Science.gov

Sample records for aridic regimes

  1. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems.

    PubMed

    Nielsen, Uffe N; Ball, Becky A

    2015-04-01

    Altered precipitation patterns resulting from climate change will have particularly significant consequences in water-limited ecosystems, such as arid to semi-arid ecosystems, where discontinuous inputs of water control biological processes. Given that these ecosystems cover more than a third of Earth's terrestrial surface, it is important to understand how they respond to such alterations. Altered water availability may impact both aboveground and belowground communities and the interactions between these, with potential impacts on ecosystem functioning; however, most studies to date have focused exclusively on vegetation responses to altered precipitation regimes. To synthesize our understanding of potential climate change impacts on dryland ecosystems, we present here a review of current literature that reports the effects of precipitation events and altered precipitation regimes on belowground biota and biogeochemical cycling. Increased precipitation generally increases microbial biomass and fungal:bacterial ratio. Few studies report responses to reduced precipitation but the effects likely counter those of increased precipitation. Altered precipitation regimes have also been found to alter microbial community composition but broader generalizations are difficult to make. Changes in event size and frequency influences invertebrate activity and density with cascading impacts on the soil food web, which will likely impact carbon and nutrient pools. The long-term implications for biogeochemical cycling are inconclusive but several studies suggest that increased aridity may cause decoupling of carbon and nutrient cycling. We propose a new conceptual framework that incorporates hierarchical biotic responses to individual precipitation events more explicitly, including moderation of microbial activity and biomass by invertebrate grazing, and use this framework to make some predictions on impacts of altered precipitation regimes in terms of event size and frequency as

  2. The influence of agricultural management on soil's CO2 regime in semi-arid and arid regions

    NASA Astrophysics Data System (ADS)

    Eshel, G.; Lifshithz, D.; Sternberg, M.; Ben-Dor, E.; Bonfile, D. J.; Arad, B.; Mingelgrin, U.; Fine, P.; Levy, G. J.

    2008-12-01

    Two of the more important parameters which may help us better evaluate the impact of agricultural practices on the global carbon cycle are the in-situ soil pCO2 profile and the corresponding CO2 fluxes to the atmosphere. In an ongoing study, we monitored the pCO2 to a depth of 5 m in two adjacent irrigated Avocado orchards in the coastal plain of Israel (semi-arid region), and to a depth of 2 m in a semi- arid rain-fed and a arid rain-fed wheat fields in southern Israel. The soil pCO2 profiles and CO2 fluxes measurements were supplemented by measurements of soil moisture and temperature. The results showed differences in the CO2 profiles (both in the depth of the highest concentration and its absolute values) and the CO2 fluxes between the orchards and the wheat fields as well as along the year. In the irrigated Avocado orchards pCO2 values were in the range of 1.5 kPa at a depth of 0.5 m up to 8 kPa at depths of 3-5 m (even though Avocado trees are characterized by shallow roots). Such levels could affect reactions (e.g., enhancement of inorganic carbon dissolution) that may take place in the soil and some of its chemical properties (e.g., pH). As expected, soil pCO2 was affected by soil moisture and temperature, and the distance from the trees. Maximum soil respiration was observed during the summer when the orchards are under irrigation. In the wheat fields pCO2 level ranged from 0.2- 0.6 kPa at a depth of 0.2 m to 0.2-1 kPa at depths of 1-1.5 m (in arid and semiarid respectively). These pCO2 levels were much lower than those obtained in the irrigated orchards and seemed to depend on the wheat growing cycle (high concentration were noted at depth of 1-1.5 m close to the end of grain filling) and precipitation gradient (arid vs. semiarid). Since CO2 fluxes are directly affected by the pCO2 profile and soil moister and temperature the CO2 fluxes from the wheat fields were much lower (0.02- 0.2 ml min-1 m-2) compared to those obtained from the Avocado orchards (2

  3. Natural flow regimes, nonnative fishes, and native fish persistence in arid-land river systems.

    PubMed

    Propst, David L; Gido, Keith B; Stefferud, Jerome A

    2008-07-01

    Escalating demands for water have led to substantial modifications of river systems in arid regions, which coupled with the widespread invasion of nonnative organisms, have increased the vulnerability of native aquatic species to extirpation. Whereas a number of studies have evaluated the role of modified flow regimes and nonnative species on native aquatic assemblages, few have been conducted where the compounding effects of modified flow regimes and established nonnatives do not confound interpretations, particularly at spatial and temporal scales that are relevant to conservation of species at a range-wide level. By evaluating a 19-year data set across six sites in the relatively unaltered upper Gila River basin, New Mexico, USA, we tested how natural flow regimes and presence of nonnative species affected long-term stability of native fish assemblages. Overall, we found that native fish density was greatest during a wet period at the beginning of our study and declined during a dry period near the end of the study. Nonnative fishes, particularly predators, generally responded in opposite directions to these climatic cycles. Our data suggested that chronic presence of nonnative fishes, coupled with naturally low flows reduced abundance of individual species and compromised persistence of native fish assemblages. We also found that a natural flow regime alone was unlikely to ensure persistence of native fish assemblages. Rather, active management that maintains natural flow regimes while concurrently suppressing or excluding nonnative fishes from remaining native fish strongholds is critical to conservation of native fish assemblages in a system, such as the upper Gila River drainage, with comparatively little anthropogenic modification.

  4. Evidence of Urban-Induced Precipitation Variability in Arid Climate Regimes

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall

    2005-01-01

    -urban (1900-1950) Phoenix. The study hypothesis that a complex interaction between the city landscape, irrigated lands, and nearby mountains have created preferred regions for rainfall development. The study also provides early evidence that rapidly urbanizing parts of the arid Middle East may also be experiencing different precipitation regimes in response to urbanization and irrigation.

  5. Influence of Precipitation Regime on Microbial Decomposition Patterns in Semi-Arid Ecosystems

    NASA Astrophysics Data System (ADS)

    Feris, K. P.; Jilek, C.; Huber, D. P.; Reinhardt, K.; deGraaff, M.; Lohse, K.; Germino, M.

    2011-12-01

    In water-limited semi-arid sagebrush steppe ecosystems predicted changes in climate may manifest as a shift from historically winter/snow-dominated precipitation regimes to one dominated by spring rains. In these ecosystems soil microorganisms play a vital role in linking the effects of water availability and plant productivity to biogeochemical cycling. Patterns of soil microbial catalyzed organic matter decomposition patters (i.e. patterns of extracellular enzyme activity (EEA)) are thought to depend upon the quantity and quality of soil organic matter (SOM), pH, and mean annual precipitation (Sinsabaugh, 2008), and less on the timing and magnitude of precipitation. However, sagebrush-steppe plant communities respond strongly to changes in the timing and magnitude of precipitation, and preliminary findings by our group suggest that corresponding changes in SOM quantity, quality, N-cycle dynamics, and soil structure are occurring. Therefore, we hypothesized: 1) Shifts in the timing and magnitude of precipitation would indirectly affect soil microbial decomposition patterns via responses in the plant community structure; and 2) Changes in precipitation patterns can directly affect soil microbial community structure and function, in effect uncoupling the interaction between plant community structure and soil community structure. We tested our hypotheses by determining the influence of experimentally manipulated timing and magnitude of precipitation on soil microbial EEA using standard flourometric assays in soils sampled under plant canopies and plant interspaces. We assessed this response in a mature (18 + years) ecohydrologic field experiment in eastern Idaho that annually imitates three possible post climatic-shift precipitation regimes (Ambient (AMB): no additional precipitation, ~200mm annually; Summer (SUMM): 200mm provisioned at 50mm bi-weekly starting in June; and Fall/Spring (F/S): 200mm provisioned over 1-2 weeks in October or April) (n=3). Within plant

  6. Observed variability of drought and aridity and its impact on the hydrological regime in the Barlad catchment (Romania)

    NASA Astrophysics Data System (ADS)

    Borcan, Mihaela; Cheval, Sorin; Chendes, Viorel

    2015-04-01

    The drought is a complex phenomenon with slow manifestation which engages, depending on its duration and intensity, a number of different components of the climatic, hydrologic, pedologic systems. This paper investigates the relationships between drought and aridity on one hand and hydrological regime, on the other hand, in Bârlad river basin, in the eastern part of Romania. Recent studies have revealed that both meteorological and hydrological drought events have a significant frequency and magnitude in the area, so that an important impact on the hydrological regime is likely to occur. For the next decades, climate change scenarios estimate increasing temperatures and relatively low decreasing of precipitation. Therefore, eventual changes in the aridity characteristics can be expected, and they might have a considerable impact on the water supply or agriculture in the Bârlad catchment. The analysis covers the period 1961-2013 and it is based on monthly data from meteorological and hydrological stations. Seasonal indices were calculated for characterising the drought (SPI, SFI, PDSI, PHDI) and aridity (UNEP, de Martonne, Pinna), while their temporal variability was further investigated in relations with specific hydrological parameters (monthly discharge time series). The spatial distribution of the selected indices was analysed in the same context using co-variables integrated in a GIS framework. The results show that the hydrological drought is influenced and determined mostly by the meteorological drought. The highest variability between the aridity indices has been identified for the summer season, where the time lag between the hydrological response to the meteorological impulse is up to 2 months. The work has been financed by the research project Changes in climate extremes and associated impact in hydrological events in Romania (CLIMHYDEX), Cod PN II-ID-2011-2-0073, sponsored by the National Authority for Scientific Research.

  7. The influence of conservation tillage methods on soil water regimes in semi-arid southern Zimbabwe

    NASA Astrophysics Data System (ADS)

    Mupangwa, W.; Twomlow, S.; Walker, S.

    Planting basins and ripper tillage practices are major components of the recently introduced conservation agriculture package that is being extensively promoted for smallholder farming in Zimbabwe. Besides preparing land for crop planting, these two technologies also help in collecting and using rainwater more efficiently in semi-arid areas. The basin tillage is being targeted for households with limited or no access to draught animals while ripping is meant for smallholder farmers with some draught animal power. Trials were established at four farms in Gwanda and Insiza in southern Zimbabwe to determine soil water contributions and runoff water losses from plots under four different tillage treatments. The tillage treatments were hand-dug planting basins, ripping, conventional spring and double ploughing using animal-drawn implements. The initial intention was to measure soil water changes and runoff losses from cropped plots under the four tillage practices. However, due to total crop failure, only soil water and runoff were measured from bare plots between December 2006 and April 2007. Runoff losses were highest under conventional ploughing. Planting basins retained most of the rainwater that fell during each rainfall event. The amount of rainfall received at each farm significantly influenced the volume of runoff water measured. Runoff water volume increased with increase in the amount of rainfall received at each farm. Soil water content was consistently higher under basin tillage than the other three tillage treatments. Significant differences in soil water content were observed across the farms according to soil types from sand to loamy sand. The basin tillage method gives a better control of water losses from the farmers’ fields. The planting basin tillage method has a greater potential for providing soil water to crops than ripper, double and single conventional ploughing practices.

  8. Greenhouse Gas Emissions from Cotton Field under Different Irrigation Methods and Fertilization Regimes in Arid Northwestern China

    PubMed Central

    Guo, Wei; Feng, Jinfei; Li, Lanhai; Yang, Haishui; Wang, Xiaohua; Bian, Xinmin

    2014-01-01

    Drip irrigation is broadly extended in order to save water in the arid cotton production region of China. Biochar is thought to be a useful soil amendment to reduce greenhouse gas (GHG) emissions. Here, a field study was conducted to compare the emissions of nitrous oxide (N2O) and methane (CH4) under different irrigation methods (drip irrigation (D) and furrow irrigation (F)) and fertilization regimes (conventional fertilization (C) and conventional fertilization + biochar (B)) during the cotton growth season. The accumulated N2O emissions were significantly lower with FB, DC, and DB than with FC by 28.8%, 36.1%, and 37.6%, while accumulated CH4 uptake was 264.5%, 226.7%, and 154.2% higher with DC, DB, and FC than that with FB, respectively. Irrigation methods showed a significant effect on total global warming potential (GWP) and yield-scaled GWP (P < 0.01). DC and DB showed higher cotton yield, water use efficiency (WUE), and lower yield-scaled GWP, as compared with FC and FB. This suggests that in northwestern China mulched-drip irrigation should be a better approach to increase cotton yield with depressed GHG. In addition, biochar addition increased CH4 emissions while it decreased N2O emissions. PMID:25133229

  9. Experimental Manipulation of Soil Moisture Regime Impacts Soil Microbial Community Abundance, Diversity, and Function in a Semi-Arid Sagebrush Steppe

    NASA Astrophysics Data System (ADS)

    Sorensen, P. O.; Feris, K. P.; Germino, M. J.

    2010-12-01

    Rising global temperatures are predicted to alter regional climate regimes, including the spatial and temporal distribution of precipitation. In water-limited (e.g. arid and semi-arid) ecosystems annual precipitation is low and shows a high degree of variability. In these environments, soil microbes occupy a pivotal seat coupling the effects of water availability and plant productivity to biogeochemical cycling and ecosystem function. Using a long running ecological field experiment (>15 years) sited in Idaho’s sagebrush steppe, effects of experimentally manipulated precipitation regime on microbial diversity, abundance, and terrestrial carbon cycling are being explored. Soils were sampled in January (winter) of 2009. Replicate cores collected at 15-20cm and 95-100cm, were taken from field plots planted with native vegetation under three different precipitation amendments; Ambient, Summer (+200mm in June), or Fall/Spring (+200mm in April or October). Bacterial and Fungal community structure was analyzed by high-resolution 454 pyrosequencing. Edaphic properties (soil moisture, pH, total C, total N, organic C, inorganic N, ortho P) were measured and used as factors for general linear modeling of Bacterial and Fungal community structure against field treatments. Labile soil carbon pools were measured as C mineralization rates by gas chromatography using long term soil incubations. Pyrosequencing analysis of soil Bacterial communities has revealed greater Bacterial community abundance and diversity across all treatments relative to Archaeal and Fungal communities. General linear modeling of sequences obtained from 454 pyrosequencing showed significant interactions of phyla-level Bacterial and Fungal abundance with experimental precipitation regime and depth of sampling. Edaphic properties such as soil moisture and pH also showed significant interactions with phyla-level Bacterial and Fungal abundance. Long-term soil incubation studies revealed treatment effects on

  10. Precipitation regime shift enhanced the rain pulse effect on soil respiration in a semi-arid steppe.

    PubMed

    Yan, Liming; Chen, Shiping; Xia, Jianyang; Luo, Yiqi

    2014-01-01

    The effect of resource pulses, such as rainfall events, on soil respiration plays an important role in controlling grassland carbon balance, but how shifts in long-term precipitation regime regulate rain pulse effect on soil respiration is still unclear. We first quantified the influence of rainfall event on soil respiration based on a two-year (2006 and 2009) continuously measured soil respiration data set in a temperate steppe in northern China. In 2006 and 2009, soil carbon release induced by rainfall events contributed about 44.5% (83.3 g C m(-2)) and 39.6% (61.7 g C m(-2)) to the growing-season total soil respiration, respectively. The pulse effect of rainfall event on soil respiration can be accurately predicted by a water status index (WSI), which is the product of rainfall event size and the ratio between antecedent soil temperature to moisture at the depth of 10 cm (r2 = 0.92, P<0.001) through the growing season. It indicates the pulse effect can be enhanced by not only larger individual rainfall event, but also higher soil temperature/moisture ratio which is usually associated with longer dry spells. We then analyzed a long-term (1953-2009) precipitation record in the experimental area. We found both the extreme heavy rainfall events (>40 mm per event) and the long dry-spells (>5 days) during the growing seasons increased from 1953-2009. It suggests the shift in precipitation regime has increased the contribution of rain pulse effect to growing-season total soil respiration in this region. These findings highlight the importance of incorporating precipitation regime shift and its impacts on the rain pulse effect into the future predictions of grassland carbon cycle under climate change.

  11. Precipitation Regime Shift Enhanced the Rain Pulse Effect on Soil Respiration in a Semi-Arid Steppe

    PubMed Central

    Yan, Liming; Chen, Shiping; Xia, Jianyang; Luo, Yiqi

    2014-01-01

    The effect of resource pulses, such as rainfall events, on soil respiration plays an important role in controlling grassland carbon balance, but how shifts in long-term precipitation regime regulate rain pulse effect on soil respiration is still unclear. We first quantified the influence of rainfall event on soil respiration based on a two-year (2006 and 2009) continuously measured soil respiration data set in a temperate steppe in northern China. In 2006 and 2009, soil carbon release induced by rainfall events contributed about 44.5% (83.3 g C m−2) and 39.6% (61.7 g C m−2) to the growing-season total soil respiration, respectively. The pulse effect of rainfall event on soil respiration can be accurately predicted by a water status index (WSI), which is the product of rainfall event size and the ratio between antecedent soil temperature to moisture at the depth of 10 cm (r2 = 0.92, P<0.001) through the growing season. It indicates the pulse effect can be enhanced by not only larger individual rainfall event, but also higher soil temperature/moisture ratio which is usually associated with longer dry spells. We then analyzed a long-term (1953–2009) precipitation record in the experimental area. We found both the extreme heavy rainfall events (>40 mm per event) and the long dry-spells (>5 days) during the growing seasons increased from 1953–2009. It suggests the shift in precipitation regime has increased the contribution of rain pulse effect to growing-season total soil respiration in this region. These findings highlight the importance of incorporating precipitation regime shift and its impacts on the rain pulse effect into the future predictions of grassland carbon cycle under climate change. PMID:25093573

  12. Differences in macroinvertebrate community structure in streams and rivers with different hydrologic regimes in the semi-arid Colorado Plateau

    USGS Publications Warehouse

    Miller, Matthew P.; Brasher, Anne M.D.

    2011-01-01

    Aquatic macroinvertebrates are sensitive to changes in their chemical and physical environment, and as such, serve as excellent indicators of overall ecosystem health. Moreover, temporal and spatial differences in macroinvertebrate community structure can be used to investigate broad issues in aquatic science, such as the hypothesis that changes in climate are likely to have disproportionately large effects on small, intermittent stream ecosystems. We quantified macroinvertebrate community structure and abiotic conditions at ten stream sites with different dominant hydrologic regimes in the Colorado Plateau, ranging from small, intermittent desert streams to large perennial mountain rivers. Considerable differences were observed in community structure between sites with differing hydrologic regimes. Quantitative results of non-metric multidimensional scaling (NMDS) ordination and Spearman rank correlations between physical habitat and macroinvertebrate resemblance matrices indicate that discharge, geomorphic channel unit type (% pools vs. % riffles), percent of substrate composed of sand, and velocity were the subset of measured habitat variables that best explained the differences in macroinvertebrate community structure among sites. Of the 134 taxa identified, nine taxa explained 95 % of the variability in community structure between sites. These results add to a growing base of knowledge regarding the functioning of lotic ecosystems in the Colorado Plateau, and provide timely information on anticipated changes in the structure and function of aquatic ecosystems in response to predicted future environmental conditions.

  13. Nutritional and ecological evaluation of dairy farming systems based on concentrate feeding regimes in semi-arid environments of Jordan

    PubMed Central

    Alqaisi, Othman; Hemme, Torsten; Hagemann, Martin; Susenbeth, Andreas

    2013-01-01

    The objective of this study was to evaluate the nutritional and ecological aspects of feeding systems practiced under semi-arid environments in Jordan. Nine dairy farms representing the different dairy farming systems were selected for this study. Feed samples (n = 58), fecal samples (n = 108), and milk samples (n = 78) were collected from the farms and analysed for chemical composition. Feed samples were also analysed for metabolisable energy (ME) contents and in vitro organic matter digestibility according to Hohenheim-Feed-Test. Furthermore, fecal nitrogen concentration was determined to estimate in vivo organic matter digestibility. ME and nutrient intakes were calculated based on the farmer’s estimate of dry matter intake and the analysed composition of the feed ingredients. ME and nutrient intakes were compared to recommended standard values for adequate supply of ME, utilizable crude protein, rumen undegradable crude protein (RUCP), phosphorus (P), and calcium (Ca). Technology Impact Policy Impact Calculation model complemented with a partial life cycle assessment model was used to estimate greenhouse gas emissions of milk production at farm gate. The model predicts CH4, N2O and CO2 gases emitted either directly or indirectly. Average daily energy corrected milk yield (ECM) was 19 kg and ranged between 11 and 27 kg. The mean of ME intake of all farms was 184 MJ/d with a range between 115 and 225 MJ/d. Intake of RUCP was lower than the standard requirements in six farms ranging between 19 and 137 g/d, was higher (32 and 93 g/d) in two farms, and matched the requirements in one farm. P intake was higher than the requirements in all farms (mean oversupply = 19 g/d) and ranged between 3 and 30 g/d. Ca intake was significantly below the requirements in small scale farms. Milk nitrogen efficiency N-eff (milk N/intake N) varied between 19% and 28% and was mainly driven by the level of milk yield. Total CO2 equivalent (CO2 equ) emission ranged

  14. Use of the subsurface thermal regime as a groundwater-flow tracer in the semi-arid western Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Salem, Zenhom E.; Bayumy, Dina A.

    2016-06-01

    Temperature profiles from 25 boreholes were used to understand the spatial and vertical groundwater flow systems in the Western Nile Delta region of Egypt, as a case study of a semi-arid region. The study area is located between the Nile River and Wadi El Natrun. The recharge areas, which are located in the northeastern and the northwestern parts of the study area, have low subsurface temperatures. The discharge areas, which are located in the western (Wadi El Natrun) and southern (Moghra aquifer) parts of the study area, have higher subsurface temperatures. In the deeper zones, the effects of faults and the recharge area in the northeastern direction disappear at 80 m below sea level. For that depth, one main recharge and one main discharge area are recognized. The recharge area is located to the north in the Quaternary aquifer, and the discharge area is located to the south in the Miocene aquifer. Two-dimensional groundwater-flow and heat-transport models reveal that the sealing faults are the major factor disturbing the regional subsurface thermal regime in the study area. Besides the main recharge and discharge areas, the low permeability of the faults creates local discharge areas in its up-throw side and local recharge areas in its down-throw side. The estimated average linear groundwater velocity in the recharge area is 0.9 mm/day to the eastern direction and 14 mm/day to the northwest. The average linear groundwater discharge velocities range from 0.4 to 0.9 mm/day in the southern part.

  15. Islands of water in a sea of dry land: hydrological regime predicts genetic diversity and dispersal in a widespread fish from Australia's arid zone, the golden perch (Macquaria ambigua).

    PubMed

    Faulks, Leanne K; Gilligan, Dean M; Beheregaray, Luciano B

    2010-11-01

    Rivers provide an excellent system to study interactions between patterns of biodiversity structure and ecological processes. In these environments, gene flow is restricted by the spatial hierarchy and temporal variation of connectivity within the drainage network. In the Australian arid zone, this variability is high and rivers often exist as isolated waterholes connected during unpredictable floods. These conditions cause boom/bust cycles in the population dynamics of taxa, but their influence on spatial genetic diversity is largely unknown. We used a landscape genetics approach to assess the effect of hydrological variability on gene flow, spatial population structure and genetic diversity in an Australian freshwater fish, Macquaria ambigua. Our analysis is based on microsatellite data of 590 samples from 26 locations across the species range. Despite temporal isolation of populations, the species showed surprisingly high rates of dispersal, with population genetic structure only evident among major drainage basins. Within drainages, hydrological variability was a strong predictor of genetic diversity, being positively correlated with spring-time flow volume. We propose that increases in flow volume during spring stimulate recruitment booms and dispersal, boosting population size and genetic diversity. Although it is uncertain how the hydrological regime in arid Australia may change under future climate scenarios, management strategies for arid-zone fishes should mitigate barriers to dispersal and alterations to the natural flow regime to maintain connectivity and the species' evolutionary potential. This study contributes to our understanding of the influence of spatial and temporal heterogeneity on population and landscape processes.

  16. Inter-species comparisons in Water use with Different water Irrigation Regimes in a Semi-arid area of Korea-Mongolia Greenbelt Plantation

    NASA Astrophysics Data System (ADS)

    Cho, S.; Ser-Oddamba, B.; Batkhuu, N. O.; Kim, H. S.

    2014-12-01

    As an effort to mitigate desertification and to restore desert areas in Mongolia, Korea-Mongolia Green Belt was established to develop a 3000 ha plantation in 2006. Two native tree species, Populus sibirica and Ulmus pumila L., have been planted under different irrigation regimes (control, control+2L, control +4L and control +8L) since 2008. To investigate the responses of different tree species to different treatment and the effect of plantation on water balance, intensive field experiments have been carried out in 2013-2014 in Mongolia. The objectives of our study are 1) to investigate whether different irrigation regimes changed the physiological characteristics of tree species, 2) to quantify transpirations and water balance under different irrigation regimes, and 3) to compare the water-use-efficiencies among species and irrigation regimes. We used Granier type thermal dissipation sensor, portable photosynthesis analyzer (Li-Cor 6400) and species and site specific allometric equations for transpiration, photosynthetic characteristics and net primary production, respectively. Our preliminary results show that the transpiration rates of P. sibirica increased with the increase of irrigation amount. For examples, the average water consumption of P. sibirica was 1.87kg/tree under control+2L irrigation and 2.97kg/tree at controal+4L irrigation. However, the transpiration rates of U. pumila were not different among different irrigation regimes; the average transpiration of U. pumila at control+2L was 1.1kg/tree compared to 0.89kg/tree at control+4L. But, photosynthetic characteristic showed similar results, which no apparent response under high irrigation regimes. The water use and carbon assimilation of P. sibirica responded to the water irrigation, however, U. pumila did not show any significant response to added water. Our results show different species respond differently to irrigation regimes, and this would lead to different effects on water balance. Therefore

  17. Understanding the link between aridity and hydrological extremes: Lessons from hyper-arid climates

    NASA Astrophysics Data System (ADS)

    Molini, Annalisa

    2016-04-01

    Precipitation over arid and hyper-arid regions represents "per se" an extreme event, often resulting in surface-hydrologic impacts comparatively more catastrophic than in temperate climates. The spatio-temporal distribution of precipitation through arid climates is in fact characterized by intense and short-lived patterns and intimately related to the local availability of water and energy. However - given the scarcity of data and the limited number of research contributions analyzing rain extremes in hyper arid environments - is still an open question whether rainfall sporadically falling on hyper-arid regions, and in particular its convective component, presents peculiar features connected with the endemically water-limited regime of these regions. If so, understanding the link between aridity and rainfall variability could turn out a precious tool to investigate not only the climate of arid regions but also more global trends of precipitation under global warming and aridification. In this contribution we analyze the connection between rainfall variability, its temporal scaling laws and aridity in a climatological prospective. Through a wide dataset of precipitation time series covering most Continental US (CONUS) we explore the local dependence of classic intermittency measures on aridity, finding evidence of a well-defined variability patterns across a wide range of water-limited climates. We also explore the connection between different intermittency features of arid climates as contrasted with "wet" regions and briefly discuss the links between clustering, water-availability thresholds and hydro-climatic extremes. Our findings provide a framework to better understand the link between intermittency, rainfall scaling and climate in water-limited regions of the world, with possible extension to global aridification studies.

  18. Climate change scenarios of herbaceous production along an aridity gradient: vulnerability increases with aridity.

    PubMed

    Golodets, Carly; Sternberg, Marcelo; Kigel, Jaime; Boeken, Bertrand; Henkin, Zalmen; Seligman, No'am G; Ungar, Eugene D

    2015-04-01

    Climate change is expected to reduce annual precipitation by 20% and increase its standard deviation by 20% in the eastern Mediterranean. We have examined how these changes may affect herbaceous aboveground net primary production (ANPP) and its inter-annual coefficient of variation (CV) in natural rangelands along a desert-Mediterranean precipitation gradient, at five sites representing arid, semi-arid, and Mediterranean-type ecosystems, respectively, all showing positive linear relationships between herbaceous ANPP and annual precipitation. Scenarios of reduced annual precipitation and increased inter-annual precipitation variability were defined by manipulating mean annual precipitation (MAP) and its standard deviation. We simulated precipitation and calculated ANPP using current ANPP-precipitation relationships. Our model predicts that reduced precipitation will strongly reduce ANPP in arid and semi-arid sites. Moreover, the effect of reduced precipitation on the CV of ANPP along the entire gradient may be modified by changes in inter-annual variability in MAP. Reduced precipitation combined with increased precipitation variability was the scenario most relevant to the wet end of the gradient, due to the increased likelihood for both dry and rainy years. In contrast, the scenario most relevant to the arid end of the gradient combined reduced precipitation with decreased precipitation variability, due to the strong effect on mean ANPP. All scenarios increased variability of ANPP along the entire gradient. However, the higher sensitivity of vegetation at arid and semi-arid sites (i.e., lower forage production) to future changes in the precipitation regime emphasizes the need to adapt grazing management in these ecosystems to secure their long-term viability as sustainable rangelands.

  19. Waste biorefinery in arid/semi-arid regions.

    PubMed

    Bastidas-Oyanedel, Juan-Rodrigo; Fang, Chuanji; Almardeai, Saleha; Javid, Usama; Yousuf, Ahasa; Schmidt, Jens Ejbye

    2016-09-01

    The utilization of waste biorefineries in arid/semi-arid regions is advisable due to the reduced sustainable resources in arid/semi-arid regions, e.g. fresh water and biomass. This review focuses on biomass residues available in arid/semi-arid regions, palm trees residues, seawater biomass based residues (coastal arid/semi-arid regions), and the organic fraction of municipal solid waste. The present review aims to describe and discuss the availability of these waste biomasses, their conversion to value chemicals by waste biorefinery processes. For the case of seawater biomass based residues it was reviewed and advise the use of seawater in the biorefinery processes, in order to decrease the use of fresh water.

  20. Waste biorefinery in arid/semi-arid regions.

    PubMed

    Bastidas-Oyanedel, Juan-Rodrigo; Fang, Chuanji; Almardeai, Saleha; Javid, Usama; Yousuf, Ahasa; Schmidt, Jens Ejbye

    2016-09-01

    The utilization of waste biorefineries in arid/semi-arid regions is advisable due to the reduced sustainable resources in arid/semi-arid regions, e.g. fresh water and biomass. This review focuses on biomass residues available in arid/semi-arid regions, palm trees residues, seawater biomass based residues (coastal arid/semi-arid regions), and the organic fraction of municipal solid waste. The present review aims to describe and discuss the availability of these waste biomasses, their conversion to value chemicals by waste biorefinery processes. For the case of seawater biomass based residues it was reviewed and advise the use of seawater in the biorefinery processes, in order to decrease the use of fresh water. PMID:27072789

  1. Regime change?

    SciTech Connect

    Pilat, Joseph F.; Budlong-Sylvester, K. W.

    2004-01-01

    Following the 1998 nuclear tests in South Asia and later reinforced by revelations about North Korean and Iraqi nuclear activities, there has been growing concern about increasing proliferation dangers. At the same time, the prospects of radiological/nuclear terrorism are seen to be rising - since 9/11, concern over a proliferation/terrorism nexus has never been higher. In the face of this growing danger, there are urgent calls for stronger measures to strengthen the current international nuclear nonproliferation regime, including recommendations to place civilian processing of weapon-useable material under multinational control. As well, there are calls for entirely new tools, including military options. As proliferation and terrorism concerns grow, the regime is under pressure and there is a temptation to consider fundamental changes to the regime. In this context, this paper will address the following: Do we need to change the regime centered on the Treaty on the Nonproliferation of Nuclear Weapons (NPT) and the International Atomic Energy Agency (IAEA)? What improvements could ensure it will be the foundation for the proliferation resistance and physical protection needed if nuclear power grows? What will make it a viable centerpiece of future nonproliferation and counterterrorism approaches?

  2. Preliminary assessment of aridity conditions in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Andrade, C.; Corte-Real, J. A.

    2016-06-01

    Aridity is one of the key elements characterizing the climate of a region, having a severe impact on human activities. Aiming at assessing aridity conditions in the Iberian Peninsula, the spatial distribution of the UNEP aridity index is analyzed during the period 1901-2012. Gridded precipitation and potential evapotranspiration datasets are used on a monthly basis. Results show that the southern half of Iberia is particularly vulnerable to water stress and hence to desertification processes. In particular, the UNEP aridity index reveals an increase and northward extension of the semi-arid regime in the Iberian Peninsula between 1901 and 2012. More than 50% of the north and western territory have experienced humid/sub-humid conditions, while the other regions underwent semi-arid settings. Results also reveal that climate was subjected to spatial and temporal variabilities with an overall statistically significant (at a 95% confidence level) trend to aridification in the south-easternmost and central regions. The remaining territory of the Iberian Peninsula does not reveal statistically significant trends.

  3. Assessment of global aridity change

    NASA Astrophysics Data System (ADS)

    Asadi Zarch, Mohammad Amin; Sivakumar, Bellie; Sharma, Ashish

    2015-01-01

    The growing demand for water and the anticipated impacts of climate change necessitate a more reliable assessment of water availability for proper planning and management. Adequate understanding of the past changes in water resources availability can offer crucial information about potential changes in the future. Aridity is a reliable representation of potential water availability, especially at large scales. The present study investigates the changes in global aridity since 1960. The study considers the UNESCO aridity index, with aridity being represented as a function of its two key drivers: precipitation (P) and potential evapotranspiration (PET). First, published literature on changes in trends of P, PET, and aridity across the world is surveyed. This is followed by the analysis of trends in the aridity observations over the period 1960-2009. The nonparametric Mann-Kendall test is performed for trend analysis and outcomes investigated for the presence of clusters of trend across different grid cells the analysis is conducted over. The results suggest that arid zones are becoming slightly more humid and vice versa. They also indicate that the trend in aridity changed, or even reversed, around 1980 in most parts of the world. We speculate that the reason for this was the dramatic change (rise) in global temperature around 1980 as per both published literature and the present analysis, which, in turn, caused similar trends for global PET. We also call for additional research to verify, and possibly confirm, the present results.

  4. Adapting to extreme climates: raising animals in hot and arid ecosystems in Australia.

    PubMed

    Seo, S Niggol

    2015-05-01

    This paper provides an analysis of adaptation to extreme climate changes using the Australian animal husbandry data. The paper finds that farmers have adapted to a hot and arid climate regime through animal husbandry. The number of sheep vastly increases into arid ecosystems while the number of beef cattle does not decline in high temperatures. In the future climate system in which Australia becomes hotter and more arid, we predict that farmers will increase by large percentages the numbers of beef cattle and/or sheep owned in order to adapt to a highly unfavorable climate condition, especially into the arid ecosystems. This paper shows how humanity has adapted to climate extremes taking into account changing ecosystems.

  5. Adapting to extreme climates: raising animals in hot and arid ecosystems in Australia

    NASA Astrophysics Data System (ADS)

    Seo, S. Niggol

    2015-05-01

    This paper provides an analysis of adaptation to extreme climate changes using the Australian animal husbandry data. The paper finds that farmers have adapted to a hot and arid climate regime through animal husbandry. The number of sheep vastly increases into arid ecosystems while the number of beef cattle does not decline in high temperatures. In the future climate system in which Australia becomes hotter and more arid, we predict that farmers will increase by large percentages the numbers of beef cattle and/or sheep owned in order to adapt to a highly unfavorable climate condition, especially into the arid ecosystems. This paper shows how humanity has adapted to climate extremes taking into account changing ecosystems.

  6. Aridity Modulates N Availability in Arid and Semiarid Mediterranean Grasslands

    PubMed Central

    Delgado-Baquerizo, Manuel; Maestre, Fernando T.; Gallardo, Antonio; Quero, José L.; Ochoa, Victoria; García-Gómez, Miguel; Escolar, Cristina; García-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Noumi, Zouhaier; Derak, Mchich; Wallenstein, Matthew D.

    2013-01-01

    While much is known about the factors that control each component of the terrestrial nitrogen (N) cycle, it is less clear how these factors affect total N availability, the sum of organic and inorganic forms potentially available to microorganisms and plants. This is particularly true for N-poor ecosystems such as drylands, which are highly sensitive to climate change and desertification processes that can lead to the loss of soil nutrients such as N. We evaluated how different climatic, abiotic, plant and nutrient related factors correlate with N availability in semiarid Stipa tenacissima grasslands along a broad aridity gradient from Spain to Tunisia. Aridity had the strongest relationship with N availability, suggesting the importance of abiotic controls on the N cycle in drylands. Aridity appeared to modulate the effects of pH, plant cover and organic C (OC) on N availability. Our results suggest that N transformation rates, which are largely driven by variations in soil moisture, are not the direct drivers of N availability in the studied grasslands. Rather, the strong relationship between aridity and N availability could be driven by indirect effects that operate over long time scales (decades to millennia), including both biotic (e.g. plant cover) and abiotic (e.g. soil OC and pH). If these factors are in fact more important than short-term effects of precipitation on N transformation rates, then we might expect to observe a lagged decrease in N availability in response to increasing aridity. Nevertheless, our results suggest that the increase in aridity predicted with ongoing climate change will reduce N availability in the Mediterranean basin, impacting plant nutrient uptake and net primary production in semiarid grasslands throughout this region. PMID:23565170

  7. New crops for arid lands.

    PubMed

    Hinman, C W

    1984-09-28

    Five plants are described that could be grown commercially under arid conditions. Once the most valuable component has been obtained from each plant (rubber from guayule; seed oil from jojoba, buffalo gourd, and bladderpod; and resin from gumweed), the remaining material holds potential for useful products as well as fuel. It is difficult to realize the full potential of arid land plants, however, because of the complexities of developing the necessary agricultural and industrial infrastructure simultaneously. To do so, multicompany efforts or cooperative efforts between government and the private sector will be required.

  8. Problems and Prospects of SWAT Model Application on an Arid/Semi-Arid Watershed in Arizona

    EPA Science Inventory

    In arid/semi-arid regions, precipitation mainly occurs during two periods: long-duration, low-intensity rainfall in winter; and short-duration, high-intensity rainfall in summer. Watersheds in arid/semi-arid regions often release water almost immediately after a storm due to spa...

  9. Stability measures in arid ecosystems

    NASA Astrophysics Data System (ADS)

    Nosshi, M. I.; Brunsell, N. A.; Koerner, S.

    2015-12-01

    Stability, the capacity of ecosystems to persist in the face of change, has proven its relevance as a fundamental component of ecological theory. Here, we would like to explore meaningful and quantifiable metrics to define stability, with a focus on highly variable arid and semi-arid savanna ecosystems. Recognizing the importance of a characteristic timescale to any definition of stability, our metrics will be focused scales from annual to multi-annual, capturing different aspects of stability. Our three measures of stability, in increasing order of temporal scale, are: (1) Ecosystem resistance, quantified as the degree to which the system maintains its mean state in response to a perturbation (drought), based on inter-annual variability in Normalized Difference Vegetation Index (NDVI). (2) An optimization approach, relevant to arid systems with pulse dynamics, that models vegetation structure and function based on a trade off between the ability to respond to resource availability and avoid stress. (3) Community resilience, measured as species turnover rate (β diversity). Understanding the nature of stability in structurally-diverse arid ecosystems, which are highly variable, yields theoretical insight which has practical implications.

  10. Calibration of the ARID robot

    NASA Technical Reports Server (NTRS)

    Doty, Keith L

    1992-01-01

    The author has formulated a new, general model for specifying the kinematic properties of serial manipulators. The new model kinematic parameters do not suffer discontinuities when nominally parallel adjacent axes deviate from exact parallelism. From this new theory the author develops a first-order, lumped-parameter, calibration-model for the ARID manipulator. Next, the author develops a calibration methodology for the ARID based on visual and acoustic sensing. A sensor platform, consisting of a camera and four sonars attached to the ARID end frame, performs calibration measurements. A calibration measurement consists of processing one visual frame of an accurately placed calibration image and recording four acoustic range measurements. A minimum of two measurement protocols determine the kinematics calibration-model of the ARID for a particular region: assuming the joint displacements are accurately measured, the calibration surface is planar, and the kinematic parameters do not vary rapidly in the region. No theoretical or practical limitations appear to contra-indicate the feasibility of the calibration method developed here.

  11. Arid lands of the Southwest

    USGS Publications Warehouse

    Thorsteinson, Lyman

    2005-01-01

    When thinking about plants and animals that inhabit hot arid lands of the southwestern U.S., fish are easily overlooked by most people. However, these desert lands often contain isolated springs or cienegas (a Spanish term referring to permanently saturated 'seep wetlands') and streams supporting native fishes that occur no where else in the world. These aquatic remnants from the last Ice Age have survived for thousands of years due to an amazing ability to tolerate harsh environmental conditions, especially extremely high water temperatures, high salinities, and unpredictable water flows.

  12. Precipitation and nitrogen interactions in arid ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arid and semi-arid ecosystems are among the most impoverished terrestrial systems in terms of water and nitrogen (N) availability. Productivity (NPP) is generally low, soil N pools are small and N loss through percolation is assumed to be negligible. Increased water availability can stimulate both N...

  13. Arctic circulation regimes.

    PubMed

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  14. Arctic circulation regimes

    PubMed Central

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L.

    2015-01-01

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  15. ARID relative calibration experimental data and analysis

    NASA Technical Reports Server (NTRS)

    Doty, Keith L

    1992-01-01

    Several experiments measure the orientation error of the ARID end-frame as well as linear displacements in the Orbiter's y- and z-axes. In each experiment the position of the ARID on the trolley is fixed and the manipulator extends and retracts along the Orbiter's y-axis. A sensor platform consisting of four sonars arranged in a '+' pattern measures the platform pitch about the Orbiter's y-axis (angle b) and yaw about the Orbiter's x-axis (angle alpha). Corroborating measurements of the yaw error were performed using a carpenter's level to keep the platform perpendicular to the gravity vector at each ARID pose being measured.

  16. Arid3b Is Critical for B Lymphocyte Development.

    PubMed

    Kurkewich, Jeffrey L; Klopfenstein, Nathan; Hallas, William M; Wood, Christian; Sattler, Rachel A; Das, Chhaya; Tucker, Haley; Dahl, Richard; Cowden Dahl, Karen D

    2016-01-01

    Arid3a and Arid3b belong to a subfamily of ARID (AT-rich interaction domain) transcription factors. The Arid family is involved in regulating chromatin accessibility, proliferation, and differentiation. Arid3a and Arid3b are closely related and share a unique REKLES domain that mediates their homo- and hetero-multimerization. Arid3a was originally isolated as a B cell transcription factor binding to the AT rich matrix attachment regions (MARS) of the immunoglobulin heavy chain intronic enhancer. Deletion of Arid3a results in a highly penetrant embryonic lethality with severe defects in erythropoiesis and hematopoietic stem cells (HSCs). The few surviving Arid3a-/- (<1%) animals have decreased HSCs and early progenitors in the bone marrow, but all mature lineages are normally represented in the bone marrow and periphery except for B cells. Arid3b-/- animals die around E7.5 precluding examination of hematopoietic development. So it is unclear whether the phenotype of Arid3a loss on hematopoiesis is dependent or independent of Arid3b. In this study we circumvented this limitation by also examining hematopoiesis in mice with a conditional allele of Arid3b. Bone marrow lacking Arid3b shows decreased common lymphoid progenitors (CLPs) and downstream B cell populations while the T cell and myeloid lineages are unchanged, reminiscent of the adult hematopoietic defect in Arid3a mice. Unlike Arid3a-/- mice, HSC populations are unperturbed in Arid3b-/- mice. This study demonstrates that HSC development is independent of Arid3b, whereas B cell development requires both Arid3a and Arid3b transcription factors. PMID:27537840

  17. Arid3b Is Critical for B Lymphocyte Development

    PubMed Central

    Kurkewich, Jeffrey L.; Klopfenstein, Nathan; Hallas, William M.; Wood, Christian; Sattler, Rachel A.; Das, Chhaya; Tucker, Haley; Dahl, Richard; Cowden Dahl, Karen D.

    2016-01-01

    Arid3a and Arid3b belong to a subfamily of ARID (AT-rich interaction domain) transcription factors. The Arid family is involved in regulating chromatin accessibility, proliferation, and differentiation. Arid3a and Arid3b are closely related and share a unique REKLES domain that mediates their homo- and hetero-multimerization. Arid3a was originally isolated as a B cell transcription factor binding to the AT rich matrix attachment regions (MARS) of the immunoglobulin heavy chain intronic enhancer. Deletion of Arid3a results in a highly penetrant embryonic lethality with severe defects in erythropoiesis and hematopoietic stem cells (HSCs). The few surviving Arid3a-/- (<1%) animals have decreased HSCs and early progenitors in the bone marrow, but all mature lineages are normally represented in the bone marrow and periphery except for B cells. Arid3b-/- animals die around E7.5 precluding examination of hematopoietic development. So it is unclear whether the phenotype of Arid3a loss on hematopoiesis is dependent or independent of Arid3b. In this study we circumvented this limitation by also examining hematopoiesis in mice with a conditional allele of Arid3b. Bone marrow lacking Arid3b shows decreased common lymphoid progenitors (CLPs) and downstream B cell populations while the T cell and myeloid lineages are unchanged, reminiscent of the adult hematopoietic defect in Arid3a mice. Unlike Arid3a-/- mice, HSC populations are unperturbed in Arid3b-/- mice. This study demonstrates that HSC development is independent of Arid3b, whereas B cell development requires both Arid3a and Arid3b transcription factors. PMID:27537840

  18. Photodegradation Pathways in Arid Ecosystems

    NASA Astrophysics Data System (ADS)

    King, J. Y.; Lin, Y.; Adair, E. C.; Brandt, L.; Carbone, M. S.

    2013-12-01

    Recent interest in improving our understanding of decomposition patterns in arid and semi-arid ecosystems and under potentially drier future conditions has led to a flurry of research related to abiotic degradation processes. Oxidation of organic matter by solar radiation (photodegradation) is one abiotic degradation process that contributes significantly to litter decomposition rates. Our meta-analysis results show that increasing solar radiation exposure corresponds to an average increase of 23% in litter mass loss rate with large variation among studies associated primarily with environmental and litter chemistry characteristics. Laboratory studies demonstrate that photodegradation results in CO2 emissions. Indirect estimates suggest that photodegradation could account for as much as 60% of ecosystem CO2 emissions from dry ecosystems, but these CO2 fluxes have not been measured in intact ecosystems. The current data suggest that photodegradation is important, not only for understanding decomposition patterns, but also for modeling organic matter turnover and ecosystem C cycling. However, the mechanisms by which photodegradation operates, along with their environmental and litter chemistry controls, are still poorly understood. Photodegradation can directly influence decomposition rates and ecosystem CO2 flux via photochemical mineralization. It can also indirectly influence biotic decomposition rates by facilitating microbial degradation through breakdown of more recalcitrant compounds into simpler substrates or by suppressing microbial activity directly. All of these pathways influence the decomposition process, but the relative importance of each is uncertain. Furthermore, a specific suite of controls regulates each of these pathways (e.g., environmental conditions such as temperature and relative humidity; physical environment such as canopy architecture and contact with soil; and litter chemistry characteristics such as lignin and cellulose content), and

  19. Dynamic Treatment Regimes

    PubMed Central

    Chakraborty, Bibhas; Murphy, Susan A.

    2014-01-01

    A dynamic treatment regime consists of a sequence of decision rules, one per stage of intervention, that dictate how to individualize treatments to patients based on evolving treatment and covariate history. These regimes are particularly useful for managing chronic disorders, and fit well into the larger paradigm of personalized medicine. They provide one way to operationalize a clinical decision support system. Statistics plays a key role in the construction of evidence-based dynamic treatment regimes – informing best study design as well as efficient estimation and valid inference. Due to the many novel methodological challenges it offers, this area has been growing in popularity among statisticians in recent years. In this article, we review the key developments in this exciting field of research. In particular, we discuss the sequential multiple assignment randomized trial designs, estimation techniques like Q-learning and marginal structural models, and several inference techniques designed to address the associated non-standard asymptotics. We reference software, whenever available. We also outline some important future directions. PMID:25401119

  20. Seasonality of soil moisture mediates responses of ecosystem phenology to elevated CO2 and warming in a semi-arid grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concurrent changes in temperature, atmospheric CO2, and precipitation regimes are altering ecosystems globally, and may be especially important in water-limited ecosystems. Such ecosystems include the semi-arid grasslands of western North America which provide critical ecosystem services, including ...

  1. Arid site characterization and technology assessment: Volatile Organic Compounds-Arid Integrated Demonstration

    SciTech Connect

    Riley, R.G.

    1993-06-01

    The US Department of Energy`s (DOE`s) Volatile Organic Compounds-Arid Integrated Demonstration (VOC-Arid ID) program was initiated in March 1991 to evaluate technologies for all phases of remediation of VOCs in soils and groundwater at DOE arid/semiarid sites. The primary site for field demonstrations under the VOC-Arid ID program is the Hanford Site. The purpose of this report is to describe (1) the bases for technologies currently under evaluation in the VOC-Arid ID program; (2) the types of subsurface contamination at DOE arid/semiarid sites; and (3) the areas of potential common technology interests based on perceived technology needs at other DOE sites. This report was compiled by Pacific Northwest Laboratory in response to DOE`s Office of Technology Development`s mission to carry out an aggressive program to accelerate the development and implementation of new and existing technologies to meet a 30-year goal set by DOE in June 1989 to clean up all of its sites and to bring all sites into compliance with current and future environmental regulations. A key component of this program is the development of technologies that are better, faster, safer, and cheaper than those technologies currently available. Included in this report are an evaluation of technologies currently (fiscal year 1993) being pursued at the Hanford Site under the auspices of the VOC-Arid ID program, an assessment of subsurface contaminants at arid/semiarid sites, a summarization of technologies under consideration at other DOE sites, a discussion of areas of potential common technology interests, and the conclusions. Also included are a summary of the extent of contamination at the DOE arid/semiarid sites under consideration and a bibliography of source documents from which this report was prepared.

  2. Pulse driven productivity in semi-arid lands

    NASA Astrophysics Data System (ADS)

    Bennett, A. C.; Collins, S. L.; Maurer, G. E.; Ruhi, A.; Litvak, M. E.

    2015-12-01

    carbon fluxes is in the size and sensitivity of both photosynthetic and respiratory responses. Understanding how these natural systems respond to rain is important for estimating future carbon storage capacity under altered precipitation regimes and assessing the potential contribution of arid and semi-arid ecosystems to the global carbon budget.

  3. ARID3B Directly Regulates Ovarian Cancer Promoting Genes

    PubMed Central

    Bobbs, Alexander; Gellerman, Katrina; Hallas, William Morgan; Joseph, Stancy; Yang, Chao; Kurkewich, Jeffrey; Cowden Dahl, Karen D.

    2015-01-01

    The DNA-binding protein AT-Rich Interactive Domain 3B (ARID3B) is elevated in ovarian cancer and increases tumor growth in a xenograft model of ovarian cancer. However, relatively little is known about ARID3B's function. In this study we perform the first genome wide screen for ARID3B direct target genes and ARID3B regulated pathways. We identified and confirmed numerous ARID3B target genes by chromatin immunoprecipitation (ChIP) followed by microarray and quantitative RT-PCR. Using motif-finding algorithms, we characterized a binding site for ARID3B, which is similar to the previously known site for the ARID3B paralogue ARID3A. Functionality of this predicted site was demonstrated by ChIP analysis. We next demonstrated that ARID3B induces expression of its targets in ovarian cancer cell lines. We validated that ARID3B binds to an epidermal growth factor receptor (EGFR) enhancer and increases mRNA expression. ARID3B also binds to the promoter of Wnt5A and its receptor FZD5. FZD5 is highly expressed in ovarian cancer cell lines, and is upregulated by exogenous ARID3B. Both ARID3B and FZD5 expression increase adhesion to extracellular matrix (ECM) components including collagen IV, fibronectin and vitronectin. ARID3B-increased adhesion to collagens II and IV require FZD5. This study directly demonstrates that ARID3B binds target genes in a sequence-specific manner, resulting in increased gene expression. Furthermore, our data indicate that ARID3B regulation of direct target genes in the Wnt pathway promotes adhesion of ovarian cancer cells. PMID:26121572

  4. Satellite observation of aerosol - cloud interactions over semi-arid and arid land regions

    NASA Astrophysics Data System (ADS)

    Klüser, L.; Holzer-Popp, T.

    2012-04-01

    Satellite observations from three different sources are used to study the interactions between aerosol and ice clouds in five semi-arid and arid land regions over Africa and Asia, reaching from the South-African Kalahari to the Taklimakan and Gobi in Mongolia. (1) Six years of Aqua MODIS cloud and aerosol observations (including "Deep Blue" retrievals) which contain a qualitative separation into coarse and fine mode aerosol are analysed. (2) Five years of APOLLO cloud observations and SYNAER aerosol retrievals which allow discriminating between mineral dust and soot dominated cases from AATSR and SCIAMACHY on ENVISAT are exploited. (3) Moreover IASI provides one year of ice cloud and mineral dust observations over land retrieved with a newly developed method based on singular vector decomposition. Cloud top temperature observations are used to asses the state of convection and to statistically re-project observation distributions of cloud properties to background conditions. Then the difference between observation density distributions of background and re-projected aerosol-contaminated samples can be evaluated. By such way of analysis the influence of different cloud development stages, which also manifest in seasonal cycles of cloud properties, can be minimised. The analysis of the various observation density distributions shows that liquid water and ice effective radius is mainly decreased for increased total aerosol content for both aerosol types, biomass burning aerosols and mineral dust, separately. Two different modes of aerosol impacts on cloud optical depth can be shown. Optical depth is mainly increased, directly following the theory of the so-called "Twomey effect". In the West African Sahel a decrease of cloud water path (for both liquid water and ice) under the influence of absorbing aerosols results also in decreased optical depth. As at the same time the cloud fraction does not decrease under aerosol influence, the statistical decrease of mean

  5. Applying animal behavior to arid rangeland mangement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Livestock production is one of many demands placed on today’s arid rangelands. Therefore, understanding plant and animal biology and their effects on biotic and abiotic landscape components is fundamental if rangelands are to remain ecologically sustainable. One limiting factor to accomplishing posi...

  6. Aridity and decomposition processes in complex landscapes

    NASA Astrophysics Data System (ADS)

    Ossola, Alessandro; Nyman, Petter

    2015-04-01

    Decomposition of organic matter is a key biogeochemical process contributing to nutrient cycles, carbon fluxes and soil development. The activity of decomposers depends on microclimate, with temperature and rainfall being major drivers. In complex terrain the fine-scale variation in microclimate (and hence water availability) as a result of slope orientation is caused by differences in incoming radiation and surface temperature. Aridity, measured as the long-term balance between net radiation and rainfall, is a metric that can be used to represent variations in water availability within the landscape. Since aridity metrics can be obtained at fine spatial scales, they could theoretically be used to investigate how decomposition processes vary across complex landscapes. In this study, four research sites were selected in tall open sclerophyll forest along a aridity gradient (Budyko dryness index ranging from 1.56 -2.22) where microclimate, litter moisture and soil moisture were monitored continuously for one year. Litter bags were packed to estimate decomposition rates (k) using leaves of a tree species not present in the study area (Eucalyptus globulus) in order to avoid home-field advantage effects. Litter mass loss was measured to assess the activity of macro-decomposers (6mm litter bag mesh size), meso-decomposers (1 mm mesh), microbes above-ground (0.2 mm mesh) and microbes below-ground (2 cm depth, 0.2 mm mesh). Four replicates for each set of bags were installed at each site and bags were collected at 1, 2, 4, 7 and 12 months since installation. We first tested whether differences in microclimate due to slope orientation have significant effects on decomposition processes. Then the dryness index was related to decomposition rates to evaluate if small-scale variation in decomposition can be predicted using readily available information on rainfall and radiation. Decomposition rates (k), calculated fitting single pool negative exponential models, generally

  7. [Effects of environmental factors on litter decomposition in arid and semi-arid regions: A review].

    PubMed

    Wang, Xin-Yuan; Zhao, Xue-Yong; Li, Yu-Lin; Lian, Jie; Qu, Hao; Yue, Xiang-Fei

    2013-11-01

    Litter decomposition is one of the important biochemical processes in arid and semi-arid regions, and a key component of regional nutrient turnover and carbon cycling, which is mainly affected by climate, litter quality, and decomposer community. In order to deeply understand the relationships between litter decomposition and environmental factors in arid and semi-arid regions, this paper summarized the research progress in the effects of abiotic factors (soil temperature, precipitation, and ultraviolet-B radiation) and biotic factors (litter quality, soil microbial and animal composition and community structure) on the litter decomposition in these regions. Among the factors, precipitation and ultraviolet-B radiation are considered to be the main limiting factors of litter decomposition. In arid and semi-arid regions, precipitation can significantly increase the litter decomposition rate in a short term, while the photo-degradation induced by ultraviolet-B radiation, due to the strong and long-term radiation, can increase the decomposition rate of terrestrial litter. Litter quality, soil microbial and animal composition and community structure are mainly affected by the type of ecosystems in a long term. However, the affecting mechanisms of these environmental factors on litter decomposition are still not very clear. It was suggested that the future litter ecological research should be paid more attention to the interaction of environmental factors under climate change, the variations of litter decomposition at different spatial scales, and the establishment of litter decomposition models in relation to the synergistic interactions of multiple factors. PMID:24564163

  8. [Effects of environmental factors on litter decomposition in arid and semi-arid regions: A review].

    PubMed

    Wang, Xin-Yuan; Zhao, Xue-Yong; Li, Yu-Lin; Lian, Jie; Qu, Hao; Yue, Xiang-Fei

    2013-11-01

    Litter decomposition is one of the important biochemical processes in arid and semi-arid regions, and a key component of regional nutrient turnover and carbon cycling, which is mainly affected by climate, litter quality, and decomposer community. In order to deeply understand the relationships between litter decomposition and environmental factors in arid and semi-arid regions, this paper summarized the research progress in the effects of abiotic factors (soil temperature, precipitation, and ultraviolet-B radiation) and biotic factors (litter quality, soil microbial and animal composition and community structure) on the litter decomposition in these regions. Among the factors, precipitation and ultraviolet-B radiation are considered to be the main limiting factors of litter decomposition. In arid and semi-arid regions, precipitation can significantly increase the litter decomposition rate in a short term, while the photo-degradation induced by ultraviolet-B radiation, due to the strong and long-term radiation, can increase the decomposition rate of terrestrial litter. Litter quality, soil microbial and animal composition and community structure are mainly affected by the type of ecosystems in a long term. However, the affecting mechanisms of these environmental factors on litter decomposition are still not very clear. It was suggested that the future litter ecological research should be paid more attention to the interaction of environmental factors under climate change, the variations of litter decomposition at different spatial scales, and the establishment of litter decomposition models in relation to the synergistic interactions of multiple factors.

  9. Aridity under conditions of increased CO2

    NASA Astrophysics Data System (ADS)

    Greve, Peter; Roderick, Micheal L.; Seneviratne, Sonia I.

    2016-04-01

    A string of recent of studies led to the wide-held assumption that aridity will increase under conditions of increasing atmospheric CO2 concentrations and associated global warming. Such results generally build upon analyses of changes in the 'aridity index' (the ratio of potential evaporation to precipitation) and can be described as a direct thermodynamic effect on atmospheric water demand due to increasing temperatures. However, there is widespread evidence that contradicts the 'warmer is more arid' interpretation, leading to the 'global aridity paradox' (Roderick et al. 2015, WRR). Here we provide a comprehensive assessment of modeled changes in a broad set of dryness metrics (primarily based on a range of measures of water availability) over a large range of realistic atmospheric CO2 concentrations. We use an ensemble of simulations from of state-of-the-art climate models to analyse both equilibrium climate experiments and transient historical simulations and future projections. Our results show that dryness is, under conditions of increasing atmospheric CO2 concentrations and related global warming, generally decreasing at global scales. At regional scales we do, however, identify areas that undergo changes towards drier conditions, located primarily in subtropical climate regions and the Amazon Basin. Nonetheless, the majority of regions, especially in tropical and mid- to northern high latitudes areas, display wetting conditions in a warming world. Our results contradict previous findings and highlight the need to comprehensively assess all aspects of changes in hydroclimatological conditions at the land surface. Roderick, M. L., P. Greve, and G. D. Farquhar (2015), On the assessment of aridity with changes in atmospheric CO2, Water Resour. Res., 51, 5450-5463

  10. Dead Sea Water Sources during Periods of Extreme Aridity: Insights from U Isotopes

    NASA Astrophysics Data System (ADS)

    Olson, J. M.; Kiro, Y.; Goldstein, S. L.

    2015-12-01

    The Dead Sea is a hypersaline lake whose watershed spans the Mediterranean and Saharan-Arabian climate systems. Between 2010 and 2011, the ICDP-Dead Sea Deep Drilling Project recovered a sediment core that records ~200 ka of climate history in the region. The last interglacial (MIS 5e) included periods of extreme aridity in this region. This study aimed to characterize water sources into the lake during such critically dry periods. Geochemical analyses of aragonite, detritus, and halite samples waere carried out though a halite-rich interval during MIS 5e that represents a large drop in lake level, when discharge was less than half of modern levels. Uranium isotope activity ratios indicate a completely different hydrological regime during the driest periods in the Dead Sea, which is reflected by a major decrease of 234U/238U from 1.5, typical to the modern day and glacial high-stands of the lake, to ~1 . The decrease toward secular equilibrium happened gradually through the arid interval. Possible explanations include more southern sources coming into the lake, more flood events, addition dissolution of old salt (i.e. in secular equilibrium) by saline springs, and possibly shutdown of the Jordan River during extremely arid conditions. Further research will yield important information to prepare for future warming in the Middle East, a region where water access and droughts greatly affect socio-economic and political stability.

  11. Design principles and common pool resource management: an institutional approach to evaluating community management in semi-arid Tanzania.

    PubMed

    Quinn, Claire H; Huby, Meg; Kiwasila, Hilda; Lovett, Jon C

    2007-07-01

    This paper analyses the role of institutions in the management of common pool resources (CPRs) in semi-arid Tanzania. Common property regimes have often been considered inadequate for the management of CPRs because of the problems of excludability, but they are becoming more widely supported as the way forward to overcome the problems of resource use and degradation in developing countries. A series of design principles for long enduring common property institutions have been proposed by Ostrom, but there is concern that they are not applicable to a wide range of real life situations or that they may be specific to certain types of CPR. Here, we compare these principles to the situation prevailing in 12 villages in six districts in semi-arid Tanzania. Data on management institutions were collected through semi-structured interviews and meetings at district and village level. The combined information was used to make a qualitative assessment of the strength with which each design principle appeared to operate in the management of forest, pasture and water resources. Boundaries, conflict and negotiation in CPR management are of key importance in semi-arid regions. However, the need for flexibility in order to deal with ecological uncertainty means that many management institutions would be considered weak or absent according to the design principle approach. This supports the view that the design principles should not be used as a 'blueprint to be imposed on resource management regimes' rather that they provide a framework for investigating common property regimes with the proviso that, certainly for semi-arid regions, they may highlight where management cannot be explained by institutional theory alone.

  12. Examination Regimes and Student Achievement

    ERIC Educational Resources Information Center

    Cosentino de Cohen, Clemencia

    2010-01-01

    Examination regimes at the end of secondary school vary greatly intra- and cross-nationally, and in recent years have undergone important reforms often geared towards increasing student achievement. This research presents a comparative analysis of the relationship between examination regimes and student achievement in the OECD. Using a micro…

  13. Water Through Life, A New Technique for Mapping Shallow Water Tables in Arid and Semi-Arid Climates using Color Infrared Aerial Photographs

    NASA Astrophysics Data System (ADS)

    Fielding, G.

    2003-04-01

    usefulness of the technique becomes greatly enhanced. By extending the analysis from 2D to 3D, the technique evolves from being a powerful descriptive tool for mapping the lateral extent of shallow groundwater into a very powerful predictive tool that can aid in unlocking the dynamics of shallow aquifers and groundwater flow regimes within basins in arid and semi-arid climates.

  14. Guatemalan forest synthesis after Pleistocene aridity

    PubMed Central

    Leyden, Barbara W.

    1984-01-01

    Sediments from two lakes in the Peten Department, Guatemala, provide palynological evidence from Central America of late Pleistocene aridity and subsequent synthesis of mesic forests. Late Glacial vegetation consisted of marsh, savanna, and juniper scrub. An early Holocene temperate forest preceded a mesic tropical forest with Brosimum (ramon). Thus “primeval” rain forests of Guatemala are no older than 10,000 to 11,000 years and are considerably younger in the Peten due to Mayan disturbances. Among dated Neotropical sites, the Peten has the most mesic vegetation yet shown to have supplanted xeric vegetation present during the Pleistocene. The arid late Glacial-humid early Holocene transition appears to have been pantropical in the lowlands. The Peten was not a Pleistocene refugium for mesophytic taxa, as has been suggested. Thus genesis of extant rain forests in northern Central America and southern Mexico remains unexplained. Images PMID:16593498

  15. A quantitative comparison of Soil Development in four climatic regimes

    USGS Publications Warehouse

    Harden, J.W.; Taylor, E.M.

    1983-01-01

    A new quantitative Soil Development Index based on field data has been applied to chronosequences formed under different climatic regimes. The four soil chronosequences, developed primarily on sandy deposits, have some numeric age control and are located in xeric-inland (Merced, Calif.), xeric-coastal (Ventura, Calif.), aridic (Las Cruces, N. Mex.), and udic (Susquehanna Valley, Pa.) soil-moisture regimes. To quantify field properties, points are assigned for developmental increases in soil properties in comparison to the parent material. Currently ten soil-field properties are quantified and normalized for each horizon in a given chronosequence, including two new properties for carbonate-rich soils in addition to the eight properties previously defined. When individual properties or the combined indexes are plotted as a function of numeric age, rates of soil development can be compared in different climates. The results demonstrate that (1) the Soil Development Index can be applied to very different soil types, (2) many field properties develop systematically in different climatic regimes, (3) certain properties appear to have similar rates of development in different climates, and (4) the Profile Index that combines different field properties increases significantly with age and appears to develop at similar rates in different climates. The Soil Development Index can serve as a preliminary guide to soil age where other age control is lacking and can be used to correlate deposits of different geographical and climatic regions. ?? 1983.

  16. Peruvian Arid Coast and Agriculture, South America

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The coast of Peru, between the Pacific Ocean and the Andes Mountains is very arid (16.5S, 72.5W). For several thousand years, water from numerous small streams has been used for traditional flood and canal irrigation agriculture. However, during the past decade innovative techniques have tapped new water sources for increased agricultural production. Ground water in the porous sedimentary rock formations has been tapped for well irrigation agriculture.

  17. VOCs in Arid soils: Technology summary

    SciTech Connect

    Not Available

    1994-02-01

    The Volatile Organic Compounds In Arid Soils Integrated Demonstration (VOC-Arid ID) focuses on technologies to clean up volatile organic compounds and associated contaminants in soil and groundwater at arid sites. The initial host site is the 200 West Area at DOE`s Hanford site in southeastern Washington state. The primary VOC contaminant is carbon tetrachloride, in association with heavy metals and radionuclides. An estimated 580--920 metric tons of carbon tetrachloride were disposed of between 1955 and 1973, resulting in extensive soil and groundwater contamination. The VOC-Arid ID schedule has been divided into three phases of implementation. The phased approach provides for: rapid transfer of technologies to the Environmental Restoration (EM-40) programs once demonstrated; logical progression in the complexity of demonstrations based on improved understanding of the VOC problem; and leveraging of the host site EM-40 activities to reduce the overall cost of the demonstrations. During FY92 and FY93, the primary technology demonstrations within the ID were leveraged with an ongoing expedited response action at the Hanford 200 West Area, which is directed at vapor extraction of VOCs from the vadose (unsaturated) zone. Demonstration efforts are underway in the areas of subsurface characterization including: drilling and access improvements, off-gas and borehole monitoring of vadose zone VOC concentrations to aid in soil vapor extraction performance evaluation, and treatment of VOC-contaminated off-gas. These current demonstration efforts constitute Phase 1 of the ID and, because of the ongoing vadose zone ERA, can result in immediate transfer of successful technologies to EM-40.

  18. Arid sites stakeholder participation in evaluating innovative technologies: VOC-Arid Site Integrated Demonstration

    SciTech Connect

    Peterson, T.S.; McCabe, G.H.; Brockbank, B.R.

    1995-05-01

    Developing and deploying innovative environmental cleanup technologies is an important goal for the U.S. Department of Energy (DOE), which faces challenging remediation problems at contaminated sites throughout the United States. Achieving meaningful, constructive stakeholder involvement in cleanup programs, with the aim of ultimate acceptance of remediation decisions, is critical to meeting those challenges. DOE`s Office of Technology Development sponsors research and demonstration of new technologies, including, in the past, the Volatile Organic Compounds Arid Site Integrated Demonstration (VOC-Arid ID), hosted at the Hanford Site in Washington State. The purpose of the VOC-Arid ID has been to develop and demonstrate new technologies for remediating carbon tetrachloride and other VOC contamination in soils and ground water. In October 1994 the VOC-Arid ID became a part of the Contaminant Plume Containment and Remediation Focus Area (Plume Focus Area). The VOC Arid ID`s purpose of involving stakeholders in evaluating innovative technologies will now be carried on in the Plume Focus Area in cooperation with Site Technology Coordination Groups and Site Specific Advisory Boards. DOE`s goal is to demonstrate promising technologies once and deploy those that are successful across the DOE complex. Achieving that goal requires that the technologies be acceptable to the groups and individuals with a stake in DOE facility cleanup. Such stakeholders include groups and individuals with an interest in cleanup, including regulatory agencies, Native American tribes, environmental and civic interest groups, public officials, environmental technology users, and private citizens. This report documents the results of the stakeholder involvement program, which is an integral part of the VOC-Arid ID.

  19. Problems and Prospects of Swat Model Application on an Arid/Semi-Arid Watershed in Arizona

    EPA Science Inventory

    Hydrological characteristics in the semi-arid southwest create unique challenges to watershed modellers. Streamflow in these regions is largely dependent on seasonal, short term, and high intensity rainfall events. The objectives of this study are: 1) to analyze the unique hydrol...

  20. Predicting the Future Impact of Droughts on Ungulate Populations in Arid and Semi-Arid Environments

    PubMed Central

    Duncan, Clare; Chauvenet, Aliénor L. M.; McRae, Louise M.; Pettorelli, Nathalie

    2012-01-01

    Droughts can have a severe impact on the dynamics of animal populations, particularly in semi-arid and arid environments where herbivore populations are strongly limited by resource availability. Increased drought intensity under projected climate change scenarios can be expected to reduce the viability of such populations, yet this impact has seldom been quantified. In this study, we aim to fill this gap and assess how the predicted worsening of droughts over the 21st century is likely to impact the population dynamics of twelve ungulate species occurring in arid and semi-arid habitats. Our results provide support to the hypotheses that more sedentary, grazing and mixed feeding species will be put at high risk from future increases in drought intensity, suggesting that management intervention under these conditions should be targeted towards species possessing these traits. Predictive population models for all sedentary, grazing or mixed feeding species in our study show that their probability of extinction dramatically increases under future emissions scenarios, and that this extinction risk is greater for smaller populations than larger ones. Our study highlights the importance of quantifying the current and future impacts of increasing extreme natural events on populations and species in order to improve our ability to mitigate predicted biodiversity loss under climate change. PMID:23284700

  1. Problems and Prospects of SWAT Model Application on an Arid/Semi-arid Watershed in Arizona

    EPA Science Inventory

    Hydrological characteristics in the semi-arid southwest create unique challenges to watershed modelers. Streamflow in these regions is largely dependent on seasonal, short term, and high intensity rainfall events. The objectives of this study are: 1) to analyze the unique hydrolo...

  2. Use of composts in revegetating arid lands

    SciTech Connect

    Brandt, C.A.; Hendrickson, P.L.

    1991-09-01

    Compost has been suggested as a soil amendment for arid lands at the US Department of Energy's Hanford Site in southeastern Washington State. The operating contractor of the site, Westinghouse Hanford Company, requested that the Pacific Northwest Laboratory conduct a literature review to compile additional information on the use of compost amendments and their benefits. This report provides background information on the factors needed for plant growth and the consequences of severe soil disturbance. This report also discussed the characteristics of composts relative to other amendments and how they each affect plant growth. Finally,regulatory requirements that could affect land application of sludge-based compost on the Hanford Site are reviewed.

  3. Great Lakes' regional climate regimes

    NASA Astrophysics Data System (ADS)

    Kravtsov, Sergey; Sugiyama, Noriyuki; Roebber, Paul

    2016-04-01

    We simulate the seasonal cycle of the Great Lakes' water temperature and lake ice using an idealized coupled lake-atmosphere-ice model. Under identical seasonally varying boundary conditions, this model exhibits more than one seasonally varying equilibrium solutions, which we associate with distinct regional climate regimes. Colder/warmer regimes are characterized by abundant/scarce amounts of wintertime ice and cooler/warmer summer temperatures, respectively. These regimes are also evident in the observations of the Great Lakes' climate variability over recent few decades, and are found to be most pronounced for Lake Superior, the deepest of the Great Lakes, consistent with model predictions. Multiple climate regimes of the Great Lakes also play a crucial role in the accelerated warming of the lakes relative to the surrounding land regions in response to larger-scale global warming. We discuss the physical origin and characteristics of multiple climate regimes over the lakes, as well as their implications for a longer-term regional climate variability.

