Science.gov

Sample records for argon tpc detectors

  1. Muon-induced background to proton decay in the p →K+ ν decay channel with large underground liquid argon TPC detectors

    NASA Astrophysics Data System (ADS)

    Klinger, J.; Kudryavtsev, V. A.; Richardson, M.; Spooner, N. J. C.

    2015-06-01

    Large liquid argon TPC detector programs such as LBNE and LAGUNA-LBNO will be able to make measurements of the proton lifetime which will outperform Cherenkov detectors in the proton decay channel p →K+ ν. At the large depths which are proposed for such experiments, a non-negligible source of isolated charged kaons may be produced in the showers of cosmogenic muons. We present an estimate of the cosmogenic muon background to proton decay in the p →K+ ν channel. The simulation of muon transport to a depth of 4 km w.e. is performed in the MUSIC framework and the subsequent propagation of muons and secondary particles in the vicinity of a cylindrical 20 kt LAr target is performed using GEANT4. An exposure time of 100 years is considered, with a rate of <0.0012 events/kt/year at 90% CL predicted from our simulations.

  2. MicroBooNE, A Liquid Argon Time Projection Chamber (LArTPC) Neutrino Experiment

    SciTech Connect

    Katori, Teppei

    2011-07-01

    Liquid Argon time projection chamber (LArTPC) is a promising detector technology for future neutrino experiments. MicroBooNE is a upcoming LArTPC neutrino experiment which will be located on-axis of Booster Neutrino Beam (BNB) at Fermilab, USA. The R&D efforts on this detection method and related neutrino interaction measurements are discussed.

  3. TPB-coated light guides for liquid argon TPC light detection systems

    NASA Astrophysics Data System (ADS)

    Ignarra, C. M.

    2013-10-01

    Light detection systems in Liquid Argon Time Projection Chambers (LArTPCs) require the detection of the 128 nm light produced during argon scintillation. Most detectors use Tetraphenyl Butadiene (TPB) to shift the wavelength of the light into a range visible to Photomultiplier Tubes (PMTs). These proceedings summarize characterizations of light-guides coated with a matrix of TPB in UV transmitting acrylic which are more compact than existing LArTPC light collection systems.

  4. Large bulk Micromegas detectors for TPC applications

    NASA Astrophysics Data System (ADS)

    Anvar, S.; Baron, P.; Boyer, M.; Beucher, J.; Calvet, D.; Colas, P.; De La Broise, X.; Delagnes, E.; Delbart, A.; Druillole, F.; Emery, S.; Giganti, C.; Giomataris, I.; Mazzucato, E.; Monmarthe, E.; Nizery, F.; Pierre, F.; Ritou, J.-L.; Sarrat, A.; Zito, M.; Catanesi, M. G.; Radicioni, E.; De Oliveira, R.; Blondel, A.; Di Marco, M.; Ferrere, D.; Perrin, E.; Ravonel, M.; Jover, G.; Lux, T.; Rodriguez, A. Y.; Sanchez, F.; Cervera, A.; Hansen, C.; Monfregola, L.

    2009-04-01

    A large volume TPC will be used in the near future in a variety of experiments including T2K. The bulk Micromegas detector for this TPC is built using a novel production technique particularly suited for compact, thin and robust low mass detectors. The capability to pave a large surface with a simple mounting solution and small dead space is of particular interest for these applications. We have built several large bulk Micromegas detectors ( 36×34 cm2) and we have tested one in the former HARP field cage with a magnetic field. Prototypes cards of the T2K front end electronics, based on the AFTER ASIC chip, have been used in this TPC test for the first time. Cosmic ray data have been acquired in a variety of experimental conditions. Good detector performances, space point resolution and energy loss measurement have been achieved.

  5. Bulk micromegas detectors for large TPC applications

    NASA Astrophysics Data System (ADS)

    Bouchez, J.; Burke, D. R.; Cavata, Ch.; Colas, P.; De La Broise, X.; Delbart, A.; Giganon, A.; Giomataris, I.; Graffin, P.; Mols, J.-Ph.; Pierre, F.; Ritou, J.-L.; Sarrat, A.; Virique, E.; Zito, M.; Radicioni, E.; De Oliveira, R.; Dumarchez, J.; Abgrall, N.; Bene, P.; Blondel, A.; Cervera, A.; Ferrere, D.; Maschiocchi, F.; Perrin, E.; Richeux, J.-P.; Schroeter, R.; Jover, G.; Lux, T.; Rodriguez, A. Y.; Sanchez, F.

    2007-05-01

    A large volume TPC will be used in the near future in a variety of experiments including T2K. The bulk Micromegas detector for this TPC is built using a novel production technique particularly suited for compact and robust low mass detectors. The capability to pave a large surface with a simple mounting solution and small dead space between modules is of particular interest for these applications. We have built several large bulk Micromegas detectors (27×26 cm2) and we have tested them in the former HARP field cage setup with a magnetic field. Cosmic ray data have been acquired in a variety of experimental conditions. Good detector performances and space point resolution have been achieved.

  6. Front-End ASIC for Liquid Argon TPC

    SciTech Connect

    De Geronimo, G.; Li, S.; D'Andragora, A.; Nambiar, N.; Rescia, S.; Vernon, E.; Chen, H.; Lanni, F.; Makowiecki, D.; Radeka, V.; Thorn, C.; Yu, B.

    2011-06-15

    We present a front-end application-specific integrated circuit (ASIC) for a wire based time-projection-chamber (TPC) operating in liquid Argon (LAr). The LAr TPC will be used for long baseline neutrino oscillation experiments. The ASIC must provide a low-noise readout of the signals induced on the TPC wires, digitization of those signals at 2 MSamples/s, compression, buffering and multiplexing. A resolution of better than 1000 rms electrons at 200 pF input capacitance for an input range of 300 fC is required, along with low power and operation in LAr (at 87 K). We include the characterization of a commercial technology for operation in the cryogenic environment and the first experimental results on the analog front end. The results demonstrate that complementary metal-oxide semiconductor transistors have lower noise and much improved dc characteristics at LAr temperature. Finally, we introduce the concept of '1/f equivalent' to model the low-frequency component of the noise spectral density, for use in the input metal-oxide semiconductor field-effect transistor optimization.

  7. Bulk Micromegas detectors for large TPC applications

    NASA Astrophysics Data System (ADS)

    Sarrat, A.

    2007-10-01

    A large volume TPC will be used in the near future for a variety of experiments, including T2K and possibly the Linear Collider detector. The bulk Micromegas detector is a novel construction technique suited for building compact and robust low mass detectors. The ability to pave a large surface with a simple mechanical solution and negligible dead space between modules is of particular interest for these applications, offering a simple and low cost alternative to wire chambers. We have built and tested two large bulk detectors (26×27 cm2 with 8×8 mm2 pads) in the former HARP field cage setup at CERN, with cosmic ray data in a magnetic field up to 0.4 T. We present the excellent detector performances, with gains in excess of 104, space point resolution of 700 μm at 1 m drift, and dE/dx resolution of 12%. Improvement on the point resolution with the use of a resistive anode is also discussed.

  8. Optical readout of a two phase liquid argon TPC using CCD camera and THGEMs

    NASA Astrophysics Data System (ADS)

    Mavrokoridis, K.; Ball, F.; Carroll, J.; Lazos, M.; McCormick, K. J.; Smith, N. A.; Touramanis, C.; Walker, J.

    2014-02-01

    This paper presents a preliminary study into the use of CCDs to image secondary scintillation light generated by THick Gas Electron Multipliers (THGEMs) in a two phase LAr TPC. A Sony ICX285AL CCD chip was mounted above a double THGEM in the gas phase of a 40 litre two-phase LAr TPC with the majority of the camera electronics positioned externally via a feedthrough. An Am-241 source was mounted on a rotatable motion feedthrough allowing the positioning of the alpha source either inside or outside of the field cage. Developed for and incorporated into the TPC design was a novel high voltage feedthrough featuring LAr insulation. Furthermore, a range of webcams were tested for operation in cryogenics as an internal detector monitoring tool. Of the range of webcams tested the Microsoft HD-3000 (model no:1456) webcam was found to be superior in terms of noise and lowest operating temperature. In ambient temperature and atmospheric pressure 1 ppm pure argon gas, the THGEM gain was ≈ 1000 and using a 1 msec exposure the CCD captured single alpha tracks. Successful operation of the CCD camera in two-phase cryogenic mode was also achieved. Using a 10 sec exposure a photograph of secondary scintillation light induced by the Am-241 source in LAr has been captured for the first time.

  9. A Large Liquid Argon TPC for Off-axis NuMI Neutrino Physics

    SciTech Connect

    Menary, Scott

    2006-07-11

    The ICARUS collaboration has shown the power of the liquid argon time projection chamber (LArTPC) technique to image events with bubble-chamber-like quality. I will describe a proposed long-baseline {nu}e appearance experiment utilizing a large ({>=} 15 kton1) LArTPC placed off-axis of Fermilab's NuMI {nu}{mu} beam. The total LArTPC program as it presently stands, which includes a number of smaller R and D projects designed to examine the key design issues, will be outlined.

  10. Integrated plan for LArTPC neutrino detectors in the US

    SciTech Connect

    Baller, B.; Fleming, B.; /Fermilab

    2009-11-01

    We present an integrated R&D plan aimed at demonstrating the ability to build a very large Liquid Argon Time Projection Chamber (LArTPC), on a scale suitable for use as a Far Detector for the LBNE neutrino oscillation experiment. This plan adopts current LArTPC R&D-related activities and proposes new ones to address questions that go beyond those being answered by the current efforts. We have employed a risk evaluation strategy to identify questions that can be answered (or risks that can be mitigated) through one or more R&D steps. In summary form, the plan consists of the following pre-existing components: (1) The Materials Test Stand program, now in operation at Fermilab, addressing questions pertaining to maintenance of argon purity; (2) Existing electronics test stands at FNAL and BNL; (3) The Liquid Argon Purity Demonstrator (LAPD) now being assembled at Fermilab; (4) The ArgoNeuT prototype LArTPC, now running in the NuMI beam; (5) The MicroBooNE experiment, proposed as a physics experiment that will advance our understanding of the LArTPC technology, now completing its conceptual design phase; (6) A software development effort that is well integrated across present and planned LArTPC detectors. We are proposing to add to these efforts the following: (1) A membrane cryostat mechanical prototype to evaluate and gain expertise with this technology; (2) An installation and integration prototype, to understand issues pertaining to detector assembly, particularly in an underground environment; (3) A {approx} 5% scale electronics systems test to understand system-wide issues as well as individual component reliability. (4) A calibration test stand that would consist of a small TPC to be exposed to a test beam for calibration studies, relevant for evaluation of physics sensitivities. We have developed a timeline and milestones for achieving these goals as discussed in Section 4. The proposed activities necessary for the final design of LAr20 are complete by CD3 in

  11. Improved TPB-coated light guides for liquid argon TPC light detection systems

    NASA Astrophysics Data System (ADS)

    Moss, Z.; Bugel, L.; Collin, G.; Conrad, J. M.; Jones, B. J. P.; Moon, J.; Toups, M.; Wongjirad, T.

    2015-08-01

    Scintillation light produced in liquid argon (LAr) must be shifted from 128 nm to visible wavelengths in light detection systems used for liquid argon time-projection chambers (LArTPCs). To date, LArTPC light collection systems have employed tetraphenyl butadiene (TPB) coatings on photomultiplier tubes (PMTs) or plates placed in front of the PMTs. Recently, a new approach using TPB-coated light guides was proposed. In this paper, we report on light guides with improved attenuation lengths above 100 cm when measured in air. This is an important step in the development of meter-scale light guides for future LArTPCs. Improvements come from using a new acrylic-based coating, diamond-polished cast UV transmitting acrylic bars, and a hand-dipping technique to coat the bars. We discuss a model for connecting bar response in air to response in liquid argon and compare this to data taken in liquid argon. The good agreement between the prediction of the model and the measured response in liquid argon demonstrates that characterization in air is sufficient for quality control of bar production. This model can be used in simulations of light guides for future experiments.

  12. Argon-39 Background in DUNE Photon Detectors

    NASA Astrophysics Data System (ADS)

    Sinev, Gleb; DUNE Collaboration

    2016-03-01

    The Deep Underground Neutrino Experiment (DUNE) is a 40-kt liquid argon detector that will be constructed 5000 ft underground in the Sanford Underground Research Facility in order to study neutrino and proton decay physics. Instrumenting liquid argon with photon detectors to record scintillation in addition to the ionization signal can significantly improve time and energy resolution of the experiment. Argon produces light with wavelength of 128 nm. The reference design for the photon detectors includes acrylic bars covered in wavelength shifter, where the scintillation light can be captured and reemitted with longer wavelengths, then detected using silicon photomultipliers. Radiological backgrounds may noticeably deteriorate the photon detection system performance, especially for low-energy interactions. A particularly important background comes from argon-39 decays, because argon-39 is present in natural argon that will be used in DUNE and the background rate increases with the size of the experiment. The effect of the argon-39 background has been studied and is presented in this talk.

  13. MicroBooNE and the Road to Large Liquid Argon Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    Karagiorgi, G.

    Liquid Argon Time Projection Chambers (LArTPC's) provide a promising technology for multi-kiloton scale detectors aiming to address-among other pressing particle physics questions-the possibility of short and long baseline electron neutrino and antineutrino appearance. MicroBooNE, a 170 ton LArTPC under construction, is the next necessary step in a phased R&D effort toward construction and stable operation of larger-scale LArTPC's. This development effort also leans heavily on the ArgoNeuT and LAr1 LArTPC R&D experiments at Fermilab. In addition to advancing the LArTPC technology, these projects also provide unique physics opportunities. For example, Micro-BooNE will be located in the Booster Neutrino Beamline at Fermilab, at ∼470 m from neutrino production. Thus, in addition to measuring a suite of low energy neutrino cross sections on argon, MicroBooNE will investigate the anomalous low energy excess seen by the MiniBooNE experiment. Furthermore, the neutrino beam energy and relatively short baseline provide MicroBooNE with sensitivity to high-∼m2 neutrino oscillations. These proceedings summarize the role of the MicroBooNE detector in the US LArTPC R&D program, present its physics reach, and briefly discuss the physics potential of a dedicated near-future neutrino oscillation program at the Booster Neutrino Beamline, as a way to maximize the physics output of the Fermilab LArTPC R&D projects.

  14. Photon Detection System for LBNE Liquid Argon Detector

    NASA Astrophysics Data System (ADS)

    Djurcic, Zelimir

    2014-03-01

    The LBNE (Long-Baseline Neutrino Experiment) is the next generation accelerator-based neutrino oscillation experiment planned in US. The experiment will use a new muon-neutrino beam sent from Fermi National Accelerator Laboratory and will detect electron-neutrino appearance and muon-neutrino disappearance using a Liquid Argon TPC located at a distance of 1300 km at Sanford Underground Research Facility in South Dakota. The primary physics goal of the LBNE is a definitive determination the neutrino mass hierarchy, determination the octant of the neutrino mixing angle theta-23, and precise measurement of CP violation in neutrino oscillation. Neutrino interaction in LAr result in charged particles producing ionization and scintillation light signals. Dedicated photon detection system is under design for use in the LBNE LArTPC far detectors. The baseline design couples wavelength-shifter coated ultraviolet transmitting acrylic to 3 mm2 silicon photomultipliers. By detecting scintillation light we aim to improve event reconstruction capabilities and efficiently separate neutrino events from background. Current status of the system will be described.

  15. The Gap-Tpc

    NASA Astrophysics Data System (ADS)

    Rossi, B.; Anastasio, A.; Boiano, A.; Catalanotti, S.; Cocco, A. G.; Covone, G.; Di Meo, P.; Longo, G.; Vanzanella, A.; Walker, S.; Wang, H.; Wang, Y.; Fiorillo, G.

    2016-02-01

    Several experiments have been conducted worldwide, with the goal of observing low-energy nuclear recoils induced by WIMPs scattering off target nuclei in ultra-sensitive, low-background detectors. In the last few decades noble liquid detectors designed to search for dark matter in the form of WIMPs have been extremely successful in improving their sensitivities and setting the best limits. One of the crucial problems to be faced for the development of large size (multi ton-scale) liquid argon experiments is the lack of reliable and low background cryogenic PMTs: their intrinsic radioactivity, cost, and borderline performance at 87 K rule them out as a possible candidate for photosensors. We propose a brand new concept of liquid argon-based detector for direct dark matter search: the Geiger-mode Avalanche Photodiode Time Projection Chamber (GAP-TPC) optimized in terms of residual radioactivity of the photosensors, energy and spatial resolution, light and charge collection efficiency.

  16. Performance and technical challenges of liquid argon detectors

    SciTech Connect

    Rebel, Brian; /Fermilab

    2011-01-01

    Liquid argon time projection chambers offer the possibility of incredible resolution of particle interactions. This review outlines the ongoing research and development towards the realization of a multi-kiloton scale detector. The ICARUS and ArgoNeuT experiments which make use of liquid argon time projection chamber technology are also described.

  17. New Measurement of ^39Ar in Underground Argon with a Low Background Liquid Argon Detector

    NASA Astrophysics Data System (ADS)

    Xu, Jingke

    2012-03-01

    A low background liquid argon detector has been developed for sensitive measurements of the beta radioactive ^39Ar in argon from underground sources. The measurement is motivated by the need to improve on earlier studies that showed no sign of ^39Ar in certain sources of underground argon, but with a limited sensitivity of ˜ 5% relative to ^39Ar in atmospheric argon[1]. We will report preliminary measurements taken with the low background detector that was commissioned and operated at the Kimballton Underground Research Facility (KURF) in Virginia. A combination of passive and active background reduction techniques resulted in a very low background and a null result with sensitivity to ^39Ar less than 1% of atmospheric. The results confirm that underground argon is well suited for direct detection of dark matter WIMPs. [4pt] [1] D. Acosta-Kane et al., Nucl. Instr. Meth. A 587:46 (2008)

  18. Current and future liquid argon neutrino experiments

    SciTech Connect

    Karagiorgi, Georgia S.

    2015-05-15

    The liquid argon time projection chamber (LArTPC) detector technology provides an opportunity for precision neutrino oscillation measurements, neutrino cross section measurements, and searches for rare processes, such as SuperNova neutrino detection. These proceedings review current and future LArTPC neutrino experiments. Particular focus is paid to the ICARUS, MicroBooNE, LAr1, 2-LArTPC at CERN-SPS, LBNE, and 100 kton at Okinoshima experiments.

  19. TPC Detectors for Neutrino-less Double-Beta Decay and Dark Matter Searches

    NASA Astrophysics Data System (ADS)

    Goldschmidt, Azriel

    2012-10-01

    Time Projection Chambers (TPCs) are increasingly becoming the particle detector technology of choice for rare event searches such as neutrino-less double beta decays and direct WIMP dark matter interactions. At present time, experiments using xenon-filled TPCs are producing some of the best limits for both of these searches. TPCs offer 3D ionization-track imaging as well as calorimetric energy measurements both of which are important handles for the identification of the rare sought-after events while discarding background events due to cosmic rays or due to radioactive decays in the detector or surrounding materials. Particle identification, beyond that provided by the particle range and dE/dx information, is also available from the relative amount of ionization and excitation losses and is essential for the WIMP searches. The contiguous gas or liquid volume at the heart of a TPC is continuously purified to remove contaminants that would otherwise deteriorate the detector performance or produce backgrounds. The fiducial volume for the event searches can be defined after the fact and is typically chosen to be well separated from the physical boundaries of the working gas or liquid to avoid surface events that often are problematic and much harder to reject in solid state detectors. The scalability of the TPC is one of its most important advantages in a field where ever increasing detector masses are required to achieve the required sensitivities. Detectors of O(100) kg scale are in operation and construction and ton to multi-ton detectors are being planned and expected to come on-line in the next years. In this talk I will describe the various types of TPCs in use or planned and will discuss their potential for achieving the exciting goals of discovering the dark matter particle and observing neutrino-less double beta decays.

  20. DETECTORS AND EXPERIMENTAL METHODS: Study on the TU gas for the GEM-TPC detector

    NASA Astrophysics Data System (ADS)

    Qi, Hui-Rong; Li, Yu-Lan; Li, Jin; Gao, Yuan-Ning; Li, Yuan-Jing

    2009-04-01

    In this paper several different working gas mixtures for GEM-TPC were evaluated based on a Garfield simulation. Among them, Ar:CH4:CF4 = 90:7:3 (named herein TU gas) was selected for a detailed study because of its better performance. Some performances of drift velocity, transverse diffusion, spatial resolution and the effective number of electrons in various electric fields were obtained. The performance of a GEM-TPC prototype working in the TU gas was studied and compared with that in Ar:CH4 = 90:10 (P10 gas).

  1. The Liquid Argon Calorimeter system for the SLC Large Detector

    SciTech Connect

    Haller, G.M.; Fox, J.D.; Smith, S.R.

    1988-09-01

    In this paper the physical packaging and the logical organization of the Liquid Argon Calorimeter (LAC) electronics system for the Stanford Linear Collider Large Detector (SLD) at SLAC are described. This system processes signals from approximately 44,000 calorimeter towers and is unusual in that most electronic functions are packaged within the detector itself as opposed to an external electronics support rack. The signal path from the towers in the liquid argon through the vacuum to the outside of the detector is explained. The organization of the control logic, analog electronics, power regulation, analog-to-digital conversion circuits, and fiber optic drivers mounted directly on the detector are described. Redundancy considerations for the electronics and cooling issues are discussed. 12 refs., 5 figs.

  2. Large area liquid argon detectors for interrogation systems

    NASA Astrophysics Data System (ADS)

    Gary, Charles; Kane, Steve; Firestone, Murray I.; Smith, Gregory; Gozani, Tsahi; Brown, Craig; Kwong, John; King, Michael J.; Nikkel, James A.; McKinsey, Dan

    2013-04-01

    Measurements of the efficiency, pulse shape, and energy and time resolution of liquid argon (LAr) detectors are presented. Liquefied noble gas-based (LNbG) detectors have been developed for the detection of dark matter and neutrinoless double-beta decay. However, the same qualities that make LNbG detectors ideal for these applications, namely their size, cost, efficiency, pulse shape discrimination and resolution, make them promising for portal screening and the detection of Special Nuclear Materials (SNM). Two 18-liter prototype detectors were designed, fabricated, and tested, one with pure LAr and the other doped with liquid Xe (LArXe). The LArXe detector presented the better time and energy resolution of 3.3 ns and 20% at 662 KeV, respectively. The total efficiency of the detector was measured to be 35% with 4.5% of the total photons detected in the photopeak.

  3. Large area liquid argon detectors for interrogation systems

    SciTech Connect

    Gary, Charles; Kane, Steve; Firestone, Murray I.; Smith, Gregory; Gozani, Tsahi; Brown, Craig; Kwong, John; King, Michael J.; Nikkel, James A.; McKinsey, Dan

    2013-04-19

    Measurements of the efficiency, pulse shape, and energy and time resolution of liquid argon (LAr) detectors are presented. Liquefied noble gas-based (LNbG) detectors have been developed for the detection of dark matter and neutrinoless double-beta decay. However, the same qualities that make LNbG detectors ideal for these applications, namely their size, cost, efficiency, pulse shape discrimination and resolution, make them promising for portal screening and the detection of Special Nuclear Materials (SNM). Two 18-liter prototype detectors were designed, fabricated, and tested, one with pure LAr and the other doped with liquid Xe (LArXe). The LArXe detector presented the better time and energy resolution of 3.3 ns and 20% at 662 KeV, respectively. The total efficiency of the detector was measured to be 35% with 4.5% of the total photons detected in the photopeak.

  4. TPC-like readout for thermal neutron detection using a GEM-detector

    NASA Astrophysics Data System (ADS)

    Flierl, B.; Hertenberger, R.; Biebel, O.; Zeitelhack, K.

    2016-07-01

    Spatial resolution of less than 200 μm is challenging for thermal neutron detection. A novel readout scheme based on the time-projection-chamber (TPC) concept is used in a gaseous electron multiplier (GEM) detector [1]. Thermal neutrons are captured in a single 2 μm thick Boron-10 converter cathode and secondary Helium and Lithium ions are produced with a combined energy of 2.8 MeV. These ions have sufficient energy to form straight tracks of several mm length. With a time resolving 2-dimensional readout of 400 μm pitch in both directions, based on APV25 chips, the ions are tracked and their respective origin in the cathode converter foil is reconstructed. Using an Ar-CO2 93:7% gas mixture, a resolution of 100 μm (FWHM 235 μm) has been observed with a triple GEM-detector setup at the Garching neutron source (FRMII) for neutrons of 4.7 Å.

  5. First demonstration of imaging cosmic muons in a two-phase Liquid Argon TPC using an EMCCD camera and a THGEM

    NASA Astrophysics Data System (ADS)

    Mavrokoridis, K.; Carroll, J.; McCormick, K. J.; Paudyal, P.; Roberts, A.; Smith, N. A.; Touramanis, C.

    2015-10-01

    Colossal two-phase Liquid Argon Time Projection Chambers (LAr TPCs) are a proposed option for future long-baseline neutrino experiments. This study illustrates the feasibility of using an EMCCD camera to capture light induced by single cosmic events in a two-phase LAr TPC employing a THGEM. An Andor iXon Ultra 897 EMCCD camera was externally mounted via a borosilicate glass viewport on the Liverpool two-phase LAr TPC. The camera successfully captured the secondary scintillation light produced at the THGEM holes that had been induced by cosmic events. The light collection capability of the camera for various EMCCD gains was assessed. For a THGEM gain of 64 and an EMCCD gain of 1000, clear images were captured with an average signal-to-noise ratio of 6. Preliminary 3D reconstruction of straight cosmic muon tracks has been performed by combining the camera images, PMT signals and THGEM charge data. Reconstructed cosmic muon tracks were used to determine THGEM gain and to calibrate the intensity levels of the EMCCD image.

  6. The Deap-Clean 3600 KG Liquid-Argon Detector

    NASA Astrophysics Data System (ADS)

    Jillings, C. J.

    2009-09-01

    DEAP-CLEAN 3600 is a proposed single-phase liquid-argon for WIMP dark matter with a fiducial mass of 1000 kg of a total 3600 kg liquid argon. The principle effort of design is background reduction to an expected background rate < 1 tonne-1 year-1. This paper discusses the DEAP-CLEAN program and then focuses on two important backgrounds. First, energetic electrons from 39Ar in the detector volume are reduced with pulse-shape discrimination. Analysis of the time-distribution of light within events is predicted to remove all electrons from the data sample with leakage < 1 × 10- while rejecting fewer than 50% of nuclear-recoil events. Our current measured limit for electron leakage is < 6 × 10-8 and is statistics limited. Second, surface-alpha contamination from 222Rn daughters that plate out on the acrylic walls is reduced using a novel resurfacing system that operates in vacuum before fill with argon. This resurfacer removes approximately 10 microns of acrylic material and applies a wavelength-shifting compound.

  7. Development of cryogenic installations for large liquid argon neutrino detectors

    NASA Astrophysics Data System (ADS)

    Adamowski, M.; Bremer, J.; Geynisman, M.; Hentschel, S.; Montanari, D.; Nessi, M.; Norris, B.

    2015-12-01

    A proposal for a very large liquid argon (68,000 kg) based neutrino detector is being studied. To validate the design principles and the detector technology, and to gain experience in the development of the cryostats and the cryogenic systems needed for such large experiments, several smaller scale installations will be developed and implemented, at Fermilab and CERN. The cryogenic systems for these installations will be developed, constructed, installed and commissioned by an international engineering team. These installations shall bring the required cooling power under specific conditions to the experiments for the initial cool-down and the long term operation, and shall also guarantee the correct distribution of the cooling power within the cryostats to ensure a homogeneous temperature distribution within the cryostat itself. The cryogenic systems shall also include gaseous and liquid phase argon purification devices to be used to reach and maintain the very stringent purity requirements needed for these installations (parts per trillion of oxygen equivalent contamination). This paper gives an overview of the installations involved in these cryogenic projects, describes the functional demands made to these cryogenic systems and presents the initial studies on which these future cryogenic systems will be based.

  8. Atmospheric tau neutrinos in a multikiloton liquid argon detector

    SciTech Connect

    Conrad, Janet; Gouvea, Andre de; Shalgar, Shashank; Spitz, Joshua

    2010-11-01

    An ultralarge liquid argon time projection chamber based neutrino detector will have the uncommon ability to detect atmospheric {nu}{sub {tau}}/{nu}{tau} events. This paper discusses the most promising modes for identifying charged current {nu}{sub {tau}}/{nu}{tau}, and shows that, with simple kinematic cuts, {approx}30 {nu}{sub {tau}}+{nu}{tau} interactions can be isolated in a 100 kt{center_dot}yr exposure, with greater than 4{sigma} significance. This sample is sufficient to perform flux-averaged total cross-section and cross-section shape parametrization measurements--the first steps toward using {nu}{sub {tau}}/{nu}{tau} to search for physics beyond the standard model.

  9. Liquid argon Time Projection Chamber

    SciTech Connect

    Doe, P.J.; Mahler, H.J.; Chen, H.H.

    1984-01-01

    The principal features of the liquid argon TPC are outlined and the status of development efforts, particularly at UCI, are discussed. Technical problems associated with liquid TPC's are: the liquid must be maintained at a high level of purity to enable long distance drifting of ionization electrons, and the signal size is small due to the absence of practical charge multiplication as found in gas chambers. These problems have been largely resolved in studies using small (1 to 100 l) detectors, thus allowing a realistic consideration of the physics potential of such devices.

  10. Study of pion photo-production using a TPC detector to determine beam asymmetries from polarized HD

    NASA Astrophysics Data System (ADS)

    Kizilgul, Serdar A.

    The Laser Electron Gamma Source facility (LEGS) provides intense, polarized, tagged gamma-ray beams by Compton backscattering laser light from relativistic electrons circulating in the X-Ray storage ring of the NSLS at BNL, Upton, NY. A series of double-polarization experiments (beam and target) has been completed to study the helicity structure of the nucleon. Neutral-pion measurements were completed in 2005 by using the Spin ASYmmetry detector system (SASY) which covers a large solid angle and allows for detection of a large range of neutral pions. Charged-pion experiments were completed in 2006. This new experiment yields data on the beam asymmetry Sigma for a polarized Hydrogen Deuterium (HD) target from the 2006 data. A Time Projection Chamber (TPC), surrounded by two-Tesla magnet, was built and incorporated into SASY to identify the pion charge and so separate neutron and proton reactions. The TPC provides snap-shots of ionizing tracks of particles produced by 300-422 MeV polarized photons on a polarized HD target. A polarized HD target was developed and used in these experiments.

  11. The fissionTPC

    NASA Astrophysics Data System (ADS)

    Heffner, Mike

    2014-03-01

    A new instument to study fission, called the fission TPC, has been constructed to make high accuracy measurements of neutron induced fission cross-sections of the major actinides. Most of the cross sections have been measured over the last 60 years, although improvements in the accuracy of the data appear unlikely with the current technology. A potential breakthrough is the deployment of the Time Projection Chamber (TPC) which was developed within the particle physics community. The NIFFTE collaboration, a group of 7 universities and 4 national laboratories, has undertaken the task of building the first TPC for this purpose. In this talk I will present the fission TPC design, challenges that had to be addressed, and the performance of the detector.

  12. Simultaneous operation of a liquid argon detector as bubble chamber and calorimeter

    NASA Astrophysics Data System (ADS)

    Berset, J. C.; Burns, M.; Harigel, G.; Lindsay, J.; Linser, G.; Schenk, F.

    1982-12-01

    The first successful operation of a new detector, filled with liquid argon is described. It can be used simultaneously as bubble chamber and calorimeter, and may find interesting applications at high-energy accelerators.

  13. Development of a µ-TPC detector as a standard instrument for low-energy neutron field characterisation.

    PubMed

    Maire, D; Billard, J; Bosson, G; Bourrion, O; Guillaudin, O; Lamblin, J; Lebreton, L; Mayet, F; Médard, J; Muraz, J F; Richer, J P; Riffard, Q; Santos, D

    2014-10-01

    In order to measure the energy and fluence of neutron fields, in the energy range of 8 to 1 MeV, a new primary standard is being developed at the Institute for Radioprotection and Nuclear Safety (IRSN). This project, Micro Time Projection Chamber (µ-TPC), carried out in collaboration with the Laboratoire de Physqique Subatomique et de Cosmologie (LPSC), is based on the nucleus recoil detector principle. The measurement strategy requires track reconstruction of recoiling nuclei down to a few kiloelectronvolts, which can be achieved using a micro-pattern gaseous detector. A gas mixture, mainly isobutane, is used as an n-p converter to detect neutrons within the detection volume. Then electrons, coming from the ionisation of the gas by the proton recoil, are collected by the pixelised anode (2D projection). A self-triggered electronics system is able to perform the anode readout at a 50-MHz frequency in order to give the third dimension of the track. Then, the scattering angle is deduced from this track using algorithms. The charge collection leads to the proton energy, taking into account the ionisation quenching factor. This article emphasises the neutron energy measurements of a monoenergetic neutron field produced at 127 keV. The fluence measurement is not shown in this article. The measurements are compared with Monte Carlo simulations using realistic neutron fields and simulations of the detector response. The discrepancy between experiments and simulations is 5 keV mainly due to the calibration uncertainties of 10 %. PMID:24594906

  14. Extreme argon purity in a large, non-evacuated cryostat

    SciTech Connect

    Tope, Terry; Adamowski, Mark; Carls, B.; Hahn, A.; Jaskierny, W.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Skup, E.; Stancari, M.; Yang, T.

    2014-01-29

    Liquid Argon Time Projection Chambers (LArTPCs) show promise as scalable devices for the large detectors needed for long-baseline neutrino oscillation physics. Over the last several years at Fermilab a staged approach to developing the technology for large detectors has been developed. The TPC detectors require ultra-pure liquid argon with respect to electronegative contaminants such as oxygen and water. The tolerable electronegative contamination level may be as pure as 60 parts per trillion of oxygen. Three liquid argon cryostats operated at Fermilab have achieved the extreme purity required by TPCs. These three cryostats used evacuation to remove atmospheric contaminants as the first purification step prior to filling with liquid argon. Future physics experiments may require very large detectors with tens of kilotonnes of liquid argon mass. The capability to evacuate such large cryostats adds significant cost to the cryostat itself in addition to the cost of a large scale vacuum pumping system. This paper describes a 30 ton liquid argon cryostat at Fermilab which uses purging to remove atmospheric contaminants instead of evacuation as the first purification step. This cryostat has achieved electronegative contamination levels better than 60 parts per trillion of oxygen equivalent. The results of this liquid argon purity demonstration will strongly influence the design of future TPC cryostats.

  15. Photodegradation mechanisms of tetraphenyl butadiene coatings for liquid argon detectors

    NASA Astrophysics Data System (ADS)

    Jones, B. J. P.; VanGemert, J. K.; Conrad, J. M.; Pla-Dalmau, A.

    2013-01-01

    We report on studies of degradation mechanisms of tetraphenyl butadiene (TPB) coatings of the type used in neutrino and dark matter liquid argon experiments. Using gas chromatography coupled to mass spectrometry we have detected the ultraviolet-blocking impurity benzophenone. We monitored the drop in performance and increase of benzophenone concentration in TPB plates with exposure to ultraviolet (UV) light, and demonstrate the correlation between these two variables. Based on the presence and initially exponential increase in the concentration of benzophenone observed, we propose that TPB degradation is a free radical-mediated photooxidation reaction, which is subsequently confirmed by displaying delayed degradation using a free radical inhibitor. Finally we show that the performance of wavelength-shifting coatings of the type envisioned for the LBNE experiment can be improved by 10-20%, with significantly delayed UV degradation, by using a 20% admixture of 4-tert-Butylcatechol.

  16. Pad TPC

    SciTech Connect

    Hilke, H.J.

    1984-01-01

    A new kind of TPC is described, in which no sense wires exist but gas amplification is obtained from a single parallel gap. A mesh separates the drift volume from the amplifying gap. The anode is segmented into circular rows of narrow pads for rphi measurement by centroid finding and into wide circular pads for dE/dx sampling. The expected advantages of this technique are: better, track angle independent rphi resolution (no need for wire pulse height corrections); better two-track separation if more electronic channels can be afforded; less dead space from frame structures; reduced positive feedback and slower chamber deterioration by deposit formation on the anode. Very tight construction tolerances are the principle drawback. The properties of the Pad TPC are discussed in view of large scale construction and first test results are presented.

  17. Designs of Large Liquid Argon TPCs - from MicroBooNE to LBNE LAr40

    NASA Astrophysics Data System (ADS)

    Yu, B.; Makowiecki, D. S.; Mahler, G. J.; Radeka, V.; Thorn, C.; Baller, B.; Jostlein, H.; Fleming, B. T.

    Liquid argon time projection chamber (LArTPC) is a unique technology well suited for large scale detectors of neutrinos and other rare processes. Its combination of millimeter scale 3D precision particle tracking and calorimetry with good dE/dx resolution provide excellent efficiency of particle identification and background rejection. MicroBooNE is a LArTPC about to enter its final design phase and is scheduled for construction in 2012. Its active volume contains 86 ton of LAr. It has a 2.6m drift distance, 8256 sense wires connected to cold CMOS analog front-end electronics. Most of the TPC design features improve upon existing tried and true techniques. The LAr40 is one of the two far detector options under consideration for the Long Baseline Neutrino Experiment (LBNE). Its conceptual design has 40 kton active liquid argon mass, to be installed underground at a moderate depth. Due to its large scale, and underground siting, great emphasis was placed on the detector cost and reliability. A modular TPC design is the key to achieve these goals. The LAr40 consists of two 20 kton detectors in one underground cavern. Each detector is in turn constructed from an array of TPC modules. Innovative concepts enable the modules to be tiled with minimal dead space. An overview of both detectors is presented. The designs of key elements in these two TPCs are described in detail.

  18. A study of the electron image due to ionizing events in a two-dimensional liquid argon TPC with a 24 cm drift gap

    NASA Astrophysics Data System (ADS)

    Bonetti, S.; Braggiotti, A.; Buckley, E.; Campanella, M.; Carugno, G.; Cecchet, G.; Cennini, P.; Centro, S.; Ciocio, A.; Cittolin, S.; Dainese, B.; Ferro-Luzzi, M.; Gasparini, F.; Gonidec, A.; Manfredi, P. F.; Meroni, E.; Muñoz, R.; Perreau, J.-M.; Pietropaolo, F.; Ptohos, F.; Ragusa, F.; Rossi, P.; Rubbia, C.; Schinzel, D.; Schmidt, W. F.; Seidl, W.

    1990-01-01

    We have tested a liquid argon time projection chamber with a novel wire configuration based on electrostatic focussing which allows the realization of a nondestructive detection of the electron image produced by ionizing events. The chamber was tested in a 5 GeV pion beam at the CERN proton synchrotron. The measured pulse shapes at both 200 V/cm and 500 V/cm were in very good agreement with the expected shapes, calculated taking into account the electron lifetime, the response of the electronics and the longitudinal diffusion of the electron cloud. The measured electron drift velocity was in good agreement with the results of other workers as well as with our previous measurements. We have also analysed a sample of events containing delta rays in order to study the behaviour of low-energy electrons in the liquid argon. We find that for electron energies greater than 5 MeV the measured energy spectrum agrees very well with the predicted spectrum after corrections for acceptance and energy loss, hence demonstrating the feasibility of recognizing low-energy electrons in liquid argon.

  19. Calibration of liquid argon and neon detectors with {sup 83}Kr{sup m}

    SciTech Connect

    Lippincott, W. H.; Cahn, S. B.; Kastens, L. W.; McKinsey, D. N.; Nikkel, J. A.; Gastler, D.; Kearns, E.

    2010-04-15

    We report results from tests of {sup 83}Kr{sup m} as a calibration source in liquid argon and liquid neon. {sup 83}Kr{sup m} atoms are produced in the decay of {sup 83}Rb, and a clear {sup 83}Kr{sup m} scintillation peak at 41.5 keV appears in both liquids when filling our detector through zeolite coated with {sup 83}Rb. Based on this scintillation peak, we observe 6.0 photoelectrons/keV in liquid argon with a resolution of 8.2% (sigma/E) and 3.0 photoelectrons/keV in liquid neon with a resolution of 19% (sigma/E). The observed peak intensity subsequently decays with the {sup 83}Kr{sup m} half-life after stopping the fill, and we find evidence that the spatial location of {sup 83}Kr{sup m} atoms in the chamber can be resolved. {sup 83}Kr{sup m} will be a useful calibration source for liquid argon, neon dark matter, and solar neutrino detectors.

  20. Use of direct current argon plasma as a detector in gel filtration chromatography of biological fluids

    NASA Astrophysics Data System (ADS)

    Gardiner, P. E.; Brätter, P.; Negretti, Virginia E.; Schulze, G.

    A direct-current argon plasma spectrometer has been interfaced with a gel filtration chromatography column to serve as a multi-element-specific detector. This analytical system was used to speciate protein-bound copper, iron, and zinc in serum and intravenous infusion fluids. The operating parameters of the direct current argon plasma including instrumental drift, detection limits, effect of background levels on the calibration graphs. and accuracy were optimized. Calibrations had to be repeated every hour to compensate for instrumental drift. The detection limits of this system (3.2, 3.9 and 9.3 μg l -1 for copper, iron and zinc, respectively) are adequate for the determination of most species containing those elements in the column effluent.

  1. A cryogenic monitor system for the Liquid Argon Calorimeter in the SLD detector

    SciTech Connect

    Fox, M.J.; Fox, J.D.

    1988-10-01

    This paper describes the monitoring electronics system design for the Liquid Argon Calorimeter (LAC) portion of the SLD detector. This system measures temperatures and liquid levels inside the LAC cryostat and transfers the results over a fiber-optic serial link to an external monitoring computer. System requirements, unique design constraints, and detailed analog, digital and software designs are presented. Fault tolerance and the requirement for a single design to work in several different operating environments are discussed. 4 refs., 3 figs., 1 tab.

  2. GLADE Global Liquid Argon Detector Experiment: a letter of intent to FNAL

    SciTech Connect

    Thomas, Jennifer

    2012-05-13

    The recent measurements of the {theta}{sub 13} mixing angle, which controls the observable size of any CP violation effects, open a window of opportunity to take advantage of the world's most powerful existing neutrino beam together with recent successes in development of the ultimate detector technology for the detection of electron neutrinos : a liquid argon (LAr) time projection chamber. During this proposed project a 5kt LAr detector (GLADE) will be developed by European groups to be put in a cryostat in the NuMI neutrino beam at Fermi National Accelerator Laboratory in the US and will start taking data in 3-5 years time to address the neutrino mass ordering. The successful fruition of this project, along with nominal exposure at NO{nu}A and T2K, together with information from double beta decay experiments could ascertain that neutrinos are Dirac particles in the next decade.

  3. Performance of the electronics for the Liquid Argon Calorimeter system of the SLC large detector

    SciTech Connect

    Vella, E.; Abt, I.; Haller, G.M.; Honma, A.

    1988-10-01

    Results of performance tests on electronics for the Liquid Argon Calorimeter (LAC) for the SLD experiment at SLAC are presented. The behavior of a sub-unit called a ''tophat,'' which processes 720 detector signals, is described. The electronics consists of charge sensitive preamplifiers, analog memories, A/D converters, and associated control and readout circuitry. An internal charge injection system is used to calibrate the overall response of the devices. Linearity is better than 1% of 0--28 pC charge at the input of the amplifiers. Noise (expressed as equivalent input charge) is less than 3000 electrons at a shaping time of 4 ..mu..s, with a slope of 2600 e/sup /minus///nF. Crosstalk to adjacent channels is less than 0.5%. The power consumption at a duty cycle of 13% is 61 W. 3 refs., 7 figs.

  4. Performance of the electronics for the liquid argon calorimeter system of the SLC large detector

    SciTech Connect

    Vella, E.; Abt, I.; Haller, G.M.; Honma, A.

    1989-02-01

    Results of performance tests on electrons for the Liquid Argon Calorimeter (LAC) for the SLD experiment at SLAC are presented. The behavior of a sub-unit called a ''tophat,'' which processes 720 detector signals, is described. The electronics consists of charge sensitive preamplifiers, analog memories , A/D converters, and associated control and readout circuitry. An internal charge injection system is used to calibrate the overall response of the devices. Linearity is better than 1% for 0-28 pC charge at the input of the amplifiers. Noise (expressed as equivalent input charge) is less than 3,000 electrons at a shaping time of 4 ..mu..s, with a slope of 2,600 e/sup -//nF. Crosstalk to adjacent channels is less than 0.5%. The power consumption at a duty cycle of 13% is 61 W.

  5. SN-detection in LAr-TPC and the quest for (ν-Ar) cross sections

    SciTech Connect

    Cavanna, F.

    2015-05-15

    Neutrino-nucleus cross sections are of relevance to supernova astrophysics. These cross-sections can be grouped into three categories, those that affect supernova dynamics, supernova nucleosynthesis, and terrestrial supernova neutrino detection, each of which would benefit from experimental study. In this report only the relevance of an accurate knowledge of neutrino-target nucleus cross sections for SN detection will be discussed, in particular for the case of Argon, the active target material of LAr-TPC detectors currently under construction or proposed for future very massive underground experiments.

  6. Photodiode radiation hardness, lyman-alpha emitting galaxies and photon detection in liquid argon neutrino detectors

    NASA Astrophysics Data System (ADS)

    Baptista, Brian

    My dissertation is comprised of three projects: 1) studies of Lyman-alpha Emitting galaxies (LAEs), 2) radiation hardness studies of InGaAs photodiodes (PDs), and 3) scintillation photon detection in liquid argon (LAr) neutrino detectors. I began work on the project that has now become WFIRST, developing a science case that would use WFIRST after launch for the observation of LAEs. The radiation hardness of PDs was as an effort to support the WFIRST calibration team. When WFIRST was significantly delayed, I joined an R&D effort that applied my skills to work on photon detection in LAr neutrino detectors. I report results on a broadband selection method developed to detect high equivalent width (EW) LAEs. Using photometry from the CFHT-Legacy Survey Deep 2 and 3 fields, I have spectroscopically confirmed 63 z=2.5-3.5 LAEs using the WIYN/Hydra spectrograph. Using UV continuum-fitting techniques I computed properties such as EWs, internal reddening and star formation rates. 62 of my LAEs show evidence to be normal dust-free LAEs. Second, I present an investigation into the effects of ionizing proton radiation on commercial off-the-shelf InGaAs PDs. I developed a monochromator-based test apparatus that utilized NIST-calibrated reference PDs. I tested the PDs for changes to their dark current, relative responsivity as a function of wavelength, and absolute responsivity. I irradiated the test PDs using 30, 52, and 98 MeV protons at the IU Cyclotron Facility. I found the InGaAs PDs showed increased dark current as the fluence increased with no evidence of broadband response degradation at the fluences expected at an L2 orbit and a 10-year mission lifetime. Finally, I detail my efforts on technology development of both optical detector technologies and waveshifting light guide construction for LAr vacuum UV scintillation light. Cryogenic neutrino detectors use photon detection for both accelerator based science and for SNe neutrino detection and proton decay. I have

  7. Front end electronics for the STAR TPC

    SciTech Connect

    Klein, S.R.; Barale, P.; Beuville, E.

    1995-10-01

    The Solenoidal Tracker at RHIC (STAR) is a large acceptance detector now being built to study high energy heavy ion collisions. It detects charged particles with a large time projection chamber. The 136,600 TPC pads are instrumented with waveform digitizers, implemented in custom low noise preamplifier/shaper and switched capacitor array/ADCs ICs. The system is highly integrated with all analog functions mounted on small cards that plug into the TPC. Detector mounted readout boards multiplex data from 1,152 channels onto a 1.5 Gbit/sec fiber optic link to the data acquisition system.

  8. PERFORMANCE OF THE LEAD/LIQUID ARGON SHOWER COUNTER SYSTEM OF THE MARK II DETECTOR AT SPEAR

    SciTech Connect

    Abrams, G.S.; Blocker, C.A.; Briggs, D.D.; Carithers, W.C.; Dieterle, W.E.; Eaton, M.W.; Lankford, A.J.; Pang, C.Y.; Vella, E.N.; Breidenbach, M.; Dorfan, J.M.; Hanson, G.; Hitlin, D.G.; Jenni, P.; Luth, V.

    1980-05-01

    The shower counter system of the SLAC-LBL Mark II detector is a large lead/liquid argon system of the type pioneered by Willis and Radekal; however, it differs in most details and is much larger than other such detectors currently in operation, It contains, for example, 8000 liters of liquid argon and 3000 channels of low noise electronics, which is about eight times the size of the system of Willis et al. in the CERN ISR. This paper reports, with little reference to design, on the operation and performance of the Mark II system during approximately a year and a half of operation at the Stanford Linear Accelerator Center's e{sup +}-e{sup -} facility, SPEAR. The design and construction of the system have previously been described and a detailed discussion of all aspects -- design, construction, operation, and performance -- is in preparation.

  9. A steerable UV laser system for the calibration of liquid argon time projection chambers

    NASA Astrophysics Data System (ADS)

    Ereditato, A.; Kreslo, I.; Lüthi, M.; von Rohr, C. Rudolf; Schenk, M.; Strauss, T.; Weber, M.; Zeller, M.

    2014-11-01

    A number of liquid argon time projection chambers (LAr TPCs) are being built or are proposed for neutrino experiments on long- and short baseline beams. For these detectors, a distortion in the drift field due to geometrical or physics reasons can affect the reconstruction of the events. Depending on the TPC geometry and electric drift field intensity, this distortion could be of the same magnitude as the drift field itself. Recently, we presented a method to calibrate the drift field and correct for these possible distortions. While straight cosmic ray muon tracks could be used for calibration, multiple coulomb scattering and momentum uncertainties allow only a limited resolution. A UV laser instead can create straight ionization tracks in liquid argon, and allows one to map the drift field along different paths in the TPC inner volume. Here we present a UV laser feed-through design with a steerable UV mirror immersed in liquid argon that can point the laser beam at many locations through the TPC. The straight ionization paths are sensitive to drift field distortions, a fit of these distortion to the linear optical path allows to extract the drift field, by using these laser tracks along the whole TPC volume one can obtain a 3D drift field map. The UV laser feed-through assembly is a prototype of the system that will be used for the MicroBooNE experiment at the Fermi National Accelerator Laboratory (FNAL).

  10. On the electric breakdown in liquid argon at centimeter scale

    NASA Astrophysics Data System (ADS)

    Auger, M.; Blatter, A.; Ereditato, A.; Goeldi, D.; Janos, S.; Kreslo, I.; Luethi, M.; von Rohr, C. Rudolf; Strauss, T.; Weber, M. S.

    2016-03-01

    We present a study on the dependence of electric breakdown discharge properties on electrode geometry and the breakdown field in liquid argon near its boiling point. The measurements were performed with a spherical cathode and a planar anode at distances ranging from 0.1 mm to 10.0 mm. A detailed study of the time evolution of the breakdown volt-ampere characteristics was performed for the first time. It revealed a slow streamer development phase in the discharge. The results of a spectroscopic study of the visible light emission of the breakdowns complement the measurements. The light emission from the initial phase of the discharge is attributed to electro-luminescence of liquid argon following a current of drifting electrons. These results contribute to set benchmarks for breakdown-safe design of ionization detectors, such as Liquid Argon Time Projection Chambers (LAr TPC).

  11. MicroBooNE: A New Liquid Argon Time Projection Chamber Experiment

    SciTech Connect

    Soderberg, M.

    2009-10-01

    Liquid Argon Time Projection Chamber detectors are well suited to study neutrino interactions, and are an intriguing option for future massive detectors capable of measuring the parameters that characterize neutrino oscillations. These detectors combine fine-grained tracking with calorimetry, allowing for excellent imaging and particle identification ability. In this talk the details of the MicroBooNE experiment, a 175 ton LArTPC which will be exposed to Fermilab's Booster Neutrino Beamline starting in 2011, will be presented. The ability of MicroBooNE to differentiate electrons from photons gives the experiment unique capabilities in low energy neutrino interaction measurements.

  12. MARLEY: Model of Argon Reaction Low Energy Yields

    NASA Astrophysics Data System (ADS)

    Gardiner, Steven; Bilton, Kyle; Grant, Christopher; Pantic, Emilija; Svoboda, Robert

    2015-10-01

    Core-collapse supernovae are sources of tremendous numbers of neutrinos with energies of up to about 50 MeV. In recent years, there has been growing interest in building detectors that are sensitive to supernova neutrinos. Such detectors can provide information about the initial stages of stellar collapse, early warning signals for light emission from supernovae, and opportunities to study neutrino oscillation physics over astronomical distances. In an effort to enable supernova neutrino detection in next-generation experiments like DUNE, the CAPTAIN collaboration plans to make the first direct measurement of cross sections for neutrino interactions on argon in the supernova energy regime. To help predict neutrino event signatures in the CAPTAIN liquid argon time projection chamber (LArTPC), we have developed a first-of-its-kind Monte Carlo event generator called MARLEY (Model of Argon Reaction Low Energy Yields). This generator attempts to model the complicated nuclear structure dependence of low-energy neutrino-nucleus reactions in sufficient detail for use in LArTPC simulations. In this talk we present some preliminary results calculated using MARLEY and discuss how the current version of the generator may be improved and expanded.

  13. Liquid Argon Time Projection Chamber research and development in the United States

    NASA Astrophysics Data System (ADS)

    Baller, B.; Bromberg, C.; Buchanan, N.; Cavanna, F.; Chen, H.; Church, E.; Gehman, V.; Greenlee, H.; Guardincerri, E.; Jones, B.; Junk, T.; Katori, T.; Kirby, M.; Lang, K.; Loer, B.; Marchionni, A.; Maruyama, T.; Mauger, C.; Menegolli, A.; Montanari, D.; Mufson, S.; Norris, B.; Pordes, S.; Raaf, J.; Rebel, B.; Sanders, R.; Soderberg, M.; St. John, J.; Strauss, T.; Szelc, A.; Tope, T.; Touramanis, C.; Thorn, C.; Urheim, J.; Van de Water, R.; Wang, H.; Yu, B.; Zuckerbrot, M.

    2014-05-01

    A workshop was held at Fermilab on March 20-21, 2013 to discuss the development of liquid argon time projection chambers (LArTPCs) in the United States. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in seven topical plenary sessions: i) Argon Purity, ii) Cryogenics, iii) TPC and High Voltage, iv) Electronics, Data Acquisition and Triggering, v) Scintillation Light Detection, vi) Calibration and Test Beams, and vii) Software. This document summarizes the current efforts in each of these areas. It also highlights areas in LArTPC research and development that are common between neutrino experiments and dark matter experiments.

  14. Performance of a liquid argon time projection chamber exposed to the CERN West Area Neutrino Facility neutrino beam

    SciTech Connect

    Arneodo, F.; Cavanna, F.; Mitri, I. De; Mortari, G. Piano; Benetti, P.; Borio di Tigliole, A.; Calligarich, E.; Cesana, E.; Dolfini, R.; Mauri, F.; Montanari, C.; Rappoldi, A.; Raselli, G. L.; Rubbia, C.; Terrani, M.; Vignoli, C.; Bonesini, M.; Boschetti, B.; Cavalli, D.; Curioni, A.

    2006-12-01

    We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. The data have been collected with a 50 liters ICARUS-like chamber located between the CHORUS and NOMAD experiments at the CERN West Area Neutrino Facility (WANF). We discuss both the instrumental performance of the detector and its capability to identify and reconstruct low-multiplicity neutrino interactions.

  15. Simulations for the NIFFTE High Precision TPC

    NASA Astrophysics Data System (ADS)

    Thornton, Remington

    2010-10-01

    The Neutron Induced Fission Fragment Tracking Experiment has designed a Time Projection Chamber (TPC) to measure neutron induced fission cross-section measurements of the major actinides to sub-1% precision over a wide incident neutron energy range. These measurements are necessary to design the next generation of nuclear power plants. In order to design a TPC capable of making these measurements, a precise simulation was required to ensure better track reconstruction. Using the Geometry And Tracking (Geant4) simulation platform along with standalone code, a complete simulation package has been written. Asynchronous trigger, 3-D charge diffusion, capacitive charge sharing, digitization, random trigger cells, and noise from the electronics have been modeled inside the detector response simulation, along with code that generates bi-products of fission events for Geant4. This talk will discuss the current status and future planned developments of this work including the efforts to make this code reusable for future TPC projects.

  16. CAMAC interface for TPC data-acquisition electronics

    SciTech Connect

    Sidman, S.; Olson, S.; Jared, R.

    1983-06-01

    The Time Projection Chamber (TPC) is a detector used for high-energy physics research at the Stanford PEP Accelerator. TPC requires about 17,000 channels of data acquisition, which samples on command the input to each channel at a 10 MHz rate. This high data rate is made possible by means of Charge Coupled Devices (CCDs), intelligent digitizers, and a sophisticated trigger system. The TPC-CAMAC interface described here was developed to allow experiments of smaller scale than the complete TPC to use the standard data acquisition portion of the TPC electronics, namely the amplifier, CCD and digitizer bins. These three bins, when properly interconnected and controlled by the interface control bin, form a transient digitizer with a depth of 455 samples and a maximum width of 256 channels per bin set.

  17. Simultaneous operation of a test apparatus filled with liquid argon as bubble chamber, calorimeter and scintillation detector: Outlook and possible applications

    NASA Astrophysics Data System (ADS)

    Harigel, Gert G.

    1984-09-01

    Physics motivations for the use of argon as a new bubble chamber liquid are discussed. Results, obtained from a 2.7 1 argon detector in SPS and SC beams at CERN, comprise its track sensitivity to ionizing particles and to a laser beam in the bubble chamber mode, its use as a calorimeter through the collection of free charges in an electric field and the recording of the scintillation light produced by ionizing particles. Various interference phenomena during the simultaneous use of the hybrid properties, as well as purity requirements on the liquid are discussed. Furthermore, nitrogen and argon/nitrogen mixtures were investigated. Applications of our technique for neutrino experiments at TeV accelerators and as vertex detectors are briefly outlined. In-line holography, successfully tested in BEBC, could simplify the optical track recording and improve the resolution in very large detectors.

  18. The darkside multiton detector for the direct dark matter search

    DOE PAGESBeta

    Aalseth, C. E.; Agnes, P.; Alton, A.; Arisaka, K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; et al

    2015-01-01

    Although the existence of dark matter is supported by many evidences, based on astrophysical measurements, its nature is still completely unknown. One major candidate is represented by weakly interacting massive particles (WIMPs), which could in principle be detected through their collisions with ordinary nuclei in a sensitive target, producing observable low-energy (<100 keV) nuclear recoils. The DarkSide program aims at the WIPMs detection using a liquid argon time projection chamber (LAr-TPC). In this paper we quickly review the DarkSide program focusing in particular on the next generation experiment DarkSide-G2, a 3.6-ton LAr-TPC. The different detector components are described as wellmore » as the improvements needed to scale the detector from DarkSide-50 (50 kg LAr-TPC) up to DarkSide-G2. Finally, the preliminary results on background suppression and expected sensitivity are presented.« less

  19. The darkside multiton detector for the direct dark matter search

    SciTech Connect

    Aalseth, C. E.; Agnes, P.; Alton, A.; Arisaka, K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Condon, C.; Crippa, L.; D’Angelo, D.; D’Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Foxe, M.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Hime, A.; Humble, P.; Hungerford, E.; Ianni, Al.; Ianni, An.; Jaffe, D. E.; Jollet, C.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Lissia, M.; Lombardi, P.; Ludhova, L.; Luitz, S.; Lukyachenko, G.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Markov, D.; Martoff, J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Montanari, D.; Nelson, A.; Odrowski, S.; Odrzywolek, A.; Orrell, J. L.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Parsells, B.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Perasso, L.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Recine, K.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, N.; Rossi, B.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smallcomb, M.; Smirnov, O.; Sotnikov, A.; Suvurov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S. E.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Williams, R.; Wojcik, M.; Xu, J.; Yang, C. G.; Yoo, J.; Yu, B.; Zavatarelli, S.; Zhong, W. L.; Zuzel, G.

