Science.gov

Sample records for argon plasma coagulation

  1. Coagulation of Dust Particles in Argon Plasma of RF Discharge

    SciTech Connect

    Mankelevich, Yu. A.; Olevanov, M. A.; Pal, A. F.; Rakhimova, T. V.; Ryabinkin, A. N.; Serov, A. O.; Filippov, A. V.

    2008-09-07

    The experiments on coagulation of poly-disperse particles with various size distributions injected into the argon plasma of the magnetron radio-frequency discharge are discussed. The experiments were carried out under the conditions similar to those using dusty plasma for technology applications. Within the created theory the threshold behavior of the coagulation process was explained for the first time, the estimation of the critical particle size for onset of a fast coagulation was made, and the analytical calculation of the coagulation rate of dust particles was performed. The proposed coagulation mechanism makes it possible to describe the typical features of coagulation processes observed in experiments and to explain the effects of attraction and coalescence of highly negatively charged microns size particles.

  2. [Argon plasma coagulation (APC): a new mode in gastrointestinal endoscopy--first experience].

    PubMed

    Dajcman, D; Skalicky, M; Pernat, C; Pocajt, M

    2001-01-01

    Argon plasma coagulation (APC) is a new method of non-contact electrocoagulation in which current is applied to tissues by means of ionised argon gas (argon plasma). The development of special applicators has made this method applicable for gastrointestinal endoscopy. The primary indication for APC is the treatment of hemorrhage in the gastrointestinal tract. APC has been proven to be highly effective and easily used, with clear advantages over previously used methods. This article describes the introduction of APC in Slovenia and the first experiences with this method in the clinical department of internal medicine in Maribor.

  3. Flexible bronchoscopic argon plasma coagulation for management of massive hemoptysis in bronchial Dieulafoy's disease

    PubMed Central

    Madan, Karan; Dhungana, Ashesh; Hadda, Vijay; Mohan, Anant; Guleria, Randeep

    2017-01-01

    Dieulafoy's disease is an uncommon condition, the usual site of occurrence being the gastrointestinal tract. The condition refers to the presence of a dysplastic submucosal artery with mucosal vascular branches that has propensity to cause recurrent bleeding. Dieulafoy's disease of the bronchus is rare. Herein, we describe the case of a 26-year-old male who presented with recurrent bouts of hemoptysis and bronchial Dieulafoy's disease was diagnosed. Flexible bronchoscopy was performed, and argon plasma coagulation (APC) of the bleeding lesion was done. The procedure was successful and was followed by complete eradication of the vascular malformation and cessation of hemoptysis. APC is a useful tool in the armamentarium of an interventional pulmonologist that can allow rapid and safe control of bleeding from superficially located and bleeding endobronchial lesions, and can be easily and effectively applied using a flexible bronchoscope. PMID:28144074

  4. Argon plasma coagulation for superficial esophageal squamous-cell carcinoma in high-risk patients

    PubMed Central

    Tahara, Kumiko; Tanabe, Satoshi; Ishido, Kenji; Higuchi, Katsuhiko; Sasaki, Tohru; Katada, Chikatoshi; Azuma, Mizutomo; Nakatani, Kento; Naruke, Akira; Kim, Myungchul; Koizumi, Wasaburo

    2012-01-01

    AIM: To evaluate the usefulness and safety of argon plasma coagulation (APC) for superficial esophageal squamous-cell carcinoma (SESC) in high-risk patients. METHODS: We studied 17 patients (15 men and 2 women, 21 lesions) with SESC in whom endoscopic mucosal resection (EMR), endoscopic submucosal dissection (ESD), and open surgery were contraindicated from March 1999 through February 2009. None of the patients could tolerate prolonged EMR/ESD or open surgery because of severe concomitant disease (e.g., liver cirrhosis, cerebral infarction, or ischemic heart disease) or scar formation after EMR/ESD and chemoradiotherapy. After conventional endoscopy, an iodine stain was sprayed on the esophageal mucosa to determine the lesion margins. The lesion was then ablated by APC. We retrospectively studied the treatment time, number of APC sessions per site, complications, presence or absence of recurrence, and time to recurrence. RESULTS: The median duration of follow-up was 36 mo (range: 6-120 mo). All of the tumors were macroscopically classified as superficial and slightly depressed type (0-IIc). The preoperative depth of invasion was clinical T1a (mucosal cancer) for 19 lesions and clinical T1b (submucosal cancer) for 2. The median treatment time was 15 min (range: 10-36 min). The median number of treatment sessions per site was 2 (range: 1-4). The median hospital stay was 14 d (range: 5-68 d). Among the 17 patients (21 lesions), 2 (9.5%) had recurrence and underwent additional APC with no subsequent evidence of recurrence. There were no treatment-related complications, such as bleeding or perforation. CONCLUSION: APC is considered to be safe and effective for the management of SESC that cannot be resected endoscopically because of underlying disease, as well as for the control of recurrence after EMR and local recurrence after chemoradiotherapy. PMID:23082058

  5. Argon plasma coagulation compared with stent placement in the palliative treatment of inoperable oesophageal cancer

    PubMed Central

    Sigounas, Dimitrios E; Krystallis, Christoforos; Couper, Graeme; Paterson-Brown, Simon; Tatsioni, Athina

    2016-01-01

    Background Self-expandable metal stents (SEMSs) are the main palliative modality used in inoperable oesophageal cancer. Other palliative modalities, including argon plasma coagulation (APC), have also been used. Objective The purpose of this study was to assess the relative efficacy of SEMS and APC regarding the survival of patients with inoperable oesophageal cancer, not receiving chemo/radiotherapy. Methods Single centre, retrospective analysis of all patients (n = 228) with inoperable oesophageal cancer between January 2000 and July 2014, not receiving chemo-radiotherapy, treated with SEMS (n = 160) or APC (n = 68) as primary palliation modalities. Cox regression analysis was performed to identify individual factors affecting survival and Kaplan–Meier curves were created for patients treated with APC and SEMS for stage III and IV disease. Survival intervals were compared by the log-rank test. Results Type of treatment was the only statistically significant factor affecting survival, after disease stage stratification (hazard ratio (HR): 1.36, 95% confidence interval (CI): 1.13–1.65 of SEMS over APC, p: 0.002). Median survival for patients treated with APC and SEMS was 257 (interquartile range (IQR): 414, 124) and 151 (IQR: 241, 61) days respectively in stage III disease. It was 135 (IQR: 238, 43) and 70 (IQR: 148, 32) days respectively in stage IV disease. Both differences were statistically significant (p = 0.02 and 0.05 respectively). Conclusions APC is a promising palliation modality in inoperable oesophageal cancer, when patients are not candidates for chemo-radiotherapy. A randomized controlled trial will be needed to confirm those results.

  6. Video: argon plasma coagulator in a 2-month-old child with tracheoesophageal fistula.

    PubMed

    Nardo, Giovanni Di; Oliva, Salvatore; Barbato, Maria; Aloi, Marina; Midulla, Fabio; Roggini, Mario; Valitutti, Francesco; Frediani, Simone; Cucchiara, Salvatore

    2012-09-01

    A 2 month-old boy was admitted to the authors' hospital because of regurgitation and persistent cough during breastfeeding. A chest X-ray examination and a barium esophagogram disclosed small amounts of barium passing in the trachea, suggesting a tracheoesophageal fistula (TEF). Bronchoscopy combined with upper gastrointestinal (GI) endoscopy performed with the patient under general anesthesia confirmed the fistula. The TEF was treated by injection of 1 ml Glubran 2 from the esophageal side. A nasogastric tube was placed for feedings, and 7 days later, a barium esophagogram showed a reduction of caliber but not complete closure of the TEF. Unsuccessful fistula obliteration with Glubran was attributed to technical difficulties in catheterization of the fistula orifice, mainly resulting from its close proximity to the upper esophageal sphincter and to its small caliber. Therefore, an argon plasma coagulator (APC) probe with a circumferentially oriented nozzle was used from the esophageal side as an alternative technique to fulgurate the residual fistula orifice (see video). A nasogastric tube was placed for feedings. Oral feeding was started 7 days later when a barium esophagogram confirmed complete fistula closure. At the 2-year follow-up visit, the boy was asymptomatic, and the barium esophagogram was negative. This report describes a case in which esophagoscopy gave a clear view of the fistula due to its direction from esophagus to trachea. Complete fistula obliteration was not obtained with Glubran. However, APC was successfully used to close the residual fistula orifice. The authors suggest that APC can be used as an alternative endoscopic technique to repair TEF when other techniques fail.

  7. Efficacy of argon plasma coagulation compared with topical formalin application for chronic radiation proctopathy

    PubMed Central

    Alfadhli, AA; Alazmi, WM; Ponich, T; Howard, JM; Prokopiw, I; Alaqeel, A; Gregor, JC

    2008-01-01

    BACKGROUND: Chronic radiation proctopathy (CRP) is a troublesome complication of radiotherapy to the pelvis for which current treatment modalities are suboptimal. Currently, the application of formalin to the rectal mucosa (AFR) and thermal ablation with argon plasma coagulation (APC) are the most promising options. OBJECTIVE: To compare the efficacy and safety of AFR with APC for CRP. PATIENTS AND METHODS: Records of 22 patients (male to female ratio, 19:3; mean age, 74 years) who received either APC or AFR for chronic hematochezia caused by CRP, and who were evaluated and treated between May 1998 and April 2002, were reviewed. Complete evaluations were made three months after completion of each therapeutic modality. Patients were considered to be responders if there was a 10% increase in hemoglobin from baseline or complete normalization of hemoglobin (male patients, higher than 130 g/L; female patients, higher than 115 g/L) without the requirement for blood transfusion. RESULTS: The mean hemoglobin level before therapy was 107 g/L. Patients received an average of 1.78 sessions for APC and 1.81 sessions for AFR. Eleven patients (50%) were treated with APC alone, eight patients (36%) with AFR alone and three (14%) with both modalities (two with AFR followed by APC, and one with APC followed by AFR). Eleven of 14 patients (79%) in the APC group were responders, compared with three of 11 patients (27%) in the AFR group (P=0.017). In the APC group, seven of 11 responders required only a single session, while in the AFR group, only one patient responded after a single session. Adverse events (nausea, vomiting, flushing, abdominal cramps, rectal pain and fever) occurred in two patients after APC and in nine patients after AFR (P=0.001). In the APC group, the mean hemoglobin level increase was 20 g/L at three months follow-up, compared with 14 g/L in the AFR group. CONCLUSION: This retrospective study suggests that APC is more effective and safe than topical AFR to

  8. Efficacy of argon plasma coagulation in the management of portal hypertensive gastropathy

    PubMed Central

    Hanafy, Amr Shaaban; El Hawary, Amr Talaat

    2016-01-01

    Objectives: Evaluation of the outcome and experience in 2 years of management of portal hypertensive gastropathy (PHG) by argon plasma coagulation (APC) in a cohort of Egyptian cirrhotic patients. Methods: This study was conducted over a 2-year period from January 2011 to February 2013. Upper gastrointestinal endoscopy was performed to evaluate the degree and site of PHG. APC was applied to areas with mucosal vascular lesions. Results: In total, 200 cirrhotic patients were enrolled; 12 patients were excluded due to death (n = 6) caused by hepatic encephalopathy (n = 3), hepatorenal syndrome (n = 2), or chronic lymphatic leukemia (n = 1), or did not complete the treatment sessions (n = 6), so 188 patients completed the study. PHG was mainly fundic in 73 patients (38.8 %), corporeal in 66 patients (35.1 %), and pangastric in 49 patients (26.1 %) (P = 0.026). Patients were exposed to APC and received proton pump inhibitors together with propranolol at a dose sufficient to reduce the heart rate by 25 % or down to 55 beats/min. The mean (± standard deviation) number of sessions was 1.65 ± 0.8; six patients needed four sessions (3.2 %), 19 patients needed three sessions (10.1 %), 74 patients needed two sessions (39.4 %), and 89 patients needed one session (47.3 %). Patients with fundic and corporeal PHG required the lowest number of sessions (P = 0.000). Patients were followed up every 2 months for up to 1 year; the end point was a complete response with improved anemia and blood transfusion requirement which was achieved after one session in 89 patients (75.4 %), two sessions in 24 patients (20.3 %) and three sessions in five patients (4.3 %). A complete response was more prevalent in patients with corporeal and fundic PHG (P = 0.04). Conclusions: After 2 years’ experience in managing PHG, we found that a combination of APC and non-selective beta blockers was highly efficacious and safe in controlling

  9. From electrocautery, balloon dilatation, neodymium-doped:yttrium-aluminum-garnet (Nd:YAG) laser to argon plasma coagulation and cryotherapy

    PubMed Central

    Pickering, Edward M.; Lee, Hans J.

    2015-01-01

    Over the past decade, there has been significant advancement in the development/application of therapeutics in thoracic diseases. Ablation methods using heat or cold energy in the airway is safe and effective for treating complex airway disorders including malignant and non-malignant central airway obstruction (CAO) without limiting the impact of future definitive therapy. Timely and efficient use of endobronchial ablative therapies combined with mechanical debridement or stent placement results in immediate relief of dyspnea for CAO. Therapeutic modalities reviewed in this article including electrocautery, balloon dilation (BD), neodymium-doped:yttrium-aluminum-garnet (Nd:YAG) laser, argon plasma coagulation (APC), and cryotherapy are often combined to achieve the desired results. This review aims to provide a clinically oriented review of these technologies in the modern era of interventional pulmonology (IP). PMID:26807284

  10. Argon Plasma Coagulation Therapy Versus Topical Formalin for Intractable Rectal Bleeding and Anorectal Dysfunction After Radiation Therapy for Prostate Carcinoma

    SciTech Connect

    Yeoh, Eric; Tam, William; Schoeman, Mark; Moore, James; Thomas, Michelle; Botten, Rochelle; Di Matteo, Addolorata

    2013-12-01

    Purpose: To evaluate and compare the effect of argon plasma coagulation (APC) and topical formalin for intractable rectal bleeding and anorectal dysfunction associated with chronic radiation proctitis. Methods and Materials: Thirty men (median age, 72 years; range, 49-87 years) with intractable rectal bleeding (defined as ≥1× per week and/or requiring blood transfusions) after radiation therapy for prostate carcinoma were randomized to treatment with APC (n=17) or topical formalin (n=13). Each patient underwent evaluations of (1) anorectal symptoms (validated questionnaires, including modified Late Effects in Normal Tissues–Subjective, Objective, Management, and Analytic and visual analogue scales for rectal bleeding); (2) anorectal motor and sensory function (manometry and graded rectal balloon distension); and (3) anal sphincteric morphology (endoanal ultrasound) before and after the treatment endpoint (defined as reduction in rectal bleeding to 1× per month or better, reduction in visual analogue scales to ≤25 mm, and no longer needing blood transfusions). Results: The treatment endpoint was achieved in 94% of the APC group and 100% of the topical formalin group after a median (range) of 2 (1-5) sessions of either treatment. After a follow-up duration of 111 (29-170) months, only 1 patient in each group needed further treatment. Reductions in rectal compliance and volumes of sensory perception occurred after APC, but no effect on anorectal symptoms other than rectal bleeding was observed. There were no differences between APC and topical formalin for anorectal symptoms and function, nor for anal sphincteric morphology. Conclusions: Argon plasma coagulation and topical formalin had comparable efficacy in the durable control of rectal bleeding associated with chronic radiation proctitis but had no beneficial effect on anorectal dysfunction.

  11. Low risk of contamination with human papilloma virus during treatment of condylomata acuminata with multilayer argon plasma coagulation and CO₂ laser ablation.

    PubMed

    Weyandt, Gerhard H; Tollmann, Franz; Kristen, Peter; Weissbrich, Benedikt

    2011-03-01

    Multilayer argon plasma coagulation (APC) is a new effective method for the treatment of genital warts. We assessed the generation of aerosols containing human papilloma virus (HPV) DNA during treatment of genital warts with multilayer APC and with CO₂ laser ablation. Surveillance petri dishes, swabs from the glasses and nasolabial folds of the operating physician, and swabs taken from the suction units used during CO₂ laser ablation were tested by HPV PCR. HPV DNA corresponding to patient derived HPV types of genital warts was not found in any of the petri dishes and swabs obtained during APC treatment. HPV DNA was detected in none of the petri dishes obtained during CO₂ laser treatment, but in suction filters. In conclusion, both CO₂ laser ablation with plume suction and APC treatment seem to have a low risk of HPV contamination of the operation room.

  12. The tissue effect of argon-plasma coagulation with prior submucosal injection (Hybrid-APC) versus standard APC: A randomized ex-vivo study

    PubMed Central

    Neugebauer, Alexander; Scharpf, Marcus; Braun, Kirsten; May, Andrea; Ell, Christian; Fend, Falko; Enderle, Markus D

    2014-01-01

    Background Thermal ablation for Barrett’s oesophagus has widely been established in gastrointestinal endoscopy during the last decade. The mainly used methods of radiofrequency ablation (RFA) and argon-plasma coagulation (APC) carry a relevant risk of stricture formation of up to 5–15%. Newer ablation techniques that are able to overcome this disadvantage would therefore be desirable. The aim of the present study was to compare the depth of tissue injury of the new method of Hybrid-APC versus standard APC within a randomized study in a porcine oesophagus model. Methods Using a total of eight explanted pig oesophagi, 48 oesophageal areas were ablated either by standard or Hybrid-APC (APC with prior submucosal fluid injection) using power settings of 50 and 70 W. The depth of tissue injury to the oesophageal wall was analysed macroscopically and histopathologically. Results Using 50 W, mean coagulation depth was 937 ± 469 µm during standard APC, and 477 ± 271 µm during Hybrid-APC (p = 0.064). Using 70 W, coagulation depth was 1096 ± 320 µm (standard APC) and 468 ± 136 µm (Hybrid-APC; p = 0.003). During all settings, damage to the muscularis mucosae was observed. Using standard APC, damage to the submucosal layer was observed in 4/6 (50 W) and 6/6 cases (70 W). During Hybrid-APC, coagulation of the submucosal layer occurred in 2/6 (50 W) and 1/6 cases (70 W). The proper muscle layer was only damaged during conventional APC (50 W: 1/6; 70 W: 3/6). Limitations Ex-vivo animal study with limited number of cases. Conclusions Hybrid-APC reduces coagulation depth by half in comparison with standard APC, with no thermal injury to the proper muscle layer. It may therefore lead to a lower rate of stricture formation during clinical application. PMID:25360316

  13. Randomized controlled study of endoscopic band ligation and argon plasma coagulation in the treatment of gastric antral and fundal vascular ectasia

    PubMed Central

    Mosaad, Samah; Alkhalawany, Walaa; Abo-Ali, Lobna; Enaba, Mohamed; Elsaka, Aymen; Elfert, Asem A

    2015-01-01

    Background Gastric antral vascular ectasia (GAVE) is characterized by mucosal and submucosal vascular ectasia causing recurrent hemorrhage and thus, chronic anemia, in patients with cirrhosis. Treatment with argon plasma coagulation (APC) is an effective and safe method, but requires multiple sessions of endoscopic therapy. Endoscopic band ligation (EBL) was found to be a good alternative for APC as a treatment for GAVE, especially in refractory cases. The aim of this prospective randomized controlled study was to evaluate the safety and efficacy of EBL, as compared to APC, in the treatment of GAVE and gastric fundal vascular ectasia (GFVE). Patients and methods A total of 88 cirrhotic patients with GAVE were prospectively randomized to endoscopic treatment with either EBL or APC, every 2 weeks until complete obliteration was accomplished; then they were followed up endoscopically after 6 months, plus they had monthly measurement of hemoglobin levels during that period. Results We describe the presence of mucosal and submucosal lesions in the gastric fundal area that were similar to those found in GAVE in 13 patients (29.5%) of the EBL group and 9 patients (20.5%) of the APC group; we named this GFVE. In these cases, we treated the fundal lesions with the same techniques we had used for treating GAVE, according to the randomization. We found that EBL significantly decreased the number of sessions required for complete obliteration of the lesions (2.98 sessions compared to 3.48 sessions in the APC group (p < 0.05)). Hemoglobin levels increased significantly after obliteration of the lesions in both groups, compared to pretreatment values (p < 0.05), but with no significant difference between the two groups (p > 0.05); however, the EBL group of patients required a significantly smaller number of units of blood transfusion than the APC group of patients (p < 0.05). There were no significant differences in adverse events nor complications between the

  14. Transpupillary CW YAG laser coagulation. A comparison with argon green and krypton red lasers.

    PubMed

    Peyman, G A; Conway, M D; House, B

    1983-08-01

    The authors have developed a CW YAG laser for transpupillary coagulation. The effects of CW YAG coagulation on the retina, retinal vessels, and fovea were compared with those produced by the krypton red and argon green lasers. To produce threshold coagulative lesions in monkeys and rabbits, we needed five to ten times more energy with the CW YAG than with the krypton red or argon green lasers. Nerve fiber damage was observed only when coagulating retinal vessels with the argon green laser. At the parameters used, none of the lasers damaged the sensory retina of the fovea. The CW YAG may be used as a new mode of laser coagulation in the treatment of retinal diseases.

  15. Diamond film growth argon-carbon plasmas

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.; Liu, Shengzhong; Pan, Xianzheng; Zuiker, Christopher D.

    1998-01-01

    A method and system for manufacturing diamond film. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrogen and hydrocarbon and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous and deposition of a diamond film on a substrate.

  16. Argon laser photo-coagulation complications in diabetic retinopathy.

    PubMed

    Pavljasević, Suzana; Pranjić, Nurka; Sarajlić, Dzevdet

    2004-05-01

    Diabetic retinopathy is a disease based on vascular genesis that begins as microangiopathy and develops into macroangioapthy preceded by fibroproliferation changes. According to histo- pathological changes, diabetic retinopathy is divided into nonproliferative, pre-proliferative and proliferative diabetic retinopathy. Possibilities and needs for photo-coagulation in the earlier and later changes in retina reduce the meaning of conservative treatment. Laser photo-coagulation with therapeutical may cause unwanted and damaging effects, as well. Complications diagnosed in diabetic retinopathy, such as cataract, secondary glaucoma, central retinal vein thrombosis, haemophthalmus, are much more frequent in patients with laser photo-coagulation treatment.

  17. Merging of high speed argon plasma jets

    SciTech Connect

    Case, A.; Messer, S.; Brockington, S.; Wu, L.; Witherspoon, F. D.; Elton, R.

    2013-01-15

    Formation of an imploding plasma liner for the plasma liner experiment (PLX) requires individual plasma jets to merge into a quasi-spherical shell of plasma converging on the origin. Understanding dynamics of the merging process requires knowledge of the plasma phenomena involved. We present results from the study of the merging of three plasma jets in three dimensional geometry. The experiments were performed using HyperV Technologies Corp. 1 cm Minirailguns with a preionized argon plasma armature. The vacuum chamber partially reproduces the port geometry of the PLX chamber. Diagnostics include fast imaging, spectroscopy, interferometry, fast pressure probes, B-dot probes, and high speed spatially resolved photodiodes, permitting measurements of plasma density, temperature, velocity, stagnation pressure, magnetic field, and density gradients. These experimental results are compared with simulation results from the LSP 3D hybrid PIC code.

  18. Diamond film growth argon-carbon plasmas

    DOEpatents

    Gruen, D.M.; Krauss, A.R.; Liu, S.Z.; Pan, X.Z.; Zuiker, C.D.

    1998-12-15

    A method and system are disclosed for manufacturing diamond film. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrogen and hydrocarbon and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous and deposition of a diamond film on a substrate. 29 figs.

  19. Coagulation of dust particles in a plasma

    NASA Technical Reports Server (NTRS)

    Horanyi, M.; Goertz, C. K.

    1990-01-01

    The electrostatic charge of small dust grains in a plasma in which the temperature varies in time is discussed, pointing out that secondary electron emission might introduce charge separation. If the sign of the charge on small grains is opposite to that on big ones, enhanced coagulation can occur which will affect the size distribution of grains in a plasma. Two scenarios where this process might be relevant are considered: a hot plasma environment with temperature fluctuations and a cold plasma environment with transient heating events. The importance of the enhanced coagulation is uncertain, because the plasma parameters in grain-producing environments such as a molecular cloud or a protoplanetary disk are not known. It is possible, however, that this process is the most efficient mechanism for the growth of grains in the size range of 0.1-500 microns.

  20. Nanoparticle coagulation in fractionally charged and charge fluctuating dusty plasmas

    SciTech Connect

    Nunomura, Shota; Kondo, Michio; Shiratani, Masaharu; Koga, Kazunori; Watanabe, Yukio

    2008-08-15

    The kinetics of nanoparticle coagulation has been studied in fractionally charged and charge fluctuating dusty plasmas. The coagulation occurs when the mutual collision frequency among nanoparticles exceeds their charging and decharging/neutralization frequency. Interestingly, the coagulation is suppressed while a fraction (several percent) of nanoparticles are negatively charged in a plasma, in which stochastic charging plays an important role. A model is developed to predict a phase diagram of the coagulation and its suppression.

  1. Contact activation of blood-plasma coagulation.

    PubMed

    Vogler, Erwin A; Siedlecki, Christopher A

    2009-04-01

    This opinion identifies inconsistencies in the generally-accepted surface biophysics involved in contact activation of blood-plasma coagulation, reviews recent experimental work aimed at resolving inconsistencies, and concludes that this standard paradigm requires substantial revision to accommodate new experimental observations. Foremost among these new findings is that surface-catalyzed conversion of the blood zymogen factor XII (FXII, Hageman factor) to the enzyme FXIIa (FXII [surface] --> FXIIa, a.k.a. autoactivation) is not specific for anionic surfaces, as proposed by the standard paradigm. Furthermore, it is found that surface activation is moderated by the protein composition of the fluid phase in which FXII autoactivation occurs by what appears to be a protein-adsorption-competition effect. Both of these findings argue against the standard view that contact activation of plasma coagulation is potentiated by the assembly of activation-complex proteins (FXII, FXI, prekallikrein, and high-molecular weight kininogen) directly onto activating surfaces (procoagulants) through specific protein/surface interactions. These new findings supplement the observation that adsorption behavior of FXII and FXIIa is not remarkably different from a wide variety of other blood proteins surveyed. Similarity in adsorption properties further undermines the idea that FXII and/or FXIIa are distinguished from other blood proteins by unusual adsorption properties resulting in chemically-specific interactions with activating anionic surfaces. IMPACT STATEMENT: This review shows that the consensus biochemical mechanism of contact activation of blood-plasma coagulation that has long served as a rationale for poor hemocompatibility is an inadequate basis for surface engineering of advanced cardiovascular biomaterials.

  2. Contact activation of blood-plasma coagulation

    NASA Astrophysics Data System (ADS)

    Golas, Avantika

    Surface engineering of biomaterials with improved hemocompatibility is an imperative, given the widespread global need for cardiovascular devices. Research summarized in this dissertation focuses on contact activation of FXII in buffer and blood plasma frequently referred to as autoactivation. The extant theory of contact activation imparts FXII autoactivation ability to negatively charged, hydrophilic surfaces. According to this theory, contact activation of plasma involves assembly of proteins comprising an "activation complex" on activating surfaces mediated by specific chemical interactions between complex proteins and the surface. This work has made key discoveries that significantly improve our core understanding of contact activation and unravel the existing paradigm of plasma coagulation. It is shown herein that contact activation of blood factor XII (FXII, Hageman factor) in neat-buffer solution exhibits a parabolic profile when scaled as a function of silanized-glass-particle activator surface energy (measured as advancing water adhesion tension t°a=g° Iv costheta in dyne/cm, where g°Iv is water interfacial tension in dyne/cm and theta is the advancing contact angle). Nearly equal activation is observed at the extremes of activator water-wetting properties --36 < t°a < 72 dyne/cm (O° ≤ theta < 120°), falling sharply through a broad minimum within the 20 < t°a < 40 dyne/cm (55° < theta < 75°). Furthermore, contact activation of FXII in buffer solution produces an ensemble of protein fragments exhibiting either procoagulant properties in plasma (proteolysis of blood factor XI or prekallikrein), amidolytic properties (cleavage of s-2302 chromogen), or the ability to suppress autoactivation through currently unknown biochemistry. The relative proportions of these fragments depend on activator surface chemistry/energy. We have also discovered that contact activation is moderated by adsorption of plasma proteins unrelated to coagulation through an

  3. ECR Plasma Sterilisation, Argon and Nitrogen Treated Plasma

    NASA Astrophysics Data System (ADS)

    Helhel, Selcuk; Oksuz, Lutfi; Cerezci, Osman; Rad, Abbas Y.

    2004-09-01

    ECR type plasma system was built to produce plasma in axial direction. Plasma was initiated in a specially designed Nickel - Chrome cylindrical vacuum tube which is being driven through dielectric window by 2.45GHz commercial magnetron source. Tube is also surrounded by a coil driving 150ADC to generate approximately 875Gauss magnetic field at the center. Langmuir probe and ICCD for optical spectrometry were used to characterize internal parameters like electron density, electron temperature and different characteristics of the plasma. Bacillus Subtilis var nigar, bacillus Stearothermophilus, bacillus pumilus E601, Escherichia coli and staphylococcus aureus type bacteria were selected as a reference. Each is resistant for different actions while the Bacilus cereus is the most resistant bacteria for microwave interaction. This study presents the effect of system on used bacteria. Those are gram positive and gram negative bacteria that refers to structure of cell wall. The sterilization efficacy of Argon type ECR plasma was found to be over 99, 5% in Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis (vegetative cell), Bacillus cereus (vegetative cell), Bacillus pumilus and Escherichia coli. System response type is less than 2 minutes.

  4. Properties of radio-frequency heated argon confined uranium plasmas

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Pure uranium hexafluoride (UF6) was injected into an argon confined, steady state, rf-heated plasma within a fused silica peripheral wall test chamber. Exploratory tests conducted using an 80 kW rf facility and different test chamber flow configurations permitted selection of the configuration demonstrating the best confinement characteristics and minimum uranium compound wall coating. The overall test results demonstrated applicable flow schemes and associated diagnostic techniques were developed for the fluid mechanical confinement and characterization of uranium within an rf plasma discharge when pure UF6 is injected for long test times into an argon-confined, high-temperature, high-pressure, rf-heated plasma.

  5. Characterization and literature review of bowel perforation injuring using argon beam coagulation

    NASA Astrophysics Data System (ADS)

    Barnes, Kelli S.; Merchel, Renée. A.; Taylor, Kenneth D.

    2015-03-01

    INTRODUCTION: Argon Beam Coagulation (ABC®) technology is used in conjunction with the ConMed ABCFlex® Probe to provide non-contact hemostasis, coagulation, and tissue devitalization during endoscopic procedures. ABC provides a superficial tissue effect; however, there is a risk of bowel perforation. To better understand the settings that lead to perforation, this study reviews the literature and provides an ex vivo characterization of the ABCFlex Probe tissue effect at different settings when used at small distances. METHODS: Depth of thermal tissue effect was characterized to determine the effect of three parameters: power (W), distance from probe tip to tissue (mm) and application duration (s). 3 ABCFlex Probes were used to create 15 samples on ex vivo porcine small intestine for each combination of parameters. The depth of tissue effect for each sample was measured using a light microscope. RESULTS: Depth of tissue effect increases as power and application time increases. An increase of distance from the probe tip to the tissue results in a decrease in depth of tissue effect from a near contact to 1mm distance. Depth of tissue effect doesn't significantly change from 1mm to 3mm distance. CONCLUSION: ABCFlex Probe can be used to achieve hemostasis in endoscopic procedures. Increasing power and application time increases the depth of thermal effect while increasing distance from the probe time to the surface of the tissue decreases the depth of tissue effect.

  6. Effect of argon addition on plasma parameters and dust charging in hydrogen plasma

    SciTech Connect

    Kakati, B. Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.; Saxena, Y. C.

    2014-10-28

    Experimental results on effect of adding argon gas to hydrogen plasma in a multi-cusp dusty plasma device are reported. Addition of argon modifies plasma density, electron temperature, degree of hydrogen dissociation, dust current as well as dust charge. From the dust charging profile, it is observed that the dust current and dust charge decrease significantly up to 40% addition of argon flow rate in hydrogen plasma. But beyond 40% of argon flow rate, the changes in dust current and dust charge are insignificant. Results show that the addition of argon to hydrogen plasma in a dusty plasma device can be used as a tool to control the dust charging in a low pressure dusty plasma.

  7. Behavior of Excited Argon Atoms in Inductively Driven Plasmas

    SciTech Connect

    HEBNER,GREGORY A.; MILLER,PAUL A.

    1999-12-07

    Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s{sub 5} and 1s{sub 4}, in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s{sub 5} level is metastable and the 1s{sub 4} level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the data suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the discharge while the density at the edge of the discharge was unaffected. The spatially resolved excited state density measurements were combined with previous line integrated measurements in the same discharge geometry to derive spatially resolved, absolute densities of the 1s{sub 5} and 1s{sub 4} argon excited states and gas temperature spatial distributions. Fluorescence lifetime was a strong fi.mction of the rf power, pressure, argon fraction and spatial location. Increasing the power or pressure resulted in a factor of two decrease in the fluorescence lifetime while adding Cl{sub 2} or BCl{sub 3} increased the fluorescence lifetime. Excited state quenching rates are derived from the data. When Cl{sub 2} or BCl{sub 3} was added to the plasma, the maximum argon metastable density depended on the gas and ratio. When chlorine was added to the argon plasma, the spatial density profiles were independent of chlorine fraction. While it is energetically possible for

  8. PLASMA COAGULATION BY ORGANISMS OTHER THAN STAPHYLOCOCCUS AUREUS.

    PubMed

    BAYLISS, B G; HALL, E R

    1965-01-01

    Bayliss, Berenice G. (Washington State University, Pullman), and Elizabeth R. Hall. Plasma coagulation by organisms other than Staphylococcus aureus. J. Bacteriol. 89:101-105. 1965.-Approximately 200 organisms were investigated for their ability to clot human and rabbit plasma. Various anticoagulants were used in preparing the plasma: acid-citrate-dextrose, ethylenediaminetetraacetate, balanced oxalate, potassium and sodium oxalates, and heparin. Twelve organisms were found which coagulated citrated plasma in less than 8 hr: four strains of Streptococcus faecalis; two strains of S. faecalis var. zymogenes; three strains of S. faecalis var. liquefaciens; and one strain each of S. pyogenes, Escherichia coli, and Serratia marcescens. Six strains of coagulase-positive Staphylococcus were selected for use as controls. Experiments were performed to determine the mechanism by which these microorganisms coagulated citrated plasma. As this was the only plasma clotted, it was presumed that the citrate was utilized by the microorganisms, thereby releasing the calcium which was then made available so that normal physiological clotting could occur. To test this hypothesis, a chromatographic method was employed to determine the presence or absence of citrate. Coagulation tests, by use of increasing amounts of citrate, showed a linear relationship between the amount of citrate in the plasma and the coagulation time. It was demonstrated that the organisms must be actively metabolizing to clot citrated plasma. Proof for this was obtained by using a cell-free filtrate, to which thimerosal had been added to inhibit growth, instead of whole cultures for the coagulation test. Only the coagulase-positive staphylococci coagulated the citrated plasma under these conditions. From the results obtained, it was concluded that plasma coagulation by these organisms was by citrate utilization.

  9. Supersonic Argon Flow In An Arc Plasma Source

    SciTech Connect

    Izrar, B.; Dudeck, M.; Andre, P.; Elchinger, M. F.; Aubreton, J.

    2006-01-15

    The plasma properties inside a D.C. arc-jet operating with argon is analysed by means of a continuum description taking into account non equilibrium ionization processes and dissipative effects. The relaxation of the different physical processes inside the nozzle and the evolution of the Mach number are aanalysed.

  10. Opacity measurements in shock-generated argon plasmas

    SciTech Connect

    Erskine, D.

    1993-07-01

    Dense plasmas having uniform and constant density and temperature are generated by passage of a planar shock wave through gas. The opacity of the plasma is accurately measured versus wavelength by recording the risetime of emitted light. This technique is applicable to a wide variety of species and plasma conditions. Initial experiments in argon have produced plasmas with 2 eV temperatures, 0.004--0.04 g/cm{sup 3} densities, and coupling parameters {Gamma} {approximately}0.3--0.7. Measurements in visible light are compared with calculations using the HOPE code. An interesting peak in the capacity at 400 nm is observed for the first time and is identified with the 4s-5p transition in excited neutral argon atoms.

  11. Optical emission spectroscopy of argon and hydrogen-containing plasmas

    NASA Astrophysics Data System (ADS)

    Siepa, Sarah; Danko, Stephan; Tsankov, Tsanko V.; Mussenbrock, Thomas; Czarnetzki, Uwe

    2015-09-01

    Optical emission spectroscopy (OES) on neutral argon is applied to investigate argon, hydrogen and hydrogen-silane plasmas. The spectra are analyzed using an extensive collisional-radiative model (CRM), from which the electron density and the electron temperature (or mean energy) can be calculated. The CRM also yields insight into the importance of different excited species and kinetic processes. The OES measurements are performed on pure argon plasmas at intermediate pressure. Besides, hydrogen and hydrogen-silane plasmas are investigated using argon as a trace gas. Especially for the gas mixture discharges, CRMs for low and high pressure differ substantially. The commonly used line-ratio technique is found to lose its sensitivity for gas mixture discharges at higher pressure. A solution using absolutely calibrated line intensities is proposed. The effect of radiation trapping and the shape of the electron energy distribution function on the results are discussed in detail, as they have been found to significantly influence the results. This work was supported by the Ruhr University Research School PLUS, funded by Germany's Excellence Initiative [DFG GSC 98/3].

  12. Equation of state of partially ionized argon plasma

    SciTech Connect

    Chen, Q. F.; Zheng, J.; Gu, Y. J.; Chen, Y. L.; Cai, L. C.

    2011-11-15

    The ionization degree, Hugoniots, and equation of state of partially ionized argon plasma were calculated by using self-consistent fluid variational theory for temperature of 6-50 kK and density of 0.05-4.0 g/cm{sup 3}. The corrections of lowering of ionization energy of fluid argon caused by the interactions among all particles of Ar, Ar{sup +}, Ar{sup 2+}, and e have been taken into consideration in terms of the correlation contributions to the chemical potential which is determined self-consistently by the free energy function. The initial density effects of gas argon under shock compression have been discussed. Comparison is performed with available shock-wave experiments and other theoretical calculations.

  13. Degenerate four-wave mixing in equilibrium argon arc plasma

    NASA Astrophysics Data System (ADS)

    Musiol, K.; Dzierzega, K.; Pawelec, E.; Pokrzywka, B.; Pellerin, S.; Labuz, S.

    1997-12-01

    The non-intrusive degenerate four-wave mixing (DFWM) method was used to study the local thermal equilibrium atmospheric-pressure argon arc plasma. The laser wavelength was in resonance with the 0022-3727/30/24/013/img10 - 0022-3727/30/24/013/img11 ArI transition, corresponding to the 696.5 nm emission line. The Abrams - Lind theory was verified and proved to be valid under the conditions of our plasma. In the high-laser-intensity limit, the DFWM signals were shown to be exclusively dependent on the population difference between the relevant argon states. Well resolved axial and radial profiles of the plasma temperature and the electron density were determined.

  14. The interaction of an atmospheric pressure plasma jet using argon or argon plus hydrogen peroxide vapour addition with bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Deng, San-Xi; Cheng, Cheng; Ni, Guo-Hua; Meng, Yue-Dong; Chen, Hua

    2010-10-01

    This paper reports that an atmospheric pressure dielectric barrier discharge plasma jet, which uses argon or argon + hydrogen peroxide vapour as the working gas, is designed to sterilize the bacillus subtilis. Compared with the pure argon plasma, the bacterial inactivation efficacy has a significant improvement when hydrogen peroxide vapour is added into the plasma jet. In order to determine which factors play the main role in inactivation, several methods are used, such as determination of optical emission spectra, high temperature dry air treatment, protein leakage quantification, and scanning electron microscope. These results indicate that the possible inactivation mechanisms are the synergistic actions of chemically active species and charged species.

  15. Conclusive evidence of abrupt coagulation inside the void during cyclic nanoparticle formation in reactive plasma

    NASA Astrophysics Data System (ADS)

    van de Wetering, F. M. J. H.; Nijdam, S.; Beckers, J.

    2016-07-01

    In this letter, we present scanning electron microscopy (SEM) results that confirm in a direct way our earlier explanation of an abrupt coagulation event as the cause for the void hiccup. In a recent paper, we reported on the fast and interrupted expansion of voids in a reactive dusty argon-acetylene plasma. The voids appeared one after the other, each showing a peculiar, though reproducible, behavior of successive periods of fast expansion, abrupt contraction, and continued expansion. The abrupt contraction was termed "hiccup" and was related to collective coagulation of a new generation of nanoparticles growing in the void using relatively indirect methods: electron density measurements and optical emission spectroscopy. In this letter, we present conclusive evidence using SEM of particles collected at different moments in time spanning several growth cycles, which enables us to follow the nanoparticle formation process in great detail.

  16. Flush-mounted probe diagnostics for argon glow discharge plasma

    SciTech Connect

    Xu, Liang Cao, Jinxiang; Liu, Yu; Wang, Jian; Du, Yinchang; Zheng, Zhe; Zhang, Xiao; Wang, Pi; Zhang, Jin; Li, Xiao; Qin, Yongqiang; Zhao, Liang

    2014-09-15

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges. These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.

  17. Flush-mounted probe diagnostics for argon glow discharge plasma.

    PubMed

    Xu, Liang; Cao, Jinxiang; Liu, Yu; Wang, Jian; Du, Yinchang; Zheng, Zhe; Zhang, Xiao; Wang, Pi; Zhang, Jin; Li, Xiao; Qin, Yongqiang; Zhao, Liang

    2014-09-01

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges. These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.

  18. Electrospray on superhydrophobic nozzles treated with argon and oxygen plasma

    NASA Astrophysics Data System (ADS)

    Byun, Doyoung; Lee, Youngjong; Tran, Si Bui Quang; Nugyen, Vu Dat; Kim, Sanghoon; Park, Baeho; Lee, Sukhan; Inamdar, Niraj; Bau, Haim H.

    2008-03-01

    We report on a simple process to fabricate electrohydrodynamic spraying devices with superhydrophobic nozzles. These devices are useful, among other things, in mass spectrometry and printing technology. The superhydrophobic nozzle is created by roughening the surface of the polyfluorotetraethylene (PTFE) by argon and oxygen plasma treatment. We have developed a polymer-based electrospray device with a flat, superhydrophobic nozzle capable of maintaining a high contact angle and stable jetting.

  19. Low Temperature Atmospheric Argon Plasma: Diagnostics and Medical Applications

    NASA Astrophysics Data System (ADS)

    Ermolaeva, Svetlana; Petrov, Oleg; Zigangirova, Nailya; Vasiliev, Mikhail; Sysolyatina, Elena; Antipov, Sergei; Alyapyshev, Maxim; Kolkova, Natalia; Mukhachev, Andrei; Naroditsky, Boris; Shimizu, Tetsuji; Grigoriev, Anatoly; Morfill, Gregor; Fortov, Vladimir; Gintsburg, Alexander

    This study was devoted to diagnostic of low temperature plasma produced by microwave generator and investigation of its bactericidal effect against bacteria in biofilms and within eukaryotic cells. The profile of gas temperature near the torch outlet was measured. The spectrum in a wide range of wavelengths was derived by the method of optical emission spec-troscopy. Probe measurements of the floating potential of plasma were car-ried out. The estimation and adaptation of parameters of plasma flow (tem-perature, velocity, ion number density) according to medico-technical requirements were produced. The model of immersed surface-associated biofilms formed by Gram-negative bacteria, Pseudomonas aeruginosa and Burkholderia cenocepacia, and Gram-positive bacteria, Staphylococcus aureus, was used to assess bactericidal effects of plasma treatment. Reduction in the concentration of live bacteria in biofilms treated with plasma for 5 min was demonstrated by measuring Live/Dead fluorescent labeling and using direct plating. The intracellular infection model with the pathogenic bacterium, Chlamydia trachomatis, was used to study the efficacy of microwave argon plasma against intracellular parasites. A 2 min plasma treatment of mouse cells infected with C. trachomatis reduced infectious bacteria by a factor of 2×106. Plasma treatment diminished the number of viable host cells by about 20%. When the samples were covered with MgF2 glass to obstruct active particles and UV alone was applied, the bactericidal effect was re-duced by 5×104 fold compared to the whole plasma.

  20. Temporal evolution of electron beam generated Argon plasma in pasotron device

    NASA Astrophysics Data System (ADS)

    Khandelwal, Neha; Pal, U. N.; Prakash, Ram; Choyal, Y.

    2016-10-01

    The plasma- assisted slow wave oscillator (PASOTRON) is a high power microwave source in which the electron beam in the interaction region is confined by the background plasma. The plasma is generated by impact ionization of background gas with the electron beam. A model has been developed for temporal evolution of Argon plasma in pasotron device. In this model, we consider electron beam of energy E interacting with Argon gas. The resulting ionization creates quasi neutral argon plasma composed of argon Ar atoms, singly ionized ions Ar+1and electrons having energy from 0 to E. Electron impact excitation, ionization, radiative decay, radiative recombination and three body recombination processes are considered in this model. Population of ground and excited states of argon atom, ground state of argon ion as well as the population of electron energy groups is calculated by solving time dependent rate equations. Temporal evolution of electron beam generated plasma is given.

  1. Numerical Modeling of an RF Argon-Silane Plasma with Dust Particle Nucleation and Growth

    NASA Astrophysics Data System (ADS)

    Girshick, Steven; Agarwal, Pulkit

    2012-10-01

    We have developed a 1-D numerical model of an RF argon-silane plasma in which dust particles nucleate and grow. This model self-consistently couples a plasma module, a chemistry module and an aerosol module. The plasma module solves population balance equations for electrons and ions, the electron energy equation under the assumption of a Maxwellian velocity distribution, and Poisson's equation for the electric field. The chemistry module treats silane dissociation and reactions of silicon hydrides containing up to two silicon atoms. The aerosol module uses a sectional method to model particle size and charge distributions. The nucleation rate is equated to the rates of formation of anions containing two Si atoms, and a heterogeneous reaction model is used to model particle surface growth. Aerosol effects considered include particle charging, coagulation, and particle transport by neutral drag, ion drag, electric force, gravity and Brownian diffusion. Simulation results are shown for the case of a 13.56 MHz plasma at a pressure of 13 Pa and applied RF voltage of 100 V (amplitude), with flow through a showerhead electrode. These results show the strong coupling between the plasma and the spatiotemporal evolution of the nanoparticle cloud.

  2. Concerning Apparent Similarity of Structures of Fluoropolymer Surfaces Exposed to an Argon Plasma or Argon Ion Beam

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Covington, M. Alan (Technical Monitor)

    1995-01-01

    X-ray photoelectron spectroscopy (XPS) C(sub 1s) spectra of fluoropolymers exposed to either an argon plasma or argon ion beam show remarkable similarity, implying that the surface-modification reactions for these two processes likely proceed through comparable mechanisms, revolving predominantly ion-surface interactions. The importance of working with a monochromatized x-ray source for XPS analysis of the surface-modified fluoropolymers is once again emphasized.

  3. Plasma core reactor simulations using RF uranium seeded argon discharges

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1976-01-01

    Experimental results are described in which pure uranium hexafluoride was injected into an argon-confined, steady-state, RF-heated plasma to investigate characteristics of plasma core nuclear reactors. The 80 kW (13.56 MHz) and 1.2 MW (5.51 MHz) rf induction heater facilities were used to determine a test chamber flow scheme which offered best uranium confinement with minimum wall coating. The cylindrical fused-silica test chamber walls were 5.7-cm-ID by 10-cm-long. Test conditions included RF powers of 2-85 kW, chamber pressures of 1-12 atm, and uranium hexafluoride mass-flow rates of 0.005-0.13 g/s. Successful techniques were developed for fluid-mechanical confinement of RF-heated plasmas with pure uranium hexafluoride injection.

  4. Transport Properties of Equilibrium Argon Plasma in a Magnetic Field

    SciTech Connect

    Bruno, D.; Laricchiuta, A.; Chikhaoui, A.; Kustova, E. V.; Giordano, D.

    2005-05-16

    Electron electrical conductivity coefficients of equilibrium Argon plasma in a magnetic field are calculated up to the 12th Chapman-Enskog approximation at pressure of 1 atm and 0.1 atm for temperatures 500K-20000K; the magnetic Hall parameter spans from 0.01 to 100. The collision integrals used in the calculations are discussed. The convergence properties of the different approximations are assessed. The degree of anisotropy introduced by the presence of the magnetic field is evaluated. Differences with the isotropic case can be very substantial. The biggest effects are visible at high ionization degrees, i.e. high temperatures, and at strong magnetic fields.

  5. A plasma proteolysis pathway comprising blood coagulation proteases.

    PubMed

    Yang, Lu; Li, Yun; Bhattacharya, Arup; Zhang, Yuesheng

    2016-07-05

    Coagulation factors are essential for hemostasis. Here, we show that these factors also team up to degrade plasma proteins that are unrelated to hemostasis. Prolidase, SRC and amyloid β1-42 (Aβ1-42) are used as probes. Each probe, upon entering the blood circulation, binds and activates factor XII (FXII), triggering the intrinsic and common coagulation cascades, which in turn activate factor VII, a component of the extrinsic coagulation cascade. Activated factor VII (FVIIa) rapidly degrades the circulating probes. Therefore, FXII and FVIIa serve as the sensor/initiator and executioner, respectively, for the proteolysis pathway. Moreover, activation of this pathway by one probe leads to the degradation of all three probes. Significant activation of this pathway follows tissue injury and may also occur in other disorders, e.g., Alzheimer's disease, of which Aβ1-42 is a key driver. However, enoxaparin, a clinically used anticoagulant, inhibits the proteolysis pathway and elevates plasma levels of the probes. Enoxaparin may also mitigate potential impact of activators of the proteolysis pathway on coagulation. Our results suggest that the proteolysis pathway is important for maintaining low levels of various plasma proteins. Our finding that enoxaparin inhibits this pathway provides a means to control it. Inhibition of this pathway may facilitate the development of disease biomarkers and protein therapeutics, e.g., plasma Aβ1-42 as a biomarker of Alzheimer's disease or recombinant human prolidase as an antitumor agent.

  6. Simulation studies of plasma target compression by argon liners

    NASA Astrophysics Data System (ADS)

    Zhang, Lina; Kim, Hyoungkeun; Samulyak, Roman; Roman Samulyak Team

    2013-10-01

    Simulation studies of plasma liners, formed by the merger of argon plasma jets, and the compression of plasma targets in the concept of the plasma jet driven magnetoinertial fusion have been performed using FronTier code. FromTier is a hybrid Lagrangian-Eulerian code that uses explicit tracking of material interfaces, thus enabling accurate resolution of hydro instabilities, and average ionization EOS models for high-Z materials. The jets merger process is accomplished through a cascade of oblique shock waves leading to the non-uniformity of imploding plasma liner and causing the Reyleigh-Taylor instability of target during compression. The stagnation pressure, deconfinement time, Rayleigh-Taylor instabilities of the target surface, and the production of fusion neutrons were analyzed for 2D simulations that included 8, 16, and 32 jets, 3D simulation with 90 jets, and compared with the corresponding cylindrically (2D) and spherically (3D) symmetric simulations. The liner non-uniformity induces instabilities in the plasma targets that result in the reduction of stagnation pressure and fusion energy. For example, 8 time reduction of the stagnation pressure and 31 time reduction of the fusion energy was observed when the 2D simulation involving 16 jets was compared to 1D simulation.

  7. A hitherto undescribed plasma factor acting at the contact phase of blood coagulation (Flaujeac factor): case report and coagulation studies.

    PubMed

    Lacombe, M J; Varet, B; Levy, J P

    1975-11-01

    This paper reports an asymptomatic coagulation defect responsible for an abnormality at the contact phase of blood coagulation in vitro, distinct from Hageman factor and Fletcher factor deficiencies. Coagulation studies in a 50-yr-old French woman without bleeding tendency revealed the following results: whole-blood clotting time in glass tubes and activated partial thromboplastin time with kaolin and ellagic acid were greatly prolonged; one-stage prothrombin was normal; no circulating anticoagulant was detected, and the infusion of normal plasma corrected the coagulation defect with an estimated half-life of 6.5 days; the levels of factor VIII, IX, XI, and XII were normal; mutual correction was obtained with a Fletcher factor-deficient plasma; the level of whole complement was normal. Studies of the contact phase of blood coagulation and contact-induced fibrinolysis showed the same abnormalities as in Hageman factor- and Fletcher-deficient plasmas. These results indicate that the patient's plasma is deficient in a previously undescribed coagulation factor, which participates in the initial stage of the blood coagulation process in vitro. Family studies revealed consanguinity in the propositus' parents. The assay of this newly described factor in the propositus' children revealed a partial defect, compatible with a heterozygous state, in three of the four tested children. This indicates a recessive inheritance of this new blood coagulation defect.

  8. Sterilization of bacterial endospores by an atmospheric-pressure argon plasma jet

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Lim, Jin P.; Li, Shou Z.

    2007-06-01

    Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. However, the spore-killing efficiency of the atmospheric-pressure argon-oxygen jet depends very sensitively on the oxygen concentration in the argon gas.

  9. Sterilization of bacterial endospores by an atmospheric-pressure argon plasma jet

    SciTech Connect

    Uhm, Han S.; Lim, Jin P.; Li, Shou Z.

    2007-06-25

    Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. However, the spore-killing efficiency of the atmospheric-pressure argon-oxygen jet depends very sensitively on the oxygen concentration in the argon gas.

  10. Nonthermal atmospheric argon plasma jet effects on Escherichia coli biomacromolecules.

    PubMed

    Hosseinzadeh Colagar, Abasalt; Memariani, Hamed; Sohbatzadeh, Farshad; Valinataj Omran, Azadeh

    2013-12-01

    Nonthermal atmospheric plasma jet, a promising technology based on ionized gas at low temperatures, can be applied for disinfection of contaminated surfaces. In this study, Escherichia coli cells and their macromolecules were exposed to the nonthermal atmospheric argon plasma jet for different time durations. Total protein, genomic DNA, and malondialdehyde (MDA) levels of E. coli were assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining; agarose gel electrophoresis; and measurement of absorbance at 534 nm, respectively. After exposure, the spectroscopic results of liquid samples indicated that the survival reduction of E. coli can reach to 100 % in an exposure time of 600 s. Moreover, inactivation zones of E. coli, DNA degradation, and MDA levels were significantly increased. Additionally, banding patterns of total protein were changed and amino acid concentrations increased following ninhydrin test. The experimental results suggest that the nonthermal plasma could serve as an effective instrument for both sterilizing E. coli and degrading macromolecules from the surface of the objects being sterilized.

  11. Nonthermal Argon Plasma Generator and Some Potential Applications

    NASA Astrophysics Data System (ADS)

    Bunoiu, M.; Jugunaru, I.; Bica, I.; Balasoiu, M.

    2015-12-01

    A laboratory - made nonthermal plasma generator is presented. It has a diameter of 0.020 m and length of 0.155 m and contains two electrodes. The first electrode is a 2% Th-W alloy, 0.002 m in diameter bar, centred inside the generator's body by means of a four channel teflon piece; the other three channels, 0.003 m in diameter, are used for Ar supply. The second electrode is a nozzle of 0.002 m - 0.008 m diameter and 0.005m length. A ~500 kV/m electric field is generated between the two electrodes by a high frequency source (13.56 MHz ±5%), equipped with a OT-1000 (Tungsram) power triode. For Ar flows ranging from 0.00008 m3/s to 0.00056 m3/s, a plasma jet of length not exceeding 0.015 m and temperature below 315 K is obtained. Anthurium andraeanumis sample , blood matrix, human hair and textile fibers may be introduced in the plasma jet. For time periods of 30 s and 60 s, various effects like, cell detexturization, fast blood coagulation or textile fiber or hair cleaning and smoothing are obtained. These effects are presented and discussed in the paper.

  12. Course of organized structures in thermal plasma inside and outside argon plasma torch

    NASA Astrophysics Data System (ADS)

    Gruber, Jan; Sonsky, Jiri; Hlina, Jan

    2016-09-01

    Arc chamber of direct-current (dc) argon plasma torch and area just above the nozzle outside of this dc plasma torch were observed by hi-speed camera. System of reflecting mirrors and transparent silica arc chamber walls were used to obtain simultaneous records of both i) cathode area with electric arc inside the plasma torch and ii) nozzle exit with resulting plasma jet outside the plasma torch. Such experimental arrangement allowed us to track localized repeating patterns (organized structures) in the arc chamber and in the plasma flow. Identification of various organized structures - for different experimental conditions - according to their origin and typical development is presented in this paper. Impact of 300 Hz ripple in arc current was compared between different areas of the plasma. Additional simultaneous observation of plasma flow in the same system by series of photodiodes was used for verification of the results. The work was possible with institutional support RVO:61388998.

  13. [Freshly frozen preserved plasma for the treatment of intravascular coagulation in polytraumatized patients].

    PubMed

    Hehne, H J; Nyman, D; Burri, H; Wolff, G

    1976-05-15

    Coagulation disorders in hemorrhagic shock need not represent an isolated intravascular coagulation. They may also occur as a complex of local disseminated intravascular consumption, extravascular consumption, dilution, and reduced synthesis of coagulation factors. In the severely bleeding patient with hemorrhagic diathesis heparin is contraindicated because it does not normalize coagulability. Therefore, it fails to stop hemorrhage and shock remains untreatable. Fresh frozen plasma, however, has proved to be suitable as simultaneous substitution therapy of coagulopathy and of hypovolemic shock. 11 patients suffering from traumatic-hemorrhagic shock associated with intravascular coagulation and hemorrhagic diathesis were successfully treated with fresh frozen plasma, after conventional shock therapy had failed over a period of hours.

  14. Radiating plasma species density distribution in EUV-induced plasma in argon: a spatiotemporal experimental study

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Beckers, J.; Osorio, E. A.; van de Ven, T. H. M.; Banine, V. Y.

    2015-12-01

    In this contribution we experimentally study temporally and spatially resolved radiating plasma species density distribution in plasma induced by irradiating a low pressure argon gas with high energy photons with a wavelength of 13.5 nm, i.e. extreme ultraviolet (EUV). This is done by recording the optical emission spatially and temporally resolved by an iCCD camera as a function of the argon gas pressure. Our experimental results show that the emission intensity, i.e. density of radiating plasma species, depends quadratically on the gas pressure. The linear term is due to photoionization and simultaneous excitation by EUV photons, the quadratic term due to electron impact excitation by electrons generated by photoionization. The decay of radiating plasma species can be divided into two phases. At time scales shorter than 10 μs (first phase), the decay is governed by radiative decay of radiating plasma species. At longer time scales (second phase, >10 μs), the decay is dominated by diffusion and subsequent de-excitation at the wall. The experimental decay and expansion during this phase corresponds well with a simplified diffusion model. In order to gain more insight in this exotic type of plasma, we compare the electron density from previous measurements with the results obtained here.

  15. Common versus noble Bacillus subtilis differentially responds to air and argon gas plasma.

    PubMed

    Winter, Theresa; Bernhardt, Jörg; Winter, Jörn; Mäder, Ulrike; Schlüter, Rabea; Weltmann, Klaus-Dieter; Hecker, Michael; Kusch, Harald

    2013-09-01

    The applications of low-temperature plasma are not only confined to decontamination and sterilization but are also found in the medical field in terms of wound and skin treatment. For the improvement of already established and also for new plasma techniques, in-depth knowledge on the interactions between plasma and microorganism is essential. In an initial study, the interaction between growing Bacillus subtilis and argon plasma was investigated by using a growth chamber system suitable for low-temperature gas plasma treatment of bacteria in liquid medium. In this follow-up investigation, a second kind of plasma treatment-namely air plasma-was applied. With combined proteomic and transcriptomic analyses, we were able to investigate the plasma-specific stress response of B. subtilis toward not only argon but also air plasma. Besides an overlap of cellular responses due to both argon and air plasma treatment (DNA damage and oxidative stress), a variety of gas-dependent cellular responses such as growth retardation and morphological changes were observed. Only argon plasma treatments lead to a phosphate starvation response whereas air plasma induced the tryptophan operon implying damage by photooxidation. Biological findings were supported by the detection of reactive plasma species by optical emission spectroscopy and Fourier transformed infrared spectroscopy measurements.

  16. Dielectric properties in microwave remote plasma sustained in argon: Expanding plasma conditions

    SciTech Connect

    Jauberteau, J. L.; Jauberteau, I.

    2012-11-15

    This work is devoted to the study of the relative permittivity in argon expanding plasma produced below a microwave discharge sustained in a quartz tube and working at 2.45 GHz. We discuss results and explain the microwave propagation within the reactor, outside the quartz tube. It is shown that at low pressures (133 Pa) and at powers ranging from 100 W to 400 W, the wave frequency remains lower than the plasma frequency anywhere in the expanding plasma. Under these conditions, the real part of the relative permittivity is negative and the wave is reflected. Surprisingly, in these conditions, the plasma is produced inside and outside the quartz tube, below the wave launcher. This effect can be explained considering a surface wave propagating at the surface of the quartz tube then into the reactor, on the external surface of the expanding plasma below the quartz tube.

  17. Influence of oxygen traces on an atmospheric-pressure radio-frequency capacitive argon plasma discharge

    SciTech Connect

    Li Shouzhe; Wu Qi; Yan Wen; Wang Dezhen; Uhm, Han S.

    2011-10-15

    An atmospheric-pressure capacitive discharge source driven by radio-frequency power supply at 13.56 MHz has been developed experimentally that is capable of producing a homogeneous and cold glow discharge in O{sub 2}/Ar. With respect to the influence of oxygen component when diluted into argon plasma discharge on the discharge characteristics, the measurements of the electrical parameters (impedance, phase angle, resistance, and reactance) are made systematically and the densities of the metastable and resonant state of argon are determined by means of optical emission spectroscopy (OES). It is shown that the admixture of oxygen into argon plasma not only changes the electric characteristics but also alters the optical emission spectra greatly due to strong interaction between the oxygen content and the argon in the plasma environment.

  18. Influence the loading effect on modification of PET film and fiber by Argon Plasma

    NASA Astrophysics Data System (ADS)

    Vasilkin, D. P.; Shikova, T. G.; Titov, V. A.; Smirnov, S. A.; Kuzmicheva, L. A.

    2017-01-01

    Poly(ethylene terepthalate) films and fabrics were modified by low-pressure argon plasma at different area of samples been treated. Contact angles for water and glycerol were measured and surface energy was calculated for film surface characterization. Height of water capillary rise was measured for fabric. The changes in chemical structure of surface layer were analyzed by ATR-FTIR method. Influence of sample area on non-homogeneity of plasma modification was shown. Some experiments were performed with polypropylene treatment in flowing plasma afterglow to confirm the reactions of oxygen active species originated from gas products of poly(ethylene terepthalate) etching in argon plasma.

  19. Non-local thermodynamic equilibrium effects on isentropic coefficient in argon and helium thermal plasmas

    SciTech Connect

    Sharma, Rohit; Singh, Kuldip

    2014-03-15

    In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Zγ, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter θ(= T{sub e}/T{sub h}) has been investigated for the ground and excited state helium and argon plasmas at pressures 1 atm, 10 atm, and 100 atm in the temperature range from 6000 K to 60 000 K. For a given value of non-equilibrium parameter, the relationship of Zγ with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter.

  20. Near-infrared and visible photoluminescence from argon plasma polymerized fullerene film

    SciTech Connect

    Xu, C.; Chen, G.; Xie, E.; Gong, J.

    1997-05-01

    Oxygenated polymeric fullerene films synthesized in argon plasma show strong photoluminescence in near-infrared and visible region (1.50{endash}2.36 eV) at room temperature excited by a 514.5 nm argon ion laser. After being annealed at different high temperatures, photoluminescence decreased in intensity. The generation and decrease of the photoluminescence were explained in terms of the change of the fullerene C{sub 60} symmetry. {copyright} {ital 1997 American Institute of Physics.}

  1. Spectroscopic Characterization of Post-Cluster Argon Plasmas During the Blast Wave Expansion

    NASA Astrophysics Data System (ADS)

    Chung, H.-K.; Fournier, K. B.; Edwards, M. J.; Scott, H. A.; Cattolica, R.; Ditmire, T.; Lee, R. W.

    2002-10-01

    In this work we present temperature diagnostics of an expanding laser-produced argon plasma. A short-pulse (35fs) laser with an intensity of I = 1017 W/cm deposits approx 100 mJ of energy into argon clusters. This generates a hot plasma filament that develops into a cylindrically expanding shock. We develop spectral diagnostics for the temperatures of the argon plasma in the shock region and the preionized region ahead of the shock. A collisional-radiative model is applied to explore line intensity ratios derived from Ar II-Ar IV spectra that are sensitive to temperatures in a few eV range. The results of hydrodynamic simulations are employed to derive a time dependent radiative transport calculation that generates the theoretical emission spectra from the expanding plasma.

  2. The response of the inductively coupled argon plasma to solvent plasma load: spatially resolved maps of electron density obtained from the intensity of one argon line

    NASA Astrophysics Data System (ADS)

    Weir, D. G. J.; Blades, M. W.

    1994-12-01

    A survey of spatially resolved electron number density ( ne) in the tail cone of the inductively coupled argon plasma (ICAP) is presented: all of the results of the survey have been radially inverted by numerical, asymmetric Abel inversion. The survey extends over the entire volume of the plasma beyond the exit of the ICAP torch; It extends over distances of z = 5-25 mm downstream from the induction coil, and over radial distances of ± 8 mm from the discharge axis. The survey also explores a range of inner argon flow rates ( QIN), solvent plasma load ( Qspl) and r.f. power: moreover, it explores loading by water, methanol and chloroform. Throughout the survey, ne was determined from the intensity of one, optically thin argon line, by a method which assumes that the atomic state distribution function (ASDF) for argon lies close to local thermal equilibrium (LTE). The validity of this assumption is reviewed. Also examined are the discrepancies between ne from this method and ne from Stark broadening measurements. With the error taken into account, the results of the survey reveal how time averaged values of ne in the ICAP respond over an extensive, previously unexplored range of experimental parameters. Moreover, the spatial information lends insight into how the thermal conditions and the transport of energy respond. Overall, the response may be described in terms of energy consumption along the axial channel and thermal pinch within the induction region. The predominating effect depends on the solvent plasma load, the solvent composition, the robustness of the discharge, and the distribution of solvent material over the argon stream.

  3. Characterization of an atmospheric double arc argon-nitrogen plasma source

    SciTech Connect

    Tu, X.; Cheron, B. G.; Yan, J. H.; Yu, L.; Cen, K. F.

    2008-05-15

    In the framework of studies devoted to hazardous waste destruction, an original dc double anode plasma torch has been designed and tested, which produces an elongated, weak fluctuation and reproducible plasma jet at atmospheric pressure. The arc instabilities and dynamic behavior of the double arc argon-nitrogen plasma jet are investigated through the oscillations of electrical signals by combined means of fast Fourier transform and Wigner distribution. In our experiment, the restrike mode is identified as the typical fluctuation behavior in an argon-nitrogen plasma jet. The Fourier spectra and Wigner distributions exhibit two characteristic frequencies of 150 Hz and 4.1 kHz, which reveals that the nature of fluctuations in the double arc argon-nitrogen plasma can be ascribed to the undulation of the power supply and both arc roots motion on the anode channels. In addition, the microscopic properties of the plasma jet inside and outside the arc chamber are investigated by means of optical emission spectroscopy, which yields excitation, electronic, rotational, and vibrational temperatures, as well as the electron number density. The results allow us to examine the validity criteria of a local thermodynamic equilibrium (LTE) state in the plasma arc. The measured electron densities are in good agreement with those calculated from the LTE model, which indicates that the atmospheric double arc argon-nitrogen plasma in the core region is close to the LTE state under our experimental conditions.

  4. Study of an Atmospheric Pressure Plasma Jet of Argon Generated by Column Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Nur, M.; Kinandana, A. W.; Winarto, P.; Muhlisin, Z.; Nasrudin

    2016-11-01

    An atmospheric of argon plasma jet was generated by using column dielectric barrier discharge has been investigated. In this study, argon gas was passed through the capillary column by regulating the flow rate of gas. This atmospheric pressure plasma jet (APPJ) was generated by a sinusoidal AC high voltage in the range of 0.4 kV to 10 kV and at frequencies of 15 kHz and 26 kHz. APPJ has been produced with flow rate of argon gas from 1 litter/min - 10 litters/min. The electric current has been taken with variation of voltage and each interval argon gas flow rate of 1 litter/min. The results show that electric current increase linearly and then it trends to saturation condition by the increasing of applied voltage. We found also that the length of the plasma jet increase by augmenting of applied voltage both for frequencies of 15 kHz and 26 kHz. Furthermore, our results show that length of plasma jet optimum for flow rate of argon gas of 2 litters/minute. In addition, we obtained that the larger applied voltage, the greater the temperature of the plasma jet.

  5. Coherent and incoherent Thomson scattering on an argon/hydrogen microwave plasma torch with transient behaviour

    NASA Astrophysics Data System (ADS)

    Obrusník, A.; Synek, P.; Hübner, S.; van der Mullen, J. J. A. M.; Zajíčková, L.; Nijdam, S.

    2016-10-01

    A new method of processing time-integrated coherent Thomson scattering spectra is presented, which provides not only the electron density and temperature but also information about the transient behaviour of the plasma. Therefore, it is an alternative to single-shot Thomson scattering measurements as long as the scattering is coherent. The method is applied to a microwave plasma torch operating in argon or a mixture of argon with hydrogen at atmospheric pressure. Electron densities up to 8\\cdot {{10}21} m-3 (ionization degree above 10-3) were observed, which is more than two times higher than presented in earlier works on comparable discharges. Additionally, a parametric study with respect to the argon/hydrogen ratio and the input power was carried out and the results are discussed together with earlier Stark broadening measurements on the same plasma.

  6. Plasma heating and acceleration in current sheets formed in discharges in argon

    NASA Astrophysics Data System (ADS)

    Kyrie, N. P.

    2016-12-01

    According to present notion, flares on the sun and other stars, substorms in magnetospheres of Earth and other planets, and disruptive instabilities in tokamak plasma are connected to development of current sheets in magnetized plasma. Therefore, current sheet dynamics and magnetic reconnection processes were studied actively during the last several decades. This paper presents the results of experimental studies of plasma heating and acceleration in current sheets formed in discharges in argon. The temperature and energy of directed motion of argon ions of different degrees of ionization were measured by spectroscopic methods. It was found that Ar II, Ar III and Ar IV ions are localized in different regions of the sheet. It was shown that Ampere forces applied to the sheet can accelerate the argon ions to observed energies.