  4. Optimizing conjunctive use of surface water and groundwater for irrigation in arid and semi-arid areas: an integrated modeling approach

    NASA Astrophysics Data System (ADS)

    Wu, Xin; Wu, Bin; Zheng, Yi; Tian, Yong; Liu, Jie; Zheng, Chunmiao

    2015-04-01

    In arid and semi-arid agricultural areas, groundwater (GW) is an important water source of irrigation, in addition to surface water (SW). Groundwater pumping would significantly alter the regional hydrological regime, and therefore complicate the water resources management process. This study explored how to optimize the conjunctive use of SW and GW for agricultural irrigation at a basin scale, based on integrated SW-GW modeling and global optimization methods. The improved GSFLOW model was applied to the Heihe River Basin, the second largest inland river basin in China. Two surrogate-based global optimization approaches were implemented and compared, including the well-established DYCORS algorithm and a new approach we proposed named as SOIM, which takes radial basis function (RBF) and support vector machine (SVM) as the surrogate model, respectively. Both temporal and spatial optimizations were performed, aiming at maximizing saturated storage change of midstream part conditioned on non-reduction of irrigation demand, constrained by certain annual discharge for the downstream part. Several scenarios for different irrigation demand and discharge flow are designed. The main study results include the following. First, the integrated modeling not only provides sufficient flexibility to formulation of optimization problems, but also makes the optimization results more physically interpretable and managerially meaningful. Second, the surrogate-based optimization approach was proved to be effective and efficient for the complex, time-consuming modeling, and is quite promising for decision-making. Third, the strong and complicated SW-GW interactions in the study area allow significant water resources conservation, even if neither irrigation demand nor discharge for the downstream part decreases. Under the optimal strategy, considerable part of surface water division is replaced by 'Stream leakage-Pump' process to avoid non-beneficial evaporation via canals. Spatially

  5. Food Production in Arid Regions as Related to Salinity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arid and semi arid regions of the world are generally associated with high population density and lower than average per capita incomes and living standards. These regions are vulnerable to food shortages due to current, unsustainable use of fresh water for irrigation and soil salinization. This pa...

  6. Uses of tree legumes in semi-arid regions

    SciTech Connect

    Felker, P.

    1980-01-01

    Uses of tree legumes in semi-arid and arid regions are reviewed. This review is divided into sections according to the following general use categories: fuels; human food; livestock food; to increase yields of crops grown beneath their canopies;and control of desertification. (MHR)

  7. Sediment source determination using fallout Cesium-137 in arid rangelands.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sediment source identification in arid rangelands is necessary to understanding rangeland conditions and developing management practices to improve rangeland health and reduce sediment load to streams. The purpose of this research was to use Cesium-137 to identify sources of sediments in an arid ran...

  8. Watershed Management in Arid Zones: A Prototype Short Course.

    ERIC Educational Resources Information Center

    Thames, John L., Ed.; Fischer, John N., Ed.

    Presented is information recommended for inclusion in a short course to help extend knowledge of water resource development and research techniques in arid and semi-arid regions. Information is particularly intended for applicability in developing nations. Included are considerations of livestock grazing, use of hydrologic data, vegetation…

  9. Mountains and arid climates of middle latitudes

    SciTech Connect

    Manabe, S.; Broccoli, A.J. )

    1990-01-12

    Simulations from a global climate model with and without orography have been used to investigate the role of mountains in maintaining extensive arid climates in middle latitudes of the Northern hemisphere. Dry climates similar to those observed were simulated over central Asia and western interior North America in the experiment with mountains, whereas relatively moist climates were simulated in these areas in the absence of orography. The experiments suggest that these interior regions are dry because general subsidence and relatively infrequent storm development occur upstream of orographically induced stationary wave troughs. Downstream of these troughs, precipitation-bearing storms develop frequently in association with strong jet streams. In contrast, both atmospheric circulation and precipitation were more zonally symmetric in the experiment without mountains. In addition, orography reduces the moisture transport into the continental interiors from nearby oceanic sources. The relative soil wetness of these regions in the experiment without mountains is consistent with paleoclimatic evidence of less aridity during the late Tertiary, before substantial uplift of the Rocky Mountains and Tibetan Plateau is believed to have occurred.

  10. Mountains and arid climates of middle latitudes.

    PubMed

    Manabe, S; Broccoli, A J

    1990-01-12

    Simulations from a global climate model with and without orography have been used to investigate the role of mountains in maintaining extensive arid climates in middle latitudes of the Northern Hemisphere. Dry climates similar to those observed were simulated over central Asia and western interior North America in the experiment with mountains, whereas relatively moist climates were simulated in these areas in the absence of orography. The experiments suggest that these interior regions are dry because general subsidence and relatively infrequent storm development occur upstream of orographically induced stationary wave troughs. Downstream of these troughs, precipitation-bearing storms develop frequently in association with strong jet streams. In contrast, both atmospheric circulation and precipitation were more zonally symmetric in the experiment without mountains. In addition, orography reduces the moisture transport into the continental interiors from nearby oceanic sources. The relative soil wetness of these regions in the experiment without mountains is consistent with paleoclimatic evidence of less aridity during the late Tertiary, before substantial uplift of the Rocky Mountains and Tibetan Plateau is believed to have occurred.

  11. Cloud regimes as phase transitions

    NASA Astrophysics Data System (ADS)

    Stechmann, Samuel N.; Hottovy, Scott

    2016-06-01

    Clouds are repeatedly identified as a leading source of uncertainty in future climate predictions. Of particular importance are stratocumulus clouds, which can appear as either (i) closed cells that reflect solar radiation back to space or (ii) open cells that allow solar radiation to reach the Earth's surface. Here we show that these clouds regimes -- open versus closed cells -- fit the paradigm of a phase transition. In addition, this paradigm characterizes pockets of open cells as the interface between the open- and closed-cell regimes, and it identifies shallow cumulus clouds as a regime of higher variability. This behavior can be understood using an idealized model for the dynamics of atmospheric water as a stochastic diffusion process. With this new conceptual viewpoint, ideas from statistical mechanics could potentially be used for understanding uncertainties related to clouds in the climate system and climate predictions.

  12. A Regime Diagram for Subduction

    NASA Astrophysics Data System (ADS)

    Stegman, D. R.; Farrington, R.; Capitanio, F. A.; Schellart, W. P.

    2009-12-01

    Regime diagrams and associated scaling relations have profoundly influenced our understanding of planetary dynamics. Previous regime diagrams characterized the regimes of stagnant-lid, small viscosity contrast, transitional, and no-convection for temperature-dependent (Moresi and Solomatov, 1995), and non-linear power law rheologies (Solomatov and Moresi, 1997) as well as stagnant-lid, sluggish-lid, and mobile-lid regimes once the finite strength of rock was considered (Moresi and Solomatov, 1998). Scalings derived from such models have been the cornerstone for parameterized models of thermal evolution of rocky planets and icy moons for the past decade. While such a theory can predict the tectonic state of a planetary body, it is still rather incomplete in regards to predicting tectonics. For example, the mobile-lid regime is unspecific as to how continuous lithospheric recycling should occur on a terrestrial planet. Towards this goal, Gerya et al., (2008) advanced a new regime diagram aiming to characterize when subduction would manifest itself as a one-sided or two-sided downwelling and either symmetric or asymmetric. Here, we present a regime diagram for the case of a single-sided, asymmetric type of subduction (most Earth-like type). Using a 3-D numerical model of a free subduction, we describe a total of 5 different styles of subduction that can possibly occur. Each style is distinguished by its upper mantle slab morphology resulting from the sinking kinematics. We provide movies to illustrate the different styles and their progressive time-evolution. In each regime, subduction is accommodated by a combination of plate advance and slab rollback, with associated motions of forward plate velocity and trench retreat, respectively. We demonstrate that the preferred subduction mode depends upon two essential controlling factors: 1) buoyancy of the downgoing plate and 2) strength of plate in resisting bending at the hinge. We propose that a variety of subduction

  13. Determine the optimum spectral reflectance of juniper and pistachio in arid and semi-arid region

    NASA Astrophysics Data System (ADS)

    Fadaei, Hadi; Suzuki, Rikie

    2012-11-01

    Arid and semi-arid areas of northeast Iran cover about 3.4 million ha are populated by two main tree species, the broadleaf Pistacia vera. L (pistachio) and the conifer Juniperus excelsa ssp. polycarpos (Persian juniper). Natural stands of pistachio in Iran are not only environmentally important but genetically essential as seed sources for pistachio production in orchards. In this study, we estimated the optimum spectral reflectance of juniper forests and natural pistachio stands using remote sensing to help in the sustainable management and production of pistachio in Iran. In this research spectral reflectance are able to specify of multispectral from Advanced Land Observing Satellite (ALOS) that provided by JAXA. These data included PRISM is a panchromatic radiometer with a 2.5 m spatial resolution at nadir, has one band with a wavelength of 0.52-0.77 μm and AVNIR-2 is a visible and near infrared radiometer for observing land and coastal zones with a 10 m spatial resolution at nadir, has four multispectral bands: blue (0.42-0.50 μm), green (0.52-0.60 μm), red (0.61-0.69 μm), and near infrared (0.76-0.89 μm). Total ratio vegetation index (TRVI) of optimum spectral reflectance of juniper and pistachio have been evaluated. The result of TRVI for Pistachio and juniper were (R2= 0.71 and 0.55). I hope this research can provide decision of managers to helping sustainable management for arid and semi-arid regions in Iran.

  14. Simulating Water Flow and Heat Transfer in Arid Soil Using Weighing Lysimeter Data

    NASA Astrophysics Data System (ADS)

    Dijkema, Jelle; Koonce, Jeremy; Ghezzehei, Teamrat; Berli, Markus; van der Ploeg, Martine; (Rien) van Genuchten, Martinus

    2015-04-01

    Deserts cover about one third of the Earth's land surface. Rather little though is known about the physics of desert soils and their implications for the ecology and hydrology of arid environments. The recently constructed weighing lysimeters located in Boulder City, Nevada, were designed to improve our understanding of the physical processes and properties of arid soils at the meter scale. In this study, we developed a HYDRUS-1D model to simulate water infiltration, hydraulic redistribution, and heat transfer for one of the lysimeters. HYDRUS-1D solves the coupled equations for water flow and heat transfer in variably saturated soil. Soil hydraulic and thermal properties were initialized based on prior knowledge and characterizations of the lysimeter soil. Soil hydraulic and thermal parameters were further refined by inverse simulation using a subset of the soil water content, water potential and temperature measurements at various depths. The model was validated using a separate portion of the soil moisture and temperature data set that was not used for calibration. The calibrated model provides a tool to virtually test future experiments in the lysimeters such as changes in the irrigation regime or the incorporation of plants. The model will also help to assess the impact of the placement of physical structures (such as solar panels) on the water and heat balance of desert soils.

  15. Long-term aridity changes in the western United States.

    PubMed

    Cook, Edward R; Woodhouse, Connie A; Eakin, C Mark; Meko, David M; Stahle, David W

    2004-11-01

    The western United States is experiencing a severe multiyear drought that is unprecedented in some hydroclimatic records. Using gridded drought reconstructions that cover most of the western United States over the past 1200 years, we show that this drought pales in comparison to an earlier period of elevated aridity and epic drought in AD 900 to 1300, an interval broadly consistent with the Medieval Warm Period. If elevated aridity in the western United States is a natural response to climate warming, then any trend toward warmer temperatures in the future could lead to a serious long-term increase in aridity over western North America.

  16. Native, Arid Green Design: Strategies to Combat Urban Heat Island Effect

    NASA Astrophysics Data System (ADS)

    Tepler, S. K.; Pavao-Zuckerman, M.; Livingston, M.; Smith, S. E.; Stoltz, R.

    2010-12-01

    The heat island effect has one of the greatest impacts on the biogeochemistry of urban microclimates. As cities grow hotter from climate change and increased energy consumption, the effect on urban ecosystem function will likely intensify. One strategy for ameliorating local elevated temperatures is to use green design to alter energy balances and reduce energy demands for cooling. In arid environments, however, little is known about how to balance needs for energy reduction with water costs associated with green roof installations in cities. We are conducting a pilot study to investigate strategies to implement green roofs in arid cities that are environmentally ‘responsible’ with respect to water consumption. In this study we ask, (a) is green roof technology appropriate for a desert city, (b) if native plants and environmentally responsible watering regimes are used, will ecosystem services we seek from green roofs be supported, and (c) would such an installation meet building code requirements. Small-plot model green roofs are constructed on the campus of Biosphere 2, near Oracle, AZ. The study design crosses two artificial soil types (a heavy and light mix made of different proportions of sand, organic materials, and a lightweight porous material [SOILMatrixTM], two irrigation regimes (ambient and drip irrigated), and three plant species (succulent: Hesparaloe parviflora; shrub: Calliandra eriophylla; grass: Cathestecum erectum) in initial tests. To address the questions we are posing, we compare energy balance of the plots, water status and health of the plants, and soil water contents. EPA MIST models indicate that plant cover has the potential to reduce average temperatures by 4 to 8°C, resulting in energy savings of 3 - 6% kWhr/ft2. In preliminary tests we found that the dry weights of our environmentally accurate rocky soil mixes were well under 40 lbs per sq. ft., the building code limit. Preliminary results from the first season of data collection

  17. Quantifying the thermal heat requirement of Brassica in assessing biophysical parameters under semi-arid microenvironments

    NASA Astrophysics Data System (ADS)

    Adak, Tarun; Chakravarty, N. V. K.

    2010-07-01

    Evaluation of the thermal heat requirement of Brassica spp. across agro-ecological regions is required in order to understand the further effects of climate change. Spatio-temporal changes in hydrothermal regimes are likely to affect the physiological growth pattern of the crop, which in turn will affect economic yields and crop quality. Such information is helpful in developing crop simulation models to describe the differential thermal regimes that prevail at different phenophases of the crop. Thus, the current lack of quantitative information on the thermal heat requirement of Brassica crops under debranched microenvironments prompted the present study, which set out to examine the response of biophysical parameters [leaf area index (LAI), dry biomass production, seed yield and oil content] to modified microenvironments. Following 2 years of field experiments on Typic Ustocrepts soils under semi-arid climatic conditions, it was concluded that the Brassica crop is significantly responsive to microenvironment modification. A highly significant and curvilinear relationship was observed between LAI and dry biomass production with accumulated heat units, with thermal accumulation explaining ≥80% of the variation in LAI and dry biomass production. It was further observed that the economic seed yield and oil content, which are a function of the prevailing weather conditions, were significantly responsive to the heat units accumulated from sowing to 50% physiological maturity. Linear regression analysis showed that growing degree days (GDD) could indicate 60-70% variation in seed yield and oil content, probably because of the significant response to differential thermal microenvironments. The present study illustrates the statistically strong and significant response of biophysical parameters of Brassica spp. to microenvironment modification in semi-arid regions of northern India.

  18. Evolution of leaf anatomy in arid environments - A case study in southern African Tetraena and Roepera (Zygophyllaceae).

    PubMed

    Lauterbach, Maximilian; van der Merwe, Pieter de Wet; Keßler, Lisa; Pirie, Michael D; Bellstedt, Dirk U; Kadereit, Gudrun

    2016-04-01

    The dry biomes of southern Africa (Desert, Nama Karoo and Succulent Karoo) are home to a rich and diverse xerophytic flora. This flora includes two morphologically diverse clades of Zygophyllaceae, Tetraena and Roepera (Zygophylloideae), which inhabit some of the most arid habitats in the region. Using a plastid phylogeny of Zygophylloideae we assess whether the evolution of putatively adaptive traits (leaf shape, vasculature, mode of water storage and photosynthetic type: C3 versus C4) coincides with the successful colonisation of environments with different drought regimes within southern Africa. Our results show general niche conservatism within arid habitats in Tetraena, but niche shifts from arid to more mesic biomes with longer and/or cooler growing season (Fynbos and Thicket) in Roepera. However, these distinct broad-scale biogeographical patterns are not reflected in leaf anatomy, which seems to vary at more local scales. We observed considerable variability and multiple convergences to similar leaf anatomies in both genera, including shifts between "all cell succulence" leaf types and leaf types with distinct chlorenchyma and hydrenchyma. Our survey of C4 photosynthesis in the Zygophylloideae showed that the C4 pathway is restricted to Tetraena simplex, which also having an annual life history and a widespread distribution, is rather atypical for this group.

  19. Nitrogen cycling: water use efficiency interactions in semi-arid ecosystems in relation to management of tree legumes (Prosopis)

    SciTech Connect

    Felker, P.; Clark, P.R.; Osborn, J.; Cannell, G.H.

    1980-04-01

    Plant productivity in semi-arid ecosystems is often limited by soil fertility as much as it is by moisture availability. A quantitative assessment of nitrogen limitations on water use efficiency has been made after careful review of plant water use efficiency data at high and low soil fertilities and after careful review of nitrogen inputs to semi arid ecosystems in the form of: blue-green algae-lichen crusts; non-symbiotic nitrogen fixers; rainfall; and tree legumes. This analysis indicates that plant productivity in semi-arid regions may be 10 fold more limited by nitrogen than moisture availability. Forage yields of non-nitrogen fixing trees and shrubs could be greatly increased by interplanting with drought adapted nitrogen fixers such as Prosopis and Acacia. Calculations based on water use efficiencies of annual legumes and nitrogen fixation values of tree legumes predict that well managed, spaced, and cared for orchards of specially selected Prosopis could produce 4000 Kgha/sup -1/ yr/sup -1/ of 13% protein pods at 500 mm annual rainfall with only light fertilization with phosphate, potassium and sulfur. Field measurements of pod yields for 25 selections of 3 year old Prosopis grown under managed orchard conditions in southern California are presented. Spacing regimes and harvesting techniques for Prosopis are proposed to facilitate pod production.

  20. Merging of Rhine flow regimes

    NASA Astrophysics Data System (ADS)

    Boessenkool, Berry; Bronstert, Axel; Bürger, Gerd

    2016-04-01

    The Rhine flow regime is changing: (a) in the alpine nival regime, snow melt floods occur earlier in the year and (b) in the pluvial middle-Rhine regime, rainfall induced flood magnitudes rise. The seasonality of each is currently separated in time, but it is conceivable that this may shift due to climate change. If extremes of both flood types coincide, this would create a new type of hydrologic extreme with disastrous consequences. Quantifying the probability for a future overlap of pluvial and nival floods is therefore of high relevance to society and particularly to reinsurance companies. In order to investigate possible changes in magnitude and timing of flood types, we are developing a chain of physical models for spatio-temporal combination of flood probabilities. As input, we aim to use stochastically downscaled temperature and rainfall extremes from climate model weather projections. Preliminary research shows a six-week forward-shift of peak discharge at the nival gauge Maxau in the past century. The aim of presenting our early-stage work as a poster is to induce an exchange of ideas with fellow scientists in close research disciplines.

  1. Arid Lands--A Study in Ecological Disaster

    ERIC Educational Resources Information Center

    Eckholm, Erik

    1977-01-01

    Reports that over-grazing and unsound agricultural practices are increasing the world-wide amount of uninhabitable land. Cites some practices which have been used to successfully reclaim arid land areas. (CP)

  2. Aridity changes in the Tibetan Plateau in a warming climate

    DOE PAGESBeta

    Gao, Yanhong; Li, Xia; Leung, Lai-Yung R.; Chen, Deliang; Xu, Jianwei

    2015-03-10

    Desertification in the Tibetan Plateau (TP) has drawn increasing attention in the recent decades. It has been postulated as a consequence of climate aridity due to the observed warming. This study quantifies the aridity changes in the TP and attributes the changes to different climatic factors. Using the ratio of P/PET (precipitation to potential evapotranspiration) as an aridity index to indicate changes in dryness and wetness in a given area, P/PET was calculated using observed records at 83 stations in the TP, with PET calculated using the Penman–Monteith (PM) algorithm. Spatial and temporal changes of P/PET in 1979-2011 are analyzed.more » Results show that stations located in the arid and semi-arid northwestern TP are becoming significantly wetter and stations in the semi-humid southeastern TP are becoming drier, though not significantly, in the recent three decades. The aridity change patterns are significantly correlated with precipitation, sunshine duration and diurnal temperature range changes at confidence level of 99.9% from two-tail t-test. Temporal correlations also confirm the significant correlation between aridity changes with the three variables, with precipitation being the most dominant driver of P/PET changes at interannual time scale. PET changes are insignificant but negatively correlated with P/PET in the cold season. In the warm season, however, correlation between PET changes and P/PET changes are significant at confidence level of 99.9% when the cryosphere melts near the surface. Significant correlation between wind speed changes and aridity changes occurs in limited locations and months. Consistency in the climatology pattern and linear trends in surface air temperature and precipitation calculated using station data, gridded data, and nearest grid-to-stations for the TP average and across sub-basins indicate the robustness of the trends despite the large spatial heterogeneity in the TP that challenge climate monitoring.« less

  3. Aridity changes in the Tibetan Plateau in a warming climate

    SciTech Connect

    Gao, Yanhong; Li, Xia; Leung, Lai-Yung R.; Chen, Deliang; Xu, Jianwei

    2015-03-10

    Desertification in the Tibetan Plateau (TP) has drawn increasing attention in the recent decades. It has been postulated as a consequence of climate aridity due to the observed warming. This study quantifies the aridity changes in the TP and attributes the changes to different climatic factors. Using the ratio of P/PET (precipitation to potential evapotranspiration) as an aridity index to indicate changes in dryness and wetness in a given area, P/PET was calculated using observed records at 83 stations in the TP, with PET calculated using the Penman–Monteith (PM) algorithm. Spatial and temporal changes of P/PET in 1979-2011 are analyzed. Results show that stations located in the arid and semi-arid northwestern TP are becoming significantly wetter and stations in the semi-humid southeastern TP are becoming drier, though not significantly, in the recent three decades. The aridity change patterns are significantly correlated with precipitation, sunshine duration and diurnal temperature range changes at confidence level of 99.9% from two-tail t-test. Temporal correlations also confirm the significant correlation between aridity changes with the three variables, with precipitation being the most dominant driver of P/PET changes at interannual time scale. PET changes are insignificant but negatively correlated with P/PET in the cold season. In the warm season, however, correlation between PET changes and P/PET changes are significant at confidence level of 99.9% when the cryosphere melts near the surface. Significant correlation between wind speed changes and aridity changes occurs in limited locations and months. Consistency in the climatology pattern and linear trends in surface air temperature and precipitation calculated using station data, gridded data, and nearest grid-to-stations for the TP average and across sub-basins indicate the robustness of the trends despite the large spatial heterogeneity in the TP that challenge climate monitoring.

  4. Dynamics of Transmissionlosses In Arid Stream Channels

    NASA Astrophysics Data System (ADS)

    Lange, J.; Mostert, A.; Wessels, C.

    In dry areas streamflow losses of ephemeral rivers are important contributions to groundwater recharge. The importance of these losses increases with aridity U in hy- perarid areas they often form the only freshwater source for aquifers sustaining water supply and life of the local population. However, just in these areas little is known about processes involved, as gauging and monitoring of surface water flow is made difficult due to the low population, remoteness of hydrological stations and short du- rations of floods. Using a physically based flow routing scheme on an event basis this study wants to contribute to the knowledge of the nature and dynamics of chan- nel transmission losses in large arid stream channels. In the 15500 km2 Kuiseb River catchment, western Namibia, annual rainfall decreases from 275 in the east to just about 0 in the west. With a distinct drop in altitude the downstream part of the basin makes up one of the driest regions in the world. A 200 km channel in the lower reaches of the Kuiseb River serves as an ideal field laboratory to simulate the transmission of flash floods because of the following reasons: i) Almost 20 years of flow records up and downstream ii) Negligible lateral inflow along the reach due to hyperarid condi- tions iii) Comparatively frequent flows due to the semiarid headwaters Hydrographs of two upstream stations serve as input for the routing scheme in a 5 min time step. Geometric information required is taken from aerial photography, topographical maps and surveyed cross sections. At the downstream end of the reach 20 simulated hy- drographs are compared with gauged events. Without calibration the routing scheme nicely documents that small floods (< 60-80 m3/s) are not significantly reduced, if they travel on a wet channel, while under the same circumstances large floods (> 120- 140 m3/s) loose up to 50% of their runoff peak. This difference is important for the assessment of groundwater recharge and may be

  5. Spatiotemporal trends in mean temperatures and aridity index over Rwanda

    NASA Astrophysics Data System (ADS)

    Muhire, I.; Ahmed, F.

    2016-01-01

    This study aims at quantifying the trends in mean temperatures and aridity index over Rwanda for the period of 1961-1992, based on analysis of climatic data (temperatures, precipitations, and potential evapotranspiration). The analysis of magnitude and significance of trends in temperatures and aridity index show the degree of climate change and mark the level of vulnerability to extreme events (e.g., droughts) in different areas of the country. The study reveals that mean temperatures increased in most parts of the country, with a significant increase observed in the eastern lowlands and in the southwestern parts. The highlands located in the northwest and the Congo-Nile crest showed a nonsignificant increase in mean temperatures. Aridity index increased only in March, April, October, and November, corresponding with the rainy seasons. The remaining months of the year showed a decreasing trend. At an annual resolution, the highlands and the western region showed a rise in aridity index with a decreasing pattern over the eastern lowlands and the central plateau. Generally, the highlands presented a nonsignificant increase in mean temperatures and aridity index especially during the rainy seasons. The eastern lowlands showed a significant increase in mean temperatures and decreasing trends in aridity index. Therefore, these areas are bound to experience more droughts, leading to reduced water and consequent decline in agricultural production. On the other hand, the north highlands and southwest region will continue to be more productive.

  6. Characterization of a new ARID family transcription factor (Brightlike/ARID3C) that co-activates Bright/ARID3A-mediated immunoglobulin gene transcription.

    PubMed

    Tidwell, Josephine A; Schmidt, Christian; Heaton, Phillip; Wilson, Van; Tucker, Philip W

    2011-10-01

    Two members, Bright/ARID3A and Bdp/ARID3B, of the ARID (AT-Rich Interaction Domain) transcription family are distinguished by their ability to specifically bind to DNA and to self-associate via a second domain, REKLES. Bright and Bdp positively regulate immunoglobulin heavy chain gene (IgH) transcription by binding to AT-rich motifs within Matrix Associating Regions (MARs) residing within a subset of V(H) promoters and the Eμ intronic enhancer. In addition, REKLES provides Bright nuclear export function, and a small pool of Bright is directed to plasma membrane sub-domains/lipid rafts where it associates with and modulates signaling of the B cell antigen receptor (BCR). Here, we characterize a third, highly conserved, physically condensed ARID3 locus, Brightlike/ARID3C. Brightlike encodes two alternatively spliced, SUMO-I-modified isoforms that include or exclude (Δ6) the REKLES-encoding exon 6. Brightlike transcripts and proteins are expressed preferentially within B lineage lymphocytes and coordinate with highest Bright expression in activated follicular B cells. Brightlike, but not BrightlikeΔ6, undergoes nuclear-cytoplasmic shuttling with a fraction localizing within lipid rafts following BCR stimulation. Brightlike, but not BrightlikeΔ6, associates with Bright in solution, at common DNA binding sites in vitro, and is enriched at Bright binding sites in chromatin. Although possessing little transactivation capacity of its own, Brightlike significantly co-activates Bright-dependent IgH transcription with maximal activity mediated by the unsumoylated form. In sum, this report introduces Brightlike as an additional functional member of the family of ARID proteins, which should be considered in regulatory circuits, previously ascribed to be mediated by Bright.

  7. Ecological condition of central Australian arid-zone rivers.

    PubMed

    Choy, S C; Thomson, C B; Marshall, J C

    2002-01-01

    Australian arid-zone rivers are known to be ecologically variable and go through "boom and bust" cycles based on highly variable and unpredictable flow regimes. They are facing increasing pressure from land and water resources development and, whilst they are considered to be still in relatively good condition, no studies have yet been carried out to verify this. Such baseline studies are crucial if we are to assess any ecological changes in response to development and management interventions. The ecological condition of four of these endorheic rivers (Georgina, Diamantina, Cooper-Thomson and Bulloo) flowing into the Lake Eyre and Bulloo Basins in central Australia was assessed using several criteria (level of human influence, habitat condition, water chemistry and aquatic macroinvertebrate composition). Using criteria based on the level of human influence, most of the sites were assessed to be relatively unimpacted (reference) condition. The most discernible and widespread impact was riparian and bank damage by stock access. However, the level of this impact was considered to be only moderate. Most aquatic macroinvertebrates found in the area are considered to be opportunistic and tolerant of a wide range of environmental conditions, but with their life histories known to be linked to flow conditions. Their trophic guild was dominated by collectors and predators. The AusRivAS modelled observed to expected values of macroinvertebrate composition indicated that there were differences in ecological condition between sites (e.g. different waterholes) and between times (e.g. seasons and years). Overall, 75% of sites were assessed to be good condition with the remainder being mildly impaired. Water chemistry of the sites was characterised by high spatial and temporal variability with low conductivity and alkaline pH, relatively high turbidity, total nitrogen and total phosphorus, and wide-ranging dissolved oxygen. Given the high variability in water quality and

  8. Comprehensive assessment of projected changes in water availability and aridity

    NASA Astrophysics Data System (ADS)

    Greve, Peter; Seneviratne, Sonia I.

    2015-04-01

    Substantial changes in the hydrological cycle are projected for the 21st century, with potential major impacts, particularly at regional scale. However, the projections are subject to major uncertainties and the metrics generally used to assess such changes do not fully account for the hydroclimatological characteristics of the land surface. In this context, the 'dry gets drier, wet gets wetter' paradigm is often used as a simplifying summary. However, recent studies have challenged the validity of the paradigm both for observations (Greve et al., 2014) and projections (Roderick et al., 2014), especially casting doubt on applying the widely used P-E (precipitation - evapotranspiration) metric over global land surfaces. Here we show in a comprehensive assessment that projected changes in mean annual P-E are generally not significant in most land areas, with the exception of the northern high latitudes where significant changes towards wetter conditions are found. We further show that the combination of decreasing P and increasing atmospheric demand (potential evapotranspiration, Ep) leads to a significant increase in aridity in many subtropical and neighbouring regions, thus confirming the paradigm for some dry regions, but invalidating it for the relative large fraction of the affected area which is currently in a humid or transitional climate regime. Combining both metrics (P-E and P-E_p) we conclude that the 'dry gets drier, wet gets wetter' paradigm is generally not confirmed for projected changes in most land areas (despite notable exceptions in the high latitudes and subtropics), because of a lack of robustness of the projected changes in some regions (tropics) and because humid to transitional regions are shifting to drier conditions, i.e. not following the paradigm. References Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., & Seneviratne, S. I. Global assessment of trends in wetting and drying over land. Nature Geosci. 7, 716-721 (2014

  9. Nitrogen Uptake Preferences by Plants in Arid and Semiarid Ecosystems

    NASA Astrophysics Data System (ADS)

    Macko, S.; Wang, L.; D'Odorico, P.

    2005-12-01

    In arid and semiarid ecosystems like African savannas, nutrient availability varies spatially and temporally and nutrients are considered to be a major limiting factor for growth in addition to water availability. Preference for different nitrogen forms presumably enhances the survivorship and fitness of plants since the relative abundances of nitrate and ammonium varies between drier and wetter areas. To test the hypothesis that species developing in dry areas will prefer nitrate whereas species growing in wet areas will prefer ammonium, a controlled experiment using a greenhouse was undertaken. Six native African grass species from different precipitation regimes were used in this study. Two species were from relatively wet areas (Pandamatenga, Botswana, precipitation = 698 mm/year), two were from relatively dry areas (Tshane, Botswana, precipitation = 232 mm/year) and other two were from intermediate environments (Ghanzi, Botswana, precipitation = 400 mm/year). The grass seeds were collected in the field during the dry season of 2004 and using germination pans, were grown in a greenhouse. When individuals were mature, they were transferred into plastic pots (one individual per pot) containing commercial sand. After one week period of adjustment, a 15N labeled fertilizer (NH4NO3) was applied. The total N applied as fertilizer was comparable to the mineralized field N based on a calculated rate for the top 15 cm of soil. A pair of individual plants was treated as an experimental unit. Each plant received the same amount of total N fertilizer, but one was 15NO3 labeled and another was 15NH4 labeled. Nutrient uptake preference was determined by the 15N difference between pairs. The preliminary results with three species shows that, the individuals from dry area ( Enneapogon cenchroides from Tshane) has significantly higher foliar 15N signatures in the 15NO3 labeling treatment (p = 0.0103) and no difference in root 15N signatures. Whereas individuals from the wet

  10. Challenges in Arid-Land Meteorology

    NASA Astrophysics Data System (ADS)

    Warner, T. T.

    2005-12-01

    A fundamental challenge in desert meteorology involves quantifying the various components of the water cycle for the coupled land-atmospheric system. Important issues include defining the fraction of precipitated water that actually reaches the ground, and, of the water that does reach the surface, how much is partitioned among evaporation, runoff to reservoirs, retention near the surface in substrates for use by vegetation, and percolation to the water table. Because monsoon rainfall is often a significant source of water in the hydrologic cycle in arid lands, understanding its inter-annual variability and improving its predictability are challenges. In addition, there are questions about how continued anthropogenic modification of the landscape will influence local weather processes and climate, in terms of changes due to agricultural conversion (including reversion away from agriculture as water tables drop), the urban conversion of prairie grassland and desert vegetation to asphalt and trees, and the trans-basin diversion of water. Predicting the elevation from the surface and the transport of natural and anthropogenic aerosols is also important in terms of their affect on the local and global radiation budget and climate, downwind effects on human health, and local and remote cloud processes. Lastly, large substrate and vegetation heterogeneities, frequently very complex orography, and extreme diurnal cycles present challenges in understanding and modeling land-atmosphere interaction and boundary-layer processes.

  11. Arid Lands Ecology Facility management plan

    SciTech Connect

    1993-02-01

    The Arid Lands Ecology (ALE) facility is a 312-sq-km tract of land that lies on the western side of the Hanford Site in southcentral Washington. The US Atomic Energy Commission officially set aside this land area in 1967 to preserve shrub-steppe habitat and vegetation. The ALE facility is managed by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) for ecological research and education purposes. In 1971, the ALE facility was designated the Rattlesnake Hills Research Natural Area (RNA) as a result of an interagency federal cooperative agreement, and remains the largest RNA in Washington. it is also one of the few remaining large tracts of shrub-steppe vegetation in the state retaining a predominant preeuropean settlement character. This management plan provides policy and implementation methods for management of the ALE facilities consistent with both US Department of Energy Headquarters and the Richland Field Office decision (US Congress 1977) to designate and manage ALE lands as an RNA and as a component of the DOE National Environmental Research Park System.

  12. Late glacial aridity in southern Rocky Mountains

    SciTech Connect

    Davis, O.K.; Pitblado, B.L.

    1995-09-01

    While the slopes of the present-day Colorado Rocky Mountains are characterized by large stands of subalpine and montane conifers, the Rockies of the late glacial looked dramatically different. Specifically, pollen records suggest that during the late glacial, Artemisia and Gramineae predominated throughout the mountains of Colorado. At some point between 11,000 and 10,000 B.P., however, both Artemisia and grasses underwent a dramatic decline, which can be identified in virtually every pollen diagram produced for Colorado mountain sites, including Como Lake (Sangre de Cristo Mountains), Copley Lake and Splains; Gulch (near Crested Butte), Molas Lake (San Juan Mountains), and Redrock Lake (Boulder County). Moreover, the same pattern seems to hold for pollen spectra derived for areas adjacent to Colorado, including at sites in the Chuska Mountains of New Mexico and in eastern Wyoming. The implications of this consistent finding are compelling. The closest modem analogues to the Artemisia- and Gramineae-dominated late-glacial Colorado Rockies are found in the relatively arid northern Great Basin, which suggests that annual precipitation was much lower in the late-glacial southern Rocky Mountains than it was throughout the Holocene.

  13. The thermal regime of Venus

    SciTech Connect

    Solomatov, V.S.; Zharkov, V.N. )

    1990-04-01

    In the present numerical modeling study of the thermal evolution of Venus, the mantle is taken to be composed of independently convecting upper and lower mantles. A novel parameterization is used which takes into account recent numerical investigations in media with complex rheology. The parameters of the convecting planet in the asymptotic regime do not depend on initial conditions, and are ascertained analytically. Convection in the lower part of the crust is demonstrated to be involved in regions having specific crustal composition; heat transfer to the surface is primarily via advection by magmas that are produced by melting of the lower layers of the crust. 50 refs.

  14. Breddin's graph for tectonic regimes

    NASA Astrophysics Data System (ADS)

    Célérier, Bernard; Séranne, Michel

    2001-05-01

    A simple graphical method is proposed to infer the tectonic regime from a fault and slip data set. An abacus is overlaid on a plot of the rake versus strike of the data. This yields the horizontal principal stress directions and a constraint on the stress tensor aspect ratio, in a manner similar to Breddin's graph for two-dimensional strain analysis. The main requirement is that one of the principal stress directions is close to the vertical. This method is illustrated on monophase synthetic and natural data, but is also expected to help sort out multiphase data sets.

  15. Keeping Sediment and Nutrients out of Streams in Arid/Semi-Arid Regions: Application of Low Impact Development/Green Infrastructure Practices

    NASA Astrophysics Data System (ADS)

    Yongping, Yuan

    2015-04-01

    Climatic and hydrological characteristics in the arid/semi-arid areas create unique challenges to soil, water and biodiversity conservation. These areas are environmentally sensitive, but very valuable for the ecosystems services they provide to society. Some of these areas are experiencing the fastest urbanization and now face multiple water resource challenges. Low Impact Development (LID)/Green Infrastructure (GI) practices are increasingly popular for reducing stormwater and nonpoint source pollution in many regions around the world. However, streamflow in the arid/semi-arid regions is largely dependent on seasonal, short term, and high intensity rainfall events. LID has not been very common in the arid/semi-arid regions due to a lack of performance evaluation, as well as the perception that LID may not be very useful for regions with little annual precipitation. This study focused on investigating the hydrologic and pollutant removal performance of LID/GI systems in arid/semi-arid climates. Ten types of practices were found in use in the Western/Southwestern U.S.: rainwater harvest systems, detention ponds, retention ponds, bioretention, media filters, porous pavements, vegetated swales/buffer/strips, green roofs, infiltration trenches, and integrated LIDs. This study compared the performance of these practices in terms of their effectiveness at pollutant removal and cost-effectiveness. This analysis provides insight into the future implementation of LID/GI in the arid/semi-arid areas. Key words: LID/GI, arid/semi-arid, effectiveness of pollutant removal, cost-effectiveness analysis

  16. The New English Quality Assurance Regime

    ERIC Educational Resources Information Center

    Brown, Roger

    2011-01-01

    England is developing a new quality assurance regime that will come into effect in October 2011. A new funding regime will operate from the following year, together with new rules to ease the participation of private higher education providers. This article describes and analyses the new quality and funding regimes. It argues that the greater…

  17. Diagnosis of GLDAS LSM based aridity index and dryland identification.

    PubMed

    Ghazanfari, Sadegh; Pande, Saket; Hashemy, Mehdy; Sonneveld, Ben

    2013-04-15

    The identification of dryland areas is crucial for guiding policy aimed at intervening in water-stressed areas and addressing the perennial livelihood or food insecurity of these areas. However, the prevailing aridity indices (such as UNEP aridity index) have methodological limitations that restrict their use in delineating drylands and may be insufficient for decision-making frameworks. In this study, we propose a new aridity index based on based on 3 decades of soil moisture time series by accounting for site-specific soil and vegetation that partitions precipitation into the competing demands of evaporation and runoff. Our proposed aridity index is the frequency at which the dominant soil moisture value at a location is not exceeded by the dominant soil moisture values in all of the other locations. To represent the dominant spatial template of the soil moisture conditions, we extract the first eigenfunction from the empirical orthogonal function (EOF) analysis from 3 GLDAS land surface models (LSMs): VIC, MOSAIC and NOAH at 1 × 1 degree spatial resolution. The EOF analysis reveals that the first eigenfunction explains 33%, 43% and 47% of the VIC, NOAH and MOSAIC models, respectively. We compare each LSM aridity indices with the UNEP aridity index, which is created based on LSM data forcings. The VIC aridity index displays a pattern most closely resembling that of UNEP, although all of the LSM-based indices accurately isolate the dominant dryland areas. The UNEP classification identifies portions of south-central Africa, southeastern United States and eastern India as drier than predicted by all of the LSMs. The NOAH and MOSAIC LSMs categorize portions of southwestern Africa as drier than the other two classifications, while all of the LSMs classify portions of central India as wetter than the UNEP classification. We compare all aridity maps with the long-term average NDVI values. Results show that vegetation cover in areas that the UNEP index classifies as

  18. Adaptation in Collaborative Governance Regimes

    NASA Astrophysics Data System (ADS)

    Emerson, Kirk; Gerlak, Andrea K.

    2014-10-01

    Adaptation and the adaptive capacity of human and environmental systems have been of central concern to natural and social science scholars, many of whom characterize and promote the need for collaborative cross-boundary systems that are seen as flexible and adaptive by definition. Researchers who study collaborative governance systems in the public administration, planning and policy literature have paid less attention to adaptive capacity specifically and institutional adaptation in general. This paper bridges the two literatures and finds four common dimensions of capacity, including structural arrangements, leadership, knowledge and learning, and resources. In this paper, we focus on institutional adaptation in the context of collaborative governance regimes and try to clarify and distinguish collaborative capacity from adaptive capacity and their contributions to adaptive action. We posit further that collaborative capacities generate associated adaptive capacities thereby enabling institutional adaptation within collaborative governance regimes. We develop these distinctions and linkages between collaborative and adaptive capacities with the help of an illustrative case study in watershed management within the National Estuary Program.

  19. Different regimes of dynamic wetting

    NASA Astrophysics Data System (ADS)

    Gustav, Amberg; Wang, Jiayu; Do-Quang, Minh; Shiomi, Junichiro; Physiochemical fluid mechanics Team; Maruyama-Chiashi Laboratory Team

    2014-11-01

    Dynamic wetting, as observed when a droplet contacts a dry solid surface, is important in various engineering processes, such as printing, coating, and lubrication. Our overall aim is to investigate if and how the detailed properties of the solid surface influence the dynamics of wetting. Here we discuss how surface roughness influences the initial dynamic spreading of a partially wetting droplet by studying the spreading on a solid substrate patterned with microstructures just a few micrometers in size. This is complemented by matching numerical simulations. We present a parameter map, based on the properties of the liquid and the solid surface, which identifies qualitatively different spreading regimes, where the spreading speed is limited by either the liquid viscosity, the surface properties, or the liquid inertia. The peculiarities of the different spreading regimes are studied by detailed numerical simulations, in conjuction with experiments. This work was financially supported in part by, the Japan Society for the Promotion of Science (J.W. and J.S) and Swedish Governmental Agency for Innovation Systems (M.D.-Q. and G.A).

  20. Adaptation in collaborative governance regimes.

    PubMed

    Emerson, Kirk; Gerlak, Andrea K

    2014-10-01

    Adaptation and the adaptive capacity of human and environmental systems have been of central concern to natural and social science scholars, many of whom characterize and promote the need for collaborative cross-boundary systems that are seen as flexible and adaptive by definition. Researchers who study collaborative governance systems in the public administration, planning and policy literature have paid less attention to adaptive capacity specifically and institutional adaptation in general. This paper bridges the two literatures and finds four common dimensions of capacity, including structural arrangements, leadership, knowledge and learning, and resources. In this paper, we focus on institutional adaptation in the context of collaborative governance regimes and try to clarify and distinguish collaborative capacity from adaptive capacity and their contributions to adaptive action. We posit further that collaborative capacities generate associated adaptive capacities thereby enabling institutional adaptation within collaborative governance regimes. We develop these distinctions and linkages between collaborative and adaptive capacities with the help of an illustrative case study in watershed management within the National Estuary Program.

  1. Predictability and prediction of summer rainfall in the arid and semi-arid regions of China

    NASA Astrophysics Data System (ADS)

    Xing, Wen; Wang, Bin

    2016-09-01

    Northwest China (NWC) is an arid and semi-arid region where climate variability and environmental changes are sensitive to precipitation. The present study explores sources and limits of predictability of summer precipitation over NWC using the predictable mode analysis (PMA) of percentage of rainfall anomaly data. Two major modes of NWC summer rainfall variability are identified which are tied to Eurasian continental scale precipitation variations. The first mode features wet northern China corresponding to dry central Siberia and wet Mongolia, which is mainly driven by tropical Pacific sea surface temperature anomalies (SSTA). The second mode features wet western China reflecting wet Central Asia and dry Ural-western Siberia, which strongly links to Indian Ocean SSTA. Anomalous land warming over Eurasia also provides important precursors for the two modes. The cross-validated hindcast results demonstrate these modes can be predicted with significant correlation skills, suggesting that they may be considered as predictable modes. The domain averaged temporal correlation coefficient (TCC) skill during 1979 to 2015 using 0-month (1-month) lead models is 0.39 (0.35), which is considerably higher than dynamical models' multi-model ensemble mean skill (-0.02). Maximum potential attainable prediction skills are also estimated and discussed. The result illustrates advantage of PMA in predicting rainfall over dry land areas and large room for dynamical model improvement. However, secular changes of predictors need to be detected continuously in order to make practical useful prediction.

  2. Shallow Horizontal GCHP Effectiveness in Arid Climate Soils

    NASA Astrophysics Data System (ADS)

    North, Timothy James

    Ground coupled heat pumps (GCHPs) have been used successfully in many environments to improve the heating and cooling efficiency of both small and large scale buildings. In arid climate regions, such as the Phoenix, Arizona metropolitan area, where the air condi-tioning load is dominated by cooling in the summer, GCHPs are difficult to install and operate. This is because the nature of soils in arid climate regions, in that they are both dry and hot, renders them particularly ineffective at dissipating heat. The first part of this thesis addresses applying the SVHeat finite element modeling soft-ware to create a model of a GCHP system. Using real-world data from a prototype solar-water heating system coupled with a ground-source heat exchanger installed in Menlo Park, California, a relatively accurate model was created to represent a novel GCHP panel system installed in a shallow vertical trench. A sensitivity analysis was performed to evaluate the accuracy of the calibrated model. The second part of the thesis involved adapting the calibrated model to represent an ap-proximation of soil conditions in arid climate regions, using a range of thermal properties for dry soils. The effectiveness of the GCHP in the arid climate region model was then evaluated by comparing the thermal flux from the panel into the subsurface profile to that of the prototype GCHP. It was shown that soils in arid climate regions are particularly inefficient at heat dissipation, but that it is highly dependent on the thermal conductivity inputted into the model. This demonstrates the importance of proper site characterization in arid climate regions. Finally, several soil improvement methods were researched to evaluate their potential for use in improving the effectiveness of shallow horizontal GCHP systems in arid climate regions.

  3. Groundwater hydrochemistry evolution in cyclone driven hydrological regimes, NW Australia

    NASA Astrophysics Data System (ADS)

    Skrzypek, G.; Dogramaci, S.; Grierson, P.

    2013-12-01

    Groundwater reserves supply the water needs of many arid regions around the world. Aquifer recharge in these regions is primarily depended on the amount and distribution of rainfall, coupled with exceedingly high rates of evaporation and interactions with both local and regional geomorphology and geology. In semi-arid northwest Australia, the majority of rainfall is delivered by large but infrequent cyclonic events and relatively more frequent but low intensity frontal systems. Changes to rainfall patterns due to global climate change may impact hydrological regimes, recharge rates and groundwater hydrochemistry. These changes may significantly restrict freshwater resources in the future. Between 2008 and 2012, we analysed >400 groundwater, surface and rainwater samples for stable isotope composition (δ2H and δ18O) and major ion chemistry. We then developed conceptual geochemical models of groundwater evolution for the Hamersley Basin (>100,000 km2) and a salt inventory for the Fortescue Marsh (the largest wetland in NW Australia) [1,2]. Fresh groundwater from the alluvium (-8.02 × 0.83‰) and fractured aquifers (-8.22 × 0.70‰) were hydrochemically similar and characterised by a very narrow range of δ18O [1]. In contrast, δ18O of saline and brine groundwater (TDS >10 g L-1) varies in wide range from +2.5 to -7.2‰ [2]. Most of the fresh and brackish groundwater reflects modern recharge and is evaporated by <20% prior to recharge. In contrast, highly saline and brine groundwater reflects mixing between modern rainfall, brackish water and older deep groundwater. The Fortescue Marsh primarily acts as a terminal basin for surface water from the upper Fortescue River catchment [2]. The stable isotope composition of the deep brine groundwater under the Marsh suggests a complex evolution, which cannot be explained by evaporation under current climatic conditions. The observed salinity and δ18O values may result from progressive evaporation from highly saline

  4. Nebkha patterns in semi-arid environments

    NASA Astrophysics Data System (ADS)

    Nield, J. M.; Gillies, J. A.; Nickling, W. G.

    2014-12-01

    In semi-arid supply-limited, environments, nehbka dunes typically form through ecogeomorphic feedbacks. The size, shape and orientation of these dunes are controlled by the interactions between vegetation growth and aeolian sedimentations processes. Once established, these dune patterns modify sediment transport and often form streets of bare surfaces between dune corridors. We examine typical dune and vegetation patterns that form with varying amounts of sediment availability and nebkha maturity at Jornada in the Chihuahuan Desert, New Mexico, USA using terrestrial laser scanning (TLS) to separate the plant and sand elements. Manual and automated TLS shrub height extractions compare well at all sites (p = 0.48-0.94) enabling the quantification of both solid and plant roughness element components in three dimensions. We find that there is a switch in orientation of the dune elements with respect to dominant wind direction from perpendicular to parallel as the landscape develops from an incipient to mature configuration and mesquite-nebkha streets are enhanced. As the nebkha dunes develop the surface coverage of bare sand increases and dune surfaces exceed the size of their companion shrubs. Roughness density also increases at the mature dune site. Individual shrub orientations remain similar at each site, but nebkhas typically host multiple shrub crowns at the mature site. Over a two year period up to 20 cm of erosion was measured on the upwind faces of the mature nebkha dunes, in agreement with the dominant annual wind direction. However, deposition patterns were more diffuse and influenced by the vegetation patterns. This study highlights the importance of ecogeomorphic interactions in shaping nebkha landscape patterns.

  5. Permafrost and the geothermal regime

    NASA Astrophysics Data System (ADS)

    Lachenbruch, A. H.; Marshall, B. V.

    Permafrost is the region in the solid earth where the temperature is below 0 C summer and winter. Within this region, water usually occurs as ice, often in massive segregated forms, although capillary water, brines, and gas hydrates also occur. The frozen condition renders permafrost impermeable to water flow, subject to brittle fracture under seasonally induced thermal stress, and subject to mechanical failure and flow when thawed by natural processes or disturbed by man. Hence an understanding of the factors controlling the geothermal regime is necessary for an understanding of geomorphic processes and for successful design of engineering structures such as roadways, heated buildings, pipelines, and oil wells in permafrost terrains. Studies of these factors are greatly simplified by the general absence of heat transfer by flowing ground water; temperatures are estimated with confidence from heat-conduction theory if the ground surface temperature, regional heat flow, and thermal properties are known.

  6. Using magnetic susceptibility to discriminate between soil moisture regimes in selected loess and loess-like soils in northern Iran

    NASA Astrophysics Data System (ADS)

    Valaee, Morteza; Ayoubi, Shamsollah; Khormali, Farhad; Lu, Sheng Gao; Karimzadeh, Hamid Reza

    2016-04-01

    This study used discriminant analysis to determine the efficacy of magnetic measures for discriminating between four soil moisture regimes in northern Iran. The study area was located on loess deposits and loess-like soils containing similar parent material. Four soil moisture regimes including aridic, xeric, udic, and aquic were selected. A total of 25 soil profiles were drug from each regime and composite soil samples were collected within the moisture control section. A set of magnetic measures including magnetic susceptibility at low (χlf) and high (χhf) frequencies, frequency-dependent magnetic susceptibility (χfd), saturation isothermal remnant magnetization (SIRM), and isothermal remnant magnetization (IRM100 mT, IRM 20 mT) were measured in the laboratory. Dithionite citrate bicarbonate (Fed) and acid oxalate (Feo) contents of all soil samples were also determined. The lowest and highest χlf and χhf were observed in aquic and udic moisture regimes, respectively. A similar trend was obtained for Fed and Fed-Feo. The significant positive correlation between Fed and SIRM (r = 0.60; P < 0.01) suggested the formation of stable single domains (SSD) due to pedogenic processes. The results of discriminant analysis indicated that a combination of magnetic measures could successfully discriminate between the selected moisture regimes in the study area (average accuracy = 80%). It can thus be concluded that magnetic measures could be applied as a powerful indicator for differentiation of soil moisture regimes in the study area.

  7. Alterations in flowering strategies and sexual allocation of Caragana stenophylla along a climatic aridity gradient

    PubMed Central

    Xie, Lina; Guo, Hongyu; Ma, Chengcang

    2016-01-01

    Plant can alter reproductive strategies for adaptation to different environments. However, alterations in flowering strategies and sexual allocation for the same species growing in different environments still remain unclear. We examined the sexual reproduction parameters of Caragana stenophylla across four climatic zones from semi-arid, arid, very arid, to intensively arid zones in the Inner Mongolia Steppe, China. Under the relatively favorable climatic conditions of semi-arid zone, C. stenophylla took a K-strategy for flowering (fewer but bigger flowers, and higher seed set). In contrast, under the harsher climatic conditions of intensively arid zone, C. stenophylla took an r-strategy for flowering (more but smaller flowers, and lower seed set). In arid and very arid zones, C. stenophylla exhibited intermediate flowering strategies between K- and r-strategies. In semi-arid, arid and very arid zones, sexual allocation and sexual allocation efficiency (SAE) of C. stenophylla were high, and the population recruitment might be mainly through sexual reproduction; in intensively arid zone, however, sexual allocation and SAE were very low, seed production was very limited, and clonal reproduction might compensate for the decrease in sexual reproduction. Our results suggested that C. stenophylla adapted to the climatic aridity gradient by alterations in flowering strategies and reproductive allocation. PMID:27628093

  8. Alterations in flowering strategies and sexual allocation of Caragana stenophylla along a climatic aridity gradient.

    PubMed

    Xie, Lina; Guo, Hongyu; Ma, Chengcang

    2016-01-01

    Plant can alter reproductive strategies for adaptation to different environments. However, alterations in flowering strategies and sexual allocation for the same species growing in different environments still remain unclear. We examined the sexual reproduction parameters of Caragana stenophylla across four climatic zones from semi-arid, arid, very arid, to intensively arid zones in the Inner Mongolia Steppe, China. Under the relatively favorable climatic conditions of semi-arid zone, C. stenophylla took a K-strategy for flowering (fewer but bigger flowers, and higher seed set). In contrast, under the harsher climatic conditions of intensively arid zone, C. stenophylla took an r-strategy for flowering (more but smaller flowers, and lower seed set). In arid and very arid zones, C. stenophylla exhibited intermediate flowering strategies between K- and r-strategies. In semi-arid, arid and very arid zones, sexual allocation and sexual allocation efficiency (SAE) of C. stenophylla were high, and the population recruitment might be mainly through sexual reproduction; in intensively arid zone, however, sexual allocation and SAE were very low, seed production was very limited, and clonal reproduction might compensate for the decrease in sexual reproduction. Our results suggested that C. stenophylla adapted to the climatic aridity gradient by alterations in flowering strategies and reproductive allocation. PMID:27628093

  9. Integrated Water Resources Planning and Management in Arid/Semi-arid Regions: Data, Modeling, and Assessment

    NASA Astrophysics Data System (ADS)

    Gupta, H.; Liu, Y.; Wagener, T.; Durcik, M.; Duffy, C.; Springer, E.

    2005-12-01

    Water resources in arid and semi-arid regions are highly sensitive to climate variability and change. As the demand for water continues to increase due to economic and population growth, planning and management of available water resources under climate uncertainties becomes increasingly critical in order to achieve basin-scale water sustainability (i.e., to ensure a long-term balance between supply and demand of water).The tremendous complexity of the interactions between the natural hydrologic system and the human environment means that modeling is the only available mechanism for properly integrating new knowledge into the decision-making process. Basin-scale integrated models have the potential to allow us to study the feedback processes between the physical and human systems (including institutional, engineering, and behavioral components); and an integrated assessment of the potential second- and higher-order effects of political and management decisions can aid in the selection of a rational water-resources policy. Data and information, especially hydrological and water-use data, are critical to the integrated modeling and assessment for water resources management of any region. To this end we are in the process of developing a multi-resolution integrated modeling and assessment framework for the south-western USA, which can be used to generate simulations of the probable effects of human actions while taking into account the uncertainties brought about by future climatic variability and change. Data are being collected (including the development of a hydro-geospatial database) and used in support of the modeling and assessment activities. This paper will present a blueprint of the modeling framework, describe achievements so far and discuss the science questions which still require answers with a particular emphasis on issues related to dry regions.

  10. Water Presence in an Arid and Semi-arid River: Pattern, causes, mechanisms and change

    NASA Astrophysics Data System (ADS)

    Meixner, T.; Soto, C. D.; Ajami, H.; Turner, D.; Richter, H.; Dominguez, F.

    2012-12-01

    The presence or absence of water in a stream is among the most fundamental hydrologic variables, particularly for arid and semi-arid rivers. The perennial or intermittent nature of a specific stream location is strongly tied to the biotic diversity and ecosystem services provided by a specific stream reach. Wet dry mapping has been conducted on several Arizona rivers over the last several years. The mapping has been most extensive in time and space along the San Pedro River where the effort has been led by the Bureau of Land Management and the Nature Conservancy. Analysis of the available 13 years of data reveals a number of critical aspects about how a river's wetness changes with climatic and geomorphic conditions. First, the pattern displays power law scaling across space for all completed surveys. Second, using a logistic regression approach the following variables were found to be important in predicting the wet/dry status of a given stream location: surface topography , depth to bedrock, mean daily streamflow in May, change in depth to bedrock, channel sinuosity, and flood plain width. The model is able to correctly predict 80.1 to 86.7% of the wet/dry locations in the river when 52.8% (31.5% wet and 21.3% dry) of its wet/dry status was constant during calibration. Importantly but unsurprisingly the logistic model indicates that hydrologic state combined with subsurface capacity to transmit flow and fluvial structure are important variables in determining the wet/dry status of specific river locations. Using groundwater models as well as climate scenarios for future conditions we are able to estimate how both the extent and the spatial pattern of stream wetness will change under future climate scenarios.

  11. Urban-Induced Rainfall Anomalies in an Arid Regime: Evidence from a 108-Year Data Record and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall

    2004-01-01

    The study employs a 108-year precipitation data record to identify statistically significant anomalies in rainfall downwind of the Phoenix urban region. The analysis reveals that during the monsoon season locations northeastern suburbs and exurbs of the Phoenix metropolitan area have experienced statistically significant increases in mean precipitation of 12 to 14 percent from a pre-urban (1895-1949) to post-urban (1950-2003) period. Mean and median post-urban precipitation totals in the anomaly region are significantly greater, in the statistical sense, than regions west of the city and in nearby mountainous regions of similar or greater topography. Further analysis of satellite-based rainfall totals for the summer of 2003 also reveal the existence of the anomaly region during a severe drought period. The anomaly can not simply be attributed to maximum topographic relief and is hypothesize to be related to urban-topographic interactions.

  12. Defining near-surface groundwater flow regimes in the semi-arid glaciated plains of North America.

    PubMed

    Hendry, M Jim; Barbour, S Lee; Schmeling, Erin E

    2016-06-01

    The dominant transport mechanisms controlling the migration of contaminants in geologic media are advection and molecular diffusion. To date, defining which transport mechanism dominates in saturated, non-lithified sediments has been difficult. Here, we illustrate the value of using detailed profiles of the conservative stable isotope values of water (δ(2)H and δ(18)O) to identify the dominant processes of contaminant transport (i.e. diffusion- or advection-dominated transport) in near-surface, non-lithified, saturated sediments of the Interior Plains of North America (IPNA). The approach presented uses detailed δ(18)O analyses of glacial till, glaciolacustrine clay, and fluvial sand core samples taken to depths of 11-50 m below ground at 22 sites across the IPNA to show whether transport in the fractured and oxidized sediments is dominated by advection or diffusion. Diffusion is by far the dominant transport mechanism in fine-textured lacustrine and glacial till sediments, but lateral advection dominates transport in sand-rich sediments and some oxidized, fine-textured lacustrine and glacial till sediments. The approach presented has a number of applications, including identifying dominant transport mechanisms in geomedia and potential protective barriers for underlying aquifers or surface waters, constraining groundwater transport models, and selecting optimum locations for monitoring wells. These findings should be applicable to most glaciated regions of the world that are composed of similar hydrogeologic units (i.e. low K clay till layers overlain by higher K coarse-textured aquifers or weathered clay till layers) and may also be applicable to non-glaciated regions exhibiting similar hydrogeologic characteristics.

  13. Discharge estimation in arid areas with the help of optical satellite data

    NASA Astrophysics Data System (ADS)

    Mett, M.; Aufleger, M.

    2009-04-01

    The MENA region is facing severe water scarcity. Overexploitation of groundwater resources leads to an ongoing drawdown of the water tables, salinisation and desertification of vast areas. To make matters worse enormous birth-rates, economic growth and refugees from conflict areas let the need for water explode. In the context of climate change this situation will even worsen and armed conflicts are within the bounds of possibility. To ease water scarcity many innovative techniques like artificial groundwater recharge are being developed or already state of the art. But missing hydrological information (for instance discharge data) often prevents design and efficient operation of such measures. Especially in poor countries hydrological measuring devices like gage stations are often missing, in a bad status or professionals of the water sector are absent. This leads to the paradox situation that in many arid regions water resources are indeed available but they cannot be utilised because they are not known. Nowadays different approaches are being designed to obtain hydrological information from perennial river systems with the help of satellite techniques. Mostly they are based on hydraulic parameters like river dimensions, roughness and water levels which can be derived from satellite data. By using conventional flow formulas and additional field investigations the discharge can be estimated. Another methodology derived information about maximum flow depth and flow width from optical sensors of high resolution to calculate discharge of the rivers whilst the flood. Attempts to derive discharge information from structural components of the river and fluviomorphologic changes due to changing flow regimes are in the focus of recent research. One attempt used Synthetic Aperture Radar (SAR) data to estimate discharge in braided river systems. Other attempts used airborne SAR imagery to obtain information about sinuosity and total river width of perennial braided river

  14. Quantification of the aridity process in South-Western Romania.

    PubMed

    Peptenatu, Daniel; Sîrodoev, Igor; Pravalie, Remus

    2013-01-01

    The report released by the Intergovernmental Committee for Climate Change indicates that Romania ranks among the top seven countries in Europe that would be strongly impacted by aridity in the next few years, with climate changes consisting in a rise of average annual temperatures by as much as 5°C. The research work was conducted in the South of the Oltenia South-Western Development Region, where more than 700,000 hectares of farmland is impacted by aridification, more than 100,000 hectares among them impacted by aridity. Research methodology encompassed the analysis of average annual temperatures over the time span data was available for, at three weather stations, an analysis of average annual precipitations, an analysis of the piezometric data, the evolution of land use as a result of the expansion of the aridity process. The assessment of the aridity process also involved taking into consideration the state of the vegetation by means of the normalized difference vegetation index (NDVI), used to assess the quality of the vegetal stratum, an important element in the complex analysis of the territory. The aridity process is an effect of global warming, and, based on the results of this study, the post-1990 escalation of its effects was brought about by socio-economic factors. The destruction of the irrigation systems and protective forest belts because of the uncertain situation of land ownership are the main factors that contributed to amplification of the effects of aridity on the efficiency of agricultural systems that nowadays are exposed to very high risks. PMID:24499565

  15. Actinobacteria from Arid and Desert Habitats: Diversity and Biological Activity

    PubMed Central

    Mohammadipanah, Fatemeh; Wink, Joachim

    2016-01-01

    The lack of new antibiotics in the pharmaceutical pipeline guides more and more researchers to leave the classical isolation procedures and to look in special niches and ecosystems. Bioprospecting of extremophilic Actinobacteria through mining untapped strains and avoiding resiolation of known biomolecules is among the most promising strategies for this purpose. With this approach, members of acidtolerant, alkalitolerant, psychrotolerant, thermotolerant, halotolerant and xerotolerant Actinobacteria have been obtained from respective habitats. Among these, little survey exists on the diversity of Actinobacteria in arid areas, which are often adapted to relatively high temperatures, salt concentrations, and radiation. Therefore, arid and desert habitats are special ecosystems which can be recruited for the isolation of uncommon Actinobacteria with new metabolic capability. At the time of this writing, members of Streptomyces, Micromonospora, Saccharothrix, Streptosporangium, Cellulomonas, Amycolatopsis, Geodermatophilus, Lechevalieria, Nocardia, and Actinomadura are reported from arid habitats. However, metagenomic data present dominant members of the communities in desiccating condition of areas with limited water availability that are not yet isolated. Furthermore, significant diverse types of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes are detected in xerophilic and xerotolerant Actinobacteria and some bioactive compounds are reported from them. Rather than pharmaceutically active metabolites, molecules with protection activity against drying such as Ectoin and Hydroxyectoin with potential application in industry and agriculture have also been identified from xerophilic Actinobacteria. In addition, numerous biologically active small molecules are expected to be discovered from arid adapted Actinobacteria in the future. In the current survey, the diversity and biotechnological potential of Actinobacteria obtained from arid ecosystems

  16. Propagation Regime of Iron Dust Flames

    NASA Technical Reports Server (NTRS)

    Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew J.

    2012-01-01

    A flame propagating through an iron-dust mixture can propagate in two asymptotic regimes. When the characteristic time of heat transfer between particles is much smaller than the characteristic time of particle combustion, the flame propagates in the continuum regime where the heat released by reacting particles can be modelled as a space-averaged function. In contrast, when the characteristic time of heat transfer is much larger than the particle reaction time, the flame can no longer be treated as a continuum due to dominating effects associated with the discrete nature of the particle reaction. The discrete regime is characterized by weak dependence of the flame speed on the oxygen concentration compared to the continuum regime. The discrete regime is observed in flames propagating through an iron dust cloud within a gas mixture containing xenon, while the continuum regime is obtained when xenon is substituted with helium.

  17. Discriminatory Proofreading Regimes in Nonequilibrium Systems

    NASA Astrophysics Data System (ADS)

    Murugan, Arvind; Huse, David A.; Leibler, Stanislas

    2014-04-01

    We use ideas from kinetic proofreading, an error-correcting mechanism in biology, to identify new kinetic regimes in nonequilibrium systems. These regimes are defined by the sensitivity of the occupancy of a state of the system to a change in its energy. In biological contexts, higher sensitivity corresponds to stronger discrimination between molecular substrates with different energetics competing in the same reaction. We study this discriminatory ability in systems with discrete states that are connected by a general network of transitions. We find multiple regimes of different discriminatory ability when the energy of a given state of the network is varied. Interestingly, the occupancy of the state can even increase with its energy, corresponding to an "antiproofreading" regime. The number and properties of such discriminatory regimes are limited by the topology of the network. Finally, we find that discriminatory regimes can be changed without modifying any "hard-wired" structural aspects of the system but rather by simply changing external chemical potentials.

  18. New crops for arid lands. [Jojoba; Buffalo gourd; Bladderpod; Gumweed

    SciTech Connect

    Hinman, C.W.

    1984-09-28

    Five plants are described that could be grown commercially under arid conditions. Once the most valuable component has been obtained from each plant (rubber from guayule; seed oil from jojoba, buffalo gourd, and bladderpod; and resin from gumweed), the remaining material holds potential for useful products as well as fuel. It is difficult to realize the full potential of arid land plants, however, because of the complexities of developing the necessary agricultural and industrial infrastructure simultaneously. To do so, multicompany efforts or cooperative efforts between government and the private sector will be required.

  19. Regimes of suprathermal electron transport

    SciTech Connect

    Glinsky, M.E.

    1995-07-01

    Regimes of the one-dimensional (1-D) transport of suprathermal electrons into a cold background plasma are delineated. A well ordered temporal progression is found through eras where {ital J}{center_dot}{ital E} heating, hot electron--cold electron collisional heating, and diffusive heat flow dominate the cold electron energy equation. Scaling relations for how important quantities such as the width and temperature of the heated layer of cold electrons evolve with time are presented. These scaling relations are extracted from a simple 1-D model of the transport which can be written in dimensionless form with one free parameter. The parameter is shown to be the suprathermal electron velocity divided by the drift velocity of cold electrons which balances the suprathermal current. Special attention is paid to the assumptions which allow the reduction from the collisional Vlasov equation, using a Fokker--Planck collision operator, to this simple model. These model equations are numerically solved and compared to both the scaling relations and a more complete multigroup electron diffusion transport. Implications of the scaling relations on fast ion generation, magnetic field generation, and electric field inhibition of electron transport are examined as they apply to laser heated plasmas. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  20. Multistability of synchronous regimes in rotator ensembles.

    PubMed

    Kryukov, A K; Petrov, V S; Osipov, G V; Kurths, J

    2015-12-01

    We study collective dynamics in rotator ensembles and focus on the multistability of synchronous regimes in a chain of coupled rotators. We provide a detailed analysis of the number of coexisting regimes and estimate in particular, the synchronization boundary for different types of individual frequency distribution. The number of wave-based regimes coexisting for the same parameters and its dependence on the chain length are estimated. We give an analytical estimation for the synchronization frequency of the in-phase regime for a uniform individual frequency distribution. PMID:26723160

  1. a Proposed New Vegetation Index, the Total Ratio Vegetation Index (trvi), for Arid and Semi-Arid Regions

    NASA Astrophysics Data System (ADS)

    Fadaei, H.; Suzuki, R.; Sakai, T.; Torii, K.

    2012-07-01

    Vegetation indices that provide important key to predict amount vegetation in forest such as percentage vegetation cover, aboveground biomass, and leaf-area index. Arid and semi-arid areas are not exempt of this rule. Arid and semi-arid areas of northeast Iran cover about 3.4 million ha and are populated by two main tree species, the broadleaf Pistacia vera (pistachio) and the conifer Juniperus excelsa ssp. polycarpos (Persian juniper). Natural stands of pistachio in Iran are not only environmentally important but also genetically essential as seed sources for pistachio production in orchards. We investigated the relationships between tree density and vegetation indices in the arid and semi-arid regions in the northeast of Iran by analysing Advanced Land Observing Satellite (ALOS) data PRISM is a panchromatic radiometer with a 2.5 m spatial resolution at nadir, and has one band with a wavelength of 0.52-0.77 μm (JAXA EORC). AVNIR-2 is a visible and near infrared radiometer for observing land and coastal zones with a 10 m spatial resolution at nadir, and has four multispectral bands: blue (0.42-0.50 μm), green (0.52-0.60 μm), red (0.61-0.69 μm), and near infrared (0.76-0.89 μm) (JAXA EORC). In this study, we estimated various vegetation indices using maximum filtering algorithm (5×5) and examined. This study carried out of juniper forests and natural pistachio stand using Advanced Land Observing Satellite (ALOS) and field inventories. Have been compared linear regression model of vegetation indices and proposed new vegetation index for arid and semi-arid regions. Also, we estimated the densities of juniper forests and natural pistachio stands using remote sensing to help in the sustainable management and production of pistachio in Iran. We present a new vegetation index for arid and semi-arid regions with sparse forest cover, the Total Ratio Vegetation Index (TRVI), and we investigate the relationship of the new index to tree density by analysing data from the

  2. Individual based, long term monitoring of acacia trees in hyper arid zone: Integration of a field survey and a remote sensing approach

    NASA Astrophysics Data System (ADS)

    Isaacson, Sivan; Blumberg, Dan G.; Ginat, Hanan; Shalmon, Benny

    2013-04-01

    Vegetation in hyper arid zones is very sparse as is. Monitoring vegetation changes in hyper arid zones is important because any reduction in the vegetation cover in these areas can lead to a considerable reduction in the carrying capacity of the ecological system. This study focuses on the impact of climate fluctuations on the acacia population in the southern Arava valley, Israel. The period of this survey includes a sequence of dry years with no flashfloods in most of the plots that ended in two years with vast floods. Arid zone acacia trees play a significant role in the desert ecosystem by moderating the extreme environmental conditions including radiation, temperature, humidity and precipitation. The trees also provide nutrients for the desert dwellers. Therefore, acacia trees in arid zones are considered to be `keystone species', because they have major influence over both plants and animal species, i.e., biodiversity. Long term monitoring of the acacia tree population in this area can provide insights into long term impacts of climate fluctuations on ecosystems in arid zones. Since 2000, a continuous yearly based survey on the three species of acacia population in seven different plots is conducted in the southern Arava (established by Shalmon, ecologist of the Israel nature and parks authority). The seven plots representing different ecosystems and hydrological regimes. A yearly based population monitoring enabled us to determine the mortality and recruitment rate of the acacia populations as well as growing rates of individual trees. This survey provides a unique database of the acacia population dynamics during a sequence of dry years that ended in a vast flood event during the winter of 2010. A lack of quantitative, nondestructive methods to estimate and monitor stress status of the acacia trees, led us to integrate remote sensing tools (ground and air-based) along with conventional field measurements in order to develop a long term monitoring of acacia

  3. Critical role of ARID3B in the expression of pro-apoptotic p53-target genes and apoptosis.

    PubMed

    Pratama, Endrawan; Tian, Xiaohui; Lestari, Widya; Iseki, Sachiko; Ichwan, Solachuddin J A; Ikeda, Masa-Aki

    ARID3A and ARID3B are transcriptional targets of p53. Recently, it has been reported that ARID3A plays a critical role in the transcriptional activation of pro-arrest p21 in response to DNA damage. However, the role of ARID3B in the p53 regulatory pathway remains poorly understood. Here we show that ARID3A and ARID3B specifically bind to putative ARID3-binding sites in p53 target genes in vitro and in vivo. ARID3B and, to a lesser extent, ARID3A silencing blocked transcriptional activation of pro-apoptotic p53 target genes, such as PUMA, PIG3, and p53. Furthermore, ectopic ARID3B, to a lesser extent, ARID3A expression activated the pro-apoptotic gene expression, and only ARID3B induced apoptosis. Finally, ARID3B but not ARID3A silencing blocked apoptosis induction following DNA damage. These results indicated that, although ARID3B and ARID3A share overlapping functions, ARID3B play a key role in the expression of pro-apoptotic p53-target genes and apoptosis.

  4. Documentation of Arid Land Soilscapes in Southwestern Europe

    NASA Astrophysics Data System (ADS)

    José Ibáñez, Juan; Pérez-Gómez, Rufino; Oyonarte, Cecilio; Brevik, Eric C.