    2015-01-01

    Although the existence of dark matter is supported by many evidences, based on astrophysical measurements, its nature is still completely unknown. One major candidate is represented by weakly interacting massive particles (WIMPs), which could in principle be detected through their collisions with ordinary nuclei in a sensitive target, producing observable low-energy (<100 keV) nuclear recoils. The DarkSide program aims at the WIPMs detection using a liquid argon time projection chamber (LAr-TPC). In this paper we quickly review the DarkSide program focusing in particular on the next generation experiment DarkSide-G2, a 3.6-ton LAr-TPC. The different detector components are described as well as the improvements needed to scale the detector from DarkSide-50 (50 kg LAr-TPC) up to DarkSide-G2. Finally, the preliminary results on background suppression and expected sensitivity are presented.

  20. Results from the STAR TPC system test

    SciTech Connect

    Betts, W.; Bieser, F.; Bossingham, R.

    1996-12-31

    A system test of various components of the Solenoidal Tracker at RHIC (STAR) detector, operating in concern, has recently come on-line. Communication between a major sub-detector, a sector of the Time Projection Chamber (TPC), and the trigger, data acquisition and slow controls systems has been established, enabling data from cosmic ray muons to be collected. First results from an analysis of the TPC data are presented. These include measurements of system noise, electronic parameters such as amplifier gains and pedestal values, and tracking resolution for cosmic ray muons and laser induced ionization tracks. A discussion on the experience gained in integrating the different components for the system test is also given.

  1. First Tests of a New Fast Waveform Digitizer for PMT Signal Read-out from Liquid Argon Dark Matter Detectors

    NASA Astrophysics Data System (ADS)

    Szelc, A. M.; Canci, N.; Cavanna, F.; Cortopassi, A.; D'Incecco, M.; Mini, G.; Pietropaolo, F.; Romboli, A.; Segreto, E.; Acciarri, R.

    A new generation Waveform Digitizer board as been recently made available on the market by CAEN. The new board CAEN V1751 with 8 Channels per board, 10 bit, 1 GS/s Flash ADC Waveform Digitizer (or 4 channel, 10 bit, 2 GS/s Flash ADC Waveform Digitizer -Dual Edge Sampling mode) with threshold and Auto-Trigger capabilities provides an ideal (relatively low-cost) solution for reading signals from liquid Argon detectors for Dark Matter search equipped with an array of PMTs for the detection of scintillation light. The board was extensively used in real experimental conditions to test its usefulness for possible future uses and to compare it with a state of the art digital oscilloscope. As results, PMT Signal sampling at 1 or 2 GS/s is appropriate for the reconstruction of the fast component of the signal scintillation in Argon (characteristic time of about 4 ns) and the extended dynamic range, after a small customization, allows for the detection of signals in the range of energy needed. The bandwidth is found to be adequate and the intrinsic noise is very low.

  2. Highly integrated electronics for the star TPC

    SciTech Connect

    Arthur, A.A.; Bieser, F.; Hearn, W.; Kleinfelder, S.; Merrick, T.; Millaud, J.; Noggle, T.; Rai, G.; Ritter, H.G.; Wieman, H.

    1991-12-31

    The concept for the STAR TPC front-end electronics is presented and the progress toward the development of a fully integrated solution is described. It is the goal of the R+D program to develop the complete electronics chain for the STAR central TPC detector at RHIC. It is obvious that solutions chosen e.g. for ALEPH are not adequate for the 150000 channels that need to be instrumented for readout. It will be necessary to perform all the signal processing, digitization and multiplexing directly on the detector in order to reduce per channel cost and the amount of cabling necessary to read out the information. We follow the approach chosen by the EOS TPC project, where the readout electronics on the detector consists of an integrated preamplifier, a hybrid shaping amplifier, an integrated switched capacitor array and a highly multiplexed ADC. The STAR electronics will be further integrated so that approximately 16 channels of the preamplifier, the shaper, the analog store and the ADC will be contained in two integrated circuits located directly on the pad plane.

  3. MiniCLEAN-360: A liquid argon/neon dark matter detector

    NASA Astrophysics Data System (ADS)

    Rielage, Keith; DEAP/CLEAN Collaboration

    2008-11-01

    MiniCLEAN-360 utilizes 360 kg of liquid argon to detect the nuclear recoil from WIMP dark matter with a projected cross-section sensitivity of 10-45 cm2. To reach this planned sensitivity, a unique modular design is being developed with a spherical geometry to maximize light collection using PMTs. Pulse shape discrimination techniques separate nuclear recoil signal from the electron recoil backgrounds resulting from the beta decay of 39Ar and Compton scattering of gamma rays. The design allows for the replacement of the target material with liquid neon to examine any signal and backgrounds with a different sensitivity. It also provides research and development for a larger scale low energy solar neutrino experiment using neon (CLEAN: Cryogenic Low Energy Astrophysics with Noble gases) that plans to measure the pp-solar neutrino flux to 1%. Particular attention is being paid to mitigating the background from contamination of surfaces by radon daughters during assembly. The engineering design, radon mitigation plan, and various testing setups are presented. MiniCLEAN-360 anticipates the start of data collection in mid-2009 at SNOLAB in Sudbury, Ontario, Canada.

  4. ALICE TPC commissioning results

    NASA Astrophysics Data System (ADS)

    Larsen, D. T.; Alice Tpc Collaboration

    2010-05-01

    ALICE is a dedicated heavy-ion experiment at CERN LHC aiming to study the properties of the quark-gluon plasma. A lead-lead collision might produce several 10 00 new particles. Detailed study of the event requires precise measurements of the particle tracks. A 90 m3 Time Projection Chamber (TPC) with more than 500 000 read-out pads was built as the main central barrel tracker. Collisions can be recorded at a rate of up to about 1 kHz. The front-end electronics, designed from FPGAs and custom ASICs, performs shaping, amplification, digitisation and digital filtering of the signals. The data are forwarded to DAQ via 216 1.25 Gb/s fibre-optical links. Configuration, control and monitoring is done by an embedded Linux system on the front-end electronics. Before production runs with beam, extensive commissioning using tracks from cosmics and from the laser system as well as clusters from radioactive krypton gas is needed. Extensive results have been obtained with respect to the performance of the TPC including its sub-systems.

  5. Precision calibration of calorimeter electronics in the D0 liquid argon/uranium particle detector

    SciTech Connect

    Huffman, D.L.

    1991-12-01

    The ability to cross calibrate thousands of channels of detector electronics is of prime importance. This paper will describe the system used to deliver and distribute a 300 nanosecond pulse across 50,000 channels of electronics with better than 0.25% difference between channels from a location more than 200 feet away. The system is used for both cross calibration and functionality checking, (i.e., missing channels). Design of a fixed width pulse generator of high stability is presented as a key ingredient in the system`s overall performance. In addition, the design of a controlled impedance distribution system is discussed. 2 refs.

  6. The DarkSide-50 outer detectors

    NASA Astrophysics Data System (ADS)

    Westerdale, S.; Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; D’Angelo, D.; D’Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Foster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hungerford, E. V.; Aldo, Ianni; Andrea, Ianni; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; DSkorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.; The DarkSide Collaboration

    2016-05-01

    DarkSide-50 is a dark matter detection experiment searching for Weakly Interacting Massive Particles (WIMPs), in Gran Sasso National Laboratory. For experiments like DarkSide-50, neutrons are one of the primary backgrounds that can mimic WIMP signals. The experiment consists of three nested detectors: a liquid argon time projection chamber surrounded by two outer detectors. The outermost detector is a 10 m by 11 m cylindrical water Cherenkov detector with 80 PMTs, designed to provide shielding and muon vetoing. Inside the water Cherenkov detector is the 4 m diameter spherical boron-loaded liquid scintillator veto, with a cocktail of pseudocumene, trimethyl borate, and PPO wavelength shifter, designed to provide shielding, neutron vetoing, and in situ measurements of the TPC backgrounds. We present design and performance details of the DarkSide-50 outer detectors.

  7. Depleted Argon from Underground Sources

    SciTech Connect

    Back, H. O.; Galbiati, C.; Goretti, A.; Loer, B.; Montanari, D.; Mosteiro, P.; Alexander, T.; Alton, A.; Rogers, H.; Kendziora, C.; Pordes, S.

    2011-04-27

    Argon is a strong scintillator and an ideal target for Dark Matter detection; however {sup 39}Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in {sup 39}Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO{sub 2} well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO{sub 2}. We first concentrate the argon locally to 3% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation, and then the N{sub 2} and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO{sub 2} facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

  8. Depleted Argon from Underground Sources

    NASA Astrophysics Data System (ADS)

    Back, H. O.; Alexander, T.; Alton, A.; Galbiati, C.; Goretti, A.; Kendziora, C.; Loer, B.; Montanari, D.; Mosteiro, P.; Pordes, S.; Rogers, H.

    2011-04-01

    Argon is a strong scintillator and an ideal target for Dark Matter detection; however 39Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in 39Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO2 well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO2. We first concentrate the argon locally to 3% in an Ar, N2, and He mixture, from the CO2 through chromatographic gas separation, and then the N2 and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO2 facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

  9. Anode-coupled readout for light collection in Liquid Argon TPCs

    NASA Astrophysics Data System (ADS)

    Moss, Z.; Toups, M.; Bugel, L.; Collin, G. H.; Conrad, J. M.

    2016-03-01

    This paper will discuss a new method of signal read-out from photon detectors in ultra-large, underground liquid argon time projection chambers. In this design, the signal from the light collection system is coupled via capacitive plates to the TPC wire-planes. This signal is then read out using the same cabling and electronics as the charge information. This greatly benefits light collection: it eliminates the need for an independent readout, substantially reducing cost; it reduces the number of cables in the vapor region of the TPC that can produce impurities; and it cuts down on the number of feed-throughs in the cryostat wall that can cause heat-leaks and potential points of failure. We present experimental results that demonstrate the sensitivity of a LArTPC wire plane to photon detector signals. We also simulate the effect of a 1 μs shaping time and a 2 MHz sampling rate on these signals in the presence of noise, and find that a single photoelectron timing resolution of ~30 ns can be achieved.

  10. CAPTAIN-Minerνa. Neutrino-Argon Scattering in a Medium-Energy Neutrino Beam

    SciTech Connect

    Mauger, Christopher M.

    2015-10-29

    The NuMI facility at Fermilab is currently providing an extremely intense beam of neutrinos for the NOνA, MINERνA and MINOS+ experiments. By installing the 5-ton CAPTAIN liquid argon TPC in front of the MINERνA detector in the NuMI beamline and combining the data from the CAPTAIN, MINERνA and MINOS+ detectors, a broad program of few-GeV neutrino cross section measurements on argon can be pursued. These measurements will be extremely helpful for future oscillation experiments. By directly comparing the cross sections on argon to MINERνA’s scintillator (CH) target, a new level of precision can be achieved in the measurements of the effects of the nucleus on neutrino interactions. These effects are of interest to not only the particle physics but also the nuclear physics community. This document describes in detail the physics goals of the CAPTAIN-MINERνA experiment, in addition to a first estimate of the technical resources required to install, commission and operate the CAPTAIN detector in front of the MINERVA detector.

  11. Simulation of the transition radiation detection conditions in the ATLAS TRT detector filled with argon and krypton gas mixtures

    SciTech Connect

    Boldyrev, A. S.; Maevskiy, A. S.

    2015-12-15

    Performance of the Transition Radiation Tracker (TRT) at the ATLAS experiment with argon and krypton gas mixtures was simulated. The efficiency of transition radiation registration, which is necessary for electron identification, was estimated along with the electron identification capabilities under such conditions.

  12. Summary of the Second Workshop on Liquid Argon Time Projection Chamber Research and Development in the United States

    DOE PAGESBeta

    Acciarri, R.; Adamowski, M.; Artrip, D.; Baller, B.; Bromberg, C.; Cavanna, F.; B. Carls; Chen, H.; Deptuch, G.; Epprecht, L.; et al

    2015-07-28

    The second workshop to discuss the development of liquid argon time projection chambers (LArTPCs) in the United States was held at Fermilab on July 8-9, 2014. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in six topical plenary sessions: i) Argon Purity and Cryogenics, ii) TPC and High Voltage, iii) Electronics, Data Acquisition and Triggering, iv) Scintillation Light Detection, v) Calibration and Test Beams, and vi) Software. This document summarizes the currentmore » efforts in each of these areas. It primarily focuses on the work in the US, but also highlights work done elsewhere in the world.« less

  13. Summary of the Second Workshop on Liquid Argon Time Projection Chamber Research and Development in the United States

    SciTech Connect

    Acciarri, R.; Adamowski, M.; Artrip, D.; Baller, B.; Bromberg, C.; Cavanna, F.; B. Carls; Chen, H.; Deptuch, G.; Epprecht, L.; Dharmapalan, R.; Foreman, W.; Hahn, A.; Johnson, M.; Jones, B. J.P.; Junk, T.; Lang, K.; Lockwitz, S.; Marchionni, A.; Mauger, C.; Montanari, C.; Mufson, S.; Nessi, M.; Back, H. Olling; Petrillo, G.; Pordes, S.; Raaf, J.; Rebel, B.; Sinins, G.; Soderberg, M.; Spooner, N.; Stancari, M.; Strauss, T.; Terao, K.; Thorn, C.; Tope, T.; Toups, M.; Urheim, J.; Water, R. Van de; Wang, H.; Wasserman, R.; Weber, M.; Whittington, D.; Yang, T.

    2015-07-28

    The second workshop to discuss the development of liquid argon time projection chambers (LArTPCs) in the United States was held at Fermilab on July 8-9, 2014. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in six topical plenary sessions: i) Argon Purity and Cryogenics, ii) TPC and High Voltage, iii) Electronics, Data Acquisition and Triggering, iv) Scintillation Light Detection, v) Calibration and Test Beams, and vi) Software. This document summarizes the current efforts in each of these areas. It primarily focuses on the work in the US, but also highlights work done elsewhere in the world.

  14. Summary of the Second Workshop on Liquid Argon Time Projection Chamber Research and Development in the United States

    SciTech Connect

    Acciarri, R.; et al.

    2015-04-21

    The second workshop to discuss the development of liquid argon time projection chambers (LArTPCs) in the United States was held at Fermilab on July 8-9, 2014. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in six topical plenary sessions: i) Argon Purity and Cryogenics, ii) TPC and High Voltage, iii) Electronics, Data Acquisition and Triggering, iv) Scintillation Light Detection, v) Calibration and Test Beams, and vi) Software. This document summarizes the current efforts in each of these areas. It primarily focuses on the work in the US, but also highlights work done elsewhere in the world.

  15. Summary of the second workshop on liquid argon time projection chamber research and development in the United States

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Adamowski, M.; Artrip, D.; Baller, B.; Bromberg, C.; Cavanna, F.; Carls, B.; Chen, H.; Deptuch, G.; Epprecht, L.; Dharmapalan, R.; Foreman, W.; Hahn, A.; Johnson, M.; Jones, B. J. P.; Junk, T.; Lang, K.; Lockwitz, S.; Marchionni, A.; Mauger, C.; Montanari, C.; Mufson, S.; Nessi, M.; Olling Back, H.; Petrillo, G.; Pordes, S.; Raaf, J.; Rebel, B.; Sinins, G.; Soderberg, M.; Spooner, N. J. C.; Stancari, M.; Strauss, T.; Terao, K.; Thorn, C.; Tope, T.; Toups, M.; Urheim, J.; Van de Water, R.; Wang, H.; Wasserman, R.; Weber, M.; Whittington, D.; Yang, T.

    2015-07-01

    The second workshop to discuss the development of liquid argon time projection chambers (LArTPCs) in the United States was held at Fermilab on July 8-9, 2014. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in six topical plenary sessions: i) Argon Purity and Cryogenics, ii) TPC and High Voltage, iii) Electronics, Data Acquisition and Triggering, iv) Scintillation Light Detection, v) Calibration and Test Beams, and vi) Software. This document summarizes the current efforts in each of these areas. It primarily focuses on the work in the US, but also highlights work done elsewhere in the world.

  16. A continuous read-out TPC for the ALICE upgrade

    NASA Astrophysics Data System (ADS)

    Lippmann, C.

    2016-07-01

    The largest gaseous Time Projection Chamber (TPC) in the world, the ALICE TPC, will be upgraded based on Micro Pattern Gas Detector technology during the second long shutdown of the CERN Large Hadron Collider in 2018/19. The upgraded detector will operate continuously without the use of a triggered gating grid. It will thus be able to read all minimum bias Pb-Pb events that the LHC will deliver at the anticipated peak interaction rate of 50 kHz for the high luminosity heavy-ion era. New read-out electronics will send the continuous data stream to a new online farm at rates up to 1 TByte/s. A fractional ion feedback of below 1% is required to keep distortions due to space charge in the TPC drift volume at a tolerable level. The new read-out chambers will consist of quadruple stacks of Gas Electron Multipliers (GEM), combining GEM foils with a different hole pitch. Other key requirements such as energy resolution and operational stability have to be met as well. A careful optimisation of the performance in terms of all these parameters was achieved during an extensive R&D program. A working point well within the design specifications was identified with an ion backflow of 0.63%, a local energy resolution of 11.3% (sigma) and a discharge probability comparable to that of standard triple GEM detectors.

  17. A large liquid argon time projection chamber for long-baseline, off-axis neutrino oscillation physics with the NuMI beam

    SciTech Connect

    Finley, D.; Jensen, D.; Jostlein, H.; Marchionni, A.; Pordes, S.; Rapidis, P.A.; Bromberg, C.; Lu, C.; McDonald, T.; Gallagher, H.; Mann, A.; Schneps, J.; Cline, D.; Sergiampietri, F.; Wang, H.; Curioni, A.; Fleming, B.T.; Menary, S.; /York U., Canada

    2005-09-01

    Results from neutrino oscillation experiments in the last ten years have revolutionized the field of neutrino physics. While the overall oscillation picture for three neutrinos is now well established and precision measurements of the oscillation parameters are underway, crucial issues remain. In particular, the hierarchy of the neutrino masses, the structure of the neutrino mixing matrix, and, above all, CP violation in the neutrino sector are the primary experimental challenges in upcoming years. A program that utilizes the newly commissioned NuMI neutrino beamline, and its planned upgrades, together with a high-performance, large-mass detector will be in an excellent position to provide decisive answers to these key neutrino physics questions. A Liquid Argon time projection chamber (LArTPC) [2], which combines fine-grained tracking, total absorption calorimetry, and scalability, is well matched for this physics program. The few-millimeter-scale spatial granularity of a LArTPC combined with dE/dx measurements make it a powerful detector for neutrino oscillation physics. Scans of simulated event samples, both directed and blind, have shown that electron identification in {nu}{sub e} charged current interactions can be maintained at an efficiency of 80%. Backgrounds for {nu}{sub e} appearance searches from neutral current events with a {pi}{sup 0} are reduced well below the {approx} 0.5-1.0% {nu}{sub e} contamination of the {nu}{sub {mu}} beam [3]. While the ICARUS collaboration has pioneered this technology and shown its feasibility with successful operation of the T600 (600-ton) LArTPC [4], a detector for off-axis, long-baseline neutrino physics must be many times more massive to compensate for the low event rates. We have a baseline concept [5] based on the ICARUS wire plane structure and commercial methods of argon purification and housed in an industrial liquefied-natural-gas tank. Fifteen to fifty kton liquid argon capacity tanks have been considered. A very

  18. SLD liquid argon calorimeter

    SciTech Connect

    Vella, E.; SLD Collaboration

    1992-10-01

    The liquid argon calorimeter (LAC) of the SLD detector is a parallel plate -- liquid argon sampling calorimeter, used to measure particle energies in Z{sup 0} decays at the Stanford Linear Collider. The LAC module design is based on a unique projective tower structure, in which lead plates and segmented lead tiles serve both as absorbers and electrodes. The LAC front end electronics incorporates several novel features, including extensive multiplexing and optical fiber readout, which take advantage of the low SLC beam crossing frequency. The operational performance of the LAC during the recently completed SLD physics run (which recorded over 10,000 Z{sup 0} events) is discussed.

  19. SLD liquid argon calorimeter

    SciTech Connect

    Vella, E.

    1992-10-01

    The liquid argon calorimeter (LAC) of the SLD detector is a parallel plate -- liquid argon sampling calorimeter, used to measure particle energies in Z[sup 0] decays at the Stanford Linear Collider. The LAC module design is based on a unique projective tower structure, in which lead plates and segmented lead tiles serve both as absorbers and electrodes. The LAC front end electronics incorporates several novel features, including extensive multiplexing and optical fiber readout, which take advantage of the low SLC beam crossing frequency. The operational performance of the LAC during the recently completed SLD physics run (which recorded over 10,000 Z[sup 0] events) is discussed.

  20. Design of a neutron-TPC prototype and its performance evaluation based on an alpha-particle test

    NASA Astrophysics Data System (ADS)

    Huang, Meng; Li, Yu-Lan; Niu, Li-Bo; Li, Jin; Deng, Zhi; He, Li; Zhang, Hong-Yan; Cheng, Xiao-Lei; Fu, Jian-Qiang; Li, Yuan-Jing

    2015-08-01

    A neutron-TPC (nTPC) is being developed for use as a fast neutron spectrometer in the fields of nuclear physics, nuclear reactor operation monitoring, and thermo-nuclear fusion plasma diagnostics. An nTPC prototype based on a GEM-TPC (Time Projection Chamber with Gas Electron Multiplier amplification) has been assembled and tested using argon-hydrocarbon mixture as the working gas. By measuring the energy deposition of the recoil proton in the sensitive volume and the angle of the proton track, the incident neutron energy can be deduced. A Monte Carlo simulation was carried out to analyze the parameters affecting the energy resolution of the nTPC, and gave an optimized resolution under ideal conditions. An alpha particle experiment was performed to verify its feasibility, and to characterize its performance, including energy resolution and spatial resolution. Based on the experimental measurement and analysis, the energy resolution (FWHM) of the nTPC prototype is predicted to be better than 3.2% for 5 MeV incident neutrons, meeting the performance requirement (FWHM<5%) for the nTPC prototype.

  1. NOSTOS: a spherical TPC to detect low energy neutrinos

    SciTech Connect

    Aune, S.; Colas, P.; Ribas, E. Ferrer; Giomataris, Y.; Irastorza, I. G.; Dolbeau, J.; Gorodetzky, P.; Patzak, T.; Salin, P.; Fanourakis, G.; Geralis, T.; Kousouris, K.; Gounaris, G. J.; Savvidis, I.; Lepeltier, V.; Paschos, E.A.; Vergados, J.D.

    2005-09-08

    A novel low-energy ({approx}few keV) neutrino-oscillation experiment NOSTOS, combining a strong tritium source and a high pressure spherical Time Projection Chamber (TPC) detector 10 m in radius has been recently proposed. The oscillation of neutrinos of such energies occurs within the size of the detector itself, potentially allowing for a very precise (and rather systematics-free) measure of the oscillation parameters, in particular, of the smaller mixing angle {theta}13, which value could be determined for the first time. This detector could also be sensitive to the neutrino magnetic moment and be capable of accurately measure the Weinberg angle at low energy. The same apparatus, filled with high pressure Xenon, exhibits a high sensitivity as a Super Nova neutrino detector with extra galactic sensitivity. The outstanding benefits of the new concept of the spherical TPC will be presented, as well as the issues to be demonstrated in the near future by an ongoing R and D. The very first results of small prototype in operation in Saclay are shown.

  2. The iTPC upgrade for BES-II

    NASA Astrophysics Data System (ADS)

    Videbaek, Flemming; STAR Collaboration

    2015-10-01

    STAR has proposed to upgrade the inner sectors of the STAR TPC to increase the segmentation on the inner padplane and to renew the inner sector wires. The upgrade will provide better momentum resolution, better dE/dx resolution and, most importantly, it will provide improved acceptance at high rapidity to | η| <= 1.5 compared to the current TPC configuration of | η| <= 1 and to extend the pt coverage towards lower pt. The enhanced measurement capabilities of STAR after the iTPC upgrade are a vital part of the BES-II effort for 2019-2020. The expanded rapidity coverage provides a major benefit for many analyses, especially those sensitive to changes in correlation lengths near a critical point, like the net-proton Kurtosis which exhibits interesting energy trends that only appear near the edge of the current STAR acceptance. In the area of dielectron measurements it reduces hadron contamination from a dominant source of uncertainty to an expected statistical uncertainty of only 10%, and will enable significantly improved understanding of in-medium modifications. In this talk I will discuss the physics impact and give a technical overview of the detector upgrade. This work was supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science.

  3. Readout system of TPC/MPD NICA project

    SciTech Connect

    Averyanov, A. V.; Bajajin, A. G.; Chepurnov, V. F.; Cheremukhina, G. A.; Fateev, O. V.; Korotkova, A. M.; Levchanovskiy, F. V.; Lukstins, J.; Movchan, S. A.; Razin, S. V.; Rybakov, A. A.; Vereschagin, S. V. Zanevsky, Yu. V.; Zaporozhets, S. A.; Zruyev, V. N.

    2015-12-15

    The time-projection chamber (TPC) is the main tracking detector in the MPD/NICA. The information on charge-particle tracks in the TPC is registered by the MWPG with cathode pad readout. The frontend electronics (FEE) are developed with use of modern technologies such as application specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), and data transfer to a concentrator via a fast optical interface. The main parameters of the FEE are as follows: total number of channels, ∼95 000; data stream from the whole TPC, 5 GB/s; low power consumption, less than 100 mW/ch; signal to noise ratio (S/N), 30; equivalent noise charge (ENC), <1000e{sup –} (C{sub in} = 10–20 pF); and zero suppression (pad signal rejection ∼90%). The article presents the status of the readout chamber construction and the data acquisition system. The results of testing FEE prototypes are presented.

  4. Materials Testing and Performance Optimization for the SAMURAI-TPC

    NASA Astrophysics Data System (ADS)

    Long, K. D.; Lynch, W. G.; Barney, J.; Chajecki, Z.; Estee, J.; Shane, R.; Tangwanchareon, S.; Tsang, M. B.; Yurkon, J.

    2012-10-01

    The SAMURAI time-projection chamber (TPC) will be used to make measurements of pion spectra from heavy ion collisions at RIBF in Japan. Such research provides an opportunity to study supra-saturation density neutron-rich matter in the laboratory, and is critical to understanding the structure of neutron stars. It will provide a complete, 3D picture of the ionization deposited in a gas volume, from which particle types and momenta can be determined. The gas-containment volume is composed of surfaces of aluminum and plastic, as well as halogen-free printed circuit board. During multiplication of the ionized electrons at the anode wire plane of the TPC, UV photons are produced. These cause unwanted discharges when they interact with oxidized aluminum surfaces, which have low work functions. This problem can be addressed by application of a suitable conductive paint or epoxy. Paints were investigated to insure they did not contain any materials capable of inhibiting the performance of the detector gas. These investigations were cross-checked by tests carried out using an existing BRAHMS-TPC. Details on these tests and the materials chosen will be shown. The design and optimization of the gating grid, used to limit data collection to triggered events, will also be discussed.

  5. Protonated water clusters in TPC's

    NASA Astrophysics Data System (ADS)

    Kaya, Yunus; Kalkan, Yalçın; Veenhof, Rob

    2016-07-01

    Water vapour is added to the ALICE TPC gas to enhance its stability. These polar molecules create large protonated water clusters around a H+ core. In this context, the reactions H3O+(H2 O) n - 1 +H2 O →H3O+(H2O)n (n=1-9) were studied in the gas phase. Structures for these clusters are suggested and the most stable structures for each cluster size are shown. The thermodynamic parameters Δ Hn-1,n0, Δ Gn-1,n0, Δ Sn-1,n0 and equilibrium constants K n - 1 , n for the reaction were calculated to determine the size of the water clusters. The results are close to experimental data found in the literature. Protonated water clusters at stp have a size of 6-9 which corresponds to a mass of 127.1 - 181.2 g / mole.

  6. Depleted argon from underground sources

    SciTech Connect

    Back, H.O.; Alton, A.; Calaprice, F.; Galbiati, C.; Goretti, A.; Kendziora, C.; Loer, B.; Montanari, D.; Mosteiro, P.; Pordes, S.; /Fermilab

    2011-09-01

    Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

  7. Depleted Argon from Underground Sources

    NASA Astrophysics Data System (ADS)

    Back, H. O.; Alton, A.; Calaprice, F.; Galbiati, C.; Goretti, A.; Kendziora, C.; Loer, B.; Montanari, D.; Mosteiro, P.; Pordes, S.

    Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic 39Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in 39Ar. In Cortez Colorado a CO2 well has been discovered to contain approximately 500 ppm of argon as a contamination in the CO2. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N2, and He mixture, from the CO2 through chromatographic gas separation. The N2 and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

  8. Design and Analysis for the DarkSide-10 Two-Phase Argon Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Love, Christina Elena

    Astounding evidence for invisible "dark" matter has been found from galaxy clusters, cosmic and stellar gas motion, gravitational lensing studies, cosmic microwave background analysis, and large scale galaxy surveys. Although all studies indicate that there is a dominant presence of non-luminous matter in the universe (about 22 percent of the total energy density with 5 times more dark matter than baryonic matter), its identity and its "direct" detection (through non-gravitational effects) has not yet been achieved. Dark matter in the form of massive, weakly interacting particles (WIMPs) could be detected through their collisions with target nuclei. This requires detectors to be sensitive to very low-energy (less than 100 keV) nuclear recoils with very low expected rates (a few interactions per year per ton of target). Reducing the background in a direct dark matter detector is the biggest challenge. A detector capable of seeing such low-energy nuclear recoils is difficult to build because of the necessary size and the radio- and chemical- purity. Therefore it is imperative to first construct small-scale prototypes to develop the necessary technology and systems, before attempting to deploy large-scale detectors in underground laboratories. Our collaboration, the DarkSide Collaboration, utilizes argon in two-phase time projection chambers (TPCs). We have designed, built, and commissioned DarkSide-10, a 10 kg prototype detector, and are designing and building DarkSide-50, a 50 kg dark matter detector. The present work is an account of my contribution to these efforts. The two-phase argon TPC technology allows powerful discrimination between dark matter nuclear recoils and background events. Presented here are simulations, designs, and analyses involving the electroluminescence in the gas phase from extracted ionization charge for both DarkSide-10 and DarkSide-50. This work involves the design of the HHV systems, including field cages, that are responsible for

  9. Analysis of TPC Single Sextant U-238/U-235 Engineering In-Beam Data

    SciTech Connect

    Tony Hill

    2012-09-01

    The Time Projection Chamber is a collaborative effort to implement an innovative approach and deliver unprecedented fission measurements to DOE programs. This 4p- detector system will provide unrivaled 3-D data about the fission process. This TPC has been shipped and installed at LANSCE and is collecting further engineering data for the full system scale up next year.

  10. Effects of high beam rates on TPC's

    SciTech Connect

    Etkin, A.; Eiseman, S.E.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C. ); Lindenbaum, S.J. City Coll., New York, NY ); Hallman, T.J. ); Chan, C.S.; Kramer, M.A.; Zhao, K.H.; Zhu, Y. (C

    1992-02-06

    The TPC's (Time Projection Chamber) used in E-810 at the AGS (Alternating Gradient Synchroton) were exposed to silicon ion fluxes equivalent to more than 10{sup 7} minimum ionizing particles per second to measure the distortion of the electric field caused by positive ions in the drift region. Results of these tests are presented and the consequences for the TPC based experiment at RHIC (Relativistic Heavy Ion Collider) are discussed.

  11. Image Processing Techniques applied to Liquid Argon Time Projection Chamber Data

    NASA Astrophysics Data System (ADS)

    Esquivel, Jessica; MicroBooNE Collaboration

    2015-04-01

    Large scale Liquid Argon Time Projection Chambers(LArTPC), like MicroBooNE, offer new ways to study neutrino cross sections and neutrino oscillations. The data from these LArTPCs are very detailed images of charged particles passing through the detector. A plethora of hit finding, cluster finding and tracking algorithms have been implemented to process data coming from MicroBooNE, but it is still possible that particle tracks that are easily visible by eye are being missed during data processing. Because the human eye sometimes does a better job at finding particle tracks that are sometimes missed by data processing, using Image Processing algorithms which emulate the human eye in conjunction with the already implemented algorithms could be beneficial. In particular Edge Detection algorithms could be useful due to the fact that tracks will often have defined deposited energy along straight lines. This talk will cover preliminary data processed with Edge Detection algorithms, and discussion of what the potential benefits are to this approach to LArTPC data analysis. On behalf of the MicroBooNE Collaboration.

  12. An Active Target-Time Projection Chamber (AT-TPC) for reaccelerated beams

    NASA Astrophysics Data System (ADS)

    Beceiro-Novo, Saul; Ahn, T.; Abu-Nimeh, F.; Bazin, D.; Bradt, J.; Chajecki, Z.; Fritsch, A.; Kohley, Z.; Kolata, J. J.; Lynch, W.; Mittig, W.; Suzuki, D.; Usher, N.

    2014-09-01

    Reaccelerated radioactive beams near the Coulomb barrier, which will soon be available from the ReA3 accelerator at NSCL, will open up new opportunities for the study of nuclear structure near the driplines. Since these beams can only be produced at modest intensities, efficient techniques must be used for measurement. The Active Target- Time Projection Chamber (AT-TPC), which was developed at MSU, solves this problem by providing the increased luminosity of a thick target while maintaining a good energy resolution by tracking the reaction vertex over an essentially 4 π solid angle. The AT-TPC and similar detectors allow us to take full advantage of the radioactive ion beams at present and future nuclear physics facilities to explore the frontier of rare isotopes where much of the spectroscopic information is unknown. We used a prototype of the AT-TPC to study resonances in light nuclei, and some illustrative results will be shown. The AT-TPC technology will be presented together with new experimental results and the commissioning of the detector and its 10240 electronic channels. Reaccelerated radioactive beams near the Coulomb barrier, which will soon be available from the ReA3 accelerator at NSCL, will open up new opportunities for the study of nuclear structure near the driplines. Since these beams can only be produced at modest intensities, efficient techniques must be used for measurement. The Active Target- Time Projection Chamber (AT-TPC), which was developed at MSU, solves this problem by providing the increased luminosity of a thick target while maintaining a good energy resolution by tracking the reaction vertex over an essentially 4 π solid angle. The AT-TPC and similar detectors allow us to take full advantage of the radioactive ion beams at present and future nuclear physics facilities to explore the frontier of rare isotopes where much of the spectroscopic information is unknown. We used a prototype of the AT-TPC to study resonances in light nuclei

  13. The Liquid Argon Purity Demonstrator

    SciTech Connect

    Adamowski, M.; Carls, B.; Dvorak, E.; Hahn, A.; Jaskierny, W.; Johnson, C.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.

    2014-07-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  14. TPC spectrometer for measuring the e/sup +/ spectrum in. mu. decay

    SciTech Connect

    Kinnison, W.W.

    1983-01-01

    The Time Projection Chamber (TPC) being used at the Los Alamos Meson Physics Facility (LAMPF) for a high-statistics normal muon-decay experiment is described. It is shown how the experiment will improve upon the limits of the weak-interaction coupling constants by a factor of 5 through the measurement of the positron momentum and direction of emission with respect to the muon-polarization vector for 10/sup 8/ decays of stopped, polarized, positive muons. The TPC apparatus is described, and it is shown that even though more work is to be done to improve the detector acceptance and individual coordinate resolutions, for certain track topologies, the TPC already has a momentum resolution of 0.7% (sigma).

  15. Solar neutrino detection in a large volume double-phase liquid argon experiment

    NASA Astrophysics Data System (ADS)

    Franco, D.; Giganti, C.; Agnes, P.; Agostino, L.; Bottino, B.; Canci, N.; Davini, S.; De Cecco, S.; Fan, A.; Fiorillo, G.; Galbiati, C.; Goretti, A. M.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Jollet, C.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Pagani, L.; Pallavicini, M.; Pantic, E.; Pocar, A.; Razeti, M.; Renshaw, A. L.; Rossi, B.; Rossi, N.; Suvorov, Y.; Testera, G.; Tonazzo, A.; Wang, H.; Zavatarelli, S.

    2016-08-01

    Precision measurements of solar neutrinos emitted by specific nuclear reaction chains in the Sun are of great interest for developing an improved understanding of star formation and evolution. Given the expected neutrino fluxes and known detection reactions, such measurements require detectors capable of collecting neutrino-electron scattering data in exposures on the order of 1 ktonne-yr, with good energy resolution and extremely low background. Two-phase liquid argon time projection chambers (LAr TPCs) are under development for direct Dark Matter WIMP searches, which possess very large sensitive mass, high scintillation light yield, good energy resolution, and good spatial resolution in all three cartesian directions. While enabling Dark Matter searches with sensitivity extending to the ``neutrino floor'' (given by the rate of nuclear recoil events from solar neutrino coherent scattering), such detectors could also enable precision measurements of solar neutrino fluxes using the neutrino-electron elastic scattering events. Modeling results are presented for the cosmogenic and radiogenic backgrounds affecting solar neutrino detection in a 300 tonne (100 tonne fiducial) LAr TPC operating at LNGS depth (3,800 meters of water equivalent). The results show that such a detector could measure the CNO neutrino rate with ~15% precision, and significantly improve the precision of the 7Be and pep neutrino rates compared to the currently available results from the Borexino organic liquid scintillator detector.

  16. Enhanced trigger for the NIFFTE fissionTPC in presence of high-rate alpha backgrounds

    NASA Astrophysics Data System (ADS)

    Bundgaard, Jeremy; Niffte Collaboration

    2015-10-01

    Nuclear physics and nuclear energy communities call for new, high precision measurements to improve existing fission models and design next generation reactors. The Neutron Induced Fission Fragment Tracking experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure neutron induced fission with unrivaled precision. The fissionTPC is annually deployed to the Weapons Neutron Research facility at Los Alamos Neutron Science Center where it operates with a neutron beam passing axially through the drift volume, irradiating heavy actinide targets to induce fission. The fissionTPC was developed at the Lawrence Livermore National Laboratory's TPC lab, where it measures spontaneous fission from radioactive sources to characterize detector response, improve performance, and evolve the design. To measure 244Cm, we've developed a fission trigger to reduce the data rate from alpha tracks while maintaining a high fission detection efficiency. In beam, alphas from 239Pu are a large background when detecting fission fragments; implementing the fission trigger will greatly reduce this background. The implementation of the cathode fission trigger in the fissionTPC will be presented along with a detailed study of its efficiency.

  17. Transaction Processing Performance Council (TPC): State of the Council 2010

    NASA Astrophysics Data System (ADS)

    Nambiar, Raghunath; Wakou, Nicholas; Carman, Forrest; Majdalany, Michael

    The Transaction Processing Performance Council (TPC) is a non-profit corporation founded to define transaction processing and database benchmarks and to disseminate objective, verifiable performance data to the industry. Established in August 1988, the TPC has been integral in shaping the landscape of modern transaction processing and database benchmarks over the past twenty-two years. This paper provides an overview of the TPC's existing benchmark standards and specifications, introduces two new TPC benchmarks under development, and examines the TPC's active involvement in the early creation of additional future benchmarks.

  18. Work at FNAL to achieve long electron drift lifetime in liquid argon

    SciTech Connect

    Finley, D.; Jaskierny, W.; Kendziora, C.; Krider, J.; Pordes, S.; Rapidis, P.A.; Tope, T.; /Fermilab

    2006-10-01

    This note records some of the work done between July 2005 and July 2006 to achieve long (many milliseconds) electron drift lifetimes in liquid argon at Fermilab. The work is part of a process to develop some experience at Fermilab with the technology required to construct a large liquid argon TPC. This technology has been largely developed by the ICARUS collaboration in Europe and this process can be seen as technology transfer. The capability to produce liquid argon in which electrons have drift lifetimes of several milliseconds is crucial to a successful device. Liquid argon calorimeters have been successfully operated at Fermilab; their electro-negative contaminants are at the level of 10{sup -7} while the TPC we are considering requires a contamination level at the level of 10{sup -11}, tens of parts per trillion (ppt). As well as demonstrating the ability to produce liquid argon at this level of purity, the work is part of a program to test the effect on the electron drift time of candidate materials for the construction of a TPC in liquid argon.

  19. The CAPTAIN liquid argon neutrino experiment

    SciTech Connect

    Liu, Qiuguang

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energy regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.

  20. The CAPTAIN liquid argon neutrino experiment

    DOE PAGESBeta

    Liu, Qiuguang

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energymore » regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.« less

  1. Strange particle measurements from the EOS TPC

    SciTech Connect

    Justice, M.

    1995-02-01

    A high statistics sample of {Lambda}`s produced in 2 GeV/nucleon {sup 5}8Ni + {sup nat}Cu collisions has been obtained with the EOS Time Projection Chamber at the Bevalac. The coverage of the EOS TPC is essentially 100% for y > y{sub cm} and extends down to P{sub T} = 0 where interesting effects such as collective radial expansion may be important. In addition, the detection of a majority of the charged particles in the TPC, along with the presence of directed flow for protons and heavier fragments at this beam energy, allows for the correlation of A production with respect to the event reaction plane. Our preliminary analysis indicates the first observation of a sidewards flow signature for A`s. Comparisons with the cascade code ARC are made.

  2. 3D reconstruction of nuclear reactions using GEM TPC with planar readout

    SciTech Connect

    Bihałowicz, Jan Stefan

    2015-02-24

    The research program of the Extreme Light Infrastructure – Nuclear Physics (ELI-NP) laboratory under construction in Magurele, Romania facilities the need of developing a gaseous active-target detector providing 3D reconstruction of charged products of nuclear reactions induced by gamma beam. The monoenergetic, high-energy (E{sub γ} > 19 MeV) gamma beam of intensity 10{sup 13}γ/s allows studying nuclear reactions in astrophysics. A Time Projection Chamber with crossed strip readout (eTPC) is proposed as one of the imaging detectors. The special feature of the readout electrode structure is a 2D reconstruction based on the information read out simultaneously from three arrays of strips that form virtual pixels. It is expected to reach similar spatial resolution as for pixel readout at largely reduced cost of electronics. The paper presents the current progress and first results of the small scale prototype TPC which is a one of implementation steps towards eTPC detector proposed in the Technical Design Report of Charged Particles Detection at ELI-NP.

  3. Bustling argon: biological effect.

    PubMed

    Ye, Zhouheng; Zhang, Rongjia; Sun, Xuejun

    2013-10-03

    Argon is a noble gas in group 18 of the periodic table. Certificated to exist in air atmosphere merely one century ago, discovery of argon shows interesting stories of researching and exploring. It was assumed to have no chemical activity. However, argon indeed present its biological effect on mammals. Narcotic effect of argon in diving operation and neur-protective function of argon in cerebral injury demonstrate that argon has crucial effect and be concentrated on is necessary. Furthermore, consider to be harmless to human, argon clinical application in therapy would be another option.

  4. Bustling argon: biological effect

    PubMed Central

    2013-01-01

    Argon is a noble gas in group 18 of the periodic table. Certificated to exist in air atmosphere merely one century ago, discovery of argon shows interesting stories of researching and exploring. It was assumed to have no chemical activity. However, argon indeed present its biological effect on mammals. Narcotic effect of argon in diving operation and neur-protective function of argon in cerebral injury demonstrate that argon has crucial effect and be concentrated on is necessary. Furthermore, consider to be harmless to human, argon clinical application in therapy would be another option. PMID:24088583

  5. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  6. How to Advance TPC Benchmarks with Dependability Aspects

    NASA Astrophysics Data System (ADS)

    Almeida, Raquel; Poess, Meikel; Nambiar, Raghunath; Patil, Indira; Vieira, Marco

    Transactional systems are the core of the information systems of most organizations. Although there is general acknowledgement that failures in these systems often entail significant impact both on the proceeds and reputation of companies, the benchmarks developed and managed by the Transaction Processing Performance Council (TPC) still maintain their focus on reporting bare performance. Each TPC benchmark has to pass a list of dependability-related tests (to verify ACID properties), but not all benchmarks require measuring their performances. While TPC-E measures the recovery time of some system failures, TPC-H and TPC-C only require functional correctness of such recovery. Consequently, systems used in TPC benchmarks are tuned mostly for performance. In this paper we argue that nowadays systems should be tuned for a more comprehensive suite of dependability tests, and that a dependability metric should be part of TPC benchmark publications. The paper discusses WHY and HOW this can be achieved. Two approaches are introduced and discussed: augmenting each TPC benchmark in a customized way, by extending each specification individually; and pursuing a more unified approach, defining a generic specification that could be adjoined to any TPC benchmark.

  7. Design and performance of TOPAZ TPC-trigger

    SciTech Connect

    Enomoto, R.; Tsukada, K.; Ujiie, N.; Shirahashi, A.

    1988-02-01

    The Time Projection Chamber (TPC) is widely used in the high energy physics experiment. The authors developed the new track finding algorithm by using the TOPAZ-TPC. The logic not only finds the number of tracks, but also calculates their vertex positions. It also takes care of the sector boundary crossing tracks. The proto-type TPC-Trigger has been tested at the in-beam experiment and has shown good performance. The authors achieved the vertex resolution of less than 10cm (r.m.s.) in the beam direction. The improved TPC-Trigger system is being used in October 1987 beam run.

  8. Muon tomography of rock density using Micromegas-TPC telescope

    NASA Astrophysics Data System (ADS)

    Hivert, Fanny; Busto, José; Gaffet, Stéphane; Ernenwein, Jean-Pierre; Brunner, Jurgen; Salin, Pierre; Decitre, Jean-Baptiste; Lázaro Roche, Ignacio; Martin, Xavier

    2014-05-01

    The knowledge of the subsurface properties is essentially obtained by geophysical methods, e.g., seismic imaging, electric prospection or gravimetry. The current work is based on a recently developed method to investigate in situ the density of rocks using a measurement of the muon flux, whose attenuation depends on the quantity of matter the particles travel through and hence on the rock density and thickness. The present project (T2DM2) aims at performing underground muon flux measurements in order to characterize spatial and temporal rock massif density variations above the LSBB underground research facility in Rustrel (France). The muon flux will be measured with a new muon telescope device using Micromegas-Time Projection Chamber (TPC) detectors. The first step of the work presented covers the muon flux simulation based on the Gaisser model (Gaisser T., 1990), for the muon flux at the ground level, and on the MUSIC code (Kudryavtsev V. A., 2008) for the propagation of muons through the rock. The results show that the muon flux distortion caused by density variations is enough significant to be observed at 500 m depth for measurement times of about one month. This time-scale is compatible with the duration of the water transfer processes within the unsaturated Karst zone where LSBB is located. The work now focuses on the optimization of the detector layout along the LSBB galleries in order to achieve the best sensitivity.

  9. Modular TPC's for relativistic heavy ion experiments

    SciTech Connect

    Etkin, A.; Eiseman, S.E.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Lindenbaum, S.J.

    1989-02-10

    We have developed a TPC system for use in relativistic heavy ion experiments that permits the efficient reconstruction of high multiplicity events including events with decay vertices. It operates with the beam through the middle of the chamber giving good efficiency, two-track separation and spatial resolution. The three-dimensional points in this system allow the reconstruction of the complex events of interest. The use of specially developed hybrid electronics allows us to build a compact and cost-effective system. 11 figs.

  10. Tests of gases in a mini-TPC with pixel chip readout

    NASA Astrophysics Data System (ADS)

    Vahsen, S.; Oliver-Mallory, K.; Lopez-Thibodeaux, M.; Kadyk, J.; Garcia-Sciveres, M.

    2014-02-01

    Gases for potential use as targets for directional dark matter detection were tested in a prototype detector using two sequential Gas Electron Multipliers, or GEMs. The sensitive volume consists of a mini-TPC of 12 cm length and 7.5 cm diameter. An FEI3 pixel chip, developed for the ATLAS experiment, was used to produce spatial measurements with high resolution. An Fe55 source produced photoelectrons by X-ray conversions in the sensitive volume, and images of these were recorded by the chip. Spatial resolution plots are shown for the gases, which include the practical electron range of the photoelectrons and the effects of diffusion in the mini-TPC. Avalanche gain and gain resolution measurements were made for the four gases tested, at atmospheric and sub-atmospheric pressures: Ar(70)/CO2(30), CF4, He(80)/CF4(20) and He(80)/isobutane(20).

  11. A study of the trace 39Ar content in argon from deep underground sources

    NASA Astrophysics Data System (ADS)

    Xu, J.; Calaprice, F.; Galbiati, C.; Goretti, A.; Guray, G.; Hohman, T.; Holtz, D.; Ianni, An.; Laubenstein, M.; Loer, B.; Love, C.; Martoff, C. J.; Montanari, D.; Mukhopadhyay, S.; Nelson, A.; Rountree, S. D.; Vogelaar, R. B.; Wright, A.

    2015-06-01

    The discovery of argon from deep underground sources with significantly less 39Ar than atmospheric argon was an important step in the development of direct dark matter detection experiments using argon as the active target. We report on the design and operation of a low-background single-phase liquid argon detector that was built to study the 39Ar content of this underground argon. Underground argon from the Kinder Morgan CO2 plant in Cortez, Colorado was determined to have less than 0.65% of the 39Ar activity in atmospheric argon, or 6.6 mBq/kg specific 39Ar activity.

  12. Data Reduction Processes Using FPGA for MicroBooNE Liquid Argon Time Projection Chamber

    SciTech Connect

    Wu, Jinyuan

    2010-05-26

    MicroBooNE is a liquid Argon time projection chamber to be built at Fermilab for an accelerator-based neutrino physics experiment and as part of the R&D strategy for a large liquid argon detector at DUSEL. The waveforms of the {approx}9000 sense wires in the chamber are continuously digitized at 2 M samples/s - which results in a large volume of data coming off the TPC. We have developed a lossless data reduction scheme based on Huffman Coding and have tested the scheme on cosmic ray data taken from a small liquid Argon time projection chamber, the BO detector. For sense wire waveforms produced by cosmic ray tracks, the Huffman Coding scheme compresses the data by a factor of approximately 10. The compressed data can be fully recovered back to the original data since the compression is lossless. In addition to accelerator neutrino data, which comes with small duty cycle in sync with the accelerator beam spill, continuous digitized waveforms are to be temporarily stored in the MicroBooNE data-acquisition system for about an hour, long enough for an external alert from possible supernova events. Another scheme, Dynamic Decimation, has been developed to compress further the potential supernova data so that the storage can be implemented within a reasonable budget. In the Dynamic Decimation scheme, data are sampled at the full sampling rate in the regions-of-interest (ROI) containing waveforms of track-hits and are decimated down to lower sampling rate outside the ROI. Note that unlike in typical zerosuppression schemes, in Dynamic Decimation, the data in the pedestal region are not thrown away but kept at a lower sampling rate. An additional factor of 10 compression ratio is achieved using the Dynamic Decimation scheme on the BO detector data, making a total compression rate of approximate 100 when the Dynamic Decimation and the Huffman Coding functional blocks are cascaded. Both of the blocks are compiled in low-cost FPGA and their silicon resource usages are low.

  13. Development of a TPC detector for the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Bächler, Joachim; Bracinik, Juraj; Fischer, Hans Gerhard; Flammier, Marcel; Janik, Rudolf; Claude Legrand, Jean; Musa, Luciano; Pikna, Miroslav; Sitar, Branislav; Szymanski, Piotr

    1998-12-01

    A proportional chamber with ring cathode readout is foreseen for the ALICE Time Projection Chamber. It offers low gas gain operation, lightweight construction and good pulse shape. The Tape Automatic Bonding (TAB) process makes it possible to mount the VLSI analog front end electronics directly on the back face of the multilayer board carrying the ring cathode elements, yielding high channel density. At the same time, simulation work is done. Construction and first results will be presented.

  14. Team Primacy Concept (TPC) Based Employee Evaluation and Job Performance

    ERIC Educational Resources Information Center

    Muniute, Eivina I.; Alfred, Mary V.

    2007-01-01

    This qualitative study explored how employees learn from Team Primacy Concept (TPC) based employee evaluation and how they use the feedback in performing their jobs. TPC based evaluation is a form of multirater evaluation, during which the employee's performance is discussed by one's peers in a face-to-face team setting. The study used Kolb's…

  15. Cold Electronics for Giant Liquid Argon Time Projection Chambers

    SciTech Connect

    Radeka, V.; De Geronimo, G.; Chen, H.; Deptuch, G.; De Geronimo, G.; Lanni, F.; Li, S.; Nambiar, N.; Rescia, S.; Thorn, C.; Yarema, R.; Yu, B.

    2011-07-25

    The choice between cold and warm electronics (inside or outside the cryostat) in very large LAr TPCs (>5-10 ktons) is not an electronics issue, but it is rather a major cryostat design issue. This is because the location of the signal processing electronics has a direct and far reaching effect on the cryostat design, an indirect effect on the TPC electrode design (sense wire spacing, wire length and drift distance), and a significant effect on the TPC performance. All these factors weigh so overwhelmingly in favor of the cold electronics that it remains an optimal solution for very large TPCs. In this paper signal and noise considerations are summarized, the concept of the readout chain is described, and the guidelines for design of CMOS circuits for operation in liquid argon (at {approx}89 K) are discussed.

  16. Behavior of TPC's in a high particle flux environment

    SciTech Connect

    Etkin, A.; Eisemann, S.E.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C. ); Lindenbaum, S.J. City Coll., New York, NY ); Chan, C.S.; Kramer, M.A.; Zhao, K.H.; Zhu, Y. ); Hallman, T.J.; Madansky, L

    1991-12-13

    TPC's (Time Projection Chamber) used in E-810 at the AGS (Alternating Gradient Synchrotron) were exposed to fluxes equivalent to more than 10{sup 7} minimum ionizing particles per second to find if such high fluxes cause gain changes or distortions of the electric field. Initial results of these and other tests are presented and the consequences for the RHIC (Relativistic Heavy Ion Collider) TPC-based experiments are discussed.

  17. A multi-channel distributed DAQ for n-TPC

    NASA Astrophysics Data System (ADS)

    Cheng, Xiao-Lei; Liu, Jian-Fang; Yu, Qian; Niu, Li-Bo; Li, Yu-Lan

    2015-11-01

    A new fast neutron spectrometer named n-TPC has been designed by LPRI (Key Laboratory of Particle & Radiation Imaging, Ministry of Education) at Tsinghua University. The neutron energy spectrum can be calculated from the recoil angle and energy of the recoil proton detected by a 704-pad GEM-TPC. In beam tests at IHIP (Institute of Heavy Ion Physics, Peking University) in 2014, n-TPC performed better than 6%@6 MeV energy resolution and 5‰ detection efficiency. To find the best working parameters (the component and proportion of the gas, the high voltage between each GEM layer, etc.) of the n-TPC and support its application in various conditions, a multichannel distributed DAQ has been designed to read out the signals from the 704 channels. With over 25 Ms/s sampling rate and 12 bit resolution for each channel, it can record the time and amplitude information as well as traditional DAQs in the TPC application domain. The main design objective of this distributed DAQ, however, is more flexible parameter modulation and operation. It can support the n-TPC without the limitation of the chassis and categorize signals arriving from the 704 channels at the same time by different events without event triggers. Supported by National Natural Science Foundation of China (11275109)

  18. Simulations of Charged-Current Supernova νe Events in a Liquid Argon Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Gardiner, Steven; Grant, Christopher; Pantic, Emilija; Svoboda, Robert

    2016-03-01

    Although it is still in its infancy, the study of supernova neutrinos has proven to be a fertile topic for fundamental science. A mere two dozen events recorded from supernova 1987A, the only supernova neutrino source observed so far, have led to numerous publications on a wide variety of topics. This bountiful scientific harvest has prompted the neutrino physics community to prepare to make more detailed observations of the neutrinos that will be produced in the next nearby supernova. Because of their unique νe sensitivity, liquid argon time projection chamber (LArTPC) experiments such as DUNE (Deep Underground Neutrino Experiment) have the potential to make valuable contributions to this detection effort. To better understand the expected SN νe signal in a LArTPC, we have developed a Monte Carlo event generator called MARLEY (Model of Argon Reaction Low-Energy Yields) for charged-current νe reactions on argon. By combining MARLEY with LArSoft, a LArTPC simulation package, we have obtained the most detailed predictions currently available for the response of a LArTPC to supernova νe. We will discuss the implications of these results for the design and operation of LArTPCs sensitive to SN neutrinos.

  19. Fast TPC Online Tracking on GPUs and Asynchronous Data Processing in the ALICE HLT to facilitate Online Calibration

    NASA Astrophysics Data System (ADS)

    Rohr, David; Gorbunov, Sergey; Krzewicki, Mikolaj; Breitner, Timo; Kretz, Matthias; Lindenstruth, Volker

    2015-12-01

    ALICE (A Large Heavy Ion Experiment) is one of the four major experiments at the Large Hadron Collider (LHC) at CERN, which is today the most powerful particle accelerator worldwide. The High Level Trigger (HLT) is an online compute farm of about 200 nodes, which reconstructs events measured by the ALICE detector in real-time. The HLT uses a custom online data-transport framework to distribute data and workload among the compute nodes. ALICE employs several calibration-sensitive subdetectors, e.g. the TPC (Time Projection Chamber). For a precise reconstruction, the HLT has to perform the calibration online. Online- calibration can make certain Offline calibration steps obsolete and can thus speed up Offline analysis. Looking forward to ALICE Run III starting in 2020, online calibration becomes a necessity. The main detector used for track reconstruction is the TPC. Reconstructing the trajectories in the TPC is the most compute-intense step during event reconstruction. Therefore, a fast tracking implementation is of great importance. Reconstructed TPC tracks build the basis for the calibration making a fast online-tracking mandatory. We present several components developed for the ALICE High Level Trigger to perform fast event reconstruction and to provide features required for online calibration. As first topic, we present our TPC tracker, which employs GPUs to speed up the processing, and which bases on a Cellular Automaton and on the Kalman filter. Our TPC tracking algorithm has been successfully used in 2011 and 2012 in the lead-lead and the proton-lead runs. We have improved it to leverage features of newer GPUs and we have ported it to support OpenCL, CUDA, and CPUs with a single common source code. This makes us vendor independent. As second topic, we present framework extensions required for online calibration. The extensions, however, are generic and can be used for other purposes as well. We have extended the framework to support asynchronous compute

  20. Lunar exospheric argon modeling

    NASA Astrophysics Data System (ADS)

    Grava, Cesare; Chaufray, J.-Y.; Retherford, K. D.; Gladstone, G. R.; Greathouse, T. K.; Hurley, D. M.; Hodges, R. R.; Bayless, A. J.; Cook, J. C.; Stern, S. A.

    2015-07-01

    Argon is one of the few known constituents of the lunar exosphere. The surface-based mass spectrometer Lunar Atmosphere Composition Experiment (LACE) deployed during the Apollo 17 mission first detected argon, and its study is among the subjects of the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and Lunar Atmospheric and Dust Environment Explorer (LADEE) mission investigations. We performed a detailed Monte Carlo simulation of neutral atomic argon that we use to better understand its transport and storage across the lunar surface. We took into account several loss processes: ionization by solar photons, charge-exchange with solar protons, and cold trapping as computed by recent LRO/Lunar Orbiter Laser Altimeter (LOLA) mapping of Permanently Shaded Regions (PSRs). Recycling of photo-ions and solar radiation acceleration are also considered. We report that (i) contrary to previous assumptions, charge exchange is a loss process as efficient as photo-ionization, (ii) the PSR cold-trapping flux is comparable to the ionization flux (photo-ionization and charge-exchange), and (iii) solar radiation pressure has negligible effect on the argon density, as expected. We determine that the release of 2.6 × 1028 atoms on top of a pre-existing argon exosphere is required to explain the maximum amount of argon measured by LACE. The total number of atoms (1.0 × 1029) corresponds to ∼6700 kg of argon, 30% of which (∼1900 kg) may be stored in the cold traps after 120 days in the absence of space weathering processes. The required population is consistent with the amount of argon that can be released during a High Frequency Teleseismic (HFT) Event, i.e. a big, rare and localized moonquake, although we show that LACE could not distinguish between a localized and a global event. The density of argon measured at the time of LACE appears to have originated from no less than four such episodic events. Finally, we show that the extent of the PSRs that trap

  1. Load on Trough Bellows Following an Argon Spill

    SciTech Connect

    Chess, K.; /Fermilab

    1988-07-12

    In the case of a gross argon spill from the DO detector, the liquid argon is caught in three plenums. These plenums are to be connected by bellows to make a horizontal trough open at one end for removing the argon. The design of these bellows is dependent on the maximum argon load they must carry. Bellows to connect the three argon-catching plenums in the DO detector must be able to carry at least 92 lbs of argon when closed and 231 lbs when open, plus the load due to argon in the convolutions. Examples of such loads and the method for their calculations are contained in the Discussion. It should be noted that a set of assumptions was used in these calculations. First, we considered a uniform channel and uniform flow. Second, we used a value for Manning's n meant for a similar, but not exactly the same, case. Finally, we were forced to define an average depth, d, to be used to state the hydraulic radius, R, and area of flow, A. These facts may warrant consideration in future calculations.

