Science.gov

Sample records for argon-nitrogen avalanche detectors

  1. Avalanche photodiodes for anticoincidence detectors

    NASA Astrophysics Data System (ADS)

    Cirignano, Leonard J.; Farrell, Richard; Redus, Robert H.; Squillante, Michael R.; Hunter, Stanley D.; Cuddapah, Rajani; Mukherjee, Reshmi

    1996-10-01

    Anticoincidence detectors are required for a variety of satellite instruments, including high energy gamma-ray telescopes, in order to differentiate ambient background radiation from signals of interest. Presently, most anticoincidence systems use scintillators coupled to photomultiplier tubes. We have demonstrated that it is now possible to use very high gain solid state avalanche photodiodes (APDs) as photodetectors for this application. A single APD coupled to a 30 cm multiplied by 30 cm multiplied by 0.95 cm plastic scintillator tile demonstrated 100% detection efficiency for minimum ionizing particles, with a low false positive rate. Multiple APDs enhance the signal to noise ratio in addition to providing redundancy. Relative to PMTs, APDs are compact, low power, and mechanically robust devices. Ground test data of APDs for anticoincidence shields is presented.

  2. TCAD simulation of Low Gain Avalanche Detectors

    NASA Astrophysics Data System (ADS)

    Dalal, Ranjeet; Jain, Geetika; Bhardwaj, Ashutosh; Ranjan, Kirti

    2016-11-01

    In the present work, detailed simulation using Technology Computer Aided Design (TCAD) tool, Silvaco for non-irradiated and irradiated LGAD (Low Gain Avalanche Detector) devices has been carried out. The effects of different design parameters and proton irradiation on LGAD operation are discussed in detail. An already published effective two trap bulk damage model is used to simulate the radiation damage without implementing any acceptor removal term. The TCAD simulation for irradiated LGAD devices produce decreasing gain with increasing fluence, similar to the measurement results. The space charge density and electric field distribution are used to illustrate the possible reasons for the degradation of gain of the irradiated LGAD devices.

  3. III-nitride-based avalanche photo detectors

    NASA Astrophysics Data System (ADS)

    McClintock, Ryan; Cicek, Erdem; Vashaei, Zahra; Bayram, Can; Razeghi, Manijeh; Ulmer, Melville P.

    2010-08-01

    Research into III-Nitride based avalanche photodiodes (APDs) is motivated by the need for high sensitivity ultraviolet (UV) detectors in numerous civilian and military applications. By designing III-Nitride photodetectors that utilize low-noise impact ionization high internal gain can be realized-GaN APDs operating in Geiger mode can achieve gains exceeding 1×107. Thus with careful design, it becomes possible to count photons at the single photon level. In this paper we review the current state of the art in III-Nitride visible-blind APDs and discuss the critical design choices necessary to achieve high performance Geiger mode devices. Other major technical issues associated with the realization of visible-blind Geiger mode APDs are also discussed in detail and future prospects for improving upon the performance of these devices are outlined. The photon detection efficiency, dark count rate, and spectral response of or most recent Geiger-mode GaN APDs on free-standing GaN substrates are studied under low photon fluxes, with single photon detection capabilities being demonstrated. We also present our latest results regarding linear mode gain uniformity: the study of gain uniformity helps reveal the spatial origins of gain so that we can better understand the role of defects.

  4. Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.

    2009-01-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  5. Indirect flat-panel detector with avalanche gain: design and operation of the avalanche photoconductor

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Li, Dan; Reznik, Alla; Lui, Brian; Hunt, D. C.; Tanioka, Kenkichi; Rowlands, J. A.

    2005-04-01

    An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP. The final electronic image can be read out using either an array of thin film transistors (TFT) or field emitters (FE). The advantage of the proposed detector is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoid pixel saturation. This paper investigates the important design considerations for HARP such as avalanche gain, which depends on both the thickness dSe and the applied electric field ESe. To determine the optimal design parameter and operational conditions for HARP, we measured the ESe dependence of both avalanche gain and optical quantum efficiency of an 8 μm HARP layer. The results were applied to a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and non-avalanche modes as a function of ESe: (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; and (4) gain non-uniformity resulting from thickness non-uniformity. Our results showed that a HARP layer thickness of 8 μm can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy.

  6. High gain multigap avalanche detectors for Cerenkov ring imaging

    SciTech Connect

    Gilmore, R.S.; Lavender, W.M.; Leith, D.W.G.S.; Williams, S.H.

    1980-10-01

    We report on a continuing study of multigap parallel plate avalanche chambers, primarily as photoelectron detectors for use with Cerenkov ring imaging counters. By suitable control of the fields in successive gaps and by introducing screens to reduce photon feedback to the cathode the gain many be increased considerably. We have obtained gains in excess of 6 x 10/sup 7/ for photoelectrons with a good pulse height spectrum and expect to increase this further. We discuss the use of resistive anodes to give avalanche positions in two dimensions by charge division.

  7. High resolution, low energy avalanche photodiode X-ray detectors

    NASA Technical Reports Server (NTRS)

    Farrell, R.; Vanderpuye, K.; Entine, G.; Squillante, M. R.

    1991-01-01

    Silicon avalanche photodiodes have been fabricated, and their performance as X-ray detectors has been measured. Photon sensitivity and energy resolution were measured as a function of size and operating parameters. Noise thresholds as low as 212 eV were obtained at room temperature, and backscatter X-ray fluorescence data were obtained for aluminum and other light elements. It is concluded that the results with the X-ray detector are extremely encouraging, and the performance is challenging the best available proportional counters. While not at the performance level of either cryogenic silicon or HgI2, these device operate at room temperature and can be reproduced in large numbers and with much larger areas than typically achieved with HgI2. In addition, they are rugged and appear to be indefinitely stable.

  8. New gamma detector modules based on micropixel avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Ahmadov, F.; Ahmadov, G.; Guliyev, E.; Madatov, R.; Sadigov, A.; Sadygov, Z.; Suleymanov, S.; Akberov, R.; Nuriyev, S.; Zerrouk, F.

    2017-01-01

    In this paper presented the results of the ionizing radiation detector modules, which developed on the basis of a new generation of micropixel avalanche photodiode (MAPD) of MAPD-3NK type. The samples were produced in cooperation with the Zecotek Photonics and characterized by the following parameters: sensitive area—3.7 mm × 3.7 mm, density of pixels—10000 pixels/mm2, photon detection efficiency—35-40% (at wavelength of 450-550 nm) and operation voltage—91 V. The beta particle and gamma ray detection performance of MAPD with different single scintillation crystal such as NaI, LFS and p-terphenyl was investigated. The gamma ray detector modules demonstrated a perfect linear behavior of detected signal amplitudes as a function of the gamma ray energy (from 26.3 keV up to 1.33 MeV). Energy resolution for 662 keV gamma rays was 11.2% and the minimum detectable energy was 26.3 keV.

  9. A field-shaping multi-well avalanche detector for direct conversion amorphous selenium

    SciTech Connect

    Goldan, A. H.; Zhao, W.

    2013-01-15

    Purpose: A practical detector structure is proposed to achieve stable avalanche multiplication gain in direct-conversion amorphous selenium radiation detectors. Methods: The detector structure is referred to as a field-shaping multi-well avalanche detector. Stable avalanche multiplication gain is achieved by eliminating field hot spots using high-density avalanche wells with insulated walls and field-shaping inside each well. Results: The authors demonstrate the impact of high-density insulated wells and field-shaping to eliminate the formation of both field hot spots in the avalanche region and high fields at the metal-semiconductor interface. Results show a semi-Gaussian field distribution inside each well using the field-shaping electrodes, and the electric field at the metal-semiconductor interface can be one order-of-magnitude lower than the peak value where avalanche occurs. Conclusions: This is the first attempt to design a practical direct-conversion amorphous selenium detector with avalanche gain.

  10. A theoretical study of improved front-illuminated avalanche drift detectors

    NASA Astrophysics Data System (ADS)

    Liang, K.; Yuan, J.; Li, H. R.; Yang, R.; Han, D. J.

    2013-06-01

    In this study, two avalanche drift detector (ADD) concepts were theoretically examined. One was an improved detector with an avalanche photodiode (APD) collecting and double pn-junction drift configuration, and the other was a combination of an APD collecting and metal oxide semiconductor (MOS) drift structure. The feasibility of the devices was theoretically investigated by the ISE-TCAD program. ADD can be operated in either Geiger mode or linear mode. In the former case, the detector was found to be appropriate for a single photon avalanche detector with a large collection area. In the latter case, the detector was observed to be well suited to be coupled to a scintillator for gamma-ray detection. The improved ADDs are considered to have good performances in the short wavelength optical detection and in matching common scintillation crystals with more flexibility.

  11. Characterization of avalanche photodiodes for lidar atmospheric return signal detectors

    NASA Technical Reports Server (NTRS)

    Antill, C. W., Jr.; Holloway, R. M.

    1988-01-01

    Results are presented from tests to characterize noise, dark current, overload, and gain versus bias, relationships of ten avalanche photodiodes. The advantages of avalanche photodiodes over photomultiplier tubes for given laser wavelengths and return signal amplitudes are outlined. The relationship between responsivity and temperature and dark current and temperature are examined. Also, measurements of the noise equivalent power, the excess noise factor, and linearity are given. The advantages of using avalanche photodiodes in the Lidar Atmospheric Sensing Experiment and the Lidar In-Space Technology Experiment are discussed.

  12. Signal-to-noise ratio of Geiger-mode avalanche photodiode single-photon counting detectors

    NASA Astrophysics Data System (ADS)

    Kolb, Kimberly

    2014-08-01

    Geiger-mode avalanche photodiodes (GM-APDs) use the avalanche mechanism of semiconductors to amplify signals in individual pixels. With proper thresholding, a pixel will be either "on" (avalanching) or "off." This discrete detection scheme eliminates read noise, which makes these devices capable of counting single photons. Using these detectors for imaging applications requires a well-developed and comprehensive expression for the expected signal-to-noise ratio (SNR). This paper derives the expected SNR of a GM-APD detector in gated operation based on gate length, number of samples, signal flux, dark count rate, photon detection efficiency, and afterpulsing probability. To verify the theoretical results, carrier-level Monte Carlo simulation results are compared to the derived equations and found to be in good agreement.

  13. Transient and steady-state dark current mechanisms in amorphous selenium avalanche radiation detectors

    SciTech Connect

    Kabir, M. Z.; Imam, Safayat-Al

    2013-04-15

    A theoretical model for describing bias-dependent transient and steady-state behaviors of dark current in amorphous selenium (a-Se) avalanche detector structures has been developed. The analytical model considers bulk thermal generation current from mid-gap sates, transient carrier depletion, and carrier injection from the electrodes incorporating avalanche multiplication. The proposed physics-based dark current model is compared with the published experimental results on three potential a-Se avalanche detector structures. The steady-state dark current is the minimum for the structures that have effective blocking layers for both holes and electrons. The transient decay time to reach a plateau decreases considerably with increasing electric field.

  14. High-Gain Avalanche Rushing amorphous Photoconductor (HARP) detector

    NASA Astrophysics Data System (ADS)

    Tanioka, K.

    2009-09-01

    We have been studying a very sensitive image sensor since the early 1980s. In 1985, the author found for the first time that an experimental pickup tube with an amorphous selenium photoconductive target exhibits high sensitivity with excellent picture quality because of a continuous and stable avalanche multiplication phenomenon. We named the pickup tube with an amorphous photoconductive layer operating in the avalanche-mode "HARP": High-gain Avalanche Rushing amorphous Photoconductor. A color camera equipped with the HARP pickup tubes has a maximum sensitivity of 11 lx at F8. This means that the HARP camera is about 100 times as sensitive as that of CCD camera for broadcasting. This ultrahigh-sensitivity HARP pickup tube is a powerful tool for reporting breaking news at night and other low-light conditions, the production of scientific programs, and numerous other applications, including medical diagnoses, biotech research, and nighttime surveillance. In addition, since the HARP target can convert X-rays into electrons directly, it should be possible to exploit this capability to produce X-ray imaging devices with unparalleled levels of resolution and sensitivity.

  15. An indirect flat-panel detector with avalanche gain for low dose x-ray imaging: SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout)

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Li, Dan; Rowlands, J. A.; Egami, N.; Takiguchi, Y.; Nanba, M.; Honda, Y.; Ohkawa, Y.; Kubota, M.; Tanioka, K.; Suzuki, K.; Kawai, T.

    2008-03-01

    An indirect flat-imager with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose x-ray imaging with high resolution. It is made by optically coupling a structured x-ray scintillator CsI (Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The charge image created by HARP is read out by electron beams generated by the FEA. The proposed detector is called SAPHIRE (Scintillator Avalanche Photoconductor with HIgh Resolution Emitter readout). The avalanche gain of HARP depends on both a-Se thickness and applied electric field E Se. At E Se of > 80 V/μm, the avalanche gain can enhance the signal at low dose (e.g. fluoroscopy) and make the detector x-ray quantum noise limited down to a single x-ray photon. At high exposure (e.g. radiography), the avalanche gain can be turned off by decreasing E Se to < 70 V/μm. In this paper the imaging characteristics of the FEA readout method, including the spatial resolution and noise, were investigated experimentally using a prototype optical HARP-FEA image sensor. The potential x-ray imaging performance of SAPHIRE, especially the aspect of programmable gain to ensure wide dynamic range and x-ray quantum noise limited performance at the lowest exposure in fluoroscopy, was investigated.

  16. Design and feasibility of active matrix flat panel detector using avalanche amorphous selenium for protein crystallography.

    PubMed

    Sultana, Afrin; Reznik, Alla; Karim, Karim S; Rowlands, J A

    2008-10-01

    Protein crystallography is the most important technique for resolving the three-dimensional atomic structure of protein by measuring the intensity of its x-ray diffraction pattern. This work proposes a large area flat panel detector for protein crystallography based on direct conversion x-ray detection technique using avalanche amorphous selenium (a-Se) as the high gain photoconductor, and active matrix readout using amorphous silicon (a-Si:H) thin film transistors. The detector employs avalanche multiplication phenomenon of a-Se to make the detector sensitive to each incident x ray. The advantages of the proposed detector over the existing imaging plate and charge coupled device detectors are large area, high dynamic range coupled to single x-ray detection capability, fast readout, high spatial resolution, and inexpensive manufacturing process. The optimal detector design parameters (such as detector size, pixel size, and thickness of a-Se layer), and operating parameters (such as electric field across the a-Se layer) are determined based on the requirements for protein crystallography application. The performance of the detector is evaluated in terms of readout time (<1 s), dynamic range (approximately 10(5)), and sensitivity (approximately 1 x-ray photon), thus validating the detector's efficacy for protein crystallography.

  17. Development of Pixelated Linear Avalanche Integration Detector Using Silicon on Insulator Technology

    NASA Astrophysics Data System (ADS)

    Koyama, Akihiro; Shimazoe, Kenji; Takahashi, Hiroyuki; Hamasaki, Ryutaro; Orita, Tadashi; Onuki, Yoshiyuki; Otani, Wataru; Takeshita, Tohru; Kurachi, Ikuo; Miyoshi, Toshinobu; Nakamura, Isamu; Arai, Yasuo

    In various X-ray imaging applications such as single photon counting X-ray CT, micrometer scale spatial resolution and high detection efficiency possibility using structured porous scintillator took great interests. In order to achieve precise energy- and timing information measurements, high sensitive separately readable photo detector needs to be coupled to porous crystal. Therefore, we fabricated test element group (TEG) of micro sized linear avalanche integration detector (Plaid) on a silicon on insulator (SOI) wafer and inspected performance of each device. Measurements results showed guard ring structure achieved avalanche gain of magnitude from 10 to 1000 with lower gain saturation effect than non-guard ring structure. We concluded guard ring structure is desirable to achieve stable gain performance toward various optical powers and efficient to use for scintillation light read out.

  18. A novel technique for the measurement of the avalanche fluctuation of gaseous detectors

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Ogawa, T.; Kawaguchi, T.; Fujii, K.; Fusayasu, T.; Ikematsu, K.; Kato, Y.; Kawada, S.; Matsuda, T.; Settles, R. D.; Sugiyama, A.; Takahashi, T.; Tian, J.; Watanabe, T.; Yonamine, R.

    2017-02-01

    We have developed a novel technique for the measurement of the avalanche fluctuation of gaseous detectors using a UV laser. The technique is simple and requires a short data-taking time of about ten minutes. Furthermore, it is applicable for relatively low gas gains. Our experimental setup as well as the measurement principle, and the results obtained with a stack of Gas Electron Multipliers (GEMs) operated in several gas mixtures are presented.

  19. Avalanche Effect in Si Heavily Irradiated Detectors: Physical Model and Perspectives for Application

    SciTech Connect

    Eremin V.; Li Z.; Verbitskaya, E.; Zabrodskii, A.; Harkonen, J.

    2011-05-07

    The model explaining an enhanced collected charge in detectors irradiated to 10{sup 15}-10{sup 16} n{sub eq}/cm{sup 2} is developed. This effect was first revealed in heavily irradiated n-on-p detectors operated at high bias voltage ranging from 900 to 1700 V. The model is based on the fundamental effect of carrier avalanche multiplication in the space charge region and in our case is extended with a consideration of p-n junctions with a high concentration of the deep levels. It is shown that the efficient trapping of free carriers from the bulk generation current to the deep levels of radiation induced defects leads to the stabilization of the irradiated detector operation in avalanche multiplication mode due to the reduction of the electric field at the junction. The charge collection efficiency and the detector reverse current dependences on the applied bias have been numerically simulated in this study and they well correlate to the recent experimental results of CERN RD50 collaboration. The developed model of enhanced collected charge predicts a controllable operation of heavily irradiated detectors that is promising for the detector application in the upcoming experiments in a high luminosity collider.

  20. Two-phase Cryogenic Avalanche Detector with electroluminescence gap operated in argon doped with nitrogen

    NASA Astrophysics Data System (ADS)

    Bondar, A.; Buzulutskov, A.; Dolgov, A.; Nosov, V.; Shekhtman, L.; Shemyakina, E.; Sokolov, A.

    2017-02-01

    A two-phase Cryogenic Avalanche Detector (CRAD) with electroluminescence (EL) gap, operated in argon doped with a minor (49±7 ppm) admixture of nitrogen, has been studied. The EL gap was optically read out using cryogenic PMTs located on the perimeter of the gap. We present the results of the measurements of the N2 content, detector sensitivity to X-ray-induced signals, EL gap yield and electron lifetime in the liquid. The detector sensitivity, at a drift field in liquid Ar of 0.6 kV/cm, was measured to be 9 and 16 photoelectrons recorded at the PMTs per keV of deposited energy at 23 and 88 keV respectively. Such two-phase detectors, with enhanced sensitivity to the S2 (ionization-induced) signal, are relevant in the field of argon detectors for dark matter search and low energy neutrino detection.

  1. Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector

    NASA Technical Reports Server (NTRS)

    Huntington, Andrew

    2013-01-01

    The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.

  2. Single photon avalanche detectors: prospects of new quenching and gain mechanisms

    NASA Astrophysics Data System (ADS)

    Hall, David; Liu, Yu-Hsin; Lo, Yu-Hwa

    2015-11-01

    While silicon single-photon avalanche diodes (SPAD) have reached very high detection efficiency and timing resolution, their use in fibre-optic communications, optical free space communications, and infrared sensing and imaging remains limited. III-V compounds including InGaAs and InP are the prevalent materials for 1550 nm light detection. However, even the most sensitive 1550 nm photoreceivers in optical communication have a sensitivity limit of a few hundred photons. Today, the only viable approach to achieve single-photon sensitivity at 1550 nm wavelength from semiconductor devices is to operate the avalanche detectors in Geiger mode, essentially trading dynamic range and speed for sensitivity. As material properties limit the performance of Ge and III-V detectors, new conceptual insight with regard to novel quenching and gain mechanisms could potentially address the performance limitations of III-V SPADs. Novel designs that utilise internal self-quenching and negative feedback can be used to harness the sensitivity of single-photon detectors,while drastically reducing the device complexity and increasing the level of integration. Incorporation of multiple gain mechanisms, together with self-quenching and built-in negative feedback, into a single device also hold promise for a new type of detector with single-photon sensitivity and large dynamic range.

  3. Predictions of silicon avalanche photodiode detector performance in water vapor differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Kenimer, R. L.

    1988-01-01

    Performance analyses are presented which establish that over most of the range of signals expected for a down-looking differential absorption lidar (DIAL) operated at 16 km the silicon avalanche photodiode (APD) is the preferred detector for DIAL measurements of atmospheric water vapor in the 730 nm spectral region. The higher quantum efficiency of the APD's, (0.8-0.9) compared to a photomultiplier's (0.04-0.18) more than offsets the higher noise of an APD receiver. In addition to offering lower noise and hence lower random error the APD's excellent linearity and impulse recovery minimize DIAL systematic errors attributable to the detector. Estimates of the effect of detector system parameters on overall random and systematic DIAL errors are presented, and performance predictions are supported by laboratory characterization data for an APD receiver system.

  4. Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector

    NASA Astrophysics Data System (ADS)

    Miki, Shigehito; Yabuno, Masahiro; Yamashita, Taro; Terai, Hirotaka

    2017-03-01

    We present a stable and high-performance fiber-coupled NbTiN superconducting nanowire avalanche photon detector (SNAP). We demonstrate afterpulse-free operation in serially connected two SNAPs (SC-2SNAP), even in the absence of a choke inductor, achieving a 7.7 times faster response speed than standard SSPDs. The SC-2SNAP device showed a system detection efficiency (SDE) of 81.0% with wide bias current margin, a dark count rate of 6.8 counts/s, and full width at half maximum timing jitter of 68 ps, operating at 2.3 K.

  5. Radiation hardness of semiconductor avalanche detectors for calorimeters in future HEP experiments

    NASA Astrophysics Data System (ADS)

    Kushpil, V.; Mikhaylov, V.; Kugler, A.; Kushpil, S.; Ladygin, V. P.; Svoboda, O.; Tlustý, P.

    2016-02-01

    During the last years, semiconductor avalanche detectors are being widely used as the replacement of classical PMTs in calorimeters for many HEP experiments. In this report, basic selection criteria for replacement of PMTs by solid state devices and specific problems in the investigation of detectors radiation hardness are discussed. The design and performance of the hadron calorimeters developed for the future high energy nuclear physics experiments at FAIR, NICA, and CERN are discussed. The Projectile Spectator Detector (PSD) for the CBM experiment at the future FAIR facility, the Forward Calorimeter for the NA61 experiment at CERN and the Multi Purpose Detector at the future NICA facility are reviewed. Moreover, new methods of data analysis and results interpretation for radiation experiments are described. Specific problems of development of detectors control systems and possibilities of reliability improvement of multi-channel detectors systems are shortly overviewed. All experimental material is based on the investigation of SiPM and MPPC at the neutron source in NPI Rez.

  6. Preliminary results for the design, fabrication, and performance of a backside-illuminated avalanche drift detector

    NASA Astrophysics Data System (ADS)

    Qiao, Yun; Liang, Kun; Chen, Wen-Fei; Han, De-Jun

    2013-10-01

    The detection of low-level light is a key technology in various experimental scientific studies. As a photon detector, the silicon photomultiplier (SiPM) has gradually become an alternative to the photomultiplier tube (PMT) in many applications in high-energy physics, astroparticle physics, and medical imaging because of its high photon detection efficiency (PDE), good resolution for single-photon detection, insensitivity to magnetic field, low operating voltage, compactness, and low cost. However, primarily because of the geometric fill factor, the PDE of most SiPMs is not very high; in particular, for those SiPMs with a high density of micro cells, the effective area is small, and the bandwidth of the light response is narrow. As a building block of the SiPM, the concept of the backside-illuminated avalanche drift detector (ADD) was first proposed by the Max Planck Institute of Germany eight years ago; the ADD is promising to have high PDE over the full energy range of optical photons, even ultraviolet light and X-ray light, and because the avalanche multiplication region is very small, the ADD is beneficial for the fabrication of large-area SiPMs. However, because of difficulties in design and fabrication, no significant progress had been made, and the concept had not yet been verified. In this paper, preliminary results in the design, fabrication, and performance of a backside-illuminated ADD are reported; the difficulties in and limitations to the backside-illuminated ADD are analyzed.

  7. Characterization of an atmospheric double arc argon-nitrogen plasma source

    SciTech Connect

    Tu, X.; Cheron, B. G.; Yan, J. H.; Yu, L.; Cen, K. F.

    2008-05-15

    In the framework of studies devoted to hazardous waste destruction, an original dc double anode plasma torch has been designed and tested, which produces an elongated, weak fluctuation and reproducible plasma jet at atmospheric pressure. The arc instabilities and dynamic behavior of the double arc argon-nitrogen plasma jet are investigated through the oscillations of electrical signals by combined means of fast Fourier transform and Wigner distribution. In our experiment, the restrike mode is identified as the typical fluctuation behavior in an argon-nitrogen plasma jet. The Fourier spectra and Wigner distributions exhibit two characteristic frequencies of 150 Hz and 4.1 kHz, which reveals that the nature of fluctuations in the double arc argon-nitrogen plasma can be ascribed to the undulation of the power supply and both arc roots motion on the anode channels. In addition, the microscopic properties of the plasma jet inside and outside the arc chamber are investigated by means of optical emission spectroscopy, which yields excitation, electronic, rotational, and vibrational temperatures, as well as the electron number density. The results allow us to examine the validity criteria of a local thermodynamic equilibrium (LTE) state in the plasma arc. The measured electron densities are in good agreement with those calculated from the LTE model, which indicates that the atmospheric double arc argon-nitrogen plasma in the core region is close to the LTE state under our experimental conditions.

  8. SWAD: inherent photon counting performance of amorphous selenium multi-well avalanche detector

    NASA Astrophysics Data System (ADS)

    Stavro, Jann; Goldan, Amir H.; Zhao, Wei

    2016-03-01

    Photon counting detectors (PCDs) have the potential to improve x-ray imaging, however they are still hindered by several performance limitations and high production cost. By using amorphous Selenium (a-Se) the cost of PCDs can be significantly reduced compared to crystalline materials and enable large area detector fabrication. To overcome the problem of low carrier mobility and low charge conversion gain in a-Se, we are developing a novel direct conversion a- Se field-Shaping multi-Well Avalanche Detector (SWAD). SWAD circumvents the charge transport limitation by using a Frisch grid built within the readout circuit, reducing charge collection time to ~200 ns. Field shaping permits depth independent avalanche gain in wells, resulting in total conversion gain that is comparable to Si and CdTe. In the present work we investigate the effects of charge sharing and energy loss to understand the inherent photon counting performance for SWAD at x-ray energies used in breast imaging applications (20-50keV). The energy deposition profile for each interacting x-ray was determined with Monte Carlo simulation. For the energy ranges we are interested in, photoelectric interaction dominates, with a k-fluorescence yield of approximately 60%. Using a monoenergetic 45 keV beam incident on a target pixel in 400um of a-Se, our results show that only 20.42 % and 22.4 % of primary interacting photons have kfluorescence emissions which escape the target pixel for 100um and 85um pixel sizes respectively, demonstrating SWAD's potential for high spatial resolution applications.

  9. A 16-channel avalanche photodiode detector array for visible and near-infrared flow cytometry

    NASA Astrophysics Data System (ADS)

    Lawrence, William G.; Stapels, Christopher; Farrell, Richard; Tario, Joseph D., Jr.; Podniesinski, Edward; Wallace, Paul K.; Christian, James F.

    2006-02-01

    We report on the development and application of a flow cytometer using a 16-channel avalanche photodiode (APD) linear detector array. The array is configured with a dispersive grating to simultaneously record emission over a broad wavelength range using the 16 APD channels of the linear APD array. The APD detector elements have a peak quantum efficiency of 80% near 900 nm and have at least 40% quantum efficiency over the 400-nm to 1000-nm wavelength range. The extended red sensitivity of the detector array facilitates the use of lower energy excitation sources and near IR emitting dyes which reduces the impact of autofluorescence in signal starved measurements. The wide wavelength sensitivity of the APD array permits the use of multiple excitation sources and many different fluorescent labels to maximize the number of independent parameters in a given experiment. We show the sensitivity and linearity measurements for a single APD detector. Initial results for the flow cytometer with the 16-element APD array and the 16-channel readout ASIC (application specific integrated circuit) are presented.

  10. Negative feedback avalanche diode

    NASA Technical Reports Server (NTRS)

    Itzler, Mark Allen (Inventor)

    2010-01-01

    A single-photon avalanche detector is disclosed that is operable at wavelengths greater than 1000 nm and at operating speeds greater than 10 MHz. The single-photon avalanche detector comprises a thin-film resistor and avalanche photodiode that are monolithically integrated such that little or no additional capacitance is associated with the addition of the resistor.

  11. InGaAs single photon avalanche detector with ultralow excess noise

    SciTech Connect

    Zhao Kai; Zhang, Arthur; Lo, Yu-hwa; Farr, William

    2007-08-20

    An InGaAs single photon avalanche detector capable of sub-Geiger mode (Photomultiplier-tube-like) operation is reported. The device achieves a stable gain at around 10{sup 6}. The gain fluctuation is greatly suppressed through a self-quenching effect, thus an equivalent excess noise factor as low as 1.001 is achieved. In the photon counting experiment, the device is operated in the nongated mode under a dc bias. Because of its unique characteristics of self-quenching and self-recovery, no external quenching circuit is needed. The device shows a single photon response of around 30 ns and a self-recovery time of about 300 ns.

  12. Investigation of a clinical PET detector module design that employs large-area avalanche photodetectors

    NASA Astrophysics Data System (ADS)

    Peng, Hao; Olcott, Peter D.; Spanoudaki, Virginia; Levin, Craig S.

    2011-06-01

    We investigated the feasibility of designing an Anger-logic PET detector module using large-area high-gain avalanche photodiodes (APDs) for a brain-dedicated PET/MRI system. Using Monte Carlo simulations, we systematically optimized the detector design with regard to the scintillation crystal, optical diffuser, surface treatment, layout of large-area APDs, and signal-to-noise ratio (SNR, defined as the 511 keV photopeak position divided by the standard deviation of noise floor in an energy spectrum) of the APD devices. A detector prototype was built comprising an 8 × 8 array of 2.75 × 3.00 × 20.0 mm3 LYSO (lutetium-yttrium-oxyorthosilicate) crystals and a 22.0 × 24.0 × 9.0 mm3 optical diffuser. From the four designs of the optical diffuser tested, two designs employing a slotted diffuser are able to resolve all 64 crystals within the block with good uniformity and peak-to-valley ratio. Good agreement was found between the simulation and experimental results. For the detector employing a slotted optical diffuser, the energy resolution of the global energy spectrum after normalization is 13.4 ± 0.4%. The energy resolution of individual crystals varies between 11.3 ± 0.3% and 17.3 ± 0.4%. The time resolution varies between 4.85 ± 0.04 (center crystal), 5.17 ± 0.06 (edge crystal), and 5.18 ± 0.07 ns (corner crystal). The generalized framework proposed in this work helps to guide the design of detector modules for selected PET system configurations, including scaling the design down to a preclinical PET system, scaling up to a whole-body clinical scanner, as well as replacing APDs with other novel photodetectors that have higher gain or SNR such as silicon photomultipliers.

  13. An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode.

    PubMed

    Yan, Zhizhong; Hamel, Deny R; Heinrichs, Aimee K; Jiang, Xudong; Itzler, Mark A; Jennewein, Thomas

    2012-07-01

    It is challenging to implement genuine free running single-photon detectors for the 1550 nm wavelength range with simultaneously high detection efficiency (DE), low dark noise, and good time resolution. We report a novel read out system for the signals from a negative feedback avalanche diode (NFAD) [M. A. Itzler, X. Jiang, B. Nyman, and K. Slomkowski, "Quantum sensing and nanophotonic devices VI," Proc. SPIE 7222, 72221K (2009); X. Jiang, M. A. Itzler, K. ODonnell, M. Entwistle, and K. Slomkowski, "Advanced photon counting techniques V," Proc. SPIE 8033, 80330K (2011); M. A. Itzler, X. Jiang, B. M. Onat, and K. Slomkowski, "Quantum sensing and nanophotonic devices VII," Proc. SPIE 7608, 760829 (2010)], which allows useful operation of these devices at a temperature of 193 K and results in very low darkcounts (∼100 counts per second (CPS)), good time jitter (∼30 ps), and good DE (∼10%). We characterized two NFADs with a time-correlation method using photons generated from weak coherent pulses and photon pairs produced by spontaneous parametric down conversion. The inferred detector efficiencies for both types of photon sources agree with each other. The best noise equivalent power of the device is estimated to be 8.1 × 10(-18) W Hz(-1/2), more than 10 times better than typical InP/InGaAs single photon avalanche diodes (SPADs) show in free running mode. The afterpulsing probability was found to be less than 0.1% per ns at the optimized operating point. In addition, we studied the performance of an entanglement-based quantum key distribution (QKD) using these detectors and develop a model for the quantum bit error rate that incorporates the afterpulsing coefficients. We verified experimentally that using these NFADs it is feasible to implement QKD over 400 km of telecom fiber. Our NFAD photon detector system is very simple, and is well suited for single-photon applications where ultra-low noise and free-running operation is required, and some afterpulsing

  14. Non-Geiger-Mode Single-Photon Avalanche Detector with Low Excess Noise

    NASA Technical Reports Server (NTRS)

    Zhao, Kai; Lo, YuHwa; Farr, William

    2010-01-01

    This design constitutes a self-resetting (gain quenching), room-temperature operational semiconductor single-photon-sensitive detector that is sensitive to telecommunications optical wavelengths and is scalable to large areas (millimeter diameter) with high bandwidth and efficiencies. The device can detect single photons at a 1,550-nm wavelength at a gain of 1 x 10(exp 6). Unlike conventional single photon avalanche detectors (SPADs), where gain is an extremely sensitive function to the bias voltage, the multiplication gain of this device is stable at 1 x 10(exp 6) over a wide range of bias from 30.2 to 30.9 V. Here, the multiplication gain is defined as the total number of charge carriers contained in one output pulse that is triggered by the absorption of a single photon. The statistics of magnitude of output signals also shows that the device has a very narrow pulse height distribution, which demonstrates a greatly suppressed gain fluctuation. From the histograms of both pulse height and pulse charge, the equivalent gain variance (excess noise) is between 1.001 and 1.007 at a gain of 1 x 10(exp 6). With these advantages, the device holds promise to function as a PMT-like photon counter at a 1,550- nm wavelength. The epitaxial layer structure of the device allows photons to be absorbed in the InGaAs layer, generating electron/hole (e-h) pairs. Driven by an electrical field in InGaAs, electrons are collected at the anode while holes reach the multiplication region (InAlAs p-i-n structure) and trigger the avalanche process. As a result, a large number of e-h pairs are created, and the holes move toward the cathode. Holes created by the avalanche process gain large kinetic energy through the electric field, and are considered hot. These hot holes are cooled as they travel across a p -InAlAs low field region, and are eventually blocked by energy barriers formed by the InGaAsP/ InAlAs heterojunctions. The composition of the InGaAsP alloy was chosen to have an 80 me

  15. Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector.

    PubMed

    Miki, Shigehito; Yabuno, Masahiro; Yamashita, Taro; Terai, Hirotaka

    2017-03-20

    Recent progress in the development of superconducting nanowire single photon detectors (SSPD or SNSPD) has delivered excellent performance, and has had a great impact on a range of research fields. Significant efforts are being made to further improve the technology, and a primary concern remains to resolve the trade-offs between detection efficiency (DE), timing jitter, and response speed. We present a stable and high-performance fiber-coupled niobium titanium nitride superconducting nanowire avalanche photon detector (SNAP) that resolves these trade-offs. Autocorrelation function measurement revealed an afterpulse-free operation in serially connected two SNAP (SC-2SNAP), even in the absence of a choke inductor, achieving a 7.65 times faster response speed than standard SSPDs. The SC-2SNAP device showed a system detection efficiency (SDE) of 81.0% with wide bias current margin, a dark count rate of 6.8 counts/s, and full width at half maximum timing jitter of 68 ps, operating in a practical Gifford-McMahon cryocooler system.

  16. Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET.

    PubMed

    Pichler, B J; Swann, B K; Rochelle, J; Nutt, R E; Cherry, S R; Siegel, S B

    2004-09-21

    Avalanche photodiodes (APDs) have proven to be useful as light detectors for high resolution positron emission tomography (PET). Their compactness makes these devices excellent candidates for replacing bulky photomultiplier tubes (PMTs) in PET systems where space limitations are an issue. The readout of densely packed, 10 x 10 lutetium oxyorthosilicate (LSO) block detectors (crystal size 2.0 x 2.0 x 12 mm3) with custom-built monolithic 3 x 3 APD arrays was investigated. The APDs had a 5 x 5 mm2 active surface and were arranged on a 6.25 mm pitch. The dead space on the edges of the array was 1.25 mm. The APDs were operated at a bias voltage of approximately 380 V for a gain of 100 and a dark current of 10 nA per APD. The standard deviation in gain between the APDs in the array ranged from 1.8 to 6.5% as the gain was varied from 50 to 108. A fast, low-noise, multi-channel charge sensitive preamplifier application-specific integrated circuit (ASIC) was developed for the APD readout. The amplifier had a rise time of 8 ns, a noise floor of 515 e- rms and a 9 e- pF(-1) noise slope. An acquired flood image showed that all 100 crystals from the block detector could be resolved. Timing measurements with single-channel LSO-APD detectors, as well as with the array, against a plastic scintillator and PMT assembly showed a time resolution of 1.2 ns and 2.5 ns, respectively. The energy resolution measured with a single 4.0 x 4.0 x 10 mm3 LSO crystal, wrapped in four-layer polytetrafluoroethylene (PTFE) tape and coupled with optical grease on a single APD of the array, yielded 15% (full width at half maximum, FWHM) at 511 keV. Stability tests over 9 months of operation showed that the APD arrays do not degrade appreciably. These results demonstrate the ability to decode densely packed LSO scintillation blocks with compact APD arrays. The good timing and energy resolution makes these detectors suitable for high resolution PET.

  17. Studies of a hybrid avalanche photo-detector in magnetic field

    NASA Astrophysics Data System (ADS)

    Šantelj, L.; Adachi, I.; Hataya, K.; Iori, S.; Iwata, S.; Kakuno, H.; Kataura, R.; Kawai, H.; Kindo, H.; Korpar, S.; Križan, P.; Mrvar, M.; Nath, K.; Nishida, S.; Ogawa, S.; Pestotnik, R.; Stanovnik, A.; Seljak, A.; Sumiyoshi, T.; Tabata, M.; Tahirovič, E.; Yusa, Y.

    2017-02-01

    For the Belle II spectrometer a proximity focusing RICH counter with an aerogel radiator (ARICH) will be employed as a PID system in the forward endcap region of the spectrometer. The main challenge was the development of a reliable multichannel sensor for single photons that operates in the high magnetic field of the spectrometer (1.5 T) and withstands the radiation levels expected at the experiment. A 144-channel Hybrid Avalanche Photo-Detector (HAPD) was developed with Hamamatsu Photonics K.K. and the mass production of ∼480 HAPDs was completed recently. While our first tests of HAPD performance in the magnetic field (before mass production) showed no issues, we lately observed a presence of very large signal pulses (∼5000× single photon signal), generated internally within about 20% of HAPDs, while operating in the magnetic field. The rate of these pulses varies from sample to sample. These pulses impact the HAPD performance in two ways: they introduce periods of dead time and, in some cases, damage to the front-end electronics was observed. Here we present conditions under which such large pulses are generated, their properties and impact on HAPD performance, and discuss possible mechanism of their origin.

  18. A new modeling and simulation method for important statistical performance prediction of single photon avalanche diode detectors

    NASA Astrophysics Data System (ADS)

    Xu, Yue; Xiang, Ping; Xie, Xiaopeng; Huang, Yang

    2016-06-01

    This paper presents a new modeling and simulation method to predict the important statistical performance of single photon avalanche diode (SPAD) detectors, including photon detection efficiency (PDE), dark count rate (DCR) and afterpulsing probability (AP). Three local electric field models are derived for the PDE, DCR and AP calculations, which show analytical dependence of key parameters such as avalanche triggering probability, impact ionization rate and electric field distributions that can be directly obtained from Geiger mode Technology Computer Aided Design (TCAD) simulation. The model calculation results are proven to be in good agreement with the reported experimental data in the open literature, suggesting that the proposed modeling and simulation method is very suitable for the prediction of SPAD statistical performance.

  19. Simulation of Low Gain Avalanche Detector characteristics based on the concept of negative feedback in irradiated silicon detectors with carrier impact ionization

    NASA Astrophysics Data System (ADS)

    Verbitskaya, E.; Eremin, V.; Zabrodskii, A.; Luukka, P.

    2016-12-01

    In this study the main characteristics of silicon Low Gain Avalanche Detectors (LGAD), the dependencies of the collected charge versus bias voltage and fluence, are calculated to fit experimental data. The calculations are based on two previously developed Ioffe Institute models of radiation degradation in Si detectors: 1) a model of two effective energy levels of radiation-induced defects, and 2) a mechanism of internal negative feedback responsible for the gain degradation in irradiated Si detectors originating from the avalanche multiplication at the detector junction. The combination of these models describes well the properties of irradiated p-i-n detectors in a wide range of fluences. For simulating the LGAD characteristics the models are adapted to its n+-pbi-p-p+ structure, where the built-in boron-doped layer pbi produces high electric field sufficient for carrier impact ionization. It is shown that the developed models give adequate quantitative description of the experimental results for the LGADs up to the fluence of 2×1015 n/cm2 including the detector pulse response; however, additional boron removal from the pbi layer is required to have the best correlation with the experimental data. Similar to the physical model developed for silicon strip detectors operated at high voltage, the results are interpreted in terms of the internal negative feedback mechanism. It is shown that in irradiated LGADs this feedback leads to the transfer of a significant fraction of the potential drop from the built-in layer toward the p+ contact. It initiates two negative effects, which both cause the gain degradation with irradiation: the lowering of the electric field in the n+-pbi region that reduces the multiplication probability, and the increase of the collection time and trapping-related charge losses.

  20. Design and testing of an active quenching circuit for an avalanche photodiode photon detector

    NASA Technical Reports Server (NTRS)

    Arbel, D.; Schwartz, J. A.

    1991-01-01

    The photon-detection capabilities of avalanche photodiodes (APDs) operating above their theoretical breakdown voltages are described, with particular attention given to the needs and methods of quenching an avalanche once breakdown has occurred. A brief background on the motives of and previous work with this mode of operation is presented. Finally, a description of the design and testing of an active quenching circuit is given. Although the active quenching circuit did not perform as expected, knowledge was gained as to the signal amplitudes necessary for quenching and the need for a better model for the above-breakdown circuit characteristics of the Geiger-mode APD.

  1. Characterization of sputtered zirconium nitride films deposited at various argon:nitrogen ratio

    NASA Astrophysics Data System (ADS)

    Patel, Nicky P.; Chauhan, Kamlesh V.; Kapopara, Jaydeep M.; Jariwala, Nayan N.; Rawal, Sushant K.

    2016-09-01

    Zirconium nitride films were deposited by reactive magnetron sputtering using argon as inert gas and nitrogen as reactive gas. The nitrogen flow rate in argon:nitrogen ratio was increased from 4sccm to 20sccm by an increment of 4sccm. The effect of increment in nitrogen flow rate on various properties of deposited zirconium nitride films are reported in this paper. The structural characterization was done by X-Ray diffraction which confirms (011) peak of Zr3N4 and a very low intensity (111) peak of Zr3N4. Optical properties was investigated by Uv-Vis-NIR spectrophotometer which showed that the films were transparent and maximum transmittance observed was around 82%. The wettability properties was investigated by contact angle goniometer which showed the films were hydrophobic and maximum contact angle achieved was 99.50.

  2. Comparative Performance of the Photomultiplier Tube and the Silicon Avalanche Photodiode When Used as Detectors in Angular Scattering Measurements

    NASA Astrophysics Data System (ADS)

    Kroner, D. O.; Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Manatt, K.; Smythe, W. D.

    2014-12-01

    We report the results of a comparative study of two types of photometric detectors that are commonly used for, spacecraft, ground-based telescope, and laboratory observations in support of precise angular scattering investigations of the type described in a companion paper (Nelson et al., this meeting). The performance of the state of the art Hamamatsu C12703-01 Silicon Avalanche photodiode (SAD) was compared to that of the Hamamatsu R928 Photomultiplier tube (PMT). The Hamamatsu R928 evolved from a sequence of photometric detectors with a long history of use in support of laboratory and remote sensing studies, tracing backwards to include the RCA 1P21 and the RCA 931A. Two newly acquired SADs were bench tested along with a new R928 photomultiplier tube that was thermoelectrically cooled to -10 deg C. The SAD's employed electronic thermal compensation supplied by the manufacturer. The SADs and PMT measured electromagnetic radiation from solid-state lasers of wavelength 635 nm after the radiation was reflected from diffusely-scattering surfaces of varying albedos. The SADs were housed on tripods that were co-aligned with the PMT and laser. The photometric detectors were placed 4.3 meters from a reflecting disk. The disk was rotated to reduce the effect of laser speckle. All detectors in the experiment were equipped with notch filters that transmit light only of the wavelength emitted by the laser. Three SR830 DSP Lock-in Amplifiers were connected to the detectors and various setting configurations were compared in order to optimize signal to noise. Neutral Density filters (ND 0,3 and ND 0,9) were placed in the light path to determine the linearity in the response function of the detectors. We conclude that in this application SADs and PMTs produce comparable photometric precision and fidelity. SADs offer greater convenience because thermal compensation circuitry is integrated with the detector. This work was partially supported by NASA's Cassini Science

  3. Technology developments and first measurements on inverse Low Gain Avalanche Detector (iLGAD) for high energy physics applications

    NASA Astrophysics Data System (ADS)

    Carulla, M.; Fernández-García, M.; Fernández-Martínez, P.; Flores, D.; González, J.; Hidalgo, S.; Jaramillo, R.; Merlos, A.; Palomo, F. R.; Pellegrini, G.; Quirion, D.; Vila, I.

    2016-12-01

    The first Inverse Low Gain Avalanche Detector (iLGAD) have been fabricated at IMB-CNM (CSIC). The iLGAD structure includes the multiplication diffusions at the ohmic contact side while the segmentation is implemented at the front side with multiple p+ diffusions. Therefore, iLGAD is p on p position-sensitive detector with a uniform electric field all along the device area that guarantees the same signal amplification wherever a particle passes through the sensitive bulk solving the main draw of the LGAD microstrip detector. However, the detection current is dominated by holes flowing back from the multiplication junction with the subsequent increase of the transient current pulse duration in comparison with conventional LGAD counterparts. Applications of iLGAD range from tracking and timing applications, like determination of primary interaction vertex, to medical imaging. The paper addresses the optimization of the iLGAD structure with the aid of TCAD simulations, focusing on the electric field profiles of iLGAD and LGAD microstrip structures and the corresponding gain. The electrical performance of the first fabricated samples is also provided. For the first time, we have the experimental demonstration of the signal amplification of these novel iLGAD detectors.

  4. Indirect flat-panel detector with avalanche gain: Fundamental feasibility investigation for SHARP-AMFPI (scintillator HARP active matrix flat panel imager)

    SciTech Connect

    Zhao Wei; Li Dan; Reznik, Alla; Lui, B.J.M.; Hunt, D.C.; Rowlands, J.A.; Ohkawa, Yuji; Tanioka, Kenkichi

    2005-09-15

    An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoid pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d{sub Se} and the applied electric field E{sub Se} of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E{sub Se} dependence of both avalanche gain and optical quantum efficiency of an 8 {mu}m HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E{sub Se}: (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 {mu}m can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy.

  5. Indirect flat-panel detector with avalanche gain: fundamental feasibility investigation for SHARP-AMFPI (scintillator HARP active matrix flat panel imager).

    PubMed

    Zhao, Wei; Li, Dan; Reznik, Alla; Lui, B J M; Hunt, D C; Rowlands, J A; Ohkawa, Yuji; Tanioka, Kenkichi

    2005-09-01

    An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoid pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d(Se) and the applied electric field E(Se) of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E(Se) dependence of both avalanche gain and optical quantum efficiency of an 8 microm HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E(Se): (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 microm can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy.

  6. The 1.06 micrometer avalanche photodiode detectors with integrated circuit preamplifiers

    NASA Technical Reports Server (NTRS)

    Eden, R. C.

    1975-01-01

    The development of a complete solid state 1.06 micron optical receiver which can be used in optical communications at data rates approaching 1.5 Gb/s, or in other applications requiring sensitive, short-pulse detection, is reported. This work entailed both the development of a new type of heterojunction 3-5 semiconductor alloy avalanche photodiode and an extremely charge-sensitive wideband low-noise preamp design making use of GaAs Schottky barrier-gate field effect transistors.

  7. Near infrared single photon avalanche detector with negative feedback and self quenching

    NASA Astrophysics Data System (ADS)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing

    2009-08-01

    We present the design and development of a negative feedback devices using the internal discrete amplifier approach used for the development of a single photon avalanche photodetector in the near infrared wavelength region. This new family of photodetectors with negative feedback, requiring no quenching mechanism using Internal Discrete Amplification (IDA) mechanism for the realization of very high gain and low excess noise factor in the visible and near infrared spectral regions, operates in the non-gated mode under a constant bias voltage. The demonstrated device performance far exceeds any available solid state Photodetectors in the near infrared wavelength range. The measured devices have Gain > 2×105, Excess noise factor < 1.05, Rise time < 350ps, Fall time < 500ps, Dark current < 2×106 cps at room temperature, and Operating Voltage < 60V. These devices are ideal for researchers in the field of Ladar/Lidar, free space optical communication, 3D imaging, industrial and scientific instrumentation, night vision, quantum cryptography, and other military, defence and aerospace applications.

  8. Linear terrestrial laser scanning using array avalanche photodiodes as detectors for rapid three-dimensional imaging.

    PubMed

    Cai, Yinqiao; Tong, Xiaohua; Tong, Peng; Bu, Hongyi; Shu, Rong

    2010-12-01

    As an active remote sensor technology, the terrestrial laser scanner is widely used for direct generation of a three-dimensional (3D) image of an object in the fields of geodesy, surveying, and photogrammetry. In this article, a new laser scanner using array avalanche photodiodes, as designed by the Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, is introduced for rapid collection of 3D data. The system structure of the new laser scanner is first presented, and a mathematical model is further derived to transform the original data to the 3D coordinates of the object in a user-defined coordinate system. The performance of the new laser scanner is tested through a comprehensive experiment. The result shows that the new laser scanner can scan a scene with a field view of 30° × 30° in 0.2 s and that, with respect to the point clouds obtained on the wall and ground floor surfaces, the root mean square errors for fitting the two planes are 0.21 and 0.01 cm, respectively. The primary advantages of the developed laser scanner include: (i) with a line scanning mode, the new scanner achieves simultaneously the 3D coordinates of 24 points per single laser pulse, which enables it to scan faster than traditional scanners with a point scanning mode and (ii) the new scanner makes use of two galvanometric mirrors to deflect the laser beam in both the horizontal and the vertical directions. This capability makes the instrument smaller and lighter, which is more acceptable for users.

  9. High-gain and low-excess noise near-infrared single-photon avalanche detector arrays

    NASA Astrophysics Data System (ADS)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing

    2010-04-01

    We have designed and developed a new family of photodetectors and arrays with Internal Discrete Amplification (IDA) mechanism for the realization of very high gain and low excess noise factor in the visible and near infrared spectral regions. These devices surpass many limitations of the Single Photon Avalanche Photodetectors such as ultra low excess noise factor, very high gain, lower reset time (< 200 ns). These devices are very simple to operate in the non-gated mode under a constant dc bias voltage. Because of its unique characteristics of self-quenching and self-recovery, no external quenching circuit is needed. This unique feature of self quenching and self-recovery makes it simple to less complex readout integrated circuit to realize large format detector arrays. In this paper, we present the discrete amplification design approach used for the development of self reset, high gain photodetector arrays in the near infrared wavelength region. The demonstrated device performance far exceeds any available solid state Photodetectors in the near infrared wavelength range. These devices are ideal for researchers in the field of spectroscopy, industrial and scientific instrumentation, Ladar, quantum cryptography, night vision and other military, defense and aerospace applications.

  10. Nuclear resonant scattering measurements on {sup 57}Fe by multichannel scaling with a 64-pixel silicon avalanche photodiode linear-array detector

    SciTech Connect

    Kishimoto, S. Haruki, R.; Mitsui, T.; Yoda, Y.; Taniguchi, T.; Shimazaki, S.; Ikeno, M.; Saito, M.; Tanaka, M.

    2014-11-15

    We developed a silicon avalanche photodiode (Si-APD) linear-array detector for use in nuclear resonant scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm{sup 2}) with a pixel pitch of 150 μm and depletion depth of 10 μm. An ultrafast frontend circuit allows the X-ray detector to obtain a high output rate of >10{sup 7} cps per pixel. High-performance integrated circuits achieve multichannel scaling over 1024 continuous time bins with a 1 ns resolution for each pixel without dead time. The multichannel scaling method enabled us to record a time spectrum of the 14.4 keV nuclear radiation at each pixel with a time resolution of 1.4 ns (FWHM). This method was successfully applied to nuclear forward scattering and nuclear small-angle scattering on {sup 57}Fe.

  11. Integrated avalanche photodiode arrays

    DOEpatents

    Harmon, Eric S.

    2015-07-07

    The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.

  12. Experimental and Theoretical Estimation of Excited Species Generation in Pulsed Electron Beam-Generated Plasmas Produced in Pure Argon, Nitrogen, Oxygen, and Their Mixtures

    DTIC Science & Technology

    2011-05-13

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6750--11-9333 Experimental and Theoretical Estimation of Excited Species Generation in ...Pulsed Electron Beam–Generated Plasmas Produced in Pure Argon, Nitrogen, Oxygen, and Their Mixtures May 13, 2011 Approved for public release...PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Experimental and Theoretical Estimation of Excited Species Generation in Pulsed Electron Beam

  13. Miniaturized time-resolved Raman spectrometer for planetary science based on a fast single photon avalanche diode detector array.

    PubMed

    Blacksberg, Jordana; Alerstam, Erik; Maruyama, Yuki; Cochrane, Corey J; Rossman, George R

    2016-02-01

    We present recent developments in time-resolved Raman spectroscopy instrumentation and measurement techniques for in situ planetary surface exploration, leading to improved performance and identification of minerals and organics. The time-resolved Raman spectrometer uses a 532 nm pulsed microchip laser source synchronized with a single photon avalanche diode array to achieve sub-nanosecond time resolution. This instrument can detect Raman spectral signatures from a wide variety of minerals and organics relevant to planetary science while eliminating pervasive background interference caused by fluorescence. We present an overview of the instrument design and operation and demonstrate high signal-to-noise ratio Raman spectra for several relevant samples of sulfates, clays, and polycyclic aromatic hydrocarbons. Finally, we present an instrument design suitable for operation on a rover or lander and discuss future directions that promise great advancement in capability.

  14. Enhanced ν-optical time domain reflectometry using gigahertz sinusoidally gated InGaAs/InP single-photon avalanche detector

    NASA Astrophysics Data System (ADS)

    Zhang, Xuping; Shi, Yuanlei; Shan, Yuanyuan; Sun, Zhenhong; Qiao, Weiyan; Zhang, Yixin

    2016-09-01

    Optical time domain reflectometry (OTDR) is one of the most successful diagnostic tools for nondestructive attenuation measurement of a fiber link. To achieve better sensitivity, spatial resolution, and avoid dead-zone in conversional OTDR, a single-photon detector has been introduced to form the photon-counting OTDR (ν-OTDR). We have proposed a ν-OTDR system using a gigahertz sinusoidally gated InGaAs/InP single-photon avalanche detector (SPAD). Benefiting from the superior performance of a sinusoidal gated SPAD on dark count probability, gating frequency, and gate duration, our ν-OTDR system has achieved a dynamic range (DR) of 33.4 dB with 1 μs probe pulse width after an equivalent measurement time of 51 s. This obtainable DR corresponds to a sensing length over 150 km. Our system has also obtained a spatial resolution of 5 cm at the end of a 5-km standard single-mode fiber. By employing a sinusoidal gating technique, we have improved the ν-OTDR spatial resolution and significantly reduced the measurement time.

  15. An argon-nitrogen-hydrogen mixed-gas plasma as a robust ionization source for inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Makonnen, Yoseif; Beauchemin, Diane

    2014-09-01

    Multivariate optimization of an argon-nitrogen-hydrogen mixed-gas plasma for minimum matrix effects, while maintaining analyte sensitivity as much as possible, was carried out in inductively coupled plasma mass spectrometry. In the presence of 0.1 M Na, the 33.9 ± 3.9% (n = 13 elements) analyte signal suppression on average observed in an all-argon plasma was alleviated with the optimized mixed-gas plasma, the average being - 4.0 ± 8.8%, with enhancement in several cases. An addition of 2.3% v/v N2 in the outer plasma gas, and 0.50% v/v H2 to the central channel, as a sheath around the nebulizer gas flow, was sufficient for this drastic increase in robustness. It also reduced the background from ArO+ and Ar2+ as well as oxide levels by over an order of magnitude. On the other hand, the background from NO+ and ArN+ increased by up to an order of magnitude while the levels of doubly-charged ions increased to 7% (versus 2.7% in an argon plasma optimized for sensitivity). Furthermore, detection limits were generally degraded by 5 to 15 fold when using the mixed-gas plasma versus the argon plasma for matrix-free solution (although they were better for several elements in 0.1 M Na). Nonetheless, the drastically increased robustness allowed the direct quantitative multielement analysis of certified ore reference materials, as well as the determination of Mo and Cd in seawater, without using any matrix-matching or internal standardization.

  16. Development of the HgCdTe Avalanche Photodiode Detectors and the Improvement in the CO2 Lidar Performance for the ASCENDS Mission

    NASA Astrophysics Data System (ADS)

    Sun, X.; Abshire, J. B.; Chen, J. R.; Ramanathan, A. K.; Mao, J.

    2015-12-01

    NASA Goddard Space Flight Center (GSFC) is developing the CO2 lidar as a candidate for the NASA's planned ASCENDS mission under the support of Earth Science Technology Office (ESTO) IIP and ATI-QRS programs. A new type of HgCdTe avalanche photodiode (APD) detector has been developed by the DRS Technologies under the IIP program. The new detectors achieved >70% quantum efficiency, including the effect of the fill factor, over the spectral range from 0.4 to 4.3 μm, which significantly improves the receiver performance of our CO2 lidar and enabled other remote sending measurements. The HgCdTe APD arrays have 80 μm square pixels in a 4x4 array along with a bank of 16 preamplifiers on the same chip carrier. Test results at both DRS and GSFC showed the HgCdTe APD array has achieved, an APD gain of 500-1000, 8-10 MHz electrical bandwidth, and an average noise equivalent power (NEP) of <0.5 fW/Hz1/2. It has demonstrated at least a 3 orders of magnitude dynamic range at a fixed APD gain setting. The gains of the APD and the preamplifier can also be adjusted to further extend the receiver dynamic range. During summer 2014 we successfully demonstrated airborne lidar measurements of column CO2 using one of these detectors. The Aerospace Corporation is currently building a 3U CubeSat with one of these detectors in a small closed-cycle cryocooler as the primary payload under the ESTO In-space Validation of Earth Science Technology (InVEST) program. The CubeSat is scheduled to be launched in late 2016 and will fly in a low Earth orbit and monitor the performance for at least a year. We have also updated the performance analysis of a space-based version of our CO2 lidar with the new HgCdTe APD detector. For the retrievals, a least-square-error method is used to fit the measured transmittances to a predetermined line shape function using 8 to 16 sampling wavelengths. The error in the derived total optical depth and the CO2 mixing ratio are estimated via the standard error

  17. Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector.