    2016-04-01

    There have been no studies to date that have proven the existence of soil assemblages typical of arid lands in Europe. This study was carried out in Almería province, a representative territory of the SE part of the Iberian Peninsula which is the driest part of Europe, to determine if soils characteristic of arid lands were present. The study made use of mathematical tools previously developed in biodiversity and pedodiversity analysis, such as richness, entropy indices, abundance distribution models, diversity-area relationships and nested subset analysis to analyse the spatial distribution of soils. The study demonstrated that the soil types or pedotaxa are typical of mountainous arid lands. Shallow and weakly developed soils (e.g. Leptosols, Regosols, Arenosols), Calcisols, Gypsisols and Solonchaks cover most of the study area, and pedodiversity analysis demonstrates that the pedotaxa spatial patterns follow the same regularities as in other areas, environments and scales. In view of the fact that the class of landscapes identified in this study are unique in Europe, the Tarbernas desert and other arid lands sites of the study area merit preservation as part of the European geological, geomorphological, and pedological heritage.

  5. Evaporation as the transport mechanism of metals in arid regions.

    PubMed

    Lima, Ana T; Safar, Zeinab; Loch, J P Gustav

    2014-09-01

    Soils of arid regions are exposed to drought and drastic temperature oscillations throughout the year. Transport mechanisms in these soils are therefore very different from the ones in temperate regions, where rain dictates the fate of most elements in soils. Due to the low rainfall and high evaporation rates in arid regions, groundwater quality is not threatened and all soil contamination issues tend to be overlooked. But if soil contamination happens, where do contaminants go? This study tests the hypothesis of upward metal movement in soils when evaporation is the main transport mechanism. Laboratory evaporation tests were carried out with heavy metal spiked Saudi soil, using circulation of air as the driving force (Fig. 1). Main results show that loamy soil retains heavy metals quite well while evaporation drives heavy metals to the surface of a sandy soil. Evaporation transports heavy metals upward in sandy soils of arid regions, making them accumulate at the soil surface. Sand being the dominating type of soil in arid regions, soils can then be a potential source of contaminated aerosols and atmospheric pollution - a transboundary problem. Some other repercussions for this problem are foreseen, such as the public ingestion or inhalation of dust. PMID:24997976

  6. Extremely arid soils of the Ili Depression in Kazakhstan

    NASA Astrophysics Data System (ADS)

    Lebedeva, M. P.; Gerasimova, M. I.; Golovanov, D. L.; Yamnova, I. A.

    2015-01-01

    On the basis of macro- and micromorphological and analytical studies of extremely arid soils of the Ili Depression in Kazakhstan, a comparative analysis of pedogenetic processes shaping these soils on piedmont plains of different ages and heights is performed. The types of soil horizons and their combinations are analyzed in the context opf modern Russian and international soil classification systems. The genesis of extremely arid soils is controlled by the climatic conditions and by their geomorphic position on alluvial fans of piedmont plains. The following processes are diagnosed in these soils: soil crusting with vesicular porosity, the development of desert pavements with rock varnish, rubification, surface salinization, and iron depletion around the pores. It is suggested that the initial factor-based name (extremely arid) of these soils can be replaced by the name vesicular-crusty soils with the corresponding AKL diagnostic horizon, which is more consistent with the principles of substantive-genetic classification systems. In order to determine the classification position of these soils in terms of the new Russian soil classification system, new diagnostic horizons—AKL and CS—have to be introduced in this system. According to the WRB classification, the studied soils belong to the group of Gypsisols; the soil with strong salinization fits the criteria of the group of Solonchaks. A qualifier [yermic] is to be added to reflect the development of desert pavement and vesicular layer under extreme arid conditions.

  7. Evaporation as the transport mechanism of metals in arid regions.

    PubMed

    Lima, Ana T; Safar, Zeinab; Loch, J P Gustav

    2014-09-01

    Soils of arid regions are exposed to drought and drastic temperature oscillations throughout the year. Transport mechanisms in these soils are therefore very different from the ones in temperate regions, where rain dictates the fate of most elements in soils. Due to the low rainfall and high evaporation rates in arid regions, groundwater quality is not threatened and all soil contamination issues tend to be overlooked. But if soil contamination happens, where do contaminants go? This study tests the hypothesis of upward metal movement in soils when evaporation is the main transport mechanism. Laboratory evaporation tests were carried out with heavy metal spiked Saudi soil, using circulation of air as the driving force (Fig. 1). Main results show that loamy soil retains heavy metals quite well while evaporation drives heavy metals to the surface of a sandy soil. Evaporation transports heavy metals upward in sandy soils of arid regions, making them accumulate at the soil surface. Sand being the dominating type of soil in arid regions, soils can then be a potential source of contaminated aerosols and atmospheric pollution - a transboundary problem. Some other repercussions for this problem are foreseen, such as the public ingestion or inhalation of dust.

  8. Ecosystem services to and from North American arid grasslands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arid grasslands throughout North America are characterized by low and variable precipitation, nutrient-poor soils, and high spatial and temporal variability in plant production. These grasslands have provided a variety of goods and services, with the provisioning of food and fiber dominating through...

  9. Regimes of DNA confined in a nanochannel

    NASA Astrophysics Data System (ADS)

    Dai, Liang; Doyle, Patrick

    2014-03-01

    Scaling regimes for polymers confined to tubular channels are well established when the channel cross-sectional dimension is either very small (Odjik regime) or large (classic de Gennes regime) relative to the polymer Kuhn length. In the literature, there is no clear consensus regarding the intermediate region and if subregimes even exist to connect these two classic bounding regimes. The confluence of emerging single DNA mapping technologies and a resurged interest in the fundamental properties of confined polymers has led to extensive research in this area using DNA as a model system. Due to the DNA molecule's properties and limitations of nanofabrication, most experiments are performed in this intermediate regime with channel dimensions of a few Kuhn lengths. Here we use simulations and theory to reconcile conflicting theories and show that there are indeed extended de Gennes, partial alignment and hairpin regimes located between the two classic regimes. Simulations results for both chain extension and free energy support the existence of these regimes. This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's research program in BioSystems and Micromechanics, the National Science Foundation (CBET-1335938).

  10. FISHER INFORMATION AND ECOSYSTEM REGIME CHANGES

    EPA Science Inventory

    Following Fisher’s work, we propose two different expressions for the Fisher Information along with Shannon Information as a means of detecting and assessing shifts between alternative ecosystem regimes. Regime shifts are a consequence of bifurcations in the dynamics of an ecosys...

  11. Capacitance densitometer for flow regime identification

    DOEpatents

    Shipp, Jr., Roy L.

    1978-01-01

    This invention relates to a capacitance densitometer for determining the flow regime of a two-phase flow system. A two-element capacitance densitometer is used in conjunction with a conventional single-beam gamma densitometer to unambiguously identify the prevailing flow regime and the average density of a flowing fluid.

  12. Dynamic Responses of Root, Mycorrhizal and Soil Heterotrophic Respiration to Temperature Increases in an Arid System of Southeast Spain.

    NASA Astrophysics Data System (ADS)

    Estruch, C.; Pugnaire, F. I.

    2014-12-01

    Mycorrhizal and heterotrophic respiration may represent up to 80% of total soil respiration in temperate environments; however little is known about arid environments where the dynamics of carbon cycling is less known. To improve models of CO2 efflux to the atmosphere in these environments it is necessary to quantify the contribution of soil components (roots, mycorrhizas and heterotrophic respiration) to soil respiration and their response to temperature increases. We settled up a soil partitioning experiment in December 2013 to address this topic. Using a mesh-collar design we quantified soil respiration of the tree main components (roots, mycorrhiza and heterotrophic respiration) in a Mediterranean arid location dominated by the shrub Rethama sphaerocarpa under two temperature regimes, an increased air temperature using open-top chambers (OTC) and a control. For the firths 6 months of measurements, we recorded a decrease in annual species cover with increased temperature; total soil respiration varied between treatments, being higher in the control treatment while, contrary to our expectations, mycorrhizal and soil heterotrophic respiration did not vary between treatments. When looking at the relative contribution of the different soil components, the treatment enclosing both mycorrhizal and soil heterotrophic respiration represented more than half the total soil respiration. These results show that temperature affects total soil respiration and that, in our case, mycorrhizal and soil heterotrophic community were not major drivers of soil respiration responses to temperature. However, these data correspond to an abnormal dry period and data to be collected during the wet season would help us to better understand the contribution of the different soil components to temperature increases in arid environments.

  13. Evidence for extreme floods in arid subtropical northwest Australia during the Little Ice Age chronozone (CE 1400-1850)

    NASA Astrophysics Data System (ADS)

    Rouillard, A.; Skrzypek, G.; Turney, C.; Dogramaci, S.; Hua, Q.; Zawadzki, A.; Reeves, J.; Greenwood, P.; O'Donnell, A. J.; Grierson, P. F.

    2016-07-01

    Here we report a ∼2000-year sediment sequence from the Fortescue Marsh (Martuyitha) in the eastern Pilbara region, which we have used to investigate changing hydroclimatic conditions in the arid subtropics of northwest Australia. The Pilbara is located at the intersection of the tropical Indian and Pacific Oceans and its modern rainfall regime is strongly influenced by tropical cyclones, the Intertropical Convergence Zone (ITCZ) and the Indo-Pacific Warm Pool. We identified four distinct periods within the record. The most recent period (P1: CE ∼1990-present) reveals hydroclimatic conditions over recent decades that are the most persistently wet of potentially the last ∼2000 years. During the previous centuries (P2: ∼CE 1600-1990), the Fortescue Marsh was overall drier but likely punctuated by a number of extreme floods, which are defined here as extraordinary, strongly episodic floods in drylands generated by rainfall events of high volume and intensity. The occurrence of extreme floods during this period, which encompasses the Little Ice Age (LIA; CE 1400-1850), is coherent with other southern tropical datasets along the ITCZ over the last 2000 years, suggesting synchronous hydroclimatic changes across the region. This extreme flood period was preceded by several hundred years (P3: ∼CE 700-1600) of less vigorous but more regular flows. The earliest period of the sediment record (P4: ∼CE 100-700) was the most arid, with sedimentary and preservation processes driven by prolonged drought. Our results highlight the importance of developing paleoclimate records from the tropical and sub-tropical arid zone, providing a long-term baseline of hydrological conditions in areas with limited historical observations.

  14. ARID1A Is Essential for Endometrial Function during Early Pregnancy

    PubMed Central

    Wang, Zhong; Lydon, John P.; Khatri, Shikha; Hawkins, Shannon M.; Leach, Richard E.; Fazleabas, Asgerally T.; Young, Steven L.; Lessey, Bruce A.; Ku, Bon Jeong; Jeong, Jae-Wook

    2015-01-01

    AT-rich interactive domain 1A gene (ARID1A) loss is a frequent event in endometriosis-associated ovarian carcinomas. Endometriosis is a disease in which tissue that normally grows inside the uterus grows outside the uterus, and 50% of women with endometriosis are infertile. ARID1A protein levels were significantly lower in the eutopic endometrium of women with endometriosis compared to women without endometriosis. However, an understanding of the physiological effects of ARID1A loss remains quite poor, and the function of Arid1a in the female reproductive tract has remained elusive. In order to understand the role of Arid1a in the uterus, we have generated mice with conditional ablation of Arid1a in the PGR positive cells (Pgr cre/+ Arid1a f/f; Arid1a d/d). Ovarian function and uterine development of Arid1a d/d mice were normal. However, Arid1a d/d mice were sterile due to defective embryo implantation and decidualization. The epithelial proliferation was significantly increased in Arid1a d/d mice compared to control mice. Enhanced epithelial estrogen activity and reduced epithelial PGR expression, which impedes maturation of the receptive uterus, was observed in Arid1a d/d mice at the peri-implantation period. The microarray analysis revealed that ARID1A represses the genes related to cell cycle and DNA replication. We showed that ARID1A positively regulates Klf15 expression with PGR to inhibit epithelial proliferation at peri-implantation. Our results suggest that Arid1a has a critical role in modulating epithelial proliferation which is a critical requisite for fertility. This finding provides a new signaling pathway for steroid hormone regulation in female reproductive biology and furthers our understanding of the molecular mechanisms that underlie dysregulation of hormonal signaling in human reproductive disorders such as endometriosis. PMID:26378916

  15. Discrete fluorescent saturation regimes in multilevel systems

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Bhatia, A. K.

    1988-01-01

    Using models of multilevel atoms, the fluorescent process was examined for the ratio of the photooxidation rate, Pij, to the collisional oxidation rate, Cij, in the pumped resonance transition i-j. It is shown that, in the full range of the parameter Pij/Cij, there exist three distinct regimes (I, II, and III) which may be usefully exploited. These regimes are defined, respectively, by the following conditions: Pij/Cij smaller than about 1; Pij/Cij much greater than 1 and Pij much lower than Cki; and Pij/Cij much greater than 1 and Pij much higher than Cki, where Cki is the collisional rate populating the source level i. The only regime which is characterized by the sensitivity of fluorescent-fluorescent line intensity ratios to Pij is regime I. If regime III is reached, even fluorescent-nonfluorescent line ratios become independent of Pij. The analysis is applied to the resonant photoexcitation of a carbonlike ion.

  16. Multi-metric calibration of hydrological model to capture overall flow regimes

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyong; Shao, Quanxi; Zhang, Shifeng; Zhai, Xiaoyan; She, Dunxian

    2016-08-01

    Flow regimes (e.g., magnitude, frequency, variation, duration, timing and rating of change) play a critical role in water supply and flood control, environmental processes, as well as biodiversity and life history patterns in the aquatic ecosystem. The traditional flow magnitude-oriented calibration of hydrological model was usually inadequate to well capture all the characteristics of observed flow regimes. In this study, we simulated multiple flow regime metrics simultaneously by coupling a distributed hydrological model with an equally weighted multi-objective optimization algorithm. Two headwater watersheds in the arid Hexi Corridor were selected for the case study. Sixteen metrics were selected as optimization objectives, which could represent the major characteristics of flow regimes. Model performance was compared with that of the single objective calibration. Results showed that most metrics were better simulated by the multi-objective approach than those of the single objective calibration, especially the low and high flow magnitudes, frequency and variation, duration, maximum flow timing and rating. However, the model performance of middle flow magnitude was not significantly improved because this metric was usually well captured by single objective calibration. The timing of minimum flow was poorly predicted by both the multi-metric and single calibrations due to the uncertainties in model structure and input data. The sensitive parameter values of the hydrological model changed remarkably and the simulated hydrological processes by the multi-metric calibration became more reliable, because more flow characteristics were considered. The study is expected to provide more detailed flow information by hydrological simulation for the integrated water resources management, and to improve the simulation performances of overall flow regimes.

  17. Snowpack regimes of the Western United States

    NASA Astrophysics Data System (ADS)

    Trujillo, Ernesto; Molotch, Noah P.

    2014-07-01

    Snow accumulation and melt patterns play a significant role in the water, energy, carbon, and nutrient cycles in the montane environments of the Western United States. Recent studies have illustrated that changes in the snow/rainfall apportionments and snow accumulation and melt patterns may occur as a consequence of changes in climate in the region. In order to understand how these changes may affect the snow regimes of the region, the current characteristics of the snow accumulation and melt patterns must be identified. Here we characterize the snow water equivalent (SWE) curve formed by the daily SWE values at 766 snow pillow stations in the Western United States, focusing on several metrics of the yearly SWE curves and the relationships between the different metrics. The metrics are the initial snow accumulation and snow disappearance dates, the peak snow accumulation and date of peak, the length of the snow accumulation season, the length of the snowmelt season, and the snow accumulation and snowmelt slopes. Three snow regimes emerge from these results: a maritime, an intermountain, and a continental regime. The maritime regime is characterized by higher maximum snow accumulations reaching 300 cm and shorter accumulation periods of less than 220 days. Conversely, the continental regime is characterized by lower maximum accumulations below 200 cm and longer accumulation periods reaching over 260 days. The intermountain regime lies in between. The regions that show the characteristics of the maritime regime include the Cascade Mountains, the Klamath Mountains, and the Sierra Nevada Mountains. The intermountain regime includes the Eastern Cascades slopes and foothills, the Blue Mountains, Northern and Central basins and ranges, the Columbia Mountains/Northern Rockies, the Idaho Batholith, and the Canadian Rockies. Lastly, the continental regime includes the Middle and Southern Rockies, and the Wasatch and Uinta Mountains. The implications of snow regime

  18. Ecohydrological control of deep drainage in arid and semiarid regions

    USGS Publications Warehouse

    Seyfried, M.S.; Schwinning, S.; Walvoord, M.A.; Pockman, W. T.; Newman, B.D.; Jackson, R.B.; Phillips, F.M.

    2005-01-01

    The amount and spatial distribution of deep drainage (downward movement of water across the bottom of the root zone) and groundwater recharge affect the quantity and quality of increasingly limited groundwater in arid and semiarid regions. We synthesize research from the fields of ecology and hydrology to address the issue of deep drainage in arid and semiarid regions. We start with a recently developed hydrological model that accurately simulates soil water potential and geochemical profiles measured in thick (>50 m), unconsolidated vadose zones. Model results indicate that, since the climate change that marked the onset of the Holocene period 10 000-15 000 years ago, there has been no deep drainage in vegetated interdrainage areas and that continuous, relatively low (<-1 MPa) soil water potentials have been maintained at depths of 2-3 m. A conceptual model consistent with these results proposes that the native, xeric-shrub-dominated, plant communities that gained dominance during the Holocene generated and maintained these conditions. We present three lines of ecological evidence that support the conceptual model. First, xeric shrubs have sufficiently deep rooting systems with low extraction limits to generate the modeled conditions. Second, the characteristic deep-rooted soil-plant systems store sufficient water to effectively buffer deep soil from climatic fluctuations in these dry environments, allowing stable conditions to persist for long periods of time. And third, adaptations resulting in deep, low-extraction-limit rooting systems confer significant advantages to xeric shrubs in arid and semiarid environments. We then consider conditions in arid and semiarid regions in which the conceptual model may not apply, leading to the expectation that portions of many arid and semiarid watersheds supply some deep drainage. Further ecohydrologic research is required to elucidate critical climatic and edaphic thresholds, evaluate the role of important physiological

  19. Loess is the accumulation of dust, not evidence for aridity

    NASA Astrophysics Data System (ADS)

    Zech, Roland

    2013-04-01

    Loess-paleosol sequences (LPS) are valuable terrestrial archives for Quaternary climate and environmental changes. The famous sections on the Chinese Loess Plateau, for example, document the alternation of warm and humid interglacials (paleosols) and cold and more arid glacials (loess). This, at least partly, reflects the weakening of the monsoonal circulation during glacials and has led to the notion that loess in general documents more arid conditions. Paleosols, on the other hand, are often interpreted to document more humid conditions. We studied the LPS Crvenka in the Carpathian Basin, southeast Europe, which spans the full last glacial cycle, and obtained results that do not fit the above concept: (i) The analysis of plant-derived long-chain n-alkanes indicates the presence of deciduous trees and shrubs during glacials, i.e. sufficient precipitation for tree growth, whereas tree-less grass steppes seem to have prevailed during the Eemian, the last interglacial. (ii) Compound-specific deuterium analyses on the alkanes show only little changes on glacial-interglacial timescale. When compared with the isotopic enrichment of the Mediterranean Sea during the last glacial, this likely documents a combination of increased rainfall, reduced evapo-transpiration and reduced temperatures. (iii) Novel lipid biomarkers derived from soil bacteria (GDGTs, glycerol dialkyl glycerol tetraethers) also indicate humid glacials (BIT index close to 1) and more arid interglacials (BIT<0.8). Our results are in good agreement with modelling studies suggesting a southward shift of the westerlies during glacials, and aridization in the Mediterranean area in response to man-made global warming. More importantly, they remind us of an important fact: Loess is the accumulation of dust, but not (necessarily) evidence for aridity. Pedogenesis may simply not have been able to keep pace with high glacial dust accumulation rates related to intense glacial, periglacial and fluvial activity

  20. Arid land plants: promising new tools for economic development and basic research

    SciTech Connect

    Felker, P.

    1980-01-01

    An overview is presented of arid land plant development stressing products and plant physiological and ecological concepts unique to arid land plants. Integration of new arid land crops into polyculture management systems is suggested utilizing specialized plant functions, e.g., drought resistance, resistance to salinity, ability to fix nitrogen, frost tolerance and capability to produce a cash crop. Impacts on arid land plant productivity on political systems of developing countries are discussed and recommendations are presented for overcoming institutional constraints facing arid land plant development. (MHR)

  1. Genetic Divergence among Regions Containing the Vulnerable Great Desert Skink (Liopholis kintorei) in the Australian Arid Zone.

    PubMed

    Dennison, Siobhan; McAlpin, Steve; Chapple, David G; Stow, Adam J

    2015-01-01

    Knowledge of genetic structure and patterns of connectivity is valuable for implementation of effective conservation management. The arid zone of Australia contains a rich biodiversity, however this has come under threat due to activities such as altered fire regimes, grazing and the introduction of feral herbivores and predators. Suitable habitats for many species can be separated by vast distances, and despite an apparent lack of current geographical barriers to dispersal, habitat specialisation, which is exhibited by many desert species, may limit connectivity throughout this expansive region. We characterised the genetic structure and differentiation of the great desert skink (Liopholis kintorei), which has a patchy, but widespread distribution in the western region of the Australian arid zone. As a species of cultural importance to local Aboriginal groups and nationally listed as Vulnerable, it is a conservation priority for numerous land managers in central Australia. Analysis of mitochondrial ND4 sequence data and ten nuclear microsatellite loci across six sampling localities through the distribution of L. kintorei revealed considerable differentiation among sites, with mitochondrial FST and microsatellite F'ST ranging from 0.047-0.938 and 0.257-0.440, respectively. The extent of differentiation suggests three main regions that should be managed separately, in particular the southeastern locality of Uluru. Current genetic delineation of these regions should be maintained if future intervention such as translocation or captive breeding is to be undertaken.

  2. Functional traits drive the contribution of solar radiation to leaf litter decomposition among multiple arid-zone species

    PubMed Central

    Pan, Xu; Song, Yao-Bin; Liu, Guo-Fang; Hu, Yu-Kun; Ye, Xue-Hua; Cornwell, William K.; Prinzing, Andreas; Dong, Ming; Cornelissen, Johannes H.C.

    2015-01-01

    In arid zones, strong solar radiation has important consequences for ecosystem processes. To better understand carbon and nutrient dynamics, it is important to know the contribution of solar radiation to leaf litter decomposition of different arid-zone species. Here we investigated: (1) whether such contribution varies among plant species at given irradiance regime, (2) whether interspecific variation in such contribution correlates with interspecific variation in the decomposition rate under shade; and (3) whether this correlation can be explained by leaf traits. We conducted a factorial experiment to determine the effects of solar radiation and environmental moisture for the mass loss and the decomposition constant k-values of 13 species litters collected in Northern China. The contribution of solar radiation to leaf litter decomposition varied significantly among species. Solar radiation accelerated decomposition in particular in the species that already decompose quickly under shade. Functional traits, notably specific leaf area, might predict the interspecific variation in that contribution. Our results provide the first empirical evidence for how the effect of solar radiation on decomposition varies among multiple species. Thus, the effect of solar radiation on the carbon flux between biosphere and atmosphere may depend on the species composition of the vegetation. PMID:26282711

  3. Functional traits drive the contribution of solar radiation to leaf litter decomposition among multiple arid-zone species.

    PubMed

    Pan, Xu; Song, Yao-Bin; Liu, Guo-Fang; Hu, Yu-Kun; Ye, Xue-Hua; Cornwell, William K; Prinzing, Andreas; Dong, Ming; Cornelissen, Johannes H C

    2015-01-01

    In arid zones, strong solar radiation has important consequences for ecosystem processes. To better understand carbon and nutrient dynamics, it is important to know the contribution of solar radiation to leaf litter decomposition of different arid-zone species. Here we investigated: (1) whether such contribution varies among plant species at given irradiance regime, (2) whether interspecific variation in such contribution correlates with interspecific variation in the decomposition rate under shade; and (3) whether this correlation can be explained by leaf traits. We conducted a factorial experiment to determine the effects of solar radiation and environmental moisture for the mass loss and the decomposition constant k-values of 13 species litters collected in Northern China. The contribution of solar radiation to leaf litter decomposition varied significantly among species. Solar radiation accelerated decomposition in particular in the species that already decompose quickly under shade. Functional traits, notably specific leaf area, might predict the interspecific variation in that contribution. Our results provide the first empirical evidence for how the effect of solar radiation on decomposition varies among multiple species. Thus, the effect of solar radiation on the carbon flux between biosphere and atmosphere may depend on the species composition of the vegetation. PMID:26282711

  4. Evaluating abiotic influences on soil salinity of inland managed wetlands and agricultural croplands in a semi-arid environment

    USGS Publications Warehouse

    Fowler, D.; King, Sammy L.; Weindorf, David C.

    2014-01-01

    Agriculture and moist-soil management are important management techniques used on wildlife refuges to provide adequate energy for migrant waterbirds. In semi-arid systems, the accumulation of soluble salts throughout the soil profile can limit total production of wetland plants and agronomic crops and thus jeopardize meeting waterbird energy needs. This study evaluates the effect of distinct hydrologic regimes associated with moist-soil management and agricultural production on salt accumulation in a semi-arid floodplain. We hypothesized that the frequency of flooding and quantity of floodwater in a moist-soil management hydroperiod results in a less saline soil profile compared to profiles under traditional agricultural management. Findings showed that agricultural croplands differed (p-value < 0.001, df = 9) in quantities of total soluble salts (TSS) compared to moist-soil impoundments and contained greater concentrations (TSS range = 1,160-1,750 (mg kg-1)) at depth greater than 55 cm below the surface of the profile, while moist-soil impoundments contained lower concentrations (TSS range = 307-531 (mg kg-1)) at the same depths. Increased salts in agricultural may be attributed to the lack of leaching afforded by smaller summer irrigations while larger periodic flooding events in winter and summer flood irrigations in moist-soil impoundments may serve as leaching events.

  5. Disconnected runoff contributing areas: Evidence provided by ancient watershed management systems in arid north-eastern Marmarica (NW-Egypt)

    NASA Astrophysics Data System (ADS)

    Vetter, T.; Rieger, A.-K.; Nicolay, A.

    2014-05-01

    This study presents the importance of disconnectivity in dryland area runoff demonstrated by manmade water harvesting structures dated to Greco-Roman times. Located on the coastal strip of some 20 km width along the Mediterranean coast of modern northwestern Egypt covering the north-eastern part of the region known in antiquity as Marmarica, the area receives winterly rainfalls of up to 140 mm. Further south, precipitation decreases quickly and desert conditions become more pronounced. Bedrocks are predominantly calcareous, soils are loamy, stony, calcareous, and shallow, except in relief sinks with sedimentary deposits. The land rises from the coast up to 230 m a.s.l. on the Marmarica Plateau in a sequence of zonal northsloping plains and scarps the northern parts of which are dissected and drained by wadis. Agriculturally suitable areas comprise some 9% of the coastal zone and adjacent tablelands. Overland flow controls the discharge dynamics and is the main source of wadi runoff and hence agricultural water supply. The land use pattern is scattered because cropping areas depend mainly on suitability of soils and the generation of runoff harvest, which are closely interrelated because of the arid water and sediment regime. The patchiness of runoff generation increases further south where aridity is higher and topography inhibits greater drainage patterns. The abundance of cisterns, many of them originally Greco-Roman, is strong evidence that tableland overland flows occur and are frequently disconnected from larger drainage systems.

  6. Functional traits drive the contribution of solar radiation to leaf litter decomposition among multiple arid-zone species.

    PubMed

    Pan, Xu; Song, Yao-Bin; Liu, Guo-Fang; Hu, Yu-Kun; Ye, Xue-Hua; Cornwell, William K; Prinzing, Andreas; Dong, Ming; Cornelissen, Johannes H C

    2015-08-18

    In arid zones, strong solar radiation has important consequences for ecosystem processes. To better understand carbon and nutrient dynamics, it is important to know the contribution of solar radiation to leaf litter decomposition of different arid-zone species. Here we investigated: (1) whether such contribution varies among plant species at given irradiance regime, (2) whether interspecific variation in such contribution correlates with interspecific variation in the decomposition rate under shade; and (3) whether this correlation can be explained by leaf traits. We conducted a factorial experiment to determine the effects of solar radiation and environmental moisture for the mass loss and the decomposition constant k-values of 13 species litters collected in Northern China. The contribution of solar radiation to leaf litter decomposition varied significantly among species. Solar radiation accelerated decomposition in particular in the species that already decompose quickly under shade. Functional traits, notably specific leaf area, might predict the interspecific variation in that contribution. Our results provide the first empirical evidence for how the effect of solar radiation on decomposition varies among multiple species. Thus, the effect of solar radiation on the carbon flux between biosphere and atmosphere may depend on the species composition of the vegetation.

  7. Damage caused to the environment by reforestation policies in arid and semi-arid areas of China.

    PubMed

    Cao, Shixiong; Tian, Tao; Chen, Li; Dong, Xiaobin; Yu, Xinxiao; Wang, Guosheng

    2010-06-01

    Traditional approaches to ecosystem restoration have considered afforestation to be an important tool. To alleviate land degradation in China, the Chinese government has therefore invested huge amounts of money in planting trees. However, the results of more than half a century of large-scale afforestation in arid and semi-arid China have shown that when the trees are not adapted to the local environment, the policy does not improve the environment, and may instead increase environmental degradation. When precipitation is lower than potential evaporation, surface soil moisture typically cannot sustain forest vegetation, and shrubs or steppe species replace the forest to form a sustainable natural ecosystem that exists in a stable equilibrium with the available water supply. The climate of much of northwestern China appears to be unsuitable for afforestation owing to the extremely low rainfall. Although some small-scale or short-term afforestation efforts have succeeded in this region, many of the resulting forests have died or degraded over longer periods, so policymakers must understand that these small-scale or short-term results do not support an inflexible policy of large-scale afforestation throughout arid and semi-arid northwestern China. Rather than focusing solely on afforestation, it would be more effective to attempt to recreate natural ecosystems that are better adapted to local environments and that thus provide a better chance of sustainable, long-term rehabilitation. PMID:20799677

  8. MULTI-SCALE CONTROLS ON AND CONSEQUENCES OF AEOLIAN PROCESSES IN LANDSCAPE CHANGE IN ARID AND SEMI-ARID ENVIRONMENTS

    EPA Science Inventory

    This paper reviews the controls on aeolian processes and their consequences at plant-interspace, patch-landscape, and regional-global scales. Based on this review, we define the requirements for a cross-scale model of wind erosion in structurally complex arid and semiarid ecosyst...

  9. Spatial pattern of nitrogen isotopes as an indicator of ecosystem responses to rainfall in semi-arid and arid grasslands

    NASA Astrophysics Data System (ADS)

    WANG, C.; Bai, E.; Liu, D.; Fang, T. Y.; Jiang, P.; Han, G. X.

    2013-12-01

    Nitrogen (N) is an essential element for plant growth, however, whether it is a limiting factor of plant growth in water-limited areas is still not clear. Here we examined spatial variations of plant and soil stable N isotopes along a 3200 km precipitation gradient and proposed a conceptual model to explain ecosystem responses to increasing precipitation in arid and semi-arid grasslands in China. Soil δ15N increased with increasing MAP in areas with MAP < 200 mm, but decreased in areas with 200 mm < MAP < 500 mm. Variations of foliar δ15N, soil total N, and soil C: N provided further evidence of a threshold at MAP = 200 mm for precipitation effects. Results indicated that soil microbes can be activated by precipitation even when MAP < 200 mm while plant N uptake can only be activated when MAP > 200 mm. In areas with MAP < 200 mm, productivity was limited by water, but not nitrogen, although soil N is low. This study provides fundamental inputs for future process-based modeling of nutrient cycling in arid and semi-arid areas. If future climate change leads to drier climate in dryland, the uncoupled plant and microbial response may cause more N losses and higher ecosystem vulnerability. 3 Soil organic carbon (Soil C, a), total nitrogen (Soil N, b), C/N (c) and δ15N (d) of study sites along a MAP gradient. Relationship between MAP and foliar δ15N (a) and root δ15N (b).

  10. Agave: a biofuel feedstock for arid and semi-arid environments

    SciTech Connect

    Gross, Stephen; Martin, Jeffrey; Simpson, June; Wang, Zhong; Visel, Axel

    2011-05-31

    Efficient production of plant-based, lignocellulosic biofuels relies upon continued improvement of existing biofuel feedstock species, as well as the introduction of newfeedstocks capable of growing on marginal lands to avoid conflicts with existing food production and minimize use of water and nitrogen resources. To this end, specieswithin the plant genus Agave have recently been proposed as new biofuel feedstocks. Many Agave species are adapted to hot and arid environments generally unsuitable forfood production, yet have biomass productivity rates comparable to other second-generation biofuel feedstocks such as switchgrass and Miscanthus. Agavesachieve remarkable heat tolerance and water use efficiency in part through a Crassulacean Acid Metabolism (CAM) mode of photosynthesis, but the genes andregulatory pathways enabling CAM and thermotolerance in agaves remain poorly understood. We seek to accelerate the development of agave as a new biofuelfeedstock through genomic approaches using massively-parallel sequencing technologies. First, we plan to sequence the transcriptome of A. tequilana to provide adatabase of protein-coding genes to the agave research community. Second, we will compare transcriptome-wide gene expression of agaves under different environmentalconditions in order to understand genetic pathways controlling CAM, water use efficiency, and thermotolerance. Finally, we aim to compare the transcriptome of A.tequilana with that of other Agave species to gain further insight into molecular mechanisms underlying traits desirable for biofuel feedstocks. These genomicapproaches will provide sequence and gene expression information critical to the breeding and domestication of Agave species suitable for biofuel production.

  11. Impacts of climate change on nutrient cycling in semi-arid and arid ecosystems

    SciTech Connect

    Belnap, J.

    1995-09-01

    Effective precipitation is a major factor in determining nutrient pathways in different ecosystems. Soil flora and fauna play a critical role in nutrient cycles of all ecosystems. Temperature, timing, and amounts of precipitation affect population composition, activity levels, biomass, and recovery rates from disturbance. Changes in these variables can result in very different inputs and outputs for different nutrients. As a result, areas with less effective precipitation have very different nutrient cycles than more mesic zones. Climate change, therefore, can profoundly affect the nutrient cycles of ecosystems. Nitrogen cycles may be especially sensitive to changes in temperature and to timing and amounts of precipitation. Rainfall contains varying amounts of nitrogen compounds. Changes in amounts of rainfall will change amounts of nitrogen available to these systems. Because rainfall is limited in semi-arid and regions, these systems tend to be more dependent on microbial populations for nitrogen input. Consequently, understanding the effects of climate change on these organisms is critical in understanding the overall effect on ecosystems.

  12. Phosphorus transformations along a large-scale climosequence in arid and semiarid grasslands of northern China

    NASA Astrophysics Data System (ADS)

    Feng, Jiao; Turner, Benjamin L.; Lü, Xiaotao; Chen, Zhenhua; Wei, Kai; Tian, Jihui; Wang, Chao; Luo, Wentao; Chen, Lijun

    2016-09-01

    The Walker and Syers model of phosphorus (P) transformations during long-term soil development has been verified along many chronosequences but has rarely been examined along climosequences, particularly in arid regions. We hypothesized that decreasing aridity would have similar effects on soil P transformations as time by increasing the rate of pedogenesis. To assess this, we examined P fractions in arid and semiarid grassland soils (0-10 cm) along a 3700 km aridity gradient in northern China (aridity between 0.43 and 0.97, calculated as 1 - [mean annual precipitation/potential evapotranspiration]). Primary mineral P declined as aridity decreased, although it still accounted for about 30% of the total P in the wettest sites. In contrast, the proportions of organic and occluded P increased as aridity decreased. These changes in soil P composition occurred in parallel with marked shifts in soil nutrient stoichiometry, with organic carbon:organic P and nitrogen:organic P ratios increasing with decreasing aridity. These results indicate increasing abundance of P relative to carbon or nitrogen along the climosequence. Overall, our results indicate a broad shift from abiotic to biotic control on P cycling at an aridity value of approximately 0.7 (corresponding to about 250 mm mean annual rainfall). We conclude that the Walker and Syers model can be extended to climosequences in arid and semiarid ecosystems and that the apparent decoupling of nutrient cycles in arid soils is a consequence of their pedogenic immaturity.

  13. Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments

    NASA Astrophysics Data System (ADS)

    Jackson, W. Andrew; Böhlke, J. K.; Andraski, Brian J.; Fahlquist, Lynne; Bexfield, Laura; Eckardt, Frank D.; Gates, John B.; Davila, Alfonso F.; McKay, Christopher P.; Rao, Balaji; Sevanthi, Ritesh; Rajagopalan, Srinath; Estrada, Nubia; Sturchio, Neil; Hatzinger, Paul B.; Anderson, Todd A.; Orris, Greta; Betancourt, Julio; Stonestrom, David; Latorre, Claudio; Li, Yanhe; Harvey, Gregory J.

    2015-09-01

    Natural perchlorate (ClO4-) is of increasing interest due to its wide-spread occurrence on Earth and Mars, yet little information exists on the relative abundance of ClO4- compared to other major anions, its stability, or long-term variations in production that may impact the observed distributions. Our objectives were to evaluate the occurrence and fate of ClO4- in groundwater and soils/caliche in arid and semi-arid environments (southwestern United States, southern Africa, United Arab Emirates, China, Antarctica, and Chile) and the relationship of ClO4- to the more well-studied atmospherically deposited anions NO3- and Cl- as a means to understand the prevalent processes that affect the accumulation of these species over various time scales. ClO4- is globally distributed in soil and groundwater in arid and semi-arid regions on Earth at concentrations ranging from 10-1 to 106 μg/kg. Generally, the ClO4- concentration in these regions increases with aridity index, but also depends on the duration of arid conditions. In many arid and semi-arid areas, NO3- and ClO4- co-occur at molar ratios (NO3-/ClO4-) that vary between ∼104 and 105. We hypothesize that atmospheric deposition ratios are largely preserved in hyper-arid areas that support little or no biological activity (e.g. plants or bacteria), but can be altered in areas with more active biological processes including N2 fixation, N mineralization, nitrification, denitrification, and microbial ClO4- reduction, as indicated in part by NO3- isotope data. In contrast, much larger ranges of Cl-/ClO4- and Cl-/NO3- ratios indicate Cl- varies independently from both ClO4- and NO3-. The general lack of correlation between Cl- and ClO4- or NO3- implies that Cl- is not a good indicator of co-deposition and should be used with care when interpreting oxyanion cycling in arid systems. The Atacama Desert appears to be unique compared to all other terrestrial locations having a NO3-/ClO4- molar ratio ∼103. The relative

  14. Modeling the Surface Water-Groundwater Interaction in Arid and Semi-Arid Regions Impacted by Agricultural Activities

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Wu, B.; Zheng, Y.

    2013-12-01

    In many semi-arid and arid regions, interaction between surface water and groundwater plays an important role in the eco-hydrological system. The interaction is often complicated by agricultural activities such as surface water diversion, groundwater pumping, and irrigation. In existing surface water-groundwater integrated models, simulation of the interaction is often simplified, which could introduce significant simulation uncertainty under certain circumstance. In this study, GSFLOW, a USGS model coupling PRMS and MODFLOW, was improved to better characterize the surface water-groundwater interaction. The practices of water diversion from rivers, groundwater pumping and irrigation are explicitly simulated. In addition, the original kinematic wave routing method was replaced by a dynamic wave routing method. The improved model was then applied in Zhangye Basin (the midstream part of Heihe River Baisn), China, where the famous 'Silk Road' came through. It is a typical semi-arid region of the western China, with extensive agriculture in its oasis. The model was established and calibrated using the data in 2000-2008. A series of numerical experiments were conducted to evaluate the effect of those improvements. It has been demonstrated that with the improvements, the observed streamflow and groundwater level were better reproduced by the model. The improvements have a significant impact on the simulation of multiple fluxes associated with the interaction, such as groundwater discharge, riverbed seepage, infiltration, etc. Human activities were proved to be key elements of the water cycle in the study area. The study results have important implications to the water resources modeling and management in semi-arid and arid basins.

  15. Abrupt climate-independent fire regime changes

    USGS Publications Warehouse

    Pausas, Juli G.; Keeley, Jon E.

    2014-01-01

    Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.

  16. Analysis of principal parameters of forest fires and identification of desertification process in semi-arid land in Algeria

    NASA Astrophysics Data System (ADS)

    Zegrar, Ahmed

    2013-10-01

    In semi arid land in Algeria the ecosystem of steppe presents a different vegetal formation, generally used for pasture, and the forest are in most time composed by species like Aleppo pine sparse. And seen climatic unfavourable conditions in zone and impact of forest fires; we notes deterioration of physical environment particularly, deterioration of natural forest. This deterioration of forests provokes an unbalance of environment witch provokes a process of deterioration advanced in the ultimate stadium is desertification. The specific regeneration of plants are influenced greatly by the regime of fire (season of fire, intensity, interval), who leads to the recuperation of the vegetation of meadow- fire, but in the most case there are unfavourable climatic conditions. In this survey we used satellite data for detection of zones with risk of forest fire and their influenced parameters witch permit generally a desertification process. A thematic detailed analysis of forests ecosystems well attended, some processing on the satellite data (2003) allowed us to identify and classifying the forests in there opinion components flowers. We identified ampleness of fire on this zone also. The parameters slope, the proximity to the road and the forests formations and fire regime were studied in the goal of determining the zones to risk of fire drill. A crossing of information in a geographic information system according to a very determined logic allowed us to classify the zones in degree of risk of fire. These results compared with image data (2011) permit to conclude that in semi arid land the forest ecosystem after fire becomes steppe courses permitting installation of process of desertification.

  17. Essential Roles for ARID1B in Dendritic Arborization and Spine Morphology of Developing Pyramidal Neurons

    PubMed Central

    Ka, Minhan; Chopra, Divyan A.; Dravid, Shashank M.

    2016-01-01

    De novo truncating mutations in ARID1B, a chromatin-remodeling gene, cause Coffin–Siris syndrome, a developmental disorder characterized by intellectual disability and speech impairment; however, how the genetic elimination leads to cognitive dysfunction remains unknown. Thus, we investigated the neural functions of ARID1B during brain development. Here, we show that ARID1B regulates dendritic differentiation in the developing mouse brain. We knocked down ARID1B expression in mouse pyramidal neurons using in utero gene delivery methodologies. ARID1B knockdown suppressed dendritic arborization of cortical and hippocampal pyramidal neurons in mice. The abnormal development of dendrites accompanied a decrease in dendritic outgrowth into layer I. Furthermore, knockdown of ARID1B resulted in aberrant dendritic spines and synaptic transmission. Finally, ARID1B deficiency led to altered expression of c-Fos and Arc, and overexpression of these factors rescued abnormal differentiation induced by ARID1B knockdown. Our results demonstrate a novel role for ARID1B in neuronal differentiation and provide new insights into the origin of cognitive dysfunction associated with developmental intellectual disability. SIGNIFICANCE STATEMENT Haploinsufficiency of ARID1B, a component of chromatin remodeling complex, causes intellectual disability. However, the role of ARID1B in brain development is unknown. Here, we demonstrate that ARID1B is required for neuronal differentiation in the developing brain, such as in dendritic arborization and synapse formation. Our findings suggest that ARID1B plays a critical role in the establishment of cognitive circuitry by regulating dendritic complexity. Thus, ARID1B deficiency may cause intellectual disability via abnormal brain wiring induced by the defective differentiation of cortical neurons. PMID:26937011

  18. Effects of experimentally-enhanced precipitation and nitrogen on resistance, recovery and resilience of a semi-arid grassland after drought.

    PubMed

    Xu, Zhuwen; Ren, Haiyan; Cai, Jiangping; Wang, Ruzhen; Li, Mai-He; Wan, Shiqiang; Han, Xingguo; Lewis, Bernard J; Jiang, Yong

    2014-12-01

    Resistance, recovery and resilience are three important properties of ecological stability, but they have rarely been studied in semi-arid grasslands under global change. We analyzed data from a field experiment conducted in a native grassland in northern China to explore the effects of experimentally enhanced precipitation and N deposition on both absolute and relative measures of community resistance, recovery and resilience--calculated in terms of community cover--after a natural drought. For both absolute and relative measures, communities with precipitation enhancement showed higher resistance and lower recovery, but no change in resilience compared to communities with ambient precipitation in the semi-arid grassland. The manipulated increase in N deposition had little effect on these community stability metrics except for decreased community resistance. The response patterns of these stability metrics to alterations in precipitation and N are generally consistent at community, functional group and species levels. Contrary to our expectations, structural equation modeling revealed that water-driven community resistance and recovery result mainly from changes in community species asynchrony rather than species diversity in the semi-arid grassland. These findings suggest that changes in precipitation regimes may have significant impacts on the response of water-limited ecosystems to drought stress under global change scenarios.

  19. Evolution of the rainfall regime in the United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Ouarda, T. B. M. J.; Charron, C.; Niranjan Kumar, K.; Marpu, P. R.; Ghedira, H.; Molini, A.; Khayal, I.

    2014-06-01

    Arid and semiarid climates occupy more than 1/4 of the land surface of our planet, and are characterized by a strongly intermittent hydrologic regime, posing a major threat to the development of these regions. Despite this fact, a limited number of studies have focused on the climatic dynamics of precipitation in desert environments, assuming the rainfall input - and their temporal trends - as marginal compared with the evaporative component. Rainfall series at four meteorological stations in the United Arab Emirates (UAE) were analyzed for assessment of trends and detection of change points. The considered variables were total annual, seasonal and monthly rainfall; annual, seasonal and monthly maximum rainfall; and the number of rainy days per year, season and month. For the assessment of the significance of trends, the modified Mann-Kendall test and Theil-Sen’s test were applied. Results show that most annual series present decreasing trends, although not statistically significant at the 5% level. The analysis of monthly time series reveals strong decreasing trends mainly occurring in February and March. Many trends for these months are statistically significant at the 10% level and some trends are significant at the 5% level. These two months account for most of the total annual rainfall in the UAE. To investigate the presence of sudden changes in rainfall time-series, the cumulative sum method and a Bayesian multiple change point detection procedure were applied to annual rainfall series. Results indicate that a change point happened around 1999 at all stations. Analyses were performed to evaluate the evolution of characteristics before and after 1999. Student’s t-test and Levene’s test were applied to determine if a change in the mean and/or in the variance occurred at the change point. Results show that a decreasing shift in the mean has occurred in the total annual rainfall and the number of rainy days at all four stations, and that the variance has

  20. Climate warming threatens semi-arid forests in Inner Asia

    NASA Astrophysics Data System (ADS)

    WU, X.

    2015-12-01

    A line of evidences reveal an increasing tree growth decline and tree mortality mainly attributable to climate warming and the warming-mediated changes in drought and other processes in many parts of world tropical, temperate and boreal forests. However, the growth responses to climate change of the widely distributed semi-arid forests are unclear. Here, we synthetically investigate the tree growth patterns during past decades and its interannual response to climate variations in Inner Asia combining the ground truth field survey and samplings, remote sensing observations and climate data. We identified a pervasive tree growth decline since mid-1990s in semi-arid forests in Inner Asia. The widely observed tree growth decline is dominantly attributable to warming-induced water stress during pre- and early growing season. Tree growth of semi-arid forests in Inner Asia is particularly susceptible to spring warming and has been suffering a prolonged growth limitation in recent decades due to spring warming-mediated water conditions. Additionally, we identified a much slower growth rate in younger trees and a lack of tree regeneration in these semi-arid forests. The widely observed forest growth reduction and lack of tree regeneration over semi-arid forests in Inner Asia could predictably exert great effects on forest structure, regionally/globally biophysical and biochemical processes and the feedbacks between biosphere and atmosphere. Notably, further increases in forest stress and tree mortality could be reasonably expected, especially in context of the increase frequency and severity of high temperature and heat waves and changes in forest disturbances, potentially driving the eventual regional loss of current semi-arid forests. Given the potential risks of climate induced forest dieback, increased management attention to adaptation options for enhancing forest resistance and resilience to projected climate stress can be expected. However, the functionally realistic

  1. Climate Warming Threatens Semi-arid Forests in Inner Asia

    NASA Astrophysics Data System (ADS)

    WU, X.; Liu, H.; Qi, Z.; Li, X.

    2014-12-01

    A line of evidences reveal an increasing tree growth decline and tree mortality mainly attributable to climate warming and the warming-mediated changes in drought and other processes (such as fire and insect dynamics) in many parts of world tropical, temperate and boreal forests. However, the growth responses to climate change of the widely distributed semi-arid forests are unclear. Here, we synthetically investigate the tree growth patterns during past decades and its interannual response to climate variations in Inner Asia combining the ground truth field survey and samplings, remote sensing observations and climate data. We identified a pervasive tree growth decline since mid-1990s in semi-arid forests in Inner Asia. The widely observed tree growth decline is dominantly attributable to warming-induced water stress during pre- and early growing season. Tree growth of semi-arid forests in Inner Asia is particularly susceptible to spring warming and has been suffering a prolonged growth limitation in recent decades due to spring warming-mediated water conditions. Additionally, we identified a much slower growth rate in younger trees and a lack of tree regeneration in these semi-arid forests. The widely observed forest growth reduction and lack of tree regeneration over semi-arid forests in Inner Asia could predictably exert great effects on forest structure, regionally/globally biophysical and biochemical processes and the feedbacks between biosphere and atmosphere. Notably, further increases in forest stress and tree mortality could be reasonably expected, especially in context of the increase frequency and severity of high temperature and heat waves and changes in forest disturbances, potentially driving the eventual regional loss of current semi-arid forests. Given the potential risks of climate induced forest dieback, increased management attention to adaptation options for enhancing forest resistance and resilience to projected climate stress can be expected

  2. High Contribution of Gallery Forests to Local Evaporation in Semi-Arid Burkina Faso

    NASA Astrophysics Data System (ADS)

    Ceperley, N. C.; Mande, T.; Tyler, S. W.; Van De Giesen, N.; Rinaldo, A.; Parlange, M. B.

    2014-12-01

    Management of the hydrologic cycle is critical to the primary livelihood of a large part of semi-arid West Africa's primary livelihood, rain-fed farming. We use flux measurements from an eddy-covariance station coupled with a dense network of small wireless meteorological stations to examine the relationship between land surface properties (albedo, soil moisture, and roughness) and evapotranspiration in a small (3.5 km2) catchment in Burkina Faso, West Africa. The catchment is a matrix of savanna and agricultural land maintained under various regimes, providing a comparison of multiple land use types of Sudanian Wooded Savanna including a canyon gallery forest, agroforestry parklands, occasionally grazed semi-open savanna, a semi-closed wooded slope, fallow fields, rice paddies, and ephemeral wetlands. By filtering out times when dry air was entrained, we demonstrate the small control of soil moisture and vegetation on the evaporative fraction, which was not initially visible. Additionally we document the high contribution of the gallery forest to the the catchment evaporation, despite its small size. These small meteorological stations could be paired with currently available satellite data to calculate evaporation over a much larger area, even when eddy-covariance equipment is not available. These findings reinforce local cultural beliefs of the importance of gallery forests for climate regulation and may provide tools to key local decision makers, rural farmers.

  3. CARBON AND NITROGEN STORAGE IN SOIL AND LITTER OF SOUTHERN CALIFORNIAN SEMI-ARID SHRUBLANDS.

    PubMed

    Vourlitis, George L; Zorba, Gypsi; Pasquini, Sarah C; Mustard, Robert

    2007-07-01

    Semi-arid shrublands of southern California, including chaparral and coastal sage, are found in widely varying elevation and microclimatic regimes and are subjected to disturbance such as fire and atmospheric N deposition that have the capacity to alter soil and litter C and N storage. Here we present a case study where soil and litter C and N were measured over 19 months in post-fire chaparral and mature coastal sage stands to assess whether differences in soil and litter C and N between these diverse shrublands could be attributed to differences in elevation, stand age, rainfall, and/or estimated N deposition exposure. Our results indicate that atmospheric N deposition exposure, either alone or in conjunction with other environmental variables (elevation, rainfall, and/or stand age), was the most frequent predictor of the spatial pattern in the soil and litter N and C variables observed. These results are consistent with those reported for high-elevation coniferous forests arrayed along an N deposition gradient in southern California, suggesting that N deposition may affect the soil N and C storage of semiarid shrublands and woodlands in a qualitatively similar manner.

  4. Soils of floodplains in arid regions of Inner Asia (the Zavkhan River, Mongolia)

    NASA Astrophysics Data System (ADS)

    Ubugunov, L. L.; Ubugunova, V. I.

    2012-03-01

    The environmental conditions of soil formation and the diversity and classification position of soils developing on the Zavkhan River floodplain are considered, and the morphogenetic and agrochemical properties of these soils are characterized. It is shown that the conditions of soil formation on the floodplain of the Zavkhan River are specified by the mountainous topography, the effect of the large Mongol Els sand massif, the character of the alluviation processes, the groundwater level and salinity, and the regime of floods. The position of the floodplain in the system of altitudinal zones largely dictates the character of the soil cover pattern. In terms of the new Russian soil classification system, the soils studied belong to three trunks, four orders, and seven types: stratified humus alluvial soils, light-humus alluvial soils, light-humus quasigley alluvial soils, light-humus stratozems, and solonchaks. The soils of floodplain ecosystems in arid regions are characterized by low fertility. For their efficient use for pasturing and crop growing, the ecologically balanced differentiated application of manure, mineral fertilizers (NPK), and some microelements is required.

  5. CARBON AND NITROGEN STORAGE IN SOIL AND LITTER OF SOUTHERN CALIFORNIAN SEMI-ARID SHRUBLANDS

    PubMed Central

    Vourlitis, George L.; Zorba, Gypsi; Pasquini, Sarah C.; Mustard, Robert

    2009-01-01

    Semi-arid shrublands of southern California, including chaparral and coastal sage, are found in widely varying elevation and microclimatic regimes and are subjected to disturbance such as fire and atmospheric N deposition that have the capacity to alter soil and litter C and N storage. Here we present a case study where soil and litter C and N were measured over 19 months in post-fire chaparral and mature coastal sage stands to assess whether differences in soil and litter C and N between these diverse shrublands could be attributed to differences in elevation, stand age, rainfall, and/or estimated N deposition exposure. Our results indicate that atmospheric N deposition exposure, either alone or in conjunction with other environmental variables (elevation, rainfall, and/or stand age), was the most frequent predictor of the spatial pattern in the soil and litter N and C variables observed. These results are consistent with those reported for high-elevation coniferous forests arrayed along an N deposition gradient in southern California, suggesting that N deposition may affect the soil N and C storage of semiarid shrublands and woodlands in a qualitatively similar manner. PMID:21654933

  6. Irrigation agriculture affects organic matter decomposition in semi-arid terrestrial and aquatic ecosystems.

    PubMed

    Arroita, Maite; Causapé, Jesús; Comín, Francisco A; Díez, Joserra; Jimenez, Juan José; Lacarta, Juan; Lorente, Carmen; Merchán, Daniel; Muñiz, Selene; Navarro, Enrique; Val, Jonatan; Elosegi, Arturo

    2013-12-15

    Many dryland areas are being converted into intensively managed irrigation crops, what can disrupt the hydrological regime, degrade soil and water quality, enhance siltation, erosion and bank instability, and affect biological communities. Still, the impacts of irrigation schemes on the functioning of terrestrial and aquatic ecosystems are poorly understood. Here we assess the effects of irrigation agriculture on breakdown of coarse organic matter in soil and water. We measured breakdown rates of alder and holm oak leaves, and of poplar sticks in terrestrial and aquatic sites following a gradient of increasing irrigation agriculture in a semi-arid Mediterranean basin transformed into irrigation agriculture in 50% of its surface. Spatial patterns of stick breakdown paralleled those of leaf breakdown. In soil, stick breakdown rates were extremely low in non-irrigated sites (0.0001-0.0003 day(-1)), and increased with the intensity of agriculture (0.0018-0.0044 day(-1)). In water, stick breakdown rates ranged from 0.0005 to 0.001 day(-1), and increased with the area of the basin subject to irrigation agriculture. Results showed that irrigation agriculture affects functioning of both terrestrial and aquatic ecosystems, accelerating decomposition of organic matter, especially in soil. These changes can have important consequences for global carbon budgets.

  7. Irrigation agriculture affects organic matter decomposition in semi-arid terrestrial and aquatic ecosystems.

    PubMed

    Arroita, Maite; Causapé, Jesús; Comín, Francisco A; Díez, Joserra; Jimenez, Juan José; Lacarta, Juan; Lorente, Carmen; Merchán, Daniel; Muñiz, Selene; Navarro, Enrique; Val, Jonatan; Elosegi, Arturo

    2013-12-15

    Many dryland areas are being converted into intensively managed irrigation crops, what can disrupt the hydrological regime, degrade soil and water quality, enhance siltation, erosion and bank instability, and affect biological communities. Still, the impacts of irrigation schemes on the functioning of terrestrial and aquatic ecosystems are poorly understood. Here we assess the effects of irrigation agriculture on breakdown of coarse organic matter in soil and water. We measured breakdown rates of alder and holm oak leaves, and of poplar sticks in terrestrial and aquatic sites following a gradient of increasing irrigation agriculture in a semi-arid Mediterranean basin transformed into irrigation agriculture in 50% of its surface. Spatial patterns of stick breakdown paralleled those of leaf breakdown. In soil, stick breakdown rates were extremely low in non-irrigated sites (0.0001-0.0003 day(-1)), and increased with the intensity of agriculture (0.0018-0.0044 day(-1)). In water, stick breakdown rates ranged from 0.0005 to 0.001 day(-1), and increased with the area of the basin subject to irrigation agriculture. Results showed that irrigation agriculture affects functioning of both terrestrial and aquatic ecosystems, accelerating decomposition of organic matter, especially in soil. These changes can have important consequences for global carbon budgets. PMID:23891536

  8. The urban heat island of a city in an arid zone: the case of Eilat, Israel

    NASA Astrophysics Data System (ADS)

    Sofer, M.; Potchter, O.

    2006-05-01

    This study presents the results of a preliminary research that was conducted in the city of Eilat, located in an extreme hot and arid zone on the northern coast of the Red Sea. The purpose was to analyse the characteristics of the local urban heat island (UHI). Diurnal pre-dawn and early-afternoon measurements were taken in winter and summer weather conditions on three separate occasions for two consecutive years. The results show the development of a moderate UHI located around the most intensive area of human activity; the city business centre and dense hotel belt. The UHI is more significant at midday during the summer period, while early morning inversions in winter have a weakening effect on the UHI intensity. It was found that the topography and wind regime have a dominant effect on the location and intensity of the UHI, while the sea has a very marginal effect. Due to the UHI influences on the spatial distribution of the heat stress in the city, it is suggested that further applied UHI research should be focused on the summer period.

  9. Development and use of bioenergy feedstocks for semi-arid and arid lands.

    PubMed

    Cushman, John C; Davis, Sarah C; Yang, Xiaohan; Borland, Anne M

    2015-07-01

    Global climate change is predicted to increase heat, drought, and soil-drying conditions, and thereby increase crop sensitivity to water vapour pressure deficit, resulting in productivity losses. Increasing competition between agricultural freshwater use and municipal or industrial uses suggest that crops with greater heat and drought durability and greater water-use efficiency will be crucial for sustainable biomass production systems in the future. Agave (Agavaceae) and Opuntia (Cactaceae) represent highly water-use efficient bioenergy crops that could diversify bioenergy feedstock supply yet preserve or expand feedstock production into semi-arid, abandoned, or degraded agricultural lands, and reclaim drylands. Agave and Opuntia are crassulacean acid metabolism species that can achieve high water-use efficiencies and grow in water-limited areas with insufficient precipitation to support traditional C3 or C4 bioenergy crops. Both Agave and Opuntia have the potential to produce above-ground biomass rivalling that of C3 and C4 crops under optimal growing conditions. The low lignin and high amorphous cellulose contents of Agave and Opuntia lignocellulosic biomass will be less recalcitrant to deconstruction than traditional feedstocks, as confirmed by pretreatments that improve saccharification of Agave. Refined environmental productivity indices and geographical information systems modelling have provided estimates of Agave and Opuntia biomass productivity and terrestrial sequestration of atmospheric CO2; however, the accuracy of such modelling efforts can be improved through the expansion of field trials in diverse geographical settings. Lastly, life cycle analysis indicates that Agave would have productivity, life cycle energy, and greenhouse gas balances comparable or superior to those of traditional bioenergy feedstocks, but would be far more water-use efficient. PMID:25873672

  10. Development and use of bioenergy feedstocks for semi-arid and arid lands.

    PubMed

    Cushman, John C; Davis, Sarah C; Yang, Xiaohan; Borland, Anne M

    2015-07-01

    Global climate change is predicted to increase heat, drought, and soil-drying conditions, and thereby increase crop sensitivity to water vapour pressure deficit, resulting in productivity losses. Increasing competition between agricultural freshwater use and municipal or industrial uses suggest that crops with greater heat and drought durability and greater water-use efficiency will be crucial for sustainable biomass production systems in the future. Agave (Agavaceae) and Opuntia (Cactaceae) represent highly water-use efficient bioenergy crops that could diversify bioenergy feedstock supply yet preserve or expand feedstock production into semi-arid, abandoned, or degraded agricultural lands, and reclaim drylands. Agave and Opuntia are crassulacean acid metabolism species that can achieve high water-use efficiencies and grow in water-limited areas with insufficient precipitation to support traditional C3 or C4 bioenergy crops. Both Agave and Opuntia have the potential to produce above-ground biomass rivalling that of C3 and C4 crops under optimal growing conditions. The low lignin and high amorphous cellulose contents of Agave and Opuntia lignocellulosic biomass will be less recalcitrant to deconstruction than traditional feedstocks, as confirmed by pretreatments that improve saccharification of Agave. Refined environmental productivity indices and geographical information systems modelling have provided estimates of Agave and Opuntia biomass productivity and terrestrial sequestration of atmospheric CO2; however, the accuracy of such modelling efforts can be improved through the expansion of field trials in diverse geographical settings. Lastly, life cycle analysis indicates that Agave would have productivity, life cycle energy, and greenhouse gas balances comparable or superior to those of traditional bioenergy feedstocks, but would be far more water-use efficient.

  11. Development and use of bioenergy feedstocks for semi-arid and arid lands

    SciTech Connect

    Cushman, John C.; Davis, Sarah C.; Yang, Xiaohan; Borland, Anne M.

    2015-04-01

    Here we report that global climate change is predicted to increase heat, drought, and soil-drying conditions, and thereby increase crop sensitivity to water vapour pressure deficit, resulting in productivity losses. Increasing competition between agricultural freshwater use and municipal or industrial uses suggest that crops with greater heat and drought durability and greater water-use efficiency will be crucial for sustainable biomass production systems in the future. Agave (Agavaceae) and Opuntia (Cactaceae) represent highly water-use efficient bioenergy crops that could diversify bioenergy feedstock supply yet preserve or expand feedstock production into semi-arid, abandoned, or degraded agricultural lands, and reclaim drylands. Agave and Opuntia are crassulacean acid metabolism species that can achieve high water-use efficiencies and grow in water-limited areas with insufficient precipitation to support traditional C3 or C4 bioenergy crops. Both Agave and Opuntia have the potential to produce above-ground biomass rivalling that of C3 and C4 crops under optimal growing conditions. The low lignin and high amorphous cellulose contents of Agave and Opuntia lignocellulosic biomass will be less recalcitrant to deconstruction than traditional feedstocks, as confirmed by pretreatments that improve saccharification of Agave. Refined environmental productivity indices and geographical information systems modelling have provided estimates of Agave and Opuntia biomass productivity and terrestrial sequestration of atmospheric CO2; however, the accuracy of such modelling efforts can be improved through the expansion of field trials in diverse geographical settings. Lastly, we note that life cycle analysis indicates that Agave would have productivity, life cycle energy, and greenhouse gas balances comparable or superior to those of traditional bioenergy feedstocks, but would be far more water-use efficient.

  12. Development and use of bioenergy feedstocks for semi-arid and arid lands

    DOE PAGESBeta

    Cushman, John C.; Davis, Sarah C.; Yang, Xiaohan; Borland, Anne M.

    2015-04-01

    Here we report that global climate change is predicted to increase heat, drought, and soil-drying conditions, and thereby increase crop sensitivity to water vapour pressure deficit, resulting in productivity losses. Increasing competition between agricultural freshwater use and municipal or industrial uses suggest that crops with greater heat and drought durability and greater water-use efficiency will be crucial for sustainable biomass production systems in the future. Agave (Agavaceae) and Opuntia (Cactaceae) represent highly water-use efficient bioenergy crops that could diversify bioenergy feedstock supply yet preserve or expand feedstock production into semi-arid, abandoned, or degraded agricultural lands, and reclaim drylands. Agave andmore » Opuntia are crassulacean acid metabolism species that can achieve high water-use efficiencies and grow in water-limited areas with insufficient precipitation to support traditional C3 or C4 bioenergy crops. Both Agave and Opuntia have the potential to produce above-ground biomass rivalling that of C3 and C4 crops under optimal growing conditions. The low lignin and high amorphous cellulose contents of Agave and Opuntia lignocellulosic biomass will be less recalcitrant to deconstruction than traditional feedstocks, as confirmed by pretreatments that improve saccharification of Agave. Refined environmental productivity indices and geographical information systems modelling have provided estimates of Agave and Opuntia biomass productivity and terrestrial sequestration of atmospheric CO2; however, the accuracy of such modelling efforts can be improved through the expansion of field trials in diverse geographical settings. Lastly, we note that life cycle analysis indicates that Agave would have productivity, life cycle energy, and greenhouse gas balances comparable or superior to those of traditional bioenergy feedstocks, but would be far more water-use efficient.« less

  13. A Framework Predicting Water Availability in a Rapidly Growing, Semi-Arid Region under Future Climate Change

    NASA Astrophysics Data System (ADS)

    Han, B.; Benner, S. G.; Glenn, N. F.; Lindquist, E.; Dahal, K. R.; Bolte, J.; Vache, K. B.; Flores, A. N.

    2014-12-01

    Climate change can lead to dramatic variations in hydrologic regime, affecting both surface water and groundwater supply. This effect is most significant in populated semi-arid regions where water availability are highly sensitive to climate-induced outcomes. However, predicting water availability at regional scales, while resolving some of the key internal variability and structure in semi-arid regions is difficult due to the highly non-linearity relationship between rainfall and runoff. In this study, we describe the development of a modeling framework to evaluate future water availability that captures elements of the coupled response of the biophysical system to climate change and human systems. The framework is built under the Envision multi-agent simulation tool, characterizing the spatial patterns of water demand in the semi-arid Treasure Valley area of Southwest Idaho - a rapidly developing socio-ecological system where urban growth is displacing agricultural production. The semi-conceptual HBV model, a population growth and allocation model (Target), a vegetation state and transition model (SSTM), and a statistically based fire disturbance model (SpatialAllocator) are integrated to simulate hydrology, population and land use. Six alternative scenarios are composed by combining two climate change scenarios (RCP4.5 and RCP8.5) with three population growth and allocation scenarios (Status Quo, Managed Growth, and Unconstrained Growth). Five-year calibration and validation performances are assessed with Nash-Sutcliffe efficiency. Irrigation activities are simulated using local water rights. Results show that in all scenarios, annual mean stream flow decreases as the projected rainfall increases because the projected warmer climate also enhances water losses to evapotranspiration. Seasonal maximum stream flow tends to occur earlier than in current conditions due to the earlier peak of snow melting. The aridity index and water deficit generally increase in the

  14. Regimes of validity for balanced models

    NASA Astrophysics Data System (ADS)

    Gent, Peter R.; McWilliams, James C.

    1983-07-01

    Scaling analyses are presented which delineate the atmospheric and oceanic regimes of validity for the family of balanced models described in Gent and McWilliams (1983a). The analyses follow and extend the classical work of Charney (1948) and others. The analyses use three non-dimensional parameters which represent the flow scale relative to the Earth's radius, the dominance of turbulent or wave-like processes, and the dominant component of the potential vorticity. For each regime, the models that are accurate both at leading order and through at least one higher order of accuracy in the appropriate small parameter are then identified. In particular, it is found that members of the balanced family are the appropriate models of higher-order accuracy over a broad range of parameter regimes. Examples are also given of particular atmospheric and oceanic phenomena which are in the regimes of validity for the different balanced models.

  15. Earth Regime Network Evolution Study (ERNESt)

    NASA Technical Reports Server (NTRS)

    Menrad, Bob

    2016-01-01

    Speaker and Presenter at the Lincoln Laboratory Communications Workshop on April 5, 2016 at the Massachusetts Institute of Technology Lincoln Laboratory in Lexington, MA. A visual presentation titled Earth Regimes Network Evolution Study (ERNESt).

  16. Historical fire regime in southern California

    USGS Publications Warehouse

    Keeley, Jon E.; Fotheringham, Connie J.

    2003-01-01

    The historical variability in fire regime is a conservative indicator of ecosystem sustainability. Understanding the natural role of fire in chaparral ecosystems is therefore necessary for effective fire management.

  17. Snowpack Regimes of the Western United States

    NASA Astrophysics Data System (ADS)

    Trujillo, E.; Molotch, N. P.

    2011-12-01

    Snow accumulation and melt patterns play a significant role in the water, energy, carbon and nutrient cycles in the montane environments of the Western United States. Recent studies have illustrated that changes in the snow/rainfall apportionments, and snow accumulation and melt patterns may occur as a consequence of changes in climate in the region. In order to understand how these changes may affect the snow regimes of the region, the current characteristics of the snow accumulation and melt patterns must be identified. Here, we characterize the snow water equivalent (SWE) curve formed by the daily SWE values at over seven hundred snow pillow stations in the Western U.S., focusing on several metrics of the yearly SWE curves and the cross relationships between the different metrics. The metrics include the initial snow accumulation and meltout dates, the peak accumulation and date of peak, the time from initial accumulation to peak, the time from peak to meltout, the accumulation and melt slopes, and the daily rates of accumulation and melt. Three distinct regimes emerge from these results: a maritime, an intermediate (intercontinental), and a continental regime. The maritime regime is characterized by higher maximum snow accumulations reaching 300 cm and shorter accumulation periods of less than 220 days, while on the other hand; the continental regime is characterized by lower maximum accumulations below 200 cm and longer accumulation periods reaching over 260 days. The intercontinental regime lies in between. Several other differences are identified between the metrics of the SWE curve in these regimes. The regions that show the characteristics of the maritime regime include the Cascade Mountains, the Klamath Mountains, and the Sierra Nevada Mountains. The intercontinental regime includes the Northern and Central basins and ranges, the Idaho Batholith, the Northern Rockies and the Blue Mountains. Lastly, the Continental regime includes the Middle and Southern

  18. Electron transport fluxes in potato plateau regime

    SciTech Connect

    Shaing, K.C.; Hazeltine, R.D.

    1997-12-01

    Electron transport fluxes in the potato plateau regime are calculated from the solutions of the drift kinetic equation and fluid equations. It is found that the bootstrap current density remains finite in the region close to the magnetic axis, although it decreases with increasing collision frequency. This finite amount of the bootstrap current in the relatively collisional regime is important in modeling tokamak startup with 100{percent} bootstrap current. {copyright} {ital 1997 American Institute of Physics.}

  19. Mitigating Climate Change in the Arid Lands of Namibia

    NASA Astrophysics Data System (ADS)

    Schneider, Martin B.; Sorensen, Marten

    2014-05-01

    Mitigating Climate Change in the Arid Lands of Namibia Namibia is the most arid country south of the Sahara, with scarce rainfall and perennial rivers only at its borders, > 80% of the area relies solely on groundwater. This has had devastating economic effects limiting opportunities for sustainable rural livelihoods that keep the population majority living below the World Bank poverty line (IFAD, 2013). A primary example of climatic variability which affects agrarian productivity is increased bush encroachment of Namibia's arid grazing land. The result has been a severe biodiversity loss, increased desertification and diminished water-use efficiency and underground water tables. Given these factors, Namibia's arid lands provide a unique opportunity to assess and test innovative / appropriate adaptation and mitigation strategies. Working toward sustainable management, restoration, and maintenance of balanced, resilient arid ecosystems in Namibia will also be a means to support and expand economic sectors incl. opportunities for job creation and potentially provide a model for similar arid regions. Main vegetation zones are: desert (46%), savannah (37%), and dry woodlands and forests (17%), i.e. < 2% is arable. Also, government protected areas cover 13.8% of the land surface. Current climate models suggest that Namibia faces serious risks, e.g. increased temperatures, hyper-arid conditions, and more frequent and extreme weather events (Pamaccafrica, 2013). The Namibian government, civil society organizations, and the scientific community attempt to address these risks and a certain level of institutional and human capacities are already in place. However, overall climate variability appears significantly higher than current plans and policies take into account. To improve livelihoods, reduce poverty, and food insecurity for rural Namibians in marginal/hyper-arid lands through sustainable climate change adaptation these objectives will be implemented: 1. Identify

  20. Cattle and pastoralism: survival and production in arid lands

    SciTech Connect

    Western, D.; Finch, V.

    1986-03-01

    Traditional subsistence pastoralists in East Africa tend to keep large herds, milk cattle in preference to eating them, and subject them to long foraging treks. Such practices are widely considered ill-suited to arid lands and are believed to arise because cattle are raised more for social prestige than food production. Whether this is true can only be judged by considering the responses of cattle to arid zones and, given the herder's goals and options, his management practices. In considering these factors, we show that indigenous East African cattle demonstrate energy-sparing capabilities during drought. Pastoralists can therefore herd cattle at great distances from water at little more cost than animals on the normal maintenance diet and watered more frequently. The physiological response of cattle to drought, the ecological constraints imposed by livestock and wildlife competition, and the energetic efficiency of mixed milk and meat pastoralism explain why herders traditionally select their characteristic management practices.