  2. Herman Feshbach Prize in Theoretical Nuclear Physics Xiangdong Ji, University of Maryland PandaX-III: high-pressure gas TPC for Xe136 neutrinoless double beta decay at CJPL

    NASA Astrophysics Data System (ADS)

    Ji, Xiangdong; PandaX-III Collaboration

    2016-03-01

    The PandaX-III in China's Jinping Underground Lab is a new neutrinoless double beta decay experiment using Xe136 high-pressure gas TPC. The first phase of the experiment uses a 4 m3 gas detector with symmetric Micromegas charge readout planes. The gas TPC allows full reconstruction of the event topology, capable of distinguishing the two electron events from gamma background with high confidence level. The energy resolution can reach about 3% FWHM at the beta decay Q-value. The detector construction and the experimental lab is currently under active development. In this talk, the current status and future plan are reported.

  3. The HARP TPC laser calibration system

    NASA Astrophysics Data System (ADS)

    Vidal-Sitjes, Gabriel

    2004-02-01

    A novel apparatus for the calibration of the HARP Time Projection Chamber has been designed, developed and built. The apparatus consists of a large number of point-like photo-electron sources located at precise positions inside the detector volume. The photo-electron sources are optical quartz fibers on which one end is coated with an aluminum layer of ˜80 Å thickness and are held in place on the high-voltage membrane. The fibers are used to guide UV laser light pulses that generate photoelectrons on the fiber tips acting as photo-electron emitters. The photo-electrons drift inside the detector and produce the calibration signals. The technique allows to assess E× B distortions and to measure drift velocity, ion feedback and time stability in real time.

  4. Neutrino Detectors: Challenges and Opportunities

    SciTech Connect

    Soler, F. J. P.

    2011-10-06

    This paper covers possible detector options suitable at future neutrino facilities, such as Neutrino Factories, Super Beams and Beta Beams. The Magnetised Iron Neutrino Detector (MIND), which is the baseline detector at a Neutrino Factory, will be described and a new analysis which improves the efficiency of this detector at low energies will be shown. Other detectors covered include the Totally Active Scintillating Detectors (TASD), particularly relevant for a low energy Neutrino Factory, emulsion detectors for tau detection, liquid argon detectors and megaton scale water Cherenkov detectors. Finally the requirements of near detectors for long-baseline neutrino experiments will be demonstrated.

  5. A Monte Carlo analysis of the liquid xenon TPC as gamma ray telescope

    NASA Technical Reports Server (NTRS)

    Aprile, E.; Bolotnikov, A.; Chen, D.; Mukherjee, R.

    1992-01-01

    Extensive Monte Carlo modeling of a coded aperture x ray telescope based on a high resolution liquid xenon TPC has been performed. Results on efficiency, background reduction capability and source flux sensitivity are presented. We discuss in particular the development of a reconstruction algorithm for events with multiple interaction points. From the energy and spatial information, the kinematics of Compton scattering is used to identify and reduce background events, as well as to improve the detector response in the few MeV region. Assuming a spatial resolution of 1 mm RMS and an energy resolution of 4.5 percent FWHM at 1 MeV, the algorithm is capable of reducing by an order of magnitude the background rate expected at balloon altitude, thus significantly improving the telescope sensitivity.

  6. Meson and baryon correlation studies using the PEP-TPC/2. gamma. Facility

    SciTech Connect

    Ronan, M.T.

    1991-03-01

    Results on vector meson, and strange and charmed-baryon production are presented for data taken during the period 1982--1986 using the TPC/2{gamma} detector at PEP. Vector mesons ({rho}{sup 0}, K{sup *} and {phi}) with 0, 1 and 2 strange quarks are used to obtain redundant measures of strange-quark suppression and of the vector to pseudoscalar ratio in hadronization. Measurements of the production rates of {Lambda}, {Xi}{sup {minus}}, {Omega} and {Xi}{sup *0} hyperons and for the {Lambda}{sub c} and of rapidity correlations between {Lambda}{bar {Lambda}} pairs provide sensitive tests of baryon production in fragmentation models. In addition, two- and three-particle correlations between like sign pions provide further evidence for the Bose-Einstein effect in e{sup +}e{sup {minus}} interactions including the relativistic motion of particle sources. 9 refs., 7 figs.

  7. Performing track reconstruction at the ALICE TPC using a fast Hough Transform method

    NASA Astrophysics Data System (ADS)

    Kouzinopoulos, Charalampos S.; Hristov, Peter

    2016-09-01

    The Hough Transform algorithm is a popular image analysis method that is widely used to perform global pattern recognition in images through the identification of local patterns in a suitably chosen parameter space. The algorithm can also be used to perform track reconstruction; to estimate the trajectory of individual particles when passed through the active elements of a detector volume. This paper presents a fast reconstruction method for the Time Projection Chamber (TPC) of the ALICE experiment at LHC. The method, that combines a linear Hough Transform algorithm with a fast filling of the Hough Transform parameter space, is developed within AliceO2, the new computing framework of ALICE for RUN3.

  8. Thermophysical properties of argon

    SciTech Connect

    Jaques, A.

    1988-02-01

    The entire report consists of tables of thermodynamic properties (including sound velocity, thermal conductivity and diffusivity, Prandtl number, density) of argon at 86 to 400/degree/K, in the form of isobars over 0.9 to 100 bars. (DLC)

  9. Overview of TPC Benchmark E: The Next Generation of OLTP Benchmarks

    NASA Astrophysics Data System (ADS)

    Hogan, Trish

    Set to replace the aging TPC-C, the TPC Benchmark E is the next generation OLTP benchmark, which more accurately models client database usage. TPC-E addresses the shortcomings of TPC-C. It has a much more complex workload, requires the use of RAID-protected storage, generates much less I/O, and is much cheaper and easier to set up, run, and audit. After a period of overlap, it is expected that TPC-E will become the de facto OLTP benchmark.

  10. Study of nuclear recoils in liquid argon with monoenergetic neutrons

    NASA Astrophysics Data System (ADS)

    Regenfus, C.; Allkofer, Y.; Amsler, C.; Creus, W.; Ferella, A.; Rochet, J.; Walter, M.

    2012-07-01

    In the framework of developments for liquid argon dark matter detectors we assembled a laboratory setup to scatter neutrons on a small liquid argon target. The neutrons are produced mono-energetically (Ekin = 2.45 MeV) by nuclear fusion in a deuterium plasma and are collimated onto a 3" liquid argon cell operating in single-phase mode (zero electric field). Organic liquid scintillators are used to tag scattered neutrons and to provide a time-of-flight measurement. The setup is designed to study light pulse shapes and scintillation yields from nuclear and electronic recoils as well as from alpha particles at working points relevant for dark matter searches. Liquid argon offers the possibility to scrutinise scintillation yields in noble liquids with respect to the population strength of the two fundamental excimer states. Here we present experimental methods and first results from recent data towards such studies.

  11. The upgraded DØ detector

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, D. L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S. N.; Ahn, S. H.; Ahsan, M.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Anastasoaie, M.; Andeen, T.; Anderson, J. T.; Anderson, S.; Andrieu, B.; Angstadt, R.; Anosov, V.; Arnoud, Y.; Arov, M.; Askew, A.; Åsman, B.; Assis Jesus, A. C. S.; Atramentov, O.; Autermann, C.; Avila, C.; Babukhadia, L.; Bacon, T. C.; Badaud, F.; Baden, A.; Baffioni, S.; Bagby, L.; Baldin, B.; Balm, P. W.; Banerjee, P.; Banerjee, S.; Barberis, E.; Bardon, O.; Barg, W.; Bargassa, P.; Baringer, P.; Barnes, C.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bhattacharjee, M.; Baturitsky, M. A.; Bauer, D.; Bean, A.; Baumbaugh, B.; Beauceron, S.; Begalli, M.; Beaudette, F.; Begel, M.; Bellavance, A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Besson, A.; Beuselinck, R.; Beutel, D.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Binder, M.; Biscarat, C.; Bishoff, A.; Black, K. M.; Blackler, I.; Blazey, G.; Blekman, F.; Blessing, S.; Bloch, D.; Blumenschein, U.; Bockenthien, E.; Bodyagin, V.; Boehnlein, A.; Boeriu, O.; Bolton, T. A.; Bonamy, P.; Bonifas, D.; Borcherding, F.; Borissov, G.; Bos, K.; Bose, T.; Boswell, C.; Bowden, M.; Brandt, A.; Briskin, G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchanan, N. J.; Buchholz, D.; Buehler, M.; Buescher, V.; Burdin, S.; Burke, S.; Burnett, T. H.; Busato, E.; Buszello, C. P.; Butler, D.; Butler, J. M.; Cammin, J.; Caron, S.; Bystricky, J.; Canal, L.; Canelli, F.; Carvalho, W.; Casey, B. C. K.; Casey, D.; Cason, N. M.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapin, D.; Charles, F.; Cheu, E.; Chevalier, L.; Chi, E.; Chiche, R.; Cho, D. K.; Choate, R.; Choi, S.; Choudhary, B.; Chopra, S.; Christenson, J. H.; Christiansen, T.; Christofek, L.; Churin, I.; Cisko, G.; Claes, D.; Clark, A. R.; Clément, B.; Clément, C.; Coadou, Y.; Colling, D. J.; Coney, L.; Connolly, B.; Cooke, M.; Cooper, W. E.; Coppage, D.; Corcoran, M.; Coss, J.; Cothenet, A.; Cousinou, M.-C.; Cox, B.; Crépé-Renaudin, S.; Cristetiu, M.; Cummings, M. A. C.; Cutts, D.; da Motta, H.; Das, M.; Davies, B.; Davies, G.; Davis, G. A.; Davis, W.; De, K.; de Jong, P.; de Jong, S. J.; De La Cruz-Burelo, E.; De La Taille, C.; De Oliveira Martins, C.; Dean, S.; Degenhardt, J. D.; Déliot, F.; Delsart, P. A.; Del Signore, K.; DeMaat, R.; Demarteau, M.; Demina, R.; Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Doets, M.; Doidge, M.; Dong, H.; Doulas, S.; Dudko, L. V.; Duflot, L.; Dugad, S. R.; Duperrin, A.; Dvornikov, O.; Dyer, J.; Dyshkant, A.; Eads, M.; Edmunds, D.; Edwards, T.; Ellison, J.; Elmsheuser, J.; Eltzroth, J. T.; Elvira, V. D.; Eno, S.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, D.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fagan, J.; Fast, J.; Fatakia, S. N.; Fein, D.; Feligioni, L.; Ferapontov, A. V.; Ferbel, T.; Ferreira, M. J.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fleck, I.; Fitzpatrick, T.; Flattum, E.; Fleuret, F.; Flores, R.; Foglesong, J.; Fortner, M.; Fox, H.; Franklin, C.; Freeman, W.; Fu, S.; Fuess, S.; Gadfort, T.; Galea, C. F.; Gallas, E.; Galyaev, E.; Gao, M.; Garcia, C.; Garcia-Bellido, A.; Gardner, J.; Gavrilov, V.; Gay, A.; Gay, P.; Gelé, D.; Gelhaus, R.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gillberg, D.; Geurkov, G.; Ginther, G.; Gobbi, B.; Goldmann, K.; Golling, T.; Gollub, N.; Golovtsov, V.; Gómez, B.; Gomez, G.; Gomez, R.; Goodwin, R.; Gornushkin, Y.; Gounder, K.; Goussiou, A.; Graham, D.; Graham, G.; Grannis, P. D.; Gray, K.; Greder, S.; Green, D. R.; Green, J.; Green, J. A.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groer, L.; Grünendahl, S.; Grünewald, M. W.; Gu, W.; Guglielmo, J.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hadley, N. J.; Haggard, E.; Haggerty, H.; Hagopian, S.; Hall, I.; Hall, R. E.; Han, C.; Han, L.; Hance, R.; Hanagaki, K.; Hanlet, P.; Hansen, S.; Harder, K.; Harel, A.; Harrington, R.; Hauptman, J. M.; Hauser, R.; Hays, C.; Hays, J.; Hazen, E.; Hebbeker, T.; Hebert, C.; Hedin, D.; Heinmiller, J. M.; Heinson, A. P.; Heintz, U.; Hensel, C.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hong, S. J.; Hooper, R.; Hou, S.; Houben, P.; Hu, Y.; Huang, J.; Huang, Y.; Hynek, V.; Huffman, D.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jacquier, Y.; Jaffré, M.; Jain, S.; Jain, V.; Jakobs, K.; Jayanti, R.; Jenkins, A.; Jesik, R.; Jiang, Y.; Johns, K.; Johnson, M.; Johnson, P.; Jonckheere, A.; Jonsson, P.; Jöstlein, H.; Jouravlev, N.; Juarez, M.; Juste, A.; Kaan, A. P.; Kado, M. M.; Käfer, D.; Kahl, W.; Kahn, S.; Kajfasz, E.; Kalinin, A. M.; Kalk, J.; Kalmani, S. D.; Karmanov, D.; Kasper, J.; Katsanos, I.; Kau, D.; Kaur, R.; Ke, Z.; Kehoe, R.; Kermiche, S.; Kesisoglou, S.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. M.; Kim, H.; Kim, K. H.; Kim, T. J.; Kirsch, N.; Klima, B.; Klute, M.; Kohli, J. M.; Konrath, J.-P.; Komissarov, E. V.; Kopal, M.; Korablev, V. M.; Kostritski, A.; Kotcher, J.; Kothari, B.; Kotwal, A. V.; Koubarovsky, A.; Kozelov, A. V.; Kozminski, J.; Kryemadhi, A.; Kouznetsov, O.; Krane, J.; Kravchuk, N.; Krempetz, K.; Krider, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kubantsev, M.; Kubinski, R.; Kuchinsky, N.; Kuleshov, S.; Kulik, Y.; Kumar, A.; Kunori, S.; Kupco, A.; Kurča, T.; Kvita, J.; Kuznetsov, V. E.; Kwarciany, R.; Lager, S.; Lahrichi, N.; Landsberg, G.; Larwill, M.; Laurens, P.; Lavigne, B.; Lazoflores, J.; Le Bihan, A.-C.; Le Meur, G.; Lebrun, P.; Lee, S. W.; Lee, W. M.; Leflat, A.; Leggett, C.; Lehner, F.; Leitner, R.; Leonidopoulos, C.; Leveque, J.; Lewis, P.; Li, J.; Li, Q. Z.; Li, X.; Lima, J. G. R.; Lincoln, D.; Lindenmeyer, C.; Linn, S. L.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Litmaath, M.; Lizarazo, J.; Lobo, L.; Lobodenko, A.; Lokajicek, M.; Lounis, A.; Love, P.; Lu, J.; Lubatti, H. J.; Lucotte, A.; Lueking, L.; Luo, C.; Lynker, M.; Lyon, A. L.; Machado, E.; Maciel, A. K. A.; Madaras, R. J.; Mättig, P.; Magass, C.; Magerkurth, A.; Magnan, A.-M.; Maity, M.; Makovec, N.; Mal, P. K.; Malbouisson, H. B.; Malik, S.; Malyshev, V. L.; Manakov, V.; Mao, H. S.; Maravin, Y.; Markley, D.; Markus, M.; Marshall, T.; Martens, M.; Martin, M.; Martin-Chassard, G.; Mattingly, S. E. K.; Matulik, M.; Mayorov, A. A.; McCarthy, R.; McCroskey, R.; McKenna, M.; McMahon, T.; Meder, D.; Melanson, H. L.; Melnitchouk, A.; Mendes, A.; Mendoza, D.; Mendoza, L.; Meng, X.; Merekov, Y. P.; Merkin, M.; Merritt, K. W.; Meyer, A.; Meyer, J.; Michaut, M.; Miao, C.; Miettinen, H.; Mihalcea, D.; Mikhailov, V.; Miller, D.; Mitrevski, J.; Mokhov, N.; Molina, J.; Mondal, N. K.; Montgomery, H. E.; Moore, R. W.; Moulik, T.; Muanza, G. S.; Mostafa, M.; Moua, S.; Mulders, M.; Mundim, L.; Mutaf, Y. D.; Nagaraj, P.; Nagy, E.; Naimuddin, M.; Nang, F.; Narain, M.; Narasimhan, V. S.; Narayanan, A.; Naumann, N. A.; Neal, H. A.; Negret, J. P.; Nelson, S.; Neuenschwander, R. T.; Neustroev, P.; Noeding, C.; Nomerotski, A.; Novaes, S. F.; Nozdrin, A.; Nunnemann, T.; Nurczyk, A.; Nurse, E.; O'Dell, V.; O'Neil, D. C.; Oguri, V.; Olis, D.; Oliveira, N.; Olivier, B.; Olsen, J.; Oshima, N.; Oshinowo, B. O.; Otero y Garzón, G. J.; Padley, P.; Papageorgiou, K.; Parashar, N.; Park, J.; Park, S. K.; Parsons, J.; Partridge, R.; Parua, N.; Patwa, A.; Pawloski, G.; Perea, P. M.; Perez, E.; Peters, O.; Pétroff, P.; Petteni, M.; Phaf, L.; Piegaia, R.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Pogorelov, Y.; Pol, M.-E.; Pompoš, A.; Polosov, P.; Pope, B. G.; Popkov, E.; Porokhovoy, S.; Prado da Silva, W. L.; Pritchard, W.; Prokhorov, I.; Prosper, H. B.; Protopopescu, S.; Przybycien, M. B.; Qian, J.; Quadt, A.; Quinn, B.; Ramberg, E.; Ramirez-Gomez, R.; Rani, K. J.; Ranjan, K.; Rao, M. V. S.; Rapidis, P. A.; Rapisarda, S.; Raskowski, J.; Ratoff, P. N.; Ray, R. E.; Reay, N. W.; Rechenmacher, R.; Reddy, L. V.; Regan, T.; Renardy, J.-F.; Reucroft, S.; Rha, J.; Ridel, M.; Rijssenbeek, M.; Ripp-Baudot, I.; Rizatdinova, F.; Robinson, S.; Rodrigues, R. F.; Roco, M.; Rotolo, C.; Royon, C.; Rubinov, P.; Ruchti, R.; Rucinski, R.; Rud, V. I.; Russakovich, N.; Russo, P.; Sabirov, B.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santoro, A.; Satyanarayana, B.; Savage, G.; Sawyer, L.; Scanlon, T.; Schaile, D.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schieferdecker, P.; Schmitt, C.; Schwanenberger, C.; Schukin, A. A.; Schwartzman, A.; Schwienhorst, R.; Sengupta, S.; Severini, H.; Shabalina, E.; Shamim, M.; Shankar, H. C.; Shary, V.; Shchukin, A. A.; Sheahan, P.; Shephard, W. D.; Shivpuri, R. K.; Shishkin, A. A.; Shpakov, D.; Shupe, M.; Sidwell, R. A.; Simak, V.; Sirotenko, V.; Skow, D.; Skubic, P.; Slattery, P.; Smith, D. E.; Smith, R. P.; Smolek, K.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Song, X.; Song, Y.; Sonnenschein, L.; Sopczak, A.; Sorín, V.; Sosebee, M.; Soustruznik, K.; Souza, M.; Spartana, N.; Spurlock, B.; Stanton, N. R.; Stark, J.; Steele, J.; Stefanik, A.; Steinberg, J.; Steinbrück, G.; Stevenson, K.; Stolin, V.; Stone, A.; Stoyanova, D. A.; Strandberg, J.; Strang, M. A.; Strauss, M.; Ströhmer, R.; Strom, D.; Strovink, M.; Stutte, L.; Sumowidagdo, S.; Sznajder, A.; Talby, M.; Tentindo-Repond, S.; Tamburello, P.; Taylor, W.; Telford, P.; Temple, J.; Terentyev, N.; Teterin, V.; Thomas, E.; Thompson, J.; Thooris, B.; Titov, M.; Toback, D.; Tokmenin, V. V.; Tolian, C.; Tomoto, M.; Tompkins, D.; Toole, T.; Torborg, J.; Touze, F.; Towers, S.; Trefzger, T.; Trincaz-Duvoid, S.; Trippe, T. G.; Tsybychev, D.; Tuchming, B.; Tully, C.; Turcot, A. S.; Tuts, P. M.; Utes, M.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Vachon, B.; van den Berg, P. J.; van Gemmeren, P.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vartapetian, A.; Vasilyev, I. A.; Vaupel, M.; Vaz, M.; Verdier, P.; Vertogradov, L. S.; Verzocchi, M.; Vigneault, M.; Villeneuve-Seguier, F.; Vishwanath, P. R.; Vlimant, J.-R.; Von Toerne, E.; Vorobyov, A.; Vreeswijk, M.; Vu Anh, T.; Vysotsky, V.; Wahl, H. D.; Walker, R.; Wallace, N.; Wang, L.; Wang, Z.-M.; Warchol, J.; Warsinsky, M.; Watts, G.; Wayne, M.; Weber, M.; Weerts, H.; Wegner, M.; Wermes, N.; Wetstein, M.; White, A.; White, V.; Whiteson, D.; Wicke, D.; Wijnen, T.; Wijngaarden, D. A.; Wilcer, N.; Willutzki, H.; Wilson, G. W.; Wimpenny, S. J.; Wittlin, J.; Wlodek, T.; Wobisch, M.; Womersley, J.; Wood, D. R.; Wyatt, T. R.; Wu, Z.; Xie, Y.; Xu, Q.; Xuan, N.; Yacoob, S.; Yamada, R.; Yan, M.; Yarema, R.; Yasuda, T.; Yatsunenko, Y. A.; Yen, Y.; Yip, K.; Yoo, H. D.; Yoffe, F.; Youn, S. W.; Yu, J.; Yurkewicz, A.; Zabi, A.; Zanabria, M.; Zatserklyaniy, A.; Zdrazil, M.; Zeitnitz, C.; Zhang, B.; Zhang, D.; Zhang, X.; Zhao, T.; Zhao, Z.; Zheng, H.; Zhou, B.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zieminski, A.; Zitoun, R.; Zmuda, T.; Zutshi, V.; Zviagintsev, S.; Zverev, E. G.; Zylberstejn, A.

    2006-09-01

    The DØ experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to DØ.

  12. Isentropic Compression of Argon

    SciTech Connect

    H. Oona; J.C. Solem; L.R. Veeser, C.A. Ekdahl; P.J. Rodriquez; S.M. Younger; W. Lewis; W.D. Turley

    1997-08-01

    We are studying the transition of argon from an insulator to a conductor by compressing the frozen gas isentropically to pressures at which neighboring atomic orbitals overlap sufficiently to allow some electron motion between atoms. Argon and the other rare gases have closed electron shells and therefore remain montomic, even when they solidify. Their simple structure makes it likely that any measured change in conductivity is due to changes in the atomic structure, not in molecular configuration. As the crystal is compressed the band gap closes, allowing increased conductivity. We have begun research to determine the conductivity at high pressures, and it is our intention to determine the compression at which the crystal becomes a metal.

  13. Slow Control System for the NIFFTE Collaboration TPC

    NASA Astrophysics Data System (ADS)

    Ringle, Erik; Niffte Collaboration Collaboration

    2011-10-01

    As world energy concerns continue to dominate public policy in the 21st century, the need for cleaner and more efficient nuclear power is necessary. In order to effectively design and implement plans for generation IV nuclear reactors, more accurate fission cross-section measurements are necessary. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration, in an effort to meet this need, has constructed a Time Projection Chamber (TPC) which aims to reduce the uncertainty of the fission cross-section to less than 1%. Using the Maximum Integration Data Acquisition System (MIDAS) framework, slow control measurements are integrated into a single interface to facilitate off-site monitoring. The Hart Scientific 1560 Black Stack will be used with two 2564 Thermistor Scanner Modules to monitor internal temperature of the TPC. A Prologix GPIB to Ethernet controller will be used to interface the hardware with MIDAS. This presentation will detail the design and implementation of the slow control system for the TPC. This work was supported by the U.S. Department of Energy Division of Energy Research.

  14. Fission cross section uncertainties with the NIFFTE TPC

    NASA Astrophysics Data System (ADS)

    Sangiorgio, Samuele; Niffte Collaboration

    2014-09-01

    Nuclear data such as neutron-induced fission cross sections play a fundamental role in nuclear energy and defense applications. In recent years, understanding of these systems has become increasingly dependent upon advanced simulation and modeling, where uncertainties in nuclear data propagate in the expected performances of existing and future systems. It is important therefore that uncertainties in nuclear data are minimized and fully understood. For this reason, the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) uses a Time Projection Chamber (TPC) to measure energy-differential (n,f) cross sections with unprecedented precision. The presentation will discuss how the capabilities of the NIFFTE TPC allow to directly measures systematic uncertainties in fission cross sections, in particular for what concerns fission-fragment identification, and target and beam uniformity. Preliminary results from recent analysis of 238U/235U and 239Pu/235U data collected with the TPC will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Argon Purification Reference and Recommendation

    SciTech Connect

    Wu, J.; /Fermilab

    1991-05-23

    This engineering note is a reference for future consideration on the purification of argon. The original concern was for the possibility of argon contamination from components in the cryostats over long-term storage. An argon purification system could also be useful for purifying the contents of the argon dewar. The general conclusion is that most of the systems researched are too expensive at this time, but the recommended choice would be Centorr Furnaces. There were three basic types of purification systems which were to be considered. The first was the molecular sieve. This method would have been the preferred one, because it was claimed that it could purify liquid argon, removing liquid oxygen from the argon. However, none of the commercial companies researched provided this type of purification for use with liquid argon. Most companies said that this type of purification was impossible, and tests at IB-4 confirmed this. The second system contained a copper oxide to remove gaseous oxygen from argon gas. The disadvantage of this system wass that the argon had to be heated to a gas, and then cooled back down to liquid. The third system was similar to the second, except that it used tungsten or another material like titanium. This system also needed to heat the argon to gas, however the advantage of this system was that it supposedly removed all contaminants, that is, everything except for inert gases. Of the three systems, the third is the type manufactured by Centorr Furnaces, which uses a titanium charge.

  16. Operation of a liquid argon time projection chamber

    SciTech Connect

    Mahler, H.J.; Chen, H.H.; Doe, P.J.

    1983-02-01

    For the first time, the operation of a three-dimensional liquid argon time projection chamber has been demonstrated. This was accomplished in a 50 liter test detector using a readout plane with a woven structure etched on a PC-board.

  17. Excitation of metastable argon and helium atoms by electron impact

    NASA Technical Reports Server (NTRS)

    Borst, W. L.

    1974-01-01

    Using a time-of-flight method, the excitation of argon and helium metastables by electron impact is investigated in the energy range from threshold to about 50 eV. The secondary-electron yields of the metastable detector used are reviewed in detail. The effect of metastable recoil is also discussed. Comparisons with data from other investigators are presented.

  18. TREX-DM: a low-background Micromegas-based TPC for low-mass WIMP detection

    NASA Astrophysics Data System (ADS)

    Iguaz, F. J.; Garza, J. G.; Aznar, F.; Castel, J. F.; Cebrián, S.; Dafni, T.; García, J. A.; Irastorza, I. G.; Lagraba, A.; Luzón, G.; Peiró, A.

    2016-10-01

    If Dark Matter is made of Weakly Interacting Massive Particles (WIMPs) with masses below {˜ }20 GeV, the corresponding nuclear recoils in mainstream WIMP experiments are of energies too close, or below, the experimental threshold. Gas Time Projection Chambers (TPCs) can be operated with a variety of target elements, offer good tracking capabilities and, on account of the amplification in gas, very low thresholds are achievable. Recent advances in electronics and in novel radiopure TPC readouts, especially micro-mesh gas structure (Micromegas), are improving the scalability and low-background prospects of gaseous TPCs. Here we present TREX-DM, a prototype to test the concept of a Micromegas-based TPC to search for low-mass WIMPs. The detector is designed to host an active mass of {˜ }0.300 kg of Ar at 10 bar, or alternatively {˜ }0.160 kg of Ne at 10 bar, with an energy threshold below 0.4 keVee, and is fully built with radiopure materials. We will describe the detector in detail, the results from the commissioning phase on surface, as well as a preliminary background model. The anticipated sensitivity of this technique may go beyond current experimental limits for WIMPs of masses of 2-8 GeV.

  19. First results of a large-area cryogenic gaseous photomultiplier coupled to a dual-phase liquid xenon TPC

    NASA Astrophysics Data System (ADS)

    Arazi, L.; Coimbra, A. E. C.; Erdal, E.; Israelashvili, I.; Rappaport, M. L.; Shchemelinin, S.; Vartsky, D.; dos Santos, J. M. F.; Breskin, A.

    2015-10-01

    We discuss recent advances in the development of cryogenic gaseous photomultipliers (GPM), for possible use in dark matter and other rare-event searches using noble-liquid targets. We present results from a 10 cm diameter GPM coupled to a dual-phase liquid xenon (LXe) TPC, demonstrating—for the first time—the feasibility of recording both primary (``S1'') and secondary (``S2'') scintillation signals. The detector comprised a triple Thick Gas Electron Multiplier (THGEM) structure with cesium iodide photocathode on the first element; it was shown to operate stably at 180 K with gains above 105, providing high single-photon detection efficiency even in the presence of large α particle-induced S2 signals comprising thousands of photoelectrons. S1 scintillation signals were recorded with a time resolution of 1.2 ns (RMS). The energy resolution (σ/E) for S2 electroluminescence of 5.5 MeV α particles was ~ 9%, which is comparable to that obtained in the XENON100 TPC with PMTs. The results are discussed within the context of potential GPM deployment in future multi-ton noble-liquid detectors.

  20. GEM-based TPC with CCD imaging for directional dark matter detection

    NASA Astrophysics Data System (ADS)

    Phan, N. S.; Lauer, R. J.; Lee, E. R.; Loomba, D.; Matthews, J. A. J.; Miller, E. H.

    2016-11-01

    The most mature directional dark matter experiments at present all utilize low-pressure gas Time Projection Chamber (TPC) technologies. We discuss some of the challenges for this technology, for which balancing the goal of achieving the best sensitivity with that of cost effective scale-up requires optimization over a large parameter space. Critical for this are the precision measurements of the fundamental properties of both electron and nuclear recoil tracks down to the lowest detectable energies. Such measurements are necessary to provide a benchmark for background discrimination and directional sensitivity that could be used for future optimization studies for directional dark matter experiments. In this paper we describe a small, high resolution, high signal-to-noise GEM-based TPC with a 2D CCD readout designed for this goal. The performance of the detector was characterized using alpha particles, X-rays, gamma-rays, and neutrons, enabling detailed measurements of electron and nuclear recoil tracks. Stable effective gas gains of greater than 1 × 105 were obtained in 100 Torr of pure CF4 by a cascade of three standard CERN GEMs each with a 140 μm pitch. The high signal-to-noise and sub-millimeter spatial resolution of the GEM amplification and CCD readout, together with low diffusion, allow for excellent background discrimination between electron and nuclear recoils down below ∼10 keVee (∼23 keVr fluorine recoil). Even lower thresholds, necessary for the detection of low mass WIMPs for example, might be achieved by lowering the pressure and utilizing full 3D track reconstruction. These and other paths for improvements are discussed, as are possible fundamental limitations imposed by the physics of energy loss.

  1. Development of a dedicated readout ASIC for TPC based X-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Zhang, Hongyan; Deng, Zhi; Li, Hong; Liu, Yinong; Feng, Hua

    2016-07-01

    X-ray polarimetry with time projection chambers was firstly proposed by JK Black in 2007 and has been greatly developed since then. It measured two dimensional photoelectron tracks with one dimensional strip and the other dimension was estimated by the drift time from the signal waveforms. A readout ASIC, APV25, originally developed for CMS silicon trackers was used and has shown some limitations such as waveform sampling depth. A dedicated ASIC was developed for TPC based X-ray polarimeters in this paper. It integrated 32 channel circuits and each channel consisted of an analog front-end and a waveform sampler based on switched capacitor array. The analog front-end has a charge sensitive preamplifier with a gain of 25 mV/fC, a CR-RC shaper with a peaking time of 25 ns, a baseline holder and a discriminator for self-triggering. The SCA has a buffer latency of 3.2 μs with 64 cells operating at 20 MSPS. The ASIC was fabricated in a 0.18 μm CMOS process. The equivalent noise charge (ENC) of the analog front-end was measured to be 274.8 e+34.6 e/pF. The effective resolution of the SCA was 8.8 bits at sampling rate up to 50 MSPS. The total power consumption was 2.8 mW per channel. The ASIC was also tested with real TPC detectors and two dimensional photoelectron tracks have been successfully acquired. More tests and analysis on the sensitivity to the polarimetry are undergoing and will be presented in this paper.

  2. The Argon Geochronology Experiment (AGE)

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.; Bode, R.; Fennema, A.; Chutjian, A.; MacAskill, J. A.; Darrach, M. R.; Clegg, S. M.; Wiens, R. C.; Cremers, D.

    2006-01-01

    This viewgraph presentation reviews the Argon Geochronology Experiment (AGE). Potassium-Argon dating is shown along with cosmic ray dating exposure. The contents include a flow diagram of the Argon Geochronology Experiment, and schematic diagrams of the mass spectrometer vacuum system, sample manipulation mechanism, mineral heater oven, and the quadrupole ion trap mass spectrometer. The Laser-Induced Breakdown Spectroscopy (LIBS) Operation with elemental abundances is also described.

  3. Isentropic compression of argon

    SciTech Connect

    Veeser, L.R.; Ekdahl, C.A.; Oona, H.

    1997-06-01

    The compression was done in an MC-1 flux compression (explosive) generator, in order to study the transition from an insulator to a conductor. Since conductivity signals were observed in all the experiments (except when the probe is removed), both the Teflon and the argon are becoming conductive. The conductivity could not be determined (Teflon insulation properties unknown), but it could be bounded as being {sigma}=1/{rho}{le}8({Omega}cm){sub -1}, because when the Teflon breaks down, the dielectric constant is reduced. The Teflon insulator problem remains, and other ways to better insulate the probe or to measure the conductivity without a probe is being sought.

  4. TPC2 controls pigmentation by regulating melanosome pH and size.

    PubMed

    Ambrosio, Andrea L; Boyle, Judith A; Aradi, Al E; Christian, Keith A; Di Pietro, Santiago M

    2016-05-17

    Melanin is responsible for pigmentation of skin and hair and is synthesized in a specialized organelle, the melanosome, in melanocytes. A genome-wide association study revealed that the two pore segment channel 2 (TPCN2) gene is strongly linked to pigmentation variations. TPCN2 encodes the two-pore channel 2 (TPC2) protein, a cation channel. Nevertheless, how TPC2 regulates pigmentation remains unknown. Here, we show that TPC2 is expressed in melanocytes and localizes to the melanosome-limiting membrane and, to a lesser extent, to endolysosomal compartments by confocal fluorescence and immunogold electron microscopy. Immunomagnetic isolation of TPC2-containing organelles confirmed its coresidence with melanosomal markers. TPCN2 knockout by means of clustered regularly interspaced short palindromic repeat/CRISPR-associated 9 gene editing elicited a dramatic increase in pigment content in MNT-1 melanocytic cells. This effect was rescued by transient expression of TPC2-GFP. Consistently, siRNA-mediated knockdown of TPC2 also caused a substantial increase in melanin content in both MNT-1 cells and primary human melanocytes. Using a newly developed genetically encoded pH sensor targeted to melanosomes, we determined that the melanosome lumen in TPC2-KO MNT-1 cells and primary melanocytes subjected to TPC2 knockdown is less acidic than in control cells. Fluorescence and electron microscopy analysis revealed that TPC2-KO MNT-1 cells have significantly larger melanosomes than control cells, but the number of organelles is unchanged. TPC2 likely regulates melanosomes pH and size by mediating Ca(2+) release from the organelle, which is decreased in TPC2-KO MNT-1 cells, as determined with the Ca(2+) sensor tyrosinase-GCaMP6. Thus, our data show that TPC2 regulates pigmentation through two fundamental determinants of melanosome function: pH and size. PMID:27140606

  5. TPC2 controls pigmentation by regulating melanosome pH and size.

    PubMed

    Ambrosio, Andrea L; Boyle, Judith A; Aradi, Al E; Christian, Keith A; Di Pietro, Santiago M

    2016-05-17

    Melanin is responsible for pigmentation of skin and hair and is synthesized in a specialized organelle, the melanosome, in melanocytes. A genome-wide association study revealed that the two pore segment channel 2 (TPCN2) gene is strongly linked to pigmentation variations. TPCN2 encodes the two-pore channel 2 (TPC2) protein, a cation channel. Nevertheless, how TPC2 regulates pigmentation remains unknown. Here, we show that TPC2 is expressed in melanocytes and localizes to the melanosome-limiting membrane and, to a lesser extent, to endolysosomal compartments by confocal fluorescence and immunogold electron microscopy. Immunomagnetic isolation of TPC2-containing organelles confirmed its coresidence with melanosomal markers. TPCN2 knockout by means of clustered regularly interspaced short palindromic repeat/CRISPR-associated 9 gene editing elicited a dramatic increase in pigment content in MNT-1 melanocytic cells. This effect was rescued by transient expression of TPC2-GFP. Consistently, siRNA-mediated knockdown of TPC2 also caused a substantial increase in melanin content in both MNT-1 cells and primary human melanocytes. Using a newly developed genetically encoded pH sensor targeted to melanosomes, we determined that the melanosome lumen in TPC2-KO MNT-1 cells and primary melanocytes subjected to TPC2 knockdown is less acidic than in control cells. Fluorescence and electron microscopy analysis revealed that TPC2-KO MNT-1 cells have significantly larger melanosomes than control cells, but the number of organelles is unchanged. TPC2 likely regulates melanosomes pH and size by mediating Ca(2+) release from the organelle, which is decreased in TPC2-KO MNT-1 cells, as determined with the Ca(2+) sensor tyrosinase-GCaMP6. Thus, our data show that TPC2 regulates pigmentation through two fundamental determinants of melanosome function: pH and size.

  6. A 4. pi. tracking TPC magnetic spectrometer for RHIC

    SciTech Connect

    Danby, G.; Eiseman, S.E.; Etkin, A.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Van Dijk, J.H. ); Lindenbaum, S.J. City Coll., New York, NY ); Chan, C.S.; Kramer, M.A.; Zhao, K. ); Biswas, N.; Kenney, P.; Piekarz, J. (Notre Dame Univ

    1990-01-01

    The primary physics objective of the 4{pi} TPC magnetic spectrometer proposal is to search for the Quark-Gluon Plasma. In previous workshops we have discussed what the possible hadronic signatures of such a state of matter would be. Succinctly, the QGP is a direct prediction of non-perturbative QCD. Therefore the question of the existence of this new state of matter bears directly on the validity of non-perturbative QCD. However, since non-perturbative QCD has never been established, it is apparent that what may await us is a host of new phenomena that will go beyond the standard model.

  7. Cryogenic Tests of the ATLAS Liquid Argon Calorimeter

    SciTech Connect

    Bremer, J.; Fabre, C.; Passardi, G.; Chalifour, M.

    2006-04-27

    The ATLAS liquid argon calorimeter consists of the barrel and two end-cap detectors housed in three independent cryostats filled with a total volume of 78 m3 of liquid argon. During cool-down the temperature differences in the composite structure of the detectors must be kept within strict limits to avoid excessive mechanical stresses and relative displacements. During normal operation the formation of gas bubbles, which are detrimental to the functioning of the detector, must be prevented and temperature gradients of less than 0.7 K across the argon bath are mandatory due to the temperature dependence of the energy measurements. Between April 2004 and May 2005 the barrel (120 t) and one end-cap (219 t) underwent qualification tests at the operating temperature of 87.3 K using a dedicated test facility at ground level. These tests provided a validation of the cooling methods to be adopted in the final underground configuration. In total 6.9 GJ and 15.7 GJ were extracted from the calorimeters and a temperature uniformity of the argon bath of less than 0.4 K was achieved.

  8. Measuring Muon-Neutrino Charged-Current Differential Cross Sections with a Liquid Argon Time Projection Chamber

    SciTech Connect

    Spitz, Joshua B.

    2011-01-01

    More than 80 years after its proposed existence, the neutrino remains largely mysterious and elusive. Precision measurements of the neutrino's properties are just now beginning to take place. Such measurements are required in order to determine the mass of the neutrino, how many neutrinos there are, if neutrinos are different than anti-neutrinos, and more. Muon-neutrino charged-current differential cross sections on an argon target in terms of the outgoing muon momentum and angle are presented. The measurements have been taken with the ArgoNeuT Liquid Argon Time Projection Chamber (LArTPC) experiment. ArgoNeuT is the first LArTPC to ever take data in a low energy neutrino beam, having collected thousands of neutrino and anti-neutrino events in the NuMI beamline at Fermilab. The results are relevant for long baseline neutrino oscillation experiments searching for non-zero $\\theta_{13}$, CP-violation in the lepton sector, and the sign of the neutrino mass hierarchy, among other things. Furthermore, the differential cross sections are important for understanding the nature of the neutrino-nucleus interaction in general. These measurements represent a significant step forward for LArTPC technology as they are among the first neutrino physics results with such a device.

  9. Argon Welding Inside A Workpiece

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.

    1988-01-01

    Canopies convert large hollow workpiece into inert-gas welding chamber. Large manifold serves welding chamber for attachment of liner parts in argon atmosphere. Every crevice, opening and passageway provided with argon-rich environment. Weld defects and oxidation dramatically reduced; also welding time reduced.

  10. Broadening and Shift of the 3p54p-3p54d Argon Spectral Lines in Pure Argon, Argon-Neon and Argon-Helium Mixtures

    NASA Astrophysics Data System (ADS)

    Wawrzynski, J.; Wolnikowski, J.

    1986-02-01

    Low pressure broadening and shift of four spectral lines of argon, 591.2, 687.1, 693.7 and 737.2 nm have been investigated. The values of the pressure broadening and shift coefficients for argon-argon, argon-neon and argon-helium interactions in the glow discharge are determined. For all lines in the pure argon a red shift and in the argon-helium mixture a blue shift has been found. In the argon-neon mixture the shifts of these lines are small and have different signs.

  11. The LUX-Zeplin Dark Matter Detector

    NASA Astrophysics Data System (ADS)

    Mock, Jeremy; Lux-Zeplin (Lz) Collaboration

    2016-03-01

    The LUX-ZEPLIN (LZ) detector is a second generation dark matter experiment that will operate at the 4850 foot level of the Sanford Underground Research Experiment as a follow-up to the LUX detector, currently the world's most sensitive WIMP direct detection experiment. The LZ detector will contain 7 tonnes of active liquid xenon with a 5.6 tonne fiducial mass in the TPC. The TPC is surrounded by an active, instrumented, liquid-xenon ``skin'' region to veto gammas, then a layer of liquid scintillator to veto neutrons, all contained within a water shield. Modeling the detector is key to understanding the expected background, which in turn leads to a better understanding of the projected sensitivity, currently expected to be 2e-48 cm2 for a 50 GeV WIMP. I will discuss the current status of the LZ experiment as well as its projected sensitivity.

  12. Heavy ion reaction measurements with the EOS TPC (looking for central collisions with missing energy)

    SciTech Connect

    Wieman, H.H.; EOS Collaboration

    1994-05-01

    The EOS TPC was constructed for complete event measurement of heavy ion collisions at the Bevalac. We report here on the TPC design and some preliminary measurements of conserved event quantities such as total invariant mass, total momentum, total A and Z.

  13. Purified TPC Isoforms Form NAADP Receptors with Distinct Roles for Ca2+ Signaling and Endolysosomal Trafficking

    PubMed Central

    Ruas, Margarida; Rietdorf, Katja; Arredouani, Abdelilah; Davis, Lianne C.; Lloyd-Evans, Emyr; Koegel, Heidi; Funnell, Timothy M.; Morgan, Anthony J.; Ward, John A.; Watanabe, Keiko; Cheng, Xiaotong; Churchill, Grant C.; Zhu, Michael X.; Platt, Frances M.; Wessel, Gary M.; Parrington, John; Galione, Antony

    2010-01-01

    Summary Intracellular Ca2+ signals constitute key elements in signal transduction. Of the three major Ca2+ mobilizing messengers described, the most potent, nicotinic acid adenine dinucleotide phosphate (NAADP) is the least well understood in terms of its molecular targets [1]. Recently, we showed that heterologous expression of two-pore channel (TPC) proteins enhances NAADP-induced Ca2+ release, whereas the NAADP response was abolished in pancreatic beta cells from Tpcn2 gene knockout mice [2]. However, whether TPCs constitute native NAADP receptors is unclear. Here we show that immunopurified endogenous TPC complexes possess the hallmark properties ascribed to NAADP receptors, including nanomolar ligand affinity [3–5]. Our study also reveals important functional differences between the three TPC isoforms. Thus, TPC1 and TPC2 both mediate NAADP-induced Ca2+ release, but the subsequent amplification of this trigger Ca2+ by IP3Rs is more tightly coupled for TPC2. In contrast, TPC3 expression suppressed NAADP-induced Ca2+ release. Finally, increased TPC expression has dramatic and contrasting effects on endolysosomal structures and dynamics, implicating a role for NAADP in the regulation of vesicular trafficking. We propose that NAADP regulates endolysosomal Ca2+ storage and release via TPCs and coordinates endoplasmic reticulum Ca2+ release in a role that impacts on Ca2+ signaling in health and disease [6]. PMID:20346675

  14. Argon metastable production in argon-helium microplasmas

    NASA Astrophysics Data System (ADS)

    Hoskinson, Alan R.; Gregorío, José; Hopwood, Jeffrey; Galbally-Kinney, Kristin; Davis, Steven J.; Rawlins, Wilson T.

    2016-06-01

    Microwave resonator-driven microplasmas are a promising technology for generating the high density of rare-gas metastable states required for optically pumped rare gas laser systems. We measure the density of argon 1s5 states (Paschen notation) in argon-helium plasmas between 100 Torr and atmospheric pressure using diode laser absorption. The metastable state density is observed to rise with helium mole fraction at lower pressures but to instead fall slightly when tested near atmospheric pressure. A 0-D model of the discharge suggests that these distinct behaviors result from the discharge being diffusion-controlled at lower pressures, but with losses occurring primarily through dissociative recombination at high pressures. In all cases, the argon metastable density falls sharply when the neutral argon gas fraction is reduced below approximately 2%.

  15. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    DOE PAGESBeta

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0more » to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.« less

  16. Measurement of scintillation and ionization yield and scintillation pulse shape from nuclear recoils in liquid argon

    NASA Astrophysics Data System (ADS)

    Cao, H.; Alexander, T.; Aprahamian, A.; Avetisyan, R.; Back, H. O.; Cocco, A. G.; Dejongh, F.; Fiorillo, G.; Galbiati, C.; Grandi, L.; Guardincerri, Y.; Kendziora, C.; Lippincott, W. H.; Love, C.; Lyons, S.; Manenti, L.; Martoff, C. J.; Meng, Y.; Montanari, D.; Mosteiro, P.; Olvitt, D.; Pordes, S.; Qian, H.; Rossi, B.; Saldanha, R.; Sangiorgio, S.; Siegl, K.; Strauss, S. Y.; Tan, W.; Tatarowicz, J.; Walker, S.; Wang, H.; Watson, A. W.; Westerdale, S.; Yoo, J.; Scene Collaboration

    2015-05-01

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V /cm . For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V /cm . We also report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from Krm83 internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni ) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.

  17. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    SciTech Connect

    Cao, H.

    2015-05-26

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (Nex) and ion pairs (Ni) and their ratio (Nex/Ni) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.

  18. Upgrade of the ALICE TPC FEE online radiation monitoring system

    NASA Astrophysics Data System (ADS)

    RØed, K.; Alme, J.; Askeland, E.; David, E.; Gunji, T.; Helstrup, H.; Kiss, T.; Lippmann, C.; Rehman, A.; Röhrich, D.; Ullaland, K.; Velure, A.; Zhao, C.

    2015-12-01

    This paper presents the radiation monitoring system on the Readout Control Unit (RCU) of the the ALICE TPC Front End Electronics. In Run 1, Single Event Upsets (SEUs) in the configuration memory of an SRAM based FPGA were counted, and the results from different run periods with stable beam conditions are presented. For Run 2, a new RCU, the RCU2, has been designed in order to achieve higher data readout rates and increase radiation tolerance. The RCU2 also includes a new radiation monitor solution with increased sensitivity, which is based on counting the number of SEUs in dedicated SRAM memories. The paper presents this new solution together with the results from the targeted irradiation campaigns.

  19. Slow Control System for the NIFFTE High Precision TPC

    NASA Astrophysics Data System (ADS)

    Thornton, Remington

    2010-11-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) has designed a Time Projection Chamber (TPC) to measure neutron induced fission cross-section measurements of the major actinides to sub-1% precision over a wide incident neutron energy range. These measurements are necessary to design the next generation of nuclear power plants. In order to achieve our high precision goals, an accurate and efficient slow control system must be implemented. Custom software has been created to control the hardware through Maximum Integration Data Acquisition System (MIDAS). This includes reading room and device temperature, setting the high voltage power supplies, and reading voltages. From hardware to software, an efficient design has been implemented and tested. This poster will present the setup and data from this slow control system.

  20. Readout of TPC Tracking Chambers with GEMs and Pixel Chip

    SciTech Connect

    Kadyk, John; Kim, T.; Freytsis, M.; Button-Shafer, J.; Kadyk, J.; Vahsen, S.E.; Wenzel, W.A.

    2007-12-21

    Two layers of GEMs and the ATLAS Pixel Chip, FEI3, have been combined and tested as a prototype for Time Projection Chamber (TPC) readout at the International Linear Collider (ILC). The double-layer GEM system amplifies charge with gain sufficient to detect all track ionization. The suitability of three gas mixtures for this application was investigated, and gain measurements are presented. A large sample of cosmic ray tracks was reconstructed in 3D by using the simultaneous timing and 2D spatial information from the pixel chip. The chip provides pixel charge measurement as well as timing. These results demonstrate that a double GEM and pixel combination, with a suitably modified pixel ASIC, could meet the stringent readout requirements of the ILC.

  1. Performance simulation studies for the ALICE TPC GEM upgrade

    NASA Astrophysics Data System (ADS)

    Ljunggren, M.

    2016-07-01

    To be able to exploit the anticipated interaction rate of 50 kHz in Pb-Pb collisions during run 3 of the LHC (beyond 2019), the ALICE TPC will be upgraded to allow continuous readout. As this is not possible with the current Multi Wire Proportional Chamber (MWPC) based amplification, the readout will be replaced with Gas Electron Multiplier (GEM) readout chambers that can suppress ~ 99% of the ion back flow. The space charge of the remaining 1% ion back flow, however, will cause significant distortions to the measured tracks of order cm. Simulation studies to characterize the distortions and test correction strategies have been performed, which show that the intrinsic momentum resolution, without these distortions, can be recovered.

  2. The Upgraded D0 detector

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Beijing, Inst. High Energy Phys. /Hefei, CUST /Andes U., Bogota /Charles U. /Prague, Tech. U. /Prague, Inst. Phys. /San Francisco de Quito U. /Clermont-Ferrand U. /LPSC, Grenoble /Marseille, CPPM /Orsay, LAL /Paris U., VI-VII /DAPNIA, Saclay /Strasbourg, IReS

    2005-07-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  3. First measurement of the ionization yield of nuclear recoils in liquid argon

    SciTech Connect

    Joshi, T.; Sangiorgio, Samuele; Bernstein, A.; Foxe, Michael P.; Hagmann, Chris; Jovanovic, Igor; Kazkaz, K.; Mozin, Vladimir V.; Norman, E. B.; Pereverzev, S. V.; Rebassoo, Finn O.; Sorensen, Peter F.

    2014-05-01

    Liquid phase argon has long been used as a target medium for particle detection via scintillation light. Recently there has been considerable interest in direct detection of both hypothetical darkmatter particles and coherent elastic neutrino nucleus scattering. These as-yet unobserved neutral particle interactions are expected to result in a recoiling argon atom O(keV), generally referred to in the literature as a nuclear recoil. This prompts the question of the available electromagnetic signal in a liquid argon detector. In this Letter we report the first measurement of the ionization yield (Qy), detected electrons per unit energy, resulting from nuclear recoils in liquid argon, measured at 6.7 keV. This is also the lowest energy measurement of nuclear recoils in liquid argon.

  4. Quenching gas for detectors of charged particles

    DOEpatents

    Atac, M.

    1974-01-22

    Operation of detectors of charged particles such as wire counters and Geiger-Muller tubes is improved by filling the counters with a quenching-gas mixture of argon, isobutane and methylchloroform. (Official Gazette)

  5. Surfactant mediated extraction of total phenolic contents (TPC) and antioxidants from fruits juices.

    PubMed

    Sharma, Shweta; Kori, Shivpoojan; Parmar, Ankush

    2015-10-15

    The aim of this study was to enhance the extraction of total phenolic contents (TPC) and antioxidants from fruit juices by the application of surfactants formulations instead of conventional solvents (methanol, ethanol and acetone). A variety of fruit infusions: apple red delicious (apple (rd)) (Malus domestica), Mcintosh apple (apple (i)) (Malus pumila), sweet lemon (Citrus limetta) and mango (Magnifera indica) were studied. Effect of water, organic solvents and five different aqueous surfactant formulations viz. SDS, Brij-35, Brij-58, Triton X-100 and Span-40 were explored for the extraction of TPC and determining the antioxidant activity (AA). The TPC and AA (%) were determined using Folin-Ciocalteu (FCA) and DPPH assay, respectively. The effect of surfactant type, concentration and common organic solvents on the extraction of TPC and AA (%) was studied using UV-visible spectrophotometric technique. Among all the extracting systems employed, Brij-58 showed the highest extraction efficiency. PMID:25952870

  6. Behavior of TPC`s in a high particle flux environment

    SciTech Connect

    Etkin, A.; Eisemann, S.E.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Lindenbaum, S.J. |; Chan, C.S.; Kramer, M.A.; Zhao, K.H.; Zhu, Y.; Hallman, T.J.; Madansky, L.; Ahmad, S.; Bonner, B.E.; Buchanan, J.A.; Chiou, C.N.; Clement, J.M.; Mutchler, G.S.; Roberts, J.B.

    1991-12-13

    TPC`s (Time Projection Chamber) used in E-810 at the AGS (Alternating Gradient Synchrotron) were exposed to fluxes equivalent to more than 10{sup 7} minimum ionizing particles per second to find if such high fluxes cause gain changes or distortions of the electric field. Initial results of these and other tests are presented and the consequences for the RHIC (Relativistic Heavy Ion Collider) TPC-based experiments are discussed.

  7. Behavior of TPC`s in a high particle flux environment

    SciTech Connect

    Etkin, A.; Eiseman, S.E.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Lindenbaum, S.J.; Chan, C.S.; Kramer, M.A.; Zhao, K.H.; Zhu, Y.; Hallman, T.J.; Madansky, L.; Ahmad, S.; Bonner, B.E.; Buchanan, J.A.; Chiou, C.N.; Clement, J.M.; Mutchler, G.S.; Roberts, J.B.

    1991-12-31

    TPC`s (Time Projection Chamber) used in E-810 at the TAGS (Alternating Gradient Synchrotron) were exposed to fluxes equivalent to more than 10 minimum ionizing particles per second to find if such high fluxes cause gain changes or distortions of the electric field. Initial results of these and other tests are presented and the consequences for the RHIC (Relativistic Heavy Ion Collider) TPC-based experiments are discussed.

  8. The Two-pore channel (TPC) interactome unmasks isoform-specific roles for TPCs in endolysosomal morphology and cell pigmentation.

    PubMed

    Lin-Moshier, Yaping; Keebler, Michael V; Hooper, Robert; Boulware, Michael J; Liu, Xiaolong; Churamani, Dev; Abood, Mary E; Walseth, Timothy F; Brailoiu, Eugen; Patel, Sandip; Marchant, Jonathan S

    2014-09-01

    The two-pore channels (TPC1 and TPC2) belong to an ancient family of intracellular ion channels expressed in the endolysosomal system. Little is known about how regulatory inputs converge to modulate TPC activity, and proposed activation mechanisms are controversial. Here, we compiled a proteomic characterization of the human TPC interactome, which revealed that TPCs complex with many proteins involved in Ca(2+) homeostasis, trafficking, and membrane organization. Among these interactors, TPCs were resolved to scaffold Rab GTPases and regulate endomembrane dynamics in an isoform-specific manner. TPC2, but not TPC1, caused a proliferation of endolysosomal structures, dysregulating intracellular trafficking, and cellular pigmentation. These outcomes required both TPC2 and Rab activity, as well as their interactivity, because TPC2 mutants that were inactive, or rerouted away from their endogenous expression locale, or deficient in Rab binding, failed to replicate these outcomes. Nicotinic acid adenine dinucleotide phosphate (NAADP)-evoked Ca(2+) release was also impaired using either a Rab binding-defective TPC2 mutant or a Rab inhibitor. These data suggest a fundamental role for the ancient TPC complex in trafficking that holds relevance for lysosomal proliferative scenarios observed in disease.

  9. The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning

    SciTech Connect

    Aleksa, Martin

    2006-10-27

    The ATLAS liquid argon (LAr) calorimeter system consists of an electromagnetic barrel calorimeter and two end caps with electromagnetic, hadronic and forward calorimeters. The liquid argon sampling technique, with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the end cap (EMEC). The hadronic end cap calorimeter (HEC) uses a copper-liquid argon sampling technique with flat plate geometry and is subdivided in depth in two wheels per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules employing cylindrical electrodes with thin liquid argon gaps.The construction of the full calorimeter system is complete since mid-2004. Production modules constructed in the home institutes were integrated into wheels at CERN in 2003-2004, and inserted into the three cryostats. They passed their first complete cold test before the lowering into the ATLAS cavern. Results of quality checks (e.g. electrical, mechanical, ...) performed on all the 190304 read-out channels after cool down will be reported. End 2004 the ATLAS barrel electromagnetic (EM) calorimeter was installed in the ATLAS cavern and since summer 2005 the front-end electronics are being connected and tested. Results of this first commissioning phase will be shown to demonstrate the high standards of quality control for our detectors.

  10. Radiative Properties of Argon Gas-Puff Implosions on COBRA

    NASA Astrophysics Data System (ADS)

    Ouart, Nicholas; Qi, Niansheng; de Grouchy, Phil; Shelkovenko, Tatiana; Pikuz, Sergei; Giuliani, John; Dasgupta, Arati; Apruzese, John; Clark, Robert; Hammer, David; Kusse, Bruce

    2015-11-01

    Gas-puff Z-pinch experiments were performed on the 1 MA COBRA pulsed power generator at Cornell University. The gas puffs were injected into the load region from a triple nozzle. The load region had an anode-cathode gap of 2.5 cm. The standard diagnostics on COBRA include time-integrated pinhole cameras, a time-integrated axially resolved x-ray spectrometer, filtered photo-conducting detectors, and time-gated XUV cameras. We will focus mainly on results from pinhole images and x-ray spectra from argon gas puffs including some with a SO2 dopant. The x-ray time-integrated pinhole images feature a tight axially uniform plasma column with a diameter of approximately 1 mm for argon gas implosion. The x-ray spectrometer used mica crystals (2d =19.84 Å) and captured the argon K-shell radiation from different crystal reflections. A 1-D multi-zone argon and sulfur non-LTE kinetics code with radiation transport is used to model the K-shell emission for the purpose of inferring the plasma conditions and the interaction of gas from the inner annulus with the central jet. This work is supported by DOE/NNSA.

  11. Rebuttal of “Comments to ‘The HARP detector at the CERN PS’ ”

    NASA Astrophysics Data System (ADS)

    HARP Collaboration

    2007-02-01

    In their "Comments on 'The HARP detector at the CERN PS' " V. Ammosov et al. criticize the description of the calibration and performance of two detectors of the HARP apparatus, namely the TPC and the RPC system. This Rebuttal intends to answer all points raised with experimental evidence. This Rebuttal is not concerned with the claims of the performances possibly obtained by the commenters.

  12. Searching for dark matter with single phase liquid argon

    NASA Astrophysics Data System (ADS)

    Caldwell, Thomas S., Jr.