    PubMed

    Rojalin, Tatu; Kurki, Lauri; Laaksonen, Timo; Viitala, Tapani; Kostamovaara, Juha; Gordon, Keith C; Galvis, Leonardo; Wachsmann-Hogiu, Sebastian; Strachan, Clare J; Yliperttula, Marjo

    2016-01-01

    In this work, we utilize a short-wavelength, 532-nm picosecond pulsed laser coupled with a time-gated complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector to acquire Raman spectra of several drugs of interest. With this approach, we are able to reveal previously unseen Raman features and suppress the fluorescence background of these drugs. Compared to traditional Raman setups, the present time-resolved technique has two major improvements. First, it is possible to overcome the strong fluorescence background that usually interferes with the much weaker Raman spectra. Second, using the high photon energy excitation light source, we are able to generate a stronger Raman signal compared to traditional instruments. In addition, observations in the time domain can be performed, thus enabling new capabilities in the field of Raman and fluorescence spectroscopy. With this system, we demonstrate for the first time the possibility of recording fluorescence-suppressed Raman spectra of solid, amorphous and crystalline, and non-photoluminescent and photoluminescent drugs such as caffeine, ranitidine hydrochloride, and indomethacin (amorphous and crystalline forms). The raw data acquired by utilizing only the picosecond pulsed laser and a CMOS SPAD detector could be used for identifying the compounds directly without any data processing. Moreover, to validate the accuracy of this time-resolved technique, we present density functional theory (DFT) calculations for a widely used gastric acid inhibitor, ranitidine hydrochloride. The obtained time-resolved Raman peaks were identified based on the calculations and existing literature. Raman spectra using non-time-resolved setups with continuous-wave 785- and 532-nm excitation lasers were used as reference data. Overall, this demonstration of time-resolved Raman and fluorescence measurements with a CMOS SPAD detector shows promise in diverse areas, including fundamental chemical research, the

  18. SAPHIRE: A New Flat-Panel Digital Mammography Detector With Avalanche Photoconductor and High-Resolution Field Emitter Readout

    DTIC Science & Technology

    2006-06-01

    array of TFTs, simi- lar to that in existing AMFPI. The proposed detector is named SHARP-AMFPI scintillator-HARP active matrix flat-panel imager...the wavelength of the incident photon. It was found by Pai and Enck that the ESe and dependence of photogeneration in a-Se follow the Onsager ...mechanism.25 Onsager theory states that every absorbed photon creates a pair of thermalized carriers bound by their Coulombic attrac- tion. The initial

  19. [Avalanche accidents and treatment of avalanche victims].

    PubMed

    Skaiaa, Sven Christjar; Thomassen, Øyvind

    2016-03-15

    Avalanches may be provoked spontaneously or as a result of human activity, and they trigger the need for considerable rescue resources. Avalanche search and rescue operations are complex and characterised by physical and mental stress. The guidelines for resuscitation of avalanche victims may be perceived as complex and abstruse, which can lead to suboptimal treatment and an increased strain on rescue teams. The purpose of this article is to summarise the principles for medical treatment of avalanche victims.

  20. Nanopillar Optical Antenna Avalanche Detectors

    DTIC Science & Technology

    2014-08-30

    allows the coupling of both SPPs and LSPRs via geometry partial metal shell and self aligned metal nanohole b) Calculated external quantum efficiency of...the NOA as a function of pitch of the self-aligned nanohole lattice ....................... 10 Figure 3: a) FDTD simulations of the power absorption...showing the signal contact aligned to the nanopillar array. ..................... 16 Figure 6:a) High resolution SEM of the nanopillar in the nanohole

  1. Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Crater wall dust avalanches in southern Arabia Terra.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 10.3, Longitude 24.5 East (335.5 West). 19 meter/pixel resolution.

  2. Gallium-based avalanche photodiode optical crosstalk

    NASA Astrophysics Data System (ADS)

    Blazej, Josef; Prochazka, Ivan; Hamal, Karel; Sopko, Bruno; Chren, Dominik

    2006-11-01

    Solid-state single photon detectors based on avalanche photodiode are getting more attention in various areas of applied physics: optical sensors, quantum key distribution, optical ranging and Lidar, time-resolved spectroscopy, X-ray laser diagnostics, and turbid media imaging. Avalanche photodiodes specifically designed for single photon counting semiconductor avalanche structures have been developed on the basis of various materials: Si, Ge, GaP, GaAsP, and InGaP/InGaAs at the Czech Technical University in Prague during the last 20 years. They have been tailored for numerous applications. Trends in demand are focused on detection array construction recently. Even extremely small arrays containing a few cells are of great importance for users. Electrical crosstalk between individual gating and quenching circuits and optical crosstalk between individual detecting cells are serious limitation for array design and performance. Optical crosstalk is caused by the parasitic light emission of the avalanche which accompanies the photon detection process. We have studied in detail the optical emission of the avalanche photon counting structure in the silicon- and gallium-based photodiodes. The timing properties and spectral distribution of the emitted light have been measured for different operating conditions to quantify optical crosstalk. We conclude that optical crosstalk is an inherent property of avalanche photodiode operated in Geiger mode. The only way to minimize optical crosstalk in avalanche photodiode array is to build active quenching circuit with minimum response time.

  3. A cooled avalanche photodiode with high photon detection probability

    NASA Technical Reports Server (NTRS)

    Robinson, D. L.; Metscher, B. D.

    1986-01-01

    An avalanche photodiode has been operated as a photon-counting detector with 2 to 3 times the sensitivity of currently-available photomultiplier tubes. APD (avalanche photodiodes) detection probabilities that exceed 27% and approach 50% have been measured at an optimum operating temperature which minimizes noise. The sources of noise and their dependence on operating temperature and bias voltage are discussed.

  4. Thick c-BN films deposited by radio frequency magnetron sputtering in argon/nitrogen gas mixture with additional hydrogen gas

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Gao, Wei; Xu, Bo; Li, Ying-Ai; Li, Hong-Dong; Gu, Guang-Rui; Yin, Hong

    2016-10-01

    The excellent physical and chemical properties of cubic boron nitride (c-BN) film make it a promising candidate for various industry applications. However, the c-BN film thickness restricts its practical applications in many cases. Thus, it is indispensable to develop an economic, simple and environment-friend way to synthesize high-quality thick, stable c-BN films. High-cubic-content BN films are prepared on silicon (100) substrates by radio frequency (RF) magnetron sputtering from an h-BN target at low substrate temperature. Adhesions of the c-BN films are greatly improved by adding hydrogen to the argon/nitrogen gas mixture, allowing the deposition of a film up to 5-μm thick. The compositions and the microstructure morphologies of the c-BN films grown at different substrate temperatures are systematically investigated with respect to the ratio of H2 gas content to total working gas. In addition, a primary mechanism for the deposition of thick c-BN film is proposed. Project supported by the National Natural Science Foundation of China (Grant Nos. 51572105, 61504046, and 51272224), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China, the Development and Reform Commission of Jilin Province, China (Grant No. 2015Y050), and the Scientific Research Foundation for the Returned Overseas of Jilin Province, China.

  5. Avalanche speed in thin avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Ong, D. S.; Rees, G. J.; David, J. P. R.

    2003-04-01

    The duration of the avalanche multiplication process in thin GaAs avalanche photodiodes is investigated using a full band Monte Carlo (FBMC) model. The results are compared with those of a simple random path length (RPL) model which makes the conventional assumptions of a displaced exponential for the ionization path length probability distribution function and that carriers always travel at their saturated drift velocities. We find that the avalanche duration calculated by the RPL model is almost twice of that predicted by the FBMC model, although the constant drift velocities used in the former model are estimated using the latter. The faster response predicted by FBMC model arises partly from the reduced dead space but mainly from the velocity overshoot of ionizing carriers. While the feedback multiplication processes forced by the effects of dead space extend the avalanche duration in short structures, the effects of velocity overshoot in the realistic model more than compensate, significantly improving multiplication bandwidth.

  6. Photon detector system

    DOEpatents

    Ekstrom, Philip A.

    1981-01-01

    A photon detector includes a semiconductor device, such as a Schottky barrier diode, which has an avalanche breakdown characteristic. The diode is cooled to cryogenic temperatures to eliminate thermally generated charge carriers from the device. The diode is then biased to a voltage level exceeding the avalanche breakdown threshold level such that, upon receipt of a photon, avalanche breakdown occurs. This breakdown is detected by appropriate circuitry which thereafter reduces the diode bias potential to a level below the avalanche breakdown threshold level to terminate the avalanche condition. Subsequently, the bias potential is reapplied to the diode in preparation for detection of a subsequently received photon.

  7. Very high-gain and low-excess noise near-infrared single-photon avalanche detector: an NIR solid state photomultiplier

    NASA Astrophysics Data System (ADS)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing

    2009-05-01

    A new family of photodetectors with a Discrete Amplification (DA) mechanism allows the realization of very high gain and low excess noise factor in the visible and near infrared spectral regions and offers an alternative to conventional photomultiplier tubes and Geiger mode avalanche photodetectors. These photodetectors can operate in linear detection mode with gain-bandwidth product in excess of 4X1014 and in photon counting mode with count rates up to 108 counts/sec. Potential benefits of this technology over conventional avalanche photodetectors include ultra low excess noise factor, very high gain, and lower reset time (<< 1 μs). In the photon counting mode, the devices can be operated in the non-gated mode under a constant dc bias. Because of its unique characteristics of self-quenching and self-recovery, no external quenching circuit is needed. We present the discrete amplification design approach used for the development of a solid state photomultiplier in the near infrared wavelength region. The demonstrated device performance far exceeds any available solid state photodetectors in the near infrared wavelength range. The measured devices have the following performance characteristics: gain > 2X105, excess noise factor < 1.05, rise time < 350ps, fall time < 500ps, dark current < 2X106 cps, operating voltage < 60V. These devices are ideal for researchers in the field of deep space optical communication, spectroscopy, industrial and scientific instrumentation, Ladar/Lidar, quantum cryptography, night vision and other military, defence and aerospace applications.

  8. Cooled avalanche photodiode used for photon detection

    NASA Technical Reports Server (NTRS)

    Robinson, Deborah L.; Metscher, Brian D.

    1987-01-01

    Commercial avalanche photodiodes have been operated as single-photon detectors at an optimum operating temperature and bias voltage. These detectors were found to be 1.5 to 3 times more sensitive than presently-available photomultiplier tubes (PPMTs). Both single-photon detection probability and detector noise increase with bias voltage; detection probabilities greater than 25 percent were obtained with detector noise levels comparable to the noise of a PMT; higher probabilities were measured at higher noise levels. The sources of noise and their dependence on temperature and bias voltage are discussed.

  9. Photon detection with cooled avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Robinson, D. L.; Metscher, B. D.

    1987-01-01

    Commercial avalanche photodiodes have been operated as single-photon detectors at an optimum operating temperature and bias voltage. These detectors were found to be 1.5-3 times more sensitive than presently available photomultiplier tubes (PMTs). Both single-photon detection probability and detector noise increase with bias voltage; detection probabilities greater than twice that of a PMT were obtained with detector noise levels below 100 counts per second. Higher probabilities were measured at higher noise levels. The sources of noise and their dependence on temperature and bias voltage are discussed.

  10. X-ray imaging using avalanche multiplication in amorphous selenium: Investigation of intrinsic avalanche noise

    SciTech Connect

    Hunt, D. C.; Tanioka, Kenkichi; Rowlands, J. A.

    2007-12-15

    The flat-panel detector (FPD) is the state-of-the-art detector for digital radiography. The FPD can acquire images in real-time, has superior spatial resolution, and is free of the problems of x-ray image intensifiers--veiling glare, pin-cushion and magnetic distortion. However, FPDs suffer from poor signal to noise ratio performance at typical fluoroscopic exposure rates where the quantum noise is reduced to the point that it becomes comparable to the fixed electronic noise. It has been shown previously that avalanche multiplication gain in amorphous selenium (a-Se) can provide the necessary amplification to overcome the electronic noise of the FPD. Avalanche multiplication, however, comes with its own intrinsic contribution to the noise in the form of gain fluctuation noise. In this article a cascaded systems analysis is used to present a modified metric related to the detective quantum efficiency. The modified metric is used to study a diagnostic x-ray imaging system in the presence of intrinsic avalanche multiplication noise independently from other noise sources, such as electronic noise. An indirect conversion imaging system is considered to make the study independent of other avalanche multiplication related noise sources, such as the fluctuations arising from the depth of x-ray absorption. In this case all the avalanche events are initiated at the surface of the avalanche layer, and there are no fluctuations in the depth of absorption. Experiments on an indirect conversion x-ray imaging system using avalanche multiplication in a layer of a-Se are also presented. The cascaded systems analysis shows that intrinsic noise of avalanche multiplication will not have any deleterious influence on detector performance at zero spatial frequency in x-ray imaging provided the product of conversion gain, coupling efficiency, and optical quantum efficiency are much greater than a factor of 2. The experimental results show that avalanche multiplication in a-Se behaves as

  11. Performance of ultra-fast silicon detectors

    NASA Astrophysics Data System (ADS)

    Cartiglia, N.; Baselga, M.; Dellacasa, G.; Ely, S.; Fadeyev, V.; Galloway, Z.; Garbolino, S.; Marchetto, F.; Martoiu, S.; Mazza, G.; Ngo, J.; Obertino, M.; Parker, C.; Rivetti, A.; Shumacher, D.; F-W Sadrozinski, H.; Seiden, A.; Zatserklyaniy, A.

    2014-02-01

    The development of Low-Gain Avalanche Detectors has opened up the possibility of manufacturing silicon detectors with signal larger than that of traditional sensors. In this paper we explore the timing performance of Low-Gain Avalanche Detectors, and in particular we demonstrate the possibility of obtaining ultra-fast silicon detector with time resolution of less than 20 picosecond.

  12. Electron avalanches in liquid argon mixtures

    SciTech Connect

    Kim, J.G.; Dardin, S.M.; Kadel, R.W.; Kadyk, J.A.; Wenzel, W.B.; Peskov, V.

    2004-03-19

    We have observed stable avalanche gain in liquid argon when mixed with small amounts of xenon in the high electric field (>7 MV/cm) near the point of a chemically etched needle in a point-plane geometry. We identify two gain mechanisms, one pressure dependent, and the other independent of the applied pressure. We conclude that the pressure dependent signals are from avalanche gain in gas bubbles at the tip of the needle, while the pressure independent pulses are from avalanche gain in liquid. We measure the decay time spectra of photons from both types of avalanches. The decay times from the pressure dependent pulses decrease (increase) with the applied pressure (high voltage), while the decay times from the pressure independent pulses are approximately independent of pressure or high voltage. For our operating conditions, the collected charge distribution from avalanches is similar for 60 keV or 122 keV photon sources. With krypton additives, instead of Xe, we measure behavior consistent with only the pressure dependent pulses. Neon and TMS were also investigated as additives, and designs for practical detectors were tested.

  13. X-ray imaging using avalanche multiplication in amorphous selenium: Investigation of depth dependent avalanche noise

    SciTech Connect

    Hunt, D. C.; Tanioka, Kenkichi; Rowlands, J. A.

    2007-03-15

    The past decade has seen the swift development of the flat-panel detector (FPD), also known as the active matrix flat-panel imager, for digital radiography. This new technology is applicable to other modalities, such as fluoroscopy, which require the acquisition of multiple images, but could benefit from some improvements. In such applications where more than one image is acquired less radiation is available to form each image and amplifier noise becomes a serious problem. Avalanche multiplication in amorphous selenium (a-Se) can provide the necessary amplification prior to read out so as to reduce the effect of electronic noise of the FPD. However, in direct conversion detectors avalanche multiplication can lead to a new source of gain fluctuation noise called depth dependent avalanche noise. A theoretical model was developed to understand depth dependent avalanche noise. Experiments were performed on a direct imaging system implementing avalanche multiplication in a layer of a-Se to validate the theory. For parameters appropriate for a diagnostic imaging FPD for fluoroscopy the detective quantum efficiency (DQE) was found to drop by as much as 50% with increasing electric field, as predicted by the theoretical model. This drop in DQE can be eliminated by separating the collection and avalanche regions. For example by having a region of low electric field where x rays are absorbed and converted into charge that then drifts into a region of high electric field where the x-ray generated charge undergoes avalanche multiplication. This means quantum noise limited direct conversion FPD for low exposure imaging techniques are a possibility.

  14. Recent detector developments at SINTEF (industrial presentation)

    NASA Astrophysics Data System (ADS)

    Sundby Avset, Berit; Evensen, Lars; Uri Jensen, Geir; Mo, Sjur; Kari Schjølberg-Henriksen; Westgaard, Trond

    1998-02-01

    Results from SINTEF's research on radiation hardness of silicon detectors, thin silicon detectors, silicon drift devices, reach-through avalanche photodiodes, and detectors with thin dead layers are presented.

  15. Effect of atmospheric turbulence on the bit error probability of a space to ground near infrared laser communications link using binary pulse position modulation and an avalanche photodiode detector

    NASA Technical Reports Server (NTRS)

    Safren, H. G.

    1987-01-01

    The effect of atmospheric turbulence on the bit error rate of a space-to-ground near infrared laser communications link is investigated, for a link using binary pulse position modulation and an avalanche photodiode detector. Formulas are presented for the mean and variance of the bit error rate as a function of signal strength. Because these formulas require numerical integration, they are of limited practical use. Approximate formulas are derived which are easy to compute and sufficiently accurate for system feasibility studies, as shown by numerical comparison with the exact formulas. A very simple formula is derived for the bit error rate as a function of signal strength, which requires only the evaluation of an error function. It is shown by numerical calculations that, for realistic values of the system parameters, the increase in the bit error rate due to turbulence does not exceed about thirty percent for signal strengths of four hundred photons per bit or less. The increase in signal strength required to maintain an error rate of one in 10 million is about one or two tenths of a db.

  16. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  17. Low dose digital X-ray imaging with avalanche amorphous selenium

    NASA Astrophysics Data System (ADS)

    Scheuermann, James R.; Goldan, Amir H.; Tousignant, Olivier; Léveillé, Sébastien; Zhao, Wei

    2015-03-01

    Active Matrix Flat Panel Imagers (AMFPI) based on an array of thin film transistors (TFT) have become the dominant technology for digital x-ray imaging. In low dose applications, the performance of both direct and indirect conversion detectors are limited by the electronic noise associated with the TFT array. New concepts of direct and indirect detectors have been proposed using avalanche amorphous selenium (a-Se), referred to as high gain avalanche rushing photoconductor (HARP). The indirect detector utilizes a planar layer of HARP to detect light from an x-ray scintillator and amplify the photogenerated charge. The direct detector utilizes separate interaction (non-avalanche) and amplification (avalanche) regions within the a-Se to achieve depth-independent signal gain. Both detectors require the development of large area, solid state HARP. We have previously reported the first avalanche gain in a-Se with deposition techniques scalable to large area detectors. The goal of the present work is to demonstrate the feasibility of large area HARP fabrication in an a-Se deposition facility established for commercial large area AMFPI. We also examine the effect of alternative pixel electrode materials on avalanche gain. The results show that avalanche gain > 50 is achievable in the HARP layers developed in large area coaters, which is sufficient to achieve x-ray quantum noise limited performance down to a single x-ray photon per pixel. Both chromium (Cr) and indium tin oxide (ITO) have been successfully tested as pixel electrodes.

  18. Avalanches in Wood Compression.

    PubMed

    Mäkinen, T; Miksic, A; Ovaska, M; Alava, Mikko J

    2015-07-31

    Wood is a multiscale material exhibiting a complex viscoplastic response. We study avalanches in small wood samples in compression. "Woodquakes" measured by acoustic emission are surprisingly similar to earthquakes and crackling noise in rocks and laboratory tests on brittle materials. Both the distributions of event energies and of waiting (silent) times follow power laws. The stress-strain response exhibits clear signatures of localization of deformation to "weak spots" or softwood layers, as identified using digital image correlation. Even though material structure-dependent localization takes place, the avalanche behavior remains scale-free.

  19. Dune Avalanche Scars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    05 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows large, low albedo (dark) sand dunes in Kaiser Crater near 47.2oS, 340.4oW. The dunes are--ever so slowly--moving east to west (right to left) as sand avalanches down the steeper, slip face slopes of each. Avalanching sand in the Kaiser dune field has left deep scars on these slopes, suggesting that the sand is not loose but is instead weakly cemented. The image covers an area approximately 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left.

  20. Avalanches in Wood Compression

    NASA Astrophysics Data System (ADS)

    Mäkinen, T.; Miksic, A.; Ovaska, M.; Alava, Mikko J.

    2015-07-01

    Wood is a multiscale material exhibiting a complex viscoplastic response. We study avalanches in small wood samples in compression. "Woodquakes" measured by acoustic emission are surprisingly similar to earthquakes and crackling noise in rocks and laboratory tests on brittle materials. Both the distributions of event energies and of waiting (silent) times follow power laws. The stress-strain response exhibits clear signatures of localization of deformation to "weak spots" or softwood layers, as identified using digital image correlation. Even though material structure-dependent localization takes place, the avalanche behavior remains scale-free.

  1. Reuyl Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 13 May 2002) The Science The rugged, arcuate rim of the 90 km crater Reuyl dominates this THEMIS image. Reuyl crater is at the southern edge of a region known to be blanketed in thick dust based on its high albedo (brightness) and low thermal inertia values. This thick mantle of dust creates the appearance of snow covered mountains in the image. Like snow accumulation on Earth, Martian dust can become so thick that it eventually slides down the face of steep slopes, creating runaway avalanches of dust. In the center of this image about 1/3 of the way down is evidence of this phenomenon. A few dozen dark streaks can be seen on the bright, sunlit slopes of the crater rim. The narrow streaks extend downslope following the local topography in a manner very similar to snow avalanches on Earth. But unlike their terrestrial counterparts, no accumulation occurs at the bottom. The dust particles are so small that they are easily launched into the thin atmosphere where they remain suspended and ultimately blow away. The apparent darkness of the avalanche scars is due to the presence of relatively dark underlying material that becomes exposed following the passage of the avalanche. Over time, new dust deposition occurs, brightening the scars until they fade into the background. Although dark slope streaks had been observed in Viking mission images, a clear understanding of this dynamic phenomenon wasn't possible until the much higher resolution images from the Mars Global Surveyor MOC camera revealed the details. MOC images also showed that new avalanches have occurred during the time MGS has been in orbit. THEMIS images will allow additional mapping of their distribution and frequency, contributing new insights about Martian dust avalanches. The Story The stiff peaks in this image might remind you of the Alps here on Earth, but they really outline the choppy edge of a large Martian crater over 50 miles wide (seen in the context image at right). While these aren

  2. Some studies of avalanche photodiode readout of fast scintillators

    SciTech Connect

    Holl, I.; Lorenz, E.; Natkaniez, S.; Renker, D.; Schmelz, C. |; Schwartz, B.

    1995-08-01

    Photomultipliers (PMs) are the classical readout element for scintillation detectors in high energy particle physics, nuclear physics, medical physics, industrial radiation monitors etc. Here, large area avalanche photodiodes with high performance, narrow operation tolerances and high reliability have recently become available. The authors report on some tests of their performance in the readout of fast scintillators.

  3. Avalanche Photodiode Statistics in Triggered-avalanche Detection Mode

    NASA Technical Reports Server (NTRS)

    Tan, H. H.

    1984-01-01

    The output of a triggered avalanche mode avalanche photodiode is modeled as Poisson distributed primary avalanche events plus conditionally Poisson distributed trapped carrier induced secondary events. The moment generating function as well as the mean and variance of the diode output statistics are derived. The dispersion of the output statistics is shown to always exceed that of the Poisson distribution. Several examples are considered in detail.

  4. Exclusion processes with avalanches.

    PubMed

    Bhat, Uttam; Krapivsky, P L

    2014-07-01

    In an exclusion process with avalanches, when a particle hops to a neighboring empty site which is adjacent to an island the particle on the other end of the island immediately hops, and if it joins another island this triggers another hop. There are no restrictions on the length of the islands and the duration of the avalanche. This process is well defined in the low-density region ρ < 1/2. We describe the nature of steady states (on a ring) and determine all correlation functions. For the asymmetric version of the process, we compute the steady state current, and we describe shock and rarefaction waves which arise in the evolution of the step-function initial profile. For the symmetric version, we determine the diffusion coefficient and examine the evolution of a tagged particle.

  5. Strain avalanches in plasticity

    NASA Astrophysics Data System (ADS)

    Argon, A. S.

    2013-09-01

    Plastic deformation at the mechanism level in all solids occurs in the form of discrete thermally activated individual stress relaxation events. While there are clear differences in mechanisms between dislocation mediated events in crystalline solids and by individual shear transformations in amorphous metals and semiconductors, such relaxation events interact strongly to form avalanches of strain bursts. In all cases the attendant distributions of released energy as amplitudes of acoustic emissions, or in serration amplitudes in flow stress, the levels of strain bursts are of fractal character with fractal exponents in the range from -1.5 to -2.0, having the character of phenomena of self-organized criticality, SOC. Here we examine strain avalanches in single crystals of ice, hcp metals, the jerky plastic deformations of nano-pillars of fcc and bcc metals deforming in compression, those in the plastic flow of bulk metallic glasses, all demonstrating the remarkable universality of character of plastic relaxation events.

  6. Laboratory singing sand avalanches.

    PubMed

    Dagois-Bohy, Simon; Ngo, Sandrine; du Pont, Sylvain Courrech; Douady, Stéphane

    2010-02-01

    Some desert sand dunes have the peculiar ability to emit a loud sound up to 110 dB, with a well-defined frequency: this phenomenon, known since early travelers (Darwin, Marco Polo, etc.), has been called the song of dunes. But only in late 19th century scientific observations were made, showing three important characteristics of singing dunes: first, not all dunes sing, but all the singing dunes are composed of dry and well-sorted sand; second, this sound occurs spontaneously during avalanches on a slip face; third this is not the only way to produce sound with this sand. More recent field observations have shown that during avalanches, the sound frequency does not depend on the dune size or shape, but on the grain diameter only, and scales as the square root of g/d--with g the gravity and d the diameter of the grains--explaining why all the singing dunes in the same vicinity sing at the same frequency. We have been able to reproduce these singing avalanches in laboratory on a hard plate, which made possible to study them more accurately than on the field. Signals of accelerometers at the flowing surface of the avalanche are compared to signals of microphones placed above, and it evidences a very strong vibration of the flowing layer at the same frequency as on the field, responsible for the emission of sound. Moreover, other characteristics of the booming dunes are reproduced and analyzed, such as a threshold under which no sound is produced, or beats in the sound that appears when the flow is too large. Finally, the size of the coherence zones emitting sound has been measured and discussed.

  7. Hebes Chasma Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located in Hebes Chasma.

    Image information: VIS instrument. Latitude -1.4, Longitude 286.6 East (73.4 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Solid-state flat panel imager with avalanche amorphous selenium

    NASA Astrophysics Data System (ADS)

    Scheuermann, James R.; Howansky, Adrian; Goldan, Amir H.; Tousignant, Olivier; Levéille, Sébastien; Tanioka, K.; Zhao, Wei

    2016-03-01

    Active matrix flat panel imagers (AMFPI) have become the dominant detector technology for digital radiography and fluoroscopy. For low dose imaging, electronic noise from the amorphous silicon thin film transistor (TFT) array degrades imaging performance. We have fabricated the first prototype solid-state AMFPI using a uniform layer of avalanche amorphous selenium (a-Se) photoconductor to amplify the signal to eliminate the effect of electronic noise. We have previously developed a large area solid-state avalanche a-Se sensor structure referred to as High Gain Avalanche Rushing Photoconductor (HARP) capable of achieving gains of 75. In this work we successfully deposited this HARP structure onto a 24 x 30 cm2 TFT array with a pixel pitch of 85 μm. An electric field (ESe) up to 105 Vμm-1 was applied across the a-Se layer without breakdown. Using the HARP layer as a direct detector, an X-ray avalanche gain of 15 +/- 3 was achieved at ESe = 105 Vμm-1. In indirect mode with a 150 μm thick structured CsI scintillator, an optical gain of 76 +/- 5 was measured at ESe = 105 Vμm-1. Image quality at low dose increases with the avalanche gain until the electronic noise is overcome at a constant exposure level of 0.76 mR. We demonstrate the success of a solid-state HARP X-ray imager as well as the largest active area HARP sensor to date.

  9. Investigation of avalanche photodiodes radiation hardness for baryonic matter studies

    NASA Astrophysics Data System (ADS)

    Kushpil, V.; Mikhaylov, V.; Ladygin, V. P.; Kugler, A.; Kushpil, S.; Svoboda, O.; Tlustý, P.

    2016-01-01

    Modern avalanche photodiodes (APDs) with high gain are good device candidates for light readout from detectors applied in relativistic heavy ion collisions experiments. The results of the investigations of the APDs properties from Zecotek, Ketek and Hamamatsu manufacturers after irradiation using secondary neutrons from cyclotron facility U120M at NPI of ASCR in Řež are presented. The results of the investigations can be used for the design of the detectors for the experiments at NICA and FAIR.

  10. Avalanche Photodiode Arrays for Optical Communications Receivers

    NASA Technical Reports Server (NTRS)

    Srinivasan, M.; Vilnrotter, V.

    2001-01-01

    An avalanche photodiode (APD) array for ground-based optical communications receivers is investigated for the reception of optical signals through the turbulent atmosphere. Kolmogorov phase screen simulations are used to generate realistic spatial distributions of the received optical field. It is shown that use of an APD array for pulse-position modulation detection can improve performance by up to 4 dB over single APD detection in the presence of turbulence, but that photon-counting detector arrays yield even greater gains.

  11. Tikhonravov Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located within a small crater inside Tikhonravov Crater.

    Image information: VIS instrument. Latitude 12.6, Longitude 37.1 East (322.9 West). 36 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Lycus Sulci Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches occur on the slopes of Lycus Sulci near Olympus Mons.

    Image information: VIS instrument. Latitude 28.1, Longitude 220.4 East (139.6 West). 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located in a small canyon within a crater rim northeast of Naktong Vallis.

    Image information: VIS instrument. Latitude 7.1, Longitude 34.7 East (325.3 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  14. Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    This region of dust avalanches is located in and around a crater to the west of yesterday's image.

    Image information: VIS instrument. Latitude 14.7, Longitude 32.7 East (327.3 West). 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Single and few photon avalanche photodiode detection process study

    NASA Astrophysics Data System (ADS)

    Blazej, Josef; Prochazka, Ivan

    2009-07-01

    We are presenting the results of the study of the Single Photon Avalanche Diode (SPAD) pulse response risetime and its dependence on several key parameters. We were investigating the unique properties of K14 type SPAD with its high delay uniformity of 200 μm active area and the correlation between the avalanche buildup time and the photon number involved in the avalanche trigger. The detection chip was operated in a passive quenching circuit with active gating. This setup enabled us to monitor the diode reverse current using an electrometer, a fast digitizing oscilloscope, and using a custom design comparator circuit. The electrometer reading enabled to estimate the photon number per detection event, independently on avalanche process. The avalanche build up was recorded on the oscilloscope and processed by custom designed waveform analysis package. The correlation of avalanche build up to the photon number, bias above break, photon absorption location, optical pulse length and photon energy was investigated in detail. The experimental results are presented. The existing solid state photon counting detectors have been dedicated for picosecond resolution and timing stability of single photon events. However, the high timing stability is maintained for individual single photons detection, only. If more than one photon is absorbed within the detector time resolution, the detection delay will be significantly affected. This fact is restricting the application of the solid state photon counters to cases where single photons may be guaranteed, only. For laser ranging purposes it is highly desirable to have a detector, which detects both single photon and multi photon signals with picoseconds stability. The SPAD based photon counter works in a purely digital mode: a uniform output signal is generated once the photon is detected. If the input signal consists of several photons, the first absorbed one triggers the avalanche. Obviously, for multiple photon signals, the

  16. Antimonide-based Geiger-mode avalanche photodiodes for SWIR and MWIR photon counting

    NASA Astrophysics Data System (ADS)

    Duerr, Erik K.; Manfra, Michael J.; Diagne, Mohamed A.; Bailey, Robert J.; Zayhowski, John J.; Donnelly, Joseph P.; Connors, Michael K.; Grzesik, Michael J.; Turner, George W.

    2010-04-01

    At MIT Lincoln Laboratory, avalanche photodiodes (APDs) have been developed for both 2-μm and 3.4-μm detection using the antimonide material system. These bulk, lattice-matched detectors operate in Geiger mode at temperatures up to 160 K. The 2-μm APDs use a separate-absorber-multiplier design with an InGaAsSb absorber and electron-initiated avalanching in the multiplier. These APDs have exhibited normalized avalanche probability (product of avalanche probability and photo-carrier-injection probability) of 0.4 and dark count rates of ~150 kHz at 77 K for a 30-μm-diameter device. A 1000- element imaging array of the 2-μm detectors has been demonstrated, which operate in a 5 kg dewar with an integrated Stirling-cycle cooler. The APD array is interfaced with a CMOS readout circuit, which provides photon time-of-arrival information for each pixel, allowing the focal plane array to be used in a photon-counting laser radar system. The 3.4-μm APDs use an InAsSb absorber and hole-initiated avalanching and have shown dark count rates of ~500 kHz at 77 K but normalized avalanche probability of < 1%. Research is ongoing to determine the cause of the low avalanche probability and improve the device performance.

  17. Fracture mechanics of snow avalanches

    NASA Astrophysics Data System (ADS)

    Åström, J. A.; Timonen, J.

    2001-07-01

    Dense snow avalanches are analyzed by modeling the snow slab as an elastic and brittle plate, attached by static friction to the underlying ground. The grade of heterogeneity in the local fracture (slip) thresholds, and the ratio of the average substrate slip threshold to the average slab fracture threshold, are the decisive parameters for avalanche dynamics. For a strong pack of snow there appears a stable precursor of local slips when the frictional contacts are weakened (equivalent to rising temperature), which eventually trigger a catastrophic crack growth that suddenly releases the entire slab. In the opposite limit of very high slip thresholds, the slab simply melts when the temperature is increased. In the intermediate regime, and for a homogeneous slab, the model display features typical of real snow avalanches. The model also suggests an explanation to why avalanches are impossible to forecast reliably based on precursor observations. This explanation may as well be applicable to other catastrophic rupture phenomena such as earthquakes.

  18. Neuronal avalanches and coherence potentials

    NASA Astrophysics Data System (ADS)

    Plenz, D.

    2012-05-01

    The mammalian cortex consists of a vast network of weakly interacting excitable cells called neurons. Neurons must synchronize their activities in order to trigger activity in neighboring neurons. Moreover, interactions must be carefully regulated to remain weak (but not too weak) such that cascades of active neuronal groups avoid explosive growth yet allow for activity propagation over long-distances. Such a balance is robustly realized for neuronal avalanches, which are defined as cortical activity cascades that follow precise power laws. In experiments, scale-invariant neuronal avalanche dynamics have been observed during spontaneous cortical activity in isolated preparations in vitro as well as in the ongoing cortical activity of awake animals and in humans. Theory, models, and experiments suggest that neuronal avalanches are the signature of brain function near criticality at which the cortex optimally responds to inputs and maximizes its information capacity. Importantly, avalanche dynamics allow for the emergence of a subset of avalanches, the coherence potentials. They emerge when the synchronization of a local neuronal group exceeds a local threshold, at which the system spawns replicas of the local group activity at distant network sites. The functional importance of coherence potentials will be discussed in the context of propagating structures, such as gliders in balanced cellular automata. Gliders constitute local population dynamics that replicate in space after a finite number of generations and are thought to provide cellular automata with universal computation. Avalanches and coherence potentials are proposed to constitute a modern framework of cortical synchronization dynamics that underlies brain function.

  19. Electro-thermal simulation of superconducting nanowire avalanche photodetectors

    SciTech Connect

    Marsili, F.; Najafi, F.; Herder, C.; Berggren, K. K.

    2011-01-01

    We developed an electrothermal model of NbN superconducting nanowire avalanche photodetectors (SNAPs) on sapphire substrates. SNAPs are single-photon detectors consisting of the parallel connection of N superconducting nanowires. We extrapolated the physical constants of the model from experimental data and we simulated the time evolution of the device resistance, temperature and current by solving two coupled electrical and thermal differential equations describing the nanowires. The predictions of the model were in good quantitative agreement with the experimental results.

  20. Ultraviolet avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    McClintock, Ryan; Razeghi, Manijeh

    2015-08-01

    The III-Nitride material system is rapidly maturing; having proved itself as a material for LEDs and laser, and now finding use in the area of UV photodetectors. However, many UV applications are still dominated by the use of photomultiplier tubes (PMT). PMTs are capable of obtaining very high sensitivity using internal electron multiplication gain (typically ~106). It is highly desirable to develop a compact semiconductor-based photodetector capable of realizing this level of sensitivity. In principle, this can be obtained in III-Nitrides by taking advantage of avalanche multiplication under high electric fields - typically 2.7 MV/cm, which with proper design can correspond to an external reverse bias of less than 100 volts. In this talk, we review the current state-of-the-art in III-Nitride solar- and visible-blind APDs, and present our latest results on GaN APDs grown on both conventional sapphire and low dislocation density free-standing c- and m-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs were compared. The spectral response and Geiger-mode photon counting performance of UV APDs are studied under low photon fluxes, with single photon detection capabilities as much as 30% being demonstrated in smaller devices. Geiger-mode operation conditions are optimized for enhanced SPDE.

  1. Avalanche effects near nanojunctions

    NASA Astrophysics Data System (ADS)

    Nandigana, Vishal V. R.; Aluru, N. R.

    2016-07-01

    In this article, we perform a computational investigation of a nanopore connected to external fluidic reservoirs of asymmetric geometries. The asymmetry between the reservoirs is achieved by changing the cross-sectional areas, and the reservoirs are designated as the micropore reservoir and macropore reservoir. When an electric field is applied, which is directed from the macropore towards the micropore reservoir, we observe local nonequilibrium chaotic current oscillations. The current oscillations originate at the micropore-nanopore interface owing to the local cascade of ions; we refer to this phenomenon as the "avalanche effects." We mathematically quantify chaos in terms of the maximum Lyapunov exponent. The maximum Lyapunov exponent exhibits a monotonic increase with the applied voltage and the macropore reservoir diameter. The temporal power spectra maps of the chaotic currents depict a low-frequency "1 /f "-type dynamics for the voltage chaos and "1 /f2 "-type dynamics for the macropore reservoir chaos. The results presented here offer avenues to manipulate ionic diodes and fluidic pumps.

  2. Photon counting modules using RCA silicon avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Lightstone, Alexander W.; Macgregor, Andrew D.; Macsween, Darlene E.; Mcintyre, Robert J.; Trottier, Claude; Webb, Paul P.

    1989-01-01

    Avalanche photodiodes (APD) are excellent small area, solid state detectors for photon counting. Performance possibilities include: photon detection efficiency in excess of 50 percent; wavelength response from 400 to 1000 nm; count rate to 10 (exp 7) counts per sec; afterpulsing at negligible levels; timing resolution better than 1 ns. Unfortunately, these performance levels are not simultaneously available in a single detector amplifier configuration. By considering theoretical performance predictions and previous and new measurements of APD performance, the anticipated performance of a range of proposed APD-based photon counting modules is derived.

  3. Gaseous wire detectors

    SciTech Connect

    Va'vra, J.

    1997-08-01

    This article represents a series of three lectures describing topics needed to understand the design of typical gaseous wire detectors used in large high energy physics experiments; including the electrostatic design, drift of electrons in the electric and magnetic field, the avalanche, signal creation, limits on the position accuracy as well as some problems one encounters in practical operations.

  4. EEG, temporal correlations, and avalanches.

    PubMed

    Benayoun, Marc; Kohrman, Michael; Cowan, Jack; van Drongelen, Wim

    2010-12-01

    Epileptiform activity in the EEG is frequently characterized by rhythmic, correlated patterns or synchronized bursts. Long-range temporal correlations (LRTC) are described by power law scaling of the autocorrelation function and have been observed in scalp and intracranial EEG recordings. Synchronous large-amplitude bursts (also called neuronal avalanches) have been observed in local field potentials both in vitro and in vivo. This article explores the presence of neuronal avalanches in scalp and intracranial EEG in the context of LRTC. Results indicate that both scalp and intracranial EEG show LRTC, with larger scaling exponents in scalp recordings than intracranial. A subset of analyzed recordings also show avalanche behavior, indicating that avalanches may be associated with LRTC. Artificial test signals reveal a linear relationship between the scaling exponent measured by detrended fluctuation analysis and the exponent of the avalanche size distribution. Analysis and evaluation of simulated data reveal that preprocessing of EEG (squaring the signal or applying a filter) affect the ability of detrended fluctuation analysis to reliably measure LRTC.

  5. Spatiotemporal recurrences of sandpile avalanches

    NASA Astrophysics Data System (ADS)

    Tarun, Anjali B.; Paguirigan, Antonino A.; Batac, Rene C.

    2015-10-01

    We study the space and time properties of avalanches in a continuous sandpile model by constructing a temporally directed network linking together the recurrent avalanche events based on their spatial separation. We use two different criteria for network construction: a later event is connected to a previous one if it is either nearest or farthest from it among all the later events. With this, we observe scale-free regimes emerge as characterized by the following power-law exponents: (a) α = 1.7 for the avalanche size distributions; (b) βF = 2.1 in the in-degree distribution of farthest recurrences; (c) δ = 1 for the separation distances; and (d) γ = 1 for the temporal separations of recurrences. Our results agree with earlier observations that describe the sandpile avalanches as repulsive events, i.e. the next avalanche is more likely to be physically separated from an earlier one. These observations, which are not captured by usual interoccurrence statistics and by random connection mechanisms, suggest an underlying spatiotemporal organization in the sandpile that makes it useful for modeling real-world systems.

  6. Improved x-ray detection and particle identification with avalanche photodiodes

    SciTech Connect

    Diepold, Marc Franke, Beatrice; Götzfried, Johannes; Hänsch, Theodor W.; Krauth, Julian J.; Mulhauser, Françoise; Nebel, Tobias; Pohl, Randolf; Fernandes, Luis M. P.; Amaro, Fernando D.; Gouvea, Andrea L.; Monteiro, Cristina M. B.; Santos, Joaquim M. F. dos; Machado, Jorge; Amaro, Pedro; Santos, José Paulo; and others

    2015-05-15

    Avalanche photodiodes are commonly used as detectors for low energy x-rays. In this work, we report on a fitting technique used to account for different detector responses resulting from photoabsorption in the various avalanche photodiode layers. The use of this technique results in an improvement of the energy resolution at 8.2 keV by up to a factor of 2 and corrects the timing information by up to 25 ns to account for space dependent electron drift time. In addition, this waveform analysis is used for particle identification, e.g., to distinguish between x-rays and MeV electrons in our experiment.

  7. First Sentinel-1 detections of avalanche debris

    NASA Astrophysics Data System (ADS)

    Malnes, E.; Eckerstorfer, M.; Vickers, H.

    2015-03-01

    Snow avalanches are natural hazards, occurring in snow covered mountain terrain worldwide. Present avalanche research and forecasting relies on complete avalanche activity records in a given area over an entire winter season, which cannot be provided with traditional, mainly field based methods. Remote sensing, using weather, and light independent SAR satellites has the potential of filling these data gaps, however, to date their use was limited by high acquisition costs, long repeat cycles, and small ground swath. Sentinel-1A (S1A), on the other hand, operational since October 2014 provides free-of-charge, 20 m spatial resolution, 250 km × 150 km ground swath images every 12 days. In this paper, we present for the first time, that it is possible to detect avalanche debris using S1A images. We successfully apply a change detection method that enhances avalanche debris zones, by comparing repeat pass images before and after the avalanche occurred. Due to the increase in backscatter from avalanche debris, manual detection is possible. With this first proof-of-concept, we show the detection of 489 avalanche debris zones in a S1A image from 6 January 2015, covering the counties Troms and parts of Nordland in Northern Norway. We validate our avalanche detection using very high resolution Radarsat-2 Ultrafine images, as well as extensive field reconnaissance. Our results give us confidence, that S1A detection of avalanches is a critical step towards operational use of SAR avalanche detection in avalanche forecasting.

  8. Statistics of electron avalanches and bursts in low pressure gases below the breakdown voltage

    SciTech Connect

    Donko, Z.

    1995-12-31

    Avalanches in different types of dynamical systems have been subject of recent interest. Avalanches building up in gases play an important role in radiation detectors and in the breakdown process of gas discharges. We have used computer simulation to study statistical properties of electron avalanches and bursts (sequences of avalanches) in a gas subjected to a homogeneous electric field. Helium was used as buffer gas, but we believe that our results are more general. The bursts were initiated by injecting low energy electrons into the gas. We applied Monte Carlo procedure to trace the trajectories of electrons. The elementary processes considered in the model were anisotropic elastic scattering of electrons from He atoms, electron impact excitation and ionization of He atoms. The electrons were traced until the are reached the perfectly absorbing anode.

  9. Enhanced Red and Near Infrared Detection in Flow Cytometry Using Avalanche Photodiodes

    PubMed Central

    Lawrence, William G.; Varadi, Gyula; Entine, Gerald; Podniesinski, Edward; Wallace, Paul K.

    2008-01-01

    Background Polychromatic flow cytometry enables detailed identification of cell phenotype using multiple fluorescent parameters. The photomultiplier tubes used to detect fluorescence in current instruments limit the sensitivity in the long wavelength spectral range. We demonstrate the flow cytometric applications of silicon avalanche photodiodes, which have improved red sensitivity and a working fluorescence detection range beyond 1000 nm. Methods A comparison of the wavelength dependent performance of the avalanche photodiode and photomultiplier tube was carried out using pulsed light emitting diode sources, calibrated test beads and biological samples. A breadboard flow cytometer test bench was constructed to compare the performance of photomultiplier tubes and avalanche photodiode detectors. The avalanche photodiode used an additional amplifier stage to match the internal gain of the photomultiplier tube. Results The resolution of the avalanche photodiode and photomultiplier tube was compared for flow cytometry applications using a pulsed light emitting diode source over the 500 nm to 1060 nm spectral range. These measurements showed the relative changes in the signal to noise performance of the APD and PMT over a broad spectral range. Both the avalanche photodiode and photomultiplier tubes were used to measure the signal to noise response for a set of 6 peak calibration beads over the 530 to 800 nm wavelength range. CD4 positive cells labeled with antibody conjugated phycoerythrin or 800 nm quantum dots were identified by simultaneous detection using the avalanche photodiode and the photomultiplier tube. The ratios of the intensities of the CD4− and CD4+ populations were found to be similar for both detectors in the visible wavelengths, but only the avalanche photodiode was able to separate these populations at wavelengths above 800 nm. Conclusions These measurements illustrate the differences in APD and PMT performance at different wavelengths and signal

  10. A branching process model for sand avalanches

    SciTech Connect

    Garcia-Pelayo, R.; Salazar, I.; Schieve, W.C. )

    1993-07-01

    An analytically solvable model for sand avalanches of noninteracting grains of sand, based on the Chapman-Kolmogorov equations, is presented. For a single avalanche, distributions of lifetimes, sizes of overflows and avalanches, and correlation functions are calculated. Some of these are exponentials, some are power laws. Spatially homogeneous distributions of avalanches are also studied. Computer simulations of avalanches of interacting grains of sand are compared to the solutions to the Chapman-Kolmogorov equations. It is found that within the range of parameters explored in the simulation, the approximation of noninteracting grains of sand is a good one. 20 refs., 4 figs.

  11. Lumped transmission line avalanche pulser

    DOEpatents

    Booth, R.

    1995-07-18

    A lumped linear avalanche transistor pulse generator utilizes stacked transistors in parallel within a stage and couples a plurality of said stages, in series with increasing zener diode limited voltages per stage and decreasing balanced capacitance load per stage to yield a high voltage, high and constant current, very short pulse. 8 figs.

  12. Lumped transmission line avalanche pulser

    DOEpatents

    Booth, Rex

    1995-01-01

    A lumped linear avalanche transistor pulse generator utilizes stacked transistors in parallel within a stage and couples a plurality of said stages, in series with increasing zener diode limited voltages per stage and decreasing balanced capacitance load per stage to yield a high voltage, high and constant current, very short pulse.

  13. A compact gas-filled avalanche counter for DANCE

    SciTech Connect

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henderson, R. A.; Gostic, J. M.; Carter, D.; Bredeweg, T. A.; Couture, A.; Jandel, M.; Ullmann, J. L.

    2012-08-04

    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4π γ-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with 235U, 238Pu,239Pu, and 241Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. We also used it to study the spontaneous fission in 252Cf. The design and performance of this avalanche counter for targets with extreme α-decay rate up to ~2.4×108/s are described.

  14. A compact gas-filled avalanche counter for DANCE

    DOE PAGES

    Wu, C. Y.; Chyzh, A.; Kwan, E.; ...

    2012-08-04

    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4π γ-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with 235U, 238Pu,239Pu, and 241Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. We also used it to study the spontaneous fission in 252Cf. The design and performance of this avalanche counter for targets with extreme α-decay rate up to ~2.4×108/s are described.

  15. Avalanche dynamics on a rough inclined plane.

    PubMed

    Börzsönyi, Tamás; Halsey, Thomas C; Ecke, Robert E

    2008-07-01

    The avalanche behavior of gravitationally forced granular layers on a rough inclined plane is investigated experimentally for different materials and for a variety of grain shapes ranging from spherical beads to highly anisotropic particles with dendritic shape. We measure the front velocity, area, and height of many avalanches and correlate the motion with the area and height. We also measure the avalanche profiles for several example cases. As the shape irregularity of the grains is increased, there is a dramatic qualitative change in avalanche properties. For rough nonspherical grains, avalanches are faster, bigger, and overturning in the sense that individual particles have down-slope speeds u p that exceed the front speed uf as compared with avalanches of spherical glass beads that are quantitatively slower and smaller and where particles always travel slower than the front speed. There is a linear increase of three quantities: (i) dimensionless avalanche height, (ii) ratio of particle to front speed, and (iii) the growth rate of avalanche speed with increasing avalanche size with increasing tan theta r where theta r is the bulk angle of repose, or with increasing beta P, the slope of the depth averaged flow rule, where both theta r and beta P reflect the grain shape irregularity. These relations provide a tool for predicting important dynamical properties of avalanches as a function of grain shape irregularity. A relatively simple depth-averaged theoretical description captures some important elements of the avalanche motion, notably the existence of two regimes of this motion.

  16. Photon Detection with Cooled Avalanche Photodiodes: Theory and Preliminary Experimental Results

    NASA Technical Reports Server (NTRS)

    Robinson, D. L.; Hays, D. A.

    1985-01-01

    Avalanche photodiodes (APDs) can be operated in a geiger-tube mode so that they can respond to single electron events and thus be used as photon counting detectors. Operational characteristics and theory of APDs while used in this mode are analyzed and assessed. Preliminary experimental investigation of several commercially available APDs has commenced, and initial results for dark count statistics are presented.

  17. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits

    PubMed Central

    Aull, Brian

    2016-01-01

    This article reviews MIT Lincoln Laboratory's work over the past 20 years to develop photon-sensitive image sensors based on arrays of silicon Geiger-mode avalanche photodiodes. Integration of these detectors to all-digital CMOS readout circuits enable exquisitely sensitive solid-state imagers for lidar, wavefront sensing, and passive imaging. PMID:27070609

  18. The blocking probability of Geiger-mode avalanche photo-diodes

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Srinivasan, Meera; Hamkins, Jon

    2005-01-01

    When a photo is detected by a Geiger-mode avalanche photo-diode (GMAPD), the detector is rendered inactive, or blocked, for a certain period of time. In this paper we derive the blocking probability for a GMAPD whose input is either an unmodulated, Benoulli modulated or pulse-position-modulated Poisson process.

  19. Cosmic Ray Measurements by Scintillators with Metal Resistor Semiconductor Avalanche Photo Diodes

    ERIC Educational Resources Information Center

    Blanco, Francesco; La Rocca, Paola; Riggi, Francesco; Akindinov, Alexandre; Mal'kevich, Dmitry

    2008-01-01

    An educational set-up for cosmic ray physics experiments is described. The detector is based on scintillator tiles with a readout through metal resistor semiconductor (MRS) avalanche photo diode (APD) arrays. Typical measurements of the cosmic angular distribution at sea level and a study of the East-West asymmetry obtained by such a device are…

  20. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product

    NASA Astrophysics Data System (ADS)

    Kang, Yimin; Liu, Han-Din; Morse, Mike; Paniccia, Mario J.; Zadka, Moshe; Litski, Stas; Sarid, Gadi; Pauchard, Alexandre; Kuo, Ying-Hao; Chen, Hui-Wen; Zaoui, Wissem Sfar; Bowers, John E.; Beling, Andreas; McIntosh, Dion C.; Zheng, Xiaoguang; Campbell, Joe C.

    2009-01-01

    Significant progress has been made recently in demonstrating that silicon photonics is a promising technology for low-cost optical detectors, modulators and light sources. It has often been assumed, however, that their performance is inferior to InP-based devices. Although this is true in most cases, one of the exceptions is the area of avalanche photodetectors, where silicon's material properties allow for high gain with less excess noise than InP-based avalanche photodetectors and a theoretical sensitivity improvement of 3 dB or more. Here, we report a monolithically grown germanium/silicon avalanche photodetector with a gain-bandwidth product of 340 GHz, a keff of 0.09 and a sensitivity of -28 dB m at 10 Gb s-1. This is the highest reported gain-bandwidth product for any avalanche photodetector operating at 1,300 nm and a sensitivity that is equivalent to mature, commercially available III-V compound avalanche photodetectors. This work paves the way for the future development of low-cost, CMOS-based germanium/silicon avalanche photodetectors operating at data rates of 40 Gb s-1 or higher.

  1. Quantitative Scaling of Magnetic Avalanches

    NASA Astrophysics Data System (ADS)

    Durin, G.; Bohn, F.; Corrêa, M. A.; Sommer, R. L.; Le Doussal, P.; Wiese, K. J.

    2016-08-01

    We provide the first quantitative comparison between Barkhausen noise experiments and recent predictions from the theory of avalanches for pinned interfaces, both in and beyond mean field. We study different classes of soft magnetic materials, including polycrystals and amorphous samples—which are characterized by long-range and short-range elasticity, respectively—both for thick and thin samples, i.e., with and without eddy currents. The temporal avalanche shape at fixed size as well as observables related to the joint distribution of sizes and durations are analyzed in detail. Both long-range and short-range samples with no eddy currents are fitted extremely well by the theoretical predictions. In particular, the short-range samples provide the first reliable test of the theory beyond mean field. The thick samples show systematic deviations from the scaling theory, providing unambiguous signatures for the presence of eddy currents.

  2. Quantitative Scaling of Magnetic Avalanches.

    PubMed

    Durin, G; Bohn, F; Corrêa, M A; Sommer, R L; Le Doussal, P; Wiese, K J

    2016-08-19

    We provide the first quantitative comparison between Barkhausen noise experiments and recent predictions from the theory of avalanches for pinned interfaces, both in and beyond mean field. We study different classes of soft magnetic materials, including polycrystals and amorphous samples-which are characterized by long-range and short-range elasticity, respectively-both for thick and thin samples, i.e., with and without eddy currents. The temporal avalanche shape at fixed size as well as observables related to the joint distribution of sizes and durations are analyzed in detail. Both long-range and short-range samples with no eddy currents are fitted extremely well by the theoretical predictions. In particular, the short-range samples provide the first reliable test of the theory beyond mean field. The thick samples show systematic deviations from the scaling theory, providing unambiguous signatures for the presence of eddy currents.

  3. The prehospital management of avalanche victims.

    PubMed

    Kornhall, Daniel K; Martens-Nielsen, Julie

    2016-12-01

    Avalanche accidents are frequently lethal events with an overall mortality of 23%. Mortality increases dramatically to 50% in instances of complete burial. With modern day dense networks of ambulance services and rescue helicopters, health workers often become involved during the early stages of avalanche rescue. Historically, some of the most devastating avalanche accidents have involved military personnel. Armed forces are frequently deployed to mountain regions in order to train for mountain warfare or as part of ongoing conflicts. Furthermore, military units are frequently called to assist civilian organised rescue in avalanche rescue operations. It is therefore important that clinicians associated with units operating in mountain regions have an understanding of, the medical management of avalanche victims, and of the preceding rescue phase. The ensuing review of the available literature aims to describe the pathophysiology particular to avalanche victims and to outline a structured approach to the search, rescue and prehospital medical management.

  4. Radiation Response of Emerging High Gain, Low Noise Detectors

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Farr, William H; Zhu, David Q.

    2007-01-01

    Data illustrating the radiation response of emerging high gain, low noise detectors are presented. Ionizing dose testing of silicon internal discrete avalanche photodiodes, and 51-MeV proton testing of InGaAs/InAlAs avalanche photodiodes operated in Geiger mode are discussed.

  5. Highly enhanced avalanche probability using sinusoidally-gated silicon avalanche photodiode

    SciTech Connect

    Suzuki, Shingo; Namekata, Naoto Inoue, Shuichiro; Tsujino, Kenji

    2014-01-27

    We report on visible light single photon detection using a sinusoidally-gated silicon avalanche photodiode. Detection efficiency of 70.6% was achieved at a wavelength of 520 nm when an electrically cooled silicon avalanche photodiode with a quantum efficiency of 72.4% was used, which implies that a photo-excited single charge carrier in a silicon avalanche photodiode can trigger a detectable avalanche (charge) signal with a probability of 97.6%.

  6. Avalanche ecology and large magnitude avalanche events: Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Fagre, Daniel B.; Peitzsch, Erich H.

    2010-01-01

    Large magnitude snow avalanches play an important role ecologically in terms of wildlife habitat, vegetation diversity, and sediment transport within a watershed. Ecological effects from these infrequent avalanches can last for decades. Understanding the frequency of such large magnitude avalanches is also critical to avalanche forecasting for the Going-to-the-Sun Road (GTSR). In January 2009, a large magnitude avalanche cycle occurred in and around Glacier National Park, Montana. The study site is the Little Granite avalanche path located along the GTSR. The study is designed to quantify change in vegetative cover immediately after a large magnitude event and document ecological response over a multi-year period. GPS field mapping was completed to determine the redefined perimeter of the avalanche path. Vegetation was inventoried using modified U.S. Forest Service Forest Inventory and Analysis plots, cross sections were taken from over 100 dead trees throughout the avalanche path, and an avalanche chronology was developed. Initial results indicate that the perimeter of this path was expanded by 30%. The avalanche travelled approximately 1200 vertical meters and 3 linear kilometers. Stands of large conifers as old as 150 years were decimated by the avalanche, causing a shift in dominant vegetation types in many parts of the avalanche path. Woody debris is a major ground cover up to 3 m in depth on lower portions of the avalanche path and will likely affect tree regrowth. Monitoring and measuring the post-avalanche vegetation recovery of this particular avalanche path provides a unique dataset for determining the ecological role of avalanches in mountain landscapes.

  7. Initial results from the Sherbrooke avalanche photodiode positron tomograph

    SciTech Connect

    Lecomte, R.; Cadorette, J.; Rodrigue, S.; Lapointe, D.; Rouleau, D.; Bentourkia, M.; Yao, R.; Msaki, P.

    1996-06-01

    The design features and engineering constraints of a PET system based on avalanche photodiode (APD) detectors have been described in a previous report. In this paper, the authors present the initial results obtained with the Sherbrooke APD-PET scanner, a very high spatial resolution device designed for dynamic imaging of small and medium-sized laboratory animals such as rats, cats, rabbits and small monkeys. Its physical performance has been evaluated in terms of resolution, sensitivity, count rate, random and scatter fractions, contrast and relative activity recovery as a function of object size. The capabilities of the scanner for biomedical research applications have been demonstrated using phantom and animal studies.

  8. A probabilistic model for snow avalanche occurrence

    NASA Astrophysics Data System (ADS)

    Perona, P.; Miescher, A.; Porporato, A.

    2009-04-01

    Avalanche hazard forecasting is an important issue in relation to the protection of urbanized environments, ski resorts and of ski-touring alpinists. A critical point is to predict the conditions that trigger the snow mass instability determining the onset and the size of avalanches. On steep terrains the risk of avalanches is known to be related to preceding consistent snowfall events and to subsequent changes in the local climatic conditions. Regression analysis has shown that avalanche occurrence indeed correlates to the amount of snow fallen in consecutive three snowing days and to the state of the settled snow at the ground. Moreover, since different type of avalanches may occur as a result of the interactions of different factors, the process of snow avalanche formation is inherently complex and with some degree of unpredictability. For this reason, although several models assess the risk of avalanche by accounting for all the involved processes with a great detail, a high margin of uncertainty invariably remains. In this work, we explicitly describe such an unpredictable behaviour with an intrinsic noise affecting the processes leading snow instability. Eventually, this sets the basis for a minimalist stochastic model, which allows us to investigate the avalanche dynamics and its statistical properties. We employ a continuous time process with stochastic jumps (snowfalls), deterministic decay (snowmelt and compaction) and state dependent avalanche occurrence (renewals) as a minimalist model for the determination of avalanche size and related intertime occurrence. The physics leading to avalanches is simplified to the extent where only meteorological data and terrain data are necessary to estimate avalanche danger. We explore the analytical formulation of the process and the properties of the probability density function of the avalanche process variables. We also discuss what is the probabilistic link between avalanche size and preceding snowfall event and

  9. [Avalanche emergencies. Review of the current situation].