  1. Mitigating Climate Change in the Arid Lands of Namibia

    NASA Astrophysics Data System (ADS)

    Schneider, Martin B.; Sorensen, Marten

    2014-05-01

    Mitigating Climate Change in the Arid Lands of Namibia Namibia is the most arid country south of the Sahara, with scarce rainfall and perennial rivers only at its borders, > 80% of the area relies solely on groundwater. This has had devastating economic effects limiting opportunities for sustainable rural livelihoods that keep the population majority living below the World Bank poverty line (IFAD, 2013). A primary example of climatic variability which affects agrarian productivity is increased bush encroachment of Namibia's arid grazing land. The result has been a severe biodiversity loss, increased desertification and diminished water-use efficiency and underground water tables. Given these factors, Namibia's arid lands provide a unique opportunity to assess and test innovative / appropriate adaptation and mitigation strategies. Working toward sustainable management, restoration, and maintenance of balanced, resilient arid ecosystems in Namibia will also be a means to support and expand economic sectors incl. opportunities for job creation and potentially provide a model for similar arid regions. Main vegetation zones are: desert (46%), savannah (37%), and dry woodlands and forests (17%), i.e. < 2% is arable. Also, government protected areas cover 13.8% of the land surface. Current climate models suggest that Namibia faces serious risks, e.g. increased temperatures, hyper-arid conditions, and more frequent and extreme weather events (Pamaccafrica, 2013). The Namibian government, civil society organizations, and the scientific community attempt to address these risks and a certain level of institutional and human capacities are already in place. However, overall climate variability appears significantly higher than current plans and policies take into account. To improve livelihoods, reduce poverty, and food insecurity for rural Namibians in marginal/hyper-arid lands through sustainable climate change adaptation these objectives will be implemented: 1. Identify

  2. Keeping Sediment and Nutrients out of Streams in Arid/Semi-Arid United States: Application of Low Impact Development/Green Infrastructure Practices

    EPA Science Inventory

    Climatic and hydrological characteristics in the arid/semi-arid areas create unique challenges to soil, water and biodiversity conservation. These areas are environmentally sensitive, but very valuable for the ecosystems services they provide to society. Some of these areas are...

  3. Green Infrastructure Management Techniques in Arid and Semi-arid Regions: Software Implementation and Demonstration using the AGWA/KINEROS2 Watershed Model

    EPA Science Inventory

    Increasing urban development in the arid and semi-arid regions of the southwestern United States has led to greater demand for water in a region with limited water resources and has fundamentally altered the hydrologic response of developed watersheds. Green Infrastructure (GI) p...

  4. Representing Green Infrastructure Management Techniques in Arid and Semi-arid Regions: Software Implementation and Demonstration using the AGWA/KINEROS2 Watershed Model

    EPA Science Inventory

    Increasing urban development in the arid and semi-arid regions of the southwestern United States has led to greater demand for water from a region of limited water resources which has fundamentally altered the hydrologic response of developed watersheds. Green Infrastructure (GI)...

  5. Evolutionary shifts in habitat aridity predict evaporative water loss across squamate reptiles.

    PubMed

    Cox, Christian L; Cox, Robert M

    2015-09-01

    Aridity is an important determinant of species distributions, shaping both ecological and evolutionary diversity. Lizards and snakes are often abundant in deserts, suggesting a high potential for adaptation or acclimation to arid habitats. However, phylogenetic evidence indicates that squamate diversity in deserts may be more strongly tied to speciation within arid habitats than to convergent evolution following repeated colonization from mesic habitats. To assess the frequency of evolutionary transitions in habitat aridity while simultaneously testing for associated changes in water-balance physiology, we analyzed estimates of total evaporative water loss (EWL) for 120 squamate species inhabiting arid, semiarid, or mesic habitats. Phylogenetic reconstructions revealed that evolutionary transitions to and from semiarid habitats were much more common than those between arid and mesic extremes. Species from mesic habitats exhibited significantly higher EWL than those from arid habitats, while species from semiarid habitats had intermediate EWL. Phylogenetic comparative methods confirmed this association between habitat aridity and EWL despite phylogenetic signal in each. Thus, the historical colonization of arid habitats by squamates is repeatedly associated with adaptive changes in EWL. This physiological convergence, which may reflect both phenotypic plasticity and genetic adaptation, has likely contributed to the success of squamates in arid environments.

  6. Invasion Potential of Two Tropical Physalis Species in Arid and Semi-Arid Climates: Effect of Water-Salinity Stress and Soil Types on Growth and Fecundity

    PubMed Central

    Ozaslan, Cumali; Bukun, Bekir; Ozcan, Selcuk

    2016-01-01

    Invasive plants are recognized for their impressive abilities to withstand adverse environmental conditions however, all invaders do not express the similar abilities. Therefore, survival, growth, nutrient uptake and fecundity of two co-occurring, invasive Physalis species were tested under water and salinity stresses, and different soil textures in the current study. Five different water stress levels (100, 75, 50, 25, and 12.5% pot water contents), four different soil salinity levels (0, 3, 6, and 12 dSm-1) and four different soil textures (67% clay, 50% clay, silt clay loam and sandy loam) were included in three different pot experiments. Both weeds survived under all levels of water stress except 12.5% water contents and on all soil types however, behaved differently under increasing salinity. The weeds responded similarly to salinity up till 3 dSm-1 whereas, P. philadelphica survived for longer time than P. angulata under remaining salinity regimes. Water and salinity stress hampered the growth and fecundity of both weeds while, soil textures had slight effect. Both weeds preferred clay textured soils for better growth and nutrient uptake however, interactive effect of weeds and soil textures was non-significant. P. angulata accumulated higher K and Na while P. philadelphica accrued more Ca and Mg as well as maintained better K/Na ratio. P. angulata accumulated more Na and P under salinity stress while, P. philadelphica accrued higher K and Mg, and maintained higher K/Na ratio. Collectively, highest nutrient accumulation was observed under stress free conditions and on clay textured soils. P. philadelphica exhibited higher reproductive output under all experimental conditions than P. angulata. It is predicted that P. philadelphica will be more problematic under optimal water supply and high salinity while P. angulata can better adapt water limited environments. The results indicate that both weeds have considerable potential to further expand their ranges in

  7. Environmental physiology of a small marsupial inhabiting arid floodplains.

    PubMed

    Warnecke, L; Cooper, C E; Geiser, F; Withers, P C

    2010-09-01

    Giles' planigale (Planigale gilesi) is among the smallest extant marsupials and inhabits deep soil cracks in arid floodplains. We examined whether its physiology shows specific adaptations to its extreme habitat. Metabolic rate, body temperature, evaporative water loss and thermal conductance were measured for eight planigales (average mass 9 g) exposed to four different ambient temperatures ranging from 10 degrees C to 32 degrees C. Water economy and respiratory variables were measured for the first time in this species. All of these standard physiological variables conformed to allometrically-predicted values for a marsupial. All variables were significantly affected by ambient temperature, except tidal volume and dry thermal conductance. Metabolic rate increased substantially at low ambient temperatures, as required to maintain a relatively constant body temperature of about 32-34 degrees C. This increased oxygen demand was accommodated by increased ventilation rather than increased oxygen extraction. Planigales had a comparatively high point of relative water economy of 19.1 degrees C, consistent with their small body size and arid habitat. Torpor reduced energy expenditure by 79% and evaporative water loss by 62%. Our study suggests that torpor use, along with behavioural adaptations, suffice for P. gilesi to live underground in arid habitats without further physiological adaptations.

  8. Characteristics of the volatile organic compounds -- Arid Integrated Demonstration Site

    SciTech Connect

    Last, G.V.; Lenhard, R.J.; Bjornstad, B.N.; Evans, J.C.; Roberson, K.R.; Spane, F.A.; Amonette, J.E.; Rockhold, M.L.

    1991-10-01

    The Volatile Organic Compounds -- Arid Integrated Demonstration Program (VOC-Arid ID) is targeted at demonstration and testing of technologies for the evaluation and cleanup of volatile organic compounds and associated contaminants at arid DOE sites. The initial demonstration site is an area of carbon tetrachloride (CCl{sub 4}) contamination located near the center of the Hanford Site. The movement of CCl{sub 4} and other volatile organic contaminants in the subsurface is very complex. The problem at the Hanford Site is further complicated by the concurrent discharge of other waste constituents including acids, lard oil, organic phosphates, and transuranic radionuclides. In addition, the subsurface environment is very complex, with large spatial variabilities in hydraulic properties. A thorough understanding of the problem is essential to the selection of appropriate containment, retrieval, and/or in situ remedial technologies. The effectiveness of remedial technologies depends on knowing where the contaminants are, how they are held up in a given physical and chemical subsurface environment; and knowing the physical, chemical, and microbiological changes that are induced by the various remedial technologies.

  9. Leaf protein concentrate as food supplement from arid zone plants.

    PubMed

    Rathore, Mala

    2010-06-01

    In arid and semi-arid areas where prevalence of droughts and famines is a recurring feature, forest cover can in general make valuable contributions to food security and provide income to the rural poor. Protein and calorie malnutrition is widespread in these areas leading to high child mortality rate. Plant species can play an important role in overcoming this by being used as a source of leaf protein concentrate (LPC), a highly nutritious food. LPC should be considered seriously as it can serve as an additional protein source in the case of non-ruminants and man, especially in drought prone areas. The use of LPC in developing countries as an alternative protein source to fishmeal in broiler diet holds tremendous promise as it can substantially lower high cost of fishmeal and eventually the acute shortage of animal protein supply. Potential tropical plants for LPC production have been evaluated and selected for further research by United States Department of Agriculture. The present study was aimed to determine the potential of arid zone plants for preparation of LPC. Extraction characteristics of the several plant species have been studied and the quality of LPC prepared from them was investigated. Different fractions, chloroplastic and cytoplasmic proteins, were analyzed for their crude protein contents. Analysis of LPC shows considerable differences in their protein contents, which was found to range from 13.7 to 88.9%. Based on this, Achyranthes aspera and Tephrosia purpurea were found to be the best suited plants for LPC preparation.

  10. Frame Shift/warp Compensation for the ARID Robot System

    NASA Technical Reports Server (NTRS)

    Latino, Carl D.

    1991-01-01

    The Automatic Radiator Inspection Device (ARID) is a system aimed at automating the tedious task of inspecting orbiter radiator panels. The ARID must have the ability to aim a camera accurately at the desired inspection points, which are in the order of 13,000. The ideal inspection points are known; however, the panel may be relocated due to inaccurate parking and warpage. A method of determining the mathematical description of a translated as well as a warped surface by accurate measurement of only a few points on this surface is developed here. The method uses a linear warp model whose effect is superimposed on the rigid body translation. Due to the angles involved, small angle approximations are possible, which greatly reduces the computational complexity. Given an accurate linear warp model, all the desired translation and warp parameters can be obtained by knowledge of the ideal locations of four fiducial points and the corresponding measurements of these points on the actual radiator surface. The method uses three of the fiducials to define a plane and the fourth to define the warp. Given this information, it is possible to determine a transformation that will enable the ARID system to translate any desired inspection point on the ideal surface to its corresponding value on the actual surface.

  11. Resource partitioning between ungulate populations in arid environments.

    PubMed

    Cooke, Robert S C; Woodfine, Tim; Petretto, Marie; Ezard, Thomas H G

    2016-09-01

    Herbivores are major drivers of ecosystem structure, diversity, and function. Resilient ecosystems therefore require viable herbivore populations in a sustainable balance with environmental resource availability. This balance is becoming harder to achieve, with increasingly threatened species reliant on small protected areas in increasingly harsh and unpredictable environments. Arid environments in North Africa exemplify this situation, featuring a biologically distinct species assemblage exposed to extreme and volatile conditions, including habitat loss and climate change-associated threats. Here, we implement an integrated likelihood approach to relate scimitar-horned oryx (Oryx dammah) and dorcas gazelle (Gazella dorcas) density, via dung distance sampling, to habitat, predator, and geographic correlates in Dghoumes National Park, Tunisia. We show how two threatened sympatric ungulates partition resources on the habitat axis, exhibiting nonuniform responses to the same vegetation gradient. Scimitar-horned oryx were positively associated with plant species richness, selecting for vegetated ephemeral watercourses (wadis) dominated by herbaceous cover. Conversely, dorcas gazelle were negatively associated with vegetation density (herbaceous height, litter cover, and herbaceous cover), selecting instead for rocky plains with sparse vegetation. We suggest that adequate plant species richness should be a prerequisite for areas proposed for future ungulate reintroductions in arid and semi-arid environments. This evidence will inform adaptive management of reintroduced ungulates in protected environments, helping managers and planners design sustainable ecosystems and effective conservation programs. PMID:27656279

  12. A Feasibility Study of Geologic Water Storage in Arid Regions

    NASA Astrophysics Data System (ADS)

    Fairley, J. P.; Preuit, T.

    2001-05-01

    An important control on the carrying capacity of arid and semi-arid regions is the ability to develop and maintain a reliable water supply for domestic and agricultural use. In the semi-arid highlands of southern Peru, the pre-Columbian Incas developed a technique of collecting and storing basin yields by controlling the discharge boundary of an existing aquifer. This water resource management strategy has been dubbed "Geologic Water Storage" (Fairley, in review). Yield from at least one such system near Cuzco, Peru, has provided a reliable source of irrigation water for rural farmers to the present day. The geologic water storage systems of southern Peru suggested the possibility of developing a similar system to water stock in rural Idaho. Annual precipitation in Idaho is about one-third that of southern Peru, and obtaining an adequate stock water supply is often problematic. The application of a simple lumped capacitance model to a selected basin in central Idaho showed that it may be physically and economically feasible to modify the basin characteristics to prolong water availability at the site. A more detailed study of this problem, that includes field characterization of the site, is necessary to substantiate the model results. If further studies and field trials confirm the viability of geologic water storage, this approach may find applications in many rural and developing areas, both nationally and internationally.

  13. Protocol for VOC-Arid ID remediation performance characterization

    SciTech Connect

    Tegner, B.J.; Hassig, N.L.; Last, G.V.

    1994-09-01

    The Volatile Organic Compound-Arid Integrated Demonstration (VOC-Arid ID) is a technology development program sponsored by the US Department of Energy`s Office of Technology Development that is targeted to acquire, develop, demonstrate, and deploy new technologies for the remediation of VOC contaminants in the soils and groundwaters of arid DOE sites. Technologies cannot be adequately evaluated unless sufficient site characterization and technology performance data have been collection and analyzed. The responsibility for identifying these data needs has been placed largely on the Principal Investigators (PIs) developing the remediation technology, who usually are not experts in site characterization or in identification of appropriate sampling, analysis, and monitoring techniques to support the field testing. This document provides a protocol for planning the collection of data before, during, and after a test of a new technology. This generic protocol provides the PIs and project managers with a set of steps to follow. The protocol is based on a data collection planning process called the Data Quality Objectives (DQO) process, which was originally developed by the US Environmental Protection Agency and has been expanded by DOE to support site cleanup decisions. The DQO process focuses on the quality and quantity of data required to make decision. Stakeholders to the decisions must negotiate such key inputs to the process as the decision rules that will be used and the acceptable probabilities of making decision errors.

  14. Rock glaciers and the sediment dynamics in arid mountain belts

    NASA Astrophysics Data System (ADS)

    Blöthe, Jan Henrik; Höser, Thorsten; Rosenwinkel, Swenja; Korup, Oliver

    2016-04-01

    Rock glaciers are common periglacial features in highest elevations of semiarid to arid mountain ranges. Rock glaciers predominate in realms where precipitation values fall below thresholds that allow for ice glacier formation, then even outranging ice glaciers in size and number. The influence of ice glaciers on high-mountain's sediment dynamics is manifold: ice-glacier-driven erosion produces large amounts of clastic material; ice glaciers act as a conveyor belt for sediments, delivering material from their source regions to their terminus; ice glaciers entering trunk valleys form efficient dams that interrupt sediment delivery. While these mechanisms have been addressed in numerous earlier studies, the role of rock glaciers for the sediment dynamics of arid mountain belts remains elusive. We address this shortcoming by analysing a rock glacier inventory that we compiled for the Himalaya-Karakoram ranges and the Tien Shan ranges in Central Asia. Our inventory comprises more than 1000 specimen, a large number of which form dams of large trunk rivers and minor tributaries, disconnecting the sediment fluxes from upstream. In certain regions that are nearly devoid of ice-glaciers, like the Gamugah surface of NW Pakistan, rock glaciers of >10^4-m length occupy valley bottoms entirely, constituting the only mode of transport for sediments produced in headwaters. In conclusion, we call for a better understanding of the role that rock glaciers take in the sediment dynamics of arid mountain belts.

  15. Eco-Physiological Responses of Dominant Species to Watering in a Natural Grassland Community on the Semi-Arid Loess Plateau of China.

    PubMed

    Niu, Furong; Duan, Dongping; Chen, Ji; Xiong, Peifeng; Zhang, He; Wang, Zhi; Xu, Bingcheng

    2016-01-01

    Altered precipitation regimes significantly affect ecosystem structure and function in arid and semi-arid regions. In order to investigate effects of precipitation changes on natural grassland community in the semi-arid Loess Plateau, the current research examined eco-physiological characteristics of two co-dominant species (i.e., Bothriochloa ischaemum and Lespedeza davurica) and community composition following two watering instances (i.e., precipitation pulses, July and August, 2011, respectively) in a natural grassland community. Results showed that the photosynthetic rate, transpiration rate, stomatal conductance and intercellular CO2 concentration rapidly increased on the first to third day following watering in both species, and both months. Under watering treatments, the maximum net photosynthetic rates appeared on the second to third day after watering, which increased 30-80% in B. ischaemum and 40-50% in L. davurica compared with non-watering treatments, respectively. Leaf water use efficiency kept stable or initially decreased in both species under watering treatments. Watering in July produced more promoting effects on grass photosynthesis than in August, particularly in B. ischaemum. Community above-ground biomass at the end of the growing season increased after watering, although no significant changes in species diversity were observed. Our results indicated that timing and magnitude of watering could significantly affect plant eco-physiological processes, and there were species-specific responses in B. ischaemum and L. davurica. Pulsed watering increased community productivity, while did not significantly alter community composition after one growing season. The outcomes of this study highlight eco-physiological traits in dominant species may playing important roles in reshaping community composition under altered precipitation regimes. PMID:27242864

  16. Eco-Physiological Responses of Dominant Species to Watering in a Natural Grassland Community on the Semi-Arid Loess Plateau of China

    PubMed Central

    Niu, Furong; Duan, Dongping; Chen, Ji; Xiong, Peifeng; Zhang, He; Wang, Zhi; Xu, Bingcheng

    2016-01-01

    Altered precipitation regimes significantly affect ecosystem structure and function in arid and semi-arid regions. In order to investigate effects of precipitation changes on natural grassland community in the semi-arid Loess Plateau, the current research examined eco-physiological characteristics of two co-dominant species (i.e., Bothriochloa ischaemum and Lespedeza davurica) and community composition following two watering instances (i.e., precipitation pulses, July and August, 2011, respectively) in a natural grassland community. Results showed that the photosynthetic rate, transpiration rate, stomatal conductance and intercellular CO2 concentration rapidly increased on the first to third day following watering in both species, and both months. Under watering treatments, the maximum net photosynthetic rates appeared on the second to third day after watering, which increased 30–80% in B. ischaemum and 40–50% in L. davurica compared with non-watering treatments, respectively. Leaf water use efficiency kept stable or initially decreased in both species under watering treatments. Watering in July produced more promoting effects on grass photosynthesis than in August, particularly in B. ischaemum. Community above-ground biomass at the end of the growing season increased after watering, although no significant changes in species diversity were observed. Our results indicated that timing and magnitude of watering could significantly affect plant eco-physiological processes, and there were species-specific responses in B. ischaemum and L. davurica. Pulsed watering increased community productivity, while did not significantly alter community composition after one growing season. The outcomes of this study highlight eco-physiological traits in dominant species may playing important roles in reshaping community composition under altered precipitation regimes. PMID:27242864

  17. Eco-Physiological Responses of Dominant Species to Watering in a Natural Grassland Community on the Semi-Arid Loess Plateau of China.

    PubMed

    Niu, Furong; Duan, Dongping; Chen, Ji; Xiong, Peifeng; Zhang, He; Wang, Zhi; Xu, Bingcheng

    2016-01-01

    Altered precipitation regimes significantly affect ecosystem structure and function in arid and semi-arid regions. In order to investigate effects of precipitation changes on natural grassland community in the semi-arid Loess Plateau, the current research examined eco-physiological characteristics of two co-dominant species (i.e., Bothriochloa ischaemum and Lespedeza davurica) and community composition following two watering instances (i.e., precipitation pulses, July and August, 2011, respectively) in a natural grassland community. Results showed that the photosynthetic rate, transpiration rate, stomatal conductance and intercellular CO2 concentration rapidly increased on the first to third day following watering in both species, and both months. Under watering treatments, the maximum net photosynthetic rates appeared on the second to third day after watering, which increased 30-80% in B. ischaemum and 40-50% in L. davurica compared with non-watering treatments, respectively. Leaf water use efficiency kept stable or initially decreased in both species under watering treatments. Watering in July produced more promoting effects on grass photosynthesis than in August, particularly in B. ischaemum. Community above-ground biomass at the end of the growing season increased after watering, although no significant changes in species diversity were observed. Our results indicated that timing and magnitude of watering could significantly affect plant eco-physiological processes, and there were species-specific responses in B. ischaemum and L. davurica. Pulsed watering increased community productivity, while did not significantly alter community composition after one growing season. The outcomes of this study highlight eco-physiological traits in dominant species may playing important roles in reshaping community composition under altered precipitation regimes.

  18. Altered stream-flow regimes and invasive plant species: The Tamarix case

    USGS Publications Warehouse

    Stromberg, J.C.; Lite, S.J.; Marler, R.; Paradzick, C.; Shafroth, P.B.; Shorrock, D.; White, J.M.; White, M.S.

    2007-01-01

    Aim: To test the hypothesis that anthropogenic alteration of stream-flow regimes is a key driver of compositional shifts from native to introduced riparian plant species. Location: The arid south-western United States; 24 river reaches in the Gila and Lower Colorado drainage basins of Arizona. Methods: We compared the abundance of three dominant woody riparian taxa (native Populus fremontii and Salix gooddingii, and introduced Tamarix) between river reaches that varied in stream-flow permanence (perennial vs. intermittent), presence or absence of an upstream flow-regulating dam, and presence or absence of municipal effluent as a stream water source. Results: Populus and Salix were the dominant pioneer trees along the reaches with perennial flow and a natural flood regime. In contrast, Tamarix had high abundance (patch area and basal area) along reaches with intermittent stream flows (caused by natural and cultural factors), as well as those with dam-regulated flows. Main conclusions: Stream-flow regimes are strong determinants of riparian vegetation structure, and hydrological alterations can drive dominance shifts to introduced species that have an adaptive suite of traits. Deep alluvial groundwater on intermittent rivers favours the deep-rooted, stress-adapted Tamarix over the shallower-rooted and more competitive Populus and Salix. On flow-regulated rivers, shifts in flood timing favour the reproductively opportunistic Tamarix over Populus and Salix, both of which have narrow germination windows. The prevailing hydrological conditions thus favour a new dominant pioneer species in the riparian corridors of the American Southwest. These results reaffirm the importance of reinstating stream-flow regimes (inclusive of groundwater flows) for re-establishing the native pioneer trees as the dominant forest type. ?? 2007 The Authors Journal compilation ?? 2007 Blackwell Publishing Ltd.

  19. Identifying natural flow regimes using fish communities

    NASA Astrophysics Data System (ADS)

    Chang, Fi-John; Tsai, Wen-Ping; Wu, Tzu-Ching; Chen, Hung-kwai; Herricks, Edwin E.

    2011-10-01

    SummaryModern water resources management has adopted natural flow regimes as reasonable targets for river restoration and conservation. The characterization of a natural flow regime begins with the development of hydrologic statistics from flow records. However, little guidance exists for defining the period of record needed for regime determination. In Taiwan, the Taiwan Eco-hydrological Indicator System (TEIS), a group of hydrologic statistics selected for fisheries relevance, is being used to evaluate ecological flows. The TEIS consists of a group of hydrologic statistics selected to characterize the relationships between flow and the life history of indigenous species. Using the TEIS and biosurvey data for Taiwan, this paper identifies the length of hydrologic record sufficient for natural flow regime characterization. To define the ecological hydrology of fish communities, this study connected hydrologic statistics to fish communities by using methods to define antecedent conditions that influence existing community composition. A moving average method was applied to TEIS statistics to reflect the effects of antecedent flow condition and a point-biserial correlation method was used to relate fisheries collections with TEIS statistics. The resulting fish species-TEIS (FISH-TEIS) hydrologic statistics matrix takes full advantage of historical flows and fisheries data. The analysis indicates that, in the watersheds analyzed, averaging TEIS statistics for the present year and 3 years prior to the sampling date, termed MA(4), is sufficient to develop a natural flow regime. This result suggests that flow regimes based on hydrologic statistics for the period of record can be replaced by regimes developed for sampled fish communities.

  20. A holistic view of marine regime shifts

    PubMed Central

    Conversi, Alessandra; Dakos, Vasilis; Gårdmark, Anna; Ling, Scott; Folke, Carl; Mumby, Peter J.; Greene, Charles; Edwards, Martin; Blenckner, Thorsten; Casini, Michele; Pershing, Andrew; Möllmann, Christian

    2015-01-01

    Understanding marine regime shifts is important not only for ecology but also for developing marine management that assures the provision of ecosystem services to humanity. While regime shift theory is well developed, there is still no common understanding on drivers, mechanisms and characteristic of abrupt changes in real marine ecosystems. Based on contributions to the present theme issue, we highlight some general issues that need to be overcome for developing a more comprehensive understanding of marine ecosystem regime shifts. We find a great divide between benthic reef and pelagic ocean systems in how regime shift theory is linked to observed abrupt changes. Furthermore, we suggest that the long-lasting discussion on the prevalence of top-down trophic or bottom-up physical drivers in inducing regime shifts may be overcome by taking into consideration the synergistic interactions of multiple stressors, and the special characteristics of different ecosystem types. We present a framework for the holistic investigation of marine regime shifts that considers multiple exogenous drivers that interact with endogenous mechanisms to cause abrupt, catastrophic change. This framework takes into account the time-delayed synergies of these stressors, which erode the resilience of the ecosystem and eventually enable the crossing of ecological thresholds. Finally, considering that increased pressures in the marine environment are predicted by the current climate change assessments, in order to avoid major losses of ecosystem services, we suggest that marine management approaches should incorporate knowledge on environmental thresholds and develop tools that consider regime shift dynamics and characteristics. This grand challenge can only be achieved through a holistic view of marine ecosystem dynamics as evidenced by this theme issue.

  1. Soil stabilization by biological soil crusts in arid Tunisia

    NASA Astrophysics Data System (ADS)

    Guidez, Sabine; Couté, Alain; Bardat, Jacques

    2015-04-01

    As part of the fight against desertification (LCD) in arid Tunisia, we have been able to highlight the important role played by biological soil crusts (BSC) in soil stabilization. The identification of the major species of cyanobacteria, lichens and bryophytes, their adaptation and terrestrial colonization strategies in this high climatic constraints area through their morpho-anatomical criteria have been set. In addition to their biological composition, their internal arrangement (i.e. texture and microstructure) reflects the structural stability of BSC against erosion. Precisely, the aggregative power of cyanobacteria and their ways of moving inside a soil, the capacity of mosses to grow through the sediments and lichens ability to bind at particles on surface, thus stabilizing the substrate have been demonstrated. Then, the three biological components ability to capture soil particles has been widely illustrated, proving the major environmental contribution of BSC in arid areas biological crusts formation, providing that soils will experience an increase of organic matter and fine particles rates subsequently gaining faster and better stability. Although the thickness and the morphology of crusts are related to the cover rates of these different biological components, the water properties of the latter, studied at the environmental SEM, illustrate their important role in altering the water cycle. Thus, the mixed crusts, i.e. with good presence of three biological components, cause the highest runoff rates by their ability to retain the water and spread on the surface. In spite of a swelling coefficient in presence of water higher than cryptogams, the cyanobacterial crusts located in newly stabilized areas of our studied region, remain finally insufficiently dense to impact surface hydrology. But, we showed after all that the cyanobacteria, pioneer species, have a certain environmental role. The lichen crusts cause a increased runoff because the lichens have a

  2. Relationships between primary production and crop yields in semi-arid and arid irrigated agro-ecosystems

    NASA Astrophysics Data System (ADS)

    Jaafar, H. H.; Ahmad, F. A.

    2015-04-01

    In semi-arid areas within the MENA region, food security problems are the main problematic imposed. Remote sensing can be a promising too early diagnose food shortages and further prevent the population from famine risks. This study is aimed at examining the possibility of forecasting yield before harvest from remotely sensed MODIS-derived Enhanced Vegetation Index (EVI), Net photosynthesis (net PSN), and Gross Primary Production (GPP) in semi-arid and arid irrigated agro-ecosystems within the conflict affected country of Syria. Relationships between summer yield and remotely sensed indices were derived and analyzed. Simple regression spatially-based models were developed to predict summer crop production. The validation of these models was tested during conflict years. A significant correlation (p<0.05) was found between summer crop yield and EVI, GPP and net PSN. Results indicate the efficiency of remotely sensed-based models in predicting summer yield, mostly for cotton yields and vegetables. Cumulative summer EVI-based model can predict summer crop yield during crisis period, with deviation less than 20% where vegetables are the major yield. This approach prompts to an early assessment of food shortages and lead to a real time management and decision making, especially in periods of crisis such as wars and drought.

  3. New Technologies to Reclaim Arid Lands User's Manual

    SciTech Connect

    W. K. Ostler

    2002-10-01

    Approximately 70 percent of all U.S. military training lands are located in arid and semi-arid areas. Training activities in such areas frequently adversely affect vegetation, damaging plants and reducing the resilience of vegetation to recover once disturbed. Fugitive dust resulting from a loss of vegetation creates additional problems for human health, increasing accidents due to decreased visibility, and increasing maintenance costs for roads, vehicles, and equipment. Under conventional technologies to mitigate these impacts, it is estimated that up to 35 percent of revegetation projects in arid areas will fail due to unpredictable natural environmental conditions, such as drought, and reclamation techniques that were inadequate to restore vegetative cover in a timely and cost-effective manner. New reclamation and restoration techniques are needed in desert ranges to help mitigate the adverse effects of military training and other activities to arid-land environments. In 1999, a cooperative effort between the U.S. Department of Energy (DOE), the US. Department of Defense (DoD), and selected university scientists was undertaken to focus on mitigating military impacts in arid lands. As arid lands are impacted due to DoD and DOE activities, biological and soil resources are gradually lost and the habitat is altered. A conceptual model of that change in habitat quality is described for varying levels of disturbance in the Mojave Desert. As the habitat quality degrades and more biological and physical resources are lost from training areas, greater costs are required to return the land to sustainable levels. The purpose of this manual is to assist land managers in recognizing thresholds associated with habitat degradation and provide reclamation planning and techniques that can reduce the costs of mitigation for these impacted lands to ensure sustainable use of these lands. The importance of reclamation planning is described in this manual with suggestions about

  4. Quantifying macropore recharge: Examples from a semi-arid area

    USGS Publications Warehouse

    Wood, W.W.; Rainwater, K.A.; Thompson, D.B.

    1997-01-01

    The purpose of this paper is to illustrate the significantly increased resolution of determining macropore recharge by combining physical, chemical, and isotopic methods of analysis. Techniques for quantifying macropore recharge were developed for both small-scale (1 to 10 km2) and regional-scale areas in and semi-arid areas. The Southern High Plains region of Texas and New Mexico was used as a representative field site to test these methods. Macropore recharge in small-scale areas is considered to be the difference between total recharge through floors of topographically dosed basins and interstitial recharge through the same area. On the regional scale, macropore recharge was considered to be the difference between regional average annual recharge and interstitial recharge measured in the unsaturated zone. Stable isotopic composition of ground water and precipitation was used us an independent estimate of macropore recharge on the regional scale. Results of this analysis suggest that in the Southern High Plains recharge flux through macropores is between 60 and 80 percent of the total 11 mm/y. Between 15 and 35 percent of the recharge occurs by interstitial recharge through the basin floors. Approximately 5 percent of the total recharge occurs as either interstitial or matrix recharge between the basin floors, representing approximately 95 percent of the area. The approach is applicable to other arid and semi-arid areas that focus rainfall into depressions or valleys.The purpose of this paper is to illustrate the significantly increased resolution of determining macropore recharge by combining physical, chemical, and isotopic methods of analysis. Techniques for quantifying macropore recharge were developed for both small-scale (1 to 10 km2) and regional-scale areas in arid and semi-arid areas. The Southern High Plains region of Texas and New Mexico was used as a representative field site to test these methods. Macropore recharge in small-scale areas is considered

  5. Spatiotemporal analysis and trends of aridity of Iberian Peninsula (1960-2010)

    NASA Astrophysics Data System (ADS)

    Paniagua, Luis L.; García, Abelardo; Moral, Francisco J.; Rebollo, Francisco J.

    2016-04-01

    In this study the aridity of the Iberian Peninsula was analysed, taking into account 45 stations in Spain and Portugal from 1960 to 2010. The De Martonne Index was considered. The goal of this study was to explore the spatial distribution and to determine monotonic trends and shift changes in annual aridity by using the Mann-Kendall test and the Seńs estimator. The spatially interpolated maps of the aridity indice were generated using the ordinary kriging algorithm in a geographic information system (GIS) environment. A great variability for Martonne Index was found, gathering from semiarid climates to extremely humid, although the former being the dominant type. 41 temporal series showed decreasing tendencies, 15 of them significant, belonging to all climate types, which indicates a increase in aridity during the research period. A shift in the aridity tendency has been observed around 1979, and a period of greater aridity started since.

  6. Identification and functional characterization of a novel bipartite nuclear localization sequence in ARID1A.

    PubMed

    Bateman, Nicholas W; Shoji, Yutaka; Conrads, Kelly A; Stroop, Kevin D; Hamilton, Chad A; Darcy, Kathleen M; Maxwell, George L; Risinger, John I; Conrads, Thomas P

    2016-01-01

    AT-rich interactive domain-containing protein 1A (ARID1A) is a recently identified nuclear tumor suppressor frequently altered in solid tumor malignancies. We have identified a bipartite-like nuclear localization sequence (NLS) that contributes to nuclear import of ARID1A not previously described. We functionally confirm activity using GFP constructs fused with wild-type or mutant NLS sequences. We further show that cyto-nuclear localized, bipartite NLS mutant ARID1A exhibits greater stability than nuclear-localized, wild-type ARID1A. Identification of this undescribed functional NLS within ARID1A contributes vital insights to rationalize the impact of ARID1A missense mutations observed in patient tumors.

  7. Discharge estimation in arid areas with the help of optical satellite data

    NASA Astrophysics Data System (ADS)

    Mett, M.; Aufleger, M.

    2009-04-01

    The MENA region is facing severe water scarcity. Overexploitation of groundwater resources leads to an ongoing drawdown of the water tables, salinisation and desertification of vast areas. To make matters worse enormous birth-rates, economic growth and refugees from conflict areas let the need for water explode. In the context of climate change this situation will even worsen and armed conflicts are within the bounds of possibility. To ease water scarcity many innovative techniques like artificial groundwater recharge are being developed or already state of the art. But missing hydrological information (for instance discharge data) often prevents design and efficient operation of such measures. Especially in poor countries hydrological measuring devices like gage stations are often missing, in a bad status or professionals of the water sector are absent. This leads to the paradox situation that in many arid regions water resources are indeed available but they cannot be utilised because they are not known. Nowadays different approaches are being designed to obtain hydrological information from perennial river systems with the help of satellite techniques. Mostly they are based on hydraulic parameters like river dimensions, roughness and water levels which can be derived from satellite data. By using conventional flow formulas and additional field investigations the discharge can be estimated. Another methodology derived information about maximum flow depth and flow width from optical sensors of high resolution to calculate discharge of the rivers whilst the flood. Attempts to derive discharge information from structural components of the river and fluviomorphologic changes due to changing flow regimes are in the focus of recent research. One attempt used Synthetic Aperture Radar (SAR) data to estimate discharge in braided river systems. Other attempts used airborne SAR imagery to obtain information about sinuosity and total river width of perennial braided river

  8. Learning Flow Regimes from Snapshot Data

    NASA Astrophysics Data System (ADS)

    Hemati, Maziar

    2015-11-01

    Fluid flow regimes are often categorized based on the qualitative patterns observed by visual inspection of the flow field. For example, bluff body wakes are traditionally classified based on the number and groupings of vortices shed per cycle (e.g., 2S, 2P, P+S), as seen in snapshots of the vorticity field. Subsequently, the existence and nature of these identified flow regimes can be explained through dynamical analyses of the fluid mechanics. Unfortunately, due to the need for manual inspection, the approach described above can be impractical for studies that seek to learn flow regimes from large volumes of numerical and/or experimental snapshot data. Here, we appeal to established techniques from machine learning and data-driven dynamical systems analysis to automate the task of learning flow regimes from snapshot data. Moreover, by appealing to the dynamical structure of the fluid flow, this approach also offers the potential to reveal flow regimes that may be overlooked by visual inspection alone. Here, we will introduce the methodology and demonstrate its capabilities and limitations in the context of several model flows.

  9. Spatial distribution and comparison of aridity indices in Extremadura, southwestern Spain

    NASA Astrophysics Data System (ADS)

    Moral, Francisco J.; Rebollo, Francisco J.; Paniagua, Luis L.; García-Martín, Abelardo; Honorio, Fulgencio

    2015-09-01

    In semi-arid lands with warm climates, aridity is a real hazard, with the threat of desertification because of greater precipitation variability and prolonged droughts. Aridity indices can be used to identify areas prone to desertification. The present study aimed to analyse the spatial distribution of aridity in Extremadura, southwestern Spain, using three indices: the De Martonne aridity index (I DM), the Pinna combinative index (I P), and the Food and Agriculture Organization (FAO) aridity index (I F). Temperature, precipitation, and evapotranspiration data from 90 weather stations located throughout Extremadura and 27 along boundaries with at least 30-year length (within the 1980-2011 period) were used to compute each index at each station. The statistical properties of each aridity index were assessed, and later, they were mapped by means of an integrated geographic information system (GIS) and a multivariate geostatistical (regression-kriging) algorithm in which exhaustive secondary information on elevation was incorporated. Annual and seasonal I DM and I F, and annual I P-kriged maps were generated. According to annual I DM, the semi-arid and Mediterranean conditions are predominant in the region, covering about 70 % of the territory, while about 94 % of the areas are classified as dry and semi-dry Mediterranean based on annual I P and about 86 % are classified as semi-arid and dry categories based on annual I F. The most vulnerable to aridity are the natural regions located to the west, the south, and the southeast of Extremadura, especially during summer, when arid conditions are found across the region. Although the three aridity indices were highly correlated, displaying similar spatial patterns, I DM was preferred because it can better discriminate different climate conditions in Extremadura.

  10. Epigenetic synthetic lethality in ovarian clear cell carcinoma: EZH2 and ARID1A mutations.

    PubMed

    Bitler, Benjamin G; Aird, Katherine M; Zhang, Rugang

    2016-01-01

    The components of the Switch/Sucrose non-fermentable (SWI/SNF) complex are mutated in approximately 20% of human cancers. The A/T-rich interacting domain 1A (ARID1A) subunit has one of the highest mutation rates. Most notably, ARID1A is mutated in over 50% of ovarian clear cell carcinomas (OCCCs). We reported that inhibition of enhancer of zeste homology 2 (EZH2) is synthetically lethal in ARID1A-mutated OCCC. PMID:27308548

  11. Various ARID1A expression patterns and their clinical significance in gastric cancers.

    PubMed

    Kim, Young-Bae; Ham, In-Hye; Hur, Hoon; Lee, Dakeun

    2016-03-01

    AT-rich interactive domain 1A (ARID1A) is frequently mutated in gastric cancers, and loss of ARID1A expression is considered a poor prognostic factor in various cancers. However, in practice, ARID1A shows various expression patterns, and our understanding of its significance is limited. We performed immunohistochemistry for ARID1A, MLH1, and pS6 using whole tissue blocks of 350 gastric cancers and classified the ARID1A expression as follows: retained (63.7%), reduced (17.7%), complete loss (14.9%), and partial loss (3.7%). Complete/partial loss was more common in poorly differentiated histology (P < .001), and reduced or complete loss of ARID1A was frequent in cases with MLH1 loss (P < .001). The ARID1A-reduced group showed only slightly inferior disease-free survival (DFS; P = .254) and overall survival (OS; P = .377) compared to those of the ARID1A-retained group, whereas the group with complete loss showed significantly worse DFS (hazard ratio [HR], 1.732; P = .015) and OS (HR, 1.751; P = .013). Worse DFS (HR, 2.672; P = .005) and OS (HR, 2.531; P = .002) were also noted in the group with partial loss. High expression of pS6 was observed more frequently in groups showing altered ARID1A expression patterns (P < .001). In conclusion, reduced ARID1A expression is not a major prognostic determinant, although it may lead to AKT pathway activation. Tumor cells lacking ARID1A expression may influence the prognosis even if they constitute only a small proportion of the tumor sample. Our data provide an enhanced roadmap for understanding ARID1A with implications for future research and therapeutics. PMID:26826411

  12. Westerly jet stream and past millennium climate change in Arid Central Asia simulated by COSMO-CLM model

    NASA Astrophysics Data System (ADS)

    Fallah, Bijan; Sodoudi, Sahar; Cubasch, Ulrich

    2016-05-01

    This study tackles one of the most debated questions around the evolution of Central Asian climate: the "Puzzle" of moisture changes in Arid Central Asia (ACA) throughout the past millennium. A state-of-the-art Regional Climate Model (RCM) is subsequently employed to investigate four different 31-year time slices of extreme dry and wet spells, chosen according to changes in the driving data, in order to analyse the spatio-temporal evolution of the moisture variability in two different climatological epochs: Medieval Climate Anomaly (MCA) and Little Ice Age (LIA). There is a clear regime behavior and bimodality in the westerly Jet phase space throughout the past millennium in ACA. The results indicate that the regime changes during LIA show a moist ACA and a dry East China. During the MCA, the Kazakhstan region shows a stronger response to the westerly jet equatorward shift than during the LIA. The out-of-phase pattern of moisture changes between India and ACA exists during both the LIA and the MCA. However, the pattern is more pronounced during the LIA.

  13. Estimation of soil moisture-thermal infrared emissivity relation in arid and semi-arid environments using satellite observations

    NASA Astrophysics Data System (ADS)

    Grazia Blasi, Maria; Masiello, Guido; Serio, Carmine; Venafra, Sara; Liuzzi, Giuliano; Dini, Luigi

    2016-04-01

    The retrieval of surface parameters is very important for various aspects concerning the climatological and meteorological context. At this purpose surface emissivity represents one of the most important parameters useful for different applications such as the estimation of climate changes and land cover features. It is known that thermal infrared (TIR) emissivity is affected by soil moisture, but there are very few works in literature on this issue. This study is aimed to analyze and find a relation between satellite soil moisture data and TIR emissivity focusing on arid and semi-arid environments. These two parameters, together with the land surface temperature, are fundamental for a better understanding of the physical phenomena implied in the soil-atmosphere interactions and the surface energy balance. They are also important in several fields of study, such as climatology, meteorology, hydrology and agriculture. In particular, there are several studies stating a correlation between soil moisture and the emissivity at 8-9 μm in desertic soils, which corresponds to the quartz Reststrahlen, a feature which is typical of sandy soils. We investigated several areas characterized by arid or semi-arid environments, focusing our attention on the Dahra desert (Senegal), and on the Negev desert (Israel). For the Dahra desert we considered both in situ, provided by the International Soil Moisture Network, and satellite soil moisture data, from ASCAT and AMSR-E sensors, for the whole year 2011. In the case of the Negev desert soil moisture data are derived from ASCAT observations and we computed a soil moisture index from a temporal series of SAR data acquired by the Cosmo-SkyMed constellation covering a period of six months, from June 2015 to November 2015. For both cases soil moisture data were related to the retrieved TIR emissivity from the geostationary satellite SEVIRI in three different spectral channels, at 8.7 μm, 10.8 μm and 12 μm. A Kalman filter physical

  14. Gradual regime shifts in fairy circles

    PubMed Central

    Zelnik, Yuval R.; Meron, Ehud; Bel, Golan

    2015-01-01

    Large responses of ecosystems to small changes in the conditions—regime shifts—are of great interest and importance. In spatially extended ecosystems, these shifts may be local or global. Using empirical data and mathematical modeling, we investigated the dynamics of the Namibian fairy circle ecosystem as a case study of regime shifts in a pattern-forming ecosystem. Our results provide new support, based on the dynamics of the ecosystem, for the view of fairy circles as a self-organization phenomenon driven by water–vegetation interactions. The study further suggests that fairy circle birth and death processes correspond to spatially confined transitions between alternative stable states. Cascades of such transitions, possible in various pattern-forming systems, result in gradual rather than abrupt regime shifts. PMID:26362787

  15. Massive superstring scatterings in the Regge regime

    SciTech Connect

    He Song; Lee, Jen-Chi; Takahashi, Keijiro; Yang Yi

    2011-03-15

    We calculate four classes of high-energy massive string scattering amplitudes of fermionic string theory at arbitrary mass levels in the Regge regime (RR). We show that all four leading order amplitudes in the RR can be expressed in terms of the Kummer function of the second kind. Based on the summation algorithm of a set of extended signed Stirling number identities, we show that all four ratios calculated previously by the method of decoupling of zero-norm states among scattering amplitudes in the Gross regime can be extracted from this Kummer function in the RR. Finally, we conjecture and give evidence that the existence of these four Gross regime ratios in the RR persists to subleading orders in the Regge expansion of all high-energy fermionic string scattering amplitudes.

  16. Gradual regime shifts in fairy circles.

    PubMed

    Zelnik, Yuval R; Meron, Ehud; Bel, Golan

    2015-10-01

    Large responses of ecosystems to small changes in the conditions--regime shifts--are of great interest and importance. In spatially extended ecosystems, these shifts may be local or global. Using empirical data and mathematical modeling, we investigated the dynamics of the Namibian fairy circle ecosystem as a case study of regime shifts in a pattern-forming ecosystem. Our results provide new support, based on the dynamics of the ecosystem, for the view of fairy circles as a self-organization phenomenon driven by water-vegetation interactions. The study further suggests that fairy circle birth and death processes correspond to spatially confined transitions between alternative stable states. Cascades of such transitions, possible in various pattern-forming systems, result in gradual rather than abrupt regime shifts. PMID:26362787

  17. Spin glasses in the nonextensive regime

    NASA Astrophysics Data System (ADS)

    Wittmann, Matthew; Young, A. P.

    2012-04-01

    Spin systems with long-range interactions are “nonextensive” if the strength of the interactions falls off sufficiently slowly with distance. It has been conjectured for ferromagnets and, more recently, for spin glasses that, everywhere in the nonextensive regime, the free energy is exactly equal to that for the infinite range model in which the characteristic strength of the interaction is independent of distance. In this paper we present the results of Monte Carlo simulations of the one-dimensional long-range spin glasses in the nonextensive regime. Using finite-size scaling, our results for the transition temperatures are consistent with this prediction. We also propose and provide numerical evidence for an analogous result for diluted long-range spin glasses in which the coordination number is finite, namely, that the transition temperature throughout the nonextensive regime is equal to that of the infinite-range model known as the Viana-Bray model.

  18. Mental hospital regime in England and Wales.

    PubMed

    Andoh, B

    1996-01-01

    Although non-private conventional mental hospitals in England and Wales have been in existence for about two centuries, the literature on the actual regimes in those hospitals is not enormous. Since Goffman's Asylums, things have changed in North America, the United Kingdom and elsewhere. However, not much has been written about the present position. This article (based on qualitative data collected over 12 months) describes the regimes in three conventional mental hospitals in S.E. England. It covers hospital policy on the admission of a patient, daily ward routine, the open-door policy, fire precautions, close observation, seclusion, search of patients and their belongings and the handling of patients' correspondence. It concludes that the regimes are reasonable.

  19. Gradual regime shifts in fairy circles.

    PubMed

    Zelnik, Yuval R; Meron, Ehud; Bel, Golan

    2015-10-01

    Large responses of ecosystems to small changes in the conditions--regime shifts--are of great interest and importance. In spatially extended ecosystems, these shifts may be local or global. Using empirical data and mathematical modeling, we investigated the dynamics of the Namibian fairy circle ecosystem as a case study of regime shifts in a pattern-forming ecosystem. Our results provide new support, based on the dynamics of the ecosystem, for the view of fairy circles as a self-organization phenomenon driven by water-vegetation interactions. The study further suggests that fairy circle birth and death processes correspond to spatially confined transitions between alternative stable states. Cascades of such transitions, possible in various pattern-forming systems, result in gradual rather than abrupt regime shifts.

  20. Massive superstring scatterings in the Regge regime

    NASA Astrophysics Data System (ADS)

    He, Song; Lee, Jen-Chi; Takahashi, Keijiro; Yang, Yi

    2011-03-01

    We calculate four classes of high-energy massive string scattering amplitudes of fermionic string theory at arbitrary mass levels in the Regge regime (RR). We show that all four leading order amplitudes in the RR can be expressed in terms of the Kummer function of the second kind. Based on the summation algorithm of a set of extended signed Stirling number identities, we show that all four ratios calculated previously by the method of decoupling of zero-norm states among scattering amplitudes in the Gross regime can be extracted from this Kummer function in the RR. Finally, we conjecture and give evidence that the existence of these four Gross regime ratios in the RR persists to subleading orders in the Regge expansion of all high-energy fermionic string scattering amplitudes.

  1. Targeting EZH2 methyltransferase activity in ARID1A mutated cancer cells is synthetic lethal

    PubMed Central

    Biter, Benjamin G.; Aird, Katherine M.; Garipov, Azat; Li, Hua; Amatangelo, Michael; Kossenkov, Andrew V.; Schultz, David C.; Liu, Qin; Shih, Ie-Ming; Conejo-Garcia, Jose R.; Speicher, David W.; Zhang, Rugang

    2015-01-01

    ARID1A, a chromatin remodeler, shows one of the highest mutation rates across many cancer types. Notably, ARID1A is mutated in over 50% of ovarian clear cell carcinomas, which currently has no effective therapy. To date, clinically applicable targeted cancer therapy based on ARID1A mutational status has not been described. Here we show that inhibition of the EZH2 methyltransferase acts in a synthetic lethal manner in ARID1A mutated ovarian cancer cells. ARID1A mutational status correlates with response to the EZH2 inhibitor. We identified PIK3IP1 as a direct ARID1A/EZH2 target, which is upregulated by EZH2 inhibition and contributes to the observed synthetic lethality by inhibiting PI3K/AKT signaling. Significantly, EZH2 inhibition causes regression of ARID1A mutated ovarian tumors in vivo. Together, these data demonstrate for the first time a synthetic lethality between ARID1A mutation and EZH2 inhibition. They indicate that pharmacological inhibition of EZH2 represents a novel treatment strategy for ARID1A mutated cancers. PMID:25686104

  2. Statistical regimes of random laser fluctuations

    SciTech Connect

    Lepri, Stefano; Cavalieri, Stefano; Oppo, Gian-Luca; Wiersma, Diederik S.

    2007-06-15

    Statistical fluctuations of the light emitted from amplifying random media are studied theoretically and numerically. The characteristic scales of the diffusive motion of light lead to Gaussian or power-law (Levy) distributed fluctuations depending on external control parameters. In the Levy regime, the output pulse is highly irregular leading to huge deviations from a mean-field description. Monte Carlo simulations of a simplified model which includes the population of the medium demonstrate the two statistical regimes and provide a comparison with dynamical rate equations. Different statistics of the fluctuations helps to explain recent experimental observations reported in the literature.

  3. Synchronization regimes in conjugate coupled chaotic oscillators.

    PubMed

    Karnatak, Rajat; Ramaswamy, Ram; Prasad, Awadhesh

    2009-09-01

    Nonlinear oscillators that are mutually coupled via dissimilar (or conjugate) variables display distinct regimes of synchronous behavior. In identical chaotic oscillators diffusively coupled in this manner, complete synchronization occurs only by chaos suppression when the coupled subsystems drive each other into a regime of periodic dynamics. Furthermore, the coupling does not vanish but acts as an "internal" drive. When the oscillators are mismatched, phase synchronization occurs, while in a master slave configuration, generalized synchrony results. These effects are demonstrated in a system of coupled chaotic Rossler oscillators.

  4. Anomalous Hall effect in localization regime

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Zhu, Kai; Yue, Di; Tian, Yuan; Jin, Xiaofeng

    2016-06-01

    The anomalous Hall effect in the ultrathin film regime is investigated in Fe(001)(1-3 nm) films epitaxial on MgO(001). The logarithmic localization correction to longitudinal resistivity and anomalous Hall resistivity are observed at low temperature. We identify that the coefficient of skew scattering has a reduction from metallic to localized regime, while the contribution of side jump has inconspicuous change except for a small drop below 10 K. Furthermore, we discover that the intrinsic anomalous Hall conductivity decreases with the reduction of thickness below 2 nm. Our results provide unambiguous experimental evidence to clarify the problem of localization correction to the anomalous Hall effect.

  5. Collective working regimes for coupled heat engines.

    PubMed

    Jiménez de Cisneros, B; Hernández, A Calvo

    2007-03-30

    Arrays of coupled heat engines are proposed as a paradigmatic model to study the trade-off between individual and collective behavior in linear irreversible thermodynamics. The analysis reveals the existence of a control parameter which selects different operation regimes of the whole array. In particular, the regimes of maximum efficiency and maximum power are considered, giving for the latter a general derivation of the Curzon-Ahlborn efficiency which surprisingly does not depend on whether or not the individual engines in the array work at maximum power.

  6. Supercurrent in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Amet, F.; Ke, C. T.; Borzenets, I. V.; Wang, J.; Watanabe, K.; Taniguchi, T.; Deacon, R. S.; Yamamoto, M.; Bomze, Y.; Tarucha, S.; Finkelstein, G.

    2016-05-01

    A promising route for creating topological states and excitations is to combine superconductivity and the quantum Hall (QH) effect. Despite this potential, signatures of superconductivity in the QH regime remain scarce, and a superconducting current through a QH weak link has been challenging to observe. We demonstrate the existence of a distinct supercurrent mechanism in encapsulated graphene samples contacted by superconducting electrodes, in magnetic fields as high as 2 tesla. The observation of a supercurrent in the QH regime marks an important step in the quest for exotic topological excitations, such as Majorana fermions and parafermions, which may find applications in fault-tolerant quantum computing.

  7. Supercurrent in the quantum Hall regime.

    PubMed

    Amet, F; Ke, C T; Borzenets, I V; Wang, J; Watanabe, K; Taniguchi, T; Deacon, R S; Yamamoto, M; Bomze, Y; Tarucha, S; Finkelstein, G

    2016-05-20

    A promising route for creating topological states and excitations is to combine superconductivity and the quantum Hall (QH) effect. Despite this potential, signatures of superconductivity in the QH regime remain scarce, and a superconducting current through a QH weak link has been challenging to observe. We demonstrate the existence of a distinct supercurrent mechanism in encapsulated graphene samples contacted by superconducting electrodes, in magnetic fields as high as 2 tesla. The observation of a supercurrent in the QH regime marks an important step in the quest for exotic topological excitations, such as Majorana fermions and parafermions, which may find applications in fault-tolerant quantum computing. PMID:27199424

  8. Convective Regimes in Crystallizing Basaltic Magma Chambers

    NASA Astrophysics Data System (ADS)

    Gilbert, A. J.; Neufeld, J. A.; Holness, M. B.

    2015-12-01

    Cooling through the chamber walls drives crystallisation in crustal magma chambers, resulting in a cumulate pile on the floor and mushy regions at the walls and roof. The liquid in many magma chambers, either the bulk magma or the interstitial liquid in the mushy regions, may convect, driven either thermally, due to cooling, or compositionally, due to fractional crystallization. We have constructed a regime diagram of the possible convective modes in a system containing a basal mushy layer. These modes depend on the large-scale buoyancy forcing characterised by a global Rayleigh number and the proportion of the chamber height constituting the basal mushy region. We have tested this regime diagram using an analogue experimental system composed of a fluid layer overlying a pile of almost neutrally buoyant inert particles. Convection in this system is driven thermally, simulating magma convection above and within a porous cumulate pile. We observe a range of possible convective regimes, enabling us to produce a regime diagram. In addition to modes characterised by convection of the bulk and interstitial fluid, we also observe a series of regimes where the crystal pile is mobilised by fluid motions. These regimes feature saltation and scouring of the crystal pile by convection in the bulk fluid at moderate Rayleigh numbers, and large crystal-rich fountains at high Rayleigh numbers. For even larger Rayleigh numbers the entire crystal pile is mobilised in what we call the snowglobe regime. The observed mobilisation regimes may be applicable to basaltic magma chambers. Plagioclase in basal cumulates crystallised from a dense magma may be a result of crystal mobilisation from a plagioclase-rich roof mush. Compositional convection within such a mush could result in disaggregation, enabling the buoyant plagioclase to be entrained in relatively dense descending liquid plumes and brought to the floor. The phenocryst load in porphyritic lavas is often interpreted as a

  9. Water regime history drives responses of soil Namib Desert microbial communities to wetting events

    PubMed Central

    Frossard, Aline; Ramond, Jean-Baptiste; Seely, Mary; Cowan, Don A.

    2015-01-01

    Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel “dry condition” control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities. PMID:26195343

  10. Water regime history drives responses of soil Namib Desert microbial communities to wetting events

    NASA Astrophysics Data System (ADS)

    Frossard, Aline; Ramond, Jean-Baptiste; Seely, Mary; Cowan, Don A.

    2015-07-01

    Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel “dry condition” control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities.

  11. Watershed flow paths and stream water nitrogen-to-phosphorus ratios under simulated precipitation regimes

    NASA Astrophysics Data System (ADS)

    Green, Mark B.; Wang, Dong

    2008-12-01

    Stream water nitrogen-to-phosphorus (N:P) ratios influence algal community composition and nutrient limitation in lotic ecosystems. N:P ratios trend across climates, with low stream water N:P ratios more common in arid climates, yet little is known about mechanisms that cause this spatial and temporal variation. This study evaluates the relationship between precipitation regime (mean annual precipitation and its frequency), watershed flow pathways, and stream water total N-to-total P (TN:TP) ratios, using a model based on a central Minnesota watershed. The purpose of the study was to examine hydrologic mechanisms that control stream water TN:TP ratios. We constructed a model that accounted for hydrological and biogeochemical processes, followed by 161 simulations under a wide range of precipitation frequency and intensity scenarios. Precipitation regime controlled total runoff and subsurface hydrologic connectivity, which had implications for TN and TP concentrations and TN:TP ratios. Results supported the hypothesis that watershed hydrology is an important control on stream water TN:TP ratios and suggested that variation of flow pathways can lead to fundamental changes of N:P ratios.

  12. Water regime history drives responses of soil Namib Desert microbial communities to wetting events.

    PubMed

    Frossard, Aline; Ramond, Jean-Baptiste; Seely, Mary; Cowan, Don A

    2015-01-01

    Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel "dry condition" control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities. PMID:26195343

  13. Delinating Thermohaline Double-Diffusive Rayleigh Regimes

    NASA Astrophysics Data System (ADS)

    Graf, T.; Walther, M.; Kolditz, O.; Liedl, R.

    2013-12-01

    In natural systems, convective flow induced from density differences may occur in near-coastal aquifers, atmospheric boundary layers, oceanic streams or within the earth crust. Whether an initially stable, diffusive regime evolves into a convective (stable or chaotic) regime, or vice versa, depends on the system's framing boundary conditions. A conventional parameter to express the relation between diffusive and convective forces of such a density-driven regime is Rayleigh number (Ra). While most systems are mainly dominated by only a single significant driving force (i.e. only temperature or salinity), some systems need to consider two boundary processes (e.g. deep, thus warm, haline flow in porous media). In that case, a two-dimensional, 'double-diffusive' Rayleigh system can be defined. Nield (1998) postulated a boundary between diffusive and convective regime at RaT + RaC = 4pi^2 in the first quadrant (Q1), with Rayleigh numbers for temperature and concentration respectively. The boundary in the forth quadrant (Q4) could not exactly be determined, yet the approximate position estimated. Simulations with HydroGeoSphere (Therrien, 2010) using a vertical, quadratic, homogeneous, isotropic setup confirmed the existence of the 4pi^2-boundary and revealed additional regimes (diffusive, single-roll, double-roll, chaotic) in Q1. Also, non-chaotic, oscillating patterns could be identified in Q4. More detailed investigations with OpenGeoSys (Kolditz, 2012) confirmed the preceding HGS results, and, using a 1:10-scaled domain (height:length), uncovered even more distinctive regimes (diffusive, minimum ten roles, supposely up to 25 roles, and chaotic?) in Q1, while again, oscillating patterns were found in the transition zone between diffusive and chaotic regimes in Q4. Output of numerical simulations from Q1 and Q4 show the mentioned regimes (diffusive, stable-convective, stable-oscillatory, chaotic) while results are displayed in context of a possible delination between

  14. Arid site water balance: evapotranspiration modeling and measurements

    SciTech Connect

    Gee, G.W.; Kirkham, R.R.

    1984-09-01

    In order to evaluate the magnitude of radionuclide transport at an aird site, a field and modeling study was conducted to measure and predict water movement under vegetated and bare soil conditions. Significant quantities of water were found to move below the roo of a shallow-rooted grass-covered area during wet years at the Hanford site. The unsaturated water flow model, UNSAT-1D, was resonably successful in simulating the transient behavior of the water balance at this site. The effects of layered soils on water balance were demonstrated using the model. Models used to evaluate water balance in arid regions should not rely on annual averages and assume that all precipitation is removed by evapotranspiration. The potential for drainage at arid sites exists under conditions where shallow rooted plants grow on coarse textured soils. This condition was observed at our study site at Hanford. Neutron probe data collected on a cheatgrass community at the Hanford site during a wet year indicated that over 5 cm of water drained below the 3.5-m depth. The unsaturated water flow model, UNSAT-1D, predicted water drainage of about 5 cm (single layer, 10 months) and 3.5 cm (two layers, 12 months) for the same time period. Additional field measurements of hydraulic conductivity will likely improve the drainage estimate made by UNSAT-1D. Additional information describing cheatgrass growth and water use at the grass site could improve model predictions of sink terms and subsequent calculations of water storage within the rooting zone. In arid areas where the major part of the annual precipitation occurs during months with low average potential evapotranspiration and where soils are vegetated but are coarse textured and well drained, significant drainage can occur. 31 references, 18 figures, 1 table.

  15. Understanding Hydrologic Processes in Semi-Arid Cold Climates

    NASA Astrophysics Data System (ADS)

    Barber, M. E.; Beutel, M.; Lamb, B.; Watts, R.

    2004-12-01

    Water shortages destabilize economies and ecosystems. These shortages are caused by complex interactions between climate variability, ecosystem processes, and increased demand from human activities. In the semi-arid region of the northwestern U.S., water availability during drought periods has already reached crisis levels and the problems are expected to intensify as the effects of global climate change and population growth continue to alter the supply and demand patterns. Many of the problems are critical to this region because hydropower, agriculture, navigation, fish and wildlife survival, water supply, tourism, environmental protection, and water-based recreation are vital to state economies and our way of life. In order to assess the spatial and temporal nature of hydrologic responses, consistent and comprehensive long-term data sets are needed. In response to these needs, we would like to propose the Spokane River drainage basin as a long-term hydrologic observatory. The Spokane River basin is located in eastern Washington and northern Idaho and is a tributary of the Columbia River. The watershed consists of several major surface water tributaries as well as natural and man-made lakes and reservoirs. With headwaters beginning in the Rocky Mountains, the drainage area is approximately 6,640 mi2. In addition to providing an excellent study area for examining many conventional water resource problems, the Spokane River watershed also presents a unique opportunity for investigating many of the hydrologic processes found in semi-arid cold climates. Snowfall in the watershed varies spatially between 35 inches near the mouth of the basin to over 112 inches at the headwaters. These varied hydrologic uses provide a unique opportunity to address many common challenges faced by water resource professionals. This broad array of issues encompasses science, engineering, agriculture, social sciences, economics, fisheries, and a host of other disciplines. In addition

  16. Biometeorology and animal protein production: the case of arid lands.

    PubMed

    Yousef, M K

    1991-11-01

    To meet the food demands of the ever-increasing world population, man's only major future land bank is the arid lands. However, their exploitation has been limited and constitutes a major challenge to many scientific disciplines. Under the present conditions of hunger and/or malnutrition, a large-scale expansion in food production is not to be expected. Hence, it is imperative that in any development programme for arid lands, malnutrition, in general, and a deficiency of animal proteins, in particular, should be considered. Major advancements have been made, but much remains to be learned and implemented. Improvement of native farm animals should be the first step in increasing the availability of animal proteins. This may be achieved by an educational programme to enhance management, housing, food intake, etc. Then a breeding programme selecting for high productivity can be pursued. After eliciting the maximum return from the present livestock, attention should be directed to domesticating wild ungulates and/or introducing highly productive temperature-zone breeds for upgrading the local animals. Additionally, new potential and unconventional sources of animal proteins must be explored. Aquaculture, in particular, has the potential of producing large quantities of lower-cost protein-rich food. Available evidence in arid regions of the developed countries, i.e. USA and Australia, promises favourable results in our efforts toward increasing the production of animal protein. By innovative methods and long-term planning, such successes can be adapted and transferred to other regions of the world, with the aim of gradually lessening the present state of malnutrition and hunger.

  17. Improved Climate Risk Simulations for Rice in Arid Environments

    PubMed Central

    van Oort, Pepijn A. J.; de Vries, Michiel E.; Yoshida, Hiroe; Saito, Kazuki

    2015-01-01

    We integrated recent research on cardinal temperatures for phenology and early leaf growth, spikelet formation, early morning flowering, transpirational cooling, and heat- and cold-induced sterility into an existing to crop growth model ORYZA2000. We compared for an arid environment observed potential yields with yields simulated with default ORYZA2000, with modified subversions of ORYZA2000 and with ORYZA_S, a model developed for the region of interest in the 1990s. Rice variety ‘IR64’ was sown monthly 15-times in a row in two locations in Senegal. The Senegal River Valley is located in the Sahel, near the Sahara desert with extreme temperatures during day and night. The existing subroutines underestimated cold stress and overestimated heat stress. Forcing the model to use observed spikelet number and phenology and replacing the existing heat and cold subroutines improved accuracy of yield simulation from EF = −0.32 to EF =0.70 (EF is modelling efficiency). The main causes of improved accuracy were that the new model subversions take into account transpirational cooling (which is high in arid environments) and early morning flowering for heat sterility, and minimum rather than average temperature for cold sterility. Simulations were less accurate when also spikelet number and phenology were simulated. Model efficiency was 0.14 with new heat and cold routines and improved to 0.48 when using new cardinal temperatures for phenology and early leaf growth. The new adapted subversion of ORYZA2000 offers a powerful analytic tool for climate change impact assessment and cropping calendar optimisation in arid regions. PMID:25774909

  18. Biometeorology and animal protein production: the case of arid lands

    NASA Astrophysics Data System (ADS)

    Yousef, M. K.

    1991-09-01

    To meet the food demands of the ever-increasing world population, man's only major future land bank is the arid lands. However, their exploitation has been limited and constitutes a major challenge to many scientific disciplines. Under the present conditions of hunger and/or malnutrition, a large-scale expansion in food production is not to be expected. Hence, it is imperative that in any development programme for arid lands, malnutrition, in general, and a deficiency of animal proteins, in particular, should be considered. Major advancements have been made, but much remains to be learned and implemented. Improvement of native farm animals should be the first step in increasing the availability of animal proteins. This may be achieved by an educational programme to enhance management, housing, food intake, etc. Then a breeding programme selecting for high productivity can be pursued. After eliciting the maximum return from the present livestock, attention should be directed to domesticating wild ungulates and/or introducing highly productive temperature-zone breeds for upgrading the local animals. Additionally, new potential and unconventional sources of animal proteins must be explored. Aquaculture, in particular, has the potential of producing large quantities of lowercost protein-rich food. Available evidence in arid regions of the developed countries, i.e. USA and Australia, promises favourable results in our efforts toward increasing the production of animal protein. By innovative methods and long-term planning, such successes can be adapted and transferred to other regions of the world, with the aim of gradually lessening the present state of malnutrition and hunger.

  19. Meaningful traits for grouping plant species across arid ecosystems.

    PubMed

    Bär Lamas, Marlene Ivonne; Carrera, A L; Bertiller, M B

    2016-05-01

    Grouping species may provide some degree of simplification to understand the ecological function of plants on key ecosystem processes. We asked whether groups of plant species based on morpho-chemical traits associated with plant persistence and stress/disturbance resistance reflect dominant plant growth forms in arid ecosystems. We selected twelve sites across an aridity gradient in northern Patagonia. At each site, we identified modal size plants of each dominant species and assessed specific leaf area (SLA), plant height, seed mass, N and soluble phenol concentration in green and senesced leaves at each plant. Plant species were grouped according with plant growth forms (perennial grasses, evergreen shrubs and deciduous shrubs) and plant morphological and/or chemical traits using cluster analysis. We calculated mean values of each plant trait for each species group and plant growth form. Plant growth forms significantly differed among them in most of the morpho-chemical traits. Evergreen shrubs were tall plants with the highest seed mass and soluble phenols in leaves, deciduous shrubs were also tall plants with high SLA and the highest N in leaves, and perennial grasses were short plants with high SLA and low concentration of N and soluble phenols in leaves. Grouping species by the combination of morpho-chemical traits yielded 4 groups in which species from one growth form prevailed. These species groups differed in soluble phenol concentration in senesced leaves and plant height. These traits were highly correlated. We concluded that (1) plant height is a relevant synthetic variable, (2) growth forms adequately summarize ecological strategies of species in arid ecosystems, and (3) the inclusion of plant morphological and chemical traits related to defenses against environmental stresses and herbivory enhanced the potential of species grouping, particularly within shrubby growth forms. PMID:26897637

  20. Intermediate scaling regime for multilayer epitaxial growth

    NASA Astrophysics Data System (ADS)

    Ross, Richard S.; Gyure, Mark F.

    2000-04-01

    We explore the layer-by-layer (Frank-van der Merwe) growth regime within the context of a discrete solid-on-solid kinetic Monte Carlo model. Our results demonstrate a nontrivial scaling of the lattice step edge density, a quantity that oscillates about a nominally constant value prior to the onset of kinetic roughening. This value varies with the ratio of the surface diffusivity to the deposition flux, R≡D/F, as a nearly perfect power law over a wide range of R. This ``intermediate'' scaling regime extends in coverage from one to at least a few tens of monolayers, which is exactly the regime of most importance to the growth of device-quality semiconductor quantum heterostructures. Comparison with lowest-order linear theories for height fluctuations demonstrates the validity of the Wolf-Villain mean-field theory for the description of lattice step density and ``in-plane'' structure for all coverages down to the first monolayer of growth. However, the mean-field theory does not fully account for the surface width in this regime and consequently does not quantitatively predict the observed step density scaling.

  1. Prolonged Instability Prior to a Regime Shift

    PubMed Central

    Spanbauer, Trisha L.; Allen, Craig R.; Angeler, David G.; Eason, Tarsha; Fritz, Sherilyn C.; Garmestani, Ahjond S.; Nash, Kirsty L.; Stone, Jeffery R.

    2014-01-01

    Regime shifts are generally defined as the point of ‘abrupt’ change in the state of a system. However, a seemingly abrupt transition can be the product of a system reorganization that has been ongoing much longer than is evident in statistical analysis of a single component of the system. Using both univariate and multivariate statistical methods, we tested a long-term high-resolution paleoecological dataset with a known change in species assemblage for a regime shift. Analysis of this dataset with Fisher Information and multivariate time series modeling showed that there was a∼2000 year period of instability prior to the regime shift. This period of instability and the subsequent regime shift coincide with regional climate change, indicating that the system is undergoing extrinsic forcing. Paleoecological records offer a unique opportunity to test tools for the detection of thresholds and stable-states, and thus to examine the long-term stability of ecosystems over periods of multiple millennia. PMID:25280010

  2. Forest damage and snow avalanche flow regime

    NASA Astrophysics Data System (ADS)

    Feistl, T.; Bebi, P.; Christen, M.; Margreth, S.; Diefenbach, L.; Bartelt, P.

    2015-06-01

    Snow avalanches break, uproot and overturn trees causing damage to forests. The extent of forest damage provides useful information on avalanche frequency and intensity. However, impact forces depend on avalanche flow regime. In this paper, we define avalanche loading cases representing four different avalanche flow regimes: powder, intermittent, dry and wet. Using a numerical model that simulates both powder and wet snow avalanches, we study documented events with forest damage. First we show that in the powder regime, although the applied impact pressures can be small, large bending moments in the tree stem can be produced due to the torque action of the blast. The impact area of the blast extends over the entire tree crown. We find that, powder clouds with velocities over 20 m s-1 can break tree stems. Second we demonstrate that intermittent granular loadings are equivalent to low-density uniform dry snow loadings under the assumption of homogeneous particle distributions. The intermittent regime seldom controls tree breakage. Third we calculate quasi-static pressures of wet snow avalanches and show that they can be much higher than pressures calculated using dynamic pressure formulas. Wet snow pressure depends both on avalanche volume and terrain features upstream of the tree.

  3. Forest damage and snow avalanche flow regime

    NASA Astrophysics Data System (ADS)

    Feistl, T.; Bebi, P.; Christen, M.; Margreth, S.; Diefenbach, L.; Bartelt, P.