  7. Imaging Mie ellipsometry: dynamics of nanodust clouds in an argon-acetylene plasma

    NASA Astrophysics Data System (ADS)

    Greiner, Franko; Carstensen, Jan; Köhler, Nils; Pilch, Iris; Ketelsen, Helge; Knist, Sascha; Piel, Alexander

    2012-12-01

    For the in situ analysis of nano-sized particles in a laboratory plasma, Mie ellipsometry is a well established technique. We present a simple setup with two CCD cameras to gain online spatiotemporal resolved information of the growth dynamics of particles which are produced by plasma chemical processes in an argon-acetylene plasma. Imaging Mie ellipsometry proves to be a powerful technique to study the growth processes of nanodust in all its details.

  8. Sterilization of Bacillus subtilis Spores Using an Atmospheric Plasma Jet with Argon and Oxygen Mixture Gas

    NASA Astrophysics Data System (ADS)

    Shen, Jie; Cheng, Cheng; Fang, Shidong; Xie, Hongbing; Lan, Yan; Ni, Guohua; Meng, Yuedong; Luo, Jiarong; Wang, Xiangke

    2012-03-01

    To determine an efficient sterilization mechanism, Bacillus subtilis spore samples were exposed to an atmospheric plasma jet. By using argon/oxygen mixture gas, the decimal reduction value was reduced from 60 s (using argon gas) to 10 s. More dramatically, after 5 min treatment, the colony-forming unit (CFU) was reduced by six orders. To understand the underlying mechanism of the efficient sterilization by plasma, the contributions from heat, UV radiation, charged particles, ozone, and reactive oxygen radicals were distinguished in this work, showing that charged particles and ozone were the main killing factors. The shape changes of the spores were also discussed.

  9. Bacterial inactivation using a low-temperature atmospheric plasma brush sustained with argon gas.

    PubMed

    Yu, Q S; Huang, C; Hsieh, F-H; Huff, H; Duan, Yixiang

    2007-01-01

    This study investigated the bacterial inactivation/sterilization effects of a new atmospheric plasma source, which is a brush-shaped argon glow discharge created under 1 atm pressure. Such an atmospheric plasma brush requires extremely low power of less than 20 W to operate; and therefore is essentially a low-temperature discharge as confirmed by gas-phase temperature measurements. Two bacteria, Escherichia coli (E. coli) and Micrococcus luteus (M. luteus), seeded in various media were subjected to plasma treatment and their survivability was examined. It was found that such argon atmospheric plasma brush is very effective in destruction of the bacteria cells. With nutrient broth and standard methods agar as supporting media, a cell reduction in a level of 6 orders of magnitude was observed for E. coli within 3-4 min plasma treatment. A similar level of cell reduction was also observed for M. luteus in the two media with 2 or 3 min plasma treatment. The plasma treatment effects on the bacteria cell structures were also examined using scanning electron microscopy and the cell structure damages due to the plasma exposure were observed on both bacteria. The possible sterilization mechanism of the argon plasmas is also discussed in this article.

  10. Surface modification of fluorosilicone acrylate RGP contact lens via low-temperature argon plasma

    NASA Astrophysics Data System (ADS)

    Yin, Shiheng; Wang, Yingjun; Ren, Li; Zhao, Lianna; Kuang, Tongchun; Chen, Hao; Qu, Jia

    2008-11-01

    A fluorosilicone acrylate rigid gas permeable (RGP) contact lens was modified via argon plasma to improve surface hydrophilicity and resistance to protein deposition. The influence of plasma treatment on surface chemical structure, hydrophilicity and morphology of RGP lens was investigated by X-ray photoelectron spectrometer (XPS), contact angle measurements and scanning electron microscope (SEM), respectively. The contact angle results showed that the hydrophilicity of the contact lens was improved after plasma treatment. XPS results indicated that the incorporation of oxygen-containing groups on surface and the transformation of silicone into hydrophilic silicate after plasma treatment are the main reasons for the surface hydrophilicity improvement. SEM results showed that argon plasma with higher power could lead to surface etching.

  11. Ionic Wind Phenomenon and Charge Carrier Mobility in Very High Density Argon Corona Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Nur, M.; Bonifaci, N.; Denat, A.

    2014-04-01

    Wind ions phenomenon has been observed in the high density argon corona discharge plasma. Corona discharge plasma was produced by point to plane electrodes and high voltage DC. Light emission from the recombination process was observed visually. The light emission proper follow the electric field lines that occur between point and plane electrodes. By using saturation current, the mobilities of non-thermal electrons and ions have been obtained in argon gas and liquid with variation of density from 2,5 1021 to 2 1022 cm-3. In the case of ions, we found that the behaviour of the apparent mobility inversely proportional to the density or follow the Langevin variation law. For non-thermal electron, mobility decreases and approximately follows a variation of Langevin type until the density <= 0,25 the critical density of argon.

  12. Gas Temperature Determination in Argon-Helium Plasma at Atmospheric Pressure using van der Waals Broadening

    SciTech Connect

    Munoz, Jose; Yubero, Cristina; Calzada, Maria Dolores; Dimitrijevic, Milan S.

    2008-10-22

    The use of the van der Waals broadening of Ar atomic lines to determine the gas temperature in Ar-He plasmas, taking into account both argon and helium atoms as perturbers, has been analyzed. The values of the gas temperature inferred from this broadening have been compared with those obtained from the spectra of the OH molecular species in the discharge.

  13. On the plasma chemistry of a cold atmospheric argon plasma jet with shielding gas device

    NASA Astrophysics Data System (ADS)

    Schmidt-Bleker, Ansgar; Winter, Jörn; Bösel, André; Reuter, Stephan; Weltmann, Klaus-Dieter

    2016-02-01

    A novel approach combining experimental and numerical methods for the study of reaction mechanisms in a cold atmospheric \\text{Ar} plasma jet is introduced. The jet is operated with a shielding gas device that produces a gas curtain of defined composition around the plasma plume. The shielding gas composition is varied from pure {{\\text{N}}2} to pure {{\\text{O}}2} . The density of metastable argon \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) in the plasma plume was quantified using laser atom absorption spectroscopy. The density of long-living reactive oxygen and nitrogen species (RONS), namely {{\\text{O}}3} , \\text{N}{{\\text{O}}2} , \\text{NO} , {{\\text{N}}2}\\text{O} , {{\\text{N}}2}{{\\text{O}}5} and {{\\text{H}}2}{{\\text{O}}2} , was quantified in the downstream region of the jet in a multipass cell using Fourier-transform infrared spectroscopy (FTIR). The jet produces a turbulent flow field and features guided streamers propagating at several \\text{km}~{{\\text{s}}-1} that follow the chaotic argon flow pattern, yielding a plasma plume with steep spatial gradients and a time dependence on the \\text{ns} scale while the downstream chemistry unfolds within several seconds. The fast and highly localized electron impact reactions in the guided streamer head and the slower gas phase reactions of neutrals occurring in the plasma plume and experimental apparatus are therefore represented in two separate kinetic models. The first electron impact reaction kinetics model is correlated to the LAAS measurements and shows that in the guided streamer head primary reactive oxygen and nitrogen species are dominantly generated from \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) . The second neutral species plug-flow model hence uses an \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) source term as sole energy input and yields good agreement with the RONS measured by FTIR spectroscopy.

  14. Collisional-Radiative Modeling of Free-Burning Arc Plasma in Argon

    DTIC Science & Technology

    2013-06-01

    chemistry used in non-equilibrium modelling of free-burning arc in argon. A simple chemistry model based on the approximation of prompt ionization, a...highlight of the model was the unified description of the whole plasma domain avoiding the division into sub-domains in which different models were used ...description. Therefore, the present work is aimed at the analysis of the plasma chemistry in a way that the model enables a deeper look into the polulations

  15. Modelling of an inductively coupled plasma torch with argon at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Bahouh, Hanene; Rebiai, Saida; Rochette, David; Vacher, Damien; Dudeck, Michel

    2014-05-01

    A fluid dynamic model is used to simulate the electromagnetic field, fluid flow and heat transfer in an inductively coupled plasma torch working at atmospheric pressure for argon plasma. The numerical simulation is carried out by using the finite element method based on COMSOL software. The two-dimensional profiles of the electric field, temperature, velocity and charged particle densities are demonstrated inside the discharge region. These numerical results are obtained for a fixed flow rate, frequency and electric power.

  16. Physical and tribological properties of diamond films grown in argon-carbon plasmas

    SciTech Connect

    Zuiker, C.; Krauss, A.R.; Gruen, D.M.; Pan, X.; Li, J.C.; Csencsits, R.; Erdemir, A.; Bindal, C.; Fenske, G.

    1995-06-01

    Nanocrystalline diamond films have been deposited using a microwave plasma consisting of argon, 2--10% hydrogen and a carbon precursor such as C{sub 60} or CH{sub 4}. It was found that it is possible to grow the diamond phase with both carbon precursors, although the hydrogen concentration in the plasma was 1--2 orders of magnitude lower than normally required in the absence of the argon. Auger electron spectroscopy, x-ray diffraction measurements and transmission electron microscopy indicate the films are predominantly composed of diamond. Surface roughness, as determined by atomic force microscopy and scanning electron microscopy indicate the nanocrystalline films grown in low hydrogen content plasmas grow exceptionally smooth (30--50 nm) to thicknesses of 10 {mu}m. The smooth nanocrystalline films result in low friction coefficients ({mu}=0.04--0.06) and low average wear rates as determined by pin-on-disk measurements.

  17. Influence of oxygen in atmospheric-pressure argon plasma jet on sterilization of Bacillus atrophaeous spores

    NASA Astrophysics Data System (ADS)

    Lim, Jin-Pyo; Uhm, Han S.; Li, Shou-Zhe

    2007-09-01

    A nonequilibrium Ar /O2 plasma discharge at atmospheric pressure was carried out in a coaxial cylindrical reactor with a stepped electrode configuration powered by a 13.56MHz rf power supplier. The argon glow discharge with high electron density produces oxygen reactive species in large quantities. Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. The decimal reduction time (D values) of the Ar /O2 plasma jet at an exposure distance of 0.5-1.5cm ranges from 5 to 57s. An actinometric comparison of the sterilization data shows that atomic oxygen radicals play a significant role in plasma sterilization. When observed under a scanning electron microscope, the average size of the spores appears to be greatly reduced due to chemical reactions with the oxygen radicals.

  18. Influence of oxygen in atmospheric-pressure argon plasma jet on sterilization of Bacillus atrophaeous spores

    SciTech Connect

    Lim, Jin-Pyo; Uhm, Han S.; Li, Shou-Zhe

    2007-09-15

    A nonequilibrium Ar/O{sub 2} plasma discharge at atmospheric pressure was carried out in a coaxial cylindrical reactor with a stepped electrode configuration powered by a 13.56 MHz rf power supplier. The argon glow discharge with high electron density produces oxygen reactive species in large quantities. Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. The decimal reduction time (D values) of the Ar/O{sub 2} plasma jet at an exposure distance of 0.5-1.5 cm ranges from 5 to 57 s. An actinometric comparison of the sterilization data shows that atomic oxygen radicals play a significant role in plasma sterilization. When observed under a scanning electron microscope, the average size of the spores appears to be greatly reduced due to chemical reactions with the oxygen radicals.

  19. An argon-nitrogen-hydrogen mixed-gas plasma as a robust ionization source for inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Makonnen, Yoseif; Beauchemin, Diane

    2014-09-01

    Multivariate optimization of an argon-nitrogen-hydrogen mixed-gas plasma for minimum matrix effects, while maintaining analyte sensitivity as much as possible, was carried out in inductively coupled plasma mass spectrometry. In the presence of 0.1 M Na, the 33.9 ± 3.9% (n = 13 elements) analyte signal suppression on average observed in an all-argon plasma was alleviated with the optimized mixed-gas plasma, the average being - 4.0 ± 8.8%, with enhancement in several cases. An addition of 2.3% v/v N2 in the outer plasma gas, and 0.50% v/v H2 to the central channel, as a sheath around the nebulizer gas flow, was sufficient for this drastic increase in robustness. It also reduced the background from ArO+ and Ar2+ as well as oxide levels by over an order of magnitude. On the other hand, the background from NO+ and ArN+ increased by up to an order of magnitude while the levels of doubly-charged ions increased to 7% (versus 2.7% in an argon plasma optimized for sensitivity). Furthermore, detection limits were generally degraded by 5 to 15 fold when using the mixed-gas plasma versus the argon plasma for matrix-free solution (although they were better for several elements in 0.1 M Na). Nonetheless, the drastically increased robustness allowed the direct quantitative multielement analysis of certified ore reference materials, as well as the determination of Mo and Cd in seawater, without using any matrix-matching or internal standardization.

  20. Two distinct forms of Factor VIII coagulant protein in human plasma. Cleavage by thrombin, and differences in coagulant activity and association with von Willebrand factor.

    PubMed Central

    Weinstein, M J; Chute, L E

    1984-01-01

    We have characterized Factor VIII coagulant protein, present in normal human plasma, that reacts with a specific human 125I-labeled anti-human VIII:C antigen Fab antibody fragment. Two major Factor VIII coagulant antigen populations were present. The first, approximately 85% of the total antigen, was bound to von Willebrand factor and when tested in a standard one-stage assay had Factor VIII coagulant activity. The second antigenic population, eluting near fibrinogen when plasma was gel filtered, was not bound to von Willebrand protein, did not have Factor VIII coagulant activity unless activated, but did block anti-VIII:C Fab neutralization of clotting activity. The two antigenic populations were separable by cryoprecipitation and agarose gel electrophoresis. Although the two antigenic populations differed in their Factor VIII coagulant activity and in their binding to von Willebrand factor, the principal member of both populations is of mol wt 2.4 X 10(5). Both antigens, when proteolyzed by thrombin, were quickly converted to a 1 X 10(5)-mol wt form in association with the appearance of VIII:C activity. The 1 X 10(5)-mol wt antigen was further slowly degraded to an 8 X 10(4)-mol wt form while Factor VIII coagulant activity declined. These results demonstrate the presence of an inactive Factor VIII coagulant protein in plasma, not associated with von Willebrand factor, that can react with thrombin to yield Factor VIII coagulant activity. Images PMID:6421875

  1. New level-resolved collision data for neutral argon, benchmarked against the ALEXIS plasma experiment

    NASA Astrophysics Data System (ADS)

    Arnold, Nicholas; Loch, Stuart; Ballance, Connor; Thomas, Ed

    2016-10-01

    Performing spectroscopic measurements of emission lines in low temperature laboratory plasmas is challenging because the plasma is often neutral-dominated and not in thermal equilibrium. The densities and temperatures are such that coronal models do not apply; meaning that generalized collisional-radiative (GCR) methods must be employed to theoretically analyze atomic processes. However, for most noble gases, detailed, level-resolved atomic data for neutral and low-charge states does not exist in the literature. We report on a new project, where we use existing atomic physics codes to calculate level-resolved atomic data for neutral and low charge states of argon and compare with previously published, term-resolved theoretical results. In addition, we use the Atomic Structure and Data Analysis (ADAS) suite of codes to calculate a GCR model for low temperature neutral argon, which we compare to published measurements of argon optical emission cross sections. Finally, we compare synthetic spectra generated from our data with observations taken from the Auburn Linear Experiment for Instability Studies (ALEXIS) in an attempt to develop new optical plasma diagnostics for electron temperature and plasma density measurements. This project is supported by the U.S. Department of Energy. Grant Number: DE-FG02-00ER54476.

  2. XPS Study of Plasma- and Argon Ion-Sputtered Polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Kliss, Mark (Technical Monitor)

    1997-01-01

    The similarity of plasma-polymerized tetrafluoroethylene (PPTFE) and the fluoropolymer film deposited by rf (radio frequency) plasma sputtering (SPTFE) of polytetrafluoroethylene (PTFE), noted earlier in the literature, has been reconfirmed. FT-IR (Fourier Transform Infrared), XPS (X ray Photoelectron Spectroscopy) and UV (ultraviolet) spectroscopy has been employed in apparently the first study to involve preparation of PPTFE and SPTFE in the same reactor and under comparable low-power plasma conditions. Most of the work concerned the use of He or Ar as sputtering gas, but some runs were also carried out with the other rare gases Ne, Kr and Xe. The C1s XPS spectra of SPTFE films displayed a relatively higher content of CF2 groups, and yielded higher F/C (fluorine / carbon) ratios, than PPTFE films, while the SPTFE films were somewhat more transparent in the UV than PPTFE. The F/C ratios for SPTFE were essentially independent of the rare gas used for sputtering. Increasing rf power from 10 to 50 W for Xe plasma-sputtering of PTFE resulted in successively lower F/C ratios (1.55 to 1.21), accompanied by sputtering of the glass reactor occurring at 40 W and above. Some limited XPS, FT-IR and UV data are presented on Ar ion-sputtered PTFE.

  3. [Investigation on the Spectral Characteristics of a Plasma Jet in Atmospheric Argon Glow Discharge].

    PubMed

    Li, Xue-chen; Zhang, Chun-yan; Li, Ji-yuan; Bao, Wen-ting

    2015-12-01

    Plasma jet is a kind of important plasma source at atmospheric pressure. In recent years, it becomes an important hot topic in the field of low temperature plasma. In this paper, using a tungsten needle and a tungsten wire mesh, a direct-current excited jet is developed to operate in argon at atmospheric pressure. In the atmospheric pressure argon, the plasma jet can produce a stable plasma plume. By using the method of emission spectroscopy, the parameters of the plasma plume are investigated. The discharge emits dazzling white light from the area between the tungsten needle electrode and the wire mesh electrode. A plasma plume with a flame shape appears outside the tungsten wire mesh electrode. For a constant value of voltage (U = 13.5 kV), the length of the plasma plume increases with the gas flow rate. For a constant value of the gas flow rate(10 L · min⁻¹), the length of the plasma plume increases with the voltage. The voltage is inversely proportional to the current under the constant gas flow rate. In other words, the voltage decreases with the discharge current, which indicates that a glow discharge is formed in the plasma jet. Optical emission spectrum in 300 to 800 nm is collected from the direct-current excited plasma jet. By Boltzmann plot method, the excited electron temperature of the plasma plume is investigated as a function of the applied voltage or the gas flow rate. Results show that the excited electron temperature increases with decreasing applied voltage under the constant gas flow. Moreover, it increases with decreasing the gas flow under the constant voltage. Based on the discharge theory, these experimental phenomena are explained qualitatively. These results are of great importance to the development of atmospheric pressure uniform discharge plasma source and its application in industrial field.

  4. Experimental Investigation of Laser-sustained Plasma in Supersonic Argon Flow

    SciTech Connect

    Sperber, David; Eckel, Hans-Albert; Moessinger, Peter; Fasoulas, Stefanos

    2011-11-10

    Laser-induced energy deposition is widely discussed as a flow control technique in supersonic transportation. In case of thermal laser-plasma upstream of a blunt body, a substantial adaptation of shock wave geometry and magnitude of wave drag is predicted. Related to the research on laser supported detonation, the paper describes the implementation of laser-sustained plasma in a supersonic Argon jet. The stable plasma state is generated by the intersection of a Q-switched Nd:YAG-laser and a continuous wave CO{sub 2}-laser beams, for ignition and maintenance of the plasma respectively. A miniature supersonic Ludwieg tube test facility generates a supersonic jet at velocities of Mach 2.1. Modifications of the flow and plasma conditions are investigated and characterized by Schlieren flow visualisation, laser energy transmission and plasma radiation measurements. The results include the discussions of the flow field as well as the required laser and gas parameters.

  5. Diagnostics of surface wave driven low pressure plasmas based on indium monoiodide-argon system

    NASA Astrophysics Data System (ADS)

    Ögün, C. M.; Kaiser, C.; Kling, R.; Heering, W.

    2015-06-01

    Indium monoiodide is proposed as a suitable alternative to hazardous mercury, i.e. the emitting component inside the compact fluorescent lamps (CFL), with comparable luminous efficacy. Indium monoiodide-argon low pressure lamps are electrodelessly driven with surface waves, which are launched and coupled into the lamp by the ‘surfatron’, a microwave coupler optimized for an efficient operation at a frequency of 2.45 GHz. A non intrusive diagnostic method based on spatially resolved optical emission spectroscopy is employed to characterize the plasma parameters. The line emission coefficients of the plasma are derived by means of Abel’s inversion from the measured spectral radiance data. The characteristic plasma parameters, e.g. electron temperature and density are determined by comparing the experimentally obtained line emission coefficients with simulated ones from a collisional-radiative model. Additionally, a method to determine the absolute plasma efficiency via irradiance measurements without any goniometric setup is presented. In this way, the relationship between the plasma efficiency and the plasma parameters can be investigated systematically for different operating configurations, e.g. electrical input power, buffer gas pressure and cold spot temperature. The performance of indium monoiodide-argon plasma is compared with that of conventional CFLs.

  6. Surface Modification of Poly Vinyl Chloride (PVC) Using Low Pressure Argon and Oxygen Plasma

    NASA Astrophysics Data System (ADS)

    Mahmood, Ghoranneviss; Sheila, Shahidi; Jakub, Wiener

    2010-04-01

    In this study, commercial poly vinyl chloride (PVC) films were treated by oxygen and argon plasmas in a cylindrical glass tube which was surrounded by a DC variable magnetic field, with different sample positions in the plasma reactor and also different exposure durations. Effects of the plasma treatment on the hydrophilic properties of the films were studied by measuring the water drop contact angle on the surface of the samples. The surface topography of the untreated and plasma treated films was analyzed and compared by atomic force microscopy (AFM). The optical characteristic changes in treated samples were investigated using reflective spectrophotometry. Also, the chemical changes which appeared on the surface of the samples were investigated using Fourier transform infrared spectroscopy (FTIR). The results show that the plasma treated PVC becomes more hydrophilic with an enhanced wettability. A sharp decrease in the water contact angle may also be a consequence of the surface texturization. The aging effect on wettability of the samples was also investigated. The results show that the effect of oxygen plasma on the surface properties of the samples is more pronounced compared with that of argon plasma.

  7. Risk assessment of a cold argon plasma jet in respect to its mutagenicity.

    PubMed

    Wende, K; Bekeschus, S; Schmidt, A; Jatsch, L; Hasse, S; Weltmann, K D; Masur, K; von Woedtke, T

    2016-03-01

    Cold atmospheric pressure plasmas represent a favorable option for the treatment of heat sensitive materials and human or animal tissue. Beneficial effects have been documented in a variety of medical conditions, e.g., in the treatment of chronic wounds. It is assumed that the main mechanism of the plasma's efficacy is mediated by a stimulating dissipation of energy via radiation and/or chemical energy. Although no evidence on undesired side effects of a plasma treatment has yet been presented, skepticism toward the safety of the exposure to plasma is present. However, only little data regarding the mutagenic potential of this new treatment option is available. Accordingly, we investigated the mutagenic potential of an argon plasma jet (kinpen) using different testing systems in accordance with ISO norms and multiple cell lines: a HPRT1 mutation assay, a micronucleus formation assay, and a colony formation assay. Moderate plasma treatment up to 180 s did not increase genotoxicity in any assay or cell type investigated. We conclude that treatment with the argon plasma jet kinpen did not display a mutagenic potential under the test conditions applied and may from this perspective be regarded as safe for the use in biomedical applications.

  8. Spectroscopy of heliumlike argon resonance and satellite lines for plasma temperature diagnostics

    NASA Astrophysics Data System (ADS)

    Biedermann, C.; Radtke, R.; Fournier, K. B.

    2002-12-01

    The n=2-1 spectral emission pattern of heliumlike argon, together with the associated satellite emission originating from lithiumlike argon have been measured with high-resolution x-ray spectroscopy at the Berlin electron-beam ion trap. The observed line intensity across a wide range of excitation energies was weighted by an electron-energy distribution to analyze as a function of plasma temperature the line ratios between KLL dielectronic recombination satellites, in particular the j+z, j, and k satellites, and the w-resonance line. A good agreement between various theoretical models is found, supporting the method of line-ratio measurement as a temperature diagnostic for plasmas. A value for the so-called R-line ratio is determined and calculations with the HULLAC suite of codes predict it to be electron density independent over a wide range.

  9. Formation mechanism of graphite hexagonal pyramids by argon plasma etching of graphite substrates

    NASA Astrophysics Data System (ADS)

    Glad, X.; de Poucques, L.; Bougdira, J.

    2015-12-01

    A new graphite crystal morphology has been recently reported, namely the graphite hexagonal pyramids (GHPs). They are hexagonally-shaped crystals with diameters ranging from 50 to 800 nm and a constant apex angle of 40°. These nanostructures are formed from graphite substrates (flexible graphite and highly ordered pyrolytic graphite) in low pressure helicon coupling radiofrequency argon plasma at 25 eV ion energy and, purportedly, due to a physical etching process. In this paper, the occurrence of peculiar crystals is shown, presenting two hexagonal orientations obtained on both types of samples, which confirms such a formation mechanism. Moreover, by applying a pretreatment step with different time durations of inductive coupling radiofrequency argon plasma, for which the incident ion energy decreases at 12 eV, uniform coverage of the surface can be achieved with an influence on the density and size of the GHPs.

  10. Use of direct current argon plasma as a detector in gel filtration chromatography of biological fluids

    NASA Astrophysics Data System (ADS)

    Gardiner, P. E.; Brätter, P.; Negretti, Virginia E.; Schulze, G.

    A direct-current argon plasma spectrometer has been interfaced with a gel filtration chromatography column to serve as a multi-element-specific detector. This analytical system was used to speciate protein-bound copper, iron, and zinc in serum and intravenous infusion fluids. The operating parameters of the direct current argon plasma including instrumental drift, detection limits, effect of background levels on the calibration graphs. and accuracy were optimized. Calibrations had to be repeated every hour to compensate for instrumental drift. The detection limits of this system (3.2, 3.9 and 9.3 μg l -1 for copper, iron and zinc, respectively) are adequate for the determination of most species containing those elements in the column effluent.

  11. Histologic evaluation of the depth of necrosis produced by argon beam coagulation: implications for use as adjuvant treatment of bone tumors.

    PubMed

    Heck, Robert K; Pope, Wood D; Ahn, Jae I; Smith, Richard A; Webber, Bruce L

    2009-01-01

    Argon beam coagulation (ABC) has been advocated as adjuvant treatment after curettage of aggressive benign bone tumors. This study was done to evaluate the depth of necrosis in cancellous bone treated with ABC. A 6-month-old pig was sacrificed and 20 1.5-cm cortical windows were created in the metaphyseal areas of the humeri, femora, and tibiae, exposing the underlying cancellous bone. The defects were randomly assigned to four groups: A, control; B, ABC at 50 W; C, 100 W; and D, 150 W. Histologic evaluation determined the depth of necrosis at each setting: A, 0.1 +/- 0.1 mm; B, 1.0 +/- 0.5 mm; C, 2.9 +/- 1.0 mm; and D, 4.2 +/- 0.7 mm. There were statistically significant differences between each of the experimental groups and the control (p < .0001), between groups B and C (p < .0001), and groups C and D (p = .0002).

  12. Atom-atom inelastic collisions and three-body atomic recombination in weakly ionized argon plasmas

    NASA Technical Reports Server (NTRS)

    Braun, C. G.; Kunc, J. A.

    1989-01-01

    A stationary collisional-radiative model including both inelastic electron-atom and atom-atom collisions is used to examine nonequilibrium weakly ionized argon plasmas with atomic densities 10 to the 16th to 10 to the 20th/cu cm, temperatures below 6000 K, and with different degrees of radiation trapping. It is shown that three-body atomic recombination becomes important at high particle densities. Comparison is made between the present approach and Thomson's theory for atomic recombination.

  13. Introduction of argon beam coagulation functionality to robotic procedures using the ABC D-Flex probe: equivalency to an existing laparoscopic instrument

    NASA Astrophysics Data System (ADS)

    Merchel, Renée. A.; Barnes, Kelli S.; Taylor, Kenneth D.

    2015-03-01

    INTRODUCTION: The ABC® D-Flex Probe utilizes argon beam coagulation (ABC) technology to achieve hemostasis during minimally invasive surgery. A handle on the probe allows for integration with robotic surgical systems and introduces ABC to the robotic toolbox. To better understand the utility of D-Flex, this study compares the performance of the D-Flex probe to an existing ABC laparoscopic probe through ex vivo tissue analysis. METHODS: Comparisons were performed to determine the effect of four parameters: ABC device, tissue type, activation duration, and distance from tissue. Ten ABC D-Flex probes were used to create 30 burn samples for each comparison. Ex vivo bovine liver and porcine muscle were used as tissue models. The area and depth of each burn was measured using a light microscope. The resulting dimensional data was used to correlate tissue effect with each variable. RESULTS: D-Flex created burns which were smaller in surface area than the laparoscopic probe at all power levels. Additionally, D-Flex achieved thermal penetration levels equivalent to the laparoscopic probe. CONCLUSION: D-Flex implements a small 7F geometry which creates a more focused beam. When used with robotic precision, quick localized superficial hemostasis can be achieved with minimal collateral damage. Additionally, D-Flex achieved equivalent thermal penetration levels at lower power and argon flow-rate settings than the laparoscopic probe.

  14. Double flush-mounted probe diagnostics and data analysis technique for argon glow discharge plasma.

    PubMed

    Yu, Pengcheng; Liu, Yu; Cao, Jinxiang; Xu, Liang; Zhang, Xiao; Zhang, Zhongkai; Wang, Pi

    2017-01-01

    In this work, a double flush-mounted probe for measuring plasma parameters was designed and fabricated. The method to determine the plasma density and electron temperature using a floating double flush-mounted probe was characterized. To validate this method, the measurement results in an argon glow discharge plasma, including the electron density and temperature measurements, were compared with those obtained using a single probe and a double probe. Results indicate that the electron density measured using the double flush-mounted probe agrees well with those measured using other probes; the effective electron temperature values are also consistent within the admissible error range. These results suggest that the double flush-mounted probe can be used for accurate measurements at low pressure DC plasma discharges and also can be applied to other complex plasmas such as tokamaks, in the boundary-layer region without a reference electrode.

  15. Double flush-mounted probe diagnostics and data analysis technique for argon glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Yu, Pengcheng; Liu, Yu; Cao, Jinxiang; Xu, Liang; Zhang, Xiao; Zhang, Zhongkai; Wang, Pi

    2017-01-01

    In this work, a double flush-mounted probe for measuring plasma parameters was designed and fabricated. The method to determine the plasma density and electron temperature using a floating double flush-mounted probe was characterized. To validate this method, the measurement results in an argon glow discharge plasma, including the electron density and temperature measurements, were compared with those obtained using a single probe and a double probe. Results indicate that the electron density measured using the double flush-mounted probe agrees well with those measured using other probes; the effective electron temperature values are also consistent within the admissible error range. These results suggest that the double flush-mounted probe can be used for accurate measurements at low pressure DC plasma discharges and also can be applied to other complex plasmas such as tokamaks, in the boundary-layer region without a reference electrode.

  16. Normal and abnormal evolution of argon metastable density in high-density plasmas

    SciTech Connect

    Seo, B. H.; Kim, J. H.; You, S. J.

    2015-05-15

    A controversial problem on the evolution of Ar metastable density as a function of electron density (increasing trend versus decreasing trend) was resolved by discovering the anomalous evolution of the argon metastable density with increasing electron density (discharge power), including both trends of the metastable density [Daltrini et al., Appl. Phys. Lett. 92, 061504 (2008)]. Later, by virtue of an adequate physical explanation based on a simple global model, both evolutions of the metastable density were comprehensively understood as part of the abnormal evolution occurring at low- and high-density regimes, respectively, and thus the physics behind the metastable evolution has seemed to be clearly disclosed. In this study, however, a remarkable result for the metastable density behavior with increasing electron density was observed: even in the same electron density regime, there are both normal and abnormal evolutions of metastable-state density with electron density depending on the measurement position: The metastable density increases with increasing electron density at a position far from the inductively coupled plasma antenna but decreases at a position close to the antenna. The effect of electron temperature, which is spatially nonuniform in the plasma, on the electron population and depopulation processes of Argon metastable atoms with increasing electron density is a clue to understanding the results. The calculated results of the global model, including multistep ionization for the argon metastable state and measured electron temperature, are in a good agreement with the experimental results.

  17. A new air-cooled argon/helium-compatible inductively coupled plasma torch.

    PubMed

    Miyahara, Hidekazu; Iwai, Takahiro; Kaburaki, Yuki; Kozuma, Tomokazu; Shigeta, Kaori; Okino, Akitoshi

    2014-01-01

    A new inductively coupled plasma (ICP) torch with an air-cooling system has been designed and developed for both argon and helium plasma. The same torch and impedance-matching network could be used to generate stable Ar- and He-ICP. The torch consists of three concentric quartz tubes. The carrier gas, plasma gas, and cooling gas flow through the intervals between each tube. In an experiment, it was found that Ar-ICP could form a stable plasma under the following conditions: RF power of 1 kW, plasma gas flow rate of 11 L min(-1), and cooling gas flow rate of 20 L min(-1). For He-ICP, an input RF power of 2 kW, which is two-times higher than that of a conventional He-ICP, could be constantly applied to the plasma with plasma gas and cooling gas flow rates of 15 and 20 L min(-1), respectively. Using this torch, it is possible to realize lower plasma gas consumption for Ar- and He-ICP and a high-power drive for He-ICP. It has been found that the air-cooling gas stabilizes the shape of the plasma due to the pressure difference between the cooling gas and the plasma gas.

  18. Novel Diamond Films Synthesis Strategy: Methanol and Argon Atmosphere by Microwave Plasma CVD Method Without Hydrogen

    NASA Astrophysics Data System (ADS)

    Yang, Li; Jiang, Caiyi; Guo, Shenghui; Zhang, Libo; Gao, Jiyun; Peng, Jinhui; Hu, Tu; Wang, Liang

    2016-09-01

    Diamond thin films are grown on silicon substrates by only using methanol and argon mixtures in microwave plasma chemical vapor deposition (MPCVD) reactor. It is worth mentioning that the novel strategy makes the synthesis reaction works smoothly without hydrogen atmosphere, and the substrates temperature is only 500 °C. The evidence of surface morphology and thickness under different time is obtained by characterizing the samples using scanning electron microscopy (SEM). X-ray diffractometer (XRD) spectrum reveals that the preferential orientation of (111) plane sample is obtained. The Raman spectra indicate that the dominant component of all the samples is a diamond. Moreover, the diamond phase content of the targeted films was quantitatively analyzed by X-ray photoelectron spectroscopy (XPS) method, and the surface roughness of diamond films was investigated by atomic force microscope (AFM). Meanwhile, the possible synthesis mechanism of the diamond films in methanol- and argon-mixed atmosphere was discussed.

  19. Effects of argon gas pressure on its metastable-state density in high-density plasmas

    SciTech Connect

    Seo, B. H.; Kim, J. H.; You, S. J.

    2015-05-15

    The effect of argon gas pressure on its metastable density in inductively coupled plasmas (ICPs) is investigated by using the laser-induced fluorescence method. Our results show that the metastable-state density of argon varies with the gas pressure depending on the measurement position; the density decreases with the pressure at a position far from the ICP antenna, whereas it increases with the pressure at a position near the antenna. This contrast in the metastable-state density trend with the pressure is explained by considering the electron temperature variations at the two measurement positions. The theoretical interpretation and calculation using a global model are also addressed in detail in this paper.

  20. Reduction of a collisional-radiative mechanism for argon plasma based on principal component analysis

    SciTech Connect

    Bellemans, A.; Munafò, A.; Magin, T. E.; Degrez, G.; Parente, A.

    2015-06-15

    This article considers the development of reduced chemistry models for argon plasmas using Principal Component Analysis (PCA) based methods. Starting from an electronic specific Collisional-Radiative model, a reduction of the variable set (i.e., mass fractions and temperatures) is proposed by projecting the full set on a reduced basis made up of its principal components. Thus, the flow governing equations are only solved for the principal components. The proposed approach originates from the combustion community, where Manifold Generated Principal Component Analysis (MG-PCA) has been developed as a successful reduction technique. Applications consider ionizing shock waves in argon. The results obtained show that the use of the MG-PCA technique enables for a substantial reduction of the computational time.

  1. Effect of the electron energy distribution on total energy loss with argon in inductively coupled plasmas

    SciTech Connect

    Kim, June Young; Kim, Young-Cheol; Kim, Yu-Sin; Chung, Chin-Wook

    2015-01-15

    The total energy lost per electron-ion pair lost ε{sub T} is investigated with the electron energy distribution function (EEDF). The EEDFs are measured at various argon powers in RF inductively coupled plasma, and the EEDFs show a depleted distribution (a discontinuity occurring at the minimum argon excitation threshold energy level) with the bulk temperature and the tail temperature. The total energy loss per electron-ion pair lost ε{sub T} is calculated from a power balance model with the Maxwellian EEDFs and the depleted EEDFs and then compared with the measured ε{sub T} from the floating probe. It is concluded that the small population of the depleted high energy electrons dramatically increases the collisional energy loss, and the calculated ε{sub T} from the depleted EEDFs has a value that is similar to the measured ε{sub T}.

  2. Characterization of a copper spark discharge plasma in argon atmosphere used for nanoparticle generation

    NASA Astrophysics Data System (ADS)

    Kohut, Attila; Galbács, Gábor; Márton, Zsuzsanna; Geretovszky, Zsolt

    2017-04-01

    Spark discharge nanoparticle generation is a dynamically developing application of discharge plasmas. In the present study a spark plasma used for nanoparticle generation is characterized by means of spatially and temporally resolved optical emission spectroscopy (OES) supplemented by fast imaging. The data acquired during the generation of copper nanoparticles in argon ambient is used to describe the spatial and temporal evolution of the species in the spark gap and to derive plasma parameters such as excitation temperature and electron concentration on one hand, and the concentration of the Cu species eroded by a single spark on the other. It is shown that temporally and spatially resolved OES together with a simple equilibrium model are efficient tools to estimate the characteristics of the spark discharge plasma that typically exists in spark discharge nanoparticle generators.

  3. Investigating the Mutagenicity of a Cold Argon-Plasma Jet in an HET-MN Model

    PubMed Central

    Bender, Claudia; Benkhai, Hicham; Sckell, Axel; Below, Harald; Stope, Matthias B.; Kramer, Axel

    2016-01-01

    Objective So-called cold physical plasmas for biomedical applications generate reactive oxygen and nitrogen species and the latter can trigger DNA damage at high concentrations. Therefore, the mutagenic risks of a certified atmospheric pressure argon plasma jet (kINPen MED) and its predecessor model (kINPen 09) were assessed. Methods Inner egg membranes of fertilized chicken eggs received a single treatment with either the kINPen 09 (1.5, 2.0, or 2.5 min) or the kINPen MED (3, 4, 5, or 10 min). After three days of incubation, blood smears (panoptic May-Grünwald-Giemsa stain) were performed, and 1000 erythrocytes per egg were evaluated for the presence of polychromatic and normochromic nuclear staining as well as nuclear aberrations and binucleated cells (hen’s egg test for micronuclei induction, HET-MN). At the same time, the embryo mortality was documented. For each experiment, positive controls (cyclophosphamide and methotrexate) and negative controls (NaCl-solution, argon gas) were included. Additionally, the antioxidant potential of the blood plasma was assessed by ascorbic acid oxidation assay after treatment. Results For both plasma sources, there was no evidence of genotoxicity, although at the longest plasma exposure time of 10 min the mortality of the embryos exceeded 40%. The antioxidant potential in the egg’s blood plasma was not significantly reduced immediately (p = 0.32) or 1 h (p = 0.19) post exposure to cold plasma. Conclusion The longest plasma treatment time with the kINPen MED was 5–10 fold above the recommended limit for treatment of chronic wounds in clinics. We did not find mutagenic effects for any plasma treatment time using the either kINPen 09 or kINPen MED. The data provided with the current study seem to confirm the lack of a genotoxic potential suggesting that a veterinary or clinical application of these argon plasma jets does not pose mutagenic risks. PMID:27584003

  4. Study of plasma coagulation induced by contact with calcium chloride solution.

    PubMed

    Shida, Natsumi; Kurasawa, Ryuta; Maki, Yasuyuki; Toyama, Yoshiharu; Dobashi, Toshiaki; Yamamoto, Takao

    2016-11-28

    Blood coagulation capability is one of the most important factors for the diagnosis of patients with thrombosis. Regarding the blood coagulation as an example of gelation of soft matter, we can apply an analytical method to this phenomenon and pick up some relevant parameters. In various systems, gelation dynamics induced by contact between a polymer solution and a crosslinker solution are well explained by the "moving boundary picture" (Yamamoto et al., J. Phys. Chem. B, 2010, 114, 10002-10009). The aim of this paper is to clarify whether this picture can be applied to a clinically important biological system used for blood coagulation tests. We have measured the time course of the thickness of a plasma gel layer formed when plasma comes in contact with calcium chloride solution in a rectangular cell and analyzed theoretically on the basis of the moving boundary picture. The entire process was well expressed using a scaled equation involving three parameters characterizing the plasma, k, Kin, and β, where k is the time required to reach the incipient stage of three-dimensional network formation, the parameter Kin is proportional to calcium chloride concentration and β is a constant. These results indicate the direct applicability of the general theory of gelation dynamics induced by contact between two solutions to the in vitro coagulation (gelation) of plasma, and the fitting parameters may be used for diagnosis.

  5. Kinetic modelling for an atmospheric pressure argon plasma jet in humid air

    NASA Astrophysics Data System (ADS)

    Van Gaens, W.; Bogaerts, A.

    2013-07-01

    A zero-dimensional, semi-empirical model is used to describe the plasma chemistry in an argon plasma jet flowing into humid air, mimicking the experimental conditions of a setup from the Eindhoven University of Technology. The model provides species density profiles as a function of the position in the plasma jet device and effluent. A reaction chemistry set for an argon/humid air mixture is developed, which considers 84 different species and 1880 reactions. Additionally, we present a reduced chemistry set, useful for higher level computational models. Calculated species density profiles along the plasma jet are shown and the chemical pathways are explained in detail. It is demonstrated that chemically reactive H, N, O and OH radicals are formed in large quantities after the nozzle exit and H2, O2(1Δg), O3, H2O2, NO2, N2O, HNO2 and HNO3 are predominantly formed as ‘long living’ species. The simulations show that water clustering of positive ions is very important under these conditions. The influence of vibrational excitation on the calculated electron temperature is studied. Finally, the effect of varying gas temperature, flow speed, power density and air humidity on the chemistry is investigated.

  6. Polydiagnostic calibration performed on a low pressure surface wave sustained argon plasma

    NASA Astrophysics Data System (ADS)

    de Vries, N.; Palomares, J. M.; Iordanova, E. I.; van Veldhuizen, E. M.; van der Mullen, J. J. A. M.

    2008-10-01

    The electron density and electron temperature of a low pressure surface wave sustained argon plasma have been determined using passive and active (laser) spectroscopic methods simultaneously. In this way the validity of the various techniques is established while the plasma properties are determined more precisely. The electron density, ne, is determined with Thomson scattering (TS), absolute continuum measurements, Stark broadening and an extrapolation of the atomic state distribution function (ASDF). The electron temperature, Te, is obtained using TS and absolute line intensity (ALI) measurements combined with a collisional-radiative (CR) model for argon. At an argon pressure of 15 mbar, the ne values obtained with TS and Stark broadening agree with each other within the error bars and are equal to (4 ± 0.5) × 1019 m-3, whereas the ne value (2 ± 0.5) × 1019 m-3 obtained from the continuum is about 30% lower. This suggests that the used formula and cross-section values for the continuum method have to be reconsidered. The electron density determined by means of extrapolation of the ASDF to the continuum is too high (~1020 m-3). This is most probably related to the fact that the plasma is strongly ionizing so that the extrapolation method is not justified. At 15 mbar, the Te values obtained with TS are equal to 13 400 ± 1100 K while the ALI/CR-model yields an electron temperature that is about 10% lower. It can be concluded that the passive results are in good or fair agreement with the active results. Therefore, the calibrated passive methods can be applied to other plasmas in a similar regime for which active diagnostic techniques cannot be used.

  7. Comparison in the analytical performance between krypton and argon glow discharge plasmas as the excitation source for atomic emission spectrometry.

    PubMed

    Wagatsuma, Kazuaki

    2009-04-01

    The emission characteristics of ionic lines of nickel, cobalt, and vanadium were investigated when argon or krypton was employed as the plasma gas in glow discharge optical emission spectrometry. A dc Grimm-style lamp was employed as the excitation source. Detection limits of the ionic lines in each iron-matrix alloy sample were compared between the krypton and the argon plasmas. Particular intense ionic lines were observed in the emission spectra as a function of the discharge gas (krypton or argon), such as the Co II 258.033 nm for krypton and the Co II 231.707 nm for argon. The explanation for this is that collisions with the plasma gases dominantly populate particular excited levels of cobalt ion, which can receive the internal energy from each gas ion selectively, for example, the 3d(7)4p (3)G(5) (6.0201 eV) for krypton and the 3d(7)4p (3)G(4) (8.0779 eV) for argon. In the determination of nickel as well as cobalt in iron-matrix samples, more sensitive ionic lines could be found in the krypton plasma rather than the argon plasma. Detection limits in the krypton plasma were 0.0039 mass% Ni for the Ni II 230.299-nm line and 0.002 mass% Co for the Co II 258.033-nm line. However, in the determination of vanadium, the argon plasma had better analytical performance, giving a detection limit of 0.0023 mass% V for the V II 309.310-nm line.

  8. Experimental investigations of the plasma radial uniformity in single and dual frequency capacitively coupled argon discharges

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Liu, Yong-Xin; Gao, Fei; Liu, Gang-Hu; Han, Dao-Man; Wang, You-Nian

    2016-12-01

    In the current work, the radial plasma density has been measured by utilizing a floating double probe in single and dual frequency capacitively coupled argon discharges operated in a cylindrical reactor, aiming at a better understanding of electromagnetic effects and exploring a method of improving the radial uniformity. The experimental results indicate that for single-frequency plasma sustained at low pressure, the plasma density radial profile exhibits a parabolic distribution at 90 MHz, whereas at 180 MHz, the profile evolves into a bimodal distribution, and both cases indicate poor uniformities. With increasing the pressure, the plasma radial uniformity becomes better for both driving frequency cases. By contrast, when discharges are excited by two frequencies (i.e., 90 + 180 MHz), the plasma radial profile is simultaneously influenced by both sources. It is found that by adjusting the low-frequency to high-frequency voltage amplitude ratio β, the radial profile of plasma density could be controlled and optimized for a wide pressure range. To gain a better plasma uniformity, it is necessary to consider the balance between the standing wave effect, which leads to a maximum plasma density at the reactor center, and the edge field effect, which is responsible for a maximum density near the radial electrode edge. This balance can be controlled either by selecting a proper gas pressure or by adjusting the ratio β.

  9. Theoretical Study of Plasma Parameters Dependence on Gas Temperature in an Atmospheric Pressure Argon Microwave Discharge

    SciTech Connect

    Pencheva, M.; Benova, E.; Zhelyazkov, I.

    2008-03-19

    The gas temperature is an important parameter in many applications of atmospheric pressure microwave discharges (MW). That is why it is necessary to study the influence of that temperature on the plasma characteristics. Our investigation is based on a self-consistent model including the wave electrodynamics and gas-discharge kinetics. We adopt a blocks' energy structure of the argon excited atom. More specifically, we consider 7 different blocks of states, namely 4s, 4p, 3d, 5s, 5p, 4d, and 6s. Each block k is characterized by its effective energy uk (derived as an average energy of all levels in the block), as well as its effective g-factor and population. The argon dimmer, atomic and molecular ions are also taken into account in the model. We solve the Boltzmann equation in order to get the electron energy distribution function and the necessary rate constants of the elementary processes. The collisional-radiative part of the model is based on 87 processes. As a result we obtain the electron and ions' number densities, mean electron energy, mean power for sustaining an electron--ion pair in the discharge bulk, as well as the population of the excited blocks of states of the argon atom as functions of the gas temperature.

  10. Waves generated in the vicinity of an argon plasma gun in the ionosphere

    NASA Technical Reports Server (NTRS)

    Cahill, L. J., Jr.; Arnoldy, R. L.; Lysak, R. L.; Peria, W.; Lynch, K. A.

    1993-01-01

    Wave and particle observations were made in the close vicinity of an argon plasma gun carned to over 600 km altitude on a sounding rocket. The gun was carned on a subpayload, separated from the main payload early in the flight. Twelve-second argon ion ejections were energized alternately with a peak energy of 100 or 200 eV. They produced waves, with multiple harmonics, in the range of ion cyclotron waves, 10 to 1000 Hz at rocket altitudes. Many of these waves could not be identified as corresponding to the cyclotron frequencies of any of the ions, argon or ambient, known to be present. In addition, the wave frequencies were observed to rise and fall and to change abruptly during a 12-s gun operation. The wave amplitudes, near a few hundred Hertz, were of the order of O. 1 V/m. Some of the waves may be ion-ion hybrid waves. Changes in ion populations were observed at the main payload and at the subpayload during gun operations. A gun-related, field-aligned, electron population also appeared.

  11. A new argon-ion laser based on an electrodeless plasma

    NASA Astrophysics Data System (ADS)

    Zhu, Peiyuan; Boswell, R. W.

    1990-09-01

    A new argon-ion laser based on an electrodeless magnetoplasma with tube diameter of 45 mm has been developed, and optimal operation conditions were experimentally studied. The plasma is thought to be generated by helicon waves excited by an external antenna. Selected excitation of the upper lasing level of Ar II due to Landau damping of the helicon waves plays an important role in the mechanics of the population inversion in this laser. The plasma is excited externally by radio frequencies, and the lasing active medium does not directly touch the plasma wall, minimizing the problems associated with impurities from both the electrodes and the tube wall. A peak laser output power of 0.5 W with 0.0001 efficiency has been reached, although the operation condition was not far from that of the lasing threshold.

  12. Spatially Resolved Measurements of a Double Layer in an Argon Helicon Plasma

    NASA Astrophysics Data System (ADS)

    Aguirre, Evan; Siddiqui, Umair; McKee, John; Scime, Earl

    2015-11-01

    We report 2-dimensional, spatially resolved observations of a double layer in an expanding helicon plasma. These new measurements investigate the origins of previously observed multiple ion beam populations in the downstream plasma. We use Laser Induced Fluorescence (LIF) to measure the ion velocity distribution functions (IVDFs) of argon ions and neutrals both parallel and perpendicular to the background magnetic field and an rf-compensated Langmuir probe to determine the local plasma potential. These are the first multi-dimensional LIF measurements of ion acceleration in a current-free double layer and were obtained with a recently installed, internal scanning probe system in the HELIX-LEIA experimental facility. This work is supported by US National Science Foundation grant number PHY-1360278.

  13. Optical Characteristics Investigation of the Cold Argon Plasma Jet for the Medical Applications

    NASA Astrophysics Data System (ADS)

    Nguyen-Kuok, Shi; Malakhov, Yury; Bach, Sy Minh; Korotkikh, Ivan

    2016-09-01

    The medical setup was designed for the treatment of wounds, disinfection of inflammation, for the destruction of damaged cells. The results of experimental determination of the optical characteristics of Argon cold plasma at atmospheric pressure are presented in the paper. The main components of the experimental setup are plasma torch, spectrometer, photo-electron multiplier, oscilloscope, gas consumption QAr = 1 - 20 l/min. Spectrum of the plasma jet is obtained using the grating spectrometer Spectra with radiometric calibration, operating in the visible range λ = 380 - 760 nm. The sun-blind photodetector was used for determination of the intensity of radiation in the UV range λ = 190 - 380 nm. The emission spectrum consists of a continuous radiation and the emissions of atoms and ions ArI and ArII. The analysis of spectral lines was carried out.

  14. Reduction of collisional-radiative models for laser-produced argon plasmas

    NASA Astrophysics Data System (ADS)

    Abrantes, Richard June; Karagozian, Ann; Le, Hai

    2016-10-01

    The formation of a laser-induced plasma involves a variety of physical phenomena stemming from the laser-plasma interaction. A thorough understanding of these processes encourages improvement and innovation for many applications. In this work, we aim to computationally reduce a previously-developed collisional-radiative (CR) model constructed from the LANL database, which includes all of the relevant collisional and radiative processes for all the ionic stages of argon. The laser is coupled to the plasma via multiphoton ionization and inverse Bremsstrahlung, processes important for electron production and heating. The use of the CR model allows us to identify dominant mechanisms responsible for initial breakdown of the gas and thermal equilibriation processes. The results are compared with experimental data from laser-induced breakdown experiments. Research supported by the AFOSR.

  15. The susceptibility of plasma coagulation factor XI to nitration and peroxynitrite action.

    PubMed

    Ponczek, Michał Błażej

    2016-10-01

    Coagulation factor XI is present in blood plasma as the zymogen, like other serine proteases of hemostatic system, but as the only coagulation factor forms 140-160kDa homodimers. Its activation is induced by thrombin, and a positive feedback increases the generation of the extra thrombin. Experimental and clinical observations confirm protective roles of factor XI deficiencies in certain types of thromboembolic disorders. Thromboembolism still causes serious problems for modern civilization. Diseases associated with the blood coagulation system are often associated with inflammation and oxidative stress. Peroxynitrite is produced from nitric oxide and superoxide in inflammatory diseases. The aim of the current study is to evaluate effects of nitrative stress triggered by peroxynitrite on coagulation factor XI in human plasma employing biochemical and bioinformatic methods. The amidolytic assay shows increase in factor XI activity triggered by peroxynitrite. Peroxynitrite interferes factor XI by nitration and fragmentation, which is demonstrated by immunoprecipitation followed by western blotting. Nitrated factor XI is even present in control blood plasma. The results suggest possible modifications of factor XI on the molecular level. Computer simulations show tyrosine residues as targets of peroxynitrite action. The modifications induced by peroxynitrite in factor XI might be important in thrombotic disorders.

  16. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    SciTech Connect

    Adam B. Sefkow and Samuel A. Cohen

    2009-04-09

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ~ 200-300 λD,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength.

  17. Numerical simulations of a nonequilibrium argon plasma in a shock-tube experiment

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc

    1991-01-01

    A code developed for the numerical modeling of nonequilibrium radiative plasmas is applied to the simulation of the propagation of strong ionizing shock waves in argon gas. The simulations attempt to reproduce a series of shock-tube experiments which will be used to validate the numerical models and procedures. The ability to perform unsteady simulations makes it possible to observe some fluctuations in the shock propagation, coupled to the kinetic processes. A coupling mechanism by pressure waves, reminiscent of oscillation mechanisms observed in detonation waves, is described. The effect of upper atomic levels is also briefly discussed.

  18. Decay of femtosecond laser-induced plasma filaments in air, nitrogen, and argon for atmospheric and subatmospheric pressures

    NASA Astrophysics Data System (ADS)

    Aleksandrov, N. L.; Bodrov, S. B.; Tsarev, M. V.; Murzanev, A. A.; Sergeev, Yu. A.; Malkov, Yu. A.; Stepanov, A. N.

    2016-07-01

    The temporal evolution of a plasma channel at the trail of a self-guided femtosecond laser pulse was studied experimentally and theoretically in air, nitrogen (with an admixture of ˜3% O2), and argon in a wide range of gas pressures (from 2 to 760 Torr). Measurements by means of transverse optical interferometry and pulsed terahertz scattering techniques showed that plasma density in air and nitrogen at atmospheric pressure reduces by an order of magnitude within 3-4 ns and that the decay rate decreases with decreasing pressure. The argon plasma did not decay within several nanoseconds for pressures of 50-760 Torr. We extended our theoretical model previously applied for atmospheric pressure air plasma to explain the plasma decay in the gases under study and to show that allowance for plasma channel expansion affects plasma decay at low pressures.

  19. Electron density characterization of inductively-coupled argon plasmas by the terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Jang, Dogeun; Uhm, Han Sup; Jang, Donggyu; Hur, Min Sup; Suk, Hyyong

    2016-12-01

    Inductively-coupled plasmas (ICP) in the high electron density regime of the order of 1013 cm-3 are generated and their electron density characteristics are investigated by the terahertz time-domain spectroscopy (THz-TDS) method. In this experiment, the plasma was produced by RF (13.56 MHz) with an applied RF power of 300-550 W and the argon gas pressure was in the range of 0.3-1.1 Torr. We generated the THz wave by focusing a femtosecond laser pulse in air with a DC electric field. As a plasma diagnostic tool, the THz-TDS method is found to successfully provide the plasma density information in the high-density regime, where other available plasma diagnostic tools are very limited. In addition, the analytical model based on the ambipolar diffusion equation is compared with experimental observations to explain the behavior of the electron density in the ICP source, where the plasma density is shown to be related to the applied RF power and gas pressure. The analytical result from the model is found to be in good agreement with the THz-TDS result.

  20. Effect of secondary emission on the argon plasma afterglow with large dust density

    SciTech Connect

    Denysenko, I. B.; Azarenkov, N. A.; Burmaka, G. P.; Stefanović, I.

    2015-02-15

    A zero-dimensional, space-averaged model for argon plasma afterglow with large dust density is developed. In the model, three groups of electrons in the plasma afterglow are assumed: (i) thermal electrons with Maxwellian distribution, (ii) energetic electrons generated by metastable-metastable collisions (metastable pooling), and (iii) secondary electrons generated at collisions of ions with the electrodes, which have sufficiently large negative voltages in the afterglow. The model calculates the time-dependencies for electron densities in plasma afterglow based on experimental decay times for metastable density and electrode bias. The effect of secondary emission on electron density in the afterglow is estimated by varying secondary emission yields. It is found that this effect is less important than metastable pooling. The case of dust-free plasma afterglow is considered also, and it is found that in the afterglow the effect of secondary emission may be more important than metastable pooling. The secondary emission may increase thermal electron density n{sub e} in dust-free and dusty plasma afterglows on a few ten percentages. The calculated time dependencies for n{sub e} in dust-free and dusty plasma afterglows describe well the experimental results.

  1. Thermalization of electrons in decaying extreme ultraviolet photons induced low pressure argon plasma

    NASA Astrophysics Data System (ADS)

    Beckers, J.; van der Horst, R. M.; Osorio, E. A.; Kroesen, G. M. W.; Banine, V. Y.

    2016-06-01

    We monitored—in the pressure range: 0.5-15 Pa—the electron temperature in decaying plasmas induced in argon gas by pulsed irradiation with extreme ultraviolet (EUV) photons with wavelengths closely around 13.5 nm. For this purpose, temporal measurements of the space-averaged and electric field weighted electron density after pulsed EUV irradiation are combined with an ambipolar diffusion model of the plasma. Results demonstrate that electrons are thermalized to room temperature before the plasma has fully expanded to the chamber walls for pressures of 3 Pa and higher. At pressures below 3 Pa, the electron temperature was found to be up to 0.1 eV above room temperature which is explained by the fact that plasma expansion is too quick for the electrons to fully thermalize. The comparison between plasma expansion duration towards a surface, plasma decay at a surface and time needed for thermalization and cooling of electrons is essential for designers of EUV lithography tools and EUV sources since the temperature of electrons dictates many fundamental physical processes.

  2. Numerical characterization of magnetized capacitively coupled argon plasmas driven by combined dc/rf sources

    NASA Astrophysics Data System (ADS)

    Yang, Shali; Zhang, Ya; Wang, Hong-Yu; Wang, Shuai; Jiang, Wei

    2017-03-01

    The characteristics of magnetized capacitively coupled plasmas (CCPs) driven by combined dc/rf sources in argon have been investigated by a one-dimensional implicit Particle-in-cell/Monte Carlo collision model. Discharges operating at 13.56 MHz with a fixed rf voltage of 300 V are simulated at the pressure of 50 mTorr in argon. Four cases, i.e., CCP driven by rf source, rf + dc sources, rf source with magnetic field, and rf + dc sources with magnetic field, are presented and compared at the Vdc = -100 V, B = 50 Gs, and γi = 0.2. It is found that, with the influence of dc voltage and magnetic field, the plasma density has been greatly enhanced by over one order of magnitude over the rf-only case. This is due to the fact that the mean free path of electrons decreases by the cyclotron motion and the energetic secondary electrons are trapped by the magnetic field, leading to a significant increase in heating and ionization rates. Moreover, transition of the stochastic to Ohmic electron heating mechanism takes place as the magnetic field increases because electron kinetics can be strongly affected by the magnetic field. In general, we have demonstrated that such a configuration will enhance the discharge and thus enable CCPs work under extremely high energy density stably that can never be operated by any other configurations. We expect that such a configuration can promote many related applications, like etching, sputtering, and deposition.

  3. Long-term spatio-temporal evolution of the dust distribution in dusty argon rf plasmas

    NASA Astrophysics Data System (ADS)

    Killer, Carsten; Greiner, Franko; Groth, Sebastian; Tadsen, Benjamin; Melzer, André

    2016-10-01

    The 3D dust distribution in dense dust clouds confined in argon rf plasmas is measured by a computed tomography (CT) technique based on the extinction of visible light. On the one hand, clouds of micron-sized particles were created by injecting standardized plastic particles into the plasma. On the other hand, sub-micron sized dust with well-defined properties is grown in situ in an argon acetylene mixture. Once created, both kinds of dust clouds decay in the course of minutes to hours. This decay is monitored by CT measurements. It is revealed that micro-dust clouds feature a drastic change of the dust distribution due to a size reduction of the dust. Dust clouds of sub-micron particles, in contrast, show a strong variation of the overall dust density while the relative dust distribution remains nearly unchanged. The evolution of the overall dust density is subject to two effects: the loss of particles due to an imperfect confinement and the reduction of the dust size via etching.

  4. Plasma characteristics of argon glow discharge produced by AC power supply operating at low frequencies

    NASA Astrophysics Data System (ADS)

    Kongpiboolkid, Watcharapon; Mongkolnavin, Rattachat

    2015-04-01

    Non-thermal properties of Argon glow discharge operating with various operating pressures were measured and presented in this work. The Argon plasma is produced by a parallel conducting electrodes coupling with a high voltage AC power supply. The power supply can generate high AC voltage at various frequencies. The frequencies for the operation are in the range of a few kHz. The system is capable of generating electric field between the two metal electrodes discharge system. The characteristics of plasma produced were measured by optical emission spectroscopy (OES) technique where electron temperature (Te) and electron number density (ne) can be determined by line intensity ratio method. The value of electron number density was then determined from the Saha-Eggert equation. Our results show that the electron number density of the discharge obtained is of the order of 10-17 - 10-18 m-3 where the electron temperature is between 1.00-2.00 eV for various operating frequencies used which are in good agreement with similar results published earlier.

  5. Plasma characteristics of argon glow discharge produced by AC power supply operating at low frequencies

    SciTech Connect

    Kongpiboolkid, Watcharapon; Mongkolnavin, Rattachat

    2015-04-24

    Non-thermal properties of Argon glow discharge operating with various operating pressures were measured and presented in this work. The Argon plasma is produced by a parallel conducting electrodes coupling with a high voltage AC power supply. The power supply can generate high AC voltage at various frequencies. The frequencies for the operation are in the range of a few kHz. The system is capable of generating electric field between the two metal electrodes discharge system. The characteristics of plasma produced were measured by optical emission spectroscopy (OES) technique where electron temperature (T{sub e}) and electron number density (n{sub e}) can be determined by line intensity ratio method. The value of electron number density was then determined from the Saha-Eggert equation. Our results show that the electron number density of the discharge obtained is of the order of 10{sup −17} − 10{sup −18} m{sup −3} where the electron temperature is between 1.00−2.00 eV for various operating frequencies used which are in good agreement with similar results published earlier.

  6. Modification of tapioca starch by non-chemical route using jet atmospheric argon plasma.

    PubMed

    Wongsagonsup, Rungtiwa; Deeyai, Panakamol; Chaiwat, Weerawut; Horrungsiwat, Sawanee; Leejariensuk, Kesini; Suphantharika, Manop; Fuongfuchat, Asira; Dangtip, Somsak

    2014-02-15

    Non-chemical modification of tapioca starch was investigated using jet atmospheric argon plasma treatment. Two forms of starch slurry, i.e. granular starch (G) and cooked starch (C), were jet-treated by argon plasma generated by supplying input power of 50 W (denoted as G50 and C50 samples) and 100 W (denoted as G100 and C100 samples) for 5 min. Physical, rheological, and structural characteristics of the modified starch were investigated. The G50 and C100 samples had lower paste clarity but higher thermal stability and performed stronger gels (G50 only) compared to their control counterparts. On the other hand, the analyzed properties of the G100 and C50 samples showed the opposite trend. FTIR and (1)H NMR results revealed that the relative areas of COC and OH peaks were changed after the treatment. Cross-linking reaction seemed to predominantly take place for the G50 and C100 samples, whereas depolymerization predominated for the G100 and C50 samples.

  7. Stark broadening measurement of the electron density in an atmospheric pressure argon plasma jet with double-power electrodes

    SciTech Connect

    Qian Muyang; Ren Chunsheng; Wang Dezhen; Zhang Jialiang; Wei Guodong

    2010-03-15

    Characteristics of a double-power electrode dielectric barrier discharge of an argon plasma jet generated at the atmospheric pressure are investigated in this paper. Time-averaged optical emission spectroscopy is used to measure the plasma parameters, of which the excitation electron temperature is determined by the Boltzmann's plot method whereas the gas temperature is estimated using a fiber thermometer. Furthermore, the Stark broadening of the hydrogen Balmer H{sub {beta}} line is applied to measure the electron density, and the simultaneous presence of comparable Doppler, van der Waals, and instrumental broadenings is discussed. Besides, properties of the jet discharge are also studied by electrical diagnosis. It has been found that the electron densities in this argon plasma jet are on the order of 10{sup 14} cm{sup -3}, and the excitation temperature, gas temperature, and electron density increase with the applied voltage. On the other hand, these parameters are inversely proportional to the argon gas flow rate.

  8. Theoretical investigation of the effect of hydrogen addition on the formation and properties of soliton in direct current argon plasma

    NASA Astrophysics Data System (ADS)

    Saikia, P.; Goswami, K. S.; Saikia, B. K.

    2014-03-01

    In this study the effect of hydrogen addition on the formation and properties of soliton in direct-current (DC) argon plasma is theoretically investigated. By coupling fluid equations with Poisons equation for such multi-component plasma, the Mach number and amplitude of the soliton are determined following pseudo potential method. Addition of hydrogen in argon discharge leads to the decrease of electron, Ar+ ion density while a reverse trend was observed for ArH+ and hydrogen like ions. It was found that presence of hydrogen like ions in argon plasma affects the formation of soliton with its amplitude significantly decreases as concentration of hydrogen increases. On the other hand, increase in ion to electron temperature ratios of the lighter ions in the discharge also has a significant influence on the amplitude and formation of soliton. The inverse relation between solitons width and amplitude is found to be consistent for the entire range of study.

  9. Theoretical investigation of the effect of hydrogen addition on the formation and properties of soliton in direct current argon plasma

    SciTech Connect

    Saikia, P. Goswami, K. S.; Saikia, B. K.

    2014-03-15

    In this study the effect of hydrogen addition on the formation and properties of soliton in direct-current (DC) argon plasma is theoretically investigated. By coupling fluid equations with Poisons equation for such multi-component plasma, the Mach number and amplitude of the soliton are determined following pseudo potential method. Addition of hydrogen in argon discharge leads to the decrease of electron, Ar{sup +} ion density while a reverse trend was observed for ArH{sup +} and hydrogen like ions. It was found that presence of hydrogen like ions in argon plasma affects the formation of soliton with its amplitude significantly decreases as concentration of hydrogen increases. On the other hand, increase in ion to electron temperature ratios of the lighter ions in the discharge also has a significant influence on the amplitude and formation of soliton. The inverse relation between solitons width and amplitude is found to be consistent for the entire range of study.

  10. Aluminium metallisation of argon and oxygen plasma-modified polycarbonate thin film surfaces

    NASA Astrophysics Data System (ADS)

    Rastomjee, C. S.; Keil, M.; Sotobayashi, H.; Bradshaw, A. M.; Lamont, C. L. A.; Gador, D.; Umbach, E.

    1998-12-01

    The influence of plasma treatment on the metallisation of polycarbonate surfaces was studied using X-ray absorption spectroscopy (XAFS) and core level X-ray photoelectron spectroscopy (XPS). Thin films of two different molecules were chosen: bis-phenol-A polycarbonate with phenol endgroups (P-PC) prepared ex situ by the spin-coating technique onto MoTe 2{0001}surfaces, and the model compound bis-phenol-A polycarbonate ( n=1) with tert-butyl phenyl endgroups (tBP-PC) evaporated in situ in UHV onto Cu{110}, Ag{100} and Ag{111} surfaces with film thicknesses of up to several monolayers. Surfaces of untreated samples and of samples which were pre-treated with either an inert argon or a reactive oxygen microwave plasma were metallised with Al (evaporated by electron beam heating) at film thicknesses ranging from the sub-monolayer region up to several monolayers. For the untreated surface, XAFS and XPS spectra suggest that the Al reacts with the carbonate groups leading to a breaking of the CO double bonds (and/or a reduction in bond order) as well as formation of Al oxide, Al hydroxide and Al-O-C linkages. A study of the time-dependent oxidation of the evaporated Al leads to the conclusion that Al slowly diffuses to the reactive sites in the first few subsurface layers of the polymer. Argon plasma treatment of samples leads to a reduction in the number of carbonyl groups in the near surface region. After metal deposition a higher ratio of metallic, non-reacted, Al was observed covering the polycarbonate surface and the diffusion rate into the polymer bulk seems to be higher than in the case of the untreated surface. Oxygen plasma treatment leads to the creation of additional CO containing species which also react with the Al in the subsequent metallisation process. Here, the ratio of oxidised Al on the polymer surface is higher than observed for untreated and argon plasma pre-treated polymer surfaces.

  11. Deposition of a-SiC:H using organosilanes in an argon/hydrogen plasma

    SciTech Connect

    Maya, L.

    1993-12-01

    Selected organosilanes were examined as precursors for the deposition of amorphous hydrogenated silicon carbide in an argon/hydrogen plasma. Effect of process variables on the quality of the films was established by means of FTIR, Auger spectroscopy, XPS, XRD, chemical analysis, and weight losses upon pyrolysis. For a given power level there is a limiting feeding rate of the precursor under which operation of the system is dominated by thermodynamics and leads to high quality silicon carbide films that are nearly stoichiometric and low in hydrogen. Beyond that limit, carbosilane polymer formation and excessive hydrogen incorporation takes place. The hydrogen content of the plasma affects the deposition rate and the hydrogen content of the film. In the thermodynamically dominated regime the nature of the precursor has no effect on the quality of the film, it affects only the relative utilization efficiency.