    The first hint that we fail to understand the nature of a large fraction of the gravitating matter in the universe came from Fritz Zwicky's measurements of the velocity distribution of the Coma cluster in 1933. Using the Virial theorem, Zwicky found that galaxies in the cluster were orbiting far too fast to remain gravitationally bound when their mass was estimated by the brightness of the visible matter. This led to the postulation that some form of non-luminous dark matter is present in galaxies comprising a large fraction of the galactic mass. The nature of this dark matter remains yet unknown over 80 years after Zwicky's measurements despite the efforts of many experiments. Dark matter is widely believed to be a beyond the Standard Model particle which brings the dark matter problem into the realm of particle physics. Supersymmetry is one widely explored extension of the Standard model, from which particles meeting the constraints on dark matter properties can naturally arise. These particles are generically termed weakly interacting massive particles (WIMPs), and are a currently favored dark matter candidate. A variety of experimental efforts are underway aimed towards direct detection of dark matter through observation of rare scattering of WIMPs in terrestrial detectors. Single phase liquid argon detectors are an appealing WIMP detection technique due to the scintillation properties of liquid argon and the scalability of the single phase approach. The MiniCLEAN dark matter detector is a single phase liquid argon scintillation scintillation detector with a 500 kg active mass. The modular design offers 4pi coverage with 92 optical cassettes, each containing TPB coated acrylic and a cryogenic photomultiplier tube. The MiniCLEAN detector has recently completed construction at SNOLAB. The detector is currently being commissioned, and will soon begin operation with the liquid argon target. Utilizing advanced pulse-shape discrimination techniques, MiniCLEAN will

  13. The Gridpix Detector: History and Perspective

    NASA Astrophysics Data System (ADS)

    van der Graaf, Harry; Aarnink, Tom; Aarts, Arno; van Bakel, Niels; Berbee, Edward; Berkien, Ad; van Beuzekom, Martin; Bosma, Marten; Campbell, Michael; Chefdeville, Max; Colas, Paul; Colijn, Auke-Pieter; Fornaini, Alessandro; Fransen, Martin; Giganon, Arnaud; Giomataris, Ioannis; Gotink, Wim; de Groot, Nicolo; Hartjes, Fred; van der Heijden, Bas; Hessey, Nigel; Jansweijer, Peter; Konig, Adriaan; Koppert, Wilco; Llopart, Xavi; de Nooij, Lucie; van der Putten, Sipho; Rövekamp, Joop; Salm, Cora; Bello, D. San Segundo; Schmitz, Jurriaan; Smits, Sander; Timmermans, Jan; Verkooijen, Hans; Visschers, Jan; Visser, Jan; Wijnen, Thei; Wyrsch, Nicolas

    2013-04-01

    In 2000, the requirements for a large TPC for experiments at a new linear collider were formulated. Both the GEM and Micromegas gas amplification systems had matured, such that they could be practically applied. With the Medipix chip, a pixel-segmented anode readout became possible, offering an unprecedented level of granularity and sensitivity. The single electron sensitive device is a digital detector capable to record and transfer all information of the primary ionization, provided that it can be made discharge proof.

  14. Attainable superheat of argon-helium, argon-neon solutions.

    PubMed

    Baidakov, Vladimir G; Kaverin, Aleksey M; Andbaeva, Valentina N

    2008-10-16

    The method of lifetime measurement has been used to investigate the kinetics of spontaneous boiling-up of superheated argon-helium and argon-neon solutions. Experiments were made at a pressure of p = 1.5 MPa and concentrations up to 0.33 mol% in the range of nucleation rates from 10 (4) to 10 (8) s (-1) m (-3). The homogeneous nucleation regime has been distinguished. With good agreement between experimental data and homogeneous nucleation theory in temperature and concentration dependences of the nucleation rate, a systematic underestimation by 0.25-0.34 K has been revealed in superheat temperatures over the saturated line attained by experiment as compared with theoretical values calculated in a macroscopic approximation. The revealed disagreement between theory and experiment is connected with the dependence of the properties of new-phase nuclei on their size.

  15. Thermal information regarding the cooldown and operation of liquid argon calorimeters

    NASA Astrophysics Data System (ADS)

    Rucinski, R. A.; Cooper, W. E.; Dixon, K. D.; Krempetz, K. J.; Mulholland, G. T.; Primdahl, K.; Urbin, J. B.

    1993-07-01

    Three liquid argon calorimeters were cooled down and operated as part of the D-Zero detector at Fermi National Accelerator laboratory. The largest vessel contains 248 metric tons of uranium and copper plates and 19 kL (5000 gal.) of liquid argon. The other two vessels are mirror images, each containing 185 metric tons of uranium and stainless steel plates and 12.1 kL (3200 gal.) of liquid argon. The cool down was accomplished by convection heat transfer between boiling liquid nitrogen filled finned heat exchangers and argon gas inside the vessels. Information regarding the general internal geometry of the calorimeters, cool down, operation, and steady state heat loads will be presented.

  16. Building a Class-1 Glove Box for Use with the NIFFTE TPC

    NASA Astrophysics Data System (ADS)

    Lynn, William

    2012-10-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) uses a Time Projection Chamber (TPC) to measure the neutron-induced fission cross sections of actinides with unprecedented accuracy which will aid in the development of the next generation nuclear reactors. Charged particles, including fission fragments, create a trail of electrons within a fill gas through ionization, which then drift in an electric field towards the read-out electronics. Using a MicroMegas mesh, the signal is amplified and then detected by the TPC pad plane. Due to the delicate nature of the MicroMegas mesh, precaution must be taken to prevent damage to the mesh from airborne contaminants which can cause the mesh to short. To avoid radiological contamination, a glove box was chosen for the task of handling and installing actinide targets into the TPC. To protect the TPC electronics, a decision was made to modify the existing glove box to create a Class-1 cleanroom environment. Variables such as glove type, filter, and cleaning agent were tested independently to determine maximum cleanliness, and a procedure for creating an acceptable Class-1 environment inside the glove box for the TPC was developed.

  17. Tetrapac (tpc), a novel genotype of Neisseria gonorrhoeae affecting epithelial cell invasion, natural transformation competence and cell separation.

    PubMed

    Fussenegger, M; Kahrs, A F; Facius, D; Meyer, T F

    1996-03-01

    We characterized a novel mutant phenotype (tetrapac, tpc) of Neisseria gonorrhoeae (Ngo) associated with a distinctive rough-colony morphology and bacterial growth in clusters of four. This phenotype, suggesting a defect in cell division, was isolated from a mutant library of Ngo MS11 generated with the phoA minitransposon TnMax4. The tpc mutant shows a 30% reduction in the overall murein hydrolase activity using Escherichia coli murein as substrate. Tetrapacs can be resolved by co-cultivation with wild-type Ngo, indicating that Tpc is a diffusible protein. Interestingly, Tpc is absolutely required for the natural transformation competence of piliated Ngo. Mutants in tpc grow normally, but show a approximately 10-fold reduction in their ability to invade human epithelial cells. The tpc sequence reveals an open reading frame of approximately 1 kb encoding a protein (Tpc) of 37 kDa. The primary gene product exhibits an N-terminal leader sequence typical of lipoproteins, but palmitoylation of Tpc could not be demonstrated. The ribosomal binding site of tpc is immediately downstream of the translational stop codon of the folC gene coding for an enzyme involved in folic acid biosynthesis and one-carbon metabolism. The tpc gene is probably co-transcribed from the folC promoter and a promoter located within the folC gene. The latter promoter sequence shares significant homology with E. coli gearbox consensus promoters. All three mutant phenotypes, i.e. the cell separation defect, the transformation deficiency and the defect in cell invasion can be restored by complementation of the mutant with an intact tpc gene. To some extent the tcp phenotype is reminiscent of iap in Listeria, lytA in Streptococcus pneumoniae and lyt in Bacillus subtilis, all of which are considered to represent murein hydrolase defects.

  18. Darkside-20k: A 20 ton Liquid Argon Dark Matter Experiment

    NASA Astrophysics Data System (ADS)

    Back, Henning; Darkside-20k Collaboration

    2016-03-01

    The Darkside-20k detector is the next step in the Darkside dark matter search program at the Laboratori Nazionali del Gran Sasso in Italy. The Darkside detectors have grown in fiducial mass starting with 10kg in Darkside10, to 50 kg in Darkside50, and finally a proposed 20,000 kg fiducial mass, Darkside20k. The Darkside detectors are dual-phase argon TPCs that combine the very powerful scintillation pulse-shape analysis and ionization information to discriminate against background events. Two unique aspects to the Darkside program is the use of an external neutron veto based on borated liquid scintillator, and the use of low radioactivity argon from underground sources as the target. Argon from the atmosphere has an 39Ar activity of 1Bq/kg, which would be the limiting background, but the underground argon is essentially free of 39Ar. Additionally, the detector is placed in a water Cherenkov muon veto. Combining all these techniques allows Darkside-20k to achieve a background-free 100 t-yr exposure accumulated in a 5 yr run. Darkside-20k is expected to start operations in 2020 with data taking starting in 2021, and will be sensitive to WIMP-nucleon interaction cross sections of 1×10-47 cm2 (1x10-46 cm2) for WIMPs of 1 TeV/c2 (10 TeV/c2) mass.

  19. The lead-liquid argon calorimeter for FNAL-E653

    SciTech Connect

    Edelstein, R.M.; Freyberger, A.P.; Lipton, R.J.; Nichols, W.R.; Potter, D.M.; Russ, J.S.; Zhang, Y.L.

    1987-02-01

    A lead-liquid argon electromagnetic calorimeter has been constructed for Fermilab experiment E-653. The design, operation, energy and spatial resolution, and analysis are described. A description of a unique read-out geometry which gives the detector powerful pattern recognition capability is also given.

  20. Peach Bottom Turbine Trip Simulations with RETRAN Using INER/TPC BWR Transient Analysis Method

    SciTech Connect

    Kao Lainsu; Chiang, Show-Chyuan

    2005-03-15

    The work described in this paper is benchmark calculations of pressurization transient turbine trip tests performed at the Peach Bottom boiling water reactor (BWR). It is part of an overall effort in providing qualification basis for the INER/TPC BWR transient analysis method developed for the Kuosheng and Chinshan plants. The method primarily utilizes an advanced system thermal hydraulics code, RETRAN02/MOD5, for transient safety analyses. Since pressurization transients would result in a strong coupling effect between core neutronic and system thermal hydraulics responses, the INER/TPC method employs the one-dimensional kinetic model in RETRAN with a cross-section data library generated by the Studsvik-CMS code package for the transient calculations. The Peach Bottom Turbine Trip (PBTT) tests, including TT1, TT2, and TT3, have been successfully performed in the plant and assigned as standards commonly for licensing method qualifications for years. It is an essential requirement for licensing purposes to verify integral capabilities and accuracies of the codes and models of the INER/TPC method in simulating such pressurization transients. Specific Peach Bottom plant models, including both neutronics and thermal hydraulics, are developed using modeling approaches and experiences generally adopted in the INER/TPC method. Important model assumptions in RETRAN for the PBTT test simulations are described in this paper. Simulation calculations are performed with best-estimated initial and boundary conditions obtained from plant test measurements. The calculation results presented in this paper demonstrate that the INER/TPC method is capable of calculating accurately the core and system transient behaviors of the tests. Excellent agreement, both in trends and magnitudes between the RETRAN calculation results and the PBTT measurements, shows reliable qualifications of the codes/users/models involved in the method. The RETRAN calculated peak neutron fluxes of the PBTT

  1. Electron avalanches in liquid argon mixtures

    SciTech Connect

    Kim, J.G.; Dardin, S.M.; Kadel, R.W.; Kadyk, J.A.; Wenzel, W.B.; Peskov, V.

    2004-03-19

    We have observed stable avalanche gain in liquid argon when mixed with small amounts of xenon in the high electric field (>7 MV/cm) near the point of a chemically etched needle in a point-plane geometry. We identify two gain mechanisms, one pressure dependent, and the other independent of the applied pressure. We conclude that the pressure dependent signals are from avalanche gain in gas bubbles at the tip of the needle, while the pressure independent pulses are from avalanche gain in liquid. We measure the decay time spectra of photons from both types of avalanches. The decay times from the pressure dependent pulses decrease (increase) with the applied pressure (high voltage), while the decay times from the pressure independent pulses are approximately independent of pressure or high voltage. For our operating conditions, the collected charge distribution from avalanches is similar for 60 keV or 122 keV photon sources. With krypton additives, instead of Xe, we measure behavior consistent with only the pressure dependent pulses. Neon and TMS were also investigated as additives, and designs for practical detectors were tested.

  2. SiPMs characterization and selection for the DUNE far detector photon detection system

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Maricic, J.

    2016-01-01

    The Deep Underground Neutrino Experiment (DUNE) together with the Long Baseline Neutrino Facility (LBNF) hosted at the Fermilab will provide a unique, world-leading program for the exploration of key questions at the forefront of neutrino physics and astrophysics. CP violation in neutrino flavor mixing is one of its most important potential discoveries. Additionally, the experiment will determine the neutrino mass hierarchy and precisely measure the neutrino mixing parameters which may potentially reveal new fundamental symmetries of nature. Moreover, the DUNE is also designed for the observation of nucleon decay and supernova burst neutrinos. The photon detection (PD) system in the DUNE far detector provides trigger for cosmic backgrounds, enhances supernova burst trigger efficiency and improves the energy resolution of the detector. The DUNE adopts the technology of liquid argon time projection chamber (LArTPC) that requires the PD sensors, silicon photomultipliers (SiPM), to be carefully chosen to not only work properly in LAr temperature, but also meet certain specifications for the life of the experiment. A comprehensive testing of SiPMs in cryostat is necessary since the datasheet provided by the manufactures in the market does not cover this temperature regime. This paper gives the detailed characterization results of SenSL C-Series 60035 SiPMs, including gain, dark count rate (DCR), cross-talk and after-pulse rate. Characteristic studies on SiPMs from other vendors are also discussed in order to avoid any potential problems associated with using a single source. Moreover, the results of the ongoing mechanical durability tests are shown for the current candidate, SenSL B/C-Series 60035 SiPMs.

  3. Space-charge effects in liquid argon ionization chambers

    NASA Astrophysics Data System (ADS)

    Rutherfoord, J. P.; Walker, R. B.

    2015-03-01

    We have uniformly irradiated liquid argon ionization chambers with betas from high-activity 90Sr sources. The radiation environment is similar to that in the liquid argon calorimeters which are part of the ATLAS detector installed at CERN's Large Hadron Collider (LHC). We measured the resulting ionization current over a wide range of applied potential for two different source activities and for three different chamber gaps. These studies provide operating experience at exceptionally high ionization rates. In particular they indicate a stability at the 0.1% level for these calorimeters over years of operation at the full LHC luminosity when operated in the normal mode at an electric field E = 1.0 kV / mm. We can operate these chambers in the normal mode or in the space-charge limited regime and thereby determine the transition point between the two. This transition point is parameterized by a positive argon ion mobility of μ+ = 0.08 ± 0.02mm2 / V s at a temperature of 88.0±0.5 K and at a pressure of 1.02±0.02 bar. In the space-charge limited regime the ionization currents are degraded and show signs of instability. At the highest electric fields in our study (6.7 kV/mm) the ionization current is still slowly rising with increasing electric field.

  4. ARAPUCA a new device for liquid argon scintillation light detection

    NASA Astrophysics Data System (ADS)

    Machado, A. A.; Segreto, E.

    2016-02-01

    We present a totally innovative device for the detection of liquid argon scintillation light, that has been named ARAPUCA (Argon R&D Advanced Program at UniCAmp). It is composed of a passive light collector and of active devices. The latters are standard SiPMs that operate at liquid argon temperature, while the passive collector is based on a new technology, never explored in this field before. It is a photon trap, that allows to collect light with extremely high efficiency. The total detection efficiency of the device can be tuned by modifying the ratio between the area of the active devices (SiPM) and the area of the optical window. For example, it will allow to reach a detection efficiency at the level of 1% on a surface of 50 × 50 cm2 with an active coverage of 2 × 2 cm2 (two/three large area SiPM). It is also a cheap device, since the major part of its cost is represented by the active devices. For these reason this appears to be the ideal device for scintillation light detection in large Time Projection Chambers. With appropriate modifications it can be used also in next generation Dark Matter detectors.

  5. Final Report for the UNIVERSITY-BASED DETECTOR RESEARCH AND DEVELOPMENT FOR THE INTERNATIONAL LINEAR COLLIDER

    SciTech Connect

    Brau, James E

    2013-04-22

    The U.S Linear Collider Detector R&D program, supported by the DOE and NSF umbrella grants to the University of Oregon, made significant advances on many critical aspects of the ILC detector program. Progress advanced on vertex detector sensor development, silicon and TPC tracking, calorimetry on candidate technologies, and muon detection, as well as on beamline measurements of luminosity, energy, and polarization.

  6. Liquid Argon Calorimetry for ATLAS

    NASA Astrophysics Data System (ADS)

    Robinson, Alan

    2008-05-01

    This summer, the largest collaborative physics project since the Manhattan project will go online. One of four experiments for the Large Hadron Collider at CERN in Geneva, ATLAS, employs over 2000 people. Canadians have helped design, construct, and calibrate the liquid argon calorimeters for ATLAS to capture the products of the high energy collisions produced by the LHC. From an undergraduate's perspective, explore how these calorimeters are made to handle their harsh requirement. From nearly a billion proton-proton collisions a second, physicists hope to discover the Higgs boson and other new fundamental particles.

  7. Results from the first use of low radioactivity argon in a dark matter search

    DOE PAGESBeta

    Agnes, P.

    2016-04-08

    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain Ar-39 at a level reduced by a factor (1.4 +- 0.2) x 103 relative to atmospheric argon. We report a background-free null result from (2616 +- 43) kg d of data, accumulatedmore » over 70.9 live-days. When combined with our previous search using an atmospheric argon, the 90 % C.L. upper limit on the WIMP-nucleon spin-independent cross section based on zero events found in the WIMP search regions, is 2.0 x 10-44 cm2 (8.6 x 10-44 cm2, 8.0 x 10-43 cm2) for a WIMP mass of 100 GeV/c2 (1 TeV/c2 , 10 TeV/c2).« less

  8. Results from the first use of low radioactivity argon in a dark matter search

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.; DarkSide Collaboration

    2016-04-01

    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using a two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain 39Ar at a level reduced by a factor (1.4 ±0.2 )×103 relative to atmospheric argon. We report a background-free null result from (2616 ±43 ) kg d of data, accumulated over 70.9 live days. When combined with our previous search using an atmospheric argon, the 90% C.L. upper limit on the WIMP-nucleon spin-independent cross section, based on zero events found in the WIMP search regions, is 2.0 ×10-44 cm2 (8.6 ×10-44 cm2 , 8.0 ×10-43 cm2 ) for a WIMP mass of 100 GeV /c2 (1 TeV /c2 , 10 TeV /c2 ).

  9. A study of dielectric breakdown along insulators surrounding conductors in liquid argon

    NASA Astrophysics Data System (ADS)

    Lockwitz, S.; Jostlein, H.

    2016-03-01

    High voltage breakdown in liquid argon is an important concern in the design of liquid argon time projection chambers, which are often used as neutrino and dark matter detectors. We have made systematic measurements of breakdown voltages in liquid argon along insulators surrounding negative rod electrodes where the breakdown is initiated at the anode. The measurements were performed in an open cryostat filled with commercial grade liquid argon exposed to air, and not the ultra-pure argon required for electron drift. While not addressing all high voltage concerns in liquid argon, these measurements have direct relevance to the design of high voltage feedthroughs especially for averting the common problem of flash-over breakdown. The purpose of these tests is to understand the effects of materials, of breakdown path length, and of surface topology for this geometry and setup. We have found that the only material-specific effects are those due to their permittivity. We have found that the breakdown voltage has no dependence on the length of the exposed insulator. A model for the breakdown mechanism is presented that can help inform future designs.

  10. A study of dielectric breakdown along insulators surrounding conductors in liquid argon

    DOE PAGESBeta

    Lockwitz, Sarah; Jostlein, Hans

    2016-03-22

    High voltage breakdown in liquid argon is an important concern in the design of liquid argon time projection chambers, which are often used as neutrino and dark matter detectors. We have made systematic measurements of breakdown voltages in liquid argon along insulators surrounding negative rod electrodes where the breakdown is initiated at the anode. The measurements were performed in an open cryostat filled with commercial grade liquid argon exposed to air, and not the ultra-pure argon required for electron drift. While not addressing all high voltage concerns in liquid argon, these measurements have direct relevance to the design of highmore » voltage feedthroughs especially for averting the common problem of flash-over breakdown. The purpose of these tests is to understand the effects of materials, of breakdown path length, and of surface topology for this geometry and setup. We have found that the only material-specific effects are those due to their permittivity. We have found that the breakdown voltage has no dependence on the length of the exposed insulator. Lastly, a model for the breakdown mechanism is presented that can help inform future designs.« less

  11. Initial DAB Argon Storage Dewar Leakage

    SciTech Connect

    Dixon, K.; /Fermilab

    1990-05-30

    Any detectable leakage emanating from the argon storage dewar is undesirable; not only from a safety standpoint (eg, cryogenic burns, asphyxiation, etc.), but also small amounts of air back diffusing through leaks can render the argon unsuitable for the future physics experiments to take place within the cryostats. Whereas leakage through some of the control and manually operated valves on the dewar does not necessarily infroduce any of the above hazards directly, it could be high enough to be an economical, and perhaps an operational nuisance. Contained in the following is a compilation of the final leakage rates associated with the dewar during the period of January through May of 1990 and the raw data from which they were derived from. Also contained is a calculation of the total maximum allowable leakage rate int%ut of the dewar. The general strategy employed while leak checking the dewar was to eliminate all leaks found which could be relatively easily stopped and to reduce the more difficult ones to an acceptable level. Leakage past the seats/plugs of control and main relief valves in addition to leakage past the ball seals in the diverter valve fell into the latter category. Helium mass spectrometer leak detector (HMSLD), rate of rise (ROR) method, and throughput calculations based on effective pumping speeds were the means used to determine leakage rates. Usually the HMSLD method was used to detect the numerous smaller leaks (1 OE-S to 1 OE-1 0 std eels) which were eventually stopped by thread tightening, gasket replacement. redesign, etc. The ROR method helped measure the leakage past valve plugs and establish outgassing rates for volumes deemed as being tight; ie, no detectable leakage using the HMSLD. The throughput calculation was used only to determine the relatively large leak past the plug/seat of the vaporizer valve. A sample calculation of each leakage rate determining method is attached to this note. All leakage rates are given for helium gas at

  12. Measuring Cross-Section and Estimating Uncertainties with the fissionTPC

    SciTech Connect

    Bowden, N.; Manning, B.; Sangiorgio, S.; Seilhan, B.

    2015-01-30

    The purpose of this document is to outline the prescription for measuring fission cross-sections with the NIFFTE fissionTPC and estimating the associated uncertainties. As such it will serve as a work planning guide for NIFFTE collaboration members and facilitate clear communication of the procedures used to the broader community.

  13. Performance of the fissionTPC and the Potential to Advance the Thorium Fuel Cycle

    NASA Astrophysics Data System (ADS)

    Towell, Rusty; Niffte Collaboration

    2014-09-01

    The NIFFTE fission Time Projection Chamber (fissionTPC) is a powerful tool that is being developed to take precision measurements of neutron-induced fission cross sections of transuranic elements. During the last run at the Los Alamos Neutron Science Center (LANSCE) the fully instrumented TPC took data for the first time. The exquisite tracking capabilities of this device allow the full reconstruction of charged particles produced by neutron beam induced fissions from a thin central target. The wealth of information gained from this approach will allow cross section systematics to be controlled at the level of 1%. The fissionTPC performance from this run will be shared. These results are critical to the development of advanced uranium-fueled reactors. However, there are clear advantages to developing thorium-fueled reactors including the abundance of thorium verses uranium, minimizing radioactive waste, improved reactor safety, and enhanced proliferation resistance. The potential for using the fissionTPC to measure needed cross sections important to the development of thorium fueled nuclear reactors will also be discussed.

  14. Precise Nuclear Data Measurements Possible with the NIFFTE fissionTPC for Advanced Reactor Designs

    NASA Astrophysics Data System (ADS)

    Towell, Rusty; Niffte Collaboration

    2015-10-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) Collaboration has applied the proven technology of Time Projection Chambers (TPC) to the task of precisely measuring fission cross sections. With the NIFFTE fission TPC, precise measurements have been made during the last year at the Los Alamos Neutron Science Center from both U-235 and Pu-239 targets. The exquisite tracking capabilities of this device allow the full reconstruction of charged particles produced by neutron beam induced fissions from a thin central target. The wealth of information gained from this approach will allow systematics to be controlled at the level of 1%. The fissionTPC performance will be presented. These results are critical to the development of advanced uranium-fueled reactors. However, there are clear advantages to developing thorium-fueled reactors such as Liquid Fluoride Thorium Reactors over uranium-fueled reactors. These advantages include improved reactor safety, minimizing radioactive waste, improved reactor efficiency, and enhanced proliferation resistance. The potential for using the fissionTPC to measure needed cross sections important to the development of thorium-fueled reactors will also be discussed.

  15. DarkSide-50 WIMP search results with low radioactivity argon

    NASA Astrophysics Data System (ADS)

    Xiang, Xin; DarkSide Collaboration

    2016-03-01

    Located at the Laboratori Nazionali del Gran Sasso, DarkSide-50 is the first physics detector of the DarkSide dark matter search program. The experiment features a dual-phase Time Projection Chamber as the WIMP detector, surrounded by an organic liquid-scintillator neutron veto and a water-Cherenkov muon detector. We report the results from the first use of low radioactivity argon extracted from underground sources in a dark matter search. We have determined that underground argon is depleted in 39Ar by a factor (1 . 4 +/- 0 . 2) ×103 relative to atmospheric argon whose 39Ar activity is 1 bq/kg. The underground argon is also found to contain (2 . 05 +/- 0 . 13) mBq/kg of 85Kr. We find no evidence for dark matter in the form of WIMPs in 70.9 live-days of data with a fiducial mass of (36 . 9 +/- 0 . 6) kg. When combined with our preceding search with an atmospheric argon target, we set a 90 % C.L. upper limit on the WIMP-nucleon spin-independent cross section of 2 . 0 ×10-44 cm2 (8 . 6 ×10-44 cm2, 8 . 0 ×10-43 cm2) for a WIMP mass of 100 GeV/c2 (1 TeV/c2, 10 TeV/c2). DS-50 will continue dark matter search with the underground argon target for a total of 3 years. See also the DS-50 presentations by E. Edkins and G. Koh.

  16. Neutrino-Argon Interaction with GENIE Event Generator

    NASA Astrophysics Data System (ADS)

    Chesneanu, Daniela

    2010-11-01

    Neutrinos are very special particles, have only weak interactions, except gravity, and are produced in very different processes in Nuclear and Particle Physics. Neutrinos are, also, messengers from astrophysical objects, as well as relics from Early Universe. Therefore, its can give us information on processes happening in the Universe, during its evolution, which cannot be studied otherwise. The underground instrumentation including a variety of large and very large detectors, thanks to technical breakthroughs, have achieved new fundamental results like the solution of the solar neutrino puzzle and the evidence for Physics beyond the Standard Model of elementary interactions in the neutrino sector with non-vanishing neutrino masses and lepton flavour violation. Two of the LAGUNA (Large Apparatus studying Grand Unification and Neutrino Astrophysics) detectors, namely: GLACIER (Giant Liquid Argon Charge Imaging ExpeRiment) [1] and LENA (Low Energy Neutrino Astrophysics) [2] could be emplaced in ``Unirea'' salt mine from Slănic-Prahova, Romania. A detailed analysis of the conditions and advantages is necessary. A few results have been presented previously [3]. In the present work, we propose to generate events and compute the cross sections for interactions between neutrino and Argon-40, to estimate possible detection performances and event types. For doing this, we use the code GENIE (G_enerates E_vents for N_eutrino I_nteraction E_xperiments) [4]. GENIE Code is an Object-Oriented Neutrino MC Generator supported and developed by an international collaboration of neutrino interaction experts.

  17. Neutrino-Argon Interaction with GENIE Event Generator

    SciTech Connect

    Chesneanu, Daniela

    2010-11-24

    Neutrinos are very special particles, have only weak interactions, except gravity, and are produced in very different processes in Nuclear and Particle Physics. Neutrinos are, also, messengers from astrophysical objects, as well as relics from Early Universe. Therefore, its can give us information on processes happening in the Universe, during its evolution, which cannot be studied otherwise. The underground instrumentation including a variety of large and very large detectors, thanks to technical breakthroughs, have achieved new fundamental results like the solution of the solar neutrino puzzle and the evidence for Physics beyond the Standard Model of elementary interactions in the neutrino sector with non-vanishing neutrino masses and lepton flavour violation.Two of the LAGUNA(Large Apparatus studying Grand Unification and Neutrino Astrophysics) detectors, namely: GLACIER (Giant Liquid Argon Charge Imaging ExpeRiment) and LENA (Low Energy Neutrino Astrophysics) could be emplaced in 'Unirea' salt mine from Slanic-Prahova, Romania. A detailed analysis of the conditions and advantages is necessary. A few results have been presented previously. In the present work, we propose to generate events and compute the cross sections for interactions between neutrino and Argon-40, to estimate possible detection performances and event types. For doing this, we use the code GENIE(G lowbar enerates E lowbar vents for N lowbar eutrino I lowbar nteraction E lowbar xperiments). GENIE Code is an Object-Oriented Neutrino MC Generator supported and developed by an international collaboration of neutrino interaction experts.

  18. Argon purge gas cooled by chill box

    NASA Technical Reports Server (NTRS)

    Spiro, L. W.

    1966-01-01

    Cooling argon purge gas by routing it through a shop-fabricated chill box reduces charring of tungsten inert gas torch head components. The argon gas is in a cooled state as it enters the torch and prevents buildup of char caused by the high concentrations of heat in the weld area during welding operations.

  19. TPC cathode read-out with C-pads

    NASA Astrophysics Data System (ADS)

    Janik, R.; Pikna, M.; Sitar, B.; Strmen, P.; Szarka, I.

    2009-01-01

    A Time Projection Chamber with "C" like shaped cathode pads was built and tested. It offers a low gas gain operation, a good pulse shape and a lightweight construction. The Pad Response Function (PRF), the cathode to anode pulse height ratios and the pad pulse shapes of the C-pad structure were measured and compared with planar cathode structures in two different wire geometries. The cathode to anode signal ratio was improved from between 0.2 and 0.4 up to 0.7. The PRF was considerably improved, it has a Gaussian shape and is narrower than in the case of the planar pads. The pulse shape from the C-pad read-out is similar to the pulse shape from a detector with a cylindrical shape of electrodes. A method for aluminum pad mass production based on a precise cold forging was developed and tested.

  20. A G/NARRLI Effort. Measuring the Ionization Yield of Low-Energy Nuclear Recoils in Liquid Argon

    SciTech Connect

    Joshi, Tenzing Henry Yatish

    2014-01-01

    Liquid argon has long been used for particle detection due to its attractive drift properties, ample abundance, and reasonable density. The response of liquid argon to lowenergy O(102 -1044 eV) interactions is, however, largely unexplored. Weakly interacting massive particles such as neutrinos and hypothetical dark-matter particles (WIMPs) are predicted to coherently scatter on atomic nuclei, leaving only an isolated low-energy nuclear recoil as evidence. The response of liquid argon to low-energy nuclear recoils must be studied to determine the sensitivity of liquid argon based detectors to these unobserved interactions. Detectors sensitive to coherent neutrino-nucleus scattering may be used to monitor nuclear reactors from a distance, to detect neutrinos from supernova, and to test the predicted behavior of neutrinos. Additionally, direct detection of hypothetical weakly interacting dark matter would be a large step toward understanding the substance that accounts for nearly 27% of the universe. In this dissertation I discuss a small dual-phase (liquid-gas) argon proportional scintillation counter built to study the low-energy regime and several novel calibration and characterization techniques developed to study the response of liquid argon to low-energy O(102 -104 eV) interactions.

  1. Argon Excluder Foam Compression Data

    SciTech Connect

    Clark, D.; /Fermilab

    1991-07-25

    The argon excluder is designed to reduce the media density of the dead space between the internal modules of the end calorimeters and the concave convex head to less than that of argon. The design of the excluder includes a thin circular stainless steel plate welded to the inner side of the convex pressure vessel head at a radius of 26 and 15/16 inches. It is estimated that this plate will experience a pressure differential of approximately 40 pounds per square inch. A inner foam core is incorporated into the design of the excluder as structural support. This engineering note outlines the compression data for the foam used in the north end calorimeter argon excluder. Four test samples of approximately the same dimensions were cut and machined from large blocks of the poured foam. Two of these test samples were then subjected to varying compression magnitudes until failure. For this test failure was taken to mean plastic yielding or the point at which deformation increases without a corresponding increase in loading. The third sample was subjected to a constant compressive stress for an extended period of time, to identify any 'creeping' effects. Finally, the fourth sample was cooled to cryogenic temperatures in order to determine the coefficient of thermal expansion. The compression test apparatus consisted of a state of the art INSTROM coupled with a PC workstation. The tests were run at a constant strain rate with discrete data taken at 500 millisecond intervals. The sample data is plotted as a stress strain diagram in the results. The first test was run on sample number one at a compression rate of 0.833 mills or equivalently a strain rate of 3.245 x 10{sup -4} mil/mills. The corresponding stress was then calculated from the force measured divided by the given initial area. The test was run for thirty minutes until the mode of failure, plastic yielding, was reached. The second test was run as a check of the first using sample number two, and likewise was

  2. Search for a QGP with a TPC spectrometer, and QGP signals predicted by new event generator

    SciTech Connect

    Lindenbaum, S.J.

    1988-12-08

    The BNL/CCNY/Johns Hopkins/Rice Collaboration has developed and successfully tested a TPC Magnetic Spectrometer to search for OGP signals produced by ion beams at AGS. Test data with 14.5 GeV/c /times/ A Oxygen ions incident on a Pb target has been obtained. These include a 78-prong nuclear interaction in the MPS magnet which was pattern recognized with an efficiency approx.75%. A cascade and plasma event generator has also been developed, the predictions of which are used to illustrate how our technique can detect possible plasma signals at AGS and RHIC. A 4..pi.. tracking TPC magnetic spectrometer has been proposed for RHIC. The new event generator predicts striking central rapidity bump QGP signals at RHIC for p, /bar p/, ..pi../sup +-/, K/sup +-/, etc., produced by 100 GeV/c /times/ A Au on Au collisions and these are presented. 2 refs., 13 figs., 1 tab.

  3. Results on search for a QGP with a TPC magnetic spectrometer at AGS and plans for an approx 4. pi. TPC magnetic spectrometer at RHIC

    SciTech Connect

    Lindenbaum, S.J. City Univ. of New York, NY )

    1991-01-01

    In the first part of this paper a search for a Quark-Gluon Plasma (QGP) with a TPC Magnetic Spectrometer at AGS by the BNL/CCNY/Johns Hopkins/Rice (E-810) Collaboration is discussed. At AGS energies the expected increase in baryon density is near maximum. If a QGP is formed even rarely this approach provides a sensitive method for its detection. We have found some interesting phenomena including strangeness enhancement, multi-{Lambda} and K{sub s}{sup 0} events and an increased slope for {pi}{sup {minus}} (corresponding to a reduced temperature) in the usual temperature plot for p{sub {perpendicular}} < 0.2 GeV/c. We plan to increase the statistics with the 14.5 GeV/c {times} A Si ions on targets from light to heavy and then to continue the program with incident Au ions. In Part 2 we discuss the BNL/CCNY/Notre Dame/Rice proposal for an {approx} 4{pi} TPC Magnetic Spectrometer for RHIC which we believe will be a sensitive probe for hadronic QGP signals, and also capable of observing departures from QCD should they occur. 8 refs., 12 figs.

  4. Safety related issues of the unexpected Argon release into the tunnel

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Malecha, Z. M.; Polinski, J.

    2015-12-01

    Modern physics laboratories require very large amounts of cryogenics fluids. Often the fluid must be transported along the tunnels or stored in the underground cavities. Currently, there are several ongoing projects where very large amounts of liquid (LAr) or gaseous Argon (GAr) will be used. One of them is a part of the LAGUNA-LBNO (Large Apparatus studying Grand Unification and Neutrino Astrophysics and Long Baseline Neutrino Oscillations) design study, where the GLACIER (Giant Liquid Argon Charge Imaging ExpeRiment) neutrino detector is considered. In order for it to properly operate, it requires the appropriate environment (it must be located in a deep, underground cavity) and approximately 150,000 tons of LAr. This huge amount of cryogen must be transported down the tunnel in cryogenic-tank trucks or by using pipelines. In both cases, there is a risk of uncontrolled LAr or GAr leakage into the tunnel, which can be dangerous for people, as well as during the installation itself. The presented work focuses on the risk analysis and consequences of unexpected Argon leakage into the tunnel. It shows the mathematical model and numerical tools which can serve to model the Argon cloud propagation, temperature distribution, and Oxygen deficiency. The results present a series of numerical experiments for Argon leakage into the tunnel with different external conditions (e.g. different ventilation regimes).

  5. Design, construction and performance of a large GEM-TPC prototype

    NASA Astrophysics Data System (ADS)

    Radicioni, Emilio

    2007-03-01

    A large size prototype of a TPC with GEM amplification has been successfully built and operated. To obtain an active area larger than the one provided by the largest GEM foil on the market, for the first time two independent GEM towers have been hosted on a single pad plane, taking care of minimizing the dead space. The design, construction, operation and initial results are presented.

  6. Structure of Voltage-gated Two-pore Channel TPC1 from Arabidopsis thaliana

    PubMed Central

    Guo, Jiangtao; Zeng, Weizhong; Chen, Qingfeng; Lee, Changkeun; Chen, Liping; Yang, Yi; Cang, Chunlei; Ren, Dejian; Jiang, Youxing

    2015-01-01

    Two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in both animals and plants as organellar cation channels. Here, we present the first crystal structure of a vacuolar two-pore channel from Arabidopsis thaliana, AtTPC1, which functions as a homodimer. AtTPC1 activation requires both voltage and cytosolic Ca2+. Ca2+ binding to the cytosolic EF-hand domain triggers conformational changes coupled to the pair of pore-lining inner helices (IS6 helices) from the first 6-TM domains, whereas membrane potential only activates the second voltage-sensing domain (VSD2) whose conformational changes are coupled to the pair of inner helices (IIS6 helices) from the second 6-TM domains. Luminal Ca2+ or Ba2+ can modulate voltage activation by stabilizing VSD2 in the resting state and shifts voltage activation towards more positive potentials. Our Ba2+ bound AtTPC1 structure reveals a voltage sensor in the resting state, providing hitherto unseen structural insight into the general voltage-gating mechanism among voltage-gated channels. PMID:26689363

  7. Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana.

    PubMed

    Guo, Jiangtao; Zeng, Weizhong; Chen, Qingfeng; Lee, Changkeun; Chen, Liping; Yang, Yi; Cang, Chunlei; Ren, Dejian; Jiang, Youxing

    2016-03-10

    Two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in both animals and plants as organellar cation channels. Here we present the crystal structure of a vacuolar two-pore channel from Arabidopsis thaliana, AtTPC1, which functions as a homodimer. AtTPC1 activation requires both voltage and cytosolic Ca(2+). Ca(2+) binding to the cytosolic EF-hand domain triggers conformational changes coupled to the pair of pore-lining inner helices from the first 6-TM domains, whereas membrane potential only activates the second voltage-sensing domain, the conformational changes of which are coupled to the pair of inner helices from the second 6-TM domains. Luminal Ca(2+) or Ba(2+) can modulate voltage activation by stabilizing the second voltage-sensing domain in the resting state and shift voltage activation towards more positive potentials. Our Ba(2+)-bound AtTPC1 structure reveals a voltage sensor in the resting state, providing hitherto unseen structural insight into the general voltage-gating mechanism among voltage-gated channels. PMID:26689363

  8. A gas microstrip detector with low noise preamplifier/shaper integrated onto a common silicon substrate

    NASA Astrophysics Data System (ADS)

    Burks, M.; Beuville, E.; Cwetanski, P.; Retiere, F.; Smirnov, N.; Trentalange, S.; Wieman, H.

    1999-03-01

    Gas microstrip detectors have been integrated with low noise preamplifier and shaper electronics on a common silicon substrate. These devices were fabricated at the Hewlett-Packard company using a standard 0.8 μm process. This unique approach offers advantages over conventional microstrip design: ease of fabrication, lower noise, and higher channel density. The detector/electronics assembly was tested in a small drift chamber. An energy resolution of 18% FWHM and a noise level of 80 e - r.m.s per channel were obtained with a gas gain of about 200. These integrated microstrip detectors are being developed as the readout devices for a small, high-resolution Time Projection Chamber (MicroTPC). Low mass and high resolution make the MicroTPC well suited for use as a vertex detector, especially in high track-density environments such as RHIC and the LHC.

  9. 21 CFR 868.1075 - Argon gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An argon gas analyzer is a device intended to measure the concentration of argon in a gas mixture to aid...

  10. 21 CFR 868.1075 - Argon gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An argon gas analyzer is a device intended to measure the concentration of argon in a gas mixture to aid...

  11. 21 CFR 868.1075 - Argon gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An argon gas analyzer is a device intended to measure the concentration of argon in a gas mixture to aid...

  12. 21 CFR 868.1075 - Argon gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An argon gas analyzer is a device intended to measure the concentration of argon in a gas mixture to aid...

  13. Flexible Support Liquid Argon Heat Intercept

    SciTech Connect

    Rudland, D.L.; /Fermilab

    1987-05-18

    A device in the flexible support system for the Central Calorimeter is the Liquid Argon Heat Intercept. The purpose of this apparatus is to intercept heat outside the inner vessel so that bubbles do not form inside. If bubbles did happen to form inside the vessel, they would cause an electric arc between the read-out board and the absorption plates, thus destroying the pre-amplifier. Since this heat intercept is located in the center of the flexible support, it must also support the load of the Central Caloimeter. Figure 1 shows how the intercept works. The subcooled liquid argon is driven through a 1/4-inch x 0.049-inch w tube by hydrostatic pressure. the ambient heat boils the subcooled argon. The gaseous argon flows through the tube and is condensed at the top of the vessel by a 100 kW cooling coil. This process is rpesent in all four flexible support systems.

  14. Clinical periodontics with the argon laser

    NASA Astrophysics Data System (ADS)

    Finkbeiner, R. L.

    1995-04-01

    The argon laser has proven to be a valuable tool for the thermodynamic debridement of the periodontal lesion, incisions and tissue fusion. Illustrations of clinical applications and discussion of laser parameters will be provided.

  15. Report on Advanced Detector Development

    SciTech Connect

    James K. Jewell

    2012-09-01

    Neutron, gamma and charged particle detection improvements are key to supporting many of the foreseen measurements and systems envisioned in the R&D programs and the future fuel cycle requirements, such as basic nuclear physics and data, modeling and simulation, reactor instrumentation, criticality safety, materials management and safeguards. This task will focus on the developmental needs of the FCR&D experimental programs, such as elastic/inelastic scattering, total cross sections and fission neutron spectra measurements, and will leverage a number of existing neutron detector development efforts and programs, such as those at LANL, PNNL, INL, and IAC as well as those at many universities, some of whom are funded under NE grants and contracts. Novel materials and fabrication processes combined with state-of-the-art electronics and computing provide new opportunities for revolutionary detector systems that will be able to meet the high precision needs of the program. This work will be closely coordinated with the Nuclear Data Crosscut. The Advanced Detector Development effort is a broadly-focused activity that supports the development of improved nuclear data measurements and improved detection of nuclear reactions and reactor conditions. This work supports the design and construction of large-scale, multiple component detectors to provide nuclear reaction data of unprecedented quality and precision. Examples include the Time Projection Chamber (TPC) and the DANCE detector at LANL. This work also supports the fabrication and end-user application of novel scintillator materials detection and monitoring.

  16. Argon clusters embedded in helium nanodroplets.

    PubMed

    da Silva, Filipe Ferreira; Bartl, Peter; Denifl, Stephan; Echt, Olof; Märk, Tilmann D; Scheier, Paul

    2009-11-14

    Electron impact ionization of argon clusters embedded in helium droplets is investigated. Superior mass resolution makes it possible to distinguish between nominally isobaric cluster ions. An abundance maximum for ArHe(12)(+) is unambiguously confirmed; the spectra also prove the formation of Ar(2)He(n)(+) complexes that had been claimed to fragment into pure Ar(2)(+). Distributions of larger argon cluster ions containing up to 60 atoms closely resemble distributions observed upon electron impact or photoionization of bare argon clusters; caging and evaporative cooling provided by the helium matrix do not suffice to quench fragmentation of the nascent argon cluster ions. Intriguing abundance anomalies are observed in distributions of argon cluster ions that contain water, nitrogen or oxygen impurities. The strong abundance of Ar(55)H(2)O(+), Ar(54)O(2)(+) and Ar(54)N(2)(+) contrasts with the virtual absence of slightly larger cluster ions containing the corresponding impurities. The features are probably related to enhanced cluster ion stability upon closure of the second icosahedral shell but the difference in magic numbers (54 versus 55) and the well-known reactivity of charged argon-nitrogen complexes suggest structural differences. PMID:19851558

  17. Excimer emission from microhollow cathode argon discharges

    NASA Astrophysics Data System (ADS)

    Moselhy, Mohamed; Petzenhauser, Isfried; Frank, Klaus; Schoenbach, Karl H.

    2003-12-01

    Microhollow cathode discharges (MHCDs) operated in rare gases are sources of intense excimer emission. Of particular interest is argon, because of its relatively low cost and the short wavelength (128 nm) of its excimer emission. The measured internal efficiency, obtained in static argon at atmospheric pressure, was found to be on the order of 1%. Flowing argon through a direct current (DC) MHCD at atmospheric pressure caused the argon excimer internal efficiency to increase to 6%, indicating that the low efficiency in static argon is mainly due to impurities. Applying 10 ns pulses to the DC plasma resulted in an increase in excimer power from 30 mW DC to 180 mW peak power, at an efficiency of 5-6%. The increase in excimer power correlates with an increase in the electron density. For DC operation, electron densities of 1015 cm-3 were measured in atmospheric pressure argon micro-plasmas, which increased to values beyond 1016 cm-3 for nanosecond pulsed operation. This increase in electron density and excimer power is due to pulsed electron heating, an effect that has allowed us to raise the mean electron energy from 1 eV, for DC operation, to 2.25 eV in the pulsed mode.

  18. A Study of Nuclear Recoils in Liquid Argon Time Projection Chamber for the Direct Detection of WIMP Dark Matter

    SciTech Connect

    Cao, Huajie

    2014-11-01

    Robust results of WIMP direct detection experiments depend on rm understandings of nuclear recoils in the detector media. This thesis documents the most comprehensive study to date on nuclear recoils in liquid argon - a strong candidate for the next generation multi-ton scale WIMP detectors. This study investigates both the energy partition from nuclear recoil energy to secondary modes (scintillation and ionization) and the pulse shape characteristics of scintillation from nuclear recoils.

  19. The analog processing system for the Liquid Argon Calorimeter for SLD at SLAC

    SciTech Connect

    Haller, G.M.; Nelson, D.; Freytag, D.R.

    1986-09-01

    The analog processing system for the Liquid Argon Calorimeter for the SLD project at SLAC is described. Amplification, storage of the analog information, and multiplexing is realized on specially developed hybrids, which will be mounted directly on the detector. This leads to a substantial reduction of the cable plant. Test results for the amplifier and for the sampling and multiplexing hybrid (CDU hybrid) are presented. The latter hybird contains a custom monolithic device, the Calorimeter Data Unit (CDU).

  20. Accurate γ and MeV-electron track reconstruction with an ultra-low diffusion Xenon/TMA TPC at 10 atm

    NASA Astrophysics Data System (ADS)

    González-Díaz, Diego; Álvarez, V.; Borges, F. I. G.; Camargo, M.; Cárcel, S.; Cebrián, S.; Cervera, A.; Conde, C. A. N.; Dafni, T.; Díaz, J.; Esteve, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Gehman, V. M.; Goldschmidt, A.; Gómez-Cadenas, J. J.; Gutiérrez, R. M.; Hauptman, J.; Hernando Morata, J. A.; Herrera, D. C.; Irastorza, I. G.; Labarga, L.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Miller, T.; Monrabal, F.; Monserrate, M.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Nygren, D.; Oliveira, C. A. B.; Pérez, J.; Pérez Aparicio, J. L.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Santos, F. P.; dos Santos, J. M. F.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R.; White, J. T.; Yahlali, N.; Azevedo, C.; Aznar, F.; Calvet, D.; Castel, J.; Ferrer-Ribas, E.; García, J. A.; Giomataris, I.; Gómez, H.; Iguaz, F. J.; Lagraba, A.; Le Coguie, A.; Mols, J. P.; Şahin, Ö.; Rodríguez, A.; Ruiz-Choliz, E.; Segui, L.; Tomás, A.; Veenhof, R.

    2015-12-01

    We report the performance of a 10 atm Xenon/trimethylamine time projection chamber (TPC) for the detection of X-rays (30 keV) and γ-rays (0.511-1.275 MeV) in conjunction with the accurate tracking of the associated electrons. When operated at such a high pressure and in 1%-admixtures, trimethylamine (TMA) endows Xenon with an extremely low electron diffusion (1.3 ± 0.13 mm - σ (longitudinal), 0.95 ± 0.20 mm - σ (transverse) along 1 m drift) besides forming a convenient 'Penning-Fluorescent' mixture. The TPC, that houses 1.1 kg of gas in its fiducial volume, operated continuously for 100 live-days in charge amplification mode. The readout was performed through the recently introduced microbulk Micromegas technology and the AFTER chip, providing a 3D voxelization of 8 mm × 8 mm × 1.2 mm for approximately 10 cm/MeV-long electron tracks. Resolution in energy (ε) at full width half maximum (R) inside the fiducial volume ranged from R = 14.6 % (30 keV) to R = 4.6 %(1.275 MeV). This work was developed as part of the R&D program of the NEXT collaboration for future detector upgrades in the search of the neutrino-less double beta decay (ββ 0 ν) in 136Xe, specifically those based on novel gas mixtures. Therefore we ultimately focus on the calorimetric and topological properties of the reconstructed MeV-electron tracks. In particular, the obtained energy resolution has been decomposed in its various contributions and improvements towards achieving the R = 1.4 %√{ 1 MeV / ε } levels obtained in small sensors are discussed.

  1. The readout driver (ROD) for the ATLAS liquid argon calorimeters

    NASA Astrophysics Data System (ADS)

    Efthymiopoulos, Ilias

    2001-04-01

    The Readout Driver (ROD) for the Liquid Argon calorimeter of the ATLAS detector is described. Each ROD module receives triggered data from 256 calorimeter cells via two fiber-optics 1.28 Gbit/s links with a 100 kHz event rate (25 kbit/event). Its principal function is to determine the precise energy and timing of the signal from discrete samples of the waveform, taken each period of the LHC clock (25 ns). In addition, it checks, histograms, and formats the digital data stream. A demonstrator system, consisting of a motherboard and several daughter-board processing units (PUs) was constructed and is currently used for tests in the lab. The design of this prototype board is presented here. The board offers maximum modularity and allows the development and testing of different PU designs based on today's leading integer and floating point DSPs.

  2. Measurement of electron longitudinal diffusion coefficient in liquid argon

    NASA Astrophysics Data System (ADS)

    Li, Yichen; Tang, Wei; Qian, Xin

    2016-03-01

    The electron longitudinal diffusion coefficients in Liquid Argon (LAr) are measured for a range of electric fields from 0.05 to 2.0 kV/cm up to a maximum drift distance of 120 mm using the two experimental setups at BNL. The measurement principle, apparatus, and data analysis are described. Our result represents the world's best measurement of electron longitudinal coefficients in this range. The measured longitudinal diffusion results are directly applicable to the existing experiments such as MicroBooNE and are essential for the future LAr based experiment detector design such as SBN and DUNE. We also report the performance of the gas purification system, which is important for the design of the purification system of future large LArTPCs.

  3. Interactions of Rubidium and Metastable Argon at Ultracold Temperatures

    NASA Astrophysics Data System (ADS)

    Shaffer, M. K.

    2005-05-01

    We are investigating the interaction between ultracold rubidium (Rb) and ultracold metastable argon (Ar*) simultaneously confined in a dual species magneto-optical trap (MOT). We will report on recent quantitative measurements of the inter-species trap loss coefficients and present our preliminary results on photoassociative spectra of the Rb-Ar* complex. We will also report on studies of Penning and associative ionization in the MOT using a modified residual gas analyzer (RGA) as a detector. Finally, we will discuss the prospects for producing and spatially confining ultracold ground state RbAr, a weakly-bound van der Waals molecule. Support provided by the National Science Foundation and the Office of Naval Research.

  4. MicroBooNE Detector Move

    SciTech Connect

    Flemming, Bonnie; Rameika, Gina

    2014-06-25

    On Monday, June 23, 2014 the MicroBooNE detector -- a 30-ton vessel that will be used to study ghostly particles called neutrinos -- was transported three miles across the Fermilab site and gently lowered into the laboratory's Liquid-Argon Test Facility. This video documents that move, some taken with time-lapse camerad, and shows the process of getting the MicroBooNE detector to its new home.

  5. MicroBooNE Detector Move

    ScienceCinema

    Flemming, Bonnie; Rameika, Gina

    2016-07-12

    On Monday, June 23, 2014 the MicroBooNE detector -- a 30-ton vessel that will be used to study ghostly particles called neutrinos -- was transported three miles across the Fermilab site and gently lowered into the laboratory's Liquid-Argon Test Facility. This video documents that move, some taken with time-lapse camerad, and shows the process of getting the MicroBooNE detector to its new home.

  6. Argon Collection And Purification For Proliferation Detection

    SciTech Connect

    Achey, R.; Hunter, D.

    2015-10-09

    In order to determine whether a seismic event was a declared/undeclared underground nuclear weapon test, environmental samples must be taken and analyzed for signatures that are unique to a nuclear explosion. These signatures are either particles or gases. Particle samples are routinely taken and analyzed under the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) verification regime as well as by individual countries. Gas samples are analyzed for signature gases, especially radioactive xenon. Underground nuclear tests also produce radioactive argon, but that signature is not well monitored. A radioactive argon signature, along with other signatures, can more conclusively determine whether an event was a nuclear test. This project has developed capabilities for collecting and purifying argon samples for ultra-low-background proportional counting. SRNL has developed a continuous gas enrichment system that produces an output stream containing 97% argon from whole air using adsorbent separation technology (the flow diagram for the system is shown in the figure). The vacuum swing adsorption (VSA) enrichment system is easily scalable to produce ten liters or more of 97% argon within twelve hours. A gas chromatographic separation using a column of modified hydrogen mordenite molecular sieve has been developed that can further purify the sample to better than 99% purity after separation from the helium carrier gas. The combination of these concentration and purification systems has the capability of being used for a field-deployable system for collecting argon samples suitable for ultra-low-background proportional counting for detecting nuclear detonations under the On-Site Inspection program of the CTBTO verification regime. The technology also has applications for the bulk argon separation from air for industrial purposes such as the semi-conductor industry.

  7. Argon isotopic zoning in mantle phlogopite

    SciTech Connect

    Phillips, D.; Onstott, T.C.

    1988-06-01

    Incremental-heating and laser-probe /sup 40/Ar//sup 39/Ar analyses were performed on phlogopite extracted from a garnet-lherzolite mantle nodule entrained by the Precambrian (1200 Ma) Premier kimberlite, South Africa. The spatial resolution of the laser probe has enabled the characterization of argon isotopic zoning in a single phlogopite grain. An apparent age contour map records lower ages (1.2 Ga) along grain margins and high apparent ages (up to 2.4 Ga) at the core. The latter ages are caused by excess argon contamination and subsequent partial diffusive loss, and have no age significance. Comparison with step-heating results indicates that argon spatial distributions inferred from in-vacuo step-heating experiments are, at best, grossly approximate. Variations in the laser-probe apparent ages were observed only laterally across the phlogopite cleavage surface, indicating that argon transport occurs preferentially along phlogopite cleavage planes. Age profiles, when modeled using one-dimensional radial geometry (cylindrical coordinates), do not conform to classical Fick's law diffusion, suggesting that the characteristic dimension of diffusion for argon in phlogopite may be highly variable within individual grains.

  8. Monitoring Liquid Argon Time Projection Chambers With A Raspberry Pi Camera

    NASA Astrophysics Data System (ADS)

    Patteson, Crystal

    2016-03-01

    The MicroBooNE detector is the first of three liquid argon (LAr) time projection chambers (TPCs) that are central to the short-baseline neutrino program at Fermilab. These chambers consist of thousands of stainless steel or beryllium-copper sense wires that detect ionization electrons produced when neutrinos interact with liquid argon nuclei inside the detector. The wires are several hundred microns in diameter to several meters in length. The construction of such LAr TPCs often takes place in an assembly hall, which is different from the detector hall where the experiment will operate, as was the case with MicroBooNE. Since in situ access to the chamber and its wires in the beamline enclosure can be limited, we investigate the possibility of using a Raspberry Pi single-board computer connected to a low-cost camera installed inside the cryostat as a cost-efficient way to verify the integrity of the wires after transport. We also highlight other benefits of this monitoring device implemented in MicroBooNE, including detector hall surveillance and verification of the status of LED indicators on detector electronics. The author would like to thank Dr. Matthew Toups for his encouragement and guidance on this research project.

  9. Dissection of the RET/β-catenin interaction in the TPC1 thyroid cancer cell line.

    PubMed

    Tartari, Carmen J; Donadoni, Carla; Manieri, Elisa; Mologni, Luca; Mina, Pamela Della; Villa, Antonello; Gambacorti-Passerini, Carlo

    2011-01-01

    The RET receptor tyrosine kinase is a member of the cadherin superfamily and plays a pivotal role in cell survival, differentiation and proliferation. Currently, 12 ret/ptc chimeric oncogenes, characterized by the fusion between the intracellular domain of RET and different activating genes, which can cause ligand-independent dimerization and constitutive activation, have been described. β-catenin is usually involved in the maintenance of cell-to-cell adhesion and mediates the Wnt/β-catenin pathway important during embryogenesis and in cellular malignant transformation. Recently, a novel mechanism of RET-mediated function through the β-catenin pathway has been reported in multiple endocrine neoplasia type 2 and in sporadic thyroid carcinomas. Here, we investigated the effects of the ZD6474, a small molecule RET-inhibitor, on RET/β-catenin interaction. We confirmed the ZD6474 mediated-inhibition of recombinant RET kinase and of growth of cells expressing RET/PTC. Interestingly, we firstly observed reduced cellular mobility and changed morphology of TPC1 treated cells suggesting that RET-inhibitor could affect β-catenin cellular distribution as resulted in its co-immunoprecipitation with E-cadherin. We further investigated this hypothesis showing that TPC1 treated cells displayed predominantly β-catenin cytosolic localization. Surprisingly, RET and β-catenin co-immunoprecipitated in both ZD6474-treated and untreated TPC1 cells, suggesting that RET/β-catenin interaction might not be affected by RET kinase inactivation. All together these results suggest that RET kinase activation is crucial for β-catenin stabilization (pY654), localization and its signaling pathway activation but not for β-catenin/RET physical interactions, in human papillary thyroid carcinomas. In conclusion, ZD6474, by inhibiting RET kinase, down-modulates β-catenin pathway leading its recruitment to the membrane by E-cadherin. PMID:22016822

  10. Dissection of the RET/β-catenin interaction in the TPC1 thyroid cancer cell line

    PubMed Central

    Tartari, Carmen J; Donadoni, Carla; Manieri, Elisa; Mologni, Luca; Mina, Pamela Della; Villa, Antonello; Gambacorti-Passerini, Carlo

    2011-01-01

    The RET receptor tyrosine kinase is a member of the cadherin superfamily and plays a pivotal role in cell survival, differentiation and proliferation. Currently, 12 ret/ptc chimeric oncogenes, characterized by the fusion between the intracellular domain of RET and different activating genes, which can cause ligand-independent dimerization and constitutive activation, have been described. β-catenin is usually involved in the maintenance of cell-to-cell adhesion and mediates the Wnt/β-catenin pathway important during embryogenesis and in cellular malignant transformation. Recently, a novel mechanism of RET-mediated function through the β-catenin pathway has been reported in multiple endocrine neoplasia type 2 and in sporadic thyroid carcinomas. Here, we investigated the effects of the ZD6474, a small molecule RET-inhibitor, on RET/β-catenin interaction. We confirmed the ZD6474 mediated-inhibition of recombinant RET kinase and of growth of cells expressing RET/PTC. Interestingly, we firstly observed reduced cellular mobility and changed morphology of TPC1 treated cells suggesting that RET-inhibitor could affect β-catenin cellular distribution as resulted in its co-immunoprecipitation with E-cadherin. We further investigated this hypothesis showing that TPC1 treated cells displayed predominantly β-catenin cytosolic localization. Surprisingly, RET and β-catenin co-immunoprecipitated in both ZD6474-treated and untreated TPC1 cells, suggesting that RET/β-catenin interaction might not be affected by RET kinase inactivation. All together these results suggest that RET kinase activation is crucial for β-catenin stabilization (pY654), localization and its signaling pathway activation but not for β-catenin/RET physical interactions, in human papillary thyroid carcinomas. In conclusion, ZD6474, by inhibiting RET kinase, down-modulates β-catenin pathway leading its recruitment to the membrane by E-cadherin. PMID:22016822

  11. Trapping cold ground state argon atoms.

    PubMed

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  12. High-pressure stabilization of argon fluorides.