    2015-01-01

    Snow avalanches break, uproot and overturn trees causing damage to forests. The extent of forest damage provides useful information on avalanche frequency and intensity. However, impact forces depend on avalanche flow regime. In this paper, we define avalanche loading cases representing four different avalanche flow regimes: powder, intermittent, dry and wet. In the powder regime, the blast of the cloud can produce large bending moments in the tree stem because of the impact area extending over the entire tree crown. We demonstrate that intermittent granular loadings are equivalent to low-density uniform dry snow loadings under the assumption of homogeneous particle distributions. In the wet snow case, avalanche pressure is calculated using a quasi-static model accounting for the motion of plug-like wet snow flows. Wet snow pressure depends both on avalanche volume and terrain features upstream of the tree. Using a numerical model that simulates both powder and wet snow avalanches, we study documented events with forest damage. We find (1) powder clouds with velocities over 20 m s-1 can break tree stems, (2) the intermittent regime seldom controls tree breakage and (3) quasi-static pressures of wet snow avalanches can be much higher than pressures calculated using dynamic pressure formulas.

  4. Knowledge Regimes and Contradictions in Education Reforms

    ERIC Educational Resources Information Center

    Aasen, Petter; Prøitz, Tine Sophie; Sandberg, Nina

    2014-01-01

    The article outlines a theoretical framework for understanding education policy and education reforms based on the concept of knowledge regimes. The concept refers to understandings and definitions of governance and procedural aspects, manners of governing and curriculum issues, thus it comprises contents, structures, and processes of education…

  5. Two limiting regimes of interacting Bessel processes

    NASA Astrophysics Data System (ADS)

    Andraus, Sergio; Katori, Makoto; Miyashita, Seiji

    2014-06-01

    We consider the interacting Bessel processes, a family of multiple-particle systems in one dimension where particles evolve as individual Bessel processes and repel each other via a log-potential. We consider two limiting regimes for this family on its two main parameters: the inverse temperature β and the Bessel index ν. We obtain the time-scaled steady-state distributions of the processes for the cases where β or ν are large but finite. In particular, for large β we show that the steady-state distribution of the system corresponds to the eigenvalue distribution of the β-Laguerre ensembles of random matrices. We also estimate the relaxation time to the steady state in both cases. We find that in the freezing regime β → ∞, the scaled final positions of the particles are locked at the square root of the zeroes of the Laguerre polynomial of parameter ν - 1/2 for any initial configuration, while in the regime ν → ∞, we prove that the scaled final positions of the particles converge to a single point. In order to obtain our results, we use the theory of Dunkl operators, in particular the intertwining operator of type B. We derive a previously unknown expression for this operator and study its behaviour in both limiting regimes. By using these limiting forms of the intertwining operator, we derive the steady-state distributions, the estimations of the relaxation times and the limiting behaviour of the processes.

  6. A Global Classification of Contemporary Fire Regimes

    NASA Astrophysics Data System (ADS)

    Norman, S. P.; Kumar, J.; Hargrove, W. W.; Hoffman, F. M.

    2014-12-01

    Fire regimes provide a sensitive indicator of changes in climate and human use as the concept includes fire extent, season, frequency, and intensity. Fires that occur outside the distribution of one or more aspects of a fire regime may affect ecosystem resilience. However, global scale data related to these varied aspects of fire regimes are highly inconsistent due to incomplete or inconsistent reporting. In this study, we derive a globally applicable approach to characterizing similar fire regimes using long geophysical time series, namely MODIS hotspots since 2000. K-means non-hierarchical clustering was used to generate empirically based groups that minimized within-cluster variability. Satellite-based fire detections are known to have shortcomings, including under-detection from obscuring smoke, clouds or dense canopy cover and rapid spread rates, as often occurs with flashy fuels or during extreme weather. Such regions are free from preconceptions, and the empirical, data-mining approach used on this relatively uniform data source allows the region structures to emerge from the data themselves. Comparing such an empirical classification to expectations from climate, phenology, land use or development-based models can help us interpret the similarities and differences among places and how they provide different indicators of changes of concern. Classifications can help identify where large infrequent mega-fires are likely to occur ahead of time such as in the boreal forest and portions of the Interior US West, and where fire reports are incomplete such as in less industrial countries.

  7. Taxonomy of potential international safeguards regimes

    SciTech Connect

    Lemley, J.R.; Allentuck, J.

    1994-08-01

    Since the International Atomic Energy Agency`s (IAEA) search for the components of Iraq`s nuclear weapons program under the auspices of the United Nations Security Council, a consensus for enhancing, strengthening or expanding the scope of international safeguards has developed. Some of the enhanced safeguards concepts which have been suggested include the following: short-notice, challenge, and random inspections; effluent monitoring in onsite, near site, and fly-by modes; local and wide-area environmental monitoring; and utilization of data from space-platform sensors. Potential safeguards regimes can be classified according to the functional and technical criteria which would be necessary for implementation of various enhanced safeguards concepts. While the nature of the regime which will emerge cannot be predicted, the classification of possible regimes according to major characteristics can be useful for identifying functional criteria and implementation challenges, focusing development efforts on the functional criteria, and planning for efficient use of safeguards resources. Precedents established in previously negotiated treaties -- the Chemical Weapons Convention, the Treaty on Conventional Forces in Europe, START, and Open Skies -- are examined with regard to enhancement of the international safeguards regime for nuclear and other weapons of mass destruction. Bilateral, multilateral and regional integration of enhanced safeguards elements is considered.

  8. The future of the nuclear nonproliferation regime.

    SciTech Connect

    Pilat, Joseph F.

    2004-01-01

    Following the 1998 nuclear tests in South Asia and later reinforced by revelations about North Korean and Iraqi nuclear activities, there has been growing concern about increasing proliferation dangers. At the same time, the prospects of radiological/nuclear terrorism are seen to be rising - since 9/11, concern over a proliferation/terrorism nexus has never been higher. In the face of this growing danger, there are urgent calls for stronger measures to strengthen the current international nuclear nonproliferation regime, including recommendations to place civilian processing of weapon-useable material under multinational control. As well, there are calls for entirely new tools, including military options. As proliferation and terrorism concerns grow, the regime is under pressure and there is a temptation to consider fundamental changes to the regime. In this context, this paper will address the following: Do we need to change the regime centered on the Treaty on the Nonproliferation of Nuclear Weapons (NPT) and the International Atomic Energy Agency (IAEA)? What improvements could ensure it will be the foundation for the proliferation resistance and physical protection needed if nuclear power grows? What will make it a viable centerpiece of future nonproliferation and counterterrorism approaches?

  9. Regimes of turbulence without an energy cascade

    PubMed Central

    Barenghi, C. F.; Sergeev, Y. A.; Baggaley, A. W.

    2016-01-01

    Experiments and numerical simulations of turbulent 4He and 3He-B have established that, at hydrodynamic length scales larger than the average distance between quantum vortices, the energy spectrum obeys the same 5/3 Kolmogorov law which is observed in the homogeneous isotropic turbulence of ordinary fluids. The importance of the 5/3 law is that it points to the existence of a Richardson energy cascade from large eddies to small eddies. However, there is also evidence of quantum turbulent regimes without Kolmogorov scaling. This raises the important questions of why, in such regimes, the Kolmogorov spectrum fails to form, what is the physical nature of turbulence without energy cascade, and whether hydrodynamical models can account for the unusual behaviour of turbulent superfluid helium. In this work we describe simple physical mechanisms which prevent the formation of Kolmogorov scaling in the thermal counterflow, and analyze the conditions necessary for emergence of quasiclassical regime in quantum turbulence generated by injection of vortex rings at low temperatures. Our models justify the hydrodynamical description of quantum turbulence and shed light into an unexpected regime of vortex dynamics. PMID:27761005

  10. Aerosol radiative effects over global arid and semi-arid regions based on MODIS Deep Blue satellite observations

    NASA Astrophysics Data System (ADS)

    Hatzianastassiou, Nikolaos; Papadimas, Christos D.; Gkikas, Antonis; Matsoukas, Christos; Sayer, Andrew M.; Hsu, N. Christina; Vardavas, Ilias

    2014-05-01

    Aerosols are a key parameter for several atmospheric processes related to weather and climate of our planet. Specifically, the aerosol impact on Earth's climate is exerted and quantified through their radiative effects, which are induced by their direct, indirect and semi-direct interactions with radiation, in particular at short wavelengths (solar). It is acknowledged that the uncertainty of present and future climate assessments is mainly associated with aerosols and that a better understanding of their physico-chemical, optical and radiative effects is needed. The contribution of satellites to this aim is important as a complementary tool to climate and radiative transfer models, as well as to surface measurements, since space observations of aerosol properties offer an extended spatial coverage. However, such satellite based aerosol properties and associated model radiation computations have suffered from unavailability over highly reflecting surfaces, namely polar and desert areas. This is also the case for MODIS which, onboard the Terra and Aqua satellites, has been providing high quality aerosol data since 2000 and 2002, respectively. These data, more specifically the aerosol optical depth (AOD) which is the most important optical property used in radiative and climate models, are considered to be of best quality. In order to address this problem, the MODIS Deep Blue (DB) algorithm has been developed which enables the retrieval of AOD above arid and semi-arid areas of the globe, including the major deserts. In the present study we make use of the FORTH detailed spectral radiative transfer model (RTM) with MODIS DB AOD data, supplemented with single scattering albedo (SSA) and asymmetry parameter (AP) aerosol data from the Global Aerosol DataSet (GADS) to estimate the aerosol DREs over the arid and semi-arid regions of the globe. The RTM is run using surface and atmospheric data from the ISCCP-D2 dataset and the NCEP global reanalysis project and computes the

  11. Statistical study to identify the key factors governing ground water recharge in the watersheds of the arid Central Asia.

    PubMed

    Zhu, Binq-Qi; Wang, Yue-Ling

    2016-01-01

    Understanding the source and recharge of ground waters is of great significance to our knowledge in hydrological cycles in arid environments over the world. Northern Xinjiang in northwestern China is a significant repository of information relating to the hydrological evolution and climatic changes in central Asia. In this study, two multivariate statistical techniques, hierarchical cluster analysis (HCA) and principal component analysis (PCA), were used to assess the ground water recharge and its governing factors, with the principal idea of exploring the above techniques to utilize all available hydrogeochemical variables in the quality assessment, which are not considered in the conventional techniques like Stiff and Piper diagrams. Q-mode HCA and R-mode PCA were combined to partition the water samples into seven major water clusters (C1-C7) and three principal components (PC1-PC3, PC1 salinity, PC2 hydroclimate, PC3 contaminant). The water samples C1 + C4 were classified as recharge area waters (Ca-HCO3 water), C2 + C3 as transitional zone waters (Ca-Mg-HCO3-SO4 water), and C5 + C6 + C7 as discharge area waters (Na-SO4 water). Based on the Q-mode PCA scores, three groups of geochemical processes influencing recharge regimes were identified: geogenic (i.e., caused by natural geochemical processes), geomorphoclimatic (caused by topography and climate), and anthropogenic (caused by ground water contamination). It is proposed that differences in recharge mechanism and ground water evolution, and possible bedrock composition difference, are responsible for the chemical genesis of these waters. These will continue to influence the geochemistry of the northern Xinjiang drainage system for a long time due to its steady tectonics and arid climate. This study proved that the chemistry differentiation of ground water can effectively support the identification of ground water recharge and evolution patterns.

  12. Statistical study to identify the key factors governing ground water recharge in the watersheds of the arid Central Asia.

    PubMed

    Zhu, Binq-Qi; Wang, Yue-Ling

    2016-01-01

    Understanding the source and recharge of ground waters is of great significance to our knowledge in hydrological cycles in arid environments over the world. Northern Xinjiang in northwestern China is a significant repository of information relating to the hydrological evolution and climatic changes in central Asia. In this study, two multivariate statistical techniques, hierarchical cluster analysis (HCA) and principal component analysis (PCA), were used to assess the ground water recharge and its governing factors, with the principal idea of exploring the above techniques to utilize all available hydrogeochemical variables in the quality assessment, which are not considered in the conventional techniques like Stiff and Piper diagrams. Q-mode HCA and R-mode PCA were combined to partition the water samples into seven major water clusters (C1-C7) and three principal components (PC1-PC3, PC1 salinity, PC2 hydroclimate, PC3 contaminant). The water samples C1 + C4 were classified as recharge area waters (Ca-HCO3 water), C2 + C3 as transitional zone waters (Ca-Mg-HCO3-SO4 water), and C5 + C6 + C7 as discharge area waters (Na-SO4 water). Based on the Q-mode PCA scores, three groups of geochemical processes influencing recharge regimes were identified: geogenic (i.e., caused by natural geochemical processes), geomorphoclimatic (caused by topography and climate), and anthropogenic (caused by ground water contamination). It is proposed that differences in recharge mechanism and ground water evolution, and possible bedrock composition difference, are responsible for the chemical genesis of these waters. These will continue to influence the geochemistry of the northern Xinjiang drainage system for a long time due to its steady tectonics and arid climate. This study proved that the chemistry differentiation of ground water can effectively support the identification of ground water recharge and evolution patterns. PMID:26718947

  13. Understanding sources of uncertainty in flash-flood forecasting for semi-arid regions 1913

    Technology Transfer Automated Retrieval System (TEKTRAN)

    About one-third of the earth’s landsurface is located in arid or semi-arid regions, often in areas suffering severely from the negative impacts of desertification and population pressure. Reliable hydrological forecasts across spatial and temporal scales are crucial in order to achieve water securit...

  14. Woody plants modulate the temporal dynamics of soil moisture in a semi-arid mesquite savanna

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In arid and semi-arid ecosystems (drylands), soil moisture abundance limits biological activity and mediates the effects of anthropogenic global change factors such as atmospheric CO2 increases and climate warming. Moreover, climate variability and human activities are interacting to increase the ab...

  15. Is aridity a high-order control on the hydro-geomorphic response of burned landscapes?

    NASA Astrophysics Data System (ADS)

    Sheridan, Gary; Van der Sant, Rene; Nyman, Petter; Lane, Patrick

    2015-04-01

    Fire results in hydro-geomorphic changes that are spatially variable and difficult to predict. In this study we compile 294 infiltration measurements, ten other soil, catchment runoff and erosion datasets, and a year of new data from 15 natural runoff plots across an aridity gradient from the eastern Victorian uplands in SE Australia. The results show that aridity (a function of the long term mean precipitation and net radiation) is associated with low post-fire infiltration capacities, increasing the chance of surface runoff, and strongly increasing the chance of debris flows. Runoff plots from the wettest site (aridity = 1.1) had an average runoff ratio of 0.3% compared with 33.6% for the most arid sites (aridity = 2.4). Post-fire debris flows were only observed in the more arid locations within the Victorian uplands, and resulted in erosion rates more than two orders of magnitude greater than non-debris flow processes. We therefore argue that in south eastern Australia aridity is a high-order control on the magnitude of post-wildfire hydro-geomorphic processes. The results from this Australian study may also help to provide insight into the landscape controls on post fire debris flows elsewhere. Aridity is a landscape-scale parameter that is mappable at a high resolution and therefore is a useful predictor of the spatial variability of the magnitude of post-fire hydro-geomorphic responses.

  16. Differences in the ARID-1 alpha expressions in squamous and adenosquamous carcinomas of uterine cervix.

    PubMed

    Solakoglu Kahraman, Dudu; Diniz, Gulden; Sayhan, Sevil; Ayaz, Duygu; Uncel, Melek; Karadeniz, Tugba; Akman, Tulay; Ozdemir, Aykut

    2015-10-01

    AT-rich interactive domain 1A (ARID1A) is a tumor suppressor gene involved in chromatin remodeling which encodes ARID1A (BAF250a) protein. Recent studies have shown the loss of ARID1A expression in several types of tumors. This retrospective study was designed to evaluate the differences in tissue expressions of ARID1A in a spectrum of cervical neoplasms. Cervical intraepithelial neoplasms, invasive squamous or adenosquamous carcinomas were identified in 100 patients recently diagnosed as cervical neoplasms based on pathology databases. In this series, there were 29 low- and 29 high-grade cervical intraepithelial neoplasms, 27 squamous cell carcinomas, and 15 adenosquamous carcinomas. Mean age of the patients was 47.8 ± 13 years (20-80 years). It was determined that the expression of ARID1A was statistically significantly down-regulated in adenosquamous carcinomas when compared with non-invasive or invasive squamous cell carcinomas (p = 0.015). Lower levels of the ARID1A expression were detected in cases with adenosquamous carcinomas (60%), low- or high-grade squamous intraepithelial lesion (SIL) (31%), and squamous cell carcinomas (18.5%). Our findings have demonstrated the presence of a correlation between ARID1A expression and adenomatous differentiation of uterine squamous cell carcinomas. Therefore, ARID1A gene may suggestively have a role in the pathogenesis of cervical adenosquamous carcinomas.

  17. Glacial aridity in central Indonesia coeval with intensified monsoon circulation

    NASA Astrophysics Data System (ADS)

    Konecky, Bronwen; Russell, James; Bijaksana, Satria

    2016-03-01

    The Last Glacial Maximum was cool and dry over the Indo-Pacific Warm Pool (IPWP), a key region driving global oceanic-atmospheric circulation. Both low- and high-latitude teleconnections with insolation, ice sheets, and sea level have been suggested to explain the pervasive aridity observed in paleoecological and geomorphic data. However, proxies tracking the H- and O-isotopic composition of rainfall (e.g., speleothems, sedimentary biomarkers) suggest muted aridity or even wetter conditions than the present, complicating interpretations of glacial IPWP climate. Here we use multiproxy reconstructions from lake sediments and modern rainfall isotopic measurements from central Indonesia to show that, contrary to the classical "amount effect," intensified Australian-Indonesian monsoon circulation drove lighter H- and O-isotopic composition of IPWP rainfall during the LGM, while at the same time, dry conditions prevailed. Precipitation isotopes are particularly sensitive to the apparent increase in monsoon circulation and perhaps also decreased moisture residence time implied by our data, explaining contrasts among proxy records while illuminating glacial IPWP atmospheric circulation, a key target for climate models.

  18. Physicochemical and biochemical properties of honeys from arid regions.

    PubMed

    Habib, Hosam M; Al Meqbali, Fatima T; Kamal, Hina; Souka, Usama D; Ibrahim, Wissam H

    2014-06-15

    This study was conducted to evaluate the quality of 11 honeys from arid regions for first time, and compare it with 5 different honeys from non-arid regions. Mean values obtained for physicochemical parameters were: pH 4.76 ± 0.55; 17.32 ± 1.8% moisture; 80.95 ± 1.60 °Brix sugar; 69.05 ± 4.41% total sugar; 413.81 ± 178.48 μS cm(-1) electrical conductivity; 17.58 ± 7.68 meq/kg free acidity; 11.05 ± 3.18 meq/kg lactonic acidity; 28.63 ± 9.6 meq/kg total acidity; 12.66 ± 20.39 mg/kg HMF; 0.58 ± 0.03 water activity; and 0.98 ± 0.62 colour intensity. Potassium was the major mineral (1760.54 ± 685.24 mg/kg). All the samples showed considerable significant variations with reference to their physicochemical and biochemical properties, moreover, the total free amino acids and total carotenoids were 61.13 ± 63.16 mg/100g and 4.07 ± 10.05 μg/100g respectively. Acrylamide was detected only in one sample at 2.39 ± 0.22 μg/kg. PMID:24491697

  19. Soil Salinity Dynamics in Arid Non-flooded Riparian Areas

    NASA Astrophysics Data System (ADS)

    Hong, S.; Hendrickx, J. M.

    2005-05-01

    Soil salinity is a common problem in arid riparian areas of the arid Southwest, but the dynamics of soil salinity in these areas are not well understood. The main causes of soil salinity in non-flooded riparian areas are generally known as low precipitation, high evapotranspiration, and capillary flux from saline shallow ground water. However, some riparian areas maintain a relatively low soil salinity for a long period of time with thriving salt-sensitive vegetation such as Cottonwoods while other areas are completely salinized and covered by salt-tolerant vegetation such as Saltcedars. Is this difference in soil salinity caused by a small amount of deep infiltration sufficient to leach salts back to the ground water or by ground water dynamics that 'wash' the soil profile from below? The results of this study, using the modeling program HYDRUS-1D, indicate that differences in soil salinity levels among different riparian areas are not caused by a small amount of deep infiltration but by ground water fluctuations that 'wash' the soil profile from below.

  20. Arid land monitoring using Landsat albedo difference images

    USGS Publications Warehouse

    Robinove, Charles J.; Chavez, Pat S.; Gehring, Dale G.; Holmgren, Ralph

    1981-01-01

    The Landsat albedo, or percentage of incoming radiation reflected from the ground in the wavelength range of 0.5 [mu]m to 1.1 [mu]m, is calculated from an equation using the Landsat digital brightness values and solar irradiance values, and correcting for atmospheric scattering, multispectral scanner calibration, and sun angle. The albedo calculated for each pixel is used to create an albedo image, whose grey scale is proportional to the albedo. Differencing sequential registered images and mapping selected values of the difference is used to create quantitative maps of increased or decreased albedo values of the terrain. All maps and other output products are in black and white rather than color, thus making the method quite economical. Decreases of albedo in arid regions may indicate improvement of land quality; increases may indicate degradation. Tests of the albedo difference mapping method in the Desert Experimental Range in southwestern Utah (a cold desert with little long-term terrain change) for a four-year period show that mapped changes can be correlated with erosion from flash floods, increased or decreased soil moisture, and increases or decreases in the density of desert vegetation, both perennial shrubs and annual plants. All terrain changes identified in this test were related to variations in precipitation. Although further tests of this method in hot deserts showing severe "desertification" are needed, the method is nevertheless recommended for experimental use in monitoring terrain change in other arid and semiarid regions of the world.

  1. An Evaluation of Unsaturated Flow Models in an Arid Climate

    SciTech Connect

    Dixon, J.

    1999-12-01

    The objective of this study was to evaluate the effectiveness of two unsaturated flow models in arid regions. The area selected for the study was the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site in Nye County, Nevada. The two models selected for this evaluation were HYDRUS-1D [Simunek et al., 1998] and the SHAW model [Flerchinger and Saxton, 1989]. Approximately 5 years of soil-water and atmospheric data collected from an instrumented weighing lysimeter site near the RWMS were used for building the models with actual initial and boundary conditions representative of the site. Physical processes affecting the site and model performance were explored. Model performance was based on a detailed sensitivity analysis and ultimately on storage comparisons. During the process of developing descriptive model input, procedures for converting hydraulic parameters for each model were explored. In addition, the compilation of atmospheric data collected at the site became a useful tool for developing predictive functions for future studies. The final model results were used to evaluate the capacities of the HYDRUS and SHAW models for predicting soil-moisture movement and variable surface phenomena for bare soil conditions in the arid vadose zone. The development of calibrated models along with the atmospheric and soil data collected at the site provide useful information for predicting future site performance at the RWMS.

  2. Sensitivity to Change in Arid Land Ecosystems (SCALE)

    SciTech Connect

    Dr. James Ehleringer

    2001-03-01

    Temporal and spatial components predispose aridland ecosystems of the Colorado Plateau to change. Possible changes in the intensity of summer monsoonal precipitation and increases in soil temperatures are two likely outcomes of climate change predicted by virtually all of the GCM modeling efforts. The deserts of the Intermountain West are at a junction where both of these environmental factors are likely to be significant and could play major roles in influencing ecosystem dynamics and plant community structure. Compounding this situation is that the cryptobiotic soils, which form a crust at the surface, appear to be the primary means of both introducing nitrogen into these ecosystems and stabilizing the surface from erosion. These soils have been disrupted by grazing and other anthropogenic activities, creating spatial heterogeneity and making these ecosystems more sensitive to change. Our climate change project focused on the Sensitivity to Change in Arid Land Ecosystems (SCALE). We focused on establishing new field sites, initiating new rounds of experimental ecophysiological and community-level competition experiments to determine the sensitivity and responsiveness of species to changes in the availability of summer moisture inputs to complement previous research conducted for the DOE. It has been quite surprising to see that in this arid land ecosystem, where water is a primary factor limiting growth, many of the dominant perennials exhibit limited uptake of that summer moisture. The research was concentrated in three main areas: Community-wide responses to water/nutrient pulses; Competitive interactions among life forms; Modeling plant responses to environmental variability.

  3. Feasibility of groundwater recharge dam projects in arid environments

    NASA Astrophysics Data System (ADS)

    Jaafar, H. H.

    2014-05-01

    A new method for determining feasibility and prioritizing investments for agricultural and domestic recharge dams in arid regions is developed and presented. The method is based on identifying the factors affecting the decision making process and evaluating these factors, followed by determining the indices in a GIS-aided environment. Evaluated parameters include results from field surveys and site visits, land cover and soils data, precipitation data, runoff data and modeling, number of beneficiaries, domestic irrigation demand, reservoir objectives, demography, reservoirs yield and reliability, dam structures, construction costs, and operation and maintenance costs. Results of a case study on more than eighty proposed dams indicate that assessment of reliability, annualized cost/demand satisfied and yield is crucial prior to investment decision making in arid areas. Irrigation demand is the major influencing parameter on yield and reliability of recharge dams, even when only 3 months of the demand were included. Reliability of the proposed reservoirs as related to their standardized size and net inflow was found to increase with increasing yield. High priority dams were less than 4% of the total, and less priority dams amounted to 23%, with the remaining found to be not feasible. The results of this methodology and its application has proved effective in guiding stakeholders for defining most favorable sites for preliminary and detailed design studies and commissioning.

  4. Regime Shifts in the Anthropocene: Drivers, Risks, and Resilience

    PubMed Central

    Rocha, Juan Carlos; Peterson, Garry D.; Biggs, Reinette

    2015-01-01

    Many ecosystems can experience regime shifts: surprising, large and persistent changes in the function and structure of ecosystems. Assessing whether continued global change will lead to further regime shifts, or has the potential to trigger cascading regime shifts has been a central question in global change policy. Addressing this issue has, however, been hampered by the focus of regime shift research on specific cases and types of regime shifts. To systematically assess the global risk of regime shifts we conducted a comparative analysis of 25 generic types of regime shifts across marine, terrestrial and polar systems; identifying their drivers, and impacts on ecosystem services. Our results show that the drivers of regime shifts are diverse and co-occur strongly, which suggests that continued global change can be expected to synchronously increase the risk of multiple regime shifts. Furthermore, many regime shift drivers are related to climate change and food production, whose links to the continued expansion of human activities makes them difficult to limit. Because many regime shifts can amplify the drivers of other regime shifts, continued global change can also be expected to increase the risk of cascading regime shifts. Nevertheless, the variety of scales at which regime shift drivers operate provides opportunities for reducing the risk of many types of regime shifts by addressing local or regional drivers, even in the absence of rapid reduction of global drivers. PMID:26267896

  5. Regime shifts in the anthropocene: drivers, risks, and resilience.

    PubMed

    Rocha, Juan Carlos; Peterson, Garry D; Biggs, Reinette

    2015-01-01

    Many ecosystems can experience regime shifts: surprising, large and persistent changes in the function and structure of ecosystems. Assessing whether continued global change will lead to further regime shifts, or has the potential to trigger cascading regime shifts has been a central question in global change policy. Addressing this issue has, however, been hampered by the focus of regime shift research on specific cases and types of regime shifts. To systematically assess the global risk of regime shifts we conducted a comparative analysis of 25 generic types of regime shifts across marine, terrestrial and polar systems; identifying their drivers, and impacts on ecosystem services. Our results show that the drivers of regime shifts are diverse and co-occur strongly, which suggests that continued global change can be expected to synchronously increase the risk of multiple regime shifts. Furthermore, many regime shift drivers are related to climate change and food production, whose links to the continued expansion of human activities makes them difficult to limit. Because many regime shifts can amplify the drivers of other regime shifts, continued global change can also be expected to increase the risk of cascading regime shifts. Nevertheless, the variety of scales at which regime shift drivers operate provides opportunities for reducing the risk of many types of regime shifts by addressing local or regional drivers, even in the absence of rapid reduction of global drivers.

  6. Regime shifts in the anthropocene: drivers, risks, and resilience.

    PubMed

    Rocha, Juan Carlos; Peterson, Garry D; Biggs, Reinette

    2015-01-01

    Many ecosystems can experience regime shifts: surprising, large and persistent changes in the function and structure of ecosystems. Assessing whether continued global change will lead to further regime shifts, or has the potential to trigger cascading regime shifts has been a central question in global change policy. Addressing this issue has, however, been hampered by the focus of regime shift research on specific cases and types of regime shifts. To systematically assess the global risk of regime shifts we conducted a comparative analysis of 25 generic types of regime shifts across marine, terrestrial and polar systems; identifying their drivers, and impacts on ecosystem services. Our results show that the drivers of regime shifts are diverse and co-occur strongly, which suggests that continued global change can be expected to synchronously increase the risk of multiple regime shifts. Furthermore, many regime shift drivers are related to climate change and food production, whose links to the continued expansion of human activities makes them difficult to limit. Because many regime shifts can amplify the drivers of other regime shifts, continued global change can also be expected to increase the risk of cascading regime shifts. Nevertheless, the variety of scales at which regime shift drivers operate provides opportunities for reducing the risk of many types of regime shifts by addressing local or regional drivers, even in the absence of rapid reduction of global drivers. PMID:26267896

  7. SWI/SNF factors required for cellular resistance to DNA damage include ARID1A and ARID1B and show interdependent protein stability.

    PubMed

    Watanabe, Reiko; Ui, Ayako; Kanno, Shin-Ichiro; Ogiwara, Hideaki; Nagase, Takahiro; Kohno, Takashi; Yasui, Akira

    2014-05-01

    The SWI/SNF chromatin-remodeling family contains various protein complexes, which regulate gene expression during cellular development and influence DNA damage response in an ATP- and complex-dependent manner, of which details remain elusive. Recent human genome sequencing of various cancer cells revealed frequent mutations in SWI/SNF factors, especially ARID1A, a variant subunit in the BRG1-associated factor (BAF) complex of the SWI/SNF family. We combined live-cell analysis and gene-suppression experiments to show that suppression of either ARID1A or its paralog ARID1B led to reduced nonhomologous end joining activity of DNA double-strand breaks (DSB), decreased accumulation of KU70/KU80 proteins at DSB, and sensitivity to ionizing radiation, as well as to cisplatin and UV. Thus, in contrast to transcriptional regulation, both ARID1 proteins are required for cellular resistance to various types of DNA damage, including DSB. The suppression of other SWI/SNF factors, namely SNF5, BAF60a, BAF60c, BAF155, or BAF170, exhibits a similar phenotype. Of these factors, ARID1A, ARID1B, SNF5, and BAF60c are necessary for the immediate recruitment of the ATPase subunit of the SWI/SNF complex to DSB, arguing that both ARID1 proteins facilitate the damage response of the complex. Finally, we found interdependent protein stability among the SWI/SNF factors, suggesting their direct interaction within the complex and the reason why multiple factors are frequently lost in parallel in cancer cells. Taken together, we show that cancer cells lacking in the expression of certain SWI/SNF factors, including ARID1A, are deficient in DNA repair and potentially vulnerable to DNA damage.

  8. Forest responses to increasing aridity and warmth in the southwestern United States

    USGS Publications Warehouse

    Williams, A.P.; Allen, C.D.; Millar, C.I.; Swetnam, T.W.; Michaelsen, J.; Still, C.J.; Leavitt, Steven W.

    2010-01-01

    In recent decades, intense droughts, insect outbreaks, and wildfires have led to decreasing tree growth and increasingmortality inmany temperate forests. We compared annual tree-ring width data from 1,097 populations in the coterminous United States to climate data and evaluated site-specific tree responses to climate variations throughout the 20th century. For each population, we developed a climate-driven growth equation by using climate records to predict annual ring widths. Forests within the southwestern United States appear particularly sensitive to drought and warmth.We input 21st century climate projections to the equations to predict growth responses. Our results suggest that if temperature and aridity rise as they are projected to, southwestern trees will experience substantially reduced growth during this century. As tree growth declines, mortality rates may increase at many sites. Increases in wildfires and bark-beetle outbreaks in the most recent decade are likely related to extreme drought and high temperatures during this period. Using satellite imagery and aerial survey data, we conservatively calculate that ???2.7% of southwestern forest and woodland area experienced substantialmortality due to wildfires from1984 to 2006, and???7. 6%experiencedmortality associated with bark beetles from 1997 to 2008. We estimate that up to ???18% of southwestern forest area (excluding woodlands) experienced mortality due to bark beetles or wildfire during this period. Expected climatic changes will alter future forest productivity, disturbance regimes, and species ranges throughout the Southwest. Emerging knowledge of these impending transitions informs efforts to adaptively manage southwestern forests.

  9. A geomorphic classification of ephemeral channels in a mountainous, arid region, southwestern Arizona, USA

    NASA Astrophysics Data System (ADS)

    Sutfin, Nicholas A.; Shaw, Jeremy; Wohl, Ellen E.; Cooper, David

    2014-09-01

    Despite the global abundance of arid-region ephemeral streams, hydrologic and geomorphic data for these systems are limited compared to their perennial counterparts. High spatial and temporal variability in flow makes hydrologic and geomorphic aspects of dryland ephemeral channels difficult to characterize. Perennial stream classifications have been extended to dryland ephemeral streams but do not adequately describe observed differences in channel geometry and characteristics of ephemeral channels in desert environments. We present a geomorphic classification for ephemeral streams in mountainous regions based on planform, degree of confinement, and composition of confining material. Five stream types were identified in the Sonoran desert of southwestern Arizona: (1) piedmont headwater, (2) bedrock, (3) bedrock with alluvium, (4) incised alluvium, and (5) braided channels. Nonparametric permutational multivariate analysis of variance for 101 surveyed reaches indicated differences (p < 0.001) in channel geometry and hydraulics among the five stream types. Nonmetric multidimensional scaling ordination identified the strongest channel geometry and hydraulic variables capable of distinguishing the five channel types, and a classification tree determined relative importance of these variables in the following order: width-to-depth ratio (W/D), stream gradient (S), stream power (Ω), and shear stress (τ). A classification tree and discriminant analysis used W/D, S, Ω, and τ for 86 study reaches on the U.S. Army Yuma Proving Ground (77% and 77% internal validation hit rate, respectively) to predict stream type of 15 separate study reaches on Barry Goldwater Air Force Range with 67% and 73% external validation hit rates, respectively. Differences in channel geometry among the five stream types reflect likely differences in hydrology, hydraulics, and sediment transport with implications for disturbance regime, channel adjustment to disturbance, and ecological sensitivity.

  10. Hydrological modelling in small, semi-arid catchments of south-eastern Australia: reforestation affects groundwater but not streamflow

    NASA Astrophysics Data System (ADS)

    Dean, Joshua; Camporese, Matteo; Grover, Samantha; Webb, John; Dresel, Evan; Daly, Edoardo

    2015-04-01

    controls on hydrological regimes in semi-arid regions can be highly complex and region-specific.

  11. Using remote sensing and spatial analysis of trees characteristics for long-term monitoring in arid environments

    NASA Astrophysics Data System (ADS)

    Isaacson, Sivan; Blumberg, Dan G.; Rachmilevitch, Shimon; Ephrath, Jhonathan E.; Maman, Shimrit

    2016-04-01

    Trees play a significant role in the desert ecosystem by moderating the extreme environmental conditions including radiation, temperature, low humidity and small amount of precipitation. Trees In arid environments such an Acacia are considered to be `keystone species', because they have major influence over both plants and animal species. Long term monitoring of acacia tree population in those areas is thus essential tool to estimate the overall ecosystem condition. We suggest a new remote sensing data analysis technique that can be integrated with field long term monitoring of trees in arid environments and improve our understanding of the spatial and temporal changes of these populations. In this work we have studied the contribution of remote sensing methods to long term monitoring of acacia trees in hyper arid environments. In order to expand the time scope of the acacia population field survey, we implemented two different approaches: (1) Trees individual based change detection using Corona satellite images and (2) Spatial analysis of trees population, converting spatial data into temporal data. A map of individual acacia trees that was extracted from a color infra-red (CIR) aerial photographs taken at 2010 allowed us to examine the distribution pattern of the trees size and foliage health status (NDVI). Comparison of the tree sizes distribution and NDVI values distribution enabled us to differentiate between long-term (decades) and short-term (months to few years) processes that brought the population to its present state. The spatial analysis revealed that both tree size and NDVI distribution patterns were significantly clustered, suggesting that the processes responsible for tree size and tree health status (i.e., flash-floods spatial spreading) have a spatial expression. The distribution of the trees in the Wadi (ephemeral river) was divided into three distinct parts: large trees with high NDVI values, large trees with low NDVI values and small trees with

  12. Water Governance and Adaptation to Disturbances in Irrigated Semi-Arid Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Evans, T. P.; McCord, P. F.; McBride, L.; Gower, D.; Caylor, K. K.

    2013-12-01

    Climate and other physical drivers of environmental systems are modifying the global availability of water for irrigation. At the same time population growth is placing an increased demand on water resources as local municipalities promote agricultural production as a mechanism to support human welfare and development. Substantial has research focused on household-level agricultural decision-making and adaptation. But equally important are institutional dynamics, or the rules implemented to allocate water resources across different user groups. Previous work has identified design principles for common-pool resource systems that tend to lead to sustained governance regimes. Likewise, past research has addressed the issue of "institutional fit", or locally adapted governance arrangements characterized through governance structure. However, much of the complexity behind institutional dynamics and adaptive capacity lies in the translation of data to information to knowledge, and how this sequence contributes to effective cross-scale water management and decision-making - an arena that has arguably received less attention in the water management literature. We investigate the interplay between governance regimes, data/information and institutional dynamics in irrigation systems in semi-arid regions of Kenya. In particular, we articulate the role of knowledge and data in institutional dynamics at multiple levels of analysis. How do users at different decision-making levels incorporate social and hydrological information in water governance? What data is needed to develop the information and knowledge users need for effective management? While governance structure is certainly a critical component of water management systems - we emphasize the interplay between the data-information-knowledge sequence and institutional dynamics. We present findings from household and manager-level surveys examining irrigation practices and the institutions designed to equitably allocate

  13. Chromatin-Remodeling-Factor ARID1B Represses Wnt/β-Catenin Signaling

    PubMed Central

    Vasileiou, Georgia; Ekici, Arif B.; Uebe, Steffen; Zweier, Christiane; Hoyer, Juliane; Engels, Hartmut; Behrens, Jürgen; Reis, André; Hadjihannas, Michel V.

    2015-01-01

    The link of chromatin remodeling to both neurodevelopment and cancer has recently been highlighted by the identification of mutations affecting BAF chromatin-remodeling components, such as ARID1B, in individuals with intellectual disability and cancer. However, the underlying molecular mechanism(s) remains unknown. Here, we show that ARID1B is a repressor of Wnt/β-catenin signaling. Through whole-transcriptome analysis, we find that in individuals with intellectual disability and ARID1B loss-of-function mutations, Wnt/β-catenin target genes are upregulated. Using cellular models of low and high Wnt/β-catenin activity, we demonstrate that knockdown of ARID1B activates Wnt/β-catenin target genes and Wnt/β-catenin-dependent transcriptional reporters in a β-catenin-dependent manner. Reciprocally, forced expression of ARID1B inhibits Wnt/β-catenin signaling downstream of the β-catenin destruction complex. Both endogenous and exogenous ARID1B associate with β-catenin and repress Wnt/β-catenin-mediated transcription through the BAF core subunit BRG1. Accordingly, mutations in ARID1B leading to partial or complete deletion of its BRG1-binding domain, as is often observed in intellectual disability and cancers, compromise association with β-catenin, and the resultant ARID1B mutant proteins fail to suppress Wnt/β-catenin signaling. Finally, knockdown of ARID1B in mouse neuroblastoma cells leads to neurite outgrowth through β-catenin. The data suggest that aberrations in chromatin-remodeling factors, such as ARID1B, might contribute to neurodevelopmental abnormalities and cancer through deregulation of developmental and oncogenic pathways, such as the Wnt/β-catenin signaling pathway. PMID:26340334

  14. Dominant takeover regimes for genetic algorithms

    NASA Technical Reports Server (NTRS)

    Noever, David; Baskaran, Subbiah

    1995-01-01

    The genetic algorithm (GA) is a machine-based optimization routine which connects evolutionary learning to natural genetic laws. The present work addresses the problem of obtaining the dominant takeover regimes in the GA dynamics. Estimated GA run times are computed for slow and fast convergence in the limits of high and low fitness ratios. Using Euler's device for obtaining partial sums in closed forms, the result relaxes the previously held requirements for long time limits. Analytical solution reveal that appropriately accelerated regimes can mark the ascendancy of the most fit solution. In virtually all cases, the weak (logarithmic) dependence of convergence time on problem size demonstrates the potential for the GA to solve large N-P complete problems.

  15. The change of resurfacing regimes on Venus

    NASA Astrophysics Data System (ADS)

    Ivanov, M. A.

    2015-01-01

    The change of volcanic resurfacing regimes on Venus is discussed. The frequency-size distribution of the regional and lobate plains fields suggest that regional plains had likely been formed due to lava flooding. The geological ratios of impact craters with plains units of different ages are analyzed. Only 3% of the craters located on the older regional plains are found to be embayed by plains material. About 50% of the craters located on the younger lobate plains are found to be embayed by plains lavas. Both the frequency-size distribution of the regional plains fields and the number of embayed craters indicate their catastrophic formation. For lobate plains, these parameters indicate a gradual and time-stretched accumulation of their material. Thus, the volcanic resurfacing regimes must have been changing radically throughout the observable portion of the geological history of Venus.

  16. Steady and transient regimes in hydropower plants

    NASA Astrophysics Data System (ADS)

    Gajic, A.

    2013-12-01

    Hydropower plant that has been in operation for about 30 years has to be reconstructed. They have already installed 12 Kaplan turbines, the largest in the world at that time. The existing CAM relationship was determined based on hydraulic model tests and checked by efficiency on-site tests. It was also tested based on turbine bearing vibrations. In order to discover vibrations and long cracks on stay vanes detailed on-site measurements were performed. Influence of the modification of the trailing edges on the dynamic stresses of the stay vanes is also shown. In order to improve power output transient regimes were analyzed, both experimentally and numerically. Reversible hydropower plant, a pioneer in Europe since it was the first Pump storage power plant constructed with the highest head pump-turbines in the world. Analyses of transient regimes discover some problems with S-shaped characteristics coupled with non-symmetrical penstock.

  17. Marginal Mean Models for Dynamic Regimes

    PubMed Central

    Murphy, S. A.; van der Laan, M. J.; Robins, J. M.

    2009-01-01

    A dynamic treatment regime is a list of rules for how the level of treatment will be tailored through time to an individual’s changing severity. In general, individuals who receive the highest level of treatment are the individuals with the greatest severity and need for treatment. Thus there is planned selection of the treatment dose. In addition to the planned selection mandated by the treatment rules, the use of staff judgment results in unplanned selection of the treatment level. Given observational longitudinal data or data in which there is unplanned selection, of the treatment level, the methodology proposed here allows the estimation of a mean response to a dynamic treatment regime under the assumption of sequential randomization. PMID:20019887

  18. The optomechanical instability in the quantum regime

    NASA Astrophysics Data System (ADS)

    Ludwig, Max; Kubala, Björn; Marquardt, Florian

    2008-09-01

    We consider a generic optomechanical system, consisting of a driven optical cavity and a movable mirror attached to a cantilever. Systems of this kind (and analogues) have been realized in many recent experiments. It is well known that these systems can exhibit an instability towards a regime where the cantilever settles into self-sustained oscillations. In this paper, we briefly review the classical theory of the optomechanical instability, and then discuss the features arising in the quantum regime. We solve numerically a full quantum master equation for the coupled system, and use it to analyze the photon number, the cantilever's mechanical energy, the phonon probability distribution and the mechanical Wigner density, as a function of experimentally accessible control parameters. When a suitable dimensionless 'quantum parameter' is sent to zero, the results of the quantum mechanical model converge towards the classical predictions. We discuss this quantum-to-classical transition in some detail.

  19. Risk of fire occurrence in arid and semi-arid ecosystems of Iran: an investigation using Bayesian belief networks.

    PubMed

    Bashari, Hossein; Naghipour, Ali Asghar; Khajeddin, Seyed Jamaleddin; Sangoony, Hamed; Tahmasebi, Pejman

    2016-09-01

    Identifying areas that have a high risk of burning is a main component of fire management planning. Although the available tools can predict the fire risks, these are poor in accommodating uncertainties in their predictions. In this study, we accommodated uncertainty in wildfire prediction using Bayesian belief networks (BBNs). An influence diagram was developed to identify the factors influencing wildfire in arid and semi-arid areas of Iran, and it was populated with probabilities to produce a BBNs model. The behavior of the model was tested using scenario and sensitivity analysis. Land cover/use, mean annual rainfall, mean annual temperature, elevation, and livestock density were recognized as the main variables determining wildfire occurrence. The produced model had good accuracy as its ROC area under the curve was 0.986. The model could be applied in both predictive and diagnostic analysis for answering "what if" and "how" questions. The probabilistic relationships within the model can be updated over time using observation and monitoring data. The wildfire BBN model may be updated as new knowledge emerges; hence, it can be used to support the process of adaptive management. PMID:27553945

  20. A Reservoir of Natural Perchlorate in Unsaturated Zones of Arid and Semi-Arid Regions, Southwestern USA

    NASA Astrophysics Data System (ADS)

    Rao, B. A.; Stonestrom, D. A.; Anderson, T. A.; Orris, G. J.; Rajagapolan, S.; Sandvig, R. M.; Scanlon, B. R.; Walvoord, M. A.; Jackson, W.

    2006-12-01

    Natural perchlorate (ClO4-) is generally present in unsaturated zones of steppe-to-desert regions of the arid and semi-arid southwestern United States. The perchlorate is associated with atmospherically deposited chloride that has accumulated throughout the Holocene. To assess this natural reservoir, we analyzed unsaturated-zone profiles from ten sites across Nevada, New Mexico, Texas, and Utah for perchlorate and other anions. The sampled sites represent a wide range of precipitation (0.1 0.5 m yr-1), dominant vegetation, soil type, underlying geology, and include five distinct ecological regions: Chihuahuan, Mojave, and southern Great Basin deserts; Arizona-New Mexico semi-desert; and Texas High Plains dry steppe. Concentrations of perchlorate correlated closely with chloride and bromide. The perchlorate reservoir (up to 1 kg ha-1) is sufficiently large to impact groundwater when natural recharge during pluvial periods or induced recharge after conversion to agriculture flushes accumulated salts from the unsaturated zone. This little explored source can explain perchlorate in milk and other agricultural products far from anthropogenic contamination, and should be considered when evaluating overall exposure risk.

  1. Rainfall-runoff relationship of some catchments with karstic geomorphology under arid to semi-arid conditions

    NASA Astrophysics Data System (ADS)

    De Vera, Maximo R.

    1984-02-01

    The relationship between rainfall and runoff of fourteen catchments with a total area of 5983 km 2 in the northeastern zone of Libya was reviewed in an attempt to determine the effect of karstic geomorphology on the runoff coefficient. Available data since 1965 were collated and eight wadis with at least eleven flood events were used for linear regression analysis. The selected catchments are under arid to semi-arid conditions with mean annual rainfall of 50-500 mm and with surface geology consisting mostly of marly limestone which is favourable to karstification phenomena. The ratio of runoff to rainfall is extremely variable with a range of 0.0001-0.830, and therefore it is not a reliable criterion for runoff estimation, especially with the limited data subjected to statistical analysis. The regression analysis shows correlation coefficients from 0.219 to 0.89 with no apparent effect of size of catchment area. As indicated by the coefficient of determination, 4.8-80.3% of the variation in runoff has been accounted for by the regression. The extent and degree of karstification, if properly quantified, can be a significant factor for runoff prediction, in addition to rainfall intensity and duration, antecedent soil moisture, effective catchment area and other geomorphological features.

  2. Bose polarons in the strongly interacting regime

    NASA Astrophysics Data System (ADS)

    Kedar, Dhruv; Hu, Ming-Guang; van de Graaff, Michael; Corson, John; Cornell, Eric; Jin, Deborah

    2016-05-01

    Impurities immersed in and interacting with a Bose-Einstein condensate (BEC) are predicted to form quasiparticle excitations called Bose polarons. I will present experimental evidence of Bose polarons in cold atoms obtained using radio-frequency spectroscopy to measure the excitation spectrum of fermionic K-40 impurities interacting with a BEC of Rb-87 atoms. We use an interspecies Feshbach resonance to tune the interactions between the impurities and the bosons, and we take data in the strongly interacting regime.

  3. The kinetic regime of the Vicsek model

    NASA Astrophysics Data System (ADS)

    Chepizhko, A. A.; Kulinskii, V. L.

    2009-12-01

    We consider the dynamics of the system of self-propelling particles modeled via the Vicsek algorithm in continuum time limit. It is shown that the alignment process for the velocities can be subdivided into two regimes: "fast" kinetic and "slow" hydrodynamic ones. In fast kinetic regime the alignment of the particle velocity to the local neighborhood takes place with characteristic relaxation time. So, that the bigger regions arise with the velocity alignment. These regions align their velocities thus giving rise to hydrodynamic regime of the dynamics. We propose the mean-field-like approach in which we take into account the correlations between density and velocity. The comparison of the theoretical predictions with the numerical simulations is given. The relation between Vicsek model in the zero velocity limit and the Kuramoto model is stated. The mean-field approach accounting for the dynamic change of the neighborhood is proposed. The nature of the discontinuity of the dependence of the order parameter in case of vectorial noise revealed in Gregorie and Chaite, Phys. Rev. Lett., 92, 025702 (2004) is discussed and the explanation of it is proposed.

  4. Understanding the Early Regime of Drop Spreading.

    PubMed

    Mitra, Surjyasish; Mitra, Sushanta K

    2016-09-01

    We present experimental data to characterize the spreading of a liquid drop on a substrate kept submerged in another liquid medium. They reveal that drop spreading always begins in a regime dominated by drop viscosity where the spreading radius scales as r ∼ t with a nonuniversal prefactor. This initial viscous regime either lasts in its entirety or switches to an intermediate inertial regime where the spreading radius grows with time following the well-established inertial scaling of r ∼ t(1/2). This latter case depends on the characteristic viscous length scale of the problem. In either case, the final stage of spreading, close to equilibrium, follows Tanner's law. Further experiments performed on the same substrate kept in ambient air reveal a similar trend, albeit with limited spatiotemporal resolution, showing the universal nature of the spreading behavior. It is also found that, for early times of spreading, the process is similar to coalescence of two freely suspended liquid drops, making the presence of the substrate and consequently the three-phase contact line insignificant. PMID:27513708

  5. Lubrication regimes in lumbar total disc arthroplasty.

    PubMed

    Shaheen, A; Shepherd, D E T

    2007-08-01

    A number of total disc arthroplasty devices have been developed. Some concern has been expressed that wear may be a potential failure mode for these devices, as has been seen with hip arthroplasty. The aim of this paper was to investigate the lubrication regimes that occur in lumbar total disc arthroplasty devices. The disc arthroplasty was modelled as a ball-and-socket joint. Elastohydrodynamic lubrication theory was used to calculate the minimum film thickness of the fluid between the bearing surfaces. The lubrication regime was then determined for different material combinations, size of implant, and trunk velocity. Disc arthroplasties with a metal-polymer or metal-metal material combination operate with a boundary lubrication regime. A ceramic-ceramic material combination has the potential to operate with fluid-film lubrication. Disc arthroplasties with a metal-polymer or metal-metal material combination are likely to generate wear debris. In future, it is worth considering a ceramic-ceramic material combination as this is likely to reduce wear.

  6. Constructing an interdisciplinary flow regime recommendation

    USGS Publications Warehouse

    Bartholow, J.M.

    2010-01-01

    It is generally agreed that river rehabilitation most often relies on restoring a more natural flow regime, but credibly defining the desired regime can be problematic. I combined four distinct methods to develop and refine month-by-month and event-based flow recommendations to protect and partially restore the ecological integrity of the Cache la Poudre River through Fort Collins, Colorado. A statistical hydrologic approach was used to summarize the river's natural flow regime and set provisional monthly flow targets at levels that were historically exceeded 75% of the time. These preliminary monthly targets were supplemented using results from three Poudre-specific disciplinary studies. A substrate maintenance flow model was used to better define the high flows needed to flush accumulated sediment from the river's channel and help sustain the riparian zone in this snowmelt-dominated river. A hydraulic/habitat model and a water temperature model were both used to better define the minimum flows necessary to maintain a thriving cool water fishery. The result is a range of recommended monthly flows and daily flow guidance illustrating the advantage of combining a wide range of available disciplinary information, supplemented by judgment based on ecological principles and a general understanding of river ecosystems, in a highly altered, working river. ?? 2010 American Water Resources Association.

  7. Three-dimensional null point reconnection regimes

    SciTech Connect

    Priest, E. R.; Pontin, D. I.

    2009-12-15

    Recent advances in theory and computational experiments have shown the need to refine the previous categorization of magnetic reconnection at three-dimensional null points--points at which the magnetic field vanishes. We propose here a division into three different types, depending on the nature of the flow near the spine and fan of the null. The spine is an isolated field line which approaches the null (or recedes from it), while the fan is a surface of field lines which recede from it (or approach it). So-called torsional spine reconnection occurs when field lines in the vicinity of the fan rotate, with current becoming concentrated along the spine so that nearby field lines undergo rotational slippage. In torsional fan reconnection field lines near the spine rotate and create a current that is concentrated in the fan with a rotational flux mismatch and rotational slippage. In both of these regimes, the spine and fan are perpendicular and there is no flux transfer across spine or fan. The third regime, called spine-fan reconnection, is the most common in practice and combines elements of the previous spine and fan models. In this case, in response to a generic shearing motion, the null point collapses to form a current sheet that is focused at the null itself, in a sheet that locally spans both the spine and fan. In this regime the spine and fan are no longer perpendicular and there is flux transfer across both of them.

  8. Soil microbial responses to nitrogen addition in arid ecosystems

    SciTech Connect

    Sinsabaugh, Robert L.; Belnap, Jayne; Rudgers, Jennifer; Kuske, Cheryl R.; Martinez, Noelle; Sandquist, Darren

    2015-08-14

    The N cycle of arid ecosystems is influenced by low soil organic matter, high soil pH, and extremes in water potential and temperature that lead to open canopies and development of biological soil crusts (biocrusts). We investigated the effects of N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa shrubland site in southern Nevada USA. Sites were fertilized with a NO3-NH4 mix at 0, 7, and 15 kg N ha-1 y-1 from March 2012 to March 2013. In March 2013, biocrust (0–0.5 cm) and bulk soils (0–10 cm) were collected beneath Ambrosia canopies and in the interspaces between plants. Biomass responses were assessed as bacterial and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic responses were measured by five ecoenzyme activities and rates of N transformation. With most measures, nutrient availability, microbial biomass, and process rates were greater in soils beneath the shrub canopy compared to the interspace between plants, and greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most measures responded positively to experimental N addition. Effect sizes were generally greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid ecosystem responses to N amendment that included data from 14 other studies. Effect sizes were calculated for biomass and metabolic responses. Regressions of effect sizes, calculated for biomass, and metabolic responses, showed similar trends in relation to N application rate and N load (rate × duration). The critical points separating positive from negative treatment effects were 88 kg ha-1 y-1 and 159 kg ha-1, respectively, for biomass, and 70 kg ha-1 y-1 and 114 kg ha-1, respectively, for metabolism. These critical values are comparable to those for microbial biomass, decomposition rates and respiration

  9. Soil microbial responses to nitrogen addition in arid ecosystems

    DOE PAGESBeta

    Sinsabaugh, Robert L.; Belnap, Jayne; Rudgers, Jennifer; Kuske, Cheryl R.; Martinez, Noelle; Sandquist, Darren

    2015-08-14

    The N cycle of arid ecosystems is influenced by low soil organic matter, high soil pH, and extremes in water potential and temperature that lead to open canopies and development of biological soil crusts (biocrusts). We investigated the effects of N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa shrubland site in southern Nevada USA. Sites were fertilized with a NO3-NH4 mix at 0, 7, and 15 kg N ha-1 y-1 from March 2012 to March 2013. In March 2013, biocrust (0–0.5 cm) and bulk soils (0–10 cm) were collected beneath Ambrosia canopies and in the interspaces betweenmore » plants. Biomass responses were assessed as bacterial and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic responses were measured by five ecoenzyme activities and rates of N transformation. With most measures, nutrient availability, microbial biomass, and process rates were greater in soils beneath the shrub canopy compared to the interspace between plants, and greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most measures responded positively to experimental N addition. Effect sizes were generally greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid ecosystem responses to N amendment that included data from 14 other studies. Effect sizes were calculated for biomass and metabolic responses. Regressions of effect sizes, calculated for biomass, and metabolic responses, showed similar trends in relation to N application rate and N load (rate × duration). The critical points separating positive from negative treatment effects were 88 kg ha-1 y-1 and 159 kg ha-1, respectively, for biomass, and 70 kg ha-1 y-1 and 114 kg ha-1, respectively, for metabolism. These critical values are comparable to those for microbial biomass, decomposition rates and respiration reported in broader meta-analyses of N amendment effects in mesic ecosystems. The large effect sizes at low N

  10. Soil microbial responses to nitrogen addition in arid ecosystems.

    PubMed

    Sinsabaugh, Robert L; Belnap, Jayne; Rudgers, Jennifer; Kuske, Cheryl R; Martinez, Noelle; Sandquist, Darren

    2015-01-01

    The N cycle of arid ecosystems is influenced by low soil organic matter, high soil pH, and extremes in water potential and temperature that lead to open canopies and development of biological soil crusts (biocrusts). We investigated the effects of N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa shrubland site in southern Nevada USA. Sites were fertilized with a NO3-NH4 mix at 0, 7, and 15 kg N ha(-1) y(-1) from March 2012 to March 2013. In March 2013, biocrust (0-0.5 cm) and bulk soils (0-10 cm) were collected beneath Ambrosia canopies and in the interspaces between plants. Biomass responses were assessed as bacterial and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic responses were measured by five ecoenzyme activities and rates of N transformation. By most measures, nutrient availability, microbial biomass, and process rates were greater in soils beneath the shrub canopy compared to the interspace between plants, and greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most measures responded positively to experimental N addition. Effect sizes were generally greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid ecosystem responses to N amendment that included data from 14 other studies. Effect sizes were calculated for biomass and metabolic responses. Regressions of effect sizes, calculated for biomass, and metabolic responses, showed similar trends in relation to N application rate and N load (rate × duration). The critical points separating positive from negative treatment effects were 88 kg ha(-1) y(-1) and 159 kg ha(-1), respectively, for biomass, and 70 kg ha(-1) y(-1) and 114 kg ha(-1), respectively, for metabolism. These critical values are comparable to those for microbial biomass, decomposition rates and respiration reported in broader meta-analyses of N amendment effects in mesic ecosystems. However, large effect sizes at low N

  11. Framework for predicting hydraulic properties of calcareous arid lands

    NASA Astrophysics Data System (ADS)

    Khlosi, Muhammed; Douaik, Ahmed; Habib, Hassan; Gabriels, Donald; Cornelis, Wim

    2014-05-01

    In arid areas, the availability of reliable data on soil hydraulic properties such as the water retention and the hydraulic conductivity curves, particularly of calcareous soils, is low. Such data are needed as input to mathematical models used to support arid land restoration and combating desertification studies. This paper aims at sharing new and pertinent research results that are of interest to the scientific community involved in such studies. The objective of our study was to (1) explore the interaction between soil hydraulic properties, and other physical and chemical properties, (2) test three data mining techniques for developing predictive functions, and (3) set up a framework for predicting soil hydraulic properties of calcareous arid soils. 72 soil samples were collected from rural areas throughout north-west Syria, covering most of its agro-climatic zones and soil types. Soil water content at eight different matric potentials and 11 chemical and physical soil properties were determined. We first found that when destroying carbonates in determining particle size distribution, no significant correlations were found with the water retention points, whereas good correlations were observed when carbonates were not removed and considered as part of the soil's mineralogy. Four principal components (PC) explained 77% of the variation in the data set. Three tested soil-water contents (at -1, -33 and -1500 kPa) were highly linked to PC1 which was correlated to plastic limit, texture, soil carbonate content, and specific surface area. In addition, soil-water content at -1 kPa was also linked to PC4 which is correlated to bulk density. PC2 and PC3, related to gravel, organic matter and hygroscopic water, only explained a negligible amount of variation of soil water content. When setting up predictive functions for the eight water retention points, the support vector machines approach performed significantly better as compared to artificial neural networks and

  12. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems.

    PubMed

    Huxman, Travis E; Snyder, Keirith A; Tissue, David; Leffler, A Joshua; Ogle, Kiona; Pockman, William T; Sandquist, Darren R; Potts, Daniel L; Schwinning, Susan

    2004-10-01

    In the arid and semiarid regions of North America, discrete precipitation pulses are important triggers for biological activity. The timing and magnitude of these pulses may differentially affect the activity of plants and microbes, combining to influence the C balance of desert ecosystems. Here, we evaluate how a "pulse" of water influences physiological activity in plants, soils and ecosystems, and how characteristics, such as precipitation pulse size and frequency are important controllers of biological and physical processes in arid land ecosystems. We show that pulse size regulates C balance by determining the temporal duration of activity for different components of the biota. Microbial respiration responds to very small events, but the relationship between pulse size and duration of activity likely saturates at moderate event sizes. Photosynthetic activity of vascular plants generally increases following relatively larger pulses or a series of small pulses. In this case, the duration of physiological activity is an increasing function of pulse size up to events that are infrequent in these hydroclimatological regions. This differential responsiveness of photosynthesis and respiration results in arid ecosystems acting as immediate C sources to the atmosphere following rainfall, with subsequent periods of C accumulation should pulse size be sufficient to initiate vascular plant activity. Using the average pulse size distributions in the North American deserts, a simple modeling exercise shows that net ecosystem exchange of CO2 is sensitive to changes in the event size distribution representative of wet and dry years. An important regulator of the pulse response is initial soil and canopy conditions and the physical structuring of bare soil and beneath canopy patches on the landscape. Initial condition influences responses to pulses of varying magnitude, while bare soil/beneath canopy patches interact to introduce nonlinearity in the relationship between pulse

  13. Soil microbial responses to nitrogen addition in arid ecosystems

    PubMed Central

    Sinsabaugh, Robert L.; Belnap, Jayne; Rudgers, Jennifer; Kuske, Cheryl R.; Martinez, Noelle; Sandquist, Darren

    2015-01-01

    The N cycle of arid ecosystems is influenced by low soil organic matter, high soil pH, and extremes in water potential and temperature that lead to open canopies and development of biological soil crusts (biocrusts). We investigated the effects of N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa shrubland site in southern Nevada USA. Sites were fertilized with a NO3-NH4 mix at 0, 7, and 15 kg N ha-1 y-1 from March 2012 to March 2013. In March 2013, biocrust (0–0.5 cm) and bulk soils (0–10 cm) were collected beneath Ambrosia canopies and in the interspaces between plants. Biomass responses were assessed as bacterial and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic responses were measured by five ecoenzyme activities and rates of N transformation. By most measures, nutrient availability, microbial biomass, and process rates were greater in soils beneath the shrub canopy compared to the interspace between plants, and greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most measures responded positively to experimental N addition. Effect sizes were generally greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid ecosystem responses to N amendment that included data from 14 other studies. Effect sizes were calculated for biomass and metabolic responses. Regressions of effect sizes, calculated for biomass, and metabolic responses, showed similar trends in relation to N application rate and N load (rate × duration). The critical points separating positive from negative treatment effects were 88 kg ha-1 y-1 and 159 kg ha-1, respectively, for biomass, and 70 kg ha-1 y-1 and 114 kg ha-1, respectively, for metabolism. These critical values are comparable to those for microbial biomass, decomposition rates and respiration reported in broader meta-analyses of N amendment effects in mesic ecosystems. However, large effect sizes at low N addition

  14. Water pulses and biogeochemical cycles in arid and semiarid ecosystems.

    PubMed

    Austin, Amy T; Yahdjian, Laura; Stark, John M; Belnap, Jayne; Porporato, Amilcare; Norton, Urszula; Ravetta, Damián A; Schaeffer, Sean M

    2004-10-01

    The episodic nature of water availability in arid and semiarid ecosystems has significant consequences on belowground carbon and nutrient cycling. Pulsed water events directly control belowground processes through soil wet-dry cycles. Rapid soil microbial response to incident moisture availability often results in almost instantaneous C and N mineralization, followed by shifts in C/N of microbially available substrate, and an offset in the balance between nutrient immobilization and mineralization. Nitrogen inputs from biological soil crusts are also highly sensitive to pulsed rain events, and nitrogen losses, particularly gaseous losses due to denitrification and nitrate leaching, are tightly linked to pulses of water availability. The magnitude of the effect of water pulses on carbon and nutrient pools, however, depends on the distribution of resource availability and soil organisms, both of which are strongly affected by the spatial and temporal heterogeneity of vegetation cover, topographic position and soil texture. The 'inverse texture hypothesis' for net primary production in water-limited ecosystems suggests that coarse-textured soils have higher NPP than fine-textured soils in very arid zones due to reduced evaporative losses, while NPP is greater in fine-textured soils in higher rainfall ecosystems due to increased water-holding capacity. With respect to belowground processes, fine-textured soils tend to have higher water-holding capacity and labile C and N pools than coarse-textured soils, and often show a much greater flush of N mineralization. The result of the interaction of texture and pulsed rainfall events suggests a corollary hypothesis for nutrient turnover in arid and semiarid ecosystems with a linear increase of N mineralization in coarse-textured soils, but a saturating response for fine-textured soils due to the importance of soil C and N pools. Seasonal distribution of water pulses can lead to the accumulation of mineral N in the dry season

  15. Measuring Aridity: Perspectives from Meteorology, Agriculture and Hydrology

    NASA Astrophysics Data System (ADS)

    Roderick, Michael; Sun, Fubao; Seneviratne, Sonia; Farquhar, Graham

    2014-05-01

    Current perceptions are dominated by the idea that it will become more arid in future largely because increases in atmospheric CO2 are expected to increase air temperatures with slightly lower relative humidity over land. That perception is derived from calculations using climate model output that show, on average, the ratio of precipitation to potential evaporation decreasing over global land areas over the next 100 years. In direct contradiction, the same model output also projects, on average, increased precipitation and increased runoff over land. That raises a paradox: how can the relative humidity decrease over a land surface that, on average, receives more precipitation and produces more runoff? In this presentation we investigate this seeming paradox from the point of view of meteorology, hydrology and agriculture. We show that this seeming paradox can be (partly) reconciled by considering the role of CO2 in determining transpiration rates.

  16. Dung of Mammuthus in the arid Southwest, North America

    NASA Astrophysics Data System (ADS)

    mead, Jim I.; Agenbroad, Larry D.; Davis, Owen K.; Martin, Paul S.

    1986-01-01

    The discovery of a unique organic deposit in a dry cave on the Colorado Plateau, southern Utah, permits the first comparison of the physical characteristics and the diet of the dung of the extinct mammoths from the arid Southwest, North America, with that of mammoths from Siberia and northern China, the only other known locations of such remains. The deposit buried beneath sand and rockfall is composed primarily of mammoth dung, estimated at over 300 m 3. Radiocarbon dates on dung boluses indicate that the mammoths frequented the cave between approximately 14,700 and 11,000 yr B.P. (the range of ages at 2σ). The desiccated boluses, measuring approximately 230 × 170 × 85 mm, are nearly identical in size to dung from extant elephants. The largest contents in the dung are stalks measuring 60 × 4.5 mm. Grasses and sedges dominated the diet, although woody species were commonly eaten.

  17. Algae from the arid southwestern United States: an annotated bibliography

    SciTech Connect

    Thomas, W.H.; Gaines, S.R.

    1983-06-01

    Desert algae are attractive biomass producers for capturing solar energy through photosynthesis of organic matter. They are probably capable of higher yields and efficiencies of light utilization than higher plants, and are already adapted to extremes of sunlight intensity, salinity and temperature such as are found in the desert. This report consists of an annotated bibliography of the literature on algae from the arid southwestern United States. It was prepared in anticipation of efforts to isolate desert algae and study their yields in the laboratory. These steps are necessary prior to setting up outdoor algal culture ponds. Desert areas are attractive for such applications because land, sunlight, and, to some extent, water resources are abundant there. References are sorted by state.

  18. Antibacterial and Antifungal Potential of some Arid Zone Plants.

    PubMed

    Jain, S C; Pancholi, B; Singh, R; Jain, R

    2010-07-01

    Sequential extracts of some medicinally important arid zone plants of Rajasthan, viz. Lepidagathis trinervis Nees., Polycarpea corymbosa Lam. and Sericostoma pauciflorum Stocks. ex Wight. were tested against six bacterial (Gram +ve and Gram -ve) and five fungal strains using agar well diffusion method. Ethyl acetate extract of L. trinervis showed maximum activity against Bacillus subtilis, Enterobactor aerogenes, Pseudomonas aeruginosa, Aspergillus flavus and Trichophyton rubrum (inhibition zone 16.00±0.81, 13.33±0.66, 14.33±1.85, 14.30±0.34 and 23.00±0.00 mm) at varied minimum inhibitory concentrations of 82, 20, 41, 41 and 20 μg/ml, respectively.

  19. Dynamic modeling of vegetation change in arid lands

    NASA Technical Reports Server (NTRS)

    Robinson, V. B.; Coiner, J. C.; Barringer, T. H.

    1982-01-01

    A general framework for a digital desertification monitoring system (DDMS) for assessing the worldwide desertification growth rate is presented. The system relies on the development of Landsat derived indicators to identify local processes signalling the growth of arid regions. A study area consisting of the eastern edge of the Niger River delta in Mali was used to characterize three indicators in terms of the covariance of the multispectral scanner (MSS) bands 2 and 4, the correlation of the two bands, and the percent variance expressed by the first eigenvalue. The scenes are imaged multitemporallly in a 400 x 400 pixel array to detect vegetation cover changes. Criteria were defined which characterized the decrease or increase of vegetation. It was determined that the correlation coefficients are the best indicators, and are easily computed.

  20. Minimal watering regime impacts on desert adapted green roof plant performance

    NASA Astrophysics Data System (ADS)

    Kovachich, S.; Pavao-Zuckerman, M.; Templer, S.; Livingston, M.; Stoltz, R.; Smith, S.

    2011-12-01

    Roof tops can cover one-fifth of urban areas and can greatly alter the movement of matter and energy in cities. With traditional roofing methods and materials, roof tops readily absorb heat and as a result, buildings and the surrounding urban area heat to unnaturally high temperatures. It is hypothesized that extensive green roofs would have wide-ranging benefits for arid environments. However, little is known about the cost of water use associated with green roof installations and how to balance energy reduction needs with water costs in this water limited environment. We are conducting a pilot study to test whether a) green roofs with native plants and environmentally-responsible watering regimes will prove successful in arid environments and if b) green roofs provide ecosystem services with responsible water application. Three species of Sonoran Desert natives, Dyssodia pentachaeta (groundcover), Calliandra eriophylla (shrub), and Hesperaloe parviflora (succulent) have been planted in experimental plots [1 m2 model houses and roofs, replicated in triplicate] with two sandy, rocky desert soil mixtures (light mix: 60% expanded shale and heavy mix: organic and sandy mix with 50% shale) at the Biosphere 2 campus near Oracle, Az. The green roofs are watered by two different techniques. The first technique provides "smart watering", the minimal amount of water needed by green roof plants based on precipitation and historical data. The second watering technique is considered heavy and does not take into account environmental conditions. Preliminary data from the experimental plots shows a 30% decrease in daytime roof top temperatures on green roofs and a 10% decrease in interior temperatures in buildings with green roofs. This trend occurs with both watering regimes (heavy and light). This finding suggests that additional irrigation yields no extra heat reduction and energy savings. In order to explain this phenomenon more clearly, we use co-located temperature and

  1. Fate of pesticides in the arid subtropics, Botswana, Southern Africa.

    PubMed

    Shunthirasingham, Chubashini; Mmereki, Baagi T; Masamba, Wellington; Oyiliagu, Catherine E; Lei, Ying D; Wania, Frank

    2010-11-01

    Despite a history of pesticide usage, few data exist on their concentrations in air and soil of Southern Africa. To add to the understanding of the processes controlling the fate of organic contaminants in arid regions, the levels, spatial trends, and seasonal variability of pesticides were studied in air and soil from Botswana. XAD resin-based passive air samplers (PAS) were deployed at 15 sites across the country from May 2006 to May 2007. Soil samples were collected from the vicinity of nine of the PAS sampling sites. In addition, 27 24-h high-volume air samples were collected in Maun, at the southeastern edge of the Okavango Delta, every two weeks for one year. Levels of pesticides in PAS were low, with α-endosulfan and lindane being most abundant. Concentrations in soils were extremely low and only soils with high organic carbon contained notable amounts of dieldrin and traces of other pesticides. In particular, air and soil from the Okavango Delta had very low levels even though the area had repeatedly been sprayed with DDT and endosulfan in the past. Air samples from Eastern Botswana, where the majority of the population lives, contained higher levels. Higher air concentrations of α-endosulfan occurred during summer and higher HCB levels occurred in winter. This seasonality was related with neither minor seasonal changes in temperature nor hydrological seasonal events such as the rainy season or the flooding of the Okavango Delta. Thus, the observed spatial and seasonal patterns are more likely related to pesticide usage pattern than to environmental factors or historical use. High temperature and low organic matter content limit the uptake capacity of most subtropical soils for pesticides. No evidence was found that sorption to dry mineral matter plays a major role. Arid soils in subtropical regions are therefore neither a major reservoir of organic contaminants nor do they constitute a significant long-term source of pesticides to the atmosphere. PMID

  2. Intermediate depth burial of classified transuranic wastes in arid alluvium

    SciTech Connect

    Cochran, J.R.; Crowe, B.M.; Di Sanza, F.