  12. Operating characteristics of a hydrogen-argon plasma torch for supersonic combustion applications

    SciTech Connect

    Barbi, E.; Mahan, J.R.; O'brien, W.F.; Wagner, T.C.

    1989-04-01

    The residence time of the combustible mixture in the combustion chamber of a scramjet engine is much less than the time normally required for complete combustion. Hydrogen and hydrocarbon fuels require an ignition source under conditions typically found in a scramjet combustor. Analytical studies indicate that the presence of hydrogen atoms should greatly reduce the ignition delay in this environment. Because hydrogen plasmas are prolific sources of hydrogen atoms, a low-power, uncooled hydrogen plasma torch has been built and tested to evaluate its potential as a possible flame holder for supersonic combustion. The torch was found to be unstable when operated on pure hydrogen; however, stable operation could be obtained by using argon as a body gas and mixing in the desired amount of hydrogen. The stability limits of the torch are delineated and its electrical and thermal behavior documented. An average torch thermal efficiency of around 88 percent is demonstrated. 10 references.

  13. Operating characteristics of a hydrogen-argon plasma torch for supersonic combustion applications

    NASA Technical Reports Server (NTRS)

    Barbi, E.; Mahan, J. R.; O'Brien, W. F.; Wagner, T. C.

    1989-01-01

    The residence time of the combustible mixture in the combustion chamber of a scramjet engine is much less than the time normally required for complete combustion. Hydrogen and hydrocarbon fuels require an ignition source under conditions typically found in a scramjet combustor. Analytical studies indicate that the presence of hydrogen atoms should greatly reduce the ignition delay in this environment. Because hydrogen plasmas are prolific sources of hydrogen atoms, a low-power, uncooled hydrogen plasma torch has been built and tested to evaluate its potential as a possible flame holder for supersonic combustion. The torch was found to be unstable when operated on pure hydrogen; however, stable operation could be obtained by using argon as a body gas and mixing in the desired amount of hydrogen. The stability limits of the torch are delineated and its electrical and thermal behavior documented. An average torch thermal efficiency of around 88 percent is demonstrated.

  14. Comparison of functional aspects of the coagulation cascade in human and sea turtle plasmas.

    PubMed

    Soslau, Gerald; Wallace, Bryan; Vicente, Catherine; Goldenberg, Seth J; Tupis, Todd; Spotila, James; George, Robert; Paladino, Frank; Whitaker, Brent; Violetta, Gary; Piedra, Rotney

    2004-08-01

    Functional hemostatic pathways are critical for the survival of all vertebrates and have been evolving for more than 400 million years. The overwhelming majority of studies of hemostasis in vertebrates have focused on mammals with very sparse attention paid to reptiles. There have been virtually no studies of the coagulation pathway in sea turtles whose ancestors date back to the Jurassic period. Sea turtles are often exposed to rapidly altered environmental conditions during diving periods. This may reduce their blood pH during prolonged hypoxic dives. This report demonstrates that five species of turtles possess only one branch of the mammalian coagulation pathway, the extrinsic pathway. Mixing studies of turtle plasmas with human factor-deficient plasmas indicate that the intrinsic pathway factors VIII and IX are present in turtle plasma. These two factors may play a significant role in supporting the extrinsic pathway by feedback loops. The intrinsic factors, XI and XII are not detected which would account for the inability of reagents to induce coagulation via the intrinsic pathway in vitro. The analysis of two turtle factors, factor II (prothrombin) and factor X, demonstrates that they are antigenically/functionally similar to the corresponding human factors. The turtle coagulation pathway responds differentially to both pH and temperature relative to each turtle species and relative to human samples. The coagulation time (prothrombin time) increases as the temperature decreases between 37 and 15 degrees C. The increased time follows a linear relationship, with similar slopes for loggerhead, Kemps ridley and hawksbill turtles as well as for human samples. Leatherback turtle samples show a dramatic nonlinear increased time below 23 degrees C, and green turtle sample responses were similar but less dramatic. All samples also showed increased prothrombin times as the pH decreased from 7.8 to 6.4, except for three turtle species. The prothrombin times decreased

  15. [The Characteristic Research of ·OH Induced by Water on an Argon Plasma Jet].

    PubMed

    Liu, Kun; Liao, Hua; Zheng, Pei-chao; Wang, Chen-ying; Liu, Hong-di; Danil, Dobrynin

    2015-07-01

    ·OH plays a crucial role in many fields, having aroused wide public concern in the world. Atmospheric Pressure Plasma Jet, which can be achieved by portable device due to working without the vacuum environment, has the advantages of high concentration of reactive species, high electron temperature and low gas temperature. It has become an important research topic in the field of gas discharge with a strong prospect. Especially, how to induce plasma jet to produce ·OH has become a new hotpot in the field of low-temperature plasma. It has been reported that mass ·OH can be induced successfully when water vapor is added to the working gas, but it will be unstable when the concentrate of water reaches a certain degree. Thus, a device of argon plasma jet with a Ring-to-Ring Electrode Configuration has been designed to interact with water in the surrounding air to generate ·OH under atmospheric pressure. In order to increase the production of ·OH, ultrasonic atomizing device is introduced to promote water concentration around the plasma plume. The generating rule of OH(A2J) induced by water has been extensively studied under different voltages and flow rate. ·OH output induced by the plasma has been tested by emission spectrometry, and at the meanwhile, Ar atomic spectral lines at 810.41 and 811.48 nm are also recorded in order to calculate the electron temperature in argon plasma plume. The results show that the water surrounding the plasma plume can be induced to produce ·OH, and OH(A2 ∑+) output increases with the electrode voltage rising from 20 to 28 kV. When the flow rate increases from 100 to 200 L x h(-1), the OH(A2∑+) output increases, but from 200 to 600 L x h(-1), it decreases. The production rules of OH(A2∑+) is the same as that of electron temperature. Therefore, the presumption is proved that ·OH output mainly affected by electron temperature.

  16. Influence of argon fraction on plasma parameters in H2-N2 mixture discharge with cathodic cage

    NASA Astrophysics Data System (ADS)

    Naeem, Muhammad; Zaka-ul-Islam, Mujahid; Khattak, Zahid Iqbal; Shafiq, Muhammad; Zakaullah, Muhammad

    2017-01-01

    > ] significantly decreases beyond 30% addition. This study provides useful information about the influence of the argon addition on plasma parameters and active species generation. As a result it helps to optimize the plasma nitriding system as a function of argon admixture to avoid random trials in the processing.

  17. Surface-mediated molecular events in material-induced blood-plasma coagulation

    NASA Astrophysics Data System (ADS)

    Chatterjee, Kaushik

    Coagulation and thrombosis persist as major impediments associated with the use of blood-contacting medical devices. We are investigating the molecular mechanism underlying material-induced blood-plasma coagulation focusing on the role of the surface as a step towards prospective development of improved hemocompatible biomaterials. A classic observation in hematology is that blood/blood-plasma in contact with clean glass surface clots faster than when in contact with many plastic surfaces. The traditional biochemical theory explaining the underlying molecular mechanism suggests that hydrophilic surfaces, like that of glass, are specific activators of the coagulation cascade because of the negatively-charged groups on the surface. Hydrophobic surfaces are poor procoagulants or essentially "benign" because they lack anionic groups. Further, these negatively-charged surfaces are believed to not only activate blood factor XII (FXII), the key protein in contact activation, but also play a cofactor role in the amplification and propagation reactions that ultimately lead to clot formation. In sharp contrast to the traditional theory, our investigations indicate a need for a paradigm shift in the proposed sequence of contact activation events to incorporate the role of protein adsorption at the material surfaces. These studies have lead to the central hypothesis for this work proposing that protein adsorption to hydrophobic surfaces attenuates the contact activation reactions so that poorly-adsorbent hydrophilic surfaces appear to be stronger procoagulants relative to hydrophobic surfaces. Our preliminary studies measuring the plasma coagulation response of activated FXII (FXIIa) on different model surfaces suggested that the material did not play a cofactor role in the processing of this enzyme dose through the coagulation pathway. Therefore, we focused our efforts on studying the mechanism of initial production of enzyme at the procoagulant surface. Calculations for the

  18. ULTRAVIOLET INDUCED MOTION OF A FLUORESCENT DUST CLOUD IN AN ARGON DIRECT CURRENT GLOW DISCHARGE PLASMA

    SciTech Connect

    Hvasta, M.G.; and Zwicker, A.

    2008-01-01

    Dusty plasmas consist of electrons, ions, neutrals and nm-μm sized particles commonly referred to as dust. In man-made plasmas this dust may represent impurities in a tokamak or plasma etching processing. In astrophysical plasmas this dust forms structures such as planetary rings and comet tails. To study dusty plasma dynamics an experiment was designed in which a 3:1 silica (<5 μm diameter) and fl uorescent dust mixture was added to an argon DC glow discharge plasma and exposed to UV radiation. This fl uorescent lighting technique offers an advantage over laser scattering (which only allows two-dimensional slices of the cloud to be observed) and is simpler than scanning mirror techniques or particle image velocimetry. Under typical parameters (P=150 mTorr, V anode= 100 V, Vcathode= -400 V, Itotal < 2mA) when the cloud is exposed to the UV light (100W, λ = 365 nm) the mixture fl uoresces, moves ~2mm towards the light source and begins rotating in a clockwise manner (as seen from the cathode). By calibrating a UV lamp and adjusting the relative intensity of the UV with a variable transformer it was found that both translational and rotational velocities are a function of UV intensity. Additionally, it was determined that bulk cloud rotation is not seen when the dust tray is not grounded while bulk translation is. This ongoing experiment represents a novel way to control contamination in man-made plasmas and a path to a better understanding of UV-bathed plasma systems in space..

  19. Two-dimensional profile measurement of plasma parameters in radio frequency-driven argon atmospheric pressure plasma jet

    SciTech Connect

    Seo, B. H.; Kim, J. H.; Kim, D. W.; You, S. J.

    2015-09-15

    The two-dimensional profiles of the electron density, electron temperature, neutral translational temperature, and molecular rotational temperature are investigated in an argon atmospheric pressure plasma jet, which is driven by the radio frequency of 13.56 MHz by means of the laser scattering methods of Thomson, Rayleigh, and Raman. All measured parameters have maximum values at the center of the discharge and decrease toward the plasma edge. The results for the electron temperature profile are contrary to the results for the microwave-driven plasma. From our experimental results, the profiles of the plasma parameters arise from the radial contraction of plasmas and the time averaged profile of the electric field, which is obtained by a microwave simulation performed under identical conditions to the plasma jet. In the case of the neutral temperature, a higher translational temperature than the rotational temperature is measured, and its discrepancy is tentatively explained in terms of the low ion-neutral charge exchange rate and the additional degrees of freedom of the molecules. The description of our experimental results and the underlying physics are addressed in detail.

  20. Morphology and characteristics of laser-induced aluminum plasma in argon and in air: A comparative study

    NASA Astrophysics Data System (ADS)

    Bai, Xueshi; Cao, Fan; Motto-Ros, Vincent; Ma, Qianli; Chen, Yanping; Yu, Jin

    2015-11-01

    In laser-induced breakdown spectroscopy (LIBS), ablation takes place in general in an ambient gas of the atmospheric pressure, often in air but also in noble gas such as argon or helium. The use of noble gas is known to significantly improve the performance of the technique. We investigate in this work the morphology and the characteristics of induced plasma in argon and in air. The purpose is to understand the mechanism of the analytical performance improvement by the use of argon ambient with respective to air ambient and the dependence on the other experimental parameters such as the laser fluence. The observation of plasma morphology in different ambient gases provides also information for better design of the detection system which optimizes the signal collection according to the used ambient gases. More specifically, the expansion of the plasma induced on an aluminum target with nanosecond infrared (1064 nm) laser pulse in two ambient gases, argon and the atmospheric air, has been studied with spectroscopic imaging at short delays and with emission spectroscopy at longer delays. With relatively low ablation laser fluence (65 J/cm2), similar morphologies have been observed in argon and in air over the early stage of plasma expansion, while diagnostics at longer delay shows stronger emission, higher electron density and temperature for plasma induced in argon. With higher ablation laser fluence (160 J/cm2) however, different expansion behaviors have been observed, with a stagnating aluminum vapor near the target surface in air while a propagating plume away from the target in argon. The craters left on the target surface show as well corresponding difference: in air, the crater is very shallow with a target surface chaotically affected by the laser pulse, indicating an effective re-deposition of the ablated material back to the crater; while in Ar a deeper crater is observed, indicating an efficient mass removal by laser ablation. At longer delays, a brighter

  1. Transient electromagnetic behaviour in inductive oxygen and argon-oxygen plasmas

    NASA Astrophysics Data System (ADS)

    Chadwick, A. R.; Herdrich, G.; Kim, M.; Dally, B.

    2016-12-01

    In order to develop inductive electric propulsion as a flexible, throttleable technology for future space operations, a greater understanding of discharge transitions within the inductive plasma generator discharge chamber is required. This paper presents a non-intrusive method to determine the conditions under which transitions between the capacitive, low inductive, and high inductive regimes occur with greater accuracy, as well as determining the proportion of a single discharge cycle the plasma spends in either capacitive or inductive regime. Such a method allows a more robust method of classification of inductive discharges than previously available and can be applied to numerous gases. This approach presents an advantage over previous methods which relied on strongly radiating or thermally reactive gases to exhibit certain behaviour (due to the restriction of classical diagnostics on such high power sources) before a transition could be confirmed. This paper presents results from the proposed method applied to a pure oxygen plasma as well as two combinations of argon and oxygen (at 1:1 and 3:2 Ar:O2 volumetric ratios) in order to assess the tunability of electromagnetic regime transitions through modifications of gas composition rather than mechanical alterations. Transitions to the higher inductive mode were observed for much lower input powers for the argon-oxygen blends, as was expected, allowing final discharge conditions to occupy the inductive regime for 94% and 85% of a single discharge cycle for the 3:2 and 1:1 Ar:O2 mixtures, respectively. Pure oxygen achieved a maximum inductive proportion of 71% by comparison.

  2. Irradiation of silver and agar/silver nanoparticles with argon, oxygen glow discharge plasma, and mercury lamp.

    PubMed

    Ahmad, Mahmoud M; Abdel-Wahab, Essam A; El-Maaref, A A; Rawway, Mohammed; Shaaban, Essam R

    2014-01-01

    The irradiation effect of argon, oxygen glow discharge plasma, and mercury lamp on silver and agar/silver nanoparticle samples is studied. The irradiation time dependence of the synthesized silver and agar/silver nanoparticle absorption spectra and their antibacterial effect are studied and compared. In the agar/silver nanoparticle sample, as the irradiation time of argon glow discharge plasma or mercury lamp increases, the peak intensity and the full width at half maximum, FWHM, of the surface plasmon resonance absorption band is increased, however a decrease of the peak intensity with oxygen glow plasma has been observed. In the silver nanoparticle sample, as the irradiation time of argon, oxygen glow discharge plasma or mercury lamp increases, the peak intensity of the surface plasmon resonance absorption band is increased, however, there is no significant change in the FWHM of the surface plasmon resonance absorption band. The SEM results for both samples showed nanoparticle formation with mean size about 50 nm and 40 nm respectively. Throughout the irradiation time with the argon, oxygen glow discharge plasma or mercury lamp, the antibacterial activity of several kinds of Gram-positive and Gram-negative bacteria has been examined.

  3. The influence of the EUV spectrum on plasma induced by EUV radiation in argon and hydrogen gas

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Osorio, E. A.; Banine, V. Y.; Beckers, J.

    2016-02-01

    Plasmas induced by EUV radiation are scarcely investigated, although they are unique since they are created without any discharge. These plasmas are also of interest from an applicational point of view, since they are related to the lifetime of optics in EUV lithography tools. In order to assess this impact, it is essential to characterize and understand EUV-induced plasma. In this contribution the influence of the background gas (argon and hydrogen) in the lithography tool and the spectrum of the illumination source on the electron density of EUV-induced plasma is investigated using microwave cavity resonance spectroscopy. The experimental results showed that out-of-band radiation (>20 nm) is the main contributor to EUV-induced plasma in both argon and hydrogen. In hydrogen, this contribution is relatively more important than in argon due to the stronger wavelength dependence of the photoionization cross section of hydrogen than of argon. Furthermore, the production of electrons by out-of-band radiation lasts longer than the production by in-band radiation (10-20 nm) due to the longer temporal width of out-of-band radiation. Finally, the obtained results correspond reasonably well with estimates from a simplified absorption model.

  4. Simulation of DBD plasma actuators, and nanoparticle-plasma interactions in argon-hydrogen CCP RF discharges

    NASA Astrophysics Data System (ADS)

    Mamunuru, Meenakshi

    The focus of this work is modeling and simulation of low temperature plasma discharges (LTPs). The first part of the thesis consists of the study of dielectric barrier (DBD) plasma actuators. Use of DBD plasma actuators on airfoil surfaces is a promising method for increasing airfoil efficiency. Actuators produce a surface discharge that causes time averaged thrust in the neutral gas. The thrust modifies the boundary layer properties of the flow and prevents the occurrence of separation bubbles. In simulating the working of an actuator, the focus is on the spatial characteristics of the thrust produced by the discharge over very short time and space scales. The results provide an understanding of the causes of thrust, and the basic principles behind the actuator operation. The second part of this work focusses on low pressure plasma discharges used for silicon nanoparticle synthesis. When reactive semiconductor precursor gases are passed through capacitively coupled plasma (CCP) radio frequency (RF) reactors, nano sized particles are formed. When the reactors are operated at high enough powers, a very high fraction of the nanoparticles are crystallized in the chamber. Nanoparticle crystallization in plasma is a very complex process and not yet fully understood. It can be inferred from experiments that bulk and surface processes initiated due to energetic ion impaction of the nanoparticles are responsible for reordering of silicon atoms, causing crystallization. Therefore, study of plasma-particle interactions is the first step towards understanding how particles are crystallized. The specific focus of this work is to investigate the experimental evidence that hydrogen gas presence in argon discharges used for silicon nanocrystal synthesis, leads to a superior quality of nanocrystals. Influence of hydrogen gas on plasma composition and discharge characteristics is studied. Via Monte Carlo simulation, distribution of ion energy impacting particles surface is studied

  5. Surface modification of argon/oxygen plasma treated vulcanized ethylene propylene diene polymethylene surfaces for improved adhesion with natural rubber

    NASA Astrophysics Data System (ADS)

    Basak, Ganesh C.; Bandyopadhyay, Abhijit; Neogi, Sudarsan; Bhowmick, Anil K.

    2011-01-01

    Vulcanized ethylene propylene diene polymethylene (EPDM) rubber surface was treated in a radio frequency capacitatively coupled low pressure argon/oxygen plasma to improve adhesion with compounded natural rubber (NR) during co-vulcanization. The plasma modified surfaces were analyzed by means of contact angle measurement, surface energy, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray sulfur mapping and atomic force microscopy. Several experimental variables such as plasma power, length of exposure time and composition of the argon-oxygen gas mixture were considered. It was delineated that plasma treatment changed both surface composition and roughness, and consequently increased peel strength. The change in surface composition was mainly ascribed to the formation of C-O and -Cdbnd O functional groups on the vulcanized surfaces. A maximum of 98% improvement in peel strength was observed after plasma treatment.

  6. Plasma of Argon Affects the Earliest Biological Response of Different Implant Surfaces: An In Vitro Comparative Study.

    PubMed

    Canullo, L; Genova, T; Tallarico, M; Gautier, G; Mussano, F; Botticelli, D

    2016-05-01

    The aim of this in vitro study was to evaluate the early cell response and protein adsorption elicited by the argon plasma treatment of different commercially available titanium surfaces via a chair-side device. Sterile disks made of grade 4 titanium (n= 450, 4-mm diameter) with 3 surface topographies (machined, plasma sprayed, and zirconia blasted and acid etched) were allocated to receive 4 testing treatments (2% and 10% protein adsorption and cell adhesion with MC3T3-E1 and MG-63). Furthermore, the specimens were divided to undergo 1) argon plasma treatment (10 W, 1 bar for 12 min) in a plasma reactor, 2) ultraviolet (UV) light treatment for 2 h (positive control group), or 3) no treatment (control group). Pretreatment surface analyses based on a scanning electron microscope and profilometer images were also performed. Profilometric analysis demonstrated that the evaluated specimens perfectly suit the standard parameters. The use of argon plasma was capable of affecting the quantity of proteins adsorbed on the different surfaces, notwithstanding their roughness or topographic features at a low fetal bovine serum concentration (2%). UV light treatment for 2 h attained similar results. Moreover, both the plasma of argon and the UV light demonstrated a significant increase in the number of osteoblasts adherent at 10 min in all tested surfaces. Within its limitations, this in vitro study highlights the potential biological benefits of treating implant surfaces with plasma of argon or UV, irrespective of the roughness of the titanium surface. However, in vivo experiments are needed to confirm these preliminary data and settle the rationale of a treatment that might be clinically relevant in case of bone-reparative deficiencies.

  7. Spectroscopic diagnostics of electron temperature and energy conversion efficiency of laser-sustained plasma in flowing argon

    NASA Astrophysics Data System (ADS)

    Mazumder, J.; Krier, H.; Chen, X.

    1988-08-01

    Laser sustained plasmas are often formed during laser materials interaction. The University's 10 kW CW CO2 laser has been used to study argon plasmas for the application to laser supported propulsion and laser materials processing. The spectroscopic diagnostic method has been applied to study laser-sustained plasmas in 1 atmosphere pure argon gas flow with an f/7 on-axis laser focusing scheme. High flow speeds of 2 to 10 m/sec are achieved. Plasma electron temperatures distributions are determined from the 415.8 nm Ar1 line and its adjacent continuum intensities. Plasma core temperatures as high as 20,000 K are reported. The total absorption of the incident laser power and the radiation loss by the plasma are calculated from the temperature distribution. Results indicated that up to 86 percent of the incident laser power can be absorbed and nearly 60 percent of the incident laser power can be retained by the flowing argon gas to provide thrust. Further research is called for in the Laser Induced Fluorescence (LIF) technique for diagnostics of the downstream mixing zone and the plasma outer region. Experiments over a wider range of operating conditions, as well as multiple plasma testings, are required to find the optimum operating scheme.

  8. The effect of UV radiation from oxygen and argon plasma on the adhesion of organosilicon coatings on polypropylene

    NASA Astrophysics Data System (ADS)

    Jaritz, M.; Behm, H.; Hopmann, Ch; Kirchheim, D.; Mitschker, F.; Awakowicz, P.; Dahlmann, R.

    2017-01-01

    The influence of ultraviolet (UV) radiation from oxygen and argon pretreatment plasmas on a plastic substrate has not been fully understood yet. In particular, its influence on the adhesion properties has not been sufficiently researched so far. This paper addresses this issue by comparing the bond strength of a plasmapolymerized silicon organic coating (SiO x C y H z ) on polypropylene (PP) after oxygen and argon plasma pretreatment and pretreatment by UV radiation emitted by the same plasmas. The UV radiation is isolated from the other species from the plasma by means of a magnesium fluoride (MgF2) optical filter. It could be shown that UV radiation originating from an oxygen plasma has a significant impact on both substrate surface chemistry and coating adhesion. The same maximum bond strength enhancement can be reached by pretreating the polypropylene surface either with pulsed oxygen plasma, or with only the UV radiation from this oxygen plasma. Also, similar surface chemistry and topography modifications are induced. For argon plasma no significant influence of its UV radiation on the substrate could be observed in this study.

  9. Study of a contracted glow in low-frequency plasma-jet discharges operating with argon

    SciTech Connect

    Minotti, F.; Giuliani, L.; Xaubet, M.; Grondona, D.

    2015-11-15

    In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in argon. The discharge has the characteristics of a contracted glow with a current channel of submillimeter diameter and a relatively high voltage cathode layer. In order to interpret the measurements, we consider the separate modeling of each region of the discharge: main channel and cathode layer, which must then be properly matched together. The main current channel was modeled, extending a previous work, as similar to an arc in which joule heating is balanced by lateral heat conduction, without thermal equilibrium between electrons and heavy species. The cathode layer model, on the other hand, includes the emission of secondary electrons by ion impact and by additional mechanisms, of which we considered emission due to collision of atoms excited at metastable levels, and field-enhanced thermionic emission (Schottky effect). The comparison of model and experiment indicates that the discharge can be effectively sustained in its contracted form by the secondary electrons emitted by collision of excited argon atoms, whereas thermionic emission is by far insufficient to provide the necessary electrons.

  10. Sterilization using a microwave-induced argon plasma system at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Park, Bong Joo; Lee, D. H.; Park, J.-C.; Lee, I.-S.; Lee, K.-Y.; Hyun, S. O.; Chun, M.-S.; Chung, K.-H.

    2003-11-01

    The use of microwave plasma for sterilization is relatively new. The advantages of this method are the relatively low temperature, time-savings and its nontoxic nature, in contrast to traditional methods such as heat and gas treatment, and radiation. This study investigated the sterilization effects of microwave-induced argon plasma at atmospheric pressure on materials contaminated with various microorganisms, such as bacteria and fungi. A low-cost and reliable 2.45 GHz, waveguide-based applicator was designed to generate microwave plasma at atmospheric pressure. This system consisted of a 1 kW magnetron power supply, a WR-284 copper waveguide, an applicator including a tuning section, and a nozzle section. Six bacterial and fungal strains were used for the sterilization test. The results showed that regardless of the strain, all the bacteria used in this study were fully sterilized within 20 seconds and all the fungi were sterilized within 1 second. These results show that this sterilization method is easy to use, requires significantly less time than the other traditional methods and established plasma sterilization methods, and it is nontoxic. It can be used in the field of sterilization in medical and dental clinics as well as in laboratory settings.

  11. Temporally and spatially resolved characterization of microwave induced argon plasmas: Experiment and modeling

    SciTech Connect

    Baeva, M. Andrasch, M.; Ehlbeck, J.; Loffhagen, D.; Weltmann, K.-D.

    2014-04-14

    Experiments and modeling of the plasma-microwave interaction have been performed in a coaxial microwave plasma source at a field frequency of 2.45 GHz generating argon plasmas at pressures of 20 and 40 millibars and a ratio of flow rate to pressure of 0.125 sccm/Pa. The incident microwave power between 100 W and 300 W is supplied in a regime of a pulse-width modulation with cycle duration of 110 ms and a power-on time of 23 ms. The experiments are based on heterodyne reflectometry and microwave interferometry at 45.75 GHz. They provide the temporal behaviour of the complex reflection coefficient, the microwave power in the plasma, as well as the electron density in the afterglow zone of the discharge. The self-consistent spatially two-dimensional and time-dependent modeling complements the analysis of the plasma-microwave interaction delivering the plasma and electromagnetic field parameters. The consolidating experimental observations and model predictions allow further characterizing the plasma source. The generated plasma has a core occupying the region close to the end of the inner electrode, where maximum electron densities above 10{sup 20} m{sup −3} and electron temperatures of about 1 eV are observed. Due to a longer outer electrode of the coaxial structure, the plasma region is extended and fills the volume comprised by the outer electrode. The electron density reaches values of the order of 10{sup 19} m{sup −3}. The heating of the gas occurs in its great part due to elastic collisions with the plasma electrons. However, the contribution of the convective heating is important especially in the extended plasma region, where the gas temperature reaches its maximum values up to approximately 1400 K. The temporally and spatially resolved modeling enables a thorough investigation of the plasma-microwave interaction which clearly shows that the power in-coupling occurs in the region of the highest electron density during the early stage of

  12. Application of a hybrid collisional radiative model to recombining argon plasmas

    NASA Astrophysics Data System (ADS)

    Benoy, D. A.; van der Mullen, J. A. M.; van de Sanden, M. C. M.; van der Sijde, B.; Schram, D. C.

    1993-02-01

    A collisional radiative model, in which a hybrid cut-off technique is used, is applied to recombining plasmas to study the atomic state distribution (ASDF) and the recombination coefficient. Computations of the ASDF using semi-empirical rate coefficients of Vriens and Smeets (V-S) and Drawin (D) are compared with experimental values measured at various positions in a free expanding argon arc jet. Apart from the shock position, where the calculated results are too low, the model calculations are higher than the experimental results. The volumetric recombination coefficient has a Te exp -4 and a Te exp -4.8 dependence when semiempirical rate coefficients of, respectively, V-S and D are used. The differences between the models based on the rate coefficients of V-S and D indicate that the recombination flow is sensitive to the low temperature behavior of the rate coefficients.

  13. Energy spectrum of argon ions emitted from Filippov type Sahand plasma focus

    NASA Astrophysics Data System (ADS)

    Mohammadnejad, M.; Pestehe, S. J.; Mohammadi, M. A.

    2013-07-01

    The energy and flux of the argon ions produced in Sahand plasma focus have been measured by employing a well-designed Faraday cup. The secondary electron emission effects on the ion signals are simulated and the dimensions of Faraday cup are optimized to minimize these effects. The measured ion energy spectrum is corrected for the ion energy loss and charge exchange in the background gas. The effects of the capacitor bank voltage and working gas pressure on the ion energy spectrum are also investigated. It has been shown that the emitted ion number per energy increases as the capacitor bank voltage increases. Decreasing the working gas pressure leads to the increase in the number of emitted ion per energy.

  14. Energy spectrum of argon ions emitted from Filippov type Sahand plasma focus.

    PubMed

    Mohammadnejad, M; Pestehe, S J; Mohammadi, M A

    2013-07-01

    The energy and flux of the argon ions produced in Sahand plasma focus have been measured by employing a well-designed Faraday cup. The secondary electron emission effects on the ion signals are simulated and the dimensions of Faraday cup are optimized to minimize these effects. The measured ion energy spectrum is corrected for the ion energy loss and charge exchange in the background gas. The effects of the capacitor bank voltage and working gas pressure on the ion energy spectrum are also investigated. It has been shown that the emitted ion number per energy increases as the capacitor bank voltage increases. Decreasing the working gas pressure leads to the increase in the number of emitted ion per energy.

  15. Energy spectrum of argon ions emitted from Filippov type Sahand plasma focus

    SciTech Connect

    Mohammadnejad, M.; Pestehe, S. J.; Mohammadi, M. A.

    2013-07-15

    The energy and flux of the argon ions produced in Sahand plasma focus have been measured by employing a well-designed Faraday cup. The secondary electron emission effects on the ion signals are simulated and the dimensions of Faraday cup are optimized to minimize these effects. The measured ion energy spectrum is corrected for the ion energy loss and charge exchange in the background gas. The effects of the capacitor bank voltage and working gas pressure on the ion energy spectrum are also investigated. It has been shown that the emitted ion number per energy increases as the capacitor bank voltage increases. Decreasing the working gas pressure leads to the increase in the number of emitted ion per energy.

  16. Exploring the electron density in plasmas induced by extreme ultraviolet radiation in argon

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Banine, V. Y.

    2015-07-01

    The new generation of lithography tools use high energy EUV radiation which ionizes the present background gas due to photoionization. To predict and understand the long term impact on the highly delicate mirrors, it is essential to characterize these kinds of EUV-induced plasmas. We measured the electron density evolution in argon gas during and just after irradiation by a short pulse of EUV light at 13.5 nm by applying microwave cavity resonance spectroscopy. Dependencies on EUV pulse energy and gas pressure have been explored over a range relevant for industrial applications. Our experimental results show that the maximum reached electron density depends linearly on pulse energy. A quadratic dependence caused by photoionization and subsequent electron impact ionization by free electrons is found from experiments where the gas pressure is varied. This is demonstrated by our theoretical estimates presented in this manuscript as well.

  17. Proton acceleration using doped Argon plasma density gradient interacting with relativistic CO2 -laser pulse

    NASA Astrophysics Data System (ADS)

    Sahai, Aakash; Ettlinger, Oliver; Hicks, George; Ditter, Emma-Jane; Najmudin, Zulfikar

    2016-10-01

    We investigate proton and light-ion acceleration driven by the interaction of relativistic CO2 laser pulses with overdense Argon or other heavy-ion gas targets doped with lighter-ion species. Optically shaping the gas targets allows tuning of the pre-plasma scale-length from a few to several laser wavelengths, allowing the laser to efficiently drive a propagating snowplow through the bunching in the electron density. Preliminary PIC-based modeling shows that the lighter-ion species is accelerated even without any significant motion of the heavier ions which is a signature of the Relativistically Induced Transparency Acceleration mechanism. Some outlines of possible experiments at the TW CO2 laser at the Accelerator Test Facility at Brookhaven National Laboratory are presented.

  18. Argon Plasma-Induced Graft Polymerization of PEGMA on Chitosan Membrane Surface for Cell Adhesion Improvement

    NASA Astrophysics Data System (ADS)

    Yin, Shiheng; Ren, Li; Wang, Yingjun

    2013-10-01

    For its biocompatibility and biodegradability, chitosan has had considerable attention for biomedical applications in recent years. In this paper, polymerization of poly (ethylene glycol) methyl ether methacrylate (PEGMA) was grafted onto chitosan membrane surface through argon plasma-induced graft polymerization. The surface properties after modification were characterized by contact angle measurement, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. The results indicated that PEGMA can be grafted successfully onto chitosan membrane surface. The surface hydrophilicity and free energy were improved and the surface roughness increased after modification. The adhesion of a human corneal epithelial cell (HCEC) on chitosan membrane surface was enhanced due to improvement of surface free energy and roughness.

  19. Radiative properties of argon-helium-nitrogen-carbon-cobalt-nickel plasmas used in CNT synthesis

    NASA Astrophysics Data System (ADS)

    Salem, D.; Hannachi, R.; Cressault, Y.; Teulet, Ph; Béji, L.

    2015-02-01

    This work presents the radiative properties of argon-helium-nitrogen-carbon-nickel-cobalt thermal plasmas by the computation of net emission coefficients (NECs) under the assumption of a local thermodynamic equilibrium and at temperature range 1000-20 000 K. These mixtures were often used in the study of carbon nanotubes (CNTs) synthesis with arc plasma which becomes one of the most useful techniques in terms of flexibility of carbon nanostructures produced with fewer defects. The values of NEC allow estimation of total radiation losses in plasmas, by taking into account the emission radiation resulting from the atomic continuum, the molecular continuum, the atomic lines and some molecular bands. Free-free transitions (Bremsstrahlung) and free-bound (electron-ion recombination), have been considered for the calculation of atomic continuum. For bound-bound transitions, natural, resonance, Van der Waals, Stark and Doppler effects have been taken into account in the calculation of the lines broadenings while the self-absorption of the resonance lines has been treated using their escape factors. Molecular continuum has been only considered for N2, C2 and CN molecules whereas we have only taken into account diatomic systems N2, \\text{N}2+ , CN and C2 for the emission of the molecular bands. The results obtained show that even for low concentrations of Ni and Co in the plasma, the NECs are modified and considerably increase only at a low temperature (T < 8000 K) and the major contribution in the total radiation arises from the lines emission. However, the effect of the thickness of the plasma on plasma radiation has been analysed based on the self absorption phenomenon of resonance lines.

  20. Scanning-electron-microscopy study of argon-plasma-treated and untreated peel-test Kevlar 49/epoxy laminates

    SciTech Connect

    Ingraham, J.A.; Walton, J.; Pruneda, C.O.; Morgan, R.J.

    1982-10-01

    It is concluded that a 200-watt RF argon plasma treatment of Kevlar fibers for four minutes increases the fiber/epoxy interfacial bonding. However, as a consequence of this increase in fiber-matrix bonding, the fiber is readily fibrillated during laminate deformation and failure.

  1. Superhydrophilic poly(L-lactic acid) electrospun membranes for biomedical applications obtained by argon and oxygen plasma treatment

    NASA Astrophysics Data System (ADS)

    Correia, D. M.; Ribeiro, C.; Botelho, G.; Borges, J.; Lopes, C.; Vaz, F.; Carabineiro, S. A. C.; Machado, A. V.; Lanceros-Méndez, S.

    2016-05-01

    Poly(L-lactic acid), PLLA, electrospun membranes and films were plasma treated at different times and power with argon (Ar) and oxygen (O2), independently, in order to modify the hydrophobic nature of the PLLA membranes. Both Ar and O2 plasma treatments promote an increase in fiber average size of the electrospun membranes from 830 ± 282 nm to 866 ± 361 and 1179 ± 397 nm, respectively, for the maximum exposure time (970 s) and power (100 W). No influence of plasma treatment was detected in the physical-chemical characteristics of PLLA, such as chemical structure, polymer phase or degree of crystallinity. On the other hand, an increase in the roughness of the films was obtained both with argon and oxygen plasma treatments. Surface wettability studies revealed a decrease in the contact angle with increasing plasma treatment time for a given power and with increasing power for a given time in membranes and films and superhydrophilic electrospun fiber membranes were obtained. Results showed that the argon and oxygen plasma treatments can be used to tailor hydrophilicity of PLLA membranes for biomedical applications. MTT assay results indicated that plasma treatments under Ar and O2 do not influence the metabolic activity of MC3T3-E1 pre-osteoblast cells.

  2. Particle Densities of the Atmospheric-Pressure Argon Plasmas Generated by the Pulsed Dielectric Barrier Discharges

    NASA Astrophysics Data System (ADS)

    Pan, Jie; Li, Li; Wang, Yunuan; Xiu, Xianwu; Wang, Chao; Song, Yuzhi

    2016-11-01

    Atmospheric-pressure argon plasmas have received increasing attention due to their high potential in many industrial and biomedical applications. In this paper, a 1-D fluid model is used for studying the particle density characteristics of the argon plasmas generated by the pulsed dielectric barrier discharges. The temporal evolutions of the axial particle density distributions are illustrated, and the influences of changing the main discharge conditions on the averaged particle densities are researched by independently varying the various discharge conditions. The calculation results show that the electron density and the ion density reach two peaks near the momentary cathodes during the rising and the falling edges of the pulsed voltage. Compared with the charged particle densities, the densities of the resonance state atom Arr and the metastable state atom Arm have more uniform axial distributions, reach higher maximums and decay more slowly. During the platform of the pulsed voltage and the time interval between the pulses, the densities of the excited state atom Ar* are far lower than those of the Arr or the Arm. The averaged particle densities of the different considered particles increase with the increases of the amplitude and the frequency of the pulsed voltage. Narrowing the discharge gap and increasing the relative dielectric constant of the dielectric also contribute to the increase of the averaged particle densities. The effects of reducing the discharge gap distance on the neutral particle densities are more significant than the influences on the charged particle densities. supported by Natural Science Foundation of Shandong Province, China (No. ZR2015AQ008), and Project of Shandong Province Higher Educational Science and Technology Program of China (No. J15LJ04)

  3. Development of a diffuse air-argon plasma source using a dielectric-barrier discharge at atmospheric pressure

    SciTech Connect

    Tang Jie; Jiang Weiman; Zhao Wei; Wang Yishan; Li Shibo; Wang Haojing; Duan Yixiang

    2013-01-21

    A stable diffuse large-volume air plasma source was developed by using argon-induced dielectric-barrier discharges at atmospheric pressure. This plasma source can be operated in a filamentary discharge with the average areal power density of 0.27 W/cm{sup 2} and the gas temperature of 315{+-}3 K. Spatial measurement of emission spectrum and temperature indicates that this plasma is uniform in the central region along the transverse direction. It is also found that the formation of diffuse air plasma mainly lies in the creation of sufficient seed electrons by the Penning effect through collisions between two argon or nitrogen metastables at low electric fields.

  4. Effects of water addition on OH radical generation and plasma properties in an atmospheric argon microwave plasma jet

    SciTech Connect

    Srivastava, Nimisha; Wang Chuji

    2011-09-01

    Water vapor was added to the feeding gas of a continuous atmospheric argon (Ar) microwave plasma jet to study its influence on plasma shape, plasma gas temperature, and OH radical concentrations. The plasma jet was created by a 2.45 GHz microwave plasma source operating at constant power of 104 W with H{sub 2}O-Ar mixture flow rate of 1.7 standard liter per minute (slm). With an increase in the H{sub 2}O/Ar ratio from 0.0 to 1.9%, the plasma jet column length decreased from 11 mm to 4 mm, and the plasma jet became unstable when the ratio was higher than 1.9%; elevation of plasma gas temperature up to 330 K was observed in the plasma temperature range of 420-910 K. Optical emission spectroscopy showed that the dominant plasma emissions changed from N{sub 2} in the pure Ar plasma jet to OH with the addition of water vapor, and simulations of emission spectra suggested non-Boltzmann distribution of the rotational levels in the OH A-state (v'=0). Spatially resolved absolute OH number densities along the plasma jet axis were measured using UV cavity ringdown spectroscopy of the OH (A-X) (0-0) band in the H{sub 2}O/Ar ratio range of 0.0-1.9%. The highest OH number density is consistently located in the vicinity of the plasma jet tip, regardless of the H{sub 2}O/Ar ratio. OH number density in the post-tip region follows approximately an exponential decay along the jet axis with the fastest decay constant of 3.0 mm in the H{sub 2}O/Ar ratio of 1.5%. Given the low gas temperature of 420-910 K and low electron temperature of 0.5-5 eV along the jet axis, formation of the OH radical is predominantly due to electron impact induced dissociation of H{sub 2}O and dissociative recombination of H{sub 2}O{sup +} resulting from the Penning ionization process.

  5. Improving Resolution of Confocal Laser Induced Fluorescence in Argon Helicon Plasma

    NASA Astrophysics Data System (ADS)

    Soderholm, Mark; Vandervort, Robert; Scime, Earl; McKee, John; McCarren, Dustin

    2014-10-01

    Laser Induced Fluorescence (LIF) provides measurements of flow speed, temperature and when absolutely calibrated, density of ions or neutrals in a plasma. Traditionally, laser induced fluorescence requires two ports on a plasma device. One port is used for laser injection and the other is used for fluorescence emission collection. Traditional LIF is tedious and time consuming to align. These difficulties motivate the development of an optical configuration that requires a single port and remains fully aligned at all times; confocal LIF. Our confocal optical design employs a single two inch diameter lens to both inject the laser light and collect the stimulated emission from an argon plasma. A dichroic mirror is used to separate the injected laser light from the collected emission. The measurement location is scanned radially by manually adjusting the final focusing lens position. In the initial version of the confocal optical system, measurements were poorly resolved radially because they were integrated over a fairly large path length (~4 cm) centered at the focal point. Here we present collected data from a modified configuration that significantly improves the special resolution of confocal measurements. The confocal measurements are compared to traditional, two-port, LIF measurements over the same radial range.

  6. Two Dimensional LIF Measurements and Potential Structure of Ion Beam Formation in an Argon Helicon Plasma

    NASA Astrophysics Data System (ADS)

    Aguirre, Evan; Scime, Earl; Good, Timothy

    2016-10-01

    We report 2-dimensional, spatially resolved observations of ion beam formation in an expanding helicon plasma. Previous studies found that a current free double layer (CFDL) spontaneously arises at low pressure, below 1 mT. We use Laser Induced Fluorescence (LIF), a non-perturbative diagnostic to measure the ion velocity distribution functions (IVDFs) of argon ions both parallel and perpendicular to the background magnetic field. We report ion beam formation as a function of the expansion chamber magnetic field (0-108 G). The ion beam appears peaked in the center of the expansion chamber and decays over a few centimeters radially. We also report the potential structure of the plasma obtained with a planar Langmuir probe. To obtain meaningful Langmuir probe measurements, averages of tens of current-voltage are needed to reduce the effects of large electrostatic fluctuations that arise in plasmas that generate ion beams. We report the dependence of density, electron temperature, and floating potential on radial and axial position in the expansion plume. NSF Award PHYS-1360278.

  7. Laboratory experiments in the argon plasma perturbed by injections of the electronegative gases

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Cao, Jin-xiang; Liu, Yu; Yu, Peng-cheng; Zhang, Zhong-kai

    2016-07-01

    In this study, laboratory observations of the perturbations of the magnetic field are reported due to the injection of attachment chemicals (CF4, SF6, and CO2) into argon plasmas. Besides the well-known electron density reduction, we also observed magnetic field perturbation in the experiment. The measured induced voltage B ˙ , which is taken as a proxy of the time-changing electromagnetic field, fluctuates in the boundary layer between the ambient plasmas and negative ions plasmas. Perturbations of the magnetic field were investigated by changing the ambient pressure and ratio of attachment chemicals. The measured B ˙ keeps increasing in these lower pressures; but it no longer increases as the ambient pressure higher than a threshold, e.g., for CF4, SF6, and CO2, the transition pressure is 6Pa, 5Pa and 4Pa, respectively. The magnitude of the B ˙ increase with the change of the ratio of release flow until at higher ratios, e.g., 40%. We transformed these time-sampled data into the frequency domain and found coherent modes with fundamental frequencies lying in the lower hybrid range. In addition, these coherent frequencies show a frequency drift with the increase of the contents of the negative ions. These modes were suggested as the magnetic component of electron-ion hybrid mode. This work has an important application in the study of artificially-created ionospheric depletion which is usually generated by releasing of attachment chemicals in the upper atmosphere.

  8. Measurement of argon neutral velocity distribution functions near an absorbing boundary in a plasma

    NASA Astrophysics Data System (ADS)

    Short, Zachary; Thompson, Derek; Good, Timothy; Scime, Earl

    2016-10-01

    Neutral particle distributions are critical to the study of plasma boundary interactions, where ion-neutral collisions, e.g. via charge exchange, may modify energetic particle populations impacting the boundary surface. Neutral particle behavior at absorbing boundaries thus underlies a number of important plasma physics issues, such as wall loading in fusion devices and anomalous erosion in Hall thruster channels. Neutral velocity distribution functions (NVDFs) are measured using laser-induced fluorescence (LIF). Our LIF scheme excites the 1s4 non-metastable state of neutral argon with 667.913 nm photons. The subsequent decay emission at 750.590 nm is recorded synchronously with injection laser frequency. Measurements are performed near a grounded boundary immersed in a cylindrical helicon plasma, with the boundary plate oriented at an oblique angle to the magnetic field. NVDFs are recorded in multiple velocity dimensions and in a three-dimensional volume, enabling point-to-point comparisons with NVDF predictions from particle-in-cell models as well as comparisons with ion velocity distribution function measurements obtained in the same regions through Ar-II LIF. This work is supported by US National Science Foundation Grant Number PHYS-1360278.

  9. Pulsed microwave-driven argon plasma jet with distinctive plume patterns resonantly excited by surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Chen, Zhao-Quan; Yin, Zhi-Xiang; Xia, Guang-Qing; Hong, Ling-Li; Hu, Ye-Lin; Liu, Ming-Hai; Hu, Xi-Wei; A. Kudryavtsev, A.

    2015-02-01

    Atmospheric lower-power pulsed microwave argon cold plasma jets are obtained by using coaxial transmission line resonators in ambient air. The plasma jet plumes are generated at the end of a metal wire placed in the middle of the dielectric tubes. The electromagnetic model analyses and simulation results suggest that the discharges are excited resonantly by the enhanced electric field of surface plasmon polaritons. Moreover, for conquering the defect of atmospheric argon filamentation discharges excited by 2.45-GHz of continued microwave, the distinctive patterns of the plasma jet plumes can be maintained by applying different gas flow rates of argon gas, frequencies of pulsed modulator, duty cycles of pulsed microwave, peak values of input microwave power, and even by using different materials of dielectric tubes. In addition, the emission spectrum, the plume temperature, and other plasma parameters are measured, which shows that the proposed pulsed microwave plasma jets can be adjusted for plasma biomedical applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 11105002 and 61170172), the Natural Science Foundation of Anhui Province, China (Grant Nos. 1408085QA16 and 1408085ME101), the China Postdoctoral Science Foundation (Grant No. 2014M551788), and the Open-end Fund of State Key Laboratory of Advanced Electromagnetic Engineering and Technology (HUST), China (Grant No. GZ1301).

  10. Plasma pentraxin-3 and coagulation and fibrinolysis variables during acute Puumala hantavirus infection and associated thrombocytopenia.

    PubMed

    Laine, Outi K; Koskela, Sirpa M; Outinen, Tuula K; Joutsi-Korhonen, Lotta; Huhtala, Heini; Vaheri, Antti; Hurme, Mikko A; Jylhävä, Juulia; Mäkelä, Satu M; Mustonen, Jukka T

    2014-09-01

    Thrombocytopenia and altered coagulation characterize all hantavirus infections. To further assess the newly discovered predictive biomarkers of disease severity during acute Puumala virus (PUUV) infection, we studied the associations between them and the variables reflecting coagulation, fibrinolysis and endothelial activation. Nineteen hospital-treated patients with serologically confirmed acute PUUV infection were included. Acutely, plasma levels of pentraxin-3 (PTX3), cell-free DNA (cf-DNA), complement components SC5b-9 and C3 and interleukin-6 (IL-6) were recorded as well as platelet ligands and markers of coagulation and fibrinolysis. High values of plasma PTX3 associated with thrombin formation (prothrombin fragments F1+2; r = 0.46, P = 0.05), consumption of platelet ligand fibrinogen (r = -0.70, P < 0.001) and natural anticoagulants antithrombin (AT) (r = -0.74, P < 0.001), protein C (r = -0.77, P < 0.001) and protein S free antigen (r = -0.81, P < 0.001) and a decreased endothelial marker ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 domain 13) (r = -0.48, P = 0.04). Plasma level of AT associated with C3 (r = 0.76, P < 0.001), IL-6 (r = -0.56, P = 0.01) and cf-DNA (r = -0.47, P = 0.04). High cf-DNA coincided with increased prothrombin fragments F1+2 (r = 0.47, P = 0.04). Low C3 levels reflecting the activation of complement system through the alternative route predicted loss of all natural anticoagulants (for protein C r = 0.53, P = 0.03 and for protein S free antigen r = 0.64, P = 0.004). Variables depicting altered coagulation follow the new predictive biomarkers of disease severity, especially PTX3, in acute PUUV infection. The findings are consistent with the previous observations of these biomarkers also being predictive for low platelet count and underline the cross-talk of inflammation and coagulation systems in acute PUUV infection.

  11. Characterization of Modified Tapioca Starch in Atmospheric Argon Plasma under Diverse Humidity by FTIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Deeyai, P.; Suphantharika, M.; Wongsagonsup, R.; Dangtip, S.

    2013-01-01

    Tapioca is economical crop grown in Thailand and continues to be one of the major sources of starch. Nowadays, tapioca starch has been widely used in industrial applications, however the native form of starch has limited the applications. Thus scientists try to modify the properties of starch for increasing the stability of the granules, pastes to low pH, heat, and shear during the food process. We modify the tapioca starch by plasma treatment under an argon atmosphere. The degree of modification is determined by following water content in the starch granules. The tablet samples of native starch are also prepared and compared with the plasma treated starch. Before plasma treatment, the starch tablets are stored under three different relative humilities (RH) including 11%, 68%, and 78%RH, respectively. The samples are characterized using FTIR spectroscopy associated with the degree of cross-linking. The results show that the water molecules are engulfed into the starch structure in two ways, a tight bond and a weak absorption of water molecules which is represented at two wave number of 1630 cm-1 and 3272 cm-1, respectively. The degree of cross-linking can be identified from the relative intensity of these two peaks with the C—O—H peak at 993 cm-1. The results show that the degree of cross-linking increase in the plasma treated starch. The degree of cross-linking of the treated starch with high relative humidity is less than that of the treated starch with low relative humidity.

  12. [A role of some intracellular signaling cascades in planarian regeneration activated under irradiation with low-temperature argon plasma].

    PubMed

    Ermakov, A M; Ermakova, O N; Maevskiĭ, E I

    2014-01-01

    Using inhibitory analysis the role of some intracellular signaling pathways in activation of planarian regeneration under the influence of low-temperature argon plasma (LTAP) has been investigated. Inactivation of specific inhibitors of intracellular signaling enzymes such as the receptor tyrosine kinase (EGFR), TGF β receptor, calmodulin, adenylate cyclase, phospholipase A2, phospholipase C, cyclin-dependent protein kinase, JAK2-protein kinase, JNK-protein kinase MEK-protein kinase led to inhibition of the head growth during its regeneration in planarians. Pretreatment with LTAP irradiation provided no inhibitory action of some cascades regulating proliferation. However, the inhibitors of the key regulators of regeneration: TGF β receptor, calmodulin and MEK-protein kinase completely suppressed the activating effect of plasma. Thus, by the example of regenerating planarians it is shown, that biological activity of low-temperature argon plasma LTAP is caused by modulation of a plurality of cellular signaling systems.

  13. Measurements of the populations of metastable and resonance levels in the plasma of an RF capacitive discharge in argon

    SciTech Connect

    Vasilieva, A. N.; Voloshin, D. G.; Kovalev, A. S. Kurchikov, K. A.

    2015-05-15

    The behavior of the populations of two metastable and two lower resonance levels of argon atoms in the plasma of an RF capacitive discharge was studied. The populations were measured by two methods: the method of emission self-absorption and the method based on measurements of the intensity ratios of spectral lines. It is shown that the populations of resonance levels increase with increasing power deposited in the discharge, whereas the populations of metastable levels is independent of the RF power. The distribution of the populations over energy levels is not equilibrium under these conditions. The population kinetics of argon atomic levels in the discharge plasma is simulated numerically. The distribution function of plasma electrons recovered from the measured populations of atomic levels and numerical simulations is found to be non-Maxwellian.

  14. Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds.

    PubMed

    Ermolaeva, Svetlana A; Varfolomeev, Alexander F; Chernukha, Marina Yu; Yurov, Dmitry S; Vasiliev, Mikhail M; Kaminskaya, Anastasya A; Moisenovich, Mikhail M; Romanova, Julia M; Murashev, Arcady N; Selezneva, Irina I; Shimizu, Tetsuji; Sysolyatina, Elena V; Shaginyan, Igor A; Petrov, Oleg F; Mayevsky, Evgeny I; Fortov, Vladimir E; Morfill, Gregor E; Naroditsky, Boris S; Gintsburg, Alexander L

    2011-01-01

    Non-thermal (low-temperature) physical plasma is under intensive study as an alternative approach to control superficial wound and skin infections when the effectiveness of chemical agents is weak due to natural pathogen or biofilm resistance. The purpose of this study was to test the individual susceptibility of pathogenic bacteria to non-thermal argon plasma and to measure the effectiveness of plasma treatments against bacteria in biofilms and on wound surfaces. Overall, Gram-negative bacteria were more susceptible to plasma treatment than Gram-positive bacteria. For the Gram-negative bacteria Pseudomonas aeruginosa, Burkholderia cenocepacia and Escherichia coli, there were no survivors among the initial 10(5) c.f.u. after a 5 min plasma treatment. The susceptibility of Gram-positive bacteria was species- and strain-specific. Streptococcus pyogenes was the most resistant with 17 % survival of the initial 10(5) c.f.u. after a 5 min plasma treatment. Staphylococcus aureus had a strain-dependent resistance with 0 and 10 % survival from 10(5) c.f.u. of the Sa 78 and ATCC 6538 strains, respectively. Staphylococcus epidermidis and Enterococcus faecium had medium resistance. Non-ionized argon gas was not bactericidal. Biofilms partly protected bacteria, with the efficiency of protection dependent on biofilm thickness. Bacteria in deeper biofilm layers survived better after the plasma treatment. A rat model of a superficial slash wound infected with P. aeruginosa and the plasma-sensitive Staphylococcus aureus strain Sa 78 was used to assess the efficiency of argon plasma treatment. A 10 min treatment significantly reduced bacterial loads on the wound surface. A 5-day course of daily plasma treatments eliminated P. aeruginosa from the plasma-treated animals 2 days earlier than from the control ones. A statistically significant increase in the rate of wound closure was observed in plasma-treated animals after the third day of the course. Wound healing in plasma

  15. Bacterial inactivation/sterilization by argon plasma treatment on contaminated titanium implant surfaces:In vitro study

    PubMed Central

    Annunziata, Marco; Donnarumma, Giovanna; Caputo, Pina; Nastri, Livia; Guida, Luigi

    2016-01-01

    Background Surface treatment by argon plasma is widely used as the last step of the manufacturing process of titanium implant fixtures before their sterilization by gamma rays. The possibility of using such a technology in the daily clinical practice is particularly fascinating. The aim of the present study was to assess the effects of the argon plasma treatment on different titanium implant surfaces previously exposed In vitro to bacterial contamination. Material and Methods Sterile c.p. titanium implant discs with turned (T, Sa: 0.8 µm ), sandblasted/acid-etched (SAE, Sa: 1.3 µm) and titanium plasma sprayed (TPS, Sa: 3.0µm) surface were used in this study. A strain of Aggregatibacter actinomycetemcomitans ATCC3718 was grown at 37°C under anaerobic conditions for 24 h and then transferred on six discs for each of the three surface types. After 24 hours, a half of the contaminated discs (control group) were directly used to evaluate the colony forming units (CFUs). The other half of the contaminated discs (test group) were treated in an argon plasma chamber for 12 minutes at room temperature prior to be analyzed for CFU counting. All assays were performed using triplicate samples of each material in 3 different experiments. Results When the CFU counting was carried out on control discs, a total of 1.50x106±1.4x105, 1.55x106±7.07x104 and 3.15x106±2.12x105 CFU was respectively assessed for T, SAE and TPS discs, without statistically significant differences among the three surfaces. On the contrary, any trace of bacterial contamination was assessed for titanium discs treated in the argon plasma chamber prior to be analyzed, irrespectively to the implant surface tested. Conclusions Within the limit of this study, reported data suggested that the argon plasma technology could be efficiently used to decontaminate/sterilize previously infected titanium implant surfaces. Key words:Argon plasma, titanium implant surface, Aggregatibacter actinomycetemcomitans. PMID

  16. The inactivation of Staphylococcus aureus biofilms using low-power argon plasma in a layer-by-layer approach.

    PubMed

    Traba, Christian; Liang, Jun F

    2015-01-01

    The direct application of low power argon plasma for the decontamination of pre-formed Staphylococcus aureus biofilms on various surfaces was examined. Distinct chemical/physical properties of reactive species found in argon plasmas generated at different wattages all demonstrated very potent but very different anti-biofilm mechanisms of action. An in-depth analysis of the results showed that: (1) the different reactive species produced in each plasma demonstrated specific antibacterial and/or anti-biofilm activity; and (2) the commonly associated etching effect could be manipulated and even controlled, depending on the experimental conditions. Under optimal experimental parameters, bacterial cells in S. aureus biofilms were killed (> 99.9%) by plasmas within 10 min of exposure and no bacteria nor biofilm regrowth from argon discharge gas treated biofilms was observed for 150 h. The decontamination ability of plasmas for the treatment of biofilm related contaminations on various materials was confirmed and an entirely novel layer-by-layer decontamination approach was designed and examined.

  17. Discharge processes and an electrical model of atmospheric pressure plasma jets in argon

    NASA Astrophysics Data System (ADS)

    Fang, Zhi; Shao, Tao; Yang, Jing; Zhang, Cheng

    2016-01-01

    In this paper, an atmospheric pressure plasma discharge in argon was generated using a needle-to-ring electrode configuration driven by a sinusoidal excitation voltage. The electric discharge processes and discharge characteristics were investigated by inspecting the voltage-current waveforms, Lissajous curves and lighting emission images. The change in discharge mode with applied voltage amplitude was studied and characterised, and three modes of corona discharge, dielectric barrier discharge (DBD) and jet discharge were identified, which appeared in turn with increasing applied voltage and can be distinguished clearly from the measured voltage-current waveforms, light-emission images and the changing gradient of discharge power with applied voltage. Based on the experimental results and discharge mechanism analysis, an equivalent electrical model and the corresponding equivalent circuit for characterising the whole discharge processes accurately was proposed, and the three discharge stages were characterised separately. A voltage-controlled current source (VCCS) associated with a resistance and a capacitance were used to represent the DBD stage, and the plasma plume and corona discharge were modelled by a variable capacitor in series with a variable resistor. Other factors that can influence the discharge, such as lead and stray capacitance values of the circuit, were also considered in the proposed model. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  18. Multivariate statistical characterization of the tolerance of argon inductively coupled plasmas to organic solvents

    NASA Astrophysics Data System (ADS)

    Lopez Molinero, A.; Castillo, J. R.; Chamorro, P.; Muniozguren, J. M.

    1997-01-01

    The tolerance of Argon-inductively coupled plasmas to the introduction of organic solvents, defined by Matsunaga's parameter and by "limiting aspiration rate", has been correlated with their nature by statistical methods. The main physical variables of solvents obtained from the technical literature were used as independent variables to perform principal component analysis (PCA) and factorial discriminant analysis (FDA). Thus the variables which had the greatest influence on heat exchange nebulization and transport processes were determined. Organic solvents were classified into different groups characterized by their tolerance in plasma operation. In the PCA study, the second principal component was the most significative to differentiate between the tolerance of solvents and it showed a high correlation with surface tension, viscosity and heat of vaporization. Scores of the organic solvents belonging to the same class can be adjusted to straight lines and their positions in the plane (expressed as ordinates in the origin) as well as the slope values are characteristics of organic solvent groups. The results of FDA confirms those obtained with PCA. Multivariable regression was applied to obtain predictive equations of the limiting aspiration rate for organic solvents, in terms of their main physical variables.

  19. Effects of metastable species in helium and argon atmospheric pressure plasma jets (APPJs) on inactivation of periodontopathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Young; Kim, Kyoung-Hwa; Seol, Yang-Jo; Kim, Su-Jeong; Bae, Byeongjun; Huh, Sung-Ryul; Kim, Gon-Ho

    2016-05-01

    The helium and argon have been widely used as discharge gases in atmospheric pressure plasma jets (APPJs) for bacteria inactivation. The APPJs show apparent different in bullet propagation speed and bacteria inactivation rate apparently vary with discharge gas species. This work shows that these two distinctive features of APPJs can be linked through one factor, the metastable energy level. The effects of helium and argon metastable species on APPJ discharge mechanism for reactive oxygen nitrogen species (RONS) generation in APPJs are investigated by experiments and numerical estimation. The discharge mechanism is investigated by using the bullet velocity from the electric field which is obtained with laser induced fluorescence (LIF) measurement. The measured electric field also applied on the estimation of RONS generation, as electron energy source term in numerical particle reaction. The estimated RONS number is verified by comparing NO and OH densities to the inactivation rate of periodontitis bacteria. The characteristic time for bacteria inactivation of the helium-APPJ was found to be 1.63 min., which is significantly less than that of the argon-APPJ, 12.1 min. In argon-APPJ, the argon metastable preserve the energy due to the lack of the Penning ionization. Thus the surface temperature increase is significantly higher than helium-APPJ case. It implies that the metastable energy plays important role in both of APPJ bullet propagation and bacteria inactivation mechanism.

  20. Red blood cell coagulation induced by low-temperature plasma treatment.

    PubMed

    Miyamoto, Kenji; Ikehara, Sanae; Takei, Hikaru; Akimoto, Yoshihiro; Sakakita, Hajime; Ishikawa, Kenji; Ueda, Masashi; Ikeda, Jun-Ichiro; Yamagishi, Masahiro; Kim, Jaeho; Yamaguchi, Takashi; Nakanishi, Hayao; Shimizu, Tetsuji; Shimizu, Nobuyuki; Hori, Masaru; Ikehara, Yuzuru

    2016-09-01

    Low-temperature plasma (LTP) treatment promotes blood clot formation by stimulation of the both platelet aggregation and coagulation factors. However, the appearance of a membrane-like structure in clots after the treatment is controversial. Based on our previous report that demonstrated characteristics of the form of coagulation of serum proteins induced by LTP treatment, we sought to determine whether treatment with two plasma instruments, namely BPC-HP1 and PN-110/120TPG, formed clots only from red blood cells (RBCs). LTP treatment with each device formed clots from whole blood, whereas LTP treatment with BPC-HP1 formed clots in phosphate-buffered saline (PBS) containing 2 × 10(9)/mL RBCs. Light microscopic analysis results showed that hemolysis formed clots consisting of materials with membrane-like structures from both whole blood and PBS-suspended RBCs. Moreover, electron microscopic analysis results showed a monotonous material with high electron density in the formed clots, presenting a membrane-like structure. Hemolysis disappeared with the decrease in the current through the targets contacting with the plasma flare and clot formation ceased. Taken together, our results and those of earlier studies present two types of blood clot formation, namely presence or absence of hemolysis capability depending on the current through the targets.

  1. Correlations between plasma variables and the deposition process of Si films from chlorosilanes in low pressure RF plasma of argon and hydrogen

    NASA Technical Reports Server (NTRS)

    Avni, R.; Carmi, U.; Grill, A.; Manory, R.; Grossman, E.

    1984-01-01

    The dissociation of chlorosilanes to silicon and its deposition on a solid substrate in a RF plasma of mixtures of argon and hydrogen were investigated as a function of the macrovariables of the plasma. The dissociation mechanism of chlorosilanes and HCl as well as the formation of Si in the plasma state were studied by sampling the plasma with a quadrupole mass spectrometer. Macrovariables such as pressure, net RF power input and locations in the plasma reactor strongly influence the kinetics of dissociation. The deposition process of microcrystalline silicon films and its chlorine contamination were correlated to the dissociation mechanism of chlorosilanes and HCl.

  2. Deposition of plasma-polymerized hydroxyethyl methacrylate (HEMA) on silicon in presence of argon plasma

    NASA Astrophysics Data System (ADS)

    Bodas, Dhananjay S.; Desai, Shrojal M.; Gangal, S. A.

    2005-05-01

    2-hydroxyethyl methacrylate (HEMA) has been deposited onto the surface of silicon substrate (thickness = 500 μm) using plasma polymerization technique. Polymerization process was carried out in an in-house developed inductively coupled plasma polymerization setup. The depositions were carried out using RF power supply (13.56 MHz) at power of 75 W for 10 and 40 min. The RF supply was coupled to the inductance through a matching network. The effect of plasma polymerization (surface grafting) on the degree of surface modification has been investigated. The chemical changes on the polymer backbone are followed from the results of Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS), which show the peaks corresponding to the functional groups of the HEMA polymerized onto the silicon surface. The morphology of the modified surfaces has also been investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The hydrophilicity was determined from the water contact angle measurements.

  3. Exploring the electron density in plasma induced by EUV radiation: II. Numerical studies in argon and hydrogen

    NASA Astrophysics Data System (ADS)

    Astakhov, D. I.; Goedheer, W. J.; Lee, C. J.; Ivanov, V. V.; Krivtsun, V. M.; Koshelev, K. N.; Lopaev, D. V.; van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Bijkerk, F.

    2016-07-01

    We used numerical modeling to study the evolution of EUV-induced plasmas in argon and hydrogen. The results of simulations were compared to the electron densities measured by microwave cavity resonance spectroscopy. It was found that the measured electron densities can be used to derive the integral amount of plasma in the cavity. However, in some regimes, the impact of the setup geometry, EUV spectrum, and EUV induced secondary emission should be taken into account. The influence of these parameters on the generated plasma and the measured electron density is discussed.

  4. X-ray Photoelectron Spectroscopy Study of Argon-Plasma-Treated Fluoropolymers

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Lopata, Eugene S.; Finney, Lorie S.

    1994-01-01

    Films of poly(tetrafluoroethylene) (PTFE) and of a tetrafluoroethylene-perfluoroalkyl vinyl ether (approximately 49:1) copolymer (PFA) were exposed to a radio-frequency argon plasma and then examined by X-ray photoelectron spectroscopy (XPS). The use of fluoropolymer films nearly free of surface hydrocarbon contamination as well as the use of a monochromatized X-ray source for XPS removed two factors contributing to conflicting reports on the effect of exposure time on the fluorine-to-carbon (F/C) and oxygen-to-carbon (O/C) ratios for several Ar-plasma-treated fluoropolymers. Contrary to literature indications, a common pattern was found for PTFE and PFA: a moderate decrease in F/C ratio (from 1.99 to 1.40, and from 1.97 to 1.57, respectively), together with a moderate increase in O/C ratio (from negligible to about 0.10, and from 0.012 to about O.10, respectively) at very short exposures, after which the F/C ratios remained essentially constant on prolonged exposures, while the O/C ratios for PTFE and PFA leveled off at 0.11 and 0.15, respectively. The XPS C(sub 1s), spectra for these polymers exposed to the Ar plasma for 20 min were similar and presented, besides a prominent peak at 292.0 eV (CF2,) and a minor peak at 294.0 or 294.1 eV (CF3), a composite band of four curve-resolved peaks (approximately 285-290 eV) representing various CH, CC, CO, CN, and CF functionalities.

  5. Plasma/particle interaction in subsonic argon/helium thermal plasma jets

    SciTech Connect

    Swank, W.D.; Fincke, J.R.; Haggard, D.C.

    1993-04-01

    Understanding the behavior of a particle and the interactions between a particle and the plasma surrounding it is important to the development and optimization of the plasma spray coating process. This is an experimental study of the interaction between a subsonic thermal plasma jet and injected nickel-aluminum particles. The velocity, temperature and composition of the gas flow field is mapped using an enthalpy probe/mass spectrometer system. The particle flow field is examined by simultaneously measuring the in-flight size, velocity, and temperature of individual particles. The complex interaction between the gas and particle flow fields is examined by combining the two sets of data. Particle and gas temperatures and velocities are compared in the vicinity of a nominal substrate standoff distance and axially along the median particle trajectory. The temperature and velocity difference is shown to vary substantially depending on the particle`s trajectory. By the time a particle on the median trajectory reaches the nominal substrate stand off of 63.5 mm it is transferring it`s heat and momentum to the plasma gas.

  6. Plasma/particle interaction in subsonic argon/helium thermal plasma jets

    SciTech Connect

    Swank, W.D.; Fincke, J.R.; Haggard, D.C.

    1993-01-01

    Understanding the behavior of a particle and the interactions between a particle and the plasma surrounding it is important to the development and optimization of the plasma spray coating process. This is an experimental study of the interaction between a subsonic thermal plasma jet and injected nickel-aluminum particles. The velocity, temperature and composition of the gas flow field is mapped using an enthalpy probe/mass spectrometer system. The particle flow field is examined by simultaneously measuring the in-flight size, velocity, and temperature of individual particles. The complex interaction between the gas and particle flow fields is examined by combining the two sets of data. Particle and gas temperatures and velocities are compared in the vicinity of a nominal substrate standoff distance and axially along the median particle trajectory. The temperature and velocity difference is shown to vary substantially depending on the particle's trajectory. By the time a particle on the median trajectory reaches the nominal substrate stand off of 63.5 mm it is transferring it's heat and momentum to the plasma gas.