    PubMed

    Paal, P; Beikircher, W; Brugger, H

    2006-03-01

    In North America and Europe around 140 persons die every year due to avalanches, approximately 35 in North America, 100 in the European Alps, and 5 in other parts of Europe. Most of the victims are skiers and snowboarders. This article outlines the specific pathophysiology of avalanche burials, such as hypoxia, hypercapnia, and hypothermia and also other factors which influence survival. Strategies to minimize the mortality due to avalanches and the on-site treatment of buried persons are discussed. Finally, possibilities to reduce the number of avalanche deaths are pointed out.

  10. Time Directed Avalanches in Invasion Models

    SciTech Connect

    Maslov, S. Department of Physics, SUNY at Stony Brook, Stony Brook, New York 11794 )

    1995-01-23

    We define forward and backward time-directed avalanches for a broad class of self-organized critical models including invasion percolation, interface depinning, and a simple model of evolution. Although the geometrical properties of the avalanches do not change under time reversal, their stationary state statistical distribution does. The overall distribution of forward avalanches [ital P]([ital s])[similar to][ital s][sup [minus]2] is superuniversal in this class of models. The power-law exponent [pi] for the distribution of distances between subsequent active sites is derived from the properties of backward avalanches.

  11. Shocks generate crossover behavior in lattice avalanches.

    PubMed

    Burridge, James

    2013-11-22

    A spatial avalanche model is introduced, in which avalanches increase stability in the regions where they occur. Instability is driven globally by a driving process that contains shocks. The system is typically subcritical, but the shocks occasionally lift it into a near- or supercritical state from which it rapidly retreats due to large avalanches. These shocks leave behind a signature-a distinct power-law crossover in the avalanche size distribution. The model is inspired by landslide field data, but the principles may be applied to any system that experiences stabilizing failures, possesses a critical point, and is subject to an ongoing process of destabilization that includes occasional dramatic destabilizing events.

  12. Remote detection of artificially triggered avalanches below a fixed avalanche control installation

    NASA Astrophysics Data System (ADS)

    van Herwijnen, Alec; Simioni, Stephan; Schweizer, Juerg

    2014-05-01

    Avalanche control by explosives is widely used as a temporary preventive measure to reduce avalanche hazard. The goal is to artificially trigger smaller less destructive avalanches, by detonating charges either above or on the snow surface. Hand charges are most often used, whereby the explosives are deployed by manually hand tossing or lowering onto the snow slope. Given the inherent dangers and limitations of this type of avalanche control, fixed avalanche control installations are increasingly used. These consist of strategically placed remote controlled installations that generate an explosion above the snow pack in an avalanche starting zone. While fixed installations can be used at any time and minimize the risk to avalanche control personnel, visual confirmation is still required to verify if an avalanche released. In order to remotely detect artificially triggered avalanches, we therefore developed a low-cost seismic monitoring system. We deployed the monitoring system in a ski area above the town of Davos , in the eastern Swiss Alps, below a Gazex installation, a remote controlled installation that generates an air blast by detonating a fuel-air explosive above the snow pack. The monitoring system consists of three vertical component geophones inserted in the ground at approximately 14, 27 and 46 meters from the Gazex installation. Our results show that, despite the relatively low precision of the monitoring equipment, both the detonation and the resulting avalanches can clearly be identified in the seismic data. Specifically, detonations are characterized by short, high amplitude broadband signals, while avalanches generate much longer, low frequency signals. Furthermore, information on the size of the artificially triggered avalanches is also obtained as it directly relates to the duration of the generated seismic signal. The overall goal is to assess the effectiveness of the fixed avalanche control installation with regards to yield (i.e. number of

  13. On the temporal organization of neuronal avalanches

    PubMed Central

    Lombardi, Fabrizio; Herrmann, Hans J.; Plenz, Dietmar; De Arcangelis, Lucilla

    2014-01-01

    Spontaneous activity of cortex in vitro and in vivo has been shown to organize as neuronal avalanches. Avalanches are cascades of neuronal activity that exhibit a power law in their size and duration distribution, typical features of balanced systems in a critical state. Recently it has been shown that the distribution of quiet times between consecutive avalanches in rat cortex slice cultures displays a non-monotonic behavior with a power law decay at short time scales. This behavior has been attributed to the slow alternation between up and down-states. Here we further characterize the avalanche process and investigate how the functional behavior of the quiet time distribution depends on the fine structure of avalanche sequences. By systematically removing smaller avalanches from the experimental time series we show that size and quiet times are correlated and highlight that avalanche occurrence exhibits the characteristic periodicity of θ and β/γ oscillations, which jointly emerge in most of the analyzed samples. Furthermore, our analysis indicates that smaller avalanches tend to be associated with faster β/γ oscillations, whereas larger ones are associated with slower θ and 1–2 Hz oscillations. In particular, large avalanches corresponding to θ cycles trigger cascades of smaller ones, which occur at β/γ frequency. This temporal structure follows closely the one of nested θ − β/γ oscillations. Finally we demonstrate that, because of the multiple time scales characterizing avalanche dynamics, the distributions of quiet times between avalanches larger than a certain size do not collapse onto a unique function when rescaled by the average occurrence rate. However, when considered separately in the up-state and in the down-state, these distributions are solely controlled by the respective average rate and two different unique function can be identified. PMID:25389393

  14. On the temporal organization of neuronal avalanches.

    PubMed

    Lombardi, Fabrizio; Herrmann, Hans J; Plenz, Dietmar; De Arcangelis, Lucilla

    2014-01-01

    Spontaneous activity of cortex in vitro and in vivo has been shown to organize as neuronal avalanches. Avalanches are cascades of neuronal activity that exhibit a power law in their size and duration distribution, typical features of balanced systems in a critical state. Recently it has been shown that the distribution of quiet times between consecutive avalanches in rat cortex slice cultures displays a non-monotonic behavior with a power law decay at short time scales. This behavior has been attributed to the slow alternation between up and down-states. Here we further characterize the avalanche process and investigate how the functional behavior of the quiet time distribution depends on the fine structure of avalanche sequences. By systematically removing smaller avalanches from the experimental time series we show that size and quiet times are correlated and highlight that avalanche occurrence exhibits the characteristic periodicity of θ and β/γ oscillations, which jointly emerge in most of the analyzed samples. Furthermore, our analysis indicates that smaller avalanches tend to be associated with faster β/γ oscillations, whereas larger ones are associated with slower θ and 1-2 Hz oscillations. In particular, large avalanches corresponding to θ cycles trigger cascades of smaller ones, which occur at β/γ frequency. This temporal structure follows closely the one of nested θ - β/γ oscillations. Finally we demonstrate that, because of the multiple time scales characterizing avalanche dynamics, the distributions of quiet times between avalanches larger than a certain size do not collapse onto a unique function when rescaled by the average occurrence rate. However, when considered separately in the up-state and in the down-state, these distributions are solely controlled by the respective average rate and two different unique function can be identified.

  15. Gaussian Velocity Distributions in Avalanches

    NASA Astrophysics Data System (ADS)

    Shattuck, Mark

    2004-03-01

    Imagine a world where gravity is so strong that if an ice cube is tilted the shear forces melt the surface and water avalanches down. Further imagine that the ambient temperature is so low that the water re-freezes almost immediately. This is the world of granular flows. As a granular solid is tilted the surface undergoes a sublimation phase transition and a granular gas avalanches down the surface, but the inelastic collisions rapidly remove energy from the flow lowering the granular temperature (kinetic energy per particle) until the gas solidifies again. It is under these extreme conditions that we attempt to uncover continuum granular flow properties. Typical continuum theories like Navier-Stokes equation for fluids follow the space-time evolution of the first few moments of the velocity distribution. We study continuously avalanching flow in a rotating two-dimensional granular drum using high-speed video imaging and extract the position and velocities of the particles. We find a universal near Gaussian velocity distribution throughout the flowing regions, which are characterized by a liquid-like radial distribution function. In the remaining regions, in which the radial distribution function develops sharp crystalline peaks, the velocity distribution has a Gaussian peak but is much broader in the tails. In a companion experiment on a vibrated two-dimensional granular fluid under constant pressure, we find a clear gas-solid phase transition in which both the temperature and density change discontinuously. This suggests that a low temperature crystal and a high temperature gas can coexist in steady state. This coexistence could result in a narrower, cooler, Gaussian peak and a broader, warmer, Gaussian tail like the non-Gaussian behavior seen in the crystalline portions of the rotating drum.

  16. Equilibrium avalanches in spin glasses

    NASA Astrophysics Data System (ADS)

    Le Doussal, Pierre; Müller, Markus; Wiese, Kay Jörg

    2012-06-01

    We study the distribution of equilibrium avalanches (shocks) in Ising spin glasses which occur at zero temperature upon small changes in the magnetic field. For the infinite-range Sherrington-Kirkpatrick (SK) model, we present a detailed derivation of the density ρ(ΔM) of the magnetization jumps ΔM. It is obtained by introducing a multicomponent generalization of the Parisi-Duplantier equation, which allows us to compute all cumulants of the magnetization. We find that ρ(ΔM)˜ΔM-τ with an avalanche exponent τ=1 for the SK model, originating from the marginal stability (criticality) of the model. It holds for jumps of size 1≪ΔMavalanche is ρ(q)˜1/(1-q). These results show interesting similarities with numerical simulations for the out-of-equilibrium dynamics of the SK model. For finite-range models, using droplet arguments, we obtain the prediction τ=(df+θ)/dm where df,dm, and θ are the fractal dimension, magnetization exponent, and energy exponent of a droplet, respectively. This formula is expected to apply to other glassy disordered systems, such as the random-field model and pinned interfaces. We make suggestions for further numerical investigations, as well as experimental studies of the Barkhausen noise in spin glasses.

  17. Triaging multiple victims in an avalanche setting: the Avalanche Survival Optimizing Rescue Triage algorithmic approach.

    PubMed

    Bogle, Lee B; Boyd, Jeff J; McLaughlin, Kyle A

    2010-03-01

    As winter backcountry activity increases, so does exposure to avalanche danger. A complicated situation arises when multiple victims are caught in an avalanche and where medical and other rescue demands overwhelm resources in the field. These mass casualty incidents carry a high risk of morbidity and mortality, and there is no recommended approach to patient care specific to this setting other than basic first aid principles. The literature is limited with regard to triaging systems applicable to avalanche incidents. In conjunction with the development of an electronic avalanche rescue training module by the Canadian Avalanche Association, we have designed the Avalanche Survival Optimizing Rescue Triage algorithm to address the triaging of multiple avalanche victims to optimize survival and disposition decisions.

  18. Avalanche!--Teachable Moments in Outdoor Education

    ERIC Educational Resources Information Center

    Galloway, Shayne

    2005-01-01

    Rarely do outdoor educators get the opportunity to safely incorporate an avalanche while the topic of the day is actually avalanche awareness and forecasting. Many similar possibilities exist in the expeditionary context, but even brief excursions may result in incredible learning experiences. These "teachable moments" occur regularly in the…

  19. Avalanche in Adhesion at Metal Interfaces

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Good, Brian S.

    1994-01-01

    Simulations have shown that as two metal surfaces approach each other, the surface layers can avalanche together when the rigid interfacial spacing falls below a critical distance. This is accompanied by a discontinuous decrease in the adhesive energy. Here we present an examination of this phenomenon for the body centered cubic (BCC) metals Fe and W using the Equivalent Crystal Theory. In order to identify the circumstances under which avalanche might be inhibited, the effect of loss of registry between the two surfaces is investigated in detail. The avalanche is inhibited when the two surfaces are sufficiently far out of registry and when only a few layers near the surface are allowed to relax. As the relaxing slabs get thicker a sharp avalanche reappears. However, as the loss of registry increases the energy released in the avalanche decreases.

  20. Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes.

    PubMed

    Farrell, Alan C; Senanayake, Pradeep; Hung, Chung-Hong; El-Howayek, Georges; Rajagopal, Abhejit; Currie, Marc; Hayat, Majeed M; Huffaker, Diana L

    2015-12-02

    Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low excess noise, using separate-absorption-multiplication (SAM) heterostructures, or taking advantage of the dead-space effect using thin multiplication regions. In this work we demonstrate the first measurement of excess noise and gain-bandwidth product in III-V nanopillars exhibiting substantially lower excess noise factors compared to bulk and gain-bandwidth products greater than 200 GHz. The nanopillar optical antenna avalanche detector (NOAAD) architecture is utilized for spatially separating the absorption region from the avalanche region via the NOA resulting in single carrier injection without the use of a traditional SAM heterostructure.

  1. Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Farrell, Alan C.; Senanayake, Pradeep; Hung, Chung-Hong; El-Howayek, Georges; Rajagopal, Abhejit; Currie, Marc; Hayat, Majeed M.; Huffaker, Diana L.

    2015-12-01

    Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low excess noise, using separate-absorption-multiplication (SAM) heterostructures, or taking advantage of the dead-space effect using thin multiplication regions. In this work we demonstrate the first measurement of excess noise and gain-bandwidth product in III-V nanopillars exhibiting substantially lower excess noise factors compared to bulk and gain-bandwidth products greater than 200 GHz. The nanopillar optical antenna avalanche detector (NOAAD) architecture is utilized for spatially separating the absorption region from the avalanche region via the NOA resulting in single carrier injection without the use of a traditional SAM heterostructure.

  2. Avalanche photodiode based time-of-flight mass spectrometry

    SciTech Connect

    Ogasawara, Keiichi Livi, Stefano A.; Desai, Mihir I.; Ebert, Robert W.; McComas, David J.; Walther, Brandon C.

    2015-08-15

    This study reports on the performance of Avalanche Photodiodes (APDs) as a timing detector for ion Time-of-Flight (TOF) mass spectroscopy. We found that the fast signal carrier speed in a reach-through type APD enables an extremely short timescale response with a mass or energy independent <2 ns rise time for <200 keV ions (1−40 AMU) under proper bias voltage operations. When combined with a microchannel plate to detect start electron signals from an ultra-thin carbon foil, the APD comprises a novel TOF system that successfully operates with a <0.8 ns intrinsic timing resolution even using commercial off-the-shelf constant-fraction discriminators. By replacing conventional total-energy detectors in the TOF-Energy system, APDs offer significant power and mass savings or an anti-coincidence background rejection capability in future space instrumentation.

  3. Development of solid-state avalanche amorphous selenium for medical imaging

    SciTech Connect

    Scheuermann, James R. Goldan, Amir H.; Zhao, Wei; Tousignant, Olivier; Léveillé, Sébastien

    2015-03-15

    Purpose: Active matrix flat panel imagers (AMFPI) have limited performance in low dose applications due to the electronic noise of the thin film transistor (TFT) array. A uniform layer of avalanche amorphous selenium (a-Se) called high gain avalanche rushing photoconductor (HARP) allows for signal amplification prior to readout from the TFT array, largely eliminating the effects of the electronic noise. The authors report preliminary avalanche gain measurements from the first HARP structure developed for direct deposition onto a TFT array. Methods: The HARP structure is fabricated on a glass substrate in the form of p-i-n, i.e., the electron blocking layer (p) followed by an intrinsic (i) a-Se layer and finally the hole blocking layer (n). All deposition procedures are scalable to large area detectors. Integrated charge is measured from pulsed optical excitation incident on the top electrode (as would in an indirect AMFPI) under continuous high voltage bias. Avalanche gain measurements were obtained from samples fabricated simultaneously at different locations in the evaporator to evaluate performance uniformity across large area. Results: An avalanche gain of up to 80 was obtained, which showed field dependence consistent with previous measurements from n-i-p HARP structures established for vacuum tubes. Measurements from multiple samples demonstrate the spatial uniformity of performance using large area deposition methods. Finally, the results were highly reproducible during the time course of the entire study. Conclusions: We present promising avalanche gain measurement results from a novel HARP structure that can be deposited onto a TFT array. This is a crucial step toward the practical feasibility of AMFPI with avalanche gain, enabling quantum noise limited performance down to a single x-ray photon per pixel.

  4. Advanced active quenching circuits for single-photon avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Stipčević, M.; Christensen, B. G.; Kwiat, P. G.; Gauthier, D. J.

    2016-05-01

    Commercial photon-counting modules, often based on actively quenched solid-state avalanche photodiode sensors, are used in wide variety of applications. Manufacturers characterize their detectors by specifying a small set of parameters, such as detection efficiency, dead time, dark counts rate, afterpulsing probability and single photon arrival time resolution (jitter), however they usually do not specify the conditions under which these parameters are constant or present a sufficient description. In this work, we present an in-depth analysis of the active quenching process and identify intrinsic limitations and engineering challenges. Based on that, we investigate the range of validity of the typical parameters used by two commercial detectors. We identify an additional set of imperfections that must be specified in order to sufficiently characterize the behavior of single-photon counting detectors in realistic applications. The additional imperfections include rate-dependence of the dead time, jitter, detection delay shift, and "twilighting." Also, the temporal distribution of afterpulsing and various artifacts of the electronics are important. We find that these additional non-ideal behaviors can lead to unexpected effects or strong deterioration of the system's performance. Specifically, we discuss implications of these new findings in a few applications in which single-photon detectors play a major role: the security of a quantum cryptographic protocol, the quality of single-photon-based random number generators and a few other applications. Finally, we describe an example of an optimized avalanche quenching circuit for a high-rate quantum key distribution system based on time-bin entangled photons.

  5. Hummock alignment in Japanese volcanic debris avalanches controlled by pre-avalanche slope of depositional area

    NASA Astrophysics Data System (ADS)

    Yoshida, Hidetsugu

    2014-10-01

    This paper investigates the relationship of hummock orientation to the flow dynamics of volcanic debris avalanches. There are opposing views on whether hummocks are systematically aligned along debris avalanche paths, or not. To investigate this geomorphologically fundamental question, I investigated hummock orientation for six Japanese debris avalanches of two simple styles: four "freely spreading" debris avalanches, and two "valley-filling" debris avalanches. Quantitative GIS-based data analysis revealed that hummock orientation along the avalanche flow path alternated between dominantly parallel to and dominantly perpendicular to the flow direction. These changes of alignment reflect dynamic changes of the local stress field within the avalanche, alternating between extensional and compressional in response to changes of the slope of the pre-avalanche ground surface. Changes of hummock alignment from perpendicular to parallel indicate that the local stress regime has changed from compressional to extensional. Conversely, changes of hummock alignment from parallel to perpendicular indicate that the local stress regime has changed from extensional to compressional. Thus, this research demonstrated a clear relationship between hummock orientation and dynamic changes of stress regime within avalanches that are related to changes of the slope of the pre-avalanche ground surface.

  6. Preliminary Study on Rock Avalanche in Taiwan

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Wen, Y.; Hsieh, M.

    2012-12-01

    Rock avalanche is a kind of rapid (average >100 km/h) granule flow caused by crushing and pulverization of rock materials during catastrophic rock slide. Literature researches show that rock avalanches typically occur on steep, high-relief slopes underlain by hard rocks, and have volumes >10,000,000 m3. Rock avalanches also are characterized by long runout distances, which are 5 to 10 times the total fall heights. Some cases can run up the opposing valley wall. Rock avalanches generally occurred in active mountains (e.g., New Zealand) and were triggered by earthquakes or rainfall (snowmelt), but with exceptions. There were few rock avalanches in historical time in Taiwan. This could reflect: (1) intrinsic instability of hillslopes due to weak rock, frequent earthquakes/heavy rains, which resulted in landslides of high frequency/low magnitude; (2) limited runout space along deeply incised river-valley systems, which increased the likelihood of rock-slope failures to transform to debris flows. However, there are ancient rock-avalanche records, found at Shou-shan coast (SW Taiwan) and Shin-she, Chang-pin, Tu-lan along Hua-tung coast (E Taiwan), which is likely to have undergone coseismic uplift. These places, with steep slopes, underlain by hard rock, and free for materials to run, are most prone to rock avalanches in the future.

  7. Temporal correlations in neuronal avalanche occurrence

    PubMed Central

    Lombardi, F.; Herrmann, H. J.; Plenz, D.; de Arcangelis, L.

    2016-01-01

    Ongoing cortical activity consists of sequences of synchronized bursts, named neuronal avalanches, whose size and duration are power law distributed. These features have been observed in a variety of systems and conditions, at all spatial scales, supporting scale invariance, universality and therefore criticality. However, the mechanisms leading to burst triggering, as well as the relationship between bursts and quiescence, are still unclear. The analysis of temporal correlations constitutes a major step towards a deeper understanding of burst dynamics. Here, we investigate the relation between avalanche sizes and quiet times, as well as between sizes of consecutive avalanches recorded in cortex slice cultures. We show that quiet times depend on the size of preceding avalanches and, at the same time, influence the size of the following one. Moreover we evidence that sizes of consecutive avalanches are correlated. In particular, we show that an avalanche tends to be larger or smaller than the following one for short or long time separation, respectively. Our analysis represents the first attempt to provide a quantitative estimate of correlations between activity and quiescence in the framework of neuronal avalanches and will help to enlighten the mechanisms underlying spontaneous activity. PMID:27094323

  8. Temporal correlations in neuronal avalanche occurrence.

    PubMed

    Lombardi, F; Herrmann, H J; Plenz, D; de Arcangelis, L

    2016-04-20

    Ongoing cortical activity consists of sequences of synchronized bursts, named neuronal avalanches, whose size and duration are power law distributed. These features have been observed in a variety of systems and conditions, at all spatial scales, supporting scale invariance, universality and therefore criticality. However, the mechanisms leading to burst triggering, as well as the relationship between bursts and quiescence, are still unclear. The analysis of temporal correlations constitutes a major step towards a deeper understanding of burst dynamics. Here, we investigate the relation between avalanche sizes and quiet times, as well as between sizes of consecutive avalanches recorded in cortex slice cultures. We show that quiet times depend on the size of preceding avalanches and, at the same time, influence the size of the following one. Moreover we evidence that sizes of consecutive avalanches are correlated. In particular, we show that an avalanche tends to be larger or smaller than the following one for short or long time separation, respectively. Our analysis represents the first attempt to provide a quantitative estimate of correlations between activity and quiescence in the framework of neuronal avalanches and will help to enlighten the mechanisms underlying spontaneous activity.

  9. Statistical properties of avalanches in networks.

    PubMed

    Larremore, Daniel B; Carpenter, Marshall Y; Ott, Edward; Restrepo, Juan G

    2012-06-01

    We characterize the distributions of size and duration of avalanches propagating in complex networks. By an avalanche we mean the sequence of events initiated by the externally stimulated excitation of a network node, which may, with some probability, then stimulate subsequent excitations of the nodes to which it is connected, resulting in a cascade of excitations. This type of process is relevant to a wide variety of situations, including neuroscience, cascading failures on electrical power grids, and epidemiology. We find that the statistics of avalanches can be characterized in terms of the largest eigenvalue and corresponding eigenvector of an appropriate adjacency matrix that encodes the structure of the network. By using mean-field analyses, previous studies of avalanches in networks have not considered the effect of network structure on the distribution of size and duration of avalanches. Our results apply to individual networks (rather than network ensembles) and provide expressions for the distributions of size and duration of avalanches starting at particular nodes in the network. These findings might find application in the analysis of branching processes in networks, such as cascading power grid failures and critical brain dynamics. In particular, our results show that some experimental signatures of critical brain dynamics (i.e., power-law distributions of size and duration of neuronal avalanches) are robust to complex underlying network topologies.

  10. Microgap ultra-violet detector

    DOEpatents

    Wuest, Craig R.; Bionta, Richard M.

    1994-01-01

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse.

  11. Microgap ultra-violet detector

    DOEpatents

    Wuest, C.R.; Bionta, R.M.

    1994-09-20

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4,000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap is disclosed. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse. 2 figs.

  12. Continuum description of avalanches in granular media.

    SciTech Connect

    Aranson, I. S.; Tsimring, L. S.

    2000-12-05

    A continuum theory of partially fluidized granular flows is proposed. The theory is based on a combination of the mass and momentum conservation equations with the order parameter equation which describes the transition between flowing and static components of the granular system. We apply this model to the dynamics of avalanches in chutes. The theory provides a quantitative description of recent observations of granular flows on rough inclined planes (Daerr and Douady 1999): layer bistability, and the transition from triangular avalanches propagating downhill at small inclination angles to balloon-shaped avalanches also propagating uphill for larger angles.

  13. Initiation of immersed granular avalanches

    NASA Astrophysics Data System (ADS)

    Mutabaruka, Patrick; Delenne, Jean-Yves; Soga, Kenichi; Radjai, Farhang

    2014-05-01

    By means of coupled molecular dynamics-computational fluid dynamics simulations, we analyze the initiation of avalanches in a granular bed of spherical particles immersed in a viscous fluid and inclined above its angle of repose. In quantitative agreement with experiments, we find that the bed is unstable for a packing fraction below 0.59 but is stabilized above this packing fraction by negative excess pore pressure induced by the effect of dilatancy. From detailed numerical data, we explore the time evolution of shear strain, packing fraction, excess pore pressures, and granular microstructure in this creeplike pressure redistribution regime, and we show that they scale excellently with a characteristic time extracted from a model based on the balance of granular stresses in the presence of a negative excess pressure and its interplay with dilatancy. The cumulative shear strain at failure is found to be ≃0.2, in close agreement with the experiments, irrespective of the initial packing fraction and inclination angle. Remarkably, the avalanche is triggered when dilatancy vanishes instantly as a result of fluctuations while the average dilatancy is still positive (expanding bed) with a packing fraction that declines with the initial packing fraction. Another nontrivial feature of this creeplike regime is that, in contrast to dry granular materials, the internal friction angle of the bed at failure is independent of dilatancy but depends on the inclination angle, leading therefore to a nonlinear dependence of the excess pore pressure on the inclination angle. We show that this behavior may be described in terms of the contact network anisotropy, which increases with a nearly constant connectivity and levels off at a value (critical state) that increases with the inclination angle. These features suggest that the behavior of immersed granular materials is controlled not only directly by hydrodynamic forces acting on the particles but also by the influence of the

  14. Initiation of immersed granular avalanches.

    PubMed

    Mutabaruka, Patrick; Delenne, Jean-Yves; Soga, Kenichi; Radjai, Farhang

    2014-05-01

    By means of coupled molecular dynamics-computational fluid dynamics simulations, we analyze the initiation of avalanches in a granular bed of spherical particles immersed in a viscous fluid and inclined above its angle of repose. In quantitative agreement with experiments, we find that the bed is unstable for a packing fraction below 0.59 but is stabilized above this packing fraction by negative excess pore pressure induced by the effect of dilatancy. From detailed numerical data, we explore the time evolution of shear strain, packing fraction, excess pore pressures, and granular microstructure in this creeplike pressure redistribution regime, and we show that they scale excellently with a characteristic time extracted from a model based on the balance of granular stresses in the presence of a negative excess pressure and its interplay with dilatancy. The cumulative shear strain at failure is found to be ≃ 0.2, in close agreement with the experiments, irrespective of the initial packing fraction and inclination angle. Remarkably, the avalanche is triggered when dilatancy vanishes instantly as a result of fluctuations while the average dilatancy is still positive (expanding bed) with a packing fraction that declines with the initial packing fraction. Another nontrivial feature of this creeplike regime is that, in contrast to dry granular materials, the internal friction angle of the bed at failure is independent of dilatancy but depends on the inclination angle, leading therefore to a nonlinear dependence of the excess pore pressure on the inclination angle. We show that this behavior may be described in terms of the contact network anisotropy, which increases with a nearly constant connectivity and levels off at a value (critical state) that increases with the inclination angle. These features suggest that the behavior of immersed granular materials is controlled not only directly by hydrodynamic forces acting on the particles but also by the influence of the

  15. The solid state detector technology for picosecond laser ranging

    NASA Technical Reports Server (NTRS)

    Prochazka, Ivan

    1993-01-01

    We developed an all solid state laser ranging detector technology, which makes the goal of millimeter accuracy achievable. Our design and construction philosophy is to combine the techniques of single photon ranging, ultrashort laser pulses, and fast fixed threshold discrimination while avoiding any analog signal processing within the laser ranging chain. The all solid state laser ranging detector package consists of the START detector and the STOP solid state photon counting module. Both the detectors are working in an optically triggered avalanche switching regime. The optical signal is triggering an avalanche current buildup which results in the generation of a uniform, fast risetime output pulse.

  16. Monitoring and modelling snow avalanches in Svalbard

    NASA Astrophysics Data System (ADS)

    Humlum, O.; Christiansen, H.; Neumann, U.; Eckerstorfer, M.; Sjöblom, A.; Stalsberg, K.; Rubensdotter, L.

    2009-04-01

    Monitoring and modelling snow avalanches in Svalbard Ole Humlum 1,3, Hanne H. Christiansen 1, Ulrich Neumann 1, Markus Eckerstorfer 1, Anna Sjöblom 1, Knut Stalsberg 2 and Lena Rubensdotter 2. 1: The University Centre in Svalbard (UNIS). 2: Geological Survey of Norway (NGU) 3: University of Oslo Ground based transportation in Svalbard landscape all takes place across mountainous terrain affected by different geomorphological slope processes. Traffic in and around the Svalbard settlements is increasing, and at the same time global climate models project substantial increases in temperature and precipitation in northern high latitudes for coming century. Therefore improved knowledge on the effect of climatic changes on slope processes in such high arctic landscapes is becoming increasingly important. Motivated by this, the CRYOSLOPE Svalbard research project since 2007 has carried out field observations on snow avalanche frequency and associated meteorological conditions. Snow avalanches are important geomorphic agents of erosion and deposition, and have long been a source of natural disasters in many mid-latitude mountain areas. Avalanches as a natural hazard has thereby been familiar to inhabitants of the Alps and Scandinavia for centuries, while it is a more recent experience in high arctic Svalbard. In addition, overall climate, topography and especially high winter wind speeds makes it difficult to apply snow avalanche models (numerical or empirical) developed for use at lower latitudes, e.g. in central Europe. In the presentation we examplify results from the ongoing (since winter 2006-07) monitoring of snow avalanches in Svalbard along a 70 km long observational route in the mountains. In addition, we present observations on the geomorphological impact of avalanches, with special reference to the formation of rock glaciers. Finally, we also present some initial results from numerical attempts of snow avalanche risk modelling within the study area.

  17. Laboratory study of avalanches in magnetized plasmas.

    PubMed

    Van Compernolle, B; Morales, G J; Maggs, J E; Sydora, R D

    2015-03-01

    It is demonstrated that a novel heating configuration applied to a large and cold magnetized plasma allows the study of avalanche phenomena under controlled conditions. Intermittent collapses of the plasma pressure profile, associated with unstable drift-Alfvén waves, exhibit a two-slope power-law spectrum with exponents near -1 at lower frequencies and in the range of -2 to -4 at higher frequencies. A detailed mapping of the spatiotemporal evolution of a single avalanche event is presented.

  18. Mechanisms of large rock avalanche propagation

    NASA Astrophysics Data System (ADS)

    Bowman, Elisabeth

    2014-05-01

    Large rock avalanches present a serious mountain hazard to lifelines, infrastructure and lives. They are one of a class of low frequency, high impact events for which there is a still considerable debate over the transport mechanism. The behaviour of large rock avalanches, sometimes referred to as sturzstrom or "stream flow" after Heim, is characterised by a volumetric dependence, so that very large rock avalanches tend to travel with a greater spreading "efficiency" than smaller ones. In this work we propose a mechanism for the volumetric dependence of rock avalanche spread (or runout) in light of the ubiquitous dynamic fragmentation behaviour of brittle solids, Terzaghi's principle of effective stress as used most commonly in soil mechanics, and concepts of momentum transfer. The proposed conceptual model is based on both observations of field scale events, such as made at Elm in Switzerland, Huascaran in Peru and Falling Mountain in New Zealand, and small scale physical model experiments using analogue rock materials which have been conducted at elevated g-level so as to increase stress levels within the experiments. In particular the model aims to explain how momentum transfer between elements within a fragmenting rock avalanche mass may lead to the greater mobility or spreading efficiency that is observed at large scale and may provide insight as to the conditions needed for rock avalanche propagation and arrest.

  19. Avalanche grainflow on a simulated aeolian dune

    NASA Astrophysics Data System (ADS)

    Sutton, S. L. F.; McKenna Neuman, C.; Nickling, W.

    2013-09-01

    Avalanches maintain the slipface of aeolian dunes, which alters their airflow characteristics and sediment dynamics, and results in the development of grainflow cross-bedding. We report on a series of experiments in which avalanches were observed on a 1:1 replica of a small (1.2 m brink height) transverse dune in the Dune Simulation Wind Tunnel under wind velocities of 8-11 m s-1. Changes in slipface topography were observed photographically and measured utilizing a 3-D laser scanner with 1 mm2 spatial resolution. Avalanches in noncohesive sands were observed to progress through scarp recession from the point of initiation and continue until the slope angle is reduced. Changes in local slope confirm that the steep, pre-avalanche mean slope relaxes to a uniform value equal to the angle of repose of the test sand (32°) over all involved portions of the slipface. Avalanche volumes are measured, and demonstrate that avalanche magnitude is independent of wind speed over the range of velocities observed. This independence provides the potential to significantly simplify the modeling of grainflow as a function of only the total cross brink sediment transport.

  20. Evolution of the average avalanche shape with the universality class.

    PubMed

    Laurson, Lasse; Illa, Xavier; Santucci, Stéphane; Tore Tallakstad, Ken; Måløy, Knut Jørgen; Alava, Mikko J

    2013-01-01

    A multitude of systems ranging from the Barkhausen effect in ferromagnetic materials to plastic deformation and earthquakes respond to slow external driving by exhibiting intermittent, scale-free avalanche dynamics or crackling noise. The avalanches are power-law distributed in size, and have a typical average shape: these are the two most important signatures of avalanching systems. Here we show how the average avalanche shape evolves with the universality class of the avalanche dynamics by employing a combination of scaling theory, extensive numerical simulations and data from crack propagation experiments. It follows a simple scaling form parameterized by two numbers, the scaling exponent relating the average avalanche size to its duration and a parameter characterizing the temporal asymmetry of the avalanches. The latter reflects a broken time-reversal symmetry in the avalanche dynamics, emerging from the local nature of the interaction kernel mediating the avalanche dynamics.

  1. Evolution of the average avalanche shape with the universality class

    PubMed Central

    Laurson, Lasse; Illa, Xavier; Santucci, Stéphane; Tore Tallakstad, Ken; Måløy, Knut Jørgen; Alava, Mikko J

    2013-01-01

    A multitude of systems ranging from the Barkhausen effect in ferromagnetic materials to plastic deformation and earthquakes respond to slow external driving by exhibiting intermittent, scale-free avalanche dynamics or crackling noise. The avalanches are power-law distributed in size, and have a typical average shape: these are the two most important signatures of avalanching systems. Here we show how the average avalanche shape evolves with the universality class of the avalanche dynamics by employing a combination of scaling theory, extensive numerical simulations and data from crack propagation experiments. It follows a simple scaling form parameterized by two numbers, the scaling exponent relating the average avalanche size to its duration and a parameter characterizing the temporal asymmetry of the avalanches. The latter reflects a broken time-reversal symmetry in the avalanche dynamics, emerging from the local nature of the interaction kernel mediating the avalanche dynamics. PMID:24352571

  2. Relativistic electron avalanches as a thunderstorm discharge competing with lightning

    NASA Astrophysics Data System (ADS)

    Kelley, Nicole A.; Smith, David M.; Dwyer, Joseph R.; Splitt, Michael; Lazarus, Steven; Martinez-McKinney, Forest; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alexander; Rassoul, Hamid K.

    2015-08-01

    Gamma-ray `glows' are long duration (seconds to tens of minutes) X-ray and gamma-ray emission coming from thunderclouds. Measurements suggest the presence of relativistic runaway electron avalanches (RREA), the same process underlying terrestrial gamma-ray flashes. Here we demonstrate that glows are relatively a common phenomena near the tops of thunderstorms, when compared with events such as terrestrial gamma-ray flashes. Examining the strongest glow measured by the airborne detector for energetic emissions, we show that this glow is measured near the end of a downward RREA, consistent with occurring between the upper positive charge layer and the negative screening layer above it. The glow discharges the upper positive layer by >=9.6 mA, strong enough to be an important charging mechanism of the storm. For this glow, the gamma-ray flux observed is close to the value at which relativistic feedback processes become important, with an avalanche multiplication factor of 4,500.

  3. Relativistic electron avalanches as a thunderstorm discharge competing with lightning.

    PubMed

    Kelley, Nicole A; Smith, David M; Dwyer, Joseph R; Splitt, Michael; Lazarus, Steven; Martinez-McKinney, Forest; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alexander; Rassoul, Hamid K

    2015-08-12

    Gamma-ray 'glows' are long duration (seconds to tens of minutes) X-ray and gamma-ray emission coming from thunderclouds. Measurements suggest the presence of relativistic runaway electron avalanches (RREA), the same process underlying terrestrial gamma-ray flashes. Here we demonstrate that glows are relatively a common phenomena near the tops of thunderstorms, when compared with events such as terrestrial gamma-ray flashes. Examining the strongest glow measured by the airborne detector for energetic emissions, we show that this glow is measured near the end of a downward RREA, consistent with occurring between the upper positive charge layer and the negative screening layer above it. The glow discharges the upper positive layer by ≥9.6 mA, strong enough to be an important charging mechanism of the storm. For this glow, the gamma-ray flux observed is close to the value at which relativistic feedback processes become important, with an avalanche multiplication factor of 4,500.

  4. Computing granular avalanches and landslides

    NASA Astrophysics Data System (ADS)

    Pitman, E. Bruce; Nichita, C. Camil; Patra, Abani; Bauer, Andy; Sheridan, Michael; Bursik, Marcus

    2003-12-01

    Geophysical mass flows—debris flows, volcanic avalanches, landslides—are often initiated by volcanic activity. These flows can contain O(106-107) m3 or more of material, typically soil and rock fragments that might range from centimeters to meters in size, are typically O(10 m) deep, and can run out over distances of tens of kilometers. This vast range of scales, the rheology of the geological material under consideration, and the presence of interstitial fluid in the moving mass, all make for a complicated modeling and computing problem. Although we lack a full understanding of how mass flows are initiated, there is a growing body of computational and modeling research whose goal is to understand the flow processes, once the motion of a geologic mass of material is initiated. This paper describes one effort to develop a tool set for simulations of geophysical mass flows. We present a computing environment that incorporates topographical data in order to generate a numerical grid on which a parallel, adaptive mesh Godunov solver can simulate model systems of equations that contain no interstitial fluid. The computational solver is flexible, and can be changed to allow for more complex material models, as warranted.

  5. UV photodetectors, focal plane arrays, and avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    McClintock, Ryan

    2007-12-01

    The study of III-Nitride based optoelectronics devices is a maturing field, but there are still many underdeveloped areas in which to make a contribution of new and original research. This work specifically targets the goals of realizing high-efficiency back-illuminated solar-blind photodetectors, solar-blind focal plane arrays, and visible- and solar-blind Avalanche photodiodes. Achieving these goals has required systematic development of the material growth and characterization, device modeling and design, device fabrication and processing, and the device testing and qualification. This work describes the research conducted and presents relevant devices results. The AlGaN material system has a tunable direct bandgap that is ideally suited to detection of ultraviolet light, however this material system suffers from several key issues, making realization of high-efficiency photodetectors difficult: large dislocation densities, low n-type and p-type doping efficiency, and lattice and thermal expansion mismatches leading to cracking of the material. All of these problems are exacerbated by the increased aluminum compositions necessary in back-illuminated and solar-blind devices. Overcoming these obstacles has required extensive development and optimization of the material growth techniques necessary: this includes everything from the growth of the buffer and template, to the growth of the active region. The broad area devices realized in this work demonstrate a quantum efficiency that is among the highest ever reported for a back-illuminated solar-blind photodetector (responsivity of 157 mA/W at 280nm, external quantum efficiency of 68%). Taking advantage of the back illuminated nature of these detectors, we have successfully developed the technology to hybridize and test a solar-blind focal plane array camera. The initial focal plane array shows good uniformity and reasonable operability, and several images from this first camera are presented. However, in order to

  6. Single photon detector design features

    NASA Astrophysics Data System (ADS)

    Zaitsev, Sergey V.; Kurochkin, Vladimir L.; Kurochkin, Yury V.

    2016-12-01

    In the report are discussed the laboratory test results of SPAD detectors with InGaAs / InP avalanche photodiodes, operating in Geiger mode. Device operating in synchronous mode with the dead timer setting for proper working conditions of photodiodes. The report materials will showing the functional block diagram of the detector, real operating signals in the receiver path and clock circuits and main results of measurements. The input signal of the synchronous detector is the clock, which determines the time positions of expected photons arrival. Increasing the clock speed 1-300 MHz or getting more time positions of the time grid, we provide increased capacity for time position code of signals, when QKD information transmitted over the nets. At the same time, the maximum attainable speed of photon reception is limited by diode dead time. Diode quantum noise are minimized by inclusion of a special time interval - dead time 0.1-10 usec, after each received and registered a photon. The lowest attainable value of the dead time is determined as a compromise between transients in electrical circuits, passive avalanche «quenching» circuit and thermal transients cooling crystal diode, after each avalanche pass though photodiode. Achievable time and speed parameters are discussed with specific examples of detectors.

  7. Dynamics of glide avalanches and snow gliding

    NASA Astrophysics Data System (ADS)

    Ancey, Christophe; Bain, Vincent

    2015-09-01

    In recent years, due to warmer snow cover, there has been a significant increase in the number of cases of damage caused by gliding snowpacks and glide avalanches. On most occasions, these have been full-depth, wet-snow avalanches, and this led some people to express their surprise: how could low-speed masses of wet snow exert sufficiently high levels of pressure to severely damage engineered structures designed to carry heavy loads? This paper reviews the current state of knowledge about the formation of glide avalanches and the forces exerted on simple structures by a gliding mass of snow. One particular difficulty in reviewing the existing literature on gliding snow and on force calculations is that much of the theoretical and phenomenological analyses were presented in technical reports that date back to the earliest developments of avalanche science in the 1930s. Returning to these primary sources and attempting to put them into a contemporary perspective are vital. A detailed, modern analysis of them shows that the order of magnitude of the forces exerted by gliding snow can indeed be estimated correctly. The precise physical mechanisms remain elusive, however. We comment on the existing approaches in light of the most recent findings about related topics, including the physics of granular and plastic flows, and from field surveys of snow and avalanches (as well as glaciers and debris flows). Methods of calculating the forces exerted by glide avalanches are compared quantitatively on the basis of two case studies. This paper shows that if snow depth and density are known, then certain approaches can indeed predict the forces exerted on simple obstacles in the event of glide avalanches or gliding snow cover.

  8. Temperature Control of Avalanche Photodiode Using Thermoelectric Cooler

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1999-01-01

    Avalanche photodiodes (APDS) are quantum optical detectors that are used for visible and near infrared optical detection applications. Although APDs are compact, rugged, and have an internal gain mechanism that is suitable for low light intensity; their responsivity, and therefore their output, is strongly dependent on the device temperature. Thermoelectric coolers (TEC) offers a suitable solution to this problem. A TEC is a solid state cooling device, which can be controlled by changing its current. TECs are compact and rugged, and they can precisely control the temperature to within 0.1 C with more than a 150 C temperature gradient between its surfaces. In this Memorandum, a proportional integral (PI) temperature controller for APDs using a TEC is discussed. The controller is compact and can successfully cool the APD to almost 0 C in an ambient temperature environment of up to 27 C.

  9. Silicon technologies for arrays of Single Photon Avalanche Diodes

    PubMed Central

    Ceccarelli, Francesco; Rech, Ivan; Ghioni, Massimo

    2016-01-01

    In order to fulfill the requirements of many applications, we recently developed a new technology aimed at combining the advantages of traditional thin and thick silicon Single Photon Avalanche Diodes (SPAD). In particular we demonstrated single-pixel detectors with a remarkable improvement in the Photon Detection Efficiency in the red/near-infrared spectrum (e.g. 40% at 800nm) while maintaining a timing jitter better than 100ps. In this paper we discuss the limitations of such Red-Enhanced (RE) technology from the point of view of the fabrication of small arrays of SPAD and we propose modifications to the structure aimed at overcoming these issues. We also report the first preliminary experimental results attained on devices fabricated adopting the improved structure. PMID:27761058

  10. Deterministically Driven Avalanche Models of Solar Flares

    NASA Astrophysics Data System (ADS)

    Strugarek, Antoine; Charbonneau, Paul; Joseph, Richard; Pirot, Dorian

    2014-08-01

    We develop and discuss the properties of a new class of lattice-based avalanche models of solar flares. These models are readily amenable to a relatively unambiguous physical interpretation in terms of slow twisting of a coronal loop. They share similarities with other avalanche models, such as the classical stick-slip self-organized critical model of earthquakes, in that they are driven globally by a fully deterministic energy-loading process. The model design leads to a systematic deficit of small-scale avalanches. In some portions of model space, mid-size and large avalanching behavior is scale-free, being characterized by event size distributions that have the form of power-laws with index values, which, in some parameter regimes, compare favorably to those inferred from solar EUV and X-ray flare data. For models using conservative or near-conservative redistribution rules, a population of large, quasiperiodic avalanches can also appear. Although without direct counterparts in the observational global statistics of flare energy release, this latter behavior may be relevant to recurrent flaring in individual coronal loops. This class of models could provide a basis for the prediction of large solar flares.

  11. Singing-sand avalanches without dunes

    NASA Astrophysics Data System (ADS)

    Dagois-Bohy, S.; Courrech du Pont, S.; Douady, S.

    2012-10-01

    Singing-sand dunes have attracted curiosity for centuries and are now the subject of controversy. We address here two aspects of this controversy: first the possible link between the frequency heard and the shear rate (for a gravity avalanche on a dune slip-face, scaling as 0.4g/d, with d the ‘mean’ grain diameter), and second, the assumed necessity of a layered dune structure under the avalanche that acts as a resonator. Field recordings of singing dunes over the world reveal that they can present very different spectral characteristics: a dune with polydisperse grains produces a very broad and noisy spectrum, while a dune with sorted grains produces a well-defined frequency. Performing laboratory avalanches on a hard plate with singing-dune sand shows that there is no need for a dune below the sand avalanche to produce the singing sound, and a fortiori neither for the dune's layered structure nor for its particular sound transmission. By sieving the polydisperse grains, the same well-defined frequency is obtained to that of the dune with sorted grains, with the same diameter-frequency relation. The various frequencies heard in the field avalanches match the shear rates not calculated from the average size, but from the various peaks of the grain size distributions.

  12. High Resolution Radar Measurements of Snow Avalanches

    NASA Astrophysics Data System (ADS)

    McElwaine, Jim; Sovilla, Betty; Vriend, Nathalie; Brennan, Paul; Ash, Matt; Keylock, Chris

    2013-04-01

    Geophysical mass flows, such as snow avalanches, are a major hazard in mountainous areas and have a significant impact on the infrastructure, economy and tourism of such regions. Obtaining a thorough understanding of the dynamics of snow avalanches is crucial for risk assessment and the design of defensive structures. However, because the underlying physics is poorly understood there are significant uncertainties concerning current models, which are poorly validated due to a lack of high resolution data. Direct observations of the denser core of a large avalanche are particularly difficult, since it is frequently obscured by the dilute powder cloud. We have developed and installed a phased array FMCW radar system that penetrates the powder cloud and directly images the dense core with a resolution of around 1 m at 50 Hz over the entire slope. We present data from recent avalanches at Vallee de la Sionne that show a wealth of internal structure and allow the tracking of individual fronts, roll waves and surges down the slope for the first time. We also show good agreement between the radar results and existing measurement systems that record data at particular points on the avalanche track.

  13. High Resolution Radar Measurements of Snow Avalanches

    NASA Astrophysics Data System (ADS)

    McElwaine, J. N.; Vriend, N. M.; Sovilla, B.; Keylock, C. J.; Brennan, P.; Ash, M.

    2012-12-01

    Geophysical mass flows, such as snow avalanches, are a major hazard in mountainous areas and have a significant impact on the infrastructure, economy and tourism of such regions. Obtaining a thorough understanding of the dynamics of snow avalanches is crucial for risk assessment and the design of defensive structures. However, because the underlying physics is poorly understood there are significant uncertainties concerning current models, which are poorly validated due to a lack of high resolution data. Direct observations of the denser core of a large avalanche are particularly difficult, since it is frequently obscured by the dilute powder cloud. We have developed and installed a phased array FMCW radar system that penetrates the powder cloud and directly images the dense core with a resolution of around 1 m at 50 Hz over the entire slope. We present data from recent avalanches at Vallée de la Sionne that show a wealth of internal structure and allow the tracking of individual fronts, roll waves and surges down the slope for the first time. We also show good agreement between the radar results and existing measurement systems that record data at particular points on the avalanche track.

  14. The application of Landsat data to mapping avalanche hazards

    NASA Technical Reports Server (NTRS)

    Waterman, S.

    1979-01-01

    Two test areas, representing a variety of avalanche hazards, were selected in the San Juan Mountains of Colorado. Midwinter Landsat digital data were analyzed using a clustering technique, and the results compared to 1:24,000 scale maps of avalanche hazards derived from air photo interpretation and field surveys. Confined avalanches were readily identified because of the high contrast between the snow covered avalanche track and the adjacent forested slopes. Unconfined avalanches could not be identified without supplementary topographic data. Spatial characteristics were of primary importance in delineating avalanche tracks. Spatial resolution was the limiting factor in avalanche detection. Landsat data should prove useful for rapid reconnaissance mapping of avalanche hazards, particularly in the absence of other data sources.

  15. Microgap x-ray detector

    DOEpatents

    Wuest, C.R.; Bionta, R.M.; Ables, E.

    1994-05-03

    An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

  16. Microgap x-ray detector

    DOEpatents

    Wuest, Craig R.; Bionta, Richard M.; Ables, Elden

    1994-01-01

    An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

  17. Optical ionization detector

    DOEpatents

    Wuest, Craig R.; Lowry, Mark E.

    1994-01-01

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium.

  18. Optical ionization detector

    DOEpatents

    Wuest, C.R.; Lowry, M.E.

    1994-03-29

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium. 3 figures.

  19. Comparative study of silicon detectors

    SciTech Connect

    Allier, C.P.; Valk, H.; Huizenga, J.; Bom, V.R.; Hollander, R.W.; Eijk, C.W.E. van

    1998-06-01

    The authors studied three different types of silicon sensors: PIN diodes, circular drift detectors, both made at the Delft University of Technology (DUT), and Hamamatsu S5345 avalanche photodiodes. Measurements have been carried out in the same optimized experimental setup, both at room temperature and at low temperatures. Comparison is made for direct X-ray detection and CsI(Tl) scintillation light readout.

  20. Relating rock avalanche morphology to emplacement processes

    NASA Astrophysics Data System (ADS)

    Dufresne, Anja; Prager, Christoph; Bösmeier, Annette

    2015-04-01

    The morphology, structure and sedimentological characteristics of rock avalanche deposits reflect both internal emplacement processes and external influences, such as runout path characteristics. The latter is mainly predisposed by topography, substrate types, and hydrogeological conditions. Additionally, the geological setting at the source slope controls, e.g. the spatial distribution of accumulated lithologies and hence material property-related changes in morphology, or the maximum clast size and amount of fines of different lithological units. The Holocene Tschirgant rock avalanche (Tyrol, Austria) resulted from failure of an intensely deformed carbonate rock mass on the southeast face of a 2,370-m-high mountain ridge. The initially sliding rock mass rapidly fragmented as it moved towards the floor of the Inn River valley. Part of the 200-250 x 106 m3 (Patzelt 2012) rock avalanche debris collided with and moved around an opposing bedrock ridge and flowed into the Ötz valley, reaching up to 6.3 km from source. Where the Tschirgant rock avalanche spread freely it formed longitudinal ridges aligned along motion direction as well as smaller hummocks. Encountering high topography, it left runup ridges, fallback patterns (i.e. secondary collapse), and compressional morphology (successively elevated, transverse ridges). Further evidence for the mechanical landslide behaviour is given by large volumes of mobilized valley-fill sediments (polymict gravels and sands). These sediments indicate both shearing and compressional faulting within the rock avalanche mass (forming their own morphological units through, e.g. in situ bulldozing or as distinctly different hummocky terrain), but also indicate extension of the spreading landslide mass (i.e. intercalated/injected gravels encountered mainly in morphological depressions between hummocks). Further influences on its morphology are given by the different lithological units. E.g. the transition from massive dolomite

  1. Adjoint method and runaway electron avalanche

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Brennan, Dylan P.; Boozer, Allen H.; Bhattacharjee, Amitava

    2017-02-01

    The adjoint method for the study of runaway electron dynamics in momentum space Liu et al (2016 Phys. Plasmas 23 010702) is rederived using the Green’s function method, for both the runaway probability function (RPF) and the expected loss time (ELT). The RPF and ELT obtained using the adjoint method are presented, both with and without the synchrotron radiation reaction force. The adjoint method is then applied to study the runaway electron avalanche. Both the critical electric field and the growth rate for the avalanche are calculated using this fast and novel approach.

  2. Avalanches, Barkhausen noise, and plain old criticality

    SciTech Connect

    Perkovic, O.; Dahmen, K.; Sethna, J.P.

    1995-12-01

    We explain Barkhausen noise in magnetic systems in terms of avalanches of domains near a plain old critical point in the hysteretic zero-temperature random-field Ising model. The avalanche size distribution has a universal scaling function, making nontrivial predictions of the shape of the distribution up to 50{percent} above the critical point, where two decades of scaling are still observed. We simulate systems with up to 1000{sup 3} domains, extract critical exponents in 2, 3, 4, and 5 dimensions, compare with our 2D and 6{minus}{epsilon} predictions, and compare to a variety of experiments. {copyright} {ital 1995 The American Physical Society.}

  3. Bulk metallic glasses deform via slip avalanches.

    PubMed

    Antonaglia, James; Wright, Wendelin J; Gu, Xiaojun; Byer, Rachel R; Hufnagel, Todd C; LeBlanc, Michael; Uhl, Jonathan T; Dahmen, Karin A

    2014-04-18

    For the first time in metallic glasses, we extract both the exponents and scaling functions that describe the nature, statistics, and dynamics of slip events during slow deformation, according to a simple mean field model. We model the slips as avalanches of rearrangements of atoms in coupled shear transformation zones (STZs). Using high temporal resolution measurements, we find the predicted, different statistics and dynamics for small and large slips thereby excluding self-organized criticality. The agreement between model and data across numerous independent measures provides evidence for slip avalanches of STZs as the elementary mechanism of inhomogeneous deformation in metallic glasses.

  4. Phase avalanches in near-adiabatic evolutions

    SciTech Connect

    Vertesi, T.; Englman, R.

    2006-02-15

    In the course of slow, nearly adiabatic motion of a system, relative changes in the slowness can cause abrupt and high magnitude phase changes, ''phase avalanches,'' superimposed on the ordinary geometric phases. The generality of this effect is examined for arbitrary Hamiltonians and multicomponent (>2) wave packets and is found to be connected (through the Blaschke term in the theory of analytic signals) to amplitude zeros in the lower half of the complex time plane. Motion on a nonmaximal circle on the Poincare-sphere suppresses the effect. A spectroscopic transition experiment can independently verify the phase-avalanche magnitudes.

  5. Bulk Metallic Glasses Deform via Slip Avalanches

    NASA Astrophysics Data System (ADS)

    Antonaglia, James; Wright, Wendelin J.; Gu, Xiaojun; Byer, Rachel R.; Hufnagel, Todd C.; LeBlanc, Michael; Uhl, Jonathan T.; Dahmen, Karin A.

    2014-04-01

    For the first time in metallic glasses, we extract both the exponents and scaling functions that describe the nature, statistics, and dynamics of slip events during slow deformation, according to a simple mean field model. We model the slips as avalanches of rearrangements of atoms in coupled shear transformation zones (STZs). Using high temporal resolution measurements, we find the predicted, different statistics and dynamics for small and large slips thereby excluding self-organized criticality. The agreement between model and data across numerous independent measures provides evidence for slip avalanches of STZs as the elementary mechanism of inhomogeneous deformation in metallic glasses.

  6. Modeling of InGaAsSb-Based Avalanche Photodetectors for 2-Micron Wavelengths

    NASA Technical Reports Server (NTRS)

    Joshi, Ravindra P.; Abedin, M. Nurul (Technical Monitor)

    2002-01-01

    The main focus of this research is to study and evaluate the potential of InGaAsSb-AlGaAsSb based 2 micron avalanche photo-detectors. The photodetector contains a separate absorption and multiplication region (SAM) structure. The analysis has mainly been done to understand the electrical response characteristics of the devices existing at NASA, and to evaluate alternate structures proposed. Calculating the current flow for the existing detector structure, on the basis of its energy band diagram, is important. This analysis also helps to find shortcomings in the existing detector structure. It is shown that, unfortunately, the existing structure cannot lead to strong multiplication or voltage dependent gain. Two alternate structures are suggested, that could overcome the inherent flaws, and help achieve improved performance. These devices are obtained through modifications of the original structure, which include varying the doping levels, and changing the thicknesses of detector sub-regions. The results of our study are presented and discussed.

  7. Assessing the importance of terrain parameters on glide avalanche release

    USGS Publications Warehouse

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.

    2014-01-01

    Glide snow avalanches are dangerous and difficult to predict. Despite recent research there is still a lack of understanding regarding the controls of glide avalanche release. Glide avalanches often occur in similar terrain or the same locations annually and observations suggest that topography may be critical. Thus, to gain an understanding of the terrain component of these types of avalanches we examined terrain parameters associated with glide avalanche release as well as areas of consistent glide crack formation but no subsequent avalanches. Glide avalanche occurrences visible from the Going-to-the-Sun Road corridor in Glacier National Park, Montana from 2003-2013 were investigated using an avalanche database derived of daily observations each year from April 1 to June 15. This yielded 192 glide avalanches in 53 distinct avalanche paths. Each avalanche occurrence was digitized in a GIS using satellite, oblique, and aerial imagery as reference. Topographical parameters such as area, slope, aspect, elevation and elevation were then derived for the entire dataset utilizing GIS tools and a 10m DEM. Land surface substrate and surface geology were derived from National Park Service Inventory and Monitoring maps and U.S. Geological Survey surface geology maps, respectively. Surface roughness and glide factor were calculated using a four level classification index. . Then, each avalanche occurrence was aggregated to general avalanche release zones and the frequencies were compared. For this study, glide avalanches released in elevations ranging from 1300 to 2700 m with a mean aspect of 98 degrees (east) and a mean slope angle of 38 degrees. The mean profile curvature for all glide avalanches was 0.15 and a plan curvature of -0.01, suggesting a fairly linear surface (i.e. neither convex nor concave). The glide avalanches occurred in mostly bedrock made up of dolomite and limestone slabs and talus deposits with very few occurring in alpine meadows. However, not all glide

  8. Advantages of gated silicon single photon detectors

    NASA Astrophysics Data System (ADS)

    Legré, Matthieu; Lunghi, Tommaso; Stucki, Damien; Zbinden, Hugo

    2013-05-01

    We present gated silicon single photon detectors based on two commercially available avalanche photodiodes (APDs) and one customised APD from ID Quantique SA. This customised APD is used in a commercially available device called id110. A brief comparison of the two commercial APDs is presented. Then, the charge persistence effect of all of those detectors that occurs just after a strong illumination is shown and discussed.

  9. Superlinear threshold detectors in quantum cryptography

    SciTech Connect

    Lydersen, Lars; Maroey, Oystein; Skaar, Johannes; Makarov, Vadim; Jain, Nitin; Wittmann, Christoffer; Marquardt, Christoph; Leuchs, Gerd

    2011-09-15

    We introduce the concept of a superlinear threshold detector, a detector that has a higher probability to detect multiple photons if it receives them simultaneously rather than at separate times. Highly superlinear threshold detectors in quantum key distribution systems allow eavesdropping the full secret key without being revealed. Here, we generalize the detector control attack, and analyze how it performs against quantum key distribution systems with moderately superlinear detectors. We quantify the superlinearity in superconducting single-photon detectors based on earlier published data, and gated avalanche photodiode detectors based on our own measurements. The analysis shows that quantum key distribution systems using detector(s) of either type can be vulnerable to eavesdropping. The avalanche photodiode detector becomes superlinear toward the end of the gate. For systems expecting substantial loss, or for systems not monitoring loss, this would allow eavesdropping using trigger pulses containing less than 120 photons per pulse. Such an attack would be virtually impossible to catch with an optical power meter at the receiver entrance.

  10. Nano-multiplication region avalanche photodiodes and arrays

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu (Inventor); Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)

    2011-01-01

    An avalanche photodiode with a nano-scale reach-through structure comprising n-doped and p-doped regions, formed on a silicon island on an insulator, so that the avalanche photodiode may be electrically isolated from other circuitry on other silicon islands on the same silicon chip as the avalanche photodiode. For some embodiments, multiplied holes generated by an avalanche reduces the electric field in the depletion region of the n-doped and p-doped regions to bring about self-quenching of the avalanche photodiode. Other embodiments are described and claimed.