    1999-04-01

    Intermediate depth disposal operations were conducted by the US Department of Energy (DOE) at the DOE`s Nevada Test Site (NTS) from 1984 through 1989. These operations emplaced high-specific activity low-level wastes (LLW) and limited quantities of classified transuranic (TRU) wastes in 37 m (120-ft) deep, Greater Confinement Disposal (GCD) boreholes. The GCD boreholes are 3 m (10 ft) in diameter and founded in a thick sequence of arid alluvium. The bottom 15 m (50 ft) of each borehole was used for waste emplacement and the upper 21 m (70 ft) was backfilled with native alluvium. The bottom of each GCD borehole is almost 200 m (650 ft) above the water table. The GCD boreholes are located in one of the most arid portions of the US, with an average precipitation of 13 cm (5 inches) per year. The limited precipitation, coupled with generally warm temperatures and low humidities results in a hydrologic system dominated by evapotranspiration. The US Environmental Protection Agency`s (EPA`s) 40 CFR 191 defines the requirements for protection of human health from disposed TRU wastes. This EPA standard sets a number of requirements, including probabilistic limits on the cumulative releases of radionuclides to the accessible environment for 10,000 years. The DOE Nevada Operations Office (DOE/NV) has contracted with Sandia National Laboratories (Sandia) to conduct a performance assessment (PA) to determine if the TRU wastes emplaced in the GCD boreholes complies with the EPA`s 40 CFR 191 requirements. This paper describes DOE`s actions undertaken to evaluate whether the TRU wastes in the GCD boreholes will, or will not, endanger human health. Based on preliminary modeling, the TRU wastes in the GCD boreholes meet the EPA`s requirements, and are, therefore, protective of human health.

  3. Thrips domiciles protect larvae from desiccation in an arid environment.

    PubMed

    Gilbert, James D J

    2014-11-01

    Desiccation is a particular risk for small animals in arid environments. In response, many organisms "construct niches," favorable microenvironments where they spend part or all of their life cycle. Some maintain such environments for their offspring via parental care. Insect eggs are often protected from desiccation by parentally derived gels, casings, or cocoons, but active parental protection of offspring from desiccation has never been demonstrated. Most free-living thrips (Thysanoptera) alleviate water loss via thigmotaxis (crevice seeking). In arid Australia, Acacia thrips (Phlaeothripidae) construct many kinds of niche. Some thrips induce galls; others, like Dunatothrips aneurae, live and breed within "domiciles" made from loosely glued phyllodes. The function of domiciles is unknown; like other constructed niches, they may 1) create favorable microenvironments, 2) facilitate feeding, 3) protect from enemies, or a combination. To test the first 2 alternatives experimentally, field-collected domiciles were destroyed or left intact. Seven-day survival of feeding and nonfeeding larval stages was monitored at high (70-80%) or low (8-10%, approximately ambient) humidity. Regardless of humidity, most individuals survived in intact domiciles, whereas for destroyed domiciles, survival depended on humidity, suggesting parents construct and maintain domiciles to prevent offspring desiccating. Feeding and nonfeeding larvae had similar survival patterns, suggesting the domicile's role is not nutritional. Outside domiciles, survival at "high" humidity was intermediate, suggesting very high humidity requirements, or energetic costs of wandering outside domiciles. D. aneurae commonly cofound domiciles; cofoundresses may benefit both from shared nestbuilding costs, and from "deferred byproduct mutualism," that is, backup parental care in case of mortality.

  4. Time Profile of Three Semi-Arid Ecosystems in Africa

    NASA Astrophysics Data System (ADS)

    Anyamba, A.; Damoah, R.; Small, J. L.; Tucker, C. J.

    2015-12-01

    We examine the spatio-temporal variability of rainfall and satellite derived-vegetation index of three endorheic semi-arid ecosystems in Africa: Lake Chad (in the Sahel region), Okavango and Etosha (Southern Africa) to infer the nature and trends of the variability during the satellite data instrumental record. We utilize African Rainfall Climatology Precipitation Estimates (1983-2014) and Normalized Difference Vegetation Index (NDVI) derived from the Advanced Very High Resolution Radiometer (AVHRR: 1981-2014) and Moderate Resolution Imaging Spectroradiometer (MODIS: 2001:2014) to examine the aspects of the annual cycle and interannual variability using both time series plots and time-space diagrams. With respect to Lake Chad region, the first two decades of the series (1981-2000) show predominantly dryer than long-term average conditions with the periods 1989, 1992 and 1996/1997 as the signature drought periods coinciding with the desiccation of the Sahel region during the 1980s to early 1990s decades. The period 2000 to present is dominated by above average rainfall and NDVI with 2003, 2007 and 2012 being the most pronounced wet/greener years. The southern African ecosystems (Okavango and Etosha) show more or less a similar temporal pattern to that of Lake Chad basin, however, the wet periods are more amplified and persistent especially 2000, 2006, 2010 and 2014, with corresponding above average NDVI departures. The amplified nature of wet and dry periods present in the southern African ecosystem time series are consistent with the El Niño Southern Oscillation teleconnection patterns. Overall these three ecosystems serve as detectable fingerprints of changing climate conditions and ecosystems in these arid regions.

  5. Thrips domiciles protect larvae from desiccation in an arid environment

    PubMed Central

    2014-01-01

    Desiccation is a particular risk for small animals in arid environments. In response, many organisms “construct niches,” favorable microenvironments where they spend part or all of their life cycle. Some maintain such environments for their offspring via parental care. Insect eggs are often protected from desiccation by parentally derived gels, casings, or cocoons, but active parental protection of offspring from desiccation has never been demonstrated. Most free-living thrips (Thysanoptera) alleviate water loss via thigmotaxis (crevice seeking). In arid Australia, Acacia thrips (Phlaeothripidae) construct many kinds of niche. Some thrips induce galls; others, like Dunatothrips aneurae, live and breed within “domiciles” made from loosely glued phyllodes. The function of domiciles is unknown; like other constructed niches, they may 1) create favorable microenvironments, 2) facilitate feeding, 3) protect from enemies, or a combination. To test the first 2 alternatives experimentally, field-collected domiciles were destroyed or left intact. Seven-day survival of feeding and nonfeeding larval stages was monitored at high (70–80%) or low (8–10%, approximately ambient) humidity. Regardless of humidity, most individuals survived in intact domiciles, whereas for destroyed domiciles, survival depended on humidity, suggesting parents construct and maintain domiciles to prevent offspring desiccating. Feeding and nonfeeding larvae had similar survival patterns, suggesting the domicile’s role is not nutritional. Outside domiciles, survival at “high” humidity was intermediate, suggesting very high humidity requirements, or energetic costs of wandering outside domiciles. D. aneurae commonly cofound domiciles; cofoundresses may benefit both from shared nestbuilding costs, and from “deferred byproduct mutualism,” that is, backup parental care in case of mortality. PMID:25419084

  6. Evolution of Asian Interior Arid-Zone Biota: Evidence from the Diversification of Asian Zygophyllum (Zygophyllaceae).

    PubMed

    Wu, Sheng-Dan; Lin, Li; Li, Hong-Lei; Yu, Sheng-Xiang; Zhang, Lin-Jing; Wang, Wei

    2015-01-01

    The Asian interior arid zone is the largest desert landform system in the Northern Hemisphere, and has high biodiversity. Little is currently known about the evolutionary history of its biota. In this study, we used Zygophyllum, an important and characteristic component of the Asian interior arid zone, to provide new insights into the evolution of this biota. By greatly enlarged taxon sampling, we present the phylogenetic analysis of Asian Zygophyllum based on two plastid and one nuclear markers. Our phylogenetic analyses indicate that Asian Zygophyllum and Sarcozygium form a clade and Sarcozygium is further embedded within the shrub subclade. An integration of phylogenetic, biogeographic, and molecular dating methods indicates that Zygophyllum successfully colonized the Asian interior from Africa in the early Oligocene, and Asian Zygophyllum became differentiated in the early Miocene and underwent a burst of diversification in the late Miocene associated with the expansion of Asian interior arid lands due to orogenetic and climatic changes. Combining diversification patterns of other important components of the Asian interior arid zone, we propose a multi-stage evolution model for this biota: the late Eocene-early Oligocene origin, the early Miocene expansion, and the middle-late Miocene rapid expansion to the whole Asian interior arid zone. This study also demonstrates that, for Zygophyllum and perhaps other arid-adapted organisms, arid biomes are evolutionary cradles of diversity. PMID:26393796

  7. Spatial analysis of the annual and seasonal aridity trends in Extremadura, southwestern Spain

    NASA Astrophysics Data System (ADS)

    Moral, Francisco J.; Paniagua, Luis L.; Rebollo, Francisco J.; García-Martín, Abelardo

    2016-09-01

    The knowledge of drought (or wetness) conditions is necessary not only for a rational use of water resources but also for explaining landscape and ecology characteristics. An increase in aridity in many areas of the world is expected because of climate change (global warming). With the aim of analysing annual and seasonal aridity trends in Extremadura, southwestern Spain, climate data from 81 locations within the 1951-2010 period were used. After computing the De Martonne aridity index at each location, a geographic information system (GIS) and multivariate geostatistics (regression kriging) were utilised to map this index throughout the region. Later, temporal trends were analysed using the Mann-Kendall test, and the Sen's estimator was utilised to estimate the magnitude of trends. Maps of aridity trends were generated by ordinary kriging algorithm, providing a visualisation of detected annual and seasonal tendencies. An increase in aridity, as the De Martonne aridity index decreased, was apparent during the study period, mainly in the more humid locations of the north of the region. An increase of the seasonal De Martonne aridity index was also found, but it was only statistically significant in some locations in spring and summer, with the highest decreasing rate in the north of Extremadura. Change year detection was achieved using cumulative sum graphs, obtaining that firstly the change point occurred in spring, in the mid-1970s, later in the annual period in the late 1970s and finally in summer at the end of the 1980s.

  8. Evolution of Asian Interior Arid-Zone Biota: Evidence from the Diversification of Asian Zygophyllum (Zygophyllaceae)

    PubMed Central

    Li, Hong-Lei; Yu, Sheng-Xiang; Zhang, Lin-Jing; Wang, Wei

    2015-01-01

    The Asian interior arid zone is the largest desert landform system in the Northern Hemisphere, and has high biodiversity. Little is currently known about the evolutionary history of its biota. In this study, we used Zygophyllum, an important and characteristic component of the Asian interior arid zone, to provide new insights into the evolution of this biota. By greatly enlarged taxon sampling, we present the phylogenetic analysis of Asian Zygophyllum based on two plastid and one nuclear markers. Our phylogenetic analyses indicate that Asian Zygophyllum and Sarcozygium form a clade and Sarcozygium is further embedded within the shrub subclade. An integration of phylogenetic, biogeographic, and molecular dating methods indicates that Zygophyllum successfully colonized the Asian interior from Africa in the early Oligocene, and Asian Zygophyllum became differentiated in the early Miocene and underwent a burst of diversification in the late Miocene associated with the expansion of Asian interior arid lands due to orogenetic and climatic changes. Combining diversification patterns of other important components of the Asian interior arid zone, we propose a multi-stage evolution model for this biota: the late Eocene–early Oligocene origin, the early Miocene expansion, and the middle-late Miocene rapid expansion to the whole Asian interior arid zone. This study also demonstrates that, for Zygophyllum and perhaps other arid-adapted organisms, arid biomes are evolutionary cradles of diversity. PMID:26393796

  9. ARID1a-DNA interactions are required for promoter occupancy by SWI/SNF.

    PubMed

    Chandler, Ronald L; Brennan, Jennifer; Schisler, Jonathan C; Serber, Daniel; Patterson, Cam; Magnuson, Terry

    2013-01-01

    Every known SWI/SNF chromatin-remodeling complex incorporates an ARID DNA binding domain-containing subunit. Despite being a ubiquitous component of the complex, physiological roles for this domain remain undefined. Here, we show that disruption of ARID1a-DNA binding in mice results in embryonic lethality, with mutant embryos manifesting prominent defects in the heart and extraembryonic vasculature. The DNA binding-defective mutant ARID1a subunit is stably expressed and capable of assembling into a SWI/SNF complex with core catalytic properties, but nucleosome substrate binding and promoter occupancy by ARID1a-containing SWI/SNF complexes (BAF-A) are impaired. Depletion of ARID domain-dependent, BAF-A associations at THROMBOSPONDIN 1 (THBS1) led to the concomitant upregulation of this SWI/SNF target gene. Using a THBS1 promoter-reporter gene, we further show that BAF-A directly regulates THBS1 promoter activity in an ARID domain-dependent manner. Our data not only demonstrate that ARID1a-DNA interactions are physiologically relevant in higher eukaryotes but also indicate that these interactions facilitate SWI/SNF binding to target sites in vivo. These findings support the model wherein cooperative interactions among intrinsic subunit-chromatin interaction domains and sequence-specific transcription factors drive SWI/SNF recruitment.

  10. Spatial and Temporal Patterns of Nutrient Limitation, Plant Biomass and Productivity, and Stream Metabolism Vary in Response to Short- and Long-Term Hydrological Regime Shifts

    NASA Astrophysics Data System (ADS)

    Grimm, N. B.; Sabo, J. L.; Dong, X.; Ruhí, A.

    2014-12-01

    Climate and hydrology are strong drivers of ecosystem structure and function in arid landscapes. Arid regions are characterized by high interannual variation in precipitation, and these climate patterns drive the overall hydrologic disturbance regime (in terms of flooding and drying), which influences geomorphic structure, biotic distributions, and nutrient status of desert stream ecosystems. We analyzed the long-term pattern of discharge in a desert stream in Arizona to identify hydrologic regime shifts, i.e., abrupt transitions between sequences of floods and droughts at periods of months to decades. We used wavelet analysis to identify time intervals over a 50-year time series that were negatively correlated with one another, reflecting a shift from wet to dry phases. We also looked with finer resolution at the most recent 10-year period, when wetlands have come to dominate the ecosystem owing to a management change, and at individual flood and drought events within years. In space, there is high site fidelity of wetland plant cover, corresponding to reliable water sources. Comparing five-year patterns of plant distribution and stream metabolism between wet and dry years suggested the primacy of geomorphic controls in drought periods. Nutrient limitation of algal production varied from moderate to very strong N limitation, with only one year when there was a (weak) suggestion of secondary P limitation. Over the longer period of record, we identified times characterized by hydrological regime shifts and asked whether ecosystem variables would have changed over that time period. We hypothesized, in particular, that the changes in nutrient status of the stream ecosystem would result from these regime shifts. We used our most complete long-term dataset on stream nitrogen (N) and phosphorus (P) concentrations and N:P ratios as a proxy for nutrient limitation. However, N:P varied primarily at fine scales in response to individual flood events.

  11. Androgen Receptor Coactivator ARID4B Is Required for the Function of Sertoli Cells in Spermatogenesis

    PubMed Central

    Zeng, Yang; Pan, I-Wen

    2015-01-01

    Defects in spermatogenesis, a process that produces spermatozoa inside seminiferous tubules of the testis, result in male infertility. Spermatogenic progression is highly dependent on a microenvironment provided by Sertoli cells, the only somatic cells and epithelium of seminiferous tubules. However, genes that regulate such an important activity of Sertoli cells are poorly understood. Here, we found that AT-rich interactive domain 4B (ARID4B), is essential for the function of Sertoli cells to regulate spermatogenesis. Specifically, we generated Sertoli cell-specific Arid4b knockout (Arid4bSCKO) mice, and showed that the Arid4bSCKO male mice were completely infertile with impaired testis development and significantly reduced testis size. Importantly, severe structural defects accompanied by loss of germ cells and Sertoli cell-only phenotype were found in many seminiferous tubules of the Arid4bSCKO testes. In addition, maturation of Sertoli cells was significantly delayed in the Arid4bSCKO mice, associated with delayed onset of spermatogenesis. Spermatogenic progression was also defective, showing an arrest at the round spermatid stage in the Arid4bSCKO testes. Interestingly, we showed that ARID4B functions as a “coactivator” of androgen receptor and is required for optimal transcriptional activation of reproductive homeobox 5, an androgen receptor target gene specifically expressed in Sertoli cells and critical for spermatogenesis. Together, our study identified ARID4B to be a key regulator of Sertoli cell function important for male germ cell development. PMID:26258622

  12. Tropical Warm Semi-Arid Regions Expanding Over Temperate Latitudes In The Projected 21st Century

    NASA Astrophysics Data System (ADS)

    Rajaud, A.; de Noblet, N. I.

    2015-12-01

    Two billion people today live in drylands, where extreme climatic conditions prevail, and natural resources are limited. Drylands are expected to expand under several scenarios of climatic change. However, relevant adaptation strategies need to account for the aridity level: it conditions the equilibrium tree-cover density, ranging from deserts (hyper-arid) to dense savannas (sub-humid). Here we focus on the evolution of climatically defined warm semi-arid areas, where low-tree density covers can be maintained. We study the global repartition of these regions in the future and the bioclimatic shifts involved. We adopted a bioclimatological approach based on the Köppen climate classification. The warm semi-arid class is characterized by mean annual temperatures over 18°C and a rainfall-limitation criterion. A multi-model ensemble of CMIP5 projections for three representative concentration pathways was selected to analyze future conditions. The classification was first applied to the start, middle and end of the 20th and 21st centuries, in order to localize past and future warm semi-arid regions. Then, time-series for the classification were built to characterize trends and variability in the evolution of those regions. According to the CRU datasets, global expansion of the warm semi-arid area has already started (~+13%), following the global warming trend since the 1900s. This will continue according to all projections, most significantly so outside the tropical belt. Under the "business as usual" scenario, the global warm semi-arid area will increase by 30% and expand 12° poleward in the Northern Hemisphere, according to the multi-model mean. Drying drives the conversion from equatorial sub-humid conditions. Beyond 30° of latitude, cold semi-arid conditions become warm semi-arid through warming, and temperate conditions through combined warming and drying processes. Those various transitions may have drastic but also very distinct ecological and sociological

  13. The Chromatin Remodeling Component Arid1a Is a Suppressor of Spontaneous Mammary Tumors in Mice.

    PubMed

    Kartha, Nithya; Shen, Lishuang; Maskin, Carolyn; Wallace, Marsha; Schimenti, John C

    2016-08-01

    Human cancer genome studies have identified the SWI/SNF chromatin remodeling complex member ARID1A as one of the most frequently altered genes in several tumor types. Its role as an ovarian tumor suppressor has been supported in compound knockout mice. Here, we provide genetic and functional evidence that Arid1a is a bona fide mammary tumor suppressor, using the Chromosome aberrations occurring spontaneously 3 (Chaos3) mouse model of sporadic breast cancer. About 70% of mammary tumors that formed in these mice contained a spontaneous deletion removing all or part of one Arid1a allele. Restoration of Arid1a expression in a Chaos3 mammary tumor line with low Arid1a levels greatly impaired its ability to form tumors following injection into cleared mammary glands, indicating that ARID1A insufficiency is crucial for maintenance of these Trp53-proficient tumors. Transcriptome analysis of tumor cells before and after reintroduction of Arid1a expression revealed alterations in growth signaling and cell-cycle checkpoint pathways, in particular the activation of the TRP53 pathway. Consistent with the latter, Arid1a reexpression in tumor cells led to increased p21 (Cdkn1a) expression and dramatic accumulation of cells in G2 phase of the cell cycle. These results not only provide in vivo evidence for a tumor suppressive and/or maintenance role in breast cancer, but also indicate a potential opportunity for therapeutic intervention in ARID1A-deficient human breast cancer subtypes that retain one intact copy of the gene and also maintain wild-type TRP53 activity. PMID:27280691

  14. Changes in the forest ecosystems in areas impacted by aridization in south-western Romania

    PubMed Central

    2014-01-01

    Background In the past few decades, global climate change has accentuated the intensification of aridization in South-Western Romania, with direct and indirect consequences on the quality of forest ecosystems. In addition to qualitative deterioration, the quantitative changes brought about by intensive anthropic deforestation have created the conditions for a decline in the size of forest areas on vast tracts of land. The paper aims to analyze the qualitative and quantitative changes in the forest ecosystems in South-Western Romania, changes due to the synergic context of the global climate changes and the anthropic pressures of the past three decades. In order to capture the evolution of aridization in the study area, specific aridization indexes have been calculated, such as the De Martonne index and the UNEP aridity index. 1990 and 2011 satellite images have been used in order to quantify the qualitative changes. Results The results obtained indicated that, in the past two decades, the quality of the biomass declined as a result of the increase in the climatic aridity conditions (De Martonne si UNEP aridity index, indicating in the last decades, annual values under 15 mm/°C, and under 0.5 mm/mm, that means that the values situated under these thresholds, describe arid and semi-arid climate conditions). Also, the uncontrolled logging across vast surfaces caused the loss of forest ecosystems by 7% in the overall study area, during the last three decades. Conclusions The severe effects of aridization meant, first of all, a significant decline in the quality of the ecosystem services supplied by forests. In the absence of viable actions to correct the present situation, the extremely undesirable consequences of an ecological and social nature will arise in the near future. PMID:24393389

  15. THE DYNAMIC REGIME CONCEPT FOR ECOSYSTEM MANAGEMENT AND RESTORATION

    EPA Science Inventory

    Dynamic regimes of ecosystems are multidimensional basis of attraction, characterized by particular species communities and ecosystems processes. Ecosystem patterns and processes rarely respond linerarly to disturbances, and the nonlinear cynamic regime concept offers a more real...

  16. FISHER INFORMATION OF DYNAMIC REGIME TRANSITIONS IN ECOLOGICAL SYSTEMS

    EPA Science Inventory

    Ecosystems often exhibit transitions between multiple dynamic regimes (or steady states). As ecosystems experience perturbations of varying regularity and intensity, they may either remain within the state space neighborhood of the current regime, or ?flip? into the neighborhood ...

  17. The discrete regime of flame propagation

    NASA Astrophysics Data System (ADS)

    Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew

    The propagation of laminar dust flames in iron dust clouds was studied in a low-gravity envi-ronment on-board a parabolic flight aircraft. The elimination of buoyancy-induced convection and particle settling permitted measurements of fundamental combustion parameters such as the burning velocity and the flame quenching distance over a wide range of particle sizes and in different gaseous mixtures. The discrete regime of flame propagation was observed by substitut-ing nitrogen present in air with xenon, an inert gas with a significantly lower heat conductivity. Flame propagation in the discrete regime is controlled by the heat transfer between neighbor-ing particles, rather than by the particle burning rate used by traditional continuum models of heterogeneous flames. The propagation mechanism of discrete flames depends on the spa-tial distribution of particles, and thus such flames are strongly influenced by local fluctuations in the fuel concentration. Constant pressure laminar dust flames were observed inside 70 cm long, 5 cm diameter Pyrex tubes. Equally-spaced plate assemblies forming rectangular chan-nels were placed inside each tube to determine the quenching distance defined as the minimum channel width through which a flame can successfully propagate. High-speed video cameras were used to measure the flame speed and a fiber optic spectrometer was used to measure the flame temperature. Experimental results were compared with predictions obtained from a numerical model of a three-dimensional flame developed to capture both the discrete nature and the random distribution of particles in the flame. Though good qualitative agreement was obtained between model predictions and experimental observations, residual g-jitters and the short reduced-gravity periods prevented further investigations of propagation limits in the dis-crete regime. The full exploration of the discrete flame phenomenon would require high-quality, long duration reduced gravity environment

  18. River Flow Regimes and Effective Discharge

    NASA Astrophysics Data System (ADS)

    Basso, S.; Sprocati, R.; Frascati, A.; Marani, M.; Schirmer, M.; Botter, G.

    2015-12-01

    The concept of effective discharge is widespread in geomorphology and river engineering and restoration. For example, it is used to design the most stable channel configuration, to estimate sedimentation rate and lifespan of reservoirs and to characterize the hydrologic forcing in models studying long-term evolution of rivers. Accordingly, the effective discharge has been the focus of countless empirical, theoretical and numerical studies, which found it to vary among catchments as a function of climate, landscape and river morphology, type of transport (dissolved, suspended or bedload), and of streamflow variability. The heterogeneity of the effective discharge values observed in different catchments challenges a thorough understanding of its pivotal drivers, and a consistent framework which explains observations carried out in different geographic areas is still lacking. In the present work, the observed diversity is explained in terms of the underlying heterogeneity of river flow regimes, by linking effective discharge to attributes of the sediment rating curve and to streamflow variability, as resulting from climatic and landscape drivers. An analytic expression of the effective ratio (i.e. the ratio between effective discharge and mean streamflow) is provided, which captures observed values of effective discharge for suspended sediment transport in a set of catchments of the continental United States. The framework disentangles hydrologic and landscape controls on effective discharge, and highlights distinct effective ratios of persistent and erratic hydrologic regimes (respectively characterized by low and high flow variability), attributable to intrinsically different streamflow dynamics. Clusters of river catchments characterized by similar streamflow dynamics can be identified. The framework provides an opportunity for first-order estimates of effective discharge in rivers belonging to different areas, based on the type of flow regime.

  19. Model projections of an imminent transition to a more arid climate in southwestern North America.

    PubMed

    Seager, Richard; Ting, Mingfang; Held, Isaac; Kushnir, Yochanan; Lu, Jian; Vecchi, Gabriel; Huang, Huei-Ping; Harnik, Nili; Leetmaa, Ants; Lau, Ngar-Cheung; Li, Cuihua; Velez, Jennifer; Naik, Naomi

    2007-05-25

    How anthropogenic climate change will affect hydroclimate in the arid regions of southwestern North America has implications for the allocation of water resources and the course of regional development. Here we show that there is a broad consensus among climate models that this region will dry in the 21st century and that the transition to a more arid climate should already be under way. If these models are correct, the levels of aridity of the recent multiyear drought or the Dust Bowl and the 1950s droughts will become the new climatology of the American Southwest within a time frame of years to decades.

  20. Model projections of an imminent transition to a more arid climate in southwestern North America.

    PubMed

    Seager, Richard; Ting, Mingfang; Held, Isaac; Kushnir, Yochanan; Lu, Jian; Vecchi, Gabriel; Huang, Huei-Ping; Harnik, Nili; Leetmaa, Ants; Lau, Ngar-Cheung; Li, Cuihua; Velez, Jennifer; Naik, Naomi

    2007-05-25

    How anthropogenic climate change will affect hydroclimate in the arid regions of southwestern North America has implications for the allocation of water resources and the course of regional development. Here we show that there is a broad consensus among climate models that this region will dry in the 21st century and that the transition to a more arid climate should already be under way. If these models are correct, the levels of aridity of the recent multiyear drought or the Dust Bowl and the 1950s droughts will become the new climatology of the American Southwest within a time frame of years to decades. PMID:17412920

  1. Bose Polarons in the Strongly Interacting Regime.

    PubMed

    Hu, Ming-Guang; Van de Graaff, Michael J; Kedar, Dhruv; Corson, John P; Cornell, Eric A; Jin, Deborah S

    2016-07-29

    When an impurity is immersed in a Bose-Einstein condensate, impurity-boson interactions are expected to dress the impurity into a quasiparticle, the Bose polaron. We superimpose an ultracold atomic gas of ^{87}Rb with a much lower density gas of fermionic ^{40}K impurities. Through the use of a Feshbach resonance and radio-frequency spectroscopy, we characterize the energy, spectral width, and lifetime of the resultant polaron on both the attractive and the repulsive branches in the strongly interacting regime. The width of the polaron in the attractive branch is narrow compared to its binding energy, even as the two-body scattering length diverges. PMID:27517776

  2. Efficiency of Rectification: Reversible vs. Irreversible Regimes

    NASA Astrophysics Data System (ADS)

    Sokolov, I. M.

    2002-11-01

    Both man-made locomotive devices and molecular motors use gears to transform a reciprocating motion into a directed one. One of the most common gears is a rectifier, a mechanically irreversible appliance. The maximal energetic efficiency of an isothermic gear is bounded by unity, as a consequence of the Second Law. However, approaching this ideal efficiency does not imply approaching reversibility. We discuss what properties of a rectifier mostly influence the transduction efficiency and show that an appliance which locks under backward force is just the one which can approach the ideal efficiency either in the reversible or in the irreversible regime.

  3. Bose Polarons in the Strongly Interacting Regime

    NASA Astrophysics Data System (ADS)

    Hu, Ming-Guang; Van de Graaff, Michael J.; Kedar, Dhruv; Corson, John P.; Cornell, Eric A.; Jin, Deborah S.

    2016-07-01

    When an impurity is immersed in a Bose-Einstein condensate, impurity-boson interactions are expected to dress the impurity into a quasiparticle, the Bose polaron. We superimpose an ultracold atomic gas of 87Rb with a much lower density gas of fermionic 40 impurities. Through the use of a Feshbach resonance and radio-frequency spectroscopy, we characterize the energy, spectral width, and lifetime of the resultant polaron on both the attractive and the repulsive branches in the strongly interacting regime. The width of the polaron in the attractive branch is narrow compared to its binding energy, even as the two-body scattering length diverges.

  4. Imperfect relativistic mirrors in the quantum regime

    SciTech Connect

    Mendonça, J. T.; Serbeto, A.; Galvão, R. M. O.

    2014-05-15

    The collective backscattering of intense laser radiation by energetic electron beams is considered in the relativistic quantum regime. Exact solutions for the radiation field are obtained, for arbitrary electron pulse shapes and laser intensities. The electron beams act as imperfect nonlinear mirrors on the incident laser radiation. This collective backscattering process can lead to the development of new sources of ultra-short pulse radiation in the gamma-ray domain. Numerical examples show that, for plausible experimental conditions, intense pulses of gamma-rays, due to the double Doppler shift of the harmonics of the incident laser radiation, can be produced using the available technology, with durations less than 1 as.

  5. Changes of AM Fungal Abundance along Environmental Gradients in the Arid and Semi-Arid Grasslands of Northern China

    PubMed Central

    Hu, Yajun; Rillig, Matthias C.; Xiang, Dan; Hao, Zhipeng; Chen, Baodong

    2013-01-01

    Arbuscular mycorrhizal (AM) fungi are ubiquitous symbionts of higher plants in terrestrial ecosystems, while the occurrence of the AM symbiosis is influenced by a complex set of abiotic and biotic factors. To reveal the regional distribution pattern of AM fungi as driven by multiple environmental factors, and to understand the ecological importance of AM fungi in natural ecosystems, we conducted a field investigation on AM fungal abundance along environmental gradients in the arid and semi-arid grasslands of northern China. In addition to plant parameters recorded in situ, soil samples were collected, and soil chemo-physical and biological parameters were measured in the lab. Statistical analyses were performed to reveal the relative contribution of climatic, edaphic and vegetation factors to AM fungal abundance, especially for extraradical hyphal length density (HLD) in the soil. The results indicated that HLD were positively correlated with mean annual temperature (MAT), soil clay content and soil pH, but negatively correlated with both soil organic carbon (SOC) and soil available N. The multiple regressions and structural equation model showed that MAT was the key positive contributor and soil fertility was the key negative contributor to HLD. Furthermore, both the intraradical AM colonization (IMC) and relative abundance of AM fungi, which was quantified by real-time PCR assay, tended to decrease along the increasing SOC content. With regard to the obvious negative correlation between MAT and SOC in the research area, the positive correlation between MAT and HLD implied that AM fungi could potentially mitigate soil carbon losses especially in infertile soils under global warming. However, direct evidence from long-term experiments is still expected to support the AM fungal contribution to soil carbon pools. PMID:23451247

  6. Changes of AM fungal abundance along environmental gradients in the arid and semi-arid grasslands of northern China.

    PubMed

    Hu, Yajun; Rillig, Matthias C; Xiang, Dan; Hao, Zhipeng; Chen, Baodong

    2013-01-01

    Arbuscular mycorrhizal (AM) fungi are ubiquitous symbionts of higher plants in terrestrial ecosystems, while the occurrence of the AM symbiosis is influenced by a complex set of abiotic and biotic factors. To reveal the regional distribution pattern of AM fungi as driven by multiple environmental factors, and to understand the ecological importance of AM fungi in natural ecosystems, we conducted a field investigation on AM fungal abundance along environmental gradients in the arid and semi-arid grasslands of northern China. In addition to plant parameters recorded in situ, soil samples were collected, and soil chemo-physical and biological parameters were measured in the lab. Statistical analyses were performed to reveal the relative contribution of climatic, edaphic and vegetation factors to AM fungal abundance, especially for extraradical hyphal length density (HLD) in the soil. The results indicated that HLD were positively correlated with mean annual temperature (MAT), soil clay content and soil pH, but negatively correlated with both soil organic carbon (SOC) and soil available N. The multiple regressions and structural equation model showed that MAT was the key positive contributor and soil fertility was the key negative contributor to HLD. Furthermore, both the intraradical AM colonization (IMC) and relative abundance of AM fungi, which was quantified by real-time PCR assay, tended to decrease along the increasing SOC content. With regard to the obvious negative correlation between MAT and SOC in the research area, the positive correlation between MAT and HLD implied that AM fungi could potentially mitigate soil carbon losses especially in infertile soils under global warming. However, direct evidence from long-term experiments is still expected to support the AM fungal contribution to soil carbon pools.

  7. 22 CFR 120.29 - Missile Technology Control Regime.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Missile Technology Control Regime. 120.29... DEFINITIONS § 120.29 Missile Technology Control Regime. (a) For purposes of this subchapter, Missile Technology Control Regime (MTCR) means the policy statement between the United States, the United...

  8. 22 CFR 120.29 - Missile Technology Control Regime.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Missile Technology Control Regime. 120.29... DEFINITIONS § 120.29 Missile Technology Control Regime. (a) For purposes of this subchapter, Missile Technology Control Regime (MTCR) means the policy statement between the United States, the United...

  9. 22 CFR 120.29 - Missile Technology Control Regime.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Missile Technology Control Regime. 120.29... DEFINITIONS § 120.29 Missile Technology Control Regime. (a) For purposes of this subchapter, Missile Technology Control Regime (MTCR) means the policy statement between the United States, the United...

  10. 22 CFR 120.29 - Missile Technology Control Regime.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Missile Technology Control Regime. 120.29... DEFINITIONS § 120.29 Missile Technology Control Regime. (a) For purposes of this subchapter, Missile Technology Control Regime (MTCR) means the policy statement between the United States, the United...

  11. 22 CFR 120.29 - Missile Technology Control Regime.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Missile Technology Control Regime. 120.29... DEFINITIONS § 120.29 Missile Technology Control Regime. (a) For purposes of this subchapter, Missile Technology Control Regime (MTCR) means the policy statement among the United States, the United Kingdom,...

  12. The relationship between void waves and flow regime transition

    SciTech Connect

    Lahey, R.T. Jr.; Drew, D.A.; Kalkach-Navarro, S.; Park, J.W.

    1992-12-31

    The results of an extensive experimental and analytical study on the relationship between void waves and flow regime transition are presented, in particular, the bubbly/slug flow regime transition. It is shown that void wave instability signals a flow regime transition.

  13. Estimates of net infiltration in arid basins and potential impacts on recharge and solute flux due to land use and vegetation change

    NASA Astrophysics Data System (ADS)

    Robertson, Wendy Marie; Sharp, John M.

    2015-03-01

    Human impacts on land use and vegetation in arid basins have, in some regions, altered infiltration, recharge, and groundwater chemistry. However, some modeling approaches currently used do not account for these effects. In the Trans-Pecos region of Texas the presence of modern water, increasing groundwater NO3- concentrations, and vadose zone cores flushed of naturally accumulated solutes belie the notion that basin groundwater is unaffected by overlying land use and vegetation change. Recharge to the Trans-Pecos basins is spatially and temporally variable, and due to human impacts it has likely changed since pre-western settlement time (circa 1850s). By using the INFIL 3.0.1 model, a spatially distributed model of net infiltration, the volume and spatial distribution of net infiltration was examined for two basins, Wild Horse/Michigan Flats and Lobo/Ryan Flats, with model simulations designed to examine the effects of irrigated agriculture and human impacts on vegetation. Model results indicate that recharge to the basins is not limited to mountain-front zones and discrete features (i.e., alluvial channels), rather, irrigation return flow contributes an estimated 6.3 × 107 m3 (408 mm) of net infiltration over 40 yrs and net infiltration on the basin floors could contribute between 7% and 11.5% of annual basin recharge. Model results also indicate that net infiltration may be higher under current vegetation regimes than in pre-western settlement conditions; the removal of thick dense grasslands in INFIL model simulations enhanced net infiltration by 48% or more. Results from distributed models (like INFIL) improve upon scientific understanding of the links between vegetation regime and hydrological processes; this is important for the sustainable management of arid basin aquifers in Texas and elsewhere.

  14. Elastic regimes of subisostatic athermal fiber networks.

    PubMed

    Licup, A J; Sharma, A; MacKintosh, F C

    2016-01-01

    Athermal models of disordered fibrous networks are highly useful for studying the mechanics of elastic networks composed of stiff biopolymers. The underlying network architecture is a key aspect that can affect the elastic properties of these systems, which include rich linear and nonlinear elasticity. Existing computational approaches have focused on both lattice-based and off-lattice networks obtained from the random placement of rods. It is not obvious, a priori, whether the two architectures have fundamentally similar or different mechanics. If they are different, it is not clear which of these represents a better model for biological networks. Here, we show that both approaches are essentially equivalent for the same network connectivity, provided the networks are subisostatic with respect to central force interactions. Moreover, for a given subisostatic connectivity, we even find that lattice-based networks in both two and three dimensions exhibit nearly identical nonlinear elastic response. We provide a description of the linear mechanics for both architectures in terms of a scaling function. We also show that the nonlinear regime is dominated by fiber bending and that stiffening originates from the stabilization of subisostatic networks by stress. We propose a generalized relation for this regime in terms of the self-generated normal stresses that develop under deformation. Different network architectures have different susceptibilities to the normal stress but essentially exhibit the same nonlinear mechanics. Such a stiffening mechanism has been shown to successfully capture the nonlinear mechanics of collagen networks. PMID:26871101

  15. Revealing the quantum regime in tunnelling plasmonics.

    PubMed

    Savage, Kevin J; Hawkeye, Matthew M; Esteban, Rubén; Borisov, Andrei G; Aizpurua, Javier; Baumberg, Jeremy J

    2012-11-22

    When two metal nanostructures are placed nanometres apart, their optically driven free electrons couple electrically across the gap. The resulting plasmons have enhanced optical fields of a specific colour tightly confined inside the gap. Many emerging nanophotonic technologies depend on the careful control of this plasmonic coupling, including optical nanoantennas for high-sensitivity chemical and biological sensors, nanoscale control of active devices, and improved photovoltaic devices. But for subnanometre gaps, coherent quantum tunnelling becomes possible and the system enters a regime of extreme non-locality in which previous classical treatments fail. Electron correlations across the gap that are driven by quantum tunnelling require a new description of non-local transport, which is crucial in nanoscale optoelectronics and single-molecule electronics. Here, by simultaneously measuring both the electrical and optical properties of two gold nanostructures with controllable subnanometre separation, we reveal the quantum regime of tunnelling plasmonics in unprecedented detail. All observed phenomena are in good agreement with recent quantum-based models of plasmonic systems, which eliminate the singularities predicted by classical theories. These findings imply that tunnelling establishes a quantum limit for plasmonic field confinement of about 10(-8)λ(3) for visible light (of wavelength λ). Our work thus prompts new theoretical and experimental investigations into quantum-domain plasmonic systems, and will affect the future of nanoplasmonic device engineering and nanoscale photochemistry.

  16. Variety of synchronous regimes in neuronal ensembles

    NASA Astrophysics Data System (ADS)

    Komarov, M. A.; Osipov, G. V.; Suykens, J. A. K.

    2008-09-01

    We consider a Hodgkin-Huxley-type model of oscillatory activity in neurons of the snail Helix pomatia. This model has a distinctive feature: It demonstrates multistability in oscillatory and silent modes that is typical for the thalamocortical neurons. A single neuron cell can demonstrate a variety of oscillatory activity: Regular and chaotic spiking and bursting behavior. We study collective phenomena in small and large arrays of nonidentical cells coupled by models of electrical and chemical synapses. Two single elements coupled by electrical coupling show different types of synchronous behavior, in particular in-phase and antiphase synchronous regimes. In an ensemble of three inhibitory synaptically coupled elements, the phenomenon of sequential synchronous dynamics is observed. We study the synchronization phenomena in the chain of nonidentical neurons at different oscillatory behavior coupled with electrical and chemical synapses. Various regimes of phase synchronization are observed: (i) Synchronous regular and chaotic spiking; (ii) synchronous regular and chaotic bursting; and (iii) synchronous regular and chaotic bursting with different numbers of spikes inside the bursts. We detect and study the effect of collective synchronous burst generation due to the cluster formation and the oscillatory death.

  17. The effect of increased temperature and altered precipitation on plants in an arid ecosystem

    NASA Astrophysics Data System (ADS)

    Wertin, T. M.; Reed, S.; Belnap, J.

    2011-12-01

    Projected changes in climate are expected to strongly affect arid and semi-arid landscapes where plant communities are assumed to already experience high temperatures and low water availability. Here we investigated the effect of elevated temperature and altered precipitation regimes on plant physiology, community composition, phenology and growth on the Colorado Plateau. The ecosystem is dominated by the native perennial grasses Pleuraphis jamesii and Achnatherum hymenoides and the shrub Atriplex confertifolia and has well-formed biological soil crusts. The invasive annual grass Bromus tectorum is also present. In 2005, five blocks of four 2m by 2.5m plots were established, and within each block plots were randomly assigned to ambient or elevated temperature (soil surface temperature of +2°C above ambient) and ambient or elevated precipitation (1.5 mm precipitation pulses applied three times weekly during summer) in full-factorial. In 2009 the temperature treatment was increased to +4°C. Additionally, five new blocks were established with the plots randomly assigned ambient or elevated temperature (again, +2°C was used) and ambient or elevated precipitation (summertime large bi-weekly watering to counteract negative effects the lamps may have had on soil moisture) in full-factorial. Throughout 2010 and 2011 the phenological state of the dominate plant species was recorded weekly. At the end of May 2010 and 2011 biomass accumulation, reproductive output and vegetative cover were assessed. Additionally, diurnal foliar gas exchange, foliar fluorescence and xylem pressure potential were measured on the dominant plant species three times throughout the spring and summer of 2011. Elevated temperature had no effect on carbon fixation or foliar physiology of A. confertifolia or P. jamesii, though A. hymenoides carbon fixation was negatively affected by elevated temperature with the +4°C treatment causing a greater reduction in fixation than the +2°C treatment. The

  18. Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan

    PubMed Central

    Ardö, Jonas; Mölder, Meelis; El-Tahir, Bashir Awad; Elkhidir, Hatim Abdalla Mohammed

    2008-01-01

    Background Large spatial, seasonal and annual variability of major drivers of the carbon cycle (precipitation, temperature, fire regime and nutrient availability) are common in the Sahel region. This causes large variability in net ecosystem exchange and in vegetation productivity, the subsistence basis for a major part of the rural population in Sahel. This study compares the 2005 dry and wet season fluxes of CO2 for a grass land/sparse savanna site in semi arid Sudan and relates these fluxes to water availability and incoming photosynthetic photon flux density (PPFD). Data from this site could complement the current sparse observation network in Africa, a continent where climatic change could significantly impact the future and which constitute a weak link in our understanding of the global carbon cycle. Results The dry season (represented by Julian day 35–46, February 2005) was characterized by low soil moisture availability, low evapotranspiration and a high vapor pressure deficit. The mean daily NEE (net ecosystem exchange, Eq. 1) was -14.7 mmol d-1 for the 12 day period (negative numbers denote sinks, i.e. flux from the atmosphere to the biosphere). The water use efficiency (WUE) was 1.6 mmol CO2 mol H2O-1 and the light use efficiency (LUE) was 0.95 mmol CO2 mol PPFD-1. Photosynthesis is a weak, but linear function of PPFD. The wet season (represented by Julian day 266–273, September 2005) was, compared to the dry season, characterized by slightly higher soil moisture availability, higher evapotranspiration and a slightly lower vapor pressure deficit. The mean daily NEE was -152 mmol d-1 for the 8 day period. The WUE was lower, 0.97 mmol CO2 mol H2O-1 and the LUE was higher, 7.2 μmol CO2 mmol PPFD-1 during the wet season compared to the dry season. During the wet season photosynthesis increases with PPFD to about 1600 μmol m-2s-1 and then levels off. Conclusion Based on data collected during two short periods, the studied ecosystem was a sink of carbon

  19. Forest fires impact in semi arid lands in Algeria, analysis and followed of desertification by using remote sensing and GIS

    NASA Astrophysics Data System (ADS)

    Zegrar, Ahmed

    The Forest in steppe present ecological diversity, and seen climatic unfavourable conditions in zone and impact of forest fires; we notes deterioration of physical environment particularly, deterioration of natural forest. This deterioration of forests provokes an unbalance of environment witch provokes a process of deterioration advanced in the ultimate stadium is desertification. By elsewhere, where climatic conditions are favourable, the fire is an ecological and acted agent like integral part of evolution of the ecosystems, the specific regeneration of plants are influenced greatly by the regime of fire (season of fire, intensity, interval), who leads to the recuperation of the vegetation of meadow- fire. In this survey we used the pictures ALSAT-1 for detection of zones with risk of forest fire and their impact on the naturals forests in region of Tlemcen. A thematic detailed analysis of forests well attended ecosystems some processing on the picture ALSAT-1, we allowed to identify and classifying the forests in there opinion components flowers. we identified ampleness of fire on this zone also. Some parameters as the slope, the proximity to the road and the forests formations were studied in the goal of determining the zones to risk of forest fire. A crossing of diaper of information in a SIG according to a very determined logic allowed to classify the zones in degree of risk of fire in a middle arid in a forest zone not encouraging the regeneration on the other hand permitting the installation of cash of steppe which encourages the desertification.

  20. Developing a novel approach to analyse the regimes of temporary streams and their controls on aquatic biota

    NASA Astrophysics Data System (ADS)

    Gallart, F.; Prat, N.; García-Roger, E. M.; Latron, J.; Rieradevall, M.; Llorens, P.; Barberá, G. G.; Brito, D.; de Girolamo, A. M.; Lo Porto, A.; Neves, R.; Nikolaidis, N. P.; Perrin, J. L.; Querner, E. P.; Quiñonero, J. M.; Tournoud, M. G.; Tzoraki, O.; Froebrich, J.

    2011-10-01

    Temporary streams are those water courses that undergo the recurrent cessation of flow or the complete drying of their channel. The biological communities in temporary stream reaches are strongly dependent on the temporal changes of the aquatic habitats determined by the hydrological conditions. The use of the aquatic fauna structural and functional characteristics to assess the ecological quality of a temporary stream reach can not therefore be made without taking into account the controls imposed by the hydrological regime. This paper develops some methods for analysing temporary streams' aquatic regimes, based on the definition of six aquatic states that summarize the sets of mesohabitats occurring on a given reach at a particular moment, depending on the hydrological conditions: flood, riffles, connected, pools, dry and arid. We used the water discharge records from gauging stations or simulations using rainfall-runoff models to infer the temporal patterns of occurrence of these states using the developed aquatic states frequency graph. The visual analysis of this graph is complemented by the development of two metrics based on the permanence of flow and the seasonal predictability of zero flow periods. Finally, a classification of the aquatic regimes of temporary streams in terms of their influence over the development of aquatic life is put forward, defining Permanent, Temporary-pools, Temporary-dry and Episodic regime types. All these methods were tested with data from eight temporary streams around the Mediterranean from MIRAGE project and its application was a precondition to assess the ecological quality of these streams using the current methods prescribed in the European Water Framework Directive for macroinvertebrate communities.

  1. Option pricing with regime switching by trinomial tree method

    NASA Astrophysics Data System (ADS)

    Yuen, Fei Lung; Yang, Hailiang

    2010-02-01

    We present a fast and simple tree model to price simple and exotic options in Markov Regime Switching Model (MRSM) with multi-regime. We modify the trinomial tree model of Boyle (1986) [12] by controlling the risk neutral probability measure in different regime states to ensure that the tree model can accommodate the data of all different regimes at the same time preserving its combining tree structure. In MRSM, the market might not be complete, therefore we provide some ideas and discussions on managing the regime switching risk in support of our results.

  2. Distinct Transport Regimes for Two Elastically Coupled Molecular Motors

    NASA Astrophysics Data System (ADS)

    Berger, Florian; Keller, Corina; Klumpp, Stefan; Lipowsky, Reinhard

    2012-05-01

    Cooperative cargo transport by two molecular motors involves an elastic motor-motor coupling, which can reduce the motors’ velocity and/or enhance their unbinding from the filament. We show theoretically that these interference effects lead, in general, to four distinct transport regimes. In addition to a weak coupling regime, kinesin and dynein motors are found to exhibit a strong coupling and an enhanced unbinding regime, whereas myosin motors are predicted to attain a reduced velocity regime. All of these regimes, which we derive by explicit calculations and general time scale arguments, can be explored experimentally by varying the elastic coupling strength.

  3. Human Constraints to Sustainable Agriculture in the Arid Regions of South Africa.

    ERIC Educational Resources Information Center

    Duvel, G. H.; Botha, A. J.

    1999-01-01

    Interviews with 79 South African farmers in arid regions showed that their conservation practices were influenced by such human factors as needs, perceptions, and knowledge. Direct influence on adoption behaviors was recommended to encourage sustainable agriculture practices. (SK)

  4. Karst characterization in a semi-arid region using gravity, seismic, and resistivity geophysical techniques.

    SciTech Connect

    Barnhart, Kevin Scott

    2013-10-01

    We proposed to customize emerging in situ geophysical monitoring technology to generate time-series data during sporadic rain events in a semi-arid region. Electrodes were to be connected to wireless \

  5. Preliminary evaluation of selected in situ remediation technologies for Volatile Organic Compound contamination at Arid sites

    SciTech Connect

    Lenhard, R.J.; Gerber, M.A.; Amonette, J.E.

    1992-10-01

    To support the Volatile Organic Compounds-Arid Site (VOC-Arid) Integrated Demonstration (ID) in its technical, logistical, institutional, and economical testing of emerging environmental management and restoration technologies. Pacific Northwest Laboratory(a) is evaluating several in situ remediation technologies for possible inclusion in the demonstration. The evaluations are made with respect to the initial focus of the VOC-Arid ID: the carbon tetrachloride contamination at the Hanford Site, where it was disposed to the vadose zone along with other volatile and nonvolatile organic wastes. heavy metals, acids. and radionuclides. The purposes of this report are (1) to identify candidate in situ technologies for inclusion in the program, (2) to evaluate the candidate technologies based on their potential applicability to VOC contamination at arid sites and geologic conditions representative of the ID host site (i.e., Hanford Site), and (3) to prioritize those technologies for future US Department of Energy (DOE) support.

  6. Climate sensitivity of snow regimes simulated by physically based snow models (Invited)

    NASA Astrophysics Data System (ADS)

    Pomeroy, J. W.; Fang, X.; Sabourin, A.; Ellis, C. R.

    2009-12-01

    Seasonal snow regimes consist of snowfall, snow redistribution by wind, snow interception and snowmelt. Sublimation can be an important ablation mechanism under highly ventilated conditions. All of these processes are strongly controlled by the energy inputs and energy state of the snowpack. Warmer winter temperatures have been observed and are predicted for many cold regions environments. The Cold Regions Hydrological Model (CRHM) has the capability to successfully model the major snow processes in a physically based manner. It is used here to explore the sensitivity of snow regimes in three environments to warmer winter temperatures. The windswept alpine and mountain spruce forest environments use baseline data from Marmot Creek Research Basin in the Rocky Mountains of Alberta, Canada and the prairie cropland environments use data from Bad Lake Research Basin in the semi-arid prairies of Saskatchewan, Canada. Under current conditions blowing snow in both alpine and prairie environments redistributes most snowfall from wind exposed ridge and fallow-field surfaces and deposits transported snow in drifts on lee slopes, gullies and treed or shrub areas. Sublimation losses are substantial. Melt occurs in May-June in the alpine and in March-April on the Prairie. Currently, snow interception and sublimation are major losses of seasonal snowpack in mountain forest environments due to high sublimation losses. Forest melt occurs in April-May. Warming is shown to reduce sublimation losses - its restriction of wind redistribution and interception overcomes the additional energy available for sublimation. Warming also advances the timing of snowmelt initiation to varying degrees, but its effects on the rate and duration of melt are equivocal. In certain environments melt is faster and shorter in duration as warming occurs, but in others the rate diminishes with warming and so duration is not strongly affected. These results have important implications for determining the

  7. Contingenet Productivity Responses to More Extreme Rainfall Regimes Across a Grassland Biome

    NASA Astrophysics Data System (ADS)

    Heisler-White, J. L.; Knapp, A.; Collins, S.; Blair, J.; Kelly, E.

    2008-12-01

    Climate models predict, and empirical evidence confirms, that more extreme precipitation regimes are occurring in tandem with warmer atmospheric temperatures. These more extreme rainfall patterns are characterized by increased event size separated by longer within season drought periods, and represent novel climatic conditions whose consequences for different ecosystem types are largely unknown. The focus of this talk will be the impacts of extreme rainfall events on soil water content and ecosystem function, and we will present results from experimental manipulations of rainfall in four native grassland sites within the Great Plains Region of North America (USA). Along this precipitation-productivity gradient, our results suggest strong sensitivity to more extreme growing season rainfall regimes, with responses of aboveground net primary productivity (ANPP) contingent on mean soil water levels for different grassland types. At the mesic end of the gradient (tallgrass prairie), longer dry intervals between events led to extended periods of below-average soil water content, increased plant water stress and a reduction in ANPP. The opposite response occurred at the dry end (semi-arid grasslands), where a shift to fewer, but larger, events increased periods of above-average soil water content, reduced seasonal plant water stress and resulted in an increase in ANPP. These results highlight the inherent complexity in predicting how terrestrial ecosystem will respond to forecast novel climate conditions as well as the difficulties in extending inferences from single site experiments across biomes. Even with no change in annual precipitation amount, ANPP responses in a relatively uniform physiographic region differed in both magnitude and direction in response to within season changes in rainfall event size/frequency. From a mechanistic perspective, we believe that these contingent responses reflect strikingly different consequences for soil water content as a result of

  8. Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota.

    PubMed

    Byrne, M; Yeates, D K; Joseph, L; Kearney, M; Bowler, J; Williams, M A J; Cooper, S; Donnellan, S C; Keogh, J S; Leys, R; Melville, J; Murphy, D J; Porch, N; Wyrwoll, K-H

    2008-10-01

    The integration of phylogenetics, phylogeography and palaeoenvironmental studies is providing major insights into the historical forces that have shaped the Earth's biomes. Yet our present view is biased towards arctic and temperate/tropical forest regions, with very little focus on the extensive arid regions of the planet. The Australian arid zone is one of the largest desert landform systems in the world, with a unique, diverse and relatively well-studied biota. With foci on palaeoenvironmental and molecular data, we here review what is known about the assembly and maintenance of this biome in the context of its physical history, and in comparison with other mesic biomes. Aridification of Australia began in the Mid-Miocene, around 15 million years, but fully arid landforms in central Australia appeared much later, around 1-4 million years. Dated molecular phylogenies of diverse taxa show the deepest divergences of arid-adapted taxa from the Mid-Miocene, consistent with the onset of desiccation. There is evidence of arid-adapted taxa evolving from mesic-adapted ancestors, and also of speciation within the arid zone. There is no evidence for an increase in speciation rate during the Pleistocene, and most arid-zone species lineages date to the Pliocene or earlier. The last 0.8 million years have seen major fluctuations of the arid zone, with large areas covered by mobile sand dunes during glacial maxima. Some large, vagile taxa show patterns of recent expansion and migration throughout the arid zone, in parallel with the ice sheet-imposed range shifts in Northern Hemisphere taxa. Yet other taxa show high lineage diversity and strong phylogeographical structure, indicating persistence in multiple localised refugia over several glacial maxima. Similar to the Northern Hemisphere, Pleistocene range shifts have produced suture zones, creating the opportunity for diversification and speciation through hybridisation, polyploidy and parthenogenesis. This review highlights

  9. Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota.

    PubMed

    Byrne, M; Yeates, D K; Joseph, L; Kearney, M; Bowler, J; Williams, M A J; Cooper, S; Donnellan, S C; Keogh, J S; Leys, R; Melville, J; Murphy, D J; Porch, N; Wyrwoll, K-H

    2008-10-01

    The integration of phylogenetics, phylogeography and palaeoenvironmental studies is providing major insights into the historical forces that have shaped the Earth's biomes. Yet our present view is biased towards arctic and temperate/tropical forest regions, with very little focus on the extensive arid regions of the planet. The Australian arid zone is one of the largest desert landform systems in the world, with a unique, diverse and relatively well-studied biota. With foci on palaeoenvironmental and molecular data, we here review what is known about the assembly and maintenance of this biome in the context of its physical history, and in comparison with other mesic biomes. Aridification of Australia began in the Mid-Miocene, around 15 million years, but fully arid landforms in central Australia appeared much later, around 1-4 million years. Dated molecular phylogenies of diverse taxa show the deepest divergences of arid-adapted taxa from the Mid-Miocene, consistent with the onset of desiccation. There is evidence of arid-adapted taxa evolving from mesic-adapted ancestors, and also of speciation within the arid zone. There is no evidence for an increase in speciation rate during the Pleistocene, and most arid-zone species lineages date to the Pliocene or earlier. The last 0.8 million years have seen major fluctuations of the arid zone, with large areas covered by mobile sand dunes during glacial maxima. Some large, vagile taxa show patterns of recent expansion and migration throughout the arid zone, in parallel with the ice sheet-imposed range shifts in Northern Hemisphere taxa. Yet other taxa show high lineage diversity and strong phylogeographical structure, indicating persistence in multiple localised refugia over several glacial maxima. Similar to the Northern Hemisphere, Pleistocene range shifts have produced suture zones, creating the opportunity for diversification and speciation through hybridisation, polyploidy and parthenogenesis. This review highlights

  10. Spatial analysis of a long-lived tree population in a hyper-arid zone as an indicator of past and present eco-hydrology

    NASA Astrophysics Data System (ADS)

    Isaacson, Sivan; Blumberg, Dan G.; Rachmilevitch, Shimon; Ephrath, Jhonathan E.

    2014-05-01

    Flash floods in arid zone occur in ephemeral streams (Wadi) which are dry for most of the year. Flash floods are characterized by short duration and relatively high peaks of discharge. The high and sudden intensity of a flash flood often causes the removal and deposition of sediments, which may result in changes of the flow route. Arid regions are characterized by high spatial and temporal variability of precipitation, resulting in high spatial and temporal variation of vegetation cover. Acacia trees in Israel are usually restricted to Wadi beds due to low precipitation. Spatial analysis of tree distribution in hyper-arid zones can contribute to our understanding of the geo-hydrologic regime, as water is the main limiting factor in such areas. The study area is located in southern Arava valley, Israel, where rain events are rare and flash floods may occur once every few years. The main objective of this study was to use the spatial distribution of different parameters of acacia trees as an indicator of past and present hydrological regimes within different segments of the Wadi. A map of individual acacia trees that was extracted from a combined near infrared aerial photograph of Wadi Ktora allowed us to examine the distribution pattern of two different parameters of the trees: size and foliage health status (NDVI). Tree size distribution was used as an indicator of long-term (decades) geo-hydrologic spatial processes affecting the acacia population. The tree health status (NDVI) distribution was used as an indicator of short-term (months to a few years) geo-hydrologic spatial processes, such as the paths of recent flash floods events. We suggest that a lack of spatial correlation between tree size and health status is the result of spatial-temporal changes in the water supply. Comparison of tree size distribution and NDVI values distribution allowed us to divide the study area into three sections, each representing a unique combination of long and short-term geo

  11. Impact of Lupinus leucophyllous on the nitrogen budgets of semi-arid plant communities

    SciTech Connect

    Hinds, W.T.; Hinds, N.R.

    1982-10-01

    In the semi-arid grassland on the Arid Lands Ecology Reserve on the Hanford Site in south-central Washington State, three legume flushes occurred in the past decade. Estimates of leguminous nitrogen in both native and disturbed vegetation after a flush showed that nitrogen in the legume (above-ground) doubled the amount of nitrogen associated with vascular plant tissues. 21 references, 2 tables.

  12. Long Noncoding RNA Arid2-IR Is a Novel Therapeutic Target for Renal Inflammation

    PubMed Central

    Zhou, Qin; Huang, Xiao R; Yu, Jianwen; Yu, Xueqing; Lan, Hui Y

    2015-01-01

    Increasing evidence shows that microRNAs play an important role in kidney disease. However, functions of long noncoding RNAs (lncRNAs) in kidney diseases remain undefined. We have previously shown that TGF-β1 plays a diverse role in renal inflammation and fibrosis and Smad3 is a key mediator in this process. In this study, we used RNA-sequencing to identify lncRNAs related to renal inflammation and fibrosis in obstructive nephropathy induced in Smad3 wild-type and knockout mice. We found that Arid2-IR was a Smad3-associated lncRNA as a Smad3 binding site was found in the promoter region of Arid2-IR and deletion of Smad3 abolished upregulation of Arid2-IR in the diseased kidney. In vitro knockdown of Arid2-IR from tubular epithelial cells produced no effect on TGF-β-induced Smad3 signaling and fibrosis but inhibited interleukin-1β-stimulated NF-κB-dependent inflammatory response. In contrast, overexpression of Arid2-IR promoted interleukin-1β-induced NF-κB signaling and inflammatory cytokine expression without alteration of TGF-β1-induced fibrotic response. Furthermore, treatment of obstructed kidney with Arid2-IR shRNA blunted NF-κB-driven renal inflammation without effect on TGF-β/Smad3-mediated renal fibrosis. Thus, Arid2-IR is a novel lncRNA that functions to promote NF-κB-dependent renal inflammation. Blockade of Arid2-IR may represent a novel and specific therapy for renal inflammatory disease. PMID:25743111

  13. Arid ephemeral stream classification using channel geometry and basin characteristics

    NASA Astrophysics Data System (ADS)

    Sutfin, N. A.; Wohl, E. E.; Shaw, J.

    2011-12-01

    Because understanding of ephemeral stream characteristics is limited and many stream classifications do not adequately describe them, it is necessary to develop a better understanding of these dryland fluvial systems and develop more precise terminology to discuss their physical attributes. In addition to development of a geomorphic classification system, we examine relationships between basin characteristics and channel geometry that will indicate where these ephemeral stream types might occur. Our conceptual model includes five geomorphic ephemeral stream types; 1) braided washes, 2) incised alluvium, 3) bedrock with alluvium, 4) bedrock, and 5) piedmont headwater channels. Preliminary watershed classification and cluster analysis of the U.S. Sonoran Desert was conducted using NHD 10-digit Hydrologic Unit Boundaries, PRISM precipitation data, state geologic survey lithology, and data derived from 30m DEMs. A total of 85 reaches were surveyed on the U.S. Army Yuma Proving Ground in southwestern Arizona representing the five stream types within three watershed categories. Following delineation of small-scale watershed characteristics using 10m DEMs for each reach location, statistical analysis will be performed to examine correlations and significant relationships among stream type, basin and channel characteristics. We hope to identify physical drivers resulting in the development of distinct geomorphic stream types and predict where the relative abundance of those stream types are likely to exist in arid environments of the southwestern U.S. We posit that locations and relative distributions of the five stream types will correlate significantly to local basin characteristics. Initial findings verify that composition of confining material dictates the level of confinement and largely influences occurrence of the five channel types. Additionally, we expect to see significant differences in width/depth ratios, grain size, stream gradient, basin hillslope gradient

  14. Environmental significance of vesicular sediment structure in arid regions

    NASA Astrophysics Data System (ADS)

    Dietze, M.; Kleber, A.

    2012-04-01

    Vesicular structure is a frequent and widely spread phenomenon in surficial fine-grained sediments in arid environments. It typically affects the upper few millimetres to decimetres of sediment and consists of isolated, spherical to ovoid pores, some 100 to 1000 micrometres in diameter, which give the sediment a foamy appearance. The vesicular layer has, together with an often genetically associated stone pavement cover, major control functions for dust trapping as well as dust mobilisation, water infiltration, soil moisture and surface runoff, as well as ecological site characteristics. Accordingly, there are numerous but often contradictory hypotheses about vesicular structure formation. Most of them are based on individual experiments with settings that were never consistent and overarching but rather focused on one sediment or environmental variable and its relative influence on vesicle formation. We present highlights of extensive laboratory experiments where physical and chemical sediment properties as well as environmental variables such as wetting technique, wetting amount, surface cover type or drying temperature were changed systematically over the entire range of published characteristics of vesicular layers. A series of measures of vesicle features, derived from digitised sediment sections, forms the base for quantitative sample comparison. Furthermore, the experimental results are related to natural analogues from severe regions throughout a climatic gradient from the hyper-arid part of Baja California, Mexico, to the sub-humid southern Sevier Basin, USA. Based on the results, the plausibility of published vesicle formation hypotheses is discussed and a genetic model is formulated. Vesicles are no transient feature but rather evolve exponentially and become stabilised. They form due to surface puddling and a wetting front which advances downward, thereby elevating the gas pressure within the sediment matrix. Translocation of clay and calcium carbonate

  15. Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, Part I: main content.

    PubMed

    Orellana, Liliana; Rotnitzky, Andrea; Robins, James M

    2010-01-01

    Dynamic treatment regimes are set rules for sequential decision making based on patient covariate history. Observational studies are well suited for the investigation of the effects of dynamic treatment regimes because of the variability in treatment decisions found in them. This variability exists because different physicians make different decisions in the face of similar patient histories. In this article we describe an approach to estimate the optimal dynamic treatment regime among a set of enforceable regimes. This set is comprised by regimes defined by simple rules based on a subset of past information. The regimes in the set are indexed by a Euclidean vector. The optimal regime is the one that maximizes the expected counterfactual utility over all regimes in the set. We discuss assumptions under which it is possible to identify the optimal regime from observational longitudinal data. Murphy et al. (2001) developed efficient augmented inverse probability weighted estimators of the expected utility of one fixed regime. Our methods are based on an extension of the marginal structural mean model of Robins (1998, 1999) which incorporate the estimation ideas of Murphy et al. (2001). Our models, which we call dynamic regime marginal structural mean models, are specially suitable for estimating the optimal treatment regime in a moderately small class of enforceable regimes of interest. We consider both parametric and semiparametric dynamic regime marginal structural models. We discuss locally efficient, double-robust estimation of the model parameters and of the index of the optimal treatment regime in the set. In a companion paper in this issue of the journal we provide proofs of the main results.

  16. Energy evaluation of the High Velocity Algae Raceway Integrated Design (ARID-HV)

    NASA Astrophysics Data System (ADS)

    Attalah, Said

    The original ARID (Algae Raceway Integrated Design) raceway was an effective method to increase temperature toward the optimal growth range. However, the energy input was high and flow mixing was poor. Thus, the ARID-HV (High Velocity Algae Raceway Integrated Design) raceway was developed to reduce energy input requirements and improve flow mixing. This was accomplished by improving pumping efficiency and using a serpentine flow pattern in which the water flows through channels instead of over barriers. A prototype ARID-HV system was installed in Tucson, Arizona, and the constructability, reliability of components, drainage of channels, and flow and energy requirements of the ARID-HV raceway were evaluated. Each of the electrical energy inputs to the raceway (air sparger, air tube blower, canal lift pump, and channel recirculation pump) was quantified, some by direct measurement and others by simulation. An algae growth model was used to determine the algae production rate vs. flow depth and time of year. Then the electrical energy requirement of the most effective flow depth was calculated. Channel hydraulics was evaluated with Manning's equation and the corner head loss equation. In this way, the maximum length of channels for several raceway slopes and mixing velocities were determined. Algae production in the ARID-HV raceway was simulated with a temperature and light growth model. An energy efficient design for the ARID-HV raceway was developed.

  17. Suppression of the SWI/SNF Component Arid1a Promotes Mammalian Regeneration.

    PubMed

    Sun, Xuxu; Chuang, Jen-Chieh; Kanchwala, Mohammed; Wu, Linwei; Celen, Cemre; Li, Lin; Liang, Hanquan; Zhang, Shuyuan; Maples, Thomas; Nguyen, Liem H; Wang, Sam C; Signer, Robert A J; Sorouri, Mahsa; Nassour, Ibrahim; Liu, Xin; Xu, Jian; Wu, Meng; Zhao, Yong; Kuo, Yi-Chun; Wang, Zhong; Xing, Chao; Zhu, Hao

    2016-04-01

    Mammals have partially lost the extensive regenerative capabilities of some vertebrates, possibly as a result of chromatin-remodeling mechanisms that enforce terminal differentiation. Here, we show that deleting the SWI/SNF component Arid1a substantially improves mammalian regeneration. Arid1a expression is suppressed in regenerating tissues, and genetic deletion of Arid1a increases tissue repair following an array of injuries. Arid1a deficiency in the liver increases proliferation, reduces tissue damage and fibrosis, and improves organ function following surgical resection and chemical injuries. Hepatocyte-specific deletion is also sufficient to increase proliferation and regeneration without excessive overgrowth, and global Arid1a disruption potentiates soft tissue healing in the ear. We show that Arid1a loss reprograms chromatin to restrict promoter access by transcription factors such as C/ebpα, which enforces differentiation, and E2F4, which suppresses cell-cycle re-entry. Thus, epigenetic reprogramming mediated by deletion of a single gene improves mammalian regeneration and suggests strategies to promote tissue repair after injury.

  18. Remote sensing-arid lands workshop, Page, Arizona, June 10-12, 1986: Workshop summary report

    SciTech Connect

    Hawkins, R.H.; Wobber, F.J.; Springer, E.P.

    1987-05-01

    This report describes research sponsored by the US Department of Energy (DOE) Office of Energy Research to evaluate advanced remote sensing technologies for environmental research. The program denoted as REFLEX (REmote FLuvial EXperiments) stresses new applications of remote sensing systems and advanced digital analysis to the solution of environmental problems from energy development. REFLEX experiments are being conducted at sites within the continental United States and Alaska. The experiments described here are being done on arid and semiarid sites in the western United States. Currently, two REFLEX experiments are being conducted in arid/semiarid ecosystems. At the Pacific Northwest Laboratory (PNL) in Richland, Washington, the REFLEX experiment will test hypotheses on the prediction of evapotranspiration (ET) over arid landscapes. The heterogeneity of arid and semiarid landscapes makes estimation of ET over an area quite difficult, and remote sensing, both aerial and ground based, offers tremendous potential in solving this sampling problem. The second REFLEX experiment in arid/semiarid ecosystems is being conducted on surface hydrology and soil erosion in arid watersheds. Two study sites, the Plutonium Valley Watershed at the Nevada Test Site and Walnut Gulch Experimental Watershed at Tombstone, Arizona, have been selected for the experiment. Remote sensing will be used to initialize and parameterize hydrologic models that can predict watershed responses to change on two spatial and temporal scales.

  19. Stable operating regime for traveling wave devices

    DOEpatents

    Carlsten, Bruce E.

    2000-01-01

    Autophase stability is provided for a traveling wave device (TWD) electron beam for amplifying an RF electromagnetic wave in walls defining a waveguide for said electromagnetic wave. An off-axis electron beam is generated at a selected energy and has an energy noise inherently arising from electron gun. The off-axis electron beam is introduced into the waveguide. The off-axis electron beam is introduced into the waveguide at a second radius. The waveguide structure is designed to obtain a selected detuning of the electron beam. The off-axis electron beam has a velocity and the second radius to place the electron beam at a selected distance from the walls defining the waveguide, wherein changes in a density of the electron beam due to the RF electromagnetic wave are independent of the energy of the electron beam to provide a concomitant stable operating regime relative to the energy noise.

  20. Nonlinear regimes of forced magnetic reconnection

    SciTech Connect

    Vekstein, G.; Kusano, K.

    2015-09-15

    This letter presents a self-consistent description of nonlinear forced magnetic reconnection in Taylor's model of this process. If external boundary perturbation is strong enough, nonlinearity in the current sheet evolution becomes important before resistive effects come into play. This terminates the current sheet shrinking that takes place at the linear stage and brings about its nonlinear equilibrium with a finite thickness. Then, in theory, this equilibrium is destroyed by a finite plasma resistivity during the skin-time, and further reconnection proceeds in the Rutherford regime. However, realization of such a scenario is unlikely because of the plasmoid instability, which is fast enough to develop before the transition to the Rutherford phase occurs. The suggested analytical theory is entirely different from all previous studies and provides proper interpretation of the presently available numerical simulations of nonlinear forced magnetic reconnection.

  1. Regime Changes in California Temperature Trends

    NASA Astrophysics Data System (ADS)

    Cordero, E. C.; Kessomkiat, W.; Mauget, S.

    2008-12-01

    Annual and seasonal temperature trends are analyzed for California using surface data from the US Historical Climate Network and the larger COOP network. While trends in Tmax and Tmin both show warming over the last 50 years, the temporal and spatial structure of these trends is quite different. An analysis using Mann Whitney U statistics reveals that the patterns of warming and cooling from individual stations have a distinct temporal signature that differs between Tmax and Tmin. Significant cooling trends in Tmin are found between 1920-1958, while significant warming only starts after the 1970s. In contrast, Tmax trends show a more variable pattern of warming and cooling between 1920-1980, with California wide warming only occurring after 1980. These results suggest regime changes in California temperature trends that could only occur through large scale forcing. A discussion of the various forcing mechanisms contributing to California trends and their spatial and temporal variability will be presented.

  2. Supercurrent in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Wei, Ming-Tso; Amet, François; Ke, Chung-Ting; Borzenets, Ivan; Wang, Jiyingmei; Watanabe, Keji; Taniguchi, Takashi; Deacon, Russell; Yamamoto, Michihisa; Bomze, Yuriy; Tarucha, Seigo; Finkelstein, Gleb

    Combining superconductivity and the quantum Hall (QH) effect is a promising route for creating new types of topological excitations. Despite this potential, signatures of superconductivity in the quantum Hall regime remain scarce, and a superconducting current through a QH weak link has so far eluded experimental observation. Here we demonstrate the existence of a novel type of Josephson coupling through a QH region at magnetic fields as high as 2 Tesla. The supercurrent is mediated by states encompassing QH edge channels, which are flowing on opposite sides of the sample. The edges are coupled together by the hybrid electron-hole modes at the interfaces between the QH region and the superconducting contacts. These chiral modes, which share some features with Majorana modes, are formed when electron and hole edge states are mixed by the superconductor.

  3. Environment Flow Assessment with Flow Regime Transition

    NASA Astrophysics Data System (ADS)

    Su, J.; Ho, C. C.; Chang, L. C.