  7. Investigations on the time evolution of the plasma density in argon electron-beam plasma at intermediate pressure

    NASA Astrophysics Data System (ADS)

    Xiaoyan, BAI; Chen, CHEN; Hong, LI; Wandong, LIU

    2017-03-01

    The time evolution of the argon electron-beam plasma at intermediate pressure and low electron beam intensity was presented. By applying the amplitude modulation with the frequency of 20 Hz on the stable beam current, the plasma evolution was studied. A Faraday cup was used for the measurement of the electron beam current and a single electrostatic probe was used for the measurement of the ion current. Experimental results indicated that the ion current was in phase with the electron beam current in the pressure range from 200 Pa to 3000 Pa and in the beam current range lower than 20 mA, the residual density increased approximately linearly with the maximum density in the log-log plot and the fitting coefficient was irrelative to the pressure. And then three kinds of kinetic models were developed and the simulated results given by the kinetic model, without the consideration of the excited atoms, mostly approached to the experimental results. This indicated that the effect of the excited atoms on the plasma density can be ignored at intermediate pressure and low electron beam current intensity, which can greatly simplify the kinetic model. In the end, the decrease of the plasma density when the beam current was suddenly off was studied based on the simplified model and it was found that the decease characteristic at intermediate pressure was approximate to the one at high pressure at low electron beam intensity, which was in good accordance with the experimental results. Supported by National Natural Science Foundations of China (No. 11375187) and the Foundation of State key Laboratory of China (No. SKLIPR1510).

  8. Gas temperature determination in an argon non-thermal plasma at atmospheric pressure from broadenings of atomic emission lines

    NASA Astrophysics Data System (ADS)

    Yubero, C.; Rodero, A.; Dimitrijevic, M. S.; Gamero, A.; García, M. C.

    2017-03-01

    In this work a new spectroscopic method, allowing gas temperature determination in argon non-thermal plasmas sustained at atmospheric pressure, is presented. The method is based on the measurements of selected pairs of argon atomic lines (Ar I 603.2 nm/Ar I 549.6 nm, Ar I 603.2 nm/Ar I 522.1 nm, Ar I 549.6 nm/Ar I 522.1 nm). For gas temperature determination using the proposed method, there is no need of knowing the electron density, neither making assumptions on the degree of thermodynamic equilibrium existing in the plasma. The values of the temperatures obtained using this method, have been compared with the rotational temperatures derived from the OH ro-vibrational bands, using both, the well-known Boltzmann-plot technique and the best fitting to simulated ro-vibrational bands. A very good agreement has been found.

  9. Analysis of tungsten carbide coatings by infrared laser-induced argon spark with inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Kanický, V.; Otruba, V.; Mermet, J.-M.

    2000-10-01

    Infrared laser ablation was studied for application to the analysis of plasma-sprayed tungsten carbide/cobalt coatings. The potential of the laser induced argon-spark (LINA-Spark™), as a sample introduction device in inductively coupled plasma atomic emission spectrometry was studied. The use of an IR laser along with defocusing led to laser-induced microplasma-based ablation. The mass ablation rate, represented by the ICP emission intensity per laser beam unit area, exhibited a flat increase in the irradiance range 2-250 GW/cm 2. A low slope (0.5) of this dependence in log-log scale gave evidence of plasma shielding. The steep increase in the measured acoustic signal when focused in front of the sample, i.e. in argon, indicated a breakdown of argon. Consequently, considerably lower ICP emissions were observed within the same range of irradiance. The cobalt/tungsten line intensity ratio in the ICP was practically constant from 1.5 up to at least 250 GW/cm 2. Acceptable precision (R.S.D.<5%) was obtained without internal standardization for irradiance between 2 and 8 GW/cm 2. Optimization of the laser pulse energy, repetition rate, beam focusing and sample displacement during interaction led to the linearization of dependences of signal vs. cobalt percentage, at least up to the highest studied value of 23% Co.

  10. Assessment of the roles of various inactivation agents in an argon-based direct current atmospheric pressure cold plasma jet

    SciTech Connect

    Zhang Qian; Wang Ruixue; Sun Peng; Feng Hongqing; Liang Yongdong; Zhu Weidong; Becker, Kurt H.; Zhang Jue; Fang Jing

    2012-06-15

    Three types of gases, pure argon (99.999%), argon with 2% oxygen, and argon with 2% oxygen and 10% nitrogen were used as operating gases of a direct current atmospheric pressure cold plasma jet to inactivate Staphylococcus aureus (S. aureus) suspended in a liquid. The inactivation efficacies for the plasma jets operating in the three gases decrease from Ar/O{sub 2}(2%) to Ar/O{sub 2}(2%)/N{sub 2}(10%) to pure Ar. Optical emission spectroscopy, electron spin resonance spectroscopy, high performance liquid chromatography, and atomic absorption spectrophotometry were employed to identify and monitor the reactive species in the plasma-liquid system for the three operating gases and revealed the presence of O, {sup 1}O{sub 2}, OH, NO, H{sub 2}O{sub 2}, O{sub 3}, and NO{sub 3}{sup -}/NO{sub 2}{sup -} as well as Cu{sup +}/Cu{sup 2+}. The S. aureus inactivation results indicate that atomic oxygen (O) is the key inactivation agent, while other species play a lesser role in the inactivation progress studied here.

  11. Conversion of emitted dimethyl sulfide into eco-friendly species using low-temperature atmospheric argon micro-plasma system.

    PubMed

    Chen, Hsin-Hung; Weng, Chih-Chiang; Liao, Jiunn-Der; Whang, Liang-Ming; Kang, Wei-Hung

    2012-01-30

    A custom-made atmospheric argon micro-plasma system was employed to dissociate dimethyl sulfide (DMS) into a non-foul-smelling species. The proposed system takes the advantages of low energy requirement and non-thermal process with a constant flow rate at ambient condition. In the experiments, the compositions of DMS/argon plasma, the residual gaseous phases, and solid precipitates were respectively characterized using an optical emission spectrometer, various gas-phase analyzers, and X-ray photoemission spectroscopy. For 400 ppm DMS introduced into argon plasma with two pairs of electrodes (90 W), a complete decomposition of DMS was achieved; the DMS became converted into excited species such as C, C(2), H, and CH. When gaseous products were taken away from the treatment area, the excited species tended to recombine and form stable compounds or species, which formed as solid particles and gaseous phases. The solid deposition was likely formed by the agglomeration of C-, H-, and S-containing species that became deposited on the quartz inner tube. For the residual gaseous phases, low-molecular-weight segments mostly recombined into relatively thermodynamic stable species, such as hydrogen, hydrogen sulfide, and carbon disulfide. The dissociation mechanism and treatment efficiency are discussed, and a treatment of converting DMS into H(2)-, CS(2)-, and H(2)S-dominant by-products is proposed.

  12. Presheath and Double Layer Structures in an Argon Helicon Plasma Source

    NASA Astrophysics Data System (ADS)

    Siddiqui, M. Umair

    Ion velocities and temperatures, plasma density, potential, and electron temperatures are measured in a 13.56 MHz helicon produced argon plasma upstream from a grounded plate inside a 10 cm ID cylindrical Pyrex vacuum chamber. The plate is held at psi = 0° → 60° relative to the background axial magnetic field in the system. For the psi = 0° experiment, two distinct helicon discharge equilibria are observed at 500 W rf power, 900 G magnetic field, and a neutral pressure of 3 → 4 mTorr. Both modes exhibit a localized region of hot electrons (Th ≈ 10 eV, Tc ≈ 3.5 eV). For the first mode the hot electrons are confined by a localized potential structure and the density decreases monotonically towards the grounded plate. For the second mode the hot electrons cool off gradually in space due to heat conduction generating a downstream density peak and no major potential structures are observed. It is found that the type of discharge mode is determined by the location of the grounded plate, the length of the presheath, and the rf electron heating mechanism. For the psi = 16° → 60° plate positions, ion flow to the boundary where a 1 kG magnetic field is obliquely incident is measured at 1, 3, and 6.5 mTorr neutral pressure and 450 → 750 W rf power. The results are compared to the magnetic presheath models put forth by Chodura [Phys. Fluids 25, 1628 (1982)], Riemann [Phys. Plasmas 1, 552 (1994)], and Ahedo [Phys. Plasmas 4, 4419 (1997)]. The 1 mTorr dataset is used to benchmark a one-dimensional fluid model for the ion flow in the presheath. Definitions of the "magnetic presheath" are discussed. The fluid model in conjuction with the data show that the ion velocities in the E x B direction can be 10% → 40% percent of the sound speed for the angles investigated. Ion flow to fusion experiment boundaries and Hall thruster walls is discussed.

  13. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    SciTech Connect

    Chen, Zhaoquan; Yin, Zhixiang Chen, Minggong; Hong, Lingli; Hu, Yelin; Huang, Yourui; Xia, Guangqing; Liu, Minghai; Kudryavtsev, A. A.

    2014-10-21

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  14. Investigation of Plasma Uniformity in Pulsed 100 MHz Narrow Gap-Capacitively Coupled Argon Plasma

    NASA Astrophysics Data System (ADS)

    Jang, Yunchang; Choi, Myungsun; Rho, Hyun-Joon; Huh, Sung-Ryul; Yoon, Sung-Young; Ryu, Sangwon; Kim, Gon-Ho

    2015-09-01

    Capacitively coupled plasmas (CCPs) for industrial applications have a narrow gap between two electrodes and a large exhaust region between electrodes and lateral walls. In this study, uniformity of electron density (ne) distribution was investigated in a 300 mm Φ CCP with outer-electrode space 4 times larger than inter-electrode space. The 100 MHz RF power was applied to top electrode at a pulse repetition rate of 5 kHz. Experiments reveals that the non-uniformity of the ne decreases from 0.60 in the active-glow period to 0.39 in after-glow period. In order to account for this phenomenon in the after-glow, the effective diffusion length representing the ratio of plasma generation volume to effective loss area is introduced. When RF power is turned off, the ne of each space starts to decrease with the specific loss rate determined by each leff. The calculated leff of the outer-electrode space is about 3.7 times longer than that in the outer-electrode space. This implies that ne of the outer-electrode space decay more slowly, leading to improve the uniformity. The details on experimental results and analysis will be presented and discussed. This research was supported by BK21 Research Division of Seoul National University for Energy Resources, Ministry of Trade, Industry and Energy Republic of Korea and Consortium of Semiconductor Advanced Research.

  15. Metastable argon atom density in complex argon/acetylene plasmas determined by means of optical absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Sushkov, Vladimir; Herrendorf, Ann-Pierra; Hippler, Rainer

    2016-10-01

    Optical emission and absorption spectroscopy has been utilized to investigate the instability of acetylene-containing dusty plasmas induced by growing nano-particles. The density of Ar(1s5) metastable atoms was derived by two methods: tunable diode laser absorption spectroscopy and with the help of the branching ratio method of emitted spectral lines. Results of the two techniques agree well with each other. The density of Ar(1s3) metastable atoms was also measured by means of optical emission spectroscopy. The observed growth instability leads to pronounced temporal variations of the metastable and other excited state densities. An analysis of optical line ratios provides evidence for a depletion of free electrons during the growth cycle but no indication for electron temperature variations.

  16. A detailed postprocess analysis of an argon gas puff Z-pinch plasma using SPEC2D

    NASA Astrophysics Data System (ADS)

    Chong, Y. K.; Kammash, T.; Davis, J.

    1997-05-01

    A postprocess analysis of a single time frame hydrodynamic profile from the PRISM two-dimensional MHD simulation of an argon gas puff Z-pinch plasma experiment on Double-Eagle generator at Physics Internationals, Co. is presented. In addition, spatially resolved emission spectra and filtered (K- and L-shell radiation) x-ray pinhole images, generated using the SPEC2D code, are examined toward the understanding of the emission characteristics of the hot spots and the formation of the Rayleigh-Taylor instability in the plasma.

  17. Randomized placebo-controlled human pilot study of cold atmospheric argon plasma on skin graft donor sites.

    PubMed

    Heinlin, Julia; Zimmermann, Julia L; Zeman, Florian; Bunk, Wolfram; Isbary, Georg; Landthaler, Michael; Maisch, Tim; Monetti, Roberto; Morfill, Gregor; Shimizu, Tetsuji; Steinbauer, Julia; Stolz, Wilhelm; Karrer, Sigrid

    2013-01-01

    Cold atmospheric plasma has already been shown to decrease the bacterial load in chronic wounds. However, until now it is not yet known if plasma treatment can also improve wound healing. We aimed to assess the impact of cold atmospheric argon plasma on the process of donor site healing. Forty patients with skin graft donor sites on the upper leg were enrolled in our study. The wound sites were divided into two equally sized areas that were randomly assigned to receive either plasma treatment or placebo (argon gas) for 2 minutes. Donor site healing was evaluated independently by two blinded dermatologists, who compared the wound areas with regard to reepithelialization, blood crusts, fibrin layers, and wound surroundings. From the second treatment day onwards, donor site wound areas treated with plasma (n = 34) showed significantly improved healing compared with placebo-treated areas (day 1, p = 0.25; day 2, p = 0.011; day 3, p < 0.001; day 4, p < 0.001; day 5, p = 0.004; day 6, p = 0.008; day 7, p = 0.031). Positive effects were observed in terms of improved reepithelialization and fewer fibrin layers and blood crusts, whereas wound surroundings were always normal, independent of the type of treatment. Wound infection did not occur in any of the patients, and no relevant side effects were observed. Both types of treatment were well tolerated. The mechanisms contributing to these clinically observed effects should be further investigated.

  18. Effect of hydrogen addition on the deposition of titanium nitride thin films in nitrogen added argon magnetron plasma

    NASA Astrophysics Data System (ADS)

    Saikia, P.; Bhuyan, H.; Diaz-Droguett, D. E.; Guzman, F.; Mändl, S.; Saikia, B. K.; Favre, M.; Maze, J. R.; Wyndham, E.

    2016-06-01

    The properties and performance of thin films deposited by plasma assisted processes are closely related to their manufacturing techniques and processes. The objective of the current study is to investigate the modification of plasma parameters occurring during hydrogen addition in N2  +  Ar magnetron plasma used for titanium nitride thin film deposition, and to correlate the measured properties of the deposited thin film with the bulk plasma parameters of the magnetron discharge. From the Langmuir probe measurements, it was observed that the addition of hydrogen led to a decrease of electron density from 8.6 to 6.2  ×  (1014 m-3) and a corresponding increase of electron temperature from 6.30 to 6.74 eV. The optical emission spectroscopy study reveals that with addition of hydrogen, the density of argon ions decreases. The various positive ion species involving hydrogen are found to increase with increase of hydrogen partial pressure in the chamber. The thin films deposited were characterized using standard surface diagnostic tools such as x-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), x-ray diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). Although it was possible to deposit thin films of titanium nitride with hydrogen addition in nitrogen added argon magnetron plasma, the quality of the thin films deteriorates with higher hydrogen partial pressures.

  19. Surface modification by argon plasma treatment improves antioxidant defense ability of CHO-k1 cells on titanium surfaces.

    PubMed

    de Queiroz, Jana Dara Freires; Leal, Angélica Maria de Sousa; Terada, Maysa; Agnez-Lima, Lucymara Fassarela; Costa, Isolda; Pinto, Nadja Cristhina de Souza; de Medeiros, Silvia Regina Batistuzzo

    2014-04-01

    Titanium is one of the most used materials in implants and changes in its surface can modify the cellular functional response to better implant fixation. An argon plasma treatment generates a surface with improved mechanical proprieties without modifying its chemical composition. Oxidative stress induced by biomaterials is considered one of the major causes of implant failure and studies in this field are fundamental to evaluate the biocompatibility of a new material. Therefore, in this work, induction of oxidative stress by titanium surfaces subjected to plasma treatment (PTTS) was evaluated. The viability of CHO-k1 cells was higher on PTTS discs. Cells grown on titanium surfaces are subjected to intracellular oxidative stress. Titanium discs subjected to the plasma treatment induced less oxidative stress than the untreated ones, which resulted in improved cellular survival. These were associated with improved cellular antioxidant response in Plasma Treated Titanium Surface (PTTS). Furthermore, a decrease in protein and DNA oxidative damage was observed on cells grown on the roughed surface when compared to the smooth one. In conclusion, our data suggest that the treatment of titanium with argon plasma may improve its biocompatible, thus improving its performance as implants or as a scaffold in tissue engineering.

  20. Effects of post-deposition argon implantation on the memory properties of plasma-deposited silicon nitride films

    NASA Astrophysics Data System (ADS)

    Shams, Q. A.; Brown, W. D.

    1989-10-01

    Post-deposition ion implantation has been used to introduce argon into plasma-enhanced chemically vapor deposited silicon nitride films in an attempt to influence the transfer, trapping, and emission of charge during write/erase exercising of the metal-silicon nitride-silicon oxide-silicon structure. Argon was implanted into the SiH4 -NH3 -N2 deposited films at energies ranging from 25 to 75 keV, current densities ranging from 0.1 to 75 μA/cm2 and fluences ranging from 1×1012 to 1×1016 ions/cm2. Physical properties of the films were studied by ellipsometry and infrared spectroscopy, while high frequency capacitance-voltage (C-V) curves were used to obtain programming, retention, and endurance characteristics.

  1. Characterization of magnetically confined low-pressure plasmas produced by an electromagnetic field in argon-acetylene mixtures

    NASA Astrophysics Data System (ADS)

    Makdessi, G. Al; Margot, J.; Clergereaux, R.

    2016-10-01

    Dust particles formation was investigated in magnetically confined low-pressure plasma produced in argon-acetylene mixtures. The plasma characteristics were measured in order to identify the species involved in the dust particles formation. Their dependence on the operating conditions including magnetic field intensity, acetylene fraction in the gas mixture and operating pressure was examined. In contrast with noble gases, in the presence of acetylene, the electron temperature increases with the magnetic field intensity, indicating additional charged particles losses in the plasma. Indeed, in these conditions, larger hydrocarbon ions are produced leading to the formation of dust particles in the plasma volume. The observed dependence of positive ion mass distribution and density and relative negative ion density on the operating parameters suggests that the dust particles are formed through different pathways, where negative and positive ions are both involved in the nucleation.

  2. Study on structural, morphological and thermal properties of surface modified polyvinylchloride (PVC) film under air, argon and oxygen discharge plasma

    NASA Astrophysics Data System (ADS)

    Suganya, Arjunan; Shanmugavelayutham, Gurusamy; Serra Rodríguez, Carmen

    2016-09-01

    The effect of air, argon, oxygen DC glow discharge plasma on the polyvinylchloride (PVC) film synthesized by solution casting technique, were evaluated via changes in physio-chemical properties such as structural, morphological, crystalline, thermal properties. The PVC film was plasma treated as a function of exposure time and different plasma forming gases, while other operating parameters such as power and pressure remained constant at 100 W and 2 Pa respectively. The plasma treated PVC were characterized by static contact angle, ATR-FTIR, XPS, AFM and T-peel analysis. It was found that various gaseous plasma treatments have improved the polar components, surface roughness on the surface of PVC which was confirmed by XPS, AFM, resulting in highly enhanced wettability and adhesion. X-ray diffraction study showed that plasma treatment does not persuade considerable change, even though it vaguely induces the crystallinity. The thermal properties of plasma treated PVC were evaluated by Differential Scanning Calorimetry and it was observed that O2 plasma treatment gives higher glass transition temperature of 87.21 °C compared with the untreated one. The glass transition temperature slightly increased for Oxygen plasma treated material due to the presence of higher concentration of the polar functional groups on the PVC surface due to strong intramolecular bonding.

  3. The effect of different methods of leucoreduction on plasma coagulation factors.

    PubMed

    Aboul Enein, Azza A; Abdel Rahman, Hala A; Abdel Maged, Mohamed M M; El Sissy, Maha H

    2017-03-01

    Removal of leucocytes from blood products, namely leucoreduction, improves the safety of blood transfusion by reducing adverse events associated with the incidental transfusion of leucocytes. Coagulation factors might be compromised during leucoreduction because of exposure of plasma to a variety of filter materials. The aim of the current study was to assess the effect of different methods of prestorage leucofiltration (apheresis and whole blood filters) on prothrombin time, international normalized ratio, partial thromboplastin time and factors V and VIII. There was a significant prolongation of prothrombin time as well as elevation of international normalized ratio in plasma after leucoreduction (14.5 ± 0.7 s vs. 13.9 ± 0.7 s, P = 0.008 and 1.14 ± 0.07 vs. 1.09 ± 0.07, P = 0.005, respectively). Also, there was a statistically significant prolongation of activated partial thromboplastin time in nonleucoreduced plasma (55.6 ± 9.9 s vs. 43.2 ± 12.8 s, P = 0.001). There was no significant filtration effect on factors V and VIII levels. Furthermore, there was no significant difference in factors V and VIII levels between plasma filtered by inline whole blood filters and apheresis machine. Leucodepleted plasma originating from both inline whole blood filter and apheresis machine maintained satisfactory levels of factors V and VIII.

  4. Emission spectroscopy of CW CO2 laser-sustained argon plasma - Effects of gas-flow speed

    NASA Astrophysics Data System (ADS)

    Chen, Xiangli; Mazumder, Jyotirmoy

    1989-12-01

    The effect of elevated gas-flow speed on the laser-sustained argon plasmas (LSPs) formed in laser-gas interaction was examined for the purpose of investigating the applicability of LSPs to laser-supported rocket propulsion. The electron temperature distribution, obtained from the 415.8-nm Ar line-to-continuum intensity ratio, was used to calculate the fraction of laser power absorbed by the plasma and the amount of radiation lost. Laser powers were 2.5 and 5 kW with an f/7 lens focusing scheme, and gas-flow speeds of 2-10 m/sec. It was found that as much as 86 percent of incident laser energy can be absorbed by the plasma, and 41 to 62 of the laser energy can still be retained as the gas thermal energy, which is a significant increase over the previously reported results for lower-flow speed and smaller focusing f number.

  5. Anomalous high-velocity outbursts ejected from the surface of tungsten microdroplets in a flow of argon-air plasma

    NASA Astrophysics Data System (ADS)

    Gulyaev, I. P.; Dolmatov, A. V.; Gulyaev, P. Yu; Iordan, V. I.; Kharlamov, M. Yu; Krivtsun, I. V.

    2016-02-01

    For the first time, a phenomenon of high-velocity outbursts ejected from the surface of liquid tungsten microparticles in a flow of argon-air plasma under atmospheric pressure was observed. As tungsten particles sized 50 to 200 μm moved in a plasma flow, stratified radiating spheres up to 9 mm in diameter formed around such particles. The spheres were sources of high-velocity outbursts whose ejection direction coincided with the direction of the plasma flow. The velocity of the anomalous outbursts amounted to 3-20 km/s. In the outburst images, the distribution of glow intensity along outburst tracks exhibited a wavy decaying behavior with a wavelength of 5-15 mm. Possible physical factors that could be the cause of the phenomenon are discussed.

  6. X-ray line emission from highly ionised argon and sulphur in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    McGinnity, Paul

    Observations of H-like and He-like argon line emission and associated satellite spectra have been made on the JET (Joint European Torus) tokamak by a Bragg rotorspectrometer and a double crystal monochromator. Similar He-like sulphur measurements have been made on the COMPASS-D (Compact Assembly) tokamak by a Johann curved crystal spectrometer. Recently calculated electron impact excitation rates for He-like ions were used in the derivation of the electron temperature sensitive line ratio G=(Ix+Iy+Iz)/Iw and the electron density sensitive ratio R=Iz/(Ix+Iy), where w, x, y and z are the He-like resonance line, intercombination lines and forbidden line respectively. For S XV the ratios Ik/Iw and Iq/Iw were also calculated, where k and q are Li-like dielectronic satellites to the w line formed by dielectronic recombination and inner shell excitation respectively. Both are electron temperature dependent, the latter also being sensitive to changes in the ionisation balance. The fine structure ratios Ix/Iy and /beta = Ly/alpha 2/Lyα1 were calculated for He-like S XV and H-like Ar XVIII respectively, where Ly/alpha/sb[1,2] are the fine structure components of the H-like Lyman alpha line. Transport modelling was carried out to account for non-coronal conditions in the JET plasma while a near-coronal equilibrium was assumed in the COMPASS-D plasma. Calculated ratios were compared with experimental measurements obtained from JET and COMPASS-D. For higher temperatures, such as during additional heating, the Ar XVII emission shell was found to move of axis, with a subsequent reduction in the G ratio. For S XV good agreement with calculations was found between the measured G and Iq/Iw ratios, indicating that the assumption of near-coronal equilibrium was valid. Lower than expected values of the S XV R ratio were found. After investigation of the atomic physics processes it was concluded that this was due to an unidentified instrumental effect of the Johann spectrometer. An

  7. Single-shot Thomson scattering on argon plasmas created by the Microwave Plasma Torch; evidence for a new plasma class

    NASA Astrophysics Data System (ADS)

    van der Mullen, J. J. A. M.; van de Sande, M. J.; de Vries, N.; Broks, B.; Iordanova, E.; Gamero, A.; Torres, J.; Sola, A.

    2007-10-01

    To determine the fine-structure size of plasmas created by a Microwave Plasma Torch (MPT), single-shot Thomson scattering (TS) measurements were performed. The aim was to find a solution for the long-standing discrepancy between experiments and Global Plasma Models (GPMs). Since these GPMs are based on the assumption that (ambipolar) diffusion is the main loss process for charged particles, the diffusion length and thus the fine-structure size should be known with high precision before an appropriate theory-experiment comparison can be carried out. In order to avoid the effect of blurring, which is created during the accumulation of multi-shot TS signals and which obscures the fine-structures, single-shot measurements are indispensable to determine the diffusion length. The results of the present study reveal that the impression created by multi-shot TS that MPT plasmas resemble stable cones is not (always) correct; instead it is found that the plasmas we investigated are tiny filaments that rotate on the mantle of a virtual cone. However, the fine-structure, especially the thickness, of these filaments is not substantially smaller than that of the virtual cone. By applying the theory-experiment comparison to the filament we found that the disagreement is even worse than what we found for the cone. It is therefore inevitable to conclude that the main proposition of the GPM is incorrect. Apparently the plasma is not diffusive in nature; that is, the main loss process of charged particles is not provided by diffusion but by local chemistry. Swirling in a cool nitrogen-containing environment favors the production of molecular ions such as Ar 2+ and N 2+ inside the plasma filament. The destruction of these molecular ions leads to recombination frequencies that are more than a factor 100 larger than what ambipolar diffusion can provide. Thus we are dealing with another plasma class and it is useful to divide plasmas into diffusive and reactive plasmas. The well

  8. Theoretical study of nanoparticle formation in thermal plasma processing: Nucleation, coagulation and aggregation

    NASA Astrophysics Data System (ADS)

    Mendoza Gonzalez, Norma Yadira

    This work presents a mathematical modeling study of the synthesis of nanoparticles in radio frequency (RF) inductively coupled plasma (ICP) reactors. The purpose is to further investigate the influence of process parameters on the final size and morphology of produced particles. The proposed model involves the calculation of flow and temperature fields of the plasma gas. Evaporation of raw particles is also accounted with the particle trajectory and temperature history calculated with a Lagrangian approach. The nanoparticle formation is considered by homogeneous nucleation and the growth is caused by condensation and Brownian coagulation. The growth of fractal aggregates is considered by introducing a power law exponent Df. Transport of nanoparticles occurs by convection, thermophoresis and Brownian diffusion. The method of moments is used to solve the particle dynamics equation. The model is validated using experimental results from plasma reactors at laboratory scale. The results are presented in the following manner. First, use is made of the computational fluid dynamics software (CFD), Fluent 6.1 with a commercial companion package specifically developped for aerosols named: Fine Particle Model (FPM). This package is used to study the relationship between the operating parameters effect and the properties of the end products at the laboratory scale. Secondly, a coupled hybrid model for the synthesis of spherical particles and fractal aggregates is developped in place of the FPM package. Results obtained from this model will allow to identify the importance of each parameter in defining the morphology of spherical primary particles and fractal aggregates of nanoparticles. The solution of the model was made using the geometries and operating conditions of existing reactors at the Centre de Recherche en Energie, Plasma et Electrochimie (CREPE) of the Universite de Sherbrooke, for which experimental results were obtained experimentally. Additionally, this study

  9. Kinetic modeling of evolution of 3 + 1:Resonance enhanced multiphoton ionization plasma in argon at low pressures

    SciTech Connect

    Tholeti, Siva Sashank; Alexeenko, Alina A.; Shneider, Mikhail N.

    2014-06-15

    We present numerical kinetic modeling of generation and evolution of the plasma produced as a result of resonance enhanced multiphoton ionization (REMPI) in Argon gas. The particle-in-cell/Monte Carlo collision (PIC/MCC) simulations capture non-equilibrium effects in REMPI plasma expansion by considering the major collisional processes at the microscopic level: elastic scattering, electron impact ionization, ion charge exchange, and recombination and quenching for metastable excited atoms. The conditions in one-dimensional (1D) and two-dimensional (2D) formulations correspond to known experiments in Argon at a pressure of 5 Torr. The 1D PIC/MCC calculations are compared with the published results of local drift-diffusion model, obtained for the same conditions. It is shown that the PIC/MCC and diffusion-drift models are in qualitative and in reasonable quantitative agreement during the ambipolar expansion stage, whereas significant non-equilibrium exists during the first few 10 s of nanoseconds. 2D effects are important in the REMPI plasma expansion. The 2D PIC/MCC calculations produce significantly lower peak electron densities as compared to 1D and show a better agreement with experimentally measured microwave radiation scattering.

  10. Convergence of Chapman-Enskog calculation of transport coefficients of magnetized argon plasma

    SciTech Connect

    Bruno, D.; Catalfamo, C.; Laricchiuta, A.; Giordano, D.; Capitelli, M.

    2006-07-15

    Convergence properties of the Chapman-Enskog method in the presence of a magnetic field for the calculation of the transport properties of nonequilibrium partially ionized argon have been studied emphasizing the role of the different collision integrals. In particular, the Ramsauer minimum of electron-argon cross sections affects the convergence of the Chapman-Enskog method at low temperature, while Coulomb collisions affect the results at higher temperatures. The presence of an applied magnetic field mitigates the slow convergence for the components affected by the field.

  11. The effect of radio-frequency self bias on ion acceleration in expanding argon plasmas in helicon sources

    NASA Astrophysics Data System (ADS)

    Wiebold, Matthew D.

    Time-averaged plasma potential differences up to ˜ 165 V over several hundred Debye lengths are observed in low pressure (pn < 1 mTorr) expanding argon plasmas in the Madison Helicon Experiment. The potential gradient leads to ion acceleration exceeding Ei ≈ 7 kTe in some cases. Up to 1 kW of 13.56 MHz RF power is supplied to a half-turn, double-helix antenna in the presence of a nozzle magnetic field up to 1 kG. An RPA measures the IEDF and an emissive probe measures the plasma potential. Single and double probes measure the electron density and temperature. Two distinct mode hops, the capacitive-inductive (E-H) and inductive-helicon (H-W) transitions, are identified by jumps in electron density as RF power is increased. In the capacitive mode, large fluctuations of the plasma potential (Vp--p ≳ 140 V, Vp--p/Vp ≈ 150%) exist at the RF frequency, leading to formation of a self-bias voltage. The mobile electrons can flow from the upstream region during an RF cycle whereas ions cannot, leading to an initial imbalance of flux, and the self-bias voltage builds as a result. The plasma potential in the expansion chamber is held near the floating potential for argon (Vp ≈ 5kTe/e). In the capacitive mode, the ion acceleration is not well described by an ambipolar relation. The accelerated population decay is consistent with that predicted by charge-exchange collisions. Grounding the upstream endplate increases the self-bias voltage compared to a floating endplate. In the inductive and helicon modes, the ion acceleration more closely follows an ambipolar relation, a result of decreased capacitive coupling due to the decreased RF skin depth. The scaling of the potential gradient with the argon flow rate, magnetic field and RF power are investigated, with the highest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees well with that predicted for RF sheaths. Use of the self-bias effect in a

  12. Effect of Non-Thermal Argon Plasma on Bond Strength of a Self-Etch Adhesive System to NaOCl-Treated Dentin.

    PubMed

    Abreu, João Luiz Bittencourt de; Prado, Maíra; Simão, Renata Antoun; Silva, Eduardo Moreira da; Dias, Katia Regina Hostilio Cervantes

    2016-01-01

    Studies have been showing a decrease of bond strength in dentin treated with sodium hypochlorite (NaOCl). The aim of this study was to evaluate the effect of non-thermal argon plasma on the bond strength of a self-etch adhesive system to dentin exposed to NaOCl. Thirty-two flat dentin surfaces of bovine incisors were immersed in 2.5% NaOCl for 30 min to simulate the irrigation step during endodontic treatment. The specimens were divided into four groups (n=8), according to the surface treatment: Control (without plasma treatment), AR15 (argon plasma for 15 s), AR30 (argon plasma for 30 s) and AR45 (argon plasma for 45 s). For microtensile bond strength test, 5 specimens were used per group. In each group, the specimens were hybridized with a self-etch adhesive system (Clearfil SE Bond) and resin composite buildups were constructed. After 48 h of water storage, specimens were sectioned into sticks (5 per tooth, 25 per group) and subjected to microtensile bond strength test (μTBS) until failure, evaluating failure mode. Three specimens per group were analyzed under FTIR spectroscopy to verify the chemical modifications produced in dentin. μTBS data were analyzed using ANOVA and Tamhane tests (p<0.05). AR30 showed the highest μTBS (20.86±9.0). AR15 (13.81±6.4) and AR45 (11.51±6.8) were statistically similar to control (13.67±8.1). FTIR spectroscopy showed that argon plasma treatment produced chemical modifications in dentin. In conclusion, non-thermal argon plasma treatment for 30 s produced chemical changes in dentin and improved the μTBs of Clearfil SE Bond to NaOCl-treated dentin.

  13. Determination of dissolved boron in fresh, estuarine, and geothermal waters by d.c. argon-plasma emission spectrometry

    USGS Publications Warehouse

    Ball, J.W.; Thompson, J.M.; Jenne, E.A.

    1978-01-01

    A d.c. argon-plasma emission spectrometer is used to determine dissolved boron in natural (fresh and estuarine) water samples. Concentrations ranged from 0.02 to 250 mg l-1. The emission-concentration function is linear from 0.02 to 1000 mg l-1. Achievement of a relative standard deviation of ??? 3% requires frequent restandardization to offset sensitivity changes. Dilution may be necessary to overcome high and variable electron density caused by differences in alkali-metal content and to avoid quenching of the plasma by high solute concentrations of sodium and other easily ionized elements. The proposed method was tested against a reference method and found to be more sensitive, equally or more precise and accurate, less subject to interferences, with a wider linear analytical range than the carmine method. Analyses of standard reference samples yielded results in all cases within one standard deviation of the means. ?? 1978.

  14. The Ionization Equilibrium of Optically Thick Argon Z-Pinch Plasmas for Electron Temperatures between 25 and 65 eV.

    DTIC Science & Technology

    2014-09-26

    reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP " Ioni;ation equilibrium Argon plasma Gamble -Il generator Collisional pumping...highly attractive due to the large gain lengths (up to 4 cm) and immense energies (-1 MJ) available to couple to the plasma. The Gamble -II device at...previously observed1 5. These results suggest that Gamble -II would be an excellent device to test lasing concepts on a Z-pinch. Argon, stripped to the neon

  15. Evaluation of bone response to synthetic bone grafting material treated with argon-based atmospheric pressure plasma.

    PubMed

    Beutel, Bryan G; Danna, Natalie R; Gangolli, Riddhi; Granato, Rodrigo; Manne, Lakshmiprada; Tovar, Nick; Coelho, Paulo G

    2014-12-01

    Bone graft materials are utilized to stimulate healing of bone defects or enhance osseointegration of implants. In order to augment these capabilities, various surface modification techniques, including atmospheric pressure plasma (APP) surface treatment, have been developed. This in vivo study sought to assess the effect of APP surface treatment on degradation and osseointegration of Synthograft™, a beta-tricalcium phosphate (β-TCP) synthetic bone graft. The experimental (APP-treated) grafts were subjected to APP treatment with argon for a period of 60s. Physicochemical characterization was performed by environmental scanning electron microscopy, surface energy (SE), and x-ray photoelectron spectroscopy analyses both before and after APP treatment. Two APP-treated and two untreated grafts were surgically implanted into four critical-size calvarial defects in each of ten New Zealand white rabbits. The defect samples were explanted after four weeks, underwent histological analysis, and the percentages of bone, soft tissue, and remaining graft material were quantified by image thresholding. Material characterization showed no differences in particle surface morphology and that the APP-treated group presented significantly higher SE along with higher amounts of the base material chemical elements on it surface. Review of defect composition showed that APP treatment did not increase bone formation or reduce the amount of soft tissue filling the defect when compared to untreated material. Histologic cross-sections demonstrated osteoblastic cell lines, osteoid deposition, and neovascularization in both groups. Ultimately, argon-based APP treatment did not enhance the osseointegration or degradation of the β-TCP graft. Future investigations should evaluate the utility of gases other than argon to enhance osseointegration through APP treatment.

  16. Antibacterial Activity of Cold Atmospheric Pressure Argon Plasma against 78 Genetically Different (mecA, luk-P, agr or Capsular Polysaccharide Type) Staphylococcus aureus Strains.

    PubMed

    Matthes, Rutger; Lührman, Anne; Holtfreter, Silva; Kolata, Julia; Radke, Dörte; Hübner, Nils-Olaf; Assadian, Ojan; Kramer, Axel

    2016-01-01

    Previous studies on the antimicrobial activity of cold atmospheric pressure argon plasma showed varying effects against mecA+ or mecA-Staphylococcus aureus strains. This observation may have important clinical and epidemiological implications. Here, the antibacterial activity of argon plasma was investigated against 78 genetically different S. aureus strains, stratified by mecA, luk-P, agr1-4, or the cell wall capsule polysaccharide types 5 and 8. kINPen09® served as the plasma source for all experiments. On agar plates, mecA+luk-P-S. aureus strains showed a decreased susceptibility against plasma compared to other S. aureus strains. This study underlines the high complexity of microbial defence against antimicrobial treatment and confirms a previously reported strain-dependent susceptibility of S. aureus to plasma treatment.

  17. Experimental study of propagation characteristics of a pulse-modulated surface-wave argon plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-Jie; Li, Shou-Zhe; Wu, Yue; Li, Zhen-Ye; Zhang, Jialiang; Wang, Yong-Xing

    2016-12-01

    An atmospheric-pressure, pulse-modulated surface wave argon plasma is investigated with respect to its propagation of the ionization front. The time-resolved photographs about the advance of the ionization front are taken using a high speed camera. The ionization front velocity and its rise time when propagating along the discharge tube are measured with respect to a series of values of input power, duty ratio, and the pulse repetition frequency. The interpretations are given on the basis of the ionization and diffusion processes. And it is also found that the reduced electric field and memory effect from previous discharge impose the influence on both the ionization front velocity and its rise time strongly.

  18. Determination of rare earth elements in geological materials by inductively coupled argon plasma/atomic emission spectrometry

    USGS Publications Warehouse

    Crock, J.G.; Lichte, F.E.

    1982-01-01

    Inductively coupled argon plasma/optical emission spectrometery (ICAP/OES) is useful as a simultaneous, multielement analytical technique for the determination of trace elements in geological materials. A method for the determination of trace-level rare earth elements (REE) in geological materials using an ICAP 63-channel emission spectrometer is described. Separation and preconcentration of the REE and yttrium from a sample digest are achieved by a nitric acid gradient cation exchange and hydrochloric acid anion exchange. Precision of 1-4% relative standard deviation and comparable accuracy are demonstrated by the triplicate analysis of three splits of BCR-1 and BHVO-1. Analyses of other geological materials including coals, soils, and rocks show comparable precision and accuracy.

  19. Dynamics of self-compressed argon and helium plasma streams in the MPC facility

    NASA Astrophysics Data System (ADS)

    Ladygina, M. S.; Marchenko, A. K.; Solyakov, D. G.; Petrov, Yu V.; Makhlaj, V. A.; Yeliseyev, D. V.; Garkusha, I. E.; Cherednichenko, T. N.

    2016-07-01

    The results of experimental investigations on self-compressed plasma streams and compression zone formation are presented for varied mass flow rate and initial concentrations of particles of working gas that depend on initial pressure. Experiments were carried out in the Magnetoplasma Compressor (MPC) facility. Space-time distributions of the electric current and electron density in the plasma stream compression region were measured under different experimental conditions. High-speed images of plasma stream dynamics in the MPC accelerating channel with a high temporal resolution were also obtained for different initial pressures. The experimental results show a strong dependence of plasma stream parameters and compression zone location on the initial gas concentration. The maximum electron density is obtained in the range of Ne = (1 ÷ 5) × 1018 cm-3. Plasma streams have a good radial symmetry under all experimental conditions. The distributions of plasma parameters along the plasma stream flows are discussed.

  20. Determining the effect of freezing on coagulation testing: comparison of results between fresh and once frozen-thawed plasma.

    PubMed

    Gosselin, Robert C; Dwyre, Denis W

    2015-01-01

    The accuracy of the results from coagulation testing can be affected by numerous preanalytic and analytic variables including the stability of the citrated sample at room temperature. Samples not tested within 2-4 h of collection should be processed and frozen for later analysis. As limited data exist about the impact of freezing samples on coagulation testing, we sought to evaluate the effect of freezing on coagulation testing. Plasma samples into 3.2% sodium citrate tubes, centrifuged to yield platelet-poor plasma, were evaluated for prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen, D-dimer, antithrombin (AT) activity, factors V, VII, VIII, IX, lupus anticoagulant and anti-Xa measurements for both unfractionated and low-molecular-weight heparins. Samples were then frozen at -70°C for at least 1 week and testing was repeated using the same lot of material. All tests strongly correlated (R > 0.85) between fresh and frozen sample results. Using paired t test analysis, significant differences between fresh and frozen tested plasma existed for PT, APTT, factors V, VIII and AT. Significant differences existed between fresh and frozen lupus anticoagulant ratios (lupus anticoagulant screen but not lupus anticoagulant confirm), and single centrifugation process underestimated the presence of lupus anticoagulant as compared to double centrifugation processing. Freezing significantly affects the results for PT, APTT, factors V and VIII activity, and AT activity, although these differences were not considered to be clinically significant. Double centrifugation is required for accurate lupus anticoagulant testing, regardless of whether platelet-poor plasma is achieved with single centrifugation.

  1. Comparison between helium and argon plasma jets on improving the hydrophilic property of PMMA surface

    NASA Astrophysics Data System (ADS)

    Wang, Ruixue; Shen, Yuan; Zhang, Cheng; Yan, Ping; Shao, Tao

    2016-03-01

    In this paper, a plasma jet driven by an in-house developed microsecond pulse is used for polymethyl methacrylate (PMMA) surface modification. The hydrophilic modification effects of He and Ar plasma jets are compared under the same condition. The He and Ar plasma jets are characterized by optical emission spectrometer (OES). Water contact angle (WCA) measurement is used to evaluate the wettability of PMMA samples. The evolution on morphology and chemical composition of PMMA before and after plasma treatment are also analyzed. The OES results demonstrate that He plasma is composed with higher intensities of reactive species, like OH, O, N2 and N2+ than that of Ar plasma and show a better modification effect. In addition, it is observed that the surface roughness and oxygen-containing groups like Csbnd O/Csbnd OH and Odbnd Csbnd O increase on the PMMA surface after plasma treatment, which are responsible for the hydrophilic modification. During the storage, the WCA of each sample increases gradually for both He and Ar plasma treatments. The He plasma treated PMMA also shows a slower aging effect than that of Ar plasma treated PMMA.

  2. Numerical Simulation of Flow in the Chamber of the Water-Argon Plasma Generator

    NASA Astrophysics Data System (ADS)

    Hlbočan, Peter; Varchola, Michal; Knížat, Branislav; Mlkvik, Marek; Olšiak, Róbert

    2012-12-01

    The paper describes the CFD simulation of the flow of gas and plasma in a plasma generator with a hybrid stabilization of the electric arc. The momentum equations of the model also take Lorentz forces into account. In the energy equation, Joule heat is introduced as an energy source. The introduction of boundary conditions is also explained, as along with plasma transport properties and a method of solution. The paper presents selected results of pressure and velocity fields in the chamber of the plasma generator.

  3. One- and two-dimensional modeling of argon K-shell emission from gas-puff Z-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Thornhill, J. W.; Chong, Y. K.; Apruzese, J. P.; Davis, J.; Clark, R. W.; Giuliani, J. L.; Terry, R. E.; Velikovich, A. L.; Commisso, R. J.; Whitney, K. G.; Frese, M. H.; Frese, S. D.; Levine, J. S.; Qi, N.; Sze, H.; Failor, B. H.; Banister, J. W.; Coleman, P. L.; Coverdale, C. A.; Jones, B.; Deeney, C.

    2007-06-01

    In this paper, a theoretical model is described and demonstrated that serves as a useful tool for understanding K-shell radiating Z-pinch plasma behavior. Such understanding requires a self-consistent solution to the complete nonlocal thermodynamic equilibrium kinetics and radiation transport in order to realistically model opacity effects and the high-temperature state of the plasma. For this purpose, we have incorporated into the MACH2 two-dimensional magnetohydrodynamic (MHD) code [R. E. Peterkin et al., J. Comput. Phys. 140, 148 (1998)] an equation of state, called the tabular collisional radiative equilibrium (TCRE) model [J. W. Thornhill et al., Phys. Plasmas 8, 3480 (2001)], that provides reasonable approximations to the plasma's opacity state. MACH2 with TCRE is applied toward analyzing the multidimensional implosion behavior that occurred in Decade Quad (DQ) [D. Price et al., Proceedings of the 12th IEEE Pulsed Power Conference, Monterey, CA, edited by C. Stallings and H. Kirbie (IEEE, New York, 1999), p. 489] argon gas puff experiments that employed a 12cm diameter nozzle with and without a central gas jet on axis. Typical peak drive currents and implosion times in these experiments were ˜6MA and ˜230ns. By using Planar Laser Induced Fluorescence measured initial density profiles as input to the calculations, the effect these profiles have on the ability of the pinch to efficiently produce K-shell emission can be analyzed with this combined radiation-MHD model. The calculated results are in agreement with the experimental result that the DQ central-jet configuration is superior to the no-central-jet experiment in terms of producing more K-shell emission. These theoretical results support the contention that the improved operation of the central-jet nozzle is due to the better suppression of instabilities and the higher-density K-shell radiating conditions that the central-jet configuration promotes. When we applied the model toward projecting argon K

  4. Measurement of plasma-surface energy fluxes in an argon rf-discharge by means of calorimetric probes and fluorescent microparticles

    NASA Astrophysics Data System (ADS)

    Maurer, H. R.; Hannemann, M.; Basner, R.; Kersten, H.

    2010-11-01

    Measured energy influx densities toward a tungsten dummy substrate in an argon rf-plasma are presented and a model for the description of the energy influx density based on plasma parameters, which have been obtained by Langmuir probe measurements, is applied. Furthermore, temperature measurements of microparticles are presented, which are confined in the plasma sheath. An extension of the model is developed for the description of the energy influx density to the particles. The comparison of model and experimental results offer the possibility to obtain an improved understanding of plasma-surface interactions.

  5. Micro-electromechanical film bulk acoustic sensor for plasma and whole blood coagulation monitoring.

    PubMed

    Chen, Da; Song, Shuren; Ma, Jilong; Zhang, Zhen; Wang, Peng; Liu, Weihui; Guo, Qiuquan

    2017-05-15

    Monitoring blood coagulation is an important issue in the surgeries and the treatment of cardiovascular diseases. In this work, we reported a novel strategy for the blood coagulation monitoring based on a micro-electromechanical film bulk acoustic resonator. The resonator was excited by a lateral electric field and operated under the shear mode with a frequency of 1.9GHz. According to the apparent step-ladder curves of the frequency response to the change of blood viscoelasticity, the coagulation time (prothrombin time) and the coagulation kinetics were measured with the sample consumption of only 1μl. The procoagulant activity of thromboplastin and the anticoagulant effect of heparin on the blood coagulation process were illustrated exemplarily. The measured prothrombin times showed a good linear correlation with R(2)=0.99969 and a consistency with the coefficient of variation less than 5% compared with the commercial coagulometer. The proposed film bulk acoustic sensor, which has the advantages of small size, light weight, low cost, simple operation and little sample consumption, is a promising device for miniaturized, online and automated analytical system for routine diagnostics of hemostatic status and personal health monitoring.

  6. [Influence of reagent storage in Sysmex CA7000 for different time on 4 test RESULTS: of the plasma coagulation].

    PubMed

    Chen, Tong-Qing; Li, Zhen-Xing

    2014-12-01

    The purpose of this study was to investigate the influence of blood coagulation reagents stored for different time on test results of the specimens prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT) and fibrinogen (Fib). A total of 21 patient plasma specimens was taken and measured for homeostasis by Sysmex CA7000 automated blood coagulation analyzer and supporting reagent. The PT, APTT, TT and Fib of specimens were measured with the reagents stored in Sysmex CA7000 for different time. The differences of PT, APTT, TT and Fib were analyzed between values measured of the reagents stored for 0 hour and different time (TS:12, 24, 36,48, 60, 72 h; DA:24, 48, 72, 96, 120 h; TT:2, 4, 6, 8, 10, 12 h; TR:4, 8, 12, 16, 20, 24 h; OVB:1, 2, 3, 4, 5 ,6 h), respectively. The results showed that when coagulation reagent TS were stored for more than 48 h , DA 96 h, TT 10 h, TR 16 h and OVB 4 h, the values of PT, APTT, TT and Fib of samples were statistically different from the values measured with fresh coagulation reagent (P < 0.01), respectively. Compared 0 h with TS stored for 48-72, DA 96-120, TT 10-12, TR 16-24 and OVB 4-6 h, the percentage difference of PT, APTT, TT and Fib is in -2.6% ∼ 10.8%, -3.44% ∼ 4.8%, -3.9% ∼ 5.52%, -10.8% ∼ 3.3% and -17.2% ∼ 0.5%, the PT and Fib changes were more significant. Accordingly, the result of PT, APTT and TT had a uptrend as the reagent stored in Sysmex CA7000 analyzer for a long time, while Fib downtrend. It is concluded that the reagents showed be timely replaced when the plasma coagulation test is performed so as to obtain accurate results of examination.

  7. Experimental and simulated argon spectra in the 2.3-3.4 nm region from tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Mattioli, M.; Fournier, K. B.; Carraro, L.; Coffey, I.; Giroud, C.; Lawson, K.; Monier-Garbet, P.; O'Mullane, M.; Ongena, J.; Puiatti, M. E.; Sattin, F.; Scarin, P.; Valisa, M.

    2001-01-01

    Experimental argon spectra in the 2.3-3.4 nm region from the Jet tokamak on a single null divertor configuration have been simulated. The spectra include lines from five ionization states, namely from Ar15+ Li-like to Ar11+ N-like ions. Collisional-radiative models have been constructed for these five Ar ions, considering electron collisional excitation and radiative decay as the populating processes of the excited states. These models give photon emission coefficients for the emitted lines at electron density and temperature values corresponding to the experimental situations. Impurity modelling is performed using a one-dimensional (1D) impurity transport code, calculating the steady-state radial distribution of the Ar ions. The Ar line brightnesses are evaluated in a post-processing subroutine and simulated spectra are obtained. The parts of the spectra corresponding to a single-ionization state do not depend on the experimental conditions and show good agreement except for the amplitude of the simulated 2s-3p Ar XVI line and the shape of the simulated 2.50 nm feature (composed of Ar XVI and Ar XV lines). On the other hand, the superposition of these spectra depends on the experimental conditions, as a consequence of the fact that the ion charge distribution depends not only on the radial profiles of the electron density and temperature, but also of the impurity transport coefficients. Simulations of the Ar spectra (including transport) give confidence in the atomic physics calculations; moreover, they allow the determination of the transport coefficients in the plasma region emitting the considered ionization states, i.e. at the interior of the last closed magnetic surface (LCMS). For a correct simulation of the amplitudes of the spectral features it is necessary to include a transport barrier inside the LCMS. As far as the atomic physics is concerned, we report improved wavelengths for Ar XV transitions and we benchmark photon emission coefficients for XUV

  8. Plasma parameters and electromagnetic forces induced by the magneto hydro dynamic interaction in a hypersonic argon flow experiment

    SciTech Connect

    Cristofolini, Andrea; Neretti, Gabriele; Borghi, Carlo A.

    2012-08-01

    This work proposes an experimental analysis on the magneto hydro dynamic (MHD) interaction induced by a magnetic test body immersed into a hypersonic argon flow. The characteristic plasma parameters are measured. They are related to the voltages arising in the Hall direction and to the variation of the fluid dynamic properties induced by the interaction. The tests have been performed in a hypersonic wind tunnel at Mach 6 and Mach 15. The plasma parameters are measured in the stagnation region in front of the nozzle of the wind tunnel and in the free stream region at the nozzle exit. The test body has a conical shape with the cone axis in the gas flow direction and the cone vertex against the flow. It is placed at the nozzle exit and is equipped with three permanent magnets. In the configuration adopted, the Faraday current flows in a closed loop completely immersed into the plasma of the shock layer. The electric field and the pressure variation due to MHD interaction have been measured on the test body walls. Microwave adsorption measurements have been used for the determination of the electron number density and the electron collision frequency. Continuum recombination radiation and line radiation emissions have been detected. The electron temperature has been determined by means of the spectroscopic data by using different methods. The electron number density has been also determined by means of the Stark broadening of H{sub {alpha}} and the H{sub {beta}} lines. Optical imaging has been utilized to visualize the pattern of the electric current distribution in the shock layer around the test body. The experiments show a considerable effect of the electromagnetic forces produced by the MHD interaction acting on the plasma flow around the test body. A comparison of the experimental data with simulation results shows a good agreement.

  9. Plasma parameters and electromagnetic forces induced by the magneto hydro dynamic interaction in a hypersonic argon flow experiment

    NASA Astrophysics Data System (ADS)

    Cristofolini, Andrea; Neretti, Gabriele; Borghi, Carlo A.

    2012-08-01

    This work proposes an experimental analysis on the magneto hydro dynamic (MHD) interaction induced by a magnetic test body immersed into a hypersonic argon flow. The characteristic plasma parameters are measured. They are related to the voltages arising in the Hall direction and to the variation of the fluid dynamic properties induced by the interaction. The tests have been performed in a hypersonic wind tunnel at Mach 6 and Mach 15. The plasma parameters are measured in the stagnation region in front of the nozzle of the wind tunnel and in the free stream region at the nozzle exit. The test body has a conical shape with the cone axis in the gas flow direction and the cone vertex against the flow. It is placed at the nozzle exit and is equipped with three permanent magnets. In the configuration adopted, the Faraday current flows in a closed loop completely immersed into the plasma of the shock layer. The electric field and the pressure variation due to MHD interaction have been measured on the test body walls. Microwave adsorption measurements have been used for the determination of the electron number density and the electron collision frequency. Continuum recombination radiation and line radiation emissions have been detected. The electron temperature has been determined by means of the spectroscopic data by using different methods. The electron number density has been also determined by means of the Stark broadening of Hα and the Hβ lines. Optical imaging has been utilized to visualize the pattern of the electric current distribution in the shock layer around the test body. The experiments show a considerable effect of the electromagnetic forces produced by the MHD interaction acting on the plasma flow around the test body. A comparison of the experimental data with simulation results shows a good agreement.

  10. Comparative study on contribution of charge-transfer collision to excitations of iron ion between argon radio-frequency inductively-coupled plasma and nitrogen microwave induced plasma

    NASA Astrophysics Data System (ADS)

    Satoh, Kozue; Wagatsuma, Kazuaki

    2015-06-01

    This paper describes an ionization/excitation phenomenon of singly-ionized iron occurring in an Okamoto-cavity microwave induced plasma (MIP) as well as an argon radio-frequency inductively-coupled plasma (ICP), by comparing the Boltzmann distribution among iron ionic lines (Fe II) having a wide range of the excitation energy from 4.76 to 9.01 eV. It indicated in both the plasmas that plots of Fe II lines having lower excitation energies (4.76 to 5.88 eV) were fitted on each linear relationship, implying that their excitations were caused by a dominant thermal process such as collision with energetic electron. However, Fe II lines having higher excitation energies (more than 7.55 eV) had a different behavior from each other. In the ICP, Boltzmann plots of Fe II lines assigned to the higher excited levels also followed the normal Boltzmann relationship among the low-lying excited levels, even including a deviation from it in particular excited levels having an excitation energy of ca. 7.8 eV. This deviation can be attributed to a charge-transfer collision with argon ion, which results in the overpopulation of these excited levels, but the contribution is small. On the other hand, the distribution of the high-lying excited levels was non-thermal in the Okamoto-cavity MIP, which did not follow the normal Boltzmann relationship among the low-lying excited levels. A probable reason for the non-thermal characteristics in the MIP is that a charge-transfer collision with nitrogen molecule ion having many vibrational/rotational levels could work for populating the 3d64p (3d54s4p) excited levels of iron ion broadly over an energy range of 7.6-9.0 eV, while collisional excitation by energetic electron would occur insufficiently to excite these high-energy levels.

  11. Effects of argon plasma treatment on the interfacial adhesion of PBO fiber/bismaleimide composite and aging behaviors

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Chen, Ping; Chen, Mingxin; Yu, Qi; Lu, Chun

    2011-09-01

    This paper is concerned with the influence of argon plasma on the interfacial adhesion of PBO fiber/bismaleimide composites and aging behaviors. The interlaminar shear strength (ILSS) was greatly increased to 62.3 MPa with an increase of 39.7% after treatment for 7 min at 80 Pa, 200 W. A small amount of O and N atoms was incorporated onto the fiber surface, but the plasma caused C-O bonds to break and generated Odbnd C-N groups. The fiber surface roughness increased, contributing much to the wettability. However, long-time treatment excessively destroyed the inherent and newly created structures. The SEM images suggested that the fracture shifted from the interface to the matrix. The modification effects degraded with storage time in the air and the ILSS decreased to approximately 54.0 MPa after 10-30 days. The composite had low water absorption of 2.0 wt% and a high retention of 90% in the ILSS at moisture conditions.

  12. Production of high quality syngas from argon/water plasma gasification of biomass and waste.

    PubMed

    Hlina, M; Hrabovsky, M; Kavka, T; Konrad, M

    2014-01-01

    Extremely hot thermal plasma was used for the gasification of biomass (spruce sawdust, wood pellets) and waste (waste plastics, pyrolysis oil). The plasma was produced by a plasma torch with DC electric arc using unique hybrid stabilization. The torch input power of 100-110 kW and the mass flow rate of the gasified materials of tens kg/h was set up during experiments. Produced synthetic gas featured very high content of hydrogen and carbon monoxide (together approximately 90%) that is in a good agreement with theory. High quality of the produced gas is given by extreme parameters of used plasma--composition, very high temperature and low mass flow rate.

  13. Equations of state, transport properties, and compositions of argon plasma: combination of self-consistent fluid variation theory and linear response theory.

    PubMed

    Quan, W L; Chen, Q F; Fu, Z J; Sun, X W; Zheng, J; Gu, Y J

    2015-02-01

    A consistent theoretical model that can be applied in a wide range of densities and temperatures is necessary for understanding the variation of a material's properties during compression and heating. Taking argon as an example, we show that the combination of self-consistent fluid variational theory and linear response theory is a promising route for studying warm dense matter. Following this route, the compositions, equations of state, and transport properties of argon plasma are calculated in a wide range of densities (0.001-20 g/cm(3)) and temperatures (5-100 kK). The obtained equations of state and electrical conductivities are found in good agreement with available experimental data. The plasma phase transition of argon is observed at temperatures below 30 kK and density about 2-6g/cm(3). The minimum density for the metallization of argon is found to be about 5.8 g/cm(3), occurring at 30-40 kK. The effects of many-particle correlations and dynamic screening on the electrical conductivity are also discussed through the effective potentials.

  14. Carbon monoxide-releasing molecule-2 enhances coagulation in rabbit plasma and decreases bleeding time in clopidogrel/aspirin-treated rabbits.

    PubMed

    Nielsen, Vance G; Chawla, Nikhil; Mangla, Dipty; Gomes, Sheldon B; Arkebauer, Matthew R; Wasko, Kimberly A; Sadacharam, Kesavan; Vosseller, Keith

    2011-12-01

    Administration of carbon monoxide derived from carbon monoxide-releasing molecules has been demonstrated to enhance coagulation in vitro at small concentrations (100-200 μmol/l) in human and rabbit plasma. We sought to determine if carbon monoxide-releasing molecule-2 [tricarbonyldichlororuthenium (II) dimer, CORM-2] would improve coagulation in rabbit plasma in vitro via thrombelastography and in an in vivo preclinical rabbit model of ear bleeding time following administration of clopidogrel (20 mg/kg) with aspirin (10 mg/kg) via gavage. Addition of 100 μmol/l CORM-2 to rabbit plasma significantly improved coagulation. This procoagulant effect was blocked by pre-exposure of plasma to an agent that converts hemefibrinogen to methemefibrinogen in human plasma, preventing carbon monoxide binding and enhancement of coagulation. Rabbit ear bleeding time was 5.8 ± 1.1 min 2-3 h after clopidogrel/aspirin administration. Bleeding time significantly decreased to 2.6 ± 0.6 min, 5 min after administration of CORM-2 (10 mg/kg; 279 μmol/l 'best-case' instantaneous concentration) intravenously. CORM-2 enhances plasmatic coagulation in a manner similar to that of human plasma in vitro, and plasmatic coagulation is enhanced in vivo by CORM-2 as well. Additional preclinical investigation of the effects of CORM-2 on coagulopathy (e.g. heparin or hemodilution mediated) utilizing this rabbit model is planned.

  15. The Role of Spraying Parameters and Inert Gas Shrouding in Hybrid Water-Argon Plasma Spraying of Tungsten and Copper for Nuclear Fusion Applications

    NASA Astrophysics Data System (ADS)

    Matějíček, J.; Kavka, T.; Bertolissi, G.; Ctibor, P.; Vilémová, M.; Mušálek, R.; Nevrlá, B.

    2013-06-01

    Tungsten-based coatings have potential application in the plasma-facing components in future nuclear fusion reactors. By the combination of refractory tungsten with highly thermal conducting copper, or steel as a construction material, functionally graded coatings can be easily obtained by plasma spraying, and may result in the development of a material with favorable properties. During plasma spraying of these materials in the open atmosphere, oxidation is an important issue, which could have adverse effects on their properties. Among the means to control it is the application of inert gas shrouding, which forms the subject of this study and represents a lower-cost alternative to vacuum or low-pressure plasma spraying, potentially applicable also for spraying of large surfaces or spacious components. It is a continuation of recent studies focused on the effects of various parameters of the hybrid water-argon torch on the in-flight behavior of copper and tungsten powders and the resultant coatings. In the current study, argon shrouding with various configurations of the shroud was applied. The effects of torch parameters, such as power and argon flow rate, and powder morphology were also investigated. Their influence on the particle in-flight behavior as well as the structure, composition and properties of the coatings were quantified. With the help of auxiliary calculations, the mass changes of the powder particles, associated with oxidation and evaporation, were assessed.

  16. Growth-inducing effects of argon plasma on soybean sprouts via the regulation of demethylation levels of energy metabolism-related genes

    PubMed Central

    Zhang, Jiao Jiao; Jo, Jin Oh; Huynh, Do Luong; Mongre, Raj Kumar; Ghosh, Mrinmoy; Singh, Amit Kumar; Lee, Sang Baek; Mok, Young Sun; Hyuk, Park; Jeong, Dong Kee

    2017-01-01

    This study was conducted to determine the effects of argon plasma on the growth of soybean [Glycine max (L.) Merr.] sprouts and investigate the regulation mechanism of energy metabolism. The germination and growth characteristics were modified by argon plasma at different potentials and exposure durations. Upon investigation, plasma treatment at 22.1 kV for 12 s maximized the germination and seedling growth of soybean, increasing the concentrations of soluble protein, antioxidant enzymes, and adenosine triphosphate (ATP) as well as up-regulating ATP a1, ATP a2, ATP b1, ATP b2, ATP b3, target of rapamycin (TOR), growth-regulating factor (GRF) 1–6, down-regulating ATP MI25 mRNA expression, and increasing the demethylation levels of the sequenced region of ATP a1, ATP b1, TOR, GRF 5, and GRF 6 of 6-day-old soybean sprouts. These observations indicate that argon plasma promotes soybean seed germination and sprout growth by regulating the demethylation levels of ATP, TOR, and GRF. PMID:28167819

  17. Growth-inducing effects of argon plasma on soybean sprouts via the regulation of demethylation levels of energy metabolism-related genes

    NASA Astrophysics Data System (ADS)

    Zhang, Jiao Jiao; Jo, Jin Oh; Huynh, Do Luong; Mongre, Raj Kumar; Ghosh, Mrinmoy; Singh, Amit Kumar; Lee, Sang Baek; Mok, Young Sun; Hyuk, Park; Jeong, Dong Kee

    2017-02-01

    This study was conducted to determine the effects of argon plasma on the growth of soybean [Glycine max (L.) Merr.] sprouts and investigate the regulation mechanism of energy metabolism. The germination and growth characteristics were modified by argon plasma at different potentials and exposure durations. Upon investigation, plasma treatment at 22.1 kV for 12 s maximized the germination and seedling growth of soybean, increasing the concentrations of soluble protein, antioxidant enzymes, and adenosine triphosphate (ATP) as well as up-regulating ATP a1, ATP a2, ATP b1, ATP b2, ATP b3, target of rapamycin (TOR), growth-regulating factor (GRF) 1–6, down-regulating ATP MI25 mRNA expression, and increasing the demethylation levels of the sequenced region of ATP a1, ATP b1, TOR, GRF 5, and GRF 6 of 6-day-old soybean sprouts. These observations indicate that argon plasma promotes soybean seed germination and sprout growth by regulating the demethylation levels of ATP, TOR, and GRF.

  18. Relationship between nanoscale roughness and ion-damaged layer in argon plasma exposed polystyrene films

    NASA Astrophysics Data System (ADS)

    Bruce, R. L.; Weilnboeck, F.; Lin, T.; Phaneuf, R. J.; Oehrlein, G. S.; Long, B. K.; Willson, C. G.; Vegh, J. J.; Nest, D.; Graves, D. B.

    2010-04-01

    The uncontrolled development of nanoscale roughness during plasma exposure of polymer surfaces is a major issue in the field of semiconductor processing. In this paper, we investigated the question of a possible relationship between the formation of nanoscale roughening and the simultaneous introduction of a nanometer-thick, densified surface layer that is formed on polymers due to plasma damage. Polystyrene films were exposed to an Ar discharge in an inductively coupled plasma reactor with controllable substrate bias and the properties of the modified surface layer were changed by varying the maximum Ar+ ion energy. The modified layer thickness, chemical, and mechanical properties were obtained using real-time in situ ellipsometry, x-ray photoelectron spectroscopy, and modeled using molecular dynamics simulation. The surface roughness after plasma exposure was measured using atomic force microscopy, yielding the equilibrium dominant wavelength λ and amplitude A of surface roughness. The comparison of measured surface roughness wavelength and amplitude data with values of λ and A predicted from elastic buckling theory utilizing the measured properties of the densified surface layer showed excellent agreement both above and below the glass transition temperature of polystyrene. This agreement strongly supports a buckling mechanism of surface roughness formation.

  19. Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures

    SciTech Connect

    Miloshevsky, Alexander; Harilal, Sivanandan S.; Miloshevsky, Gennady Hassanein, Ahmed

    2014-04-15

    Plasma expansion with shockwave formation during laser ablation of materials in a background gasses is a complex process. The spatial and temporal evolution of pressure, temperature, density, and velocity fields is needed for its complete understanding. We have studied the expansion of femtosecond (fs) laser-ablated aluminum (Al) plumes in Argon (Ar) gas at 0.5 and 1 atmosphere (atm). The expansion of the plume is investigated experimentally using shadowgraphy and fast-gated imaging. The computational fluid dynamics (CFD) modeling is also carried out. The position of the shock front measured by shadowgraphy and fast-gated imaging is then compared to that obtained from the CFD modeling. The results from the three methods are found to be in good agreement, especially during the initial stage of plasma expansion. The computed time- and space-resolved fields of gas-dynamic parameters have provided valuable insights into the dynamics of plasma expansion and shockwave formation in fs-pulse ablated Al plumes in Ar gas at 0.5 and 1 atm. These results are compared to our previous data on nanosecond (ns) laser ablation of Al [S. S. Harilal et al., Phys. Plasmas 19, 083504 (2012)]. It is observed that both fs and ns plumes acquire a nearly spherical shape at the end of expansion in Ar gas at 1 atm. However, due to significantly lower pulse energy of the fs laser (5 mJ) compared to pulse energy of the ns laser (100 mJ) used in our studies, the values of pressure, temperature, mass density, and velocity are found to be smaller in the fs laser plume, and their time evolution occurs much faster on the same time scale. The oscillatory shock waves clearly visible in the ns plume are not observed in the internal region of the fs plume. These experimental and computational results provide a quantitative understanding of plasma expansion and shockwave formation in fs-pulse and ns-pulse laser ablated Al plumes in an ambient gas at atmospheric pressures.

  20. The effect of helium impurity addition on current sheath speed in argon-operated plasma focus using a tridimensional magnetic probe

    NASA Astrophysics Data System (ADS)

    Panahi, N.; Mohammadi, M. A.; Hedyeh, S.; Rawat, R. S.; Rawat

    2013-10-01

    Using the tridimensional magnetic probe, the current sheath velocity at 0.25 Torr is studied in Sahand, a Filippov-type plasma focus facility. The current sheath velocity in argon-filled plasma focus with different percentages of helium impurity at different operating voltages was studied. The highest average current sheath velocity of 12.26 +/- 1.51 cm μs-1 at the top of the anode in the axial phase was achieved at 17 kV. Minimum average current sheath velocity is 5.24 +/- 1.18 cm μs-1 at 12 kV with 80% argon + 20% helium as a working gas. The full width at half-maximum of peaks of the magnetic probe was found to be inversely related to the current sheath velocity, i.e. smaller at higher voltages for different impurity and decreased with increasing of impurity.

  1. Room-temperature atomic layer deposition of ZrO2 using tetrakis(ethylmethylamino)zirconium and plasma-excited humidified argon

    NASA Astrophysics Data System (ADS)

    Kanomata, K.; Tokoro, K.; Imai, T.; Pansila, P.; Miura, M.; Ahmmad, B.; Kubota, S.; Hirahara, K.; Hirose, F.