  11. The role of thermal coupling on avalanches in manganites.

    PubMed

    Macià, F; Abril, G; Hernandez, J M; Tejada, J

    2009-10-07

    We report here a study on the environmental dependence of the occurrence, at low temperature, of ultra-sharp field induced avalanches in phase separated manganites. Despite the high reproducibility of avalanches, it has already been observed that the critical fields shift with the magnetic field sweep rate and that different sample sizes lead to different ignition fields for the avalanches. Critical growing rates have been suggested to describe the avalanche ignition though the role of thermal coupling has hardly been considered. We qualitatively analyze here a set of experimental data on avalanches in manganites and discuss the role of thermal coupling as a key parameter of the instability in a dynamical system.

  12. Measuring acoustic emissions in an avalanche slope

    NASA Astrophysics Data System (ADS)

    Reiweger, Ingrid; Schweizer, Jürg

    2014-05-01

    Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.

  13. Rock avalanches caused by earthquakes: source characteristics.

    PubMed

    Keefer, D K

    1984-03-23

    Study of a worldwide sample of historical earthquakes showed that slopes most susceptible to catastrophic rock avalanches were higher than 150 meters and steeper than 25 degrees. The slopes were undercut by fluvial or glacial erosion, were composed of intensely fractured rock, and exhibited at least one other indicator of low strength or potential instability.

  14. Vortex avalanches in a type II superconductor

    SciTech Connect

    Behnia, K.; Capan, C.; Mailly, D.; Etienne, B.

    1999-12-01

    The authors report on a study of the spatiotemporal variation of magnetic induction in a superconducting niobium sample during a slow sweep of external magnetic field. A sizable fraction of the increase in the local vortex population occurs in abrupt jumps. They compare the size distribution of these avalanches with the predictions of self-organized-criticality models for vortex dynamics.

  15. Forecasting runout of rock and debris avalanches

    USGS Publications Warehouse

    Iverson, Richard M.; Evans, S.G.; Mugnozza, G.S.; Strom, A.; Hermanns, R.L.

    2006-01-01

    Physically based mathematical models and statistically based empirical equations each may provide useful means of forecasting runout of rock and debris avalanches. This paper compares the foundations, strengths, and limitations of a physically based model and a statistically based forecasting method, both of which were developed to predict runout across three-dimensional topography. The chief advantage of the physically based model results from its ties to physical conservation laws and well-tested axioms of soil and rock mechanics, such as the Coulomb friction rule and effective-stress principle. The output of this model provides detailed information about the dynamics of avalanche runout, at the expense of high demands for accurate input data, numerical computation, and experimental testing. In comparison, the statistical method requires relatively modest computation and no input data except identification of prospective avalanche source areas and a range of postulated avalanche volumes. Like the physically based model, the statistical method yields maps of predicted runout, but it provides no information on runout dynamics. Although the two methods differ significantly in their structure and objectives, insights gained from one method can aid refinement of the other.

  16. Fractal avalanche ruptures in biological membranes

    NASA Astrophysics Data System (ADS)

    Gözen, Irep; Dommersnes, Paul; Czolkos, Ilja; Jesorka, Aldo; Lobovkina, Tatsiana; Orwar, Owe

    2010-11-01

    Bilayer membranes envelope cells as well as organelles, and constitute the most ubiquitous biological material found in all branches of the phylogenetic tree. Cell membrane rupture is an important biological process, and substantial rupture rates are found in skeletal and cardiac muscle cells under a mechanical load. Rupture can also be induced by processes such as cell death, and active cell membrane repair mechanisms are essential to preserve cell integrity. Pore formation in cell membranes is also at the heart of many biomedical applications such as in drug, gene and short interfering RNA delivery. Membrane rupture dynamics has been studied in bilayer vesicles under tensile stress, which consistently produce circular pores. We observed very different rupture mechanics in bilayer membranes spreading on solid supports: in one instance fingering instabilities were seen resulting in floral-like pores and in another, the rupture proceeded in a series of rapid avalanches causing fractal membrane fragmentation. The intermittent character of rupture evolution and the broad distribution in avalanche sizes is consistent with crackling-noise dynamics. Such noisy dynamics appear in fracture of solid disordered materials, in dislocation avalanches in plastic deformations and domain wall magnetization avalanches. We also observed similar fractal rupture mechanics in spreading cell membranes.

  17. Interplanetary space weather effects on Lunar Reconnaissance Orbiter avalanche photodiode performance

    NASA Astrophysics Data System (ADS)

    Clements, E. B.; Carlton, A. K.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Sun, X.; Cahoy, K.

    2016-05-01

    Space weather is a major concern for radiation-sensitive space systems, particularly for interplanetary missions, which operate outside of the protection of Earth's magnetic field. We examine and quantify the effects of space weather on silicon avalanche photodiodes (SiAPDs), which are used for interplanetary laser altimeters and communications systems and can be sensitive to even low levels of radiation (less than 50 cGy). While ground-based radiation testing has been performed on avalanche photodiode (APDs) for space missions, in-space measurements of SiAPD response to interplanetary space weather have not been previously reported. We compare noise data from the Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) SiAPDs with radiation measurements from the onboard Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument. We did not find any evidence to support radiation as the cause of changes in detector threshold voltage during radiation storms, both for transient detector noise and long-term average detector noise, suggesting that the approximately 1.3 cm thick shielding (a combination of titanium and beryllium) of the LOLA detectors is sufficient for SiAPDs on interplanetary missions with radiation environments similar to what the LRO experienced (559 cGy of radiation over 4 years).

  18. Interplanetary Space Weather Effects on Lunar Reconnaissance Orbiter Avalanche Photodiode Performance

    NASA Technical Reports Server (NTRS)

    Clements, E. B.; Carlton, A. K.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Sun, X.; Cahoy, K.

    2016-01-01

    Space weather is a major concern for radiation-sensitive space systems, particularly for interplanetary missions, which operate outside of the protection of Earth's magnetic field. We examine and quantify the effects of space weather on silicon avalanche photodiodes (SiAPDs), which are used for interplanetary laser altimeters and communications systems and can be sensitive to even low levels of radiation (less than 50 cGy). While ground-based radiation testing has been performed on avalanche photodiode (APDs) for space missions, in-space measurements of SiAPD response to interplanetary space weather have not been previously reported. We compare noise data from the Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) SiAPDs with radiation measurements from the onboard Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument. We did not find any evidence to support radiation as the cause of changes in detector threshold voltage during radiation storms, both for transient detector noise and long-term average detector noise, suggesting that the approximately 1.3 cm thick shielding (a combination of titanium and beryllium) of the LOLA detectors is sufficient for SiAPDs on interplanetary missions with radiation environments similar to what the LRO experienced (559 cGy of radiation over 4 years).

  19. Direct-conversion flat-panel imager with avalanche gain: Feasibility investigation for HARP-AMFPI

    SciTech Connect

    Wronski, M. M.; Rowlands, J. A.

    2008-12-15

    The authors are investigating the concept of a direct-conversion flat-panel imager with avalanche gain for low-dose x-ray imaging. It consists of an amorphous selenium (a-Se) photoconductor partitioned into a thick drift region for x-ray-to-charge conversion and a relatively thin region called high-gain avalanche rushing photoconductor (HARP) in which the charge undergoes avalanche multiplication. An active matrix of thin film transistors is used to read out the electronic image. The authors call the proposed imager HARP active matrix flat panel imager (HARP-AMFPI). The key advantages of HARP-AMFPI are its high spatial resolution, owing to the direct-conversion a-Se layer, and its programmable avalanche gain, which can be enabled during low dose fluoroscopy to overcome electronic noise and disabled during high dose radiography to prevent saturation of the detector elements. This article investigates key design considerations for HARP-AMFPI. The effects of electronic noise on the imaging performance of HARP-AMFPI were modeled theoretically and system parameters were optimized for radiography and fluoroscopy. The following imager properties were determined as a function of avalanche gain: (1) the spatial frequency dependent detective quantum efficiency; (2) fill factor; (3) dynamic range and linearity; and (4) gain nonuniformities resulting from electric field strength nonuniformities. The authors results showed that avalanche gains of 5 and 20 enable x-ray quantum noise limited performance throughout the entire exposure range in radiography and fluoroscopy, respectively. It was shown that HARP-AMFPI can provide the required gain while maintaining a 100% effective fill factor and a piecewise dynamic range over five orders of magnitude (10{sup -7}-10{sup -2} R/frame). The authors have also shown that imaging performance is not significantly affected by the following: electric field strength nonuniformities, avalanche noise for x-ray energies above 1 keV and direct

  20. Direct-conversion flat-panel imager with avalanche gain: feasibility investigation for HARP-AMFPI.

    PubMed

    Wronski, M M; Rowlands, J A

    2008-12-01

    The authors are investigating the concept of a direct-conversion flat-panel imager with avalanche gain for low-dose x-ray imaging. It consists of an amorphous selenium (a-Se) photoconductor partitioned into a thick drift region for x-ray-to-charge conversion and a relatively thin region called high-gain avalanche rushing photoconductor (HARP) in which the charge undergoes avalanche multiplication. An active matrix of thin film transistors is used to read out the electronic image. The authors call the proposed imager HARP active matrix flat panel imager (HARP-AMFPI). The key advantages of HARP-AMFPI are its high spatial resolution, owing to the direct-conversion a-Se layer, and its programmable avalanche gain, which can be enabled during low dose fluoroscopy to overcome electronic noise and disabled during high dose radiography to prevent saturation of the detector elements. This article investigates key design considerations for HARP-AMFPI. The effects of electronic noise on the imaging performance of HARP-AMFPI were modeled theoretically and system parameters were optimized for radiography and fluoroscopy. The following imager properties were determined as a function of avalanche gain: (1) the spatial frequency dependent detective quantum efficiency; (2) fill factor; (3) dynamic range and linearity; and (4) gain nonuniformities resulting from electric field strength nonuniformities. The authors results showed that avalanche gains of 5 and 20 enable x-ray quantum noise limited performance throughout the entire exposure range in radiography and fluoroscopy, respectively. It was shown that HARP-AMFPI can provide the required gain while maintaining a 100% effective fill factor and a piecewise dynamic range over five orders of magnitude (10(-7)-10(-2) R/frame). The authors have also shown that imaging performance is not significantly affected by the following: electric field strength nonuniformities, avalanche noise for x-ray energies above 1 keV and direct interaction

  1. Radiation effects on the runaway electron avalanche

    NASA Astrophysics Data System (ADS)

    Liu, Chang

    2016-10-01

    Runaway electrons are a critical area of research into tokamak disruptions. A thermal quench on ITER can result in avalanche production of a large amount of runaway electrons and a transfer of the plasma current to be carried by runaway electrons. The potential damage caused by the highly energetic electron beam poses a significant challenge for ITER to achieve its mission. It is therefore extremely important to have a quantitative understanding of the avalanche process, including (1) the critical energy for an electron to run away to relativistic energy and (2) the avalanche growth rate dependence on electric field, which is related to the poloidal flux change required for an e-fold in current. It is found that the radiative energy loss of runaway electrons plays an important role in determining these two quantities. In this talk we discuss three kinds of radiation from runaway electrons, synchrotron radiation, Cerenkov radiation, and electron cyclotron emission (ECE) radiation. Synchrotron radiation, which mainly comes from the cyclotron motion of highly relativistic runaway electrons, dominates the energy loss of runaway electrons in the high-energy regime. The Cerenkov radiation from runaway electrons gives an additional correction to the Coulomb logarithm in the collision operator, which changes the avalanche growth rate. The ECE emission mainly comes from electrons in the energy range 1.2 < γ < 3 , and gives an important approach to diagnose the runaway electron distribution in momentum and pitch angle. To study the runaway electron dynamics in momentum space including all the radiation and scattering effects, we use a novel tool, the adjoint method to obtain both the runaway probability and the expected slowing-down time. The method is then combined with kinetic simulations to calculate the avalanche threshold and growth rate. This work is supported by US Department of Energy under Grant No. DE-AC02-09CH-11466.

  2. Are Comet Outbursts the Result of Avalanches?

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Melosh, H. Jay

    2016-10-01

    Recently, Rosetta became the first spacecraft to make high-resolution observations of a comet outburst (a rapid, ephemeral increase in dust production) emerging from the surface of a comet nucleus. These outbursts occurred near perihelion, lasted only a few minutes, and produced a highly collimated outburst plume without any corresponding increase in H2O or CO2 gas production (See abstract by Rinaldi et al.). These observations cannot be explained by proposed driving outburst mechanisms (such as crystallization of amorphous ice, cryovolcanic gas exsolution, or explosive outgasing of subsurface chambers), all of which are driven by gas, and would therefore lead to an increase in the gas production.We propose instead that the observed outbursts on Comet 67P/Churyumov-Gerasimenko (hereafter 67P) are the result of cometary avalanches. The surface of 67P contains many cliffs and scarps, with dusty surface layers blanketing the shallower slopes above and below these steep surfaces. The Rosetta spacecraft returned clear evidence of mass wasting, which form icy talus fields that are the source of much of 67P's cometary activity. Additionally, Rosetta observed morphological changes over time in the shallower, dusty surface layers above these steep slopes, which suggest that avalanches periodically release dusty materials onto these active talus fields.Here we present the results of a numerical simulation of dusty material avalanching into an active area (active talus field). These simulations show that such avalanches will generate a transient, highly collimated outburst plume that closely matches the observed morphology of the outbursts emanating from the surface of 67P. This mechanism predicts that cometary outbursting should not be directly associated with any increase in gas production, consistent with observations. Additionally, we show that regions of the nucleus that have sourced outburst plumes contain steep surfaces (above the angle of repose), which is required

  3. Recent advances in very large area avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Squillante, Michael R.; Christian, James; Entine, Gerald; Farrell, Richard; Karger, Arieh M.; McClish, Mickel; Myers, Richard; Shah, Kanai S.; Taylor, David; Vanderpuye, Kofi; Waer, Peter; Woodring, Mitchell

    2003-09-01

    The Avalanche Photodiode (APD) is a unique device that combines the advantages of solid state photodetectors with those of high gain devices such as photomultiplier tubes (PMTs). APDs have internal gain that provides a high signal-to-noise ratio. APDs have high quantum efficiency, are fast, compact, and rugged. These properties make them suitable detectors for important applications such as LADAR, detection and identification toxic chemicals and bio-warfare agents, LIDAR fluorescence detection, stand-off laser induced breakdown spectroscopy (LIBS), and nuclear detectors and imagers. Recently there have been significant technical breakthroughs in fabricating very large APDs, APD arrays, and position sensitive APD arrays (PSAPD). Signal gain of over 10,000 has been achieved, single element APDs have been fabricated with active area greater than 40 cm2, monolithic pixelated arrays with up to 28 x 28 elements have been fabricated, and position sensitive APDs have been developed and tested. Additionally, significant progress has been made in improving the fabrication process to provide better uniformity and high yield, permitting cost effective manufacturing of APDs for reduced cost.

  4. Characterization of Advanced Avalanche Photodiodes for Water Vapor Lidar Receivers

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Halama, Gary E.; DeYoung, Russell J.

    2000-01-01

    Development of advanced differential absorption lidar (DIAL) receivers is very important to increase the accuracy of atmospheric water vapor measurements. A major component of such receivers is the optical detector. In the near-infrared wavelength range avalanche photodiodes (APD's) are the best choice for higher signal-to-noise ratio, where there are many water vapor absorption lines. In this study, characterization experiments were performed to evaluate a group of silicon-based APD's. The APD's have different structures representative of different manufacturers. The experiments include setups to calibrate these devices, as well as characterization of the effects of voltage bias and temperature on the responsivity, surface scans, noise measurements, and frequency response measurements. For each experiment, the setup, procedure, data analysis, and results are given and discussed. This research was done to choose a suitable APD detector for the development of an advanced atmospheric water vapor differential absorption lidar detection system operating either at 720, 820, or 940 nm. The results point out the benefits of using the super low ionization ratio (SLIK) structure APD for its lower noise-equivalent power, which was found to be on the order of 2 to 4 fW/Hz(sup (1/2)), with an appropriate optical system and electronics. The water vapor detection systems signal-to-noise ratio will increase by a factor of 10.

  5. Semiconductor radiation detector with internal gain

    DOEpatents

    Iwanczyk, Jan; Patt, Bradley E.; Vilkelis, Gintas

    2003-04-01

    An avalanche drift photodetector (ADP) incorporates extremely low capacitance of a silicon drift photodetector (SDP) and internal gain that mitigates the surface leakage current noise of an avalanche photodetector (APD). The ADP can be coupled with scintillators such as CsI(Tl), NaI(Tl), LSO or others to form large volume scintillation type gamma ray detectors for gamma ray spectroscopy, photon counting, gamma ray counting, etc. Arrays of the ADPs can be used to replace the photomultiplier tubes (PMTs) used in conjunction with scintillation crystals in conventional gamma cameras for nuclear medical imaging.

  6. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  7. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  8. The design of the TASD (totally active scintillator detector) prototype

    SciTech Connect

    Mefodiev, A. V. Kudenko, Yu. G.

    2015-12-15

    Totally active and magnetic segmented scintillation neutrino detectors are developed for the nextgeneration accelerator neutrino experiments. Such detectors will incorporate scintillation modules with scintillation counters that form X and Y planes. A single counter is a 7 × 10 × 90 mm{sup 3} scintillation bar with gluedin wavelength-shifting fibers and micropixel avalanche photodiodes. The results of measurements of the parameters of these detectors are presented.

  9. The Marocche rock avalanches (Trentino, Italy)

    NASA Astrophysics Data System (ADS)

    Ivy-Ochs, Susan; Martin, Silvana; Campedel, Paolo; Viganò, Alfio; Alberti, Silvio; Rigo, Manuel; Vockenhuber, Christof

    2015-04-01

    The floors of the Adige and Sarca River valleys are punctuated by numerous rock avalanche deposits of undetermined age. With a view to understanding predisposition and triggering factors, thus ultimately paleoseismicity in the region, we are studying the geomorphology and timing of the largest rock avalanches of the River Sarca-Lake Garda area (e.g., Marocche, Monte Spinale, Lago di Tovel, Lago di Molveno, San Giovanni and Torbole). Among the most extensive of these deposits, with an area of 13 km2 and a volume of about 109 m3, are the Marocche. Marocche deposits cover the lower Sarca valley north of Lake Garda for a length of more than 8 km with 200 m of debris. Both collapse and bedding parallel sliding are a consequence of dip slopes and the extreme relief on the right side of the valley of nearly 2000 m from the bedrock below the valley floor to the peaks combined with the zones of structural weakness. The rock avalanches developed within carbonate rocks of Mesozoic age, mainly limestones of the Jurassic Calcari Grigi Group. The main scarps are located on the western side of the lower Sarca Valley, along the steep faces of Mt. Brento and Mt. Casale. The presence of these scarps is strictly related to the Southern Giudicarie and the Ballino fault systems. The former is here constituted by regular NNE-directed ESE-vergent thrust faults. The latter has been reactivated as normal faults. These complicated structural relationships favored complex failure mechanisms, including rock slide and massive collapse. At the Marocche itself, based on field relationships and analysis of lidar imagery, we differentiated two large rock avalanches: the Marocca di Kas in the south which overlies and in part buries the Marocche (s.s.) in the northern sector. Previous mapping had suggested up to five rock avalanches in the area where we differentiate two. In spite of hypotheses suggesting failure of the rock avalanches onto stagnating late Pleistocene glaciers, preliminary 36Cl

  10. Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing

    NASA Astrophysics Data System (ADS)

    Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei

    2014-03-01

    We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.

  11. Temporal and spatial multiplexed infrared single-photon counter based on high-speed avalanche photodiode

    PubMed Central

    Chen, Xiuliang; Ding, Chengjie; Pan, Haifeng; Huang, Kun; Laurat, Julien; Wu, Guang; Wu, E

    2017-01-01

    We report on a high-speed temporal and spatial multiplexed single-photon counter with photon-number-resolving capability up to four photons. The infrared detector combines a fiber loop to split, delay and recombine optical pulses and a 200 MHz dual-channel single-photon detector based on InGaAs/InP avalanche photodiode. To fully characterize the photon-number-resolving capability, we perform quantum detector tomography and then reconstruct its positive-operator-valued measure and the associated Wigner functions. The result shows that, despite of the afterpulsing noise and limited system detection efficiency, this temporal and spatial multiplexed single-photon counter can already find applications for large repetition rate quantum information schemes. PMID:28294155

  12. Temporal and spatial multiplexed infrared single-photon counter based on high-speed avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Chen, Xiuliang; Ding, Chengjie; Pan, Haifeng; Huang, Kun; Laurat, Julien; Wu, Guang; Wu, E.

    2017-03-01

    We report on a high-speed temporal and spatial multiplexed single-photon counter with photon-number-resolving capability up to four photons. The infrared detector combines a fiber loop to split, delay and recombine optical pulses and a 200 MHz dual-channel single-photon detector based on InGaAs/InP avalanche photodiode. To fully characterize the photon-number-resolving capability, we perform quantum detector tomography and then reconstruct its positive-operator-valued measure and the associated Wigner functions. The result shows that, despite of the afterpulsing noise and limited system detection efficiency, this temporal and spatial multiplexed single-photon counter can already find applications for large repetition rate quantum information schemes.

  13. Memory effect in silicon time-gated single-photon avalanche diodes

    SciTech Connect

    Dalla Mora, A.; Contini, D. Di Sieno, L.; Tosi, A.; Boso, G.; Villa, F.; Pifferi, A.

    2015-03-21

    We present a comprehensive characterization of the memory effect arising in thin-junction silicon Single-Photon Avalanche Diodes (SPADs) when exposed to strong illumination. This partially unknown afterpulsing-like noise represents the main limiting factor when time-gated acquisitions are exploited to increase the measurement dynamic range of very fast (picosecond scale) and faint (single-photon) optical signals following a strong stray one. We report the dependences of this unwelcome signal-related noise on photon wavelength, detector temperature, and biasing conditions. Our results suggest that this so-called “memory effect” is generated in the deep regions of the detector, well below the depleted region, and its contribution on detector response is visible only when time-gated SPADs are exploited to reject a strong burst of photons.

  14. Teaching Natural Hazards: The Use of Snow Avalanches in Demonstrating and Addressing Geographic Topics and Principles.

    ERIC Educational Resources Information Center

    Butler, David R.

    1988-01-01

    Illustrates the importance of studying the snow avalanche as a natural hazard. Describes the various kinds of snow avalanches, the types of triggering mechanisms that produce them, the typical avalanche terrain, and the geomorphic and the vegetative evidence for snow avalanching. Depicts methods of human adjustment to the avalanche hazard.…

  15. Methods of similitude in granular avalanche flows

    NASA Astrophysics Data System (ADS)

    Tai, Yih-Chin; Wang, Yongqi; Gray, J. M. N. T.; Hutter, Kolumban

    Snow avalanches are relatively dry and dense granular flows for which the Savage-Hutter (SH) equations have been demonstrated to be an adequate mathematical model. We review these equations and point out for which cases the equations have been tested against laboratory experiments. Since the equations are scale invariant and because agreement with experiments is good, laboratory experiments can be used to test realistic flows. This is detailed in this paper. We demonstrate how shocks are formed when dilatational flow states merge into compacting states and show that shock formation is an essential mechanism in flows against obstructions. We finally apply the theory of similitude to the design of a projected avalanche protection structure of the Schneefernerhaus at the Zugspitze.

  16. Mean-field avalanches in jammed spheres

    NASA Astrophysics Data System (ADS)

    Franz, S.; Spigler, S.

    2017-02-01

    Disordered systems are characterized by the existence of many sample-dependent local-energy minima that cause a step-wise response when the system is perturbed. In this article we use an approach based on elementary probabilistic methods to compute the complete probability distribution of the jumps (static avalanches) in the response of mean-field systems described by replica symmetry breaking; we find a precise condition for having a power-law behavior in the distribution of avalanches caused by small perturbations, and we show that our predictions are in remarkable agreement both with previous results and with what is found in simulations of three-dimensional systems of soft spheres, either at jamming or at slightly higher densities.

  17. Hierarchical networks, power laws, and neuronal avalanches.

    PubMed

    Friedman, Eric J; Landsberg, Adam S

    2013-03-01

    We show that in networks with a hierarchical architecture, critical dynamical behaviors can emerge even when the underlying dynamical processes are not critical. This finding provides explicit insight into current studies of the brain's neuronal network showing power-law avalanches in neural recordings, and provides a theoretical justification of recent numerical findings. Our analysis shows how the hierarchical organization of a network can itself lead to power-law distributions of avalanche sizes and durations, scaling laws between anomalous exponents, and universal functions-even in the absence of self-organized criticality or critical points. This hierarchy-induced phenomenon is independent of, though can potentially operate in conjunction with, standard dynamical mechanisms for generating power laws.

  18. Stochastic simulation of electron avalanches on supercomputers

    SciTech Connect

    Rogasinsky, S. V.; Marchenko, M. A.

    2014-12-09

    In the paper, we present a three-dimensional parallel Monte Carlo algorithm named ELSHOW which is developed for simulation of electron avalanches in gases. Parallel implementation of the ELSHOW was made on supercomputers with different architectures (massive parallel and hybrid ones). Using the ELSHOW, calculations of such integral characteristics as the number of particles in an avalanche, the coefficient of impact ionization, the drift velocity, and the others were made. Also, special precise computations were made to select an appropriate size of the time step using the technique of dependent statistical tests. Particularly, the algorithm consists of special methods of distribution modeling, a lexicographic implementation scheme for “branching” of trajectories, justified estimation of functionals. A comparison of the obtained results for nitrogen with previously published theoretical and experimental data was made.

  19. Mean-field avalanches in jammed spheres.

    PubMed

    Franz, S; Spigler, S

    2017-02-01

    Disordered systems are characterized by the existence of many sample-dependent local-energy minima that cause a step-wise response when the system is perturbed. In this article we use an approach based on elementary probabilistic methods to compute the complete probability distribution of the jumps (static avalanches) in the response of mean-field systems described by replica symmetry breaking; we find a precise condition for having a power-law behavior in the distribution of avalanches caused by small perturbations, and we show that our predictions are in remarkable agreement both with previous results and with what is found in simulations of three-dimensional systems of soft spheres, either at jamming or at slightly higher densities.

  20. Communicators' perspective on snow avalanche risk communication

    NASA Astrophysics Data System (ADS)

    Charriere, M. K. M.; Bogaard, T.; Mostert, E.

    2014-12-01

    Among all the natural hazards, snow avalanches are the only ones for which a public danger scale is globally used. It consists of 5 levels of danger displayed with a given number and colour and for each of them, behavioural advices are provided. Even though this is standardized in most of the countries affected by this natural hazard, the tools (usually websites or smartphone applications) with which the information is disseminated to the general pubic differs, particularly in terms of target audience and level of details. This study aims at gathering the perspectives of several communicators that are responsible for these communication practices. The survey was created to assess how and why choices were made in the design process of the communication tools and to determine how their effectiveness is evaluated. Along with a review of existing avalanche risk communication tools, this study provides guidelines for communication and the evaluation of its effectiveness.

  1. Monte Carlo simulations within avalanche rescue

    NASA Astrophysics Data System (ADS)

    Reiweger, Ingrid; Genswein, Manuel; Schweizer, Jürg

    2016-04-01

    Refining concepts for avalanche rescue involves calculating suitable settings for rescue strategies such as an adequate probing depth for probe line searches or an optimal time for performing resuscitation for a recovered avalanche victim in case of additional burials. In the latter case, treatment decisions have to be made in the context of triage. However, given the low number of incidents it is rarely possible to derive quantitative criteria based on historical statistics in the context of evidence-based medicine. For these rare, but complex rescue scenarios, most of the associated concepts, theories, and processes involve a number of unknown "random" parameters which have to be estimated in order to calculate anything quantitatively. An obvious approach for incorporating a number of random variables and their distributions into a calculation is to perform a Monte Carlo (MC) simulation. We here present Monte Carlo simulations for calculating the most suitable probing depth for probe line searches depending on search area and an optimal resuscitation time in case of multiple avalanche burials. The MC approach reveals, e.g., new optimized values for the duration of resuscitation that differ from previous, mainly case-based assumptions.

  2. Thermal avalanches near a Mott transition.

    PubMed

    Lashley, J C; Gofryk, K; Mihaila, B; Smith, J L; Salje, E K H

    2014-01-22

    We probe the volume collapse transition (ΔV/Vo ∼ 15%) between the isostructural γ and α phases (T ∼ 100 K) of Ce0.9Th0.1 using the Hall effect, three-terminal capacitive dilatometry, and electrical resistivity measurements. Hall effect measurements confirm the itinerant ground state as the carrier concentration increases by a factor of 7 in the α phase, γ phase (nH = 5.28 × 10(26) m(-3)), and the α phase (nH = 3.76 × 10(27) m(-3)). We were able to detect a noise spectrum consisting of avalanches while slowly varying the temperature through the hysteretic region. We surmise that the avalanches originate from intergranular stresses at the interfaces between partially transformed high-volume and low-volume phases. The statistical distribution of avalanches obey power laws with energy exponent ϵ ≃ 1.5. Hall effect measurements, combined with universal critical exponents, point to short electron mean-free percolation pathways and carrier localization at phase interfaces. Carrier localization was predicted many years ago for elemental cerium by Johansson (1974 Phil. Mag. 30 469).

  3. Neuronal avalanches in spontaneous activity in vivo.

    PubMed

    Hahn, Gerald; Petermann, Thomas; Havenith, Martha N; Yu, Shan; Singer, Wolf; Plenz, Dietmar; Nikolic, Danko

    2010-12-01

    Many complex systems give rise to events that are clustered in space and time, thereby establishing a correlation structure that is governed by power law statistics. In the cortex, such clusters of activity, called "neuronal avalanches," were recently found in local field potentials (LFPs) of spontaneous activity in acute cortex slices, slice cultures, the developing cortex of the anesthetized rat, and premotor and motor cortex of awake monkeys. At present, it is unclear whether neuronal avalanches also exist in the spontaneous LFPs and spike activity in vivo in sensory areas of the mature brain. To address this question, we recorded spontaneous LFPs and extracellular spiking activity with multiple 4 × 4 microelectrode arrays (Michigan Probes) in area 17 of adult cats under anesthesia. A cluster of events was defined as a consecutive sequence of time bins Δt (1-32 ms), each containing at least one LFP event or spike anywhere on the array. LFP cluster sizes consistently distributed according to a power law with a slope largely above -1.5. In two thirds of the corresponding experiments, spike clusters also displayed a power law that displayed a slightly steeper slope of -1.8 and was destroyed by subsampling operations. The power law in spike clusters was accompanied with stronger temporal correlations between spiking activities of neurons that spanned longer time periods compared with spike clusters lacking power law statistics. The results suggest that spontaneous activity of the visual cortex under anesthesia has the properties of neuronal avalanches.

  4. Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes.

    PubMed

    Acconcia, G; Labanca, I; Rech, I; Gulinatti, A; Ghioni, M

    2017-02-01

    The minimization of Single Photon Avalanche Diodes (SPADs) dead time is a key factor to speed up photon counting and timing measurements. We present a fully integrated Active Quenching Circuit (AQC) able to provide a count rate as high as 100 MHz with custom technology SPAD detectors. The AQC can also operate the new red enhanced SPAD and provide the timing information with a timing jitter Full Width at Half Maximum (FWHM) as low as 160 ps.

  5. Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes

    NASA Astrophysics Data System (ADS)

    Acconcia, G.; Labanca, I.; Rech, I.; Gulinatti, A.; Ghioni, M.

    2017-02-01

    The minimization of Single Photon Avalanche Diodes (SPADs) dead time is a key factor to speed up photon counting and timing measurements. We present a fully integrated Active Quenching Circuit (AQC) able to provide a count rate as high as 100 MHz with custom technology SPAD detectors. The AQC can also operate the new red enhanced SPAD and provide the timing information with a timing jitter Full Width at Half Maximum (FWHM) as low as 160 ps.

  6. SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) for low dose x-ray imaging: Spatial resolution

    SciTech Connect

    Li Dan; Zhao Wei

    2008-07-15

    An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator/HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve the low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 {mu}m. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 {mu}mx50 {mu}m pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 {mu}m. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity.

  7. SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) for low dose x-ray imaging: spatial resolution.

    PubMed

    Li, Dan; Zhao, Wei

    2008-07-01

    An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator/HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve the low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 microm. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 microm x 50 microm pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 microm. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity.

  8. Mechanisms of evolution of avalanches in regular graphs.

    PubMed

    Handford, Thomas P; Pérez-Reche, Francisco J; Taraskin, Sergei N

    2013-06-01

    A mapping of avalanches occurring in the zero-temperature random-field Ising model to life periods of a population experiencing immigration is established. Such a mapping allows the microscopic criteria for the occurrence of an infinite avalanche in a q-regular graph to be determined. A key factor for an avalanche of spin flips to become infinite is that it interacts in an optimal way with previously flipped spins. Based on these criteria, we explain why an infinite avalanche can occur in q-regular graphs only for q>3 and suggest that this criterion might be relevant for other systems. The generating function techniques developed for branching processes are applied to obtain analytical expressions for the durations, pulse shapes, and power spectra of the avalanches. The results show that only very long avalanches exhibit a significant degree of universality.

  9. Edge effect on the power law distribution of granular avalanches.

    PubMed

    Lorincz, Kinga A; Wijngaarden, Rinke J

    2007-10-01

    Many punctuated phenomena in nature are claimed [e.g., by the theory of self-organized criticality (SOC)] to be power-law distributed. In our experiments on a three-dimensional pile of long-grained rice, we find that by only changing the boundary condition of the system, we switch from such power-law-distributed avalanche sizes to quasiperiodic system-spanning avalanches. Conversely, by removing ledges the incidence of system-spanning avalanches is significantly reduced. This may offer a perspective on new avalanche prevention schemes. In addition, our findings may help to explain why the archetype of SOC, the sandpile, was found to have power-law-distributed avalanches in some experiments, while in other experiments quasiperiodic system-spanning avalanches were found.

  10. 1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode.

    PubMed

    Namekata, Naoto; Adachi, Shunsuke; Inoue, Shuichiro

    2009-04-13

    We report a telecom-band single-photon detector for gigahertz clocked quantum key distribution systems. The single-photon detector is based on a sinusoidally gated InGaAs/InP avalanche photodiode. The gate repetition frequency of the single-photon detector reached 1.5 GHz. A quantum efficiency of 10.8 % at 1550 nm was obtained with a dark count probability per gate of 6.3 x 10(-7) and an afterpulsing probability of 2.8 %. Moreover, the maximum detection rate of the detector is 20 MHz.

  11. Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes

    PubMed Central

    Farrell, Alan C.; Senanayake, Pradeep; Hung, Chung-Hong; El-Howayek, Georges; Rajagopal, Abhejit; Currie, Marc; Hayat, Majeed M.; Huffaker, Diana L.

    2015-01-01

    Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low excess noise, using separate-absorption-multiplication (SAM) heterostructures, or taking advantage of the dead-space effect using thin multiplication regions. In this work we demonstrate the first measurement of excess noise and gain-bandwidth product in III–V nanopillars exhibiting substantially lower excess noise factors compared to bulk and gain-bandwidth products greater than 200 GHz. The nanopillar optical antenna avalanche detector (NOAAD) architecture is utilized for spatially separating the absorption region from the avalanche region via the NOA resulting in single carrier injection without the use of a traditional SAM heterostructure. PMID:26627932

  12. Avalanche in adhesion. [interfacial separation between two Ni crystals

    NASA Technical Reports Server (NTRS)

    Smith, John R.; Bozzolo, Guillermo; Banerjea, Amitava; Ferrante, John

    1989-01-01

    Consider surfaces being brought into contact. It is proposed that atomic layers can collapse or avalanche together when the interfacial spacing falls below a critical distance. This causes a discontinuous drop in the adhesive binding energy. Avalanche can occur regardless of the stiffness of external supports. A simple understanding of the origin of this phenomenon is provided. A numerical calculation has been carried out for adhesion in Ni. A new wear mechanism due to avalanche is suggested.

  13. Two scenarios for avalanche dynamics in inclined granular layers.

    PubMed

    Börzsönyi, Tamás; Halsey, Thomas C; Ecke, Robert E

    2005-05-27

    We report experimental measurements of avalanche behavior of thin granular layers on an inclined plane for low volume flow rate. The dynamical properties of avalanches were quantitatively and qualitatively different for smooth glass beads compared to irregular granular materials such as sand. Two scenarios for granular avalanches on an incline are identified, and a theoretical explanation for these different scenarios is developed based on a depth-averaged approach that takes into account the differing rheologies of the granular materials.

  14. Modelling rock avalanche propagation onto glaciers

    NASA Astrophysics Data System (ADS)

    Sosio, Rosanna; Crosta, Giovanni B.; Chen, Joanna H.; Hungr, Oldrich

    2012-07-01

    Ice-rock avalanches which occur in glacial environments are controlled by the presence of snow and ice in the moving material and by possible propagation onto icy basal surfaces. All these factors contribute to enhancing the flow mobility. Mixing with ice and snow hampers block collisions and favours dense flow behaviour. Ice melting reduces granular friction by saturation of the basal material and fluidization effects. Propagating onto glaciers offers a smooth surface with low shear resistance. This work is a review of the best documented ice-rock avalanches and focuses on evaluating their mobility for hazard analysis purposes by providing a set of calibrated cases. The rock avalanches have volumes ranging from 5*106 m3 to 25*106 m3. We replicate these events by using SPH and FEM numerical methods, assuming frictional and Voellmy basal rheologies. The Voellmy rheology best performs at replicating the landslide propagation. Among the back analyzed cases, the frictional coefficient ranges in the interval 0.03-0.1, the turbulent coefficient within 1000 m s-2-2000 m s-2. The bulk basal friction angle ranges within 2.75° and 14° with values inversely related to event volumes. Forward selection of the basal friction angle based on event volume, allows the replication of the Mount Cook ice-rock avalanche predicting a maximum runout which is less than 4% larger than observed. In the perspective of forward modelling, large uncertainty is related to the reconstruction of the post-event topographies, particularly for the sliding surface. Mixing with ice and snow reduces basal friction proportionally to ice and snow content. Pure ice has a basal friction which is reduced by about 75% than basal friction of pure rock. Melting of ice during rock avalanche propagation has been evaluated for the Sherman event. The frictional heat generated at the glacier surface results in the melting of 86.2 ± 5.9 kg m-2, which could have contributed to a minimum 20-35% (±10%) reduction of

  15. New advances for modelling the debris avalanches

    NASA Astrophysics Data System (ADS)

    Cuomo, Sabatino; Cascini, Leonardo; Pastor, Manuel; Castorino, Giuseppe Claudio

    2013-04-01

    Flow-like landslides are a major global hazard and they occur worldwide causing a large number of casualties, significant structural damages to property and infrastructures as well as economic losses. When involving open slopes, these landslides often occur in triangular source areas where initial slides turn into avalanches through further failures and/or eventual soil entrainment. This paper deals with the numerical modelling of the propagation stage of debris avalanches which provides information such as the propagation pattern of the mobilized material, its velocity, thickness and run-out distance. In the paper, a "depth integrated" model is used which allows: i) adequately taking into account the irregular topography of real slopes which greatly affect the propagation stage and ii) using a less time consuming model than fully 3D approaches. The used model is named "GeoFlow_SPH" and it was formerly applied to theoretical, experimental and real case histories (Pastor et al., 2009; Cascini et al., 2012). In this work the behavior of debris avalanches is analyzed with special emphasis on the apical angle, one of the main features of this type of landslide, in relation to soil rheology, hillslope geometry and features of triggering area. Furthermore, the role of erosion has been investigated with reference to the uppermost parts of open slopes with a different steepness. These analyses are firstly carried out for simplified benchmark slopes, using both water-like materials (with no shear strength) and debris type materials. Then, three important case studies of Campania region (Cervinara, Nocera Inferiore e Sarno) are analyzed where debris avalanches involved pyroclastic soils originated from the eruptive products of Vesusius volcano. The results achieved for both benchmark slopes and real case histories outline the key role played by the erosion on the whole propagation stage of debris avalanches. The results are particularly satisfactory since they indicate the

  16. State-of-the-art performance of GaAlAs/GaAs avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Law, H. D.; Nakano, K.; Tomasetta, L. R.

    1979-01-01

    Ga(0.15)Al(0.85)As/GaAs avalanche photodiodes have been successfully fabricated. The performance of these detectors is characterized by a rise time of less than 35 ps, an external quantum efficiency with an antireflection coating of 95% at 0.53 microns, and a microwave optical gain of 42 dB. The dark current density is in the low range (10 to the minus A/sq cm) at one-half the breakdown voltages, and rises to 0.0001 A/sq cm at 42 dB optical gain.

  17. Required energy for a laser radar system incorporating a fiber amplifier or an avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Overbeck, Jay A.; Salisbury, Michael S.; Mark, Martin B.; Watson, Edward A.

    1995-11-01

    The transmitted energy required for an airborne laser radar system to be able to image a target at 20 km is investigated. Because direct detection is being considered, two methods of using an avalanche photodiode (APD) as the detector and (2) using a commercial fiber amplifier as a preamplifier before a photodetector. For this analysis a specified signal-to-noise ratio was used in conjunction with the radar range equation, which includes the effects of atmospheric transmission and turbulence. Theoretical analysis reveals that a system with a fiber amplifier performs nearly the same as a system incorporating an APD.

  18. Neutron detector using sol-gel absorber

    DOEpatents

    Hiller, John M.; Wallace, Steven A.; Dai, Sheng

    1999-01-01

    An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.

  19. Avalanche photodiode photon counting receivers for space-borne lidars

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic M.

    1991-01-01

    Avalanche photodiodes (APD) are studied for uses as photon counting detectors in spaceborne lidars. Non-breakdown APD photon counters, in which the APD's are biased below the breakdown point, are shown to outperform: (1) conventional APD photon counters biased above the breakdown point; (2) conventional APD photon counters biased above the breakdown point; and (3) APD's in analog mode when the received optical signal is extremely weak. Non-breakdown APD photon counters were shown experimentally to achieve an effective photon counting quantum efficiency of 5.0 percent at lambda = 820 nm with a dead time of 15 ns and a dark count rate of 7000/s which agreed with the theoretically predicted values. The interarrival times of the counts followed an exponential distribution and the counting statistics appeared to follow a Poisson distribution with no after pulsing. It is predicted that the effective photon counting quantum efficiency can be improved to 18.7 percent at lambda = 820 nm and 1.46 percent at lambda = 1060 nm with a dead time of a few nanoseconds by using more advanced commercially available electronic components.

  20. Assessment and mapping of snow avalanche risk in Russia

    NASA Astrophysics Data System (ADS)

    Seliverstov, Yuri; Glazovskaya, Tatiana; Shnyparkov, Alexander; Vilchek, Yana; Sergeeva, Ksenia; Martynov, Alexei

    The term 'risk' can be defined as the probability of unfavourable consequences or negative effects. Risk can be expressed by means of various indices, such as collective or social risk (possible number of dead), individual risk (probability of a person's death within a certain territory during 1 year), probability of losses, etc. This paper is a case study of the small-scale assessment and mapping of individual avalanche risk focused on the two regions of Russia with the highest levels of avalanche activity: the northern Caucasus and the mountainous parts of Sakhalin island. The basic indices applied for individual avalanche risk estimation are: recurrence interval of avalanches (avalanche frequency), percentage of the whole investigated territory that is occupied by avalanche-prone areas, duration of avalanche danger period, probability of a person's stay in an avalanche-prone area during 1 day (24 hours) and during 1 year, total population of the area and its density. The results of individual avalanche risk assessment, undertaken for the territory of Russia as a whole, show that its values generally do not exceed the admissible level (from 1 × 10-6 to 1 × 10-4). However, some areas of the northern Caucasus, including famous alpine skiing resorts (Krasnaya Poliana, Dombai, the Mount Elbrus region, etc.), and of Sakhalin, including the environs of towns (Kholmsk, Nevel'sk) and other smaller human settlements, are characterized by an unacceptable level of risk. In the aggregate, areas with an unacceptable (>1 × 10-4) level of individual avalanche risk comprise about 7% of the whole avalanche-prone territory of the northern Caucasus, those with an admissible level comprise 52% and those with an acceptable level (<1 × 10-6) 41%. The corresponding values for Sakhalin are 0.1%, 14.8% and 85.1%.

  1. Avalanche-like behavior in ciliary import

    PubMed Central

    Ludington, William B.; Wemmer, Kimberly A.; Lechtreck, Karl F.; Witman, George B.; Marshall, Wallace F.

    2013-01-01

    Cilia and flagella are microtubule-based organelles that protrude from the cell body. Ciliary assembly requires intraflagellar transport (IFT), a motile system that delivers cargo from the cell body to the flagellar tip for assembly. The process controlling injections of IFT proteins into the flagellar compartment is, therefore, crucial to ciliogenesis. Extensive biochemical and genetic analyses have determined the molecular machinery of IFT, but these studies do not explain what regulates IFT injection rate. Here, we provide evidence that IFT injections result from avalanche-like releases of accumulated IFT material at the flagellar base and that the key regulated feature of length control is the recruitment of IFT material to the flagellar base. We used total internal reflection fluorescence microscopy of IFT proteins in live cells to quantify the size and frequency of injections over time. The injection dynamics reveal a power-law tailed distribution of injection event sizes and a negative correlation between injection size and frequency, as well as rich behaviors such as quasiperiodicity, bursting, and long-memory effects tied to the size of the localized load of IFT material awaiting injection at the flagellar base, collectively indicating that IFT injection dynamics result from avalanche-like behavior. Computational models based on avalanching recapitulate observed IFT dynamics, and we further show that the flagellar Ras-related nuclear protein (Ran) guanosine 5'-triphosphate (GTP) gradient can in theory act as a flagellar length sensor to regulate this localized accumulation of IFT. These results demonstrate that a self-organizing, physical mechanism can control a biochemically complex intracellular transport pathway. PMID:23431147

  2. towards a continuum theory of avalanches

    NASA Astrophysics Data System (ADS)

    Champeaux, Stephanie

    2001-10-01

    Recently there has been increased interest in avalanches and other structures and their role in turbulent transport in confined plasmas. Experimental and computational investigations [1] have provided evidence of avalanche phenomena at work in transport dynamics. Numerical simulations of familiar turbulence models exhibit anisotropic radially extended structures clearly related to mesoscale transport events or bursts [2]. Such structures, also called streamers, may be viewed as radially extended cells of nonlinear nature (as indicated by mounting evidence). Modulational instabilities are explored as a mechanism for avalanche type formation in drift-ITG turbulence. Radially extended streamer cell formation and self-regulation are investigated within both random phase approximation and coherent envelope approaches [3]. The dual roles of the modulated Reynolds stress and nonlinear pressure advection are elucidated. While convection cells are a time-honored topic, a major new theme of this work is the study of the cell saturation mechanisms, which regulate the transport. Both poloidal shearing on the underlying ITG turbulence, Kelvin-Helmholtz type instability and curvature-drift resonant damping are explored as a saturation mechanism. Saturation levels for streamer and underlying turbulence are estimated. Implications for scalings of enhancement factors are discussed. Aspect of streamer structure and dynamics are used to estimate the variance of the drift-wave induced heat flux, which is shown to be proportional to the streamer intensity level. Streamer growth then results in a significant enhancement of the heat flux variance to order unity. [1] B.A. Carreras et al Phys Rev Lett 83 (1999) 3653; P.A. Politzer Phys Rev Lett 84 (2000) 1192 [2] P. Beyer et al Phys Rev Lett 85 (2000) 4892 [3] P.H. Diamond, S. Champeaux et al Nuclear Fusion in press; S. Champeaux & P.H. Diamond Phys Lett A in press

  3. Avalanche behavior in yield stress fluids.

    PubMed

    Coussot, Philippe; Nguyen, Q D; Huynh, H T; Bonn, Daniel

    2002-04-29

    We show that, above a critical stress, typical yield stress fluids (gels and clay suspensions) and soft glassy materials (colloidal glasses) start flowing abruptly and subsequently accelerate, leading to avalanches that are remarkably similar to those of granular materials. Rheometrical tests reveal that this is associated with a bifurcation in rheological behavior: for small stresses, the viscosity increases in time; the material eventually stops flowing. For slightly larger stresses the viscosity decreases continuously in time; the flow accelerates. Thus the viscosity jumps discontinuously to infinity at the critical stress. We propose a simple physical model capable of reproducing these effects.

  4. Bilayer avalanche spin-diode logic

    SciTech Connect

    Friedman, Joseph S. Querlioz, Damien; Fadel, Eric R.; Wessels, Bruce W.; Sahakian, Alan V.

    2015-11-15

    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  5. Direct observation of Barkhausen avalanche in Co thin films.

    PubMed

    Kim, Dong-Hyun; Choe, Sug-Bong; Shin, Sung-Chul

    2003-02-28

    We report direct full-field magneto-optical observations of Barkhausen avalanches in Co polycrystalline thin films at criticality. We provide experimental evidence for the validity of a phenomenological model of the Barkhausen avalanche originally proposed by Cizeau, Zapperi, Durin, and Stanley [Phys. Rev. Lett. 79, 4669 (1997)

  6. Design and characterization of single photon avalanche diodes arrays

    NASA Astrophysics Data System (ADS)

    Neri, L.; Tudisco, S.; Lanzanò, L.; Musumeci, F.; Privitera, S.; Scordino, A.; Condorelli, G.; Fallica, G.; Mazzillo, M.; Sanfilippo, D.; Valvo, G.

    2010-05-01

    During the last years, in collaboration with ST-Microelectronics, we developed a new avalanche photo sensor, single photon avalanche diode (SPAD) see Ref.[S. Privitera, et al., Sensors 8 (2008) 4636 [1];S. Tudisco et al., IEEE Sensors Journal 8 (2008) 1324 [2

  7. Avalanches mediate crystallization in a hard-sphere glass.

    PubMed

    Sanz, Eduardo; Valeriani, Chantal; Zaccarelli, Emanuela; Poon, Wilson C K; Cates, Michael E; Pusey, Peter N

    2014-01-07

    By molecular-dynamics simulations, we have studied the devitrification (or crystallization) of aged hard-sphere glasses. First, we find that the dynamics of the particles are intermittent: Quiescent periods, when the particles simply "rattle" in their nearest-neighbor cages, are interrupted by abrupt "avalanches," where a subset of particles undergo large rearrangements. Second, we find that crystallization is associated with these avalanches but that the connection is not straightforward. The amount of crystal in the system increases during an avalanche, but most of the particles that become crystalline are different from those involved in the avalanche. Third, the occurrence of the avalanches is a largely stochastic process. Randomizing the velocities of the particles at any time during the simulation leads to a different subsequent series of avalanches. The spatial distribution of avalanching particles appears random, although correlations are found among avalanche initiation events. By contrast, we find that crystallization tends to take place in regions that already show incipient local order.

  8. Room temperature single-photon detectors for high bit rate quantum key distribution

    SciTech Connect

    Comandar, L. C.; Patel, K. A.; Fröhlich, B. Lucamarini, M.; Sharpe, A. W.; Dynes, J. F.; Yuan, Z. L.; Shields, A. J.; Penty, R. V.

    2014-01-13

    We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50 km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances.

  9. Avalanche prediction in a self-organized pile of beads.

    PubMed

    Ramos, O; Altshuler, E; Måløy, K J

    2009-02-20

    It is a common belief that power-law distributed avalanches are inherently unpredictable. This idea affects phenomena as diverse as evolution, earthquakes, superconducting vortices, stock markets, etc., from atomic to social scales. It mainly comes from the concept of "self-organized criticality" (SOC), where criticality is interpreted in the way that, at any moment, any small avalanche can eventually cascade into a large event. Nevertheless, this work demonstrates experimentally the possibility of avalanche prediction in the classical paradigm of SOC: a pile of grains. By knowing the position of every grain in a two-dimensional pile, avalanches of moving grains follow a distinct power-law distribution. Large avalanches, although uncorrelated, are on average preceded by continuous, detectable variations in the internal structure of the pile that are monitored in order to achieve prediction.

  10. Avalanche Prediction in a Self-Organized Pile of Beads

    NASA Astrophysics Data System (ADS)

    Ramos, O.; Altshuler, E.; Måløy, K. J.

    2009-02-01

    It is a common belief that power-law distributed avalanches are inherently unpredictable. This idea affects phenomena as diverse as evolution, earthquakes, superconducting vortices, stock markets, etc., from atomic to social scales. It mainly comes from the concept of “self-organized criticality” (SOC), where criticality is interpreted in the way that, at any moment, any small avalanche can eventually cascade into a large event. Nevertheless, this work demonstrates experimentally the possibility of avalanche prediction in the classical paradigm of SOC: a pile of grains. By knowing the position of every grain in a two-dimensional pile, avalanches of moving grains follow a distinct power-law distribution. Large avalanches, although uncorrelated, are on average preceded by continuous, detectable variations in the internal structure of the pile that are monitored in order to achieve prediction.

  11. Age of Palos Verdes submarine debris avalanche, southern California

    USGS Publications Warehouse

    Normark, W.R.; McGann, M.; Sliter, R.

    2004-01-01

    The Palos Verdes debris avalanche is the largest, by volume, late Quaternary mass-wasted deposit recognized from the inner California Borderland basins. Early workers speculated that the sediment failure giving rise to the deposit is young, taking place well after sea level reached its present position. A newly acquired, closely-spaced grid of high-resolution, deep-tow boomer profiles of the debris avalanche shows that the Palos Verdes debris avalanche fills a turbidite leveed channel that extends seaward from San Pedro Sea Valley, with the bulk of the avalanche deposit appearing to result from a single failure on the adjacent slope. Radiocarbon dates from piston-cored sediment samples acquired near the distal edge of the avalanche deposit indicate that the main failure took place about 7500 yr BP. ?? 2003 Elsevier B.V. All rights reserved.

  12. First prototypes of two-tier avalanche pixel sensors for particle detection

    NASA Astrophysics Data System (ADS)

    Pancheri, L.; Brogi, P.; Collazuol, G.; Dalla Betta, G.-F.; Ficorella, A.; Marrocchesi, P. S.; Morsani, F.; Ratti, L.; Savoy-Navarro, A.

    2017-02-01

    In this paper, we present the implementation and preliminary evaluation of a new type of silicon sensor for charged particle detection operated in Geiger-mode. The proposed device, formed by two vertically-aligned pixel arrays, exploits the coincidence between two simultaneous avalanche events to discriminate between particle-triggered detections and dark counts. A proof-of-concept two-layer sensor with per-pixel coincidence circuits was designed and fabricated in a 150 nm CMOS process and vertically integrated through bump bonding. The sensor includes a 48×16 pixel array with 50 μ m × 75 μ m pixels. This work describes the sensor architecture and reports a selection of results from the characterization of the avalanche detectors in the two layers. Detectors with an active area of 43 × 45 μ m2 have a median dark count rate of 3 kHz at 3.3 V excess bias and a breakdown voltage non-uniformity lower than 20 mV.

  13. Hybrid AlGaN-SiC Avalanche Photodiode for Deep-UV Photon Detection

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Herrero, Federico A.; Sigwarth, John; Goldsman, Neil; Akturk, Akin

    2010-01-01

    The proposed device is capable of counting ultraviolet (UV) photons, is compatible for inclusion into space instruments, and has applications as deep- UV detectors for calibration systems, curing systems, and crack detection. The device is based on a Separate Absorption and Charge Multiplication (SACM) structure. It is based on aluminum gallium nitride (AlGaN) absorber on a silicon carbide APD (avalanche photodiode). The AlGaN layer absorbs incident UV photons and injects photogenerated carriers into an underlying SiC APD that is operated in Geiger mode and provides current multiplication via avalanche breakdown. The solid-state detector is capable of sensing 100-to-365-nanometer wavelength radiation at a flux level as low as 6 photons/pixel/s. Advantages include, visible-light blindness, operation in harsh environments (e.g., high temperatures), deep-UV detection response, high gain, and Geiger mode operation at low voltage. Furthermore, the device can also be designed in array formats, e.g., linear arrays or 2D arrays (micropixels inside a superpixel).

  14. Application of PN and avalanche silicon photodiodes to low-level optical

    NASA Technical Reports Server (NTRS)

    Eppeldauer, G.; Schaefer, A. R.

    1988-01-01

    New approaches to the discovery of other planetary systems require very sensitive and stable detection techniques in order to succeed. Two methods in particular, the astrometric and the photometric methods, require this. To begin understanding the problems and limitations of solid state detectors regarding this application, preliminary experiments were performed at the National Bureau of Standards and a low light level detector characterization facility was built. This facility is briefly described, and the results of tests conducted in it are outlined. A breadboard photometer that was used to obtain stellar brightness ratio precision data is described. The design principles of PN and avalanche silicon photodiodes based on low light level measuring circuits are discussed.

  15. Reducing the Spikes of Avalanche Photodiode Measurements at the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Brubaker, Z. E.; Foley, E. L.

    2011-10-01

    Avalanche Photodiodes (APD) used at the National Spherical Torus Experiment (NSTX) make important measurements for the Motional Stark Effect (MSE) diagnostic. However, they are very sensitive, and if radiation consistently reaches these detectors they are damaged over time. Furthermore, they also display spikes in their readings, which greatly complicates the data analysis for MSE. Due to our Collisionally-Induced Fluorescence Motional Stark Effect diagnostic observing significant radiation despite being shielded by a 3 foot concrete wall, we must devise a plan for shielding our new Laser-Induced Fluorescence Motional Stark Effect diagnostic, as well as determining the best possible location for them. In order to reduce the amount of spikes seen in our readings and to preserve our detectors, I investigated the type of radiation responsible, the locations most affected, and tested various materials for shielding. Results will be presented.

  16. Avalanche current read-out circuit for low jitter parallel photon timing.

    PubMed

    Crotti, M; Rech, I; Gulinatti, A; Ghioni, M

    2013-08-01

    We propose a novel circuit for single photon avalanche diode (SPAD) current read-out, for photon timing applications. The circuit consists of a single transistor trans-impedance amplifier with a GHz bandwidth: the feedback loop fixes the SPAD anode voltage and allows us to obtain a high time resolution with a very high equivalent current threshold (almost 700 μA). The trans-impedance stage is followed by a low pass filter that reduces the crosstalk of other on-chip detectors and makes the designed structure suitable for multi-detector systems. The discrete components prototype presented in this letter achieves a state-of-art resolution of 34.4 ps FWHM, presents negligible crosstalk between the different pixels and opens the way for the development of an integrated structure with a large number of channels.

  17. Angle sensitive single photon avalanche diode

    NASA Astrophysics Data System (ADS)

    Lee, Changhyuk; Johnson, Ben; Molnar, Alyosha

    2015-06-01

    An ideal light sensor would provide exact information on intensity, timing, location, and angle of incoming photons. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information and can be implemented at a pixel-scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses or diffraction gratings) that are capable of encoding both spatial and angular information of incident light. In this letter, we describe the implementation of such a grating structure on SPADs to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) built in a standard CMOS process. While the underlying SPAD structure provides high sensitivity, the time information of the two layers of diffraction gratings above offers angle-sensitivity. Such a unique combination of SPAD and diffraction gratings expands the sensing dimensions to pave a path towards lens-less 3-D imaging and light-field time-of-flight imaging.

  18. Avalanches of Singing Sand in the Laboratory

    NASA Astrophysics Data System (ADS)

    Dagois-Bohy, Simon; Courrech Du Pont, Sylvain; Douady, Stéphane

    2011-03-01

    The song of dunes is a natural phenomenon that has arisen travellers' curiosity for a long time, from Marco Polo to R.A. Bagnold. Scientific observations in the XXth century have shown that the sound is emitted during a shear flow of these particular grains, the free surface of the flow having coherent vibrations like a loud speaker. The sound emission is also submitted to a threshold effect with many parameters like humidity, flow speed, surface of the grains. The sound has been reproduced in laboratory avalanche experiments close to the natural phenomenon on field, but set in a channel with a hard bottom and a few centimeters of sand flowing, which contradicts explanations of the sound that involve a sand dune under the avalanche flow. Flow rates measurements also show the presence of a plug region in the flow above the sheared band, with the same characteristic length as the coherence zones of the sound. Finally we show experimentally that the Froude number, once modified to take into account the height of this plug band, is the parameter that sets the amplitude of the sound, and produces a threshold that depends on the grain type.

  19. Angle sensitive single photon avalanche diode

    SciTech Connect

    Lee, Changhyuk Johnson, Ben Molnar, Alyosha

    2015-06-08

    An ideal light sensor would provide exact information on intensity, timing, location, and angle of incoming photons. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information and can be implemented at a pixel-scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses or diffraction gratings) that are capable of encoding both spatial and angular information of incident light. In this letter, we describe the implementation of such a grating structure on SPADs to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) built in a standard CMOS process. While the underlying SPAD structure provides high sensitivity, the time information of the two layers of diffraction gratings above offers angle-sensitivity. Such a unique combination of SPAD and diffraction gratings expands the sensing dimensions to pave a path towards lens-less 3-D imaging and light-field time-of-flight imaging.