    PubMed

    Kurzydłowski, Dominik; Zaleski-Ejgierd, Patryk

    2016-01-28

    On account of the rapid development of noble gas chemistry in the past half-century both xenon and krypton compounds can now be isolated in macroscopic quantities. The same does not hold true for the next lighter group 18 element, argon, which forms only isolated molecules stable solely in low temperature matrices or supersonic jet streams. Here we present theoretical investigations into a new high-pressure reaction pathway, which enables synthesis of argon fluorides in bulk and at room temperature. Our hybrid DFT calculations (employing the HSE06 functional) indicate that above 60 GPa ArF2-containing molecular crystals can be obtained by a reaction between argon and molecular fluorine. PMID:26742478

  13. First performance results of the ALICE TPC Readout Control Unit 2

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Alme, J.; Alt, T.; Appelshäuser, H.; Bratrud, L.; Castro, A.; Costa, F.; David, E.; Gunji, T.; Kirsch, S.; Kiss, T.; Langøy, R.; Lien, J.; Lippmann, C.; Oskarsson, A.; Rehman, A. Ur; Røed, K.; Röhrich, D.; Sekiguchi, Y.; Stuart, M.; Ullaland, K.; Velure, A.; Yang, S.; Österman, L.

    2016-01-01

    This paper presents the first performance results of the ALICE TPC Readout Control Unit 2 (RCU2). With the upgraded hardware typology and the new readout scheme in FPGA design, the RCU2 is designed to achieve twice the readout speed of the present Readout Control Unit. Design choices such as using the flash-based Microsemi Smartfusion2 FPGA and applying mitigation techniques in interfaces and FPGA design ensure a high degree of radiation tolerance. This paper presents the system level irradiation test results as well as the first commissioning results of the RCU2. Furthermore, it will be concluded with a discussion of the planned updates in firmware.

  14. First irradiation tests results of the ALICE TPC Readout Control Unit 2

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Røed, K.; Alme, J.; Costa, F.; Lippmann, C.; Rehman, A. Ur; Nikolai Torsvik, I.; Kiss, T.; David, E.; Velure, A.; Bratrud, L.; Torgersen, C.; Röhrich, D.; Ullaland, K.

    2015-01-01

    This paper will present the first results from irradiation tests performed on the ALICE TPC Readout Control Unit 2 (RCU2). The RCU2 is developed in order to double the readout speed with respect to the present RCU1, which then will fulfil the requirements for LHC RUN2. While the present RCU1 is based on an SRAM based FPGA, whose configuration memory has shown to be sensitive to single event upsets, the newly released Flash-based Smartfusion2 FPGA from Microsemi has been chosen for the RCU2.

  15. Process to process communication over Fastbus in the data acquisition system of the ALEPH TPC

    SciTech Connect

    Lusiani, A. . Division PPE Scuola Normale Superiore, Pisa )

    1994-02-01

    The data acquisition system of the ALEPH TPC includes a VAX/VMS computer cluster and 36 intelligent Fastbus modules (ALEPH TPPS) running the OS9 multitasking real-time operating system. Dedicated software has been written in order to reliably exchange information over Fastbus between the VAX/VMS cluster and the 36 TPPs to initialize and co-ordinate the microprocessors, and to monitor and debug their operation. The functionality and the performance of this software will be presented together with an overview of the application that rely on it.

  16. Excimer Emission from Argon Microhollow Cathode Discharges

    NASA Astrophysics Data System (ADS)

    Moselhy, Mohamed; Schoenbach, Karl H.

    2002-10-01

    Excimer emission from direct current microhollow cathode discharges had been studied for rare gases and mixtures of rare gases and halides as working gases [1]. In static xenon, the dc efficiency was measured as 6%-9%. In static argon, however, the efficiency is only on the order of 1%. This relatively low value was found to be due to excimer quenching processes caused by impurities. By flowing the argon, rather than operating under static conditions we could increase the efficiency to 6%. Applying a 10 ns pulse of 600 V to the DC discharge in argon resulted in an increased intensity by a factor of six. The decay time for argon excimer emission was found to be 500 ns, indicating that quenching processes even with purging of the discharge chamber are still more effective by a factor of six in depopulating the excimer level than excimer radiation. The major quenching effect is based on resonant energy transfer from the argon excimer to atomic oxygen [2]. The addition of small amounts of oxygen allowed us therefore to convert the argon excimer emission centered at 128 nm into narrowband emission at 130.4 nm (oxygen triplet) with an optical power of up to 13 mW.This material was supported by NSF (CTS-0078618).[1] Karl H. Schoenbach, Ahmed El-Habachi, Mohamed M. Moselhy, Wenhui Shi, and Robert H. Stark, Physics of Plasmas 7, 2186 (2000). [2] M. Moselhy, R.H. Stark, K.H. Schoenbach, and U. Kogelschatz, Appl. Phys. Lett. 78, 880 (2001).

  17. Upgraded Readout Electronics for the ATLAS Liquid Argon Calorimeters at the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Andeen, Timothy R.; ATLAS Liquid Argon Calorimeter Group

    2012-12-01

    The ATLAS liquid-argon calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics sum analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up background expected during the high luminosity phases of the LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons or photons, at high background rejection rates. For the first upgrade phase in 2018, new Liquid Argon Trigger Digitizer Boards are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new, off-detector digital processing system. The digital processing system applies digital filtering and identifies significant energy depositions. The refined trigger primitives are then transmitted to the first level trigger system to extract improved trigger signatures. The general concept of the upgraded liquid-argon calorimeter readout together with the various electronics components to be developed for such a complex system is presented. The research activities and architectural studies undertaken by the ATLAS Liquid Argon Calorimeter Group are described, particularly details of the on-going design of mixed-signal front-end electronics, of radiation tolerant optical-links, and of the high-speed off-detector digital processing system.

  18. Solid-liquid phase transition in argon

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Tang, H. T.

    1978-01-01

    Starting from the Lennard-Jones interatomic potential, a modified cell theory has been used to describe the solid-liquid phase transition in argon. The cell-size variations may be evaluated by a self-consistent condition. With the inclusion of cell-size variations, the transition temperature, the solid and liquid densities, and the liquid-phase radial-distribution functions have been calculated. These ab initio results are in satisfactory agreement with molecular-dynamics calculations as well as experimental data on argon.

  19. Physics with gamma-beams and charged particle detectors: I) Nuclear structure II) Nuclear astrophysics

    SciTech Connect

    Gai, Moshe

    2015-02-24

    The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as {sup 12}C and {sup 16}O. All three detectors (SSD, eTPC and BC) will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the {sup 12}C(α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.

  20. Physics with gamma-beams and charged particle detectors: I) Nuclear structure II) Nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Gai, Moshe

    2015-02-01

    The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as 12C and 16O . All three detectors (SSD, eTPC and BC) will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the 12C (α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.

  1. Fourth workshop on experiments and detectors for a relativistic heavy ion collider

    SciTech Connect

    Fatyga, M.; Moskowitz, B.

    1990-01-01

    This report contains papers on the following topics: physics at RHIC; flavor flow from quark-gluon plasma; space-time quark-gluon cascade; jets in relativistic heavy ion collisions; parton distributions in hard nuclear collisions; experimental working groups, two-arm electron/photon spectrometer collaboration; total and elastic pp cross sections; a 4{pi} tracking TPC magnetic spectrometer; hadron spectroscopy; efficiency and background simulations for J/{psi} detection in the RHIC dimuon experiment; the collision regions beam crossing geometries; Monte Carlo simulations of interactions and detectors; proton-nucleus interactions; the physics of strong electromagnetic fields in collisions of relativistic heavy ions; a real time expert system for experimental high energy/nuclear physics; the development of silicon multiplicity detectors; a pad readout detector for CRID/tracking; RHIC TPC R D progress and goals; development of analog memories for RHIC detector front-end electronic systems; calorimeter/absorber optimization for a RHIC dimuon experiment; construction of a highly segmented high resolution TOF system; progress report on a fast, particle-identifying trigger based on ring-imaging and highly integrated electronics for a TPC detector.

  2. Design and Construction of Prototype Dark Matter Detectors

    SciTech Connect

    Peter Fisher

    2012-03-23

    The Lepton Quark Studies (LQS) group is engaged in searching for dark matter using the Dark Matter Time Projection Chamber (DMTPC) at the Waste Isolation Pilot Plant (WIPP) (Carlsbad, NM). DMTPC is a direction-sensitive dark matter detector designed to measure the recoil direction and energy deposited by fluorine nuclei recoiling from the interaction with incident WIMPs. In the past year, the major areas of progress have been: to publish the first dark matter search results from a surface run of the DMTPC prototype detector, to build and install the 10L prototype in the underground laboratory at WIPP which will house the 1 m{sup 3} detector, and to demonstrate charge and PMT readout of the TPC using prototype detectors, which allow triggering and {Delta}z measurement to be used in the 1 m{sup 3} detector under development.

  3. ArgoNeuT: A Liquid Argon Time Projection Chamber Test in the NuMI Beamline

    SciTech Connect

    Soderberg, M.

    2009-10-01

    Liquid Argon Time Projection Chamber detectors are ideally suited for studying neutrino interactions and probing the parameters that characterize neutrino oscillations. The ability to drift ionization particles over long distances in purified argon and to trigger on abundant scintillation light allows for excellent particle identification and triggering capability. In these proceedings the details of the ArgoNeuT test-beam project will be presented after a brief introduction to the detector technique. ArgoNeuT is a 175 liter detector exposed to Fermilab's NuMI neutrino beamline. The first neutrino interactions observed in ArgoNeuT will be presented, along with discussion of the various physics analyses to be performed on this data sample.

  4. Performance of the ATLAS Liquid Argon Calorimeter after three years of LHC operation and plans for a future upgrade

    NASA Astrophysics Data System (ADS)

    Ilic, N.

    2014-03-01

    The ATLAS experiment is a multi-purpose detector built for analyzing LHC collision data. In July 2012, ATLAS announced the discovery of the Higgs boson, the last undiscovered particle in the Standard Model of Particle Physics. The ATLAS Liquid Argon (LAr) Calorimeter played a crucial role in the discovery by providing accurate measurements of Higgs final state objects such as photons, electrons and jets. The LAr detector is a sampling calorimeter consisting of four subsystems: an electromagnetic barrel, electromagnetic endcaps, hadronic endcaps, and forward calorimeters. The purity and temperature of the liquid argon remained well above the required levels throughout the data-taking period. Overall the calorimeter performed very well, with over 99% of data it collected in 2012 proton-proton collisions being suitable for physics analyses. In order to ensure good LAr detector performance at future higher luminosity LHC operation, several upgrades are being planned and implemented.

  5. Liquid Argon Dielectric Breakdown Studies with the MicroBooNE Purification System

    SciTech Connect

    Acciarri, R.; Carls, B.; James, C.; Johnson, B.; Jostlein, H.; Lockwitz, S.; Lundberg, B.; Raaf, J. L.; Rameika, R.; Rebel, B.; Zeller, G. P.; Zuckerbrot, M.

    2014-11-04

    The proliferation of liquid argon time projection chamber detectors makes the characterization of the dielectric properties of liquid argon a critical task. To improve understanding of these properties, a systematic study of the breakdown electric field in liquid argon was conducted using a dedicated cryostat connected to the MicroBooNE cryogenic system at Fermilab. An electrode sphere-plate geometry was implemented using spheres with diameters of 1.3 mm, 5.0 mm, and 76 mm. The MicroBooNE cryogenic system allowed measurements to be taken at a variety of electronegative contamination levels ranging from a few parts-per-million to tens of parts-per-trillion. The cathode-anode distance was varied from 0.1 mm to 2.5 cm. The results demonstrate a geometric dependence of the electric field strength at breakdown. This study is the first time that the dependence of the breakdown field on stressed cathode area has been shown for liquid argon.

  6. Proceedings of the symposium on RHIC detector R&D

    SciTech Connect

    Makdisi, Y.; Stevens, A.J.

    1991-12-31

    This report contains papers on the following topics: Development of Analog Memories for RHIC Detector Front-end Electronic Systems; Monolithic Circuit Development for RHIC at Oak Ridge National Laboratory; Highly Integrated Electronics for the STAR TPC; Monolithic Readout Circuits for RHIC; New Methods for Trigger Electronics Development; Neurocomputing methods for Pattern Recognition in Nuclear Physics; The Development of a Silicon Multiplicity Detector System; The Vertex Detector for the Lepton/Photon Collaboration; Simulations of Silicon Vertex Tracker for STAR Experiment at RHIC; Calorimeter/Absorber Optimization for a RHIC Dimuon Experiment (RD-10 Project); Applications of the LAHET simulation Code to Relativistic Heavy Ion Detectors; Highly Segmented, High Resolution Time-of-Flight System; Research and Development on a Sub 100 Picosecond Time-of-Flight System Based on Silicon Avalance Diodes; Behavior of TPC`s in a High Particle Flux Environment; Generic R&D on Undoped Cesium Iodide and Lead Fluoride; and A Transition Radiation Detector for RHIC Featuring Accurate Tracking and dE/dx Particle Identification. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  7. SLD liquid argon calorimeter prototype test results

    SciTech Connect

    Dubois, R.; Eigen, G.; Au, Y.; Sleeman, J.; Breidenbach, M.; Brau, J.; Ludgate, G.A.; Oram, C.J.; Cook, V.; Johnson, J.

    1985-10-01

    The results of the SLD test beam program for the selection of a calorimeter radiator composition within a liquid argon system are described, with emphasis on the study of the use of uranium to obtain equalization of pion and electron responses.

  8. Diffusion of cyclooctane (1); argon (2)

    NASA Astrophysics Data System (ADS)

    Winkelmann, J.

    This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of (1) cyclooctane; (2) argon

  9. Diamond film growth argon-carbon plasmas

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.; Liu, Shengzhong; Pan, Xianzheng; Zuiker, Christopher D.

    1998-01-01

    A method and system for manufacturing diamond film. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrogen and hydrocarbon and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous and deposition of a diamond film on a substrate.

  10. Argon Dewar Required Relief Flow Capacity

    SciTech Connect

    Fitzpatrick, J.B.; /Fermilab

    1987-09-28

    This report calculates the required fire relief valve flow capacity, the required vaporizer failure relief valve flow capacity, and the required loss of vacuum relief valve flow capacity of the liquid argon storage tank in use at the D-Zero site.

  11. Thermal evolution of Venus with argon degassing

    NASA Astrophysics Data System (ADS)

    O'Rourke, Joseph G.; Korenaga, Jun

    2015-11-01

    Decades-old measurements of atmospheric and elemental surface composition constrain the history of Venus. In this study, we search for a model featuring continuous evolution in the stagnant-lid regime that predicts the present-day atmospheric mass of radiogenic argon and satisfies the other available constraints. For comparison, we also consider the end-member scenario of a single catastrophic resurfacing event. Thermal evolution simulations are performed that track the mass transport of argon and potassium and include a simple model of upwelling mantle plumes. Sensitivity analyses and linear regression are used to quantify the range of initial conditions that will produce desired values for key model output parameters. Decompression melting of passively upwelling mantle causes considerable mantle processing and crustal growth during the early evolution of Venus. Mantle plumes have negligible effects on recent crustal production, but may be important to local surface features. For a wide range of initial conditions, continuous evolution in the stagnant-lid regime predicts the correct amount of argon degassing, along with the absence of a global magnetic field, crustal and lithosphere thicknesses matching modern estimates, and volcanism consistent with the cratering record. Argon degassing does not uniquely constrain mantle dynamics, but the success of simple stagnant-lid models diminishes the need to invoke dramatic changes like catastrophic resurfacing.

  12. Argon frost continuous cryopump for fusion applications

    SciTech Connect

    Foster, C.A.; McCurdy, H.C.

    1993-12-01

    A cryopumping system based on the snail continuous cryopump concept is being developed for fusion applications under a DOE SBIR grant. The primary pump is a liquid helium cooled compound pump designed to continuously pump and fractionate deuterium/tritium and helium. The D/T pumping stage is a 500 mm bore cryocondensation pump with a nominal pumping speed of 45,000 L/s. It will be continuously regenerated by a snail regeneration by head every 12 minutes. Continuous regeneration will dramatically reduce the vulnerable tritium inventory in a fusion reactor. Operating at an inlet pressure of 1 millitorr, eight of these pumps could pump the projected D/T flow in the ITER CDA design while reducing the inventory of tritium in the pumping system from 630 to 43 grams. The helium fraction will be pumped in a compound argon frost stage. This stage will also operate continuously with a snail regeneration head. In addition the argon spray head will be enclosed inside the snail, thereby removing gaseous argon from the process chamber. Since the cryocondensation stage will intercept over 90% of the D/T/H steam, a purified stream from this stage could be directly reinjected into the plasma as gas or pellets, thereby bypassing the isotope separation system and further simplifying the fuel cycle. Experiments were undertaken in Phase I which demonstrated continuous cryosorption pumping of hydrogen on CO{sub 2} and argon frosts. The pumping system and its relevance to fusion reactor pumping will be discussed.

  13. Antiapoptotic activity of argon and xenon.

    PubMed

    Spaggiari, Sabrina; Kepp, Oliver; Rello-Varona, Santiago; Chaba, Kariman; Adjemian, Sandy; Pype, Jan; Galluzzi, Lorenzo; Lemaire, Marc; Kroemer, Guido

    2013-08-15

    Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects. PMID:23907115

  14. Antiapoptotic activity of argon and xenon.

    PubMed

    Spaggiari, Sabrina; Kepp, Oliver; Rello-Varona, Santiago; Chaba, Kariman; Adjemian, Sandy; Pype, Jan; Galluzzi, Lorenzo; Lemaire, Marc; Kroemer, Guido

    2013-08-15

    Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects.

  15. Hydrodynamic Simulations of Gaseous Argon Shock Experiments

    NASA Astrophysics Data System (ADS)

    Garcia, Daniel; Dattelbaum, Dana; Goodwin, Peter; Morris, John; Sheffield, Stephen; Burkett, Michael

    2015-06-01

    The lack of published Argon gas shock data motivated an evaluation of the Argon Equation of State (EOS) in gas phase initial density regimes never before reached. In particular, these regimes include initial pressures in the range of 200-500 psi (0.025 - 0.056 g/cc) and initial shock velocities around 0.2 cm/ μs. The objective of the numerical evaluation was to develop a physical understanding of the EOS behavior of shocked and subsequently multiply re-shocked Argon gas initially pressurized to 200-500 psi through Pagosa numerical hydrodynamic simulations utilizing the SESAME equation of state. Pagosa is a Los Alamos National Laboratory 2-D and 3-D Eulerian hydrocode capable of modeling high velocity compressible flow with multiple materials. The approach involved the use of gas gun experiments to evaluate the shock and multiple re-shock behavior of pressurized Argon gas to validate Pagosa simulations and the SESAME EOS. Additionally, the diagnostic capability within the experiments allowed for the EOS to be fully constrained with measured shock velocity, particle velocity and temperature. The simulations demonstrate excellent agreement with the experiments in the shock velocity/particle velocity space, but note unanticipated differences in the ionization front temperatures.

  16. Multishock Compression Properties of Warm Dense Argon

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Chen, Qifeng; Yunjun, Gu; Li, Zhiguo; Shen, Zhijun

    2015-10-01

    Warm dense argon was generated by a shock reverberation technique. The diagnostics of warm dense argon were performed by a multichannel optical pyrometer and a velocity interferometer system. The equations of state in the pressure-density range of 20-150 GPa and 1.9-5.3 g/cm3 from the first- to fourth-shock compression were presented. The single-shock temperatures in the range of 17.2-23.4 kK were obtained from the spectral radiance. Experimental results indicates that multiple shock-compression ratio (ηi = ρi/ρ0) is greatly enhanced from 3.3 to 8.8, where ρ0 is the initial density of argon and ρi (i = 1, 2, 3, 4) is the compressed density from first to fourth shock, respectively. For the relative compression ratio (ηi’ = ρi/ρi-1), an interesting finding is that a turning point occurs at the second shocked states under the conditions of different experiments, and ηi’ increases with pressure in lower density regime and reversely decreases with pressure in higher density regime. The evolution of the compression ratio is controlled by the excitation of internal degrees of freedom, which increase the compression, and by the interaction effects between particles that reduce it. A temperature-density plot shows that current multishock compression states of argon have distributed into warm dense regime.

  17. Multishock Compression Properties of Warm Dense Argon.

    PubMed

    Zheng, Jun; Chen, Qifeng; Yunjun, Gu; Li, Zhiguo; Shen, Zhijun

    2015-01-01

    Warm dense argon was generated by a shock reverberation technique. The diagnostics of warm dense argon were performed by a multichannel optical pyrometer and a velocity interferometer system. The equations of state in the pressure-density range of 20-150 GPa and 1.9-5.3 g/cm(3) from the first- to fourth-shock compression were presented. The single-shock temperatures in the range of 17.2-23.4 kK were obtained from the spectral radiance. Experimental results indicates that multiple shock-compression ratio (ηi = ρi/ρ0) is greatly enhanced from 3.3 to 8.8, where ρ0 is the initial density of argon and ρi (i = 1, 2, 3, 4) is the compressed density from first to fourth shock, respectively. For the relative compression ratio (ηi' = ρi/ρi-1), an interesting finding is that a turning point occurs at the second shocked states under the conditions of different experiments, and ηi' increases with pressure in lower density regime and reversely decreases with pressure in higher density regime. The evolution of the compression ratio is controlled by the excitation of internal degrees of freedom, which increase the compression, and by the interaction effects between particles that reduce it. A temperature-density plot shows that current multishock compression states of argon have distributed into warm dense regime. PMID:26515505

  18. Keeping argon under a graphene lid-Argon intercalation between graphene and nickel(111)

    NASA Astrophysics Data System (ADS)

    Späth, Florian; Gotterbarm, Karin; Amende, Max; Bauer, Udo; Gleichweit, Christoph; Höfert, Oliver; Steinrück, Hans-Peter; Papp, Christian

    2016-01-01

    We report on the intercalation of graphene grown on a Ni(111) crystal with argon. Argon is implanted in the Ni(111) crystal by ion bombardment before graphene growth, and diffuses to the surface during the growth of graphene at elevated temperatures. Graphene acts as an atomically thin barrier and keeps the argon underneath. We investigated this system with high resolution X-ray photoelectron spectroscopy. From our experiments we determined the mean quantities of argon under graphene. From our analysis, a simple model to determine the pressure under the graphene layer is presented. In our measurements, we find an increased thermal stability of the intercalated graphene as compared to non-intercalated graphene on Ni(111).

  19. 46 CFR 151.50-36 - Argon or nitrogen.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa...

  20. 46 CFR 151.50-36 - Argon or nitrogen.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa...

  1. 46 CFR 151.50-36 - Argon or nitrogen.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa...

  2. 46 CFR 151.50-36 - Argon or nitrogen.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa...

  3. 46 CFR 151.50-36 - Argon or nitrogen.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa...

  4. Argon laser treatment of strawberry hemangioma in infancy.

    PubMed

    Achauer, B M; Vander Kam, V M

    1985-11-01

    Argon laser therapy is effective for removing port-wine stains and for reducing cutaneous vascular and pigmented lesions. Strawberry hemangiomas, being much thicker lesions than port-wine stains, were considered not appropriate for argon laser treatment. Using argon laser therapy in 13 cases of strawberry hemangioma, we achieved poor to dramatic results. PMID:4082569

  5. On the OES line-ratio technique in argon and argon-containing plasmas

    NASA Astrophysics Data System (ADS)

    Siepa, Sarah; Danko, Stephan; Tsankov, Tsanko V.; Mussenbrock, Thomas; Czarnetzki, Uwe

    2014-11-01

    Optical emission spectroscopy is used to investigate capacitively coupled argon and argon-hydrogen-silane plasmas. The argon collisional-radiative model (CRM) used to extract the electron density and temperature from the spectra is presented. The electron energy distribution function, which is an input parameter to the model, is discussed in detail. Its strong variation with pressure is found to significantly influence the results for the (effective) temperature. For the analysis of the spectra the common line-ratio technique is applied. Special attention is paid to the choice of lines and a pair of line-ratios for optimum accuracy is suggested. For the argon gas mixture at high partial pressure of the admixed molecular gases the CRM reduces to a corona-like model, extended by a quenching term. The line-ratio method is found to fail under these conditions due to the strong depopulation of the argon 1s states. As a consequence, individual line intensities have to be used and an absolute calibration is required. An easy calibration method, which relies on the results obtained by the line-ratio method in pure argon, is proposed and applied.

  6. Use of propane as a quench gas in argon-filled proportional counters and comparison with other quench gases

    NASA Technical Reports Server (NTRS)

    Agrawal, P. C.; Ramsey, B. D.

    1988-01-01

    An experimental investigation of propane and six other quench gases was carried out in argon-filled proportional counters. The objective of the study was to find the best gas mixture for optimizing the gas gain and the energy resolution as well as to understand the role of the ionization potential of quench gases in determining these parameters. It was found that the best gas gains and energy resolutions are obtained with propane, ethane, and isobutane in that order. The ionization potentials of these three lie below the argon metastable potentials and have the lowest value of resonance defect compared to the other quench gases. The better results obtained with these mixtures can be explained by an increased ionization yield resulting from the Penning effect. Propylene and trans-2-butene give inferior performance compared to the above three gases. Methane and carbon dioxide, the most commonly used quench gases in the argon-filled detectors, provide the worst results.

  7. Tetraphenyl-butadiene films: VUV-Vis optical characterization from room to liquid argon temperature

    NASA Astrophysics Data System (ADS)

    Francini, R.; Montereali, R. M.; Nichelatti, E.; Vincenti, M. A.; Canci, N.; Segreto, E.; Cavanna, F.; Di Pompeo, F.; Carbonara, F.; Fiorillo, G.; Perfetto, F.

    2013-09-01

    A thin film of Tetraphenyl-butadiene (TPB) deposited onto the surface delimiting the active volume of the detector and/or onto the photosensor's optical window is the most common solution to down convert argon VUV scintillation light in current and planned liquid argon based experiments for dark matter searches and neutrino physics. Characterization of the main features of TPB coatings on different, commonly used substrates is reported, as a result of measurements at the specialized optical metrology labs of ENEA and University of Tor Vergata. Measured features include TPB emission spectra with lineshape and relative intensity variation recorded as a function of the film thickness and for the first time down to LAr temperature, as well as optical reflectance and transmittance spectra of the TPB coated substrates in the wavelength range of the TPB emission.

  8. Status of the ATLAS Liquid Argon calorimeter and its performance after two years of LHC operation

    NASA Astrophysics Data System (ADS)

    Aperio Bella, L.

    2013-08-01

    The ATLAS detector is designed to study proton-proton collisions produced at the Large Hadron Collider (LHC) at CERN. Its calorimeter system, for the electromagnetic and forward part and for a fraction of the hadronic part, is made of liquid argon sampling calorimeters. During the 2011 data taking period, ATLAS operated with an excellent efficiency and recorded more than 5fb-1 integrated luminosity of 7 TeV center of mass energy proton-proton collisions. The ATLAS Liquid Argon calorimeters played a significant role in this achievement. Its main features are first described. Then, some of its performances over the past two years are given. Highlights are put on its operation, calibration, stability and data taking efficiency, as well as on the related physics performances.

  9. Dissociation-excitation reactions of argon metastables with carbon dioxide.

    NASA Technical Reports Server (NTRS)

    Starr, W. L.

    1971-01-01

    Results of a study showing that a metastable argon-carbon dioxide reaction results in dissociation of carbon dioxide and electronic excitation of one of the products, carbon monoxide or oxygen. A flow system using a 2450-MHz discharge was used to produce metastable argon atoms. Metastable argon in the afterglow was confirmed by adding nitrogen to the afterglow. Without addition of carbon dioxide no argon line emission, or any other emission, is observed from the reaction zone. Absence of argon line emission produced by recombination indicates the absence of charged species.

  10. Preferential site occupancy observed in coexpanded argon-krypton clusters

    SciTech Connect

    Lundwall, M.; Bergersen, H.; Lindblad, A.; Oehrwall, G.; Svensson, S.; Bjoerneholm, O.; Tchaplyguine, M.

    2006-10-15

    Free heterogeneous argon-krypton clusters have been produced by coexpansion and investigated by means of x-ray photoelectron spectroscopy. By examining cluster surface and bulk binding energy shifts, relative intensities, and peak widths, we show that in the mixed argon-krypton clusters the krypton atoms favor the bulk and argon atoms are pushed to the surface. Furthermore, we show that krypton atoms in the surface layer occupy high-coordination sites and that heterogeneous argon-krypton clusters produced by coexpansion show the same surface structure as argon host clusters doped with krypton. These observations are supported by site-dependent calculations of chemical shifts.

  11. A Novel Calcium Binding Site in the Slow Vacuolar Cation Channel TPC1 Senses Luminal Calcium Levels[W

    PubMed Central

    Dadacz-Narloch, Beata; Beyhl, Diana; Larisch, Christina; López-Sanjurjo, Enrique J.; Reski, Ralf; Kuchitsu, Kazuyuki; Müller, Thomas D.; Becker, Dirk; Schönknecht, Gerald; Hedrich, Rainer

    2011-01-01

    Cytosolic calcium homeostasis is pivotal for intracellular signaling and requires sensing of calcium concentrations in the cytosol and accessible stores. Numerous Ca2+ binding sites have been characterized in cytosolic proteins. However, little is known about Ca2+ binding inside organelles, like the vacuole. The slow vacuolar (SV) channel, encoded by Arabidopsis thaliana TPC1, is regulated by luminal Ca2+. However, the D454/fou2 mutation in TPC1 eliminates vacuolar calcium sensitivity and increases store calcium content. In a search for the luminal calcium binding site, structure modeling indicated a possible coordination site formed by residues Glu-450, Asp-454, Glu-456, and Glu-457 on the luminal side of TPC1. Each Glu residue was replaced by Gln, the modified genes were transiently expressed in loss-of-TPC1-function protoplasts, and SV channel responses to luminal calcium were recorded by patch clamp. SV channels lacking any of the four negatively charged residues appeared altered in calcium sensitivity of channel gating. Our results indicate that Glu-450 and Asp-454 are directly involved in Ca2+ binding, whereas Glu-456 and Glu-457 are probably involved in connecting the luminal Ca2+ binding site to the channel gate. This novel vacuolar calcium binding site represents a potential tool to address calcium storage in plants. PMID:21764990

  12. SAMPA chip: a new ASIC for the ALICE TPC and MCH upgrades

    NASA Astrophysics Data System (ADS)

    Barboza, S. H. I.; Bregant, M.; Chambert, V.; Espagnon, B.; Hernandez Herrera, H. D.; Mahmood, S. M.; Moraes, D.; Munhoz, M. G.; Noël, G.; Pilyar, A.; Russo, P.; Sanches, B. C. S.; Tambave, G. J.; Tun-Lanoë, K. M. M.; van Noije, W.; Velure, A.; Vereschagin, S.; Weber, T. O.; Zaporozhets, S.

    2016-02-01

    This paper presents the SAMPA, an ASIC designed for the upgrade of read-out front end electronics of the ALICE Time Projection Chamber (TPC) and Muon Chambers (MCH). SAMPA is made in a 130 nm CMOS technology with 1.25 V nominal voltage supply and includes 32 channels, with selectable input polarity, and five possible combinations of shaping time and sensitivity. Each channel comprises a Charge Sensitive Amplifier, a semi-Gaussian shaper and a 10-bit ADC, followed by a Digital Signal Processor. A prototype in a multi project run was submitted to evaluate the performance of each of these blocks. The experimental results of the tests on these building blocks are presented, showing a substantial agreement with requirements.

  13. Photoassociative Spectroscopy of Ultracold Argon and Krypton

    NASA Astrophysics Data System (ADS)

    Omar, M. K.; Williams, W. D.; Sukenik, C. I.

    2016-05-01

    We report on photoassociative spectroscopy experiments performed separately on ultracold 40 Ar and ultracold 84 Kr with the spectroscopy laser tuned around the trapping transition for each species (ns[ 3 / 2 ] 2 --> np[ 5 / 2 ] 3 where n = 4 for argon and n = 5 for krypton). Previous studies in argon observed several discrete features in the spectrum that have now been positively identified as arising from otherwise undetectable frequency sidebands on the spectroscopy laser and not from molecular structure. Spectra have been taken over a range of laser intensities and show a broad (several GHz) signature of single photon photo-association, but with no individual vibrational levels resolved. We will discuss our results and compare our spectra to those obtained in ultracold, noble gas photoassociative spectroscopy experiments conducted by other groups in recent years. Supported in part by the National Science Foundation, Award, No. PHY-0855290.

  14. Argon ion pollution of the magnetosphere

    NASA Technical Reports Server (NTRS)

    Lopez, R. E.

    1985-01-01

    Construction of a Solar Power Satellite (SPS) would require the injection of large quantities of propellant to transport material from Low Earth Orbit (LEO) to the construction site at Geostationary Earth Orbit (GEO). This injection, in the form of approx 10 to the 32nd power, 2 KeV argon ions (and associated electrons) per SPS, is comparable to the content of the plasmasphere (approx 10 to the 31st power ions). In addition to the mass deposited, this represents a considerable injection of energy. The injection is examined in terms of a simple model for the expansion of the beam plasma. General features of the subsequent magnetospheric convection of the argon are also examined.

  15. Dynamic distortions in the HARP TPC: observations, measurements, modelling and corrections

    NASA Astrophysics Data System (ADS)

    Bagulya, A.; Blondel, A.; Borghi, S.; Catanesi, G.; Chimenti, P.; Gastaldi, U.; Giani, S.; Grichine, V.; Ivanchenko, V.; Kolev, D.; Panman, J.; Radicioni, E.; Tsenov, R.; Tsukerman, I.

    2009-11-01

    The HARP experiment was designed to study hadron production in proton-nucleus collisions in the energy range of 1.5 GeV/c-15 GeV/c. The experiment was made of two spectrometers, a forward dipole spectrometer and a large-angle solenoid spectrometer. In the large-angle spectrometer the main tracking and particle identification is performed by a cylindrical Time Projection Chamber (TPC) which suffered a number of shortcomings later addressed in the analysis. In this paper we discuss the effects of time-dependent (dynamic) distortions of the position measurements in the TPC which are due to a build-up of ion charges in the chamber during the accelerator spill. These phenomena have been studied both by modelling and by experiment, and a correction procedure has been developed. The effects of the time-dependent distortions have been measured experimentally by means of recoil protons in elastic scattering reactions, where the track coordinates are precisely predictable from simple kinematical considerations. The dynamics of the positive ion cloud and of the electrostatics of the field-cage system have been modelled with a phenomenological approach providing an understanding of the features. Using the elastic scattering data a general correction procedure has been developed and applied to all data settings. After application of the corrections for dynamic distortions the corrected data have a performance equal to data where the dynamic distortions are absent. We describe the phenomenological model, the comparison with the measurements, the distortion correction method and the results obtained with experimental data.

  16. Diamond film growth argon-carbon plasmas

    DOEpatents

    Gruen, D.M.; Krauss, A.R.; Liu, S.Z.; Pan, X.Z.; Zuiker, C.D.

    1998-12-15

    A method and system are disclosed for manufacturing diamond film. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrogen and hydrocarbon and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous and deposition of a diamond film on a substrate. 29 figs.

  17. An impact hypothesis for Venus argon anomalies

    NASA Astrophysics Data System (ADS)

    Kaula, W. M.; Newman, W. I.

    1997-03-01

    The Ar-36+38 argon-excess anomally of Venus has been hypothesized to have its origin in the impact of an outer solar system body of about 100-km diameter. A critical evaluation is made of this hypothesis and its competitors; it is judged that its status must for the time being remain one of 'Sherlock Holmes' type, in that something so improbable must be accepted when all alternatives are eliminated.

  18. Multishock Compression Properties of Warm Dense Argon

    PubMed Central

    Zheng, Jun; Chen, Qifeng; Yunjun, Gu; Li, Zhiguo; Shen, Zhijun

    2015-01-01

    Warm dense argon was generated by a shock reverberation technique. The diagnostics of warm dense argon were performed by a multichannel optical pyrometer and a velocity interferometer system. The equations of state in the pressure-density range of 20–150 GPa and 1.9–5.3 g/cm3 from the first- to fourth-shock compression were presented. The single-shock temperatures in the range of 17.2–23.4 kK were obtained from the spectral radiance. Experimental results indicates that multiple shock-compression ratio (ηi = ρi/ρ0) is greatly enhanced from 3.3 to 8.8, where ρ0 is the initial density of argon and ρi (i = 1, 2, 3, 4) is the compressed density from first to fourth shock, respectively. For the relative compression ratio (ηi’ = ρi/ρi-1), an interesting finding is that a turning point occurs at the second shocked states under the conditions of different experiments, and ηi’ increases with pressure in lower density regime and reversely decreases with pressure in higher density regime. The evolution of the compression ratio is controlled by the excitation of internal degrees of freedom, which increase the compression, and by the interaction effects between particles that reduce it. A temperature-density plot shows that current multishock compression states of argon have distributed into warm dense regime. PMID:26515505

  19. Distribution and Abundance of Mars' Atmospheric Argon

    NASA Technical Reports Server (NTRS)

    Sprague, A. L.; Boynton, W. V.; Kerry, K. E.; Nelli, Steven; Murphy, Jim; Reedy, R. C.; Metzger, A. E.; Hunten, D. M.; Janes, K. D.; Crombie, M. K.

    2005-01-01

    One and one half Mars years (MY 26 and 27) of atmospheric Argon measurements are described and studied in the context of understanding how Argon, a minor constituent of Mars atmosphere that does not condense at Mars temperatures, can be used to study martian circulation and dynamics. Argon data are from the 2001 Mars Odyssey Gamma Subsystem (GS) of the suite of three instruments comprising the Gamma Ray Spectrometer (GRS). A comprehensive data analysis including gamma-ray production and attenuation by the atmosphere is included. Of particular interest is the enhanced abundance of Ar over the observed Ar abundance at lower latitudes at south (up to a factor of 10) and north (up to a factor of 4) polar regions during winter. Calibration of the measurements to actual Ar abundance is possible because GS measurements cover the same latitude and season as measurements made by the gas chromatograph mass spectrometer (GCMS) on Viking Landers 1 and 2 (VL1 and VL2). [2].

  20. Operation of a 1-liter-volume gaseous argon proportional scintillation counter

    NASA Astrophysics Data System (ADS)

    Kazkaz, K.; Foxe, M.; Bernstein, A.; Hagmann, C.; Jovanovic, I.; Sorensen, P.; Stoeffl, W. S.; Winant, C. D.

    2010-09-01

    We have built a gas-phase argon ionization detector to measure small nuclear recoil energies (<10 keVee). In this paper, we describe the detector response to X-ray and gamma calibration sources, including analysis of pulse shapes, software triggers, optimization of gas content, and energy- and position-dependence of the signal. We compare our experimental results against simulation using a 5.9-keV X-ray source, as well as higher-energy gamma sources up to 1332 keV. We conclude with a description of the detector, DAQ, and software settings optimized for a measurement of the low-energy nuclear quenching factor in gaseous argon. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. Funded by Lab-wide LDRD. LLNL-JRNL-415990-DRAFT.

  1. Using argon laser blue light reduces ophthalmologists' color contrast sensitivity. Argon blue and surgeons' vision

    SciTech Connect

    Berninger, T.A.; Canning, C.R.; Guenduez, K.St.; Strong, N.; Arden, G.B. )

    1989-10-01

    Color contrast sensitivity was measured in laser operators before and after laser use. After argon blue-green laser treatment sessions, sensitivity was reduced for colors lying along a tritan color-confusion line for several hours. This acute effect is due to specular flash-backs from the aiming beam off the surface of the contact lens. It is caused only by argon 488-nm light, when the aiming beam intensity is high. In addition, a correlation has been demonstrated between the number of years of laser experience and a chronic reduction in tritan color contrast sensitivity. It is suggested that repeated acute changes caused by the argon lasers may cause cumulative effects and produce a chronic threshold elevation. A simple method of eliminating the acute effect is documented.

  2. Transmutation detectors

    NASA Astrophysics Data System (ADS)

    Viererbl, L.; Lahodová, Z.; Klupák, V.; Sus, F.; Kučera, J.; Kůs, P.; Marek, M.

    2011-03-01

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  3. On the geometrical design of integrated Micromegas detectors

    NASA Astrophysics Data System (ADS)

    Blanco Carballo, V. M.; Salm, C.; Smits, S. M.; Schmitz, J.; Chefdeville, M.; van der Graaf, H.; Timmermans, J.; Visschers, J. L.

    2007-06-01

    This paper presents the operational characteristics of several integrated Micromegas detectors. These detectors called InGrids are made by means of micro-electronic fabrication techniques. These techniques allow a large variety of detector geometry to be made and studied. Gain, gain homogeneity and energy resolution were measured for various amplification gap sizes, hole pitches and hole diameters in Argon/Isobutane. Gain measurements as a function of gap thickness are compared to the Rose and Korff formula and a model of the detector gain. Our model uses electric field maps and MAGBOLTZ calculated amplification coefficients.

  4. Study of argon-oxygen flowing afterglow

    NASA Astrophysics Data System (ADS)

    Mazánková, V.; Trunec, D.; Navrátil, Z.; Raud, J.; Krčma, F.

    2016-06-01

    The reaction kinetics in argon-oxygen flowing afterglow (post-discharge) was studied using NO titration and optical emission spectroscopy. The flowing DC post-discharge in argon-oxygen mixture was created in a quartz tube at the total gas pressure of 1000 Pa and discharge power of 90 W. The O(3P) atom concentration was determined by NO titration at different places along the flow tube. The optical emission spectra were also measured along the flow tube. Argon spectral lines, oxygen lines at 777 nm and 844.6 nm and atmospheric A-band of {{\\text{O}}2} were identified in the spectra. Rotational temperature of {{\\text{O}}2} was determined from the oxygen atmospheric A-band and also the outer wall temperature of the flow tube was measured by a thermocouple and by an IR thermometer. A zero-dimensional kinetic model for the reactions in the afterglow was developed. This model allows the time dependencies of particle concentrations and of gas temperature to be calculated. The wall recombination probability for O(3P) atoms {γ\\text{O≤ft(\\text{P}\\right)}}=≤ft(1.63+/- 0.06\\right)× {{10}-3} and wall deactivation probability for {{\\text{O}}2} (b {{}1}Σ\\text{g}+ ) molecules {γ{{\\text{O}2}≤ft(\\text{b}\\right)}}=≤ft(1.7+/- 0.1\\right)× {{10}-3} were determined from the fit of model results to experimental data. Sensitivity analysis was applied for the analysis of kinetic model in order to reveal the most important reactions in the model. The calculated gas temperature increases in the afterglow and then decreases at later afterglow times after reaching the maximum. This behavior is in good agreement with the spatial rotational temperature dependence. A similar trend was also observed at outer wall temperature measurement.

  5. Dendritic microstructure in argon atomized superalloy powders

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Kumar, Mahundra

    1986-01-01

    The dendritic microstructure of atomized nickel base superalloy powders (Ni-20 pct Cr, NIMONIC-80A, ASTROALOY, and ZHS6-K) was studied. Prealloyed vacuum induction melted ingots were argon-atomized, the powders were cooled to room temperature, and various powder-size fractions were examined by optical metallography. Linear correlations were obtained for the powder size dependence of the secondary dendrite arm spacing, following the expected d-alpha (R) to the m power dependence on the particle size for all four superalloy compositions. However, the Ni-20 pct Cr alloy, which had much coarser arm spacing as compared to the other three alloys, had a much larger value of m.

  6. [Temperature measurement of DC argon plasma jet].

    PubMed

    Yan, Jian-Hua; Pan, Xin-Chao; Ma, Zeng-Yi; Tu, Xin; Cen, Ke-Fa

    2008-01-01

    The electron temperature of DC arc plasma jet is an important parameter, which determines the characteristics of plasma jet. The measurement of emission spectrum was performed to obtain the spectral intensities of some Ar lines and the method of diagrammatic view of Boltzmann was adopted to calculate the electron temperature. The results indicated that the electron temperature dropped at different speed along with the axes of the plasma jet and rose rapidly when the current was increased, and it also rose when the flowrate of argon was increased.

  7. Resonantly-enhanced harmonic generation in Argon.

    PubMed

    Ackermann, P; Münch, H; Halfmann, T

    2012-06-18

    We present systematic investigations of harmonic generation in Argon, driven in the vicinity of a five-photon resonance by intense, tunable picosecond radiation pulses. When properly matching the laser frequency with the Stark-shifted multi-photon resonance, we observe a pronounced enhancement not only of the 5th, but also the 7th and 9th harmonic of the driving laser (i.e. at orders higher than the involved multi-photon resonance). We study the harmonic yield at different intensities and wavelengths of the driving laser to determine optimal conditions for resonantly-enhanced harmonic generation.

  8. Analysis of the 222Rn concentration in argon and a purification technique for gaseous and liquid argon.

    PubMed

    Simgen, H; Zuzel, G

    2009-05-01

    We present an investigation of the (222)Rn concentration in argon with ultra-low background proportional counters. Argon purification tests by means of cryo-adsorption of radon on activated carbon were performed. For gaseous argon the purification process was found to be very efficient. Also in liquid phase the (222)Rn concentration could be reduced significantly, however, the efficiency is lower than in the gas phase. We also have analyzed the initial (222)Rn concentrations in commercial liquid argon. It was found to be significantly higher than in liquid nitrogen.

  9. Cosmic ray tests of a GEM-based TPC prototype operated in Ar-CF4-isobutane gas mixtures: II

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Yonamine, R.; Tomioka, T.; Aoza, A.; Bito, H.; Fujii, K.; Higashi, T.; Hiramatsu, K.; Ikematsu, K.; Ishikawa, A.; Kato, Y.; Kuroiwa, H.; Matsuda, T.; Nitoh, O.; Ohta, H.; Sakai, K.; Settles, R. D.; Sugiyama, A.; Tsuji, H.; Watanabe, T.; Yamaoka, H.; Yazu, T.

    2014-12-01

    The spatial resolution along the pad-row direction was measured with a GEM-based TPC prototype for the future linear collider experiment in order to understand its performance for tracks with finite projected angles with respect to the pad-row normal. The degradation of the resolution due to the angular pad effect was confirmed to be consistent with the prediction of a simple calculation taking into account the cluster-size distribution and the avalanche fluctuation.

  10. A first walk on the DarkSide

    DOE PAGESBeta

    Davini, S.; Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; et al

    2016-05-31

    DarkSide-50 (DS-50) at Gran Sasso underground laboratory (LNGS), Italy, is a direct dark matter search experiment based on a TPC with liquid argon. DS-50 has completed its first dark matter run using atmospheric argon as target. Here, the DS-50 detector performances and the results of the first physics run are reviewed in this proceeding.

  11. Argon laser photocoagulation in the dog stomach.

    PubMed Central

    Bown, S G; Salmon, P R; Kelly, D F; Calder, B M; Pearson, H; Weaver, B M; Read, A E

    1979-01-01

    Laser photocoagulation is one of a number of methods currently under investigation for the endoscopic treatment of gastrointestinal haemorrhage. The Argon ion and Neodymium Yttrium Aluminium Garnet (Nd YAG) lasers are theoretically suitable as the beam from each may be transmitted via a flexible fibre. Argon laser photocoagulation has been shown to be effective and we have elucidated which factors determine its safety and efficacy. Studies on normal canine gastric mucosa showed that the depth of tissue damage depended chiefly on the total incident laser energy on any one spot, and that below 50 J the risk of perforation was extremely low. The energy density was much less important. The haemostatic effect depended more on the laser power. In artificial bleeding gastric ulcers in heparinised dogs the most effective level was 7--9 W, at which 22 out of 23 ulcers (96%) stopped bleeding completely, compared with one out of 12 controls. Photocoagulation was achieved in these cases with energies well within the safe limits. The procedure was effective endoscopically, and these results justify early clinical studies in man. PMID:573722

  12. Electron scattering and transport in liquid argon

    SciTech Connect

    Boyle, G. J.; Cocks, D. G.; White, R. D.; McEachran, R. P.

    2015-04-21

    The transport of excess electrons in liquid argon driven out of equilibrium by an applied electric field is revisited using a multi-term solution of Boltzmann’s equation together with ab initio liquid phase cross-sections calculated using the Dirac-Fock scattering equations. The calculation of liquid phase cross-sections extends previous treatments to consider multipole polarisabilities and a non-local treatment of exchange, while the accuracy of the electron-argon potential is validated through comparison of the calculated gas phase cross-sections with experiment. The results presented highlight the inadequacy of local treatments of exchange that are commonly used in liquid and cluster phase cross-section calculations. The multi-term Boltzmann equation framework accounting for coherent scattering enables the inclusion of the full anisotropy in the differential cross-section arising from the interaction and the structure factor, without an a priori assumption of quasi-isotropy in the velocity distribution function. The model, which contains no free parameters and accounts for both coherent scattering and liquid phase screening effects, was found to reproduce well the experimental drift velocities and characteristic energies.

  13. TREX-DM: a low background Micromegas-based TPC for low-mass WIMP detection

    NASA Astrophysics Data System (ADS)

    Iguaz, F. J.; Garza, J. G.; Aznar, F.; Castel, J. F.; Cebrián, S.; Dafni, T.; García, J. A.; Irastorza, I. G.; Lagraba, A.; Luzón, G.; Peiró, A.

    2016-05-01

    Dark Matter experiments are recently focusing their detection techniques in low-mass WIMPs, which requires the use of light elements and low energy threshold. In this context, we describe the TREX-DM experiment, a low background Micromegas-based TPC for low-mass WIMP detection. Its main goal is the operation of an active detection mass ~0.3 kg, with an energy threshold below 0.4 keVee and fully built with previously selected radiopure materials. This work describes the commissioning of the actual setup situated in a laboratory on surface and the updates needed for a possible physics run at the Canfranc Underground Laboratory (LSC) in 2016. A preliminary background model of TREX-DM is also presented, based on a Geant4 simulation, the simulation of the detector’s response and two discrimination methods: a conservative muon/electron and one based on a neutron source. Based on this background model, TREX-DM could be competitive in the search for low-mass WIMPs. In particular it could be sensitive, e.g., to the low-mass WIMP interpretation of the DAMA/LIBRA and other hints in a conservative scenario.

  14. Investigating 3-body Decays of Cluster States with the PAT-TPC

    NASA Astrophysics Data System (ADS)

    Carpenter, Lisa; Ayyad Limonge, Y.; Bazin, D.; Beceiro-Novo, S.; Bradt, J.; Cortesi, M.; Mittig, W.; Ahn, T.; Kolata, J. J.; Meisel, Z.; Bechetti, F. D.; Fritsch, A.; Howard, A.

    2016-03-01

    Recent model calculations with most advanced methods for cluster states have shown the need of experimental data to probe the structure of light exotic nuclei, including those with α-clustering, such as 14C. The Prototype Active Target Time Projection Chamber (PAT-TPC) allows us to investigate these types of structures, giving access to the full excitation function with a single beam energy. This type of experiment measures resonances in 14C that can be compared to the models. With an improved Micromegas pad plane with a circular backgammon design we are able to investigate 3-body decays in addition to 2-body scattering. The measurements were carried out by resonant alpha-scattering on 10Be beam delivered by the TwinSol facility at the University of Notre Dame. We also observed the 3-body decay of the Hoyle State in 12C from a 12N or 12B beam with the same device. Preliminary results will be presented. This work is supported by the National Science Foundation.

  15. Application of gas chromatographic method in simultaneous measurements of helium, argon and neon concentration in groundwaters

    NASA Astrophysics Data System (ADS)

    Najman, J.; Bielewski, J.; Sliwka, I.

    2012-04-01

    Helium concentration in groundwater is a fine indicator in water dating in a range from a hundred to tens of thousands of years. Gas chromatography (GC) measurements of helium can be used as an alternative to mass spectrometry (MS) determinations of 4He for groundwater dating [1]. Argon and neon concentrations mainly serve for determining the temperature of recharge and the air excess which is needed to correct measured values of helium concentration [2] . A chromatographic measurement system of helium, argon and neon concentration in groundwater is presented [3]. Water samples are taken from groundwater with a precise procedure without contamination with air in a special stainless steel vessels of volume equal to 2900 cm3. Helium is extracted from water samples using the head-space method. After enrichment by cryotrap method helium is analyzed in the gas chromatograph equipped with the thermal conductivity detector (TCD) with detection limit of about 2.8 ng He. The helium limit of detection of presented method is 1,2·10-8 cm3STP/gH2O [4]. We are currently working on adapting the method of cryogenic enrichment of helium concentration for simultaneous measurements of the concentration of helium, argon and neon using single sample of groundwater. Neon will be measured with the thermal conductivity detector and capillary column filled with molecular sieve 5A. Argon will be analyzed also with the thermal conductivity detector and packed column filled with molecular sieve 5A. This work was supported by grant No. N N525 3488 38 from the polish National Science Centre. [1] A. Zuber, W. Ciężkowski, K. Różański (red.), Tracer methods in hydrogeological studies - a methodological guide. Wroclaw University of Technology Publishing House, Wroclaw, 2007 (in polish). [2] P. Mochalski, Chromatographic method for the determination of Ar, Ne and N2 in water, Ph.D. thesis, Institute of Nuclear Physics Polish Academy of Sciences in Krakow, 2003 (in polish). [3] A. Żurek, P

  16. Extreme-ultraviolet beam-foil spectroscopy of highly ionized neon and argon. Doctoral thesis

    SciTech Connect

    Demarest, J.A.

    1986-08-01

    A study of the extreme-ultraviolet radiation emitted by ion beams of highly ionized neon and argon after passage through thin foils was conducted. A grazing-incidence spectrometer was equipped with a position-sensitive microchannel plate (MCP) detector, which improved the detection efficiency by two orders of magnitude. The position information of the MCP was determined to be linear over 90% of the 50-mm-wide detector. Spectra spanning regions of over 100 A were accumulated at a resolution of less than 1 A. A wavelength calibration based on a second order equation of spectrometer position was found to result in an accuracy of - 0.1 A. Over 40 transitions of Ne VIII, Ne IX, and Ne X were observed in the wavelength region from 350 to 30 A from n=2-3,4,5; n=3-4,5,6,7,8; n=4-6,7; and n=5-9. An intensity calibration of the detection system allowed the determination of the relative populations of n=3 states of Ne VIII and Ne IX. An overpopulation of states with low orbital angular momenta support electron-capture predictions by the first-order Born approximation. The argon beam-foil data confirmed the wavelength predictions of 30 previously unobserved transitions in the wavlength region from 355 to 25 A from n=2-2; n=3-4; n=4-5,6,7; and n=6-8. Lifetime determinations were made by the simultaneous measurement of 26 argon lines in the spectral region from 295-180 A. Many of the n=2-2 transitions agreed well with theory.

  17. A system to test the effects of materials on the electron drift lifetime in liquid argon and observations on the effect of water

    SciTech Connect

    Andrews, R.; Jaskierny, W.; Jostlein, H.; Kendziora, C.; Pordes, S.; Tope, T.; /Fermilab

    2009-07-01

    A materials test system (MTS) has been developed at FNAL to assess the suitability of materials for use in a large liquid argon time projection chamber. During development of the MTS, it was noted that controlling the cryostat pressure with a 'raining' condenser reduced the electron drift lifetime in the liquid argon. The effect of condensing has been investigated using a series of passive materials to filter the condensate. We report the results of these studies and of tests on different candidate materials for detector construction. The inferred reduction of electron drift lifetime by water concentrations in the parts per trillion is of particular interest.

  18. 21 CFR 868.1075 - Argon gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification....

  19. Argon gas: a potential neuroprotectant and promising medical therapy.

    PubMed

    Nowrangi, Derek S; Tang, Jiping; Zhang, John H

    2014-02-17

    Argon is a noble gas element that has demonstrated narcotic and protective abilities that may prove useful in the medical field. The earliest records of argon gas have exposed its ability to exhibit narcotic symptoms at hyperbaric pressures greater than 10 atmospheres with more recent evidence seeking to display argon as a potential neuroprotective agent. The high availability and low cost of argon provide a distinct advantage over using similarly acting treatments such as xenon gas. Argon gas treatments in models of brain injury such as in vitro Oxygen-Glucose-Deprivation (OGD) and Traumatic Brain Injury (TBI), as well as in vivo Middle Cerebral Artery Occlusion (MCAO) have largely demonstrated positive neuroprotective behavior. On the other hand, some warning has been made to potential negative effects of argon treatments in cases of ischemic brain injury, where increases of damage in the sub-cortical region of the brain have been uncovered. Further support for argon use in the medical field has been demonstrated in its use in combination with tPA, its ability as an organoprotectant, and its surgical applications. This review seeks to summarize the history and development of argon gas use in medical research as mainly a neuroprotective agent, to summarize the mechanisms associated with its biological effects, and to elucidate its future potential.

  20. Improved installation prototype for measurement of low argon-37 activity

    NASA Astrophysics Data System (ADS)

    Pakhomov, Sergei; Dubasov, Yuri

    2015-04-01

    On-site Inspection (OSI) is a key element of verification of State Parties' compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). An on-site inspection is launched to establish whether or not a nuclear explosion has been carried out. One of the most significant evidence of n underground nuclear explosion (UNE) is detection above background concentrations of argon-37 in near surface air. Argon-37 is formed in large amounts at interaction of neutrons of UNE with the potassium which is a part of the majority of rocks. Its estimated contents for the 100th days after explosion with a energy of 1000 t of TNT near a surface can vary from 1 to 1000 mBq/m3. The background concentrations of argon-37 in subsoil air vary 1 do100 mBq/m3. Traditionally, for argon-37 activity measurement the gas-proportional counters are used. But at Khlopin Radium institute the developments of the new type of highly sensitive and low-background installation capable to provide the required range of measurements of the argon-37 concentration are conducted. The liquid scintillation method of the registration of the low-energetic argon-37 electrons is the basic installation principle and as scintillator, the itself condensed air argon sample is used. Registration of scintillations of liquid argon is made by means of system from 3 PMT which cathodes are cooled near to the temperature of liquid nitrogen together with the measuring chamber in which placed the quartz glass ampule, containing the measured sample of the liquefied argon. For converse the short wavelength photons (λ = 127 nm) of liquid argon scintillations to more long-wave, corresponding to the range of PMT sensitivity, the polymer film with tetra-phenyl-butadiene (TPB) is provided. Even the insignificant impurities of nitrogen, oxygen and others gaseous in the liquid argon samples can to cause the quenching of scintillation, especially their slow components. To account this effect and it influence on change of registration

  1. Effect of Emergency Argon on FCF Operational Incidents

    SciTech Connect

    Charles Solbrig

    2011-12-01

    The following report presents analyses of operational incidents which are considered in the safety analysis of the FCF argon cell and the effect that the operability of the emergency argon system has on the course of these incidents. The purpose of this study is to determine if the emergency argon system makes a significant difference in ameliorating the course of these incidents. Six incidents were considered. The following three incidents were analyzed. These are: 1. Cooling failing on 2. Vacuum Pump Failing on 3. Argon Supplies Failing on. In the remaining three incidents, the emergency argon supply would have no effect on the course of these transients since it would not come on during these incidents. The transients are 1. Loss of Cooling 2. Loss of power (Differs from above by startup delay till the Diesel Generators come on.) 3. Cell rupture due to an earthquake or other cause. The analyses of the first three incidents are reported on in the next three sections. This report is issued realizing the control parameters used may not be optimum, and additional modeling must be done to model the inertia of refrigeration system, but the major conclusion concerning the need for the emergency argon system is still valid. The timing of some events may change with a more accurate model but the differences between the transients with and without emergency argon will remain the same. Some of the parameters assumed in the analyses are Makeup argon supply, 18 cfm, initiates when pressure is = -6 iwg., shuts off when pressure is = -3.1 iwg. 170,000 ft3 supply. Min 1/7th always available, can be cross connected to HFEF argon supply dewar. Emergency argon supply, 900 cfm, initiates when pressure is = -8 iwg. shuts off when pressure is =-4 iwg. reservoir 220 ft3, refilled when tank farm pressure reduces to 1050 psi which is about 110 ft3.