    2016-11-01

    Room-temperature atomic layer deposition (ALD) of ZrO2 is developed with tetrakis(ethylmethylamino)zirconium (TEMAZ) and a plasma-excited humidified argon. A growth per cycle of 0.17 nm/cycle at room temperature is confirmed, and the TEMAZ adsorption and its oxidization on ZrO2 are characterized by IR absorption spectroscopy with a multiple internal reflection mode. TEMAZ is saturated on a ZrO2 surface with exposures exceeding ∼2.0 × 105 Langmuir (1 Langmuir = 1.0 × 10-6 Torr s) at room temperature, and the plasma-excited humidified argon is effective in oxidizing the TEMAZ-adsorbed ZrO2 surface. The IR absorption spectroscopy suggests that Zr-OH works as an adsorption site for TEMAZ. The reaction mechanism of room-temperature ZrO2 ALD is discussed in this paper.

  2. Modelling on dynamics properties of a stationary argon cascaded arc plasma flows

    SciTech Connect

    Wei, G. D.; Qi, X.; Yang, L.

    2014-03-15

    The gas dynamics properties of a stationary arc plasma flows are studied through the numerical simulations. A two dimensional axis-symmetric turbulent magneto-hydrodynamic plasma model is developed with the commercial code ANSYS FLUENT. The reliable κ-ε model is used to account for turbulence. In this paper, the plasma is assumed to be a fluid following Navier–Stokes equations, respecting local thermodynamic equilibrium, and described by only one temperature. Distributions of the pressure, velocity, temperature, density, and electric potential inside of thus cascaded arc are obtained for an arc current density of 10{sup 6} A/m{sup 2}. The pressure inside the arc varies from 10{sup 5} Pa to 100 Pa. The temperature at the arc axis can reach as high as 13 600 K. The electric potential drops uniformly along the axis with a magnitude of 160 V. In addition, distributions of the sonic velocity and Mach number are shown to describe supersonic behavior of thus cascaded arc, which have a good agreement with the analytical formula.

  3. Etching of Niobium in an Argon-Chlorine Capacitively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Radovanov, Svetlana; Samolov, Ana; Upadhyay, Janardan; Peshl, Jeremy; Popovic, Svetozar; Vuskovic, Leposava; Applied Materials, Varian Semiconductor Team; Old Dominion University Team

    2016-09-01

    Ion assisted etching of the inner surfaces of Nb superconducting radio frequency (SRF) cavities requires control of incident ion energies and fluxes to achieve the desired etch rate and smooth surfaces. In this paper, we combine numerical simulation and experiment to investigate Ar /Cl2 capacitively coupled plasma (CCP) in cylindrical reactor geometry. Plasma simulations were done in the CRTRS 2D/3D code that self-consistently solves for CCP power deposition and electrostatic potential. The experimental results are used in combination with simulation predictions to understand the dependence of plasma parameters on the operating conditions. Using the model we were able to determine the ion current and flux at the Nb substrate. Our simulations indicate the relative importance of the current voltage phase shift and displacement current at different pressures and powers. For simulation and the experiment we have used a test structure with a pillbox cavity filled with niobium ring-type samples. The etch rate of these samples was measured. The probe measurements were combined with optical emission spectroscopy in pure Ar for validation of the model. The authors acknowledge Dr Shahid Rauf for developing the CRTRS code. Support DE-SC0014397.

  4. Modification of argon impurity transport by electron cyclotron heating in KSTAR H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Hong, Joohwan; Henderson, S. S.; Kim, Kimin; Seon, C. R.; Song, Inwoo; Lee, H. Y.; Jang, Juhyeok; Park, Jae Sun; Lee, S. G.; Lee, J. H.; Lee, Seung Hun; Hong, Suk-Ho; Choe, Wonho

    2017-03-01

    Experiments with a small amount of Ar gas injection as a trace impurity were conducted in the Korea Superconducting Tokamak Advanced Research (KSTAR) H-mode plasma ({{B}\\text{T}}   =  2.8 T, {{I}\\text{P}}   =  0.6 MA, and {{P}\\text{NBI}}   =  4.0 MW). 170 GHz electron cyclotron resonance heating (ECH) at 600 and 800 kW was focused along the mid-plane with a fixed major radial position of R   =  1.66 m. The emissivity of the Ar16+ (3.949 {\\mathring{\\text{A}}} ) and Ar15+ (353.860 {\\mathring{\\text{A}}} ) spectral lines were measured by x-ray imaging crystal spectroscopy (XICS) and a vacuum UV (VUV) spectrometer, respectively. ECH reduces the peak Ar15+ emission and increases the Ar16+ emission, an effect largest with 800 kW. The ADAS-SANCO impurity transport code was used to evaluate the Ar transport coefficients. It was found that the inward convective velocity found in the plasma core without ECH was decreased with ECH, while diffusion remained approximately constant resulting in a less-peaked Ar density profile. Theoretical results from the NEO code suggest that neoclassical transport is not responsible for the change in transport, while the microstability analysis using GKW predicts a dominant ITG mode during both ECH and non-ECH plasmas.

  5. Cross-diagnostic comparison of fluctuation measurements in a cylindrical argon plasma

    NASA Astrophysics Data System (ADS)

    Light, Adam; Chakraborty Thakur, Saikat; Tynan, George

    2016-10-01

    The advent of fast imaging diagnostics, which provide two-dimensional measurements on relevant plasma time scales, has proven invaluable for interpreting plasma dynamics in laboratory devices. Despite its success, imaging remains a qualitative aid for many studies, because intensity is difficult to map onto a single physical variable for use in a theoretical model. This work continues our exploration of the relationship between visible-light imaging and other diagnostics in the Controlled Shear Decorrelation Experiment (CSDX). CSDX is a well-characterized linear machine producing dense plasmas relevant to the tokamak edge (Te 5 eV, ne 1013 /cc). Visible light from ArI and ArII line emission is collected at high frame rates using a fast digital camera, floating potential and ion-saturation current are measured by an array of electrostatic probe tips, and average profiles of ion temperature and velocity are obtained using laser-induced fluorescence (LIF). We present a detailed comparison between these measurements, including temporal, spatial, and spectral properties in various operational regimes.

  6. The Mechanisms of Coagulation.

    ERIC Educational Resources Information Center

    Kurtz, Richard; Jesty, Jolyon

    1994-01-01

    Several topics such as heart disease, strokes, biochemical reactions, blood components, and genetics can be related to blood clotting. Introduces a simple, safe and inexpensive hands-on demonstration using bovine (cattle) blood plasma of normal and abnormal coagulation. (ZWH)

  7. Angular distribution of energetic argon ions emitted by a 90 kJ Filippov-type plasma focus

    SciTech Connect

    Pestehe, S. J.; Mohammadnejad, M.

    2015-02-15

    Characteristics of the energetic argon ions emitted by a 90 kJ Filippov-type plasma focus are studied by employing an array of Faraday cups. The Faraday cups are designed to minimize the secondary electron emission effects on their response. Angular distribution of the ions is measured, and the results indicate a highly anisotropic emission with a dip at the device axis and a local maximum at the angle of 7° with respect to the axis. It has been argued that this kind of anisotropic emission may be related to the surfatron acceleration mechanism and shown that this behavior is independent of the working gas pressure. It has been also demonstrated that this mechanism is responsible for the generation of MeV ions. Measuring the total ion number at different working gas pressures gives an optimum pressure of 0.3 Torr. In addition, the energy spectrum of ions is measured by taking into account of the ambient gas effects on the energy and charge of the ions. The current neutralization effect of electrons trapped in the ion beam as well as the effect of conducting boundaries surrounding the beam, on the detected signals are investigated.

  8. Effects of argon laser on in vitro aggregation of platelets in platelet rich plasma and whole blood

    SciTech Connect

    Doerger, P.T.; Glueck, H.I.; McGill, M.

    1988-06-01

    The effects of an Argon laser on platelet aggregation were studied, since platelets may be exposed to laser energy when used intravascularly. Various preparations of platelets in platelet rich plasma (PRP) and whole blood, with or without aspirin, were tested with the aggregating agents ADP, collagen, thrombin, and epinephrine. Simultaneous release of ATP was also measured in PRP. At relatively low levels of irradiation, platelet aggregation was potentiated. Enhancement was evidenced by an increase in percent aggregation, earlier onset of the reaction, and reduction in the amount of aggregating agent required. In PRP, the mechanism of laser potentiation appeared to be the release of endogenous ATP from platelets. At relatively high levels of irradiation, platelets were destroyed and aggregation abolished. In whole blood, the mechanism was somewhat more complicated since release of ATP occurred from RBCs as well as platelets. Spontaneous aggregation following laser treatment occurred in isolated instances in PRP and in every trial in whole blood preparations. Aspirin ingestion inhibited the laser's effects in PRP but not in whole blood. These results may have important clinical implications for laser angioplasty, and the potentiated aggregation response may prove useful in laboratory studies of platelet function.

  9. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon

    SciTech Connect

    Malinina, A. A. Malinin, A. N.

    2015-03-15

    Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argon—the working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the blue—green spectral region (λ{sub max} = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/N = 20 Td, at which the maximum emission intensity in the blue—green spectral region was observed in this experiment, is found to be 8.1 × 10{sup −15} m{sup 3}/s.

  10. Experimental and Theoretical Estimation of Excited Species Generation in Pulsed Electron Beam-Generated Plasmas Produced in Pure Argon, Nitrogen, Oxygen, and Their Mixtures

    DTIC Science & Technology

    2011-05-13

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6750--11-9333 Experimental and Theoretical Estimation of Excited Species Generation in ...Pulsed Electron Beam–Generated Plasmas Produced in Pure Argon, Nitrogen, Oxygen, and Their Mixtures May 13, 2011 Approved for public release...PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Experimental and Theoretical Estimation of Excited Species Generation in Pulsed Electron Beam

  11. Haem-assisted dityrosine-cross-linking of fibrinogen under non-thermal plasma exposure: one important mechanism of facilitated blood coagulation

    PubMed Central

    Ke, Zhigang; Huang, Qing

    2016-01-01

    Although blood coagulation facilitated by non-thermal plasma has been reported several years ago, the insight to the involved mechanisms is still rather limited. In this work, we report our discovery of a new mechanism for the haem-promoted blood-coagulation caused by non-thermal plasma treatment. The reason for the haem role is due to that its oxidized form, namely, hematin, can promote the dityrosine cross-linking of fibrinogen, the most important coagulation protein, to form a membrane-like layer on the surface of the treated blood with plasma exposure. Both haem and non-thermal-plasma generated hydrogen peroxide are requisite for the cross-linking process. We confirmed that fibrinogen can coordinate with the haem iron to form a protein-haem complex which shows pseudo-peroxidase activity, and in the presence of hydrogen peroxide, the complex can induce the dityrosine formation between fibrinogen molecules, leading to the fibrin network necessary for the blood coagulation. Understanding of such an underlying mechanism can be useful to guide more efficient application of non-thermal plasma in the management of hemostasis, thrombosis and etc. PMID:27229173

  12. Effects of the electrical excitation signal parameters on the geometry of an argon-based non-thermal atmospheric pressure plasma jet.

    PubMed

    Benabbas, Mohamed Tahar; Sahli, Salah; Benhamouda, Abdallah; Rebiai, Saida

    2014-12-01

    A non-thermal atmospheric pressure argon plasma jet for medical applications has been generated using a high-voltage pulse generator and a homemade dielectric barrier discharge (DBD) reactor with a cylindrical configuration. A plasma jet of about 6 cm of length has been created in argon gas at atmospheric pressure with an applied peak to peak voltage and a frequency of 10 kV and 50 kHz, respectively. The length and the shape of the created plasma jet were found to be strongly dependent on the electrode setup and the applied voltage and the signal frequency values. The length of the plasma jet increases when the applied voltage and/or its frequency increase, while the diameter at its end is significantly reduced when the applied signal frequency increases. For an applied voltage of 10 kV, the plasma jet diameter decreases from near 5 mm for a frequency of 10 kHz to less than 1 mm at a frequency of 50 kHz. This obtained size of the plasma jet diameter is very useful when the medical treatment must be processed in a reduced space. PACS 2008: 52.50.Dg; 52.70.-m; 52.80.-s.

  13. Argon/UF6 plasma experiments: UF6 regeneration and product analysis

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1980-01-01

    An experimental and analytical investigation was conducted to aid in developing some of the technology necessary for designing a self-critical fissioning uranium plasma core reactors (PCR). This technology is applicable to gaseous uranium hexafluoride nuclear-pumped laser systems. The principal equipment used included 1.2 MW RF induction heater, a d.c. plasma torch, a uranium tetrafluoride feeder system, and batch-type fluorine/UF6 regeneration systems. Overall objectives were to continue to develop and test materials and handling techniques suitable for use with high-temperature, high-pressure, gaseous UF6; and to continue development of complementary diagnostic instrumentation and measurement techniques to characterize the effluent exhaust gases and residue deposited on the test chamber and exhaust system components. Specific objectives include: a development of a batch-type UF6 regeneration system employing pure high-temperature fluorine; development of a ruggedized time-of-flight mass spectrometer and associated data acquisition system capable of making on-line concentration measurements of the volatile effluent exhaust gas species in a high RF environment and corrosive environment of UF6 and related halide compounds.

  14. Friction and wear properties of smooth diamond films grown in fullerene-argon plasmas

    SciTech Connect

    Erdemir, A.; Fenske, G.R.; Bindal, C.; Zuiker, C.; Krauss, A.R.; Gruen, D.M.

    1995-08-01

    In this study, we describe the growth mechanism and the ultralow friction and wear properties of smooth (20-50 nm rms) diamond films grown in a microwave plasma consisting of Ar and fullerene (the carbon source). The sliding friction coefficients of these films against Si{sub 3}N{sub 4} balls are 0.04 and 0.1 in dry N{sub 2} and air, which are comparable to that of natural diamond sliding against the same pin material, but is lower by factors of 5 to 10 than that afforded by rough diamond films grown in conventional H{sub 2}-CH{sub 4} plasmas. Furthermore, the smooth diamond films produced in this work afforded wear rates to Si{sub 3}N{sub 4} balls that were two to three orders of magnitude lower than those of H{sub 2}-CH{sub 4} grown films. Mechanistically, the ultralow friction and wear properties of the fullerene-derived diamond films correlate well with their initially smooth surface finish and their ability to polish even further during sliding. The wear tracks reach an ultrasmooth (3-6 nm rms) surface finish that results in very little abrasion and ploughing. The nanocrystalline microstructure and exceptionally pure sp{sup 3} bonding in these smooth diamond films were verified by numerous surface and structure analytical methods, including x-ray diffraction, high-resolution AF-S, EELS, NEXAFS, SEM, and TEM. An AFM instrument was used to characterize the topography of the films and rubbing surfaces.

  15. Investigation of local thermodynamic equilibrium of laser induced Al2O3-TiC plasma in argon by spatially resolved optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Alnama, K.; Alkhawwam, A.; Jazmati, A. K.

    2016-06-01

    Plasma plume of Al2O3-TiC is generated by third harmonic Q-switched Nd:YAG nanosecond laser. It is characterized using Optical Emission Spectroscopy (OES) at different argon background gas pressures 10, 102, 103, 104 and 105 Pa. Spatial evolution of excitation and ionic temperatures is deduced from spectral data analysis. Temporal evolution of Ti I emission originated from different energy states is probed. The correlation between the temporal behavior and the spatial temperature evolution are investigated under LTE condition for the possibility to use the temporal profile of Ti I emission as an indicator for LTE validity in the plasma.

  16. Release of alpha 2-plasmin inhibitor from plasma fibrin clots by activated coagulation factor XIII. Its effect on fibrinolysis.

    PubMed Central

    Mimuro, J; Kimura, S; Aoki, N

    1986-01-01

    When blood coagulation takes place in the presence of calcium ions, alpha 2-plasmin inhibitor (alpha 2PI) is cross-linked to fibrin by activated coagulation Factor XIII (XIIIa) and thereby contributes to the resistance of fibrin to fibrinolysis. It was previously shown that the cross-linking reaction is a reversible one, since the alpha 2PI-fibrinogen cross-linked complex could be dissociated. In the present study we have shown that the alpha 2PI-fibrin cross-linking reaction is also a reversible reaction and alpha 2PI which had been cross-linked to fibrin can be released from fibrin by disrupting the equilibrium, resulting in a decrease of its resistance to fibrinolysis. When the fibrin clot formed from normal plasma in the presence of calcium ions was suspended in alpha 2PI-deficient plasma of buffered saline, alpha 2PI was gradually released from fibrin on incubation. When alpha 2PI was present in the suspending milieu, the release was decreased inversely to the concentrations of alpha 2PI in the suspending milieu. The release was accelerated by supplementing XIIIa or the presence of a high concentration of the NH2-terminal 12-residue peptide of alpha 2PI (N-peptide) which is cross-linked to fibrin in exchange for the release of alpha 2PI. When the release of alpha 2PI from fibrin was accelerated by XIIIa or N-peptide, the fibrin became less resistant to the fibrinolytic process, resulting in an acceleration of fibrinolysis which was proportional to the degree of the release of alpha 2PI. These results suggest the possibility that alpha 2PI could be released from fibrin in vivo by disrupting the equilibrium of the alpha 2PI-fibrin cross-linking reaction, and that the release would result in accelerated thrombolysis. Images PMID:2419360

  17. On the difference between breakdown and quench voltages of argon plasma and its relation to 4p–4s atomic state transitions

    SciTech Connect

    Forati, Ebrahim Piltan, Shiva; Sievenpiper, Dan

    2015-02-02

    Using a relaxation oscillator circuit, breakdown (V{sub BD}) and quench (V{sub Q}) voltages of a DC discharge microplasma between two needle probes are measured. High resolution modified Paschen curves are obtained for argon microplasmas including a quench voltage curve representing the voltage at which the plasma turns off. It is shown that for a point to point microgap (e.g., the microgap between two needle probes) which describes many realistic microdevices, neither Paschen's law applies nor field emission is noticeable. Although normally V{sub BD} > V{sub Q,} it is observed that depending on environmental parameters of argon, such as pressure and the driving circuitry, plasma can exist in a different state with equal V{sub BD} and V{sub Q.} Using emission line spectroscopy, it is shown that V{sub BD} and V{sub Q} are equal if the atomic excitation by the electric field dipole moment dominantly leads to one of the argon's metastable states (4P{sub 5} in our study)

  18. Lead levels in fur of rats treated with inorganic lead measured by inductively coupled argon plasma mass spectrometry.

    PubMed

    Lesage, François-Xavier; Deschamps, Frédèric; Millart, Hervé

    2010-12-01

    The aim of this study was to investigate the relationship between continuous lead exposure and the concentration of this metal in fur. The two main questions we wanted to answer were: 1) Are the fur lead concentrations different according to exposure level? 2) Is the kinetics of lead concentration linear in different compartments?For 12 weeks, 6 rats were force-fed with water containing lead acetate in the following quantities: 0.5 and 50 µg/day. Furs were sampled every two weeks. The lead content of the samples was measured by inductively coupled argon plasma mass spectrometry (ICP-MS).There was a statistical difference (p<0.0001) between fur lead concentration and the three groups (control, low level exposure and high level exposure), between fur lead concentration and time exposure (p<0.0001), and between fur lead concentration and each exposure group at different time exposure (p<0.0001). Thus the level exposure factor and the time exposure factor have an effect on fur lead concentration. Since the determination coefficients were weak for the two exposed groups (0.032 and 0.032), a linear correlation cannot be concluded. The kinetic curves of fur lead concentration are similar for all the exposition groups. Two peaks (at 2 and 8 weeks of exposure) were noted for the two exposed groups.This experimental study cannot conclude a linear relationship to exist between fur lead concentration and exposition duration. It highlights the lack of understanding of mechanisms involved in hair incorporation of metals and raises the question of a cyclic accumulation in hair. A better understanding of the kinetic incorporation of lead in body growths is required.

  19. Characteristic effects onto C13H12N2O3 molecule dissolved in solvents of argon plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Tanışlı, Murat; Taşal, Erol

    2017-02-01

    We could easily argue that the decomposition of the chemical chain molecules is a compelling application when it comes to the atmospheric pressure plasma. In this paper, we have investigated the effect of the atmospheric pressure argon plasma on 4-((2-methoxyphenyl)diazenyl)benzene-1,3,-diol molecule (abbreviated as 4MBD) at room temperature. 4MBD molecule is one of the industrial dye molecules used widely. When considering the ecological life, this molecule is very harmful and dangerous. As such, we suggest a new decomposing method for such molecules. Atmospheric pressure plasma jet is principally treated for the breakdown of the molecule in question. Fourier transform infrared spectrometry and UV-Vis spectrophotometry tools are used to characterization of the molecules subsequent to the plasma applications to 4MBD molecule in ethanol and methanol solvents. The atmospheric-pressure plasma jet of argon (Ar) as non-equilibrium has been formed by ac-power generator with frequency—24 kHz and voltage—12 kV. Characterizations for solutions prepared with ethanol and methanol solvents of 4MBD molecule have been examined after applying (duration 3 min) the atmospheric pressure plasma jet. The molecule is broken at 6C-7N-8N=9C stretching peak in consequence of the plasma treatment. The new plasma photo-products for ethanol and methanol solutions are produced as 6C-7N-8N=9C (strong, varying) and 12C=17O (strong, wide) stretching peaks. Also, the bathochromic drifts are discerned.

  20. Spectroscopic Investigations of Glow Discharges and the Emissions of Nonmetallic Elements in the Argon Inductively Coupled Plasma.

    NASA Astrophysics Data System (ADS)

    Phillips, Hugh Alan

    1988-12-01

    Spectroscopic investigations have been carried out on hollow cathode discharges adapted from laser technology for use as a spectroscopic light source and the argon inductively coupled plasma (ICP) as an excitation source for nonmetal emission. High and low voltage aluminum and copper hollow cathode discharges were studied as a source of ionic and resonant atomic metal emission. The high voltage versions achieve strongly positive current-voltage behavior through utilization of the obstructed discharge phenomenon. The current-pressure-intensity-voltage relationships for low and high voltage copper hollow cathode discharges were studied with the inert gases He, Ne, Ar, Kr, and Xe. The intensity for copper resonant atomic emission with the fill gases Ar, Kr, and Xe improved relative to neon in the high voltage lamp when compared to the low voltage lamp. Absorption measurements through the cathode bore show the ground state atom density to increase with the atomic weight of the fill gas at any given level of intensity, at the fill gas pressure yielding highest resonant atomic copper emission. The estimated ion/atom intensity ratio is increased with fill gases which have metastable or ionization energies greater than the excitation energy of the ion transition. A copper hollow cathode lamp incorporating a short positive column discharge in front of the cathode opening was investigated for its lineshape as measured spectroscopically and by its atomic absorption sensitivity. Incorporation of this positive column allowed higher intensities to be obtained at the same line quality as a commercial hollow cathode lamp. An enlarged cathode volume also improves the lineshape at a given intensity. Inductively coupled plasma spectra for the elements C, O, N, Cl, P, S, and Br were obtained in the vacuum ultraviolet utilizing a vacuum polychromator and SWR film. The detection limit for injected O_2 and N _2 detected electronically by the VUV emissions is 1.3 and 0.9 micrograms

  1. Laser Optogalvanic Spectroscopy pf Neon and Argon in a Discharge Plasma and its Significance for Microgravity Combustion

    NASA Technical Reports Server (NTRS)

    Misra, Prabhakar; Haridass, C.; Major, H.

    1999-01-01

    A detailed study of combustion mechanisms in flames, employing laser-based diagnostics, has provided good knowledge and understanding of the physical phenomena, and led to better characterization of the dynamical and chemical combustion processes, both under low-gravity (in space) and normal gravity (in ground based facilities, e.g. drop towers). Laser induced fluorescence (LIF), laser-induced incandescence (LII) and LIF thermometry have been widely used to perform nonintrusive measurements and to better understand combustion phenomena. Laser optogalvanic (LOG) spectroscopy has well-established applications in ion mobility measurements, atomic and molecular spectroscopy, ionization rates, recombination rates, velocity measurements and as a combustion probe for trace element detection. Absorption spectra of atomic and molecular species in flames can be obtained via LOG spectroscopy by measuring the voltage and current changes induced by laser irradiation. There are different kinds of processes that contribute to a discharge current, namely: (1) electron impact ionization, (2) collisions among the excited atoms of the discharge species and (3) Penning ionization. In general, at higher discharge currents, the mechanism of electron impact ionization dominates over Penning ionization, whereby the latter is hardly noticeable. In a plasma, whenever the wavelength of a laser coincides with the absorption of an atomic or molecular species, the rate of ionization of the species momentarily increases or decreases due to laser-assisted acceleration of collisional ionization. Such a rate of change in the ionization is monitored as a variation in the transient current by inserting a high voltage electrode into the plasma. Optogalvanic spectroscopy in discharges has been useful for characterizing laser line-widths and for providing convenient calibration lines for tunable dye lasers in the ultraviolet, visible and infrared wavelength regions. Different kinds of quantitative

  2. Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application

    NASA Astrophysics Data System (ADS)

    Ulliac, G.; Calero, V.; Ndao, A.; Baida, F. I.; Bernal, M.-P.

    2016-03-01

    Lithium Niobate (LN) exhibits unique physical properties such as remarkable electro-optical coefficients and it is thus an excellent material for a wide range of fields like optic communications, lasers, nonlinear optical applications, electric field optical sensors etc. In order to further enhance the optical device performance and to be competitive with silicon photonics, sub-micrometric thickness lithium niobate films are crucial. A big step has been achieved with the development of LN thin films by using smart cut technology and wafer bonding and these films are nowadays available in the market. However, it is a challenge to obtain the requirements of the high quality thin LN film waveguide. In this letter, we show smooth ridge waveguides fabricated on 700 nm thickness thin film lithium niobate (TFLN). The fabrication has been done by developing and optimizing three steps of the technological process, the mask fabrication, the plasma etching, and a final cleaning wet etching step in order to remove the lithium niobate redeposition on the side walls. We have obtained single mode propagation with light overall losses of only 5 dB/cm.

  3. Neutralisation of the anti-coagulant effects of heparin by histones in blood plasma and purified systems.

    PubMed

    Longstaff, Colin; Hogwood, John; Gray, Elaine; Komorowicz, Erzsebet; Varjú, Imre; Varga, Zoltán; Kolev, Krasimir

    2016-03-01

    Neutrophil extracellular traps (NETs) composed primarily of DNA and histones are a link between infection, inflammation and coagulation. NETs promote coagulation and approaches to destabilise NETs have been explored to reduce thrombosis and treat sepsis. Heparinoids bind histones and we report quantitative studies in plasma and purified systems to better understand physiological consequences. Unfractionated heparin (UFH) was investigated by activated partial thromboplastin time (APTT) and alongside low-molecular-weight heparins (LMWH) in purified systems with thrombin or factor Xa (FXa) and antithrombin (AT) to measure the sensitivity of UFH or LMWH to histones. A method was developed to assess the effectiveness of DNA and non-anticoagulant heparinoids as anti-histones. Histones effectively neutralised UFH, the IC50 value for neutralisation of 0.2 IU/ml UFH was 1.8 µg/ml histones in APTT and 4.6 µg/ml against 0.6 IU/ml UFH in a purified system. Histones also inhibited the activities of LMWHs with thrombin (IC50 6.1 and 11.0 µg/ml histones, for different LMWHs) or FXa (IC50 7.8 and 7.0 µg/ml histones). Direct interactions of UFH and LMWH with DNA and histones were explored by surface plasmon resonance, while rheology studies showed complex effects of histones, UFH and LMWH on clot resilience. A conclusion from these studies is that anticoagulation by UFH and LMWH will be compromised by high affinity binding to circulating histones even in the presence of DNA. A complete understanding of the effects of histones, DNA and heparins on the haemostatic system must include an appreciation of direct effects on fibrin and clot structure.

  4. Selective depletion of plasma prekallikrein or coagulation factor XII inhibits thrombosis in mice without increased risk of bleeding

    PubMed Central

    Revenko, Alexey S.; Gao, Dacao; Crosby, Jeff R.; Bhattacharjee, Gourab; Zhao, Chenguang; May, Chris; Gailani, David; Monia, Brett P.

    2011-01-01

    Recent studies indicate that the plasma contact system plays an important role in thrombosis, despite being dispensable for hemostasis. For example, mice deficient in coagulation factor XII (fXII) are protected from arterial thrombosis and cerebral ischemia-reperfusion injury. We demonstrate that selective reduction of prekallikrein (PKK), another member of the contact system, using antisense oligonucleotide (ASO) technology results in an antithrombotic phenotype in mice. The effects of PKK deficiency were compared with those of fXII deficiency produced by specific ASO-mediated reduction of fXII. Mice with reduced PKK had ∼ 3-fold higher plasma levels of fXII, and reduced levels of fXIIa-serpin complexes, consistent with fXII being a substrate for activated PKK in vivo. PKK or fXII deficiency reduced thrombus formation in both arterial and venous thrombosis models, without an apparent effect on hemostasis. The amount of reduction of PKK and fXII required to produce an antithrombotic effect differed between venous and arterial models, suggesting that these factors may regulate thrombus formation by distinct mechanisms. Our results support the concept that fXII and PKK play important and perhaps nonredundant roles in pathogenic thrombus propagation, and highlight a novel, specific and safe pharmaceutical approach to target these contact system proteases. PMID:21821705

  5. Contribution of a portable air plasma torch to rapid blood coagulation as a method of preventing bleeding

    NASA Astrophysics Data System (ADS)

    Kuo, S. P.; Tarasenko, O.; Chang, J.; Popovic, S.; Chen, C. Y.; Fan, H. W.; Scott, A.; Lahiani, M.; Alusta, P.; Drake, J. D.; Nikolic, M.

    2009-11-01

    The effectiveness and mechanism of a low temperature air plasma torch in clotting blood are explored. Both blood droplets and smeared blood samples were used in the tests. The treated droplet samples reveal how blood clotting depends on the distance at which the torch operated, and for how long the droplets have been exposed to the torch. Microscopy and cell count of smeared blood samples shed light on dependencies of erythrocyte and platelet counts on torch distance and exposure time. With an increase of torch distance, the platelet count of treated blood samples increases but is less than that of the control. The flux of reactive atomic oxygen (RAO) and the degree of blood clotting decreased. With an increase of exposure time, platelet count of treated samples decreased, while the degree of clot increased. The correlation among these dependencies and published data support a blood clotting mechanism that RAO as well as other likely reactive oxygen species generated by the plasma torch activate erythrocyte-platelets interactions and induces blood coagulation.

  6. First principles transport coefficients and reaction rates of Ar2(+) ions in argon for cold plasma jet modeling.

    PubMed

    Chicheportiche, Alexandre; Stachoň, Martin; Benhenni, Malika; Gadéa, Florent Xavier; Kalus, René; Yousfi, Mohammed

    2014-10-07

    Momentum-transfer collision cross-sections and integral collision cross-sections for the collision-induced dissociation are calculated for collisions of ionized argon dimers with argon atoms using a nonadiabatic semiclassical method with the electronic Hamiltonian calculated on the fly via a diatomics-in-molecules semiempirical model as well as inverse-method modeling based on simple isotropic rigid-core potential. The collision cross-sections are then used in an optimized Monte Carlo code for evaluations of the Ar 2 (+) mobility in argon gas, longitudinal diffusion coefficient, and collision-induced dissociation rates. A thorough comparison of various theoretical calculations as well as with available experimental data on the Ar 2 (+) mobility and collision cross-sections is performed. Good agreement is found between both theoretical approaches and the experiment. Analysis of the role of inelastic processes in Ar 2 (+)/Ar collisions is also provided.

  7. Examination of Ion Beam Acceleration in A High Power-Low Pressure and Gas Flow Rates Argon Plasma Created in the MadHeX Helicon Source

    NASA Astrophysics Data System (ADS)

    Sung, Yung-Ta; Devinney, Michael; Scharer, John

    2012-10-01

    The modified MadHeX experimental system consists of a Pyrex tube connected to a stainless steel chamber with an axial magnetic nozzle field, variable up to 1 kG at the source region that has been upgraded to minimize neutral reflux and reduce neutral concentrations in the chamber. A half-turn double-helix antenna is used to excite helicon waves in the source. An ion beam of energy, E = 160 eV at 500 W RF power, has been observed in a low flowing argon plasma formed in the expanding region with a 340 G magnetic field. The role of plasma positive ``self-bias'' and the effects of boundary conditions are discussed. The measured density decrease factor of 18 at 100 W RF power across the expansion region yields a higher ion acceleration and agrees with a conservation-of-flux calculation. The effect of lower flow rates and pressures, higher RF powers and magnetic field strength dependence on the ion beam acceleration, plasma potential, electron density and temperature are further explored. The axial ion velocity distribution function and temperatures at higher powers are observed by argon 668 nm laser induced fluorescence with density measurements by interferometry. The electron energy distribution and its possible non-Maxwellian tail are examined using optical emission spectroscopy (ADAS and Vlcek models).

  8. Interactions of poly(lactic acid) and poly(lactic acid-co-ethylene oxide) nanoparticles with the plasma factors of the coagulation system.

    PubMed

    Sahli, H; Tapon-Bretaudière, J; Fischer, A M; Sternberg, C; Spenlehauer, G; Verrecchia, T; Labarre, D

    1997-02-01

    When surfactant-stabilized biodegradable poly(lactic acid) (PLA) particles are injected into rats, the rate of clearance from blood is fast. The rate can be strongly reduced by using particles made from diblock copolymers of PLA and poly(ethylene oxide) (PLA-PEO), resulting in an increased duration of contact with the components of the coagulation system. Thus, possible adverse effects such as activation of the coagulation cascade could occur. In this paper, the interactions of surfactant-stabilized PLA and PLA-PEO nanoparticle suspensions with the plasma factors of the coagulation system are presented. PLA suspensions stabilized by sodium cholate (PLA-Ch) interact with thrombin, factor V and calcium ions. Formation of complexes and aggregates is induced by addition of calcium ions to PLA-Ch suspensions in the presence or in the absence of plasma. On the contrary, PLA-PEO suspensions are remarkably inert towards the coagulation factors and calcium ions, even when cholate is present. Steric repulsion owing to the high surface density of PEO is sufficient to avoid strong interations with the proteins and formation of aggregates between particles.

  9. Ambient air particle transport into the effluent of a cold atmospheric-pressure argon plasma jet investigated by molecular beam mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dünnbier, M.; Schmidt-Bleker, A.; Winter, J.; Wolfram, M.; Hippler, R.; Weltmann, K.-D.; Reuter, S.

    2013-10-01

    Ambient air species, which are transported into the active effluent of an atmospheric-pressure plasma jet result in highly reactive oxygen and nitrogen species (RONS). Especially for the envisaged application field of plasma medicine, these RONS are responsible for strong biological responses. In this work, the effect of ambient air transport into the effluent of an atmospheric-pressure plasma argon jet on the on-axis densities of nitrogen, oxygen and argon was investigated by means of absolutely calibrated molecular beam mass spectrometry (MBMS). According to biomedical experiments a (bottomless) Petri dish was installed in front of the MBMS. In the following, the near flow field is referring to the region close to the nozzle exit and the far flow field is referring to the region beyond that. The absolute on-axis densities were obtained by three different methods, for the near flow field with VUV-absorption technique, for the far flow field with the MBMS and the total flow field was calculated with a computational fluid dynamics (CFD) simulation. The results of the ambient air particle densities of all independent methods were compared and showed an excellent agreement. Therefore the transport processes of ambient air species can be measured for the whole effluent of an atmospheric-pressure plasma jet. Additionally, with the validation of the simulation it is possible in future to calculate the ambient species transport for various gas fluxes in the same turbulent flow regime. Comparing the on-axis densities obtained with an ignited and with a non-ignited plasma jet shows that for the investigated parameters, the main influence on the ambient air species transport is due to the increased temperature in the case when the jet is switched on. Moreover, the presence of positive ions (e.g. ArN_{2}^{+} ) formed due to the interaction of plasma-produced particles and ambient air species, which are transported into the effluent, is shown.

  10. Prophylactic Plasma Transfusion for Surgical Patients With Abnormal Preoperative Coagulation Tests: A Propensity-Adjusted Cohort Study

    PubMed Central

    Jia, Qing; Brown, Michael J.; Clifford, Leanne; Wilson, Gregory A.; Truty, Mark J.; Stubbs, James R.; Schroeder, Darrell R.; Hanson, Andrew C.; Gajic, Ognjen; Kor, Daryl J.

    2016-01-01

    Background Perioperative hemorrhage negatively impacts patient outcomes and results in substantial health care resource consumption. Plasma transfusions are frequently administered to address abnormal preoperative coagulation tests, with the hope of mitigating bleeding complications. This study aimed to evaluate the associations between preoperative plasma transfusion and bleeding complications in patients with elevated international normalized ratios undergoing noncardiac surgery. Methods An observational comparative effectiveness research study evaluating a consecutive sample of adult patients undergoing noncardiac surgery (N=14,743) with preoperative international normalized ratios ≥ 1.5 between January 1, 2008, and December 31, 2011. Among the patients, 1,234 (8.4%) had an international normalized ratio ≥ 1.5 and were included in this investigation. Exposure of interest was transfusion of preoperative plasma for an elevated international normalized ratio. Primary outcome was World Health Organization grade 3 bleeding in the early perioperative period. Secondary outcomes included blood loss, reoperation for bleeding, and additional patient-important outcomes including death and lengths of stay. Hypotheses were tested with univariate and propensity-matched analyses. Multiple sensitivity analyses were performed to further evaluate the robustness of study findings. Findings Of 1,234 study participants, 139 (11.3%) received a preoperative plasma transfusion. Those who received plasma had a higher rate of perioperative (52.5% vs 32.0%; P < .0001) and intraoperative (40.3% vs 24.5%; P < .0001) red blood cell transfusion, as well as an increased rate of reoperation for bleeding (11.5% vs 4.5%; P = .0005). The increased rate of perioperative red blood cell transfusion stayed in the propensity-matched analyses (OR, 1.75 [95% CI, 1.09–2.81]; P= .0210). Results from multiple sensitivity analyses were qualitatively similar. Interpretation Preoperative plasma

  11. Use of INR calibrator plasmas in the routine coagulation laboratory: a study of two thrombolastin reagents.

    PubMed

    Fattorini, Annalisa; Pattarini, Elisabetta; Viganò, Silvana; Crippa, Luciano; D'Angelo, Armando

    2012-09-01

    INR values may be either calculated with the ISI values supplied by thromboplastin manufacturers or are directly extrapolated from certified INR calibrator plasmas. We tested the principle of local INR calibration using INR calibrator plasmas (PT-Multi Calibrator, Siemens), two thromboplastin reagents (Neoplastin Plus, rabbit brain, Stago, coagulometer-specific ISI 1.31, and Innovin, recombinant human tissue factor, Siemens) and the same coagulometer (STA-R, Stago) in 100 patients on warfarin. Using a ISI value of 0.77 with Tomenson correction for Innovin (correction factor=1.09), INR values of patients were similar with the two reagents, with a bias of 0.03 INR units and no significant regression of the difference over the average INR by method comparison analysis. With the INR calibrator plasmas, INR values with Neoplastin Plus were lower than Innovin values with an average bias of 0.39 INR units and a significant regression of the difference over the average INR (r=-0.91). Significant bias (0.16 INR units, p<0.00001) and regression (r=-0.77) was also observed by comparison of Neoplastin Plus INRs with Innovin calibrated INRs. Based on a therapeutic INR interval of 2.0 to 3.5, discordance in warfarin dosing was approximately 3 times higher with INR calibration (27% vs 11%). Because of non commutability with fresh plasma samples, local INR calibration with lyophilized calibrator plasmas may not be valid for some reagent-instrument combinations.

  12. An investigation of Ar metastable state density in low pressure dual-frequency capacitively coupled argon and argon-diluted plasmas

    SciTech Connect

    Liu, Wen-Yao; Xu, Yong Peng, Fei; Guo, Qian; Li, Xiao-Song; Zhu, Ai-Min; Liu, Yong-Xin; Wang, You-Nian

    2015-01-14

    An tunable diode laser absorption spectroscopy has been used to determine the Ar*({sup 3}P{sub 2}) and Ar*({sup 3}P{sub 0}) metastable atoms densities in dual-frequency capacitively coupled plasmas. The effects of different control parameters, such as high-frequency power, gas pressure and content of Ar, on the densities of two metastable atoms and electron density were discussed in single-frequency and dual-frequency Ar discharges, respectively. Particularly, the effects of the pressure on the axial profile of the electron and Ar metastable state densities were also discussed. Furthermore, a simple rate model was employed and its results were compared with experiments to analyze the main production and loss processes of Ar metastable states. It is found that Ar metastable state is mainly produced by electron impact excitation from the ground state, and decayed by diffusion and collision quenching with electrons and neutral molecules. Besides, the addition of CF{sub 4} was found to significantly increase the metastable destruction rate by the CF{sub 4} quenching, especially for large CF{sub 4} content and high pressure, it becomes the dominant depopulation process.

  13. Study on the effect of hydrogen addition on the variation of plasma parameters of argon-oxygen magnetron glow discharge for synthesis of TiO2 films

    NASA Astrophysics Data System (ADS)

    Saikia, Partha; Saikia, Bipul Kumar; Bhuyan, Heman

    2016-04-01

    We report the effect of hydrogen addition on plasma parameters of argon-oxygen magnetron glow discharge plasma in the synthesis of H-doped TiO2 films. The parameters of the hydrogen-added Ar/O2 plasma influence the properties and the structural phases of the deposited TiO2 film. Therefore, the variation of plasma parameters such as electron temperature (Te), electron density (ne), ion density (ni), degree of ionization of Ar and degree of dissociation of H2 as a function of hydrogen content in the discharge is studied. Langmuir probe and Optical emission spectroscopy are used to characterize the plasma. On the basis of the different reactions in the gas phase of the magnetron discharge, the variation of plasma parameters and sputtering rate are explained. It is observed that the electron and heavy ion density decline with gradual addition of hydrogen in the discharge. Hydrogen addition significantly changes the degree of ionization of Ar which influences the structural phases of the TiO2 film.

  14. Surface modification with poly(sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, and plasma coagulation.

    PubMed

    Kuo, Wei-Hsuan; Wang, Meng-Jiy; Chien, Hsiu-Wen; Wei, Ta-Chin; Lee, Chiapyng; Tsai, Wei-Bor

    2011-12-12

    Zwitterionic sulfobetaine methacrylate (SBMA) polymers were known to possess excellent antifouling properties due to high hydration capacity and neutral charge surface. In this study, copolymers of SBMA and acrylic acid (AA) with a variety of compositions were synthesized and were immobilized onto polymeric substrates with layer-by-layer polyelectrolyte films via electrostatic interaction. The amounts of platelet adhesion and fibrinogen adsorption were determined to evaluate hemocompatibility of poly(SBMA-co-AA)-modified substrates. Among various deposition conditions by modulating SBMA ratio in the copolymers and pH of the deposition solution, poly(SBMA(56)-co-AA(44)) deposited at pH 3.0 possessed the best hemocompatibility. This work demonstrated that poly(SBMA-co-AA) copolymers adsorbed on polyelectrolyte-base films via electrostatic interaction improve hemocompatibility effectively and are applicable for various substrates including TCPS, PU, and PDMS. Furthermore, poly(SBMA-co-AA)-coated substrate possesses great durability under rigorous conditions. The preliminary hemocompatibility tests regarding platelet adhesion, fibrinogen adsorption, and plasma coagulation suggest the potential of this technique for the application to blood-contacting biomedical devices.

  15. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres.

    PubMed

    Franz, Robert; Polcik, Peter; Anders, André

    2015-06-25

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al(+) regardless of the background gas species, whereas Cr(2+) ions were dominating in Ar and N2 and Cr(+) in O2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.

  16. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    PubMed Central

    Franz, Robert; Polcik, Peter; Anders, André

    2015-01-01

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr2+ ions were dominating in Ar and N2 and Cr+ in O2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings. PMID:26120236

  17. Coagulopathies in Naja naja karachiensis (black Pakistan cobra) bites and its effect on coagulation tests upon storage of platelet-poor plasma.

    PubMed

    Asad, Muhammad Hassham Hassan Bin; Razi, Muhammad Tahir; Khan, Taous; Najam-Us-saqib, Qazi; Murtaza, Ghulam; Hussain, Muhammad Shahzad; Hussain, Muhammad Sikandar; Karim, Sabiha; Hussain, Izhar

    2012-01-01

    The aim of this study was to evaluate the effect of venom from Naja naja karachiensis on platelet-poor plasma, activated partial thromboplastin time (aPTT), prothrombin time (PT) / international normalized ratio (INR), thrombin time (TT) and to evaluate its effect on clotting time upon storage of plasma for a specific time period with possible mechanism responsible for that. Prolongation of PT / INR, aPTT and TT was observed when different concentrations of venom were introduced due to degeneration of fibrinogen. Preservation of plasma for three months further prolong clotting time for coagulation tests, however, difference of PT and TT results were not very prominent as compared to aPTT. Minute concentrations of cobra venom and short as well as long storage of platelet-poor plasma badly affects the INR ratio.

  18. A sequence variation scan of the coagulation factor VIII (FVIII) structural gene and associations with plasma FVIII activity levels.

    PubMed

    Viel, Kevin R; Machiah, Deepa K; Warren, Diane M; Khachidze, Manana; Buil, Alfonso; Fernstrom, Karl; Souto, Juan C; Peralta, Juan M; Smith, Todd; Blangero, John; Porter, Sandra; Warren, Stephen T; Fontcuberta, Jordi; Soria, Jose M; Flanders, W Dana; Almasy, Laura; Howard, Tom E

    2007-05-01

    Plasma factor VIII coagulant activity (FVIII:C) level is a highly heritable quantitative trait that is strongly correlated with thrombosis risk. Polymorphisms within only 1 gene, the ABO blood-group locus, have been unequivocally demonstrated to contribute to the broad population variability observed for this trait. Because less than 2.5% of the structural FVIII gene (F8) has been examined previously, we resequenced all known functional regions in 222 potentially distinct alleles from 137 unrelated nonhemophilic individuals representing 7 racial groups. Eighteen of the 47 variants identified, including 17 single-nucleotide polymorphisms (SNPs), were previously unknown. As the degree of linkage disequilibrium across F8 was weak overall, we used measured-genotype association analysis to evaluate the influence of each polymorphism on the FVIII:C levels in 398 subjects from 21 pedigrees known as the Genetic Analysis of Idiopathic Thrombophilia project (GAIT). Our results suggested that 92714C>G, a nonsynonymous SNP encoding the B-domain substitution D1241E, was significantly associated with FVIII:C level. After accounting for important covariates, including age and ABO genotype, the association persisted with each C-allele additively increasing the FVIII:C level by 14.3 IU dL(-1) (P = .016). Nevertheless, because the alleles of 56010G>A, a SNP within the 3' splice junction of intron 7, are strongly associated with 92714C>G in GAIT, additional studies are required to determine whether D1241E is itself a functional variant.

  19. A sequence variation scan of the coagulation factor VIII (FVIII) structural gene and associations with plasma FVIII activity levels

    PubMed Central

    Viel, Kevin R.; Machiah, Deepa K.; Warren, Diane M.; Khachidze, Manana; Buil, Alfonso; Fernstrom, Karl; Souto, Juan C.; Peralta, Juan M.; Smith, Todd; Blangero, John; Porter, Sandra; Warren, Stephen T.; Fontcuberta, Jordi; Soria, Jose M.; Dana Flanders, W.; Almasy, Laura

    2007-01-01

    Plasma factor VIII coagulant activity (FVIII:C) level is a highly heritable quantitative trait that is strongly correlated with thrombosis risk. Polymorphisms within only 1 gene, the ABO blood-group locus, have been unequivocally demonstrated to contribute to the broad population variability observed for this trait. Because less than 2.5% of the structural FVIII gene (F8) has been examined previously, we resequenced all known functional regions in 222 potentially distinct alleles from 137 unrelated nonhemophilic individuals representing 7 racial groups. Eighteen of the 47 variants identified, including 17 single-nucleotide polymorphisms (SNPs), were previously unknown. As the degree of linkage disequilibrium across F8 was weak overall, we used measured-genotype association analysis to evaluate the influence of each polymorphism on the FVIII:C levels in 398 subjects from 21 pedigrees known as the Genetic Analysis of Idiopathic Thrombophilia project (GAIT). Our results suggested that 92714C>G, a nonsynonymous SNP encoding the B-domain substitution D1241E, was significantly associated with FVIII:C level. After accounting for important covariates, including age and ABO genotype, the association persisted with each C-allele additively increasing the FVIII:C level by 14.3 IU dL−1 (P = .016). Nevertheless, because the alleles of 56010G>A, a SNP within the 3′ splice junction of intron 7, are strongly associated with 92714C>G in GAIT, additional studies are required to determine whether D1241E is itself a functional variant. PMID:17209060

  20. Measurement of ion density in an atmospheric pressure argon with pin-to-plate dielectric barrier discharge by resonance of plasma radiation

    SciTech Connect

    Qi, Bing Pan, Lizhu; Zhou, Qiujiao; Huang, Jianjun; Liu, Ying

    2014-12-15

    The measurements of the ion densities in the atmospheric AC barrier corona argon discharge are carried out by receiving and analyzing the frequencies of the electromagnetic radiation emitted from the plasma. An auxiliary excitation source composed of a pin-to-pin discharge system is introduced to excite the oscillations of the main discharge. To analyze the resonance mechanism, a complemented model based on a one-dimensional description of forced vibrations is given. Calculations indicate that Ar{sub 2}{sup +} is the dominant ion (∼89% in number density). By analyzing resonance frequencies, the ion densities of Ar{sub 2}{sup +} are in the order of 10{sup 19}∼10{sup 20}m{sup −3} and increase slowly as the applied voltage increases.

  1. Influence of low energy argon plasma treatment on the moisture barrier performance of hot wire-CVD grown SiNx multilayers

    NASA Astrophysics Data System (ADS)

    Majee, Subimal; Fátima Cerqueira, Maria; Tondelier, Denis; Geffroy, Bernard; Bonnassieux, Yvan; Alpuim, Pedro; Bourée, Jean Eric

    2014-01-01

    The reliability and stability are key issues for the commercial utilization of organic photovoltaic devices based on flexible polymer substrates. To increase the shelf-lifetime of these devices, transparent moisture barriers of silicon nitride (SiNx) films are deposited at low temperature by hot wire CVD (HW-CVD) process. Instead of the conventional route based on organic/inorganic hybrid structures, this work defines a new route consisting in depositing multilayer stacks of SiNx thin films, each single layer being treated by argon plasma. The plasma treatment allows creating smoother surface and surface atom rearrangement. We define a critical thickness of the single layer film and focus our attention on the effect of increasing the number of SiNx single-layers on the barrier properties. A water vapor transmission rate (WVTR) of 2 × 10-4 g/(m2·day) is reported for SiNx multilayer stack and a physical interpretation of the plasma treatment effect is given.

  2. A new flexible DBD device for treating infected wounds: in vitro and ex vivo evaluation and comparison with a RF argon plasma jet

    NASA Astrophysics Data System (ADS)

    Boekema, B. K. H. L.; Vlig, M.; Guijt, D.; Hijnen, K.; Hofmann, S.; Smits, P.; Sobota, A.; van Veldhuizen, E. M.; Bruggeman, P.; Middelkoop, E.

    2016-02-01

    Cold plasma has been shown to provide a promising alternative antimicrobial treatment for wound healing. We developed and tested a flexible surface dielectric barrier discharge (DBD) and compared it to an argon gas based plasma jet operated remotely with a distance between plasma plume and sample of 8 mm. Tests were conducted using different models: on cultured cells, on ex vivo human skin and on bacteria (Pseudomonas aeruginosa) (on agar, in suspension, in collagen/elastin matrix or on ex vivo human skin), allowing us to directly compare bactericidal with safety aspects under identical conditions. Both plasma devices were highly efficient when used on bacteria in non-buffered solutions, but DBD was faster in reaching the maximum bacterial reduction. Treatment of bacteria on intact skin with DBD resulted in up to 6 log reductions in 3 min. The jet was far less efficient on intact skin. Even after 8 min treatment no more than 2 log reductions were obtained with the jet. Treatment of bacteria in burn wound models with DBD for 6 min resulted in a 4.5 log reduction. Even when using DBD for 6 min on infected burn wound models with colonizing or biofilm phase bacteria, the log reductions were 3.8 or 3.2 respectively. DBD plasma treatment for 6 min did not affect fibroblast viability, whereas a treatment for 8 min was detrimental. Similarly, treatment with DBD or plasma jet for 6 min did also not affect the metabolic activity of skin biopsies. After treatment for 8 min with DBD or plasma jet, 78% or 60% of activity in skin biopsies remained, respectively. Multiple treatments of in vitro burn wound models with surface DBD for 6 min or with plasma jet for 8 min did not affect re-epithelialization. With the flexible surface DBD plasma strip we were able to quickly inactivate large numbers of bacteria on and in skin. Under the same conditions, viability of skin cells or re-epithelialization was not affected. The DBD source has potential for treating

  3. Effect of combined treatment with immunoadsorption and membrane filtration on plasma coagulation--Results of a randomized controlled crossover study.

    PubMed

    Biesenbach, Peter; Eskandary, Farsad; Ay, Cihan; Wiegele, Marion; Derfler, Kurt; Schaden, Eva; Haslacher, Helmuth; Oberbauer, Rainer; Böhmig, Georg A

    2016-02-01

    The combined use of immunoadsorption (IA) and membrane filtration (MF) may markedly enhance removal of IgM and complement component C1q, supporting its use as an element of recipient desensitization in antibody-incompatible transplantation. However, coagulation factor removal may contribute to altered hemostasis, posing a risk of bleeding in the perioperative setting. This secondary endpoint analysis of standard coagulation assays and rotational thromboelastometry (ROTEM®) was performed in the context of a randomized controlled crossover study designed to assess the effect of combined IA (GAM-146-peptide) and MF on levels of ABO antigen-specific IgM. Fourteen patients with autoimmune disorders were randomized to a single treatment with IA+MF followed by IA alone, or vice versa. MF was found to markedly enhance fibrinogen depletion (57% vs. 28% median decrease after IA alone, P < 0.001), whereby four patients showed post-treatment fibrinogen concentrations below 100 mg dL(-1). In support of a critical contribution of fibrinogen depletion to impaired coagulation, extrinsically activated ROTEM(®) analysis revealed a marked reduction in fibrinogen-dependent clot formation upon IA+MF (59% median decrease in FIBTEM mean clot firmness (MCF) as compared to 24% after IA alone, P < 0.001). Moreover, the addition of MF led to a substantial prolongation of activated partial thromboplastin time, possibly due to depletion of macromolecular coagulation factors contributing to intrinsically activated coagulation. Our study demonstrates substantial effects of combined IA+MF on clot formation, which may be mainly attributable to fibrinogen depletion. We suggest that the use of combined apheresis in the setting of transplant surgery may necessitate a careful monitoring of coagulation.

  4. Changes in Plasma Levels of Natural Anticoagulants in Disseminated Intravascular Coagulation: High Prognostic Value of Antithrombin and Protein C in Patients with Underlying Sepsis or Severe Infection

    PubMed Central

    Choi, Qute; Hong, Ki Ho; Kim, Ji-Eun

    2014-01-01

    Background Dysfunctional natural anticoagulant systems enhance intravascular fibrin for mation in disseminated intravascular coagulation (DIC), and plasma levels of natural anti coagulants can be used in the diagnosis and prognosis of DIC. Herein, the diagnostic value of 4 natural anticoagulants was assessed, and the prognostic value of antithrombin and protein C were validated in a large population. Methods Part 1 study included 126 patients with clinically suspected DIC and estimated plasma levels of 4 candidate anticoagulant proteins: antithrombin, protein C, protein S, and protein Z. Part 2 comprised 1,846 patients, in whom plasma antithrombin and protein C levels were compared with other well-known DIC markers according to the underlying dis eases. The 28-day mortality rate was used to assess prognostic outcome. Results Antithrombin and protein C showed higher areas under the ROC curve than pro tein S and protein Z. In part 2 of the study, antithrombin and protein C levels significantly correlated with DIC score, suggesting that these factors are good indicators of DIC severity. Antithrombin and protein C showed significant prognostic power in Kaplan-Meier analyses. In patients with sepsis/severe infection, antithrombin and protein C showed higher hazard ratios than D-dimer. Platelet count showed the highest hazard ratio in patients with hemato logic malignancy. In patients with liver disease, the hazard ratio for antithrombin levels was significantly high. Conclusions Decreased plasma anticoagulant levels reflect florid consumption of the phys iologic defense system against DIC-induced hypercoagulation. Plasma antithrombin and protein C levels are powerful prognostic markers of DIC, especially in patients with sepsis/severe infection. PMID:24624342

  5. Spectroscopy of reactive species produced by low-energy atmospheric-pressure plasma on conductive target material surface

    NASA Astrophysics Data System (ADS)

    Yamada, Hiromasa; Sakakita, Hajime; Kato, Susumu; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Masanori; Itagaki, Hirotomo; Okazaki, Toshiya; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki; Ikehara, Yuzuru

    2016-10-01

    A method for blood coagulation using low-energy atmospheric-pressure plasma (LEAPP) is confirmed as an alternative procedure to reduce tissue damage caused by heat. Blood coagulation using LEAPP behaves differently depending on working gas species; helium is more effective than argon in promoting fast coagulation. To analyse the difference in reactive species produced by helium and argon plasma, spectroscopic measurements were conducted without and with a target material. To compare emissions, blood coagulation experiments using LEAPP for both plasmas were performed under almost identical conditions. Although many kinds of reactive species such as hydroxyl radicals and excited nitrogen molecules were observed with similar intensity in both plasmas, intensities of nitrogen ion molecules and nitric oxide molecules were extremely strong in the helium plasma. It is considered that nitrogen ion molecules were mainly produced by penning ionization by helium metastable. Near the target, a significant increase in the emissions of reactive species is observed. There is a possibility that electron acceleration was induced in a local electric field formed on the surface. However, in argon plasma, emissions from nitrogen ion were not measured even near the target surface. These differences between the two plasmas may be producing the difference in blood coagulation behaviour. To control the surrounding gas of the plasma, a gas-component-controllable chamber was assembled. Filling the chamber with O2/He or N2/He gas mixtures selectively produces either reactive oxygen species or reactive nitrogen species. Through selective treatments, this chamber would be useful in studying the effects of specific reactive species on blood coagulation.

  6. Influence of the temporal variations of plasma composition on the cyclic formation of dust in hexamethyldisiloxane-argon radiofrequency discharges: Analysis by time-resolved mass spectrometry

    NASA Astrophysics Data System (ADS)

    Despax, B.; Gaboriau, F.; Caquineau, H.; Makasheva, K.

    2016-10-01

    Cyclic formation of dust nanoparticles in hexamethyldisiloxane (HMDSO, Si2O(CH3)6)-argon RF discharge with pulsed injection of HMDSO was studied using time-resolved mass spectrometry (MS) and optical emission spectroscopy (OES). A large amount of C2H2, considered as promoter of dust nucleation in hydrocarbon plasmas, was found as a by-product of HMDSO fragmentation. Although no negative ions were detected the presence of C2H2 in the HMDSO-Ar discharge supports the hypothesis of a dust growth mechanism based on negative ions being trapped in the plasma. It was found that at the beginning of each cycle of dust formation during α -γ' transition, the discharge sustaining process is accompanied by a strong consumption of the HMDSO main by-products: HMDSO-15, CH4 and C2H2. At the end of the cycle, corresponding to the progressive disappearance of dust, the discharge switches back to its initial conditions. The beginning of the inverse transition, i.e. γ'-α , is most likely correlated to the growing void in the dust cloud and dust disappearance. In presence of dust nanoparticles, Ar+ and ArH+ dominate the ion population and consequently the discharge maintenance. When the dust particles gradually disappear, the discharge is rather controlled by Si2O(CH3)5+ ions. Moreover, the increased amount of such heavy ions reveals clearly their important income in the dust repelling process due to the drag force on the large sized dust even at short time scale during the injection time of HMDSO. Atomic-H production increases during the transition from dusty plasma to HMDSO-rich plasma with no dust and its role is associated to a delay in the dust nucleation stage.

  7. Platelet coagulation-protein interactions.

    PubMed

    Walsh, Peter N

    2004-08-01

    The biochemical mechanisms by which activated platelets participate in exposing receptors for the assembly of enzyme-cofactor-substrate complexes at all stages of the blood coagulation cascade are reviewed. Information derived from studies conducted during the last 30 years supports the concept that the initiation of blood coagulation is triggered by exposure of tissue factor at injury sites, leading to the generation of minute quantities of thrombin (limited by tissue factor pathway inhibitor), sufficient to activate platelets, factors XI, VIII, and V, and trigger the consolidation pathway (i.e., the sequential activation of factors XI, IX, X, and prothrombin on the activated platelet surface), leading to the generation of sufficient thrombin to convert fibrinogen to fibrin and effect hemostasis. Platelets localize coagulation to the hemostatic thrombus and protect coagulation enzymes from inhibition by both plasma and platelet inhibitors (e.g., protease nexin 2), thus preventing disseminated intravascular coagulation.

  8. Proteome of human plasma very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism.

    PubMed

    Dashty, M; Motazacker, M M; Levels, J; de Vries, M; Mahmoudi, M; Peppelenbosch, M P; Rezaee, F

    2014-03-03

    Apart from transporting lipids through the body, the human plasma lipoproteins very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) are also thought to serve as a modality for intra-organismal protein transfer, shipping proteins with important roles in inflammation and thrombosis from the site of synthesis to effector locations. To better understand the role of VLDL and LDL in the transport of proteins, we applied a combination of LTQ ORBITRAP-XL (nLC-MS/MS) with both in-SDS-PAGE gel and in-solution tryptic digestion of pure and defined VLDL and LDL fractions. We identified the presence of 95 VLDL- and 51 LDL-associated proteins including all known apolipoproteins and lipid transport proteins, and intriguingly a set of coagulation proteins, complement system and anti- microbial proteins. Prothrombin, protein S, fibrinogen γ, PLTP, CETP, CD14 and LBP were present on VLDL but not on LDL. Prenylcysteine oxidase 1, dermcidin, cathelicidin antimicrobial peptide, TFPI-1 and fibrinogen α chain were associated with both VLDL and LDL. Apo A-V is only present on VLDL and not on LDL. Collectively, this study provides a wealth of knowledge on the protein constituents of the human plasma lipoprotein system and strongly supports the notion that protein shuttling through this system is involved in the regulation of biological processes. Human diseases related to proteins carried by VLDL and LDL can be divided in three major categories: 1 - dyslipidaemia, 2 - atherosclerosis and vascular disease, and 3 - coagulation disorders.

  9. A Prospective Randomized Experimental Study to Investigate the Eradication Rate of Endometriosis after Surgical Resection versus Aerosol Plasma Coagulation in a Rat Model

    PubMed Central

    Rothmund, Ralf; Scharpf, Marcus; Tsaousidis, Christos; Planck, Constanze; Enderle, Markus Dominik; Neugebauer, Alexander; Kroeker, Kristin; Nuessle, Daniela; Fend, Falko; Brucker, Sara; Kraemer, Bernhard

    2016-01-01

    Purpose To investigate the eradication rate of endometriosis after surgical resection (SR) vs. thermal ablation with aerosol plasma coagulation (AePC) in a rat model. Methods In this prospective, randomized, controlled, single-blinded animal study endometriosis was induced on the abdominal wall of 34 female Wistar rats. After 14 days endometriosis was either removed by SR or ablated by AePC. 14 days later the rats were euthanized to evaluate the eradication rate histopathologically. Intervention times were recorded. Results Eradication rate of endometriosis after 14 days did not significantly differ between AePC and SR (p=0.22). Intervention time per endometrial lesion was 22.1 s for AePC and 51.8 s for SR (p<0.0001). Conclusions This study compares the eradication rate of the new aerosol plasma coagulation device versus standard surgical resection of endometriosis in a rat model. Despite being a thermal method, AePC showed equality towards SR regarding eradication rate but with significantly shorter intervention time. PMID:26941579

  10. Bustling argon: biological effect

    PubMed Central

    2013-01-01

    Argon is a noble gas in group 18 of the periodic table. Certificated to exist in air atmosphere merely one century ago, discovery of argon shows interesting stories of researching and exploring. It was assumed to have no chemical activity. However, argon indeed present its biological effect on mammals. Narcotic effect of argon in diving operation and neur-protective function of argon in cerebral injury demonstrate that argon has crucial effect and be concentrated on is necessary. Furthermore, consider to be harmless to human, argon clinical application in therapy would be another option. PMID:24088583

  11. One- and two-dimensional density and temperature measurements of an argon-neon Z-pinch plasma at stagnation

    SciTech Connect

    Wong, K.L.; Springer, P.T.; Hammer, J.H.; Iglesias, C.A.; Osterheld, A.L.; Foord, M.E.; Bruns, H.C.; Emig, J.A.; Deeney, C.

    1996-10-01

    In order to benchmark and improve current 2D radiation magnetohydrodynamic (MHD) models of Z-pinch plasmas, we have performed experiments which characterize the plasma -conditions at stagnation. In the experiments the SATURN pulsed power facility at Sandia National Laboratory was used to create an imploding -Ar-Ne plasma. An absolutely calibrated, high resolution space- and time- resolving Johann crystal spectrometer was used to infer the electron temperature Te from the slope of the hydrogenlike Ne free-bound continuum, and the ion density ni from the Stark broadening of the Ar heliunlike Rydberg series. 2D electron temperature profiles of the plasma are obtained from a set of imaging crystals also focused on the Ne free-bound continuum. We shot two types of gas nozzles in the experiment, annular and uniform fill which varies the amount of mass in the plasma. 2D local thermodynamic equilibrium (LTE) and non-LTE MM models predict a radiating region denser and cooler than measured.

  12. Photocatalytic property of titanium dioxide thin films deposited by radio frequency magnetron sputtering in argon and water vapour plasma

    NASA Astrophysics Data System (ADS)

    Sirghi, L.; Hatanaka, Y.; Sakaguchi, K.

    2015-10-01

    The present work is investigating the photocatalytic activity of TiO2 thin films deposited by radiofrequency magnetron sputtering of a pure TiO2 target in Ar and Ar/H2O (pressure ratio 40/3) plasmas. Optical absorption, structure, surface morphology and chemical structure of the deposited films were comparatively studied. The films were amorphous and included a large amount of hydroxyl groups (about 5% of oxygen atoms were bounded to hydrogen) irrespective of the intentional content of water in the deposition chamber. Incorporation of hydroxyl groups in the film deposited in pure Ar plasma is explained as contamination of the working gas with water molecules desorbed by plasma from the deposition chamber walls. However, intentional input of water vapour into the discharge chamber decreased the deposition speed and roughness of the deposited films. The good photocatalytic activity of the deposited films could be attributed hydroxyl groups in their structures.

  13. Observation of inactivation of Bacillus sbtilis spores under exposures of oxygen added argon atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Shen, Jie; Cheng, Cheng; Zhao, Ying; Xiao, Dezhi; Lan, Yan; Xie, Hongbing; Cheng, Junli; Meng, Yuedong; Li, Jiangang; Chu, Paul K.

    2014-11-01

    The inactivation of Bacillus subtilis spores by an Ar plasma jet mixed with different amounts of oxygen is reported. 5.8 × 106 B. subtilis spores are sterilized by an Ar/O2 (8.7%) plasma jet after exposure for 2 min. The densities of ozone and oxygen radicals in the Ar/O2 plasma jet increase with oxygen concentration and are estimated by optical spectroscopy diagnostic. The malondialdehyde (MDA) test shows that oxygen radicals participate in bacterial inactivation. Scanning electron microscopy (SEM) reveals the deformation of the spore shape due to etching by oxygen radicals and the dependence of the degree of deformation on the density of oxygen radicals.

  14. Determination of ionic and neutral components of argon-methyl methacrylate radiofrequency discharge plasma by mass spectrometry

    SciTech Connect

    Shcheglov, A.N.; Vasilets, V.N.; Ponomarev, A.N.

    1995-09-01

    Positive ions and neutral species formed in the plasma of a radiofrequency discharge in an argonmethyl methacrylate (MMA) mixture at 5.28 MHz, discharge power 12 - 130 W, pressure 10 - 100 Pa, and 0.5 - 10% MMA content of the gas mixture were investigated by mass spectrometry. Over 30 different ionic species were identified in the plasma under various experimental conditions. The most abundant plasma ions were as follows (the m/e values are given in parentheses): CH{sub 3}{sup +} (15), C{sub 2}H{sub 2}{sup +} (26), C{sub 2}H{sub 3}{sup +} (27), C{sub 2}H{sub 4}{sup +}, CO{sup +} (28), C{sub 2}H{sub 5}{sup +}, C{sub 2}H{sub 5}{sup +}, HCO{sup +} (29), C{sub 3}H{sub 3}{sup +} (39), Ar{sup +} (40), C{sub 3}H{sub 5}{sup +} (41), COOCH{sub 3}{sup +} (101). At the MMA concentrations studied, Ar{sup +} was the principal ionic component of the plasma. Among the neutral plasma components, 28 compounds were identified, including C{sub 1}-C{sub 6} hydrocarbons, H{sub 2},H{sub 2}O, CO, HCOH, CH{sub 3}OH, CO{sub 2}, CH{sub 3}COCH{sub 3}, and C{sub 3}H{sub 7}COH. The experimental data suggest that both electron-impact-induced dissociation and ion-molecule reactions involving Ar{sup +}MMA mixture.

  15. Performance of coagulation tests in patients on therapeutic doses of rivaroxaban. A cross-sectional pharmacodynamic study based on peak and trough plasma levels.

    PubMed

    Francart, Suzanne J; Hawes, Emily M; Deal, Allison M; Adcock, Dorothy M; Gosselin, Robert; Jeanneret, Cheryl; Friedman, Kenneth D; Moll, Stephan

    2014-06-01

    Knowledge of anticoagulation status during rivaroxaban therapy is desirable in certain clinical situations. It was the study objective to determine coagulation tests most useful for assessing rivaroxaban's anticoagulant effect. Peak and trough blood samples from 29 patients taking rivaroxaban 20 mg daily were collected. Mass spectrometry and various coagulation assays were performed. "On-therapy range" was defined as the rivaroxaban concentrations determined by LC-MS/MS. A "misprediction percentage" was calculated based on how often results of each coagulation assay were in the normal reference range, while the rivaroxaban concentration was in the "on-therapy" range. The on-therapy range was 8.9-660 ng/ml. The misprediction percentages for prothrombin time (PT) and activated partial thromboplastin time (aPTT), using multiple reagents and coagulometers, ranged from 10%-52% and 31%-59%, respectively. PT, aPTT and activated clotting time (ACT) were insensitive to trough rivaroxaban: 59%, 62%, and 80% of samples had a normal result, respectively. Over 95% of PT and ACT values were elevated at peak. Four different rivaroxaban calibrated anti-Xa assays had R² values >0.98, demonstrating strong correlations with rivaroxaban drug levels. In conclusion, PT, aPTT and ACT are often normal in patients on therapeutic doses of rivaroxaban. However, PT and ACT may have clinical utility at higher drug plasma levels. Rivaroxaban calibrated anti-factor Xa assays can accurately identify low and high on-therapy rivaroxaban drug levels and, therefore, have superior utility in all clinical situations where assessment of anticoagulation status may be beneficial.