    2015-12-01

    To avoid worsen river and estuarine ecosystems cause by overusing water resources, environmental flows conservation is applied to reduce the impact of river environment. Environmental flows refer to water provided within a river, wetland or coastal zone to sustain ecosystems and benefits to human wellbeing. Environment flow assessment is now widely accepted that a naturally variable flow regime, rather than just a minimum low flow. In this study, we propose four methods, experience method, Tenant method, hydraulic method and habitat method to assess the environmental flow of base flow, flush flow and overbank flow with different discharge, frequency and occurrence period. Dahan River has been chosen as a case to demonstrate the assessment mechanism. The alternatives impact analysis of environment and human water used provides a reference for stakeholders when holding an environmental flow consultative meeting.

  4. Alumina strength degradation in the elastic regime

    SciTech Connect

    Furnish, M.D.; Chhabildas, L.C.

    1997-08-01

    Measurements of Kanel et. al. [1991] have suggested that deviatoric stresses in glasses shocked to nearly the Hugoniot Elastic limit (HEL) relax over a time span of microseconds after initial loading. Failure (damage) waves have been inferred on the basis of these measurements using time-resolved manganin normal and transverse stress gauges. Additional experiments on glass by other researchers, using time-resolved gauges, high-speed photography and spall strength determinations have also lead to the same conclusions. In the present study the authors have conducted transmitted-wave experiments on high-quality Coors AD995 alumina shocked to roughly 5 and 7 GPa (just below or at the HEL). The material is subsequently reshocked to just above its elastic limit. Results of these experiments do show some evidence of strength degradation in the elastic regime.

  5. Different spreading regimes of spray-flames

    NASA Astrophysics Data System (ADS)

    Suard, Sylvain; Haldenwang, Pierre; Nicoli, Colette

    2004-05-01

    We present a minimal model of spray combustion to investigate a flame front propagating through a fuel-lean mixture of fuel vapor, droplets and air. The model relies on a main control parameter, Da, named the Damkoehler number, which allows us to take into account a large variety of fuel sprays. Numerical results reveal, as a function of Da, a wide range of spray-flame structures, including the classical gaseous premixed flame, a specific regime controlled by vaporisation, and a pulsating mode of propagation. The latter appears when the vaporisation is smaller than (or equal to) the reaction time, and it occurs even with a unit Lewis number. To cite this article: S. Suard et al., C. R. Mecanique 332 (2004).

  6. Evolution of the water regime of Phobos

    SciTech Connect

    Fanale, F.P.; Salvail, J.R. )

    1990-12-01

    In the present model of Phobos water regime evolution, a time-dependent solar insolation is influenced by both decreasing solar output over geologic time and the Mars and Phobos cycles of eccentricity and obliquity, which vary over 100,000-1,000,000 year time scales. The results presented address model cases which assume (1) a homogeneous distribution of water ice, and (2) a driving of water ice toward the surface by the internal thermal gradient near the poles. A two-dimensional model is used to compute temperatures, heat and vapor fluxes, and ice removal/deposition rates, for the case of uniform ice distribution throughout Phobos. The results obtained indicate that a substantial amount of vapor is produced within 1 km of the surface. 15 refs.

  7. Deterministic-random separation in nonstationary regime

    NASA Astrophysics Data System (ADS)

    Abboud, D.; Antoni, J.; Sieg-Zieba, S.; Eltabach, M.

    2016-02-01

    In rotating machinery vibration analysis, the synchronous average is perhaps the most widely used technique for extracting periodic components. Periodic components are typically related to gear vibrations, misalignments, unbalances, blade rotations, reciprocating forces, etc. Their separation from other random components is essential in vibration-based diagnosis in order to discriminate useful information from masking noise. However, synchronous averaging theoretically requires the machine to operate under stationary regime (i.e. the related vibration signals are cyclostationary) and is otherwise jeopardized by the presence of amplitude and phase modulations. A first object of this paper is to investigate the nature of the nonstationarity induced by the response of a linear time-invariant system subjected to speed varying excitation. For this purpose, the concept of a cyclo-non-stationary signal is introduced, which extends the class of cyclostationary signals to speed-varying regimes. Next, a "generalized synchronous average'' is designed to extract the deterministic part of a cyclo-non-stationary vibration signal-i.e. the analog of the periodic part of a cyclostationary signal. Two estimators of the GSA have been proposed. The first one returns the synchronous average of the signal at predefined discrete operating speeds. A brief statistical study of it is performed, aiming to provide the user with confidence intervals that reflect the "quality" of the estimator according to the SNR and the estimated speed. The second estimator returns a smoothed version of the former by enforcing continuity over the speed axis. It helps to reconstruct the deterministic component by tracking a specific trajectory dictated by the speed profile (assumed to be known a priori).The proposed method is validated first on synthetic signals and then on actual industrial signals. The usefulness of the approach is demonstrated on envelope-based diagnosis of bearings in variable

  8. Late Quaternary fire regimes of Australasia

    NASA Astrophysics Data System (ADS)

    Mooney, S. D.; Harrison, S. P.; Bartlein, P. J.; Daniau, A.-L.; Stevenson, J.; Brownlie, K. C.; Buckman, S.; Cupper, M.; Luly, J.; Black, M.; Colhoun, E.; D'Costa, D.; Dodson, J.; Haberle, S.; Hope, G. S.; Kershaw, P.; Kenyon, C.; McKenzie, M.; Williams, N.

    2011-01-01

    We have compiled 223 sedimentary charcoal records from Australasia in order to examine the temporal and spatial variability of fire regimes during the Late Quaternary. While some of these records cover more than a full glacial cycle, here we focus on the last 70,000 years when the number of individual records in the compilation allows more robust conclusions. On orbital time scales, fire in Australasia predominantly reflects climate, with colder periods characterized by less and warmer intervals by more biomass burning. The composite record for the region also shows considerable millennial-scale variability during the last glacial interval (73.5-14.7 ka). Within the limits of the dating uncertainties of individual records, the variability shown by the composite charcoal record is more similar to the form, number and timing of Dansgaard-Oeschger cycles as observed in Greenland ice cores than to the variability expressed in the Antarctic ice-core record. The composite charcoal record suggests increased biomass burning in the Australasian region during Greenland Interstadials and reduced burning during Greenland Stadials. Millennial-scale variability is characteristic of the composite record of the sub-tropical high pressure belt during the past 21 ka, but the tropics show a somewhat simpler pattern of variability with major peaks in biomass burning around 15 ka and 8 ka. There is no distinct change in fire regime corresponding to the arrival of humans in Australia at 50 ± 10 ka and no correlation between archaeological evidence of increased human activity during the past 40 ka and the history of biomass burning. However, changes in biomass burning in the last 200 years may have been exacerbated or influenced by humans.

  9. Global and continental changes of arid areas using the FAO Aridity Index over the periods 1951-1980 and 1981-2010

    NASA Astrophysics Data System (ADS)

    Spinoni, Jonathan; Micale, Fabio; Carrao, Hugo; Naumann, Gustavo; Barbosa, Paulo; Vogt, Jürgen

    2013-04-01

    An increase in arid areas and progressing land degradation are two of the main consequences of global climate change. In the 2nd edition of the World Atlas of Desertification (WAD), published by the United Nation Environment Program (UNEP) in 1997, a global aridity map was presented. This map was based on the Food and Agriculture Organization (FAO) Aridity Index (AI) that takes into account the annual ratio between precipitation (RR) and Potential Evapo-Transpiration (PET). According to the long-term mean value of this ratio, climate is therefore classified in hyper-arid (<0.05), arid (0.05-0.2), semi-arid (0.2-0.5), dry sub-humid (0.5-0.65), and humid (>0.65); a special case are cold climates, which occur if the mean annual PET is below 400 mm. In the framework of the 3rd edition of the WAD, we computed new global aridity maps to improve and update the old version that was based on a single dataset (CRU dataset, Climate Research Unit of University of East Anglia) related to the 1951-80 period only. We computed the AI on two different time intervals (1951-80 and 1981-2010) in order to account for shifts in classes between the two periods and we used two different datasets: PET from CRU (version 3.2), and precipitation from the global 0.5˚x0.5˚ gridded monthly precipitation of the Global Precipitation Climatology Center (GPCC) of the Deutscher Wetterdienst (DWD). We used the GPCC Full Data Reanalysis Version 6.0, which showed a high reliability during many quality checks and is based on more stations than the CRU's precipitation counterpart. The results show that the "arid areas" (i.e. AI <0.5) globally increased from 28.4% to 29.6% and in Northern Hemisphere the cold climate areas decreased from 26.6% to 25.4%. Comparing the aridity maps of the two periods, the areas which most remarkably moved to lower AI values ("more arid" conditions) are: Canada, Brazil, the Mediterranean Region, Eastern Europe, almost all of Africa, the Middle East, Eastern China, Borneo

  10. Simulating the Dependence of Sagebrush Steppe Vegetation on Redistributed Snow in a Semi-Arid Watershed.

    NASA Astrophysics Data System (ADS)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Strand, E. K.; Seyfried, M. S.

    2014-12-01

    snow. These results indicate that as snow water subsidies decrease, ecosystems may shift from tree and shrub dominated to grassland dominated. As climate change progresses, shifts in the precipitation regimes in semi-arid environments may lead to changes in species composition and carbon stores throughout the intermountain west.

  11. Verification of watershed vegetation restoration policies, arid China

    NASA Astrophysics Data System (ADS)

    Zhang, Chengqi; Li, Yu

    2016-07-01

    Verification of restoration policies that have been implemented is of significance to simultaneously reduce global environmental risks while also meeting economic development goals. This paper proposed a novel method according to the idea of multiple time scales to verify ecological restoration policies in the Shiyang River drainage basin, arid China. We integrated modern pollen transport characteristics of the entire basin and pollen records from 8 Holocene sedimentary sections, and quantitatively reconstructed the millennial-scale changes of watershed vegetation zones by defining a new pollen-precipitation index. Meanwhile, Empirical Orthogonal Function method was used to quantitatively analyze spatial and temporal variations of Normalized Difference Vegetation Index in summer (June to August) of 2000–2014. By contrasting the vegetation changes that mainly controlled by millennial-scale natural ecological evolution with that under conditions of modern ecological restoration measures, we found that vegetation changes of the entire Shiyang River drainage basin are synchronous in both two time scales, and the current ecological restoration policies met the requirements of long-term restoration objectives and showed promising early results on ecological environmental restoration. Our findings present an innovative method to verify river ecological restoration policies, and also provide the scientific basis to propose future emphasizes of ecological restoration strategies.

  12. Landscape ecological risk assessment study in arid land

    NASA Astrophysics Data System (ADS)

    Gong, Lu; Amut, Aniwaer; Shi, Qingdong; Wang, Gary Z.

    2007-09-01

    The ecosystem risk assessment is an essential decision making system for predicting the reconstruction and recovery of a damaged ecosystem after intensive mankind activities. The sustainability of environment and resources of the lake ecosystem in arid districts have been paid close attention to by international communities as well as numerous experts and scholars. The ecological risk assessment offered a scientific foundation for making the decision and execution of ecological risk management. Bosten Lake, the largest inland freshwater lake in China, is the main water source of the industrial and agricultural production as well as the local residence in Yanqi basin, Kuara city and Yuri County in the southern Xinjiang. Bosten Lake also provides a direct water source for emergency transportation in the Lower Reaches of Tarim River. However, with the intensive utilizations of water and soil resources, the environmental condition in the Bosten Lake has become more and more serious. In this study, the theory and method of landscape ecological risk assessment has been practiced using 3S technologies combined with the frontier theory of landscape ecology. Defining the mainly risk resource including flood, drought, water pollution and rich nutrition of water has been evaluated based on the ecosystem risk assessment system. The main process includes five stages: regional natural resources analysis, risk receptor selection, risk sources evaluation, exposure and hazard analysis, and integrated risk assessment. Based on the risk assessment results, the environmental risk management countermeasure has been determined.

  13. Comparison modeling for alpine vegetation distribution in an arid area.

    PubMed

    Zhou, Jihua; Lai, Liming; Guan, Tianyu; Cai, Wetao; Gao, Nannan; Zhang, Xiaolong; Yang, Dawen; Cong, Zhentao; Zheng, Yuanrun

    2016-07-01

    Mapping and modeling vegetation distribution are fundamental topics in vegetation ecology. With the rise of powerful new statistical techniques and GIS tools, the development of predictive vegetation distribution models has increased rapidly. However, modeling alpine vegetation with high accuracy in arid areas is still a challenge because of the complexity and heterogeneity of the environment. Here, we used a set of 70 variables from ASTER GDEM, WorldClim, and Landsat-8 OLI (land surface albedo and spectral vegetation indices) data with decision tree (DT), maximum likelihood classification (MLC), and random forest (RF) models to discriminate the eight vegetation groups and 19 vegetation formations in the upper reaches of the Heihe River Basin in the Qilian Mountains, northwest China. The combination of variables clearly discriminated vegetation groups but failed to discriminate vegetation formations. Different variable combinations performed differently in each type of model, but the most consistently important parameter in alpine vegetation modeling was elevation. The best RF model was more accurate for vegetation modeling compared with the DT and MLC models for this alpine region, with an overall accuracy of 75 % and a kappa coefficient of 0.64 verified against field point data and an overall accuracy of 65 % and a kappa of 0.52 verified against vegetation map data. The accuracy of regional vegetation modeling differed depending on the variable combinations and models, resulting in different classifications for specific vegetation groups. PMID:27307276

  14. Verification of watershed vegetation restoration policies, arid China.

    PubMed

    Zhang, Chengqi; Li, Yu

    2016-01-01

    Verification of restoration policies that have been implemented is of significance to simultaneously reduce global environmental risks while also meeting economic development goals. This paper proposed a novel method according to the idea of multiple time scales to verify ecological restoration policies in the Shiyang River drainage basin, arid China. We integrated modern pollen transport characteristics of the entire basin and pollen records from 8 Holocene sedimentary sections, and quantitatively reconstructed the millennial-scale changes of watershed vegetation zones by defining a new pollen-precipitation index. Meanwhile, Empirical Orthogonal Function method was used to quantitatively analyze spatial and temporal variations of Normalized Difference Vegetation Index in summer (June to August) of 2000-2014. By contrasting the vegetation changes that mainly controlled by millennial-scale natural ecological evolution with that under conditions of modern ecological restoration measures, we found that vegetation changes of the entire Shiyang River drainage basin are synchronous in both two time scales, and the current ecological restoration policies met the requirements of long-term restoration objectives and showed promising early results on ecological environmental restoration. Our findings present an innovative method to verify river ecological restoration policies, and also provide the scientific basis to propose future emphasizes of ecological restoration strategies. PMID:27470948

  15. Torpor and basking in a small arid zone marsupial

    NASA Astrophysics Data System (ADS)

    Warnecke, Lisa; Turner, James M.; Geiser, Fritz

    2008-01-01

    The high energetic cost associated with endothermic rewarming from torpor is widely seen as a major disadvantage of torpor. We tested the hypothesis that small arid zone marsupials, which have limited access to energy in the form of food but ample access to solar radiation, employ basking to facilitate arousal from torpor and reduce the costs of rewarming. We investigated torpor patterns and basking behaviour in free-ranging fat-tailed dunnarts Sminthopsis crassicaudata (10 g) in autumn and winter using small, internal temperature-sensitive transmitters. Torpid animals emerged from their resting sites in cracking soil at ˜1000 h with body temperatures as low as 14.6°C and positioned themselves in the sun throughout the rewarming process. On average, torpor duration in autumn was shorter, and basking was less pronounced in autumn than in winter. These are the first observations of basking during rewarming in S. crassicaudata and only the second direct evidence of basking in a torpid mammal for the reduction of energetic costs during arousal from torpor and normothermia. Our findings suggest that although overlooked in the past, basking may be widely distributed amongst heterothermic mammals. Therefore, the energetic benefits from torpor use in wild animals may currently be underestimated.

  16. Reintroduction of locally extinct vertebrates impacts arid soil fungal communities.

    PubMed

    Clarke, Laurence J; Weyrich, Laura S; Cooper, Alan

    2015-06-01

    Introduced species have contributed to extinction of native vertebrates in many parts of the world. Changes to vertebrate assemblages are also likely to alter microbial communities through coextinction of some taxa and the introduction of others. Many attempts to restore degraded habitats involve removal of exotic vertebrates (livestock and feral animals) and reintroduction of locally extinct species, but the impact of such reintroductions on microbial communities is largely unknown. We used high-throughput DNA sequencing of the fungal internal transcribed spacer I (ITS1) region to examine whether replacing exotic vertebrates with reintroduced native vertebrates led to changes in soil fungal communities at a reserve in arid central Australia. Soil fungal diversity was significantly different between dune and swale (interdune) habitats. Fungal communities also differed significantly between sites with exotic or reintroduced native vertebrates after controlling for the effect of habitat. Several fungal operational taxonomic units (OTUs) found exclusively inside the reserve were present in scats from reintroduced native vertebrates, providing a direct link between the vertebrate assemblage and soil microbial communities. Our results show that changes to vertebrate assemblages through local extinctions and the invasion of exotic species can alter soil fungal communities. If local extinction of one or several species results in the coextinction of microbial taxa, the full complement of ecological interactions may never be restored. PMID:25943906

  17. Sources and transport of nitrogen in arid urban watersheds

    SciTech Connect

    Hale, Rebecca L.; Turnbull, Laura; Earl, Stevan; Grimm, Nancy B.; Riha, Krystin M.; Michalski, Greg; Lohse, Kathleen; Childers, Daniel L.

    2014-06-03

    Urban watersheds are often sources of nitrogen (N) to downstream systems, contributing to poor water quality. However, it is unknown which components (e.g., land cover and stormwater infrastructure type) of urban watersheds contribute to N export and which may be sites of retention. In this study we investigated which watershed characteristics control N sourcing, biogeochemical processing of nitrate (NO3–) during storms, and the amount of rainfall N that is retained within urban watersheds. We used triple isotopes of NO3– (δ15N, δ18O, and Δ17O) to identify sources and transformations of NO3– during storms from 10 nested arid urban watersheds that varied in stormwater infrastructure type and drainage area. Stormwater infrastructure and land cover—retention basins, pipes, and grass cover—dictated the sourcing of NO3– in runoff. Urban watersheds can be strong sinks or sources of N to stormwater depending on the proportion of rainfall that leaves the watershed as runoff, but we found no evidence that denitrification occurred during storms. Our results suggest that watershed characteristics control the sources and transport of inorganic N in urban stormwater but that retention of inorganic N at the timescale of individual runoff events is controlled by hydrologic, rather than biogeochemical, mechanisms.

  18. Mutual positive effects between shrubs in an arid ecosystem

    PubMed Central

    Tirado, Reyes; Bråthen, Kari Anne; Pugnaire, Francisco I.

    2015-01-01

    One-way facilitation in plants has been found in many harsh environments and their role as structural forces governing species composition in plant communities is now well established. However, reciprocal positive effects benefiting two interacting species have seldom been reported and, in recent reviews, conceptually considered merely as facilitation when in fact there is room for adaptive strategies and evolutionary responses. We tested the existence of such reciprocal positive effects in an arid environment in SE Spain using spatial pattern analysis, a species removal experiment, and a natural experiment. We found that the spatial association between Maytenus senegalensis and Whitania frutescens, two shrub species of roughly similar size intimately interacting in our community, resulted in mutual benefit for both species. Benefits included improved water relations and nutritional status and protection against browsing, and did occur despite simultaneous competition for resources. Our data suggest two-way facilitation or, rather, a facultative mutualism among higher plant species, a process often overlooked which could be a main driver of plant community dynamics allowing for evolutionary processes. PMID:26419958

  19. Regional aridity in North America during the middle Holocene

    USGS Publications Warehouse

    Dean, W.E.; Ahlbrandt, T.S.; Anderson, R.Y.; Bradbury, J.P.

    1996-01-01

    Increased aridity throughout the Great Plains and Rocky Mountain region during the middle Holocene has been documented from pollen records, aeolian proxy variables in lake cores, and active sand dune migration. Varve calibration provided by a continuously varved record of the Holocene from a core from Elk Lake, northwestern Minnesota, shows that the influx of aeolian elastic material increased beginning about 8 ka and ended about 3.8 ka, with peak aeolian activity at about 6 ka. If aeolian influx to Elk Lake corresponds in time to aeolian influx in other lakes and to maximum dune activity in Minnesota dune fields, then the varve calibration in Elk Lake provides precise time calibration of periods of peak aeolian activity in Minnesota. Palaeowind studies from the Minnesota dune fields show that the dominant wind direction when the dunes were active was from the northwest, the same as the dominant wind direction in dune fields throughout the Great Plains and Rocky Mountains. If the mid-Holocene aeolian activity in Minnesota was driven by an increase in westerly zonal winds, then the varve calibration can be extended to more precisely determine the timing of activity of dunes over a much broader area. We suggest that an increase in the westerly zonal wind field might have a solar-geomagnetic cause.

  20. Sources and transport of nitrogen in arid urban watersheds.

    PubMed

    Hale, Rebecca L; Turnbull, Laura; Earl, Stevan; Grimm, Nancy; Riha, Krystin; Michalski, Greg; Lohse, Kathleen A; Childers, Daniel

    2014-06-01

    Urban watersheds are often sources of nitrogen (N) to downstream systems, contributing to poor water quality. However, it is unknown which components (e.g., land cover and stormwater infrastructure type) of urban watersheds contribute to N export and which may be sites of retention. In this study we investigated which watershed characteristics control N sourcing, biogeochemical processing of nitrate (NO3-) during storms, and the amount of rainfall N that is retained within urban watersheds. We used triple isotopes of NO3- (δ15N, δ18O, and Δ17O) to identify sources and transformations of NO3- during storms from 10 nested arid urban watersheds that varied in stormwater infrastructure type and drainage area. Stormwater infrastructure and land cover--retention basins, pipes, and grass cover--dictated the sourcing of NO3- in runoff. Urban watersheds were strong sinks or sources of N to stormwater depending on runoff, which in turn was inversely related to retention basin density and positively related to imperviousness and precipitation. Our results suggest that watershed characteristics control the sources and transport of inorganic N in urban stormwater but that retention of inorganic N at the time scale of individual runoff events is controlled by hydrologic, rather than biogeochemical, mechanisms.

  1. Verification of watershed vegetation restoration policies, arid China

    PubMed Central

    Zhang, Chengqi; Li, Yu

    2016-01-01

    Verification of restoration policies that have been implemented is of significance to simultaneously reduce global environmental risks while also meeting economic development goals. This paper proposed a novel method according to the idea of multiple time scales to verify ecological restoration policies in the Shiyang River drainage basin, arid China. We integrated modern pollen transport characteristics of the entire basin and pollen records from 8 Holocene sedimentary sections, and quantitatively reconstructed the millennial-scale changes of watershed vegetation zones by defining a new pollen-precipitation index. Meanwhile, Empirical Orthogonal Function method was used to quantitatively analyze spatial and temporal variations of Normalized Difference Vegetation Index in summer (June to August) of 2000–2014. By contrasting the vegetation changes that mainly controlled by millennial-scale natural ecological evolution with that under conditions of modern ecological restoration measures, we found that vegetation changes of the entire Shiyang River drainage basin are synchronous in both two time scales, and the current ecological restoration policies met the requirements of long-term restoration objectives and showed promising early results on ecological environmental restoration. Our findings present an innovative method to verify river ecological restoration policies, and also provide the scientific basis to propose future emphasizes of ecological restoration strategies. PMID:27470948

  2. Highly specialized microbial diversity in hyper-arid polar desert

    PubMed Central

    Pointing, Stephen B.; Chan, Yuki; Lacap, Donnabella C.; Lau, Maggie C. Y.; Jurgens, Joel A.; Farrell, Roberta L.

    2009-01-01

    The McMurdo Dry Valleys in Antarctica are a cold hyperarid polar desert that present extreme challenges to life. Here, we report a culture-independent survey of multidomain microbial biodiversity in McKelvey Valley, a pristine example of the coldest desert on Earth. We demonstrate that life has adapted to form highly-specialized communities in distinct lithic niches occurring concomitantly within this terrain. Endoliths and chasmoliths in sandstone displayed greatest diversity, whereas soil was relatively depauperate and lacked a significant photoautotrophic component, apart from isolated islands of hypolithic cyanobacterial colonization on quartz rocks in soil contact. Communities supported previously unreported polar bacteria and fungi, but archaea were absent from all niches. Lithic community structure did not vary significantly on a landscape scale and stochastic moisture input due to snowmelt resulted in increases in colonization frequency without significantly affecting diversity. The findings show that biodiversity near the cold-arid limit for life is more complex than previously appreciated, but communities lack variability probably due to the high selective pressures of this extreme environment. PMID:19850879

  3. Water harvesting techniques for small communities in arid areas.

    PubMed

    Yuen, E; Anda, M; Mathew, K; Ho, G

    2001-01-01

    Limited water resources exist in numerous remote indigenous settlements around Australia. Indigenous people in these communities are still living in rudimentary conditions while their urban counterparts have full amenities, large scale water supplies and behavioral practices which may not be appropriate for an arid continent but are supported by extensive infrastructure in higher rainfall coastal areas. As remote indigenous communities continue to develop, their water use will increase, and in some cases, costly solutions may have to be implemented to augment supplies. Water harvesting techniques have been applied in settlements on a small scale for domestic and municipal purposes, and in the large, broadacre farm setting for productive use of the water. The techniques discussed include swales, infiltration basins, infiltration trenches and "sand dam" basins. This paper reviews the applications of water harvesting relevant to small communities for land rehabilitation, landscaping and flood control. Landscaping is important in these communities as it provides shelter from the sun and wind, reduces soil erosion and hence reduced airborne dust, and in some cases provides food and nutrition. Case studies of water harvesting systems applied in the Pilbara Region, Western Australia for landscaping around single dwellings in Jigalong and Cheeditha, in a permaculture garden in Wittenoon and at a college and carpark in Karratha are described.

  4. Semi-arid ecosystem response under seasonal hydroclimatic forcings

    NASA Astrophysics Data System (ADS)

    Feng, Xue; Souza, Rodolfo; Vico, Giulia; Antonino, Antonio; Montenegro, Suzana; Porporato, Amilcare

    2015-04-01

    The interannual variability of seasonal rainfall has been observed to change in conjunction with the magnitude, timing, and duration of seasonality. Such changes are especially pronounced in several seasonality hotspots around the world, including in the semi-arid regions of northeast Brazil. Rainfall variability, combined with a generally low rainfall amount and high year-round potential evapotranspiration, poses challenges here for plant survival in the local ecosystems of dry forests and managed pastures. As a result, the native vegetation has adopted many physiological and phenological strategies to deal with the yearly alteration between favorable (wet) and adverse (dry) growing conditions, including drought deciduousness and succulence. To understand the ecosystem-level response to future changes in climate seasonality, we adopt a new model for resolving the seasonal trajectory of stochastic soil moisture, coupled to a vegetation growth model that accounts for various plant water use strategies and phenological adjustments. This is validated using satellite data (e.g., NDVI) and field surveys, with special attention to the role of water storage capacity of the ecosystem, which governs hysteretic responses under seasonal forcings, and may ultimately determine ecosystem resilience and recovery after periods of drought.

  5. Mining the Agave Microbiome for adaptions to arid environments

    SciTech Connect

    Coleman-Derr, Devin; Wojke, Tanja; North, Gretchen; Partida-Martinez, Laila; DeAngeli, Kristen; Clingenpeel, Scott; Gross, Stephen; Tringe, Susannah; Visel, Axel

    2013-03-25

    A major challenge facing the biofuels industry is the identification of high-yield plant feedstocks that can be cultivated with minimal resource inputs without competing for land and water supplies with existing food crops. Recent research has demonstrated that the Agave plant, cultivated in Mexico and Southwestern United States for the production of fiber and alcohol, meets these criteria1. Agaves grow on non-arable rocky soils in regions characterized by prolonged drought and extreme temperatures, due in part to physiological adaptions that prevent excess water-loss in arid environments2. Plant-microbial symbioses can play a role in helping plants adapt to heat and drought stress, increasing the accessibility of soil nutrients, or compete with plant pathogens3. Whether agaves have similar beneficial microbe interactions in their native environment is unknown. We aim to provide a comprehensive characterization of the Agave microbiome, with the goal of identifying specific community members that may contribute to Agave biotic and abiotic stress tolerance

  6. Landfarm performance under arid conditions. 1. Conceptual framework.

    PubMed

    Hejazi, Ramzi F; Husain, Tahir

    2004-04-15

    The primary disposal method for oily sludge in the Kingdom of Saudi Arabia, which is a major oil-exporting country in the world, is landfarming. It is an attractive method of oily sludge disposal in hot arid climatic conditions. Although landfarming technology was introduced to Saudi Arabia in 1982, no scientific studies have been conducted within the Kingdom to support this decision. The results presented in this paper are based on a comprehensive field experiment conducted under Saudi Arabian environmental conditions. Details of experimental setup and conceptual framework of degradation process based on field observations are presented in this paper. The paper also addresses kinetics of oily sludge degradation in landfarm cells under natural and enhanced conditions in the presence of water, nutrients, and tilling. The 12-month field study showed that weathering (evaporation) and not biodegradation is the overall dominant degradation mechanism occurring in landfarms in the study area. The results of this study showed that up to 76% of the oil and grease (O&G) in the sludge has been lost from soil as a result of weathering. However, the results of this study also indicated the primary mechanism for the loss of C17 and C18 alkanes as compared to branched alkanes was due to biodegradation. PMID:15116853

  7. Verification of watershed vegetation restoration policies, arid China.

    PubMed

    Zhang, Chengqi; Li, Yu

    2016-07-29

    Verification of restoration policies that have been implemented is of significance to simultaneously reduce global environmental risks while also meeting economic development goals. This paper proposed a novel method according to the idea of multiple time scales to verify ecological restoration policies in the Shiyang River drainage basin, arid China. We integrated modern pollen transport characteristics of the entire basin and pollen records from 8 Holocene sedimentary sections, and quantitatively reconstructed the millennial-scale changes of watershed vegetation zones by defining a new pollen-precipitation index. Meanwhile, Empirical Orthogonal Function method was used to quantitatively analyze spatial and temporal variations of Normalized Difference Vegetation Index in summer (June to August) of 2000-2014. By contrasting the vegetation changes that mainly controlled by millennial-scale natural ecological evolution with that under conditions of modern ecological restoration measures, we found that vegetation changes of the entire Shiyang River drainage basin are synchronous in both two time scales, and the current ecological restoration policies met the requirements of long-term restoration objectives and showed promising early results on ecological environmental restoration. Our findings present an innovative method to verify river ecological restoration policies, and also provide the scientific basis to propose future emphasizes of ecological restoration strategies.

  8. Using NDVI to measure precipitation in semi-arid landscapes

    USGS Publications Warehouse

    Birtwhistle, Amy N.; Laituri, Melinda; Bledsoe, Brian; Friedman, Jonathan M.

    2016-01-01

    Measuring precipitation in semi-arid landscapes is important for understanding the processes related to rainfall and run-off; however, measuring precipitation accurately can often be challenging especially within remote regions where precipitation instruments are scarce. Typically, rain-gauges are sparsely distributed and research comparing rain-gauge and RADAR precipitation estimates reveal that RADAR data are often misleading, especially for monsoon season convective storms. This study investigates an alternative way to map the spatial and temporal variation of precipitation inputs along ephemeral stream channels using Normalized Difference Vegetation Index (NDVI) derived from Landsat Thematic Mapper imagery. NDVI values from 26 years of pre- and post-monsoon season Landsat imagery were derived across Yuma Proving Ground (YPG), a region covering 3,367 km2 of semiarid landscapes in southwestern Arizona, USA. The change in NDVI from a pre-to post-monsoon season image along ephemeral stream channels explained 73% of the variance in annual monsoonal precipitation totals from a nearby rain-gauge. In addition, large seasonal changes in NDVI along channels were useful in determining when and where flow events have occurred.

  9. Comparison modeling for alpine vegetation distribution in an arid area.

    PubMed

    Zhou, Jihua; Lai, Liming; Guan, Tianyu; Cai, Wetao; Gao, Nannan; Zhang, Xiaolong; Yang, Dawen; Cong, Zhentao; Zheng, Yuanrun

    2016-07-01

    Mapping and modeling vegetation distribution are fundamental topics in vegetation ecology. With the rise of powerful new statistical techniques and GIS tools, the development of predictive vegetation distribution models has increased rapidly. However, modeling alpine vegetation with high accuracy in arid areas is still a challenge because of the complexity and heterogeneity of the environment. Here, we used a set of 70 variables from ASTER GDEM, WorldClim, and Landsat-8 OLI (land surface albedo and spectral vegetation indices) data with decision tree (DT), maximum likelihood classification (MLC), and random forest (RF) models to discriminate the eight vegetation groups and 19 vegetation formations in the upper reaches of the Heihe River Basin in the Qilian Mountains, northwest China. The combination of variables clearly discriminated vegetation groups but failed to discriminate vegetation formations. Different variable combinations performed differently in each type of model, but the most consistently important parameter in alpine vegetation modeling was elevation. The best RF model was more accurate for vegetation modeling compared with the DT and MLC models for this alpine region, with an overall accuracy of 75 % and a kappa coefficient of 0.64 verified against field point data and an overall accuracy of 65 % and a kappa of 0.52 verified against vegetation map data. The accuracy of regional vegetation modeling differed depending on the variable combinations and models, resulting in different classifications for specific vegetation groups.

  10. Using decision lists to construct interpretable and parsimonious treatment regimes.

    PubMed

    Zhang, Yichi; Laber, Eric B; Tsiatis, Anastasios; Davidian, Marie

    2015-12-01

    A treatment regime formalizes personalized medicine as a function from individual patient characteristics to a recommended treatment. A high-quality treatment regime can improve patient outcomes while reducing cost, resource consumption, and treatment burden. Thus, there is tremendous interest in estimating treatment regimes from observational and randomized studies. However, the development of treatment regimes for application in clinical practice requires the long-term, joint effort of statisticians and clinical scientists. In this collaborative process, the statistician must integrate clinical science into the statistical models underlying a treatment regime and the clinician must scrutinize the estimated treatment regime for scientific validity. To facilitate meaningful information exchange, it is important that estimated treatment regimes be interpretable in a subject-matter context. We propose a simple, yet flexible class of treatment regimes whose members are representable as a short list of if-then statements. Regimes in this class are immediately interpretable and are therefore an appealing choice for broad application in practice. We derive a robust estimator of the optimal regime within this class and demonstrate its finite sample performance using simulation experiments. The proposed method is illustrated with data from two clinical trials. PMID:26193819

  11. Using Decision Lists to Construct Interpretable and Parsimonious Treatment Regimes

    PubMed Central

    Zhang, Yichi; Laber, Eric B.; Tsiatis, Anastasios; Davidian, Marie

    2015-01-01

    Summary A treatment regime formalizes personalized medicine as a function from individual patient characteristics to a recommended treatment. A high-quality treatment regime can improve patient outcomes while reducing cost, resource consumption, and treatment burden. Thus, there is tremendous interest in estimating treatment regimes from observational and randomized studies. However, the development of treatment regimes for application in clinical practice requires the long-term, joint effort of statisticians and clinical scientists. In this collaborative process, the statistician must integrate clinical science into the statistical models underlying a treatment regime and the clinician must scrutinize the estimated treatment regime for scientific validity. To facilitate meaningful information exchange, it is important that estimated treatment regimes be interpretable in a subject-matter context. We propose a simple, yet flexible class of treatment regimes whose members are representable as a short list of if-then statements. Regimes in this class are immediately interpretable and are therefore an appealing choice for broad application in practice. We derive a robust estimator of the optimal regime within this class and demonstrate its finite sample performance using simulation experiments. The proposed method is illustrated with data from two clinical trials. PMID:26193819

  12. Rheological equations in asymptotic regimes of granular flow

    USGS Publications Warehouse

    Chen, C.-L.; Ling, C.-H.

    1998-01-01

    This paper assesses the validity of the generalized viscoplastic fluid (GVF) model in light of the established constitutive relations in two asymptotic flow regimes, namely, the macroviscous and grain-inertia regimes. A comprehensive review of the literature on constitutive relations in both regimes reveals that except for some material constants, such as the coefficient of restitution, the normalized shear stress in both regimes varies only with the grain concentration, C. It is found that Krieger-Dougherty's relative viscosity, ??*(C), is sufficiently coherent among the monotonically nondecreasing functions of C used in describing the variation of the shear stress with C in both regimes. It not only accurately represents the C-dependent relative viscosity of a suspension in the macroviscous regime, but also plays a role of the radial distribution function that describes the statistics of particle collisions in the grain-inertia regime. Use of ??*(C) alone, however, cannot link the two regimes. Another parameter, the shear-rate number, N, is needed in modelling the rheology of neutrally buoyant granular flows in transition between the two asymptotic regimes. The GVF model proves compatible with most established relations in both regimes.

  13. Low expression of ARID1A correlates with poor prognosis in intrahepatic cholangiocarcinoma

    PubMed Central

    Yang, Song-Zhu; Wang, An-Qiang; Du, Juan; Wang, Jian-Tao; Yu, Wei-Wei; Liu, Qing; Wu, Yan-Fang; Chen, Shu-Guang

    2016-01-01

    AIM: To investigate the relationship between ARID1A expression and clinicopathologic parameters, as well as its prognostic value, for patients with intrahepatic cholangiocarcinoma (IHCC). METHODS: We assessed ARID1A protein and mRNA expression in IHCC tissues and paracarcinomatous (PC) tissues from 57 patients with IHCC using western blot and quantitative real-time reverse transcription polymerase chain reaction, respectively. We used Fisher’s exact and χ2 tests to analyze relationships between clinicopathological parameters and ARID1A expression. The Kaplan-Meier method and Cox regression were used to analyze survival. RESULTS: The mean ARID1A protein level in IHCC tissues was 1.16 ± 0.36 relative units (RU), which was significantly lower than that in PC tissues (1.26 ± 0.21 RU, P < 0.01) and NL tissues (1.11 ± 0.31, P < 0.001). The mean ARID1A mRNA level in IHCC tissues (1.20 ± 0.18) was also lower than that in PC tissues (1.27 ± 0.15, P < 0.001) and normal liver tissues (1.15 ± 0.34, P < 0.001). Low ARID1A expression was significantly associated with tumor nodules, vein invasion, and recurrence. Median overall survival (OS) and disease-free survival (DFS) for the low ARID1A expression group was 15.0 and 7.0 mo, respectively, which were significantly shorter than those for the high ARID1A expression group at 25.0 and 22.0 mo (OS: P < 0.01; DFS: P < 0.001), respectively. Low ARID1A expression was significantly associated with worse OS (HR = 3.967, 95%CI: 1.299-12.118, P = 0.016) in multivariate analyses. CONCLUSION: Low expression of ARID1A is associated with poor prognosis in patients with IHCC, and thus may be a potential prognostic biomarker candidate in IHCC. PMID:27433094

  14. Book title: Exotic brome grasses in arid and semi-arid ecosystems of the western US: causes, consequences, and management implications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exotic invasive annual grass research and management in arid and semiarid ecosystems of the western US have historically focused on the outcome of efforts to reduce weed abundance. Given the current impact of invasive annual grasses and their continued spread in this region, we assessed components ...

  15. Effects of long-term irrigation with treated wastewater on the hydraulic properties, and the water and air regime in the root zone of a clayey soil.

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel

    2013-04-01

    With increasing water scarcity, treated wastewater (TW) appears as an attractive alternative source of water for irrigation, especially in arid and semi-arid regions where freshwater is naturally scarce. However, it seems that long-term use of TW for irrigation of orchards planted on heavy soils cause to yield reduction and crop damages. In terms of water quality, TW are characterized by higher concentrations of sodium and dissolved organic content (DOC) that affect soil exchangeable sodium percentage (ESP) on one hand and soil wettability, on the other hand. The working hypothesis of this study is that long-term use of TW for irrigation of clayey soils causes significant changes in the soil hydraulic properties. Such changes might affect the water and air regime in the root zone, and the hydrological balance components at the field scale. High-resolution field sampling determined the spatial distribution of chloride, ESP and DOC below the dripper, revealing higher salinity and sodicity, lower hydraulic conductivity, and possible preferential flow pattern linked to wettability in WW-irrigated soils. Laboratory experiments involving infiltration, evaporation, and swelling pressure measurements provide quantitative estimates of the impact of TW for irrigation on the soil hydraulic properties. The upper soil layer of TW-irrigated plots is more affected by the impact of DOC on soil wettability, while the lower layers are more affected by the impact of the increased ESP on soil hydraulic conductivity. Continuous monitoring of oxygen concentration at 10, 20 and 30 cm depths in the root zone near the trees and at mid-distance between trees revealed that the air regime in the root zone is significantly affected by the TW use as a consequence for the effect on the water regime.

  16. Groundwater quality and management in arid and semi-arid regions: Case study, Central Eastern Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Amer, Reda; Ripperdan, Robert; Wang, Tao; Encarnación, John

    2012-07-01

    This study presents a model budget for groundwater in the Central Eastern Desert of Egypt. The stable isotopic composition and hydrochemistry of groundwater samples collected from different aquifers were determined to identify recharge sources and water quality. Stable isotopic values suggest that shallow alluvial and fracture zone aquifers are recharged from seasonal precipitation, while groundwater in deeper sedimentary sub-basins is paleowater that was recharged during periods of less arid regional climate. Hydrochemical analysis indicates elevated salinity in each aquifer type, which is attributed to leaching and dissolution of terrestrial salts and to mixing with marine water. Groundwater from sedimentary sub-basin aquifers can be treated and used for drinking and domestic purposes. Groundwater from shallow alluvial and fracture zone wells is suitable for animal husbandry and mineral ore dressing. A model water budget shows that approximately 4.8 × 109 m3 of recoverable groundwater is stored in sedimentary sub-basin aquifers, or approximately 550 years of water at present utilization rates.

  17. Applicability of toxicity bioassays to ecological risk assessment in arid and semiarid ecosystems.

    SciTech Connect

    Markwiese, J. T.; Ryti, R. T.; Hooten, M. M.; Michael, D. I.; Hlohowskyj, I.; Environmental Assessment; Neptune and Company, Inc.

    2001-01-01

    Substantial tracts of land in the southwestern and western U.S. are undergoing or will require ERA. Toxicity bioassays employed in baseline ERAs are, for the most part. representative of mesic systems, and highly standardized test species (e.g., lettuce, earthworm) are generally not relevant to arid system toxicity testing. Conversely, relevant test species are often poorly characterized with regard to toxicant sensitivity and culture conditions. The applicability of toxicity bioassays to ecological risk assessment in arid and semiarid ecosystems was reviewed for bacteria and fungi, plants, terrestrial invertebrates, and terrestrial vertebrates. Bacteria and fungi are critical to soil processes, and understanding their ecology is important to understanding the ecological relevance of bioassays targeting either group. Terrestrial bacteria require a water film around soil particles to be active, while soil fungi can remain active in extremely dry soils. It is therefore expected that fungi will be of greater importance to arid and semiarid systems (Whitford 1989). If microbial processes are to be measured in soils of arid environments, it is recommended that bioassays target fungi. Regardless of the taxa studied, problems are associated with the standardization and interpretability of microbial tests, and regulatory acceptance may hinder widespread incorporation of microbial toxicity bioassays in arid system risk assessments. Plant toxicity bioassays are gaining recognition as sensitive indicators of soil conditions because they can provide a cost-effective and relatively rapid assessment of soil quality for both pre- and postremediation efforts. Although the choices of suitable plant species for assessing mesic system soils are numerous, the choices for arid system soils are limited. Guidance is provided for evaluating plant species with regard to their suitability for serving as representative arid system flora. Terrestrial invertebrates can survive and flourish in

  18. Characterization of fire regime in Sardinia (Italy)

    NASA Astrophysics Data System (ADS)

    Bacciu, V. M.; Salis, M.; Mastinu, S.; Masala, F.; Sirca, C.; Spano, D.

    2012-12-01

    In the last decades, a number of Authors highlighted the crucial role of forest fires within Mediterranean ecosystems, with impacts both negative and positive on all biosphere components and with reverberations on different scales. Fire determines the landscape structure and plant composition, but it is also the cause of enormous economic and ecological damages, beside the loss of human life. In Sardinia (Italy), the second largest island of the Mediterranean Basin, forest fires are perceived as one of the main environmental and social problems, and data are showing that the situation is worsening especially within the rural-urban peripheries and the increasing number of very large forest fires. The need for information concerning forest fire regime has been pointed out by several Authors (e.g. Rollins et al., 2002), who also emphasized the importance of understanding the factors (such as weather/climate, socio-economic, and land use) that determine spatial and temporal fire patterns. These would be used not only as a baseline to predict the climate change effect on forest fires, but also as a fire management and mitigation strategy. The main aim of this paper is, thus, to analyze the temporal and spatial patterns of fire occurrence in Sardinia (Italy) during the last three decades (1980-2010). For the analyzed period, fire statistics were provided by the Sardinian Forest Service (CFVA - Corpo Forestale e di Vigilanza Ambientale), while weather data for eight weather stations were obtained from the web site www.tutiempo.it. For each station, daily series of precipitation, mean, maximum and minimum temperature, relative humidity and wind speed were available. The present study firstly analyzed fire statistics (burned area and number of fires) according to the main fire regime characteristics (seasonality, fire return interval, fire incidence, fire size distribution). Then, fire and weather daily values were averaged to obtain monthly, seasonal and annual values, and

  19. Influences on the stable oxygen and carbon isotopes in gerbillid rodent teeth in semi-arid and arid environments: Implications for past climate and environmental reconstruction

    NASA Astrophysics Data System (ADS)

    Jeffrey, Amy; Denys, Christiane; Stoetzel, Emmanuelle; Lee-Thorp, Julia A.

    2015-10-01

    The stable isotope composition of small mammal tissues has the potential to provide detailed information about terrestrial palaeoclimate and environments, because their remains are abundant in palaeontological and archaeological sites, and they have restricted home ranges. Applications to the Quaternary record, however, have been sparse and limited by an acute lack of understanding of small mammal isotope ecology, particularly in arid and semi-arid environments. Here we document the oxygen and carbon isotope composition of Gerbillinae (gerbil) tooth apatite across a rainfall gradient in northwestern Africa, in order to test the relative influences of the 18O/16O in precipitation or moisture availability on gerbil teeth values, the sensitivity of tooth apatite 13C/12C to plant responses to moisture availability, and the influence of developmental period on the isotopic composition of gerbil molars and incisors. The results show that the isotopic composition of molars and incisors from the same individuals differs consistent with the different temporal periods reflected by the teeth; molar teeth are permanently rooted and form around the time of birth, whereas incisors grow continuously. The results indicate that tooth choice is an important consideration for applications as proxy Quaternary records, but also highlights a new potential means to distinguish seasonal contexts. The oxygen isotope composition of gerbil tooth apatite is strongly correlated with mean annual precipitation (MAP) below 600 mm, but above 600 mm the teeth reflect the oxygen isotope composition of local meteoric water instead. Predictably, the carbon isotope composition of the gerbil teeth reflected C3 and C4 dietary inputs, however arid and mesic sites could not be distinguished because of the high variability displayed in the carbon isotope composition of the teeth due to the microhabitat and short temporal period reflected by the gerbil. We show that the oxygen isotope composition of small

  20. Scarce data in hydrology and hydrogeology: Estimation and modelling of groundwater recharge for a numerical groundwater flow model in a semi-arid to arid catchment

    NASA Astrophysics Data System (ADS)

    Gräbe, Agnes; Schulz, Stephan; Rödiger, Tino; Kolditz, Olaf

    2013-04-01

    Water resources are strongly limited in semi-arid to arid regions and groundwater constitutes often the only possibility for fresh water for the population and industry. An understanding of the hydrological processes and the estimation of magnitude of water balance parameters also includes the knowledge of processes of groundwater recharge. For the sustainable management of water resources, it is essential to estimate the potential groundwater recharge under the given climatic conditions. We would like to present the results of a hydrological model, which is based on the HRU- concept and intersected the parameters of climatic conditions, topography, geology, soil, vegetation and land use to calculate the groundwater recharge. This model was primarily developed for humid area applications and has now been adapted to the regional conditions in the semi-arid to arid region. It was quite a challenge to understand the hydrological processes in the semi-arid to arid study area and to implement those findings (e.g. routing [Schulz (in prep.)]) into the model structure. Thus we compared the existing approaches for groundwater recharge estimations (chloride mass balance [Marei et. al 2000], empirical relations such as rainfall and base flow-relation [Goldschmidt 1960; Guttman 2000; Hughes 2008; Issar 1993; Lerner 1990; De Vries et. al 2002]) with the results of our numerical model. References: De Vries, J. J., I. Simmers (2002): Groundwater recharge: an overview of processes and challenges. Hydrogeology Journal (2002) 10: 5-17. DOI 10.1007/s10040-001-0171-7. Guttman, J., 2000. Multi-Lateral Project B: Hydrogeology of the Eastern Aquifer in the Judea Hills and Jordan Valley. Mekorot Water Company, Report 468, p. 36. Hughes, A. G., M. M. Mansour, N. S. Robins (2008): Evaluation of distributed recharge in an upland semi-arid karst system: the West Bank Mountain Aquifer, Middle East. Hydrogeology Journal (2008) 16: 845-854. DOI 10.1007/s10040-008-0273-6 Issar, A. S. (1993

  1. Correlations between microbial tetraether lipids and environmental variables in Chinese soils: Optimizing the paleo-reconstructions in semi-arid and arid regions

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Pancost, Richard D.; Dang, Xinyue; Zhou, Xinying; Evershed, Richard P.; Xiao, Guoqiao; Tang, Changyan; Gao, Li; Guo, Zhengtang; Xie, Shucheng

    2014-02-01

    The bacterial membrane lipid-based continental paleothermometer, the MBT/CBT or MBT‧-CBT proxy (methylation index of branched tetraethers/cyclization of branched tetraethers), results in a large temperature deviation when applied in semiarid and arid regions. Here we propose new calibration models based on the investigation of >100 surface soils across a large climatic gradient, with a particular focus on semiarid and arid regions of China, and apply them to a loess-paleosol sequence. As reported elsewhere, MBT values exhibit a much higher correlation with MAAT than with summer temperature, suggesting a minimal seasonality bias; however, MBT is apparently insensitive to temperature <5 °C or >20 °C. Additional complexities are apparent in alkaline and arid soils, which are characterized by different relationships to climatic parameters than those in the complete Chinese (or global) dataset. For example, MBT and CBT indices exhibit a negative correlation in alkaline and arid soils, in contrast to their positive correlation in acid soils. Moreover, the cyclization ratio of bGDGTs (CBT), previously defined as a proxy for soil pH, is apparently primarily controlled by MAAT in these alkaline soils. Thus, we propose (1) a local Chinese calibration of the MBT-CBT proxy and (2) an alternative temperature proxy for use in semiarid and arid regions based on the fractional abundances of bGDGTs; the latter has a markedly higher determination factor and lower root mean square error in alkaline soils than the Chinese local calibration and is suggested to be preferred for paleotemperature reconstruction in Chinese loess/paleosol sequences. These new bGDGT proxies have been applied to the Weinan Holocene paleosol section of the Chinese Loess Plateau (CLP). The fractional abundance calibration, when applied in the Weinan Holocene paleosol, produces a total Holocene temperature variation of 5.2 °C and a temperature for the topmost sample that is consistent with the modern

  2. Progress and prospects of climate change impacts on hydrology in the arid region of northwest China.

    PubMed

    Chen, Yaning; Li, Zhi; Fan, Yuting; Wang, Huaijun; Deng, Haijun

    2015-05-01

    The arid region of Northwest China, located in the central Asia, responds sensitively to global climate change. Based on the newest research results, this paper analyzes the impacts of climate change on hydrology and the water cycle in the arid region of Northwest China. The analysis results show that: (1) In the northwest arid region, temperature and precipitation experienced "sharply" increasing in the past 50 years. The precipitation trend changed in 1987, and since then has been in a state of high volatility, during the 21st century, the increasing rate of precipitation was diminished. Temperature experienced a "sharply" increase in 1997; however, this sharp increasing trend has turned to an apparent hiatus since the 21st century. The dramatic rise in winter temperatures in the northwest arid region is an important reason for the rise in the average annual temperature, and substantial increases in extreme winter minimum temperature play an important role in the rising average winter temperature; (2) There was a significant turning point in the change of pan evaporation in the northwest arid area in 1993, i.e., in which a significant decline reversed to a significant upward trend. In the 21st century, the negative effects of global warming and increasing levels of evaporation on the ecology of the northwest arid region have been highlighted; (3) Glacier change has a significant impact on hydrology in the northwest arid area, and glacier inflection points have appeared in some rivers. The melting water supply of the Tarim River Basin possesses a large portion of water supplies (about 50%). In the future, the amount of surface water will probably remain at a high state of fluctuation. PMID:25682220

  3. Progress and prospects of climate change impacts on hydrology in the arid region of northwest China.

    PubMed

    Chen, Yaning; Li, Zhi; Fan, Yuting; Wang, Huaijun; Deng, Haijun

    2015-05-01

    The arid region of Northwest China, located in the central Asia, responds sensitively to global climate change. Based on the newest research results, this paper analyzes the impacts of climate change on hydrology and the water cycle in the arid region of Northwest China. The analysis results show that: (1) In the northwest arid region, temperature and precipitation experienced "sharply" increasing in the past 50 years. The precipitation trend changed in 1987, and since then has been in a state of high volatility, during the 21st century, the increasing rate of precipitation was diminished. Temperature experienced a "sharply" increase in 1997; however, this sharp increasing trend has turned to an apparent hiatus since the 21st century. The dramatic rise in winter temperatures in the northwest arid region is an important reason for the rise in the average annual temperature, and substantial increases in extreme winter minimum temperature play an important role in the rising average winter temperature; (2) There was a significant turning point in the change of pan evaporation in the northwest arid area in 1993, i.e., in which a significant decline reversed to a significant upward trend. In the 21st century, the negative effects of global warming and increasing levels of evaporation on the ecology of the northwest arid region have been highlighted; (3) Glacier change has a significant impact on hydrology in the northwest arid area, and glacier inflection points have appeared in some rivers. The melting water supply of the Tarim River Basin possesses a large portion of water supplies (about 50%). In the future, the amount of surface water will probably remain at a high state of fluctuation.

  4. Hydrologic issues in arid, unsaturated systems and implications for contaminant transport

    NASA Astrophysics Data System (ADS)

    Scanlon, Bridget R.; Tyler, Scott W.; Wierenga, Peter J.

    1997-11-01

    Analysis of unsaturated flow and transport in arid regions is important, not only in water resource evaluation but in contaminant transport as well, particularly in siting waste disposal facilities and in remediating contaminated sites. The water fluxes under consideration have a magnitude close to the errors inherent in measuring or in calculating these water fluxes, which makes it difficult to resolve basic issues such as direction and rate of water movement and controls on unsaturated flow. The purpose of this paper is to review these issues on the basis of unsaturated zone studies in arid settings. Because individual techniques for estimating water fluxes in the unsaturated zone have limitations, a variety of physical measurements and environmental tracers should be used to provide multiple, independent lines of evidence to quantify flow and transport in arid regions. The direction and rate of water flow are affected not only by hydraulic head gradients but also by temperature and air pressure gradients. The similarity of water fluxes in a variety of settings in the southwestern United States indicates that vegetative cover may be one of the primary controls on the magnitude of water flow in the unsaturated zone; however, our understanding of the role of plants is limited. Most unsaturated flow in arid systems is focused beneath topographic depressions, and diffuse flow is limited. Thick unsaturated sections and low water fluxes typical of many arid regions result in preservation of paleoclimatic variations in water flux and suggest that deep vadose zones may be out of equilibrium with current climate. Whereas water movement along preferred pathways is common in humid sites, field studies that demonstrate preferential flow are restricted mostly to fractured rocks and root zones in arid regions. Results of field studies of preferential flow in humid sites, generally restricted to the upper 1-2 m because of shallow water tables, cannot be applied readily to thick

  5. Energy Productivity of the High Velocity Algae Raceway Integrated Design (ARID-HV)

    SciTech Connect

    Attalah, Said; Waller, Peter M.; Khawam, George; Ryan, Randy D.; Huesemann, Michael H.

    2015-06-03

    The original Algae Raceway Integrated Design (ARID) raceway was an effective method to increase algae culture temperature in open raceways. However, the energy input was high and flow mixing was poor. Thus, the High Velocity Algae Raceway Integrated Design (ARID-HV) raceway was developed to reduce energy input requirements and improve flow mixing in a serpentine flow path. A prototype ARID-HV system was installed in Tucson, Arizona. Based on algae growth simulation and hydraulic analysis, an optimal ARID-HV raceway was designed, and the electrical energy input requirement (kWh ha-1 d-1) was calculated. An algae growth model was used to compare the productivity of ARIDHV and conventional raceways. The model uses a pond surface energy balance to calculate water temperature as a function of environmental parameters. Algae growth and biomass loss are calculated based on rate constants during day and night, respectively. A 10 year simulation of DOE strain 1412 (Chlorella sorokiniana) showed that the ARID-HV raceway had significantly higher production than a conventional raceway for all months of the year in Tucson, Arizona. It should be noted that this difference is species and climate specific and is not observed in other climates and with other algae species. The algae growth model results and electrical energy input evaluation were used to compare the energy productivity (algae production rate/energy input) of the ARID-HV and conventional raceways for Chlorella sorokiniana in Tucson, Arizona. The energy productivity of the ARID-HV raceway was significantly greater than the energy productivity of a conventional raceway for all months of the year.

  6. Decoupling of soil nutrient cycles as a function of aridity in global drylands.

    PubMed

    Delgado-Baquerizo, Manuel; Maestre, Fernando T; Gallardo, Antonio; Bowker, Matthew A; Wallenstein, Matthew D; Quero, Jose Luis; Ochoa, Victoria; Gozalo, Beatriz; García-Gómez, Miguel; Soliveres, Santiago; García-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Escolar, Cristina; Arredondo, Tulio; Barraza-Zepeda, Claudia; Bran, Donaldo; Carreira, José Antonio; Chaieb, Mohamed; Conceição, Abel A; Derak, Mchich; Eldridge, David J; Escudero, Adrián; Espinosa, Carlos I; Gaitán, Juan; Gatica, M Gabriel; Gómez-González, Susana; Guzman, Elizabeth; Gutiérrez, Julio R; Florentino, Adriana; Hepper, Estela; Hernández, Rosa M; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Liu, Jushan; Mau, Rebecca L; Miriti, Maria; Monerris, Jorge; Naseri, Kamal; Noumi, Zouhaier; Polo, Vicente; Prina, Aníbal; Pucheta, Eduardo; Ramírez, Elizabeth; Ramírez-Collantes, David A; Romão, Roberto; Tighe, Matthew; Torres, Duilio; Torres-Díaz, Cristian; Ungar, Eugene D; Val, James; Wamiti, Wanyoike; Wang, Deli; Zaady, Eli

    2013-10-31

    The biogeochemical cycles of carbon (C), nitrogen (N) and phosphorus (P) are interlinked by primary production, respiration and decomposition in terrestrial ecosystems. It has been suggested that the C, N and P cycles could become uncoupled under rapid climate change because of the different degrees of control exerted on the supply of these elements by biological and geochemical processes. Climatic controls on biogeochemical cycles are particularly relevant in arid, semi-arid and dry sub-humid ecosystems (drylands) because their biological activity is mainly driven by water availability. The increase in aridity predicted for the twenty-first century in many drylands worldwide may therefore threaten the balance between these cycles, differentially affecting the availability of essential nutrients. Here we evaluate how aridity affects the balance between C, N and P in soils collected from 224 dryland sites from all continents except Antarctica. We find a negative effect of aridity on the concentration of soil organic C and total N, but a positive effect on the concentration of inorganic P. Aridity is negatively related to plant cover, which may favour the dominance of physical processes such as rock weathering, a major source of P to ecosystems, over biological processes that provide more C and N, such as litter decomposition. Our findings suggest that any predicted increase in aridity with climate change will probably reduce the concentrations of N and C in global drylands, but increase that of P. These changes would uncouple the C, N and P cycles in drylands and could negatively affect the provision of key services provided by these ecosystems.

  7. Guidance for evaluating and recommending temperature regimes to protect fish

    USGS Publications Warehouse

    Armour, Carl L.

    1991-01-01

    Procedures are presented for evaluating temperature regimes for fish. Although examples pertain to spring chinook salmon (Oncorhynchus tshawytscha), the principles apply to other species. Basic temperature tolerance relationships for fish are explained and three options are described for comparing alternative temperature regimes. The options are to base comparisons on experimental temperature tolerance results, suitability of a simulated temperature regime for key life stages, or population statistics and predicated responses to simulated temperatures.

  8. Modeling and Managing Regional Aquifers in Arid Countries

    NASA Astrophysics Data System (ADS)

    Schüth, C.; Rausch, R.

    2009-12-01

    Most of the regional aquifers in arid countries were recharged many thousand years ago when the climate was much wetter than today. Therefore, most of the groundwater stored in the aquifers is fossil water. The aquifers are in a state of constant depletion as recent groundwater recharge is much smaller than the outflow. A prerequisite for the smart management of such groundwater resources is a sound understanding of the aquifer system based on reliable data and robust simulation models. Mathematical groundwater models are one of the tools available that can consider a complex array of aquifer variables and allow these variables to interact with themselves. Exploring these interactions with a model can reveal how an aquifer behaves. Once a model is working properly, it can be used to make predictions for managing groundwater resources, such as predicting how groundwater levels might respond to increased pumping or drought, testing different management scenarios etc. Furthermore, groundwater models describing regional aquifers in arid regions must be considered to be in a transient state and consider the entire extent of the aquifer. The introduction of artificial boundaries is not possible and lead to wrong estimations. Within the modeling process the reduction and estimation of uncertainties is required, which leads to the “inverse problem” in groundwater modeling. Strategies for the reduction and estimation of uncertainties are needed. Problems are (1) the ill-posedness of parameter estimation, (2) that no unique solution may exist, and (3) that measurement errors make the results unreliable. Ways out are the reduction of degrees of freedom by introducing geological ‘a priori’ knowledge as well as the joint use of head, flow and/or concentration measurements, and the estimation of uncertainty. This concept is demonstrated by examples of model development for regional aquifers on the Arabian Peninsula, e.g. ‘a priori’ knowledge is introduced into the

  9. Bird migration patterns in the arid southwest-Final report

    USGS Publications Warehouse

    Ruth, Janet M.; Felix, Rodney K.; Dieh, Robert H.

    2010-01-01

    To ensure full life-cycle conservation, we need to understand migrant behavior en route and how migrating species use stopover and migration aerohabitats. In the Southwest, birds traverse arid and mountainous landscapes in migration. Migrants are known to use riparian stopover habitats; we know less about how migrant density varies across the Southwest seasonally and annually, and how migrants use other habitat types during migratory stopover. Furthermore, we lack information about migrant flight altitudes, speeds, and directions of travel, and how these patterns vary seasonally and annually across the Southwest. Using weather surveillance radar data, we identified targets likely dominated by nocturnally migrating birds and determined their flight altitudes, speeds, directions over ground, and variations in abundance. Migrating or foraging bats likely are present across the region in some of these data, particularly in central Texas. We found that migrants flew at significantly lower altitudes and significantly higher speeds in spring than in fall. In all seasons migrants maintained seasonally appropriate directions of movement. We detected significant differences in vertical structure of migrant densities that varied both geographically within seasons and seasonally within sites. We also found that in fall there was a greater and more variable passage of migrants through the central part of the borderlands (New Mexico and west Texas); in spring there was some suggestion of greater and more variable passage of migrants in the eastern borderlands (central and south Texas). Such patterns are consistent with the existence of at least two migration systems through western North America and the use of different migration routes in spring and fall for at least some species. Using radar data and satellite land cover data, we determined the habitats with which migrants are associated during migration stopover. There were significant differences in bird densities among

  10. Using remote sensing to create indicators of ecosystem variability for a semi-arid savanna watershed in the Kavango-Zambezi region of Southern Africa

    NASA Astrophysics Data System (ADS)

    Pricope, Narcisa Gabriela

    This dissertation addresses changes in land and resource availability occurring as a result of climate, water variability and changes in fire regimes in a semi-arid savanna region in Southern Africa. The research combines geospatial analyses of climatological and hydrologic data and various remotely-sensed datasets to create measures of ecosystem variability and adaptability to natural and anthropogenic changes in sensitive ecosystems. The study area is the Chobe River Basin (CRB), a watershed shared between Botswana and Namibia situated at the heart of one of the world.s largest transfrontier conservation areas, where different land-use management strategies and economic policies affect both the ecosystem and the livelihoods support system differentially. The southern African savanna is a highly variable environment and people have adapted to its harshness through the generations. However, in light of past and ongoing environmental changes, their ability to adapt may become threatened. By mapping and then analyzing the spatial and temporal variability of two important factors, namely flooding and fires, in conjunction with indices of vegetation health and productivity, the findings of this research can ultimately contribute to enhancing our understanding of local adaptation mechanisms to future environmental change. This is the first reconstruction of the spatial and temporal patterns of inundation for the last 25 years in the CRB, a transboundary basin with an unusual hydrologic regime and an important water resource for both human and wildlife populations. In the context of increasing temperatures, decreasing precipitation trends and increasing frequencies and intensities of El Nino episodes in southern Africa (Boko et al., 2007), I also investigated changes in fire incidences and marked shifts in fire seasonality both within and outside of protected areas of central Kavango Zambezi Transfrontier Conservation Area (KAZA TFCA). These changes are likely to have a

  11. Random nanolasing in the Anderson localized regime

    NASA Astrophysics Data System (ADS)

    Liu, J.; Garcia, P. D.; Ek, S.; Gregersen, N.; Suhr, T.; Schubert, M.; Mørk, J.; Stobbe, S.; Lodahl, P.

    2014-04-01

    The development of nanoscale optical devices for classical and quantum photonics is affected by unavoidable fabrication imperfections that often impose performance limitations. However, disorder may also enable new functionalities, for example in random lasers, where lasing relies on random multiple scattering. The applicability of random lasers has been limited due to multidirectional emission, lack of tunability, and strong mode competition with chaotic fluctuations due to a weak mode confinement. The regime of Anderson localization of light has been proposed for obtaining stable multimode random lasing, and initial work concerned macroscopic one-dimensional layered media. Here, we demonstrate on-chip random nanolasers where the cavity feedback is provided by the intrinsic disorder. The strong confinement achieved by Anderson localization reduces the spatial overlap between lasing modes, thus preventing mode competition and improving stability. This enables highly efficient, stable and broadband wavelength-controlled lasers with very small mode volumes. Furthermore, the complex interplay between gain, dispersion-controlled slow light, and disorder is demonstrated experimentally for a non-conservative random medium. The statistical analysis shows a way towards optimizing random-lasing performance by reducing the localization length, a universal parameter.

  12. CSDP: The seismology of continental thermal regimes

    SciTech Connect

    Aki, K.

    1990-05-01

    This is a progress report for the past one year of research (year 3 of 5-year project) under the project titled CSDP: Seismology of Continental Thermal Regime'', in which we proposed to develop seismological interpretation theory and methods applicable to complex structures encountered in continental geothermal areas and apply them to several candidate sites for the Continental Scientific Drilling Project. The past year has been extremely productive especially in the area of interpretation theory, including the following two major break-throughs. One is the derivation of an integral equation for time-dependent power spectra, which unified all the existing theories on seismic scattering (including the radiative transfer theory for total energy and single and multiple scattering theories based on the ray approach) and offers more complete and economical solutions to the problems of seismic scattering and attenuation. The other is the new formula for synthetic seismograms for layered media with irregular interfaces, combining the T-matrix method for an arbitrary shaped inclusion and the method of global generalized reflection/transmission coefficients for layered media. Both breakthroughs will enable us to deal with seismic observations in complex earth structures more efficiently and accurately. In the area of experimental studies, we discovered seismic guided waves trapped in the San Andreas fault near Parkfield, California. 54 refs., 14 figs.

  13. Global fishery prospects under contrasting management regimes.

    PubMed

    Costello, Christopher; Ovando, Daniel; Clavelle, Tyler; Strauss, C Kent; Hilborn, Ray; Melnychuk, Michael C; Branch, Trevor A; Gaines, Steven D; Szuwalski, Cody S; Cabral, Reniel B; Rader, Douglas N; Leland, Amanda

    2016-05-01

    Data from 4,713 fisheries worldwide, representing 78% of global reported fish catch, are analyzed to estimate the status, trends, and benefits of alternative approaches to recovering depleted fisheries. For each fishery, we estimate current biological status and forecast the impacts of contrasting management regimes on catch, profit, and biomass of fish in the sea. We estimate unique recovery targets and trajectories for each fishery, calculate the year-by-year effects of alternative recovery approaches, and model how alternative institutional reforms affect recovery outcomes. Current status is highly heterogeneous-the median fishery is in poor health (overfished, with further overfishing occurring), although 32% of fisheries are in good biological, although not necessarily economic, condition. Our business-as-usual scenario projects further divergence and continued collapse for many of the world's fisheries. Applying sound management reforms to global fisheries in our dataset could generate annual increases exceeding 16 million metric tons (MMT) in catch, $53 billion in profit, and 619 MMT in biomass relative to business as usual. We also find that, with appropriate reforms, recovery can happen quickly, with the median fishery taking under 10 y to reach recovery targets. Our results show that commonsense reforms to fishery management would dramatically improve overall fish abundance while increasing food security and profits.

  14. Global fishery prospects under contrasting management regimes

    PubMed Central

    Costello, Christopher; Ovando, Daniel; Clavelle, Tyler; Strauss, C. Kent; Hilborn, Ray; Melnychuk, Michael C.; Branch, Trevor A.; Gaines, Steven D.; Szuwalski, Cody S.; Cabral, Reniel B.; Rader, Douglas N.; Leland, Amanda

    2016-01-01

    Data from 4,713 fisheries worldwide, representing 78% of global reported fish catch, are analyzed to estimate the status, trends, and benefits of alternative approaches to recovering depleted fisheries. For each fishery, we estimate current biological status and forecast the impacts of contrasting management regimes on catch, profit, and biomass of fish in the sea. We estimate unique recovery targets and trajectories for each fishery, calculate the year-by-year effects of alternative recovery approaches, and model how alternative institutional reforms affect recovery outcomes. Current status is highly heterogeneous—the median fishery is in poor health (overfished, with further overfishing occurring), although 32% of fisheries are in good biological, although not necessarily economic, condition. Our business-as-usual scenario projects further divergence and continued collapse for many of the world’s fisheries. Applying sound management reforms to global fisheries in our dataset could generate annual increases exceeding 16 million metric tons (MMT) in catch, $53 billion in profit, and 619 MMT in biomass relative to business as usual. We also find that, with appropriate reforms, recovery can happen quickly, with the median fishery taking under 10 y to reach recovery targets. Our results show that commonsense reforms to fishery management would dramatically improve overall fish abundance while increasing food security and profits. PMID:27035953

  15. RF Profile Control for Sustained Plasma Regimes

    NASA Astrophysics Data System (ADS)

    Hosea, J.; Bernabei, S.; Leblanc, B.; Majeski, R.; Menard, J.; Ono, M.; Phillips, C. K.; Schilling, G.; Wilson, J. R.

    1999-11-01

    For advancing plasma operation regimes for AT tokamaks and steady state concepts, as well as for forming and sustaining alternate concepts, it is necessary to provide control of the spatial profiles for the important plasma parameters - pressure, current, etc.. RF techniques offer considerable promise for providing this control and should be further developed as rapidly as possible within the well established tokamak program for forming a basis for application to all confinement concepts. Notably, IBW promises to provide internal transport barrier control if the coupling physics can be understood and efficient antenna coupling to the Bernstein wave can be developed. We will review the IBW experience and discuss possible explanations and solutions for the coupling problems encountered. In particular, the competing roles of parametric decay instability and surface mode excitation will be examined in order to elucidate the increase in surface power losses for the larger devices DIII-D and TFTR. Also, issues which need to be understood for employing ICRF and LH techniques to best advantage, such as antenna bombardment and energetic electron excitation, respectively, will be outlined.

  16. Global fishery prospects under contrasting management regimes.

    PubMed

    Costello, Christopher; Ovando, Daniel; Clavelle, Tyler; Strauss, C Kent; Hilborn, Ray; Melnychuk, Michael C; Branch, Trevor A; Gaines, Steven D; Szuwalski, Cody S; Cabral, Reniel B; Rader, Douglas N; Leland, Amanda

    2016-05-01

    Data from 4,713 fisheries worldwide, representing 78% of global reported fish catch, are analyzed to estimate the status, trends, and benefits of alternative approaches to recovering depleted fisheries. For each fishery, we estimate current biological status and forecast the impacts of contrasting management regimes on catch, profit, and biomass of fish in the sea. We estimate unique recovery targets and trajectories for each fishery, calculate the year-by-year effects of alternative recovery approaches, and model how alternative institutional reforms affect recovery outcomes. Current status is highly heterogeneous-the median fishery is in poor health (overfished, with further overfishing occurring), although 32% of fisheries are in good biological, although not necessarily economic, condition. Our business-as-usual scenario projects further divergence and continued collapse for many of the world's fisheries. Applying sound management reforms to global fisheries in our dataset could generate annual increases exceeding 16 million metric tons (MMT) in catch, $53 billion in profit, and 619 MMT in biomass relative to business as usual. We also find that, with appropriate reforms, recovery can happen quickly, with the median fishery taking under 10 y to reach recovery targets. Our results show that commonsense reforms to fishery management would dramatically improve overall fish abundance while increasing food security and profits. PMID:27035953

  17. Characterizing wildfire regimes in the United States

    PubMed Central

    Malamud, Bruce D.; Millington, James D. A.; Perry, George L. W.