  2. Smoke Detector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo, Fire Chief Jay Stout of Safety Harbor, Florida, is explaining to young Richard Davis the workings of the Honeywell smoke and fire detector which probably saved Richard's life and that of his teen-age brother. Alerted by the detector's warning, the pair were able to escape their burning home. The detector in the Davis home was one of 1,500 installed in Safety Harbor residences in a cooperative program conducted by the city and Honeywell Inc.

  3. Vascular Welding Using The Argon Laser

    NASA Astrophysics Data System (ADS)

    White, Rodney A.; Donayre, Carlos; Kopchok, George; White, Geoffrey; Abergel, R. Patrick; Lyons, Richard; Klein, Stanley; Dwyer, Richard; Uitto, Jouni

    1987-03-01

    This study compared the histology, biochemistry, and tensile strength of laser welded and sutured canine venotomies, arteriotomies and arteriovenous fistulas. Bilateral femoral, carotid or jugular vessels were studied with one repair (control) closed with interrupted 6-0 polypropylene sutures, and the contralatral repair (experimental) welded with the argon laser. Specimens were examined at weekly intervals from 1 to 4 weeks for each type of repair and evaluated histologically by hematoxylineosin, elastin and trichrome stains, biochemically by the formation of [3H] hyaroxyproline as an index of collagen synthesis, ana mechanically by tensile strength determinations. At removal, all experimental closures were patent without hematomas, aneurysms or luminal dilatation. Histologic and biochemical examination and tensile strength determinations suggest that laser welaing may be an alternative to sutures for repair of large diameter venotomies, arteriotomies and arteriovenous fistulas, as they heal comparable to suture repairs up to 4 weeks postoperatively.

  4. Merging of High Speed Argon Plasma Jets

    NASA Astrophysics Data System (ADS)

    Case, Andrew; Messer, Sarah; Brockington, Sam; Wu, Lin-Chun; Witherspoon, F. Douglas

    2012-10-01

    Formation of an imploding plasma liner for the Plasma Liner Experiment (PLX) requires individual plasma jets to merge into a uniform shell of plasma converging on the target region. Understanding dynamics of the merging process requires knowledge of the plasma phenomena involved. We present here results from the study of the merging of six plasma jets in three dimensional geometry. The experiments were performed using HyperV Technologies Corp. one centimeter MiniRailguns using a preionized Argon plasma armature on a vacuum chamber designed to partially reproduce the port geometry of the PLX vacuum chamber. Diagnostics include fast imaging, spectroscopy, interferometry, fast pressure probes, B-dot probes, and high speed spatially resolved photodiodes, permitting measurements of plasma density, temperature, velocity, stagnation pressure, and magnetic field. These experimental results are compared with simulation results from the LSP 3D hybrid PIC code.

  5. Merging of high speed argon plasma jets

    NASA Astrophysics Data System (ADS)

    Case, A.; Messer, S.; Brockington, S.; Wu, L.; Witherspoon, F. D.; Elton, R.

    2013-01-01

    Formation of an imploding plasma liner for the plasma liner experiment (PLX) requires individual plasma jets to merge into a quasi-spherical shell of plasma converging on the origin. Understanding dynamics of the merging process requires knowledge of the plasma phenomena involved. We present results from the study of the merging of three plasma jets in three dimensional geometry. The experiments were performed using HyperV Technologies Corp. 1 cm Minirailguns with a preionized argon plasma armature. The vacuum chamber partially reproduces the port geometry of the PLX chamber. Diagnostics include fast imaging, spectroscopy, interferometry, fast pressure probes, B-dot probes, and high speed spatially resolved photodiodes, permitting measurements of plasma density, temperature, velocity, stagnation pressure, magnetic field, and density gradients. These experimental results are compared with simulation results from the LSP 3D hybrid PIC code.

  6. Explosive cavitation in superheated liquid argon.

    PubMed

    Vinogradov, V E; Pavlov, P A; Baidakov, V G

    2008-06-21

    The kinetics of explosive boiling-up of liquid argon has been investigated at negative pressures created by the reflection of a compression pulse 3-5 mus long from the free surface of a liquid by the method of liquid pulse heating on a thin platinum wire (with a rate of temperature increase of about 1 Kmus). The limiting superheats T(*) (stretches p(*)), the effective nucleation rate J(*), and the derivative G(T)=(d ln JdT)(T=T(*) ) have been determined by experimental data on the thermal perturbation of a wire probe and the results of solution of the problem on the initial stage of explosive boiling-up of a liquid. The experimental data are compared with homogeneous nucleation theory. PMID:18570511

  7. Argon laser treatment of radiation proctitis

    SciTech Connect

    O'Connor, J.J.

    1989-06-01

    Radiation therapy for malignant gynecologic disease and prostatic cancer has resulted in increased survival and cure rates. This modality has unfortunately produced debilitating radiation proctitis. Recently, five patients were seen with continuous rectal bleeding secondary to radiation disease of the rectum. Four of these patients were women who were being treated for cervical carcinoma and one was a man with prostatic cancer. These patients were refractory to steroid retention enemas, iron therapy, and benproperine enema therapy. Treatment was accomplished using the argon laser with a 300-micron fiber passed via flexible fiberoptic sigmoidoscope. The most proximal areas were treated first. One and a half watts at 0.5 pulses was used. Up to 50 pulses were delivered per therapy session. The fiber was placed in contact with the lesion and circumferentially for 0.5 cm surrounding each suspected area. Bleeding stopped in the four women after two sessions and in the man after four sessions.

  8. BoNuS: Development and Use of a Radial TPC using Cylindrical GEMs

    SciTech Connect

    Howard Fenker; Nathan Baillie; Peter Bradshaw; S. Bultmann; Stephen Bueltmann; Volker Burkert; Michael Christy; Gail Dodge; Dipangkar Dutta; Rolf Ent; Josh Evans; Robert Fersch; Kevin Giovanetti; Keith Griffioen; Mikayel Ispiryan; Chandana Jayalath; Narbe Kalantarians; Cynthia Keppel; Sebastian Kuhn; Gabriel Niculescu; Maria-Ioana Niculescu; Svyatoslav Tkachenko; Vladas Tvaskis; Jixie Zhang

    2007-11-28

    To provide new access to information about nucleon structure from electron-neutron interactions, a specialized aystem of target and detector was developed at Jefferson Lab. It allows identification and measurement of spectator protons produced in e X scattering events. The detector is a radial time-projection chamber optimized for the acceptance of low-momentum protons. Gas gain is provided by three cascaded curved Gas Electron Multipliers (GEMs), the first application of GEMs in any configuration other than flat.

  9. Scintillation light from cosmic-ray muons in liquid argon

    NASA Astrophysics Data System (ADS)

    Whittington, D.; Mufson, S.; Howard, B.

    2016-05-01

    This paper reports the results of an experiment to directly measure the time-resolved scintillation signal from the passage of cosmic-ray muons through liquid argon. Scintillation light from these muons is of value to studies of weakly-interacting particles in neutrino experiments and dark matter searches. The experiment was carried out at the TallBo dewar facility at Fermilab using prototype light guide detectors and electronics developed for the Deep Underground Neutrino Experiment. Two models are presented for the time structure of the scintillation light, a phenomenological model and a composite model. Both models find τT = 1.52 μs for the decay time constant of the Ar2* triplet state. These models also show that the identification of the ``early'' light fraction in the phenomenological model, FE ≈ 25% of the signal, with the total light from singlet decays is an underestimate. The total fraction of singlet light is FS ≈ 36%, where the increase over FE is from singlet light emitted by the wavelength shifter through processes with long decay constants. The models were further used to compute the experimental particle identification parameter Fprompt, the fraction of light coming in a short time window after the trigger compared with the light in the total recorded waveform. The models reproduce quite well the typical experimental value ~0.3 found by dark matter and double β-decay experiments, which suggests this parameter provides a robust metric for discriminating electrons and muons from more heavily ionizing particles.

  10. Optical Detectors

    NASA Astrophysics Data System (ADS)

    Goushcha, Alexander; Tabbert, Bernd

    Optical detectors are applied in all fields of human activities - from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  11. Optical Detectors

    NASA Astrophysics Data System (ADS)

    Tabbert, Bernd; Goushcha, Alexander

    Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  12. Cell-specific compartmentation of mineral nutrients is an essential mechanism for optimal plant productivity— another role for TPC1?

    PubMed Central

    Gilliham, Matthew; Athman, Asmini; Tyerman, Stephen D.; Conn, Simon J.

    2011-01-01

    Vacuoles of different leaf cell-types vary in their capacity to store specific mineral elements. In Arabidopsis thaliana potassium (K) accumulates preferentially in epidermal and bundle sheath cells whereas calcium (Ca) and magnesium (Mg) are stored at high concentrations only in mesophyll cells. Accumulation of these elements in a particular vacuole can be reciprocal, i.e. as [K]vac increases [Ca]vac decreases. Mesophyll-specific Ca-storage involves CAX1 (a Ca2+/H+ antiporter) and Mg-storage involves MRS2-1/MGT2 and MRS2-5/MGT3 (both Mg2+-transporters), all of which are preferentially expressed in the mesophyll and encode tonoplast-localised proteins. However, what controls leaf-cell [K]vac is less well understood. TPC1 encodes the two-pore Ca2+ channel protein responsible for the tonoplast-localised SV cation conductance, and is highly expressed in cell-types that not preferentially accumulate Ca. Here, we evaluate evidence that TPC1 has a role in maintaining differential K and Ca storage across the leaf, and propose a function for TPC1 in releasing Ca2+ from epidermal and bundle sheath cell vacuoles to maintain low [Ca]vac. Mesophyll-specific Ca storage is essential to maintain apoplastic free Ca concentration at a level that does not perturb a range of physiological parameters including leaf gas exchange, cell wall extensibility and growth. When plants are grown under serpentine conditions (high Mg/Ca ratio), MGT2/MRS2-1 and MGT3/MRS2-5 are required to sequester additional Mg2+ in vacuoles to replace Ca2+ as an osmoticum to maintain growth. An updated model of Ca2+ and Mg2+ transport in leaves is presented as a reference for future interrogation of nutritional flows and elemental storage in plant leaves. PMID:22067997

  13. Gating of the two-pore cation channel AtTPC1 in the plant vacuole is based on a single voltage-sensing domain.

    PubMed

    Jaślan, D; Mueller, T D; Becker, D; Schultz, J; Cuin, T A; Marten, I; Dreyer, I; Schönknecht, G; Hedrich, R

    2016-09-01

    The two-pore cation channel TPC1 operates as a dimeric channel in animal and plant endomembranes. Each subunit consists of two homologous Shaker-like halves, with 12 transmembrane domains in total (S1-S6, S7-S12). In plants, TPC1 channels reside in the vacuolar membrane, and upon voltage stimulation, give rise to the well-known slow-activating SV currents. Here, we combined bioinformatics, structure modelling, site-directed mutagenesis, and in planta patch clamp studies to elucidate the molecular mechanisms of voltage-dependent channel gating in TPC1 in its native plant background. Structure-function analysis of the Arabidopsis TPC1 channel in planta confirmed that helix S10 operates as the major voltage-sensing site, with Glu450 and Glu478 identified as possible ion-pair partners for voltage-sensing Arg537. The contribution of helix S4 to voltage sensing was found to be negligible. Several conserved negative residues on the luminal site contribute to calcium binding, stabilizing the closed channel. During evolution of plant TPC1s from two separate Shaker-like domains, the voltage-sensing function in the N-terminal Shaker-unit (S1-S4) vanished. PMID:27270880

  14. Gating of the two-pore cation channel AtTPC1 in the plant vacuole is based on a single voltage-sensing domain.

    PubMed

    Jaślan, D; Mueller, T D; Becker, D; Schultz, J; Cuin, T A; Marten, I; Dreyer, I; Schönknecht, G; Hedrich, R

    2016-09-01

    The two-pore cation channel TPC1 operates as a dimeric channel in animal and plant endomembranes. Each subunit consists of two homologous Shaker-like halves, with 12 transmembrane domains in total (S1-S6, S7-S12). In plants, TPC1 channels reside in the vacuolar membrane, and upon voltage stimulation, give rise to the well-known slow-activating SV currents. Here, we combined bioinformatics, structure modelling, site-directed mutagenesis, and in planta patch clamp studies to elucidate the molecular mechanisms of voltage-dependent channel gating in TPC1 in its native plant background. Structure-function analysis of the Arabidopsis TPC1 channel in planta confirmed that helix S10 operates as the major voltage-sensing site, with Glu450 and Glu478 identified as possible ion-pair partners for voltage-sensing Arg537. The contribution of helix S4 to voltage sensing was found to be negligible. Several conserved negative residues on the luminal site contribute to calcium binding, stabilizing the closed channel. During evolution of plant TPC1s from two separate Shaker-like domains, the voltage-sensing function in the N-terminal Shaker-unit (S1-S4) vanished.

  15. Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Titov, Maxim

    Since long time, the compelling scientific goals of future high-energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements - the Multi-Wire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel prize in physics in 1992. Since that time radiation detection and imaging with fast gaseous detectors, capable of economically covering large detection volumes with low mass budget, have been playing an important role in many fields of physics. Advances in photolithography and microprocessing techniques in the chip industry during the past decade triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell-size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the next generation of colliders. The design of the new micro-pattern devices appears suitable for industrial production. Novel structures where MPGDs are directly coupled to the CMOS pixel readout represent an exciting field allowing timing and charge measurements as well as precise spatial information in 3D. Originally developed for the high-energy physics, MPGD applications have expanded to nuclear physics, photon detection, astroparticle and neutrino physics, neutron detection, and medical imaging.

  16. The interaction of an atmospheric pressure plasma jet using argon or argon plus hydrogen peroxide vapour addition with bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Deng, San-Xi; Cheng, Cheng; Ni, Guo-Hua; Meng, Yue-Dong; Chen, Hua

    2010-10-01

    This paper reports that an atmospheric pressure dielectric barrier discharge plasma jet, which uses argon or argon + hydrogen peroxide vapour as the working gas, is designed to sterilize the bacillus subtilis. Compared with the pure argon plasma, the bacterial inactivation efficacy has a significant improvement when hydrogen peroxide vapour is added into the plasma jet. In order to determine which factors play the main role in inactivation, several methods are used, such as determination of optical emission spectra, high temperature dry air treatment, protein leakage quantification, and scanning electron microscope. These results indicate that the possible inactivation mechanisms are the synergistic actions of chemically active species and charged species.

  17. Argon beam coagulation in foot and ankle surgery.

    PubMed

    Adams, Melissa L; Steinberg, John S

    2011-01-01

    In this brief report, we introduce the principles, indications, advantages, disadvantages, and surgical techniques involved in the use of argon beam coagulation in foot and ankle surgery. PMID:21907597

  18. Argon z-pinch implosions on Phoenix

    SciTech Connect

    Fisher, A.; Peterson, G.; Nolting, E.

    1995-12-31

    Upgrades to the Phoenix front end have resulted in a three-fold increase in Argon K-shell x-ray yields. Lack of a transit time isolator between the center conductor and ground necessitated powering the gas-puff hardware with batteries and supplying control via fiber optic cables. A simple gas flow model was developed to optimize the valve/nozzle design. The gas-puff valve and nozzle were modified to produce a 250-{micro}s density rise time. This short rise-time allowed firing on the gas plateau which improved reproducibility. Front end power flow was improved by opening the MITL from 8 to 10-mm and by increasing the dog-leg at the nozzle to obstruct UV light. The highest yield shots were achieved with a 4-cm long load using a 3.5-cm mean diameter nozzle with a mean inward tilt of 13.75 degrees. X-ray pulse widths ranged between 7--15 ns and x-ray pinhole photos suggest uniform assembly on axis. Results and documentation of the Phoenix upgrades are presented.

  19. A Proposal to Upgrade the Silicon Strip Detector

    SciTech Connect

    Matis, Howard; Michael, LeVine; Jonathan, Bouchet; Stephane, Bouvier; Artemios, Geromitsos; Gerard, Guilloux; Sonia, Kabana; Christophe, Renard; Howard, Matis; Jim, Thomas; Vi Nham, Tram

    2007-11-05

    The STAR Silicon Strip Detector (SSD) was built by a collaboration of Nantes, Strasbourg and Warsaw collaborators. It is a beautiful detector; it can provide 500 mu m scale pointing resolution at the vertex when working in combination with the TPC. It was first used in Run 4, when half the SSD was installed in an engineering run. The full detector was installed for Run 5 (the Cu-Cu run) and the operation and performance of the detector was very successful. However, in preparation for Run 6, two noisy ladders (out of 20) were replaced and this required that the SSD be removed from the STAR detector. The re-installation of the SSD was not fully successful and so for the next two Runs, 6 and 7, the SSD suffered a cooling system failure that allowed a large fraction of the ladders to overheat and become noisy, or fail. (The cause of the SSD cooling failure was rather trivial but the SSD could not be removed betweens Runs 6 and 7 due to the inability of the STAR detector to roll along its tracks at that time.)

  20. Common Blepharitis Related to Phthiriasis Palpebrarum: Argon Laser Phototherapy.

    PubMed

    Sundu, Cem; Dinç, Erdem; Kurtuluş, Umut Can; Yıldırım, Özlem

    2015-09-01

    A 42-year-old woman was admitted to Mersin University, Department of Ophthalmology Clinic with itching and burning sensation of the right eye for 3 weeks. In her slit-lamp examination, nits and lice, attached to the upper and lower eyelashes of her right eye, were observed. Lice and nits were destroyed by argon laser phototherapy and were removed with the help of a fine forceps thereafter. Argon laser phototherapy is a quick, effective, and safe treatment modality for phthiriasis palpebrarum.

  1. Multiple deaths from argon contamination of hospital oxygen supply.

    PubMed

    Smith, F P

    1987-07-01

    During the course of routine hospital surgical procedures, three patients lapsed into hypoxic cyanosis. Two expired immediately, another after four days of coma. Investigation of the hospital's central liquid oxygen tank revealed that it had been refilled recently and was labelled both "oxygen" and "argon." Mass spectrometric analysis of gas sampled from the questioned tank revealed a predominance of argon. A discussion of the sampling technique, method of analysis, role of the criminalist, and causes of this accident is presented.

  2. First Argon Gas Puff Experiments With 500 ns Implosion Time On Sphinx Driver

    NASA Astrophysics Data System (ADS)

    Zucchini, F.; Calamy, H.; Lassalle, F.; Loyen, A.; Maury, P.; Grunenwald, J.; Georges, A.; Morell, A.; Bedoch, J.-P.; Ritter, S.; Combes, P.; Smaniotto, O.; Lample, R.; Coleman, P. L.; Krishnan, M.

    2009-01-01

    Experiments have been performed at the SPHINX driver to study potential of an Argon Gas Puff load designed by AASC. We present here the gas Puff hardware and results of the last shot series. The Argon Gas Puff load used is injected thanks to a 20 cm diameter nozzle. The nozzle has two annuli and a central jet. The pressure and gas type in each of the nozzle plena can be independently adjusted to tailor the initial gaz density distribution. This latter is selected as to obtain an increasing radial density from outer shell towards the pinch axis in order to mitigate the RT instabilities and to increase radiating mass on axis. A flashboard unit produces a high intensity UV source to pre-ionize the Argon gas. Typical dimensions of the load are 200 mm in diameter and 40 mm height. Pressures are adjusted to obtain an implosion time around 550 ns with a peak current of 3.5 MA. With the goal of improving k-shell yield a mass scan of the central jet was performed and implosion time, mainly given by outer and middle plena settings, was kept constant. Tests were also done to reduce the implosion time for two configurations of the central jet. Strong zippering of the radiation production was observed mainly due to the divergence of the central jet over the 40 mm of the load height. Due to that feature k-shell radiation is mainly obtained near cathode. Therefore tests were done to mitigate this effect first by adjusting local pressure of middle and central jet and second by shortening the pinch length. At the end of this series, best shot gave 5 kJ of Ar k-shell yield. PCD detectors showed that k-shell x-ray power was 670 GW with a FWHM of less than 10 ns.

  3. First Argon Gas Puff Experiments With 500 ns Implosion Time On Sphinx Driver

    SciTech Connect

    Zucchini, F.; Calamy, H.; Lassalle, F.; Loyen, A.; Maury, P.; Grunenwald, J.; Georges, A.; Morell, A.; Bedoch, J.-P.; Ritter, S.; Combes, P.; Smaniotto, O.; Lample, R.; Coleman, P. L.; Krishnan, M.

    2009-01-21

    Experiments have been performed at the SPHINX driver to study potential of an Argon Gas Puff load designed by AASC. We present here the gas Puff hardware and results of the last shot series.The Argon Gas Puff load used is injected thanks to a 20 cm diameter nozzle. The nozzle has two annuli and a central jet. The pressure and gas type in each of the nozzle plena can be independently adjusted to tailor the initial gaz density distribution. This latter is selected as to obtain an increasing radial density from outer shell towards the pinch axis in order to mitigate the RT instabilities and to increase radiating mass on axis. A flashboard unit produces a high intensity UV source to pre-ionize the Argon gas. Typical dimensions of the load are 200 mm in diameter and 40 mm height. Pressures are adjusted to obtain an implosion time around 550 ns with a peak current of 3.5 MA.With the goal of improving k-shell yield a mass scan of the central jet was performed and implosion time, mainly given by outer and middle plena settings, was kept constant. Tests were also done to reduce the implosion time for two configurations of the central jet. Strong zippering of the radiation production was observed mainly due to the divergence of the central jet over the 40 mm of the load height. Due to that feature k-shell radiation is mainly obtained near cathode. Therefore tests were done to mitigate this effect first by adjusting local pressure of middle and central jet and second by shortening the pinch length.At the end of this series, best shot gave 5 kJ of Ar k-shell yield. PCD detectors showed that k-shell x-ray power was 670 GW with a FWHM of less than 10 ns.

  4. Calibration of a Noble Gas Mass Spectrometer with an Atmospheric Argon Standard (Invited)

    NASA Astrophysics Data System (ADS)

    Prasad, V.; Grove, M.

    2009-12-01

    Like other mass spectrometers, gas source instruments are very good at precisely measuring isotopic ratios but need to be calibrated with a standard to be accurate. The need for calibration arises due to the complicated ionization process which inefficiently and differentially creates ions from the various isotopes that make up the elemental gas. Calibration of the ionization process requires materials with well understood isotopic compositions as standards. Our project goal was to calibrate a noble gas (Noblesse) mass spectrometer with a purified air sample. Our sample obtained from Ocean Beach in San Francisco was under known temperature, pressure, volume, humidity. We corrected the pressure for humidity and used the ideal gas law to calculate the number of moles of argon gas. We then removed all active gasses using specialized equipment designed for this purpose at the United States Geological Survey. At the same time, we measured the volume ratios of various parts of the gas extraction line system associated with the Noblesse mass spectrometer. Using this data, we calculated how much Ar was transferred to the reservoir from the vacuum-sealed vial that contained the purified gas standard. Using similar measurements, we also calculated how much Ar was introduced into the extraction line from a pipette system and how much of this Ar was ultimately expanded into the Noblesse mass spectrometer. Based upon this information, it was possible to calibrate the argon sensitivity of the mass spectrometer. From a knowledge of the isotopic composition of air, it was also possible to characterize how ionized argon isotopes were fractionated during analysis. By repeatedly analyzing our standard we measured a 40Ar Sensitivity of 2.05 amps/bar and a 40Ar/36Ar ratio of 309.2 on the Faraday detector. In contrast, measurements carried out by ion counting using electron multipliers yield a value (296.8) which is much closer to the actual atmospheric 40Ar/36Ar value of 295.5.

  5. MS Detectors

    SciTech Connect

    Koppenaal, David W.; Barinaga, Charles J.; Denton, M Bonner B.; Sperline, Roger P.; Hieftje, Gary M.; Schilling, G. D.; Andrade, Francisco J.; Barnes IV., James H.

    2005-11-01

    Good eyesight is often taken for granted, a situation that everyone appreciates once vision begins to fade with age. New eyeglasses or contact lenses are traditional ways to improve vision, but recent new technology, i.e. LASIK laser eye surgery, provides a new and exciting means for marked vision restoration and improvement. In mass spectrometry, detectors are the 'eyes' of the MS instrument. These 'eyes' have also been taken for granted. New detectors and new technologies are likewise needed to correct, improve, and extend ion detection and hence, our 'chemical vision'. The purpose of this report is to review and assess current MS detector technology and to provide a glimpse towards future detector technologies. It is hoped that the report will also serve to motivate interest, prompt ideas, and inspire new visions for ion detection research.

  6. Study of argon flowing afterglow with nitrogen injection

    SciTech Connect

    Mazánková, V.; Krčma, F.; Trunec, D.

    2013-10-28

    In this work, the reaction kinetics in argon flowing afterglow with nitrogen addition was studied by optical emission spectroscopy. The DC flowing post-discharge in pure argon was created in quartz tube at the total gas pressure of 1000 Pa and discharge power of 60 W. The nitrogen was added into the afterglow at the distance of 9 cm behind the active discharge. The optical emission spectra were measured along the flow tube. The argon spectral lines and after nitrogen addition also nitrogen second positive system (SPS) were identified in the spectra. The measurement of spatial dependence of SPS intensity showed a very slow decay of the intensity and the decay rate did not depend on the nitrogen concentration. In order to explain this behavior a kinetic model for reaction in afterglow was developed. This model showed that C {sup 3}Π{sub u} state of molecular nitrogen, which is the upper state of SPS emission, is produced by excitation transfer from argon metastables to nitrogen molecules. However, the argon metastables are also produced at Ar{sub 2}{sup +} ion recombination with electrons and this limits the decay of argon metastable concentration and it results in very slow decay of SPS intensity.

  7. Effects of argon gas flow rate on laser-welding.

    PubMed

    Takayama, Yasuko; Nomoto, Rie; Nakajima, Hiroyuki; Ohkubo, Chikahiro

    2012-01-01

    The purpose of this study was to evaluate the effects of the rate of argon gas flow on joint strength in the laser-welding of cast metal plates and to measure the porosity. Two cast plates (Ti and Co-Cr alloy) of the same metal were abutted and welded together. The rates of argon gas flow were 0, 5 and 10 L/min for the Co-Cr alloy, and 5 and 10 L/min for the Ti. There was a significant difference in the ratio of porosity according to the rate of argon gas flow in the welded area. Argon shielding had no significant effect on the tensile strength of Co-Cr alloy. The 5 L/min specimens showed greater tensile strength than the 10 L/min specimens for Ti. Laser welding of the Co-Cr alloy was influenced very little by argon shielding. When the rate of argon gas flow was high, joint strength decreased for Ti.

  8. TPC2 Is a Novel NAADP-sensitive Ca2+ Release Channel, Operating as a Dual Sensor of Luminal pH and Ca2+*

    PubMed Central

    Pitt, Samantha J.; Funnell, Tim M.; Sitsapesan, Mano; Venturi, Elisa; Rietdorf, Katja; Ruas, Margarida; Ganesan, A.; Gosain, Rajendra; Churchill, Grant C.; Zhu, Michael X.; Parrington, John; Galione, Antony; Sitsapesan, Rebecca

    2010-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a molecule capable of initiating the release of intracellular Ca2+ required for many essential cellular processes. Recent evidence links two-pore channels (TPCs) with NAADP-induced release of Ca2+ from lysosome-like acidic organelles; however, there has been no direct demonstration that TPCs can act as NAADP-sensitive Ca2+ release channels. Controversial evidence also proposes ryanodine receptors as the primary target of NAADP. We show that TPC2, the major lysosomal targeted isoform, is a cation channel with selectivity for Ca2+ that will enable it to act as a Ca2+ release channel in the cellular environment. NAADP opens TPC2 channels in a concentration-dependent manner, binding to high affinity activation and low affinity inhibition sites. At the core of this process is the luminal environment of the channel. The sensitivity of TPC2 to NAADP is steeply dependent on the luminal [Ca2+] allowing extremely low levels of NAADP to open the channel. In parallel, luminal pH controls NAADP affinity for TPC2 by switching from reversible activation of TPC2 at low pH to irreversible activation at neutral pH. Further evidence earmarking TPCs as the likely pathway for NAADP-induced intracellular Ca2+ release is obtained from the use of Ned-19, the selective blocker of cellular NAADP-induced Ca2+ release. Ned-19 antagonizes NAADP-activation of TPC2 in a non-competitive manner at 1 μm but potentiates NAADP activation at nanomolar concentrations. This single-channel study provides a long awaited molecular basis for the peculiar mechanistic features of NAADP signaling and a framework for understanding how NAADP can mediate key physiological events. PMID:20720007

  9. Status of the ATLAS Liquid Argon Calorimeter; Performance after 2 years of LHC operation

    NASA Astrophysics Data System (ADS)

    AbouZeid, Hass; ATLAS Collaboration

    2012-12-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider(LHC) at CERN. Liquid argon sampling calorimeters are used for all electromagnetic calorimetry covering the pseudo-rapidity region up to 3.2, as well as for hadronic calorimetry in the range 1.4-4.9. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform azimuthal response without any gap. Copper and tungsten were chosen as passive material for the hadronic calorimetry; whereas a classic plate geometry was adopted at large polar angles, an innovative one based on cylindrical electrodes with thin argon gaps was designed for the coverage at low angles, where the particle flow is higher. All detectors are housed in three cryostats kept at about 88 K. After installation in 2004-2006, the calorimeters were extensively commissioned over the three years period prior to first collisions in 2009, using cosmic rays and single LHC beams. Since then, around 9 fb-1 (as of June, 2012) of data have been collected at a center of mass energy of 7 and 8 TeV. During all these stages, the calorimeter and its electronics have been operating almost optimally, with performances very close to the specifications.

  10. Concerning Apparent Similarity of Structures of Fluoropolymer Surfaces Exposed to an Argon Plasma or Argon Ion Beam

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Covington, M. Alan (Technical Monitor)

    1995-01-01

    X-ray photoelectron spectroscopy (XPS) C(sub 1s) spectra of fluoropolymers exposed to either an argon plasma or argon ion beam show remarkable similarity, implying that the surface-modification reactions for these two processes likely proceed through comparable mechanisms, revolving predominantly ion-surface interactions. The importance of working with a monochromatized x-ray source for XPS analysis of the surface-modified fluoropolymers is once again emphasized.

  11. Electron densities and energies of a guided argon streamer in argon and air environments

    NASA Astrophysics Data System (ADS)

    Hübner, S.; Hofmann, S.; van Veldhuizen, E. M.; Bruggeman, P. J.

    2013-12-01

    In this study we report the temporally and spatially resolved electron densities and mean energies of a guided argon streamer in ambient argon and air obtained by Thomson laser scattering. The plasma is driven by a positive monopolar 3.5 kV pulse, with a pulse width of 500 ns and a frequency of 5 kHz which is synchronized with the high repetition rate laser system. This configuration enables us to use the spatial and temporal stability of the guided streamer to accumulate a multitude of laser/plasma shots by a triple grating spectrometer equipped with an ICCD camera and to determine the electron parameters. We found a strong initial ne-overshoot with a maximum of 7 × 1019 m-3 and a mean electron energy of 4.5 eV. This maximum is followed by a fast decay toward the streamer channel. Moreover, a 2D distribution of the electron density is obtained which exhibits a peculiar mushroom-like shape of the streamer head with a diameter significantly larger than that of the emission profile. A correlation of the width of the streamer head with the expected pre-ionization channel is found.

  12. Argon and argon-oxygen glow discharge cleaning of the Main Ring beam pipe

    SciTech Connect

    Trbojevic, D.; Pastore, N.

    1989-02-15

    This report presents the experimental results from the argon and argon-oxygen gas mixture glow discharge in the Main Ring beam pipe and is a follow-up to the proposal for vacuum improvements of the Main Ring magnets and straight sections and the warm Tevatron straight sections. Glow discharge was used in the experiment in order to clean the vacuum system instead of bakeout which could only be performed with great difficulty or not at all. It is a relatively simple and very effective method. The glow discharge occurs under specific gas pressures (10--120 mTorr) and current flows (10/sup /minus/5/ /minus/ 10/sup /minus/1/ A) through gas excitation and formation of plasma conditions. Deexcitation of the gas molecules produces visible light. Several mechanisms have been proposed to explain the glow discharge cleaning process. Ions can sputter adsorbed molecules or atoms at the cathode surface and even produce lattice damage extending several monolayers below the surface. The glow discharge has already been extensively used for vacuum improvements in accelerators. 9 refs.

  13. Characterization of atmospheric pressure microplasma produced from argon and a mixture of argon-ethylenediamine

    NASA Astrophysics Data System (ADS)

    Bashir, M.; Rees, Julia M.; Bashir, S.; Zimmerman, William B.

    2014-06-01

    A non-thermal atmospheric pressure microplasma generated from pure argon (Ar) and a mixture of argon-ethylenediamine vapors (Ar/EDA) has been characterized in this study. A sinusoidal power supply operating at 30 kHz was used to excite microplasma in a rectangular borosilicate glass capillary (4×0.4 mm). The monomer EDA was mixed with Ar in order to perform plasma polymerization inside the microchannel. The analyses were made by measuring spectroscopic and electrical parameters of the discharge. The effects of EDA mixing on plasma parameters such as electron, excitation and rotational temperatures during the process of surface coating of the microchannel were investigated. These parameters play an important role in the deposition process. The plasma temperatures estimated through spectroscopic measurement were found in the sequence Te>Texc>Tvib>Trot, which indicated the non-thermal characteristics of the proposed DBD microplasma. The parameters of the Ar discharge were also numerically computed using plasma simulations. The numerical predictions of electron temperature (2D simulations) and electron density (3D simulations) were found to be in close agreement to those estimated through experiments.

  14. Behavior of Excited Argon Atoms in Inductively Driven Plasmas

    SciTech Connect

    HEBNER,GREGORY A.; MILLER,PAUL A.

    1999-12-07

    Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s{sub 5} and 1s{sub 4}, in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s{sub 5} level is metastable and the 1s{sub 4} level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the data suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the discharge while the density at the edge of the discharge was unaffected. The spatially resolved excited state density measurements were combined with previous line integrated measurements in the same discharge geometry to derive spatially resolved, absolute densities of the 1s{sub 5} and 1s{sub 4} argon excited states and gas temperature spatial distributions. Fluorescence lifetime was a strong fi.mction of the rf power, pressure, argon fraction and spatial location. Increasing the power or pressure resulted in a factor of two decrease in the fluorescence lifetime while adding Cl{sub 2} or BCl{sub 3} increased the fluorescence lifetime. Excited state quenching rates are derived from the data. When Cl{sub 2} or BCl{sub 3} was added to the plasma, the maximum argon metastable density depended on the gas and ratio. When chlorine was added to the argon plasma, the spatial density profiles were independent of chlorine fraction. While it is energetically possible for

  15. Photon detectors

    SciTech Connect

    Va`vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF{sub 2} windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission.

  16. Measurement of the response of the ATLAS liquid argon barrel calorimeter to electrons at the 2004 combined test-beam

    SciTech Connect

    Aharrouche, M.; Ma, H.; Adam-Bourdarios, C.; Aleksa, M.; Banfi, D.; Benchekroun, D.; Benslama, K.; Boonekamp, M.; Carli, T.; Carminati, L.; Chen, H.; Citterio, M.; Dannheim, D.; Delmastro, M.; Derue, F.; Di Girolamo, B.; El Kacimi, M.; Fanti, M.; Froeschl, R.; Fournier, D.; Grahn, K.-J.; Kado, M.; Kerschen, N.; Lafaye, R.; Laforge, B.; Lampl, W.; Laplace, S.; Lechowski, M.; Lelas, D.; Liang, Z.; Loureiro, K.; Lund-Jensen, B.; Mandelli, L.; Mazzanti, M.; McPherson, R.; Meng, Z.; Paganis, S.; Prieur, D.; Puzo, P.; Ridel, M.; Riu, I.; Rousseau, D.; Sauvage, G.; Schwemling, P.; Simon, S.; Spano, F.; Straessner, A.; Tarrade, F.; Tartarelli, F.; Thioye, M.; Unal, G.; Wilkens, H.; Wingerter-Seez, I. and Zhang, H.

    2010-03-11

    During summer and fall 2004, the response of a full slice of the ATLAS barrel detector to different particles was studied in controlled beam. One module of the ATLAS liquid argon barrel calorimeter - identical to the production modules and read out by the final front-end and back-end electronics - was used for electromagnetic calorimetry. This paper presents and discusses the electron performance of the LAr barrel calorimeter, including linearity, uniformity, and resolution with different amounts of material upstream the calorimeter and energies ranging from 1 to 250 GeV.

  17. Towards a new Liquid Argon Imaging Chamber for the MODULAr project

    NASA Astrophysics Data System (ADS)

    Angeli, D.; Baibussinov, B.; Baldo Ceolin, M.; Battistoni, G.; Benetti, P.; Borio, A.; Calligarich, E.; Cambiaghi, M.; Cavanna, F.; Centro, S.; Cieslik, K.; Cocco, A. G.; Dolfini, R.; Gigli Berzolari, A.; Farnese, C.; Fava, A.; Ferrari, A.; Fiorillo, G.; Gibin, D.; Guglielmi, A.; Mannocchi, G.; Menegolli, A.; Meng, G.; Montanari, C.; Muraro, S.; Palamara, O.; Periale, L.; Picchi, P.; Pietropaolo, F.; Rappoldi, A.; Raselli, G. L.; Rossella, M.; Rubbia, C.; Sala, P.; Satta, G.; Varanini, F.; Ventura, S.; Vignoli, C.

    2009-02-01

    The MODULAr project foresees the exploitation of a new liquid Argon imaging detector, of at least 20 kt fiducial mass, to be operated in a shallow depth location under the Gran Sasso Mountain. It will be devoted to study neutrino oscillations with an optimized off-axis CNGS neutrino beam. Cosmic neutrinos as well as proton decay will also be addressed. The MODULAr detector will vastly inherit from the technology developed for ICARUS-T600. However, such an increase in the volume over the current ICARUS-T600 needs to be carefully considered. It is concluded that a single, huge volume is an inoperable and uneconomical solution for many reasons. A very large mass is best realized with a modular set of many identical, independent units, each of about 5 kt, ``cloning'' the basic technology of the ICARUS-T600. Several of such modular units will be assembled to reach at least 20 kt as initial sensitive volume. The increase of the active volume of about one order of magnitude with respect to the ICARUS-T600 detector requires some specific R&D activity, which will be implemented in a ~ 360 ton prototype unit (SLICE) of reduced length.

  18. First measurement of neutrino and antineutrino coherent charged pion production on argon.

    PubMed

    Acciarri, R; Adams, C; Asaadi, J; Baller, B; Bolton, T; Bromberg, C; Cavanna, F; Church, E; Edmunds, D; Ereditato, A; Farooq, S; Fleming, B; Greenlee, H; Hatcher, R; Horton-Smith, G; James, C; Klein, E; Lang, K; Laurens, P; Mehdiyev, R; Page, B; Palamara, O; Partyka, K; Rameika, G; Rebel, B; Santos, E; Schukraft, A; Soderberg, M; Spitz, J; Szelc, A M; Weber, M; Yang, T; Zeller, G P

    2014-12-31

    We report on the first cross section measurements for charged current coherent pion production by neutrinos and antineutrinos on argon. These measurements are performed using the ArgoNeuT detector exposed to the NuMI beam at Fermilab. The cross sections are measured to be 2.6(-1.0)(+1.2)(stat)(-0.4)(+0.3)(syst)×10(-38)  cm(2)/Ar for neutrinos at a mean energy of 9.6 GeV and 5.5(-2.1)(+2.6)(stat)(-0.7)(+0.6)(syst)×10(-39)  cm(2)/Ar for antineutrinos at a mean energy of 3.6 GeV. PMID:25615307

  19. First measurement of neutrino and antineutrino coherent charged pion production on argon

    SciTech Connect

    Acciarri, R.; Adams, C.; Asaadi, J.; Baller, B.; Bolton, T.; Bromberg, C.; Cavanna, F.; Church, E.; Edmunds, D.; Ereditato, A.; Farooq, S.; Fleming, B.; Greenlee, H.; Hatcher, R.; Horton-Smith, G.; James, C.; Klein, E.; Lang, K.; Laurens, P.; Mehdiyev, R.; Page, B.; Palamara, O.; Partyka, K.; Rameika, G.; Rebel, B.; Santos, E.; Schukraft, A.; Soderberg, M.; Spitz, J.; Szelc, A.  M.; Weber, M.; Yang, T.; Zeller, G. P.

    2014-12-23

    We report on the first cross section measurements for charged current coherent pion production by neutrinos and antineutrinos on argon. These measurements are performed using the ArgoNeuT detector exposed to the NuMI beam at Fermilab. The cross sections are measured to be 2.6 +1.2-1.0 (stat)+0.3-0.4(syst) × 10⁻³⁸cm² / Ar for neutrinos at a mean energy of 9.6 GeV and 5.5+2.6-2.1(stat)+0.6-0.7(syst) × 10⁻³⁹ cm² / Ar for antineutrinos at a mean energy of 3.6 GeV.

  20. First measurement of neutrino and antineutrino coherent charged pion production on argon

    DOE PAGESBeta

    Acciarri, R.

    2015-01-20

    In this study, we report on the first cross section measurements for charged current coherent pion production by neutrinos and antineutrinos on argon. These measurements are performed using the ArgoNeuT detector exposed to the NuMI beam at Fermilab. The cross sections are measured to be 2.6 +1.2-1.0 (stat)+0.3-0.4(syst) x 10-38 cm2/Ar for neutrinos at a mean energy of 9.6 GeV and 5.5+2.6-2.1(stat)+0.6-0.7(syst) x 10-39 cm2/Ar for antineutrinos at a mean energy of 3.6 GeV.

  1. First measurement of neutrino and antineutrino coherent charged pion production on argon

    DOE PAGESBeta

    Acciarri, R.; Adams, C.; Asaadi, J.; Baller, B.; Bolton, T.; Bromberg, C.; Cavanna, F.; Church, E.; Edmunds, D.; Ereditato, A.; et al

    2014-12-23

    We report on the first cross section measurements for charged current coherent pion production by neutrinos and antineutrinos on argon. These measurements are performed using the ArgoNeuT detector exposed to the NuMI beam at Fermilab. The cross sections are measured to be 2.6 +1.2-1.0 (stat)+0.3-0.4(syst) × 10⁻³⁸cm² / Ar for neutrinos at a mean energy of 9.6 GeV and 5.5+2.6-2.1(stat)+0.6-0.7(syst) × 10⁻³⁹ cm² / Ar for antineutrinos at a mean energy of 3.6 GeV.

  2. Performance of VUV-sensitive MPPC for liquid argon scintillation light

    NASA Astrophysics Data System (ADS)

    Igarashi, T.; Tanaka, M.; Washimi, T.; Yorita, K.

    2016-10-01

    A new multi-pixel photon counter (MPPC) sensitive to vacuum ultra-violet (VUV) light (wavelength λ < 150 nm) has recently been developed and produced by Hamamatsu Photonics K.K. In this study, the basic properties of the new MPPC are measured at the cryogenic facility of the Waseda University using liquid nitrogen. The temperature dependence of the breakdown voltage, capacitance, and dark count rate of the MPPCs are also evaluated. Using an 241Am α-ray source, the absolute photon detection efficiency (PDE) of the liquid argon (LAr) scintillation light (λ=128 nm) for the latest MPPC model is estimated to be 13%. Based on these basic measurements a possible application of the new MPPC to LAr detectors in dark matter search is suggested.

  3. Status of the ATLAS Liquid Argon Calorimeter and Its Performance after One Year of LHC Operation

    NASA Astrophysics Data System (ADS)

    Hoffman, Julia; ATLAS Collaboration

    The ATLAS experiment is designed to study the proton-proton collisions produced at the LHC with a centre-of-mass energy of 14 TeV. Liquid Argon (LAr) sampling calorimeters are used in ATLAS for all electromagnetic calorimetry covering the pseudorapidity region |η| <3.2, as well as for hadronic calorimetry from η = 1.4 to η = 4.8. An overview of the system is shown as well as a discussion of its operation and performance at √s=900 GeV and 7 TeV since the start of LHC running. The latest status of the detector as well as problems and solutions addressed during the last years are also discussed.

  4. Pyroelectric detectors

    NASA Technical Reports Server (NTRS)

    Haller, Eugene E.; Beeman, Jeffrey; Hansen, William L.; Hubbard, G. Scott; Mcmurray, Robert E., Jr.

    1990-01-01

    The multi-agency, long-term Global Change programs, and specifically NASA's Earth Observing system, will require some new and advanced photon detector technology which must be specifically tailored for long-term stability, broad spectral range, cooling constraints, and other parameters. Whereas MCT and GaAs alloy based photovoltaic detectors and detector arrays reach most impressive results to wavelengths as long as 12 microns when cooled to below 70 K, other materials, such as ferroelectrics and pyroelectrics, appear to offer special opportunities beyond 12 microns and above 70 K. These materials have found very broad use in a wide variety of room temperature applications. Little is known about these classes of materials at sub-room temperatures and no photon detector results have been reported. From the limited information available, researchers conclude that the room temperature values of D asterisk greater than or equal to 10(exp 9) cm Hz(exp 1/2)/W may be improved by one to two orders of magnitude upon cooling to temperatures around 70 K. Improvements of up to one order of magnitude appear feasible for temperatures achievable by passive cooling. The flat detector response over a wavelength range reaching from the visible to beyond 50 microns, which is an intrinsic advantage of bolometric devices, makes for easy calibration. The fact that these materials have been developed for reduced temperature applications makes ferro- and pyroelectric materials most attractive candidates for serious exploration.

  5. Evolution of Martian atmospheric argon: Implications for sources of volatiles

    NASA Astrophysics Data System (ADS)

    Hutchins, Kevin S.; Jakosky, Bruce M.

    We have examined processes affecting isotopes of argon (36Ar, 38Ar, 40Ar) in order to determine important atmospheric sources and sinks. Our simple model for argon evolution incorporates production of radiogenic argon in the mantle, outgassing of all argon species by extrusive and intrusive volcanism, and loss to space by knock-on sputtering above the exobase. Sputtering has been shown previously to be an important loss process for atmospheric species, especially isotopes of noble gases, which have few other mechanisms of escape. The integrated evolution of argon (36Ar, 38Ar, and 40Ar, respectively) is modeled in terms of these variables: (1) the planetary concentration of potassium, (2) the fraction of juvenile argon released catastrophically during the first 600 Myr., (3) potential variation in the time-history of sputtering loss from that suggested by Luhmann et al. [1992], and (4) the volume of total outgassing to the surface as compared to outgassing contributed by volcanic release. Our results indicate that Mars has lost between 85-95% of 36Ar and 70-88% of outgassed 40Ar. Due to this substantial loss, the planet must have outgassed the equivalent of between 10 and 100 times the total volume of gases released by extrusive and intrusive volcanics. This indicates that volcanic outgassing, alone, is insufficient to explain the present-day abundances of 36Ar and 40Ar in the Martian atmosphere. Similar calculations for 20Ne suggest outgassed volumes of between 100 and 1800 times in excess of that due to volcanism. This results in a distinct Ne/Ar elemental fractionation, with a preference for outgassing argon, of the order of 10 to 17. Although the results must be evaluated within the model uncertainties, the results are compelling in that they unequivocally show the existence of additional sources of atmospheric volatiles and helps define a means to identify them.

  6. PHASE DETECTOR

    DOEpatents

    Kippenhan, D.O.

    1959-09-01

    A phase detector circuit is described for use at very high frequencies of the order of 50 megacycles. The detector circuit includes a pair of rectifiers inverted relative to each other. One voltage to be compared is applied to the two rectifiers in phase opposition and the other voltage to be compared is commonly applied to the two rectifiers. The two result:ng d-c voltages derived from the rectifiers are combined in phase opposition to produce a single d-c voltage having amplitude and polarity characteristics dependent upon the phase relation between the signals to be compared. Principal novelty resides in the employment of a half-wave transmission line to derive the phase opposing signals from the first voltage to be compared for application to the two rectifiers in place of the transformer commonly utilized for such purpose in phase detector circuits for operation at lower frequency.

  7. Hydrogen detector

    DOEpatents

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  8. Microwave detector

    DOEpatents

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  9. Microwave detector

    DOEpatents

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  10. Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Sadrozinski, Hartmut

    2014-03-01

    The use of silicon detectors has experienced an exponential growth in accelerator and space based experiments, similar to trends in the semiconductor industry as a whole, usually paraphrased as ``Moore's Law.'' Some of the essentials for this phenomenon will be presented, together with examples of the exciting science results which it enabled. With the establishment of a ``semiconductor culture'' in universities and laboratories around the world, an increased understanding of the sensors results in thinner, faster, more radiation-resistant detectors, spawning an amazing wealth of new technologies and applications, which will be the main subject of the presentation.

  11. Microwave detector

    SciTech Connect

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1986-12-02

    A detector is described for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations, the detector comprising: a B-dot loop linking the magnetic field of the microwave pulse; a biased ferrite, that produces a magnetization field flux that links the B-dot loop. The ferrite is positioned within the B-dot loop so that the magnetic field of the microwave pulse interacts with the ferrite and thereby participates in the formation of the magnetization field flux; and high-frequency insensitive means for measuring electric voltage or current induced in the B-dot loop.

  12. Characteristics of Knock in Hydrogen-Oxygen-Argon SI Engine

    SciTech Connect

    Killingsworth, N; Rapp, V; Flowers, D; Aceves, S; Chen, J; Dibble, R

    2010-02-23

    A promising approach for improving the efficiency of internal combustion engines is to employ a working fluid with a high specific heat ratio such as the noble gas argon. Moreover, all harmful emissions are eliminated when the intake charge is composed of oxygen, nonreactive argon, and hydrogen fuel. Previous research demonstrated indicated thermal efficiencies greater than 45% at 5.5 compression ratio in engines operating with hydrogen, oxygen, and argon. However, knock limits spark advance and increasing the efficiency further. Conditions under which knock occurs in such engines differs from typical gasoline fueled engines. In-cylinder temperatures using hydrogen-oxygen-argon are higher due to the high specific heat ratio and pressures are lower because of the low compression ratio. Better understanding of knock under these conditions can lead to operating strategies that inhibit knock and allow operation closer to the knock limit. In this work we compare knock with a hydrogen, oxygen, and argon mixture to that of air-gasoline mixtures in a variable compression ratio cooperative fuels research (CFR) engine. The focus is on stability of knocking phenomena, as well as, amplitude and frequency of the resulting pressure waves.

  13. Search for QGP signals at AGS with a TPC spectrometer, and comparison of our event generator predictions for plasma model and cascade interactions

    SciTech Connect

    Lindenbaum, S.J.; Foley, K.J.; Eiseman, S.E.; Etkin, A.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.

    1988-06-21

    We have developed and successfully tested a TPC Magnetic Spectrometer to search for QGP signals produced by ion beams at AGS. We also developed a cascade and plasma event generator the predictions of which are used to illustrate how our technique can detect possible plasma signals. 4 refs., 6 figs., 1 tab.

  14. Vertex detectors

    SciTech Connect

    Lueth, V.

    1992-07-01

    The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10{sup {minus}13} s, among them the {tau} lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation.

  15. Argon-40: excess in submarine pillow basalts from kilauea volcano, hawaii.

    PubMed

    Dalrymple, G B; Moore, J G

    1968-09-13

    Submarine pillow basalts from Kilauea Volcano contain excess radiogenic argon-40 and give anomalously high potassium-argon ages. Glassy rims of pillows show a systematic increase in radiogenic argon-40 with depth, and a pillow from a depth of 2590 meters shows a decrease in radiogenic argon40 inward from the pillow rim. The data indicate that the amount of excess radiogenic argon-40 is a direct function of both hydrostatic pressure and rate of cooling, and that many submarine basalts are not suitable for potassium-argon dating. PMID:17812284

  16. Argon-40: Excess in submarine pillow basalts from Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Brent, Dalrymple G.; Moore, J.G.

    1968-01-01

    Submarine pillow basalts from Kilauea Volcano contain excess radiogenic argon-40 and give anomalously high potassium-argon ages. Glassy rims of pillows show a systematic increase in radiogenic argon-40 with depth, and a pillow from a depth of 2590 meters shows a decrease in radiogenic argon-40 inward from the pillow rim. The data indicate that the amount of excess radiogenic argon-40 is a direct function of both hydrostatic pressure and rate of cooling, and that many submarine basalts are not suitable for potassium-argon dating.

  17. New statistical boundary conditions for argon-tungsten interactions.

    PubMed

    Ozhgibesov, M S; Leu, T S; Cheng, C H; Utkin, A V

    2012-09-01

    In this study, scattering processes of argon beam impinging on tungsten surface are investigated numerically by applying molecular dynamics (MD) simulations. Energy transfer, momentum change, and scattering processes of argon gas atoms from W(110) surface are discussed. A new model of argon-tungsten (Ar-W) interaction is proposed. Based on the new proposed model, one can simplify the boundary conditions of this problem. The new boundary conditions are proved to be in line with previous experimental and theoretical results. This paper demonstrates how to proceed normalization and further conversion of the MD simulation results into boundary conditions. Application of the new proposed boundary conditions for Ar-W interactions provides a significant speedup of computations.

  18. Krypton and argon laser photocoagulation effects in subretinal hemorrhage.

    PubMed

    Chino, K; Ohki, R; Noyori, K

    1986-01-01

    Previous studies suggested that krypton laser photocoagulation was more effective in the treatment of macular diseases than argon laser. Furthermore, it could perform photocoagulation more effectively in some lesions with subretinal hemorrhage, because the krypton laser beam was poorly absorbed by hemoglobin. In the present experiment, hemorrhagic retinal detachment was produced in monkey eyes with Q-switched Nd-YAG laser, and 4 weeks later photocoagulation was performed with krypton and argon lasers to compare the differences in the effects of these two lasers. When the subretinal hemorrhage and a heavy coagulation effect was produced in the detached retina, but no coagulation effects were observed in the choroid. Krypton laser beam could go through the hemorrhage and certain coagulation effects were observed in the choroid and the detached retina. It is suggested that krypton laser photocoagulation is more effective in the lesions behind subretinal hemorrhages than photocoagulation with argon laser.

  19. Early Clinical Experience With Argon Ion Laser Endarterectomy

    NASA Astrophysics Data System (ADS)

    Eugene, John; Baribeau, Yvon; Ott, Richard A.; McColgan, Stephen J.; Berns, Michael W.

    1989-09-01

    This report describes our progress in the development of argon ion laser endarterectomy for arteriosclerotic cardiovascular disease. Nine patients underwent 10 vascular reconstructions for claudication (6), rest pain (1), and gangrene (2). There was 1 aortoiliac endarterectomy, 6 superficial femoral artery endarterectomies, 1 profunda femoris endarterectomy and 2 popliteal endarterectomies. The reconstructions were 6 cm to 60 cm in length. The operations were performed using low power argon ion laser radiation, 1.0 W. All patients experienced symptomatic relief and had palpable pulses postoperatively. There were no perforations and there were no injuries to surrounding tissues from laser radiation. Surgical complications occurred and these were technical problems that should be eliminated from the operation with further developments. The early clinical results show that laser endarterectomy can be performed for peripheral vascular reconstruction using low power argon ion laser radiation.

  20. Improved background rejection in neutrinoless double beta decay experiments using a magnetic field in a high pressure xenon TPC

    NASA Astrophysics Data System (ADS)

    Renner, J.; Cervera, A.; Hernando, J. A.; Imzaylov, A.; Monrabal, F.; Muñoz, J.; Nygren, D.; Gomez-Cadenas, J. J.

    2015-12-01

    We demonstrate that the application of an external magnetic field could lead to an improved background rejection in neutrinoless double-beta (0νββ) decay experiments using a high-pressure xenon (HPXe) TPC. HPXe chambers are capable of imaging electron tracks, a feature that enhances the separation between signal events (the two electrons emitted in the 0νββ decay of 136Xe) and background events, arising chiefly from single electrons of kinetic energy compatible with the end-point of the 0νββ decay (0Qββ). Applying an external magnetic field of sufficiently high intensity (in the range of 0.5-1 Tesla for operating pressures in the range of 5-15 atmospheres) causes the electrons to produce helical tracks. Assuming the tracks can be properly reconstructed, the sign of the curvature can be determined at several points along these tracks, and such information can be used to separate signal (0νββ) events containing two electrons producing a track with two different directions of curvature from background (single-electron) events producing a track that should spiral in a single direction. Due to electron multiple scattering, this strategy is not perfectly efficient on an event-by-event basis, but a statistical estimator can be constructed which can be used to reject background events by one order of magnitude at a moderate cost (about 30%) in signal efficiency. Combining this estimator with the excellent energy resolution and topological signature identification characteristic of the HPXe TPC, it is possible to reach a background rate of less than one count per ton-year of exposure. Such a low background rate is an essential feature of the next generation of 0νββ experiments, aiming to fully explore the inverse hierarchy of neutrino masses.

  1. Characterization of a medium size Xe/TMA TPC instrumented with microbulk Micromegas, using low-energy γ-rays

    NASA Astrophysics Data System (ADS)

    Álvarez, V.; Borges, F. I. G. M.; Cárcel, S.; Castel, J.; Cebrián, S.; Cervera, A.; Conde, C. A. N.; Dafni, T.; Dias, T. H. V. T.; Díaz, J.; Egorov, M.; Esteve, R.; Evtoukhovitch, P.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Gehman, V. M.; Gil, A.; Goldschmidt, A.; Gómez, H.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Hernando Morata, J. A.; Herrera, D. C.; Iguaz, F. J.; Irastorza, I. G.; Jinete, M. A.; Labarga, L.; Laing, A.; Liubarsky, I.; Lopes, J. A. M.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez, A.; Martínez-Lema, G.; Miller, T.; Moiseenko, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Natal da Luz, H.; Navarro, G.; Nebot-Guinot, M.; Nygren, D.; Oliveira, C. A. B.; Palma, R.; Pérez, J.; Pérez Aparicio, J. L.; Renner, J.; Ripoll, L.; Rodríguez, A.; Rodríguez, J.; Santos, F. P.; dos Santos, J. M. F.; Segui, L.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J. F.; Tomás, A.; Torrent, J.; Tsamalaidze, Z.; Vázquez, D.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R. C.; White, J. T.; Yahlali, N.; Aznar, F.; Calvet, D.; Druillole, F.; Ferrer-Ribas, E.; García, J. A.; Giomataris, I.; Gracia, J.; Le Coguie, A.; Mols, J. P.; Pons, P.; Ruiz, E.

    2014-04-01

    NEXT-MM is a general-purpose high pressure (10 bar, ~ 25 l active volume) Xenon-based TPC, read out in charge mode with an 0.8 cm × 0.8 cm-segmented 700 cm2 plane (1152 ch) of the latest microbulk-Micromegas technology. It has been recently commissioned at University of Zaragoza as part of the R&D of the NEXT 0νββ experiment, although the experiment's first stage is currently being built based on a SiPM/PMT-readout concept relying on electroluminescence. Around 2 million events were collected during the last months, stemming from the low energy γ-rays emitted by a 241Am source when interacting with the Xenon gas (Eγ = 26, 30, 59.5 keV). The localized nature of such events around atmospheric pressure, the long drift times, as well as the possibility to determine their production time from the associated α particle in coincidence, allow the extraction of primordial properties of the TPC filling gas, namely the drift velocity, diffusion and attachment coefficients. In this work we focus on the little explored combination of Xe and trimethylamine (TMA) for which, in particular, such properties are largely unknown. This gas mixture offers potential advantages over pure Xenon when aimed at Rare Event Searches, mainly due to its Penning characteristics, wave-length shifting properties and reduced diffusion, and it is being actively investigated by our collaboration. The chamber is currently operated at 2.7 bar, as an intermediate step towards the envisaged 10 bar. We report here its performance as well as a first implementation of the calibration procedures that have allowed the extension of the previously reported energy resolution to the whole readout plane (10.6% FWHM@30 keV).