  16. Interactions among Hageman factor (HG, Factor XII), plasma thromboplastin antecedent (PTA, Factor XI), plasma prekallikrein (PK, Fletcher factor) and high molecular weight kininogen (HMW-K, Fitzgerald factor) in blood coagulation.

    PubMed

    Saito, H; Ratnoff, O D

    1979-01-01

    Studies of plasmas from individuals with Hageman trait (factor XII deficiency), plasma thromboplastin antecedent (PTA, factor XI) deficiency, Fletcher trait (plasma prekallikrein deficiency) and Fitzgerald trait (high molecular weight-kininogen deficiency) have revealed the importance of these proteins in blood coagulation. The interactions among them, however, are not fully elucidated. We have studied these reactions by two different approaches. (1) In a purified system, high molecular weight kininogen was absolutely required for activation of PTA by HF and ellagic acid (EA). The yield of activated PTA was proportional to the amount of HF, HMW-K, and PTA in the mixtures, suggesting that these three proteins may form a complex in the presence of EA. (2) In experiments with whole plasma, we took advantage of the adsorption of EA to Sephadex gels. When normal plasma or plasma deficient in HF, PK, HMW-K or PTA was exposed to Sephadex-EA and was separated by centrifugation, each supernatant plasma except that deficient in HF shortened the prolonged partial thromboplastin time (PTT) of HF-deficient plasma. Plasma simultaneously depleted of HMW-K, PK and PTA also shortened the PTT of HF-deficient plasma and of plasma depleted of HF and PK, but had virtually no procoagulant effect upon the PTT of plasma depleted of HF and MHW-K. Thus, exposure of HF in plasma to Sephadex-EA appeared to generate a clot-promoting form of HF in the absence of other clotting factors, but its expression required the presence of HMW-K.

  17. Impact of cold atmospheric pressure argon plasma on antibiotic sensitivity of methicillin-resistant Staphylococcus aureus strains in vitro

    PubMed Central

    Lührmann, Anne; Matthes, Rutger; Kramer, Axel

    2016-01-01

    Aim: The antimicrobial activity of cold atmospheric pressure plasma (CAP), also called tissue tolerable plasma (TTP), could be a promising option to eradicate methicillin-sensitive as well as methicillin-resistant Staphylococcus aureus strains, which often colonize chronic wounds. Currently, the influence of CAP on the susceptibility of S. aureus to antibiotics is scarcely known, but could be important for treatment of wounds. Therefore, the aim of this study was to investigate whether CAP has an impact on the susceptibility of different S. aureus strains to different antibiotics. Method: For assessment, the agar diffusion test with different antibiotic test disks (cefuroxime, gentamicin, oxacillin, vancomycin, ciprofloxacin, co-trimoxazole, clindamycin, erythromycin) was used. Test strains were spread on agar plates and CAP treated before the antibiotic disks were placed. After 24 hours cultivation, the inhibited growth zones were measured and differences statistically evaluated. Results: In most cases, CAP had a negligible influence on the susceptibility to antibiotics. For two strains, the susceptibility significantly decreased to β-lactam antibiotics. Conclusion: Because CAP can influence the antibiotic susceptibility of S. aureus, before conducting combined treatment with local plasma application on wounds and systemic antibiotics, their interaction must be analysed in vitro to exclude unwanted combination effects. PMID:27610332

  18. Density of atoms in Ar*(3p{sup 5}4s) states and gas temperatures in an argon surfatron plasma measured by tunable laser spectroscopy

    SciTech Connect

    Huebner, S.; Carbone, E. A. D.; Mullen, J. J. A. M. van der; Sadeghi, N.

    2013-04-14

    This study presents the absolute argon 1 s (in Paschens's notation) densities and the gas temperature, T{sub g}, obtained in a surfatron plasma in the pressure range 0.6510 mbar, for which the pressure broadening can no more be neglected. T{sub g} is in the range of 480-750 K, increasing with pressure and decreasing with the distance from the microwave launcher. Taking into account the line of sight effects of the absorption measurements, a good agreement is found with our previous measurements by Rayleigh scattering of T{sub g} at the tube center. In the studied pressure range, the Ar(4 s) atom densities are in the order of 10{sup 16}-10{sup 18} m{sup -3}, increasing towards the end of the plasma column, decreasing with the pressure. In the low pressure side, a broad minimum is found around 10

  19. Density of atoms in Ar*(3p54s) states and gas temperatures in an argon surfatron plasma measured by tunable laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Hübner, S.; Sadeghi, N.; Carbone, E. A. D.; van der Mullen, J. J. A. M.

    2013-04-01

    This study presents the absolute argon 1 s (in Paschens's notation) densities and the gas temperature, Tg, obtained in a surfatron plasma in the pressure range 0.65

    10 mbar, for which the pressure broadening can no more be neglected. Tg is in the range of 480-750 K, increasing with pressure and decreasing with the distance from the microwave launcher. Taking into account the line of sight effects of the absorption measurements, a good agreement is found with our previous measurements by Rayleigh scattering of Tg at the tube center. In the studied pressure range, the Ar(4 s) atom densities are in the order of 1016-1018 m-3, increasing towards the end of the plasma column, decreasing with the pressure. In the low pressure side, a broad minimum is found around 10

  20. EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu

    PubMed Central

    Uchiyama, Hidefumi; Zhao, Qing-Li; Hassan, Mariame Ali; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi

    2015-01-01

    Electron paramagnetic resonance (EPR)-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP) in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH) radicals and hydrogen (H) atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO), and phenyl N-t-butylnitrone (PBN). The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and an

  1. EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu.

    PubMed

    Uchiyama, Hidefumi; Zhao, Qing-Li; Hassan, Mariame Ali; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi

    2015-01-01

    Electron paramagnetic resonance (EPR)-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP) in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH) radicals and hydrogen (H) atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO), and phenyl N-t-butylnitrone (PBN). The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and an

  2. [Direct oral anticoagulants: what is the exact assessment of coagulation tests and plasma levels by laboratory tests in clinical practice?].

    PubMed

    Gendron, Nicolas; Smadja, David M

    2016-01-01

    Direct oral anticoagulants (DAO), anti-IIa or anti-Xa, are intended to be widely used for the treatment and prevention of thrombotic disorders in venous thromboembolic disease and atrial fibrillation as an alternative of vitamin K antagonists (VKA). Despite predictable pharmacological properties, spontaneous or provoked hemorrhagic risks by DAO are major limitations. Thus, after few years of inconsistence concerning biological implication and in particular coagulation tests, it is now established that we need biology to evaluate hemorrhagic risk before surgery or in hemorrhagic cases.

  3. PF-04886847 (an inhibitor of plasma kallikrein) attenuates inflammatory mediators and activation of blood coagulation in rat model of lipopolysaccharide (LPS)-induced sepsis.

    PubMed

    Kolte, D; Bryant, J W; Gibson, G W; Wang, J; Shariat-Madar, Z

    2012-06-01

    The plasma kallikrein-mediated proteolysis regulates both thrombosis and inflammation. Previous study has shown that PF-04886847 is a potent and competitive inhibitor of kallikrein, suggesting that it might be useful for the treatment of kallikrein-kinin mediated inflammatory and thrombotic disorders. In the rat model of lipopolysaccharide (LPS) -induced sepsis used in this study, pretreatment of rats with PF-04886847 (1 mg/kg) prior to LPS (10 mg/kg) prevented endotoxin-induced increase in granulocyte count in the systemic circulation. PF-04886847 significantly reduced the elevated plasma 6-keto PGF1α levels in LPS treated rats, suggesting that PF-04886847 could be useful in preventing hypotensive shock during sepsis. PF-04886847 did not inhibit LPS-induced increase in plasma TNF-α level. Pretreatment of rats with PF-04886847 prior to LPS did not attenuate endotoxin-induced decrease in platelet count and plasma fibrinogen levels as well as increase in plasma D-dimer levels. PF-04886847 did not protect the animals against LPS-mediated acute hepatic and renal injury and disseminated intravascular coagulation (DIC). Since prekallikrein (the zymogen form of plasma kallikrein) deficient patients have prolonged activated partial thromboplastin time (aPTT) without having any bleeding disorder, the anti-thrombotic property and mechanism of action of PF-04886847 was assessed. In a rabbit balloon injury model designed to mimic clinical conditions of acute thrombotic events, PF-04886847 reduced thrombus mass dose-dependently. PF-04886847 (1 mg/kg) prolonged both aPTT and prothrombin time (PT) in a dose-dependent manner. Although the findings of this study indicate that PF-04886847 possesses limited anti-thrombotic and anti-inflammatory effects, PF-04886847 may have therapeutic potential in other kallikrein-kinin mediated diseases.

  4. Spatial evolution of the electron energy distribution function in a low-pressure capacitively coupled plasma containing argon and krypton

    NASA Astrophysics Data System (ADS)

    Zhu, Xi-Ming; Chen, Wen-Cong; Li, Jiang; Cheng, Zhi-Wen; Pu, Yi-Kang

    2012-08-01

    The spatial evolution of the electron energy distribution function (EEDF) in the axial direction of a capacitively coupled plasma with two parallel plate electrodes is investigated using an optical emission line-ratio method for Ar/Kr discharges. When the rf power is increased from 25 to 400 W at a pressure of 400 mTorr, we observe a transition from convex EEDFs to concave ones and a sharp increase in electron density, due to an α-γ mode transition, which is believed to be caused by the high-energy electrons originating in the high-voltage sheath. We also investigate the spatial evolution of the EEDF when the pressure is increased from 45 to 500 mTorr at a power of 100 W. The EEDF is uniform at pressures below 180 mTorr and becomes non-uniform at higher pressures, owing to the decrease in the energy relaxation length of the high-energy electrons.

  5. Use of a nitrogen-argon plasma to improve adherence of sputtered titanium carbide coatings on steel

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Wheeler, D. R.

    1979-01-01

    Friction and wear experiments on 440-C steel surfaces that had been RF-sputtered with titanium carbide when a small percentage of nitrogen was added to the plasma were conducted. X-ray photoelectron spectroscopy and X-ray diffraction were used to analyze the resultant coatings. Results indicate that a small partial pressure of nitrogen (about 0.5%) markedly improves the adherence, friction, and wear properties when compared with coatings applied on sputter-etched oxidized surfaces or in the presence of a small oxygen partial pressure. The improvements are related to the formation of an interface containing a mixture of the nitrides of titanium and iron, which are harder than their corresponding oxides.

  6. [Proteins influencing the blood coagulation].

    PubMed

    Alberio, Lorenzo

    2011-11-01

    This review describes some natural proteins, which can be employed, either as factor concentrates derived from human plasma or as recombinant drug, to modulate the coagulation system. I will address some biochemical characteristics and the physiological role of von Willebrand factor, the coagulation factors of the extrinsic and intrinsic pathways, and the physiological anticoagulant protein C. In addition, I will detail the pharmacological compounds, which are available for influencing or substituting the coagulation proteins: desmopressin (DDAVP), single coagulation factor concentrates, prothrombin complex concentrates, and protein C concentrate. In particular, I will address some treatment topics of general medical interest, such as the treatment of massive bleeding, the correction of the coagulopathy induced by vitamin K-antagonists in patients with cerebral haemorrhage, and of the coagulopathy of meningococcemia. Finally, I will describe some properties and practical clinical applications of the recombinant anticoagulans lepirudin and bivalirudin, which are derived from hirudin, the natural anticoagulant of the medical leech.

  7. Impact of cold atmospheric pressure argon plasma on antibiotic sensitivity of methicillin-resistant Staphylococcus aureus strains in vitro.

    PubMed

    Lührmann, Anne; Matthes, Rutger; Kramer, Axel

    2016-01-01

    Zielsetzung: Die antimikrobielle Wirksamkeit von kaltem Atmosphärendruckplasma (CAP), auch als gewebeverträgliches Plasma (TTP) bezeichnet, könnte eine aussichtsreiche Option zur Eradikation von Methicillin-empfindlichen ebenso wie von Methicillin-resistenten Staphylococcus aureus-Stämmen sein, die oft chronische Wunden kolonisieren. Bisher wurde der Einfluss von CAP auf die Antibiotikaempfindlichkeit von S. aureus kaum untersucht. Da eine Veränderung der Antibiotikaempfindlichkeit für die Wundbehandlung relevant sein könnte, sollte der Einfluss von CAP auf die Empfindlichkeit verschiedener S. aureus-Stämme gegen unterschiedliche Antibiotika untersucht werden.Methode: Im Agardiffusionstest wurden Antibiotikatestplättchen mit Cefuroxim, Gentamicin, Oxacillin, Vancomycin, Ciprofloxacin, Co-Trimoxazol, Clindamycin und Erythromycin eingesetzt. Die Teststämme wurden auf Agar ausplattiert und mit CAP exponiert, bevor die Testplättchen aufgelegt wurden. Nach 24 h Bebrütung wurden die Inhibitionszonen gemessen und statistisch auf Unterschiede geprüft.Ergebnisse: In den meisten Fällen war die Einfluss von CAP auf die Antibiotikaempfindlichkeit zu vernachlässigen. Für zwei Stämme wurde die Empfindlichkeit gegenüber β-Lactam-Antibiotika signifikant herabgesetzt. Schlussfolgerung: Da CAP die Antibiotikaempfindlichkeit beeinflussen kann, sollten vor beabsichtigter kombinierter lokaler CAP-Behandlung und gleichzeitiger systemischer Antibiotikagabe Interaktionen in vitro untersucht werden, um unerwünschte Kombinationseffekte auszuschließen.

  8. Coagulation in Liver Disease.

    PubMed

    Hoffman, Maureane

    2015-07-01

    The liver plays a key role in hemostasis as the site of synthesis of many of the proteins involved in the coagulation, antithrombotic and fibrinolytic systems that interact to both establish hemostasis, and preventing thrombosis. The common laboratory tests, prothrombin time (PT) and activated partial thromboplastin time (aPTT), evolved from studies of plasma clotting in test tubes. Such studies laid the basis for the coagulation cascade model of hemostasis. However, thought has evolved to place a greater emphasis on the active roles of cells in localizing and regulating hemostasis. The PT and aPTT do not reflect the roles of cellular elements in hemostasis, nor do they reflect the crucial roles of antithrombotic and fibrinolytic systems. Thus, though the PT may indeed reflect the synthetic capacity of the liver, it does not accurately reflect the risk of bleeding or thrombosis in patients with liver failure.

  9. Direct liquid sample introduction for flow injection analysis and liquid chromatography with inductively coupled argon plasma spectrometric detection

    SciTech Connect

    Lawrence, K.E.; Rice, G.W.; Fassel, V.A.

    1984-02-01

    The coupling of flow injection analysis (FIA) or high-performance liquid chromatography (HPLC) techniques to inductively coupled plasma atomic emission spectrometry (ICP-AES) offers new and attractive approaches for the determination of elemental concentrations in a wide variety of sample matrices. One of the most attractive features that FIA offers is a rapid and precise means of automating sample introduction into an ICP for simultaneous, multielement analysis at the trace, minor, and major constituent level with minimal sample consumption. The utilization of the ICP as a detector for HPLC retains most of the advantages of FIA-ICP, while providing the analyst with a powerful and versatile means of compound separation. This added dimension becomes particularly important when metal speciation is of primary interest, rather than total metal content. To date, the coupling of FIA and HPLC to the ICP has only been accomplished using conventional cross-flow, concentric, or Babington-type pneumatic nebulizers. Limits of detection under these conditions have generally been observed to be poorer when compared to conventional continuous sample flow conditions. These limitations have been attributed to the large dead-volume and the sample losses associated with conventional nebulizers and band broadening of eluents from FIA transfer tubing or HPLC columns prior to entering the nebulizer unit. In an effort to resolve these difficulties, a microconcentric nebulizer has been developed which is inserted directly into the tip of a conventional sample introduction tube of an ICP torch. Preliminary data on the potential utility of direct liquid sample introduction into the ICP are presented. 12 references, 6 figures, 1 table.

  10. Titanium Dioxide Coatings Sprayed by a Water-Stabilized Plasma Gun (WSP) with Argon and Nitrogen as the Powder Feeding Gas: Differences in Structural, Mechanical and Photocatalytic Behavior

    NASA Astrophysics Data System (ADS)

    Ctibor, P.; Pala, Z.; Sedláček, J.; Štengl, V.; Píš, I.; Zahoranová, T.; Nehasil, V.

    2012-06-01

    Titanium dioxide coatings were sprayed by a water-stabilized plasma gun to form robust self-supporting bodies with a photocatalytically active surface. Agglomerated nanometric powder was used as a feedstock. In one case argon was used as a powder-feeding as well as coating-cooling gas whereas in the other case nitrogen was used. Stainless steel was used as a substrate and the coatings were released after the cooling. Over one millimeter thick self-supporting bodies were studied by XRD, HR-TEM, XPS, Raman spectroscopy, UV-VIS spectrophotometry and photocatalytic tests. Selected tests were done at the surface as well as at the bottom side representing the contact surface with the substrate during the spray process. Porosity was studied by image analysis on polished cross sections where also microhardness was measured. The dominant phase present in the sprayed samples was rutile, whereas anatase was only a minor component. The hydrogen content in the nitrogen-assisted coating was higher, but the character of the optical absorption edge remained the same for both samples. Photoelectron spectroscopy revealed differences in the character of the O1s peak between both samples. The photocatalytic activity was tested by decomposition of acetone at UV illumination, whereas also the end products—CO and CO2—were monitored. The nitrogen-assisted coating was revealed as a more efficient photocatalyst. Certain aspects of a thermal post-treatment on the coatings are discussed as well. Color and electrical conductivity are markedly changed at annealing at 760 °C, whereas only very small changes of the as-sprayed coating character correspond to annealing at 500 °C.

  11. Characterization of the behavior of chemically reactive species in a nonequilibrium inductively coupled argon-hydrogen thermal plasma under pulse-modulated operation

    NASA Astrophysics Data System (ADS)

    Ye, Rubin; Ishigaki, Takamasa; Taguchi, Hiroyuki; Ito, Shigeru; Murphy, Anthony B.; Lange, Hubert

    2006-11-01

    The temporal and spatial dependence of species densities in a pulse-modulated inductively coupled plasma (PM-ICP) in an argon-hydrogen mixture was investigated by means of numerical modeling, taking into account time dependence, two temperatures, and chemical nonequilibrium, and also through spectroscopic measurements. Conservation equations for mass, momentum, electron energy, heavy-species energy, each species, and the electromagnetic field were developed and solved self-consistently. The transient behavior of the mass fraction of each species was determined by including chemical kinetics source terms in the species conservation equations. Fourteen chemical reactions involving seven species (e, Ar, Ar+, H2, H2+, H, and H+) were considered. The transport properties were evaluated based on the local species densities using the first-order approximation of the Chapman-Enskog method. Time-resolved electron density profiles were obtained from measurements of the Stark broadening of the Hβ line (486.1nm), performed using an optical system positioned using a stepper motor. The investigations were conducted for a maximum power level of 11.7kW with a duty factor of 66.7% and at a pressure of 27kPa. Reasonable agreement was found between the predicted and measured electron densities. The electron density in the discharge region varied considerably over a pulse cycle, while the hydrogen atom density remained high throughout the cycle, and peaked in a region that has been experimentally demonstrated to have optimal efficiency for hydrogen doping of materials. The main mechanisms responsible for the production of the relevant species in the PM-ICP are discussed.

  12. Effects of nitrogen on the apoptosis of and changes in gene expression in human lymphoma U937 cells exposed to argon-based cold atmospheric pressure plasma.

    PubMed

    Tabuchi, Yoshiaki; Uchiyama, Hidefumi; Zhao, Qing-Li; Yunoki, Tatsuya; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi

    2016-06-01

    Cold atmospheric pressure plasma (CAP) is known as a source of biologically active agents, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS). In the present study, we examined the effects of nitrogen (N2) on the apoptosis of and changes in gene expression in human lymphoma U937 cells exposed to argon (Ar)-CAP. Enormous amounts of hydroxyl (·OH) radicals in aqueous solution were produced using Ar‑CAP generated using a 20 kHz low frequency at 18 kV with a flow rate of 2 l/min. The increase in the levels of ·OH radicals was significantly attenuated by the addition of N2 to Ar gas. On the other hand, the level of total nitrate/nitrite in the supernatant was significantly elevated in the Ar + N2-CAP‑exposed U937 cells. When the cells were exposed to Ar‑CAP, a significant increase in apoptosis was observed, whereas apoptosis was markedly decreased in the cells exposed to Ar + N2-CAP. Microarray and pathway analyses revealed that a newly identified gene network containing a number of heat shock proteins (HSPs), anti-apoptotic genes, was mainly associated with the biological function of the prevention of apoptosis. Quantitative PCR revealed that the expression levels of HSPs were significantly elevated in the cells exposed to Ar + N2-CAP than those exposed to Ar‑CAP. These results indicate that N2 gas in Ar‑CAP modifies the ratio of ROS to RNS, and suppresses the apoptosis induced by Ar‑CAP. The modulation of gaseous conditions in CAP may thus prove to be useful for future clinical applications, such as for switching from a sterilizing mode to cytocidal effect for cancer cells.

  13. Hydroxyurea increases plasma concentrations of microparticles and reduces coagulation activation and fibrinolysis in patients with sickle cell anemia.

    PubMed

    Brunetta, Denise Menezes; De Santis, Gil Cunha; Silva-Pinto, Ana Cristina; Oliveira de Oliveira, Luciana Correa; Covas, Dimas Tadeu

    2015-01-01

    Microparticles (MPs) are present in healthy subjects and their concentration increases in patients at high risk of thrombosis. We evaluated 10 patients with sickle cell anemia (SCA) treated with hydroxyurea (HU) and 13 SCA patients without this treatment. MP concentrations were determined by flow cytometry. Coagulation was evaluated using the thrombin-antithrombin complex (TAT) and D-dimers. Total MP concentrations were increased in the HU-treated group (265 × 10(6)/ml vs. 67.45 × 10(6)/ml; p = 0.0026), as well as MPs derived from RBC (67.83 × 10(6)/ml vs. 26.31 × 10(6)/ml; p = 0.05), monocytes (51.31 × 10(6)/ml vs. 9.03 × 10(6)/ml; p = 0.0084), monocytes with tissue factor (TF) expression (2.27 × 10(6)/ml vs. 0.27 × 10(6)/ml; p = 0.0058), endothelium (49.42 × 10(6)/ml vs. 7.23 × 10(6)/ml; p = 0.007) and endothelium with TF (1.42 × 10(6)/ml vs. 0.26 × 10(6)/ml; p = 0.0043). Furthermore, the concentrations of TAT (7.56 vs. 10.98 µg/l; p = 0.014) and D-dimers (0.65 vs. 1.29 µg/ml; p = 0.007) were reduced with HU. The MP elevation may suggest a direct cytotoxic effect of HU. Another explanation is a cell surface increase secondary to a megaloblastic process, resulting in increased vesicle release. In our opinion, the known benefits of HU on SCA patients, along with the reduction in coagulation activation, surpass its potential detrimental effect on MPs. Future studies should elucidate the role of MPs and demonstrate their significance in different contexts.

  14. Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma

    NASA Astrophysics Data System (ADS)

    van de Wetering, F. M. J. H.; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Gibert, T.; Mikikian, M.; Rabat, H.; Kovačević, E.; Berndt, J.

    2016-05-01

    Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10-6%), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon-acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.

  15. Protective Effects of Fresh Frozen Plasma on Vascular Endothelial Permeability, Coagulation, and Resuscitation After Hemorrhagic Shock Are Time Dependent and Diminish Between Days 0 and 5 After Thaw

    PubMed Central

    Pati, Shibani; Matijevic, Nena; Doursout, Marie-Françoise; Ko, Tien; Cao, Yanna; Deng, Xiyun; Kozar, Rosemary A.; Hartwell, Elizabeth; Conyers, Jodie; Holcomb, John B.

    2011-01-01

    Background Clinical studies have shown that resuscitation with fresh frozen plasma (FFP) is associated with improved outcome after severe hemorrhagic shock (HS). We hypothesized that in addition to its effects on hemostasis, FFP has protective and stabilizing effects on the endothelium that translate into diminished endothelial cell (EC) permeability and improved resuscitation in vivo after HS. We further hypothesized that the beneficial effects of FFP would diminish over 5 days of routine storage at 4°C. Methods EC permeability was induced by hypoxia and assessed by the passage of 70-kDa Dextran between monolayers. Thrombin generation time and coagulation factor levels or activity were assessed in FFP. An in vivo rat model of HS and resuscitation was used to determine the effects of FFP on hemodynamic stability. Results Thawed FFP inhibits EC permeability in vitro by 10.2-fold. Protective effects diminish (to 2.5-fold) by day 5. Thrombin generation time is increased in plasma that has been stored between days 0 and 5. In vivo data show that day 0 FFP is superior to day 5 FFP in maintaining mean arterial pressure in rats undergoing HS with resuscitation. Conclusion Both in vitro and in vivo studies show that FFP has beneficial effects on endothelial permeability, vascular stability, and resuscitation in rats after HS. The benefits are independent of hemostasis and diminish between days 0 and 5 of storage. PMID:20622621

  16. A method for systematic purification from bovine plasma of six vitamin K-dependent coagulation factors: prothrombin, factor X, factor IX, protein S, protein C, and protein Z.

    PubMed

    Hashimoto, N; Morita, T; Iwanaga, S

    1985-05-01

    A systematic purification scheme is presented for the isolation of six vitamin K-dependent coagulation factors from bovine plasma in a functionally and biochemically pure state. The vitamin K-dependent proteins concentrated by the ordinary barium citrate adsorption were first separated into four fractions, fractions A, B, C, and D, by DEAE-Sephadex A-50 chromatography. From the pooled fraction A, protein S, factor IX, and prothrombin were purified by column chromatography on Blue-Sepharose CL-6B. Heparin-Sepharose chromatography of the pooled fraction B provided mainly pure factor IX, in addition to homogeneous prothrombin. A high degree of resolution of protein C and prothrombin from the pooled fraction C was obtained with a Blue-Sepharose column. This dye-ligand chromatographic procedure was also very effective for the separation of protein Z and factor X contained in the pooled fraction D. Thus, these preparative procedures allowed high recovery of milligram and gram quantities of six vitamin K-dependent proteins from 15 liters of plasma in only two chromatographic steps, except for protein S, which required three (the third step was rechromatography on Blue-Sepharose CL-6B).

  17. Inherited disorders of blood coagulation.

    PubMed

    Lippi, Giuseppe; Franchini, Massimo; Montagnana, Martina; Favaloro, Emmanuel J

    2012-08-01

    Hemostasis is traditionally defined as a physiological response to blood vessel injury and bleeding, which entails a co-ordinated process involving the blood vessel, platelets, and blood clotting proteins (i.e. coagulation factors). Hemostasis can be divided into primary and secondary components. The former rapidly initiates after endothelial damage and is characterized by vascular contraction, platelet adhesion, and formation of a soft aggregate plug. The latter is initiated following the release of tissue factor and involves a complex sequence of events known as the blood coagulation cascade, encompassing serial steps where each coagulation factor activates another in a chain reaction that culminates in the conversion of fibrinogen to fibrin. Patients carrying abnormalities of the coagulation cascade (i.e. deficiencies of coagulation factors) have an increased bleeding tendency, where the clinical severity is mostly dependent upon the type and the plasma level of the factor affected. These disorders also impose a heavy medical and economic burden on individual patients and society in general. The aim of this article is to provide a general overview on the pathophysiology, clinics, diagnostics, and therapy of inherited disorders of coagulation factors.

  18. Systems Biology of Coagulation

    PubMed Central

    Diamond, Scott L.

    2013-01-01

    Accurate computer simulation of blood function can inform drug target selection, patient-specific dosing, clinical trial design, biomedical device design, as well as the scoring of patient-specific disease risk and severity. These large-scale simulations rely on hundreds of independently measured physical parameters and kinetic rate constants. However, the models can be validated against large scale, patient-specific laboratory measurements. By validation with high dimensional data, modelling becomes a powerful tool to predict clinically complex scenarios. Currently, it is possible to accurately predict the clotting rate of plasma or blood in a tube as it is activated with a dose of tissue factor, even as numerous coagulation factors are altered by exogenous attenuation or potentiation. Similarly, the dynamics of platelet activation, as indicated by calcium mobilisation or inside-out signalling, can now be numerically simulated with accuracy in cases where platelets are exposed to combinations of agonists. Multiscale models have emerged to combine platelet function and coagulation kinetics into complete physics-based descriptions of thrombosis under flow. Blood flow controls platelet fluxes, delivery and removal of coagulation factors, adhesive bonding, and von Willebrand factor conformation. The field of Blood Systems Biology has now reached a stage that anticipates the inclusion of contact, complement, and fibrinolytic pathways along with models of neutrophil and endothelial activation. Along with “-omics” data sets, such advanced models seek to predict the multifactorial range of healthy responses and diverse bleeding and clotting scenarios, ultimately to understand and improve patient outcomes. PMID:23809126

  19. First principles transport coefficients and reaction rates of Ar{sub 2}{sup +} ions in argon for cold plasma jet modeling

    SciTech Connect

    Chicheportiche, Alexandre; Benhenni, Malika; Yousfi, Mohammed; Stachoň, Martin; Kalus, René; Gadéa, Florent Xavier

    2014-10-07

    Momentum-transfer collision cross-sections and integral collision cross-sections for the collision-induced dissociation are calculated for collisions of ionized argon dimers with argon atoms using a nonadiabatic semiclassical method with the electronic Hamiltonian calculated on the fly via a diatomics-in-molecules semiempirical model as well as inverse-method modeling based on simple isotropic rigid-core potential. The collision cross-sections are then used in an optimized Monte Carlo code for evaluations of the Ar{sub 2}{sup +} mobility in argon gas, longitudinal diffusion coefficient, and collision-induced dissociation rates. A thorough comparison of various theoretical calculations as well as with available experimental data on the Ar{sub 2}{sup +} mobility and collision cross-sections is performed. Good agreement is found between both theoretical approaches and the experiment. Analysis of the role of inelastic processes in Ar{sub 2}{sup +}/Ar collisions is also provided.

  20. Argon/UF6 plasma exhaust gas reconstitution experiments using preheated fluorine and on-line diagnostics. [fissioning uranium plasma core reactor design

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1979-01-01

    The feasibility of employing a flowing, high-temperature, pure fluorine/UF6 regeneration system to efficiently convert a large fraction of the effluent plasma exhaust back to pure UF6 was demonstrated. The custom built T.O.F. mass spectrometer sampling system permitted on-line measurements of the UF6 concentration at different locations in the exhaust system. Negligible amounts ( 100 ppm) of UF6 were detected in the axial bypass exhaust duct and the exhaust ducts downstream of the cryogenic trap system used to collect the UF6, thus verifying the overall system efficiency over a range of operating conditions. Use of a porous Monel duct as part of the exhaust duct system, including provision for injection of pure fluorine, provided a viable technique to eliminate uranium compound residue on the inside surface of the exhaust ducts. Typical uranium compound mass deposition per unit area of duct was 2 micron g/sq cm. This porous duct technique is directly applicable to future uranium compound transfer exhaust systems. Throughout these experiments, additional basic data on the corrosion aspects of hot, pressurized UF6/fluorine were also accumulated.

  1. Influences of ABO blood group, age and gender on plasma coagulation factor VIII, fibrinogen, von Willebrand factor and ADAMTS13 levels in a Chinese population

    PubMed Central

    Wang, Zongkui; Dou, Miaomiao; Du, Xi; Ma, Li; Sun, Pan; Cao, Haijun; Ye, Shengliang; Jiang, Peng; Liu, Fengjuan; Lin, Fangzhao

    2017-01-01

    Background ABO blood group is a hereditary factor of plasma levels of coagulation factor VIII (FVIII) and von Willebrand factor (VWF). Age and gender have been shown to influence FVIII, VWF, fibrinogen (Fbg), and ADAMTS13 (A disintegrin and metalloprotease with thrombospondin type 1 motif, 13). We investigated the effects of ABO type, age, and gender on plasma levels of FVIII, Fbg, VWF, and ADAMTS13 in a Chinese population. Methods A total of 290 healthy volunteers were eligible for this study. ABO blood group was determined by indirect technique. FVIII:C and Fbg were measured by clotting assays. VWF antigen (VWF:Ag), collagen-binding activity (VWF:CBA), and ADAMTS13 antigen were assessed by ELISA, whereas VWF ristocetin cofactor activity (VWF:Rcof) was performed by agglutination of platelets with ristocetin. Results Mean FVIII:C and VWF levels (VWF:Ag, VWF:CBA, and VWF:Rcof) were significantly higher in non-O than in O type subjects (p < 0.05 for all comparison). ADAMTS13 antigen decreased with increasing age, whereas the other parameters increased. Other than ADAMTS13 (p < 0.01), no gender-related variations were observed in the other parameters. Moreover, FVIII:C, Fbg, VWF:Ag, VWF:CBA, and VWF:Rcof showed significant and positive relationships with age (r = 0.421, 0.445, 0.410, 0.401, and 0.589, resp.; all p < 0.001), whereas a negative relationship was observed for ADAMTS13 antigen (r = 0.306; p = 0.006). Furthermore, FVIII:C were strongly correlated with VWF:Ag, VWF:CBA, and VWF:Rcof (r = 0.746, r = 0.746, and r = 0.576, resp.; p < 0.0001). VWF parameters were also strongly correlated with each other (r = 0.0.847 for VWF:Ag and VWF:CBA; r = 0.722 for VWF:Ag and VWF:Rcof; p < 0.0001). Conclusions ABO blood group, age, and gender showed different effects on plasma levels of FVIII:C, Fbg, VWF:Ag, VWF:CBA, VWF:Rcof, and ADAMTS13 antigen. These new data on a Chinese population are quite helpful to compare with other ethnic groups. PMID

  2. Powder evolution at low powers in silane-argon discharge

    SciTech Connect

    Chaudhuri, P.; Gupta, N. Dutta; Bhaduri, A.; Longeaud, C.; Vignoli, S.; Marty, O.

    2005-08-15

    Powder formation in a 13.56-MHz radio frequency (rf) capacitive glow discharge plasma of silane-argon mixture has been studied by in situ laser light-scattering measurements. The rf power density (P{sub rf}) was varied from 18 to 53 mW/cm{sup 2}. At high P{sub rf} the light scattering occurs all along the discharge and extends even beyond the exit end of the electrodes toward the pumping system. With decreasing P{sub rf} the maximum intensity of the light scattering decreases and the scattering zone shrinks and moves toward the exit end. With P{sub rf}{approx_equal}20 mW/cm{sup 2} a very bright scattering zone only a few centimeters wide appears located at the electrodes outlet. The powders studied by transmission electron microscopy did not show a drastic decrease of their sizes with P{sub rf} though clear coagulation of small particles is observed at high P{sub rf}. In this paper we have tried to link the laser light-scattering evolution with P{sub rf} to various parameters such as the microstructure factor, the deposition rate, the electron mobilityxlifetime product, the density of states, and the minority-carriers diffusion length of the films in an attempt to link the effect the evolution of powder formation to the films properties.

  3. Lunar exospheric argon modeling

    NASA Astrophysics Data System (ADS)

    Grava, Cesare; Chaufray, J.-Y.; Retherford, K. D.; Gladstone, G. R.; Greathouse, T. K.; Hurley, D. M.; Hodges, R. R.; Bayless, A. J.; Cook, J. C.; Stern, S. A.

    2015-07-01

    Argon is one of the few known constituents of the lunar exosphere. The surface-based mass spectrometer Lunar Atmosphere Composition Experiment (LACE) deployed during the Apollo 17 mission first detected argon, and its study is among the subjects of the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and Lunar Atmospheric and Dust Environment Explorer (LADEE) mission investigations. We performed a detailed Monte Carlo simulation of neutral atomic argon that we use to better understand its transport and storage across the lunar surface. We took into account several loss processes: ionization by solar photons, charge-exchange with solar protons, and cold trapping as computed by recent LRO/Lunar Orbiter Laser Altimeter (LOLA) mapping of Permanently Shaded Regions (PSRs). Recycling of photo-ions and solar radiation acceleration are also considered. We report that (i) contrary to previous assumptions, charge exchange is a loss process as efficient as photo-ionization, (ii) the PSR cold-trapping flux is comparable to the ionization flux (photo-ionization and charge-exchange), and (iii) solar radiation pressure has negligible effect on the argon density, as expected. We determine that the release of 2.6 × 1028 atoms on top of a pre-existing argon exosphere is required to explain the maximum amount of argon measured by LACE. The total number of atoms (1.0 × 1029) corresponds to ∼6700 kg of argon, 30% of which (∼1900 kg) may be stored in the cold traps after 120 days in the absence of space weathering processes. The required population is consistent with the amount of argon that can be released during a High Frequency Teleseismic (HFT) Event, i.e. a big, rare and localized moonquake, although we show that LACE could not distinguish between a localized and a global event. The density of argon measured at the time of LACE appears to have originated from no less than four such episodic events. Finally, we show that the extent of the PSRs that trap

  4. Depleted Argon from Underground Sources

    SciTech Connect

    Back, H. O.; Galbiati, C.; Goretti, A.; Loer, B.; Montanari, D.; Mosteiro, P.; Alexander, T.; Alton, A.; Rogers, H.; Kendziora, C.; Pordes, S.

    2011-04-27

    Argon is a strong scintillator and an ideal target for Dark Matter detection; however {sup 39}Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in {sup 39}Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO{sub 2} well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO{sub 2}. We first concentrate the argon locally to 3% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation, and then the N{sub 2} and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO{sub 2} facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

  5. International reference standards in coagulation.

    PubMed

    Raut, Sanj; Hubbard, Anthony R

    2010-07-01

    Measurement of coagulation factor activity using absolute physico-chemical techniques is not possible and estimation therefore relies on comparative bioassay relative to a reference standard with a known or assigned potency. However the inherent variability of locally prepared and calibrated reference standards can give rise to poor agreement between laboratories and methods. Harmonisation of measurement between laboratories at the international level relies on the availability of a common source of calibration for local reference standards and this is provided by the World Health Organization (WHO) International Standards which define the International Unit for the analyte. This article describes the principles, practices and problems of biological standardisation and the development and use of reference standards for assays of coagulation factors, with particular emphasis on WHO International Standards for both concentrates and plasma.

  6. Tissue gas and blood analyses of human subjects breathing 80% argon and 20% oxygen

    NASA Technical Reports Server (NTRS)

    Horrigan, D. J.; Wells, C. H.; Guest, M. M.; Hart, G. B.; Goodpasture, J. E.

    1979-01-01

    Eight human volunteers, individually studied in a hyperbaric chamber, breathed: (1) air at 1 ATA; (2) 80% argon and 20% oxygen at 1 ATA for 30 min; (3) air at 1 ATA for 30 min; (4) 100% O2 at 1 ATA for 30 min; (5) air at 1 ATA for 30 min; (6) 100% O2 at 2 ATA for 60 min; and (7) 80% argon and 20% oxygen at 1 ATA for 30 min. Oxygen, carbon dioxide, nitrogen, and argon tensions were measured in muscle and subcutaneous tissue by mass spectroscopic analyses. Venous blood obtained at regular intervals was analyzed for coagulation and fibrinolytic factors. Inert gas narcosis was not observed. After breathing argon for 30 min, muscle argon tensions were almost three times the subcutaneous tensions. Argon wash-in mirrored nitrogen wash-out. Argon wash-in and wash-out had no effect on tissue PO2 or PCO2. Coagulation and fibrinolytic changes usually associated with vascular bubbles were absent.

  7. Argon laser for otosclerosis

    NASA Astrophysics Data System (ADS)

    Michalski, Wojciech; Pospiech, Lucyna; Jankowska-Kuc, Malgorzata

    1995-03-01

    Up to now, among different kinds of lasers an argon laser is mostly used for otosclerosis. Exposure conditions at use of the laser beam are still not well defined. In order to achieve the optimum conditions a series of experiments has been made. Obtained results are presented in this paper.

  8. Thermophysical properties of argon

    SciTech Connect

    Jaques, A.

    1988-02-01

    The entire report consists of tables of thermodynamic properties (including sound velocity, thermal conductivity and diffusivity, Prandtl number, density) of argon at 86 to 400/degree/K, in the form of isobars over 0.9 to 100 bars. (DLC)

  9. Argon frost continuous cryopump for fusion applications

    SciTech Connect

    Foster, C.A.; McCurdy, H.C.

    1993-12-01

    A cryopumping system based on the snail continuous cryopump concept is being developed for fusion applications under a DOE SBIR grant. The primary pump is a liquid helium cooled compound pump designed to continuously pump and fractionate deuterium/tritium and helium. The D/T pumping stage is a 500 mm bore cryocondensation pump with a nominal pumping speed of 45,000 L/s. It will be continuously regenerated by a snail regeneration by head every 12 minutes. Continuous regeneration will dramatically reduce the vulnerable tritium inventory in a fusion reactor. Operating at an inlet pressure of 1 millitorr, eight of these pumps could pump the projected D/T flow in the ITER CDA design while reducing the inventory of tritium in the pumping system from 630 to 43 grams. The helium fraction will be pumped in a compound argon frost stage. This stage will also operate continuously with a snail regeneration head. In addition the argon spray head will be enclosed inside the snail, thereby removing gaseous argon from the process chamber. Since the cryocondensation stage will intercept over 90% of the D/T/H steam, a purified stream from this stage could be directly reinjected into the plasma as gas or pellets, thereby bypassing the isotope separation system and further simplifying the fuel cycle. Experiments were undertaken in Phase I which demonstrated continuous cryosorption pumping of hydrogen on CO{sub 2} and argon frosts. The pumping system and its relevance to fusion reactor pumping will be discussed.

  10. Influence of argon plasma on the deposition of Al2O3 film onto the PET surfaces by atomic layer deposition.

    PubMed

    Edy, Riyanto; Huang, Xiaojiang; Guo, Ying; Zhang, Jing; Shi, Jianjun

    2013-02-15

    In this paper, polyethyleneterephthalate (PET) films with and without plasma pretreatment were modified by atomic layer deposition (ALD) and plasma-assisted atomic layer deposition (PA-ALD). It demonstrates that the Al2O3 films are successfully deposited onto the surface of PET films. The cracks formed on the deposited Al2O3 films in the ALD, plasma pretreated ALD, and PA-ALD were attributed to the energetic ion bombardment in plasmas. The surface wettability in terms of water contact angle shows that the deposited Al2O3 layer can enhance the wetting property of modified PET surface. Further characterizations of the Al2O3 films suggest that the elevated density of hydroxyl -OH group improve the initial growth of ALD deposition. Chemical composition of the Al2O3-coated PET film was characterized by X-ray photoelectron spectroscopy, which shows that the content of C 1s reduces with the growing of O 1s in the Al2O3-coated PET films, and the introduction of plasma in the ALD process helps the normal growth of Al2O3 on PET in PA-ALD.

  11. Isentropic Compression of Argon

    SciTech Connect

    H. Oona; J.C. Solem; L.R. Veeser, C.A. Ekdahl; P.J. Rodriquez; S.M. Younger; W. Lewis; W.D. Turley

    1997-08-01

    We are studying the transition of argon from an insulator to a conductor by compressing the frozen gas isentropically to pressures at which neighboring atomic orbitals overlap sufficiently to allow some electron motion between atoms. Argon and the other rare gases have closed electron shells and therefore remain montomic, even when they solidify. Their simple structure makes it likely that any measured change in conductivity is due to changes in the atomic structure, not in molecular configuration. As the crystal is compressed the band gap closes, allowing increased conductivity. We have begun research to determine the conductivity at high pressures, and it is our intention to determine the compression at which the crystal becomes a metal.

  12. Direct solid analysis of powdered tungsten carbide hardmetal precursors by laser-induced argon spark ablation with inductively coupled plasma atomic emission spectrometry.

    PubMed

    Holá, Markéta; Kanický, Viktor; Mermet, Jean-Michel; Otruba, Vítezslav

    2003-12-01

    The potential of the laser-induced argon spark atomizer (LINA-Spark atomizer) coupled with ICP-AES as a convenient device for direct analysis of WC/Co powdered precursors of sintered hardmetals was studied. The samples were presented for the ablation as pressed pellets prepared by mixing with powdered silver binder containing GeO2 as internal standard. The pellets were ablated with the aid of a Q-switched Nd:YAG laser (1064 nm) focused 16 mm behind the target surface with a resulting estimated power density of 5 GW cm(-2). Laser ablation ICP-AES signals were studied as a function of ablation time, and the duration of time prior to measurement (pre-ablation time) which was necessary to obtain reliable results was about 40 s. Linear calibration plots were obtained up to 10% (m/m) Ti, 9% Ta and 3.5% Nb both without internal standardization and by using germanium as an added internal standard or tungsten as a contained internal standard. The relative uncertainty at the centroid of the calibration line was in the range from +/- 6% to +/- 11% for Nb, Ta and Ti both with and without internal standardisation by Ge. A higher spread of points about the regression was observed for cobalt for which the relative uncertainty at the centroid was in the range from +/- 9% to +/- 14%. Repeatability of results was improved by the use of both Ge and W internal standards. The lowest determinable quantities calculated for calibration plots were 0.060% Co, 0.010% Nb, 0.16% Ta and 0.030% Ti with internal standardization by Ge. The LA-ICP-AES analyses of real samples led to good agreement with the results obtained by solution-based ICP determination with a relative bias not exceeding 10%. The elimination of the dissolution procedure of powdered tungsten (Nb, Ta, Ti) carbide is the principal advantage of the developed LA-ICP-AES method.

  13. Microrheological Coagulation Assay Exploiting Micromechanical Resonators.

    PubMed

    Padovani, Francesco; Duffy, James; Hegner, Martin

    2017-01-03

    Rheological measurements in biological liquids yield insights into homeostasis and provide information on important molecular processes that affect fluidity. We present a fully automated cantilever-based method for highly precise and sensitive measurements of microliter sample volumes of human blood plasma coagulation (0.009 cP for viscosity range 0.5-3 cP and 0.0012 g/cm(3) for density range 0.9-1.1 g/cm(3)). Microcantilever arrays are driven by a piezoelectric element, and resonance frequencies and quality factors of sensors that change over time are evaluated. A highly accurate approximation of the hydrodynamic function is introduced that correlates resonance frequency and quality factor of cantilever beams immersed in a fluid to the viscosity and density of that fluid. The theoretical model was validated using glycerol reference solutions. We present a surface functionalization protocol that allows minimization of unspecific protein adsorption onto cantilevers. Adsorption leads to measurement distortions and incorrect estimation of the fluid parameters (viscosity and density). Two hydrophilic terminated self-assembled monolayers (SAMs) sensor surfaces are compared to a hydrophobic terminated SAM coating. As expected, the hydrophobic modified surfaces induced the highest mass adsorption and could promote conformational changes of the proteins and subsequent abnormal biological activity. Finally, the activated partial thromboplastin time (aPTT) coagulation assay was performed, and the viscosity, density, and coagulation rate of human blood plasma were measured along with the standard coagulation time. The method could extend and improve current coagulation testing.

  14. Effect of oxygen atoms dissociated by non-equilibrium plasma on flame of methane oxygen and argon pre-mixture gas

    NASA Astrophysics Data System (ADS)

    Akashi, Haruaki; Yoshinaga, Tomokazu; Sasaki, Koichi

    2014-10-01

    For more efficient way of combustion, plasma-assisted combustion has been investigated by many researchers. But it is very difficult to clarify the effect of plasma even on the flame of methane. Because there are many complex chemical reactions in combustion system. Sasaki et al. has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power. They also measured emission from Second Positive Band System of nitrogen during the irradiation. The emission indicates existence of high energy electrons which are accelerated by the microwave. The high energy electrons also dissociate oxygen molecules easily and oxygen atom would have some effects on the flame. But the dissociation ratio of oxygen molecules by the non-equilibrium plasma is significantly low, compared to that in the combustion reaction. To clarify the effect of dissociated oxygen atoms on the flame, dependence of dissociation ratio of oxygen on the flame has been examined using CHEMKIN. It is found that in the case of low dissociation ratio of 10-6, the ignition of the flame becomes slightly earlier. It is also found that in the case of high dissociation ratio of 10-3, the ignition time becomes significantly earlier by almost half. This work was supported by KAKENHI (22340170).

  15. Argon ion pollution of the magnetosphere

    NASA Technical Reports Server (NTRS)

    Lopez, R. E.

    1985-01-01

    Construction of a Solar Power Satellite (SPS) would require the injection of large quantities of propellant to transport material from Low Earth Orbit (LEO) to the construction site at Geostationary Earth Orbit (GEO). This injection, in the form of approx 10 to the 32nd power, 2 KeV argon ions (and associated electrons) per SPS, is comparable to the content of the plasmasphere (approx 10 to the 31st power ions). In addition to the mass deposited, this represents a considerable injection of energy. The injection is examined in terms of a simple model for the expansion of the beam plasma. General features of the subsequent magnetospheric convection of the argon are also examined.

  16. Plasma Sources for Medical Applications - A Comparison of Spot Like Plasmas and Large Area Plasmas

    NASA Astrophysics Data System (ADS)

    Weltmann, Klaus-Dieter

    2015-09-01

    Plasma applications in life science are currently emerging worldwide. Whereas today's commercially available plasma surgical technologies such as argon plasma coagulation (APC) or ablation are mainly based on lethal plasma effects on living systems, the newly emerging therapeutic applications will be based on selective, at least partially non-lethal, possibly stimulating plasma effects on living cells and tissue. Promising results could be obtained by different research groups worldwide revealing a huge potential for the application of low temperature atmospheric pressure plasma in fields such as tissue engineering, healing of chronic wounds, treatment of skin diseases, tumor treatment based on specific induction of apoptotic processes, inhibition of biofilm formation and direct action on biofilms or treatment of dental diseases. The development of suitable and reliable plasma sources for the different therapies requires an in-depth knowledge of their physics, chemistry and parameters. Therefore much basic research still needs to be conducted to minimize risk and to provide a scientific fundament for new plasma-based medical therapies. It is essential to perform a comprehensive assessment of physical and biological experiments to clarify minimum standards for plasma sources for applications in life science and for comparison of different sources. One result is the DIN-SPEC 91315, which is now open for further improvements. This contribution intends to give an overview on the status of commercial cold plasma sources as well as cold plasma sources still under development for medical use. It will discuss needs, prospects and approaches for the characterization of plasmas from different points of view. Regarding the manageability in everyday medical life, atmospheric pressure plasma jets (APPJ) and dielectric barrier discharges (DBD) are of special interest. A comprehensive risk-benefit assessment including the state of the art of commercial sources for medical use

  17. Study of nuclear recoils in liquid argon with monoenergetic neutrons

    NASA Astrophysics Data System (ADS)

    Regenfus, C.; Allkofer, Y.; Amsler, C.; Creus, W.; Ferella, A.; Rochet, J.; Walter, M.

    2012-07-01

    In the framework of developments for liquid argon dark matter detectors we assembled a laboratory setup to scatter neutrons on a small liquid argon target. The neutrons are produced mono-energetically (Ekin = 2.45 MeV) by nuclear fusion in a deuterium plasma and are collimated onto a 3" liquid argon cell operating in single-phase mode (zero electric field). Organic liquid scintillators are used to tag scattered neutrons and to provide a time-of-flight measurement. The setup is designed to study light pulse shapes and scintillation yields from nuclear and electronic recoils as well as from alpha particles at working points relevant for dark matter searches. Liquid argon offers the possibility to scrutinise scintillation yields in noble liquids with respect to the population strength of the two fundamental excimer states. Here we present experimental methods and first results from recent data towards such studies.

  18. The Argon Geochronology Experiment (AGE)

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.; Bode, R.; Fennema, A.; Chutjian, A.; MacAskill, J. A.; Darrach, M. R.; Clegg, S. M.; Wiens, R. C.; Cremers, D.

    2006-01-01

    This viewgraph presentation reviews the Argon Geochronology Experiment (AGE). Potassium-Argon dating is shown along with cosmic ray dating exposure. The contents include a flow diagram of the Argon Geochronology Experiment, and schematic diagrams of the mass spectrometer vacuum system, sample manipulation mechanism, mineral heater oven, and the quadrupole ion trap mass spectrometer. The Laser-Induced Breakdown Spectroscopy (LIBS) Operation with elemental abundances is also described.

  19. Analysis of the limiting noise and identification of some factors that dictate the detection limits in a low-power inductively coupled argon plasma system

    NASA Astrophysics Data System (ADS)

    Boumans, P. W. J. M.; McKenna, R. J.; Bosveld, M.

    conclusions drawn from experiments with pure aqueous solutions under less idealized analysis conditions and to provide some results obtained with a low-power argon ICP in the scope of the "ICP Detection Limits Program". These experiments included the measurement of the various quantities that may undergo an influence from the matrix, viz. background, net signal, SBR, and RSD of background signal. In this way it was possible not only to state the gross effect of the matrices on the detection limits, but also to give a quantitative account of the various sub-effects that were responsible for the gross effects. Since the calcium chloride matrix was included to assess the system for its stray light rejection characteristics, some experiments involving stray light elimination by a band rejection filter or a solar blind PMT were performed. A basic conclusion of this work is that the full exploitation of the important low ultraviolet wavelength region (190-250 nm) in ICP trace analysis requires the use of spectrometers with a high optical conductance, efficient entrance optics, and photomultipliers with high spectral sensitivity and low dark current noise. Only under such conditions can the "ideal" RSD of the background signal of 1% be realized, or at least approached, down to the lower end of the wavelength range, if one requires in addition that a reasonably high spectral resolution (e.g. 0.015 nm) be used to maximize the signal-to-background ratios and minimize spectral interferences.

  20. Isentropic compression of argon

    SciTech Connect

    Veeser, L.R.; Ekdahl, C.A.; Oona, H.

    1997-06-01

    The compression was done in an MC-1 flux compression (explosive) generator, in order to study the transition from an insulator to a conductor. Since conductivity signals were observed in all the experiments (except when the probe is removed), both the Teflon and the argon are becoming conductive. The conductivity could not be determined (Teflon insulation properties unknown), but it could be bounded as being {sigma}=1/{rho}{le}8({Omega}cm){sub -1}, because when the Teflon breaks down, the dielectric constant is reduced. The Teflon insulator problem remains, and other ways to better insulate the probe or to measure the conductivity without a probe is being sought.

  1. Dust coagulation in ISM

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Tielens, Alexander G. G. M.; Hollenbach, David

    1989-01-01

    Coagulation is an important mechanism in the growth of interstellar and interplanetary dust particles. The microphysics of the coagulation process was theoretically analyzed as a function of the physical properties of the coagulating grains, i.e., their size, relative velocities, temperature, elastic properties, and the van der Waal interaction. Numerical calculations of collisions between linear chains provide the wave energy in individual particles and the spectrum of the mechanical vibrations set up in colliding particles. Sticking probabilities are then calculated using simple estimates for elastic deformation energies and for the attenuation of the wave energy due to absorption and scattering processes.

  2. [Coagulation disorders in cirrhosis].

    PubMed

    Téllez-Avila, Felix I; Chávez-Tapia, Norberto C; Torre-Delgadillo, Aldo

    2007-01-01

    The liver plays a central role in the clotting process. In this organ are sintetizated the major part of the coagulation factors. Historically, was considered that alteration in liver function causes important bleeding disorders. However, actual evidence is not in agreement with this asseveration. Decreased synthesis of clotting and inhibitor factors, decrease clearance of activated factors, quantitative and qualitative platelet defects, hyperfibrinolysis and intravascular coagulation are some of the defects observed in liver diseases. Thrombotic events, even if rare in cirrhotic patients, occur manly in the portal and mesenteric veins. The aim of the present work is to review the present evidence in coagulation disorders and liver disease.

  3. A comparative study of emission efficiencies in low-pressure argon plasmas induced by picosecond and nanosecond Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Mangasi Marpaung, Alion; Ramli, Muliadi; Idroes, Rinaldi; Suyanto, Hery; Lahna, Kurnia; Nur Abdulmadjid, Syahrun; Idris, Nasrullah; Pardede, Marincan; Hedwig, Rinda; Sukra Lie, Zener; Putra Kurniawan, Davy; Hendrik Kurniawan, Koo; Jie Lie, Tjung; Tjia, May On; Kagawa, Kiichiro

    2016-11-01

    An experimental study is performed on the comparative advantages of nanosecond (ns) and picosecond (ps) lasers in laser-induced breakdown spectroscopy (LIBS) analysis. The experiment focused on the relative efficiencies of the plasma emission induced by the two lasers in low-pressure Ar ambient gas for samples of various hardnesses. It is shown that the emission intensities are consistenly reduced when the ns laser is replaced by the ps laser. This is explained as the consequence of the increased power density delivered by the ps laser, which results in a time mismatch between the passage of the ablated atoms and the formation of the shock wave. The time mismatch in turn leads to less effective thermal excitation by the shock wave plasma and the hence reduced emission intensity. Furthermore, this adverse effect is found to worsen for softer samples due to the slower formation of the shock wave. These results are obtained with the same volumes of craters produced by the two lasers on the same sample, which implies that ns laser irradiation has higher emission efficiency than ps laser irradiation.

  4. Numerical Modeling of Plasmas in which Nanoparticles Nucleate and Grow

    NASA Astrophysics Data System (ADS)

    Agarwal, Pulkit

    Dusty plasmas refer to a broad category of plasmas. Plasmas such as argon-silane plasmas in which particles nucleate and grow are widely used in semiconductor processing and nanoparticle manufacturing. In such dusty plasmas, the plasma and the dust particles are strongly coupled to each other. This means that the presence of dust particles significantly affects the plasma properties and vice versa. Therefore such plasmas are highly complex and they involve several interesting phenomena like nucleation, growth, coagulation, charging and transport. Dusty plasma afterglow is equally complex and important. Especially, residual charge on dust particles carries special significance in several industrial and laboratory situations and it has not been well understood. A 1D numerical model was developed of a low-pressure capacitively-coupled plasma in which nanoparticles nucleate and grow. Polydispersity of particle size distributions can be important in such plasmas. Sectional method, which is well known in aerosol literature, was used to model the evolving particle size and charge distribution. The numerical model is transient and one-dimensional and self consistently accounts for nucleation, growth, coagulation, charging and transport of dust particles and their effect on plasma properties. Nucleation and surface growth rates were treated as input parameters. Results were presented in terms of particle size and charge distribution with an emphasis on importance of polydispersity in particle growth and dynamics. Results of numerical model were compared with experimental measurements of light scattering and light emission from plasma. Reasonable qualitative agreement was found with some discrepancies. Pulsed dusty plasma can be important for controlling particle production and/or unwanted particle deposition. In this case, it is important to understand the behavior of the particle cloud during the afterglow following plasma turn-off. Numerical model was modified to self

  5. Coagulation Factors Test

    MedlinePlus

    ... this page helpful? Also known as: Factor Assays; Blood Clotting Factors; Clotting Factors [or by the individual factor ... person has enough coagulation activity to control the blood clotting process. It is used by healthcare practitioners to ...

  6. [Diagnostic of blood coagulation].

    PubMed

    Barthels, M

    2008-12-01

    A survey is given on the peculiar characteristics of laboratory methods for analyzing the blood coagulation system with special regard to the preanalytical, analytical and postanalytical phase. Routinely used methods are described.

  7. The effect of sample matrix on electron density, electron temperature and gas temperature in the argon inductively coupled plasma examined by Thomson and Rayleigh scattering

    NASA Astrophysics Data System (ADS)

    Hanselman, D. S.; Sesi, N. N.; Huang, M.; Hieftje, G. M.

    1994-05-01

    Spatially-resolved electron temperature ( Te), electron number density ( ne) and gas-kinetic temperature ( Tg) maps of the inductively coupled plasma (ICP) have been obtained for two central-gas flow rates, four heights above the load coil (ALC) and in the presence and absence of interferants with a wide range of first ionization potentials. The radial profiles demonstrate how the directly measured fundamental parameters neTe and Tg can be significantly enhanced and/or depressed with added interferent, depending upon plasma operating conditions and observation region. In general, the magnitude of ne, and Te change is found to be an inverse function of interferent ionization potential; furthermore, ne enhancements in the central channel might be the result of electron redistribution from high to low electron density regions rather than from ionization of the matrix. The large measured increases in ne cannot be attributed solely to matrix ionization, especially when measurement uncertainties and the probable over-estimation in calculated ne, enhancements are taken into account. Changes in ne and Te have been correlated with axial Ca atom and ion emission profiles. A brief review of the mechanisms most likely involved in interelement matrix interferences is given within the context of the present study. This article is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta Part B (SAB). The hardcopy text is accompanied by a disk for the Macintosh computer with data files stored in ASCII format. The main article discusses the scientific aspects of the subject and gives an interpretation of the results contained in the data files.

  8. Coagulation and sepsis.

    PubMed

    Levi, Marcel; van der Poll, Tom

    2017-01-01

    Severe sepsis is almost invariably associated with systemic activation of coagulation. There is ample evidence that demonstrates a wide-ranging cross-talk between hemostasis and inflammation, which is probably implicated in the pathogenesis of organ dysfunction in patients with sepsis. Inflammation not only leads to initiation and propagation of coagulation activity, but coagulation also markedly influences inflammation. Molecular mechanisms that play a role in inflammation-induced effects on coagulation have been recognized in much detail. Pro-inflammatory cells and cyto- and chemokines can activate the coagulation system and downregulate crucial physiological anticoagulant mechanisms. Initiation of coagulation activation and consequent thrombin generation is caused by expression of tissue factor on activated monocytes and endothelial cells and is ineffectually offset by tissue factor pathway inhibitor. At the same time, endothelial-associated anticoagulant pathways, in particular the protein C system, is impaired by pro-inflammatory cytokines. Also, fibrin removal is severely obstructed by inactivation of the endogenous fibrinolytic system, mainly as a result of upregulation of its principal inhibitor, plasminogen activator inhibitor type 1 (PAI-1). Increased fibrin generation and impaired break down lead to deposition of (micro)vascular clots, which may contribute to tissue ischemia and ensuing organ dysfunction. The foundation of the management of coagulation in sepsis is the explicit and thorough treatment of the underlying disorder by antibiotic treatment and source control measures. Adjunctive strategies focused at the impairment of coagulation, including anticoagulants and restoration of physiological anticoagulant mechanisms, may supposedly be indicated and have been found advantageous in experimental and initial clinical trials.

  9. [Acquired coagulant factor inhibitors].

    PubMed

    Nogami, Keiji

    2015-02-01

    Acquired coagulation factor inhibitors are an autoimmune disease causing bleeding symptoms due to decreases in the corresponding factor (s) which result from the appearance of autoantibodies against coagulation factors (inhibitor). This disease is quite different from congenital coagulation factor deficiencies based on genetic abnormalities. In recent years, cases with this disease have been increasing, and most have anti-factor VIII autoantibodies. The breakdown of the immune control mechanism is speculated to cause this disease since it is common in the elderly, but the pathology and pathogenesis are presently unclear. We herein describe the pathology and pathogenesis of factor VIII and factor V inhibitors. Characterization of these inhibitors leads to further analysis of the coagulation process and the activation mechanisms of clotting factors. In the future, with the development of new clotting examination method (s), we anticipate that further novel findings will be obtained in this field through inhibitor analysis. In addition, detailed elucidation of the coagulation inhibitory mechanism possibly leading to hemostatic treatment strategies for acquired coagulation factor disorders will be developed.

  10. Analysis of Laser Pumping by Capillary Pinching Discharge in Argon and Nitrogen

    NASA Astrophysics Data System (ADS)

    Vrba, P.; Vrbová, M.; Jančárek, A.; Pína, L.; Tamáš, M.; Havlíková, R.; Palínek, S.; Tomassetti, G.; Ritucci, A.

    A comparative study of the capillary pinching discharges in argon and nitrogen is presented. Requirements on plasma parameters needed for laser collision and recombination pumping are stated. The results of the computer modelling are compared with previously published experimental results for argon laser and with recent experiments done with the same capillary filled by nitrogen.

  11. Argon Welding Inside A Workpiece

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.

    1988-01-01

    Canopies convert large hollow workpiece into inert-gas welding chamber. Large manifold serves welding chamber for attachment of liner parts in argon atmosphere. Every crevice, opening and passageway provided with argon-rich environment. Weld defects and oxidation dramatically reduced; also welding time reduced.

  12. Change in blood coagulation indices as a function of the incubation period of plasma in a constant magnetic field. [considering heparin tolerance and recalcification

    NASA Technical Reports Server (NTRS)

    Yepishina, S. G.

    1974-01-01

    The influence of a constant magnetic field (CMF) with a strength of 250 and 2500 oersteds on the recalcification reaction and the tolerance of plasma to heparin was studied as a function of the exposure time of the plasma to the CMF. The maximum and reliable change in the activation of the coagulatory system of the blood was observed after a 20-hour incubation of the plasma in a CMF. As the exposure time increased, the recalcification reaction changed insigificantly; the difference between the mean arithmetic of the experiment and control values was not statistically reliable. The tolerance of the plasma to heparin as a function of the exposure time to the CMF of the plasma was considerably modified, an was statistically reliable.

  13. Quantification of sphingosine 1-phosphate by validated LC-MS/MS method revealing strong correlation with apolipoprotein M in plasma but not in serum due to platelet activation during blood coagulation.

    PubMed

    Frej, Cecilia; Andersson, Anders; Larsson, Benny; Guo, Li Jun; Norström, Eva; Happonen, Kaisa E; Dahlbäck, Björn

    2015-11-01

    Sphingosine 1-phosphate (S1P) is a signalling sphingolipid affecting multiple cellular functions of vascular and immune systems. It circulates at submicromolar levels bound to HDL-associated apolipoprotein M (apoM) or to albumin. S1P in blood is mainly produced by platelets and erythrocytes, making blood sampling for S1P quantification delicate. Standardisation of sampling is thereby of great importance to obtain robust data. By optimising and characterising the extraction procedure and the LC-MS/MS analysis, we have developed and validated a highly specific and sensitive method for S1P quantification. Blood was collected from healthy individuals (n = 15) to evaluate the effects of differential blood sampling on S1P levels. To evaluate correlation between S1P and apoM in different types of plasma and serum, apoM was measured by ELISA. The method showed good accuracy and precision in the range of 0.011 to 0.9 μM with less than 0.07 % carryover. We found that the methanol precipitation used to extract S1P co-extracted apoM and several other HDL-proteins from plasma. The platelet-associated S1P was released during coagulation, thus increasing the S1P concentration to double in serum as compared to that in plasma. Gel filtration chromatography revealed that the platelet-released S1P was mainly bound to albumin. This explains why the strong correlation between S1P and apoM levels in plasma is lost upon the clotting process and hence not observed in serum. We have developed, characterised and validated an efficient, highly sensitive and specific method for the quantification of S1P in biological material.

  14. Evaluation and application of argon and helium microstrip plasma for the determination of mercury by the cold vapor technique and optical emission spectrometry.

    PubMed

    Jiménez Zapata, Israel; Pohl, Pawel; Bings, Nicolas H; Broekaert, José A C

    2007-08-01

    The suitability of a 2.45-GHz atmospheric pressure, low-power microwave microstrip plasma (MSP) operated with Ar and He for the determination of Hg by continuous-flow cold vapor (CV) generation, using SnCl2/HCl as the reducing agent, and optical emission spectrometry (OES) using a small CCD spectrometer was studied. The areas of stability for a discharge in the Ar and in the He MSP enclosed in a cylindrical channel in a quartz wafer were investigated. The excitation temperatures as measured for discharge gas atoms (Ar I, He I), and the electron number densities at 35-40 W and 15-400 mL min(-1) were found to be at the order of 3,200-5,500 K and 0.8x10(14)-1.6x10(14) cm(-3), respectively. The relative intensity of the Hg I 253.6-nm line and the signal-to-background ratio as a function of the forward power (35-40 W) as well as of the flow rate of the working gas (15-400 mL min(-1)) were evaluated and discussed. For the selected measurement conditions, the Ar MSP was established to have the lower detection limit for Hg (0.6 ng mL(-1)) compared with the He MSP. The linearity range is up to 300 ng mL(-1) and the precision is on the order of 1-3%. With the optimized CV Ar MSP-OES method a determination of Hg in spiked domestic and natural waters at concentration levels of 20-100 microg L(-1) and an accuracy of 1-4% could be performed. In an NIST domestic sludge standard reference material, Hg (3.64 microg g(-1)) could be determined with a relative standard deviation of 4% and an agreement better than 4%.

  15. Thermophysical properties of multi-shock compressed dense argon

    SciTech Connect

    Chen, Q. F. Zheng, J.; Gu, Y. J.; Chen, Y. L.; Cai, L. C.; Shen, Z. J.

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  16. Simulation of nanoparticle coagulation in radio-frequency C2H2/Ar microdischarges

    NASA Astrophysics Data System (ADS)

    Xiang-Mei, Liu; Qi-Nan, Li; Rui, Li

    2016-06-01

    The nanoparticle coagulation is investigated by using a couple of fluid models and aerosol dynamics model in argon with a 5% molecular acetylene admixture rf microdischarges, with the total input gas flow rate of 400 sccm. It co-exists with a homogeneous, secondary electron-dominated low temperature γ-mode glow discharges. The heat transfer equation and flow equation for neutral gas are taken into account. We mainly focused on investigations of the nanoparticle properties in atmospheric pressure microdischarges, and discussed the influences of pressure, electrode spacing, and applied voltage on the plasma density and nanoparticle density profiles. The results show that the characteristics of microdischarges are quite different from those of low pressure radio-frequency discharges. First, the nanoparticle density in the bulk plasma in microdischarges is much larger than that of low pressure discharges. Second, the nanoparticle density of 10 nm experiences an exponential increase as soon as the applied voltage increases, especially in the presheath. Finally, as the electrode spacing increases, the nanoparticle density decreased instead of increasing. Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant Nos. A2015011 and A2015010), the Postdoctoral Scientific Research Development Fund of Heilongjiang Province, China (Grant No. LBH-Q14159), the Program for Young Teachers Scientific Research in Qiqihar University (Grant No. 2014k-Z11), the National Natural Science Foundation of China (Grant No. 11404180), and the University Nursing Program for Yong Scholars with Creative Talents in Heilongjiang Province, China (Grant No. UNPYSCT-2015095).