  20. Avalanches and the distribution of solar flares

    NASA Technical Reports Server (NTRS)

    Lu, Edward T.; Hamilton, Russell J.

    1991-01-01

    The solar coronal magnetic field is proposed to be in a self-organized critical state, thus explaining the observed power-law dependence of solar-flare-occurrence rate on flare size which extends over more than five orders of magnitude in peak flux. The physical picture that arises is that solar flares are avalanches of many small reconnection events, analogous to avalanches of sand in the models published by Bak and colleagues in 1987 and 1988. Flares of all sizes are manifestations of the same physical processes, where the size of a given flare is determined by the number of elementary reconnection events. The relation between small-scale processes and the statistics of global-flare properties which follows from the self-organized magnetic-field configuration provides a way to learn about the physics of the unobservable small-scale reconnection processes. A simple lattice-reconnection model is presented which is consistent with the observed flare statistics. The implications for coronal heating are discussed and some observational tests of this picture are given.

  1. Reducing financial avalanches by random investments

    NASA Astrophysics Data System (ADS)

    Biondo, Alessio Emanuele; Pluchino, Alessandro; Rapisarda, Andrea; Helbing, Dirk

    2013-12-01

    Building on similarities between earthquakes and extreme financial events, we use a self-organized criticality-generating model to study herding and avalanche dynamics in financial markets. We consider a community of interacting investors, distributed in a small-world network, who bet on the bullish (increasing) or bearish (decreasing) behavior of the market which has been specified according to the S&P 500 historical time series. Remarkably, we find that the size of herding-related avalanches in the community can be strongly reduced by the presence of a relatively small percentage of traders, randomly distributed inside the network, who adopt a random investment strategy. Our findings suggest a promising strategy to limit the size of financial bubbles and crashes. We also obtain that the resulting wealth distribution of all traders corresponds to the well-known Pareto power law, while that of random traders is exponential. In other words, for technical traders, the risk of losses is much greater than the probability of gains compared to those of random traders.

  2. Avalanches and scaling in plastic deformation

    SciTech Connect

    Koslowski, M.

    2004-01-01

    Plastic deformation of crystalline materials is a complex non-homogeneous process characterized by avalanches in the motion of dislocations. We study the evolution of dislocations loops using an analytically solvable phase-field model of dislocations for ductile single crystals during monotonic loading. We present simulations of dislocations under slow external loading that generate scale-free avalanches and power-law behavior that are characteristics of self organized criticality. The distribution of dislocation loop sizes is given by P(A) {approx} A{sup -{sigma}}, with {sigma} = 1.8 {+-} 0.1. The power law exponent is in agreement with those found in acoustic emission measurements on stressed ice single crystals. In addition to the jerky character of dislocation motion, this model also predicts a range of macroscopic behaviors in agreement with observation, including hardening and dislocation multiplication with monotonic loading and a maximum in the acoustic emission signal at the onset of yielding. At sufficient large stress, the hardening rate drops and the stress-strain curve saturates. At the same time the acoustic emission as well as the dislocation production decreases in agreement with experimental observation.

  3. Reducing financial avalanches by random investments.

    PubMed

    Biondo, Alessio Emanuele; Pluchino, Alessandro; Rapisarda, Andrea; Helbing, Dirk

    2013-12-01

    Building on similarities between earthquakes and extreme financial events, we use a self-organized criticality-generating model to study herding and avalanche dynamics in financial markets. We consider a community of interacting investors, distributed in a small-world network, who bet on the bullish (increasing) or bearish (decreasing) behavior of the market which has been specified according to the S&P 500 historical time series. Remarkably, we find that the size of herding-related avalanches in the community can be strongly reduced by the presence of a relatively small percentage of traders, randomly distributed inside the network, who adopt a random investment strategy. Our findings suggest a promising strategy to limit the size of financial bubbles and crashes. We also obtain that the resulting wealth distribution of all traders corresponds to the well-known Pareto power law, while that of random traders is exponential. In other words, for technical traders, the risk of losses is much greater than the probability of gains compared to those of random traders.

  4. Direction sensitive neutron detector

    DOEpatents

    Ahlen, Steven; Fisher, Peter; Dujmic, Denis; Wellenstein, Hermann F.; Inglis, Andrew

    2017-01-31

    A neutron detector includes a pressure vessel, an electrically conductive field cage assembly within the pressure vessel and an imaging subsystem. A pressurized gas mixture of CF.sub.4, .sup.3He and .sup.4He at respective partial pressures is used. The field cage establishes a relatively large drift region of low field strength, in which ionization electrons generated by neutron-He interactions are directed toward a substantially smaller amplification region of substantially higher field strength in which the ionization electrons undergo avalanche multiplication resulting in scintillation of the CF.sub.4 along scintillation tracks. The imaging system generates two-dimensional images of the scintillation patterns and employs track-finding to identify tracks and deduce the rate and direction of incident neutrons. One or more photo-multiplier tubes record the time-profile of the scintillation tracks permitting the determination of the third coordinate.

  5. Junction-side illuminated silicon detector arrays

    DOEpatents

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  6. Characterization of Large Area APDs for the EXO-200 Detector

    SciTech Connect

    Neilson, R.; LePort, F.; Pocar, A.; Kumar, K.; Odian, A.; Prescott, C.Y.; Tenev, V.; Ackerman, N.; Akimov, D.; Auger, M.; Benitez-Medina, C.; Breidenbach, M.; Burenkov, A.; Conley, R.; Cook, S.; deVoe, R.; Dolinski, M.J.; Fairbank, W., Jr.; Farine, J.; Fierlinger, P.; Flatt, B.; /Stanford U., Phys. Dept. /Bern U., LHEP /Stanford U., Phys. Dept. /Maryland U. /Colorado State U. /Laurentian U. /Carleton U. /SLAC /Maryland U. /Moscow, ITEP /Alabama U. /SLAC /Colorado State U. /Stanford U., Phys. Dept. /Alabama U. /Stanford U., Phys. Dept. /Alabama U. /SLAC /Carleton U. /SLAC /Maryland U. /Moscow, ITEP /Carleton U. /Stanford U., Phys. Dept. /Bern U., LHEP /SLAC /Laurentian U. /SLAC /Maryland U.

    2011-12-02

    EXO-200 uses 468 large area avalanche photodiodes (LAAPDs) for detection of scintillation light in an ultra-low-background liquid xenon (LXe) detector. We describe initial measurements of dark noise, gain and response to xenon scintillation light of LAAPDs at temperatures from room temperature to 169 K - the temperature of liquid xenon. We also describe the individual characterization of more than 800 LAAPDs for selective installation in the EXO-200 detector.

  7. Design optimization of ultra-fast silicon detectors

    NASA Astrophysics Data System (ADS)

    Cartiglia, N.; Arcidiacono, R.; Baselga, M.; Bellan, R.; Boscardin, M.; Cenna, F.; Dalla Betta, G. F.; Fernndez-Martnez, P.; Ferrero, M.; Flores, D.; Galloway, Z.; Greco, V.; Hidalgo, S.; Marchetto, F.; Monaco, V.; Obertino, M.; Pancheri, L.; Paternoster, G.; Picerno, A.; Pellegrini, G.; Quirion, D.; Ravera, F.; Sacchi, R.; Sadrozinski, H. F.-W.; Seiden, A.; Solano, A.; Spencer, N.

    2015-10-01

    Low-Gain Avalanche Diodes (LGAD) are silicon detectors with output signals that are about a factor of 10 larger than those of traditional sensors. In this paper we analyze how the design of LGAD can be optimized to exploit their increased output signal to reach optimum timing performances. Our simulations show that these sensors, the so-called Ultra-Fast Silicon Detectors (UFSD), will be able to reach a time resolution factor of 10 better than that of traditional silicon sensors.

  8. Development of Numerical Models for Performance Predictions of Single-Photon Avalanche Photodetectors (SPAP) for the 2-Micron Regime

    NASA Technical Reports Server (NTRS)

    Joshi, Ravindra P.; Abedin, M. Nurul (Technical Monitor)

    2001-01-01

    Field dependent drift velocity results are presented for electron transport in bulk Indium Arsenide (InAs) material based on a Monte Carlo model, which includes an analytical treatment of band-to-band impact ionization. Avalanche multiplication and related excess noise factor (F) are computed as a function of device length and applied voltage. A decrease in F with increases in device length is obtained. The results suggest an inherent utility for InAs-based single-photon avalanche detectors, particularly around the 2 microns region of interest for atmospheric remote sensing applications. The dark current response was also evaluated. The role of the various components has been analyzed. For shorter devices, the tunneling component is shown to dominate at low temperatures. Finally, possible structures for enhanced photodetection are proposed for future research.

  9. Topographic Avalanche Risk: DEM Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Nazarkulova, Ainura; Strobl, Josef

    2015-04-01

    GIS-based models are frequently used to assess the risk and trigger probabilities of (snow) avalanche releases, based on parameters and geomorphometric derivatives like elevation, exposure, slope, proximity to ridges and local relief energy. Numerous models, and model-based specific applications and project results have been published based on a variety of approaches and parametrizations as well as calibrations. Digital Elevation Models (DEM) come with many different resolution (scale) and quality (accuracy) properties, some of these resulting from sensor characteristics and DEM generation algorithms, others from different DEM processing workflows and analysis strategies. This paper explores the impact of using different types and characteristics of DEMs for avalanche risk modeling approaches, and aims at establishing a framework for assessing the uncertainty of results. The research question is derived from simply demonstrating the differences in release risk areas and intensities by applying identical models to DEMs with different properties, and then extending this into a broader sensitivity analysis. For the quantification and calibration of uncertainty parameters different metrics are established, based on simple value ranges, probabilities, as well as fuzzy expressions and fractal metrics. As a specific approach the work on DEM resolution-dependent 'slope spectra' is being considered and linked with the specific application of geomorphometry-base risk assessment. For the purpose of this study focusing on DEM characteristics, factors like land cover, meteorological recordings and snowpack structure and transformation are kept constant, i.e. not considered explicitly. Key aims of the research presented here are the development of a multi-resolution and multi-scale framework supporting the consistent combination of large area basic risk assessment with local mitigation-oriented studies, and the transferability of the latter into areas without availability of

  10. Study of seismic signals generated by explosions triggering avalanches.

    NASA Astrophysics Data System (ADS)

    Surinach, Emma; Pérez-Guillén, Cristina; Tapia, Mar; Hiller, Martin; Dufour, François

    2014-05-01

    Our group is dedicated to the study of the seismic signals generated by avalanches. Through several years deploying seismic stations at the Vallée de la Sionne (VDLS) test site in Switzerland (operated by SLF) it has gathered a large amount of seismic signals forming a database. The database consists mainly on signals generated by snow avalanches descending the VDLS test site. However, signals corresponding to the explosions that triggered the avalanches and even earthquakes are also included in the database. Depending on the snowpack stability, some of the explosions, despite being of the same charge, are unable to trigger an avalanche. The explosion signals are recorded in 3-component seismometers placed at two or three sites separated a maximum distance of 2.5 km approx. from the release area of the avalanches. The seismic signals corresponding to the explosions recorded at different sites are analyzed and their characteristics compared. Amplitude and frequency content of the displacement, velocity and acceleration of the generated waves traveling into the ground and those of the blast (air) are calculated. These values are compared with those of the waves generated by avalanches and other seismic sources (earthquakes, helicopters, airplanes). These analyses allow us to quantify and evaluate parameters related to the possible triggering of secondary snow avalanches caused by the generated vibrations in air and ground. The results are related to the weather and snowpack conditions, when it is possible.

  11. Disordered artificial spin ices: Avalanches and criticality (invited)

    SciTech Connect

    Reichhardt, Cynthia J. Olson Chern, Gia-Wei; Reichhardt, Charles; Libál, Andras

    2015-05-07

    We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in the square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.

  12. Record-breaking avalanches in driven threshold systems.

    PubMed

    Shcherbakov, Robert; Davidsen, Jörn; Tiampo, Kristy F

    2013-05-01

    Record-breaking avalanches generated by the dynamics of several driven nonlinear threshold models are studied. Such systems are characterized by intermittent behavior, where a slow buildup of energy is punctuated by an abrupt release of energy through avalanche events, which usually follow scale-invariant statistics. From the simulations of these systems it is possible to extract sequences of record-breaking avalanches, where each subsequent record-breaking event is larger in magnitude than all previous events. In the present work, several cellular automata are analyzed, among them the sandpile model, the Manna model, the Olami-Feder-Christensen (OFC) model, and the forest-fire model to investigate the record-breaking statistics of model avalanches that exhibit temporal and spatial correlations. Several statistical measures of record-breaking events are derived analytically and confirmed through numerical simulations. The statistics of record-breaking avalanches for the four models are compared to those of record-breaking events extracted from the sequences of independent and identically distributed (i.i.d.) random variables. It is found that the statistics of record-breaking avalanches for the above cellular automata exhibit behavior different from that observed for i.i.d. random variables, which in turn can be used to characterize complex spatiotemporal dynamics. The most pronounced deviations are observed in the case of the OFC model with a strong dependence on the conservation parameter of the model. This indicates that avalanches in the OFC model are not independent and exhibit spatiotemporal correlations.

  13. Avalanche situation in Turkey and back calculation of selected events

    NASA Astrophysics Data System (ADS)

    Aydin, A.; Bühler, Y.; Christen, M.; Gürer, I.

    2014-05-01

    In Turkey, an average of 24 people die in snow avalanches every year, mainly in the eastern part of Anatolia and in the eastern Black Sea region, where high-mountain ranges are close to the sea. The proportion of people killed in buildings is very high (87%), especially in comparison to other European countries and North America. In this paper we discuss avalanche occurrence, the climatic situation and historical avalanche events in Turkey; in addition, we identify bottlenecks and suggest solutions to tackle avalanche problems. Furthermore, we have applied the numerical avalanche simulation software RAMMS (rapid mass movements simulation) combined with a (digital elevation model) DEM-based potential release zone identification algorithm to analyze the catastrophic avalanche events in the villages of Üzengili (Bayburt province) in 1993 and Yaylaönü (Trabzon province) in 1981. The results demonstrate the value of such an approach for regions with poor avalanche databases, enabling the calculation of different scenarios and the estimation of run-out distances, impact pressure and flow height.

  14. Patterns of death among avalanche fatalities: a 21-year review

    PubMed Central

    Boyd, Jeff; Haegeli, Pascal; Abu-Laban, Riyad B.; Shuster, Michael; Butt, John C.

    2009-01-01

    Background Avalanches are a significant cause of winter recreational fatalities in mountain regions. The purpose of this study was to determine the relative contributions of trauma and asphyxia to avalanche deaths. Methods We reviewed all avalanche fatalities between 1984 and 2005 that had been investigated by the offices of the British Columbia Coroners Service and the Chief Medical Examiner of Alberta. In addition, we searched the database of the Canadian Avalanche Centre for fatal avalanche details. We calculated injury severity scores for all victims who underwent autopsy. Results There were 204 avalanche fatalities with mortality information over the 21-year study period. Of these, 117 victims underwent autopsy, and 87 underwent forensic external examination. Asphyxia caused 154 (75%) deaths. Trauma caused 48 (24%) deaths, with the rate of death from trauma ranging from 9% (4/44) for snowmobilers to 42% (5/12) for ice climbers. In addition, 13% (12/92) of the asphyxia victims who underwent autopsy had major trauma, defined as an injury severity score of greater than 15. Only 48% (23/48) of victims for whom trauma was the primary cause of death had been completely buried. Interpretation Asphyxia and severe trauma caused most avalanche fatalities in western Canada. The relative rates differed between snowmobilers and those engaged in other mountain activities. Our findings should guide recommendations for safety devices, safety measures and resuscitation. PMID:19213801

  15. IFKIS a basis for organizational measures in avalanche risk management

    NASA Astrophysics Data System (ADS)

    Bründl, M.; Etter, H.-J.; Klingler, Ch.; Steiniger, M.; Rhyner, J.; Ammann, W.

    2003-04-01

    The avalanche winter 1999 in Switzerland showed that the combination of protection measures like avalanche barriers, hazard zone mapping, artificial avalanche release and organisational measures (closure of roads, evacuation etc.) proved to perform well. However, education as well as information and communication between the involved organizations proved to be a weak link in the crisis management. In the first part of the project IFKIS we developed a modular education and training course program for security responsibles of settlements and roads. In the second part an information system was developed which improves on the one hand the information fluxes between the national center for avalanche forecasting, the Swiss Federal Institute for Snow and Avalanche Research SLF, and the local forecasters. On the other hand the communication between the avalanche security services in the communities can be enhanced. During the last two years an information system based on Internet technology has been developed for this purpose. This system allows the transmission of measured data and observations to a central database at SLF and visualization of the data for different users. It also provides the possibility to exchange information on organizational measures like closure of roads, artificial avalanche release etc. on a local and regional scale. This improves the information fluxes and the coordination of safety-measures because all users, although at different places, are on the same information level. Inconsistent safety-measures can be avoided and information and communication concerning avalanche safety becomes much more transparent for all persons involved in hazard management. The training program as well the concept for the information-system are important basics for an efficient avalanche risk management but also for other natural processes and catastrophes.

  16. Statistical analyses support power law distributions found in neuronal avalanches.

    PubMed

    Klaus, Andreas; Yu, Shan; Plenz, Dietmar

    2011-01-01

    The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i) analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii) model parameter estimation to determine the specific exponent of the power law, and (iii) comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect). This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.

  17. III-V alloy heterostructure high speed avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Law, H. D.; Nakano, K.; Tomasetta, L. R.

    1979-01-01

    Heterostructure avalanche photodiodes have been successfully fabricated in several III-V alloy systems: GaAlAs/GaAs, GaAlSb/GaAlSb, and InGaAsP/InP. These diodes cover optical wavelengths from 0.4 to 1.8 micron. Early stages of development show very encouraging results. High speed response of less than 35 ps and high quantum efficiency more than 95 percent have been obtained. The dark currents and the excess avalanche noise are also dicussed. A direct comparison of GaAlSb, GaAlAsSb, and In GaAsP avalanche photodiodes is given.

  18. ELECTRON AVALANCHE MODEL OF DIELECTRIC-VACUUM SURFACE BREAKDOWN

    SciTech Connect

    Lauer, E J

    2007-02-21

    The model assumes that an 'initiating event' results in positive ions on the surface near the anode and reverses the direction of the normal component of electric field so that electrons in vacuum are attracted to the dielectric locally. A sequence of surface electron avalanches progresses in steps from the anode to the cathode. For 200 kV across 1 cm, the spacing of avalanches is predicted to be about 13 microns. The time for avalanches to step from the anode to the cathode is predicted to be about a ns.

  19. Avalanche statistics from data with low time resolution

    NASA Astrophysics Data System (ADS)

    LeBlanc, Michael; Nawano, Aya; Wright, Wendelin J.; Gu, Xiaojun; Uhl, J. T.; Dahmen, Karin A.

    2016-11-01

    Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distribution of the underlying avalanches even when the resolution is so low that naive analysis methods give incorrect results. We test these methods on both downsampled simulation data from a simple model and downsampled bulk metallic glass compression data and find that the methods recover the correct critical exponents.

  20. Avalanche statistics from data with low time resolution.

    PubMed

    LeBlanc, Michael; Nawano, Aya; Wright, Wendelin J; Gu, Xiaojun; Uhl, J T; Dahmen, Karin A

    2016-11-01

    Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distribution of the underlying avalanches even when the resolution is so low that naive analysis methods give incorrect results. We test these methods on both downsampled simulation data from a simple model and downsampled bulk metallic glass compression data and find that the methods recover the correct critical exponents.

  1. Relative degradation of near infrared avalanche photodiodes from proton irradiation

    NASA Technical Reports Server (NTRS)

    Becker, Heidi; Johnston, Allan H.

    2004-01-01

    InGaAs and Ge avalanche photodiodes are compared for the effects of 63-MeV protons on dark current. Differences in displacement damage factors are discussed as they relate to structural differences between devices.

  2. Avalanches and clusters in planar crack front propagation.

    PubMed

    Laurson, Lasse; Santucci, Stephane; Zapperi, Stefano

    2010-04-01

    We study avalanches in a model for a planar crack propagating in a disordered medium. Due to long-range interactions, avalanches are formed by a set of spatially disconnected local clusters, the sizes of which are distributed according to a power law with an exponent tau{a}=1.5. We derive a scaling relation tau{a}=2tau-1 between the local cluster exponent tau{a} and the global avalanche exponent tau . For length scales longer than a crossover length proportional to the Larkin length, the aspect ratio of the local clusters scales with the roughness exponent of the line model. Our analysis provides an explanation for experimental results on planar crack avalanches in Plexiglas plates, but the results are applicable also to other systems with long-range interactions.

  3. Dynamic intermittency in discrete erodible-bed avalanches

    NASA Astrophysics Data System (ADS)

    Arran, Matthew; Vriend, Nathalie

    2016-11-01

    The coexistence of fluid-like and solid-like behaviour in granular matter allows avalanches of grains to flow on the surface of a static but erodible bed. For sufficiently slow inflow, these avalanches are discrete, with previous experimentalists reporting that avalanche fronts pass a given point quasi-periodically. We report instead observations of dynamic intermittency between two regimes, one in which avalanches occur quasi-periodically and another in which the intervals between them are irregular. Finding the first regime consistent with existing models, we introduce a model for the second regime within the framework of Self-Organised Criticality, and describe the transition between the regimes with reference to the state of the erodible bed.

  4. New Method For Classification of Avalanche Paths With Risks

    NASA Astrophysics Data System (ADS)

    Rapin, François

    After the Chamonix-Montroc avalanche event in February 1999, the French Ministry of the environment wanted to engage a new examination of the "sensitive avalanche paths", i.e. sites with stakes (in particular habitat) whose operation cannot be apprehended in a simple way. The ordered objective consisted in establishing a tool, a method, making it possible to identify them and to treat on a hierarchical basis them according to the risk which they generate, in order to later on as well as possible distribute the efforts of public policy. The proposed tool is based only on objective and quantifiable criteria, a priori of relatively fast access. These criteria are gathered in 4 groups : vulnerability concerned, the morphology of the site, known avalanche history, snow-climatology. Each criterion selected is affected by a " weight ", according to the group to which it belongs and relatively compared to the others. Thus this tool makes it possible to classify the sites subjected at one avalanche risk in a three dangerousness levels grid, which are: - low sensitivity: a priori the site does not deserve a particular avalanche study; - doubtful sensitivity: the site can deserve a study specifying the avalanche risk; - strong sensitivity: the site deserves a thorough study of the avalanche risk. According to conclusions' of these studies, existing measurements of prevention and risk management (zoning, protection, alert, help) will be examined and supplemented as a need. The result obtained by the application of the method by no means imposes the renewal of a thorough study of the avalanche risk which would exist beforehand. A priori less than one ten percent of the paths will be in a strong sensitivity. The present method is thus a new tool of decision-making aid for the first phase of identification and classification of the avalanche sites according to the risk which they generate. To be recognized and used under good conditions, this tool was worked out by the search for

  5. A 48-pixel array of Single Photon Avalanche Diodes for multispot Single Molecule analysis.

    PubMed

    Gulinatti, Angelo; Rech, Ivan; Maccagnani, Piera; Ghioni, Massimo

    2013-02-04

    In this paper we present an array of 48 Single Photon Avalanche Diodes (SPADs) specifically designed for multispot Single Molecule Analysis. The detectors have been arranged in a 12×4 square geometry with a pitch-to-diameter ratio of ten in order to minimize the collection of the light from non-conjugated excitation spots. In order to explore the trade-offs between the detectors' performance and the optical coupling with the experimental setup, SPADs with an active diameter of 25 and of 50µm have been manufactured. The use of a custom technology, specifically designed for the fabrication of the detectors, allowed us to combine a high photon detection efficiency (peak close to 50% at a wavelength of 550nm) with a low dark count rate compatible with true single molecule detection. In order to allow easy integration into the optical setup for parallel single-molecule analysis, the SPAD array has been incorporated in a compact module containing all the electronics needed for a proper operation of the detectors.

  6. Development in the design and performance of gas avalanche microdetectors (MSGC, MGC, and MDOT)

    SciTech Connect

    Cho, Hyo-Sung

    1997-12-01

    There has been continuing development of generic classes of microstrip gas chambers (MSGCs), microgap gas chambers (MGCs) and microdot gas chambers (MDOTs) at Lawrence Berkeley National Laboratory (LBNL) over the past few years, to improve such detectors beyond their present capabilities, to produce detectors suitable for use in current or upcoming experiments, and to allow a basis for new R&D developments which may incorporate these detectors as part of the system. All of these new detectors are collectively referred to as "gas avalanche microdetectors". The MSGC, which was motivated by the pioneering work of A. Oed, has many attractive features, especially excellent spatial resolution (~30 μm rms at normal incidence) and high rate capability (~106 mm-2∙s-1). Moreover, the MGC seems to have certain advantages over the MSGC in speed, stability and simplicity, and the MDOT has larger gain (>104) and the intrinsic advantages of two-dimensional readout. Because of these attractive properties, they have received a great deal of attention for nuclear and high energy physics experiments, medical X-ray imaging and many other fields requiring radiation detection and measurement.

  7. Optimum Receiver Structure for PPM Signals with Avalanche Photodiode Statistics

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V.; Srinivasan, M.

    1998-01-01

    The maximum likelihood decision statistic for detection of pulse-position modulated signals with an avalanche photodiode is derived, using the more accurate Webb density rather than Poisson or Gaussian approximations for the distribution of avalanche photodiode output electrons. It is shown that for Webb-distributed output electtrons, the maximum likelihood rule is to choose the PPM word corresponding to the slot with the maximum electron count.

  8. Why do some ice avalanches give warning prior to failure?

    NASA Astrophysics Data System (ADS)

    Caplan-Auerbach, J.

    2006-12-01

    Ice avalanches on Iliamna volcano Alaska, Mt. Baker, Washington, and Mt. Steller in the Chugach range of Alaska, exhibit up to several hours of precursory seismicity prior to failure. The precursory sequence includes a series of repeating earthquakes that become progressively more frequent, eventually degrading into continuous ground shaking. The amplitude of ground shaking typically grows until the avalanche suddenly fails. Avalanche propagation is represented by a broadband, spindle-shaped seismic signal. This sequence is interpreted as resulting from slip at the base of a glacier, or within a weak rocky layer beneath the ice. Avalanches with precursory seismicity also share certain physical characteristics, including exposure of the underlying rock surface and evidence of nearby liquid water. In contrast, many other mass-wasting events fail without any kind of seismic warning. These events, however, appear to have initiated in rock or due to glacial calving, rather than at an ice-rock interface. Precursory seismicity may be a characteristic common to glacial ramp failures, in which slip is promoted by a decrease in basal drag. Precursory activity was also not identified in association with avalanches such as the 2002 Kolka or 2005 Monte Rosa events, although this may be due to the large distance between these avalanches and regional seismic stations. The frequent identification of such events on volcanoes may therefore be a consequence of seismic network density, allowing identification of small precursory seismic events. In the case of Iliamna and Mt. Baker volcanoes, avalanches recur in fairly predictable locations at short (1-5 year) intervals. Such frequent failure, as well as the presence of active fumaroles near the failure site, indicates that these events are promoted by geothermal melting. However, the Mt. Steller event confirms that precursory seismicity is not unique to volcanic ice avalanches. Since temperate slab fractures do not fail at predictable

  9. Avalanches and hysteresis in frustrated superconductors and XY spin glasses

    NASA Astrophysics Data System (ADS)

    Sharma, Auditya; Andreanov, Alexei; Müller, Markus

    2014-10-01

    We study avalanches along the hysteresis loop of long-range interacting spin glasses with continuous XY symmetry, which serves as a toy model of granular superconductors with long-range and frustrated Josephson couplings. We identify sudden jumps in the T =0 configurations of the XY phases as an external field is increased. They are initiated by the softest mode of the inverse susceptibility matrix becoming unstable, which induces an avalanche of phase updates (or spin alignments). We analyze the statistics of these events and study the correlation between the nonlinear avalanches and the soft mode that initiates them. We find that the avalanches follow the directions of a small fraction of the softest modes of the inverse susceptibility matrix, similarly as was found in avalanches in jammed systems. In contrast to the similar Ising spin glass (Sherrington-Kirkpatrick) studied previously, we find that avalanches are not distributed with a scale-free power law but rather have a typical size which scales with the system size. We also observe that the Hessians of the spin-glass minima are not part of standard random matrix ensembles as the lowest eigenvector has a fractal support.

  10. Repertoires of Spike Avalanches Are Modulated by Behavior and Novelty

    PubMed Central

    Ribeiro, Tiago L.; Ribeiro, Sidarta; Copelli, Mauro

    2016-01-01

    Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance. Here, we show that spike avalanches, recorded from hippocampus (HP) and sensory neocortex of freely-behaving rats, constitute distinct families of recursive spatiotemporal patterns. A significant number of those patterns were specific to a behavioral state. Although avalanches produced during sleep were mostly similar to others that occurred during waking, the repertoire of patterns recruited during sleep differed significantly from that of waking. More importantly, exposure to novel objects increased the rate at which new patterns arose, also leading to changes in post-exposure repertoires, which were significantly different from those before the exposure. A significant number of families occurred exclusively during periods of whisker contact with objects, but few were associated with specific objects. Altogether, the results provide original evidence linking behavior and criticality at the spike level: spike avalanches form repertoires that emerge in waking, recur during sleep, are diversified by novelty and contribute to object representation. PMID:27047341

  11. Improving detection of avalanches on a conical bead pile

    NASA Astrophysics Data System (ADS)

    Vajpeyi, Avi; Lehman, Susan; Dahmen, Karin; Leblanc, Michael; Uhl, Jonathan

    A conical bead pile subject to slow driving and an external magnetic field is used as a simple system to investigate the variations in the avalanche size probability distribution function. Steel beads are dropped onto the pile from different heights and at different strengths of applied magnetic field. Avalanches are recorded by the change in mass as beads fall off the pile. Experimentally we observe an increasing deviation from power law behavior as the field and thus cohesion between the beads increases. We compare our experimental results for the probability distribution function to the results of an analytic theory from a mean-field model of slip avalanches [Dahmen, Nat Phys 7, 554 (2011)]. The model also makes predictions for avalanche duration, which is not measurable with the existing system. To more fully characterize the avalanching behavior of the pile over time, a high-speed camera has been added to the system to record the largest avalanches and allow more detailed analysis. The conical pile geometry presents a challenge for observation and particle tracking over the full pile. Our implementation scheme and preliminary results from the video analysis are presented. Research supported by NSF CBET 1336116 and 1336634.

  12. Avalanches and hysteresis in frustrated superconductors and XY spin glasses.

    PubMed

    Sharma, Auditya; Andreanov, Alexei; Müller, Markus

    2014-10-01

    We study avalanches along the hysteresis loop of long-range interacting spin glasses with continuous XY symmetry, which serves as a toy model of granular superconductors with long-range and frustrated Josephson couplings. We identify sudden jumps in the T=0 configurations of the XY phases as an external field is increased. They are initiated by the softest mode of the inverse susceptibility matrix becoming unstable, which induces an avalanche of phase updates (or spin alignments). We analyze the statistics of these events and study the correlation between the nonlinear avalanches and the soft mode that initiates them. We find that the avalanches follow the directions of a small fraction of the softest modes of the inverse susceptibility matrix, similarly as was found in avalanches in jammed systems. In contrast to the similar Ising spin glass (Sherrington-Kirkpatrick) studied previously, we find that avalanches are not distributed with a scale-free power law but rather have a typical size which scales with the system size. We also observe that the Hessians of the spin-glass minima are not part of standard random matrix ensembles as the lowest eigenvector has a fractal support.

  13. Avalanches, plasticity, and ordering in colloidal crystals under compression.

    PubMed

    McDermott, D; Reichhardt, C J Olson; Reichhardt, C

    2016-06-01

    Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.

  14. Repertoires of Spike Avalanches Are Modulated by Behavior and Novelty.

    PubMed

    Ribeiro, Tiago L; Ribeiro, Sidarta; Copelli, Mauro

    2016-01-01

    Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance. Here, we show that spike avalanches, recorded from hippocampus (HP) and sensory neocortex of freely-behaving rats, constitute distinct families of recursive spatiotemporal patterns. A significant number of those patterns were specific to a behavioral state. Although avalanches produced during sleep were mostly similar to others that occurred during waking, the repertoire of patterns recruited during sleep differed significantly from that of waking. More importantly, exposure to novel objects increased the rate at which new patterns arose, also leading to changes in post-exposure repertoires, which were significantly different from those before the exposure. A significant number of families occurred exclusively during periods of whisker contact with objects, but few were associated with specific objects. Altogether, the results provide original evidence linking behavior and criticality at the spike level: spike avalanches form repertoires that emerge in waking, recur during sleep, are diversified by novelty and contribute to object representation.

  15. Ultra-Fast Silicon Detectors for 4D tracking

    NASA Astrophysics Data System (ADS)

    Sola, V.; Arcidiacono, R.; Bellora, A.; Cartiglia, N.; Cenna, F.; Cirio, R.; Durando, S.; Ferrero, M.; Galloway, Z.; Gruey, B.; Freeman, P.; Mashayekhi, M.; Mandurrino, M.; Monaco, V.; Mulargia, R.; Obertino, M. M.; Ravera, F.; Sacchi, R.; Sadrozinski, H. F.-W.; Seiden, A.; Spencer, N.; Staiano, A.; Wilder, M.; Woods, N.; Zatserklyaniy, A.

    2017-02-01

    We review the progress toward the development of a novel type of silicon detectors suited for tracking with a picosecond timing resolution, the so called Ultra-Fast Silicon Detectors. The goal is to create a new family of particle detectors merging excellent position and timing resolution with GHz counting capabilities, very low material budget, radiation resistance, fine granularity, low power, insensitivity to magnetic field, and affordability. We aim to achieve concurrent precisions of ~ 10 ps and ~ 10 μm with a 50 μm thick sensor. Ultra-Fast Silicon Detectors are based on the concept of Low-Gain Avalanche Detectors, which are silicon detectors with an internal multiplication mechanism so that they generate a signal which is factor ~ 10 larger than standard silicon detectors.

  16. The interpretation of gamma-ray enhancements in thunderstorms with and without avalanche multiplication

    NASA Astrophysics Data System (ADS)

    Kelley, N. A.

    2015-12-01

    Relativistic Runaway Electron Avalanches (RREAs) are the acceleration and subsequent multiplication of relativistic electrons inside by electric field. Inside thunderstorms, RREA are thought to be involved in the creation of extraordinarily bright bursts of gamma rays, called Terrestrial Gamma-ray Flashes (TGFs), and long duration production of gamma rays (called gamma-ray glows or thunderstorm ground enhancements (TGEs)). However, Chilingarian has proposed that some electric fields inside thunderstorms may not be strong enough or have large enough spatial extent to result in significant avalanche multiplication by RREA to make a glow. High-energy electrons and gamma rays would still be present by a modification of the spectra (MOS) of cosmic-ray air showers. MOS and RREA glows have both been detected many times from the ground but distinguishing between the two is difficult since differing count rates can be the result of either these two distinct production models or attenuation due to various source distances. We will present GEANT4 models showing how these spectra differ as a function of source distance as well as discuss the differences in their gamma ray/electron signature in ground-based, gamma-ray detectors. These models will be compared to measurements made with instruments already in place in Mexico and Japan.

  17. Skier triggering of backcountry avalanches with skilled route selection

    NASA Astrophysics Data System (ADS)

    Sinickas, Alexandra; Haegeli, Pascal; Jamieson, Bruce

    2015-04-01

    Jamieson (2009) provided numerical estimates for the baseline probabilities of triggering an avalanche by a backcountry skier making fresh tracks without skilled route selection as a function of the North American avalanche danger scale (i.e., hazard levels Low, Moderate, Considerable, High and Extreme). Using the results of an expert survey, he showed that triggering probabilities while skiing directly up, down or across a trigger zone without skilled route selection increase roughly by a factor of 10 with each step of the North American avalanche danger scale (i.e. hazard level). The objective of the present study is to examine the effect of skilled route selection on the relationship between triggering probability and hazard level. To assess the effect of skilled route selection on triggering probability by hazard level, we analysed avalanche hazard assessments as well as reports of skiing activity and triggering of avalanches from 11 Canadian helicopter and snowcat operations during two winters (2012-13 and 2013-14). These reports were submitted to the daily information exchange among Canadian avalanche safety operations, and reflect professional decision-making and route selection practices of guides leading groups of skiers. We selected all skier-controlled or accidentally triggered avalanches with a destructive size greater than size 1 according to the Canadian avalanche size classification, triggered by any member of a guided group (guide or guest). These operations forecast the avalanche hazard daily for each of three elevation bands: alpine, treeline and below treeline. In contrast to the 2009 study, an exposure was defined as a group skiing within any one of the three elevation bands, and consequently within a hazard rating, for the day (~4,300 ratings over two winters). For example, a group that skied below treeline (rated Moderate) and treeline (rated Considerable) in one day, would receive one count for exposure to Moderate hazard, and one count for

  18. Development of signal processing system of avalanche photo diode for space observations by Astro-H

    NASA Astrophysics Data System (ADS)

    Ohno, M.; Goto, K.; Hanabata, Y.; Takahashi, H.; Fukazawa, Y.; Yoshino, M.; Saito, T.; Nakamori, T.; Kataoka, J.; Sasano, M.; Torii, S.; Uchiyama, H.; Nakazawa, K.; Watanabe, S.; Kokubun, M.; Ohta, M.; Sato, T.; Takahashi, T.; Tajima, H.

    2013-01-01

    Astro-H is the sixth Japanese X-ray space observatory which will be launched in 2014. Two of onboard instruments of Astro-H, Hard X-ray Imager and Soft Gamma-ray Detector are surrounded by many number of large Bismuth Germanate (Bi4Ge3O12; BGO) scintillators. Optimum readout system of scintillation lights from these BGOs are essential to reduce the background signals and achieve high performance for main detectors because most of gamma-rays from out of field-of-view of main detectors or radio-isotopes produced inside them due to activation can be eliminated by anti-coincidence technique using BGO signals. We apply Avalanche Photo Diode (APD) for light sensor of these BGO detectors since their compactness and high quantum efficiency make it easy to design such large number of BGO detector system. For signal processing from APDs, digital filter and other trigger logics on the Field-Programmable Gate Array (FPGA) is used instead of discrete analog circuits due to limitation of circuit implementation area on spacecraft. For efficient observations, we have to achieve as low threshold of anti-coincidence signal as possible by utilizing the digital filtering. In addition, such anti-coincident signals should be sent to the main detector within 5 μs to make it in time to veto the A-D conversion. Considering this requirement and constraint from logic size of FPGA, we adopt two types of filter, 8 delay taps filter with only 2 bit precision coefficient and 16 delay taps filter with 8 bit precision coefficient. The data after former simple filter provides anti-coincidence signal quickly in orbit, and the latter filter is used for detail analysis after the data is down-linked.

  19. Characterization and Monte Carlo simulation of single ion Geiger mode avalanche diodes integrated with a quantum dot nanostructure

    NASA Astrophysics Data System (ADS)

    Sharma, Peter; Abraham, J. B. S.; Ten Eyck, G.; Childs, K. D.; Bielejec, E.; Carroll, M. S.

    Detection of single ion implantation within a nanostructure is necessary for the high yield fabrication of implanted donor-based quantum computing architectures. Single ion Geiger mode avalanche (SIGMA) diodes with a laterally integrated nanostructure capable of forming a quantum dot were fabricated and characterized using photon pulses. The detection efficiency of this design was measured as a function of wavelength, lateral position, and for varying delay times between the photon pulse and the overbias detection window. Monte Carlo simulations based only on the random diffusion of photo-generated carriers and the geometrical placement of the avalanche region agrees qualitatively with device characterization. Based on these results, SIGMA detection efficiency appears to be determined solely by the diffusion of photo-generated electron-hole pairs into a buried avalanche region. Device performance is then highly dependent on the uniformity of the underlying silicon substrate and the proximity of photo-generated carriers to the silicon-silicon dioxide interface, which are the most important limiting factors for reaching the single ion detection limit with SIGMA detectors. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  20. Dead Time of Single Photon Avalanche Diodes

    NASA Astrophysics Data System (ADS)

    Neri, L.; Tudisco, S.; Musumeci, F.; Scordino, A.; Fallica, G.; Mazzillo, M.; Zimbone, M.

    2011-06-01

    Single Photon Avalanche Diode (SPAD) is the new generation of Geiger-Muller counter device developed in semiconductor technology [S. Privitera et al. Sensors Journal, vol 8 Iss. 8 (2008) 4636; S. Tudisco et al. IEEE Sensors Journal vol 8 ISS 7-8 (2008) 1324; S. Cova et al. Applied Optics 35 (1996) 1956]. Physical dead time model and noise production process has been analyzed and their corrections have been performed [S.H. Lee, R.P. Gardner, M. Jae, Nucl. Instr. and Meth. in Phys. Res. B 263 (2007) 46]. We have been able to extract the real amount of incident photon rate up to 10 7cps using a device with 0.97μs total deadtime. We also developed the equation of the noise count rate vs incoming photon rate, supported by Montecarlo simulation and experimental data. We marked the difference between dark rate and noise count rate, and introduced the noise rate inside the hybrid deadtime equation used for SPAD device.

  1. The structure of powder snow avalanches

    NASA Astrophysics Data System (ADS)

    Sovilla, Betty; McElwaine, Jim N.; Louge, Michel Y.

    2015-01-01

    Powder snow avalanches (PSAs) can be hundreds of metres high and descend at astonishing speeds. This review paints a composite picture of PSAs from data acquired at the Vallée de la Sionne test site in Switzerland, including time-histories of snow cover thickness from buried RADAR and, at several elevations on a pylon, impact pressures from load cells, air pressure, particle velocity from optical sensors, and cloud density and particle cluster size from capacitance probes. PSAs feature distinct flow regions with stratification in mean density. At the head, highly fluctuating impact pressures weaken with elevation, while vertical velocity profiles evolve rapidly along the flow, suggesting that surface snow layers of light, cold, cohesionless snow erupt into a turbulent, inhomogeneous, recirculating frontal cloud region. For hundreds of metres behind the head, cloud stratification sharpens with the deposition of suspended cloud particles, while a denser basal flow of increasing thickness forms as deeper, warmer and heavier parts of the weakened snow cover are entrained. Toward the tail, vertical velocity profiles are more uniform, impact pressures become lower and steadier as the flow becomes thinner, and snow pack entrainment is negligible.

  2. Granular avalanches down inclined and vibrated planes.

    PubMed

    Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine

    2016-09-01

    In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999)PHFLE61070-663110.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.

  3. Granular avalanches down inclined and vibrated planes

    NASA Astrophysics Data System (ADS)

    Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine

    2016-09-01

    In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999), 10.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.

  4. Avalanche outbreaks emerging in cooperative contagions

    NASA Astrophysics Data System (ADS)

    Cai, Weiran; Chen, Li; Ghanbarnejad, Fakhteh; Grassberger, Peter

    2015-11-01

    The spreading of contagions can exhibit a percolation transition, which separates transitory prevalence from outbreaks that reach a finite fraction of the population. Such transitions are commonly believed to be continuous, but empirical studies have shown more violent spreading modes when the participating agents are not limited to one type. Striking examples include the co-epidemic of the Spanish flu and pneumonia that occurred in 1918 (refs , ), and, more recently, the concurrent prevalence of HIV/AIDS and a host of diseases. It remains unclear to what extent an outbreak in the presence of interacting pathogens differs from that due to an ordinary single-agent process. Here we study a mechanistic model for understanding contagion processes involving inter-agent cooperation. Our stochastic simulations reveal the possible emergence of a massive avalanche-like outbreak right at the threshold, which is manifested as a discontinuous phase transition. Such an abrupt change arises only if the underlying network topology supports a bottleneck for cascaded mutual infections. Surprisingly, all these discontinuous transitions are accompanied by non-trivial critical behaviours, presenting a rare case of hybrid transition. The findings may imply the origin of catastrophic occurrences in many realistic systems, from co-epidemics to financial contagions.

  5. Avalanches in a stochastic model of spiking neurons.

    PubMed

    Benayoun, Marc; Cowan, Jack D; van Drongelen, Wim; Wallace, Edward

    2010-07-08

    Neuronal avalanches are a form of spontaneous activity widely observed in cortical slices and other types of nervous tissue, both in vivo and in vitro. They are characterized by irregular, isolated population bursts when many neurons fire together, where the number of spikes per burst obeys a power law distribution. We simulate, using the Gillespie algorithm, a model of neuronal avalanches based on stochastic single neurons. The network consists of excitatory and inhibitory neurons, first with all-to-all connectivity and later with random sparse connectivity. Analyzing our model using the system size expansion, we show that the model obeys the standard Wilson-Cowan equations for large network sizes ( neurons). When excitation and inhibition are closely balanced, networks of thousands of neurons exhibit irregular synchronous activity, including the characteristic power law distribution of avalanche size. We show that these avalanches are due to the balanced network having weakly stable functionally feedforward dynamics, which amplifies some small fluctuations into the large population bursts. Balanced networks are thought to underlie a variety of observed network behaviours and have useful computational properties, such as responding quickly to changes in input. Thus, the appearance of avalanches in such functionally feedforward networks indicates that avalanches may be a simple consequence of a widely present network structure, when neuron dynamics are noisy. An important implication is that a network need not be "critical" for the production of avalanches, so experimentally observed power laws in burst size may be a signature of noisy functionally feedforward structure rather than of, for example, self-organized criticality.

  6. A method to precisely identify the afterpulses when using the S9717 avalanche photodiode

    SciTech Connect

    Rusu, Alexandru Rusu, Lucian

    2015-12-07

    The detection ratio of an avalanche photodiode (APD) biased in Geiger-mode increases versus the excess voltage; the afterpulsing rate increases too. The last one can be reduced by inserting an artificial dead time and accepting a lower measuring top rate. So, in order to tune a single-photon detector system, it is necessary to exactly identify afterpulses and measure their rate; the experimental results are presented. When using the S9717 APD in Geiger-mode, the cathode to ground voltage waveform reveals the existence of a particular sequence of pulses: a usual one followed, within 1μs, by a least one appearing to have been generated for negative excess voltage values. All these characteristics are the signature of the afterpulsing generation. Based on this observation, we were able to precisely measure the afterpulsing rate.

  7. Infrared Detector Activities at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Refaat, T. F.; Sulima, O. V.; Amzajerdian, F.

    2008-01-01

    Infrared detector development and characterization at NASA Langley Research Center will be reviewed. These detectors were intended for ground, airborne, and space borne remote sensing applications. Discussion will be focused on recently developed single-element infrared detector and future development of near-infrared focal plane arrays (FPA). The FPA will be applied to next generation space-based instruments. These activities are based on phototransistor and avalanche photodiode technologies, which offer high internal gain and relatively low noise-equivalent-power. These novel devices will improve the sensitivity of active remote sensing instruments while eliminating the need for a high power laser transmitter.

  8. Some recent trends in the evolution of gaseous detectors

    NASA Astrophysics Data System (ADS)

    Charpak, G.

    1982-05-01

    The emission of VUV light by electrons drifting in intense electric fields, with or without ionizing collisions, plays an important role in a variety of new classes of gaseous detectors, which are briefly analysed. New types of X-ray detectors with high-energy resolution, 8% fwhm at 6 keV, 1 mm spatial resolution, have been built. Large-surface VUV imaging photon detectors have important applications in Cherenkov ring imaging. Multistep avalanche chambers, invented for high-rate applications, appear to be a useful ingredient for single-photon detection, and find surprizing applications in applied fields such as high-accuracy chromatography or thermal neutron localization.

  9. Impact ionization engineered avalanche photodiode arrays for free space optical communication

    NASA Astrophysics Data System (ADS)

    Ferraro, Mike S.; Rabinovich, William S.; Clark, William R.; Waters, William D.; Campbell, Joe C.; Mahon, Rita; Vaccaro, Kenneth; Krejca, Brian D.

    2016-03-01

    High sensitivity photodetectors serve two purposes in free space optical communication: data reception and position sensing for pointing, tracking, and stabilization. Because of conflicting performance criteria, two separate detectors are traditionally utilized to perform these tasks but recent advances in the fabrication and development of large area, low noise avalanche photodiode (APD) arrays have enabled these devices to be used both as position sensitive detectors (PSD) and as communications receivers. Combining these functionalities allows for more flexibility and simplicity in optical assembly design without sacrificing the sensitivity and bandwidth performance of smaller, single element data receivers. Beyond eliminating the need to separate the return beam into two separate paths, these devices enable implementation of adaptive approaches to compensate for focal plane beam wander and breakup often seen in highly scintillated terrestrial and maritime optical links. While the Naval Research Laboratory (NRL) and Optogration Inc, have recently demonstrated the performance of single period, InAlAs/InGaAs APD arrays as combined data reception and tracking sensors, an impact ionization engineered (I2E) epilayer design achieves even lower carrier ionization ratios by incorporating multiple multiplication periods engineered to suppress lower ionization rate carriers while enhancing the higher ionization rate carriers of interest. This work presents a three period I2E concentric, five element avalanche photodiode array rated for bandwidths beyond 1GHz with measured carrier ionization ratios of 0.05-0.1 at moderate APD gains. The epilayer design of the device will be discussed along with initial device characterization and high speed performance measurements.

  10. Friction and dynamics of rock avalanches travelling on glaciers

    NASA Astrophysics Data System (ADS)

    De Blasio, Fabio Vittorio

    2014-05-01

    Rock avalanches travelling on glaciers often exhibit effective friction coefficient lower than those on a rocky terrain. After briefly considering some data of rock avalanches on glaciers, the physics of sliding of solid objects on icy surfaces is reviewed, and a model is put forward for the mechanics of rock avalanche sliding on ice accounting for the formation of a natural lubricating layer. It is suggested that at the beginning of the flow of a rock avalanche, friction results from rocky blocks ploughing on ice. As the erosion continues, a gouge of ice particles results, which clogs the interstices between blocks and may partially melt as a consequence of the production of frictional heat. This conceptual model is numerically investigated for a slab travelling on ice. The results show an increase in mobility as a function of slab thickness, travelled length, and the gravity field, in agreement with case studies. The results are useful to interpret the peculiar features of rock avalanches travelling on icy surfaces such as digitations, out-runner blocks, and longitudinal furrows. The lubrication theory for landslides on ice proposed here may provide a framework for understanding landslides on Earth and for future modelling; in addition, it may help elucidate the presence of similar landslide deposits on the surface of Mars.

  11. Avalanche multiplication and impact ionization in amorphous selenium photoconductive target

    NASA Astrophysics Data System (ADS)

    Park, Wug-Dong; Tanioka, Kenkichi

    2014-03-01

    The avalanche multiplication factor and the hole ionization coefficient in the amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) target depend on the electric field. The phenomenon of avalanche multiplication and impact ionization in the 0.4-µm-thick a-Se HARP target is investigated. The hot carrier energy in the 0.4-µm-thick a-Se HARP target increases linearly as the target voltage increases. The energy relaxation length of hot carriers in the a-Se photoconductor of the 0.4-µm-thick HARP target saturates as the electric field increases. The average energy Eav of a hot carrier and the energy relaxation length λE in the a-Se photoconductor of the 0.4-µm-thick HARP target at 1 × 108 V/m were 0.25 eV and 2.5 nm, respectively. In addition, the hole ionization coefficient β and the avalanche multiplication factor M are derived as a function of the electric field, the average energy of a hot carrier, and the impact ionization energy. The experimental hole ionization coefficient β and the avalanche multiplication factor M in the 0.4-µm-thick a-Se HARP target agree with the theoretical results.

  12. Debris avalanche deposits: emplacement dynamics, morphology and hazards (Invited)

    NASA Astrophysics Data System (ADS)

    Davies, T. R.; Dufresne, A.

    2013-12-01

    Debris avalanches from volcanoes form some of the largest subaerial and submarine landslide deposits on Earth, covering vast areas (10s to 100s km2) and displaying typically hummocky surface topography. Numerical models have been developed that can identify the area threatened by an event of known volume from a known volcano, if the runout mechanics can be understood. Better understanding the hazards from these enormous events requires realistic parameterization of models, which must be able to explain debris avalanche deposit geometries under water, in air, on Mars and in vacuo on the Moon. We have shown that the complex deposit geometry of the 25 km3 Socompa deposit in Chile can be explained by the effects of basal debris fragmenting during runout. The hummocky surface morphology of many debris avalanche deposits again indicates that the emplacement process involved a very mobile basal layer, above which the travelling mass passively extends, leading to lateral and longitudinal disaggregation of the mass into discrete blocks whose dimension reflects the mass depth. Submarine debris avalanches can also be modelled on this basis, because the presence of ambient water does not fundamentally alter the fragmentation process; to assess the additional hazards of debris avalanches entering into water, models are available to simulate the tsunami generated by such events.

  13. Snow avalanche friction relation based on extended kinetic theory

    NASA Astrophysics Data System (ADS)

    Rauter, Matthias; Fischer, Jan-Thomas; Fellin, Wolfgang; Kofler, Andreas

    2016-11-01

    Rheological models for granular materials play an important role in the numerical simulation of dry dense snow avalanches. This article describes the application of a physically based model from the field of kinetic theory to snow avalanche simulations. The fundamental structure of the so-called extended kinetic theory is outlined and the decisive model behavior for avalanches is identified. A simplified relation, covering the basic features of the extended kinetic theory, is developed and implemented into an operational avalanche simulation software. To test the obtained friction relation, simulation results are compared to velocity and runout observations of avalanches, recorded from different field tests. As reference we utilize a classic phenomenological friction relation, which is commonly applied for hazard estimation. The quantitative comparison is based on the combination of normalized residuals of different observation variables in order to take into account the quality of the simulations in various regards. It is demonstrated that the extended kinetic theory provides a physically based explanation for the structure of phenomenological friction relations. The friction relation derived with the help of the extended kinetic theory shows advantages to the classic phenomenological friction, in particular when different events and various observation variables are investigated.

  14. Linking snow avalanche path characteristics and simulation parameters

    NASA Astrophysics Data System (ADS)

    Kofler, Andreas; Fischer, Jan-Thomas; Tollinger, Christian; Granig, Matthias; Fellin, Wolfgang

    2015-04-01

    In this work an objective optimization algorithm is utilized to determine adjusted parameter distributions for avalanche simulation in 3d terrain. Multiple documented extreme avalanche events are investigated to emphasize similarities and differences between adjusted parameter distributions and the corresponding event. A probabilistic simulation setup, using a depth averaged flow model with a simple entrainment and the Voellmy friction law implemented in the SamosAT simulation software, is used to randomly vary the two friction (Coulomb friction, turbulent drag) and one entrainment parameter in their entire physically relevant range. The simulation results (peak pressures and flow depths) are analyzed in 3d terrain, performing a transformation in an avalanche path dependent coordinate system. The model parameters for entrainment and the Voellmy friction relation are systematically optimized, back calculating each documented event by introducing different optimization variables (runout, matched and exceeded affected area, maximum velocity, mass growth, etc.) and maximizing the degree of simulation-observation correspondence. This trial and error approach leads to distributions representing the optimal parameter settings. Different avalanche paths are characterized, distinguishing between avalanche size, total fall height, path shape and others. Statistical dependencies between those path characteristics and the optimal parameters are highlighted. We show that investigating dependencies between optimal parameter distributions and path characteristics is indispensable, when a systematic framework for simulation optimization is applied.

  15. The effectiveness of mean-field theory for avalanche distributions

    NASA Astrophysics Data System (ADS)

    Lee, Edward; Raju, Archishman; Sethna, James

    We explore the mean-field theory of the pseudogap found in avalanche systems with long-range anisotropic interactions using analytical and numerical tools. The pseudogap in the density of low-stability states emerges from the competition between stabilizing interactions between spins in an avalanche and the destabilizing random movement towards the threshold caused by anisotropic couplings. Pazmandi et al. have shown that for the Sherrington-Kirkpatrick model, the pseudogap scales linearly and produces a distribution of avalanche sizes with exponent t=1 in contrast with that predicted from RFIM t=3/2. Lin et al. have argued that the scaling exponent ? of the pseudogap depends on the tail of the distribution of couplings and on non-universal values like the strain rate and the magnitude of the coupling strength. Yet others have argued that the relationship between the pseudogap scaling and the distribution of avalanche sizes is dependent on dynamical details. Despite the theoretical arguments, the class of RFIM mean-field models is surprisingly good at predicting the distribution of avalanche sizes in a variety of different magnetic systems. We investigate these differences with a combination of theory and simulation.

  16. Segregation induced fingering instabilities in granular avalanches

    NASA Astrophysics Data System (ADS)

    Woodhouse, Mark; Thornton, Anthony; Johnson, Chris; Kokelaar, Pete; Gray, Nico

    2013-04-01

    It is important to be able to predict the distance to which a hazardous natural granular flows (e.g. snow slab avalanches, debris-flows and pyroclastic flows) might travel, as this information is vital for accurate assessment of the risks posed by such events. In the high solids fraction regions of these flows the large particles commonly segregate to the surface, where they are transported to the margins to form bouldery flow fronts. In many natural flows these bouldery margins experience a much greater frictional force, leading to frontal instabilities. These instabilities create levees that channelize the flow vastly increasing the run-out distance. A similar effect can be observed in dry granular experiments, which use a combination of small round and large rough particles. When this mixture is poured down an inclined plane, particle size segregation causes the large particles to accumulate near the margins. Being rougher, the large particles experience a greater friction force and this configuration (rougher material in front of smoother) can be unstable. The instability causes the uniform flow front to break up into a series of fingers. A recent model for particle size-segregation has been coupled to existing avalanche models through a particle concentration dependent friction law. In this talk numerical solutions of this coupled system are presented and compared to both large scale experiments carried out at the USGS flume and more controlled small scale laboratory experiments. The coupled depth-averaged model captures the accumulation of large particles at the flow front. We show this large particle accumulation at the head of the flow can lead to the break-up of the initially uniform front into a series of fingers. However, we are unable to obtain a fully grid-resolved numerical solution; the width of the fingers decreases as the grid is refined. By considering the linear stability of a steady, fully-developed, bidisperse granular layer it is shown that

  17. Activity-Dependent Model for Neuronal Avalanches

    NASA Astrophysics Data System (ADS)

    de Arcangelis, L.

    Networks of living neurons represent one of the most fascinating systems of modern biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behavior of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behavior is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. This fundamental problem in neurobiology has recently shown a number of features in common to other complex systems. These features mainly concern the morphology of the network, namely the spatial organization of the established connections, and a novel kind of neuronal activity. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. Both features have been found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behavior. In this contribution, we apply a statistical mechanical model to describe the complex activity in a neuronal network. The network is chosen to have a number of connections in long range, as found for neurons in vitro. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. The numerical power spectra for electrical activity reproduces also the power law behavior measured in an EEG of man resting with the eyes closed.

  18. RADIATION DETECTOR

    DOEpatents

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  19. Mobility of large rock avalanches: evidence from Valles Marineris, Mars

    USGS Publications Warehouse

    McEwen, A.S.

    1989-01-01

    Measurements of H/L (height of drop/length of runout) vs. volume for landslides in Valles Marineris on Mars show a trend of decreasing H/L with increasing volume. This trend, which is linear on a log-log plot, is parallel to but lies above the trend for terrestrial dry rock avalanches. This result and estimates of 104 to 105 Pa yield strength suggest that the landslides were not water saturated, as suggested by previous workers. The offset between the H/L vs. volume trends shows that a typical Martian avalanche must be nearly two orders of magnitude more voluminous than a typical terrestrial avalance in order to achieve the same mobility. This offset might be explained by the effects of gravity on flows with high yield strengths. These results should prove useful to future efforts to resolve the controversy over the mechanics of long-runout avalanches. -Author

  20. Solutions to heavy ion induced avalanche burnout in power devices

    SciTech Connect

    Wrobel, T.F.; Beutler, D.E.

    1991-01-01

    Silicon power devices fall into two broad categories, bipolar and field effect. Transistors using both of these technologies are often used in satellite applications for power conversion. The present trend is toward integrating power transistors and control electronics on the same chip. In this case, it is the power portion of the chip that is most susceptible to burnout failures, because of it's high voltage operation. Hence, it is important to understand the operational limitations of power transistors when exposed to intense heavy ion and/or dose-rate environments. Reviews of normal breakdown and current induced avalanche breakdown mechanisms in silicon power transistors are presented. We show the applicability of the current induced avalanche model to heavy ion induced burnouts and present solutions to current induced avalanche in silicon power semiconductors. 9 refs., 5 figs.