  2. Recent operational performance of the CERN Omega Ring Imaging Cerenkov Detector

    SciTech Connect

    Apsimon, R.J.; Flower, P.S.; Freeston, K.A.; Hallewell, G.D.; Morris, J.A.G.; Morris, J.V.; Paterson, C.N.; Sharp, P.H.; Uden, C.N.; Davenport, M.

    1985-10-01

    We discuss the design and construction of the Time Projection chambers (TPCs) of the Omega Ring Imaging Cerenkov Detector (RICH). Details are given of the TPC high voltage system and its monitoring and control. In addition, the operation and monitoring of the readout is described together with results of tests on the performance of the front end amplifiers. The operation of the RICH TPCs and electronics during the first data run of WA69, in 1984, is discussed together with relevant results from laboratory tests. Results from the preliminary analysis of a sample of data from the 1984 run are also presented.

  3. High time resolution laser induced fluorescence in pulsed argon plasma

    SciTech Connect

    Biloiu, Ioana A.; Sun Xuan; Scime, Earl E.

    2006-10-15

    A submillisecond time resolution laser induced fluorescence (LIF) method for obtaining the temporal evolution of the ion velocity distribution function in pulsed argon plasma is presented. A basic LIF system that employs a continuous laser wave pumping and lock-in aided detection of the subsequent fluorescence radiation is modified by addition of a high frequency acousto-optic modulator to provide measurements of the ion flow velocity and ion temperature in a helicon generated pulsed argon plasma with temporal resolutions as high as 30 {mu}s.

  4. Mechanisms underlying strong-field double ionization of argon dimers

    SciTech Connect

    Manschwetus, B.; Rottke, H.; Steinmeyer, G.; Sandner, W.; Foucar, L.; Czasch, A.; Schmidt-Boecking, H.

    2010-07-15

    We investigate double ionization of argon dimers in high-intensity ultrashort Ti:sapphire laser pulses. We are able to identify several strong-field excitation pathways of the dimer that terminate in atomic ion pairs from a Coulomb explosion. The explosion starts from two-site double-ionized dimers and from one-site double-ionized ones after radiative charge transfer at small internuclear separation. One-site double ionization is accomplished by laser-induced charge transfer in the high-intensity laser pulse following two-site double ionization. The highest energy ion pairs we observed can be attributed to ''frustrated triple ionization'' of the argon dimer.

  5. Properties of radio-frequency heated argon confined uranium plasmas

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Pure uranium hexafluoride (UF6) was injected into an argon confined, steady state, rf-heated plasma within a fused silica peripheral wall test chamber. Exploratory tests conducted using an 80 kW rf facility and different test chamber flow configurations permitted selection of the configuration demonstrating the best confinement characteristics and minimum uranium compound wall coating. The overall test results demonstrated applicable flow schemes and associated diagnostic techniques were developed for the fluid mechanical confinement and characterization of uranium within an rf plasma discharge when pure UF6 is injected for long test times into an argon-confined, high-temperature, high-pressure, rf-heated plasma.

  6. Common Blepharitis Related to Phthiriasis Palpebrarum: Argon Laser Phototherapy.

    PubMed

    Sundu, Cem; Dinç, Erdem; Kurtuluş, Umut Can; Yıldırım, Özlem

    2015-09-01

    A 42-year-old woman was admitted to Mersin University, Department of Ophthalmology Clinic with itching and burning sensation of the right eye for 3 weeks. In her slit-lamp examination, nits and lice, attached to the upper and lower eyelashes of her right eye, were observed. Lice and nits were destroyed by argon laser phototherapy and were removed with the help of a fine forceps thereafter. Argon laser phototherapy is a quick, effective, and safe treatment modality for phthiriasis palpebrarum. PMID:26470938

  7. Argon Triple Point for Long-Stem SPRTs: Thermal Behavior

    NASA Astrophysics Data System (ADS)

    Dobre, M.; Didialaoui, I.; Hermier, Y.

    2011-08-01

    A new device for an ITS-90 triple-point-of-argon realization has been designed at LNE-CNAM. It follows the widely used principle of the cryogenic Dewar filled with pressurized liquid nitrogen, but the new construction achieves better temperature stability at the level of the argon cell. A new pressure regulation, controlled directly by a nitrogen temperature measurement, solves the problem of the influence of atmospheric-pressure variations. The paper presents the new device and the thermal tests conducted in order to optimize the pressure regulation.

  8. A transition radiation detector prototype to measure the energy of muons in cosmic ray laboratories

    NASA Astrophysics Data System (ADS)

    Bellotti, R.; Cafagna, F.; Calicchio, M.; Castellano, M.; De Cataldo, G.; De Marzo, C.; Enriquez, O.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Mongelli, M.; Nappi, E.; Perchiazzi, M.; Sacchetti, A.; Spinelli, P.

    1991-07-01

    We have developed and tested a transition radiation detector prototype suitable to measure the energy of muons in cosmic ray laboratories. The technical solutions adopted, based on extruded tubes as detectors and foam or fiber mats as radiators, allow to cover very large areas with a low number of channels and ensure stability of operation. Using an argon-carbon dioxide gas mixture it is possible to explore the muon energy range up to 1 TeV.

  9. Overview of the data acquisition electronics system design for the SLAC linear collider detector (SLD)

    SciTech Connect

    Larsen, R.S.

    1986-02-01

    The SLD Detector will contain five major electronics subsystems: Vertex, Drift, Liquid Argon Calorimeter, Cerenkov Ring Imaging, and Warm Iron Calorimeter. To implement the approximately 170,000 channels of electronics, extensive miniaturization and heavy use of multiplexing techniques are required. Design criteria for each subsystem, overall system architecture, and the R and D program are described.

  10. Overview of the data acquisition electronics system design for the SLAC Linear Collider Detector (SLD)

    SciTech Connect

    Larsen, R.S.

    1985-09-01

    The SLD Detector will contain five major electronics subsystems: Vertex, Drift, Liquid Argon Calorimeter, Cerenkov Ring Imaging, and Warm Iron Calorimeter. To implement the approximately 170,000 channels of electronics, extensive miniaturization and heavy use of multiplexing techniques are required. Design criteria for each subsystem, overall system architecture, and the R and D program are described.

  11. A new, very massive modular Liquid Argon Imaging Chamber to detect low energy off-axis neutrinos from the CNGS beam (Project MODULAr)

    NASA Astrophysics Data System (ADS)

    Baibussinov, B.; Baldo Ceolin, M.; Battistoni, G.; Benetti, P.; Borio, A.; Calligarich, E.; Cambiaghi, M.; Cavanna, F.; Centro, S.; Cocco, A. G.; Dolfini, R.; Gigli Berzolari, A.; Farnese, C.; Fava, A.; Ferrari, A.; Fiorillo, G.; Gibin, D.; Guglielmi, A.; Mannocchi, G.; Mauri, F.; Menegolli, A.; Meng, G.; Montanari, C.; Palamara, O.; Periale, L.; Picchi, P.; Pietropaolo, F.; Rappoldi, A.; Raselli, G. L.; Rossella, M.; Rubbia, C.; Sala, P.; Satta, G.; Varanini, F.; Ventura, S.; Vignoli, C.

    2008-04-01

    The paper is considering an opportunity for the CERN/GranSasso (CNGS) neutrino complex, concurrent time-wise with T2K and NOvA projects, with the aim of improving the sensitivity on νμ ↔ νeθ13 mixing angle by nearly an order of magnitude with respect to T2K expectations. The experiment is based on a ≈20 kt fiducial volume LAr-TPC, following very closely the technology developed for the ICARUS-T600. The present preliminary proposal, called MODULAr, is focused on the following three main activities, for which we seek an extended international collaboration: The neutrino beam from the CERN 400 GeV proton beam and an optimized horn focussing, eventually with an increased intensity in the framework of the LHC accelerator improvement programme. A new experimental area LNGS-B, of at least 50,000 m 3 at 10 km off-axis from the main laboratory, eventually upgradable to larger sizes. A location is under consideration at about 1.2 km equivalent water depth. The bubble chamber like imaging and the very fine calorimetry of the LAr-TPC detector will ensure the best background recognition not only from the off-axis neutrinos from the CNGS but also for proton decay and cosmic neutrinos. A new LAr Imaging detector, at least initially with about 20 kt fiducial mass, realised with a modular set of four identical, but independent units, each of about 5 kt, "cloning" the basic technology of the T600. Further phases may foresee extensions of MODULAr to a mass required by the future physics goals. Compared with large water Cherenkov (T2K) and fine grained scintillators (NOvA), the LAr-TPC offers a higher detection efficiency for a given mass and lower backgrounds, since virtually all channels may be unambiguously recognized. In addition to the search for θ13 oscillations and CP violation, it would be possible to collect a large number of accurately identified cosmic ray neutrino events and perform search for proton decay in the exotic channels.

  12. Neutron detector

    DOEpatents

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  13. Neutron detector

    SciTech Connect

    Stephan, Andrew C; Jardret, Vincent D

    2009-04-07

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  14. Angle detector

    NASA Technical Reports Server (NTRS)

    Parra, G. T. (Inventor)

    1978-01-01

    An angle detector for determining a transducer's angular disposition to a capacitive pickup element is described. The transducer comprises a pendulum mounted inductive element moving past the capacitive pickup element. The capacitive pickup element divides the inductive element into two parts L sub 1 and L sub 2 which form the arms of one side of an a-c bridge. Two networks R sub 1 and R sub 2 having a plurality of binary weighted resistors and an equal number of digitally controlled switches for removing resistors from the networks form the arms of the other side of the a-c bridge. A binary counter, controlled by a phase detector, balances the bridge by adjusting the resistance of R sub 1 and R sub 2. The binary output of the counter is representative of the angle.

  15. Flame Detector

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.

  16. First measurements with new high-resolution gadolinium-GEM neutron detectors

    NASA Astrophysics Data System (ADS)

    Pfeiffer, D.; Resnati, F.; Birch, J.; Etxegarai, M.; Hall-Wilton, R.; Höglund, C.; Hultman, L.; Llamas-Jansa, I.; Oliveri, E.; Oksanen, E.; Robinson, L.; Ropelewski, L.; Schmidt, S.; Streli, C.; Thuiner, P.

    2016-05-01

    European Spallation Source instruments like the macromolecular diffractometer (NMX) require an excellent neutron detection efficiency, high-rate capabilities, time resolution, and an unprecedented spatial resolution in the order of a few hundred micrometers over a wide angular range of the incoming neutrons. For these instruments solid converters in combination with Micro Pattern Gaseous Detectors (MPGDs) are a promising option. A GEM detector with gadolinium converter was tested on a cold neutron beam at the IFE research reactor in Norway. The μTPC analysis, proven to improve the spatial resolution in the case of 10B converters, is extended to gadolinium based detectors. For the first time, a Gd-GEM was successfully operated to detect neutrons with a measured efficiency of 11.8% at a wavelength of 2 Åand a position resolution better than 250 μm.

  17. The Solenoidal Detector Collaboration at the SSCL

    SciTech Connect

    Not Available

    1992-01-01

    Our primary interest is the detection and measurement of muons and the design of the muon detector and trigger for the SDC. We have been concentrating on the design of the forward muon system (in the approximate pseudo-rapidity region of 1.5 <{vert bar} {eta} {vert bar}<2.5 corresponding to azimuthal angles of 9.4{degrees} to 26. 0{degrees}) and at present are responsible for the engineering design of the detector support system in this rapidity region. We are also participating in the development of a liquid argon (LAr) calorimeter adapted to the bunch structure of the SSC machine. At present a LAr calorimeter still remains an option for the choice of calorimetry for the SDC. Recent measurements at BNL in a 20 GeV pion beam confirm that many of the problems associated with long signal collection times of LAr can be solved.

  18. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  19. Low-energy (<10keV) electron ionization and recombination model for a liquid argon detector

    SciTech Connect

    Foxe, M.; Hagmann, C.; Jovanovic, I.; Bernstein, A.; Kazkaz, K.; Mozin, V.; Pereverzev, S. V.; Sangiorgio, S.; Sorensen, P.

    2015-01-01

    Detailed understanding of the ionization process in dual-phase noble element detectors is important for their use in applications such as the search for Dark Matter and coherent neutrino-nucleus scattering. The response of dual-phase noble element detectors to low-energy ionization events is poorly understood at this time. We describe a new simulation tool which predicts the ionization yield from electronic energy deposits (E < 10 keV) in liquid Ar, including the dependence of the yield on the applied electric drift eld. The ionization signal produced in a dual-phase argon detector from 37Ar beta decay and 55Fe X-rays has been calculated using the new model.

  20. Effects of argon laser curing on dentin shear bond strengths

    NASA Astrophysics Data System (ADS)

    Powell, G. L.; Blankenau, Richard J.

    1996-04-01

    Previous studies have demonstrated the ability of the argon laser to polymerize light activated materials and improve enamel shear bond strengths. This study was conducted to evaluate the effects of the argon laser on dentin shear bond strengths of current dentin bonding systems. Argon laser (HGM Model 8) at 231 mw and 280 mw, 5 second bonding agent, 10 seconds composite and a conventional curing light (Translux EC/Kulzer) at 10 seconds bonding agent, 20 second composite were used to polymerize samples of dentin bonding systems: Scotchbond Multi-Purpose Plus (3M) and Prime Bond (Dentsply/Caulk), both with TPH (Dentsply/Caulk) composite. A flat dentin bonding site (600 grit) was prepared on the buccal surface of extracted human teeth. Twelve samples were made for each set of parameters for both laser and conventional light totaling 60 samples. Samples were stored in distilled water in light- proof containers for 24 hours at 37 degree(s)C. Shear bond strengths (MPa) were determined for each sample on the Instron testing machine. Mean values were calculated for each set of data and ANOVA with Fisher PLSD were used for statistical analysis. The argon laser provided bond strengths that were 21 - 24% greater than those of the conventional curing light system.

  1. Thermophysical properties of multi-shock compressed dense argon.

    PubMed

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  2. Optical emission spectroscopy of argon and hydrogen-containing plasmas

    NASA Astrophysics Data System (ADS)

    Siepa, Sarah; Danko, Stephan; Tsankov, Tsanko V.; Mussenbrock, Thomas; Czarnetzki, Uwe

    2015-09-01

    Optical emission spectroscopy (OES) on neutral argon is applied to investigate argon, hydrogen and hydrogen-silane plasmas. The spectra are analyzed using an extensive collisional-radiative model (CRM), from which the electron density and the electron temperature (or mean energy) can be calculated. The CRM also yields insight into the importance of different excited species and kinetic processes. The OES measurements are performed on pure argon plasmas at intermediate pressure. Besides, hydrogen and hydrogen-silane plasmas are investigated using argon as a trace gas. Especially for the gas mixture discharges, CRMs for low and high pressure differ substantially. The commonly used line-ratio technique is found to lose its sensitivity for gas mixture discharges at higher pressure. A solution using absolutely calibrated line intensities is proposed. The effect of radiation trapping and the shape of the electron energy distribution function on the results are discussed in detail, as they have been found to significantly influence the results. This work was supported by the Ruhr University Research School PLUS, funded by Germany's Excellence Initiative [DFG GSC 98/3].

  3. Tin LPP plasma control in the argon cusp source

    NASA Astrophysics Data System (ADS)

    McGeoch, Malcolm W.

    2016-03-01

    The argon cusp plasma has been introduced [1,2] for 500W class tin LPP exhaust control in view of its high power handling, predicted low tin back-scatter from a beam dump, and avoidance of hydrogen usage. The physics of tin ion control by a plasma is first discussed. Experimentally, cusp stability and exhaust disc geometry have previously been proved at full scale [2], the equivalent of 300W-500W usable EUV. Here we verify operation of the plasma barrier that maintains a high argon density next to the collector, for its protection, and a low density in the long path toward the intermediate focus, for efficiency. A pressure differential of 2Pa has been demonstrated in initial work. Other aspects of tin LPP plasma control by the cusp have now been demonstrated using tin ions from a low Hz 130mJ CO2 laser pulse onto a solid tin surface at the cusp center. Plasma is rejected at the <0.5% level at the collector mirror location using the cusp magnetic field alone. Plasma also is rejected using a low argon density (<1x1014cm-3). We have measured the tin ion flow pattern toward the large area annular beam dump. Scaling of the cusp design to match a specified exhaust power is discussed. In view of this work, argon cusp exhaust control appears to be very promising for 500W class tin LPP sources.

  4. Thermophysical properties of multi-shock compressed dense argon

    SciTech Connect

    Chen, Q. F. Zheng, J.; Gu, Y. J.; Chen, Y. L.; Cai, L. C.; Shen, Z. J.

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  5. Experimental and numerical study of high intensity argon cluster beams

    SciTech Connect

    Korobeishchikov, N. G.; Kalyada, V. V.; Shmakov, A. A.; Zarvin, A. E.; Skovorodko, P. A.

    2014-12-09

    Experimental and numerical investigations of expansion of argon with homogeneous condensation in supersonic conical nozzle and in free jet behind it were carried out. Optimal parameters (stagnation pressure, nozzle-skimmer distance) for the formation of cluster beam with maximum intensity were determined. Two available models for nonequilibrium nucleation were tested. The numerical results are in satisfactory agreement with the measured data.

  6. Supersonic Argon Flow In An Arc Plasma Source

    SciTech Connect

    Izrar, B.; Dudeck, M.; Andre, P.; Elchinger, M. F.; Aubreton, J.

    2006-01-15

    The plasma properties inside a D.C. arc-jet operating with argon is analysed by means of a continuum description taking into account non equilibrium ionization processes and dissipative effects. The relaxation of the different physical processes inside the nozzle and the evolution of the Mach number are aanalysed.

  7. Calibration of Electric Field Induced Energy Level Shifts in Argon

    NASA Astrophysics Data System (ADS)

    Hebner, Greg

    1999-10-01

    Argon is a commonly used gas in a number of discharges. As such it is an ideal candidate for spectroscopic based electric field measurements within the sheath and bulk discharge regions. Recently, measurements demonstrated the use of the Stark induced shifts of high lying energy levels in Argon to make spatially and temporally resolved electric field measurements [1]. However, that method relied on the cross calibration of known and calculable shifts in helium discharges to calibrate, in-situ, the energy level shifts in Argon. This poster shows the use of an atomic beam system to calibrate the electric field induced shift of high lying energy levels directly. In addition, data on very high lying argon levels, up to the 20 F manifold, were obtained. Comparison of our electric field induced energy level shift calibration curves with previous work will be shown. The possibility of using this system to calibrate energy level shifts in other gases of technological interest to the microelectronics and lighting industry will be discussed. [1]. J. B. Kim, K. Kawamura, Y. W. Choi, M. D. Bowden, K. Muraoka and V. Helbig, IEEE Transactions on Plasma Science, 26(5), 1556 (1998). This work was performed at Sandia National Laboratories and supported by the United States Department of Energy (DE-AC04-94AL85000).

  8. Thermophysical properties of multi-shock compressed dense argon.

    PubMed

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models. PMID:24559345

  9. Conversion of an atomic to a molecular argon ion and low pressure argon relaxation

    NASA Astrophysics Data System (ADS)

    M, N. Stankov; A, P. Jovanović; V, Lj Marković; S, N. Stamenković

    2016-01-01

    The dominant process in relaxation of DC glow discharge between two plane parallel electrodes in argon at pressure 200 Pa is analyzed by measuring the breakdown time delay and by analytical and numerical models. By using the approximate analytical model it is found that the relaxation in a range from 20 to 60 ms in afterglow is dominated by ions, produced by atomic-to-molecular conversion of Ar+ ions in the first several milliseconds after the cessation of the discharge. This conversion is confirmed by the presence of double-Gaussian distribution for the formative time delay, as well as conversion maxima in a set of memory curves measured in different conditions. Finally, the numerical one-dimensional (1D) model for determining the number densities of dominant particles in stationary DC glow discharge and two-dimensional (2D) model for the relaxation are used to confirm the previous assumptions and to determine the corresponding collision and transport coefficients of dominant species and processes. Project supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. ON171025).

  10. 21 CFR 874.4490 - Argon laser for otology, rhinology, and laryngology.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Argon laser for otology, rhinology, and laryngology. 874.4490 Section 874.4490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... Argon laser for otology, rhinology, and laryngology. (a) Identification. The argon laser device for...

  11. Argon metastable dynamics and lifetimes in a direct current microdischarge

    SciTech Connect

    Stefanović, Ilija; Kuschel, Thomas; Schröter, Sandra; Böke, Marc

    2014-09-21

    In this paper we study the properties of a pulsed dc microdischarge with the continuous flow of argon. Argon metastable lifetimes are measured by tunable diode laser absorption spectroscopy (TDLAS) and are compared with calculated values which yield information about excitation and de-excitation processes. By increasing the gas flow-rate about 5 times from 10 to 50 sccm, the Ar{sup m} lifetime increases from 1 to 5 μs due to the reduction of metastable quenching with gas impurities. Optical emission spectroscopy reveals nitrogen and water molecules as the main gas impurities. The estimated N₂ density [N₂]=0.1% is too low to explain the measured metastable lifetimes. Water impurity was found to be the main de-excitation source of argon metastable atoms due to high quenching coefficients. The water impurity level of [H₂O]=0.15% to 1% is sufficient to bring calculated metastable lifetimes in line with experiments. The maximum value of water content in the discharge compared to the argon atoms is estimated to approximately 6%, due to the large surface to volume ratio of the microdischarge. The current pulse releases the water molecules from the electrode surface and they are either re-adsorbed in the time between 0.4 ms for [H₂O]=1% and 2.6 ms for [H₂O]=0.15% or pumped out of the discharge with the speed equal to the gas flow-rate. Depending on its partial pressure, the water impurity re-adsorption time is of the order of magnitude or less then the argon gas residence time.

  12. Progress and commissioning of the SLD Cherenkov Ring Imaging Detector

    SciTech Connect

    Abe, K.; Hasegawa, K.; Suekane, F.; Yuta, H. . Dept. of Physics); Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dolinsky, S.; Dunwoodie, W.; Hallewell, G.: Kawahara, H.; Kwon, Y.; Leith, D.W.G.S.; Muller, D.; Nagamine, T.; Pavel, T.J.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Toge, N.; Va'vra, J.; Williams, S.H. (Stanford Linear Accelerator

    1991-11-01

    We report the recent progress of the SLD Cherenkov Ring Imaging Detector. All of the individual components of the device (TPC's, mirrors, liquid radiator trays) have been completed and installed. Almost half of the electronics packages are installed and operational, and the data acquisition system has been commissioned. The liquid C{sub 6}F{sub 14} recirculation system is functioning. The drift gas supply systems are operating well with TMAE, and the gaseous Freon C{sub 5}F{sub 12} recirculator is being brought on-line. Our monitor and control systems are fully functional. The commissioning of all 40 TPCs at full operating voltage has gone very smoothly. The system shows a remarkable immunity to the SLC backgrounds, and yields very clean events, while operating with a single electron sensitivity.

  13. Dust Detector

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.

    2001-01-01

    We discuss a recent sounding rocket experiment which found charged dust in the Earth's tropical mesosphere. The dust detector was designed to measure small (5000 - 10000 amu.) charged dust particles, most likely of meteoric origin. A 5 km thick layer of positively charged dust was found at an altitude of 90 km, in the vicinity of an observed sporadic sodium layer and sporadic E layer. The observed dust was positively charged in the bulk of the dust layer, but was negatively charged near the bottom.

  14. Ion detector

    DOEpatents

    Tullis, Andrew M.

    1987-01-01

    An improved ion detector device of the ionization detection device chamber ype comprises an ionization chamber having a central electrode therein surrounded by a cylindrical electrode member within the chamber with a collar frictionally fitted around at least one of the electrodes. The collar has electrical contact means carried in an annular groove in an inner bore of the collar to contact the outer surface of the electrode to provide electrical contact between an external terminal and the electrode without the need to solder leads to the electrode.

  15. Laboratory measurements of the x-ray emission following dielectronic recombination onto highly charged argon ions

    NASA Astrophysics Data System (ADS)

    Brown, Gregory V.; Beiersdorfer, Peter; Bulbul, Esra; Hell, Natalie; Foster, Adam; Betancourt-Martinez, Gabriele; Porter, Frederick Scott; Smith, Randall K.

    2016-06-01

    We have used the LLNL EBIT-I electron beam ion trap to measure the X-ray emission following resonant dielectronic recombination (DR) onto helium-like and lithium-like argon as a function of electron energy. These measurements were completed by sweeping the energy of EBIT-I's near mono-energetic electron beam from below threshold for DR resonance to above threshold for direct excitation of K-shell transitions in helium-like argon. The X-ray emission was recorded as a function of electron beam energy using the EBIT Calorimeter Spectrometer, whose energy resolution is ~ 5 eV, and also a relatively low resolution, solid-state X-ray detector. These results will be useful when analyzing and interpreting high resolution spectra from celestial sources measured with the Soft X-ray Spectrometer (SXS) calorimeter instrument recently launched on the Hitomi X-ray Observatory (formerly known as Astro-H), as well as data measured using instruments on the Chandra and XMM-Newton X-ray Observatories. Specifically, these data will help determine if the feature detected at ~ 3.56 keV (Bulbul et al. 2014, Boyarsky et al. 2014) in clusters is the result of the decay of a sterile neutrino, a long sought after dark matter particle candidate. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and Chandra Grant AR5-16012A.

  16. Status of the ATLAS Liquid Argon Calorimeter and its Performance after Three Years of LHC Operation

    NASA Astrophysics Data System (ADS)

    Lampl, W.

    2014-06-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider(LHC) at CERN. Liquid argon sampling calorimeters are used for all electromagnetic calorimetry covering the pseudo-rapidity region up to 3.2, as well as for hadron calorimetry in the range 1.5-4.9. The electromagnetic calorimeters use lead as passive material and are characterised by an accordion geometry that allows a fast and uniform azimuthal response without any gap. Copper and tungsten were chosen as passive material for the hadron calorimetry; whereas a classic plate geometry was adopted at large polar angles, an innovative one based on cylindrical electrodes with thin argon gaps was designed for the coverage at low angles, where the particles flow is higher. All detectors are housed in three cryostats kept at approximately 89 K. After installation in 2004-2006, the calorimeters were extensively commissioned over the three-year period prior to first collisions in 2009, using cosmic rays and single LHC beams. Since then, around 27 fb-1 of data have been collected at centre of mass energies of 7-8 TeV. During all these stages, the calorimeter has been operating almost optimally, with performance very close to specifications. The talk will cover all aspects of these first years of operation, including the calibration efforts and the data quality assessment procedure. The excellent performance achieved will also be briefly reviewed, especially in the context of the recently announced discovery of the Higgs boson.

  17. Comparative study of the effects of solid-state fermentation with three filamentous fungi on the total phenolics content (TPC), flavonoids, and antioxidant activities of subfractions from oats (Avena sativa L.).

    PubMed

    Cai, Shengbao; Wang, Ou; Wu, Wei; Zhu, Songjie; Zhou, Feng; Ji, Baoping; Gao, Fengyi; Zhang, Di; Liu, Jia; Cheng, Qian

    2012-01-11

    The aim of present work was to investigate the effect of solid-state fermentation with filamentous fungi (Aspergillus oryzae var. effuses, Aspergillus oryzae, and Aspergillus niger) on total phenolics content (TPC), flavonoids, and antioxidant activities of four subfractions of oat, namely, n-hexane, ethyl acetate (EA), n-butanol, and water, and compare them to their corresponding subfractions of unfermented oat. The TPC and total flavonoids increased dramatically, especially in EA subfractions (p < 0.05). The levels of antioxidant activity of subfractions were also significantly enhanced (p < 0.05). The highest antioxidant activities were also found in the EA subfractions. The polyphenols in EA were analyzed by high-performance liquid chromatography at 280 nm. Most polyphenols were increased remarkably, especially ferulic and caffeic acids. There was a clear correlation between the TPC and antioxidant activity. In conclusion, fungi fermentation is a potential bioprocess for increasing the TPC, flavonoids, and antioxidant activities of oat-based food.

  18. Optimization of ultrasound-assisted extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant (Solanum melongena L.) peel.

    PubMed

    Dranca, Florina; Oroian, Mircea

    2016-07-01

    The present study describes the extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant peel using ultrasonic treatments and methanol and 2-propanol as extraction solvents. The extraction yields were optimized by varying the solvent concentration, ultrasonic frequency, temperature and time of ultrasonic treatment. Box-Behnken design was used to investigate the effect of process variables on the ultrasound-assisted extraction. The results showed that for TPC extraction the optimal condition were obtained with a methanol concentration of 76.6%, 33.88 kHz ultrasonic frequency, a temperature of 69.4 °C and 57.5 min extraction time. For TMA the optimal condition were the following: 54.4% methanol concentration, 37 kHz, 55.1 °C and process time of 44.85 min. PMID:26701808

  19. Optimization of ultrasound-assisted extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant (Solanum melongena L.) peel.

    PubMed

    Dranca, Florina; Oroian, Mircea

    2016-07-01

    The present study describes the extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant peel using ultrasonic treatments and methanol and 2-propanol as extraction solvents. The extraction yields were optimized by varying the solvent concentration, ultrasonic frequency, temperature and time of ultrasonic treatment. Box-Behnken design was used to investigate the effect of process variables on the ultrasound-assisted extraction. The results showed that for TPC extraction the optimal condition were obtained with a methanol concentration of 76.6%, 33.88 kHz ultrasonic frequency, a temperature of 69.4 °C and 57.5 min extraction time. For TMA the optimal condition were the following: 54.4% methanol concentration, 37 kHz, 55.1 °C and process time of 44.85 min.

  20. The precision tracker of the OPERA detector

    NASA Astrophysics Data System (ADS)

    Zimmermann, R.; Ebert, J.; Hagner, C.; Koppitz, B.; Saveliev, V.; Schmidt-Parzefall, W.; Sewing, J.; Zaitsev, Y.

    2005-12-01

    The Precision Tracker of the muon spectrometer of the OPERA detector consists of ˜10000 aluminum drift tubes of 8 m length. They have an outer diameter of 38 mm and a wall thickness of 0.85 mm. The challenge of the detector design originates from the 8 m length of the drift tubes, a detector length, which has not been used before. Tight mechanical tolerances for positioning and alignment of the signal wires are required in order to make a significant measurement of the sign of the muon charge. The detector is manufactured in modules, which are 50 cm wide, each consisting of four adjacent drift tube planes. This guarantees high efficiency and complete rejection of the left-right ambiguity. The details of the novel mechanical design are described in this paper. For safety reasons, the drift tubes are operated with an Argon/CO2 gas mixture. The gas volume of the drift tubes is entirely sealed with O-rings, in order to avoid ageing problems. The total gas volume amounts to about 80 m3. The front end electronics of the drift tubes consist of a bootstrap amplifier followed by a commercial ultrafast comparator. Thus only digital LVDS signals are transmitted over large distances. We report on the development and performance of the first two prototype modules of the precision tracker including test measurements of the resolution and efficiency obtained.

  1. A ROS-Assisted Calcium Wave Dependent on the AtRBOHD NADPH Oxidase and TPC1 Cation Channel Propagates the Systemic Response to Salt Stress.

    PubMed

    Evans, Matthew J; Choi, Won-Gyu; Gilroy, Simon; Morris, Richard J

    2016-07-01

    Plants exhibit rapid, systemic signaling systems that allow them to coordinate physiological and developmental responses throughout the plant body, even to highly localized and quickly changing environmental stresses. The propagation of these signals is thought to include processes ranging from electrical and hydraulic networks to waves of reactive oxygen species (ROS) and cytoplasmic Ca(2+) traveling throughout the plant. For the Ca(2+) wave system, the involvement of the vacuolar ion channel TWO PORE CHANNEL1 (TPC1) has been reported. However, the precise role of this channel and the mechanism of cell-to-cell propagation of the wave have remained largely undefined. Here, we use the fire-diffuse-fire model to analyze the behavior of a Ca(2+) wave originating from Ca(2+) release involving the TPC1 channel in Arabidopsis (Arabidopsis thaliana). We conclude that a Ca(2+) diffusion-dominated calcium-induced calcium-release mechanism is insufficient to explain the observed wave transmission speeds. The addition of a ROS-triggered element, however, is able to quantitatively reproduce the observed transmission characteristics. The treatment of roots with the ROS scavenger ascorbate and the NADPH oxidase inhibitor diphenyliodonium and analysis of Ca(2+) wave propagation in the Arabidopsis respiratory burst oxidase homolog D (AtrbohD) knockout background all led to reductions in Ca(2+) wave transmission speeds consistent with this model. Furthermore, imaging of extracellular ROS production revealed a systemic spread of ROS release that is dependent on both AtRBOHD and TPC1 These results suggest that, in the root, plant systemic signaling is supported by a ROS-assisted calcium-induced calcium-release mechanism intimately involving ROS production by AtRBOHD and Ca(2+) release dependent on the vacuolar channel TPC1. PMID:27261066

  2. A ROS-Assisted Calcium Wave Dependent on the AtRBOHD NADPH Oxidase and TPC1 Cation Channel Propagates the Systemic Response to Salt Stress1[OPEN

    PubMed Central

    Evans, Matthew J.; Choi, Won-Gyu

    2016-01-01

    Plants exhibit rapid, systemic signaling systems that allow them to coordinate physiological and developmental responses throughout the plant body, even to highly localized and quickly changing environmental stresses. The propagation of these signals is thought to include processes ranging from electrical and hydraulic networks to waves of reactive oxygen species (ROS) and cytoplasmic Ca2+ traveling throughout the plant. For the Ca2+ wave system, the involvement of the vacuolar ion channel TWO PORE CHANNEL1 (TPC1) has been reported. However, the precise role of this channel and the mechanism of cell-to-cell propagation of the wave have remained largely undefined. Here, we use the fire-diffuse-fire model to analyze the behavior of a Ca2+ wave originating from Ca2+ release involving the TPC1 channel in Arabidopsis (Arabidopsis thaliana). We conclude that a Ca2+ diffusion-dominated calcium-induced calcium-release mechanism is insufficient to explain the observed wave transmission speeds. The addition of a ROS-triggered element, however, is able to quantitatively reproduce the observed transmission characteristics. The treatment of roots with the ROS scavenger ascorbate and the NADPH oxidase inhibitor diphenyliodonium and analysis of Ca2+ wave propagation in the Arabidopsis respiratory burst oxidase homolog D (AtrbohD) knockout background all led to reductions in Ca2+ wave transmission speeds consistent with this model. Furthermore, imaging of extracellular ROS production revealed a systemic spread of ROS release that is dependent on both AtRBOHD and TPC1. These results suggest that, in the root, plant systemic signaling is supported by a ROS-assisted calcium-induced calcium-release mechanism intimately involving ROS production by AtRBOHD and Ca2+ release dependent on the vacuolar channel TPC1. PMID:27261066

  3. Determining the neutrino mass hierarchy and CP violation in NoVA with a second off-axis detector

    SciTech Connect

    Mena, Olga; Palomares-Ruiz, Sergio; Pascoli, Silvia; /CERN /Durham U., IPPP

    2005-10-01

    We consider a Super-NOVA-like experimental configuration based on the use of two detectors in a long-baseline experiment as NOVA. We take the far detector as in the present NOVA proposal and add a second detector at a shorter baseline. The location of the second off-axis detector is chosen such that the ratio L/E is the same for both detectors, being L the baseline and E the neutrino energy. We consider liquid argon and water- Cerenkov techniques for the second off-axis detector and study, for different experimental setups, the detector mass required for the determination of the neutrino mass hierarchy, for different values of {theta}{sub 13}. We also study the capabilities of such an experimental setup for determining CP-violation in the neutrino sector. Our results show that by adding a second off-axis detector a remarkable enhancement on the capabilities of the current NOVA experiment could be achieved.

  4. Oscillator detector

    SciTech Connect

    Potter, B.M.

    1980-05-13

    An alien liquid detector employs a monitoring element and an oscillatory electronic circuit for maintaining the temperature of the monitoring element substantially above ambient temperature. The output wave form, eg., frequency of oscillation or wave shape, of the oscillatory circuit depends upon the temperaturedependent electrical characteristic of the monitoring element. A predetermined change in the output waveform allows water to be discriminated from another liquid, eg., oil. Features of the invention employing two thermistors in two oscillatory circuits include positioning one thermistor for contact with water and the other thermistor above the oil-water interface to detect a layer of oil if present. Unique oscillatory circuit arrangements are shown that achieve effective thermistor action with an economy of parts and energizing power. These include an operational amplifier employed in an astable multivibrator circuit, a discrete transistor-powered tank circuit, and use of an integrated circuit chip.

  5. Development and tests of an anode readout TPC with high track separability for large solid angle relativistic ion experiments

    SciTech Connect

    Lindenbaum, S.J.; Foley, K.J.; Eiseman, S.E.; Etkin, A.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Chan, C.; Kramer, M.A.; Hallman, T.J.; Madansky, L.; Bonner, B.E.; Buchanan, J.A.; Clement, J.M.; Corcoran, M.D.; Kruk, J.W.; Miettinen, H.E.; Mutchler, G.S.; Nessi-Tedaldi, F.; Nessi, M.; Phillips, G.C.; Roberts, J.B.

    1988-07-18

    We have developed, constructed and tested an anode readout TPC with high track separability which is suitable for large solid angle relativistic ion experiments. The readout via rows of short anode wires parallel to the beam has been found in tests to allow two-track separability of approx.2-3 mm. The efficiency of track reconstruction for events from a target, detected inside the MPS 5 KG magnet, is estimated to be >90% for events made by incident protons and pions. 15 GeV/c x A Si ion beams at a rate of approx.25 K per AGS pulse were permitted to course through the chamber and did not lead to any problems. When the gain was reduced to simulate the total output of a minimum ionizing particle, many Si ion tracks were also detected simultaneously with high efficiency. The resolution along the drift direction (parallel to the MPS magnetic field and perpendicular to the beam direction) was <1 mm and the resolution along the other direction /perpendicular/ to the beam direction was <1 mm also. 3 refs., 5 figs.

  6. First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment

    DOE PAGESBeta

    Ferrario, P.

    2016-01-19

    The NEXT experiment aims to observe the neutrinoless double beta decay of xenon in a high-pressure 136Xe gas TPC using electroluminescence (EL) to amplify the signal from ionization. One of the main advantages of this technology is the possibility to reconstruct the topology of events with energies close to Qββ. This paper presents the first demonstration that the topology provides extra handles to reject background events using data obtained with the NEXT-DEMO prototype. Single electrons resulting from the interactions of 22Na 1275 keV gammas and electron-positron pairs produced by conversions of gammas from the 228Th decay chain were used tomore » represent the background and the signal in a double beta decay. Furthermore, these data were used to develop algorithms for the reconstruction of tracks and the identification of the energy deposited at the end-points, providing an extra background rejection factor of 24.3 ± 1.4 (stat.)%, while maintaining an efficiency of 66.7 ± 1% for signal events.« less

  7. Expression of Ca2+-permeable two-pore channels rescues NAADP signalling in TPC-deficient cells

    PubMed Central

    Ruas, Margarida; Davis, Lianne C; Chen, Cheng-Chang; Morgan, Anthony J; Chuang, Kai-Ting; Walseth, Timothy F; Grimm, Christian; Garnham, Clive; Powell, Trevor; Platt, Nick; Platt, Frances M; Biel, Martin; Wahl-Schott, Christian; Parrington, John; Galione, Antony

    2015-01-01

    The second messenger NAADP triggers Ca2+ release from endo-lysosomes. Although two-pore channels (TPCs) have been proposed to be regulated by NAADP, recent studies have challenged this. By generating the first mouse line with demonstrable absence of both Tpcn1 and Tpcn2 expression (Tpcn1/2−/−), we show that the loss of endogenous TPCs abolished NAADP-dependent Ca2+ responses as assessed by single-cell Ca2+ imaging or patch-clamp of single endo-lysosomes. In contrast, currents stimulated by PI(3,5)P2 were only partially dependent on TPCs. In Tpcn1/2−/− cells, NAADP sensitivity was restored by re-expressing wild-type TPCs, but not by mutant versions with impaired Ca2+-permeability, nor by TRPML1. Another mouse line formerly reported as TPC-null likely expresses truncated TPCs, but we now show that these truncated proteins still support NAADP-induced Ca2+ release. High-affinity [32P]NAADP binding still occurs in Tpcn1/2−/− tissue, suggesting that NAADP regulation is conferred by an accessory protein. Altogether, our data establish TPCs as Ca2+-permeable channels indispensable for NAADP signalling. PMID:25872774

  8. Operation of a THGEM-based detector in low-pressure Helium

    NASA Astrophysics Data System (ADS)

    Cortesi, M.; Yurkon, J.; Stolz, A.

    2015-02-01

    In view of a possible application as a charge-particle track readout for an Active Target Time Projection Chamber (AT-TPC), the operating properties of THick Gaseous Electron Multipliers (THGEM) in pure low-pressure Helium were investigated. This paper includes the effective gain dependence on pressure for different detector configurations (single-, double-, triple-cascade setup), long-term gain stability and energy resolution from tracks of 5.5 MeV alpha particles. Stable operational conditions and maximum detector gains of 104-107 have been achieved in pure Helium at pressure ranging from 100 torr up to 760 torr. Energy resolution of 6.65% (FWHM) for 690 keV of energy deposited by 5.5 MeV alpha particles at 350 torr was measured. The expected energy resolution for the full track is around 2.4% (FWHM). These results, together with the robustness of THGEM electrodes against spark damage, make THGEM structures highly competitive compared to other technologies considered for TPC applications in an active target operating with pure noble gases, requiring a high dynamic range and a wide operating pressure range down to few hundred torr.

  9. Current to Pressure Transducers for the Argon & Nitrogen Dewars

    SciTech Connect

    Serges, T.J.; /Fermilab

    1988-08-25

    A current to pressure (I/P) transducer will be used in the D-Zero piping system. The transducer is necessary to precisely control the control valve positioners located at the argon and nitrogen dewars. A 4-20 rnA signal will come from the PLC function of the TI565. This electric signal must be converted by the transducer to a pneumatic signal of 3-15 psi which will position the actuator. By doing this, the valve can be opened or closed to any adjusted amount from the control room or a remote I/P controller. A total of 9 transducers will be used at the dewars. The nitrogen dewar will have 3 that are located outside and will have to be weatherproof. The argon dewar will have 6, located inside, that will have to be explosion proof or intrinsically safe.

  10. Trimming a Metallic Biliary Stent Using an Argon Plasma Coagulator

    SciTech Connect

    Rerknimitr, Rungsun Naprasert, Pisit; Kongkam, Pradermchai; Kullavanijaya, Pinit

    2007-06-15

    Background. Distal migration is one of the common complications after insertion of a covered metallic stent. Stent repositioning or removal is not always possible in every patient. Therefore, trimming using an argon plasma coagulator (APC) may be a good alternative method to solve this problem. Methods. Metallic stent trimming by APC was performed in 2 patients with biliary Wallstent migration and in another patient with esophageal Ultraflex stent migration. The power setting was 60-100 watts with an argon flow of 0.8 l/min. Observations. The procedure was successfully performed and all distal parts of the stents were removed. No significant collateral damage to the nearby mucosa was observed. Conclusions. In a patient with a distally migrated metallic stent, trimming of the stent is possible by means of an APC. This new method may be applicable to other sites of metallic stent migration.

  11. Treatment of facial vascular lesions with an argon laser

    NASA Astrophysics Data System (ADS)

    Szymanczyk, Jacek; Golebiowska, Aleksandra; Michalska, I.

    1996-03-01

    Two-hundred-ninety-six patients with various vascular lesions of the face have been treated with argon laser LAK-1 in the Department of Dermatology Warsaw Medical Academy since April 1992. The diagnosis of the treated lesions was port-wine stains, multiple telangiectasiae and small, most often induced by trauma hemangioma cavernosum of the lip. Best results were achieved in the patients with small hemangiomas cavernosum of the lip and multiple telangiectasiae on the face. Cure rate in this group was 100%. In 112 port-wine stain cases fading of 50 - 75% comparing with the adjacent skin was achieved. With stress, the argon laser therapy is a method of choice for the treatment of hemangioma cavernosum, port-wine stains and multiple teleagiectasiae of the face.

  12. Breakdown voltage of metal-oxide resistors in liquid argon

    SciTech Connect

    Bagby, L. F.; Gollapinni, S.; James, C. C.; Jones, B. J.P.; Jostlein, H.; Lockwitz, S.; Naples, D.; Raaf, J. L.; Rameika, R.; Schukraft, A.; Strauss, T.; Weber, M. S.; Wolbers, S. A.

    2014-11-07

    We characterized a sample of metal-oxide resistors and measured their breakdown voltage in liquid argon by applying high voltage (HV) pulses over a 3 second period. This test mimics the situation in a HV-divider chain when a breakdown occurs and the voltage across resistors rapidly rise from the static value to much higher values. All resistors had higher breakdown voltages in liquid argon than their vendor ratings in air at room temperature. Failure modes range from full destruction to coating damage. In cases where breakdown was not catastrophic, subsequent breakdown voltages were lower in subsequent measuring runs. One resistor type withstands 131 kV pulses, the limit of the test setup.

  13. Evaporation and condensation at a liquid surface. I. Argon

    NASA Astrophysics Data System (ADS)

    Yasuoka, Kenji; Matsumoto, Mitsuhiro; Kataoka, Yosuke

    1994-11-01

    Molecular dynamics computer simulations were carried out to investigate the dynamics of evaporation and condensation for argon at the temperature of 80 and 100 K. From the decrease of the survival probability of vapor molecules, the ratio of self reflection to collision is estimated to be 12%-15%, only weakly dependent on the temperature. This suggests that argon vapor molecules are in the condition of almost complete capture, and the condensation is considered to be a barrierless process. The total ratio of reflection which is evaluated with the flux correlation of condensation and evaporation is 20% at both temperature. The difference between these two ratios of reflection is ascribed to a phenomenon that vapor molecules colliding with the surface drive out other liquid molecules. This molecule exchange at the surface is as important as the self-reflection, and the conventional picture of condensation as a unimolecular chemical reaction is not appropriate.

  14. Argon-assisted growth of epitaxial graphene on Cu(111)

    NASA Astrophysics Data System (ADS)

    Robinson, Zachary R.; Tyagi, Parul; Mowll, Tyler R.; Ventrice, Carl A., Jr.; Hannon, James B.

    2012-12-01

    The growth of graphene by catalytic decomposition of ethylene on Cu(111) in an ultrahigh vacuum system was investigated with low-energy electron diffraction, low-energy electron microscopy, and atomic force microscopy. Attempts to form a graphene overlayer using ethylene at pressures as high as 10 mTorr and substrate temperatures as high as 900 ∘C resulted in almost no graphene growth. By using an argon overpressure, the growth of epitaxial graphene on Cu(111) was achieved. The suppression of graphene growth without the use of an argon overpressure is attributed to Cu sublimation at elevated temperatures. During the initial stages of growth, a random distribution of rounded graphene islands is observed. The predominant rotational orientation of the islands is within ±1∘ of the Cu(111) substrate lattice.

  15. Near infrared photodissociation spectra of the aniline +-argon ionic complexes

    NASA Astrophysics Data System (ADS)

    Pino, T.; Douin, S.; Boudin, N.; Bréchignac, Ph.

    2006-02-01

    The near infrared spectra of the ionic complexes aniline(NH 2) +-argon and aniline(ND 2) +-argon have been measured by laser photodissociation spectroscopy. The bands observed from 10 500 to 13 500 cm -1 have been assigned to the D1(A˜2A2)←D0(X˜2B1) electronic transition within the solvated chromophore. They are characterized by a long vibrational progression involving the 6a mode. On the basis of CASSCF calculations, a large change of geometry along this coordinate is found while the amino group remains in the ring plane. Therefore, a change of the conjugation of the ring rather than a charge transfer is inferred. This is thought to be the origin of the extent of the progression.

  16. Spectroscopy of Argon Excited in an Electron Beam Ion Trap

    SciTech Connect

    Trabert, E

    2005-04-18

    Argon is one of the gases best investigated and most widely used in plasma discharge devices for a multitude of applications that range from wavelength reference standards to controlled fusion experiments. Reviewing atomic physics and spectroscopic problems in various ionization stages of Ar, the past use and future options of employing an electron beam ion trap (EBIT) for better and more complete Ar data in the x-ray, EUV and visible spectral ranges are discussed.

  17. Rayleigh scattering from argon clusters in a planar expansion

    SciTech Connect

    DeArmond, F. M.; Suelzer, J.; Masters, M. F.

    2008-05-01

    Rayleigh scattering is presented as evidence for the presence of large argon clusters formed in a planar expansion. Based on the observed scattering signal, the dependence of mean cluster size on stagnation pressure is {proportional_to}P{sub 0}{sup 3.38}. This is in contrast to the dependence of the mean cluster size on stagnation pressure for a symmetric expansion of {proportional_to}P{sub 0}{sup 2.29}.

  18. Low intensity argon laser coagulation in central serous retinopathy (csr).

    PubMed

    Greite, J H; Birngruber, R

    1975-01-01

    Mechanisms of light coagulation effects in RPE and detached retina are discussed. 25 cases of CSR are presented in which the leaking point in the RPE was coagulated with an argon laser coagulator, the exposure parameters being set to avoid a whitening of the retina. The results suggest that the retinal whitening and consequently retinal damage does not constitute a criterium for coagulation effectiveness in CSR.

  19. Energy and charge transfer in ionized argon coated water clusters

    SciTech Connect

    Kočišek, J. E-mail: michal.farnik@jh-inst.cas.cz Lengyel, J.; Fárník, M. E-mail: michal.farnik@jh-inst.cas.cz; Slavíček, P. E-mail: michal.farnik@jh-inst.cas.cz

    2013-12-07

    We investigate the electron ionization of clusters generated in mixed Ar-water expansions. The electron energy dependent ion yields reveal the neutral cluster composition and structure: water clusters fully covered with the Ar solvation shell are formed under certain expansion conditions. The argon atoms shield the embedded (H{sub 2}O){sub n} clusters resulting in the ionization threshold above ≈15 eV for all fragments. The argon atoms also mediate more complex reactions in the clusters: e.g., the charge transfer between Ar{sup +} and water occurs above the threshold; at higher electron energies above ∼28 eV, an excitonic transfer process between Ar{sup +}* and water opens leading to new products Ar{sub n}H{sup +} and (H{sub 2}O){sub n}H{sup +}. On the other hand, the excitonic transfer from the neutral Ar* state at lower energies is not observed although this resonant process was demonstrated previously in a photoionization experiment. Doubly charged fragments (H{sub 2}O){sub n}H{sub 2}{sup 2+} and (H{sub 2}O){sub n}{sup 2+} ions are observed and Intermolecular Coulomb decay (ICD) processes are invoked to explain their thresholds. The Coulomb explosion of the doubly charged cluster formed within the ICD process is prevented by the stabilization effect of the argon solvent.

  20. Argon laser-assisted treatment of benign eyelid lesions.

    PubMed

    Korkmaz, Şafak; Ekici, Feyzahan; Sül, Sabahattin

    2015-02-01

    We investigated the treatment of benign eyelid lesions with argon laser as an alternative therapy to surgical excision. The charts of 73 patients with 95 lesions treated with argon laser photocoagulation were reviewed retrospectively. In all patients, the procedure was performed for cosmetic reasons. The laser spot size ranged from 50 to 200 μm, the power varied from 300 to 700 mW, and the exposure time ranged between 0.1 and 0.2 s. The lesions were mostly located on the upper eyelid (66%); the lid margin was involved in 30 cases. The mean follow-up time was 7.2 ± 3.5 months (range 3-15 months). A histopathological diagnosis was confirmed for 81 lesions (85.3%). All patients were satisfied with the cosmetic result. No intraoperative complications occurred, and none of the patients complained of pain during laser application. All wounds epithelialized in 3-4 weeks with skin that appeared normal. Hypopigmentation of the treated areas were observed in three cases. No recurrence occurred during the follow-up period. Argon laser-assisted benign eyelid tumor excision is a useful, cheap, accessible, and well-tolerated alternative to traditional surgery.

  1. Insights into discharge argon-mediated biofilm inactivation.

    PubMed

    Traba, Christian; Chen, Long; Liang, Danni; Azzam, Robin; Liang, Jun F

    2013-01-01

    Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in biomedical sciences. Conventional sterilization and decontamination methods are not suitable for new and more sophisticated biomaterials. In this paper, the efficiency and effectiveness of gas discharges in the inactivation and removal of biofilms on biomaterials were studied. It was found that although discharge oxygen, nitrogen and argon all demonstrated excellent antibacterial and antibiofilm activity, gases with distinct chemical/physical properties underwent different mechanisms of action. Discharge oxygen- and nitrogen-mediated decontamination was associated with strong etching effects, which can cause live bacteria to relocate thus spreading contamination. On the contrary, although discharge argon at low powers maintained excellent antibacterial ability, it had negligible etching effects. Based on these results, an effective decontamination approach using discharge argon was established in which bacteria and biofilms were killed in situ and then removed from the contaminated biomaterials. This novel procedure is applicable for a wide range of biomaterials and biomedical devices in an in vivo and clinical setting.

  2. Liquid Argon Maximm Convective Heat Flux vs. Liquid Depth

    SciTech Connect

    Peterson, T.; /Fermilab

    1990-01-12

    In order to help answer questions about the magnitude of heat flux to the liquid argon in a liquid argon calorimeter which could cause boiling (bubbles), calculations estimating the heat flux which can be removed by free convection were made in February, 1988. These calculations are intended to be an estimate of the heat flux above which boiling would occur. No formal writeup was made of these calculations, although the graph dated 3 Feb 88 and revised (adding low-velocity forced convection lines) 19 Feb 88 was presented in several meetings and widely distributed. With this description of the calculations, copies of the original graph and calculations are being added to the D0 Engineering Note files. The liquid argon surface is in equilibrium with argon vapor at a pressure of 1.3 bar, so the surface is at 89.70 K. The liquid is entirely at this surface temperature throughout the bulk of the volume, except locally where it is warmed by a solid surface at a higher temperature than the bulk liquid. This surface temperature is taken to be the boiling temperature of argon at the pressure corresponding to 1.3 bar plus the liquid head; hence it is a function of depth below the surface. The free and forced convection correlations used are 'from Kreith, 'Heat Transfer', for heated flat plates in a large (i.e., no other objects nearby enough to disturb the flow) uniform volume of fluid. Heat flux is a function of plate size, really length along the flow path (since a boundary layer increases in thickness starting from the leading edge of the plate), and orientation (i.e., vertical or horizontal). The maximum heat flux which can be carried away by free convection (i.e., the heat flux above which boiling occurs) is .001 W/sq.cm. at 4 inches below the surface and 0.1 to 0.2 W/sq.cm. 15 feet below the surface. Forced convection over a 1 cm plate with a fluid velocity of 1 cm/sec, or a 10 cm plate at 10 cm/sec, is about like free convection. The line for much higher heat flux is

  3. D0 Control Room Argon Test Cell Placement

    SciTech Connect

    Michael, J.; /Fermilab

    1991-04-01

    Due to the need of maintaining and providing high purity argon for the D0 experiment. it is necessary to have a purity verifying device readUy aVailable. The testing eqUipment used by the D0 cryo group is called the Argon Test Cell (ATC). It operates by taking a sample of the argon to be tested and running it through a test cell for purity determination. LiqUid nitrogen cooling loops are used to to keep the argon cold during the testing. The initial placement of the ATC was outside of the D0 Cryo Control Room. This was not a favorable place. mainly because of exposure to the elements on the operators and the device. A plan was made to move the ATe from outside to inside the control room. This would allow security. favorable environment conditions. and general overall improved access and operability. Havtng the ATC inside causes some concern over some issues. It is true that the ATC employs cryogenic piping components. so there is an ODH possibility ifthose components were to faU and leak. However. there are ways by which we can determine the ODH class fairly easily. Using the methods outlined in D0 EN-229. the components of the cryogenic pipelines are summed and grouped according to failure possibility and likely leakage upon failure. (Note that this is the reason that one type of component may be listed a multiple number of times in the appendix spreadsheet, as the different components have different possible leak rates. depending on position or size. etc.). The result is an ODH class 0. since the fatality rate has to be above 10{sup -7} for a hazard condition to be present. The fatality rates in this analysis only come within an order of magnitude of this safety limit due to using conservative estimates. Note that the 130 scfm fan must be active for the ODH status to remain O. The control room ventilation is on emergency power. An alarm attached to the fan will notify the operators of fan failure. but both the fan and the alarm can be turned off when they are not

  4. Response mechanisms of thermionic detectors with enhanced nitrogen selectivity.

    PubMed

    Carlsson, H; Robertsson, G; Colmsjö, A

    2001-12-01

    The response mechanisms of a thermionic detector with enhanced nitrogen selectivity operating in an inert gas environment were investigated. According to accepted theory, the analyte has to contain electronegative functional groups in order for negative ions to be formed by the extraction of electrons from the thermionic source. This leads to a selective detector response for compounds containing nitro groups or multiple halogens. However, in the tests described here, polycyclic aromatic nitrogen hydrocarbons (PANHs), acridines, and carbazoles were used as reference substances. These compounds contain no electronegative functional groups. None of the investigated acridines exhibited any response from the detector, but carbazoles generated a strong structure-related detector response. By examining partial charges for all hydrogens of all individual carbazoles and acridine, it was demonstrated that the acidic hydrogen atom attached to the nitrogen heteroatom of the carbazoles has a strong influence on the detector response. Ionization of carbazoles may occur by dissociation of the nitrogen-hydrogen bond during contact with the thermionic surface. Support for this theory was provided by the linear relationship between the relative detector response and the deprotonization energy of the carbazoles (coefficients of determination of 0.90 and 0.98 for linear and quadratic models, respectively, were obtained). Further, there appeared to be no linear relationship between the detector response and electron affinity of the carbazoles, (R2 value, 0.32). Thus, the mechanism involved in ionization of the carbazoles is probably not direct electron transfer from the thermionic surface to the carbazoles. Principal component analysis (PCA) showed that the thermal conductivity of chemically inert detector gases also has an influence on the detector response. The investigated gases were helium, neon, nitrogen, carbon dioxide, and argon. It was found that thermal conductivity can be

  5. GOSSIP: A vertex detector combining a thin gas layer as signal generator with a CMOS readout pixel array

    NASA Astrophysics Data System (ADS)

    Campbell, M.; Heijne, E. H. M.; Llopart, X.; Colas, P.; Giganon, A.; Giomataris, Y.; Chefdeville, M.; Colijn, A. P.; Fornaini, A.; van der Graaf, H.; Kluit, P.; Timmermans, J.; Visschers, J. L.; Schmitz, J.

    2006-05-01

    A small TPC has been read out by means of a Medipix2 chip as direct anode. A Micromegas foil was placed 50 μm above the chip, and electron multiplication occurred in the gap. With a He/isobutane 80/20 mixture, gas multiplication factors up to tens of thousands were achieved, resulting in an efficiency for detecting single electrons of better than 90%. With this new readout technology for gas-filled detectors we recorded many image frames containing 2D images with tracks from cosmic muons. Along these tracks, electron clusters were observed, as well as δ-rays. With a gas layer thickness of only 1 mm, the device could be applied as vertex detector, outperforming all Si-based detectors.

  6. Detector simulation needs for detector designers

    SciTech Connect

    Hanson, G.G.

    1987-11-01

    Computer simulation of the components of SSC detectors and of the complete detectors will be very important for the designs of the detectors. The ratio of events from interesting physics to events from background processes is very low, so detailed understanding of detector response to the backgrounds is needed. Any large detector for the SSC will be very complex and expensive and every effort must be made to design detectors which will have excellent performance and will not have to undergo major rebuilding. Some areas in which computer simulation is particularly needed are pattern recognition in tracking detectors and development of shower simulation code which can be trusted as an aid in the design and optimization of calorimeters, including their electron identification performance. Existing codes require too much computer time to be practical and need to be compared with test beam data at energies of several hundred GeV. Computer simulation of the processing of the data, including electronics response to the signals from the detector components, processing of the data by microprocessors on the detector, the trigger, and data acquisition will be required. In this report we discuss the detector simulation needs for detector designers.