  17. Depleted argon from underground sources

    SciTech Connect

    Back, H.O.; Alton, A.; Calaprice, F.; Galbiati, C.; Goretti, A.; Kendziora, C.; Loer, B.; Montanari, D.; Mosteiro, P.; Pordes, S.; /Fermilab

    2011-09-01

    Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

  18. Effect of oral administration of unfractionated heparin (UFH) on coagulation parameters in plasma and levels of urine and fecal heparin in dogs

    PubMed Central

    Erickson, Malathi; Hiebert, Linda M.; Carr, Anthony P.; Stickney, Jocelyn D.

    2014-01-01

    The effects of heparin administration, by the oral route, were evaluated in dogs. In single and multiple dose studies (single 7.5 mg/kg, multiple 3 × 7.5 mg/kg per 48 h), plasma, urine, and fecal samples were collected at various times up to 120 h after oral administration of unfractionated heparin. Changes in plasma and urine anti-Xa activity, plasma and urine anti-IIa activity, plasma activated partial thromboplastin time (APTT) and antithrombin (ATIII), and chemical heparin in urine and feces were examined with time. There was support for heparin absorption, with significant differences in APTT, heparin in plasma as determined by anti-Xa activity (Heptest) in the single dose study and plasma anti-Xa activity, anti-IIa activity and ATIII; and chemical heparin in urine in the multiple dose study. No clinical evidence of bleeding was detected in any dog during the studies. Oral heparin therapy may be applicable for thromboembolic disease in animals. Further studies are warranted to determine the effects of oral heparin at the endothelial level in the dog. PMID:24982550

  19. The Liquid Argon Purity Demonstrator

    SciTech Connect

    Adamowski, M.; Carls, B.; Dvorak, E.; Hahn, A.; Jaskierny, W.; Johnson, C.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.

    2014-07-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  20. Proton Scattering on Liquid Argon

    NASA Astrophysics Data System (ADS)

    Bouabid, Ryan; LArIAT Collaboration

    2017-01-01

    LArIAT (Liquid Argon In A Test-beam) is a liquid argon time projection chamber (LArTPC) positioned in a charged particle beamline whose primary purpose is to study the response of LArTPC's to charged particle interactions. This previously unmeasured experimental data will allow for improvement of Monte Carlo simulations and development of identification techniques, important for future planned LArTPC neutrino experiments. LArIAT's beamline is instrumented to allow for the identification of specific particles as well as measurement of those particles' incoming momenta. Among the particles present in the beamline, the analysis presented here focuses on proton-Argon interactions. This study uses particle trajectories and calorimetric information to identify proton-Argon interaction candidates. We present preliminary data results on the measurement of the proton-Argon cross-section. Liquid Argon In A Test Beam. The work is my analysis made possible through the efforts of LArIAT detector, data, and software.

  1. Effects of argon, dye, and Nd:YAG lasers on epidermis, dermis, and venous vessels

    SciTech Connect

    Landthaler, M.; Haina, D.; Brunner, R.; Waidelich, W.; Braun-Falco, O.

    1986-01-01

    The aim of the present study, which was performed at the dorsal aspects of the ears of guinea pigs, was to compare effects of different lasers on epidermis, dermis, and small venous vessels. Irradiations were performed with argon, dye, and Nd:YAG lasers. In the first series tissue repair processes were studied after argon laser application. Laser defects were excised after 1, 4, 8, and 14 days and were prepared for routine histological examination. The breadth of epidermal defect and extent of dermal coagulation and occlusion of vessels by thrombus formation were examined histologically. In a second series parameters of irradiation (ie, exposure time, laser power) of the three different lasers were changed systematically. Laser-induced morphological tissue changes could be best observed 24 hours after irradiation. Each of the lasers led to occlusion of vessels by thrombus formation and also coagulated epidermis and dermis. The extent of dermal and epidermal coagulation was less pronounced after dye laser application. Using short exposure times it was possible to reduce the extent of epidermal damage caused by argon and Nd:YAG lasers. Only 50-msec dye laser pulses led to intravascular thrombus formation without epidermal and dermal damage.

  2. Asthma and coagulation.

    PubMed

    de Boer, J Daan; Majoor, Christof J; van 't Veer, Cornelis; Bel, Elisabeth H D; van der Poll, Tom

    2012-04-05

    Asthma is a chronic airway disease characterized by paroxysmal airflow obstruction evoked by irritative stimuli on a background of allergic lung inflammation. Currently, there is no cure for asthma, only symptomatic treatment. In recent years, our understanding of the involvement of coagulation and anticoagulant pathways, the fibrinolytic system, and platelets in the pathophysiology of asthma has increased considerably. Asthma is associated with a procoagulant state in the bronchoalveolar space, further aggravated by impaired local activities of the anticoagulant protein C system and fibrinolysis. Protease-activated receptors have been implicated as the molecular link between coagulation and allergic inflammation in asthma. This review summarizes current knowledge of the impact of the disturbed hemostatic balance in the lungs on asthma severity and manifestations and identifies new possible targets for asthma treatment.

  3. Attachment cooling of electrons in oxygen-argon and SF6-argon mixtures

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia; Kim, Sung Jin; Park, Gan Young; Lee, Jae Koo

    2004-09-01

    In e-beam sustained plasma different electron temperature can be obtained. Thus, in plasma of capacitive RF discharges in inert gases typical electron temperature is of the order of 2-3 eV. At certain conditions, in plasma of electronegative gases electron temperature can approach ion/neutral temperature. We consider e-beam sustained plasma of electronegative gases and their mixtures with argon where the main mechanism of plasma neutralization is connected with electron-molecule attachment. In such plasma, due to retardation of fast electrons of e-beam secondary electrons are created which loose their energy due to attachment. It is shown, that at certain conditions (in dependence of the e-beam intensity and spectrum of secondary electrons) electron temperature can obtain the values comparable or even less than temperature of neutral component. The effect can be explained by the increase of attachment rate coefficient with the increase of electron temperature (mean electron energy). Such a dependence leads to attachment of the fastest plasma electrons and selective loss of electrons whose energy exceeds the mean electron energy and, as a result, to effective electron cooling. The theoretical and numerical analysis of the problem has been conducted. The numerical results obtained using ELENDIF code are compared with Particle-in-cell/Monte Carlo simulations under similar conditions.

  4. Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity

    NASA Astrophysics Data System (ADS)

    Navaneetha Pandiyaraj, K.; Ram Kumar, M. C.; Arun Kumar, A.; Padmanabhan, P. V. A.; Deshmukh, R. R.; Bah, M.; Ismat Shah, S.; Su, Pi-Guey; Halleluyah, M.; Halim, A. S.

    2016-05-01

    Enhancement of anti-thrombogenic properties of polypropylene (PP) to avert the adsorption of plasma proteins (fibrinogen and albumin), adhesion and activation of the platelets are very important for vast biomedical applications. The cold atmospheric pressure plasma (CAPP) assisted polymerization has potential to create the specific functional groups such as Osbnd Cdbnd O, Cdbnd O, Csbnd N and Ssbnd S. on the surface of polymeric films using selective precursor in vapour phase to enhance anti-thrombogenic properties. Such functionalized polymeric surfaces would be suitable for various biomedical applications especially to improve the blood compatibility. The eventual aspiration of the present investigation is to develop the biofunctional coating onto the surface of PP films using acrylic acid (AAc) and polyethylene glycol (PEG) as a precursor in a vapour phase by incorporating specific functional groups for immobilization of biomolecules such as heparin (HEP), chitosan (CHI) and insulin (INS) on the surface of plasma modified PP films. The surface properties such as hydrophilicity, chemical composition, surface topography of the surface modified PP films were analyzed by contact angle (CA), Fourier transform infrared spectroscopy (FTIR), X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM). Furthermore the anti-thrombogenic properties of the surface modified PP films were studied by in vitro tests which include platelet adhesion and protein adsorption analysis. It was found that the anti-thrombogenic properties of the PP films are effectively controlled by the CAPP grafting of AAc and PEG followed by immobilization of biomolecules of heparin, chitosan and insulin. The grafting and immobilization was confirmed by FTIR and XPS through the recognition of specific functional groups such as COOH, Csbnd O, Ssbnd S and Csbnd N. on the surface of PP film. Furthermore, the surface morphology and hydrophilic nature of the PP films also tailored

  5. [Extracorporeal shockwave lithotripsy in patients with coagulation disorders].

    PubMed

    Ruiz Marcellán, F J; Mauri Cunill, A; Cabré Fabré, P; Argentino Gancedo Rodríguez, V; Güell Oliva, J A; Ibarz Servio, L; Ramón Dalmau, M

    1992-03-01

    During treatment of renal lithiasis with extracorporeal shock wave lithotripsy (ESWL) hemorrhagic events, especially renal hematoma, may present. A coagulation study is warranted in order to institute hemotherapy for blood factor deficiencies. We reviewed the records of 4,000 patients that had undergone ESWL. Of these, 17 (12 males, 5 females) presented coagulation disorders. The bleeding diatheses were due to platelet deficiency in 6 cases, plasma defects in 5, platelet and plasma disorders in 2, and capillary wall defects in 5 cases. The underlying cause was hepatosplenic disease in 12 cases, iatrogenic in 1, connectivopathy and corticoids in 2, and capillary purpura of unknown cause in 2 cases. Due to this protocol, no patient presented hemorrhage or hematoma from shock wave-induced lesions. These results show that a complete coagulation study must be performed in order to institute the necessary measures in patients with disorders of hemostasis due to the high risk of hematoma repeatedly reported in the literature.

  6. Spectroscopy of Argon Excited in an Electron Beam Ion Trap

    SciTech Connect

    Trabert, E

    2005-04-18

    Argon is one of the gases best investigated and most widely used in plasma discharge devices for a multitude of applications that range from wavelength reference standards to controlled fusion experiments. Reviewing atomic physics and spectroscopic problems in various ionization stages of Ar, the past use and future options of employing an electron beam ion trap (EBIT) for better and more complete Ar data in the x-ray, EUV and visible spectral ranges are discussed.

  7. Spatial localization of bacteria controls coagulation of human blood by 'quorum acting'.

    PubMed

    Kastrup, Christian J; Boedicker, James Q; Pomerantsev, Andrei P; Moayeri, Mahtab; Bian, Yao; Pompano, Rebecca R; Kline, Timothy R; Sylvestre, Patricia; Shen, Feng; Leppla, Stephen H; Tang, Wei-Jen; Ismagilov, Rustem F

    2008-12-01

    Blood coagulation often accompanies bacterial infections and sepsis and is generally accepted as a consequence of immune responses. Though many bacterial species can directly activate individual coagulation factors, they have not been shown to directly initiate the coagulation cascade that precedes clot formation. Here we demonstrated, using microfluidics and surface patterning, that the spatial localization of bacteria substantially affects coagulation of human and mouse blood and plasma. Bacillus cereus and Bacillus anthracis, the anthrax-causing pathogen, directly initiated coagulation of blood in minutes when bacterial cells were clustered. Coagulation of human blood by B. anthracis required secreted zinc metalloprotease InhA1, which activated prothrombin and factor X directly (not via factor XII or tissue factor pathways). We refer to this mechanism as 'quorum acting' to distinguish it from quorum sensing--it does not require a change in gene expression, it can be rapid and it can be independent of bacterium-to-bacterium communication.

  8. Autoantibodies to coagulation factors: from pathophysiology to diagnosis and therapy.

    PubMed

    Cugno, Massimo; Gualtierotti, Roberta; Tedeschi, Alberto; Meroni, Pier Luigi

    2014-01-01

    Autoantibodies may develop against coagulation factors altering their function or promoting their rapid clearance. In non-congenitally deficient patients, they are usually in association with autoimmune diseases, malignancies, pregnancy or advanced age. The possible development of coagulation factor autoantibodies should be considered when a patient presents with bleeding symptoms without any prior bleeding diathesis. The most common disorder associated with coagulation factor autoantibodies is acquired factor VIII deficiency, which is characterized by hemorrhages involving soft tissues, muscles and skin; hemarthroses are less frequent than in the inherited form. Acquired deficiencies of von Willebrand factor and factor XIII due to autoantibodies are emerging conditions. Autoantibodies to the other coagulation factors may be associated with a wide spectrum of clinical manifestations ranging from minimal or no bleeding to life-threatening conditions. The diagnostic approach begins with global coagulation tests: prothrombin time (PT) and activated partial thromboplastin time (aPTT). In case of prolonged times, mixing studies (typically using normal plasma in a 1:1 proportion) should be performed. Specific factor and inhibitor assays, assessment of lupus anticoagulant and eventually enzyme immunoassays for specific anti-factor antibodies complete the evaluation. A prompt diagnosis of specific coagulation factor inhibitors is mandatory for starting an appropriate treatment aimed at overcoming the deficient factor, in case of bleeding, and, if possible, at the suppression of the autoantibody's production.

  9. Attainable superheat of argon-helium, argon-neon solutions.

    PubMed

    Baidakov, Vladimir G; Kaverin, Aleksey M; Andbaeva, Valentina N

    2008-10-16

    The method of lifetime measurement has been used to investigate the kinetics of spontaneous boiling-up of superheated argon-helium and argon-neon solutions. Experiments were made at a pressure of p = 1.5 MPa and concentrations up to 0.33 mol% in the range of nucleation rates from 10 (4) to 10 (8) s (-1) m (-3). The homogeneous nucleation regime has been distinguished. With good agreement between experimental data and homogeneous nucleation theory in temperature and concentration dependences of the nucleation rate, a systematic underestimation by 0.25-0.34 K has been revealed in superheat temperatures over the saturated line attained by experiment as compared with theoretical values calculated in a macroscopic approximation. The revealed disagreement between theory and experiment is connected with the dependence of the properties of new-phase nuclei on their size.

  10. Thermochemical nonequilibrium modeling of a low-power argon arcjet wind tunnel

    NASA Astrophysics Data System (ADS)

    Katsurayama, Hiroshi; Abe, Takashi

    2013-02-01

    Non-transferred low-power arcjet wind tunnels with pure argon working gas are widely used as inexpensive laboratory plasma sources to simulate a weakly ionized supersonic flow around an atmospheric entry vehicle. Many experiments using argon arcjet wind tunnels have been conducted, but their numerical modeling is not yet complete. We develop an axisymmetric Navier-Stokes model with thermochemical nonequilibrium and arc discharge that simulates the entire flow field in a steady-operating argon arcjet wind tunnel, which consists of the inside of the arcjet and its arc plume entering a rarefied vacuum chamber. The computational method we develop makes it possible to reproduce the arc column behavior far from thermochemical equilibrium in the low-voltage discharge mode typical of argon arcjets. Furthermore, the results reveal that the plasma characteristic of being far from thermal equilibrium, which is particular to argon, causes the arcjet to operate in the low-voltage mode and its arc plume to be completely thermochemically frozen. Moreover, the arc plume has electroconductive non-uniformity with an electrically insulating boundary in the radial direction. Our computed values for the shock standoff distance in front of a blunt body and the drag exerted on it agree with measured values. As a result, the self-consistent computational model in this study is useful in investigating thermochemical nonequilibrium plasma flows in argon arcjet wind tunnels.

  11. Blood Coagulation, Inflammation and Malaria

    PubMed Central

    Francischetti, Ivo M. B.; Seydel, Karl B.; Monteiro, Robson Q.

    2010-01-01

    I. ABSTRACT Malaria remains a highly prevalent disease in more than 90 countries and accounts for at least 1 million deaths every year. Plasmodium falciparum infection is often associated with a procoagulant tonus characterized by thrombocytopenia and activation of the coagulation cascade and fibrinolytic system; however, bleeding and hemorrhage are uncommon events, suggesting that a compensated state of blood coagulation activation occurs in malaria. This article i) reviews the literature related to blood coagulation and malaria in a historic perspective, ii) describes basic mechanisms of coagulation, anticoagulation, and fibrinolysis, iii) explains the laboratory changes in acute and compensated disseminated intravascular coagulation (DIC), iv) discusses the implications of tissue factor (TF) expression in the endothelium of P. falciparum-infected patients, and v) emphasizes the pro-coagulant role of parasitized erythrocytes (pRBC) and activated platelets in the pathogenesis of malaria. This article also presents the ‘Tissue Factor Model’ (TFM) for malaria pathogenesis, which places TF as the interface between sequestration, endothelial cell activation, blood coagulation disorder and inflammation often associated with the disease. The relevance of the coagulation-inflammation cycle for the multiorgan dysfunction and coma is discussed in the context of malaria pathogenesis. PMID:18260002

  12. [Ratio of erythrocyte and plasma in massive blood transfusion].

    PubMed

    Wen, Xian-Hui; Liu, Feng-Xia; Zhang, Jun-Hua; Gui, Rong

    2014-06-01

    This study was purposed to explore the suitable ratio between fresh frozen plasma and erythrocyte by retrospective analysis of coagulation in patients with massive blood transfusion. The clinical data of 151 cases with massive blood transfusion from January 2011 to January 2013 were analyzed retrospectively. According to coagulation, patients were divided into coagulation normal group (138 cases) and coagulation dysfunction group (13 cases). Based on the ratio of 1:1 of fresh frozen plasma and erythrocyte, the patients were divided into high plasma group(2:1), medium plasma group (1:1) and low plasma (<1:1) subgroups. Coagulation was detected before and after 24 h of massive blood transfusion. The results showed that prothrombin time (PT), activated partial thromboplastin time (APTT) and thrombin time (TT) were prolonged, fibrinogen (FIB) level decreased significantly (all P < 0.05) in the low plasma subgroup of coagulation normal group after massive blood transfusion 24 h; the high plasma and the medium plasma group of coagulation normal group had no significant changes in coagulation (P > 0.05); prothrombin time, activated partial thromboplastin time, thrombin time and fibrinogen level in the medium plasma and low plasma subgroup of coagulation dysfunction group after massive transfusion was still in abnormal levels (P > 0.05), coagulation function in high plasma subgroup was improved significantly (P < 0.05). It is concluded that the ratio of plasma to erythrocyte should be adjusted according to the patient's coagulation function during massive blood transfusion, the ratio between fresh frozen plasma and erythrocyte is recommended to be 2:1 in patients of coagulation dysfunction in order to improve the patient's coagulation function and to reduce the incidence of adverse event, the ratio of fresh frozen plasma to erythrocyte is recommended to be 1:1 in patients with normal coagulation so as to reduce the dilutional coagulopathy and hypervolemia of blood.

  13. Microfluidics and Coagulation Biology

    PubMed Central

    Colace, Thomas V.; Tormoen, Garth W.

    2014-01-01

    The study of blood ex vivo can occur in closed or open systems, with or without flow. Microfluidic devices facilitate measurements of platelet function, coagulation biology, cellular biorheology, adhesion dynamics, pharmacology, and clinical diagnostics. An experimental session can accommodate 100s to 1000s of unique clotting events. Using microfluidics, thrombotic events can be studied on defined surfaces of biopolymers, matrix proteins, and tissue factor under constant flow rate or constant pressure drop conditions. Distinct shear rates can be created on a device with a single perfusion pump. Microfluidic devices facilitated the determination of intraluminal thrombus permeability and the discovery that platelet contractility can be activated by a sudden decrease in flow. Microfluidics are ideal for multicolor imaging of platelets, fibrin, and phosphatidylserine and provide a human blood analog to the mouse injury models. Overall, microfluidic advances offer many opportunities for research, drug testing under relevant hemodynamic conditions, and clinical diagnostics. PMID:23642241

  14. Extremely refractory Kawasaki disease with disseminated intravascular coagulation.

    PubMed

    Koh, Young Kwon; Lee, Jae Hee; Park, Yeong Bong

    2017-03-07

    Disseminated intravascular coagulation is a rare complication of Kawasaki disease and appears in <0.1% of Kawasaki disease patients. We report a case of refractory Kawasaki disease complicated with disseminated intravascular coagulation and giant coronary aneurysm. A 5-month-old boy presented with Kawasaki disease with coagulopathy. Although the coagulopathy improved after fresh-frozen plasma and antithrombin-III administration, the fever persisted despite two rounds of intravenous immunoglobulin, along with intravenous methylprednisolone pulse therapy and infliximab administration. Despite all efforts to treatment, the patient had giant coronary aneurysms and died suddenly.

  15. Demonstration of the extrinsic coagulation pathway in teleostei: Identification of zebrafish coagulation factor VII

    PubMed Central

    Sheehan, John; Templer, Michael; Gregory, Michael; Hanumanthaiah, Ravikumar; Troyer, Dean; Phan, Thao; Thankavel, Bharath; Jagadeeswaran, Pudur

    2001-01-01

    It is not known whether the mammalian mechanism of coagulation initiation is conserved in fish. Identification of factor VII is critical in providing evidence for such a mechanism. A cDNA was cloned from a zebrafish (teleost) library that predicted a protein with sequence similarity to human factor VII. Factor VII was shown to be present in zebrafish blood and liver by Western blot analysis and immunohistochemistry. Immunodepletion of factor VII from zebrafish plasma selectively inhibited thromboplastin-triggered thrombin generation. Heterologous expression of zebrafish factor VII demonstrated a secreted protein (50 kDa) that reconstituted thromboplastin-triggered thrombin generation in immunodepleted zebrafish plasma. These results suggest conservation of the extrinsic coagulation pathway between zebrafish and humans and add credence to the zebrafish as a model for mammalian hemostasis. The structure of zebrafish factor VIIa predicted by homology modeling was consistent with the overall three-dimensional structure of human factor VIIa. However, amino acid disparities were found in the epidermal growth factor-2/serine protease regions that are present in the human tissue factor–factor VIIa contact surface, suggesting a structural basis for the species specificity of this interaction. In addition, zebrafish factor VII demonstrates that the Gla-EGF-EGF-SP domain structure, which is common to coagulation factors VII, IX, X, and protein C, was present before the radiation of the teleosts from the tetrapods. Identification of zebrafish factor VII significantly narrows the evolutionary window for development of the vertebrate coagulation cascade and provides insight into the structural basis for species specificity in the tissue factor–factor VIIa interaction. PMID:11459993

  16. Thermophoretically modified aerosol brownian coagulation.

    PubMed

    Arias-Zugasti, Manuel; Rosner, Daniel E

    2011-08-01

    A theory of aerosol coagulation rates resulting from continuum-regime brownian coagulation in the presence of size-dependent particle thermophoresis is developed and explored here. We are motivated by a wide variety of applications in which particle brownian coagulation occurs in a nonisothermal gas where differential thermophoretic drift contributes to, but does not dominate, the encounter frequency between suspended spherical particles (e.g., mist droplets) of different sizes. We employ a Smoluchowski-like population-balance to demonstrate the relative roles of brownian diffusion and thermophoresis in shaping the short and long time (asymptotic or "coagulation-aged") mist-droplet size distribution (DSD) function. To carry out these combined-mechanism DSD-evolution calculations we developed a rational "coupled" coagulation rate constant (allowing for simultaneous brownian diffusion and relative thermophoretic drift) rather than simply adding the relevant individual coagulation "kernels." Dimensionless criteria are provided to facilitate precluding other coagulation mechanisms not considered here (such as simultaneous sedimentation or Marangoni-flow-induced mist-droplet phoresis) and potential complications not included in the present model [as finite-rate coalescence, initial departures from the continuum (Stokes drag-) limit, and even dense (nonideal) vapor effects].

  17. Thermophoretically modified aerosol Brownian coagulation

    NASA Astrophysics Data System (ADS)

    Arias-Zugasti, Manuel; Rosner, Daniel E.

    2011-08-01

    A theory of aerosol coagulation rates resulting from continuum-regime Brownian coagulation in the presence of size-dependent particle thermophoresis is developed and explored here. We are motivated by a wide variety of applications in which particle Brownian coagulation occurs in a nonisothermal gas where differential thermophoretic drift contributes to, but does not dominate, the encounter frequency between suspended spherical particles (e.g., mist droplets) of different sizes. We employ a Smoluchowski-like population-balance to demonstrate the relative roles of Brownian diffusion and thermophoresis in shaping the short and long time (asymptotic or “coagulation-aged”) mist-droplet size distribution (DSD) function. To carry out these combined-mechanism DSD-evolution calculations we developed a rational “coupled” coagulation rate constant (allowing for simultaneous Brownian diffusion and relative thermophoretic drift) rather than simply adding the relevant individual coagulation “kernels.” Dimensionless criteria are provided to facilitate precluding other coagulation mechanisms not considered here (such as simultaneous sedimentation or Marangoni-flow-induced mist-droplet phoresis) and potential complications not included in the present model [as finite-rate coalescence, initial departures from the continuum (Stokes drag-) limit, and even dense (nonideal) vapor effects].

  18. Physiological levels of blood coagulation factors IX and X control coagulation kinetics in an in vitro model of circulating tissue factor

    NASA Astrophysics Data System (ADS)

    Tormoen, Garth W.; Khader, Ayesha; Gruber, András; McCarty, Owen J. T.

    2013-06-01

    Thrombosis significantly contributes to cancer morbidity and mortality. The mechanism behind thrombosis in cancer may be circulating tissue factor (TF), as levels of circulating TF are associated with thrombosis. However, circulating TF antigen level alone has failed to predict thrombosis in patients with cancer. We hypothesize that coagulation factor levels regulate the kinetics of circulating TF-induced thrombosis. Coagulation kinetics were measured as a function of individual coagulation factor levels and TF particle concentration. Clotting times increased when pooled plasma was mixed at or above a ratio of 4:6 with PBS. Clotting times increased when pooled plasma was mixed at or above a ratio of 8:2 with factor VII-depleted plasma, 7:3 with factor IX- or factor X-depleted plasmas, or 2:8 with factor II-, V- or VIII-depleted plasmas. Addition of coagulation factors VII, X, IX, V and II to depleted plasmas shortened clotting and enzyme initiation times, and increased enzyme generation rates in a concentration-dependent manner. Only additions of factors IX and X from low-normal to high-normal levels shortened clotting times and increased enzyme generation rates. Our results demonstrate that coagulation kinetics for TF particles are controlled by factor IX and X levels within the normal physiological range. We hypothesize that individual patient factor IX and X levels may be prognostic for susceptibility to circulating TF-induced thrombosis.

  19. Cosmic dust synthesis by accretion and coagulation

    NASA Technical Reports Server (NTRS)

    Praburam, G.; Goree, J.

    1995-01-01

    The morphology of grains grown by accretion and coagulation is revaled by a new laboratory method of synthesizing cosmic dust analogs. Submicron carbon particles, grown by accretion of carbon atoms from a gas, have a spherical shape with a cauliflower-like surface and an internal micro-structure of radial columns. This shape is probably common for grains grown by accretion at a temperature well below the melting point. Coagulated grains, consisting of spheres that collided to form irregular strings, were also synthesized. Another shape we produced had a bumpy non- spherical morphology, like an interplanetary particle collected in the terrestrial stratosphere. Besides these isolated grains, large spongy aggregates of nanometer-size particles were also found for various experimental conditions. Grains were synthesized using ions to sputter a solid target, producing an atomic vapor at a low temperature. The ions were provided by a plasma, which also provided electrostatic levitation of the grains during their growth. The temporal development of grain growth was studied by extinguishing the plasma after various intervals.

  20. Shockwave Interactions with Argon Glow Discharges

    DTIC Science & Technology

    2006-03-01

    SHOCKWAVE INTERACTIONS WITH ARGON GLOW DISCHARGES THESIS Nicholas S. Siefert, Lieutenant, USAF AFIT/GAP/ENP/06-18 DEPARTMENT OF THE AIR FORCE AIR...the United States Government. AFIT/GAP/ENP/06-18 SHOCKWAVE INTERACTIONS WITH ARGON GLOW DISCHARGES THESIS Presented to the Faculty Department of...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/GAP/ENP/06-18 SHOCKWAVE INTERACTIONS WITH ARGON GLOW DISCHARGES Nicholas S. Siefert, BS

  1. Prospects for photosensitive dopants in liquid argon

    SciTech Connect

    Anderson, D.F.

    1990-12-01

    Evidence is presented that the addition of a few ppM of a photosensitive dopant to a U/liquid argon or Pb/liquid argon calorimeter will make a substantial reduction in the e/{pi} ratio. Previous results indicating high voltage problems and no change in the e/{pi} ratio in tests of photosensitive dopants with the Fermilab D0 experiment's U/liquid argon tests calorimeter are also explained. 13 refs., 3 figs.

  2. Disseminated intravascular coagulation (DIC)

    MedlinePlus

    ... serious disorder in which the proteins that control blood clotting become overactive. Causes When you are injured, proteins ... Supportive treatments may include: Plasma transfusions to replace blood clotting factors if a large amount of bleeding is ...

  3. Boltzmann expansion in a radiofrequency conical helicon thruster operating in xenon and argon

    SciTech Connect

    Charles, C.; Boswell, R.; Takahashi, K.

    2013-06-03

    A low pressure ({approx}0.5 mTorr in xenon and {approx}1 mTorr in argon) Boltzmann expansion is experimentally observed on axis within a magnetized (60 to 180 G) radiofrequency (13.56 MHz) conical helicon thruster for input powers up to 900 W using plasma parameters measured with a Langmuir probe. The axial forces, respectively, resulting from the electron and magnetic field pressures are directly measured using a thrust balance for constant maximum plasma pressure and show a higher fuel efficiency for argon compared to xenon.

  4. Disorders of coagulation in pregnancy.

    PubMed

    Katz, D; Beilin, Y

    2015-12-01

    The process of haemostasis is complex and is further complicated in the parturient because of the physiological changes of pregnancy. Understanding these changes and the impact that they have on the safety profile of the anaesthetic options for labour and delivery is crucial to any anaesthetist caring for the parturient. This article analyses current theories on coagulation and reviews the physiological changes to coagulation that occur during pregnancy and the best methods with which to evaluate coagulation. Finally, we examine some of the more common disorders of coagulation that occur during pregnancy, including von Willebrand disease, common factor deficiencies, platelet disorders, the parturient on anticoagulants, and the more rare acute fatty liver of pregnancy, with a focus on their implications for neuraxial anaesthesia.

  5. Plasmin-induced procoagulant effects in the blood coagulation: a crucial role of coagulation factors V and VIII.

    PubMed

    Ogiwara, Kenichi; Nogami, Keiji; Nishiya, Katsumi; Shima, Midori

    2010-09-01

    Plasminogen activators provide effective treatment for patients with acute myocardial infarction. However, paradoxical elevation of thrombin activity associated with failure of clot lysis and recurrent thrombosis has been reported. Generation of thrombin in these circumstances appears to be owing to plasmin (Plm)-induced activation of factor (F) XII. Plm catalyzes proteolysis of several coagulant factors, but the roles of these factors on Plm-mediated procoagulant activity remain to be determined. Recently developed global coagulation assays were used in this investigation. Rotational thromboelastometry using whole blood, clot waveform analysis and thrombin generation tests using plasma, showed that Plm (> or =125 nmol/l) shortened the clotting times in similar dose-dependent manners. In particular, the thrombin generation test, which was unaffected by products of fibrinolysis, revealed the enhanced coagulation with an approximately two-fold increase of peak level of thrombin generation. Studies using alpha2-antiplasmin-deficient plasma revealed that much lower dose of Plm (> or =16 nmol/l) actually contributed to enhancing thrombin generation. The shortening of clotting time could be observed even in the presence of corn trypsin inhibitor, supporting that Plm exerted the procoagulant activity independently of FXII. In addition, using specific coagulation-deficient plasmas, the clot waveform analysis showed that Plm did not shorten the clotting time in only FV-deficient or FVIII-deficient plasma in prothrombin time-based or activated partial thromboplastin time-based assay, respectively. Our results indicated that Plm did possess procoagulant activity in the blood coagulation, and this effect was likely attributed by multicoagulation factors, dependent on FV and/or FVIII.

  6. Whole blood coagulation analyzers.

    PubMed

    1997-08-01

    Whole blood Coagulation analyzers (WBCAs) are widely used point-of-care (POC) testing devices found primarily in cardiothoracic surgical suites and cardia catheterization laboratories. Most of these devices can perform a number of coagulation tests that provide information about a patient's blood clotting status. Clinicians use the results of the WBCA tests, which are available minutes after applying a blood sample, primarily to monitor the effectiveness of heparin therapy--an anticoagulation therapy used during cardiopulmonary bypass (CPB) surgery, angioplasty, hemodialysis, and other clinical procedures. In this study we evaluated five WBCAs from four suppliers. Our testing focused on the applications for which WBCAs are primarily used: Monitoring moderate to high heparin levels, as would be required, for example, during CPB are angioplasty. For this function, WCBAs are typically used to perform an activated clotting time (ACT) test or, as one supplier refers to its test, a heparin management test (HMT). All models included in this study offered an ACT test or an HMT. Monitoring low heparin levels, as would be required, for example,during hemodialysis. For this function, WBCAs would normally be used to perform either a low-range ACT (LACT) test or a whole blood activated partial thromboplastin time (WBAPTT) test. Most of the evaluated units could perform at least one of these tests; one unit did not offer either test and was therefore not rated for this application. We rated and ranked each evaluated model separately for each of these two applications. In addition, we provided a combined rating and ranking that considers the units' appropriateness for performing both application. We based our conclusions on a unit's performance and humans factor design, as determined by our testing, and on its five-year life-cycle cost, as determined by our net present value (NPV) analysis. While we rated all evaluated units acceptable for each appropriate category, we did

  7. A DSMC Study of Low Pressure Argon Discharge

    NASA Technical Reports Server (NTRS)

    Hash, David B.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    Work toward a self-consistent plasma simulation using the DSMC (Direct Simulation Monte Carlo) method for examination of the flowfields of low-pressure high density plasma reactors is presented. Presently, DSMC simulations for these applications involve either treating the electrons as a fluid or imposing experimentally determined values for the electron number density profile. In either approach, the electrons themselves are not physically simulated. Self-consistent plasma DSMC simulations have been conducted for aerospace applications but at a severe computational cost due in part to the scalar architectures on which the codes were employed. The present work attempts to conduct such simulations at a more reasonable cost using a plasma version of the object-oriented parallel Cornell DSMC code, MONACO, on an IBM SP-2. Due to availability of experimental data, the GEC reference cell is chosen to conduct preliminary investigations. An argon discharge is chosen to conduct preliminary investigations. An argon discharge is examined thus affording a simple chemistry set with eight gas-phase reactions and five species: Ar, Ar(+), Ar(*), Ar(sub 2), and e where Ar(*) is a metastable.

  8. Liquid Argon Calorimetry for ATLAS

    NASA Astrophysics Data System (ADS)

    Robinson, Alan

    2008-05-01

    This summer, the largest collaborative physics project since the Manhattan project will go online. One of four experiments for the Large Hadron Collider at CERN in Geneva, ATLAS, employs over 2000 people. Canadians have helped design, construct, and calibrate the liquid argon calorimeters for ATLAS to capture the products of the high energy collisions produced by the LHC. From an undergraduate's perspective, explore how these calorimeters are made to handle their harsh requirement. From nearly a billion proton-proton collisions a second, physicists hope to discover the Higgs boson and other new fundamental particles.

  9. Coagulation tests show significant differences in patients with breast cancer.

    PubMed

    Tas, Faruk; Kilic, Leyla; Duranyildiz, Derya

    2014-06-01

    Activated coagulation and fibrinolytic system in cancer patients is associated with tumor stroma formation and metastasis in different cancer types. The aim of this study is to explore the correlation of blood coagulation assays for various clinicopathologic factors in breast cancer patients. A total of 123 female breast cancer patients were enrolled into the study. All the patients were treatment naïve. Pretreatment blood coagulation tests including PT, APTT, PTA, INR, D-dimer, fibrinogen levels, and platelet counts were evaluated. Median age of diagnosis was 51 years old (range 26-82). Twenty-two percent of the group consisted of metastatic breast cancer patients. The plasma level of all coagulation tests revealed statistically significant difference between patient and control group except for PT (p<0.001 for all variables except for PT; p=0.08). Elderly age (>50 years) was associated with higher D-dimer levels (p=0.003). Metastatic patients exhibited significantly higher D-dimer values when compared with early breast cancer patients (p=0.049). Advanced tumor stage (T3 and T4) was associated with higher INR (p=0.05) and lower PTA (p=0.025). In conclusion, coagulation tests show significant differences in patients with breast cancer.

  10. Blood coagulation and propagation of autowaves in flow.

    PubMed

    Ermakova, Elena A; Panteleev, Mikhail A; Shnol, Emmanuil E

    2005-01-01

    This study analyses the effect of flow and boundary reactions on spatial propagation of waves of blood coagulation. A simple model of coagulation in plasma consisting of three differential reaction-diffusion equations was used for numerical simulations. The vessel was simulated as a two-dimensional channel of constant width, and the anticoagulant influence of thrombomodulin present on the undamaged vessel wall was taken into account. The results of the simulations showed that this inhibition could stop the coagulation process in the absence of flow in narrow channels. For the used mathematical model of coagulation this was the case if the width was below 0.2 mm. In wider vessels, the process could be stopped by the rapid blood flow. The required flow rate increased with the increase of the damage region size. For example, in a 0.5-mm wide channel with 1-mm long damage region, the propagation of coagulation may be terminated at the flow rate of more than 20 mm/min.

  11. Using a Systems Pharmacology Model of the Blood Coagulation Network to Predict the Effects of Various Therapies on Biomarkers

    PubMed Central

    Nayak, S; Lee, D; Patel-Hett, S; Pittman, DD; Martin, SW; Heatherington, AC; Vicini, P; Hua, F

    2015-01-01

    A number of therapeutics have been developed or are under development aiming to modulate the coagulation network to treat various diseases. We used a systems model to better understand the effect of modulating various components on blood coagulation. A computational model of the coagulation network was built to match in-house in vitro thrombin generation and activated Partial Thromboplastin Time (aPTT) data with various concentrations of recombinant factor VIIa (FVIIa) or factor Xa added to normal human plasma or factor VIII-deficient plasma. Sensitivity analysis applied to the model revealed that lag time, peak thrombin concentration, area under the curve (AUC) of the thrombin generation profile, and aPTT show different sensitivity to changes in coagulation factors’ concentrations and type of plasma used (normal or factor VIII-deficient). We also used the model to explore how variability in concentrations of the proteins in coagulation network can impact the response to FVIIa treatment. PMID:26312163

  12. Comparison of coagulation performance and floc properties of a novel zirconium-glycine complex coagulant with traditional coagulants.

    PubMed

    Zhang, Zhilin; Wu, Chunde; Wu, Yue; Hu, Caixia

    2014-05-01

    A new inorganic-organic hybrid material zirconium-glycine complex (ZGC) was firstly used as a coagulant in a coagulation process to treat Pearl River raw water. Its coagulation performance was compared with commonly used aluminum (Al) coagulants such as aluminum sulfate (Al2(SO4)3) and polyaluminum chloride (PAC), in terms of water quality parameters and floc properties. ZGC coagulation achieved higher removal of turbidity (93.8%) than other traditional coagulants. Charge neutralization was proven to act as a dominant mechanism during ZGC coagulation. The aggregated flocs with ZGC showed the fastest growth rate and good recovery ability compared with the other coagulants and achieved the largest floc size within 5 min. The ZGC coagulant can decrease the hydraulic retention time and increase removal efficiency.

  13. Effects of oxygen concentration on atmospheric pressure dielectric barrier discharge in Argon-Oxygen Mixture

    NASA Astrophysics Data System (ADS)

    Li, Xuechun; Li, Dian; Wang, Younian

    2016-09-01

    A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).

  14. Computational framework for nanoparticle growth in low-temperature plasmas

    NASA Astrophysics Data System (ADS)

    Santos, Benjamin; Vidal, François; Boucher, Claude

    2016-10-01

    We propose a framework to study nanoparticle growth in low-temperature plasmas. This system represents a challenge because of complexity:nanoparticles can accumulate charge, coagulate and grow while strongly coupled with the plasma. In analogy with aerosol physics, we describe the nanoparticle model using a General Dynamics Equation. In order to follow the evolution of nanoparticle size and charge distribution we must partition it in representative sizes and charges for each point in the spatial domain. Thus, for each combination of charge and size we need to calculate a drift-diffusion equation. As a case of study, we considered a radio frequency capacitively coupled plasma with an Argon-Silane gas mixture. Using a time slicing approach we can separate the plasma calculations from nanoparticle model. Particle densities are calculated from a drift-diffusion equation with finite difference scheme and the flux calculated by a Scharfetter-Gummel method. Additionally,we decoupled the plasma density calculations and nanoparticle sources in chunks that can be solved using linear solvers with appropriate time step, instead of solving a coupled nonlinear system. Finally, applications to the proposed framework are discussed.

  15. [Modern coagulation management reduces the transfusion rate of allogenic blood products].

    PubMed

    Weber, Christian Friedrich

    2012-06-01

    Evaluating the patient's individual bleeding history with a standardized questionnaire, using "point-of-care" - methods for coagulation analyses and providing autologous transfusion techniques are preconditions of a modern coagulation management. Therapy of coagulopathic patients should be based on structured hemotherapy algorithms. Surgical haemostasis and the maintenance of the basic conditions for haemostasis are elementary requirements for an effective therapy. In cases of diffuse bleeding, early antifibrinolytic therapy should be considered. Coagulation factor deficiencies should be corrected "goal-directed" using coagulation factor concentrates. Transfusion of fresh frozen plasma is only indicated in the clinical setting of massive transfusions. DDAVP and transfusion of platelet concentrates are options to optimize primary haemostasis. In cases of on-going bleeding, recombinant activated coagulation factor VII represents an option for "ultima-ratio" therapy.

  16. ATLAS liquid argon calorimeter front end electronics

    NASA Astrophysics Data System (ADS)

    Buchanan, N. J.; Chen, L.; Gingrich, D. M.; Liu, S.; Chen, H.; Damazio, D.; Densing, F.; Duffin, S.; Farrell, J.; Kandasamy, S.; Kierstead, J.; Lanni, F.; Lissauer, D.; Ma, H.; Makowiecki, D.; Muller, T.; Radeka, V.; Rescia, S.; Ruggiero, R.; Takai, H.; Wolniewicz, K.; Ghazlane, H.; Hoummada, A.; Hervas, L.; Hott, T.; Wilkens, H. G.; Ban, J.; Boettcher, S.; Brooijmans, G.; Chi, C.-Y.; Caughron, S.; Cooke, M.; Copic, K.; Dannheim, D.; Gara, A.; Haas, A.; Katsanos, I.; Parsons, J. A.; Simion, S.; Sippach, W.; Zhang, L.; Zhou, N.; Eckstein, P.; Kobel, M.; Ladygin, E.; Auge, E.; Bernier, R.; Bouchel, M.; Bozzone, A.; Breton, D.; de la Taille, C.; Falleau, I.; Fournier, D.; Imbert, P.; Martin-Chassard, G.; Perus, A.; Richer, J. P.; Seguin Moreau, N.; Serin, L.; Tocut, V.; Veillet, J.-J.; Zerwas, D.; Colas, J.; Dumont-Dayot, N.; Massol, N.; Perrodo, P.; Perrot, G.; Wingerter-Seez, I.; Escalier, M.; Hubaut, F.; Laforge, B.; LeDortz, O.; Schwemling, Ph; Collot, J.; Dzahini, D.; Gallin-Martel, M.-L.; Martin, P.; Cwienk, W. D.; Fent, J.; Kurchaninov, L.; Citterio, M.; Mazzanti, M.; Tartarelli, F.; Bansal, V.; Boulahouache, C.; Cleland, W.; Liu, B.; McDonald, J.; Paolone, V.; Rabel, J.; Savinov, V.; Zuk, G.; Benslama, K.; Borgeaud, P.; de la Broïse, X.; Delagnes, E.; LeCoguie, A.; Mansoulié, B.; Pascual, J.; Teiger, J.; Dinkespiler, B.; Liu, T.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.; Grahn, K.-J.; Hansson, P.; Lund-Jensen, B.; Chu, M. L.; Lee, S.-C.; Su, D. S.; Teng, P. K.; Braun, H. M.

    2008-09-01

    The ATLAS detector has been designed for operation at CERN's Large Hadron Collider. ATLAS includes a complex system of liquid argon calorimeters. This paper describes the architecture and implementation of the system of custom front end electronics developed for the readout of the ATLAS liquid argon calorimeters.

  17. Argon purge gas cooled by chill box

    NASA Technical Reports Server (NTRS)

    Spiro, L. W.

    1966-01-01

    Cooling argon purge gas by routing it through a shop-fabricated chill box reduces charring of tungsten inert gas torch head components. The argon gas is in a cooled state as it enters the torch and prevents buildup of char caused by the high concentrations of heat in the weld area during welding operations.

  18. New photosensitive dopants for liquid argon

    NASA Astrophysics Data System (ADS)

    Anderson, D. F.

    1986-05-01

    Thirteen photosensitive dopants for liquid argon are presented, and the criteria for selecting prospective new dopants are discussed. A substantial improvement in energy resolution for 5.5 MeV alpha particles is measured in liquid argon when a photosensitive dopant is added.

  19. 2D laser-collision induced fluorescence in low-pressure argon discharges

    SciTech Connect

    Barnat, E. V.; Weatherford, B. R.

    2015-09-25

    Development and application of laser-collision induced fluorescence (LCIF) diagnostic technique is presented for the use of interrogating argon plasma discharges. Key atomic states of argon utilized for the LCIF method are identified. A simplified two-state collisional radiative model is then used to establish scaling relations between the LCIF, electron density, and reduced electric fields (E/N). The procedure used to generate, detect and calibrate the LCIF in controlled plasma environments is discussed in detail. LCIF emanating from an argon discharge is then presented for electron densities spanning 109 e cm–3 to 1012 e cm–3 and reduced electric fields spanning 0.1 Td to 40 Td. Lastly, application of the LCIF technique for measuring the spatial distribution of both electron densities and reduced electric field is demonstrated.

  20. 2D laser-collision induced fluorescence in low-pressure argon discharges

    DOE PAGES

    Barnat, E. V.; Weatherford, B. R.

    2015-09-25

    Development and application of laser-collision induced fluorescence (LCIF) diagnostic technique is presented for the use of interrogating argon plasma discharges. Key atomic states of argon utilized for the LCIF method are identified. A simplified two-state collisional radiative model is then used to establish scaling relations between the LCIF, electron density, and reduced electric fields (E/N). The procedure used to generate, detect and calibrate the LCIF in controlled plasma environments is discussed in detail. LCIF emanating from an argon discharge is then presented for electron densities spanning 109 e cm–3 to 1012 e cm–3 and reduced electric fields spanning 0.1 Tdmore » to 40 Td. Lastly, application of the LCIF technique for measuring the spatial distribution of both electron densities and reduced electric field is demonstrated.« less

  1. Model of a stationary microwave argon discharge at atmospheric pressure

    SciTech Connect

    Zhelyazkov, I.; Pencheva, M.; Benova, E.

    2008-03-19

    The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power {theta} necessary for sustaining an electron - ion pair, electron - neutral collision frequency for momentum transfer v{sub en}, and gas temperature T{sub g}. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency {omega}/2{pi} = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature T{sub g} are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L {approx_equal} 14 cm, sustained by wave power of 110 W - the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number.

  2. [Coagulation disorders in the intensive care station].

    PubMed

    Hart, C; Spannagl, M

    2014-05-01

    Coagulation disorders are frequently encountered in the intensive care unit (ICU) and are challenging due to a variety of potential etiologies. Critically ill patients with coagulation abnormalities may present with an increased risk of bleeding, show coagulation activation resulting in thromboembolism, or have no specific symptoms. Hemostatic abnormalities observed in ICU patients range from isolated thrombocytopenia or prolonged global clotting tests to complex and life-threatening coagulation defects. Successful management of coagulation disorders requires prompt and accurate identification of the underlying cause. This review describes the most frequently occurring diagnoses found in intensive care patients with thrombocytopenia and coagulation test abnormalities and summarizes appropriate diagnostic interventions and current approaches to differential diagnosis.

  3. Advances of Coagulation Factor XIII

    PubMed Central

    Shi, Da-Yu; Wang, Shu-Jie

    2017-01-01

    Objective: To provide a comprehensive literature review on roles of coagulation factor XIII (FXIII) in coagulation, wound healing, neoplasm, bone metabolism, and pregnancy. Data Sources: All articles in PubMed with key words Coagulation factor XIII, wound, leukemia, tumor, bone, and pregnancy with published date from 2001 to 2016 were included in the study. Frequently cited publications before 2000 were also included. Study Selection: We reviewed the role of FXIII in biologic processes as documented in clinical, animal, and in vitro studies. Results: FXIII, a member of the transglutaminase (TG) family, plays key roles in various biological processes. Besides its well-known function in coagulation, the cross-linking of small molecules catalyzed by FXIII has been found in studies to help promote wound healing, improve bone metabolism, and prevent miscarriages. The study has also shown that FXIII concentration level differs in the blood of patients with leukemia and solid tumors and offers promises as a diagnostic indicator. Conclusions: FXIII has many more biologic functions besides being known as coagulation factor. The TG activity of FXIII contributes to several processes, including wound healing, bone extracellular matrix stabilization, and the interaction between embryo and decidua of uterus. Further research is needed to elucidate the link between FXIII and leukemia and solid tumors. PMID:28091415

  4. Calculation of the shifts of argon spectral lines

    SciTech Connect

    Christova, M.; Andreev, N.; Christov, L.; Dimitrijevic, M. S.

    2008-10-22

    Shifts due to collisions with charged particles (Stark broadening ) and neutral atoms, were determined for nine argon spectral lines corresponding to the transitions 3p{sup 5}nd-3p{sup 5}4p for n = 4-7, 3p{sup 5}6s-3p{sup 5}4d and 3p{sup 5}4p'-3p{sup 5}4s in order to estimate their usability for the research and diagnostics of a plasma in a surface-wave discharge at atmospheric pressure.

  5. Fibrinogen Availability and Coagulation Function After Hemorrhage and Resuscitation in Pigs

    DTIC Science & Technology

    2011-08-01

    partial thromboplastin time (aPTT), are per- formed in plasma, and, therefore, can- not reflect the interaction of platelet and fibrinogen. Activated ...requires a valid and comprehensive as- sessment of coagulation function. Nor- mal coagulation assays, such as pro- thrombin time (PT) and activated ...the initiation of thrombin generation by the activation of FVIIa/TF complex and FXa, the propagation of thrombin generation from the production of

  6. Coagulation assays and anticoagulant monitoring.

    PubMed

    Funk, Dorothy M Adcock

    2012-01-01

    Anticoagulant therapy, including conventional agents and a variety of new oral, fast-acting drugs, is prescribed for millions of patients annually. Each anticoagulant varies in its effect on routine and specialty coagulation assays and each drug may require distinct laboratory assay(s) to measure drug concentration or activity. This review provides an overview of the assorted assays that can measure anticoagulant drug concentration or activity and includes key assay interferences. The effect of these conventional and new anticoagulant agents on specialty coagulation assays used to evaluate for bleeding or clotting disorders, and whether this impact is physiological or factitious, is included. Also provided is a short review of superwarfarin poisoning and features distinguishing this from warfarin overdose. Knowledge of clinically significant pearls and pitfalls pertinent to coagulation assays in relation to anticoagulant therapy are important to optimize patient care.

  7. Modelling for turbulent transport of nanoparticles growing around a thermal plasma jet

    NASA Astrophysics Data System (ADS)

    Shigeta, Masaya

    2015-09-01

    Modelling works for expressing the simultaneous processes of growth and transport of nanoparticles around a turbulent-like thermal plasma jet are presented. From the physical aspect, extending the previous model, a simple-but-consistent model which requires less computational costs is developed to describe the nanoparticles' birth and collective growth through homogeneous nucleation, heterogeneous condensation, and coagulation among themselves as well as transports by convection, diffusion, and thermophoresis. From the mathematical aspect, an original simulation code with higher accuracy is developed to express thermal plasma turbulence and to capture steep gradients in the spatial distribution of nanoparticles. As a base case, an argon thermal plasma jet is ejected at 1.5 slm from the nozzle, and iron vapor is supplied at 0.1 g/min with the plasma jet. The computation shows that the high-temperature plasma jet entrains the surrounding non-ionized gas because of Kelvin-Helmholtz instability at their interface. The instability waves grow up and then the interface rolls up to eddies. As the jet goes downstream, the eddies break to smaller ones, which lead to turbulence transition. This feature has also been reported in the experimental study. The iron vapor is transported with the plasma flow and simultaneously diffuses across the plasma's fringe where the vapor experiences the temperature decrease. As a result, the vapor changes its phase to nanoparticles through nucleation and condensation. The nanoparticles are also transported by convection and diffusion. The regions of large diameters coincide with those of low number densities of nanoparticles, because the size of nanoparticles increases through coagulation among themselves decreasing their own numbers.

  8. Clinical and prognostic significance of coagulation assays in lung cancer.

    PubMed

    Tas, Faruk; Kilic, Leyla; Serilmez, Murat; Keskin, Serkan; Sen, Fatma; Duranyildiz, Derya

    2013-03-01

    Activation of coagulation and fibrinolysis is frequently encountered among cancer patients. Such tumors are supposed to be associated with higher risk of invasion, metastases and eventually worse outcome. The aim of this study is to explore the prognostic value of blood coagulation tests for lung cancer patients. The study comprised 110 lung cancer patients. Pretreatment blood coagulation tests including PT, aPTT, PTA, INR, D-dimer, fibrinogen levels and platelet counts were evaluated. The plasma level of all coagulation tests revealed statistically significant difference between patient and control group (p < 0.001). There was a significant association between D-Dimer levels and histological subtypes of NSCLC, pointing an elevated plasma D-dimer level in squamous cell cancer (p = 0.035). Patients with extensive stage SCLC exhibited evidently higher levels of D-Dimer, INR and PLT (p = 0.037, p = 0.042, p = 0.04, respectively). Prolongation of PT and INR had statistically significant adverse effect on survival (p = 0.05 and p = 0.014, respectively). Although prolonged aPTT and high levels of D-dimer was associated with worse survival, the difference was not statistically significant (p = 0.117, p = 0.104). Multivariate analysis revealed INR as the sole independent prognostic variable among coagulation parameters (p = 0.05). In conclusion, elevation of PT and INR are associated with decreased survival in lung cancer patients.

  9. Depinning as a coagulation process

    NASA Astrophysics Data System (ADS)

    İşeri, M.; Kaspar, D.; Mungan, M.

    2016-08-01

    We consider a one-dimensional model that describes the depinning of an elastic string of particles in a strongly pinning, phase-disordered periodic environment under a slowly increasing force. The evolution towards depinning occurs by the triggering of avalanches in regions of activity which are at first isolated, but later grow and merge. For large system sizes the dynamically critical behavior is dominated by the coagulation of these active regions. Our analysis and numerical simulations show that the evolution of the sizes of active regions is well described by a Smoluchowski coagulation equation, allowing us to predict correlation lengths and avalanche sizes in terms of certain moments of the size distribution.

  10. [Coagulation behavior of Al13 species].

    PubMed

    Hu, Cheng-zhi; Liu, Hui-juan; Qu, Jiu-hui

    2006-12-01

    Coagulation behavior of Al13 species was examined in synthetic water with high alkalinity and high humic acid concentration from viewpoint of the transformation of Al hydrolysis products during the coagulation process. The results indicated that coagulation efficiency of Al coagulants positively correlated with the content of Al13 in the coagulation process. Aluminum chloride (AlCl3) was more effective than polyaluminum chloride (PACI) in removing turbidity and dissolved organic matter in the synthetic water because AlCl3 could not only generate Al13 species but also function as pH control agent in the coagulation process. During coagulation process pH control can improve coagulation process through regulating Al speciation, and AlCl3 benefited most from pH control.

  11. Observation of Ω mode electron heating in dusty argon radio frequency discharges

    SciTech Connect

    Killer, Carsten; Bandelow, Gunnar; Schneider, Ralf; Melzer, André; Matyash, Konstantin

    2013-08-15

    The time-resolved emission of argon atoms in a dusty plasma has been measured with phase-resolved optical emission spectroscopy using an intensified charge-coupled device camera. For that purpose, three-dimensional dust clouds have been confined in a capacitively coupled rf argon discharge with the help of thermophoretic levitation. While electrons are exclusively heated by the expanding sheath (α mode) in the dust-free case, electron heating takes place in the entire plasma bulk when the discharge volume is filled with dust particles. Such a behavior is known as Ω mode, first observed in electronegative plasmas. Furthermore, particle-in-cell simulations have been carried out, which reproduce the trends of the experimental findings. These simulations support previous numerical models showing that the enhanced atomic emission in the plasma can be attributed to a bulk electric field, which is mainly caused by the reduced electrical conductivity due to electron depletion.

  12. Luminosity limits for liquid argon calorimetry

    NASA Astrophysics Data System (ADS)

    J, Rutherfoord; B, Walker R.

    2012-12-01

    We have irradiated liquid argon ionization chambers with betas using high-activity Strontium-90 sources. The radiation environment is comparable to that in the liquid argon calorimeters which are part of the ATLAS detector installed at CERN's Large Hadron Collider. We measure the ionization current over a wide range of applied potential for two different source activities and for three different chamber gaps. These studies provide operating experience at exceptionally high ionization rates. We can operate these chambers either in the normal mode or in the space-charge limited regime and thereby determine the transition point between the two. From the transition point we indirectly extract the positive argon ion mobility.

  13. A Novel Role for Pro-Coagulant Microvesicles in the Early Host Defense against Streptococcus pyogenes

    PubMed Central

    Oehmcke, Sonja; Westman, Johannes; Malmström, Johan; Mörgelin, Matthias; Olin, Anders I.; Kreikemeyer, Bernd; Herwald, Heiko

    2013-01-01

    Previous studies have shown that stimulation of whole blood or peripheral blood mononuclear cells with bacterial virulence factors results in the sequestration of pro-coagulant microvesicles (MVs). These particles explore their clotting activity via the extrinsic and intrinsic pathway of coagulation; however, their pathophysiological role in infectious diseases remains enigmatic. Here we describe that the interaction of pro-coagulant MVs with bacteria of the species Streptococcus pyogenes is part of the early immune response to the invading pathogen. As shown by negative staining electron microscopy and clotting assays, pro-coagulant MVs bind in the presence of plasma to the bacterial surface. Fibrinogen was identified as a linker that, through binding to the M1 protein of S. pyogenes, allows the opsonization of the bacteria by MVs. Surface plasmon resonance analysis revealed a strong interaction between pro-coagulant MVs and fibrinogen with a KD value in the nanomolar range. When performing a mass-spectrometry-based strategy to determine the protein quantity, a significant up-regulation of the fibrinogen-binding integrins CD18 and CD11b on pro-coagulant MVs was recorded. Finally we show that plasma clots induced by pro-coagulant MVs are able to prevent bacterial dissemination and possess antimicrobial activity. These findings were confirmed by in vivo experiments, as local treatment with pro-coagulant MVs dampens bacterial spreading to other organs and improved survival in an invasive streptococcal mouse model of infection. Taken together, our data implicate that pro-coagulant MVs play an important role in the early response of the innate immune system in infectious diseases. PMID:23935504

  14. Defective thrombus formation in mice lacking coagulation factor XII

    PubMed Central

    Renné, Thomas; Pozgajová, Miroslava; Grüner, Sabine; Schuh, Kai; Pauer, Hans-Ulrich; Burfeind, Peter; Gailani, David; Nieswandt, Bernhard

    2005-01-01

    Blood coagulation is thought to be initiated by plasma protease factor VIIa in complex with the membrane protein tissue factor. In contrast, coagulation factor XII (FXII)–mediated fibrin formation is not believed to play an important role for coagulation in vivo. We used FXII-deficient mice to study the contributions of FXII to thrombus formation in vivo. Intravital fluorescence microscopy and blood flow measurements in three distinct arterial beds revealed a severe defect in the formation and stabilization of platelet-rich occlusive thrombi. Although FXII-deficient mice do not experience spontaneous or excessive injury-related bleeding, they are protected against collagen- and epinephrine-induced thromboembolism. Infusion of human FXII into FXII-null mice restored injury-induced thrombus formation. These unexpected findings change the long-standing concept that the FXII-induced intrinsic coagulation pathway is not important for clotting in vivo. The results establish FXII as essential for thrombus formation, and identify FXII as a novel target for antithrombotic therapy. PMID:16009717

  15. Spatial Propagation and Localization of Blood Coagulation Are Regulated by Intrinsic and Protein C Pathways, Respectively

    PubMed Central

    Panteleev, Mikhail A.; Ovanesov, Mikhail V.; Kireev, Dmitrii A.; Shibeko, Aleksei M.; Sinauridze, Elena I.; Ananyeva, Natalya M.; Butylin, Andrey A.; Saenko, Evgueni L.; Ataullakhanov, Fazoil I.

    2006-01-01

    Blood coagulation in vivo is a spatially nonuniform, multistage process: coagulation factors from plasma bind to tissue factor (TF)-expressing cells, become activated, dissociate, and diffuse into plasma to form enzymatic complexes on the membranes of activated platelets. We studied spatial regulation of coagulation using two approaches: 1), an in vitro experimental model of clot formation in a thin layer of plasma activated by a monolayer of TF-expressing cells; and 2), a computer simulation model. Clotting in factor VIII- and factor XI-deficient plasmas was initiated normally, but further clot elongation was impaired in factor VIII- and, at later stages, in factor XI-deficient plasma. The data indicated that clot elongation was regulated by factor Xa formation by intrinsic tenase, whereas factor IXa was formed by extrinsic tenase on activating cells and diffused into plasma, thus sustaining clot growth. Far from the activating cells, additional factor IXa was produced by factor XIa. Exogenously added TF had no effect on the clot growth rate, suggesting that plasma TF does not contribute significantly to the clot propagation process in a reaction-diffusion system without flow. Addition of thrombomodulin at 3–100 nM caused dose-dependent termination of clot elongation with a final clot size of 2–0.2 mm. These results identify roles of specific coagulation pathways at different stages of spatial clot formation (initiation, elongation, and termination) and provide a possible basis for their therapeutic targeting. PMID:16326897

  16. 21 CFR 868.1075 - Argon gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An argon gas analyzer is a device intended to measure the concentration of argon in a gas mixture to aid...

  17. 21 CFR 868.1075 - Argon gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An argon gas analyzer is a device intended to measure the concentration of argon in a gas mixture to aid...

  18. 21 CFR 868.1075 - Argon gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An argon gas analyzer is a device intended to measure the concentration of argon in a gas mixture to aid...

  19. 21 CFR 868.1075 - Argon gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An argon gas analyzer is a device intended to measure the concentration of argon in a gas mixture to aid...

  20. 21 CFR 868.1075 - Argon gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An argon gas analyzer is a device intended to measure the concentration of argon in a gas mixture to aid...

  1. Emission in argon and krypton at 147 nm excited by runaway-electron-induced diffusion discharge

    SciTech Connect

    Gerasimov, Gennadii N; Krylov, B E; Lomaev, Mikhail I; Rybka, D V; Tarasenko, Viktor F

    2010-05-26

    Plasma emission of a pulsed diffuse discharge produced at increased pressures due to the preionisation of the gap by runaway electrons is studied in argon, krypton, and xenon. Nanosecond voltage pulses with the amplitude {approx}220 kV were applied to the discharge gap. It is shown that the presence of xenon ({approx}0.01%) in argon and krypton leads to the emergence of high-power narrowband radiation at awavelength of 147 nm. It is assumed that this radiation belongs to the bands of heteronuclear molecules Xe*Ar and Xe*Kr.

  2. Argon Diffusion in Pyroxene and Albite

    NASA Astrophysics Data System (ADS)

    Weirich, J. R.; Isachsen, C. E.; Johnson, J. R.; Swindle, T. D.

    2010-03-01

    Shock greatly raises the diffusivity of albite, and also explains why meteorites often have low activation energies. Unshocked pyroxene cannot explain the high temperature release of argon in meteorites, though shocked pyroxene is a possibility.

  3. Clinical periodontics with the argon laser

    NASA Astrophysics Data System (ADS)

    Finkbeiner, R. L.

    1995-04-01

    The argon laser has proven to be a valuable tool for the thermodynamic debridement of the periodontal lesion, incisions and tissue fusion. Illustrations of clinical applications and discussion of laser parameters will be provided.

  4. Coagulation Changes During Graded Orhostatic Stress and Recovery

    NASA Astrophysics Data System (ADS)

    Goswami, Nandu; Cvirn, Gerhard; Schlagenhauf, Aaxel; Leschnik, Bettina; Koestenberger, Martin; Roessler, Andreas; Jantscher, Andreas; Waha, James Elvis; Wolf, Sabine; Vrecko, Karoline; Juergens, Guenther; Hinghofer-Szalkay, Helmut

    2013-02-01

    Background: Orthostatic stress has been introduced as a novel paradigm for activating the coagulation system. We examined whether graded orthostatic stress (using head up tilt, HUT + lower body negative pressure, LBNP) until presyncope leads to anti / pro-coagulatory changes and how rapidly they return to baseline during recovery. Methodology: Eight male subjects were enrolled in this study. Presyncopal runs were carried out using HUT + LBNP. At minute zero, the tilt table was brought from 0° (supine) to 70 ° head-up position for 4 min, after which pressure in the LBNP chamber was reduced to -15, -30, and -45 mm Hg every 4 min. At presyncope, the subjects were returned to supine position. Coagulatory responses and plasma mass density (for volume changes) were measured before, during and 20 min after the orthostatic stress. Whole blood coagulation was examined by means of thrombelastometry. Platelet aggregation in whole blood was examined by using impedance aggregometry. Thrombin generation parameters, prothrombin levels, and markers of endothelial activation were measured in plasma samples. Results: At presyncope, plasma volume was 20 % below the initial supine value. Blood cell counts, prothrombin levels, thrombin peak, endogenous thrombin potential (ETP), and tissue factor pathway inhibitor (TFPI) levels increased during the protocol, commensurate with hemoconcentration. The markers of endothelial activation (tissue factor, TF, tissue plasminogen activator, t-PA) and the markers of thrombin generation (Prothrombin fragments 1 and 2, F1+2, and thrombin-antithrombin complex, TAT) increased significantly. During recovery, all the coagulation parameters returned to initial supine values except F1 +2 and TAT. Conclusion: Head-up tilt/LBNP leads to activation of the coagulation system. Some of the markers of thrombin formation are still at higher than supine levels during recovery.

  5. Microwave diagnostics of atmospheric plasmas

    NASA Astrophysics Data System (ADS)

    Scott, David

    Plasma treatment of biological tissues has tremendous potential due to the wide range of applications. Most plasmas have gas temperatures which greatly exceed room temperature. These are often utilized in electro-surgery for cutting and coagulating tissue. Another type of plasma, referred to as cold atmospheric plasma, or CAP, is characterized by heavy particle temperatures which are at or near room temperature. Due to this lack of thermal effect, CAP may provide less invasive medical procedures. Additionally, CAP have been demonstrated to be effective at targeting cancer cells while minimizing damage to the surrounding tissue. A recently fabricated Microwave Electron Density Device (MEDD) utilizes microwave scattering on small atmospheric plasmas to determine the electron plasma density. The MEDD can be utilized on plasmas which range from a fraction of a millimeter to several centimeters at atmospheric pressure when traditional methods cannot be applied. Microwave interferometry fails due to the small size of the plasma relative to the microwave wavelength which leads to diffraction and negligible phase change; electrostatic probes introduce very strong perturbation and are associated with difficulties of application in strongly-collisional atmospheric conditions; and laser Thomson scattering is not sensitive enough to measure plasma densities less than 1012 cm-3. The first part of this dissertation provides an overview of two types of small atmospheric plasma objects namely CAPs and plasmas utilized in the electro-surgery. It then goes on to describe the fabrication, testing and calibration of the MEDD facility. The second part of this dissertation is focused on the application of the MEDD and other diagnostic techniques to both plasma objects. A series of plasma images that illustrate the temporal evolution of a discharge created by an argon electrosurgical device operating in the coagulation mode and its behavior was analyzed. The discharge of the argon

  6. Etching of Bacillus atrophaeus by oxygen atoms, molecules and argon ions

    NASA Astrophysics Data System (ADS)

    Benedikt, J.; Flötgen, C.; Kussel, G.; Raball, V.; von Keudell, A.

    2008-10-01

    The etching of spores of Bacillus atrophaeus by oxygen atoms, molecules and argon ions is investigated in a particle beam experiment. Thereby, the conditions occurring in an argon oxygen plasma are mimicked and fundamental inactivation mechanisms are revealed. It is shown that only the combined impact of argon ions and of O atoms or O2 molecules causes significant etching of the spores. This is explained by the process of chemical sputtering, where an ion induced defect at the surface of the spore reacts with either the incident bi-radical O2 or with an incident O atom. This leads to the formation of CO, CO2 and H2O and thus to erosion. This process is compared to the plasma etching of hydrocarbon thin films as an atomistic model system for the spore coat. It is shown that the etch rate in an inductively coupled argon oxygen plasma is only maximal if both, the electron density and thus the ion flux towards the surface and the O atom flux are optimized simultaneously.

  7. Hemolymph coagulation and phenoloxidase activity in Uca tangeri induced by Escherichia coli endotoxin.

    PubMed

    Salawu, Musa O; Oloyede, Hussein O B; Oladiji, Temidayo A; Yakubu, Musa T; Amuzat, Aliyu O

    2016-05-01

    Uca tangeri is a marine fiddler crab found commonly in the West African coast and is often exposed to Gram-negative pathogens upon injury. The aim of this study was to document the patterns of endotoxin-induced protein coagulation and phenoloxidase (PO) activity in hemolymph fractions of Uca tangeri. Hemolymph from live crabs was obtained by carapace puncture, pooled. and then separated into plasma, hemocyte Lysate (HL), hemocyte lysate supernatant (HLS) and hemocyte lysate debris (HLD). The effect of Escherichia coli (O1111:B4) endotoxin and calcium ion (Ca(2+)) on protein coagulation in the presence/absence of endotoxin and the endotoxin dose-dependence of coagulation and PO activity were each studied in the plasma, HL, HLS and HLD. The results showed Ca(2+) was required to induce coagulation, and was endotoxin concentration-dependent in the plasma. PO activity was highest in the HLS but PO specific activity was highest in HLD. PO activity remained relatively constant with increased LPS concentration in the range studied 0-10 EU/ml. From the data we conclude that endotoxin-induced protein coagulation occurs in the plasma alone and might be mediated by trans-glutaminases, while PO activity is localized inside hemocytes and cell membranes in Uca tangeri.