  1. [Death by avalanche in the minor mountain range].

    PubMed

    Geisenberger, Dorothee; Kramer, Lena; Pircher, Rebecca; Pollak, Stefan

    2015-01-01

    On 30 Jan 2015, two avalanche accidents happened in the Black Forest (at the foot of the 1493 m high Feldberg and the Herzogenhorn situated next to it), in which experienced ski tourers--a 58-year-old woman and a 20-year-old man--were completely buried by snow masses. Both victims were recovered dead after nearly 2 hours under the snow. The avalanches were promoted by strong snowfalls, snowdrift by the wind and steep downwind slopes. One of the victims, the 20-year-old man, underwent a forensic autopsy. The findings suggested death by protracted asphyxiation with agonal hypothermia. A mechanical traumatization with internal injuries suspected by the emergency doctor at the scene could not be confirmed at autopsy. The possible causes of death in the avalanche are discussed using the reported case as an example and in reference to the relevant literature.

  2. Controlling avalanche criticality in 2D nano arrays

    PubMed Central

    Zohar, Y. C.; Yochelis, S.; Dahmen, K. A.; Jung, G.; Paltiel, Y.

    2013-01-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments. PMID:23677142

  3. Catastrophic debris avalanche from ancestral Mount Shasta volcano, California

    NASA Astrophysics Data System (ADS)

    Crandell, D. R.; Miller, C. D.; Glicken, H. X.; Christiansen, R. L.; Newhall, C. G.

    1984-03-01

    A debris-avalanche deposit extends 43 km northwestward from the base of Mount Shasta across the floor of Shasta Valley, California, where it covers an area of at least 450 km2. The surface of the deposit is dotted with hundreds of mounds, hills, and ridges, all formed of blocks of pyroxene andesite and unconsolidated volcaniclastic deposits derived from an ancestral Mount Shasta. Individual hills are separated by flat-topped laharlike deposits that also form the matrix of the debris avalanche and slope northwestward about 5 m/km. Radiometric ages of rocks in the deposit and of a postavalanche basalt flow indicate that the avalanche occurred between about 300,000 and 360,000 yr ago. An inferred average thickness of the deposit, plus a computed volume of about 4 km3 for the hills and ridges, indicate an estimated volume of about 26 km3, making it the largest known Quaternary landslide on Earth.

  4. Distribution of maximum velocities in avalanches near the depinning transition.

    PubMed

    LeBlanc, Michael; Angheluta, Luiza; Dahmen, Karin; Goldenfeld, Nigel

    2012-09-07

    We report exact predictions for universal scaling exponents and scaling functions associated with the distribution of the maximum collective avalanche propagation velocities v(m) in the mean field theory of the interface depinning transition. We derive the extreme value distribution P(v(m)|T) for the maximum velocities in avalanches of fixed duration T and verify the results by numerical simulation near the critical point. We find that the tail of the distribution of maximum velocity for an arbitrary avalanche duration, v(m), scales as P(v(m))~v(m)(-2) for large v(m). These results account for the observed power-law distribution of the maximum amplitudes in acoustic emission experiments of crystal plasticity and are also broadly applicable to other systems in the mean-field interface depinning universality class, ranging from magnets to earthquakes.

  5. Controlling avalanche criticality in 2D nano arrays.

    PubMed

    Zohar, Y C; Yochelis, S; Dahmen, K A; Jung, G; Paltiel, Y

    2013-01-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.

  6. Erosive granular avalanches : a cross confrontation between theory and experiment.

    SciTech Connect

    Clement, E.; Malloggi, F.; Andreotti, B.; Aranson, I. S.; Materials Science Division; ESPCI-Univ. Paris; Univ. of Twente

    2007-01-01

    Results on two laboratory scale avalanches experiments taking place both in the air and under-water, are presented. In both cases a family of solitary erosion/deposition waves are observed. At higher inclination angles, we show the existence of a long wavelength transverse instability followed by a coarsening and the onset of a fingering pattern. While the experiments strongly differ by the spatial and time scales, the agreement between the stability diagram, the wavelengths selection and the avalanche morphology suggest a common erosion/deposition scenario. These experiments are studied theoretically in the framework of the 'partial fluidization' model of dense granular flows. This model identifies a family of propagating solitary waves displaying a behavior similar to the experimental observation. A primary cause for the transverse instability is related to the dependence of avalanche velocity on the granular mass trapped by the flow.

  7. Communicators' perspective on snow avalanche risk communication using smartphone applications

    NASA Astrophysics Data System (ADS)

    Charrière, Marie; Bogaard, Thom; Junier, Sandra; Mostert, Erik

    2015-04-01

    Among all the natural hazards, snow avalanches are the only ones for which a public danger scale is used globally. It consists of 5 levels of danger displayed with a given number and colour, and for each of them behavioural advices are provided. Even though this is standardized in most of the countries affected by this natural hazard, the smartphone applications with which the information is disseminated to the general public differ, particularly in terms of target audience and level of details. This study aims to gather the perspectives of several persons that are responsible for these avalanche risk communication practices. The survey was created to assess how and why choices were made in the design process of the applications and to determine how their effectiveness is evaluated. Along with a review of existing avalanche risk communication smartphone applications, this study provides guidelines for communication and the evaluation of its effectiveness.

  8. Avalanche Dynamics of Crackle Sound in the Lung

    SciTech Connect

    Alencar, Adriano M.; Buldyrev, Sergey V.; Majumdar, Arnab; Stanley, H. Eugene; Suki, Bela

    2001-08-20

    We analyze a sequence of short transient sound waves, called 'crackles,' which are associated with explosive openings of airways during lung inflation. The distribution of time intervals between consecutive crackles {Delta}t shows two regimes of power law behavior. We develop an avalanche model which fits the data over five decades of {Delta}t. We find that the regime for large {Delta}t is related to the dynamics of distinct avalanches in a Cayley tree, and the regime for small {Delta}t is determined by the dynamics of crackle propagation within a single avalanche. We also obtain a mean-field solution of the model which provides information about lung inflation.

  9. SiC Deep Ultraviolet Avalanche Photodetectors

    DTIC Science & Technology

    2010-10-01

    filters and SEM cross-section of dielectric stack filter. • GE SiC Solar blind detector demonstrated the best response in deep UV spectral region...Bolotnikov, A., Frechette, J., Verghese, S., Grossmann, P., Shaw, G.A. SiC APDs and arrays for UV and solar blind detection (2009) Conference Proceedings...optimized using optical and electrical device simulations , and associated fabrication methods for solar - blind SiC APD arrays have been developed

  10. Avalanche Dynamics and Stability in Wet Granular Media

    NASA Astrophysics Data System (ADS)

    Schiffer, Peter; Tegzes, Pal; Vicsek, Tamas

    2002-11-01

    In our previous work, we identified three fundamental regimes for the repose angle of wet granular materials as a function of the liquid content. The granular regime at very low liquid contents is dominated by the motion of individual grains; in the correlated regime corresponding to intermediate liquid contents, a rough surface is formed by the flow of separated clumps; and the repose angle of very wet samples results from cohesive flow with viscoplastic properties. Here we report investigations of the avalanche dynamics and flow properties of wet granular materials, employing a rotating drum apparatus (a cylindrical chamber partly filled with a granular medium and rotated around a horizontal axis). At low rotation rates, the medium remains at rest relative to the drum while its surface angle is slowly increased by rotation, up to a critical angle thetamax where an avalanche occurs, thus decreasing the surface angle to the repose angle thetar The flow becomes continuous at high rotation rates, but the transition between avalanching and continuous flow is hysteretic in rotation rate in dry media. Previous studies of cohesive granular media in a rotating drum have focused on the surface angles of the medium before and after avalanches. In our measurements, we focus instead on characterizing the dynamics of cohesive flow. We quantitatively investigate the flow dynamics during avalanches at different liquid contents by analyzing the time evolution of the averaged surface profile obtained from hundreds of avalanche events, and we also measure surface velocities during continuous flow. In particular, we explore the nature of the viscoplastic flow, (observed at the highest liquid contents) in which there are lasting contacts during flow, leading to coherence across the entire sample. This coherence leads to a velocity independent flow depth at high rotation rates and novel robust pattern formation in the granular surface. Additional information is included in the

  11. Parallel adaptive discontinuous Galerkin approximation for thin layer avalanche modeling

    NASA Astrophysics Data System (ADS)

    Patra, A. K.; Nichita, C. C.; Bauer, A. C.; Pitman, E. B.; Bursik, M.; Sheridan, M. F.

    2006-08-01

    This paper describes the development of highly accurate adaptive discontinuous Galerkin schemes for the solution of the equations arising from a thin layer type model of debris flows. Such flows have wide applicability in the analysis of avalanches induced by many natural calamities, e.g. volcanoes, earthquakes, etc. These schemes are coupled with special parallel solution methodologies to produce a simulation tool capable of very high-order numerical accuracy. The methodology successfully replicates cold rock avalanches at Mount Rainier, Washington and hot volcanic particulate flows at Colima Volcano, Mexico.

  12. Magnetar Outbursts from Avalanches of Hall Waves and Crustal Failures

    NASA Astrophysics Data System (ADS)

    Li, Xinyu; Levin, Yuri; Beloborodov, Andrei M.

    2016-12-01

    We explore the interaction between Hall waves and mechanical failures inside a magnetar crust, using detailed one-dimensional models that consider temperature-sensitive plastic flow, heat transport, and cooling by neutrino emission, as well as the coupling of the crustal motion to the magnetosphere. We find that the dynamics is enriched and accelerated by the fast, short-wavelength Hall waves that are emitted by each failure. The waves propagate and cause failures elsewhere, triggering avalanches. We argue that these avalanches are the likely sources of outbursts in transient magnetars.

  13. Effect of volume fraction on granular avalanche dynamics.

    PubMed

    Gravish, Nick; Goldman, Daniel I

    2014-09-01

    We study the evolution and failure of a granular slope as a function of prepared volume fraction, ϕ(0). We rotated an initially horizontal layer of granular material (0.3-mm-diam glass spheres) to a 45° angle while we monitor the motion of grains from the side and top with high-speed video cameras. The dynamics of grain motion during the tilt process depended sensitively on ϕ(0)∈[0.58-0.63] and differed above or below the granular critical state, ϕ(c), defined as the onset of dilation as a function of increasing volume fraction. For ϕ(0)-ϕ(c)<0, slopes experienced short, rapid, precursor compaction events prior to the onset of a sustained avalanche. Precursor compaction events began at an initial angle θ(0)=7.7±1.4° and occurred intermittently prior to the onset of an avalanche. Avalanches occurred at the maximal slope angle θ(m)=28.5±1.0°. Granular material at ϕ(0)-ϕ(c)>0 did not experience precursor compaction prior to avalanche flow, and instead experienced a single dilational motion at θ(0)=32.1±1.5° prior to the onset of an avalanche at θ(m)=35.9±0.7°. Both θ(0) and θ(m) increased with ϕ(0) and approached the same value in the limit of random close packing. The angle at which avalanching grains came to rest, θ(R)=22±2°, was independent of ϕ(0). From side-view high-speed video, we measured the velocity field of intermittent and avalanching flow. We found that flow direction, depth, and duration were affected by ϕ(0), with ϕ(0)-ϕ(c)<0 precursor flow extending deeper into the granular bed and occurring more rapidly than precursor flow at ϕ(0)-ϕ(c)>0. Our study elucidates how initial conditions-including volume fraction-are important determinants of granular slope stability and the onset of avalanches.

  14. Microwave diagnostics of laser-induced avalanche ionization in air

    SciTech Connect

    Zhang Zhili; Shneider, Mikhail N.; Miles, Richard B.

    2006-10-01

    This work presents a simplified model of microwave scattering during the avalanche ionization stage of laser breakdown and corresponding experimental results of microwave scattering from laser breakdown in room air. The model assumes and measurements confirm that the breakdown regime can be viewed as a point dipole scatterer of the microwave radiation and thus directly related to the time evolving number of electrons. The delay between the laser pulse and the rise of the microwave scattering signal is a direct measure of the avalanche ionization process.

  15. Assessing risk based on uncertain avalanche activity patterns

    NASA Astrophysics Data System (ADS)

    Zeidler, Antonia; Fromm, Reinhard

    2015-04-01

    Avalanches may affect critical infrastructure and may cause great economic losses. The planning horizon of infrastructures, e.g. hydropower generation facilities, reaches well into the future. Based on the results of previous studies on the effect of changing meteorological parameters (precipitation, temperature) and the effect on avalanche activity we assume that there will be a change of the risk pattern in future. The decision makers need to understand what the future might bring to best formulate their mitigation strategies. Therefore, we explore a commercial risk software to calculate risk for the coming years that might help in decision processes. The software @risk, is known to many larger companies, and therefore we explore its capabilities to include avalanche risk simulations in order to guarantee a comparability of different risks. In a first step, we develop a model for a hydropower generation facility that reflects the problem of changing avalanche activity patterns in future by selecting relevant input parameters and assigning likely probability distributions. The uncertain input variables include the probability of avalanches affecting an object, the vulnerability of an object, the expected costs for repairing the object and the expected cost due to interruption. The crux is to find the distribution that best represents the input variables under changing meteorological conditions. Our focus is on including the uncertain probability of avalanches based on the analysis of past avalanche data and expert knowledge. In order to explore different likely outcomes we base the analysis on three different climate scenarios (likely, worst case, baseline). For some variables, it is possible to fit a distribution to historical data, whereas in cases where the past dataset is insufficient or not available the software allows to select from over 30 different distribution types. The Monte Carlo simulation uses the probability distribution of uncertain variables

  16. Avalanches in strained amorphous solids: does inertia destroy critical behavior?

    PubMed

    Salerno, K Michael; Maloney, Craig E; Robbins, Mark O

    2012-09-07

    Simulations are used to determine the effect of inertia on athermal shear of amorphous two-dimensional solids. In the quasistatic limit, shear occurs through a series of rapid avalanches. The distribution of avalanches is analyzed using finite-size scaling with thousands to millions of disks. Inertia takes the system to a new underdamped universality class rather than driving the system away from criticality as previously thought. Scaling exponents are determined for the underdamped and overdamped limits and a critical damping that separates the two regimes. Systems are in the overdamped universality class even when most vibrational modes are underdamped.

  17. Further studies of electron avalanche gain in liquid argon

    SciTech Connect

    Kim, J.G.; Dardin, S.M.; Kadel, R.W.; Kadyk, J.A.; Jackson, K.H.; Peskov, V.; Wenzel, W.A.; Joo, K.S.

    2003-03-07

    Previously we showed how small admixtures of xenon (Xe) stabilize electron avalanches in liquid Argon (LAr). In the present work, we have measured the positive charge carrier mobility in LAr with small admixtures of Xe to be 6.4 x 10{sup -3} cm{sup 2}/Vsec, in approximate agreement with the mobility measured in pure LAr, and consistent with holes as charge carriers. We have measured the concentration of Xe actually dissolved in the liquid and compared the results with expectations based on the amount of Xe gas added to the LAr. We also have tested LAr doped with krypton to investigate the mechanism of avalanche stabilization.

  18. Simultaneous resonant enhanced multiphoton ionization and electron avalanche ionization in gas mixtures

    SciTech Connect

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2008-07-15

    Resonant enhanced multiphoton ionization (REMPI) and electron avalanche ionization (EAI) are measured simultaneously in Ar:Xe mixtures at different partial pressures of mixture components. A simple theory for combined REMPI+EAI in gas mixture is developed. It is shown that the REMPI electrons seed the avalanche process, and thus the avalanche process amplifies the REMPI signal. Possible applications are discussed.

  19. Meteorological variables associated with deep slab avalanches on persistent weak layers

    USGS Publications Warehouse

    Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.

    2014-01-01

    Deep slab avalanches are a particularly challenging avalanche forecasting problem. These avalanches are typically difficult to trigger, yet when they are triggered they tend to propagate far and result in large and destructive avalanches. For this work we define deep slab avalanches as those that fail on persistent weak layers deeper than 0.9m (3 feet), and that occur after February 1st. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl Ski Area to test the usefulness of meteorological variables for predicting deep slab avalanches. As in previous studies, we used data from the days preceding deep slab cycles, but we also considered meteorological metrics over the early months of the season. We utilized classification trees for our analyses. Our results showed warmer temperatures in the prior twenty-four hours and more loading over the seven days before days with deep slab avalanches on persistent weak layers. In line with previous research, extended periods of above freezing temperatures led to days with deep wet slab avalanches on persistent weak layers. Seasons with either dry or wet avalanches on deep persistent weak layers typically had drier early months, and often had some significant snow depth prior to those dry months. This paper provides insights for ski patrollers, guides, and avalanche forecasters who struggle to forecast deep slab avalanches on persistent weak layers late in the season.

  20. Safety on the Hills in Winter: Avalanche Risk--Snow Formation.

    ERIC Educational Resources Information Center

    Grant, Frank

    2003-01-01

    This compact training session on avalanche risk reviews snow crystal formations and common generalities about avalanches. Two types of avalanches--loose and slab--are described, and the characteristics of each are given along with danger signs that accompany each one. Three books are highly recommended for further information. (TD)

  1. Research and development on a sub 100 PICO second time-of-flight system based on silicon avalanche diodes

    SciTech Connect

    Choi, Y.; Hirsch, A.; Hauger, A.; Scharenberg, R.; Tincknell, M.; Rai, G.

    1991-12-31

    Particle identification requires a momentum measurement and a second independent determination either energy loss (dE/dx) or time of flight (TOF). To cover a momentum range from 0.1 GeV/c to 1.5 GeV/c in the STAR detector requires both the dE/dx and TOF techniques. This research is designed to develop the avalanche diode (AVD) detectors for TOF systems and evaluate their performance. The test of a small prototype system would be carried out at Purdue and at accelerator test beam sites. The Purdue group has developed a complete test setup for evaluating the time resolution of the AVD`s which includes fast-slow electronic channels, CAMAC based electronic modules and a temperature controlled environment. The AVDs also need to be tested in a 0.5 tesla magnetic field. The Purdue group would augment this test set up to include a magnetic field.

  2. Monolithic active quenching and picosecond timing circuit suitable for large-area single-photon avalanche diodes.

    PubMed

    Gallivanoni, A; Rech, I; Resnati, D; Ghioni, M; Cova, S

    2006-06-12

    A new integrated active quenching circuit (i-AQC) designed in a standard CMOS process is presented, capable of operating with any available single photon avalanche diode (SPAD) over wide temperature range. The circuit is suitable for attaining high photon timing resolution also with wide-area SPADs. The new i-AQC integrates the basic active-quenching loop, a patented low-side timing circuit comprising a fast pulse pick-up scheme that substantially improves time-jitter performance, and a novel active-load passive quenching mechanism (consisting of a current mirror rather than a traditional high-value resistor) greatly improves the maximum counting rate. The circuit is also suitable for portable instruments, miniaturized detector modules and SPAD-array detectors. The overall features of the circuit may open the way to new developments in diversified applications of time-correlated photon counting in life sciences and material sciences.

  3. Development and verification of signal processing system of avalanche photo diode for the active shields onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Ohno, M.; Kawano, T.; Edahiro, I.; Shirakawa, H.; Ohashi, N.; Okada, C.; Habata, S.; Katsuta, J.; Tanaka, Y.; Takahashi, H.; Mizuno, T.; Fukazawa, Y.; Murakami, H.; Kobayashi, S.; Miyake, K.; Ono, K.; Kato, Y.; Furuta, Y.; Murota, Y.; Okuda, K.; Wada, Y.; Nakazawa, K.; Mimura, T.; Kataoka, J.; Ichinohe, Y.; Uchida, Y.; Katsuragawa, M.; Yoneda, H.; Sato, G.; Sato, R.; Kawaharada, M.; Harayama, A.; Odaka, H.; Hayashi, K.; Ohta, M.; Watanabe, S.; Kokubun, M.; Takahashi, T.; Takeda, S.; Kinoshita, M.; Yamaoka, K.; Tajima, H.; Yatsu, Y.; Uchiyama, H.; Saito, S.; Yuasa, T.; Makishima, K.

    2016-09-01

    The hard X-ray Imager and Soft Gamma-ray Detector onboard ASTRO-H demonstrate high sensitivity to hard X-ray (5-80 keV) and soft gamma-rays (60-600 keV), respectively. To reduce the background, both instruments are actively shielded by large, thick Bismuth Germanate scintillators. We have developed the signal processing system of the avalanche photodiode in the BGO active shields and have demonstrated its effectiveness after assembly in the flight model of the HXI/SGD sensor and after integration into the satellite. The energy threshold achieved is about 150 keV and anti-coincidence efficiency for cosmic-ray events is almost 100%. Installed in the BGO active shield, the developed signal processing system successfully reduces the room background level of the main detector.

  4. Photon-number-resolving detector with 10 bits of resolution

    SciTech Connect

    Jiang, Leaf A.; Dauler, Eric A.; Chang, Joshua T

    2007-06-15

    A photon-number-resolving detector with single-photon resolution is described and demonstrated. It has 10 bits of resolution, does not require cryogenic cooling, and is sensitive to near ir wavelengths. This performance is achieved by flood illuminating a 32x32 element In{sub x}Ga{sub 1-x}AsP Geiger-mode avalanche photodiode array that has an integrated counter and digital readout circuit behind each pixel.

  5. Near-infrared Single-photon-counting Detectors for Free-space Laser Receivers

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Sun, Xiaoli; Hasselbrack, William; Wu, Stewart; Waczynski, Augustyn; Miko, Laddawan

    2007-01-01

    We compare several photon-counting detector technologies for use as near-infrared timeresolved laser receivers in science instrument, communication and navigation systems. The key technologies are InGaAs(P) photocathode hybrid photomultiplier tubes and InGaAs(P) and HgCdTe avalanche photodiodes. We discuss recent experimental results and application.

  6. Non-Geiger mode single photon detector with multiple amplification and gain control mechanisms

    SciTech Connect

    Nawar Rahman, Samia Hall, David; Lo, Yu-Hwa

    2014-05-07

    A new type of single photon detector, Multiple Amplification Gain with Internal Control (MAGIC), is proposed and analyzed using Monte Carlo simulations based on a physical model of the device. The MAGIC detector has two coupled amplification mechanisms, avalanche multiplication and bipolar gain, and the net gain is regulated by a built-in feedback mechanism. Compared to conventional Geiger mode single photon avalanche detectors (SPADs), the MAGIC detector produces a much greater single photon detection efficiency of nearly 100%, low bit-error-ratio for single photon signals, and a large dynamic range. All these properties are highly desirable for applications that require single photon sensitivity and are absent for conventional Geiger-mode SPADs.

  7. Catastrophic debris avalanche deposit of Socompa volcano, northern Chile

    NASA Technical Reports Server (NTRS)

    Francis, P. W.; Gardeweg, M.; Ramirez, C. F.; Rothery, D. A.

    1985-01-01

    Between 10,000 and 500 yr ago the Socompa volcano in northern Chile experienced a catastrophic collapse of a 70 deg sector of the original cone, causing a debris avalanche that descended nearly 3000 m vertically and traveled more than 35 km from the volcano. The deposits cover some 490 sq km and have a minimum volume of 15 cu km. Parts of the original cone slumped in a nearly coherent form and are now preserved as large blocks more than 400 m high. The primary avalanche traveled northwestward over sloping ground before coming to rest transiently, forming a prominent marginal ridge, and then slid away northeastward to form a secondary flow, overriding much of the primary avalanche deposit. Abundant, prismatic, jointed dacite blocks within the debris avalanche deposit and a thin, fine-grained pumiceous deposit beneath it suggest that the collapse was triggered by magmatic activity and may have been accompanied by a violent lateral blast. Collapse was followed by eruption of pumiceous pyroclastic flows and extrusion of voluminous dacite domes.

  8. Hybrid phase transition into an absorbing state: Percolation and avalanches

    NASA Astrophysics Data System (ADS)

    Lee, Deokjae; Choi, S.; Stippinger, M.; Kertész, J.; Kahng, B.

    2016-04-01

    Interdependent networks are more fragile under random attacks than simplex networks, because interlayer dependencies lead to cascading failures and finally to a sudden collapse. This is a hybrid phase transition (HPT), meaning that at the transition point the order parameter has a jump but there are also critical phenomena related to it. Here we study these phenomena on the Erdős-Rényi and the two-dimensional interdependent networks and show that the hybrid percolation transition exhibits two kinds of critical behaviors: divergence of the fluctuations of the order parameter and power-law size distribution of finite avalanches at a transition point. At the transition point global or "infinite" avalanches occur, while the finite ones have a power law size distribution; thus the avalanche statistics also has the nature of a HPT. The exponent βm of the order parameter is 1 /2 under general conditions, while the value of the exponent γm characterizing the fluctuations of the order parameter depends on the system. The critical behavior of the finite avalanches can be described by another set of exponents, βa and γa. These two critical behaviors are coupled by a scaling law: 1 -βm=γa .

  9. Spontaneous cortical activity in awake monkeys composed of neuronal avalanches.

    PubMed

    Petermann, Thomas; Thiagarajan, Tara C; Lebedev, Mikhail A; Nicolelis, Miguel A L; Chialvo, Dante R; Plenz, Dietmar

    2009-09-15

    Spontaneous neuronal activity is an important property of the cerebral cortex but its spatiotemporal organization and dynamical framework remain poorly understood. Studies in reduced systems--tissue cultures, acute slices, and anesthetized rats--show that spontaneous activity forms characteristic clusters in space and time, called neuronal avalanches. Modeling studies suggest that networks with this property are poised at a critical state that optimizes input processing, information storage, and transfer, but the relevance of avalanches for fully functional cerebral systems has been controversial. Here we show that ongoing cortical synchronization in awake rhesus monkeys carries the signature of neuronal avalanches. Negative LFP deflections (nLFPs) correlate with neuronal spiking and increase in amplitude with increases in local population spike rate and synchrony. These nLFPs form neuronal avalanches that are scale-invariant in space and time and with respect to the threshold of nLFP detection. This dimension, threshold invariance, describes a fractal organization: smaller nLFPs are embedded in clusters of larger ones without destroying the spatial and temporal scale-invariance of the dynamics. These findings suggest an organization of ongoing cortical synchronization that is scale-invariant in its three fundamental dimensions--time, space, and local neuronal group size. Such scale-invariance has ontogenetic and phylogenetic implications because it allows large increases in network capacity without a fundamental reorganization of the system.

  10. Avalanches in dry and saturated disordered media at fracture.

    PubMed

    Milanese, Enrico; Yılmaz, Okan; Molinari, Jean-François; Schrefler, Bernhard

    2016-04-01

    This paper analyzes fracturing in inhomogeneous media under dry and fully saturated conditions. We adopt a central force model with continuous damage to study avalanche behavior in a two-dimensional truss lattice undergoing dilation. Multiple fractures can develop at once and a power-law distribution of the avalanche size is observed. The values for the power-law exponent are compared with the ones found in the literature and scale-free behavior is suggested. The fracture evolves intermittently in time because only some avalanches correspond to fracture advancement. A fully saturated model with continuous damage based on the extended Biot's theory is developed and avalanche behavior is studied in the presence of fluid, varying the fluid boundary conditions. We show that power-law behavior is destroyed when the fluid flux governs the problem. Fluid pressure behavior during intermittent crack tip advancement is studied for the continuous-damage fully saturated model. It is found that when mechanical loading prevails, the pressure rises when the crack advances, while when fluid loading prevails, the pressure drops when the crack advances.

  11. Group Dynamics and Decision Making: Backcountry Recreationists in Avalanche Terrain

    ERIC Educational Resources Information Center

    Bright, Leslie Shay

    2010-01-01

    The purpose of this study was to describe and determine the prevalence of decision-making characteristics of recreational backcountry groups when making a decision of where to travel and ride in avalanche terrain from the perspective of individuals. Decision-making characteristics encompassed communication, decision-making processes, leadership,…

  12. Teaching Avalanche Safety Courses: Instructional Techniques and Field Exercises.

    ERIC Educational Resources Information Center

    Watters, Ron

    This paper discusses course structure, teaching techniques, and field exercises for enhancing winter travelers' avalanche knowledge and skills. In two class sessions, the course typically consists of a historical perspective; a section on snow physics (clouds, types of snow crystals, effects of riming, identification of precipitated snow crystals,…

  13. Reducing the Odds: Backcountry Powder Skiing in Avalanche Terrain.

    ERIC Educational Resources Information Center

    Daffern, Tony

    This paper provides information and strategies to reduce the risk of encountering an avalanche when skiing or climbing on steep slopes. Skiers must recognize that the risk exists, be aware of their own tolerance for risk, and not allow companions to pressure them into taking more risk than they can tolerate. Ideally, one should ski with a small…

  14. Hybrid phase transition into an absorbing state: Percolation and avalanches.

    PubMed

    Lee, Deokjae; Choi, S; Stippinger, M; Kertész, J; Kahng, B

    2016-04-01

    Interdependent networks are more fragile under random attacks than simplex networks, because interlayer dependencies lead to cascading failures and finally to a sudden collapse. This is a hybrid phase transition (HPT), meaning that at the transition point the order parameter has a jump but there are also critical phenomena related to it. Here we study these phenomena on the Erdős-Rényi and the two-dimensional interdependent networks and show that the hybrid percolation transition exhibits two kinds of critical behaviors: divergence of the fluctuations of the order parameter and power-law size distribution of finite avalanches at a transition point. At the transition point global or "infinite" avalanches occur, while the finite ones have a power law size distribution; thus the avalanche statistics also has the nature of a HPT. The exponent β_{m} of the order parameter is 1/2 under general conditions, while the value of the exponent γ_{m} characterizing the fluctuations of the order parameter depends on the system. The critical behavior of the finite avalanches can be described by another set of exponents, β_{a} and γ_{a}. These two critical behaviors are coupled by a scaling law: 1-β_{m}=γ_{a}.

  15. Gridded snow maps supporting avalanche forecasting in Norway

    NASA Astrophysics Data System (ADS)

    Müller, K.; Humstad, T.; Engeset, R. V.; Andersen, J.

    2012-04-01

    We present gridded maps indicating key parameters for avalanche forecasting with a 1 km x 1 km resolution. Based on the HBV hydrology model, snow parameters are modeled based on observed and interpolated precipitation and temperature data. Modeled parameters include for example new snow accumulated the last 24 and 72 hours, snow-water equivalent, and snow-water content. In addition we use meteorological parameters from the UK weather prediction model "Unified Model" such as wind and radiation to model snow-pack properties. Additional loading in lee-slopes by wind-transport is modeled based on prevailing wind conditions, snow-water content and snow age. A depth hoar index accounts for days with considerable negative temperature gradients in the snow pack. A surface hoar index based on radiation and humidity is currently under development. The maps are tested against field reports from avalanche observers throughout Norway. All data is available via a web-platform that combines maps for geo-hazards such as floods, landslides and avalanches. The maps are used by the Norwegian avalanche forecasting service, which is currently in a test phase. The service will be operational by winter 2012/2013.

  16. Ripples Versus Giant Dunes in a Saltation-Avalanche Model

    NASA Astrophysics Data System (ADS)

    Vandewalle, Nicolas; Galam, Serge

    A simple stochastic cellular automaton model is proposed for ripples and dunes formation. Saltation and avalanches are the unique ingredients of the model. The dynamics of ripple formation is found to be logarithmic in time while the ripple merging as well as the dune growth is faster and occurs by bursts. The ripple state turns out to be metastable.

  17. Performance prospects for the CMS electromagnetic calorimeter barrel avalanche photodiodes for LHC phase I and phase II: Radiation hardness and longevity

    NASA Astrophysics Data System (ADS)

    Addesa, F.; Cavallari, F.

    2015-07-01

    The electromagnetic calorimeter of the Compact Muon Solenoid (CMS) experiment at the LHC is a hermetic, fine-grained, homogeneous calorimeter, comprising 75,848 lead tungstate scintillating crystals. Avalanche photodiodes produced by Hamamatsu are used as sensors for the electromagnetic barrel calorimeter. These devices were tested for radiation hardness assuming an integrated luminosity of 500 fb-1, which corresponds to a neutron fluence of 2- 4 ×1013 n /cm2, depending on the detector location. Beginning in 2022, a new phase of the LHC is foreseen to exploit the full potential of the accelerator, which will deliver 3000 fb-1 of integrated luminosity. Irradiation studies up to a fluence of 1.5 ×1014 n /cm2 have been performed to qualify the avalanche photodiodes for radiation hardness. We present measurements of gain, quantum efficiency and noise, and discuss the implications for the CMS electromagnetic barrel calorimeter performance.

  18. Rock-avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek valley, western Colorado

    USGS Publications Warehouse

    Coe, Jeffrey A.; Baum, Rex L.; Allstadt, Kate; Kochevar, Bernard; Schmitt, Robert G.; Morgan, Matthew L.; White, Jonathan L.; Stratton, Benjamin T.; Hayashi, Timothy A.; Kean, Jason W.

    2016-01-01

    On 25 May 2014, a rain-on-snow–induced rock avalanche occurred in the West Salt Creek valley on the northern flank of Grand Mesa in western Colorado (United States). The avalanche mobilized from a preexisting rock slide in the Green River Formation and traveled 4.6 km down the confined valley, killing three people. The avalanche was rare for the contiguous United States because of its large size (54.5 Mm3) and high mobility (height/length = 0.14). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, unmanned aircraft system imagery as a base for field mapping, and analyzed seismic data from 22 broadband stations (distances < 656 km from the rock-slide source area) and one short-period network. We inverted broadband data to derive a time series of forces that the avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with an early morning landslide/debris flow that started ∼10 h before the main avalanche. The main avalanche lasted ∼3.5 min and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich core continued to move slowly. Since 25 May 2014, numerous shallow landslides, rock slides, and rock falls have created new structures and modified avalanche topography. Mobility of the main avalanche and central core was likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional

  19. Dealing with the white death: avalanche risk management for traffic routes.

    PubMed

    Rheinberger, Christoph M; Bründl, Michael; Rhyner, Jakob

    2009-01-01

    This article discusses mitigation strategies to protect traffic routes from snow avalanches. Up to now, mitigation of snow avalanches on many roads and railways in the Alps has relied on avalanche sheds, which require large initial investments resulting in high opportunity costs. Therefore, avalanche risk managers have increasingly adopted organizational mitigation measures such as warning systems and closure policies instead. The effectiveness of these measures is, however, greatly dependent on human decisions. In this article, we present a method for optimizing avalanche mitigation for traffic routes in terms of both their risk reduction impact and their net benefit to society. First, we introduce a generic framework for assessing avalanche risk and for quantifying the impact of mitigation. This allows for sound cost-benefit comparisons between alternative mitigation strategies. Second, we illustrate the framework with a case study from Switzerland. Our findings suggest that site-specific characteristics of avalanche paths, as well as the economic importance of a traffic route, are decisive for the choice of optimal mitigation strategies. On routes endangered by few avalanche paths with frequent avalanche occurrences, structural measures are most efficient, whereas reliance on organizational mitigation is often the most appropriate strategy on routes endangered by many paths with infrequent or fuzzy avalanche risk. Finally, keeping a traffic route open may be very important for tourism or the transport industry. Hence, local economic value may promote the use of a hybrid strategy that combines organizational and structural measures to optimize the resource allocation of avalanche risk mitigation.

  20. Use of a magnetic field to modify and detect avalanche behavior on a conical bead pile

    NASA Astrophysics Data System (ADS)

    Johnson, Nathan; Lehman, Susan

    2015-03-01

    A conical bead pile subject to slow driving and an external magnetic field is used to test the effects of drop height and cohesion on avalanche statistics. Magnetically susceptible beads were dropped onto a pile from different heights and into different strengths of magnetic field. Avalanches were recorded by the change in mass as beads fall off the pile. For beads dropped from a low drop height with no cohesion, the avalanche size distribution follows a power law. As cohesion increases, we observe an increase in the probability of very large avalanches and decreases in the mid-size avalanches. The resulting bump in the avalanche distribution moves to larger avalanche size as the cohesion in the system is increased, matching the prediction by an analytic theory from a mean-field model of slip avalanches. The model also makes predictions for avalanche duration, which is not measurable with our current system. Since the steel beads are magnetized while in the applied magnetic field, their motion during an avalanche creates a change in magnetic flux. To detect this motion, we have placed a large-diameter pick-up coil around the pile. Results of the testing and calibration of this coil to measure avalanche duration are presented.

  1. Meteorological variables to aid forecasting deep slab avalanches on persistent weak layers

    USGS Publications Warehouse

    Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.

    2015-01-01

    Deep slab avalanches are particularly challenging to forecast. These avalanches are difficult to trigger, yet when they release they tend to propagate far and can result in large and destructive avalanches. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl ski area in southwest Montana to test the usefulness of meteorological variables for predicting seasons and days with deep slab avalanches. We defined deep slab avalanches as those that failed on persistent weak layers deeper than 0.9 m, and that occurred after February 1st. Previous studies often used meteorological variables from days prior to avalanches, but we also considered meteorological variables over the early months of the season. We used classification trees and random forests for our analyses. Our results showed seasons with either dry or wet deep slabs on persistent weak layers typically had less precipitation from November through January than seasons without deep slabs on persistent weak layers. Days with deep slab avalanches on persistent weak layers often had warmer minimum 24-hour air temperatures, and more precipitation over the prior seven days, than days without deep slabs on persistent weak layers. Days with deep wet slab avalanches on persistent weak layers were typically preceded by three days of above freezing air temperatures. Seasonal and daily meteorological variables were found useful to aid forecasting dry and wet deep slab avalanches on persistent weak layers, and should be used in combination with continuous observation of the snowpack and avalanche activity.

  2. Novel Photon-Counting Detectors for Free-Space Communication

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff

    2016-01-01

    We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.

  3. CALIFA Barrel prototype detector characterisation

    NASA Astrophysics Data System (ADS)

    Pietras, B.; Gascón, M.; Álvarez-Pol, H.; Bendel, M.; Bloch, T.; Casarejos, E.; Cortina-Gil, D.; Durán, I.; Fiori, E.; Gernhäuser, R.; González, D.; Kröll, T.; Le Bleis, T.; Montes, N.; Nácher, E.; Robles, M.; Perea, A.; Vilán, J. A.; Winkel, M.

    2013-11-01

    Well established in the field of scintillator detection, Caesium Iodide remains at the forefront of scintillators for use in modern calorimeters. Recent developments in photosensor technology have lead to the production of Large Area Avalanche Photo Diodes (LAAPDs), a huge advancement on traditional photosensors in terms of high internal gain, dynamic range, magnetic field insensitivity, high quantum efficiency and fast recovery time. The R3B physics programme has a number of requirements for its calorimeter, one of the most challenging being the dual functionality as both a calorimeter and a spectrometer. This involves the simultaneous detection of ∼300 MeV protons and gamma rays ranging from 0.1 to 20 MeV. This scintillator - photosensor coupling provides an excellent solution in this capacity, in part due to the near perfect match of the LAAPD quantum efficiency peak to the light output wavelength of CsI(Tl). Modern detector development is guided by use of Monte Carlo simulations to predict detector performance, nonetheless it is essential to benchmark these simulations against real data taken with prototype detector arrays. Here follows an account of the performance of two such prototypes representing different polar regions of the Barrel section of the forthcoming CALIFA calorimeter. Measurements were taken for gamma-ray energies up to 15.1 MeV (Maier-Leibnitz Laboratory, Garching, Germany) and for direct irradiation with a 180 MeV proton beam (The Svedberg Laboratoriet, Uppsala, Sweden). Results are discussed in light of complementary GEANT4 simulations.

  4. Smoke Detector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo, Fire Chief Jay Stout of Safety Harbor, Florida, is explaining to young Richard Davis the workings of the Honeywell smoke and fire detector which probably saved Richard's life and that of his teen-age brother. Alerted by the detector's warning, the pair were able to escape their burning home. The detector in the Davis home was one of 1,500 installed in Safety Harbor residences in a cooperative program conducted by the city and Honeywell Inc.

  5. A fast and compact electromagnetic calorimeter for the PANDA detector at FAIR

    SciTech Connect

    Wilms, Andrea

    2005-10-26

    In this presentation we report on the electromagnetic calorimeter of the 4{pi} detector PANDA to be installed at the antiproton storage ring of the proposed Facility for Antiproton and Ion Research (FAIR). We present details of the R and D work with two scintillator materials, PbWO4 (PWO) and BGO, and the new developed large area avalanche photodiodes (LAAPDs) as detector readout.

  6. Fast single photon avalanche photodiode-based time-resolved diffuse optical tomography scanner

    PubMed Central

    Mu, Ying; Niedre, Mark

    2015-01-01

    Resolution in diffuse optical tomography (DOT) is a persistent problem and is primarily limited by high degree of light scatter in biological tissue. We showed previously that the reduction in photon scatter between a source and detector pair at early time points following a laser pulse in time-resolved DOT is highly dependent on the temporal response of the instrument. To this end, we developed a new single-photon avalanche photodiode (SPAD) based time-resolved DOT scanner. This instrument uses an array of fast SPADs, a femto-second Titanium Sapphire laser and single photon counting electronics. In combination, the overall instrument temporal impulse response function width was 59 ps. In this paper, we report the design of this instrument and validate its operation in symmetrical and irregularly shaped optical phantoms of approximately small animal size. We were able to accurately reconstruct the size and position of up to 4 absorbing inclusions, with increasing image quality at earlier time windows. We attribute these results primarily to the rapid response time of our instrument. These data illustrate the potential utility of fast SPAD detectors in time-resolved DOT. PMID:26417526

  7. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy

    PubMed Central

    Michalet, Xavier; Ingargiola, Antonino; Colyer, Ryan A.; Scalia, Giuseppe; Weiss, Shimon; Maccagnani, Piera; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo

    2014-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements. PMID:25309114

  8. Forensic Analysis of the May 2014 West Salt Creek Rock Avalanche in Western Colorado

    NASA Astrophysics Data System (ADS)

    Coe, J. A.; Baum, R. L.; Allstadt, K.; Kochevar, B. F.; Schmitt, R. G.; Morgan, M. L.; White, J. L.; Stratton, B. T.; Hayashi, T. A.; Kean, J. W.

    2015-12-01

    The rain-on-snow induced West Salt Creek rock avalanche occurred on May 25, 2014 on the northern flank of Grand Mesa. The avalanche was rare for the contiguous U.S. because of its large size (59 M m3) and high mobility (Length/Height=7.2). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, Unmanned Aircraft System (UAS) imagery as a base for our field mapping and analyzed seismic data from 22 broadband stations (distances <656 km) and one short-period network. We inverted broadband data to derive a time series of forces that the avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with a landslide/debris flow that started about 10 hours before the main avalanche. The main avalanche lasted just over 3 minutes and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich, strike-slip bound core continued to move slowly. Following movement of the core, numerous shallow landslides, rock slides, and rock falls created new structures and modified topography. Mobility of the main avalanche and central core were likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These results indicate that the West Salt Creek avalanche, and probably other long-traveled avalanches, could be modeled as two layers: a liquefied basal layer; and a thicker and stronger overriding layer.

  9. A multi path, weather independent avalanche monitoring tool using distributed acoustic fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Prokop, Alexander; Wirbel, Anna

    2013-04-01

    Information on avalanche activity is a paramount parameter in avalanche forecasting. When avalanches are released spontaneously, the risk of avalanches is very high. Triggering avalanches by artificial means, such as explosives launched from helicopter or avalanche towers, can also give information on the stability of the snow pack. Hence, monitoring of avalanches released naturally or artificially, is an important quantity in avalanche forecasting. This information is also needed when deciding whether to close or not endangered ski runs, roads or railway lines. So far monitoring systems lack certain benefits. Either they monitor only large avalanches, can only be used for single avalanche tracks or are weather/sight dependant. Therefore a new tool for avalanche- monitoring, a distributed fiber optic system, is for the first time installed and adapted for the purpose of monitoring snow avalanche activity. The method is based on an optical time domain reflectometer (OTDR) system, which dates back to the 1970`s and detects seismic vibrations and acoustic signals on a fiber optic cable that can have a length of up to 30 km. An appropriate test slope for this configuration has been found in the ski area of "Lech am Arlberg". In this work a detailed description of the theoretical background, the system implementation, the field installation, realization of tests and an investigation of the recorded data is presented. We conducted 100 tests and triggered 41 avalanches so far with a runout distances ranging from a few meters to approximately 250 meters, all of which were detected by the system, as well as the 59 not successful attempts of artificial triggering. Moreover we measured properly if critical infrastructure (in our case a ski run) was reached by the avalanches or not. The spatial distributed sensing approach allowed us to relate the amplitude and spectral content of the signals to avalanche size, avalanche speed and snow properties of the avalanches. In

  10. Application of statistical and dynamics models for snow avalanche hazard assessment in mountain regions of Russia

    NASA Astrophysics Data System (ADS)

    Turchaninova, A.

    2012-04-01

    The estimation of extreme avalanche runout distances, flow velocities, impact pressures and volumes is an essential part of snow engineering in mountain regions of Russia. It implies the avalanche hazard assessment and mapping. Russian guidelines accept the application of different avalanche models as well as approaches for the estimation of model input parameters. Consequently different teams of engineers in Russia apply various dynamics and statistical models for engineering practice. However it gives more freedom to avalanche practitioners and experts but causes lots of uncertainties in case of serious limitations of avalanche models. We discuss these problems by presenting the application results of different well known and widely used statistical (developed in Russia) and avalanche dynamics models for several avalanche test sites in the Khibini Mountains (The Kola Peninsula) and the Caucasus. The most accurate and well-documented data from different powder and wet, big rare and small frequent snow avalanche events is collected from 1960th till today in the Khibini Mountains by the Avalanche Safety Center of "Apatit". This data was digitized and is available for use and analysis. Then the detailed digital avalanche database (GIS) was created for the first time. It contains contours of observed avalanches (ESRI shapes, more than 50 years of observations), DEMs, remote sensing data, description of snow pits, photos etc. Thus, the Russian avalanche data is a unique source of information for understanding of an avalanche flow rheology and the future development and calibration of the avalanche dynamics models. GIS database was used to analyze model input parameters and to calibrate and verify avalanche models. Regarding extreme dynamic parameters the outputs using different models can differ significantly. This is unacceptable for the engineering purposes in case of the absence of the well-defined guidelines in Russia. The frequency curves for the runout distance

  11. Maximum speeds and alpha angles of flowing avalanches

    NASA Astrophysics Data System (ADS)

    McClung, David; Gauer, Peter

    2016-04-01

    A flowing avalanche is one which initiates as a slab and, if consisting of dry snow, will be enveloped in a turbulent snow dust cloud once the speed reaches about 10 m/s. A flowing avalanche has a dense core of flowing material which dominates the dynamics by serving as the driving force for downslope motion. The flow thickness typically on the order of 1 -10 m which is on the order of about 1% of the length of the flowing mass. We have collected estimates of maximum frontal speed um (m/s) from 118 avalanche events. The analysis is given here with the aim of using the maximum speed scaled with some measure of the terrain scale over which the avalanches ran. We have chosen two measures for scaling, from McClung (1990), McClung and Schaerer (2006) and Gauer (2012). The two measures are the √H0-;√S0-- (total vertical drop; total path length traversed). Our data consist of 118 avalanches with H0 (m)estimated and 106 with S0 (m)estimated. Of these, we have 29 values with H0 (m),S0 (m)and um (m/s)estimated accurately with the avalanche speeds measured all or nearly all along the path. The remainder of the data set includes approximate estimates of um (m/s)from timing the avalanche motion over a known section of the path where approximate maximum speed is expected and with either H0or S0or both estimated. Our analysis consists of fitting the values of um/√H0--; um/√S0- to probability density functions (pdf) to estimate the exceedance probability for the scaled ratios. In general, we found the best fits for the larger data sets to fit a beta pdf and for the subset of 29, we found a shifted log-logistic (s l-l) pdf was best. Our determinations were as a result of fitting the values to 60 different pdfs considering five goodness-of-fit criteria: three goodness-of-fit statistics :K-S (Kolmogorov-Smirnov); A-D (Anderson-Darling) and C-S (Chi-squared) plus probability plots (P-P) and quantile plots (Q-Q). For less than 10% probability of exceedance the results show that

  12. Metal Detectors.

    ERIC Educational Resources Information Center

    Harrington-Lueker, Donna

    1992-01-01

    Schools that count on metal detectors to stem the flow of weapons into the schools create a false sense of security. Recommendations include investing in personnel rather than hardware, cultivating the confidence of law-abiding students, and enforcing discipline. Metal detectors can be quite effective at afterschool events. (MLF)

  13. Hummocks: how they form and evolve in debris avalanches (Invited)

    NASA Astrophysics Data System (ADS)

    Paguican, E. R.; van Wyk de Vries, B.; Lagmay, A.

    2013-12-01

    Hummocks are topographic features of large landslides and rockslide-debris avalanches common in volcanic settings. We use scaled analog models to study hummock formation and explore their importance in understanding landslide kinematics and dynamics. The models are designed to replicate large-scale volcanic collapses but are relevant also to non-volcanic settings. We characterize hummocks in terms of their evolution, spatial distribution, and internal structure from slide initiation to final arrest. Hummocks initially form by extensional faulting as a landslide begins to move. During motion, individual large blocks develop and spread, creating an initial distribution, with small hummocks at the landslide front and larger ones at the back. As the mass spreads, hummocks remain as discrete entities. They can get wider but may decrease in height, break up, or merge to form bigger and long anticlinal hummocks when confined. In areas of transverse movement within a landslide, elongate hummocks develop between strike-slip flower structures. Absence of hummocks and fault-like features in the deposit may imply a more fluidal flow of emplacement or very low cohesion of lithologies. Hummock size depends on their position in the initial mass, modified by subsequent breakup or coalescence. Hummock size, shape and spatial distribution vary between and within deposits. Such a universal structure with clear connection to the deformation process should provide a framework with which to study avalanche emplacement dynamics and conditions. We study well-preserved and well-sectioned hummocks in the Mt Iriga rockslide-debris avalanches (Philippines), to characterise the internal structure and relate hummocks to the landslide-avalanche behaviour. All the model structures are consistent with field observations and suggest a general brittle-slide emplacement for most landslide avalanches. The upper and outer hummock surface is destabilised by minor slumps and scree formation forming a

  14. Radiation detector

    DOEpatents

    Fultz, B.T.

    1980-12-05

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  15. Radiation detector

    DOEpatents

    Fultz, Brent T.

    1983-01-01

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  16. A new web-based system to improve the monitoring of snow avalanche hazard in France

    NASA Astrophysics Data System (ADS)

    Bourova, Ekaterina; Maldonado, Eric; Leroy, Jean-Baptiste; Alouani, Rachid; Eckert, Nicolas; Bonnefoy-Demongeot, Mylene; Deschatres, Michael

    2016-05-01

    Snow avalanche data in the French Alps and Pyrenees have been recorded for more than 100 years in several databases. The increasing amount of observed data required a more integrative and automated service. Here we report the comprehensive web-based Snow Avalanche Information System newly developed to this end for three important data sets: an avalanche chronicle (Enquête Permanente sur les Avalanches, EPA), an avalanche map (Carte de Localisation des Phénomènes d'Avalanche, CLPA) and a compilation of hazard and vulnerability data recorded on selected paths endangering human settlements (Sites Habités Sensibles aux Avalanches, SSA). These data sets are now integrated into a common database, enabling full interoperability between all different types of snow avalanche records: digitized geographic data, avalanche descriptive parameters, eyewitness reports, photographs, hazard and risk levels, etc. The new information system is implemented through modular components using Java-based web technologies with Spring and Hibernate frameworks. It automates the manual data entry and improves the process of information collection and sharing, enhancing user experience and data quality, and offering new outlooks to explore and exploit the huge amount of snow avalanche data available for fundamental research and more applied risk assessment.

  17. Rescue missions for totally buried avalanche victims: conclusions from 12 years of experience.

    PubMed

    Hohlrieder, Matthias; Thaler, Stephanie; Wuertl, Walter; Voelckel, Wolfgang; Ulmer, Hanno; Brugger, Hermann; Mair, Peter

    2008-01-01

    The planning and execution of avalanche rescue missions to search for totally buried avalanche victims are mostly based on personal experience and preference, as evidence-based information from literature is almost completely missing. Hence, the aim of this study was to identify major factors determining the survival probability of totally buried victims during avalanche rescue missions carried out by organized rescue teams (Austrian Mountain Rescue Service, Tyrol). During the 12-year period studied, 109 totally buried persons (56 off-piste, 53 backcountry), were rescued or recovered; 18.3% survived to hospital discharge. Median depth of burial was 1.25 m; median duration of burial was 85 min. The majority (61.6%) of the rescue missions were conducted under considerably dangerous avalanche conditions. The probability of survival was highest when located visually and lowest for those located by avalanche transceiver; survival did not significantly differ between those found by rescue dogs and those located with avalanche probes. Multivariate analysis revealed short duration of burial and off-piste terrain to be the two independent predictors of survival. Whenever companion rescue fails, snow burial in an avalanche is associated with extraordinarily high mortality. Searching the avalanche debris with probe lines seems to be equally effective as compared to searching with rescue dogs. The potential hazard for rescuers during avalanche rescue missions comes mainly from self-triggered avalanches, hence thorough mission planning and critical risk-benefit assessment are of utmost importance for risk reduction.

  18. Application of LANDSAT data to delimitation of avalanche hazards in Montane Colorado

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Many avalanche hazard zones can be identified on LANDSAT imagery, but not consistently over a large region. Therefore, regional avalanche hazard mapping, using LANDSAT imagery, must draw on additional sources of information. A method was devised that depicts three levels of avalanche hazards according to three corresponding levels of certainty that active avalanches occur. The lowest level, potential avalanche hazards, was defined by delineating slopes steep enough to support avalanches at elevations where snowfall was likely to be sufficient to produce a thick snowpack. The intermediate level of avalanche hazard was interpreted as avalanche hazard zones. These zones have direct and indirect indicators of active avalanche activity and were interpreted from LANDSAT imagery. The highest level of known or active avalanche hazards was compiled from existing maps. Some landslides in Colorado were identified and, to a degree, delimited on LANDSAT imagery, but the conditions of their identification were highly variable. Because of local topographic, geologic, structural, and vegetational variations, there was no unique landslide spectral appearance.

  19. A method for automated snow avalanche debris detection through use of synthetic aperture radar (SAR) imaging

    NASA Astrophysics Data System (ADS)

    Vickers, H.; Eckerstorfer, M.; Malnes, E.; Larsen, Y.; Hindberg, H.

    2016-11-01

    Avalanches are a natural hazard that occur in mountainous regions of Troms County in northern Norway during winter and can cause loss of human life and damage to infrastructure. Knowledge of when and where they occur especially in remote, high mountain areas is often lacking due to difficult access. However, complete, spatiotemporal avalanche activity data sets are important for accurate avalanche forecasting, as well as for deeper understanding of the link between avalanche occurrences and the triggering snowpack and meteorological factors. It is therefore desirable to develop a technique that enables active mapping and monitoring of avalanches over an entire winter. Avalanche debris can be observed remotely over large spatial areas, under all weather and light conditions by synthetic aperture radar (SAR) satellites. The recently launched Sentinel-1A satellite acquires SAR images covering the entire Troms County with frequent updates. By focusing on a case study from New Year 2015 we use Sentinel-1A images to develop an automated avalanche debris detection algorithm that utilizes change detection and unsupervised object classification methods. We compare our results with manually identified avalanche debris and field-based images to quantify the algorithm accuracy. Our results indicate that a correct detection rate of over 60% can be achieved, which is sensitive to several algorithm parameters that may need revising. With further development and refinement of the algorithm, we believe that this method could play an effective role in future operational monitoring of avalanches within Troms and has potential application in avalanche forecasting areas worldwide.

  20. Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Titov, Maxim

    Since long time, the compelling scientific goals of future high-energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements - the Multi-Wire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel prize in physics in 1992. Since that time radiation detection and imaging with fast gaseous detectors, capable of economically covering large detection volumes with low mass budget, have been playing an important role in many fields of physics. Advances in photolithography and microprocessing techniques in the chip industry during the past decade triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell-size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the next generation of colliders. The design of the new micro-pattern devices appears suitable for industrial production. Novel structures where MPGDs are directly coupled to the CMOS pixel readout represent an exciting field allowing timing and charge measurements as well as precise spatial information in 3D. Originally developed for the high-energy physics, MPGD applications have expanded to nuclear physics, photon detection, astroparticle and neutrino physics, neutron detection, and medical imaging.

  1. Origin of the Avalanche-Like Photoluminescence from Metallic Nanowires

    PubMed Central

    Ma, Zongwei; Yu, Ying; Shen, Shaoxin; Dai, Hongwei; Yao, Linhua; Han, Yibo; Wang, Xia; Han, Jun-Bo; Li, Liang

    2016-01-01

    Surface plasmonic systems provide extremely efficient ways to modulate light-matter interaction in photon emission, light harvesting, energy conversion and transferring, etc. Various surface plasmon enhanced luminescent behaviors have been observed and investigated in these systems. But the origin of an avalanche-like photoluminescence, which was firstly reported in 2007 from Au and subsequently from Ag nanowire arrays/monomers, is still not clear. Here we show, based on systematic investigations including the excitation power/time related photoluminescent measurements as well as calculations, that this avalanche-like photoluminescence is in fact a result of surface plasmon assisted thermal radiation. Nearly all of the related observations could be perfectly interpreted with this concept. Our finding is crucial for understanding the surface plasmon mediated thermal and photoemission behaviors in plasmonic structures, which is of great importance in designing functional plasmonic devices. PMID:26728439

  2. Magnetic avalanches in granular ferromagnets: thermal activated collective behavior

    NASA Astrophysics Data System (ADS)

    Chern, Gia-Wei

    2017-02-01

    We present a numerical study on the thermal activated avalanche dynamics in granular materials composed of ferromagnetic clusters embedded in a non-magnetic matrix. A microscopic dynamical simulation based on the reaction-diffusion process is developed to model the magnetization process of such systems. The large-scale simulations presented here explicitly demonstrate inter-granular collective behavior induced by thermal activation of spin tunneling. In particular, we observe an intriguing criticality controlled by the rate of energy dissipation. We show that thermal activated avalanches can be understood in the framework of continuum percolation and the emergent dissipation induced criticality is in the universality class of 3D percolation transition. Implications of these results to the phase-separated states of colossal magnetoresistance materials and other artificial granular magnetic systems are also discussed.

  3. Weathering processes implied from analysis of small Martian avalanche chutes

    NASA Technical Reports Server (NTRS)

    Sullivan, R.

    1992-01-01

    It has been proposed that the smaller features of martian spur and gully slope morphology, located along the upper walls of Valles Marineris, are avalanche chutes. A three-dimensional stability back-analysis technique was developed and applied to these small avalanche chutes, yielding average values of cohesion and angle of internal friction for the mobile layer materials on these slopes at the time of each slope failure. Generally, the analysis showed that at the time of each slope failure material strengths had been reduced to those of moderately cohesive debris down through depths of tens of meters. These results have implications and possible constraints for the nature and rate of martian weathering processes.

  4. Controllable morphology of flux avalanches in microstructured superconductors

    NASA Astrophysics Data System (ADS)

    Motta, M.; Colauto, F.; Vestgârden, J. I.; Fritzsche, J.; Timmermans, M.; Cuppens, J.; Attanasio, C.; Cirillo, C.; Moshchalkov, V. V.; Van de Vondel, J.; Johansen, T. H.; Ortiz, W. A.; Silhanek, A. V.

    2014-04-01

    The morphology of abrupt bursts of magnetic flux into superconducting films with engineered periodic pinning centers (antidots) has been investigated. Guided flux avalanches of thermomagnetic origin develop a treelike structure, with the main trunk perpendicular to the borders of the sample, while secondary branches follow well-defined directions determined by the geometrical details of the underlying periodic pinning landscape. Strikingly, we demonstrate that in a superconductor with relatively weak random pinning the morphology of such flux avalanches can be fully controlled by proper combinations of lattice symmetry and antidot geometry. Moreover, the resulting flux patterns can be reproduced, to the finest details, by simulations based on a phenomenological thermomagnetic model. In turn, this model can be used to predict such complex structures and to estimate physical variables of more difficult experimental access, such as the local values of temperature and electric field.

  5. Magnetic avalanches in granular ferromagnets: thermal activated collective behavior.

    PubMed

    Chern, Gia-Wei

    2017-02-01

    We present a numerical study on the thermal activated avalanche dynamics in granular materials composed of ferromagnetic clusters embedded in a non-magnetic matrix. A microscopic dynamical simulation based on the reaction-diffusion process is developed to model the magnetization process of such systems. The large-scale simulations presented here explicitly demonstrate inter-granular collective behavior induced by thermal activation of spin tunneling. In particular, we observe an intriguing criticality controlled by the rate of energy dissipation. We show that thermal activated avalanches can be understood in the framework of continuum percolation and the emergent dissipation induced criticality is in the universality class of 3D percolation transition. Implications of these results to the phase-separated states of colossal magnetoresistance materials and other artificial granular magnetic systems are also discussed.