  7. Measuring the Muon Neutrino Charged Current Cross Section on Water using the Near Detector of T2K

    NASA Astrophysics Data System (ADS)

    Das, Rajarshi

    2012-10-01

    The Near Detector of the T2K Long Baseline Neutrino Oscillation Experiment comprises of several sub-detectors working together to study neutrino interactions. The neutrinos are provided by a powerful off-axis, accelerator generated neutrino beam located at the J-PARC facility in Tokai, Japan. The first sub-detector in the path of travelling neutrinos, the Pi-Zero Detector (P0D), is made of layers of scintillating plastic, lead, brass and bags of water. The next sub-detector, the Tracker, consists of alternating Time Projection Chambers (TPC) and Fine Grained scintillator Detectors (FGD). We outline the procedure for extracting a muon neutrino charged current cross section on water-only by selecting muons originating in the P0D and travelling through the Tracker. We compare data collected while the P0D water bags are filled with water against data from P0D water bags filled with air. A detailed detector simulation utilizing NEUT and GENIE neutrino interaction generators is used in conjunction with a Bayesian Unfolding scheme to correct for detector effects in the data. The end result is a model-independent double differential neutrino cross section as a function of muon momentum and direction.

  8. Modeling ionization and recombination from low energy nuclear recoils in liquid argon

    SciTech Connect

    Foxe, Michael P.; Hagmann, Chris; Jovanovic, Igor; Bernstein, A.; Joshi, T.; Kazkaz, K.; Mozin, Vladimir V.; Pereverzev, S. V.; Sangiorgio, Samuele; Sorensen, Peter F.

    2015-09-01

    Coherent neutrino-nucleus scattering (CNNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model. CNNS is a flavor-blind interaction, which offers potential benefits for its use in nonproliferation (nuclear reactor monitoring) and astrophysics (supernova and solar neutrinos) applications. One challenge with detecting CNNS is the low energy deposition associated with a typical CNNS nuclear recoil. In addition, nuclear recoils are predicted to result in lower ionization yields than those produced by electron recoils of the same energy. This ratio of nuclear- and electron-induced ionization, known as the nuclear quenching factor, is unknown at energies typical for CNNS interactions in liquid xenon (LXe) and liquid argon (LAr), detector media being considered for CNNS detection. While there have been recent measurements [1] of the ionization yield from nuclear recoils in LAr, there is no universal model for nuclear quenching and ionization yield. For this reason, a Monte Carlo simulation has been developed to predict the ionization yield at sub-10 keV energies. The local ionization yield of a recoiling atom in the medium is calculated first. The ejected electrons are subsequently tracked in the electric field resulting from both the local electric charges and the externally applied drift field. The dependence of the ionization yield on the drift electric field is obtained by combining the calculated ionization yield for the initial collision cascade with the electron escape probability. An updated estimate of the CNNS signal expected in a LAr detector operated near a nuclear power reactor is presented.

  9. Study on hydrogen removal of AZ91 alloys using ultrasonic argon degassing process.

    PubMed

    Liu, Xuan; Zhang, Zhiqiang; Hu, Wenyi; Le, Qichi; Bao, Lei; Cui, Jianzhong; Jiang, Jiajia

    2015-09-01

    Argon degassing, ultrasonic degassing and a novel ultrasonic argon degassing treatment were applied for the hydrogen removal of AZ91 magnesium alloy. The hydrogen concentration, microstructures and mechanical properties have also been investigated. AZ91 alloys contains a high hydrogen concentration. The mechanical properties of the as-cast alloy are much improved using degassing process, which should be mainly attributed to the hydrogen removal. Among the three degassing process, the ultrasonic argon treatment is a high efficient process both for hydrogen removal and microstructure refining. One hand, ultrasonic wave could break up the purged argon bubble to improve the degassing efficiency of these bubbles. On the other hand, ultrasound could also generate many cavitation bubbles in the melt, which should account for the microstructure refinement. The ultrasonic argon treatment involves dynamics between the ascending argon bubbles and ultrasonic effects, such as cavitation and streaming, etc.

  10. Spiral silicon drift detectors

    SciTech Connect

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs.

  11. Infrared spectrum of the complex of formaldehyde with carbon dioxide in argon and nitrogen matrices

    NASA Technical Reports Server (NTRS)

    Van Der Zwet, G. P.; Allamandola, Louis J.; Baas, F.; Greenberg, J. M.

    1989-01-01

    The complex of formaldehyde with carbon dioxide has been studied by infrared spectroscopy in argon and nitrogen matrices. The shifts relative to the free species show that the complex is weak and similar in argon and nitrogen. The results give evidence for T-shaped complexes, which are isolated in several configurations. Some evidence is also presented which indicates that, in addition to the two well-known sites in argon, carbon dioxide can be trapped in a third site.

  12. Resonant energy transfer from argon dimers to atomic oxygen in microhollow cathode discharges

    NASA Astrophysics Data System (ADS)

    Moselhy, M.; Stark, R. H.; Schoenbach, K. H.; Kogelschatz, U.

    2001-02-01

    The emission of atomic oxygen lines at 130.2 and 130.5 nm from a microhollow cathode discharge in argon with oxygen added indicates resonant energy transfer from argon dimers to oxygen atoms. The internal efficiency of the vacuum-ultraviolet (VUV) radiation was measured as 0.7% for a discharge in 1100 Torr argon with 0.1% oxygen added. The direct current VUV point source operates at voltages below 300 V and at current levels of milliamperes.

  13. An Efficient, FPGA-Based, Cluster Detection Algorithm Implementation for a Strip Detector Readout System in a Time Projection Chamber Polarimeter

    NASA Technical Reports Server (NTRS)

    Gregory, Kyle J.; Hill, Joanne E. (Editor); Black, J. Kevin; Baumgartner, Wayne H.; Jahoda, Keith

    2016-01-01

    A fundamental challenge in a spaceborne application of a gas-based Time Projection Chamber (TPC) for observation of X-ray polarization is handling the large amount of data collected. The TPC polarimeter described uses the APV-25 Application Specific Integrated Circuit (ASIC) to readout a strip detector. Two dimensional photoelectron track images are created with a time projection technique and used to determine the polarization of the incident X-rays. The detector produces a 128x30 pixel image per photon interaction with each pixel registering 12 bits of collected charge. This creates challenging requirements for data storage and downlink bandwidth with only a modest incidence of photons and can have a significant impact on the overall mission cost. An approach is described for locating and isolating the photoelectron track within the detector image, yielding a much smaller data product, typically between 8x8 pixels and 20x20 pixels. This approach is implemented using a Microsemi RT-ProASIC3-3000 Field-Programmable Gate Array (FPGA), clocked at 20 MHz and utilizing 10.7k logic gates (14% of FPGA), 20 Block RAMs (17% of FPGA), and no external RAM. Results will be presented, demonstrating successful photoelectron track cluster detection with minimal impact to detector dead-time.

  14. An efficient, FPGA-based, cluster detection algorithm implementation for a strip detector readout system in a Time Projection Chamber polarimeter

    NASA Astrophysics Data System (ADS)

    Gregory, Kyle J.; Hill, Joanne E.; Black, J. Kevin; Baumgartner, Wayne H.; Jahoda, Keith

    2016-05-01

    A fundamental challenge in a spaceborne application of a gas-based Time Projection Chamber (TPC) for observation of X-ray polarization is handling the large amount of data collected. The TPC polarimeter described uses the APV-25 Application Specific Integrated Circuit (ASIC) to readout a strip detector. Two dimensional photo- electron track images are created with a time projection technique and used to determine the polarization of the incident X-rays. The detector produces a 128x30 pixel image per photon interaction with each pixel registering 12 bits of collected charge. This creates challenging requirements for data storage and downlink bandwidth with only a modest incidence of photons and can have a significant impact on the overall mission cost. An approach is described for locating and isolating the photoelectron track within the detector image, yielding a much smaller data product, typically between 8x8 pixels and 20x20 pixels. This approach is implemented using a Microsemi RT-ProASIC3-3000 Field-Programmable Gate Array (FPGA), clocked at 20 MHz and utilizing 10.7k logic gates (14% of FPGA), 20 Block RAMs (17% of FPGA), and no external RAM. Results will be presented, demonstrating successful photoelectron track cluster detection with minimal impact to detector dead-time.

  15. Germanium detector passivated with hydrogenated amorphous germanium

    DOEpatents

    Hansen, William L.; Haller, Eugene E.

    1986-01-01

    Passivation of predominantly crystalline semiconductor devices (12) is provided for by a surface coating (21) of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating (21) of amorphous germanium onto the etched and quenched diode surface (11) in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices (12), which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating (21) compensates for pre-existing undesirable surface states as well as protecting the semiconductor device (12) against future impregnation with impurities.

  16. Aluminium control of argon solubility in silicate melts under pressure.

    PubMed

    Bouhifd, M Ali; Jephcoat, Andrew P

    2006-02-23

    Understanding of the crystal chemistry of the Earth's deep mantle has evolved rapidly recently with the gradual acceptance of the importance of the effect of minor elements such as aluminium on the properties of major phases such as perovskite. In the early Earth, during its formation and segregation into rocky mantle and iron-rich core, it is likely that silicate liquids played a large part in the transport of volatiles to or from the deep interior. The importance of aluminium on solubility mechanisms at high pressure has so far received little attention, even though aluminium has long been recognized as exerting strong control on liquid structures at ambient conditions. Here we present constraints on the solubility of argon in aluminosilicate melt compositions up to 25 GPa and 3,000 K, using a laser-heated diamond-anvil cell. The argon contents reach a maximum that persists to pressures as high as 17 GPa (up to 500 km deep in an early magma ocean), well above that expected on the basis of Al-free melt experiments. A distinct drop in argon solubility observed over a narrow pressure range correlates well with the expected void loss in the melt structure predicted by recent molecular dynamics simulations. These results provide a process for noble gas sequestration in the mantle at various depths in a cooling magma ocean. The concept of shallow partial melting as a unique process for extracting noble gases from the early Earth, thereby defining the initial atmospheric abundance, may therefore be oversimplified. PMID:16495996

  17. Argon Laser Photoablation for Treating Benign Pigmented Conjunctival Nevi

    PubMed Central

    Alsharif, Abdulrahman M.; Al-Gehedan, Saeed M.; Alasbali, Tariq; Alkuraya, Hisham S.; Lotfy, Nancy M.; Khandekar, Rajiv

    2016-01-01

    Purpose: To evaluate the outcomes of argon laser photoablation of benign conjunctival pigmented nevi with different clinical presentations. Patients and Methods: This interventional case series was conducted between July 2014 and January 2015. Patients presenting with benign conjunctival nevi were included. Data were collected on the clinical features at presentation, argon laser photoablation, and follow-up at 8 and 24 weeks. Postoperative photography allowed recording of the success of each case and the overall success rate. Complete removal of conjunctival pigments was considered an absolute success. Partial pigmentation requiring repeat laser treatment was considered a qualified success. Results: There were 14 eyes (four right eyes and ten left eyes) with benign pigmented conjunctival nevi. There were three males and eight females in the study sample. The median age was 36 (25% percentile: 26 years). Three patients had bilateral lesions. The nevi were located temporally in nine eyes, nasally in three eyes, and on the inferior bulbar conjunctiva in two eyes. The mean horizontal and vertical diameters of nevi were 5 ± 2 mm and 4 ± 2.7 mm, respectively. The mean follow-up period was 5 months. Following laser treatment, no eyes had subconjunctival hemorrhage, infection, scarring, neovascularization, recurrence, or corneal damage. The absolute success rate of laser ablation was 79%. Three eyes with elevated nevi had one to three sessions of laser ablation resulting in a qualified success rate of 100%. Conclusions: Argon laser ablation was a safe and effective treatment for the treatment of selective benign pigmented conjunctival nevi in Arab patients. PMID:27555708

  18. Potassium-argon ages of lunar rocks from mare tranquillitatis and oceanus procellarum.

    PubMed

    Schaeffer, O A; Funkhouser, J G; Bogard, D D; Zähringer, J

    1970-10-01

    Crystalline rocks from Mare Tranquillitatis have yielded potassium-argon dates as old as 3.8 x 10(9) years. Crystalline rocks from Oceanus Procellarum give potassium-argon ages as old as 2.8 x 10(9) years. Evidently the maria are ancient features of the moon and were not formed contemporaneously, a conclusion that also has been verified by other methods. The potassium-argon ages of rocks from Oceanus Procellarum show much more loss of argon than the rocks from Mare Tranquillitatis, an indication that the rocks at Oceanus Procellarum have experienced more severe shock effects or longer cooling rates.

  19. Sterilization of bacterial endospores by an atmospheric-pressure argon plasma jet

    SciTech Connect

    Uhm, Han S.; Lim, Jin P.; Li, Shou Z.

    2007-06-25

    Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. However, the spore-killing efficiency of the atmospheric-pressure argon-oxygen jet depends very sensitively on the oxygen concentration in the argon gas.

  20. Changes of electric cochlea activity of guinea pigs during argon laser stapedotomy

    NASA Astrophysics Data System (ADS)

    Michalski, Wojciech; Pres, Krzysztof; Dziewiszek, Wojciech; Pospiech, Lucyna

    2000-11-01

    Small electric signals appear on surface of a cochlea when the ear is stimulated by sound. A level of the signals can be measured of the electric activity of cochlea. The aim of the experiments was recording of changes of the cochlear potentials during argon laser stapedotomy. On the base of the recording the limits of the safe argon laser stapedotomy have been preliminary estimated. The series of argon laser pulses lasting 0.2-0.5 s and of 16 s interval between the pulses are preferable for safety of argon laser stapedotomy. The pulse peak power should be below 1 W.

  1. Frequency stabilization of a high power argon laser.

    NASA Technical Reports Server (NTRS)

    Hohimer, J. P.; Tittel, F. K.; Kelly, R. C.

    1972-01-01

    A technique for frequency stabilizing a high power, single frequency argon laser is described which offers certain advantages over those that have already been reported. This system is capable of maintaining a relative short term frequency stability of the order of plus or minus two parts in one billion and a long term stability (2 hr) of about plus or minus five parts in one billion for the 5145-A line at a power level of 750 mW. This short and long term stability is achieved by means of a multiple feedback loop composed of an optical cavity discriminator which is stabilized against an iodine vapor absorption line.

  2. Flash pyrolysis of coal by an argon ion laser

    SciTech Connect

    Thomsen, M.S.; Egsgaard, H.

    1994-12-31

    A novel approach to laser induced pyrolysis of coal by using the visible blue-green emission from an argon ion laser is presented. The gaseous pyrolysis products are identified by on-line gas chromatography/mass spectrometry (GC/MS). Five different subbituminous to bituminous coals have been studied and results for the low-molecular weight hydrocarbons up to C{sub 3} are discussed. Mechanisms for the formation of the unsaturated hydrocarbons, ethylene and acetylene, during laser pyrolysis of coal have been disclosed utilizing deuterium as a buffer gas in the pyrolysis cell.

  3. Calculation of the shifts of argon spectral lines

    SciTech Connect

    Christova, M.; Andreev, N.; Christov, L.; Dimitrijevic, M. S.

    2008-10-22

    Shifts due to collisions with charged particles (Stark broadening ) and neutral atoms, were determined for nine argon spectral lines corresponding to the transitions 3p{sup 5}nd-3p{sup 5}4p for n = 4-7, 3p{sup 5}6s-3p{sup 5}4d and 3p{sup 5}4p'-3p{sup 5}4s in order to estimate their usability for the research and diagnostics of a plasma in a surface-wave discharge at atmospheric pressure.

  4. Dissociation rate of bromine diatomics in an argon heat bath

    NASA Technical Reports Server (NTRS)

    Razner, R.; Hopkins, D.

    1973-01-01

    The evolution of a collection of 300 K bromine diatomics embedded in a heat bath of argon atoms at 1800 K was studied by computer, and a dissociation-rate constant for the reaction Br2 + BR + Ar yields Br + Ar was determined. Previously published probability distributions for energy and angular momentum transfers in classical three-dimensional Br2-Ar collisions were used in conjunction with a newly developed Monte Carlo scheme for this purpose. Results are compared with experimental shock-tube data and the predictions of several other theoretical models. A departure from equilibrium is obtained which is significantly greater than that predicted by any of these other theories.

  5. Argon Analyses of Lherzolic Shergottites Y984028 and Y000097

    NASA Technical Reports Server (NTRS)

    Park, J.; Nyquist, L. E.; Bogard, D. D.; Garrison, D. H.; Shih, C.-Y.; Mikouchi, T.; Misawa, K.

    2010-01-01

    Antarctic Martian meteorites Yamato (Y) 984028 and Y000027/47/97 have similar textures, mineralogy, chemistry, and isotopic composition and are possibly paired. We analyzed the argon isotopic composition of Y984028 whole rock (WR) and pyroxene mineral separates (Px) in order to evaluate their trapped Ar components and compare with Y000097 Ar data. WR and Px yield an apparent Ar-39-Ar-40 age spectra of roughly 2 Ga, much older than the crystallization age determined by other isotopic techniques. Sm-Nd and Rb-Sr ages for Y984028 are approximately 170 Ma. This discrepancy is likely the byproduct of several coexisting Ar components, such as radiogenic 40Ar*, cosmogenic Ar, and trapped Ar from the multiple minerals, as well as multiple source origins. Similarly, the reported Ar-39-Ar-40 age of Y000097 is approximately 260 Ma with a Rb-Sr age of 147+/- 28 Ma and a Sm-Nd age of 152 +/- 13 Ma [4]. Apparently Ar-Ar ages of both Y984028 and Y000097 show trapped Ar components. Stepwise temperature extractions of Ar from Y984028 Px show several Arcomponents released at different temperatures. For example, intermediate temperature data (800-1100 C) are nominally consistent with the Sm-Nd and Rb-Sr radiometric ages (approximately 170 Ma) with an approximately Martian atmosphere trapped Ar composition with a Ar-40-Ar-36 ratio of approximately 1800. Based on K/Ca distribution, we know that Ar-39 at both lower and intermediate temperatures is primarily derived from plagioclase and olivine. Argon released during higher temperature extractions (1200-1500 C), however, differs significantly. The thermal profile of argon released from Martian meteorites is complicated by multiple sources, such as Martian atmosphere, Martian mantle, inherited Ar, terrestrial atmosphere, cosmogenic Ar. Obviously, Ar release at higher temperatures from Px should contain little terrestrial atmospheric component. Likewise, Xe-129/Xe-132 from high temperature extractions (1200-1800 C) gives a value above that

  6. Pulsed electron beam propagation in argon and nitrogen gas mixture

    NASA Astrophysics Data System (ADS)

    Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.; Remnev, G. E.; Zhirkov, I. S.

    2015-10-01

    The paper presents the results of current measurements for the electron beam, propagating inside a drift tube filled in with a gas mixture (Ar and N2). The experiments were performed using the TEA-500 pulsed electron accelerator. The main characteristics of electron beam were as follows: 60 ns pulse duration, up to 200 J energy, and 5 cm diameter. The electron beam propagated inside the drift tube assembled of three sections. Gas pressures inside the drift tube were 760 ± 3, 300 ± 3, and 50 ± 1 Torr. The studies were performed in argon, nitrogen, and their mixtures of 33%, 50%, and 66% volume concentrations, respectively.

  7. Operational performance of a large liquid argon photon calorimeter

    NASA Astrophysics Data System (ADS)

    Nelson, C.; Biel, J.; Droege, T.; Jonckheere, A.; Koehler, P.; Berg, D.; Chandlee, C.; Cihangir, S.; Ferbel, T.; Huston, J.; Jensen, T.; LeBritton, J.; Lobkowicz, F.; McLaughlin, M.; Ohshima, T.; Slattery, P.; Thompson, P.; Bromberg, C.; Cooper, S. R. W.; Collick, B.; Heppelmann, S.; Makdisi, Y.; Marshak, M.; Peterson, E.; Povlis, J.; Ruddick, K.; Brown, B.; Garelick, D.; Glass, G.; Glaubman, M.; Han, S. R.; Pothier, E.

    1983-11-01

    We describe the performance of a large (0.9 × 1.4 m2) liquid argon photon calorimeter in high energy experiments at Fermilab. Resolutions for π0 and electron showers, obtained under data-taking conditions, are compared with electron-beam calibration results. Exceptional spatial and time resolutions have been achieved for isolated showers (σx,y <0.7 mm and σt ∼6 ns). Electron data up to energies of 80 GeV and π0 data up to 180 GeV are presented.

  8. The abundances of neon, sulfur, and argon in planetary nebulae

    NASA Technical Reports Server (NTRS)

    Beck, S. C.; Lacy, J. H.; Townes, C. H.; Aller, L. H.; Geballe, T. R.; Baas, F.

    1981-01-01

    New infrared observations of Ne II, Ar III, and S IV are used in optical observations of other ionization states of the considered elements to evaluate the abundances of neon, argon, and sulfur in 18 planetary nebulae. Attention is also given to one or more of the infrared lines in 18 other nebulae. It is pointed out that S IV was detected in approximately 90% of the observed objects, while Ar III was found in about 80%, and Ne II in roughly one-third. It is noted that optical observations typically include only a limited region of the nebula, while the infrared measurements frequently involve integration over the entire nebular image.

  9. Performance of the ATLAS Liquid Argon Calorimeter after three years of LHC operation and plans for a future upgrade

    NASA Astrophysics Data System (ADS)

    Strizenec, P.

    2014-09-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid Argon sampling calorimeters are used for all electromagnetic calorimetry covering the pseudorapidity region up to 3.2, as well as for hadronic calorimetry in the range 1.4-4.9. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform azimuthal response. Copper and tungsten were chosen as passive material for the hadronic calorimetry; whereas a parallel plate geometry was adopted at large polar angles, an innovative one based on cylindrical electrodes with thin argon gaps was designed for the coverage at low angles, where the particles flow is higher. All detectors are housed in three cryostats kept at 88.5 K. After installation in 2004-2006, the calorimeters were extensively commissioned over the three years period prior to first collisions in 2009, using cosmic rays and single LHC beams. Since then, around 27 fb-1 of data have been collected at a unprecedented center of mass energies between 7 TeV and 8 TeV. During all these stages, the calorimeter and its electronics have been operating with performances very close to the specification ones. After 2019, the instantaneous luminosity will reach 2-3 × 1034 cm-2s-1, well above the luminosity for which the calorimeter was designed. In order to preserve its triggering capabilities, the detector will be upgraded with a new fully digital trigger system with a refined granularity. In 2023, the instantaneous luminosity will ultimately reach 5-7 × 1034 cm-2s-1, requiring a complete replacement of the readout electronics. Moreover, with an increased particle flux, several phenomena (liquid argon boiling, space charge effects...) will affect the performance of the forward calorimeter (FCal). A replacement with a new FCal with smaller LAr gaps or a new calorimeter module are considered. The performance of these new

  10. Foam injection moulding of a TPO/TPC-blend and the effect of different nucleating agents on the resulting foam structure

    NASA Astrophysics Data System (ADS)

    Mueller, J.; Spoerrer, A.; Altstaedt, V.

    2014-05-01

    The manufacturing of car interior parts with a soft touch surface is possible in a one-step injection moulding process, in which an injection moulded carrier is overmoulded with a compatible foamed thermoplastic elastomer (TPE). In contrast to the complex conventional process the structural foaming of the TPE component allows a saving of one material component as it combines a compact skin and a foamed core. Furthermore the manufacturing process can be achieved on a two component injection moulding machine which offers a much higher economic efficiency. One approach to reach an adhesion between a reinforced PP carrier and the foamed TPE component including good surface resistance is the use of an olefinic-/polyester-based TPE blend (TPO/TPC-blend). This paper is going to show the possibility to process a TPO/TPC-blend system by foam injection moulding with MuCell® and how the resulting foam structure can be influenced by various nucleating agents. For this purpose particles which differ in type, form and size were added in various concentrations to the TPE-blend. Before the structure elucidation of the foamed samples the particle dispersion and their effects on the polymers rheological properties were investigated. Finally abrasion tests were performed to investigate the influence of the particles on the performance characteristics of the foamed blend system. The results showed that the foam structure as well as the surface quality of the foamed TPO/TPC-blend can be improved with the use of suitable nucleating agents. Furthermore the abrasion properties can be advanced with appropriate additives in the right dosage.

  11. The readout of a GEM or Micromegas-equipped TPC by means of the Medipix2 CMOS sensor as direct anode

    NASA Astrophysics Data System (ADS)

    Colas, P.; Colijn, A. P.; Fornaini, A.; Giomataris, Y.; van der Graaf, H.; Heijne, E. H. M.; Llopart, X.; Schmitz, J.; Timmermans, J.; Visschers, J. L.

    2004-12-01

    We have applied the Medipix2 pixel CMOS chip as direct anode readout for a TPC. For the gas amplification two options have been investigated: (i) a three-stage GEM system and (ii) a Micromegas mesh. The structure of the cloud of primary electrons, left after interactions of 55Fe quanta with the gas is visible with unprecedented precision. This proof-of-principle is an essential step in our project to realize a monolithic pixel sensor with integrated Micromegas, to be developed specially for the readout of TPCs, and applicable for drift chambers in general.

  12. Advanced UV Detectors and Detector Arrays

    NASA Technical Reports Server (NTRS)

    Pankove, Jacques I.; Torvik, John

    1998-01-01

    Gallium Nitride (GaN) with its wide energy bandgap of 3.4 eV holds excellent promise for solar blind UV detectors. We have successfully designed, fabricated and tested GaN p-i-n detectors and detector arrays. The detectors have a peak responsivity of 0.14A/W at 363 nm (3.42 eV) at room temperature. This corresponds to an internal quantum efficiency of 56%. The responsivity decreases by several orders of magnitude to 0.008 A/W at 400 nm (3.10 eV) giving the excellent visible rejection ratio needed for solar-blind applications.

  13. Estimation of sputtering rate by bombardment with argon gas ions

    NASA Astrophysics Data System (ADS)

    Okajima, Yoshiaki

    1980-01-01

    The sputtering rates of single-crystal Si and polycrystalline Ag, Cu, Ni, Ti, and Al were measured. These target materials were bombarded with argon ions accelerated at 10 kV. The sputtered depth after a given interval of bombardment was greatest for Ag, and decreased for the other materials in the following order: Cu, Ni, Ti, Si, and Al. The difference in the sputtering rates of these target materials was investigated on the basis of their binding energies, and the following expression for sputtering rate was obtained experimentally, Sr=K (I/D)(M/Ec)k, where Sr is the sputtering rate, I is the current density of incident argon ions, and D, M, and Ec are the atomic concentration, mass number, and cohesive energy of a target material, respectively. K and k are constants. Sputtering yield (Sy) can be written Sy=K' (M/Ec)k. The result was compared with experimental data of many target materials already reported. These results were used to estimate the sputtered depth after a given interval in the practical analyses using ion bombardment.

  14. Argon laser effect on demineralization of human enamel

    NASA Astrophysics Data System (ADS)

    Powell, G. L.; Higuchi, William I.; Fox, Jeffrey L.; Yu, Duncan; Blankenau, Richard J.

    1992-06-01

    Previous studies have recorded the reduction of caries-like lesions in extracted human teeth that have been irradiated with CO2 laser. Other studies have shown a decrease in dissolution rate of enamel that has been irradiated with CO2 laser and acid resistance. This study was conducted to evaluate the effects of Argon laser irradiation on acid resistance and demineralization of dental enamel. Human enamel was laser irradiated with approximately 60 J/cm2 and 120 J/cm2. The amount of demineralization was determined in a rotating disk assembly (0.1 M acetate buffer, pH-4.5) for 24 hours and the results determined and plotted against the nonlased control using microradiographs and computerized imaging. The amount of dissolution of tooth structure lost to demineralization in 4.5 pH acid bath in a 24 hour period was reduced from approximately 140 micrometers to approximately 70 micrometers . This study show that demineralization is reduced when human enamel is exposed to Argon laser irradiation.

  15. Argon Triple-Point Device for Calibration of SPRTs

    NASA Astrophysics Data System (ADS)

    Kołodziej, B.; Manuszkiewicz, H.; Szmyrka-Grzebyk, A.; Lipiński, L.; Kowal, A.; Steur, P. P. M.; Pavese, F.

    2015-03-01

    This paper presents an apparatus for the calibration of long-stem platinum resistance thermometers at the argon triple point , designed at the Institute of Low Temperature and Structural Research, Poland (INTiBS). A hermetically sealed cell filled at the Istituto Nazionale di Ricerca Metrologica, Italy with high purity gas (6N) is the main element of this apparatus. The cell is placed in a cryostat fully immersed in liquid nitrogen. A temperature-controlled shield ensures the quasi-adiabatic condition needed for proper realization of the phase transition. A system for correcting the temperature distribution along the thermometer well is also implemented. The cell cooling and argon solidification is carried out by filling the thermometer well with liquid nitrogen. A LabVIEW computer program written at INTiBS automatically controls the triple-point realization process. The duration of a melting plateau in the apparatus lasts for about 24 h. The melting width for between 20 % and 80 % was mK. The reproducibility of the plateau temperature is better than.

  16. Model of a stationary microwave argon discharge at atmospheric pressure

    SciTech Connect

    Zhelyazkov, I.; Pencheva, M.; Benova, E.

    2008-03-19

    The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power {theta} necessary for sustaining an electron - ion pair, electron - neutral collision frequency for momentum transfer v{sub en}, and gas temperature T{sub g}. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency {omega}/2{pi} = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature T{sub g} are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L {approx_equal} 14 cm, sustained by wave power of 110 W - the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number.

  17. Energy of the quasifree electron in argon and krypton

    SciTech Connect

    Evans, C.M.; Findley, G.L.

    2005-08-15

    Field ionization measurements of CH{sub 3}I and C{sub 2}H{sub 5}I dopant high-n molecular Rydberg states in argon and krypton perturbers are presented as a function of perturber number density along various isotherms up to the density of the triple point liquid. Using these data, a new local Wigner-Seitz model for the density-dependent energy V{sub 0}({rho}{sub P}) of a quasifree electron in argon and krypton is developed. This model, which contains only one adjustable parameter, uses a local Wigner-Seitz radius derived from the local number density rather than from the bulk number density, includes a statistical mechanical calculation of both the ion/medium polarization energy and the electron/medium polarization energy, and includes the thermal kinetic energy of the quasifree electron. Using this model, V{sub 0}({rho}{sub P}) and the perturber-induced energy shift of the dopant ionization potential {delta}{sub D}({rho}{sub P}) are calculated to within {+-}0.1% of experiment. Previously reported V{sub 0}({rho}{sub P}) data for xenon are also shown to be interpretable within this new model.

  18. Argon isotopic composition of Archaean atmosphere probes early Earth geodynamics.

    PubMed

    Pujol, Magali; Marty, Bernard; Burgess, Ray; Turner, Grenville; Philippot, Pascal

    2013-06-01

    Understanding the growth rate of the continental crust through time is a fundamental issue in Earth sciences. The isotopic signatures of noble gases in the silicate Earth (mantle, crust) and in the atmosphere afford exceptional insight into the evolution through time of these geochemical reservoirs. However, no data for the compositions of these reservoirs exists for the distant past, and temporal exchange rates between Earth's interior and its surface are severely under-constrained owing to a lack of samples preserving the original signature of the atmosphere at the time of their formation. Here, we report the analysis of argon in Archaean (3.5-billion-year-old) hydrothermal quartz. Noble gases are hosted in primary fluid inclusions containing a mixture of Archaean freshwater and hydrothermal fluid. Our analysis reveals Archaean atmospheric argon with a (40)Ar/(36)Ar value of 143 ± 24, lower than the present-day value of 298.6 (for which (40)Ar has been produced by the radioactive decay of the potassium isotope (40)K, with a half-life of 1.25 billion years; (36)Ar is primordial in origin). This ratio is consistent with an early development of the felsic crust, which might have had an important role in climate variability during the first half of Earth's history.

  19. Argon hydrochloride, Ar.HCl, bond energy by infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Miziolek, A. W.; Pimentel, G. C.

    1976-01-01

    The infrared absorption of argon (200 to 760 torr) and hydrogen chloride (2 to 6 torr) mixtures is reexamined in the missing Q branch region (spectral region between 2860 and 3010 wavelength/cm) at temperatures ranging from 195 to 298 K. The temperature dependence of two absorption features of the argon hydrogen chloride complex, at 2887 and 2879 wavelength/cm, leads to a bond energy estimate that depends on the assumptions made about the internal degrees of freedom of the complex. It is shown that agreement with experiment can be reached for well depths near 1.2 kcal/mole. This result is relatively insensitive to the choice of the vibrational frequencies and anharmonicities, but does depend on the extent to which the energy level manifolds are truncated to avoid molecular excitation in excess of the bond energy. The bond energy is found to deviate from the commonly accepted value of 0.4 kcal/mole. Possible causes for the discrepancy are considered.

  20. A DSMC Study of Low Pressure Argon Discharge

    NASA Technical Reports Server (NTRS)

    Hash, David B.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    Work toward a self-consistent plasma simulation using the DSMC (Direct Simulation Monte Carlo) method for examination of the flowfields of low-pressure high density plasma reactors is presented. Presently, DSMC simulations for these applications involve either treating the electrons as a fluid or imposing experimentally determined values for the electron number density profile. In either approach, the electrons themselves are not physically simulated. Self-consistent plasma DSMC simulations have been conducted for aerospace applications but at a severe computational cost due in part to the scalar architectures on which the codes were employed. The present work attempts to conduct such simulations at a more reasonable cost using a plasma version of the object-oriented parallel Cornell DSMC code, MONACO, on an IBM SP-2. Due to availability of experimental data, the GEC reference cell is chosen to conduct preliminary investigations. An argon discharge is chosen to conduct preliminary investigations. An argon discharge is examined thus affording a simple chemistry set with eight gas-phase reactions and five species: Ar, Ar(+), Ar(*), Ar(sub 2), and e where Ar(*) is a metastable.

  1. Investigation of a Mercury-Argon Hot Cathode Discharge

    NASA Astrophysics Data System (ADS)

    Wamsley, Robert Charles

    Classical absorption and laser induced fluorescence (LIF) experiments are used to investigate processes in the cathode region of a Hg-Ar hot cathode discharge. The absorption and LIF measurements are used to test the qualitative understanding and develop a quantitative model of a hot cathode discharge. The main contribution of this thesis is a model of the negative glow region that demonstrates the importance of Penning ionization to the ionization balance in the negative glow. We modeled the excited argon balance equation using a Monte Carlo simulation. In this simulation we used the trapped radiative decay rate of the resonance levels and the Penning ionization rate as the dominant loss terms in the balance equation. The simulated data is compared to and found to agree with absolute excited argon densities measured in a classical absorption experiment. We found the primary production rate per unit volume of excited Ar atoms in the simulation is sharply peaked near the cathode hot spot. We used the ion production rate from this simulation and a Green's function solution to the ambipolar diffusion equation to calculate the contribution of Penning ionization to the total ion density. We compared the results of this calculation to our experimental values of the Hg ^+ densities in the negative glow. We found that Penning ionization is an important and possibly the dominant ionization process in the negative glow.

  2. Harmonic Generation in Argon by Femtosecond Ti:Sapphire Laser

    NASA Astrophysics Data System (ADS)

    Qindeel, Rabia; Samad, Ricardo Elgul; de Freitas, Anderson Zanardi; de Matos, Paulo Sergio Fabris; Falcão, Edilson Lucena; Vieira Junior, Nilson Dias

    Generation of harmonics using a gas nozzle has remarkable feature in various applications. Pulses from a Ti:Sapphire laser, centered at 785 nm, in a 4 kHz train, with 25 femtoseconds and 800 μJ of maximum energy were employed to generate harmonics in an argon gas nozzle. We present the current results on the focusability of the nozzle, harmonic radiation, measurement of the influence of laser power and laser focus position on the divergence of gas nozzle. We have successfully generated 3rd, 5th and 7th harmonics in Argon at different laser powers. The results show that the harmonic signals are almost same for laser average powers over 1.0 W and variation always appears below 1.0 W. It means that there is saturation in the physical phenomenon happening inside the gas nozzle at high laser powers and the variation is non-linear below 1.0 W. These results are embedded in an effort towards x-ray generation in the water window.

  3. Elastic properties of liquid and solid argon in nanopores.

    PubMed

    Schappert, Klaus; Pelster, Rolf

    2013-10-16

    We have measured sorption isotherms and determined the intrinsic longitudinal elastic modulus β(Ar,ads) of nanoconfined material via ultrasonic measurements combined with a special effective medium analysis. In the liquid regime the adsorbate only contributes to the measured effective properties when the pores are completely filled and the modulus is bulklike. At partial fillings its contribution is cancelled out by the high compressibility of the vapour phase. In contrast, at lower temperatures frozen argon as well as underlying liquid surface layers cause a linear increase of the effective longitudinal modulus upon filling. During sorption the contribution of the liquid surface layers near the pore wall β(Ar,surf) increases with the thickness of the solid layers reaching the bulk value β(Ar,liquid) only in the limit of complete pore filling. We interpret this effect as due to the gradual stiffening of the solid argon membrane. The measurements and their analysis show that longitudinal ultrasonic waves are well suited to the study of the elastic properties and liquid-solid phase transitions in porous systems. This method should also help to detect the influence of nanoconfinement on elastic properties in further research.

  4. Correction of NPL-2013 estimate of the Boltzmann constant for argon isotopic composition and thermal conductivity

    NASA Astrophysics Data System (ADS)

    de Podesta, Michael; Yang, Inseok; Mark, Darren F.; Underwood, Robin; Sutton, Gavin; Machin, Graham

    2015-10-01

    In 2013, a team from NPL, Cranfield University and SUERC published an estimate of the Boltzmann constant based on precision measurements of the speed of sound in argon. A key component of our results was an estimate of the molar mass of the argon gas used in our measurements. To achieve this we made precision comparison measurements of the isotope ratios found in our experimental argon against the ratios of argon isotopes found in atmospheric air. We then used a previous measurement of the atmospheric argon isotope ratios to calibrate the relative sensitivity of the mass spectrometer to different argon isotopes. The previous measurement of the atmospheric argon isotope ratios was carried out at KRISS using a mass spectrometer calibrated using argon samples of known isotopic composition, which had been prepared gravimetrically. We report here a new measurement made at KRISS in October 2014, which directly compared a sample of our experimental gas against the same gravimetrically-prepared argon samples. We consider that this direct comparison has to take precedence over our previous more indirect comparison. This measurement implies a molar mass which is 2.73(60) parts in 106 lighter than our 2013 estimate, a shift which is seven times our 2013 estimate of the uncertainty in the molar mass. In this paper we review the procedures used in our 2013 estimate of molar mass; describe the 2014 measurement; highlight some questions raised by the large change in our estimate of molar mass; and describe how we intend to address the inconsistencies between them. We also consider the effect of a new estimate of the low pressure thermal conductivity of argon at 273.16 K. Finally we report our new best estimate of the Boltzmann constant with revised uncertainty, taking account of the new estimates for the molar mass and the thermal conductivity of the argon.

  5. The GMT detector alignment in the STAR experiment

    NASA Astrophysics Data System (ADS)

    Ermakov, N.; STAR Collaboration

    2016-02-01

    The Solenoidal Tracker At RHIC (STAR) uses the Time Projection Chamber (TPC) to perform tracking and particle identification. In order to improve the corrections (such as space charge) and monitor non-static distortions of the TPC, GEM-based chambers (GMT) were installed at eight locations outside the TPC where they will provide optimal sensitivity to the distortions. In order to reach this goal, the ionization clusters were measured by using the ADC signals in each module. The positions of clusters and their deviations from track projections enabled alignment of the GMT modules with respect to TPC to an accuracy ∼ 200μm.

  6. The ArgoNeuT detector in the NuMI low-energy beam line at Fermilab

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Antonello, M.; Baller, B.; Bolton, T.; Bromberg, C.; Cavanna, F.; Church, E.; Edmunds, D.; Ereditato, A.; Farooq, S.; Fleming, B.; Greenlee, H.; Guenette, R.; Haug, S.; Horton-Smith, G.; James, C.; Klein, E.; Lang, K.; Lathrop, A.; Laurens, P.; Linden, S.; McKee, D.; Mehdiyev, R.; Page, B.; Palamara, O.; Partyka, K.; Pordes, S.; Rameika, G.; Rebel, B.; Rossi, B.; Sanders, R.; Soderberg, M.; Spitz, J.; Szelc, A. M.; Weber, M.; Wongjirad, T.; Yang, T.; Zeller, G. P.

    2012-10-01

    The ArgoNeuT liquid argon time projection chamber has collected thousands of neutrino and anti-neutrino events during an extended run period in the NuMI beam-line at Fermilab. This paper focuses on the main aspects of the detector layout and related technical features, including the cryogenic equipment, time projection chamber, read-out electronics, and off-line data treatment. The detector commissioning phase, physics run, and first neutrino event displays are also reported. The characterization of the main working parameters of the detector during data-taking, the ionization electron drift velocity and lifetime in liquid argon, as obtained from through-going muon data complete the present report.

  7. GridPix detectors: Production and beam test results

    NASA Astrophysics Data System (ADS)

    Koppert, W. J. C.; van Bakel, N.; Bilevych, Y.; Colas, P.; Desch, K.; Fransen, M.; van der Graaf, H.; Hartjes, F.; Hessey, N. P.; Kaminski, J.; Schmitz, J.; Schön, R.; Zappon, F.

    2013-12-01

    The innovative GridPix detector is a Time Projection Chamber (TPC) that is read out with a Timepix-1 pixel chip. By using wafer post-processing techniques an aluminium grid is placed on top of the chip. When operated, the electric field between the grid and the chip is sufficient to create electron induced avalanches which are detected by the pixels. The time-to-digital converter (TDC) records the drift time enabling the reconstruction of high precision 3D track segments. Recently GridPixes were produced on full wafer scale, to meet the demand for more reliable and cheaper devices in large quantities. In a recent beam test the contribution of both diffusion and time walk to the spatial and angular resolutions of a GridPix detector with a 1.2 mm drift gap are studied in detail. In addition long term tests show that in a significant fraction of the chips the protection layer successfully quenches discharges, preventing harm to the chip.

  8. The TALE Tower Detector

    NASA Astrophysics Data System (ADS)

    Bergman, D. R.

    The TA Low Energy Extension will include a Tower FluorescenceDetector. Extensive air showers at the lowest usful energies for fluorescence detectors will in general be close to the detector. This requires viewing all elevation angles to be able to reconstruct showers. The TALE Tower Detector, operating in conjunction with other TALE detectors will view elevation angles up to above 70 degrees, with an azimuthal coverage of about 90 degrees. Results from a prototype mirror operated in conjunction with the HiRes detector will also be presented.

  9. GADRAS Detector Response Function.

    SciTech Connect

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G; Horne, Steven M.

    2014-11-01

    The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

  10. The MINOS detectors

    SciTech Connect

    Habig, A.; Grashorn, E.W.; /Minnesota U., Duluth

    2005-07-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment's primary goal is the precision measurement of the neutrino oscillation parameters in the atmospheric neutrino sector. This long-baseline experiment uses Fermilab's NuMI beam, measured with a Near Detector at Fermilab, and again 735 km later using a Far Detector in the Soudan Mine Underground Lab in northern Minnesota. The detectors are magnetized iron/scintillator calorimeters. The Far Detector has been operational for cosmic ray and atmospheric neutrino data from July of 2003, the Near Detector from September 2004, and the NuMI beam started in early 2005. This poster presents details of the two detectors.

  11. The influence of microstructures on the relationship between argon retentivity and chemical composition of hornblende

    SciTech Connect

    Onstott, T.C.; Pringle-Goodell, L. )

    1988-08-01

    This paper discusses isotope dating of hornblende separates from the Connemara, western Ireland. The dating is based on potassium/argon dates and the author provides a rebuttal of an earlier paper which dismisses any correlation between iron content in the hornblende and the Argon isotope dates for the same mineral.

  12. 21 CFR 874.4490 - Argon laser for otology, rhinology, and laryngology.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4490 Argon laser for otology, rhinology, and laryngology. (a) Identification. The argon laser device for use in otology, rhinology, and laryngology is an electro-optical device which produces...

  13. Present and Future of Central Production With STAR Detector at RHIC

    SciTech Connect

    Guryn, Wlodek

    2011-07-15

    The present status and future of the physics program of Central Production using the STAR detector at RHIC are described. The program focuses on particle production in the Double Pomeron Exchange (DPE) process. Forward protons from the DPE interaction are detected in the Roman Pot system installed at 55.5 m and 58.5 m on both sides of the STAR interaction point. The recoil system of charged particles from the DPE process is measured in the STAR Time Projection Chamber (TPC). The first data were taken during the 2009 RHIC Run 9 using polarized proton-proton collisions at {radical}(s) 200 GeV. The preliminary spectra of two pion and four pion invariant mass reconstructed by STAR TPC in central region of pseudo-rapidity |{eta}|<1, are presented. Plans to take data with the current system at {radical}(s) = 500 GeV and plans to upgrade the forward proton tagging system, so that it can reach higher masses and obtain large data samples to allow searching for glueballs that could be produced in the DPE process, are also discussed.

  14. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Ting; Li, Guo; Li, He-Ping; Bao, Cheng-Yu; Wang, Hua-Bo; Zeng, Shi; Gao, Xing; Luo, Hui-Ying

    2007-06-01

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  15. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    SciTech Connect

    Sun Wenting; Li Guo; Li Heping; Bao Chengyu; Wang Huabo; Zeng Shi; Gao Xing; Luo Huiying

    2007-06-15

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure {alpha}-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  16. Effect of argon addition on plasma parameters and dust charging in hydrogen plasma

    SciTech Connect

    Kakati, B. Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.; Saxena, Y. C.

    2014-10-28

    Experimental results on effect of adding argon gas to hydrogen plasma in a multi-cusp dusty plasma device are reported. Addition of argon modifies plasma density, electron temperature, degree of hydrogen dissociation, dust current as well as dust charge. From the dust charging profile, it is observed that the dust current and dust charge decrease significantly up to 40% addition of argon flow rate in hydrogen plasma. But beyond 40% of argon flow rate, the changes in dust current and dust charge are insignificant. Results show that the addition of argon to hydrogen plasma in a dusty plasma device can be used as a tool to control the dust charging in a low pressure dusty plasma.

  17. Argon-Hydrogen Shielding Gas Mixtures for Activating Flux-Assisted Gas Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Huang, Her-Yueh

    2010-11-01

    Using activating flux for gas tungsten arc welding (GTAW) to improve penetration capability is a well-established technique. Argon is an inert gas and the one most widely used as a shielding gas for GTAW. For the most austenitic stainless steels, pure argon does not provide adequate weld penetration. Argon-hydrogen mixtures give a more even heat input to the workpiece, increasing the arc voltage, which tends to increase the volume of molten material in the weld pool as well as the weld depth-to-width ratio. Great interest has been shown in the interaction between activating flux and the hydrogen concentration in an argon-based shielding gas. In this study, the weld morphology, the arc profile, the retained delta ferrite content, the angular distortion, and the microstructures were examined. The application of an activating flux combining argon and hydrogen for GTAW is important in the industry. The results of this study are presented here.

  18. Tin Can Radiation Detector.

    ERIC Educational Resources Information Center

    Crull, John L.

    1986-01-01

    Provides instructions for making tin can radiation detectors from empty aluminum cans, aluminum foil, clear plastic, copper wire, silica gel, and fine, unwaxed dental floss put together with tape or glue. Also provides suggestions for activities using the detectors. (JN)

  19. Segmented pyroelector detector

    DOEpatents

    Stotlar, S.C.; McLellan, E.J.

    1981-01-21

    A pyroelectric detector is described which has increased voltage output and improved responsivity over equivalent size detectors. The device comprises a plurality of edge-type pyroelectric detectors which have a length which is much greater than the width of the segments between the edge-type electrodes. External circuitry connects the pyroelectric detector segments in parallel to provide a single output which maintains 50 ohm impedance characteristics.

  20. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  1. LGB neutron detector

    NASA Astrophysics Data System (ADS)

    Quist, Nicole

    2012-10-01

    The double pulse signature of the Gadolinium Lithium Borate Cerium doped plastic detector suggests its effectiveness for analyzing neutrons while providing gamma ray insensitivity. To better understand this detector, a californium gamma/neutron time of flight facility was constructed in our lab. Reported here are efforts to understand the properties and applications of the LGB detector with regards to neutron spectroscopy.

  2. Tevatron Detector Upgrades

    SciTech Connect

    Lipton, Ronald

    2005-03-22

    The D0 and CDF experiments are in the process of upgrading their detectors to cope with the high luminosities projected for the remainder of Tevatron Run II. We discuss the expected Tevatron environment through 2009, the detector challenges due to increasing luminosity in this period, and the solutions undertaken by the two experiments to mitigate detector problems and maximize physics results.

  3. Tevatron detector upgrades

    SciTech Connect

    Lipton, R.; /Fermilab

    2005-01-01

    The D0 and CDF experiments are in the process of upgrading their detectors to cope with the high luminosities projected for the remainder of Tevatron Run II. They discuss the expected Tevatron environment through 2009, the detector challenges due to increasing luminosity in this period, and the solutions undertaken by the two experiments to mitigate detector problems and maximize physics results.

  4. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Zheng, Wei

    2010-09-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  5. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Ely, Justin

    2013-10-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  6. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Ely, Justin

    2012-10-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  7. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Cox, Colin

    2011-10-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  8. Flush-mounted probe diagnostics for argon glow discharge plasma.

    PubMed

    Xu, Liang; Cao, Jinxiang; Liu, Yu; Wang, Jian; Du, Yinchang; Zheng, Zhe; Zhang, Xiao; Wang, Pi; Zhang, Jin; Li, Xiao; Qin, Yongqiang; Zhao, Liang

    2014-09-01

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges. These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.

  9. Flush-mounted probe diagnostics for argon glow discharge plasma

    SciTech Connect

    Xu, Liang Cao, Jinxiang; Liu, Yu; Wang, Jian; Du, Yinchang; Zheng, Zhe; Zhang, Xiao; Wang, Pi; Zhang, Jin; Li, Xiao; Qin, Yongqiang; Zhao, Liang

    2014-09-15

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges. These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.

  10. Pulsed electron beam propagation in argon and nitrogen gas mixture

    SciTech Connect

    Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.; Remnev, G. E.; Zhirkov, I. S.

    2015-10-15

    The paper presents the results of current measurements for the electron beam, propagating inside a drift tube filled in with a gas mixture (Ar and N{sub 2}). The experiments were performed using the TEA-500 pulsed electron accelerator. The main characteristics of electron beam were as follows: 60 ns pulse duration, up to 200 J energy, and 5 cm diameter. The electron beam propagated inside the drift tube assembled of three sections. Gas pressures inside the drift tube were 760 ± 3, 300 ± 3, and 50 ± 1 Torr. The studies were performed in argon, nitrogen, and their mixtures of 33%, 50%, and 66% volume concentrations, respectively.

  11. Coagulation of Dust Particles in Argon Plasma of RF Discharge

    SciTech Connect

    Mankelevich, Yu. A.; Olevanov, M. A.; Pal, A. F.; Rakhimova, T. V.; Ryabinkin, A. N.; Serov, A. O.; Filippov, A. V.

    2008-09-07

    The experiments on coagulation of poly-disperse particles with various size distributions injected into the argon plasma of the magnetron radio-frequency discharge are discussed. The experiments were carried out under the conditions similar to those using dusty plasma for technology applications. Within the created theory the threshold behavior of the coagulation process was explained for the first time, the estimation of the critical particle size for onset of a fast coagulation was made, and the analytical calculation of the coagulation rate of dust particles was performed. The proposed coagulation mechanism makes it possible to describe the typical features of coagulation processes observed in experiments and to explain the effects of attraction and coalescence of highly negatively charged microns size particles.

  12. Photochemistry of cyclopentadiene isolated in low-temperature argon matrices

    NASA Astrophysics Data System (ADS)

    Miyazaki, Jun; Yamada, Yasuhiro

    2004-04-01

    The photochemistry of cyclopentadiene isolated in low-temperature argon matrices was studied by means of IR and UV/VIS spectroscopy. Bicyclo[2.1.0]pent-2-ene was formed by the irradiation of matrix-isolated cyclopentadiene using a super-high-pressure mercury lamp. When the matrix-isolated cyclopentadiene was irradiated with shorter wavelength using a low-pressure mercury lamp, further reactions of bicyclo[2.1.0]pent-2-ene were found to produce allylacetylene and vinylallene. While the photochemistry of cyclopentadiene to form bicyclo[2.1.0]pent-2-ene is known in a solution system, the production of allylacetylene and vinylallene in a matrix-isolated system has never been previously reported. The assignments of the species and the determination of the reaction mechanisms were performed using molecular orbital calculations.

  13. Self-consistent polarization density functional theory: Application to Argon

    SciTech Connect

    Maerzke, Katie A.; Murdachaew, Garold; Mundy, Christopher J.; Schenter, Gregory K.; Siepmann, J. I.

    2009-03-12

    We present a comprehensive set of results for argon, a case study in weak interactions, using the selfconsistent polarization density functional theory (SCP-DFT). With minimal parameterization, SCPDFT is found is give excellent results for the dimer interaction energy, the second virial coefficient, the liquid structure, and the lattice constant and cohesion energy of the face-centered cubic (fcc) crystal compared to both accurate theoretical and experimental benchmarks. Thus, SCP-DFT holds promise as a fast, efficient, and accurate method for performing ab initio dynamics that include additional polarization and dispersion interactions for large, complex systems involving solvation and bond breaking. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

  14. Threshold photoelectron spectrum of the Argon 3s satellites

    SciTech Connect

    Medhurst, L.J.; Von Wittenau, A.S.; van Zee, R.D.; Zhang, J.S.; Liu, S.H.; Shirley, D.A.; Lindle, D.W.

    1989-07-01

    Lately a variety of techniques have studied the electron correlation satellites with binding energies between the Argon 3s binding energy (29.24 eV) and the 2p/sup /minus/2/ ionization potential (43.38 eV). One of these techniques, Threshold Photoelectron Spectroscopy, with /approximately/90 meV FWHM resolution, revealed at least 25 individual electronic states. All of these could contribute to any other satellite spectrum, and this helped explain some discrepancies between previous measurements. This technique has been applied to the same region with higher resolution (<60 meV at the Ar 3s/sup /minus/1/peak). In this higher resolution spectrum at least 29 individual electronic states are present. In some cases the multiplet splitting is observed. 12 refs., 2 figs.

  15. Is there excess argon in the Fish Canyon magmatic system?

    NASA Astrophysics Data System (ADS)

    Wilkinson, C. M.; Sherlock, S.; Kelley, S. P.; Charlier, B. L.

    2010-12-01

    Some phenocrysts from the Fish Canyon Tuff (San Juan volcanic field, south-western Colorado, USA) have yielded anomalously old 40Ar/39Ar apparent ages and yet the sanidine ages are sufficiently reproducible to allow its use as an international standard. The eruption age of the Fish Canyon tuff has recently been determined by high precision analysis and recalibration of the decay constants based on the sanidine standard at 28.305 ± 0.036 Ma [1], slightly younger than the generally accepted U-Pb age. Previously, minerals from the tuff have been used in various geochronological studies e.g., fission-track; U-Pb; Rb-Sr; K-Ar and 40Ar/39Ar, but U-Pb zircon ages which range 28.37 - 28.61 Ma appear to be older than the sanidine and other minerals, including biotite, yield older ages (27.41 - 28.25 Ma for biotite) [2]. In the Fish Canyon volcanic system, the erupted products are thought to exist in the magma chamber for significant periods prior to eruption [3] and then pass rapidly from a high temperature magmatic environment (where Ar is free to re-equilibrate among the minerals), to effectively being quenched upon eruption (where Ar becomes immobile). Artificially elevated ages, older than eruption age, have been identified in some 40Ar/39Ar geochronological studies (e.g. [4]). These older ages may either reflect; 1) argon accumulation in pheno- or xenocrysts (by radioactive decay of parent 40K), 2) excess argon (40ArE) incorporated into a mineral during crystallisation (via diffusion into the mineral lattice or hosted within fluid or melt inclusions) or 3) inherited radiogenic argon (the dated material contains a component older than the age of eruption) [5]. To better understand the effects of 40ArE on 40Ar/39Ar apparent ages we have conducted a detailed study of intra-grain grain age variations by UV-LAMP Ar-analysis. Analysis of polished thick sections has been performed in-situ using a 213nm laser and Nu Instruments Noblesse which is able to discriminate against

  16. Uranium (III) precipitation in molten chloride by wet argon sparging

    NASA Astrophysics Data System (ADS)

    Vigier, Jean-François; Laplace, Annabelle; Renard, Catherine; Miguirditchian, Manuel; Abraham, Francis

    2016-06-01

    In the context of pyrochemical processes for nuclear fuel treatment, the precipitation of uranium (III) in molten salt LiCl-CaCl2 (30-70 mol%) at 705 °C is studied. First, this molten chloride is characterized with the determination of the water dissociation constant. With a value of 10-4.0, the salt has oxoacid properties. Then, the uranium (III) precipitation using wet argon sparging is studied. The salt is prepared using UCl3 precursor. At the end of the precipitation, the salt is totally free of solubilized uranium. The main part is converted into UO2 powder but some uranium is lost during the process due to the volatility of uranium chloride. The main impurity of the resulting powder is calcium. The consequences of oxidative and reductive conditions on precipitation are studied. Finally, coprecipitation of uranium (III) and neodymium (III) is studied, showing a higher sensitivity of uranium (III) than neodymium (III) to precipitation.

  17. Low-energy ion implantation: Large mass fractionation of argon

    NASA Technical Reports Server (NTRS)

    Ponganis, K. V.; Graf, TH.; Marti, K.

    1993-01-01

    The isotropic signatures of noble gases in the atmospheres of the Earth and other planets are considerably evolved when compared to signatures observed in the solar wind. The mechanisms driving the evolution of planetary volatiles from original compositions in the solar accretion disk are currently poorly understood. Modeling of noble-gas compositional histories requires knowledge of fractionating processes that may have operated through the evolutionary stages. Since these gases are chemically inert, information on noble-gas fractionation processes can be used as probes. The importance of understanding these processes extends well beyond 'noble-gas planetology.' Trapped argon acquired by low-energy implantation (approximately less than 100 eV) into solids is strongly mass fractionated (approximately greater than or equal to 3 percent/amu). This has potential implications for the origin and evolution of terrestrial planet atmospheres.

  18. Studies on argon collisions with smooth and rough tungsten surfaces.

    PubMed

    Ozhgibesov, M S; Leu, T S; Cheng, C H; Utkin, A V

    2013-09-01

    The aim of this work is to investigate argon scattering behaviors on the smooth and rough tungsten surfaces. Current work deals with numerical simulation of nanoscale heat transfer process accompanying with rarefied gas-solid substrate interactions using molecular dynamics (MD) method. Taking into account that this method is very time consuming, MD simulation using CUDA capable Graphic Cards is implemented. The results found that imperfection of the surface significantly influences on gas atom's momentum change upon collision. However, the energy exchange rate remains unchanged regardless to the surface roughness. This finding is in contrast with the results in extant literatures. We believed the results found in this paper are important for both numerical and theoretical analyses of rarefied gas flow in micro- and nano-systems where the choice of boundary conditions significantly influences flow. PMID:24007943

  19. Studies on argon collisions with smooth and rough tungsten surfaces.

    PubMed

    Ozhgibesov, M S; Leu, T S; Cheng, C H; Utkin, A V

    2013-09-01

    The aim of this work is to investigate argon scattering behaviors on the smooth and rough tungsten surfaces. Current work deals with numerical simulation of nanoscale heat transfer process accompanying with rarefied gas-solid substrate interactions using molecular dynamics (MD) method. Taking into account that this method is very time consuming, MD simulation using CUDA capable Graphic Cards is implemented. The results found that imperfection of the surface significantly influences on gas atom's momentum change upon collision. However, the energy exchange rate remains unchanged regardless to the surface roughness. This finding is in contrast with the results in extant literatures. We believed the results found in this paper are important for both numerical and theoretical analyses of rarefied gas flow in micro- and nano-systems where the choice of boundary conditions significantly influences flow.

  20. Evaluation of phototoxic retinal damage after argon laser iridotomy

    SciTech Connect

    Anderson, D.R.; Knighton, R.W.; Feuer, W.J.

    1989-04-15

    We performed several visual function tests in 17 eyes (ten patients) before and after argon laser iridotomy in an effort to detect diffuse photochemical damage to photoreceptors caused by exposure to the intense, blue-green light that is transmitted into the posterior segment as the iridotomy is created and enlarged. No change was detected in static threshold sensitivity in the central 30 degrees of the field (Octopus perimeter), color sensitivity (Farnsworth-Munsell 100-Hue test), or visual acuity. Contrast sensitivity showed a small increase at low spatial frequencies and a small decrease at high spatial frequencies. The latter change was small and not necessarily laser related, but precautions to limit laser exposure of the posterior pole are prudent.