  8. Imaging of hydrogen halides photochemistry on argon and ice nanoparticles.

    PubMed

    Poterya, V; Lengyel, J; Pysanenko, A; Svrčková, P; Fárník, M

    2014-08-21

    The photodissociation dynamics of HX (X = Cl, Br) molecules deposited on large ArN and (H2O)N, N̄ ≈ 10(2)-10(3), clusters is investigated at 193 nm using velocity map imaging of H and Cl photofragments. In addition, time-of-flight mass spectrometry after electron ionization complemented by pickup cross section measurements provide information about the composition and structure of the clusters. The hydrogen halides coagulate efficiently to generate smaller (HX)n clusters on ArN upon multiple pickup conditions. This implies a high mobility of HX molecules on argon. On the other hand, the molecules remain isolated on (H2O)N. The photodissociation on ArN leads to strong H-fragment caging manifested by the fragment intensity peaking sharply at zero kinetic energy. Some of the Cl-fragments from HCl photodissociation on ArN are also caged, while some of the fragments escape the cluster directly without losing their kinetic energy. The images of H-fragments from HX on (H2O)N also exhibit a strong central intensity, however, with a different kinetic energy distribution which originates from different processes: the HX acidic dissociation followed by H3O neutral hydronium radical formation after the UV excitation, and the slow H-fragments stem from subsequent decay of the H3O. The corresponding Cl-cofragment from the photoexcitation of the HCl·(H2O)N is trapped in the ice nanoparticle.

  9. Imaging of hydrogen halides photochemistry on argon and ice nanoparticles

    NASA Astrophysics Data System (ADS)

    Poterya, V.; Lengyel, J.; Pysanenko, A.; Svrčková, P.; Fárník, M.

    2014-08-01

    The photodissociation dynamics of HX (X = Cl, Br) molecules deposited on large ArN and (H2O)N, bar{N}≈ 102-103, clusters is investigated at 193 nm using velocity map imaging of H and Cl photofragments. In addition, time-of-flight mass spectrometry after electron ionization complemented by pickup cross section measurements provide information about the composition and structure of the clusters. The hydrogen halides coagulate efficiently to generate smaller (HX)n clusters on ArN upon multiple pickup conditions. This implies a high mobility of HX molecules on argon. On the other hand, the molecules remain isolated on (H2O)N. The photodissociation on ArN leads to strong H-fragment caging manifested by the fragment intensity peaking sharply at zero kinetic energy. Some of the Cl-fragments from HCl photodissociation on ArN are also caged, while some of the fragments escape the cluster directly without losing their kinetic energy. The images of H-fragments from HX on (H2O)N also exhibit a strong central intensity, however, with a different kinetic energy distribution which originates from different processes: the HX acidic dissociation followed by H3O neutral hydronium radical formation after the UV excitation, and the slow H-fragments stem from subsequent decay of the H3O. The corresponding Cl-cofragment from the photoexcitation of the HCl.(H2O)N is trapped in the ice nanoparticle.

  10. Effect of iron and carbon monoxide on fibrinogenase-like degradation of plasmatic coagulation by venoms of four Crotalus species.

    PubMed

    Nielsen, Vance G; Redford, Daniel T; Boyle, Patrick K

    2017-01-01

    Annually, thousands suffer poisonous snake bite, often from defibrinogenating species. Iron and carbon monoxide (CO) improve coagulation kinetics by modulation of fibrinogen as demonstrated in various Agkistrodon species and Crotalus atrox. Thus, we sought to determine whether pretreatment of plasma with iron and CO could attenuate venom-mediated catalysis of fibrinogen obtained from four common Crotalus species with known fibrinogenase activity. Human plasma was pretreated with ferric chloride (0-10 μmol/l) and CO-releasing molecule-2 (0-100 μmol/l) prior to exposure to venom from a Northern Pacific rattlesnake, Arizona black rattlesnake, prairie rattlesnake, or red diamond rattlesnake. The concentration of venom used decreased coagulation function of one or more kinetic parameters by at least 50% of normal values. Coagulation kinetics were determined with thrombelastography.Three snake venoms significantly degraded plasmatic coagulation kinetics, prolonging the onset to clot formation, diminishing velocity of clot growth and decreasing clot strength. However, red diamond rattlesnake venom exposure resulted in mixed coagulation kinetics, significantly decreasing the time to onset of coagulation without decreasing the velocity of clot growth. Iron and CO attenuated these coagulation kinetic changes in a species-specific manner. Further in vitro investigation of other fibrinogenolytic venoms is indicated to determine if iron and CO can attenuate venom compromised coagulation.

  11. Plasma Processing of Metallic and Semiconductor Thin Films in the Fisk Plasma Source

    NASA Technical Reports Server (NTRS)

    Lampkin, Gregory; Thomas, Edward, Jr.; Watson, Michael; Wallace, Kent; Chen, Henry; Burger, Arnold

    1998-01-01

    The use of plasmas to process materials has become widespread throughout the semiconductor industry. Plasmas are used to modify the morphology and chemistry of surfaces. We report on initial plasma processing experiments using the Fisk Plasma Source. Metallic and semiconductor thin films deposited on a silicon substrate have been exposed to argon plasmas. Results of microscopy and chemical analyses of processed materials are presented.

  12. Interaction between Paracoccidioides brasiliensis conidia and the coagulation system: involvement of fibrinogen.

    PubMed

    Tamayo, Diana; Hernández, Orville; Muñoz-Cadavid, Cesar; Cano, Luz Elena; González, Angel

    2013-06-01

    The infectious process starts with an initial contact between pathogen and host. We have previously demonstrated that Paracoccidioides brasiliensis conidia interact with plasma proteins including fibrinogen, which is considered the major component of the coagulation system. In this study, we evaluated the in vitro capacity of P. brasiliensis conidia to aggregate with plasma proteins and compounds involved in the coagulation system. We assessed the aggregation of P. brasiliensis conidia after incubation with human serum or plasma in the presence or absence of anticoagulants, extracellular matrix (ECM) proteins, metabolic and protein inhibitors, monosaccharides and other compounds. Additionally, prothrombin and partial thromboplastin times were determined after the interaction of P. brasiliensis conidia with human plasma. ECM proteins, monosaccharides and human plasma significantly induced P. brasiliensis conidial aggregation; however, anticoagulants and metabolic and protein inhibitors diminished the aggregation process. The extrinsic coagulation pathway was not affected by the interaction between P. brasiliensis conidia and plasma proteins, while the intrinsic pathway was markedly altered. These results indicate that P. brasiliensis conidia interact with proteins involved in the coagulation system. This interaction may play an important role in the initial inflammatory response, as well as fungal disease progression caused by P. brasiliensis dissemination.

  13. Colon and pancreas tumors enhance coagulation: role of hemeoxygenase-1.

    PubMed

    Nielsen, Vance G; Nfonsam, Valentine N; Matika, Ryan W; Ong, Evan S; Jie, Tun; Warneke, James A; Steinbrenner, Evangelina B

    2014-07-01

    Colon and pancreatic cancer are associated with significant thrombophilia. Colon and pancreas tumor cells have an increase in hemeoxygenase-1 (HO-1) activity, the endogenous enzyme responsible for carbon monoxide production. Given that carbon monoxide enhances plasmatic coagulation, we determined if patients undergoing resection of colon and pancreatic tumors had an increase in endogenous carbon monoxide and plasmatic hypercoagulability. Patients with colon (n = 17) and pancreatic (n = 10) tumors were studied. Carbon monoxide was determined by the measurement of carboxyhemoglobin (COHb). A thrombelastographic method to assess plasma coagulation kinetics and formation of carboxyhemefibrinogen (COHF) was utilized. Nonsmoking patients with colon and pancreatic tumors had abnormally increased COHb concentrations of 1.4 ± 0.9 and 1.9 ± 0.7%, respectively, indicative of HO-1 upregulation. Coagulation analyses comparing both tumor groups demonstrated no significant differences in any parameter; thus the data were combined for the tumor groups for comparison with 95% confidence interval values obtained from normal individuals (n = 30) plasma. Seventy percent of tumor patients had a velocity of clot formation greater than the 95% confidence interval value of normal individuals, with 53% of this hypercoagulable group also having COHF formation. Further, 67% of tumor patients had clot strength that exceeded the normal 95% confidence interval value, and 56% of this subgroup had COHF formation. Finally, 63% of all tumor patients had COHF formation. Future investigation of HO-1-derived carbon monoxide in the pathogenesis of colon and pancreatic tumor-related thrombophilia is warranted.

  14. Blood coagulation and the risk of atherothrombosis: a complex relationship.

    PubMed

    Spronk, Henri Mh; van der Voort, Danielle; Ten Cate, Hugo

    2004-12-01

    The principles of Virchov's triad appear to be operational in atherothrombosis or arterial thrombosis: local flow changes and particularly vacular wall damage are the main pathophysiological elements. Furthermore, alterations in arterial blood composition are also involved although the specific role and importance of blood coagulation is an ongoing matter of debate. In this review we provide support for the hypothesis that activated blood coagulation is an essential determinant of the risk of atherothrombotic complications. We distinguish two phases in atherosclerosis: In the first phase, atherosclerosis develops under influence of "classical" risk factors, i.e. both genetic and acquired forces. While fibrinogen/fibrin molecules participate in early plaque lesions, increased activity of systemic coagulation is of no major influence on the risk of arterial thrombosis, except in rare cases where a number of specific procoagulant forces collide. Despite the presence of tissue factor - factor VII complex it is unlikely that all fibrin in the atherosclerotic plaque is the direct result from local clotting activity. The dominant effect of coagulation in this phase is anticoagulant, i.e. thrombin enhances protein C activation through its binding to endothelial thrombomodulin.The second phase is characterized by advancing atherosclerosis, with greater impact of inflammation as indicated by an elevated level of plasma C-reactive protein, the result of increased production influenced by interleukin-6. Inflammation overwhelms protective anticoagulant forces, which in itself may have become less efficient due to down regulation of thrombomodulin and endothelial cell protein C receptor (EPCR) expression. In this phase, the inflammatory drive leads to recurrent induction of tissue factor and assembly of catalytic complexes on aggregated cells and on microparticles, maintaining a certain level of thrombin production and fibrin formation. In advanced atherosclerosis systemic and

  15. First-Principles Investigation to Ionization of Argon Under Conditions Close to Typical Sonoluminescence Experiments.

    PubMed

    Kang, Wei; Zhao, Shijun; Zhang, Shen; Zhang, Ping; Chen, Q F; He, Xian-Tu

    2016-02-08

    Mott effect, featured by a sharp increase of ionization, is one of the unique properties of partially ionized plasmas, and thus of great interest to astrophysics and inertial confinement fusion. Recent experiments of single bubble sonoluminescence (SBSL) revealed that strong ionization took place at a density two orders lower than usual theoretical expectation. We show from the perspective of electronic structures that the strong ionization is unlikely the result of Mott effect in a pure argon plasma. Instead, first-principles calculations suggest that other ion species from aqueous environments can energetically fit in the gap between the continuum and the top of occupied states of argon, making the Mott effect possible. These results would help to clarify the relationship between SBSL and Mott effect, and further to gain an better understanding of partially ionized plasmas.

  16. First-Principles Investigation to Ionization of Argon Under Conditions Close to Typical Sonoluminescence Experiments

    PubMed Central

    Kang, Wei; Zhao, Shijun; Zhang, Shen; Zhang, Ping; Chen, Q. F.; He, Xian-Tu

    2016-01-01

    Mott effect, featured by a sharp increase of ionization, is one of the unique properties of partially ionized plasmas, and thus of great interest to astrophysics and inertial confinement fusion. Recent experiments of single bubble sonoluminescence (SBSL) revealed that strong ionization took place at a density two orders lower than usual theoretical expectation. We show from the perspective of electronic structures that the strong ionization is unlikely the result of Mott effect in a pure argon plasma. Instead, first-principles calculations suggest that other ion species from aqueous environments can energetically fit in the gap between the continuum and the top of occupied states of argon, making the Mott effect possible. These results would help to clarify the relationship between SBSL and Mott effect, and further to gain an better understanding of partially ionized plasmas. PMID:26853107

  17. Effects Of Continuous Argon Laser Irradiation On Canine And Autopsied Human Cardiac Tissue

    NASA Astrophysics Data System (ADS)

    Ben-Shachar, Giora; Sivakoff, Mark; Bernard, Steven L.; Dahms, Beverly B.; Riemenschneider, Thomas A.

    1984-10-01

    In eight human formalin preserved cardiac specimens, various cardiac and vascular obstructions were relieved by argon laser irradiation. Interatrial communication was also produced by a transar'rial approach in a live dog. In-vivo fresh canine cardiac tissues required power density of at feast 80, 90, and 110 watts/cm2 for vaporization of myocardial, vascular and valvular tissues respectively. The fiber tip to tissue distance (effective irradiation distance) for effective vaporization was less than I mm for vascular and valvular tissues and less than 4 mm for myocardium. Light microscopy showed four zones of histological damage common to all tissues - central crater surrounded by layers of charring, vacuolization and coagulation necorsis. Myocardium showed additionally a layer of normal appearing muscle cells (skip area) surrounded by a peripheral coagulation halo. Laser irradiation effects on valvular tissue showed the most lateral extension of coagulation necrosis. It is concluded that palliation and treatment of certain congenital heart defects by laser irradiation is anatomi-cally feasible and may be safe for in vivo application when low power output and short exposure time are used from a very short irradiation distance.

  18. Progesterone levels before and after laparoscopic tubal sterilization using endotherm coagulation.

    PubMed

    Helm, G; Sjöberg, N O

    1983-01-01

    Tubal sterilization can be performed by several surgical methods. It has often been reported that menstrual disorders appear after the operations, probably caused by hormonal disturbance. However, there is no published systematic study of the ovarian hormonal status after sterilization. In the present prospective study therefore, the plasma progesterone level has been determined during one menstrual cycle before and one after endotherm tubal laparoscopic coagulation. Plasma progesterone was chosen as normal levels of this hormone during the luteal phase reflect ovulation and an adequate corpus luteum. The endotherm coagulation method does not appear to cause any progesterone malfunction in the ovary.

  19. Fast-imaging and spectroscopic analysis of atmospheric argon streamers for large gap arc breakdown

    NASA Astrophysics Data System (ADS)

    Pachuilo, Michael; Stefani, Francis; Bengtson, Roger; Raja, Laxminarayan

    2014-10-01

    A non-equilibrium plasma source has been developed to assist in the low-voltage arc breakdown of large electrode gaps. The source consists of a dielectric embedded wire helically wound around a confining cylindrical quartz chamber. Annular electrodes cap the ends of the quartz chamber. An argon feed gas is used to provide a uniform environment and exhausts to ambient atmospheric conditions. A negative polarity 50 kV trigger pulse is applied to the embedded trigger wire to initiate the arc breakdown. Application of the trigger pulse produces a localized coronal discharges along the inner surface of the quartz tube. The corona provides seed electrons through which streamers propagate from one of the main discharge electrode along the quartz surface until it reaches the opposite electrode to bridge the gap. Once the gap is bridged a spark over occurs and robust arc discharge is formed in the chamber volume. Fast imaging of the streamer propagation establishes its velocity in the range of ~ 100 km/s. Spectroscopy of the streamer discharge in atmospheric argon has been conducted and electron temperature and number density estimated from a collision radiative model. Argon spectrum is dominated by neutral argon lines in the 650--950 nm range, and singly ionized argon lines are observed in the ultra-violet to near UV (300--400 nm). Research was performed in connection with AFOSR Contract FA9550-11-1-0062.

  20. Argon Collection And Purification For Proliferation Detection

    SciTech Connect

    Achey, R.; Hunter, D.

    2015-10-09

    In order to determine whether a seismic event was a declared/undeclared underground nuclear weapon test, environmental samples must be taken and analyzed for signatures that are unique to a nuclear explosion. These signatures are either particles or gases. Particle samples are routinely taken and analyzed under the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) verification regime as well as by individual countries. Gas samples are analyzed for signature gases, especially radioactive xenon. Underground nuclear tests also produce radioactive argon, but that signature is not well monitored. A radioactive argon signature, along with other signatures, can more conclusively determine whether an event was a nuclear test. This project has developed capabilities for collecting and purifying argon samples for ultra-low-background proportional counting. SRNL has developed a continuous gas enrichment system that produces an output stream containing 97% argon from whole air using adsorbent separation technology (the flow diagram for the system is shown in the figure). The vacuum swing adsorption (VSA) enrichment system is easily scalable to produce ten liters or more of 97% argon within twelve hours. A gas chromatographic separation using a column of modified hydrogen mordenite molecular sieve has been developed that can further purify the sample to better than 99% purity after separation from the helium carrier gas. The combination of these concentration and purification systems has the capability of being used for a field-deployable system for collecting argon samples suitable for ultra-low-background proportional counting for detecting nuclear detonations under the On-Site Inspection program of the CTBTO verification regime. The technology also has applications for the bulk argon separation from air for industrial purposes such as the semi-conductor industry.

  1. New Measurement of ^39Ar in Underground Argon with a Low Background Liquid Argon Detector

    NASA Astrophysics Data System (ADS)

    Xu, Jingke

    2012-03-01

    A low background liquid argon detector has been developed for sensitive measurements of the beta radioactive ^39Ar in argon from underground sources. The measurement is motivated by the need to improve on earlier studies that showed no sign of ^39Ar in certain sources of underground argon, but with a limited sensitivity of ˜ 5% relative to ^39Ar in atmospheric argon[1]. We will report preliminary measurements taken with the low background detector that was commissioned and operated at the Kimballton Underground Research Facility (KURF) in Virginia. A combination of passive and active background reduction techniques resulted in a very low background and a null result with sensitivity to ^39Ar less than 1% of atmospheric. The results confirm that underground argon is well suited for direct detection of dark matter WIMPs. [4pt] [1] D. Acosta-Kane et al., Nucl. Instr. Meth. A 587:46 (2008)

  2. Argon isotopic zoning in mantle phlogopite

    SciTech Connect

    Phillips, D.; Onstott, T.C.

    1988-06-01

    Incremental-heating and laser-probe /sup 40/Ar//sup 39/Ar analyses were performed on phlogopite extracted from a garnet-lherzolite mantle nodule entrained by the Precambrian (1200 Ma) Premier kimberlite, South Africa. The spatial resolution of the laser probe has enabled the characterization of argon isotopic zoning in a single phlogopite grain. An apparent age contour map records lower ages (1.2 Ga) along grain margins and high apparent ages (up to 2.4 Ga) at the core. The latter ages are caused by excess argon contamination and subsequent partial diffusive loss, and have no age significance. Comparison with step-heating results indicates that argon spatial distributions inferred from in-vacuo step-heating experiments are, at best, grossly approximate. Variations in the laser-probe apparent ages were observed only laterally across the phlogopite cleavage surface, indicating that argon transport occurs preferentially along phlogopite cleavage planes. Age profiles, when modeled using one-dimensional radial geometry (cylindrical coordinates), do not conform to classical Fick's law diffusion, suggesting that the characteristic dimension of diffusion for argon in phlogopite may be highly variable within individual grains.

  3. Effect of fibrinogen on blood coagulation detected by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Xu, Xiangqun; Teng, Xiangshuai

    2015-05-01

    Our previous work demonstrated that an optical coherence tomography (OCT) technique and the parameter 1/e light penetration depth (d1/e) were able to characterize the whole blood coagulation process in contrast to existing optical tests that are performed on plasma samples. To evaluate the feasibility of the technique for quantifying the effect of fibrinogen (Fbg) on blood coagulation, a dynamic study of d1/e of blood in various Fbg concentrations was performed in static state. Two groups of blood samples of hematocrit (HCT) in 35, 45, and 55% were reconstituted of red blood cells with: 1) treated plasma with its intrinsic Fbg removed and commercial Fbg added (0-8 g L-1) and 2) native plasma with commercial Fbg added (0-8 g L-1). The results revealed a typical behavior due to coagulation induced by calcium ions and the clotting time is Fbg concentration-dependent. The clotting time was decreased by the increasing amount of Fbg in both groups. Besides, the blood of lower HCT with various levels of Fbg took shorter time to coagulate than that of higher HCT. Consequently, the OCT method is a useful and promising tool for the detection of blood-coagulation processes induced with different Fbg levels.

  4. Effect of fibrinogen on blood coagulation detected by optical coherence tomography.

    PubMed

    Xu, Xiangqun; Teng, Xiangshuai

    2015-05-21

    Our previous work demonstrated that an optical coherence tomography (OCT) technique and the parameter 1/e light penetration depth (d1/e) were able to characterize the whole blood coagulation process in contrast to existing optical tests that are performed on plasma samples. To evaluate the feasibility of the technique for quantifying the effect of fibrinogen (Fbg) on blood coagulation, a dynamic study of d1/e of blood in various Fbg concentrations was performed in static state. Two groups of blood samples of hematocrit (HCT) in 35, 45, and 55% were reconstituted of red blood cells with: 1) treated plasma with its intrinsic Fbg removed and commercial Fbg added (0-8 g L(-1)); and 2) native plasma with commercial Fbg added (0-8 g L(-1)). The results revealed a typical behavior due to coagulation induced by calcium ions and the clotting time is Fbg concentration-dependent. The clotting time was decreased by the increasing amount of Fbg in both groups. Besides, the blood of lower HCT with various levels of Fbg took shorter time to coagulate than that of higher HCT. Consequently, the OCT method is a useful and promising tool for the detection of blood-coagulation processes induced with different Fbg levels.

  5. [Monitoring of blood coagulation in perioperative care].

    PubMed

    Ishii, Hisanari

    2012-01-01

    Coagulation disorders often occur perioperatively and monitoring of blood coagulation should be fast and adequate to treat these disorders to protect patients from massive bleeding. Control of hemostasis is one of the main issues in major surgeries. Coagulation test results from a central laboratory may delay making such a perioperative decision. Recently, point-of-care monitoring (POCM), which is able to examine coagulation disorder in an operation theater with short waiting time, has become important. Both prothrombin time (PT) and activated clotting time (ACT) are very useful and popular, but also criticized because they can be monitored only until fibrin formation. On the other hand, viscoelastic monitorings of whole blood, are able to estimate fibrin formation, clot fixation, platelet function and fibrinolysis. In this review article, among variable perioperative POCMs of blood coagulation, three thromboelastographic monitorings, such as TEG ROTEM, and Sonoclot as well as PT and ACT, are described along with their utilities and limits to examine perioperative coagulation.

  6. The reciprocal relationship between inflammation and coagulation.

    PubMed

    O'Brien, Mauria

    2012-05-01

    Inflammation and coagulation constitute two host defense systems with complementary roles in eliminating invading pathogens, limiting tissue damage, and restoring homeostasis. Extensive cross talk exists between these 2 systems, whereby inflammation leads to activation of coagulation, and coagulation considerably affects inflammatory activity. Infection leads to the production of proinflammatory cytokines that, in turn, stimulate the production of tissue factor. Activation of the coagulation system and ensuing thrombin generation are dependent on the expression of tissue factor. Conversely, activated coagulation proteases may affect specific receptors on inflammatory cells and endothelial cells and thereby modulate the inflammatory response. Activation of coagulation with the simultaneous down-regulation of endothelial-bound anticoagulant mechanisms and endogenous fibrinolysis characterizes the pathophysiology of sepsis. The mechanisms by which these highly complex and codependent defense strategies are linked together both in health and disease is the focus of this review.

  7. Isolation and study of an acquired inhibitor of human coagulation factor V.

    PubMed Central

    Nesheim, M E; Nichols, W L; Cole, T L; Houston, J G; Schenk, R B; Mann, K G; Bowie, E J

    1986-01-01

    A coagulation Factor V inhibitor developed in a man 75 yr of age in association with an anaplastic malignancy and drug treatment (including the aminoglycoside antibiotic, gentamicin). The patient did not bleed abnormally, despite both surgical challenge and plasma Factor V activity of less than 1%. The inhibited plasma had grossly prolonged prothrombin and activated partial thromboplastin times, but a normal thrombin time. Mixing studies indicated progressive coagulation inhibition with normal plasma, but not with Factor V-deficient plasma, and reversal of coagulation inhibition by the addition of bovine Factor V to the patient's plasma. 1 ml of patient plasma inhibited the Factor V activity of 90 ml of normal human plasma. The inhibitor was isolated by sequential affinity chromatography on protein A-Sepharose and Factor V-Sepharose. The IgG isolate markedly inhibits the activity of prothrombinase assembled from purified Factors Xa and Va, calcium ion, and phospholipid vesicles, and partially inhibits prothrombinase assembled from purified Factor Xa, calcium ion, and normal platelets. The Factor V of platelets, however, appears relatively inaccessible to the antibody, inasmuch as platelets isolated from whole blood supplemented for 8 h with the antibody functioned normally with respect to platelet Factor V-mediated prothrombinase function. The absence of obvious hemorrhagic difficulties in the patient, the total inhibition of plasma Factor V by the inhibitor, and the apparent inaccessibility of platelet Factor V to the inhibitor specifically implicate platelet Factor V in the maintenance of hemostasis. Images PMID:3944265

  8. Optical emission spectrometric determination of arsenic and antimony by continuous flow chemical hydride generation and a miniaturized microwave microstrip argon plasma operated inside a capillary channel in a sapphire wafer

    NASA Astrophysics Data System (ADS)

    Pohl, Pawel; Zapata, Israel Jimenéz; Bings, Nicolas H.; Voges, Edgar; Broekaert, José A. C.

    2007-05-01

    Continuous flow chemical hydride generation coupled directly to a 40 W, atmospheric pressure, 2.45 GHz microwave microstrip Ar plasma operated inside a capillary channel in a sapphire wafer has been optimized for the emission spectrometric determination of As and Sb. The effect of the NaBH 4 concentration, the concentration of HCl, HNO 3 and H 2SO 4 used for sample acidification, the Ar flow rate, the reagent flow rates, the liquid volume in the separator as well as the presence of interfering metals such as Fe, Cu, Ni, Co, Zn, Cd, Mn, Pb and Cr, was investigated in detail. A considerable influence of Fe(III) (enhancement of up to 50 %) for As(V) and of Fe(III), Cu(II) and Cr(III) (suppression of up to 75%) as well as of Cd(II) and Mn(II) (suppression by up to 25%) for Sb(III) was found to occur, which did not change by more than a factor of 2 in the concentration range of 2-20 μg ml - 1 . The microstrip plasma tolerated the introduction of 4.2 ml min - 1 of H 2 in the Ar working gas, which corresponded to an H 2/Ar ratio of 28%. Under these conditions, the excitation temperature as measured with Ar atom lines and the electron number density as determined from the Stark broadening of the H β line was of the order of 5500 K and 1.50 · 10 14 cm - 3 , respectively. Detection limits (3σ) of 18 ng ml - 1 for As and 31 ng ml - 1 for Sb were found and the calibration curves were linear over 2 orders of magnitude. With the procedure developed As and Sb could be determined at the 45 and 6.4 μg ml - 1 level in a galvanic bath solution containing 2.5% of NiSO 4. Additionally, As was determined in a coal fly ash reference material (NIST SRM 1633a) with a certified concentration of As of 145 ± 15 μg g - 1 and a value of 144 ± 4 μg g - 1 was found.

  9. Trapping cold ground state argon atoms.

    PubMed

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  10. The CAPTAIN Liquid Argon Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Liu, Qiuguang

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors - a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5-5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energy regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.

  11. The CAPTAIN liquid argon neutrino experiment

    SciTech Connect

    Liu, Qiuguang

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energy regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.

  12. The CAPTAIN liquid argon neutrino experiment

    DOE PAGES

    Liu, Qiuguang

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energymore » regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.« less

  13. Dusty plasmas

    SciTech Connect

    Jones, M.E.; Winske, D.; Keinigs, R.; Lemons, D.

    1996-05-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project has been to develop a fundamental understanding of dusty plasmas at the Laboratory. While dusty plasmas are found in space in galactic clouds, planetary rings, and cometary tails, and as contaminants in plasma enhanced fabrication of microelectronics, many of their properties are only partially understood. Our work has involved both theoretical analysis and self-consistent plasma simulations to understand basic properties of dusty plasmas related to equilibrium, stability, and transport. Such an understanding can improve the control and elimination of plasma dust in industrial applications and may be important in the study of planetary rings and comet dust tails. We have applied our techniques to the study of charging, dynamics, and coagulation of contaminants in plasma processing reactors for industrial etching and deposition processes and to instabilities in planetary rings and other space plasma environments. The work performed in this project has application to plasma kinetics, transport, and other classical elementary processes in plasmas as well as to plasma waves, oscillations, and instabilities.

  14. Change of coagulation parameters after double plateletpheresis.

    PubMed

    Yilmaz, Mustafa; Dikmen, Tamer; Sonmez, Mehmet; Akdogan, Elif; Durmus, Ahmet; Omay, Serdar Bedii; Ovali, Ercument

    2007-10-01

    In the previous studies, some authors reported that automated apheresis leads to a hypercoagulable state. We tried to find out changes in coagulation parameters after double plateletpheresis in this study. Forty-five donors were recruited to the study, and coagulation parameters were assessed before and after double plateletpheresis. After double plateletpheresis, fibrinogen, factor V, factor VIII and factor IX were decreased compared with the values before apheresis. Although serum levels of this coagulation parameters are decreasing, they are still in the normal limits. Therefore, we suggest that double plateletpheresis is a safe procedure for healthy volunteers taking into account these coagulation parameters.

  15. Coagulation in patients with severe sepsis.

    PubMed

    Levi, Marcel; Poll, Tom van der

    2015-02-01

    In the majority of patients with severe sepsis, systemic activation of coagulation is present. Increasing evidence points to an extensive cross-talk between coagulation and inflammation that may play an important role in the pathogenesis of sepsis. Inflammation not only leads to activation of coagulation, but coagulation also considerably affects inflammatory activity. Molecular pathways that contribute to inflammation-induced activation of coagulation have been precisely identified. Proinflammatory cytokines and other mediators are capable of activating the coagulation system and downregulating important physiological anticoagulant pathways. Activation of the coagulation system and ensuing thrombin generation is dependent on expression of tissue factor on activated mononuclear cells and endothelial cells, and is insufficiently counteracted by TFPI. Simultaneously, endothelial-bound anticoagulant mechanism, in particular the protein C system, is shutoff by proinflammatory cytokines. In addition, fibrin removal is severely inhibited, because of inactivation of the fibrinolytic system, caused by an upregulation of its main inhibitor, plasminogen activator inhibitor type 1 (PAI-1). Increased fibrin formation and impaired removal lead to (micro)vascular thrombosis, which may result in tissue ischemia and subsequent organ damage. The cornerstone of the management of coagulation in sepsis is the specific and vigorous treatment of the underlying disorder. Strategies aimed at the inhibition of coagulation activation may theoretically be justified and have been found beneficial in experimental and initial clinical studies. Heparin may be an effective anticoagulant approach and alternative strategies comprise restoration of physiological anticoagulant pathways.

  16. Solid-liquid phase transition in argon

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Tang, H. T.

    1978-01-01

    Starting from the Lennard-Jones interatomic potential, a modified cell theory has been used to describe the solid-liquid phase transition in argon. The cell-size variations may be evaluated by a self-consistent condition. With the inclusion of cell-size variations, the transition temperature, the solid and liquid densities, and the liquid-phase radial-distribution functions have been calculated. These ab initio results are in satisfactory agreement with molecular-dynamics calculations as well as experimental data on argon.

  17. Argon isotopes as recorders of magmatic processes

    NASA Astrophysics Data System (ADS)

    Layer, P. W.; Gardner, J. E.; Mora Chaparro, J. C.; Arce, J. L.

    2003-12-01

    Argon isotopic ratios vary enough between different reservoirs (atmosphere, crust, mantle) and diffuse fast enough through most minerals at magmatic temperatures (700-1200 C) to make them ideal for looking at magma chamber dynamics. Indeed, diffusion is sufficiently fast to allow short time scales to be deciphered, setting argon apart from many other isotopic methods. A mineral's ability to retain "excess" argon (40Ar/36Ar ratios greater than the atmospheric value and apparent ages older than the known eruption age) during post-eruption cooling is key to Ar studies. Previous work shows that both phenocrysts (crystallizing in the magma chamber; e.g. Mt St. Helens; Layer and Gardner, 2001) and xenocrysts (introduced into the magma chamber; e.g Toba; Gardner et al., 2002) preserve excess argon, which enables magma chamber processes to be deciphered through the variable diffusion rates between crystal phases. Single crystal 40Ar/39Ar step-heating of biotite from the 10.5 ka eruption of Nevado de Toluca volcano, Mexico indicates that they are xenocrystic and resided for only a short (< 1 year) time in the magma before it erupted. The biotite has reaction rims of hornblende, orthopyroxene and plagioclase, and failed to grow experimentally at pressure-temperature conditions of the magma, confirming the xenocrystic nature of this phase. Single-step fusion of plagioclase phenocrysts from eruptions of El Chichon volcano, Mexico, shows evidence of excess (mantle) argon, whereas hornblende from the same eruptions contains little or none. In this case, faster diffusion of Ar in plagioclase than in hornblende allow plagioclase to incorporate excess argon during magma recharge; hornblende does not. Combining such results with other isotopic systems may in fact better determine magma chamber processes. At El Chichon, Sr isotopes suggest magma recharges ocurred (Tepley et al., 2000), whereas the argon isotopes suggest such pulses occurred just before each eruption. The fast and

  18. Glial reactions to argon laser photocoagulation injury in rabbit and rat retinas

    NASA Astrophysics Data System (ADS)

    Humphrey, Martin F.; Chu, Yi; Sharp, Claudia; Moore, Stephen; Mann, Krishna; Rakoczy, Piroska; Constable, Ian J.

    1996-04-01

    Argon laser photocoagulation is a standard and effective clinical technique for a variety of disease conditions. However there is evidence that coagulation produces more widespread alterations in the retina than the local scarring at the injury site. For example, in diabetic retinopathy multiple photocoagulations in the retinal periphery can control blood vessel growth in the central retina. Therefore we have studied the changes in retinal glial cells following photocoagulation using immunocytochemical techniques with an emphasis on the spread of cellular reactions by using whole, flatmounted retinal preparations. Muller glial cells do not normally express the cytoskeletal protein GFAP (glial fibrillary acidic protein) but do so after a variety of injuries. We found that there is a very widespread expression of GFAP by Muller cells even after very focal coagulations and that this persists for 1 - 1.5 months after coagulation. The microglial cells are primed to react to injury and can release very powerful effector molecules and we therefore also examined the microglial reaction to see whether it correlated with the Muller cell reaction. However, we found that the microglial response, in terms of anatomical changes, was very focally confined to regions of direct cellular injury. We also examined MHC II expression to see whether microglia expressed this activity related protein without anatomical changes but we found no evidence of wide spread changes. In summary we find that inflammatory reactions are very localized after coagulation but the macroglial changes are more widespread and therefore the distant effects of photocoagulation may be more related to macroglial reactions.

  19. Scintillation efficiency of liquid argon in low energy neutron-argon scattering

    NASA Astrophysics Data System (ADS)

    Creus, W.; Allkofer, Y.; Amsler, C.; Ferella, A. D.; Rochet, J.; Scotto-Lavina, L.; Walter, M.

    2015-08-01

    Experiments searching for weak interacting massive particles with noble gases such as liquid argon require very low detection thresholds for nuclear recoils. A determination of the scintillation efficiency is crucial to quantify the response of the detector at low energy. We report the results obtained with a small liquid argon cell using a monoenergetic neutron beam produced by a deuterium-deuterium fusion source. The light yield relative to electrons was measured for six argon recoil energies between 11 and 120 keV at zero electric drift field.

  20. Genetic engineering and coagulation factors.

    PubMed

    Fass, D N; Toole, J J

    1985-06-01

    It is unfortunate that we cannot report, in the area of coagulation, advances that have been seen in related fields such as thrombolytic therapy. The reported progress (Gold et al, 1984; Van de Werf et al, 1984) with human recombinant tissue plasminogen activator (Pennica et al, 1983) augers well for the application of recombinant technology to the problems faced by patients with coagulation defects. While plasminogen activator is being assessed in an acute therapeutic setting, its use signals a beginning of the application of the technology to abnormalities of the haemostatic mechanism. Chronic administration of coagulation factors for prophylaxis and replacement therapy would appear to be just one more step down the pathway illuminated by the biochemists, microbiologists and cell biologists who have preceded the clinicians in this promising area. There is no record of the use of genetically engineered materials in the treatment of coagulation defects, primarily because the body of knowledge and refined techniques have only recently been acquired. For this reason we have had to project developments in other areas onto the problems that exist for the haemostatically compromised patient. In describing the potential usefulness of these technologies, it is difficult to ascertain where the logical projection, from a fully investigated model system, diverges from flights of imaginative fancy. Cloning projects considered overly ambitious and grandiose at the beginning of this decade are already accomplished feats. The feasibility of gene therapy in the mammalian system has been demonstrated, and trade publications now discuss governmental approval for investigative use of this procedure in 1985. Panels of physicians, scientists and even politicians now seriously contemplate and promulgate views and regulations pertaining to the efficacy and ethics of the use of genetic engineering in the treatment of human disease. The haemophilias will certainly be among the first

  1. Monitoring and treatment of coagulation abnormalities in burn patients. an international survey on current practices.

    PubMed

    Lavrentieva, A; Depetris, N; Kaimakamis, E; Berardino, M; Stella, M

    2016-09-30

    The magnitude of coagulation abnormalities, and the definition and treatment of coagulopathy in burn patients are inadequately understood and continue to be discussed in the literature. We aimed to analyse physicians' views on monitoring and treating coagulation abnormalities in burn patients. A total of 350 questionnaires were distributed electronically to burn ICU physicians. Participation was voluntary and anonymous. Responses were analysed electronically and comparisons were made according to the region of the ICU or the specialty of the physician. Of the 350 questionnaires distributed, 55 (15.7%) were returned. The majority of burn specialists consider sepsis-induced coagulopathy to be the most frequent coagulopathy in burn patients, and 74.5% declare that they do not use any specific definition/scoring system in their department to detect coagulopathy. The majority of specialists (70.8%) use standard coagulation tests. The most frequent indications for plasma transfusion are massive bleeding (32.8%) and Disseminated Intravascular Coagulation syndrome treatment (20%). The main specific factors reported in our study are cryoprecipitate (23.2%) and fibrinogen concentrate (18.9%). 21.1% of respondents state that they do not use any specific coagulation factor substitution in burn patients. Specific coagulation factor substitution is not a routine practice. The low response rate precludes the generalization of our results.

  2. Dust grain coagulation modelling : From discrete to continuous

    NASA Astrophysics Data System (ADS)

    Paruta, P.; Hendrix, T.; Keppens, R.

    2016-07-01

    In molecular clouds, stars are formed from a mixture of gas, plasma and dust particles. The dynamics of this formation is still actively investigated and a study of dust coagulation can help to shed light on this process. Starting from a pre-existing discrete coagulation model, this work aims to mathematically explore its properties and its suitability for numerical validation. The crucial step is in our reinterpretation from its original discrete to a well-defined continuous form, which results in the well-known Smoluchowski coagulation equation. This opens up the possibility of exploiting previous results in order to prove the existence and uniqueness of a mass conserving solution for the evolution of dust grain size distribution. Ultimately, to allow for a more flexible numerical implementation, the problem is rewritten as a non-linear hyperbolic integro-differential equation and solved using a finite volume discretisation. It is demonstrated that there is an exact numerical agreement with the initial discrete model, with improved accuracy. This is of interest for further work on dynamically coupled gas with dust simulations.

  3. International biological standards for coagulation factors and inhibitors.

    PubMed

    Hubbard, Anthony R

    2007-04-01

    The use of international biological standards during the last 30 years has proved extremely successful in promoting global harmonization of estimates between laboratories and methods. Experience has led to the identification of physical criteria essential for standards to be suitable for long-term use. High precision of liquid filling coupled with low residual moisture and oxygen and the use of sealed glass ampoules have been found consistent with homogeneous and stable International Standards (ISs). Most plasma coagulation factors and inhibitors are calibrated in International Units (IU), which are defined as the amount of analyte in 1 mL of normal pooled plasma. Adoption of the IU has provided clarity in the definition of normal and abnormal states and has facilitated dose calculation for replacement therapy. The assay of like-versus-like materials (e.g., concentrate versus concentrate) has been found to improve interlaboratory agreement and there are now both plasma and concentrate ISs available for many coagulation factors and inhibitors. Studies into the assay of recombinant factor VIII have indicated that additional measures, such as modifications to assay methodology, are necessary to reduce interlaboratory variability. This experience may prove valuable in the future, when we have to deal increasingly with the challenges to standardization associated with the products of bioengineering.

  4. A microwave plasma cleaning apparatus

    NASA Technical Reports Server (NTRS)

    Tsai, C. C.; Nelson, W. D.; Schechter, D. E.; Thompson, L. M.; Glover, A. L.

    1995-01-01

    In a microwave electron cyclotron resonance plasma source, reactive plasmas of oxygen and its mixtures of argon have been used for evaluating plasma cleaning technologies. Small aluminum samples (0.95 x 1.9 cm) were coated with thin films (less than or equal to 20 micrometers in thickness) of Shell Vitrea oil and cleaned with reactive plasmas. The discharge parameters, such as gas pressure, magnetic field, substrate biasing, and microwave power, were varied to change cleaning conditions. A mass spectroscopy (or residual gas analyzer) was used to monitor the status of plasma cleaning. Mass loss of the samples after plasma cleaning was measured to estimate cleaning rates. Measured cleaning rates of low-pressure (0.5-m torr) argon/oxygen plasmas were as high as 2.7 micrometers/min. X-ray photoelectron spectroscopy was used to determine cleanliness of the sample surfaces. In this paper, significant results of the plasma cleaning are reported and discussed.

  5. Radiative properties of argon gas puff z-pinch implosions on COBRA

    NASA Astrophysics Data System (ADS)

    Ouart, N. D.; de Grouchy, P. W. L.; Qi, N.; Giuliani, J. L.; Dasgupta, A.; Shelkovenko, T. A.; Pikuz, S. A.; Hammer, D. A.; Kusse, B. R.; Apruzese, J. P.; Clark, R. W.

    2016-10-01

    Spatially resolved and time-integrated x-ray spectroscopy, combined with modeling of the spectra with detailed radiation kinetics and transport, is a powerful method to study the conditions in a hot moving plasma. K-shell argon spectra were measured from gas puff implosions with different center jet masses on the 1 MA COBRA generator at Cornell University. The outer to inner plenum pressures (1 and 3 psia, respectively) were the same for all shots producing an outer to inner mass ratio of 1:1. This paper uses non-local thermodynamic equilibrium kinetic modeling to infer the ion density, electron temperature, K-shell radiating mass, and K-shell powers from stagnating argon gas puff z-pinch implosion. We find that the implosions with a center jet produced bright spot regions of plasma with higher temperature and density than those without a jet.

  6. Thermal evolution of Venus with argon degassing

    NASA Astrophysics Data System (ADS)

    O'Rourke, Joseph G.; Korenaga, Jun

    2015-11-01

    Decades-old measurements of atmospheric and elemental surface composition constrain the history of Venus. In this study, we search for a model featuring continuous evolution in the stagnant-lid regime that predicts the present-day atmospheric mass of radiogenic argon and satisfies the other available constraints. For comparison, we also consider the end-member scenario of a single catastrophic resurfacing event. Thermal evolution simulations are performed that track the mass transport of argon and potassium and include a simple model of upwelling mantle plumes. Sensitivity analyses and linear regression are used to quantify the range of initial conditions that will produce desired values for key model output parameters. Decompression melting of passively upwelling mantle causes considerable mantle processing and crustal growth during the early evolution of Venus. Mantle plumes have negligible effects on recent crustal production, but may be important to local surface features. For a wide range of initial conditions, continuous evolution in the stagnant-lid regime predicts the correct amount of argon degassing, along with the absence of a global magnetic field, crustal and lithosphere thicknesses matching modern estimates, and volcanism consistent with the cratering record. Argon degassing does not uniquely constrain mantle dynamics, but the success of simple stagnant-lid models diminishes the need to invoke dramatic changes like catastrophic resurfacing.

  7. Commissioning of the ATLAS Liquid Argon Calorimeters

    SciTech Connect

    Cooke, Mark S.

    2009-12-17

    A selection of ATLAS liquid argon (LAr) calorimeter commissioning studies is presented. It includes a coherent noise study, a measurement of the quality of the ionization pulse shape prediction, and energy and time reconstruction analyses with cosmic and single beam signals.

  8. Hydrodynamic Simulations of Gaseous Argon Shock Experiments

    NASA Astrophysics Data System (ADS)

    Garcia, Daniel; Dattelbaum, Dana; Goodwin, Peter; Morris, John; Sheffield, Stephen; Burkett, Michael

    2015-06-01

    The lack of published Argon gas shock data motivated an evaluation of the Argon Equation of State (EOS) in gas phase initial density regimes never before reached. In particular, these regimes include initial pressures in the range of 200-500 psi (0.025 - 0.056 g/cc) and initial shock velocities around 0.2 cm/ μs. The objective of the numerical evaluation was to develop a physical understanding of the EOS behavior of shocked and subsequently multiply re-shocked Argon gas initially pressurized to 200-500 psi through Pagosa numerical hydrodynamic simulations utilizing the SESAME equation of state. Pagosa is a Los Alamos National Laboratory 2-D and 3-D Eulerian hydrocode capable of modeling high velocity compressible flow with multiple materials. The approach involved the use of gas gun experiments to evaluate the shock and multiple re-shock behavior of pressurized Argon gas to validate Pagosa simulations and the SESAME EOS. Additionally, the diagnostic capability within the experiments allowed for the EOS to be fully constrained with measured shock velocity, particle velocity and temperature. The simulations demonstrate excellent agreement with the experiments in the shock velocity/particle velocity space, but note unanticipated differences in the ionization front temperatures.

  9. SLD liquid argon calorimeter prototype test results

    SciTech Connect

    Dubois, R.; Eigen, G.; Au, Y.; Sleeman, J.; Breidenbach, M.; Brau, J.; Ludgate, G.A.; Oram, C.J.; Cook, V.; Johnson, J.

    1985-10-01

    The results of the SLD test beam program for the selection of a calorimeter radiator composition within a liquid argon system are described, with emphasis on the study of the use of uranium to obtain equalization of pion and electron responses.

  10. Antiapoptotic activity of argon and xenon.

    PubMed

    Spaggiari, Sabrina; Kepp, Oliver; Rello-Varona, Santiago; Chaba, Kariman; Adjemian, Sandy; Pype, Jan; Galluzzi, Lorenzo; Lemaire, Marc; Kroemer, Guido

    2013-08-15

    Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects.

  11. Does Bicarbonate Correct Coagulation Function Impaired by Acidosis in Swine?

    DTIC Science & Technology

    2006-07-01

    L bicarbonate to a pH of 7.4 (A-Bi, n 6). Blood samples were taken at base - line, 15 minutes after acidosis induction, and 15 minutes after...Behring, Deerfield, IL). Plasma fibrinogen concentra- tion was determined by BCS Coagulation System based on fibrinogen functional activities in the...0.05). Hct decreased from 31 1% to 28 1% in A-LR and from 29 1% to 25 1% in A-Bi (p 0.05). Arterial base excess (BE) dropped from 7.1 0.7

  12. Blood coagulation reactions on nanoscale membrane surfaces

    NASA Astrophysics Data System (ADS)

    Pureza, Vincent S.

    Blood coagulation requires the assembly of several membrane-bound protein complexes composed of regulatory and catalytic subunits. The biomembranes involved in these reactions not only provide a platform for these procoagulant proteins, but can also affect their function. Increased exposure of acidic phospholipids on the outer leaflet of the plasma membrane can dramatically modulate the catalytic efficiencies of such membrane-bound enzymes. Under physiologic conditions, however, these phospholipids spontaneously cluster into a patchwork of membrane microdomains upon which membrane binding proteins may preferentially assemble. As a result, the membrane composition surrounding these proteins is largely unknown. Through the development and use of a nanometer-scale bilayer system that provides rigorous control of the phospholipid membrane environment, I investigated the role of phosphatidylserine, an acidic phospholipid, in the direct vicinity (within nanometers) of two critical membrane-bound procoagulant protein complexes and their respective natural substrates. Here, I present how the assembly and function of the tissue factor˙factor VIIa and factor Va˙factor Xa complexes, the first and final cofactor˙enzyme complexes of the blood clotting cascade, respectively, are mediated by changes in their immediate phospholipid environments.

  13. Inflammation and coagulation in urticaria and angioedema.

    PubMed

    Cugno, Massimo; Asero, Riccardo; Tedeschi, Alberto; Lazzari, Riccardo; Marzano, Angelo V

    2012-09-01

    Urticaria is a skin disease characterised by short-lived surface swellings of the dermis (wheals) frequently accompanied by itching. It is classified as acute or chronic depending on whether the wheal recurrence occurs for less or more than six weeks. Acute urticaria is often due to a hypersensitivity reaction, whereas about 50% of the cases of chronic urticaria are regarded as autoimmune. Urticaria may occur alone or in association with a deeper swelling (angioedema) involving the subcutaneous and/or submucosal tissues, and last from hours to a few days. Angioedema can also develop alone, and may be idiopathic or be caused by allergies, inherited or acquired deficiencies of C1-inhibitor protein, or adverse drug reactions. An interplay between inflammation and coagulation has been proposed as a pathomechanism in urticaria and urticaria-associated angioedema (in which histamine and thrombin are involved), as well as in angioedema due to C1-inhibitor deficiency, which involves various biological systems. An increase in the plasma markers of thrombin generation, fibrinolysis and inflammation has been documented during exacerbations of urticaria and angioedema, with the marker levels decreasing to normal during remission. However, the hypercoagulable state in chronic urticaria and angioedema has not been reported to be associated with any increased risk of thrombosis, although there have been a number of reports of cardiovascular events occurring during episodes of acute urticaria. These observations have provided the rationale for the clinical evaluation of anticoagulant and antifibrinolytic drugs, the efficacy of which has sometimes been demonstrated.

  14. Oxidation inhibits iron-induced blood coagulation.

    PubMed

    Pretorius, Etheresia; Bester, Janette; Vermeulen, Natasha; Lipinski, Boguslaw

    2013-01-01

    Blood coagulation under physiological conditions is activated by thrombin, which converts soluble plasma fibrinogen (FBG) into an insoluble clot. The structure of the enzymatically-generated clot is very characteristic being composed of thick fibrin fibers susceptible to the fibrinolytic degradation. However, in chronic degenerative diseases, such as atherosclerosis, diabetes mellitus, cancer, and neurological disorders, fibrin clots are very different forming dense matted deposits (DMD) that are not effectively removed and thus create a condition known as thrombosis. We have recently shown that trivalent iron (ferric ions) generates hydroxyl radicals, which subsequently convert FBG into abnormal fibrin clots in the form of DMDs. A characteristic feature of DMDs is their remarkable and permanent resistance to the enzymatic degradation. Therefore, in order to prevent thrombotic incidences in the degenerative diseases it is essential to inhibit the iron-induced generation of hydroxyl radicals. This can be achieved by the pretreatment with a direct free radical scavenger (e.g. salicylate), and as shown in this paper by the treatment with oxidizing agents such as hydrogen peroxide, methylene blue, and sodium selenite. Although the actual mechanism of this phenomenon is not yet known, it is possible that hydroxyl radicals are neutralized by their conversion to the molecular oxygen and water, thus inhibiting the formation of dense matted fibrin deposits in human blood.

  15. Fast and interrupted expansion in cyclic void growth in dusty plasma

    NASA Astrophysics Data System (ADS)

    van de Wetering, F. M. J. H.; Brooimans, R. J. C.; Nijdam, S.; Beckers, J.; Kroesen, G. M. W.

    2015-01-01

    Low-pressure acetylene plasmas are able to spontaneously form dust particles. This will result in a dense cloud of solid particles that is levitated in the plasma. The formed particles can grow up to micrometers. We observed a spontaneous interruption in the expansion of the so-called dust void. A dust void is a macroscopic region in the plasma that is free of nanoparticles. The phenomenon is periodical and reproducible. We refer to the expansion interruption as ‘hiccup’. The expanding void is an environment in which a new cycle of dust particle formation can start. At a certain moment in time, this cycle reaches the (sudden) coagulation phase and as a result the void will temporarily shrink. To substantiate this reasoning, the electron density is determined non-intrusively using microwave cavity resonance spectroscopy. Moreover, video imaging of laser light scattering of the dust particles provides their spatial distribution. The emission intensity of a single argon transition is measured similarly. Our results support the aforementioned hypothesis for what happens during the void hiccup. The void dynamics preceding the hiccup are modeled using a simple analytical model for the two dominant forces (ion drag and electric) working on a nanoparticle in a plasma. The model results qualitatively reproduce the measurements.

  16. Emission spectroscopic study on gas-gas interactions in glow discharge plasmas using several binary gas mixtures.

    PubMed

    Wagatsuma, Kazuaki

    2010-01-01

    Emission spectra of constituent gas species from glow discharge plasmas using argon-helium, krypton-helium, argon-krypton, and krypton-argon gas mixtures were analyzed to elucidate collisional energy transfer between these gas species occurring in the plasma. In the argon-helium mixed gas plasma, the enhancement or quenching of particular Ar II lines was observed when helium was added to an argon-matrix glow discharge plasma, meaning that a redistribution in the population among the excited levels could be induced through argon-helium collisions. On the other hand, the krypton-helium plasma showed little change in the emission intensities of Kr II lines when helium was added to a krypton-matrix glow discharge plasma, meaning that energy exchanges between krypton and helium excited species occur inactively. These phenomena are principally because the excitation energy as well as the spin multiplicity between collision partners follow both the energy resonance conditions and the spin conservation rule in collisions of the second kind in the argon-helium system, but not in the krypton-helium system. In the argon-krypton and krypton-argon mixed gas plasmas, significant intensity changes of particular Ar II or Kr II lines could not be found; therefore, there were no dominant channels for energy exchanges between argon and krypton species in the mixed gas plasmas.

  17. 46 CFR 151.50-36 - Argon or nitrogen.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa...

  18. 46 CFR 151.50-36 - Argon or nitrogen.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa...

  19. 46 CFR 151.50-36 - Argon or nitrogen.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa...

  20. 46 CFR 151.50-36 - Argon or nitrogen.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa...

  1. 46 CFR 151.50-36 - Argon or nitrogen.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa...

  2. Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling.

    PubMed

    Le Gall, Sylvain M; Szabo, Roman; Lee, Melody; Kirchhofer, Daniel; Craik, Charles S; Bugge, Thomas H; Camerer, Eric

    2016-06-23

    The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation.

  3. Abnormal factor VIII coagulant antigen in patients with renal dysfunction and in those with disseminated intravascular coagulation.

    PubMed Central

    Weinstein, M J; Chute, L E; Schmitt, G W; Hamburger, R H; Bauer, K A; Troll, J H; Janson, P; Deykin, D

    1985-01-01

    Factor VIII antigen (VIII:CAg) exhibits molecular weight heterogeneity in normal plasma. We have compared the relative quantities of VIII:CAg forms present in normal individuals (n = 22) with VIII:CAg forms in renal dysfunction patients (n = 19) and in patients with disseminated intravascular coagulation (DIC; n = 7). In normal plasma, the predominant VIII: CAg form, detectable by sodium dodecyl sulfate polyacrylamide gel electrophoresis, was of molecular weight 2.4 X 10(5), with minor forms ranging from 8 X 10(4) to 2.6 X 10(5) D. A high proportion of VIII:CAg in renal dysfunction patients, in contrast, was of 1 X 10(5) mol wt. The patients' high 1 X 10(5) mol wt VIII: CAg level correlated with increased concentrations of serum creatinine, F1+2 (a polypeptide released upon prothrombin activation), and with von Willebrand factor. Despite the high proportion of the 1 X 10(5) mol wt VIII:CAg form, which suggests VIII:CAg proteolysis, the ratio of Factor VIII coagulant activity to total VIII:CAg concentration was normal in renal dysfunction patients. These results could be simulated in vitro by thrombin treatment of normal plasma, which yielded similar VIII:CAg gel patterns and Factor VIII coagulant activity to antigen ratios. DIC patients with high F1+2 levels but no evidence of renal dysfunction had an VIII:CAg gel pattern distinct from renal dysfunction patients. DIC patients had elevated concentrations of both the 1 X 10(5) and 8 X 10(4) mol wt VIII:CAg forms. We conclude that an increase in a particular VIII:CAg form correlates with the severity of renal dysfunction. The antigen abnormality may be the result of VIII:CAg proteolysis by a thrombinlike enzyme and/or prolonged retention of proteolyzed VIII:CAg fragments. Images PMID:3932466

  4. CpaA a novel protease from Acinetobacter baumannii clinical isolates deregulates blood coagulation.

    PubMed

    Tilley, Derek; Law, Robert; Warren, Sarah; Samis, John A; Kumar, Ayush

    2014-07-01

    Acinetobacter baumannii is an important nosocomial pathogen that displays high antibiotic resistance. It causes a variety of infections including pneumonias and sepsis which may result in disseminated intravascular coagulation. In this work, we identify and characterize a novel secreted, zinc-dependent, metallo-endopeptidase CpaA (coagulation targeting metallo-endopeptidase of Acinetobacter baumannii) which deregulates human blood coagulation in vitro and thus is likely to contribute to A. baumannii virulence. Three quarters of the clinical isolates tested (n = 16) had the cpaA gene; however, it was absent from two type strains, A. baumannii ATCC 17978 and A. baumannii ATCC 19606. The CpaA protein was purified from one clinical isolate and was able to cleave purified factor (F) V and fibrinogen and reduce the coagulation activity of FV in human plasma. CpaA-treated plasma showed reduced clotting activity in contact pathway-activated partial thromboplastin time (aPTT) assays, but increased clotting activity in tissue factor pathway prothrombin time (PT) assays. A significant portion of clinically relevant A. baumannii isolates secrete a protease which targets and deregulates the coagulation system.

  5. Coagulation factor V(A2440G) causes east Texas bleeding disorder via TFPIα.

    PubMed

    Vincent, Lisa M; Tran, Sinh; Livaja, Ruzica; Bensend, Tracy A; Milewicz, Dianna M; Dahlbäck, Björn

    2013-09-01

    The autosomal dominantly inherited east Texas bleeding disorder is linked to an A2440G variant in exon 13 of the F5 gene. Affected individuals have normal levels of coagulation factor V (FV) activity, but demonstrate inhibition of global coagulation tests. We demonstrated that the A2440G mutation causes upregulation of an alternatively spliced F5 transcript that results in an in-frame deletion of 702 amino acids of the large activation fragment, the B domain. The approximately 250-kDa FV isoform (FV-short), which can be fully activated by thrombin, is present in all A2440G carriers' plasma (n = 16). FV-short inhibits coagulation through an indirect mechanism by forming a complex with tissue factor pathway inhibitor-α (TFPIα), resulting in an approximately 10-fold increase in plasma TFPIα, suggesting that the TFPIα:FV-short complexes are retained in circulation. The TFPIα:FV-short complexes efficiently inhibit thrombin generation of both intrinsic and extrinsic coagulation pathways. These data demonstrate that the east Texas bleeding disorder-associated F5(A2440G) leads to the formation of the TFPIα:FV-short complex, which inhibits activation and propagation of coagulation.

  6. Coagulation factor VA2440G causes east Texas bleeding disorder via TFPIα

    PubMed Central

    Vincent, Lisa M.; Tran, Sinh; Livaja, Ruzica; Bensend, Tracy A.; Milewicz, Dianna M.; Dahlbäck, Björn

    2013-01-01

    The autosomal dominantly inherited east Texas bleeding disorder is linked to an A2440G variant in exon 13 of the F5 gene. Affected individuals have normal levels of coagulation factor V (FV) activity, but demonstrate inhibition of global coagulation tests. We demonstrated that the A2440G mutation causes upregulation of an alternatively spliced F5 transcript that results in an in-frame deletion of 702 amino acids of the large activation fragment, the B domain. The approximately 250-kDa FV isoform (FV-short), which can be fully activated by thrombin, is present in all A2440G carriers’ plasma (n = 16). FV-short inhibits coagulation through an indirect mechanism by forming a complex with tissue factor pathway inhibitor-α (TFPIα), resulting in an approximately 10-fold increase in plasma TFPIα, suggesting that the TFPIα:FV-short complexes are retained in circulation. The TFPIα:FV-short complexes efficiently inhibit thrombin generation of both intrinsic and extrinsic coagulation pathways. These data demonstrate that the east Texas bleeding disorder–associated F5A2440G leads to the formation of the TFPIα:FV-short complex, which inhibits activation and propagation of coagulation. PMID:23979162

  7. Virus inactivation in aluminum and polyaluminum coagulation.

    PubMed

    Matsui, Yoshihiko; Matsushita, Taku; Sakuma, Satoru; Gojo, Takahito; Mamiya, Teppei; Suzuoki, Hiroshi; Inoue, Takanobu

    2003-11-15

    Inorganic aluminum salts, such as aluminum sulfate, are coagulants that cause small particles, such as bacteria and viruses as well as inorganic particles, to destabilize and combine into larger aggregates. In this investigation, batch coagulation treatments of water samples spiked with Qbeta, MS2, T4, and P1 viruses were conducted with four different aluminum coagulants. The total infectious virus concentration in the suspension of floc particles that eventually formed by dosing with coagulant was measured after the floc particles were dissolved by raising the pH with an alkaline beef extract solution. The virus concentrations were extremely reduced after the water samples were dosed with aluminum coagulants. Viruses mixed with and adsorbed onto preformed aluminum hydroxide floc were, however, completely recovered after the floc dissolution. These results indicated that the aluminum coagulation process inactivates viruses. Virucidal activity was most prominent with the prehydrolyzed aluminum salt coagulant, polyaluminum chloride (PACl). Virucidal activity was lower in river water than in ultrapure water--natural organic matter in the river water depressed the virucidal activity. Mechanisms and kinetics of the virus inactivation were discussed. Our results suggest that intermediate polymers formed during hydrolysis of the aluminum coagulants sorbed strongly to viruses, either rendering them inactive or preventing infectivity.

  8. A Numerical Study on Microwave Coagulation Therapy

    DTIC Science & Technology

    2013-01-01

    improvement of therapeutic effect. References [1] P. Prakash, “Theoretical Modeling for Hepatic Microwave Ablation ,” The Open Biomedical...A Numerical Study on Microwave Coagulation Therapy Amy J. Liu † , Hong Zhou * and Wei Kang * Department of Applied Mathematics Naval...is properly cited. Abstract Microwave coagulation therapy is a clinical technique for treating hepatocellular carcinoma (small size liver

  9. [Blood coagulation disorders in oncological patients].

    PubMed

    von Depka Prondzinski, M

    2005-01-01

    Patients with malignancies often experience acute disorders of coagulation. They may manifest as thromboembolism, disseminated intravascular coagulation or a tendency to bleed. Either disorder carries a high rate of complications and a difficult task in diagnosing and treating them. Some complications typical for patients with malignancies are discussed. Among these are tumor associated thrombophilia, acquired von Willebrand's disease, and thrombocytopenia.

  10. Textile wastewater purification through natural coagulants

    NASA Astrophysics Data System (ADS)

    Beltrán-Heredia, J.; Sánchez-Martín, J.; Rodríguez-Sánchez, M. T.

    2011-09-01

    A new coagulant obtained through polymerization of Acacia mearnsii de Wild tannin extract has been characterized in the removal of two dangerous dye pollutants: Alizarin Violet 3R and Palatine Fast Black WAN. This coagulant is lab-synthesized according to the etherification of tannins with glycidyltrimethylammonium chloride and formaldehyde and its performance in dye removal in terms of efficiency was high. Reasonably low coagulant dosages (ca. 50 mg L-1) reaches high capacity levels (around 0.8 for Alizarin Violet 3R and 1.6 for Palatine Fast Black WAN mg dye mg-1 of coagulant) and pH and temperature are not extremely affecting variables. The systems coagulant dyes were successfully modeled by applying the Langmuir hypothesis. q max and b parameters were obtained with an adjusted correlation factor ( r 2) above 0.8.

  11. Immunoassays for diagnosis of coagulation disorders.

    PubMed

    Kappel, A; Ehm, M

    2010-11-01

    Immunoassays play a pivotal role in the clinical laboratory. In the coagulation section of the laboratory, they are used as an aid for diagnosis of deep vein thrombosis or pulmonary embolism, thrombophilia screening, or detection of coagulation factor deficiencies, respectively. Enzyme-linked immunosorbent assay (ELISA) and latex agglutination immunoassay technologies are currently most widely used, while Luminescent Oxygen Channeling Immunoassay (LOCI®) and other chemiluminescence-based immunoassays are emerging technologies for the coagulation laboratory. However, not all immunoassay technologies employed are compatible with the workflow requirements of the coagulation laboratory, and, not all technologies are suitable for detection or quantification of every marker. This review focuses on technical and performance aspects of those immunoassay technologies that are most widely used in the coagulation laboratory, and provides a description of markers that are typically tested by immunoassays.

  12. Atmospheric pressure argon surface discharges propagated in long tubes: physical characterization and application to bio-decontamination

    NASA Astrophysics Data System (ADS)

    Kovalova, Zuzana; Leroy, Magali; Jacobs, Carolyn; Kirkpatrick, Michael J.; Machala, Zdenko; Lopes, Filipa; Laux, Christophe O.; DuBow, Michael S.; Odic, Emmanuel

    2015-11-01

    Pulsed corona discharges propagated in argon (or in argon with added water vapor) at atmospheric pressure on the interior surface of a 49 cm long quartz tube were investigated for the application of surface bio-decontamination. H2O molecule dissociation in the argon plasma generated reactive species (i.e. OH in ground and excited states) and UV emission, which both directly affected bacterial cells. In order to facilitate the evaluation of the contribution of UV radiation, a DNA damage repair defective bacterial strain, Escherichia coli DH-1, was used. Discharge characteristics, including propagation velocity and plasma temperature, were measured. Up to ~5.5 and ~5 log10 reductions were observed for E. coli DH-1 bacteria (from 106 initial load) exposed 2 cm and 44 cm away from the charged electrode, respectively, for a 20 min plasma treatment. The factors contributing to the observed bactericidal effect include desiccation, reactive oxygen species (OH) plus H2O2 accumulation in the liquid phase, and UV-B (and possibly VUV) emission in dry argon. The steady state temperature measured on the quartz tube wall did not exceeded 29 °C the contribution of heating, along with that of H2O2 accumulation, was estimated to be low. The effect of UV-B emission alone or in combination with the other stress factors of the plasma process was examined for different operating conditions.

  13. Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet.

    PubMed

    Wende, Kristian; Williams, Paul; Dalluge, Joe; Gaens, Wouter Van; Aboubakr, Hamada; Bischof, John; von Woedtke, Thomas; Goyal, Sagar M; Weltmann, Klaus-Dieter; Bogaerts, Annemie; Masur, Kai; Bruggeman, Peter J

    2015-06-06

    The mechanism of interaction of cold nonequilibrium plasma jets with mammalian cells in physiologic liquid is reported. The major biological active species produced by an argon RF plasma jet responsible for cell viability reduction are analyzed by experimental results obtained through physical, biological, and chemical diagnostics. This is complemented with chemical kinetics modeling of the plasma source to assess the dominant reactive gas phase species. Different plasma chemistries are obtained by changing the feed gas composition of the cold argon based RF plasma jet from argon, humidified argon (0.27%), to argon/oxygen (1%) and argon/air (1%) at constant power. A minimal consensus physiologic liquid was used, providing isotonic and isohydric conditions and nutrients but is devoid of scavengers or serum constituents. While argon and humidified argon plasma led to the creation of hydrogen peroxide dominated action on the mammalian cells, argon-oxygen and argon-air plasma created a very different biological action and was characterized by trace amounts of hydrogen peroxide only. In particular, for the argon-oxygen (1%), the authors observed a strong negative effect on mammalian cell proliferation and metabolism. This effect was distance dependent and showed a half life time of 30 min in a scavenger free physiologic buffer. Neither catalase and mannitol nor superoxide dismutase could rescue the cell proliferation rate. The strong distance dependency of the effect as well as the low water solubility rules out a major role for ozone and singlet oxygen but suggests a dominant role of atomic oxygen. Experimental results suggest that O reacts with chloride, yielding Cl2(-) or ClO(-). These chlorine species have a limited lifetime under physiologic conditions and therefore show a strong time dependent biological activity. The outcomes are compared with an argon MHz plasma jet (kinpen) to assess the differences between these (at least seemingly) similar plasma sources.

  14. Preferential site occupancy observed in coexpanded argon-krypton clusters

    SciTech Connect

    Lundwall, M.; Bergersen, H.; Lindblad, A.; Oehrwall, G.; Svensson, S.; Bjoerneholm, O.; Tchaplyguine, M.

    2006-10-15

    Free heterogeneous argon-krypton clusters have been produced by coexpansion and investigated by means of x-ray photoelectron spectroscopy. By examining cluster surface and bulk binding energy shifts, relative intensities, and peak widths, we show that in the mixed argon-krypton clusters the krypton atoms favor the bulk and argon atoms are pushed to the surface. Furthermore, we show that krypton atoms in the surface layer occupy high-coordination sites and that heterogeneous argon-krypton clusters produced by coexpansion show the same surface structure as argon host clusters doped with krypton. These observations are supported by site-dependent calculations of chemical shifts.

  15. Plasma surface cleaning using microwave plasmas

    SciTech Connect

    Tsai, C.C.; Haselton, H.H.; Nelson, W.D.; Schechter, D.E.; Thompson, L.M.; Campbell, V.B.; Glover, A.L.; Googin, J.M.

    1993-11-01

    In a microwave electron cyclotron resonance (ECR) plasma source, reactive plasmas of oxygen and its mixture with argon are used for plasma-cleaning experiments. Aluminum test samples (0.95 {times} 1.9 cm) were coated with thin films ({le} 20 {mu}m in thickness) of Shell Vitrea oil and cleaned by using such reactive plasmas. The plasma cleaning was done in various discharge conditions with fixed microwave power, rf power, biased potential, gas pressures (0.5 and 5 mtorr), and operating time up to 35 min. The status of plasma cleaning has been monitored by using mass spectroscopy. Mass loss of the samples after plasma cleaning was measured to estimate cleaning rates. Measured clean rates of low pressure (0.5 mtorr) argon/oxygen plasmas were as high as 2.7 {mu}/min. X-ray photoelectron spectroscopy was used to determine cleanliness of the sample surfaces and confirm the effectiveness of plasma cleaning in achieving atomic levels of surface cleanliness. In this paper, significant results are reported and discussed.

  16. Purification of High Molecular Weight Kininogen and the Role of This Agent in Blood Coagulation

    PubMed Central

    Saito, Hidehiko

    1977-01-01

    Recent studies of individuals with high molecular weight (HMW) kininogen deficiency established the importance of this plasma protein for in vitro initiation of blood coagulation. In the present study, HMW-kininogen was highly purified from human plasma by monitoring its clot-promoting activity, using Fitzgerald trait plasma as a substra