  6. Macroscopic control parameter for avalanche models for bursty transport

    SciTech Connect

    Chapman, S. C.; Rowlands, G.; Watkins, N. W.

    2009-01-15

    Similarity analysis is used to identify the control parameter R{sub A} for the subset of avalanching systems that can exhibit self-organized criticality (SOC). This parameter expresses the ratio of driving to dissipation. The transition to SOC, when the number of excited degrees of freedom is maximal, is found to occur when R{sub A}{yields}0. This is in the opposite sense to (Kolmogorov) turbulence, thus identifying a deep distinction between turbulence and SOC and suggesting an observable property that could distinguish them. A corollary of this similarity analysis is that SOC phenomenology, that is, power law scaling of avalanches, can persist for finite R{sub A} with the same R{sub A}{yields}0 exponent if the system supports a sufficiently large range of lengthscales, necessary for SOC to be a candidate for physical (R{sub A} finite) systems.

  7. Stability of the discretization of the electron avalanche phenomenon

    SciTech Connect

    Villa, Andrea; Barbieri, Luca; Gondola, Marco; Leon-Garzon, Andres R.; Malgesini, Roberto

    2015-09-01

    The numerical simulation of the discharge inception is an active field of applied physics with many industrial applications. In this work we focus on the drift-reaction equation that describes the electron avalanche. This phenomenon is one of the basic building blocks of the streamer model. The main difficulty of the electron avalanche equation lies in the fact that the reaction term is positive when a high electric field is applied. It leads to exponentially growing solutions and this has a major impact on the behavior of numerical schemes. We analyze the stability of a reference finite volume scheme applied to this latter problem. The stability of the method may impose a strict mesh spacing, therefore a proper stabilized scheme, which is stable whatever spacing is used, has been developed. The convergence of the scheme is treated as well as some numerical experiments.

  8. Ray optics behavior of flux avalanche propagation in superconducting films

    NASA Astrophysics Data System (ADS)

    Mikheenko, P.; Johansen, T. H.; Chaudhuri, S.; Maasilta, I. J.; Galperin, Y. M.

    2015-02-01

    Experimental evidence of wave properties of dendritic flux avalanches in superconducting films is reported. Using magneto-optical imaging the propagation of dendrites across boundaries between a bare NbN film and areas coated by a Cu layer was visualized, and it was found that the propagation is refracted in full quantitative agreement with Snell's law. For the studied film of 170 nm thickness and a 0.9 μ m thick metal layer, the refractive index was close to n =1.4 . The origin of the refraction is believed to be caused by the dendrites propagating as an electromagnetic shock wave, similar to damped modes considered previously for normal metals. The analogy is justified by the large dissipation during the avalanches raising the local temperature significantly. Additional time-resolved measurements of voltage pulses generated by segments of the dendrites traversing an electrode confirm the consistency of the adopted physical picture.

  9. Robust Quantum Random Number Generator Based on Avalanche Photodiodes

    NASA Astrophysics Data System (ADS)

    Wang, Fang-Xiang; Wang, Chao; Chen, Wei; Wang, Shuang; Lv, Fu-Sheng; He, De-Yong; Yin, Zhen-Qiang; Li, Hong-Wei; Guo, Guang-Can; Han, Zheng-Fu

    2015-08-01

    We propose and demonstrate a scheme to realize a high-efficiency truly quantum random number generator (RNG) at room temperature (RT). Using an effective extractor with simple time bin encoding method, the avalanche pulses of avalanche photodiode (APD) are converted into high-quality random numbers (RNs) that are robust to slow varying noise such as fluctuations of pulse intensity and temperature. A light source is compatible but not necessary in this scheme. Therefor the robustness of the system is effective enhanced. The random bits generation rate of this proof-of-principle system is 0.69 Mbps with double APDs and 0.34 Mbps with single APD. The results indicate that a high-speed RNG chip based on the scheme is potentially available with an integrable APD array.

  10. Bias-dependent timing jitter of 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Zhu, Ge; Zheng, Fu; Wang, Chao; Sun, Zhibin; Zhai, Guangjie; Zhao, Qing

    2016-11-01

    We characterized the dependence of the timing jitter of an InGaAs/InP single-photon avalanche diode on the excess bias voltage (V ex) when operated in 1-GHz sinusoidally gated mode. The single-photon avalanche diode was cooled to -30 degrees Celsius. When the V ex is too low (0.2 V-0.8 V) or too high (3 V-4.2 V), the timing jitter is increased with the V ex, particularly at high V ex. While at middle V ex (1 V-2.8 V), the timing jitter is reduced. Measurements of the timing jitter of the same avalanche diode with pulsed gating show that this effect is likely related to the increase of both the amplitude of the V ex and the width of the gate-on time. For the 1-GHz sinusoidally gated detector, the best jitter of 93 ps is achieved with a photon detection efficiency of 21.4% and a dark count rate of ˜2.08×10-5 per gate at the V ex of 2.8 V. To evaluate the whole performance of the detector, we calculated the noise equivalent power (NEP) and the afterpulse probability (P ap). It is found that both NEP and P ap increase quickly when the V ex is above 2.8 V. At 2.8-V V ex, the NEP and P ap are ˜2.06×10-16 W/Hz1/2 and 7.11%, respectively. Therefore, the detector should be operated with V ex of 2.8 V to exploit the fast time response, low NEP and low P ap. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275024, 61274024, and 61474123), the Youth Innovation Promotion Association, China (Grant No. 2013105), and the Ministry of Science and Technology of China (Grant Nos. 2013YQ030595-3 and 2011AA120101).

  11. Ultra-fast silicon detectors (UFSD)

    NASA Astrophysics Data System (ADS)

    Sadrozinski, H. F.-W.; Anker, A.; Chen, J.; Fadeyev, V.; Freeman, P.; Galloway, Z.; Gruey, B.; Grabas, H.; John, C.; Liang, Z.; Losakul, R.; Mak, S. N.; Ng, C. W.; Seiden, A.; Woods, N.; Zatserklyaniy, A.; Baldassarri, B.; Cartiglia, N.; Cenna, F.; Ferrero, M.; Pellegrini, G.; Hidalgo, S.; Baselga, M.; Carulla, M.; Fernandez-Martinez, P.; Flores, D.; Merlos, A.; Quirion, D.; Mikuž, M.; Kramberger, G.; Cindro, V.; Mandić, I.; Zavrtanik, M.

    2016-09-01

    We report on measurements on Ultra-Fast Silicon Detectors (UFSD) which are based on Low-Gain Avalanche Detectors (LGAD). They are n-on-p sensors with internal charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction, obtained with a highly doped implant. We have performed several beam tests with LGAD of different gain and report the measured timing resolution, comparing it with laser injection and simulations. For the 300 μm thick LGAD, the timing resolution measured at test beams is 120 ps while it is 57 ps for IR laser, in agreement with simulations using Weightfield2. For the development of thin sensors and their readout electronics, we focused on the understanding of the pulse shapes and point out the pivotal role the sensor capacitance plays.

  12. Receiver characteristics of laser altimeters with avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic M.; Boutsikaris, Leo; Abshire, James B.

    1992-01-01

    The receiver characteristics of a laser altimeter system containing an avalanche photodiode photodetector are analyzed using the Gaussian approximation, the saddle-point approximation, and a nearly exact analysis. The last two methods are shown to yield very similar results except when the background noise is extremely low and the probability of false alarm is high. However, the Gaussian approximation method is shown to cause significant errors even under relatively high levels of background noise and received signal energy.

  13. A micropixel avalanche phototransistor for time of flight measurements

    NASA Astrophysics Data System (ADS)

    Sadigov, A.; Suleymanov, S.; Ahmadov, F.; Ahmadov, G.; Abdullayev, K.; Akberov, R.; Heydarov, N.; Madatov, R.; Mukhtarov, R.; Nazarov, M.; Valiyev, R.

    2017-02-01

    This paper presents results of studies of the silicon based new micropixel avalanche phototransistor (MAPT). MAPT is a modification of well-known silicon photomultipliers (SiPMs) and differs since each photosensitive pixel of the MAPT operates in Geiger mode and comprises an individual micro-transistor operating in binary mode. This provides a high amplitude single photoelectron signal with significantly shorter rise time. The obtained results are compared with appropriate parameters of known SiPMs.

  14. Geiger-mode avalanche photodiodes, history, properties and problems

    NASA Astrophysics Data System (ADS)

    Renker, D.

    2006-11-01

    Geiger-mode avalanche photodiodes (G-APDs) have been developed during recent years and promise to be an alternative to photomultiplier tubes. They have many advantages like single photon response, high detection efficiency, high gain at low bias voltage and very good timing properties but some of their properties, the dark count rate for example, can be a problem. Several types of G-APDs are on the market and should be selected carefully for a given application.

  15. Flux avalanches in superconducting films with periodic arrays of holes.

    SciTech Connect

    Vlasko-Vlasov, V.; Welp, U.; Metlushko, V.; Crabtree, G. W.; Materials Science Division; Inst. of Solid State Physics RAS

    2000-01-01

    The magnetic flux dynamics in Nb films with periodic hole arrays is studied magneto-optically. Flux motion in the shape of microavalanches along {l_brace}100{r_brace} and {l_brace}110{r_brace} directions of the hole lattice is observed. At lower temperatures anisotropic large scale thermo-magnetic avalanches dominate flux entry and exit. At T-T{sub c} critical-state-like field patterns periodically appear at fractions of the matching field.

  16. Custom single-photon avalanche diode with integrated front-end for parallel photon timing applications.

    PubMed

    Cammi, C; Panzeri, F; Gulinatti, A; Rech, I; Ghioni, M

    2012-03-01

    Emerged as a solid state alternative to photo multiplier tubes (PMTs), single-photon avalanche diodes (SPADs) are nowadays widely used in the field of single-photon timing applications. Custom technology SPADs assure remarkable performance, in particular a 10 counts/s dark count rate (DCR) at low temperature, a high photon detection efficiency (PDE) with a 50% peak at 550 nm and a 30 ps (full width at half maximum, FWHM) temporal resolution, even with large area devices, have been obtained. Over the past few years, the birth of novel techniques of analysis has led to the parallelization of the measurement systems and to a consequent increasing demand for the development of monolithic arrays of detectors. Unfortunately, the implementation of a multidimensional system is a challenging task from the electrical point of view; in particular, the avalanche current pick-up circuit, used to obtain the previously reported performance, has to be modified in order to enable high parallel temporal resolution, while minimizing the electrical crosstalk probability between channels. In the past, the problem has been solved by integrating the front-end electronics next to the photodetector, in order to reduce the parasitic capacitances and consequently the filtering action on the current signal of the SPAD, leading to an improvement of the timing jitter at higher threshold. This solution has been implemented by using standard complementary metal-oxide-semiconductor (CMOS) technologies, which, however, do not allow a complete control on the SPAD structure; for this reason the intrinsic performance of CMOS SPADs, such as DCR, PDE, and afterpulsing probability, are worse than those attainable with custom detectors. In this paper, we propose a pixel architecture, which enables the development of custom SPAD arrays in which every channel maintains the performance of the best single photodetector. The system relies on the integration of the timing signal pick-up circuit next to the

  17. Debris Avalanche Formation at Kick'em Jenny Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Sigurdsson, H.; Carey, S. N.; Wilson, D.

    2005-12-01

    Kick'em Jenny submarine volcano near Grenada is the most active volcanic center in the Lesser Antilles arc. Multibeam surveys of the volcano by NOAA in 2002 revealed an arcuate fault scarp east of the active cone, suggesting flank collapse. More extensive NOAA surveys in 2003 demonstrated the presence of an associated debris avalanche deposit, judging from their surface morphologic expression on the sea floor, extending at least 15 km and possibly as much as 30 km from the volcano, into the Grenada Basin to the west. Seismic air-gun profiles of the region show that these are lobate deposits, that range in thickness from tens to hundreds of meters. The debris avalanche deposit is contained within two marginal levees, that extend symmetrically from the volcano to the west. A conservative estimate of the volume of the smaller debris avalanche deposit is about 10 km3. Age dating of the deposits and the flank failure events is in progress, by analysis of gravity cores collected during the 2003 survey. Reconstruction of the pre-collapse volcanic edifice suggests that the ancestral Kick'em Jenny volcano might have been at or above sea level. Kick'em Jenny is dominantly supplied by basalt to basaltic andesite magmas, that are extruded now as submarine pillow lavas and domes or ejected as tephra in relatively minor phreatomagmatic explosions. Geochemical evolution of this volcano has not, however, reached the stage of generation of volatile-rich silicic magmas that might form highly explosive eruptions.

  18. Solar flares and avalanches in driven dissipative systems

    NASA Technical Reports Server (NTRS)

    Lu, Edward T.; Hamilton, Russell J.; Mctiernan, J. M.; Bromund, Kenneth R.

    1993-01-01

    The contention of Lu and Hamilton (1991) that the energy release process in solar flares can be understood as avalanches of many small reconnection events is further developed. The dynamics of the complex magnetized plasma of solar active regions is modeled with a simple driven dissipative system, consisting of a vector field with local instabilities that cause rapid diffusion of the field. It is argued that the avalanches in this model are analogous to solar flares. The distributions of avalanches in this model are compared with the solar flare frequency distributions obtained from ISEE 3/ICE satellite observations. Quantitative agreement is found with the energy, peak luminosity, and duration distributions over four orders of magnitude in flare energy, from the largest flares down to the completeness limit of the observations. It is predicted that the power-law solar flare frequency distributions will be found to continue downward with the same logarithmic slopes to an energy of about 3 x 10 exp 25 ergs and duration of about 0.3 s, with deviations from power-law behavior below these values.

  19. AN MHD AVALANCHE IN A MULTI-THREADED CORONAL LOOP

    SciTech Connect

    Hood, A. W.; Cargill, P. J.; Tam, K. V.; Browning, P. K.

    2016-01-20

    For the first time, we demonstrate how an MHD avalanche might occur in a multithreaded coronal loop. Considering 23 non-potential magnetic threads within a loop, we use 3D MHD simulations to show that only one thread needs to be unstable in order to start an avalanche even when the others are below marginal stability. This has significant implications for coronal heating in that it provides for energy dissipation with a trigger mechanism. The instability of the unstable thread follows the evolution determined in many earlier investigations. However, once one stable thread is disrupted, it coalesces with a neighboring thread and this process disrupts other nearby threads. Coalescence with these disrupted threads then occurs leading to the disruption of yet more threads as the avalanche develops. Magnetic energy is released in discrete bursts as the surrounding stable threads are disrupted. The volume integrated heating, as a function of time, shows short spikes suggesting that the temporal form of the heating is more like that of nanoflares than of constant heating.

  20. Particle-size segregation in dense granular avalanches

    NASA Astrophysics Data System (ADS)

    Gray, John Mark Nicholas Timm; Gajjar, Parmesh; Kokelaar, Peter

    2015-01-01

    Particles of differing sizes are notoriously prone to segregate, which is a chronic problem in the manufacture of a wide variety of products that are used by billions of people worldwide every day. Segregation is the single most important factor in product non-uniformity, which can lead to significant handling problems as well as complete batches being discarded at huge financial loss. It is generally regarded that the most important mechanism for segregation is the combination of kinetic sieving and squeeze expulsion in shallow granular avalanches. These free-surface flows are more common than one might expect, often forming part of more complicated flows in drums, heaps and silos, where there is mass exchange with underlying regions of static or slowly moving grains. The combination of segregation and solid-fluid granular phase transitions creates incredibly complicated and beautiful patterns in the resulting deposits, but a full understanding of such effects lies beyond our capabilities at present. This paper reviews recent advances in our ability to model the basic segregation processes in a single avalanche (without mass exchange) and the subtle feedback effects that they can have on the bulk flow. This is particularly important for geophysical applications, where segregation can spontaneously self-channelize and lubricate the flow, significantly enhancing the run-out of debris-flows, pyroclastic flows, rock-falls and snow-slab avalanches.

  1. The transitional behaviour of avalanches in cohesive granular materials

    NASA Astrophysics Data System (ADS)

    Quintanilla, M. A. S.; Valverde, J. M.; Castellanos, A.

    2006-07-01

    We present a statistical analysis of avalanches of granular materials that partially fill a slowly rotated horizontal drum. For large sized noncohesive grains the classical coherent oscillation is reproduced, consisting of a quasi-periodic succession of regularly sized avalanches. As the powder cohesiveness is increased by decreasing the particle size, we observe a gradual crossover to a complex dynamics that resembles the transitional behaviour observed in fusion plasmas. For particle size below ~50 µm, avalanches lose a characteristic size, retain a short term memory and turn gradually decorrelated in the long term as described by a Markov process. In contrast, large grains made cohesive by coating them with adhesive microparticles display a distinct phenomenology, characterized by a quasi-regular succession of well defined small precursors and large relaxation events. The transition from a one-peaked distribution (noncohesive large beads) to a flattened distribution (fine cohesive beads) passing through the two-peaked distribution of cohesive large beads had already been predicted using a coupled-map lattice model, as the relaxation mechanism of grain reorganization becomes dominant to the detriment of inertia.

  2. Modeling and Scaling of the Distribution of Trade Avalanches in a STOCK Market

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Joo

    We study the trading activity in the Korea Stock Exchange by considering trade avalanches. A series of successive trading with small trade time interval is regarded as a trade avalanche of which the size s is defined as the number of trade in a series of successive trades. We measure the distribution of trade avalanches sizes P(s) and find that it follows the power-law behavior P(s) ~ s-α with the exponent α ≈ 2 for two stocks with the largest number of trades. A simple stochastic model which describes the power-law behavior of the distribution of trade avalanche size is introduced. In the model it is assumed that the some trades induce the accompanying trades, which results in the trade avalanches and we find that the distribution of the trade avalanche size also follows power-law behavior with the exponent α ≈ 2.

  3. MS Detectors

    SciTech Connect

    Koppenaal, David W.; Barinaga, Charles J.; Denton, M Bonner B.; Sperline, Roger P.; Hieftje, Gary M.; Schilling, G. D.; Andrade, Francisco J.; Barnes IV., James H.

    2005-11-01

    Good eyesight is often taken for granted, a situation that everyone appreciates once vision begins to fade with age. New eyeglasses or contact lenses are traditional ways to improve vision, but recent new technology, i.e. LASIK laser eye surgery, provides a new and exciting means for marked vision restoration and improvement. In mass spectrometry, detectors are the 'eyes' of the MS instrument. These 'eyes' have also been taken for granted. New detectors and new technologies are likewise needed to correct, improve, and extend ion detection and hence, our 'chemical vision'. The purpose of this report is to review and assess current MS detector technology and to provide a glimpse towards future detector technologies. It is hoped that the report will also serve to motivate interest, prompt ideas, and inspire new visions for ion detection research.

  4. Four channel Cosmic Ray detector based on polymaq

    NASA Astrophysics Data System (ADS)

    Herrera-Guzman, K. N.; Gutierrez-Sanchez, R. A.; Felix, J.

    2017-01-01

    The Cherenkov radiation has been widely studied in transparent materials, and applied to detect and identify elementary particles. But it has not been widely studied in opaque materials. A four channels radiation detector has been designed, built, characterized, and operated; based on four polymaq (UHMW-PE) bars of 2.54 cm X 5.08 cm X 25.4 cm, which is an opaque material to visible radiation to the human eye. Silicon photo detectors, Hamamatsu, avalanche type (APD) are used to detect the radiation produced by the passage of particles in the detector blocks. The design, construction, characterization, operation, and preliminary results of this cosmic ray detector details are presented.

  5. Thermal blinding of gated detectors in quantum cryptography.

    PubMed

    Lydersen, Lars; Wiechers, Carlos; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim

    2010-12-20

    It has previously been shown that the gated detectors of two commercially available quantum key distribution (QKD) systems are blindable and controllable by an eavesdropper using continuous-wave illumination and short bright trigger pulses, manipulating voltages in the circuit [Nat. Photonics 4, 686 (2010)]. This allows for an attack eavesdropping the full raw and secret key without increasing the quantum bit error rate (QBER). Here we show how thermal effects in detectors under bright illumination can lead to the same outcome. We demonstrate that the detectors in a commercial QKD system Clavis2 can be blinded by heating the avalanche photo diodes (APDs) using bright illumination, so-called thermal blinding. Further, the detectors can be triggered using short bright pulses once they are blind. For systems with pauses between packet transmission such as the plug-and-play systems, thermal inertia enables Eve to apply the bright blinding illumination before eavesdropping, making her more difficult to catch.

  6. Recent technological developments on LGAD and iLGAD detectors for tracking and timing applications

    NASA Astrophysics Data System (ADS)

    Pellegrini, G.; Baselga, M.; Carulla, M.; Fadeyev, V.; Fernández-Martínez, P.; García, M. Fernández; Flores, D.; Galloway, Z.; Gallrapp, C.; Hidalgo, S.; Liang, Z.; Merlos, A.; Moll, M.; Quirion, D.; Sadrozinski, H.; Stricker, M.; Vila, I.

    2016-09-01

    This paper reports the latest technological development on the Low Gain Avalanche Detector (LGAD) and introduces a new architecture of these detectors called inverse-LGAD (iLGAD). Both approaches are based on the standard Avalanche Photo Diodes (APD) concept, commonly used in optical and X-ray detection applications, including an internal multiplication of the charge generated by radiation. The multiplication is inherent to the basic n++-p+-p structure, where the doping profile of the p+ layer is optimized to achieve high field and high impact ionization at the junction. The LGAD structures are optimized for applications such as tracking or timing detectors for high energy physics experiments or medical applications where time resolution lower than 30 ps is required. Detailed TCAD device simulations together with the electrical and charge collection measurements are presented through this work.

  7. Design of near-infrared single photon detector at 1550nm wavelength

    NASA Astrophysics Data System (ADS)

    Gao, Jiali

    2016-09-01

    Technology of near-infrared single photon detection is used in quantum communication, laser ranging and weak light detection. Present single photon detectors are usually expensive and bulky. To overcome their disadvantages, a hand-held single photon detector based on InGaAs/InP avalanche photo diode (APD) is developed. A circuit program for temperature control and bias voltage is offered. The gating signal is generated and the avalanche signal is extracted by FPGA. Experiment results show that, the single photon detector yields only 8.2×10-6/ns dark count rate (DCR) when photon detection efficiency is 12%, and the maximum photon detection efficiency of 16% is obtained at temperature of -55°C.

  8. Development of analog solid-state photo-detectors for Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Bisogni, Maria Giuseppina; Morrocchi, Matteo

    2016-02-01

    Solid-state photo-detectors are one of the main innovations of past century in the field of sensors. First produced in the early forties with the invention of the p-n junction in silicon and the study of its optical properties, photo-detectors received a major boost in the sixties when the p-i-n (PIN) photodiode was developed and successfully used in several applications. The development of devices with internal gain, avalanche photodiodes (APD) first and then Geiger-mode avalanche photodiodes, named single photon avalanche diode (SPAD), leads to a substantial improvement in sensitivity and allowed single photon detection. Later on, thousands of SPADs have been assembled in arrays of few millimeters squared (named SiPM, silicon photo-multiplier) with single photon resolution. The high internal gain of SiPMs, together with other features peculiar of the silicon technology like compactness, speed and compatibility with magnetic fields, promoted SiPMs as the principal photo-detector competitor of photomultipliers in many applications from radiation detection to medical imaging. This paper provides a review of the properties of analog solid-state photo-detectors. Particular emphasis is given to latest advances on Positron Emission Tomography instrumentation boosted by the adoption of the silicon photo-detectors as an alternative to photomultiplier tubes (PMTs). Special attention is dedicated to the SiPMs, which are playing a key role in the development of innovative scanners.

  9. Automated detection of snow avalanche deposits: segmentation and classification of optical remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Lato, M. J.; Frauenfelder, R.; Bühler, Y.

    2012-09-01

    Snow avalanches in mountainous areas pose a significant threat to infrastructure (roads, railways, energy transmission corridors), personal property (homes) and recreational areas as well as for lives of people living and moving in alpine terrain. The impacts of snow avalanches range from delays and financial loss through road and railway closures, destruction of property and infrastructure, to loss of life. Avalanche warnings today are mainly based on meteorological information, snow pack information, field observations, historically recorded avalanche events as well as experience and expert knowledge. The ability to automatically identify snow avalanches using Very High Resolution (VHR) optical remote sensing imagery has the potential to assist in the development of accurate, spatially widespread, detailed maps of zones prone to avalanches as well as to build up data bases of past avalanche events in poorly accessible regions. This would provide decision makers with improved knowledge of the frequency and size distributions of avalanches in such areas. We used an object-oriented image interpretation approach, which employs segmentation and classification methodologies, to detect recent snow avalanche deposits within VHR panchromatic optical remote sensing imagery. This produces avalanche deposit maps, which can be integrated with other spatial mapping and terrain data. The object-oriented approach has been tested and validated against manually generated maps in which avalanches are visually recognized and digitized. The accuracy (both users and producers) are over 0.9 with errors of commission less than 0.05. Future research is directed to widespread testing of the algorithm on data generated by various sensors and improvement of the algorithm in high noise regions as well as the mapping of avalanche paths alongside their deposits.

  10. Statistical Evaluation of Waveform Collapse Reveals Scale-Free Properties of Neuronal Avalanches

    PubMed Central

    Shaukat, Aleena; Thivierge, Jean-Philippe

    2016-01-01

    Neural avalanches are a prominent form of brain activity characterized by network-wide bursts whose statistics follow a power-law distribution with a slope near 3/2. Recent work suggests that avalanches of different durations can be rescaled and thus collapsed together. This collapse mirrors work in statistical physics where it is proposed to form a signature of systems evolving in a critical state. However, no rigorous statistical test has been proposed to examine the degree to which neuronal avalanches collapse together. Here, we describe a statistical test based on functional data analysis, where raw avalanches are first smoothed with a Fourier basis, then rescaled using a time-warping function. Finally, an F ratio test combined with a bootstrap permutation is employed to determine if avalanches collapse together in a statistically reliable fashion. To illustrate this approach, we recorded avalanches from cortical cultures on multielectrode arrays as in previous work. Analyses show that avalanches of various durations can be collapsed together in a statistically robust fashion. However, a principal components analysis revealed that the offset of avalanches resulted in marked variance in the time-warping function, thus arguing for limitations to the strict fractal nature of avalanche dynamics. We compared these results with those obtained from cultures treated with an AMPA/NMDA receptor antagonist (APV/DNQX), which yield a power-law of avalanche durations with a slope greater than 3/2. When collapsed together, these avalanches showed marked misalignments both at onset and offset time-points. In sum, the proposed statistical evaluation suggests the presence of scale-free avalanche waveforms and constitutes an avenue for examining critical dynamics in neuronal systems. PMID:27092071

  11. Statistical Evaluation of Waveform Collapse Reveals Scale-Free Properties of Neuronal Avalanches.

    PubMed

    Shaukat, Aleena; Thivierge, Jean-Philippe

    2016-01-01

    Neural avalanches are a prominent form of brain activity characterized by network-wide bursts whose statistics follow a power-law distribution with a slope near 3/2. Recent work suggests that avalanches of different durations can be rescaled and thus collapsed together. This collapse mirrors work in statistical physics where it is proposed to form a signature of systems evolving in a critical state. However, no rigorous statistical test has been proposed to examine the degree to which neuronal avalanches collapse together. Here, we describe a statistical test based on functional data analysis, where raw avalanches are first smoothed with a Fourier basis, then rescaled using a time-warping function. Finally, an F ratio test combined with a bootstrap permutation is employed to determine if avalanches collapse together in a statistically reliable fashion. To illustrate this approach, we recorded avalanches from cortical cultures on multielectrode arrays as in previous work. Analyses show that avalanches of various durations can be collapsed together in a statistically robust fashion. However, a principal components analysis revealed that the offset of avalanches resulted in marked variance in the time-warping function, thus arguing for limitations to the strict fractal nature of avalanche dynamics. We compared these results with those obtained from cultures treated with an AMPA/NMDA receptor antagonist (APV/DNQX), which yield a power-law of avalanche durations with a slope greater than 3/2. When collapsed together, these avalanches showed marked misalignments both at onset and offset time-points. In sum, the proposed statistical evaluation suggests the presence of scale-free avalanche waveforms and constitutes an avenue for examining critical dynamics in neuronal systems.

  12. Analysis of scale-invariant slab avalanche size distributions

    NASA Astrophysics Data System (ADS)

    Faillettaz, J.; Louchet, F.; Grasso, J.-R.; Daudon, D.

    2003-04-01

    Scale invariance of snow avalanche sizes was reported for the first time in 2001 by Louchet et al. at the EGS conference, using both acoustic emission duration, and the surface of the crown step left at the top of the starting zone, where the former parameter characterises the size of the total avalanche flow, and the latter that of the starting zone. The present paper focuses on parameters of the second type, that are more directly related to precise release mechanisms, vz. the crown crack length L, the crown crack or slab depth H, the crown step surface HxL, the volume HxL^2 of the snow involved in the starting zone, and LxH^2 which is a measure of the stress concentration at the basal crack tip at failure. The analysis is performed on two data sets, from la Grande Plagne (GP) and Tignes (T) ski resorts. For both catalogs, cumulative distributions of L, H, HxL, HxL^2 and LxH^2 are shown to be roughly linear in a log-log plot. i.e. consistent with so-called scale invariant (or power law) distributions for both triggered and natural avalanches. Plateaus are observed at small sizes, and roll-offs at large sizes. The power law exponents for each of these quantities are roughly independent of the ski resort (GP or T) they come from. In contrast, exponents for natural events are significantly smaller than those for artificial ones. We analyse the possible reasons for the scale invariance of these quantities, for the possible "universality" of the exponents corresponding to a given triggering mode, and for the difference in exponents between triggered and natural events. The physical meaning of the observed roll-offs and plateaus is also discussed. The power law distributions analysed here provide the occurrence probability of an avalanche of a given (starting) volume in a given time period on a given area. A possible use of this type of distributions for snow avalanche hazard assessment is contemplated, as it is for earthquakes or rockfalls.

  13. The Tancitaro Debris Avalanche: Characterization, propagation and modeling

    NASA Astrophysics Data System (ADS)

    Morelli, Stefano; Monroy, Victor Hugo Garduño; Gigli, Giovanni; Falorni, Giacomo; Rocha, Eleazar Arreygue; Casagli, Nicola

    2010-06-01

    The Tancitaro volcano (3860 m) is an andesitic-dacitic stratovolcano located in the western portion of the Trans-Mexican Volcanic Belt within the state of Michoacán (Mexico). The tectonic activity of this area has likely contributed to a large sector collapse of the volcano. The first findings of a multidisciplinary investigation into this debris avalanche are presented here. Geomorphological analyses, based on the interpretation of orthophotos, satellite imagery and on GIS elaborations, had the objective of determining the main morphometric features of the landslide. The collapse structure is an east-facing horseshoe-shaped crater (4 km wide and 5.3 km long), while the deposit forms a large fan that is 66 km long, covers an area of approximately 1155 km 2 and has an estimated volume of 18 km 3. Event volume was established by reconstructing the paleo-edifice in a GIS and taking into account volumetric expansion. Cross sections measured in the field were also used for this purpose. Field investigations also highlighted the presence of two texturally distinct units, which are referred to as the "block facies" and the "matrix facies", respectively. The first is responsible for the typical hummock morphologies found in the proximal area. A transitional zone contains a "mixed block and matrix facies" while in the distal portion blocks and megablocks, some of which have a jigsaw puzzle texture, gradually decrease in size until they disappear entirely. A number of matrix samples were collected to conduct direct shear tests, granulometric analyses and classification of the materials. The data and analyses described above were used to discuss the mechanism controlling the long runout of the avalanche. Based on the comparison between the Tancitaro debris avalanche and similar events we propose that mechanical fluidization was the mechanism responsible for the remarkable mobility of the landslide. The predisposing factors leading to the collapse were also considered. Field

  14. Influence of weak layer heterogeneity on slab avalanche release. Application to the evaluation of avalanche release depths.

    NASA Astrophysics Data System (ADS)

    Gaume, J.; Chambon, G.; Eckert, N.; Naaim, M.

    2012-04-01

    Slab avalanches are generally caused by the collapse of a weak layer underlying a cohesive slab. The two key ingredients for the mechanical description of such slab avalanche releases are the heterogeneity of the weak layer and the redistribution of stresses via the elasticity of the slab. The finite element code Cast3M is used to build a complete full-scale mechanical model of the slab-weak layer system including inertial effects. The weak layer is modeled as a cohesive Mohr-Coulomb interface with cohesion softening which accounts for shear-induced collapse. The overlying slab is represented by an elastic layer. The system is loaded by increasing the slope angle until rupture. We first study the influence of a single weak spot in the weak layer in order to validate the model against analytical solutions. The interaction between two weak spots is also analyzed. The case of heterogeneous weak layers represented through Gaussian stochastic distributions of the cohesion with a spherical spatial covariance is then studied. Several simulations for different realizations of the heterogeneity of the weak layer are carried out and the influence of slab depth and heterogeneity correlation length on avalanche release angle distributions is examined. In particular a heterogeneity smoothing effect caused by slab elasticity and characterized by a typical length scale of the system is evidenced. Finally the model is coupled with extreme snowfall distributions belonging to the GEV class, which allows to recover with very good accuracy release depth distributions obtained from field data.

  15. Theory of suppressing avalanche process of carrier in short pulse laser irradiated dielectrics

    SciTech Connect

    Deng, H. X. E-mail: xtzu@uestc.edu.cn Zu, X. T. E-mail: xtzu@uestc.edu.cn Xiang, X.; Zheng, W. G.; Yuan, X. D.; Sun, K. E-mail: xtzu@uestc.edu.cn; Gao, F.

    2014-05-28

    A theory for controlling avalanche process of carrier during short pulse laser irradiation is proposed. We show that avalanche process of conduction band electrons (CBEs) is determined by the occupation number of phonons in dielectrics. The theory provides a way to suppress avalanche process and a direct judgment for the contribution of avalanche process and photon ionization process to the generation of CBEs. The obtained temperature dependent rate equation shows that the laser induced damage threshold of dielectrics, e.g., fused silica, increase nonlinearly with the decreases of temperature. Present theory predicts a new approach to improve the laser induced damage threshold of dielectrics.

  16. Snow Avalanche Disturbance Ecology: Examples From the San Juan Mountains, Colorado.

    NASA Astrophysics Data System (ADS)

    Simonson, S.; Fassnacht, S. R.

    2008-12-01

    We evaluated landscape ecology approaches to characterize snow avalanche paths based on patterns of plant species composition and evidence of disturbance. Historical records of avalanche incidents, patterns in the annual growth layers of woody plants, and distributions of plant species can be used to quantify and map the frequency and magnitude of snow slide events. Near Silverton, Colorado, a series of snow storms in January of 2005 resulted in many avalanche paths running full track at 30 and 100 year return frequency. Many avalanches cut fresh trimlines, widening their tracks by uprooting, stripping, and breaking mature trees. Powerful avalanches deposited massive piles of snow, rocks, and woody debris in their runout zones. We used cross-section discs and cores of representative downed trees to detect dendro-ecological signals of past snow avalanche disturbance. Avalanche signals included impact scars from the moving snow and associated wind blast, relative width of annual growth rings, and development of reaction wood in response to tilting. Initial measurements of plant diversity and disturbance along the elevation gradient of an avalanche path near Silverton indicate that avalanche activity influences patterns of forest cover, contributes to the high local plant species diversity, and provides opportunities for new seedling establishment.

  17. Avalanche dynamics of magnetic flux in a two-dimensional discrete superconductor

    SciTech Connect

    Ginzburg, S. L.; Nakin, A. V.; Savitskaya, N. E.

    2006-11-15

    The critical state of a two-dimensional discrete superconductor in an external magnetic field is studied. This state is found to be self-organized in the generalized sense, i.e., is a set of metastable states that transform to each other by means of avalanches. An avalanche is characterized by the penetration of a magnetic flux to the system. The sizes of the occurring avalanches, i.e., changes in the magnetic flux, exhibit the power-law distribution. It is also shown that the size of the avalanche occurring in the critical state and the external magnetic field causing its change are statistically independent quantities.

  18. Information processing occurs via critical avalanches in a model of the primary visual cortex

    NASA Astrophysics Data System (ADS)

    Bortolotto, G. S.; Girardi-Schappo, M.; Gonsalves, J. J.; Pinto, L. T.; Tragtenberg, M. H. R.

    2016-01-01

    We study a new biologically motivated model for the Macaque monkey primary visual cortex which presents power-law avalanches after a visual stimulus. The signal propagates through all the layers of the model via avalanches that depend on network structure and synaptic parameter. We identify four different avalanche profiles as a function of the excitatory postsynaptic potential. The avalanches follow a size-duration scaling relation and present critical exponents that match experiments. The structure of the network gives rise to a regime of two characteristic spatial scales, one of which vanishes in the thermodynamic limit.

  19. Photon detectors

    SciTech Connect

    Va`vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF{sub 2} windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission.

  20. Impact of silicide layer on single photon avalanche diodes in a 130 nm CMOS process

    NASA Astrophysics Data System (ADS)

    Cheng, Zeng; Palubiak, Darek; Zheng, Xiaoqing; Deen, M. Jamal; Peng, Hao

    2016-09-01

    Single photon avalanche diode (SPAD) is an attractive solid-state optical detector that offers ultra-high photon sensitivity (down to the single photon level), high speed (sub-nanosecond dead time) and good timing performance (less than 100 ps). In this work, the impact of the silicide layer on SPAD’s characteristics, including the breakdown voltage, dark count rate (DCR), after-pulsing probability and photon detection efficiency (PDE) is investigated. For this purpose, two sets of SPAD structures in a standard 130 nm complementary metal oxide semiconductor (CMOS) process are designed, fabricated, measured and compared. A factor of 4.5 (minimum) in DCR reduction, and 5 in PDE improvements are observed when the silicide layer is removed from the SPAD structure. However, the after-pulsing probability of the SPAD without silicide layer is two times higher than its counterpart with silicide. The reasons for these changes will be discussed.

  1. On the vulnerability of basic quantum key distribution protocols and three protocols stable to attack with 'blinding' of avalanche photodetectors

    SciTech Connect

    Molotkov, S. N.

    2012-05-15

    The fundamental quantum mechanics prohibitions on the measurability of quantum states allow secure key distribution between spatially remote users to be performed. Experimental and commercial implementations of quantum cryptography systems, however, use components that exist at the current technology level, in particular, one-photon avalanche photodetectors. These detectors are subject to the blinding effect. It was shown that all the known basic quantum key distribution protocols and systems based on them are vulnerable to attacks with blinding of photodetectors. In such attacks, an eavesdropper knows all the key transferred, does not produce errors at the reception side, and remains undetected. Three protocols of quantum key distribution stable toward such attacks are suggested. The security of keys and detection of eavesdropping attempts are guaranteed by the internal structure of protocols themselves rather than additional technical improvements.

  2. On the vulnerability of basic quantum key distribution protocols and three protocols stable to attack with "blinding" of avalanche photodetectors

    NASA Astrophysics Data System (ADS)

    Molotkov, S. N.

    2012-05-01

    The fundamental quantum mechanics prohibitions on the measurability of quantum states allow secure key distribution between spatially remote users to be performed. Experimental and commercial implementations of quantum cryptography systems, however, use components that exist at the current technology level, in particular, one-photon avalanche photodetectors. These detectors are subject to the blinding effect. It was shown that all the known basic quantum key distribution protocols and systems based on them are vulnerable to attacks with blinding of photodetectors. In such attacks, an eavesdropper knows all the key transferred, does not produce errors at the reception side, and remains undetected. Three protocols of quantum key distribution stable toward such attacks are suggested. The security of keys and detection of eavesdropping attempts are guaranteed by the internal structure of protocols themselves rather than additional technical improvements.

  3. Intruder Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The shadowy prowler is attempting a break-in, unaware that his presence has already been detected and reported by the device in the lower left corner of the photo. It is part of a three-element ntruder Detecti on System developed by NASA's Ames Research Center from technology acquired in the Apollo lunar exploration program. Apollo astronauts left behind on the moon small portable seismic (shock) detectors to record subsurface vibrations and transmit to Earth data on the moon's density and thickness. A similar seismic detector is the key component of the lntruder Detection System. Encased in a stainless steel tube, the detector is implanted in the ground outside the facility being protected-home, bank, industrial or other facilities. The vibration-sensing detector picks up the footstep of anyone within a preset range. The detector is connected by cable to the transmitter, which relays the warning to a portable radio receiver. The radio alerts plant guards or home occupants by emitting an audible tone burst for each footstep.

  4. Pyroelectric detectors

    NASA Technical Reports Server (NTRS)

    Haller, Eugene E.; Beeman, Jeffrey; Hansen, William L.; Hubbard, G. Scott; Mcmurray, Robert E., Jr.

    1990-01-01

    The multi-agency, long-term Global Change programs, and specifically NASA's Earth Observing system, will require some new and advanced photon detector technology which must be specifically tailored for long-term stability, broad spectral range, cooling constraints, and other parameters. Whereas MCT and GaAs alloy based photovoltaic detectors and detector arrays reach most impressive results to wavelengths as long as 12 microns when cooled to below 70 K, other materials, such as ferroelectrics and pyroelectrics, appear to offer special opportunities beyond 12 microns and above 70 K. These materials have found very broad use in a wide variety of room temperature applications. Little is known about these classes of materials at sub-room temperatures and no photon detector results have been reported. From the limited information available, researchers conclude that the room temperature values of D asterisk greater than or equal to 10(exp 9) cm Hz(exp 1/2)/W may be improved by one to two orders of magnitude upon cooling to temperatures around 70 K. Improvements of up to one order of magnitude appear feasible for temperatures achievable by passive cooling. The flat detector response over a wavelength range reaching from the visible to beyond 50 microns, which is an intrinsic advantage of bolometric devices, makes for easy calibration. The fact that these materials have been developed for reduced temperature applications makes ferro- and pyroelectric materials most attractive candidates for serious exploration.

  5. High-efficiency integrated readout circuit for single photon avalanche diode arrays in fluorescence lifetime imaging.

    PubMed

    Acconcia, G; Cominelli, A; Rech, I; Ghioni, M

    2016-11-01

    In recent years, lifetime measurements by means of the Time Correlated Single Photon Counting (TCSPC) technique have led to a significant breakthrough in medical and biological fields. Unfortunately, the many advantages of TCSPC-based approaches come along with the major drawback of a relatively long acquisition time. The exploitation of multiple channels in parallel could in principle mitigate this issue, and at the same time it opens the way to a multi-parameter analysis of the optical signals, e.g., as a function of wavelength or spatial coordinates. The TCSPC multichannel solutions proposed so far, though, suffer from a tradeoff between number of channels and performance, and the overall measurement speed has not been increased according to the number of channels, thus reducing the advantages of having a multichannel system. In this paper, we present a novel readout architecture for bi-dimensional, high-density Single Photon Avalanche Diode (SPAD) arrays, specifically designed to maximize the throughput of the whole system and able to guarantee an efficient use of resources. The core of the system is a routing logic that can provide a dynamic connection between a large number of SPAD detectors and a much lower number of high-performance acquisition channels. A key feature of our smart router is its ability to guarantee high efficiency under any operating condition.

  6. X-ray spectroscopy with silicon pin and avalanche photo diodes

    NASA Technical Reports Server (NTRS)

    Desai, U. D.

    1992-01-01

    Results of an evaluation of silicon P-Intrinsic-N (PIN) photodiodes and Avalanche Photodiodes (APD) for the direct detection of soft x rays from 1 to 20 keV and for the detection of scintillation light output from CsI(TI) for higher x ray energies (30 to 1000 keV) are presented. About one keV resolution was achieved at room temperature for both the PIN and APD detectors for soft x rays (1 to 20 keV). Commercially available, low power (18 mV), low noise, hybrid preamplifiers, were used. These photodiodes were also coupled to CsI(TI) scintillator and obtained about 6 resolution at 662 keV. The photodiode frequency response matches well with the emission spectrum of the CsI(TI) scintillator providing good spectral resolution and a higher signal than NaI(TI) when viewed by conventional photomultipliers. A PIN-CsI(TI) combination provides a low energy threshold of around 60 keV while for the APD-CsI(TI) it is 15 keV.

  7. Slot clock recovery in optical PPM communication systems with avalanche photodiode photodetectors

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli

    1989-01-01

    Slot timing recovery in a direct-detection optical PPM communication system can be achieved by processing the photodetector output waveform with a nonlinear device whose output forms the input to a phase-locked loop. The choice of a simple transition detector as the nonlinearity is shown to give satisfactory synchronization performance. The rms phase error of the recovered slot clock and the effect of slot timing jitter on the bit error probability were directly measured. The experimental system consisted of an AlGaAs laser diode (wavelength = 834 nm) and a silicon avalanche photodiode photodetector. The system used Q = 4 PPM signaling and operated at a source data rate of 25 Mbits/s. The mathematical model developed to compute the rms phase error of the recovered clock is shown to be in good agreement with results of actual measurements of phase errors. The use of the recovered slot clock in the receiver resulted in no significant degradation in receiver sensitivity compared to a system with perfect slot timing. The system achieved a bit error probability of 10 to the -6th at a received optical signal energy of 55 detected photons per information bit.

  8. High-efficiency integrated readout circuit for single photon avalanche diode arrays in fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Acconcia, G.; Cominelli, A.; Rech, I.; Ghioni, M.

    2016-11-01

    In recent years, lifetime measurements by means of the Time Correlated Single Photon Counting (TCSPC) technique have led to a significant breakthrough in medical and biological fields. Unfortunately, the many advantages of TCSPC-based approaches come along with the major drawback of a relatively long acquisition time. The exploitation of multiple channels in parallel could in principle mitigate this issue, and at the same time it opens the way to a multi-parameter analysis of the optical signals, e.g., as a function of wavelength or spatial coordinates. The TCSPC multichannel solutions proposed so far, though, suffer from a tradeoff between number of channels and performance, and the overall measurement speed has not been increased according to the number of channels, thus reducing the advantages of having a multichannel system. In this paper, we present a novel readout architecture for bi-dimensional, high-density Single Photon Avalanche Diode (SPAD) arrays, specifically designed to maximize the throughput of the whole system and able to guarantee an efficient use of resources. The core of the system is a routing logic that can provide a dynamic connection between a large number of SPAD detectors and a much lower number of high-performance acquisition channels. A key feature of our smart router is its ability to guarantee high efficiency under any operating condition.

  9. MAMA Detector

    NASA Technical Reports Server (NTRS)

    Bowyer, Stuart

    1998-01-01

    Work carried out under this grant led to fundamental discoveries and over one hundred publications in the scientific literature. Fundamental developments in instrumentation were made including all the instrumentation on the EUVE satellite, the invention of a whole new type of grazing instrument spectrometer and the development of fundamentally new photon counting detectors including the Wedge and Strip used on EUVE and many other missions and the Time Delay detector used on OREFUS and FUSE. The Wedge and Strip and Time Delay detectors were developed under this grant for less than two million dollars and have been used in numerous missions most recently for the FUSE mission. In addition, a fundamentally new type of diffuse spectrometer has been developed under this grant which has been used in instrumentation on the MMSAT spacecraft and the Lewis spacecraft. Plans are underway to use this instrumentation on several other missions as well.

  10. PHASE DETECTOR

    DOEpatents

    Kippenhan, D.O.

    1959-09-01

    A phase detector circuit is described for use at very high frequencies of the order of 50 megacycles. The detector circuit includes a pair of rectifiers inverted relative to each other. One voltage to be compared is applied to the two rectifiers in phase opposition and the other voltage to be compared is commonly applied to the two rectifiers. The two result:ng d-c voltages derived from the rectifiers are combined in phase opposition to produce a single d-c voltage having amplitude and polarity characteristics dependent upon the phase relation between the signals to be compared. Principal novelty resides in the employment of a half-wave transmission line to derive the phase opposing signals from the first voltage to be compared for application to the two rectifiers in place of the transformer commonly utilized for such purpose in phase detector circuits for operation at lower frequency.

  11. Study of solid-conversion gaseous detector based on GEM for high energy X-ray industrial CT.

    PubMed

    Zhou, Rifeng; Zhou, Yaling

    2014-01-01

    The general gaseous ionization detectors are not suitable for high energy X-ray industrial computed tomography (HEICT) because of their inherent limitations, especially low detective efficiency and large volume. The goal of this study was to investigate a new type of gaseous detector to solve these problems. The novel detector was made by a metal foil as X-ray convertor to improve the conversion efficiency, and the Gas Electron Multiplier (hereinafter "GEM") was used as electron amplifier to lessen its volume. The detective mechanism and signal formation of the detector was discussed in detail. The conversion efficiency was calculated by using EGSnrc Monte Carlo code, and the transport course of photon and secondary electron avalanche in the detector was simulated with the Maxwell and Garfield codes. The result indicated that this detector has higher conversion efficiency as well as less volume. Theoretically this kind of detector could be a perfect candidate for replacing the conventional detector in HEICT.

  12. Hydrogen detector

    DOEpatents

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  13. Microwave detector

    SciTech Connect

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1986-12-02

    A detector is described for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations, the detector comprising: a B-dot loop linking the magnetic field of the microwave pulse; a biased ferrite, that produces a magnetization field flux that links the B-dot loop. The ferrite is positioned within the B-dot loop so that the magnetic field of the microwave pulse interacts with the ferrite and thereby participates in the formation of the magnetization field flux; and high-frequency insensitive means for measuring electric voltage or current induced in the B-dot loop.

  14. Microwave detector

    DOEpatents

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  15. Microwave detector

    DOEpatents

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  16. Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Sadrozinski, Hartmut

    2014-03-01

    The use of silicon detectors has experienced an exponential growth in accelerator and space based experiments, similar to trends in the semiconductor industry as a whole, usually paraphrased as ``Moore's Law.'' Some of the essentials for this phenomenon will be presented, together with examples of the exciting science results which it enabled. With the establishment of a ``semiconductor culture'' in universities and laboratories around the world, an increased understanding of the sensors results in thinner, faster, more radiation-resistant detectors, spawning an amazing wealth of new technologies and applications, which will be the main subject of the presentation.

  17. Epitaxially-grown germanium/silicon avalanche photodiodes for near infrared light detection

    NASA Astrophysics Data System (ADS)

    Kang, Yimin; Liu, Han-Din; Morse, Mike; Paniccia, Mario J.; Zadka, Moshe; Litski, Stas; Sarid, Gadi; Pauchard, Alexandre; Kuo, Ying-Hao; Chen, Hui-Wen; Sfar Zaoui, Wissem; Bowers, John E.; Beling, Andreas; McIntosh, Dion C.; Zheng, Xiaoguang; Campbell, Joe C.

    2009-05-01

    Avalanche Photodiodes (APDs) are widely used in fiber-optic communications as well as imaging and sensing applications where high sensitivities are needed. Traditional InP-based APD receivers typically offer a 10 dB improvement in sensitivity up to 10 Gb/s when compared to standard p-i-n based detector counterparts. As the data rates increase, however, a limited gain-bandwidth product (~100GHz) results in degraded receiver sensitivity. An increasing amount of research is now focusing on alternative multiplication materials for APDs to overcome this limitation, and one of the most promising is silicon. The difficulty in realizing a silicon-based APD device at near infrared wavelengths is that a compatible absorbing material is difficult to find. Research on germanium-on-silicon p-i-n detectors has shown acceptable responsivity at wavelengths as long as 1550 nm, and this work extends the approach to the more complicated APD structure. We are reporting here a germanium-on-silicon Separate Absorption Charge and Multiplication (SACM) APD which operates at 1310 nm, with a responsivity of 0.55A/W at unity gain with long dark current densities. The measured gain bandwidth product of this device is much higher than that of a typical III-V APD. Other device performances, like reliability, sensitivity and thermal stability, will also be discussed in this talk. This basic demonstration of a new silicon photonic device is an important step towards practical APD devices operating at 40 Gb/s, as well as for new applications which require low cost, high volume receivers with high sensitivity such as imaging and sensing.

  18. Martian dust devil electron avalanche process and associated electrochemistry

    NASA Astrophysics Data System (ADS)

    Jackson, Telana L.; Farrell, William M.; Delory, Gregory T.; Nithianandam, Jeyasingh

    2010-05-01

    Mars' dynamic atmosphere displays localized dust devils and larger, global dust storms. Based on terrestrial analog studies, electrostatic modeling, and laboratory work, these features will contain large electrostatic fields formed via triboelectric processes. In the low-pressure Martian atmosphere, these fields may create an electron avalanche and collisional plasma due to an increase in electron density driven by the internal electrical forces. To test the hypothesis that an electron avalanche is sustained under these conditions, a self-consistent atmospheric process model is created including electron impact ionization sources and electron losses via dust absorption, electron dissociation attachment, and electron/ion recombination. This new model is called the Dust Devil Electron Avalanche Model (DDEAM). This model solves simultaneously nine continuity equations describing the evolution of the primary gaseous chemical species involved in the electrochemistry. DDEAM monitors the evolution of the electrons and primary gas constituents, including electron/water interactions. We especially focus on electron dynamics and follow the electrons as they evolve in the E field driven collisional gas. When sources and losses are self-consistently included in the electron continuity equation, the electron density grows exponentially with increasing electric field, reaching an equilibrium that forms a sustained time-stable collisional plasma. However, the character of this plasma differs depending upon the assumed growth rate saturation process (chemical saturation versus space charge). DDEAM also shows the possibility of the loss of atmospheric methane as a function of electric field due to electron dissociative attachment of the hydrocarbon. The methane destruction rates are presented and can be included in other larger atmospheric models.

  19. Subsampling effects in neuronal avalanche distributions recorded in vivo

    PubMed Central

    Priesemann, Viola; Munk, Matthias HJ; Wibral, Michael

    2009-01-01

    Background Many systems in nature are characterized by complex behaviour where large cascades of events, or avalanches, unpredictably alternate with periods of little activity. Snow avalanches are an example. Often the size distribution f(s) of a system's avalanches follows a power law, and the branching parameter sigma, the average number of events triggered by a single preceding event, is unity. A power law for f(s), and sigma = 1, are hallmark features of self-organized critical (SOC) systems, and both have been found for neuronal activity in vitro. Therefore, and since SOC systems and neuronal activity both show large variability, long-term stability and memory capabilities, SOC has been proposed to govern neuronal dynamics in vivo. Testing this hypothesis is difficult because neuronal activity is spatially or temporally subsampled, while theories of SOC systems assume full sampling. To close this gap, we investigated how subsampling affects f(s) and sigma by imposing subsampling on three different SOC models. We then compared f(s) and sigma of the subsampled models with those of multielectrode local field potential (LFP) activity recorded in three macaque monkeys performing a short term memory task. Results Neither the LFP nor the subsampled SOC models showed a power law for f(s). Both, f(s) and sigma, depended sensitively on the subsampling geometry and the dynamics of the model. Only one of the SOC models, the Abelian Sandpile Model, exhibited f(s) and sigma similar to those calculated from LFP activity. Conclusion Since subsampling can prevent the observation of the characteristic power law and sigma in SOC systems, misclassifications of critical systems as sub- or supercritical are possible. Nevertheless, the system specific scaling of f(s) and sigma under subsampling conditions may prove useful to select physiologically motivated models of brain function. Models that better reproduce f(s) and sigma calculated from the physiological recordings may be

  20. Avalanche-diode oscillator circuit with tuning at multiple frequencies

    NASA Technical Reports Server (NTRS)

    Parker, D.; Ablow, C. M.; Lee, R. E.; Karp, A.; Chambers, D. R.

    1971-01-01

    Detailed theoretical analysis of three different modes or types of high efficiency oscillation in a PIN diode are presented. For the TRAPATT mode in a PIN diode, it is shown that a traveling avalanche zone is not necessary to generate a dense trapped plasma. An economical computer program for TRAPATT oscillations in a PIN diode is described. Typical results of diode power, dc-to-RF conversion efficiency, and required circuit impedances are presented for several different current waveforms. A semianalytical solution for a second type of high efficiency mode in a PIN diode is derived assuming a rectangular current waveform. A quasi-static approximation is employed to derive a semianalytical solution for the voltage across a PIN diode in a third mode, where avalanching occurs during a major portion of a half cycle. Calculations for this mode indicate that the power increases proportionally to the magnitude of the drive current with a small decrease in efficiency relative to the ordinary TRAPATT mode. An analytical solution is also given for a PIN diode, where it is assumed that the ionization coefficient is a step function. It is shown that the step-ionization approximation permits one to draw possible patterns of avalanche region in the depletion layer as a function of time. A rule governing admissible patterns is derived and an example solution given for one admissible pattern. Preliminary experimental results on the high-efficiency oscillations are presented and discussed. Two different experimental circuits, which used channel-dropping filters to provide independent harmonic tuning, are described. Simpler circuits used to produce high-efficiency oscillations are discussed. Results of experiments using inexpensive Fairchild FD300 diodes are given.

  1. Neuronal avalanches in the resting MEG of the human brain.

    PubMed

    Shriki, Oren; Alstott, Jeff; Carver, Frederick; Holroyd, Tom; Henson, Richard N A; Smith, Marie L; Coppola, Richard; Bullmore, Edward; Plenz, Dietmar

    2013-04-17

    What constitutes normal cortical dynamics in healthy human subjects is a major question in systems neuroscience. Numerous in vitro and in vivo animal studies have shown that ongoing or resting cortical dynamics are characterized by cascades of activity across many spatial scales, termed neuronal avalanches. In experiment and theory, avalanche dynamics are identified by two measures: (1) a power law in the size distribution of activity cascades with an exponent of -3/2 and (2) a branching parameter of the critical value of 1, reflecting balanced propagation of activity at the border of premature termination and potential blowup. Here we analyzed resting-state brain activity recorded using noninvasive magnetoencephalography (MEG) from 124 healthy human subjects and two different MEG facilities using different sensor technologies. We identified large deflections at single MEG sensors and combined them into spatiotemporal cascades on the sensor array using multiple timescales. Cascade size distributions obeyed power laws. For the timescale at which the branching parameter was close to 1, the power law exponent was -3/2. This relationship was robust to scaling and coarse graining of the sensor array. It was absent in phase-shuffled controls with the same power spectrum or empty scanner data. Our results demonstrate that normal cortical activity in healthy human subjects at rest organizes as neuronal avalanches and is well described by a critical branching process. Theory and experiment have shown that such critical, scale-free dynamics optimize information processing. Therefore, our findings imply that the human brain attains an optimal dynamical regime for information processing.

  2. Martian Dust Devil Electron Avalanche Process and Associated Electrochemistry

    NASA Technical Reports Server (NTRS)

    Jackson, Telana L.; Farrell, William M.; Delory, Gregory T.; Nithianandam, Jeyasingh

    2010-01-01

    Mars' dynamic atmosphere displays localized dust devils and larger, global dust storms. Based on terrestrial analog studies, electrostatic modeling, and laboratory work these features will contain large electrostatic fields formed via triboelectric processes. In the low-pressure Martian atmosphere, these fields may create an electron avalanche and collisional plasma due to an increase in electron density driven by the internal electrical forces. To test the hypothesis that an electron avalanche is sustained under these conditions, a self-consistent atmospheric process model is created including electron impact ionization sources and electron losses via dust absorption, electron dissociation attachment, and electron/ion recombination. This new model is called the Dust Devil Electron Avalanche Model (DDEAM). This model solves simultaneously nine continuity equations describing the evolution of the primary gaseous chemical species involved in the electrochemistry. DDEAM monitors the evolution of the electrons and primary gas constituents, including electron/water interactions. We especially focus on electron dynamics and follow the electrons as they evolve in the E field driven collisional gas. When sources and losses are self-consistently included in the electron continuity equation, the electron density grows exponentially with increasing electric field, reaching an equilibrium that forms a sustained time-stable collisional plasma. However, the character of this plasma differs depending upon the assumed growth rate saturation process (chemical saturation versus space charge). DDEAM also shows the possibility of the loss of atmospheric methane as a function of electric field due to electron dissociative attachment of the hydrocarbon. The methane destruction rates are presented and can be included in other larger atmospheric models.

  3. Magnetic field modification to the relativistic runaway electron avalanche length

    NASA Astrophysics Data System (ADS)

    Cramer, E. S.; Dwyer, J. R.; Rassoul, H. K.

    2016-11-01

    This paper explores the impact of the geomagnetic field on the relativistic runaway electron avalanche length, λe-. Coleman and Dwyer (2006) developed an analytical fit to Monte Carlo simulations using the Runaway Electron Avalanche Model. In this work, we repeat this process but with the addition of the geomagnetic field in the range of [100,900]/n μT, where n is the ratio of the density of air at altitude to the sea level density. As the ambient electric field approaches the runaway threshold field (Eth≈284 kV/m sea level equivalent), it is shown that the magnetic field has an impact on the orientation of the resulting electron beam. The runaway electrons initially follow the vertically oriented electric field but then are deflected in the v × B direction, and as such, the electrons experience more dynamic friction due to the increase in path length. This will be shown to result in a difference in the avalanche length from the case where B = 0. It will also be shown that the average energy of the runaway electrons will decrease while the required electric field to produce runaway electrons increases. This study is also important in understanding the physics of terrestrial gamma ray flashes (TGFs). Not only will this work impact relativistic feedback rates determined from simulations, it may also be useful in studying spectroscopy of TGFs observed from balloon and aircraft measurements. These models may also be used in determining beaming properties of TGFs originating in the tropical regions seen from orbiting spacecraft.

  4. Analysis of spanning avalanches in the two-dimensional nonequilibrium zero-temperature random-field Ising model.

    PubMed

    Spasojević, Djordje; Janićević, Sanja; Knežević, Milan

    2014-01-01

    We present a numerical analysis of spanning avalanches in a two-dimensional (2D) nonequilibrium zero-temperature random field Ising model. Finite-size scaling analysis, performed for distribution of the average number of spanning avalanches per single run, spanning avalanche size distribution, average size of spanning avalanche, and contribution of spanning avalanches to magnetization jump, is augmented by analysis of spanning field (i.e., field triggering spanning avalanche), which enabled us to collapse averaged magnetization curves below critical disorder. Our study, based on extensive simulations of sufficiently large systems, reveals the dominant role of subcritical 2D-spanning avalanches in model behavior below and at the critical disorder. Other types of avalanches influence finite systems, but their contribution for large systems remains small or vanish.

  5. Numerical run-out modelling used for reassessment of existing permanent avalanche paths in the Krkonose Mts., Czechia

    NASA Astrophysics Data System (ADS)

    Blahut, Jan; Klimes, Jan; Balek, Jan; Taborik, Petr; Juras, Roman; Pavlasek, Jiri

    2015-04-01

    Run-out modelling of snow avalanches is being widely applied in high mountain areas worldwide. This study presents application of snow avalanche run-out calculation applied to mid-mountain ranges - the Krkonose, Jeseniky and Kralicky Sneznik Mountains. All mentioned mountain ranges lie in the northern part of Czechia, close to the border with Poland. Its highest peak reaches only 1602 m a.s.l. However, climatic conditions and regular snowpack presence are the reason why these mountain ranges experience considerable snow avalanche activity every year, sometimes resulting in injuries or even fatalities. Within the aim of an applied project dealing with snow avalanche hazard prediction a re-assessment of permanent snow avalanche paths has been performed based on extensive statistics covering period from 1961/62 till present. On each avalanche path different avalanches with different return periods were modelled using the RAMMS code. As a result, an up-to-date snow avalanche hazard map was prepared.

  6. Advanced passive detectors for neutron dosimetry and spectrometry.

    PubMed

    Tommasino, L

    2004-01-01

    Different neutron detectors have been developed in the past which exploit electrical and electrochemical processes in plastic foils and thin-film capacitors (namely metal-oxide-silicon devices) to trigger avalanche processes, which greatly facilitate the detection of neutron-induced charged particles. These detectors are: (i) spark-replica counter of neutron-induced fission-fragment holes in plastic films, thin-film breakdown counter of neutron-induced fission fragments, and electrochemically etched detectors of neutron-induced recoils in plastic foils. The major shortcomings of damage-track detectors for the measurement of low neutron fluencies, such as those of cosmic ray neutrons at civil aviation altitudes, are their large and unpredictable background and their small signal-to-noise ratio. These shortcomings have been overcome respectively by using long exposure times and large detector areas and counting coincidence-track events on matched pairs of detectors even for a few-micron-long tracks such as those of neutron recoils. The responses of all these detectors have been analysed both with neutrons with energy up to approximately 200 MeV and protons up to tens of gigaelectron volts. Applications of these detectors for the cosmic ray neutron dosimetry and/or spectrometry will be mentioned.

  7. Energy pumping in electrical circuits under avalanche noise

    NASA Astrophysics Data System (ADS)

    Kanazawa, Kiyoshi; Sagawa, Takahiro; Hayakawa, Hisao

    2014-07-01

    We theoretically study energy pumping processes in an electrical circuit with avalanche diodes, where non-Gaussian athermal noise plays a crucial role. We show that a positive amount of energy (work) can be extracted by an external manipulation of the circuit in a cyclic way, even when the system is spatially symmetric. We discuss the properties of the energy pumping process for both quasistatic and finite-time cases, and analytically obtain formulas for the amounts of the work and the power. Our results demonstrate the significance of the non-Gaussianity in energetics of electrical circuits.

  8. Some exact solutions for debris and avalanche flows

    NASA Astrophysics Data System (ADS)

    Pudasaini, Shiva P.

    2011-04-01

    Exact analytical solutions to simplified cases of nonlinear debris avalanche model equations are necessary to calibrate numerical simulations of flow depth and velocity profiles on inclined surfaces. These problem-specific solutions provide important insight into the full behavior of the system. In this paper, we present some new analytical solutions for debris and avalanche flows and then compare these solutions with experimental data to measure their performance and determine their relevance. First, by combining the mass and momentum balance equations with a Bagnold rheology, a new and special kinematic wave equation is constructed in which the flux and the wave celerity are complex nonlinear functions of the pressure gradient and the flow depth itself. The new model can explain the mechanisms of wave advection and distortion, and the quasiasymptotic front bore observed in many natural and laboratory debris and granular flows. Exact time-dependent solutions for debris flow fronts and associated velocity profiles are then constructed. We also present a novel semiexact two-dimensional plane velocity field through the flow depth. Second, starting with the force balance between gravity, the pressure gradient, and Bagnold's grain-inertia or macroviscous forces, we construct a simple and very special nonlinear ordinary differential equation to model the steady state debris front profile. An empirical pressure gradient enhancement factor is introduced to adequately stretch the flow front and properly model nonhydrostatic pressure in granular and debris avalanches. An exact solution in explicit form is constructed, and is expressed in terms of the Lambert-Euler omega function. Third, we consider rapid flows of frictional granular materials down a channel. The steady state mass and the momentum balance equations are combined together with the Coulomb friction law. The Chebyshev radicals are employed and the exact solutions are developed for the velocity profile and the

  9. Dielectric breakdown and avalanches at nonequilibrium metal-insulator transitions.

    PubMed

    Shekhawat, Ashivni; Papanikolaou, Stefanos; Zapperi, Stefano; Sethna, James P

    2011-12-30

    Motivated by recent experiments on the finite temperature Mott transition in VO(2) films, we propose a classical coarse-grained dielectric breakdown model where each degree of freedom represents a nanograin which transitions from insulator to metal with increasing temperature and voltage at random thresholds due to quenched disorder. We describe the properties of the resulting nonequilibrium metal-insulator transition and explain the universal characteristics of the resistance jump distribution. We predict that by tuning voltage, another critical point is approached, which separates a phase of boltlike avalanches from percolationlike ones.

  10. Reliability assessment of multiple quantum well avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Yun, Ilgu; Menkara, Hicham M.; Wang, Yang; Oguzman, Isamil H.; Kolnik, Jan; Brennan, Kevin F.; May, Gray S.; Wagner, Brent K.; Summers, Christopher J.

    1995-01-01

    The reliability of doped-barrier AlGaAs/GsAs multi-quantum well avalanche photodiodes fabricated by molecular beam epitaxy is investigated via accelerated life tests. Dark current and breakdown voltage were the parameters monitored. The activation energy of the degradation mechanism and median device lifetime were determined. Device failure probability as a function of time was computed using the lognormal model. Analysis using the electron beam induced current method revealed the degradation to be caused by ionic impurities or contamination in the passivation layer.

  11. Barkhausen avalanches in anisotropic ferromagnets with 180 degrees domain walls

    PubMed

    Tadic; Nowak

    2000-04-01

    We show that Barkhausen noise in two-dimensional disordered ferromagnets with extended domain walls is characterized by the avalanche size exponent tau(s)=1.54 at low disorder. With increasing disorder the characteristic domain size is reduced relative to the system size due to nucleation of new domains and a dynamic phase transition occurs to the scaling behavior with tau(s)=1.30. The exponents decrease at finite driving rate. The results agree with recently observed behavior in amorphous Metglas and Fe-Co-B ribbons when the applied anisotropic stress is varied.

  12. Power-law statistics for avalanches in a martensitic transformation.

    PubMed

    Ahluwalia, R; Ananthakrishna, G

    2001-04-30

    We devise a two-dimensional model that mimics the recently observed power-law distributions for the amplitudes and durations of the acoustic emission signals observed during martensitic transformation [Vives et al., Phys. Rev. Lett. 72, 1694 (1994)]. We include a threshold mechanism, long-range interaction between the transformed domains, inertial effects, and dissipation arising due to the motion of the interface. The model exhibits thermal hysteresis and, more importantly, it shows that the energy is released in the form of avalanches with power-law distributions for their amplitudes and durations. Computer simulations also reveal morphological features similar to those observed in real systems.

  13. Energy pumping in electrical circuits under avalanche noise.

    PubMed

    Kanazawa, Kiyoshi; Sagawa, Takahiro; Hayakawa, Hisao

    2014-07-01

    We theoretically study energy pumping processes in an electrical circuit with avalanche diodes, where non-Gaussian athermal noise plays a crucial role. We show that a positive amount of energy (work) can be extracted by an external manipulation of the circuit in a cyclic way, even when the system is spatially symmetric. We discuss the properties of the energy pumping process for both quasistatic and finite-time cases, and analytically obtain formulas for the amounts of the work and the power. Our results demonstrate the significance of the non-Gaussianity in energetics of electrical circuits.

  14. Operation of silicon single photon avalanche diodes at cryogenic temperature.

    PubMed

    Rech, Ivan; Labanca, Ivan; Armellini, Giacomo; Gulinatti, Angelo; Ghioni, Massimo; Cova, Sergio

    2007-06-01

    This article reports a complete characterization of single photon avalanche diodes (SPADs) at temperatures down to 120 K. We show that deep cooling of the device by means of a compact liquid-nitrogen Dewar brings several advantages, such as extremely low dark counting rates (down to 1 counts/s), better time resolution, and higher quantum efficiency in the visible range. By using a special current pick-off circuit, we achieved a time resolution of 20 ps full width at half maximum at 120 K for a 50 mum diameter SPAD. Afterpulsing effects are avoided by using a sufficiently long hold-off time (microseconds).

  15. Microslips to "Avalanches" in Confined, Molecular Layers of Ionic Liquids.

    PubMed

    Espinosa-Marzal, R M; Arcifa, A; Rossi, A; Spencer, N D

    2014-01-02

    We have measured forces between mica surfaces across two hydrophobic ionic liquids with a surface forces apparatus. Both surface-adsorbed water and alkyl-chain length on the imidazolium cation influence the structure of the nanoconfined film and the dynamics of film-thickness transitions. Friction shows accumulative microslips as precursors to collective "avalanches" that abruptly reduce friction momentarily. This behavior is interpreted as a consequence of interlayer ion correlations within the 1 to 2 nm thick film; we identify this to be analogous to the friction response of crackling noise systems over a broad range of sizes.

  16. Sixteen-year follow-up of childhood avalanche survivors

    PubMed Central

    Thordardottir, Edda Bjork; Valdimarsdottir, Unnur Anna; Hansdottir, Ingunn; Hauksdóttir, Arna; Dyregrov, Atle; Shipherd, Jillian C.; Elklit, Ask; Resnick, Heidi; Gudmundsdottir, Berglind

    2016-01-01

    Background Every year a substantial number of children are affected by natural disasters worldwide. However, data are scarce on long-term psychological impact of natural disasters on children's health. Identifying risk factors and outcomes associated with the long-term sequelae of posttraumatic stress disorder (PTSD) can provide a gateway to recovery as well as enhancement of preventive measures. Objective Among childhood avalanche survivors, we aimed to investigate risk factors for PTSD symptoms and the relationship between socioeconomic status (SES) and PTSD symptoms in adulthood. Methods Childhood survivors (aged 2–19 at the time of exposure) of two avalanches were identified through nationwide registers 16 years later. The Posttraumatic Diagnostic Scale was used to assess current PTSD symptoms. One-way ANOVA was used to explore PTSD symptoms by background and trauma-specific factors, as well as associations with current SES. Predictors of PTSD symptoms were examined by multivariable regression analysis. Results Response rate was 66% (108/163). Results from univariate ANOVA analysis revealed that female sex was associated with PTSD symptoms (F=5.96, p<0.05). When adjusted for age and sex, PTSD symptoms were associated with lower education (F=7.62, p<0.001), poor financial status (F=12.21, p<0.001), and unemployment and/or disability (F=3.04, p<0.05). In a multivariable regression model, when adjusting for age and sex, lack of social support (t=4.22, p<0.001) and traumatic reactions of caregivers (t=2.49, p<0.05) in the aftermath of the disaster independently predicted PTSD 16 years post-trauma. Conclusions Lingering PTSD symptoms after childhood exposure to a disaster may negatively influence socioeconomic development in adulthood. Strengthening children's support systems post-disaster may prevent the long-term sequelae of symptoms. Highlights of the article PTSD symptoms following avalanche exposure during childhood were associated with poorer socioeconomic

  17. A 1.06 micrometer avalanche photodiode receiver

    NASA Technical Reports Server (NTRS)

    Eden, R. C.

    1975-01-01

    The development of a complete solid state 1.06 micron optical receiver which can be used in optical communications at data rates approaching 1.5 Gb/s, or in other applications requiring sensitive, short pulse detection, is reported. This work entailed both the development of a new type of heterojunction III-V semiconductor alloy avalanche photodiode and an extremely charge-sensitive wideband low noise preamp design making use of GaAs Schottky barrier-gate field effect transistors (GAASFET's) operating in in the negative-feedback transimpedance mode. The electrical characteristics of the device are described.

  18. Vertex detectors

    SciTech Connect

    Lueth, V.

    1992-07-01

    The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10{sup {minus}13} s, among them the {tau} lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation.

  19. Wilderness Medical Society Practice Guidelines for Prevention and Management of Avalanche and Nonavalanche Snow Burial Accidents.

    PubMed

    Van Tilburg, Christopher; Grissom, Colin K; Zafren, Ken; McIntosh, Scott; Radwin, Martin I; Paal, Peter; Haegeli, Pascal; Smith, William Will R; Wheeler, Albert R; Weber, David; Tremper, Bruce; Brugger, Hermann

    2017-03-01

    To provide guidance to clinicians and avalanche professionals about best practices, the Wilderness Medical Society convened an expert panel to develop evidence-based guidelines for the prevention, rescue, and medical management of avalanche and nonavalanche snow burial victims. Recommendations are graded on the basis of quality of supporting evidence according to the classification scheme of the American College of Chest Physicians.

  20. Analysis of inter-event times for avalanches on a conical bead pile with cohesion

    NASA Astrophysics Data System (ADS)

    Lehman, Susan; Johnson, Nathan; Tieman, Catherine; Wainwright, Elliot

    2015-03-01

    We investigate the critical behavior of a 3D conical bead pile built from uniform 3 mm steel spheres. Beads are added to the pile by dropping them onto the apex one at a time; avalanches are measured through changes in pile mass. We investigate the dynamic response of the pile by recording avalanches from the pile over tens of thousands of bead drops. We have previously shown that the avalanche size distribution follows a power law for beads dropped onto the pile apex from a low drop height. We are now tuning the critical behavior of the system by adding cohesion from a uniform magnetic field and find an increase in both size and number for very large avalanches and decreases in the mid-size avalanches. The resulting bump in the avalanche distribution moves to larger avalanche size as the cohesion in the system is increased. We compare the experimental inter-event time distribution to both the Brownian passage-time and Weibull distributions, and observe a shift from the Weibull to Brownian passage-time as we raise the threshold from measuring time between events of all sizes to time between only the largest system-spanning events. These results are both consistent with those from a mean-field model of slip avalanches in a shear system [Dahmen, Nat Phys 7, 554 (2011)].

  1. Tuning Parameters and Scaling For Avalanches On A Slowly-Driven Conical Bead Pile with Cohesion

    NASA Astrophysics Data System (ADS)

    Lehman, Susan; Jacobs, D. T.; Palchoudhuri, Paroma; Vajpeyi, Avi; Walker, Justine; Dahmen, Karin; Leblanc, Michael; Uhl, Jonathan

    Slip avalanches on a slowly driven pile are investigated experimentally using a 3D conical pile built from uniform 3 mm steel beads. Beads are added to the pile by dropping them onto the apex one at a time; avalanches are measured through changes in pile mass. We investigate the dynamic response of the pile by recording avalanches from the pile over the course of tens of thousands of bead drops. The statistical properties of the avalanches, including probability of particular avalanche sizes and the time between avalanches of given size, are well-characterized by universal power laws and scaling functions. By adding a uniform magnetic field, we may systematically vary the cohesion between the beads and tune the critical behavior of the system. As the cohesion increases we observe an increase in both size and number for very large avalanches and decreases in the mid-size avalanches, causing a deviation from the power law. A full study of the effect of cohesion on the size and time distributions is in process, combining the experimental results with predictions from an analytical mean-field model [Dahmen, Nat Phys 7, 554 (2011)]. Research supported by NSF CBET 1336116 and 1336634.

  2. Teaching Natural Hazards: The Use of Snow Avalanches in Demonstrating and Addressing Geographic Topics and Principles.

    ERIC Educational Resources Information Center

    Barber, David L.

    1988-01-01

    Because of increased recreational use of alpine environments in the western United States, this lesson plan integrates the themes of location, place, and human-environment interaction in order to teach avalanche hazard awareness. Presents classroom activities and research topics to enhance student awareness of snow avalanche hazards. Provides…

  3. A Methodology To Allow Avalanche Forecasting on an Information Retrieval System.

    ERIC Educational Resources Information Center

    Purves, R. S.; Sanderson, M.

    1998-01-01

    Presents adaptations and tests undertaken to allow an information retrieval system to forecast the likelihood of avalanches on a particular day; the forecasting process uses historical data of the weather and avalanche conditions for a large number of days. Describes a method for adapting these data into a form usable by a text-based IR system and…

  4. Avalanches and local force evolution in a granular stick-slip experiment

    NASA Astrophysics Data System (ADS)

    Abed Zadeh, Aghil; Bares, Jonathan; Behringer, Robert

    2016-11-01

    We perform a stick-slip experiment to characterize avalanches for granular materials. In our experiment, a constant speed stage pulls a slider which rests on a vertical bed of circular photoelastic particles in a 2D system. The stage is connected to the slider by a spring. We measure the force on the spring by a force sensor attached to the spring. We study the PDF of energy release and slip size, avalanche shape in time, and other seismicity laws during slip avalanches. We analyze the power spectrum of the force signal and probability distributions to understand the effect of the loading speed and of the spring stiffness on the statistical behavior of the system. From a more local point of view and by using a high speed camera and the photoelastic properties of our particles, we characterize the local stress change and flow of particles during avalanches. By image processing we detect the avalanches, as connected components in space and time, and the energy dissipation inside the granular medium and their PDFs. The PDFs of avalanches obey power laws both at global and local scales, but with different exponents. We try to understand the distribution and correlation of local avalanches in space and the way they coarse grain to the global avalanches. NSF-DMR-1206351, NASA Grant NNX15AD38G, William M. Keck Foundation.

  5. Monitoring and modeling ice-rock avalanches from ice-capped volcanoes: A case study of frequent large avalanches on Iliamna Volcano, Alaska

    USGS Publications Warehouse

    Huggel, C.; Caplan-Auerbach, J.; Waythomas, C.F.; Wessels, R.L.

    2007-01-01

    Iliamna is an andesitic stratovolcano of the Aleutian arc with regular gas and steam emissions and mantled by several large glaciers. Iliamna Volcano exhibits an unusual combination of frequent and large ice-rock avalanches in the order of 1 ?? 106??m3 to 3 ?? 107??m3 with recent return periods of 2-4??years. We have reconstructed an avalanche event record for the past 45??years that indicates Iliamna avalanches occur at higher frequency at a given magnitude than other mass failures in volcanic and alpine environments. Iliamna Volcano is thus an ideal site to study such mass failures and its relation to volcanic activity. In this study, we present different methods that fit into a concept of (1) long-term monitoring, (2) early warning, and (3) event documentation and analysis of ice-rock avalanches on ice-capped active volcanoes. Long-term monitoring methods include seismic signal analysis, and space-and airborne observations. Landsat and ASTER satellite data was used to study the extent of hydrothermally altered rocks and surface thermal anomalies at the summit region of Iliamna. Subpixel heat source calculation for the summit regions where avalanches initiate yielded temperatures of 307 to 613??K assuming heat source areas of 1000 to 25??m2, respectively, indicating strong convective heat flux processes. Such heat flow causes ice melting conditions and is thus likely to reduce the strength at the base of the glacier. We furthermore demonstrate typical seismic records of Iliamna avalanches with rarely observed precursory signals up to two hours prior to failure, and show how such signals could be used for a multi-stage avalanche warning system in the future. For event analysis and documentation, space- and airborne observations and seismic records in combination with SRTM and ASTER derived terrain data allowed us to reconstruct avalanche dynamics and to identify remarkably similar failure and propagation mechanisms of Iliamna avalanches for the past 45??years

  6. Monitoring and modeling ice-rock avalanches from ice-capped volcanoes: A case study of frequent large avalanches on Iliamna Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Huggel, Christian; Caplan-Auerbach, Jacqueline; Waythomas, Christopher F.; Wessels, Rick L.

    2007-11-01

    Iliamna is an andesitic stratovolcano of the Aleutian arc with regular gas and steam emissions and mantled by several large glaciers. Iliamna Volcano exhibits an unusual combination of frequent and large ice-rock avalanches in the order of 1 × 10 6 m 3 to 3 × 10 7 m 3 with recent return periods of 2-4 years. We have reconstructed an avalanche event record for the past 45 years that indicates Iliamna avalanches occur at higher frequency at a given magnitude than other mass failures in volcanic and alpine environments. Iliamna Volcano is thus an ideal site to study such mass failures and its relation to volcanic activity. In this study, we present different methods that fit into a concept of (1) long-term monitoring, (2) early warning, and (3) event documentation and analysis of ice-rock avalanches on ice-capped active volcanoes. Long-term monitoring methods include seismic signal analysis, and space-and airborne observations. Landsat and ASTER satellite data was used to study the extent of hydrothermally altered rocks and surface thermal anomalies at the summit region of Iliamna. Subpixel heat source calculation for the summit regions where avalanches initiate yielded temperatures of 307 to 613 K assuming heat source areas of 1000 to 25 m 2, respectively, indicating strong convective heat flux processes. Such heat flow causes ice melting conditions and is thus likely to reduce the strength at the base of the glacier. We furthermore demonstrate typical seismic records of Iliamna avalanches with rarely observed precursory signals up to two hours prior to failure, and show how such signals could be used for a multi-stage avalanche warning system in the future. For event analysis and documentation, space- and airborne observations and seismic records in combination with SRTM and ASTER derived terrain data allowed us to reconstruct avalanche dynamics and to identify remarkably similar failure and propagation mechanisms of Iliamna avalanches for the past 45 years

  7. NASA's Potential Contributions to Avalanche Forecasting Using Active and Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir

    2007-01-01

    This Candidate Solution is based on using active and passive microwave measurements acquired from NASA satellites to improve USDA (U.S. Department of Agriculture) Forest Service forecasting of avalanche danger. Regional Avalanche Centers prepare avalanche forecasts using ground measurements of snowpack and mountain weather conditions. In this Solution, range of the in situ observations is extended by adding remote sensing measurements of snow depth, snow water equivalent, and snowfall rate acquired by satellite missions that include Aqua, CloudSat, future GPM (Global Precipitation Measurement), and the proposed SCLP (Snow and Cold Land Processes). Measurements of snowpack conditions and time evolution are improved by combining the in situ and satellite observations with a snow model. Recurring snow observations from NASA satellites increase accuracy of avalanche forecasting, which helps the public and the managers of public facilities make better avalanche safety decisions.

  8. Avalanche and bit independence characteristics of double random phase encoding in the Fourier and Fresnel domains.

    PubMed

    Moon, Inkyu; Yi, Faliu; Lee, Yeon H; Javidi, Bahram

    2014-05-01

    In this work, we evaluate the avalanche effect and bit independence properties of the double random phase encoding (DRPE) algorithm in the Fourier and Fresnel domains. Experimental results show that DRPE has excellent bit independence characteristics in both the Fourier and Fresnel domains. However, DRPE achieves better avalanche effect results in the Fresnel domain than in the Fourier domain. DRPE gives especially poor avalanche effect results in the Fourier domain when only one bit is changed in the plaintext or in the encryption key. Despite this, DRPE shows satisfactory avalanche effect results in the Fresnel domain when any other number of bits changes in the plaintext or in the encryption key. To the best of our knowledge, this is the first report on the avalanche effect and bit independence behaviors of optical encryption approaches for bit units.

  9. Geometrical properties of avalanches in self-organized critical models of solar flares.

    PubMed

    McIntosh, Scott W; Charbonneau, Paul; Bogdan, Thomas J; Liu, Han-Li; Norman, James P

    2002-04-01

    We investigate the geometrical properties of avalanches in self-organized critical models of solar flares. Traditionally, such models differ from the classical sandpile model in their formulation of stability criteria in terms of the curvature of the nodal field, and belong to a distinct universality class. With a view toward comparing these properties to those inferred from spatially and temporally resolved flare observations, we consider the properties of avalanche peak snapshots, time-integrated avalanches in two and three dimensions, and the two-dimensional projections of the latter. The nature of the relationship between the avalanching volume and its projected area is an issue of particular interest in the solar flare context. Using our simulation results we investigate this relationship, and demonstrate that proper accounting of the fractal nature of avalanches can bring into agreement hitherto discrepant results of observational analyses based on simple, nonfractal geometries for the flaring volume.

  10. Apparatus and method for recharging a string a avalanche transistors within a pulse generator

    DOEpatents

    Fulkerson, E. Stephen

    2000-01-01

    An apparatus and method for recharging a string of avalanche transistors within a pulse generator is disclosed. A plurality of amplification stages are connected in series. Each stage includes an avalanche transistor and a capacitor. A trigger signal, causes the apparatus to generate a very high voltage pulse of a very brief duration which discharges the capacitors. Charge resistors inject current into the string of avalanche transistors at various points, recharging the capacitors. The method of the present invention includes the steps of supplying current to charge resistors from a power supply; using the charge resistors to charge capacitors connected to a set of serially connected avalanche transistors; triggering the avalanche transistors; generating a high-voltage pulse from the charge stored in the capacitors; and recharging the capacitors through the charge resistors.

  11. Averaged model for probabilistic coalescence avalanches in two-dimensional emulsions: Insights into uncertainty propagation

    NASA Astrophysics Data System (ADS)

    Danny Raj, M.; Rengaswamy, R.

    2017-03-01

    A two-dimensional concentrated emulsion exhibits spontaneous rapid destabilization through an avalanche of coalescence events which propagate through the assembly stochastically. We propose a deterministic model to explain the average dynamics of the avalanching process. The dynamics of the avalanche phenomenon is studied as a function of a composite parameter, the decay time ratio, which characterizes the ratio of the propensity of coalescence to cease propagation to that of propagation. When this ratio is small, the avalanche grows autocatalytically to destabilize the emulsion. Using a scaling analysis, we unravel the relation between a local characteristic of the system and a global system wide effect. The anisotropic nature of local coalescence results in a system size dependent transition from nonautocatalytic to autocatalytic behavior. By incorporating uncertainty into the parameters in the model, several possible realizations of the coalescence avalanche are generated. The results are compared with the Monte Carlo simulations to derive insights into how the uncertainty propagates in the system.

  12. Flux avalanche in a superconducting film with non-uniform critical current density

    NASA Astrophysics Data System (ADS)

    Lu, Yurong; Jing, Ze; Yong, Huadong; Zhou, Youhe

    2016-10-01

    The flux avalanche in type-II superconducting thin film is numerically simulated in this paper. We mainly consider the effect of non-uniform critical current density on the thermomagnetic stability. The nonlinear electromagnetic constitutive relation of the superconductor is adopted. Then, Maxwell's equations and heat diffusion equation are numerically solved by the fast Fourier transform technique. We find that the non-uniform critical current density can remarkably affect the behaviour of the flux avalanche. The external magnetic field ramp rate and the environmental temperature have been taken into account. The results are compared with a film with uniform critical current density. The flux avalanche first appears at the interface where the critical current density is discontinuous. Under the same environmental temperature or magnetic field, the flux avalanche occurs more easily for the film with the non-uniform critical current density. The avalanche structure is a finger-like pattern rather than a dendritic structure at low environmental temperatures.

  13. Assessing wet snow avalanche activity using detailed physics based snowpack simulations

    NASA Astrophysics Data System (ADS)

    Wever, N.; Vera Valero, C.; Fierz, C.

    2016-06-01

    Water accumulating on microstructural transitions inside a snowpack is often considered a prerequisite for wet snow avalanches. Recent advances in numerical snowpack modeling allow for an explicit simulation of this process. We analyze detailed snowpack simulations driven by meteorological stations in three different climate regimes (Alps, Central Andes, and Pyrenees), with accompanying wet snow avalanche activity observations. Predicting wet snow avalanche activity based on whether modeled water accumulations inside the snowpack locally exceed 5-6% volumetric liquid water content is providing a higher prediction skill than using thresholds for daily mean air temperature, or the daily sum of the positive snow energy balance. Additionally, the depth of the maximum water accumulation in the simulations showed a significant correlation with observed avalanche size. Direct output from detailed snow cover models thereby is able to provide a better regional assessment of dangerous slope aspects and potential avalanche size than traditional methods.

  14. Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state.

    PubMed

    Bellay, Timothy; Klaus, Andreas; Seshadri, Saurav; Plenz, Dietmar

    2015-07-07

    Spontaneous fluctuations in neuronal activity emerge at many spatial and temporal scales in cortex. Population measures found these fluctuations to organize as scale-invariant neuronal avalanches, suggesting cortical dynamics to be critical. Macroscopic dynamics, though, depend on physiological states and are ambiguous as to their cellular composition, spatiotemporal origin, and contributions from synaptic input or action potential (AP) output. Here, we study spontaneous firing in pyramidal neurons (PNs) from rat superficial cortical layers in vivo and in vitro using 2-photon imaging. As the animal transitions from the anesthetized to awake state, spontaneous single neuron firing increases in irregularity and assembles into scale-invariant avalanches at the group level. In vitro spike avalanches emerged naturally yet required balanced excitation and inhibition. This demonstrates that neuronal avalanches are linked to the global physiological state of wakefulness and that cortical resting activity organizes as avalanches from firing of local PN groups to global population activity.

  15. Scaling Behavior of Barkhausen Avalanches along the Hysteresis loop in Nucleation-Mediated Magnetization Reversal Process

    SciTech Connect

    Im, Mi-Young; Fischer, Peter; Kim, D.-H.; Shin, S.-C.

    2008-10-14

    We report the scaling behavior of Barkhausen avalanches for every small field step along the hysteresis loop in CoCrPt alloy film having perpendicular magnetic anisotropy. Individual Barkhausen avalanche is directly observed utilizing a high-resolution soft X-ray microscopy that provides real space images with a spatial resolution of 15 nm. Barkhausen avalanches are found to exhibit power-law scaling behavior at all field steps along the hysteresis loop, despite their different patterns for each field step. Surprisingly, the scaling exponent of the power-law distribution of Barkhausen avalanches is abruptly altered from 1 {+-} 0.04 to 1.47 {+-} 0.03 as the field step is close to the coercive field. The contribution of coupling among adjacent domains to Barkhausen avalanche process affects the sudden change of the scaling behavior observed at the coercivity-field region on the hysteresis loop of CoCrPt alloy film.

  16. High-speed, high-voltage pulse generation using avalanche transistor.

    PubMed

    Yong-Sheng, Gou; Bai-Yu, Liu; Yong-Lin, Bai; Jun-Jun, Qin; Xiao-Hong, Bai; Bo, Wang; Bing-Li, Zhu; Chuan-Dong, Sun

    2016-05-01

    In this work, the conduction mechanism of avalanche transistors was demonstrated and the operation condition for generating high-speed pulse using avalanche transistors was illustrated. Based on the above analysis, a high-speed and high-voltage pulse (HHP) generating circuit using avalanche transistors was designed, and its working principle and process were studied. To improve the speed of the output pulse, an approach of reducing the rise time of the leading edge is proposed. Methods for selecting avalanche transistor and reducing the parasitic inductance and capacitance of printed circuit board (PCB) were demonstrated. With these instructions, a PCB with a tapered transmission line was carefully designed and manufactured. Output pulse with amplitude of 2 kV and rise time of about 200 ps was realized with this PCB mounted with avalanche transistors FMMT417, indicating the effectiveness of the HHP generating circuit design.

  17. High-speed, high-voltage pulse generation using avalanche transistor

    NASA Astrophysics Data System (ADS)

    Yong-sheng, Gou; Bai-yu, Liu; Yong-lin, Bai; Jun-jun, Qin; Xiao-hong, Bai; Bo, Wang; Bing-li, Zhu; Chuan-dong, Sun

    2016-05-01

    In this work, the conduction mechanism of avalanche transistors was demonstrated and the operation condition for generating high-speed pulse using avalanche transistors was illustrated. Based on the above analysis, a high-speed and high-voltage pulse (HHP) generating circuit using avalanche transistors was designed, and its working principle and process were studied. To improve the speed of the output pulse, an approach of reducing the rise time of the leading edge is proposed. Methods for selecting avalanche transistor and reducing the parasitic inductance and capacitance of printed circuit board (PCB) were demonstrated. With these instructions, a PCB with a tapered transmission line was carefully designed and manufactured. Output pulse with amplitude of 2 kV and rise time of about 200 ps was realized with this PCB mounted with avalanche transistors FMMT417, indicating the effectiveness of the HHP generating circuit design.

  18. Morphometric and meteorological controls on recent snow avalanche distribution and activity at hillslopes in steep mountain valleys in western Norway

    NASA Astrophysics Data System (ADS)

    Laute, Katja; Beylich, Achim A.

    2014-08-01

    Snow avalanches are common phenomena in Norway. Controlling factors of snow avalanche distribution and activity, and the relative importance of snow avalanches regarding contemporary sedimentary mass transfers were explored within two steep, parabolic-shaped and glacier-connected tributary valleys (Erdalen and Bødalen) in western Norway. Mapping of distribution, extent and the entire path lengths of snow avalanches was combined with spatial data analysis (GIS and DEM computing) of morphometric controls. The timing and frequency of snow avalanches were explored by correlating meteorological data with high-resolution monitoring data of snow avalanche events. Sediment masses annually transferred by snow avalanches along hillslopes and from hillslopes into stream channels were estimated. A high inter-annual variability of avalanche activity and a wide spectrum of avalanche sizes and types ranging from small to extreme-sized events were found for the four-year investigation period 2009-2012. Spatial distribution of snow avalanches is governed by the topographical factors valley orientation, slope aspect, relative slope height and rockwall morphometry whereas timing and frequency of snow avalanches are controlled by snowfall intensity, periods with strong winds combined with a prevalent wind direction or sharp air temperature changes within short time periods. Snow avalanches represent one of the dominant denudational processes and have a high relative importance regarding sedimentary mass transfers within the two mountain valleys Erdalen and Bødalen in western Norway.

  19. MCT (HgCdTe) IR detectors: latest developments in France

    NASA Astrophysics Data System (ADS)

    Reibel, Yann; Rubaldo, Laurent; Vaz, Cedric; Tribolet, Philippe; Baier, Nicolas; Destefanis, Gérard

    2010-10-01

    This paper presents an overview of the very recent developments of the MCT infrared detector technology developed by CEA-LETI and Sofradir in France. New applications require high sensitivity, higher operating temperature and dual band detectors. The standard n on p technology in production at Sofradir for 25 years is well mastered with an extremely robust and reliable process. Sofradir's interest in p on n technology opens the perspective of reducing dark current of diodes so detectors could operate in lower flux or higher operating temperature. In parallel, MCT Avalanche Photo Diodes (APD) have demonstrated ideal performances for low flux and high speed application like laser gated imaging during the last few years. This technology also opens new prospects on next generation of imaging detectors for compact, low flux and low power applications. Regarding 3rd Gen IR detectors, the development of dual-band infrared detectors has been the core of intense research and technological improvements for the last ten years. New TV (640 x 512 pixels) format MWIR/LWIR detectors on 20μm pixel pitch, made from Molecular Beam Epitaxy, has been developed with dedicated Read-Out Integrated Circuit (ROIC) for real simultaneous detection and maximum SNR. Technological and products achievements, as well as latest results and performances are presented outlining the availability of p/n, avalanche photodiodes and dual band technologies for new applications at system level.

  20. Peltier-Cooled and Actively Quenched Operation of InGaAs/InP Avalanche Photodiodes as Photon Counters at a 1.55-mum Wavelength.

    PubMed

    Prochazka, I

    2001-11-20

    The performance of commercially available InGaAs/InP avalanche photodiodes as single-photon detectors at a 1.55-mum wavelength has been investigated. A new active quenching and gating circuit, tailored for operation of these diodes at temperatures in the range from room temperature to -60 degrees C and achievable by means of thermoelectrical cooling, has been developed. Careful tuning of the diodes' operating conditions resulted in a significant reduction of afterpulsing effects; it permitted operation of the detectors with high repetition rates. A noise-equivalent power of 7 x 10(-16) W/Hz(1/2) was obtained at a 1.55-mum wavelength.

  1. The September 1988 intracaldera avalanche and eruption at Fernandina volcano, Galapagos Islands

    NASA Astrophysics Data System (ADS)

    Chadwick, William W.; de Roy, Tui; Carrasco, Alfredo

    1991-05-01

    During 14 16 September 1988, a large intracaldera avalanche and an eruption of basaltic tephra and lava at Fernandina volcano, Galapagos, produced the most profound changes within the caldera since its collapse in 1968. A swarm of eight earthquakes ( m b 4.7 5.5) occurred in a 14 h period on 24 February 1988 at Fernandina, and two more earthquakes of this size followed on 15 April and 20 May, respectively. On 14 September 1988, another earthquake ( m b 4.6) preceded a complex series of events. A debris avalanche was generated by the failure of a fault-bounded segment of the east caldera wall, approximately 2 km long and 300 m wide. The avalanche deposit is up to 250 m thick and has an approximate volume of 0.9 km3. The avalanche rapidly displaced a preexisting lake from the southeast end of the caldera floor to the northwest end, where the water washed up against the lower part of the caldera wall, then gradually seeped into the avalanche deposit and was completely gone by mid-January 1989. An eruption began in the caldera within about 1 2 h of the earthquake, producing a vigorous tephra plume for about 12 h, then lava flows during the next two days. The eruption ended late on 16 September. Most of the eruptive activity was from vents on the caldera floor near the base of the new avalanche scar. Unequivocal relative timing of events is difficult to determine, but seismic records suggest that the avalanche may have occurred 1.6 h after the earthquake, and field relations show that lava was clearly erupted after the avalanche was emplaced. The most likely sequence of events seems to be that the 1988 feeder dike intruded upward into the east caldera wall, dislocated the unstable wall block, and triggered the avalanche. The avalanche immediately exposed the newly emplaced dike and initiated the eruption. The exact cause of the earthquakes is unknown.

  2. Comparison of seismic and infrasound wave fields generated by snow avalanches

    NASA Astrophysics Data System (ADS)

    Suriñach, Emma; Tapia, Mar; Pérez-Guillén, Cristina; Khazaradze, Giorgi; Roig, Pere

    2016-04-01

    Snow avalanches are a source of waves that are transmitted through the ground and the air. These wave fields are detected by seismic and infrasound sensors. During the winter seasons 2008 -2016, a good quality database of avalanches was obtained at the VdlS test site with an accurate instrumentation. These avalanches were both natural and artificially triggered and were of varying types and sizes. Distances involved were 0.5 -3 km. Seismic signals were acquired using three seismometers (3-components, 1Hz) spaced 600 m apart along the avalanche track. One infrasound sensor (0.1Hz) and one seismometer (3-components, 1Hz) were placed one next to the other with a common base of time on the slope opposite the path. The database obtained enables us to compare the different signals generated. Differences in the frequency content and shape of the signals depending on the type and size of the avalanche are detected. A clear evolution of the recorded seismic signals along the path is observed. The cross correlation of the infrasound and seismic signals generated by the avalanches allows us to determine different characteristics for powder, transitional and wet avalanches concerning their wave fields. The joint analysis of infrasound and seismic waves enables us to obtain valuable information about the internal parts of the avalanche as a source of each wave field. This study has repercussions on avalanche dynamics and on the selection of the appropriate avalanche detection system. This study is supported by the Spanish Ministry of Science and Innovation project CHARMA: CHAracterization and ContRol of MAss Movements. A Challenge for Geohazard Mitigation (CGL2013-40828-R), and RISKNAT group (2014GR/1243).

  3. Granular avalanches in a two-dimensional rotating drum with imposed vertical vibration

    NASA Astrophysics Data System (ADS)

    Amon, Daniel L.; Niculescu, Tatiana; Utter, Brian C.

    2013-07-01

    We present statistics on granular avalanches in a rotating drum with and without imposed vertical vibration. The experiment consists of a quasi-two-dimensional, vertical drum containing pentagonal particles and rotated at a constant angular velocity. The drum rests on an electromagnetic shaker to allow vibration of the assembly as it rotates. We measure time series of the slope of the interface and find that the critical angle for slope failure θc and the resulting angle of repose θr are broadly distributed with an approximate power-law distribution of avalanches θc-θr for large avalanches. The faceted pentagonal grains used lead to significant interlocking with critical and repose angles (θc≈45∘ and θr≈39∘) larger than experiments using spherical grains, even with vibration, and avalanche magnitudes correlated with the prior build-up and anti-correlated with the prior avalanche. We find that the stability of the assembly increases with small vibrations and is destabilized at vibration amplitudes above a dimensionless acceleration (peak acceleration divided by acceleration due to gravity) of Γ=0.2. We also study history dependence of the avalanches by periodically oscillating the drum to compare the initial avalanche upon reversal of shear to steady-state distributions for avalanches during continuous rotation. We observe history dependence as an initial decrease in critical angle upon reversal of the drum rotation direction, indicating that a texture is induced to resist continued shear such that the surface is weaker to reversals in shear direction. Memory of this history is removed by sufficient external vibration (Γ≥0.8), which leads to compaction and relaxation of the surface layer grains responsible for avalanching dynamics, as initial and steady-state avalanche distributions become indistinguishable.

  4. Granular avalanches in a two-dimensional rotating drum with imposed vertical vibration.

    PubMed

    Amon, Daniel L; Niculescu, Tatiana; Utter, Brian C

    2013-07-01

    We present statistics on granular avalanches in a rotating drum with and without imposed vertical vibration. The experiment consists of a quasi-two-dimensional, vertical drum containing pentagonal particles and rotated at a constant angular velocity. The drum rests on an electromagnetic shaker to allow vibration of the assembly as it rotates. We measure time series of the slope of the interface and find that the critical angle for slope failure θ(c) and the resulting angle of repose θ(r) are broadly distributed with an approximate power-law distribution of avalanches θ(c)-θ(r) for large avalanches. The faceted pentagonal grains used lead to significant interlocking with critical and repose angles (θ(c)≈45° and θ(r)≈39°) larger than experiments using spherical grains, even with vibration, and avalanche magnitudes correlated with the prior build-up and anti-correlated with the prior avalanche. We find that the stability of the assembly increases with small vibrations and is destabilized at vibration amplitudes above a dimensionless acceleration (peak acceleration divided by acceleration due to gravity) of Γ=0.2. We also study history dependence of the avalanches by periodically oscillating the drum to compare the initial avalanche upon reversal of shear to steady-state distributions for avalanches during continuous rotation. We observe history dependence as an initial decrease in critical angle upon reversal of the drum rotation direction, indicating that a texture is induced to resist continued shear such that the surface is weaker to reversals in shear direction. Memory of this history is removed by sufficient external vibration (Γ≥0.8), which leads to compaction and relaxation of the surface layer grains responsible for avalanching dynamics, as initial and steady-state avalanche distributions become indistinguishable.

  5. Snow-avalanche hazard forecasting in the Krkonoše Mountains, Czechia

    NASA Astrophysics Data System (ADS)

    Blahut, Jan; Pavlasek, Jiri; Juras, Roman; Klimes, Jan; Klose, Zbynek; Balek, Jan; Roubinek, Jiri; Taborik, Petr; Hajek, Petr

    2014-05-01

    The Krkonoše Mts., with the highest peak at 1602 m, are the highest mountains in the Czech Republic. This middle-mountain range covers an area of 454 km2 and includes 53 permanent avalanche paths. Despite its low altitude Krkonoše experience considerably high avalanche activity, even causing fatalities. Unfortunately, and so far, the local authorities do not have a professional tool for avalanche forecasting available. Within the framework of a project devoted to preparation of a tool for snow avalanche hazard forecasting an analysis of historical datasets was performed including weather and snow condition data covering more than 1100 avalanche events in the last 50 years. HR-DEM from airborne LiDAR was used to get accurate slope and terrain characteristics, which were used for calculation of a release susceptibility map using ANN method. Afterwards and regional runout susceptibility was calculated employing Flow-R code (http://www.flow-r.org) and information from the regression analysis of avalanche runout length. This "static" information about avalanche hazard is then being coupled with snow distribution and stability models in order to assess the snow-avalanche hazard in near-real time. For the snow distribution modelling are being tested two models - Alpine 3D and newly developed spatial distributed HBV-ETH model. It is planned that the forecasting system will be employed as a public avalanche alert system for the Krkonoše Mts. and consequently will be extended for the whole Czechia under the patronage of the Mountain Rescue Service, an organization responsible for the public snow-avalanche hazard forecasting. The system will use forecasted ALADIN weather data.

  6. Model for avalanches in a hollow pressure filament

    NASA Astrophysics Data System (ADS)

    Poulos, M. J.; Morales, G. J.

    2016-10-01

    A theoretical and modeling study is made of a novel heating configuration recently implemented in the LAPD device at UCLA. The geometry essentially consists of a hollow pressure filament embedded in a cold, magnetized plasma. An eigenmode-based stability analysis is made of drift-waves excited by simultaneous gradients in density and temperature. A Braginskii transport code that includes the ExB flows of the unstable modes is used to self-consistently evolve the profile modifications in the presence of external heating. A shooting code is used to calculate the evolving mode structures as the profiles are modified. It is found that intermittent avalanches are triggered and their properties are in good agreement with the experimental observations. During the recovery phase after an avalanche the large difference between the relaxation times of density and temperature results in azimuthal filamentation of the profiles. New insights are obtained that suggest future laboratory and theoretical studies. Sponsored by BaPSF at UCLA under DOE-NSF Grant.

  7. First-principles derivation of static avalanche-size distributions.

    PubMed

    Le Doussal, Pierre; Wiese, Kay Jörg

    2012-06-01

    We study the energy minimization problem for an elastic interface in a random potential plus a quadratic well. As the position of the well is varied, the ground state undergoes jumps, called shocks or static avalanches. We introduce an efficient and systematic method to compute the statistics of avalanche sizes and manifold displacements. The tree-level calculation, i.e., mean-field limit, is obtained by solving a saddle-point equation. Graphically, it can be interpreted as the sum of all tree graphs. The 1-loop corrections are computed using results from the functional renormalization group. At the upper critical dimension the shock statistics is described by the Brownian force model (BFM), the static version of the so-called Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model in the nonequilibrium context of depinning. This model can itself be treated exactly in any dimension and its shock statistics is that of a Lévy process. Contact is made with classical results in probability theory on the Burgers equation with Brownian initial conditions. In particular we obtain a functional extension of an evolution equation introduced by Carraro and Duchon, which recursively constructs the tree diagrams in the field theory.

  8. Characterization of midwave infrared InSb avalanche photodiode

    SciTech Connect

    Abautret, J. Evirgen, A.; Perez, J. P.; Christol, P.; Rothman, J.; Cordat, A.

    2015-06-28

    This paper focuses on the InSb material potential for the elaboration of Avalanche Photodiodes (APD) for high performance infrared imaging applications, both in passive or active mode. The first InSb electron-APD structure was grown by molecular beam epitaxy, processed and electrically characterized. The device performances are at the state of the art for the InSb epi-diode technology, with a dark current density J(−50 mV) = 32 nA/cm{sup 2} at 77 K. Then, a pure electron injection was performed, and an avalanche gain, increasing exponentially, was observed with a gain value near 3 at −4 V at 77 K. The Okuto–Crowell model was used to determine the electron ionization coefficient α(E) in InSb, and the InSb gain behavior is compared with the one of InAs and MCT APDs.

  9. Supershort avalanche electron beam in SF6 and krypton

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Tarasenko, Victor F.; Gu, Jianwei; Baksht, Evgeni Kh.; Beloplotov, Dmitry V.; Burachenko, Alexander G.; Yan, Ping; Lomaev, Mikhail I.; Shao, Tao

    2016-03-01

    Runaway electrons play an important role in the avalanche formation in nanosecond- and subnanosecond- pulse discharges. In this paper, characteristics of a supershort avalanche electron beam (SAEB) generated at the subnanosecond and nanosecond breakdown in sulfur hexafluoride (SF6 ) in an inhomogeneous electric field were studied. One pulser operated at negative polarity with voltage pulse amplitude of ˜130 kV and rise time of 0.3 ns. The other pulser operated at negative polarity with voltage pulse amplitude of 70 kV and rise time of ˜1.6 ns . SAEB parameters in SF6 are compared with those obtained in krypton (Kr), nitrogen (N2 ), air, and mixtures of SF6 with krypton or nitrogen. Experimental results showed that SAEB currents appeared during the rise-time of the voltage pulse for both pulsers. Moreover, amplitudes of the SAEB current in SF6 and Kr approximately ranged from several to tens of milliamps at atmospheric pressure, which were smaller than those in N2 and air (ranging from hundreds of milliamps to several amperes). Furthermore, the concentration of SF6 additive could significantly reduce the SAEB current in N2-SF6 mixture, but it slightly affected the SAEB current in Kr -SF6 mixture because of the atomic/molecular ionization cross section of the gas had a much greater impact on the SAEB current rather than the electronegativity.

  10. Spatiotemporal chaotic unjamming and jamming in granular avalanches.

    PubMed

    Wang, Ziwei; Zhang, Jie

    2015-01-30

    We have investigated the spatiotemporal chaotic dynamics of unjamming and jamming of particles in a model experiment - a rotating drum partially filled with bidisperse disks to create avalanches. The magnitudes of the first Lyapunov vector δu(t) and velocity v(t) of particles are directly measured for the first time to yield insights into their spatial correlation Cδu,v, which is on statistical average slightly larger near the unjamming than the value near the jamming transition. These results are consistent with the recent work of Banigan et al (Nature Phys. 2013), and it is for the first time to validate their theoretical models in a real scenario. v(t) shows rich dynamics: it grows exponentially for unstable particles and keeps increasing despite stochastic interactions; after the maximum, it decays with large fluctuations. Hence the spatiotemporal chaotic dynamics of avalanche particles are entangled, causing temporal correlations of macroscopic quantities of the system. We propose a simple model for these observations.

  11. Tuned critical avalanche scaling in bulk metallic glasses

    SciTech Connect

    Antonaglia, James; Xie, Xie; Schwarz, Gregory; Wraith, Matthew; Qiao, Junwei; Zhang, Yong; Liaw, Peter K.; Uhl, Jonathan T.; Dahmen, Karin A.

    2014-03-17

    In this study, ingots of the bulk metallic glass (BMG), Zr64.13Cu15.75Ni10.12Al10 in atomic percent (at. %), are compressed at slow strain rates. The deformation behavior is characterized by discrete, jerky stress-drop bursts (serrations). Here we present a quantitative theory for the serration behavior of BMGs, which is a critical issue for the understanding of the deformation characteristics of BMGs. The mean-field interaction model predicts the scaling behavior of the distribution, D(S), of avalanche sizes, S, in the experiments. D(S) follows a power law multiplied by an exponentially-decaying scaling function. The size of the largest observed avalanche depends on experimental tuning-parameters, such as either imposed strain rate or stress. Similar to crystalline materials, the plasticity of BMGs reflects tuned criticality showing remarkable quantitative agreement with the slip statistics of slowly-compressed nanocrystals. The results imply that material-evaluation methods based on slip statistics apply to both crystalline and BMG materials.

  12. Active microrheology in active matter systems: Mobility, intermittency, and avalanches.

    PubMed

    Reichhardt, C; Reichhardt, C J Olson

    2015-03-01

    We examine the mobility and velocity fluctuations of a driven particle moving through an active matter bath of self-mobile disks for varied density or area coverage and varied activity. We show that the driven particle mobility can exhibit nonmonotonic behavior that is correlated with distinct changes in the spatiotemporal structures that arise in the active media. We demonstrate that the probe particle velocity distributions exhibit specific features in the different dynamic regimes and identify an activity-induced uniform crystallization that occurs for moderate activity levels and is distinct from the previously observed higher activity cluster phase. The velocity distribution in the cluster phase has telegraph noise characteristics produced when the probe particle moves alternately through high-mobility areas that are in the gas state and low-mobility areas that are in the dense phase. For higher densities and large activities, the system enters what we characterize as an active jamming regime. Here the probe particle moves in intermittent jumps or avalanches that have power-law-distributed sizes that are similar to the avalanche distributions observed for nonactive disk systems near the jamming transition.

  13. Tuned critical avalanche scaling in bulk metallic glasses

    DOE PAGES

    Antonaglia, James; Xie, Xie; Schwarz, Gregory; ...

    2014-03-17

    In this study, ingots of the bulk metallic glass (BMG), Zr64.13Cu15.75Ni10.12Al10 in atomic percent (at. %), are compressed at slow strain rates. The deformation behavior is characterized by discrete, jerky stress-drop bursts (serrations). Here we present a quantitative theory for the serration behavior of BMGs, which is a critical issue for the understanding of the deformation characteristics of BMGs. The mean-field interaction model predicts the scaling behavior of the distribution, D(S), of avalanche sizes, S, in the experiments. D(S) follows a power law multiplied by an exponentially-decaying scaling function. The size of the largest observed avalanche depends on experimental tuning-parameters,more » such as either imposed strain rate or stress. Similar to crystalline materials, the plasticity of BMGs reflects tuned criticality showing remarkable quantitative agreement with the slip statistics of slowly-compressed nanocrystals. The results imply that material-evaluation methods based on slip statistics apply to both crystalline and BMG materials.« less

  14. Vortex Avalanches with Periodic Arrays of Pinning Sites

    NASA Astrophysics Data System (ADS)

    Abbas, J.; Heckel, T.; Kakalios, J.

    2001-03-01

    Numerical simulations by Nori and co-workers of dynamical phase transitions for magnetic vortices in type II superconductors when the defects which act as pinning sites are arranged in a periodic array have found a dramatic non-linear relationship between vortex voltage and driving current.2,4 In order to experimentally test the predictions of these simulations, a macroscopic physical analog of an array of flux vortices in the presense of an ordered lattice of pinning sites has been constructed. This simple table-top experimental system consists of conventional household magnets, arranged in an ordered grid (serving as the lattice of fixed pinning centers). A plexiglass sheet is positioned above these fixed magnets, and another collection of magnets (representing the magnetic flux vortices), oriented so that they are attracted to the fixed magnets are placed on top of the sheet. The entire apparatus is then tilted to a given angle (the analog of the driving voltage) and the velocity of the avalanching magnets is recorded using the induced voltage in a pick-up coil. By varying the ratio of movable magnets to fixed pinning magnets, the filling fraction can be adjusted, as can the pinning strength, by adjusting the separation of the plexiglass sheet between the fixed and movable magnets. The velocity of the avalanching magnets as the filling fraction is varied displays a jamming transition, with a non-trivial dependence on the pinning strength of the lattice of fixed magnets below the sheet.

  15. Spatiotemporal chaotic unjamming and jamming in granular avalanches

    PubMed Central

    Wang, Ziwei; Zhang, Jie

    2015-01-01

    We have investigated the spatiotemporal chaotic dynamics of unjamming and jamming of particles in a model experiment – a rotating drum partially filled with bidisperse disks to create avalanches. The magnitudes of the first Lyapunov vector δu(t) and velocity v(t) of particles are directly measured for the first time to yield insights into their spatial correlation Cδu,v, which is on statistical average slightly larger near the unjamming than the value near the jamming transition. These results are consistent with the recent work of Banigan et al (Nature Phys. 2013), and it is for the first time to validate their theoretical models in a real scenario. v(t) shows rich dynamics: it grows exponentially for unstable particles and keeps increasing despite stochastic interactions; after the maximum, it decays with large fluctuations. Hence the spatiotemporal chaotic dynamics of avalanche particles are entangled, causing temporal correlations of macroscopic quantities of the system. We propose a simple model for these observations. PMID:25634753

  16. Collective Dislocation Dynamics and Avalanches during Fatigue of Aluminum

    NASA Astrophysics Data System (ADS)

    Rhouma, W. Ben; Deschanel, S.; Weiss, J.

    2011-09-01

    We present a study of collective dislocation dynamics and plasticity during fatigue of pure Aluminum from the analysis of continuous and discrete acoustic emission (AE). The three stages of macroscopic fatigue behavior (strain-hardening, shakedown, and strain softening) are clearly differentiated in terms of AE. During the first loading cycles, collective dislocation dynamics consists in dislocation avalanches of various sizes and clustered in time. Once a microstructure of dislocation cells and walls is formed, the spreading of such avalanches is restrained, and the discrete AE strongly decreases. Instead, a symmetrical (tension-compression) continuous AE, maximal at plastic yield, is observed, likely associated to a superposition of numerous, small and uncorrelated motions such as dislocation loops initiation from cell walls. However, some discrete AE activity remains during shakedown, a possible signature of sudden rearrangements of the microstructure occurring at scales larger than its wavelength. Finally, the onset of strain softening is associated to a strong increase of discrete AE, in relation with microcracking. Our results suggest that collective dislocation instabilities and the emergence of a dislocation microstructure are interrelated, and challenge future numerical modeling developments of dislocation assemblies.

  17. Flame Detector

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.

  18. Neutron detector

    DOEpatents

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  19. Angle detector

    NASA Technical Reports Server (NTRS)

    Parra, G. T. (Inventor)

    1978-01-01

    An angle detector for determining a transducer's angular disposition to a capacitive pickup element is described. The transducer comprises a pendulum mounted inductive element moving past the capacitive pickup element. The capacitive pickup element divides the inductive element into two parts L sub 1 and L sub 2 which form the arms of one side of an a-c bridge. Two networks R sub 1 and R sub 2 having a plurality of binary weighted resistors and an equal number of digitally controlled switches for removing resistors from the networks form the arms of the other side of the a-c bridge. A binary counter, controlled by a phase detector, balances the bridge by adjusting the resistance of R sub 1 and R sub 2. The binary output of the counter is representative of the angle.

  20. Morphometric and meteorological controls of snow avalanche distribution and activity at hillslopes in steep mountain valleys in western Norway

    NASA Astrophysics Data System (ADS)

    Laute, Katja; Beylich, Achim A.

    2013-04-01

    Snow avalanches are common phenomena in Norway due to the interactions between the prevalent climatic factors and local topography. Research on snow avalanches provides insights into possible effects of predicted climate change on avalanche activity and connected sediment transport in mountain areas. This study focuses on (i) controlling factors of avalanche distribution and activity, and (ii) their relative importance regarding mass transfers in two steep, parabolic-shaped and glacier-connected tributary valleys (Erdalen and Bødalen) in western Norway. Mapping of distribution, extension and run-out distances of avalanches is combined with spatial data analysis of morphometric controls. Based on correlation of climate data with monitored avalanche events the timing and frequency of avalanches is explored and debris mass transfer on hillslopes caused by avalanches is estimated. The denudative effect of snow avalanches occurs in two steps: firstly throughout erosion directly on the surface of the rockwall and secondly due to their transport ability which causes significant remobilization and transport of available debris further downslope. The spatial distribution of snow avalanches depends on the valley orientation, slope aspect and rockwall morphometry. Especially distinct laterally convex-shaped leeside upper rockwall areas allow a high accumulation rate of snow during winter which is then released as avalanches during spring. The timing and frequency of avalanches in both valleys depend mainly on snowfall intensity, periods with strong winds combined with a stable wind direction or sudden air temperature changes. Snow avalanche activity leads in some valley areas to significant hillslope-channel coupling because debris is transported far enough by avalanches to reach channels. Snow avalanches represent one of the dominant denudational processes and have a high relative importance regarding mass transfer within the sedimentary budgets of the entire valleys.