    2005-01-01

    Wildfires statistics for the conterminous United States (U.S.) are examined in a spatially and temporally explicit manner. We use a high-resolution data set consisting of 88,916 U.S. Department of Agriculture Forest Service wildfires over the time period 1970-2000 and consider wildfire occurrence as a function of ecoregion (land units classified by climate, vegetation, and topography), ignition source (anthropogenic vs. lightning), and decade. For the conterminous U.S., we (i) find that wildfires exhibit robust frequency-area power-law behavior in 18 different ecoregions; (ii) use normalized power-law exponents to compare the scaling of wildfire-burned areas between ecoregions, finding a systematic change from east to west; (iii) find that wildfires in the eastern third of the U.S. have higher power-law exponents for anthropogenic vs. lightning ignition sources; and (iv) calculate recurrence intervals for wildfires of a given burned area or larger for each ecoregion, allowing for the classification of wildfire regimes for probabilistic hazard estimation in the same vein as is now used for earthquakes. PMID:15781868

  18. Cluster analysis of multiple planetary flow regimes

    NASA Technical Reports Server (NTRS)

    Mo, Kingtse; Ghil, Michael

    1987-01-01

    A modified cluster analysis method was developed to identify spatial patterns of planetary flow regimes, and to study transitions between them. This method was applied first to a simple deterministic model and second to Northern Hemisphere (NH) 500 mb data. The dynamical model is governed by the fully-nonlinear, equivalent-barotropic vorticity equation on the sphere. Clusters of point in the model's phase space are associated with either a few persistent or with many transient events. Two stationary clusters have patterns similar to unstable stationary model solutions, zonal, or blocked. Transient clusters of wave trains serve as way stations between the stationary ones. For the NH data, cluster analysis was performed in the subspace of the first seven empirical orthogonal functions (EOFs). Stationary clusters are found in the low-frequency band of more than 10 days, and transient clusters in the bandpass frequency window between 2.5 and 6 days. In the low-frequency band three pairs of clusters determine, respectively, EOFs 1, 2, and 3. They exhibit well-known regional features, such as blocking, the Pacific/North American (PNA) pattern and wave trains. Both model and low-pass data show strong bimodality. Clusters in the bandpass window show wave-train patterns in the two jet exit regions. They are related, as in the model, to transitions between stationary clusters.

  19. Regime shifts in models of dryland vegetation.

    PubMed

    Zelnik, Yuval R; Kinast, Shai; Yizhaq, Hezi; Bel, Golan; Meron, Ehud

    2013-12-13

    Drylands are pattern-forming systems showing self-organized vegetation patchiness, multiplicity of stable states and fronts separating domains of alternative stable states. Pattern dynamics, induced by droughts or disturbances, can result in desertification shifts from patterned vegetation to bare soil. Pattern formation theory suggests various scenarios for such dynamics: an abrupt global shift involving a fast collapse to bare soil, a gradual global shift involving the expansion and coalescence of bare-soil domains and an incipient shift to a hybrid state consisting of stationary bare-soil domains in an otherwise periodic pattern. Using models of dryland vegetation, we address the question of which of these scenarios can be realized. We found that the models can be split into two groups: models that exhibit multiplicity of periodic-pattern and bare-soil states, and models that exhibit, in addition, multiplicity of hybrid states. Furthermore, in all models, we could not identify parameter regimes in which bare-soil domains expand into vegetated domains. The significance of these findings is that, while models belonging to the first group can only exhibit abrupt shifts, models belonging to the second group can also exhibit gradual and incipient shifts. A discussion of open problems concludes the paper.

  20. Regime shifts in models of dryland vegetation.

    PubMed

    Zelnik, Yuval R; Kinast, Shai; Yizhaq, Hezi; Bel, Golan; Meron, Ehud

    2013-01-01

    Drylands are pattern-forming systems showing self-organized vegetation patchiness, multiplicity of stable states and fronts separating domains of alternative stable states. Pattern dynamics, induced by droughts or disturbances, can result in desertification shifts from patterned vegetation to bare soil. Pattern formation theory suggests various scenarios for such dynamics: an abrupt global shift involving a fast collapse to bare soil, a gradual global shift involving the expansion and coalescence of bare-soil domains and an incipient shift to a hybrid state consisting of stationary bare-soil domains in an otherwise periodic pattern. Using models of dryland vegetation, we address the question of which of these scenarios can be realized. We found that the models can be split into two groups: models that exhibit multiplicity of periodic-pattern and bare-soil states, and models that exhibit, in addition, multiplicity of hybrid states. Furthermore, in all models, we could not identify parameter regimes in which bare-soil domains expand into vegetated domains. The significance of these findings is that, while models belonging to the first group can only exhibit abrupt shifts, models belonging to the second group can also exhibit gradual and incipient shifts. A discussion of open problems concludes the paper.

  1. Flow regimes in a trapped vortex cell

    NASA Astrophysics Data System (ADS)

    Lasagna, D.; Iuso, G.

    2016-03-01

    This paper presents results of an experimental investigation on the flow in a trapped vortex cell, embedded into a flat plate, and interacting with a zero-pressure-gradient boundary layer. The objective of the work is to describe the flow features and elucidate some of the governing physical mechanisms, in the light of recent investigations on flow separation control using vortex cells. Hot-wire velocity measurements of the shear layer bounding the cell and of the boundary layers upstream and downstream are reported, together with spectral and correlation analyses of wall-pressure fluctuation measurements. Smoke flow visualisations provide qualitative insight into some relevant features of the internal flow, namely a large-scale flow unsteadiness and possible mechanisms driving the rotation of the vortex core. Results are presented for two very different regimes: a low-Reynolds-number case where the incoming boundary layer is laminar and its momentum thickness is small compared to the cell opening, and a moderately high-Reynolds-number case, where the incoming boundary layer is turbulent and the ratio between the momentum thickness and the opening length is significantly larger than in the first case. Implications of the present findings to flow control applications of trapped vortex cells are also discussed.

  2. VOCs in Non-Arid Soils Integrated Demonstration: Technology summary

    SciTech Connect

    Not Available

    1994-02-01

    The Volatile Organic Compounds (VOCs) in Non-Arid Soils Integrated Demonstration (ID) was initiated in 1989. Objectives for the ID were to test the integrated demonstration concept, demonstrate and evaluate innovative technologies/systems for the remediation of VOC contamination in soils and groundwater, and to transfer technologies and systems to internal and external customers for use in fullscale remediation programs. The demonstration brought together technologies from DOE laboratories, other government agencies, and industry for demonstration at a single test bed. The Savannah River Site was chosen as the location for this ID as the result of having soil and groundwater contaminated with VOCS. The primary contaminants, trichlorethylene and tetrachloroethylene, originated from an underground process sewer line servicing a metal fabrication facility at the M-Area. Some of the major technical accomplishments for the ID include the successful demonstration of the following: In situ air stripping coupled with horizontal wells to remediate sites through air injection and vacuum extraction; Crosshole geophysical tomography for mapping moisture content and lithologic properties of the contaminated media; In situ radio frequency and ohmic heating to increase mobility, of the contaminants, thereby speeding recovery and the remedial process; High-energy corona destruction of VOCs in the off-gas of vapor recovery wells; Application of a Brayton cycle heat pump to regenerate carbon adsorption media used to trap VOCs from the offgas of recovery wells; In situ permeable flow sensors and the colloidal borescope to determine groundwater flow; Chemical sensors to rapidly quantify chlorinated solvent contamination in the subsurface; In situ bioremediation through methane/nutrient injection to enhance degradation of contaminants by methanotrophic bateria.

  3. Remote sensing for grassland management in the arid Southwest

    USGS Publications Warehouse

    Marsett, R.C.; Qi, J.; Heilman, P.; Biedenbender, S.H.; Watson, M.C.; Amer, S.; Weltz, M.; Goodrich, D.; Marsett, R.

    2006-01-01

    We surveyed a group of rangeland managers in the Southwest about vegetation monitoring needs on grassland. Based on their responses, the objective of the RANGES (Rangeland Analysis Utilizing Geospatial Information Science) project was defined to be the accurate conversion of remotely sensed data (satellite imagery) to quantitative estimates of total (green and senescent) standing cover and biomass on grasslands and semidesert grasslands. Although remote sensing has been used to estimate green vegetation cover, in arid grasslands herbaceous vegetation is senescent much of the year and is not detected by current remote sensing techniques. We developed a ground truth protocol compatible with both range management requirements and Landsat's 30 m resolution imagery. The resulting ground-truth data were then used to develop image processing algorithms that quantified total herbaceous vegetation cover, height, and biomass. Cover was calculated based on a newly developed Soil Adjusted Total Vegetation Index (SATVI), and height and biomass were estimated based on reflectance in the near infrared (NIR) band. Comparison of the remotely sensed estimates with independent ground measurements produced r2 values of 0.80, 0.85, and 0.77 and Nash Sutcliffe values of 0.78, 0.70, and 0.77 for the cover, plant height, and biomass, respectively. The approach for estimating plant height and biomass did not work for sites where forbs comprised more than 30% of total vegetative cover. The ground reconnaissance protocol and image processing techniques together offer land managers accurate and timely methods for monitoring extensive grasslands. The time-consuming requirement to collect concurrent data in the field for each image implies a need to share the high fixed costs of processing an image across multiple users to reduce the costs for individual rangeland managers.

  4. [Effects of rotational tillage during summer fallow on wheat field soil water regime and grain yield].

    PubMed

    Hou, Xian-qing; Wang, Wei; Han, Qing-fang; Jia, Zhi-kuan; Yan, Bo; Li, Yong-ping; Su, Qin

    2011-10-01

    In 2007-2010, a field experiment was conducted to study the effects of different rotational tillage practices during summer follow on the soil water regime and grain yield in a winter wheat field in Southern Ningxia arid area. Three treatments were installed, i.e., T1 (no-tillage in first year, subsoiling in second year, and no-tillage in third year), T2 (subsoiling in first year, notillage in second year, and subsoiling in third year), and CT (conventional tillage in the 3 years). Through the three years of the tillage practices, the soil water storage efficiency in treatments T1 and T2 was increased averagely by 15.2% and 26.5%, respectively, as compared to CT. In treatments T1 and T2, the potential rainfall use rate was higher, being 37.8% and 38.5%, respectively, and the rainfall use efficiency was increased averagely by 9.9% and 10.7%, respectively, as compared to CT. Rotational tillage during summer fallow could decrease the soil ineffective evaporation significantly, and save the soil water effectively in wheat growth season. At early growth stage, the water storage in 0-200 cm soil layer in treatments T1 and T2 was increased averagely by 6.8% and 9. 4%, as compared to CT; at jointing, heading, and filling stages, the water storage in 0-200 cm soil layer in treatments T1 and T2 had a significant increase, giving greater contribution to the wheat yield than the control. Different rotational tillage practices increased the water consumption by wheat, but in the meantime, increased the grain yield and water use efficiency. In treatments T1 and T2, the water consumption by wheat through the three years was increased averagely by 5.2% and 6.1%, whereas the grain yield and the water use efficiency were increased averagely by 9.9% and 10.6%, and by 4.5% and 4.3%, respectively, as compared to CT. Correlation analysis showed that in Southern Ningxia arid area, the soil water storage at sowing, jointing, heading, and filling stages, especially at heading stage, could

  5. Latent heat loss of dairy cows in an equatorial semi-arid environment

    NASA Astrophysics Data System (ADS)

    da Silva, Roberto Gomes; Maia, Alex Sandro Campos; de Macedo Costa, Leonardo Lelis; de Queiroz, João Paulo A. Fernandes

    2012-09-01

    The present study aimed to evaluate evaporative heat transfer of dairy cows bred in a hot semi-arid environment. Cutaneous ( E S) and respiratory ( E R) evaporation were measured (810 observations) in 177 purebred and crossbred Holstein cows from five herds located in the equatorial semi-arid region, and one herd in the subtropical region of Brazil. Rectal temperature ( T R), hair coat surface temperature ( T S) and respiratory rate ( F R) were also measured. Observations were made in the subtropical region from August to December, and in the semi-arid region from April to July. Measurements were done from 1100 to 1600 hours, after cows remained in a pen exposed to the sun. Environmental variables measured in the same locations as the animals were black globe temperature ( T G), air temperature ( T A), wind speed ( U), and partial air vapour pressure ( P V). Data were analysed by mixed models, using the least squares method. Results showed that average E S and E R were higher in the semi-arid region (117.2 W m-2 and 44.0 W m-2, respectively) than in the subtropical region (85.2 W m-2 and 30.2 W m-2, respectively). Herds and individual cows were significant effects ( P < 0.01) for all traits in the semi-arid region. Body parts did not affect T S and E S in the subtropical region, but was a significant effect ( P < 0.01) in the semi-arid region. The average flank T S (42.8°C) was higher than that of the neck and hindquarters (39.8°C and 41.6°C, respectively). Average E S was higher in the neck (133.3 W m-2) than in the flank (116.2 W m-2) and hindquarters (98.6 W m-2). Coat colour affected significantly both T S and E S ( P < 0.01). Black coats had higher T S and E S in the semi-arid region (41.7°C and 117.2 W m-2, respectively) than white coats (37.2°C and 106.7 W m-2, respectively). Rectal temperatures were almost the same in both subtropical and semi-arid regions. The results highlight the need for improved management methods specific for semi-arid regions.

  6. Latent heat loss of dairy cows in an equatorial semi-arid environment.

    PubMed

    da Silva, Roberto Gomes; Maia, Alex Sandro Campos; de Macedo Costa, Leonardo Lelis; de Queiroz, João Paulo A Fernandes

    2012-09-01

    The present study aimed to evaluate evaporative heat transfer of dairy cows bred in a hot semi-arid environment. Cutaneous (E(S)) and respiratory (E(R)) evaporation were measured (810 observations) in 177 purebred and crossbred Holstein cows from five herds located in the equatorial semi-arid region, and one herd in the subtropical region of Brazil. Rectal temperature (T(R)), hair coat surface temperature (T(S)) and respiratory rate (F(R)) were also measured. Observations were made in the subtropical region from August to December, and in the semi-arid region from April to July. Measurements were done from 1100 to 1600 hours, after cows remained in a pen exposed to the sun. Environmental variables measured in the same locations as the animals were black globe temperature (T(G)), air temperature (T(A)), wind speed (U), and partial air vapour pressure (P(V)). Data were analysed by mixed models, using the least squares method. Results showed that average E(S) and E(R) were higher in the semi-arid region (117.2 W m(-2) and 44.0 W m(-2), respectively) than in the subtropical region (85.2 W m(-2) and 30.2 W m(-2), respectively). Herds and individual cows were significant effects (P < 0.01) for all traits in the semi-arid region. Body parts did not affect T(S) and E(S) in the subtropical region, but was a significant effect (P < 0.01) in the semi-arid region. The average flank T(S) (42.8°C) was higher than that of the neck and hindquarters (39.8°C and 41.6°C, respectively). Average E(S) was higher in the neck (133.3 W m(-2)) than in the flank (116.2 W m(-2)) and hindquarters (98.6 W m(-2)). Coat colour affected significantly both T(S) and E(S) (P < 0.01). Black coats had higher T(S) and E(S) in the semi-arid region (41.7°C and 117.2 W m(-2), respectively) than white coats (37.2°C and 106.7 W m(-2), respectively). Rectal temperatures were almost the same in both subtropical and semi-arid regions. The results highlight the need for improved management methods specific

  7. Evaluating the generalizability of GEP models for estimating reference evapotranspiration in distant humid and arid locations

    NASA Astrophysics Data System (ADS)

    Kiafar, Hamed; Babazadeh, Hosssien; Marti, Pau; Kisi, Ozgur; Landeras, Gorka; Karimi, Sepideh; Shiri, Jalal

    2016-08-01

    Evapotranspiration estimation is of crucial importance in arid and hyper-arid regions, which suffer from water shortage, increasing dryness and heat. A modeling study is reported here to cross-station assessment between hyper-arid and humid conditions. The derived equations estimate ET0 values based on temperature-, radiation-, and mass transfer-based configurations. Using data from two meteorological stations in a hyper-arid region of Iran and two meteorological stations in a humid region of Spain, different local and cross-station approaches are applied for developing and validating the derived equations. The comparison of the gene expression programming (GEP)-based-derived equations with corresponding empirical-semi empirical ET0 estimation equations reveals the superiority of new formulas in comparison with the corresponding empirical equations. Therefore, the derived models can be successfully applied in these hyper-arid and humid regions as well as similar climatic contexts especially in data-lack situations. The results also show that when relying on proper input configurations, cross-station might be a promising alternative for locally trained models for the stations with data scarcity.

  8. On the Role of Hyper-arid Regions within the Virtual Water Trade Network

    NASA Astrophysics Data System (ADS)

    Aggrey, James; Alshamsi, Aamena; Molini, Annalisa

    2016-04-01

    Climate change, economic development, and population growth are bound to increasingly impact global water resources, posing a significant threat to the sustainable development of arid regions, where water consumption highly exceeds the natural carrying capacity, population growth rate is high, and climate variability is going to impact both water consumption and availability. Virtual Water Trade (VWT) - i.e. the international trade network of water-intensive products - has been proposed as a possible solution to optimize the allocation of water resources on the global scale. By increasing food availability and lowering food prices it may in fact help the rapid development of water-scarce regions. The structure of the VWT network has been analyzed by a number of authors both in connection with trade policies, socioeconomic constrains and agricultural efficiency. However a systematic analysis of the structure and the dynamics of the VWT network conditional to aridity, climatic forcing and energy availability, is still missing. Our goal is hence to analyze the role of arid and hyper-arid regions within the VWN under diverse climatic, demographic, and energy constraints with an aim to contribute to the ongoing Energy-Water-Food nexus discussion. In particular, we focus on the hyper-arid lands of the Arabian Peninsula, the role they play in the global network and the assessment of their specific criticalities, as reflected in the VWN resilience.

  9. Land-atmosphere feedbacks amplify aridity increase over land under global warming

    NASA Astrophysics Data System (ADS)

    Berg, Alexis; Findell, Kirsten; Lintner, Benjamin; Giannini, Alessandra; Seneviratne, Sonia I.; van den Hurk, Bart; Lorenz, Ruth; Pitman, Andy; Hagemann, Stefan; Meier, Arndt; Cheruy, Frédérique; Ducharne, Agnès; Malyshev, Sergey; Milly, P. C. D.

    2016-09-01

    The response of the terrestrial water cycle to global warming is central to issues including water resources, agriculture and ecosystem health. Recent studies indicate that aridity, defined in terms of atmospheric supply (precipitation, P) and demand (potential evapotranspiration, Ep) of water at the land surface, will increase globally in a warmer world. Recently proposed mechanisms for this response emphasize the driving role of oceanic warming and associated atmospheric processes. Here we show that the aridity response is substantially amplified by land-atmosphere feedbacks associated with the land surface's response to climate and CO2 change. Using simulations from the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we show that global aridity is enhanced by the feedbacks of projected soil moisture decrease on land surface temperature, relative humidity and precipitation. The physiological impact of increasing atmospheric CO2 on vegetation exerts a qualitatively similar control on aridity. We reconcile these findings with previously proposed mechanisms by showing that the moist enthalpy change over land is unaffected by the land hydrological response. Thus, although oceanic warming constrains the combined moisture and temperature changes over land, land hydrology modulates the partitioning of this enthalpy increase towards increased aridity.

  10. Sensitivity of Vadose Zone Water Fluxes to Climate Shifts in Arid Settings

    SciTech Connect

    Pfletschinger, H.; Prömmel, K.; Schüth, C.; Herbst, M.; Engelhardt, I.

    2014-01-01

    Vadose zone water fluxes in arid settings are investigated regarding their sensitivity to hydraulic soil parameters and meteorological data. The study is based on the inverse modeling of highly defined soil column experiments and subsequent scenario modeling comparing different climate projections for a defined arid region. In arid regions, groundwater resources are prone to depletion due to excessive water use and little recharge potential. Especially in sand dune areas, groundwater recharge is highly dependent on vadose zone properties and corresponding water fluxes. Nevertheless, vadose zone water fluxes under arid conditions are hard to determine owing to, among other reasons, deep vadose zones with generally low fluxes and only sporadic high infiltration events. In this study, we present an inverse model of infiltration experiments accounting for variable saturated nonisothermal water fluxes to estimate effective hydraulic and thermal parameters of dune sands. A subsequent scenario modeling links the results of the inverse model with projections of a global climate model until 2100. The scenario modeling clearly showed the high dependency of groundwater recharge on precipitation amounts and intensities, whereas temperature increases are only of minor importance for deep infiltration. However, simulated precipitation rates are still affected by high uncertainties in the response to the hydrological input data of the climate model. Thus, higher certainty in the prediction of precipitation pattern is a major future goal for climate modeling to constrain future groundwater management strategies in arid regions.

  11. Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae)

    PubMed Central

    Manzaneda, Antonio J.; Rey, Pedro J.; Bastida, Jesús M.; Weiss-Lehman, Christopher; Raskin, Evan; Mitchell-Olds, Thomas

    2011-01-01

    Summary The ecological and adaptive significance of plant polyploidization is not well understood and no clear pattern of association between polyploid frequency and environment has emerged. Climatic factors are expected to predict cytotype distribution. However, the relationship between climate, cytotype distribution and variation of abiotic stress tolerance traits has rarely been examined.Here, we use flow cytometry and root-tip squashes to examine the cytotype distribution in the temperate annual grass Brachypodium distachyon in 57 natural populations distributed across an aridity gradient in the Iberian Peninsula. We further investigate the link between environmental aridity, ploidy, and variation of drought tolerance and drought avoidance (flowering time) traits.istribution of diploids (2n = 10) and allotetraploids (2n = 30) in this species is geographically structured throughout its range in the Iberian Peninsula, and is associated with aridity gradients. Importantly, after controlling for geographic and altitudinal effects, the link between aridity and polyploidization occurrence persisted. Water use efficiency varied between ploidy levels, with tetraploids being more efficient in the use of water than diploids under water-restricted growing conditions.Our results indicate that aridity is an important predictor of polyploid occurrence in B. distachyon, suggesting a possible adaptive origin of the cytotype segregation. PMID:22150799

  12. The impacts of precipitation on land- atmosphere interaction over the semi-arid Loess Plateau region

    NASA Astrophysics Data System (ADS)

    WANG, G.; Huang, J.

    2015-12-01

    To understand the impacts of precipitation on land-atmosphere interactions over semi-arid regions, 6-year continuous measurements data in situ were analyzed to investigate the influence of precipitation on soil moisture, evapotranspiration, energy partitioning and plant growing over Loess Plateau in northwest China. Results show that annual precipitation had obvious inter-annual variability, and the variation of soil moisture; evaporation and CO2 flux were very consistently with the annual cycle and intensity of precipitation. Soil moisture is the key participant in land-atmosphere interaction. However, as the water shortage and disconnected from water table over the semi-arid region, it is much more sensitive with precipitation compensation and evaporation feedbacks. Soil water can cooling the near surface air temperature by evaporation (latent heat flux), and also as the main energy partitioning consumer of net radiation in humid area or pluvial period in arid area, yet it was water limited in arid and semi-arid region, sensible heat flux predominated net radiation for enhancing the surface air temperature. We also found that soil moisture profile significantly affected the plant physiology, which was also consistent with the annual cycle and intensity of precipitation.

  13. The relationship between anthropogenic dust and population over global semi-arid regions

    NASA Astrophysics Data System (ADS)

    Guan, Xiaodan; Huang, Jianping; Zhang, Yanting; Xie, Yongkun; Liu, Jingjing

    2016-04-01

    Although anthropogenic dust has received more attention from the climate research community, its dominant role in the production process is still not identified. In this study, we analysed the relationship between anthropogenic dust and population density/change over global semi-arid regions and found that semi-arid regions are major source regions in producing anthropogenic dust. The results showed that the relationship between anthropogenic dust and population is more obvious in cropland than in other land cover types (crop mosaics, grassland, and urbanized regions) and that the production of anthropogenic dust increases as the population density grows to more than 90 persons km-2. Four selected semi-arid regions, namely East China, India, North America, and North Africa, were used to explore the relationship between anthropogenic dust production and regional population. The most significant relationship between anthropogenic dust and population occurred in an Indian semi-arid region that had a greater portion of cropland, and the high peak of anthropogenic dust probability appeared with 220 persons km-2 of population density and 60 persons km-2 of population change. These results suggest that the influence of population on production of anthropogenic dust in semi-arid regions is obvious in cropland regions. However, the impact does not always have a positive contribution to the production of anthropogenic dust, and overly excessive population will suppress the increase of anthropogenic dust. Moreover, radiative and climate effects of increasing anthropogenic dust need more investigation.

  14. Synthetic Lethal Targeting of ARID1A-Mutant Ovarian Clear Cell Tumors with Dasatinib.

    PubMed

    Miller, Rowan E; Brough, Rachel; Bajrami, Ilirjana; Williamson, Chris T; McDade, Simon; Campbell, James; Kigozi, Asha; Rafiq, Rumana; Pemberton, Helen; Natrajan, Rachel; Joel, Josephine; Astley, Holly; Mahoney, Claire; Moore, Jonathan D; Torrance, Chris; Gordan, John D; Webber, James T; Levin, Rebecca S; Shokat, Kevan M; Bandyopadhyay, Sourav; Lord, Christopher J; Ashworth, Alan

    2016-07-01

    New targeted approaches to ovarian clear cell carcinomas (OCCC) are needed, given the limited treatment options in this disease and the poor response to standard chemotherapy. Using a series of high-throughput cell-based drug screens in OCCC tumor cell models, we have identified a synthetic lethal (SL) interaction between the kinase inhibitor dasatinib and a key driver in OCCC, ARID1A mutation. Imposing ARID1A deficiency upon a variety of human or mouse cells induced dasatinib sensitivity, both in vitro and in vivo, suggesting that this is a robust synthetic lethal interaction. The sensitivity of ARID1A-deficient cells to dasatinib was associated with G1-S cell-cycle arrest and was dependent upon both p21 and Rb. Using focused siRNA screens and kinase profiling, we showed that ARID1A-mutant OCCC tumor cells are addicted to the dasatinib target YES1. This suggests that dasatinib merits investigation for the treatment of patients with ARID1A-mutant OCCC. Mol Cancer Ther; 15(7); 1472-84. ©2016 AACR.

  15. Terrestrial Occurrence of Perchlorate and the Relationship to Nitrate in Arid and Semi-Arid Areas (Invited)

    NASA Astrophysics Data System (ADS)

    Jackson, W. A.; Bohlke, J. K.; Sevanthi, R.; Bexfield, L.; Fahlquist, L.; Andraski, B. J.; Gates, J. B.; Eckardt, F. D.; Gu, B.; Rao, B.; Davila, A.; Sturchio, N. C.; Hatzinger, P. B.; Harvey, G.

    2013-12-01

    Indigenous perchlorate (ClO4-) is of increasing interest due to its wide spread occurrence on Earth and Mars. In addition, ClO4- has a number of attributes that may facilitate life and it appears that the metabolic ability to reduce ClO4- may be quite ancient. There are numerous reports of natural terrestrial ClO4- occurrence, deposition, and production but little information exists on the relative occurrence of ClO4- to other major anions, stability of ClO4-, and the long term variations in ClO4- production that may have led to the observed distributions. ClO4- is chemically stable under typical environmental conditions but can be reduced by some bacteria under anoxic conditions. We evaluated samples of soils/caliches and groundwater from a number of arid and semi-arid areas including multiple areas of the U.S. southwest (Edwards Aquifer, Rio Grande Basin, and Amargosa Desert), southern Africa, United Arab Emirates, China (3 locations, including the massive Turpan-Hami NO3- deposits ), Antarctica, and large areas of the Atacama Desert in Chile. NO3- and ClO4- concentrations in soils/caliches were highly correlated (r>0.75) at each location and generally for groundwater samples (r=0.60-0.97). Average NO3-/ClO4-molar ratios were generally lower and less variable in groundwaters (11,000 to 61,000) and somewhat higher and more variable for soils/caliches (12,000 to 120,000) excluding Atacama Desert samples. These ratios are bracketed by the range of ratios observed in dry and wet deposition in the United States. In contrast, NO3-/ClO4- molar ratios of Atacama samples are an order of magnitude lower (1,400) than any other location evaluated or any measured deposition. The isotopic composition of NO3- (δ15N, δ18O, and Δ17O) varies substantially among the sites. Sites that contain atmospheric NO3- primarily (Turpan-Hami and Atacama) if not solely (Antarctica Dry Valley), based on δ18O and Δ17O values, tend to have relatively low NO3-/ClO4- ratios, possibly

  16. The seismology of geothermal regimes. Final report

    SciTech Connect

    Aki, K.

    1997-04-01

    The authors have been developing seismological interpretation theory and methods applicable to complex structures encountered in geothermal areas for a better understanding of the earth`s geothermal regimes. The questions the y have addressed in their research may be summarized as ``What is going on in the earth`s crust under tectonically active regions; what are the structures and processes responsible for such activities as earthquakes and volcanic eruptions; and how can one capture their essence effectively by means of seismological studies?`` First, the authors found clear evidence for localization of scattered seismic energy in the deep magmatic system of the volcano on the island of Reunion in the Indian Ocean. The seismic coda of local earthquakes show concentrated energy in the intrusive zones as late as 30 to 40 seconds after the origin time. This offers a very effective method for defining a zone of strong heterogeneity on a regional scale, complementary to the high resolution study using trapped modes as pursued in the past project. Secondly, the authors identified about 700 long-period events with various frequencies and durations from the data collected during the past 5 years which included three episodes of eruption. They are applying a finite-element method to the simplest event with the longest period and the shortest duration in order to find the location, geometry and physical properties of their source deterministically. The preliminary result described here suggests that their sources may be a horizontally lying magma-filled crack at a shallow depth under the summit area. In addition to the above work on the Reunion data, they have continued the theoretical and observational studies of attenuation and scattering of seismic waves.

  17. CSDP: Seismology of continental thermal regime

    SciTech Connect

    Aki, K.

    1989-04-01

    This is a progress report for the past one year of research (year 2 of 5-year project) under the project titled CSDP: Seismology of Continental Thermal Regime'', in which we proposed to develop seismological interpretation theory and methods applicable to complex structures encountered in continental geothermal areas and apply them to several candidate sites for the Continental Scientific Drilling Project. During the past year, two Ph.D. thesis works were completed under the present project. One is a USC thesis on seismic wave propagation in anisotropic media with application to defining fractures in the earth. The other is a MIT thesis on seismic Q and velocity structure for the magma-hydrothermal system of the Valles Caldera, New Mexico. The P.I. co-organized the first International Workshop on Volcanic Seismology at Capri, Italy in October 1988, and presented the keynote paper on the state-of-art of volcanic seismology''. We presented another paper at the workshop on Assorted Seismic Signals from Kilauea Volcano, Hawaii. Another international meeting, namely, the Chapman Conference on seismic anisotropy in the earth's crust at Berkeley, California in May 1988, was co-organized by the co-P.I. (P.C.L), and we presented our work on seismic waves in heterogeneous and anisotropic media. Adding the publications and presentations made in the past year to the list for the preceding year, the following table lists 21 papers published, submitted or presented in the past two years of the present project. 65 refs., 334 figs., 1 tab.

  18. Evidence of moisture control on the methylation of branched glycerol dialkyl glycerol tetraethers in semi-arid and arid soils

    NASA Astrophysics Data System (ADS)

    Dang, Xinyue; Yang, Huan; Naafs, B. David A.; Pancost, Richard D.; Xie, Shucheng

    2016-09-01

    The distribution of bacterial branched glycerol dialkyl glycerol tetraethers (brGDGTs) is influenced by growth temperature and pH. This results in the widespread application of the brGDGT-based MBT(‧)/CBT proxy (MBT - methylation of branched tetraethers, CBT - cyclization of branched tetraethers) in terrestrial paleo-environmental reconstructions. Recently, it was shown that the amount of precipitation could also have an impact on CBT, as well as the abundance of brGDGTs relative to that of archaeal isoprenoidal (iso)GDGTs (Ri/b) and the absolute abundance of brGDGTs, potentially complicating the use of MBT/CBT as paleothermometer. However, the full influence of hydrology, and in particular soil water content (SWC), on GDGT distributions remains unclear. Here we investigated variations in the GDGT distribution across a SWC gradient (0-61%) around Qinghai Lake in the Tibetan Plateau, an arid to semiarid region in China. Our results demonstrate that SWC affects the brGDGT distribution. In particular, we show that SWC has a clear impact on the degree of methylation of C6-methylated brGDGTs, whereas C5-methylated brGDGTs are more impacted by temperature. This results in a combined SWC and temperature control on MBT‧. In this context we propose a diagnostic parameter, the IR6ME (relative abundance of C6-methylated GDGTs) index, to evaluate the applicability of brGDGT-based paleotemperature reconstructions. Using the global dataset, expanded with our own data, MBT‧ has a significant correlation with mean annual air temperature when IR6ME < 0.5, allowing for the use of MBT‧/CBT as temperature proxy. However, MBT‧ has a significant correlation with mean annual precipitation (i.e., a substantial reflection of SWC impact) when IR6ME > 0.5, implying that MBT‧ may respond to hydrological change in these regions and can be used as a proxy for MAP.

  19. Magnetised Kelvin-Helmholtz instability in the intermediate regime between subsonic and supersonic regimes

    SciTech Connect

    Henri, P.; Califano, F.; Pegoraro, F.; Faganello, M.

    2012-07-15

    The understanding of the dynamics at play at the Earth's Magnetopause, the boundary separating the Earth's magnetosphere and the solar wind plasmas, is of primary importance for space plasma modeling. We focus our attention on the low latitude flank of the magnetosphere where the velocity shear between the magnetosheath and the magnetospheric plasmas is the energetic source of Kelvin-Helmholtz instability. On the shoulder of the resulting vortex chain, different secondary instabilities are at play depending on the local plasma parameters and compete with the vortex pairing process. Most important, secondary instabilities, among other magnetic reconnection, control the plasma mixing as well as the entry of solar wind plasma in the magnetosphere. We make use of a two-fluid model, including the Hall term and the electron mass in the generalized Ohm's law, to study the 2D non-linear evolution of the Kelvin-Helmholtz instability at the magnetosheath-magnetosphere interface, in the intermediate regime between subsonic and supersonic regimes. We study the saturation mechanisms, depending on the density jump across the shear layer and the magnetic field strength in the plane. In the presence of a weak in-plane magnetic field, the dynamics of the Kelvin-Helmholtz rolled-up vortices self-consistently generates thin current sheets where reconnection instability eventually enables fast reconnection to develop. Such a system enables to study guide field multiple-island collisionless magnetic reconnection as embedded in a large-scale dynamic system, unlike the classical static, ad hoc reconnection setups. In this regime, reconnection is shown to inhibit the vortex pairing process. This study provides a clear example of nonlinear, cross-scale, collisionless plasma dynamics.

  20. FISHER INFORMATION AS A METRIC FOR SUSTAINABLE REGIMES

    EPA Science Inventory

    The important question in sustainability is not whether the world is sustainable, but whether a humanly acceptable regime of the world is sustainable. We propose Fisher Information as a metric for the sustainability of dynamic regimes in complex systems. The quantity now known ...

  1. Water use regimes: Characterizing direct human interaction with hydrologic systems

    USGS Publications Warehouse

    Weiskel, P.K.; Vogel, R.M.; Steeves, P.A.; Zarriello, P.J.; DeSimone, L.A.; Ries, Kernell G.

    2007-01-01

    [1] The sustainability of human water use practices is a rapidly growing concern in the United States and around the world. To better characterize direct human interaction with hydrologic systems (stream basins and aquifers), we introduce the concept of the water use regime. Unlike scalar indicators of anthropogenic hydrologic stress in the literature, the water use regime is a two-dimensional, vector indicator that can be depicted on simple x-y plots of normalized human withdrawals (hout) versus normalized human return flows (hin). Four end-member regimes, natural-flow-dominated (undeveloped), human-flow-dominated (churned), withdrawal-dominated (depleted), and return-flow-dominated (surcharged), are defined in relation to limiting values of hout and hin. For illustration, the water use regimes of 19 diverse hydrologic systems are plotted and interpreted. Several of these systems, including the Yellow River Basin, China, and the California Central Valley Aquifer, are shown to approach particular end-member regimes. Spatial and temporal regime variations, both seasonal and long-term, are depicted. Practical issues of data availability and regime uncertainty are addressed in relation to the statistical properties of the ratio estimators hout and hin. The water use regime is shown to be a useful tool for comparative water resources assessment and for describing both historic and alternative future pathways of water resource development at a range of scales. Copyright 2007 by the American Geophysical Union.

  2. A Tale of Two Regimes: Instrumentality and Commons Access

    ERIC Educational Resources Information Center

    Toly, Noah J.

    2005-01-01

    Technical developments have profound social and environmental impacts. Both are observed in the implications of regimes of instrumentality for commons access regimes. Establishing social, material, ecological, intellectual, and moral infrastructures, technologies are partly constitutive of commons access and may militate against governance…

  3. IDENTIFICATION OF REGIME SHIFTS IN TIME SERIES USING NEIGHBORHOOD STATISTICS

    EPA Science Inventory

    The identification of alternative dynamic regimes in ecological systems requires several lines of evidence. Previous work on time series analysis of dynamic regimes includes mainly model-fitting methods. We introduce two methods that do not use models. These approaches use state-...

  4. Global regime shift dynamics of catastrophic sea urchin overgrazing

    PubMed Central

    Ling, S. D.; Scheibling, R. E.; Rassweiler, A.; Johnson, C. R.; Shears, N.; Connell, S. D.; Salomon, A. K.; Norderhaug, K. M.; Pérez-Matus, A.; Hernández, J. C.; Clemente, S.; Blamey, L. K.; Hereu, B.; Ballesteros, E.; Sala, E.; Garrabou, J.; Cebrian, E.; Zabala, M.; Fujita, D.; Johnson, L. E.

    2015-01-01

    A pronounced, widespread and persistent regime shift among marine ecosystems is observable on temperate rocky reefs as a result of sea urchin overgrazing. Here, we empirically define regime-shift dynamics for this grazing system which transitions between productive macroalgal beds and impoverished urchin barrens. Catastrophic in nature, urchin overgrazing in a well-studied Australian system demonstrates a discontinuous regime shift, which is of particular management concern as recovery of desirable macroalgal beds requires reducing grazers to well below the initial threshold of overgrazing. Generality of this regime-shift dynamic is explored across 13 rocky reef systems (spanning 11 different regions from both hemispheres) by compiling available survey data (totalling 10 901 quadrats surveyed in situ) plus experimental regime-shift responses (observed during a total of 57 in situ manipulations). The emergent and globally coherent pattern shows urchin grazing to cause a discontinuous ‘catastrophic’ regime shift, with hysteresis effect of approximately one order of magnitude in urchin biomass between critical thresholds of overgrazing and recovery. Different life-history traits appear to create asymmetry in the pace of overgrazing versus recovery. Once shifted, strong feedback mechanisms provide resilience for each alternative state thus defining the catastrophic nature of this regime shift. Importantly, human-derived stressors can act to erode resilience of desirable macroalgal beds while strengthening resilience of urchin barrens, thus exacerbating the risk, spatial extent and irreversibility of an unwanted regime shift for marine ecosystems.

  5. Extractive Regimes: Toward a Better Understanding of Indonesian Development

    ERIC Educational Resources Information Center

    Gellert, Paul K.

    2010-01-01

    This article proposes the concept of an extractive regime to understand Indonesia's developmental trajectory from 1966 to 1998. The concept contributes to world-systems, globalization, and commodity-based approaches to understanding peripheral development. An extractive regime is defined by its reliance on extraction of multiple natural resources…

  6. Disciplinary Regimes of "Care" and Complementary Alternative Education

    ERIC Educational Resources Information Center

    Thomson, Pat; Pennacchia, Jodie

    2016-01-01

    In schools, the notion of "care" is often synonymous with welfare and disciplinary regimes. Drawing on Foucault, and a study of alternative education (AE) across the UK, and looking in depth at two cases of complementary AE, we identify three types of disciplinary regimes at work in schools: (1) dominant performative reward and…

  7. FISHER INFORMATION AS A METRIC FOR SUSTAINABLE SYSTEM REGIMES

    EPA Science Inventory

    The important question in sustainability is not whether the world is sustainable, but whether a humanly acceptable regime of the world is sustainable. We propose Fisher Information as a metric for the sustainability of dynamic regimes in complex systems. The quantity now known ...

  8. Plasma Physics Regimes in Tokamaks with Li Walls

    SciTech Connect

    L.E. Zakharo; N.N. Gorelenkov; R.B. White; S.I. Krasheninnikov; G.V. Pereverzev

    2003-08-21

    Low recycling regimes with a plasma limited by a lithium wall surface suggest enhanced stability and energy confinement, both necessary for tokamak reactors. These regimes could make ignition feasible in compact tokamaks. Ignited Spherical Tokamaks (IST), self-sufficient in the bootstrap current, are introduced as a necessary step for development of the physics and technology of power reactors.

  9. Detection and Assessment of Ecosystem Regime Shifts from Fisher Information

    EPA Science Inventory

    Ecosystem regime shifts, which are long-term system reorganizations, have profound implications for sustainability. There is a great need for indicators of regime shifts, particularly methods that are applicable to data from real systems. We have developed a form of Fisher info...

  10. Bargaining among Nations: Culture, History, and Perceptions in Regime Formation.

    ERIC Educational Resources Information Center

    Lipschutz, Ronnie D.

    1991-01-01

    The formation of regimes (collective international schemes) for managing global problems depends on culture, history, and perceptions. The ways in which these elements affect bargaining among nations over issues of the global commons are discussed. Implications are reviewed for a regime to deal with atmospheric conditions and global warming. (SLD)

  11. Booming during a bust: Asynchronous population responses of arid zone lizards to climatic variables

    NASA Astrophysics Data System (ADS)

    Read, John L.; Kovac, Kelli-Jo; Brook, Barry W.; Fordham, Damien A.

    2012-04-01

    The productivity of arid environments and the reproductive success of vertebrates in these systems, are typically thought to be primarily influenced by rainfall patterns. Data from our 15 year study at an Australian arid zone site reveals asynchronous demographic responses to rainfall and other climatic variables among different lizard species. We show that, in addition to precipitation, key demographic rates (fecundity, recruitment and survival) are correlated strongly with temporal variability in temperature, during and prior to the breeding season, and also to the density of sympatric lizard species. There were nine-fold fluctuations through time in the relative abundance of two similar-sized Ctenotus species, and asynchronous recruitment success and survival among other species, despite the absence of direct anthropogenic affects Understanding the drivers and magnitude of the substantial natural variability in arid-zone lizard assemblages is integral to predicting and interpreting their responses to future land use or climate-change scenarios.

  12. A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems

    USGS Publications Warehouse

    Collins, Scott L.; Belnap, Jayne; Grimm, N. B.; Rudgers, J. A.; Dahm, Clifford N.; D'Odorico, P.; Litvak, M.; Natvig, D. O.; Peters, Douglas C.; Pockman, W. T.; Sinsabaugh, R. L.; Wolf, B. O.

    2014-01-01

    Ecological processes in arid lands are often described by the pulse-reserve paradigm, in which rain events drive biological activity until moisture is depleted, leaving a reserve. This paradigm is frequently applied to processes stimulated by one or a few precipitation events within a growing season. Here we expand the original framework in time and space and include other pulses that interact with rainfall. This new hierarchical pulse-dynamics framework integrates space and time through pulse-driven exchanges, interactions, transitions, and transfers that occur across individual to multiple pulses extending from micro to watershed scales. Climate change will likely alter the size, frequency, and intensity of precipitation pulses in the future, and arid-land ecosystems are known to be highly sensitive to climate variability. Thus, a more comprehensive understanding of arid-land pulse dynamics is needed to determine how these ecosystems will respond to, and be shaped by, increased climate variability.

  13. Water balance of two earthen landfill caps in a semi-arid climate

    SciTech Connect

    Khire, M.V.; Benson, C.H.; Bosscher, P.J.

    1997-12-31

    Water balance data are presented that were obtained from two earthen cap test sections located in a semi-arid region. The test sections were constructed on a municipal solid waste landfill in East Wenatchee, Washington, USA. One test section represents a traditional resistive barrier, and is constructed with a compacted silty clay barrier 60 cm thick and a vegetated silty clay surface layer 15 cm thick. The other test section represents a capillary barrier and has a sand layer 75 cm thick overlain by a 15-cm-thick vegetated surface layer of silt. Extensive hydrological and meteorological data have been collected since November 1992. Unsaturated hydraulic properties of soils, hydrologic parameters, and vegetation have been extensively characterized. Results of the study show that capillary barriers can be effective caps in semi-arid and arid regions. They are also cheaper to construct and can perform better than traditional resistive barriers.

  14. Metagenomic characterization of biodiversity in the extremely arid desert soils of Kazakhstan

    NASA Astrophysics Data System (ADS)

    Kutovaya, O. V.; Lebedeva, M. P.; Tkhakakhova, A. K.; Ivanova, E. A.; Andronov, E. E.

    2015-05-01

    For the first time, the composition of microbiomes in the biological crust (AKL) horizons of extremely arid desert soils (Aridic Calcisols) developed from saline and nonsaline alluvial deposits in the Ili Depression (eastern Kazakhstan) was analyzed. To describe the diversity of microorganisms in the soil samples, a novel method of pyrosequencing (Roche/454 Life Sciences) was applied. It was shown that bacteria from the Proteobacteria, Actinobacteria, Firmicutes, Verrucomicrobia, Acidobacteria, and Bacteroidetes phyla predominate in all the samples; these are typical representatives of the microbiome of soil crusts. A distinctive feature of the extremely arid soils is the high contribution of cyanobacteria (25-30%) to the total DNA. In the soils developed from saline sediments, representatives from the Rubrobacteraceae, Streptococcaceae, and Caulobacteraceae families and from the Firmicutes phylum predominated. In the soils developed from nonsaline gypsiferous deposits, bacteria from the class of Acidobacteria, subgroup Gp3, of the Methylobacteriaceae family and the class of Subdivision 3 from the Verrucomicrobia phylum predominated.

  15. Flow regimes in a single dimple on the channel surface

    NASA Astrophysics Data System (ADS)

    Kovalenko, G. V.; Terekhov, V. I.; Khalatov, A. A.

    2010-12-01

    The boundaries of the domains of existence of flow regimes past single dimples made as spherical segments on a flat plate are determined with the use of available experimental results. Regimes of a diffuser-confuser flow, a horseshoe vortex, and a tornado-like vortex in the dimple are considered. Neither a horseshoe vortex nor a tornado-like vortex is observed in dimples with the relative depth smaller than 0.1. Transformations from the diffuser-confuser flow regime to the horseshoe vortex regime and from the horseshoe vortex flow to the tornado-like vortex flow are found to depend not only on the Reynolds number, but also on the relative depth of the spherical segment. Dependences for determining the boundaries of the regime existence domains are proposed, and parameters at which the experimental results can be generalized are given.

  16. Monitoring and diagnostics systems for nuclear power plant operating regimes

    SciTech Connect

    Abagyan, A.A.; Dmitriev, V.M.; Klebanov, L.A.; Kroshilin, A.E.; Larin, E.P.; Morozov, S.K.

    1988-05-01

    The development of new monitoring and diagnostics systems for Soviet reactors is discussed. An experimental test station is described where industrial operation of new experimental systems can be conducted for purposes of bringing their performance to the level of standard Soviet systems for monitoring reactor operation regimes and equipment resources. The requirements and parameters of the systems are described on a unit-by-unit basis, including the sensor reading monitoring unit, the vibroacoustic monitoring unit, the noise monitoring unit, the accident regime identification unit, and the nonstationary regime monitoring unit. Computer hardware and software requirements are discussed. The results of calculational and experimental research on two complex nonstationary regimes of reactor operation are given. The accident regimes identification unit for the VVER-1000 is analyzed in detail.

  17. Assessment of the Consistency among Precipitation Products over Arid Regions

    NASA Astrophysics Data System (ADS)

    Ghebreyesus, Dawit; Temimi, Marouane

    2016-04-01

    This study addresses the analysis of the consistency among global precipitation products over arid regions. First, precipitation products were examined against in situ observations from the UAE network. Then, the consistency among the different products was assessed regionally over the Arabian Peninsula and the Sahara Desert. Four distinct independently-derived precipitation products, namely, Global Precipitation Climate Center (GPCC), Willmott-Matsuura 2001 (WM), Tropical Rainfall Measurement Mission (TRMM), and CPC Morphing (CMORPH) were examined. Over the UAE, in situ monthly observations from 6 stations over a time period of 11 years, from 2000 to 2010 inclusive, were used. The correlation with in situ observations, Root Mean Square Error (RMSE), and Relative Bias (rBIAS) were calculated to evaluate the precipitation products. The lowest areal averaged RMSE over all stations, ranging from 3.82mm to 9.98mm, was obtained with the GPCC indicating a higher agreement with in situ observations. The average RMSE of GPCC over the country was 6.18mm. However, the highest areal averaged RMSE, ranging from 9.44 to 19.52mm, was obtained with the WM product with average of 13.57mm. The results showed an overestimation of the observed rainfall values across all products with overall average of 42%. CMORPH product was found to be the most inconsistent products spatially across the UAE with rBIAS ranging from -47% in Al Ain to 372% in Dubai. The correlation with in situ observations was found to be higher with GPCC product ranging from 0.8450 to 0.9494. TRMM was second with an average of 0.8413, ranging from 0.7098 to 0.9248. Furthermore, Mean Relative Difference (MRD) was calculated to investigate the precision among the precipitation products. CMORPH was found to be inconsistent spatially being the lowest estimator for four stations (Adu Dhabi, Al Ain, Sharjah, Ras Al Khaimah) whereas being the highest estimator for the rest two stations (Dubai and Fujairah). Generally, the

  18. On predicting debris flows in arid mountain belts

    NASA Astrophysics Data System (ADS)

    Stolle, Amelie; Langer, Maria; Blöthe, Jan Henrik; Korup, Oliver

    2015-03-01

    The use of topographic metrics for estimating the susceptibility to, and reconstructing the characteristics of, debris flows has a long research tradition, although largely devoted to humid mountainous terrain. The exceptional 2010 monsoonal rainstorms in the high-altitude mountain desert of Ladakh and Zanskar, NW India, were a painful reminder of how susceptible arid regions are to rainfall-triggered flash floods, landslides, and debris flows. The rainstorms of August 4-6 triggered numerous debris flows, killing 182 people, devastating 607 houses, and more than 10 bridges around Ladakh's capital of Leh. The lessons from this disaster motivated us to revisit methods of predicting (a) flow parameters such as peak discharge and maximum velocity from field and remote sensing data, and (b) the susceptibility to debris flows from catchment morphometry. We focus on quantifying uncertainties tied to these approaches. Comparison of high-resolution satellite images pre- and post-dating the 2010 rainstorm reveals the extent of damage and catastrophic channel widening. Computations based on these geomorphic markers indicate maximum flow velocities of 1.6-6.7 m s- 1 with runout of up to ~ 10 km on several alluvial fans that sustain most of the region's settlements. We estimate median peak discharges of 310-610 m3 s- 1, which are largely consistent with previous estimates. Monte Carlo-based error propagation for a single given flow-reconstruction method returns a variance in discharge similar to one derived from juxtaposing several different flow reconstruction methods. We further compare discriminant analysis, classification tree modelling, and Bayesian logistic regression to predict debris-flow susceptibility from morphometric variables of 171 catchments in the Ladakh Range. These methods distinguish between fluvial and debris flow-prone catchments at similar success rates, but Bayesian logistic regression allows quantifying uncertainties and relationships between potential

  19. Arid Climate Landscape Evolution and the Pediment Problem

    NASA Astrophysics Data System (ADS)

    Strudley, M. W.; Murray, A. B.; Haff, P. K.

    2003-12-01

    Although widely disseminated throughout many different climatic environments, pediments, or gently sloping, laterally extensive surfaces characterized by a thin veneer of alluvium covering bedrock, are particularly well developed in granitic desert locales such as the Mojave and Colorado Deserts in southern California and the Sonoran Desert in western Arizona. These features form a transitional zone within the piedmont of many exposed batholithic mountainous bodies, separating a zone of bare bedrock erosion in the steep mountain mass from a depositional zone in the alluvial basin. Well developed pediments in granitic environments commonly contain bedrock outcroppings (tors or inselbergs) that may remain uncovered indefinitely and sharp slope discontinuities at the piedmont junction separating the pediment surface from the mountain mass. Pediments have been the focus of debate in geomorphic circles for over half a century. While some geomorphologists have proposed that pediments and their associated tor fields represent unearthed relict landforms, others propose unique modes of sediment transport that form and maintain the beveled form of pediment surfaces. We hypothesize that a simple relationship between bedrock weathering and alluvial thickness could explain this range of enigmatic features and phenomena, a relationship that Anderson (2002) incorporates in his proposed explanation for high alpine surfaces and tors. Field observations suggest that the transformation of bedrock to regolith is most rapid with a finite covering of regolith. This weathering rule, combined with a simple set of sediment transport rules provides a mechanism through which pediment surfaces are produced. We examine the development of pediment surfaces and associated features using a 3D numerical, distributed-parameter landscape evolution model incorporating the most pertinent landscape development processes acting in arid regions. Temporally and spatially variable rainfall (storm size

  20. Soil Moisture Dynamics and Evaporation in Arid Intermountain Environments

    NASA Astrophysics Data System (ADS)

    Hang, C.; Pardyjak, E.; Nadeau, D. F.; Jensen, D. D.; Hoch, S.

    2014-12-01

    Mountain flows have been studied for several decades now and it is safe to say that their main features are well understood under steady conditions and over idealized terrain. The Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program was designed to better understand atmospheric fluid dynamics across all scales over realistic mountainous terrain as well as under transient and steady conditions. As part of MATERHORN, a large field campaign was conducted in May 2013. The main study area, a playa site, covers an area of several hundred square kilometers. It is mostly devoid of vegetation, characterized by a flat surface, shallow water table and a heterogeneous soil moisture spatial distribution even in dry conditions. Recent studies have shown that soil moisture plays a critical role in the dynamics of mountain flows, but a detailed understanding of these has not been sufficiently quantified. The objectives of this study are thus: 1) to quantify the spatial heterogeneity of soil moisture on the playa site; 2) to describe how soil moisture affects the surface energy balance; 3) to identify the key controlling mechanisms on evaporation after a rain event in an arid area; 4) to explore the existence of nocturnal evaporation and investigate its main driving factors. To do this, we applied the gravimetric method to measure volumetric water content in the surface soil layer (0 - 2 cm and 4 - 6 cm) twice per 24-h intensive observation period at 17 sites evenly distributed on a 180 x 240 m grid. Near-surface atmospheric variables as well as ground heat-flux were also measured by a flux tower located close to the soil sampling sites. Preliminary data analysis reveals that the highest spatial variability in surface soil moisture is found under dry conditions. Our results also show that decreasing surface albedo with increasing soil moisture sustained a powerful positive feedback loop promoting large evaporation rates. Finally, it was found that while

  1. Exotic plant invasion alters nitrogen dynamics in an arid grassland

    USGS Publications Warehouse

    Evans, R.D.; Rimer, R.; Sperry, L.; Belnap, J.

    2001-01-01

    The introduction of nonnative plant species may decrease ecosystem stability by altering the availability of nitrogen (N) for plant growth. Invasive species can impact N availability by changing litter quantity and quality, rates of N2-fixation, or rates of N loss. We quantified the effects of invasion by the annual grass Bromus tectorum on N cycling in an arid grassland on the Colorado Plateau (USA). The invasion occurred in 1994 in two community types in an undisturbed grassland. This natural experiment allowed us to measure the immediate responses following invasion without the confounding effects of previous disturbance. Litter biomass and the C:N and lignin:N ratios were measured to determine the effects on litter dynamics. Long-term soil incubations (415 d) were used to measure potential microbial respiration and net N mineralization. Plant-available N was quantified for two years in situ with ion-exchange resin bags, and potential changes in rates of gaseous N loss were estimated by measuring denitrification enzyme activity. Bromus invasion significantly increased litter biomass, and Bromus litter had significantly greater C:N and lignin:N ratios than did native species. The change in litter quantity and chemistry decreased potential rates of net N mineralization in sites with Bromus by decreasing nitrogen available for microbial activity. Inorganic N was 50% lower on Hilaria sites with Bromus during the spring of 1997, but no differences were observed during 1998. The contrasting differences between years are likely due to moisture availability; spring precipitation was 15% greater than average during 1997, but 52% below average during spring of 1998. Bromus may cause a short-term decrease in N loss by decreasing substrate availability and denitrification enzyme activity, but N loss is likely to be greater in invaded sites in the long term because of increased fire frequency and greater N volatilization during fire. We hypothesize that the introduction of

  2. Great Basin semi-arid woodland dynamics during the late quaternary

    SciTech Connect

    Wigand, P.E.; Hemphill, M.L.; Sharpe, S.E.

    1995-09-01

    Semi-arid woodlands have dominated the middle elevations of Great Basin mountain ranges during the Holocene where subalpine woodlands prevailed during the Pleistocene. Ancient woodrat middens, and in a few cases pollen records indicate in the late Pleistocene and early Holocene woodland history lowered elevation of subalpine woodland species. After a middle Holocene retrenchment at elevations in excess of 500 meters above today, Juniper-dominated semi-arid woodland reached its late Holocene maximum areal extent during the Neoglacial (2 to 4 ka). These records, along with others indicate contracting semi-arid woodland after the Neoglacial about 1.9 ka. Desert shrub community expansion coupled with increased precariousness of wetland areas in the southern Great Basin between 1.9 and 1.5 ka coincide with shrinking wet-lands in the west-central and northern Great Basin. Coincident greater grass abundance in northern Great Basin sagebrush steppe, reaching its maximum between 1.5 and 1.2 ka, corresponds to dramatic increases in bison remains in the archaeological sites of the northern Intermontane West. Pollen and woodrat midden records indicate that this drought ended about 1.5 ka. Succeeding ameliorating conditions resulted in the sudden northward and downward expansion of pinon into areas that had been dominated by juniper during the Neoglacial. Maximum areal extent of pinon dominated semi-arid woodland in west-central Nevada was centered at 1.2 ka. This followed by 100 years the shift in dominance from juniper to pinon in southern Nevada semi-arid woodlands. Great Basin woodlands suffered from renewed severe droughts between .5 to .6 ka. Effectively wetter conditions during the {open_quotes}Little Ice Age{close_quotes} resulted in re-expansion of semi-arid woodland. Activities related to European settlement in the Great Basin have modified prehistoric factors or imposed new ones that are affecting woodland response to climate.

  3. A stereological analysis of kidney structure of honeyeater birds (Meliphagidae) inhabiting either arid or wet environments.

    PubMed

    Casotti, G; Richardson, K C

    1992-04-01

    Stereology was used to quantify components within the kidney of honeyeater birds. Arid zone and wet zone inhabiting 'matched' body mass pairs of birds were examined. The kidney structure of the arid zone white-fronted honeyeater, Phylidonyris albifrons (16.9 g), was compared with that of the wet zone New Holland honeyeater, Phylidonyris novaehollandiae (21.9 g), and that of the arid zone spiny-cheeked honeyeater, Acanthogenys rufogularis (42.5 g), with that of the wet zone little wattlebird, Anthochaera lunulata (62.0 g). Both arid zone honeyeaters had a significantly higher (P less than 0.001) percentage of medulla in the kidneys, while the wet zone birds had a significantly higher (P less than 0.001) percentage of cortex. There were few differences between arid and wet zone honeyeaters in the percentage of nephron components in the cortex and medulla. Both arid zone bird species had a significantly larger volume of medulla, a feature characteristic of a high ability to conserve water by producing a concentrated urine. Both wet zone species had a higher volume of cortex but the difference was not significant. Few differences were found in the volumes and surface areas of tubules within the nephron. Differences that did occur were not always consistent with a high ability to conserve either ions or water more efficiently. The volume and surface area of brush border in the proximal tubule were significantly higher in the little wattlebird. This characteristic may lead to a greater capacity of its kidneys to absorb both water and ions.

  4. A stereological analysis of kidney structure of honeyeater birds (Meliphagidae) inhabiting either arid or wet environments.

    PubMed

    Casotti, G; Richardson, K C

    1992-04-01

    Stereology was used to quantify components within the kidney of honeyeater birds. Arid zone and wet zone inhabiting 'matched' body mass pairs of birds were examined. The kidney structure of the arid zone white-fronted honeyeater, Phylidonyris albifrons (16.9 g), was compared with that of the wet zone New Holland honeyeater, Phylidonyris novaehollandiae (21.9 g), and that of the arid zone spiny-cheeked honeyeater, Acanthogenys rufogularis (42.5 g), with that of the wet zone little wattlebird, Anthochaera lunulata (62.0 g). Both arid zone honeyeaters had a significantly higher (P less than 0.001) percentage of medulla in the kidneys, while the wet zone birds had a significantly higher (P less than 0.001) percentage of cortex. There were few differences between arid and wet zone honeyeaters in the percentage of nephron components in the cortex and medulla. Both arid zone bird species had a significantly larger volume of medulla, a feature characteristic of a high ability to conserve water by producing a concentrated urine. Both wet zone species had a higher volume of cortex but the difference was not significant. Few differences were found in the volumes and surface areas of tubules within the nephron. Differences that did occur were not always consistent with a high ability to conserve either ions or water more efficiently. The volume and surface area of brush border in the proximal tubule were significantly higher in the little wattlebird. This characteristic may lead to a greater capacity of its kidneys to absorb both water and ions. PMID:1506282

  5. An Overview of Biodegradation of LNAPLs in Coastal (Semi)-arid Environment.

    PubMed

    Yadav, Brijesh Kumar; Hassanizadeh, S Majid

    2011-09-01

    Contamination of soil and water due to the release of light non-aqueous phase liquids (LNAPLs) is a ubiquitous problem. The problem is more severe in arid and semi-arid coastal regions where most of the petroleum production and related refinery industries are located. Biological treatment of these organic contaminated resources is receiving increasing interests and where applicable, can serve as a cost-effective remediation alternative. The success of bioremediation greatly depends on the prevailing environmental variables, and their remediation favoring customization requires a sound understanding of their integrated behavior on fate and transport of LNAPLs under site-specific conditions. The arid and semi-arid coastal sites are characterized by specific environmental extremes; primarily, varying low and high temperatures, high salinity, water table dynamics, and fluctuating soil moisture content. An understanding of the behavior of these environmental variables on biological interactions with LNAPLs would be helpful in customizing the bioremediation for restoring problematic sites in these regions. Therefore, this paper reviews the microbial degradation of LNAPLs in soil-water, considering the influences of prevailing environmental parameters of arid and semi-arid coastal regions. First, the mechanism of biodegradation of LNAPLs is discussed briefly, followed by a summary of popular kinetic models used by researchers for describing the degradation rate of these hydrocarbons. Next, the impact of soil moisture content, water table dynamics, and soil-water temperature on the fate and transport of LNAPLs are discussed, including an overview of the studies conducted so far. Finally, based on the reviewed information, a general conclusion is presented with recommendations for future research subjects on optimizing the bioremediation technique in the field under the aforesaid environmental conditions. The present review will be useful to better understand the

  6. Human influence on California fire regimes

    USGS Publications Warehouse

    Syphard, A.D.; Radeloff, V.C.; Keeley, J.E.; Hawbaker, T.J.; Clayton, M.K.; Stewart, S.I.; Hammer, R.B.

    2007-01-01

    Periodic wildfire maintains the integrity and species composition of many ecosystems, including the mediterranean-climate shrublands of California. However, human activities alter natural fire regimes, which can lead to cascading ecological effects. Increased human ignitions at the wildland-urban interface (WUI) have recently gained attention, but fire activity and risk are typically estimated using only biophysical variables. Our goal was to determine how humans influence fire in California and to examine whether this influence was linear, by relating contemporary (2000) and historic (1960-2000) fire data to both human and biophysical variables. Data for the human variables included fine-resolution maps of the WUI produced using housing density and land cover data. Interface WUI, where development abuts wildland vegetation, was differentiated from intermix WUI, where development intermingles with wildland vegetation. Additional explanatory variables included distance to WUI, population density, road density, vegetation type, and ecoregion. All data were summarized at the county level and analyzed using bivariate and multiple regression methods. We found highly significant relationships between humans and fire on the contemporary landscape, and our models explained fire frequency (R2 = 0.72) better than area burned (R2 = 0.50). Population density, intermix WUI, and distance to WUI explained the most variability in fire frequency, suggesting that the spatial pattern of development may be an important variable to consider when estimating fire risk. We found nonlinear effects such that fire frequency and area burned were highest at intermediate levels of human activity, but declined beyond certain thresholds. Human activities also explained change in fire frequency and area burned (1960-2000), but our models had greater explanatory power during the years 1960-1980, when there was more dramatic change in fire frequency. Understanding wildfire as a function of the

  7. Human influence on California fire regimes.

    PubMed

    Syphard, Alexandra D; Radeloff, Volker C; Keeley, Jon E; Hawbaker, Todd J; Clayton, Murray K; Stewart, Susan I; Hammer, Roger B

    2007-07-01

    Periodic wildfire maintains the integrity and species composition of many ecosystems, including the mediterranean-climate shrublands of California. However, human activities alter natural fire regimes, which can lead to cascading ecological effects. Increased human ignitions at the wildland-urban interface (WUI) have recently gained attention, but fire activity and risk are typically estimated using only biophysical variables. Our goal was to determine how humans influence fire in California and to examine whether this influence was linear, by relating contemporary (2000) and historic (1960-2000) fire data to both human and biophysical variables. Data for the human variables included fine-resolution maps of the WUI produced using housing density and land cover data. Interface WUI, where development abuts wildland vegetation, was differentiated from intermix WUI, where development intermingles with wildland vegetation. Additional explanatory variables included distance to WUI, population density, road density, vegetation type, and ecoregion. All data were summarized at the county level and analyzed using bivariate and multiple regression methods. We found highly significant relationships between humans and fire on the contemporary landscape, and our models explained fire frequency (R2 = 0.72) better than area burned (R2 = 0.50). Population density, intermix WUI, and distance to WUI explained the most variability in fire frequency, suggesting that the spatial pattern of development may be an important variable to consider when estimating fire risk. We found nonlinear effects such that fire frequency and area burned were highest at intermediate levels of human activity, but declined beyond certain thresholds. Human activities also explained change in fire frequency and area burned (1960-2000), but our models had greater explanatory power during the years 1960-1980, when there was more dramatic change in fire frequency. Understanding wildfire as a function of the

  8. Mercury's thermal evolution and core crystallization regime

    NASA Astrophysics Data System (ADS)

    Rivoldini, A.; Van Hoolst, T.; Dumberry, M.; Steinle-Neumann, G.

    2015-10-01

    Unlike the Earth, where the liquid core isentrope is shallower than the core liquidus, at the lower pressures inside Mercury's core the isentrope can be steeper than the melting temperature. As a consequence, upon cooling, the isentrope may first enter a solid stability field near the core mantle boundary and produce ironrich snow that sinks under gravity and produces buoyant upwellings of iron depleted fluid. Similar to bottom up crystallization, crystallization initiated near the top might generate sufficient buoyancy flux to drive magnetic field generation by compositional convection.In this study we model Mercury's thermal evolution by taking into account the formation of iron-rich snow to assess when the conditions for an internally magnetic field can be satisfied. We employ a thermodynamic consistent description of the iron high-pressure phase diagram and thermoelastic properties of iron alloys as well as the most recent data about the thermal conductivity of core materials. We use a 1-dimensional parametrized thermal evolution model in the stagnant lid regime for the mantle (e.g. [1]) that is coupled to the core. The model for the mantle takes into account the formation of the crust due to melting at depth. Mantle convection is driven by heat producing radioactive elements, heat loss from secular cooling and from the heat supplied by the core. The heat generated inside the core is mainly provided from secular cooling, from the latent heat released at iron freezing, and from gravitational energy resulting form the release of light elements at the inner core-outer core boundary as well as from the sinking of iron-rich snow and subsequent upwellings of light elements in the snow zone. If the heat flow out of the core is smaller than the heat transported along the core isentrope a thermal boundary will from at the top of the outer core. To determine the extension of the convecting region inside the liquid core we calculate the convective power [2]. Finally, we

  9. Tropical precipitation regimes and mechanisms of regime transitions: contrasting two aquaplanet general circulation models

    NASA Astrophysics Data System (ADS)

    Oueslati, Boutheina; Bellon, Gilles

    2013-05-01

    The atmospheric general circulation models ARPEGE-climate and LMDz are used in an aquaplanet configuration to study the response of a zonally symmetric atmosphere to a range of sea surface temperature (SST) forcing. We impose zonally-symmetric SST distributions that are also symmetric about the equator, with varying off-equatorial SST gradients. In both models, we obtain the characteristic inter-tropical convergence zone (ITCZ) splitting that separates two regimes of equilibrium (in terms of precipitations): one with one ITCZ over the equator for large SST gradients in the tropics, and one with a double ITCZ for small tropical SST gradients. Transition between these regimes is mainly driven by changes in the low-level convergence that are forced by the SST gradients. Model-dependent, dry and moist feedbacks intervene to reinforce or weaken the effect of the SST forcing. In ARPEGE, dry advective processes reinforce the SST forcing, while a competition between sensible heat flux and convective cooling provides a complex feedback on the SST forcing in the LMDz. It is suggested that these feedbacks influence the location of the transition in the parameter range.

  10. Patch scale turbulence over dryland and irrigated surfaces in a semi-arid landscape during BEAREX08

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantifying turbulent fluxes of heat and water vapor over heterogeneous surfaces presents unique challenges. For example, in many arid and semi-arid regions, parcels of irrigated cropland are juxtaposed with hot, dry surfaces. Contrasting surface conditions can result in the advection of warm dry ai...

  11. Plant functional traits and phylogenetic relatedness explain variation in associations with root fungal endophytes in an extreme arid environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since root endophytes may ameliorate drought stress, understanding which plants associate with endophytes is important, especially in arid ecosystems. Here we characterized the root endophytes of 42 plants from an arid region of Argentina. We related colonization by arbuscular mycorrhizal fungi (AMF...

  12. Can biochar be used as a seed coating to improve native plant germination and growth in arid conditions?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Millions of hectares of arid and semi-arid rangelands throughout the world have been disturbed by fire and invasive weeds and are relatively difficult to restore using traditional seeding approaches. Biochar is an organic charcoal product that has been used extensively as a soil amendment to improv...

  13. Overview of water-saving potato production research for the semi-arid areas of Northern China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the arid and semi-arid areas of Northern China, potato makes a greater contribution to solve food problems, even though,frequent droughts, general water shortages and poor irrigation management often lead to low yields and poor tuber quality. Therefore, water-saving potato production plays an imp...

  14. Woody plants modulate the temporal dynamics of soil moisture in a semi-arid mesquite savanna 2023

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In arid and semi-arid ecosystems (drylands), soil moisture abundance limits biological activity and mediates the effects of anthropogenic global change factors such as atmospheric CO2 increases and climate warming. Moreover, climate variability and human activities are interacting to increase the ab...

  15. Oviposition-site selection by Phyllomedusa sauvagii (Anura: Hylidae): An arboreal nester inhabiting arid environments

    NASA Astrophysics Data System (ADS)

    García, Cecilia G.; Lescano, Julián N.; Leynaud, Gerardo C.

    2013-08-01

    Breeding biology in Phyllomedusa sauvagii is related to vegetation since the species encloses its eggs in leaves above water. Considering that arid environments may represent high risks of death by desiccation for amphibians with this reproductive mode, we evaluated plant characteristics associated with sites used for oviposition in semi-permanent ponds in the Arid Chaco region of Argentina. Plant characteristics were used to fit a statistical habitat selection model that allows the prediction of nest presence. Our results show that P. sauvagii needs substrate with specific features for oviposition that would help to reduce the probability of eggs and tadpoles desiccation.

  16. Buffalo gourd: potential as a fuel resource on semi-arid lands

    SciTech Connect

    Young, P.G.; Morgan, R.P.; Shultz, E.B. Jr.

    1982-01-01

    Buffalo gourd, (Cucurbita foetidissima), is a wild, hot-dry-land plant native to the semi-arid regions of North America. Its triglyceride oil and fermentable starch make it a potential biomass energy source. These products, along with the seed meal and foliage, also offer the potential for cultivation in semi-arid regions of the developing world as a food and feed source. Alternatively, the plant may help to maintain economic vitality in regions such as the Texas High Plains, where declining water supplies threaten present irrigation practices. Technical feasibility, impacts, commercialization requirements, and research needs are discussed.

  17. New crops for arid lands. [Bladderpod, gumweed, guayule, jojoba, and buffalo gourd

    SciTech Connect

    Hinman, C.W.

    1984-09-28

    Five plants are described that could be grown commercially under arid conditions. Once the most valuable component has been obtained from each plant (rubber from guayule; seed oil from jojoba, buffalo gourd, and bladderpod; and resin from gumweed), the remaining material holds potential for useful products as well as fuel. It is difficult to realize the full potential or arid land plants, however, because of the complexities of developing the necessary agricultural and industrial infrastructure simultaneously. To do so, multicompany efforts or cooperative efforts between government and the private sector will be required. 20 references.

  18. Reintroducing antelopes into arid areas: lessons learnt from the oryx in Saudi Arabia.

    PubMed

    Mésochina, Pascal; Bedin, Eric; Ostrowski, Stéphane

    2003-08-01

    We focus on constraints faced by antelopes reintroductions in arid environments, and propose keys to enhance their success, using the oryx project in Saudi Arabia as example: (1) Monitoring and management of reintroduced populations appear more important than the number of released animals; (2) Because of the low accuracy of population size estimators, we recommend to implement a continuous monitoring and to use several estimators to assess the reintroduced population size; (3) Reintroduction schedule should take into account the unpredictability of food resources in arid environments; (4) The re-establishment of desert antelopes depends as a priority on the enforcement of regulations to avoid poaching.

  19. Assessment of arid lands plants as future energy crops for the electric utility industry

    SciTech Connect

    Foster, K.E.; Brooks, W.H.

    1981-12-01

    This technical report has been prepared to assess and estimate the prospects of utilizing selected native arid lands plant species (terpene- and nonterpene-containing species) as future renewable energy resources, especially by US electric utilities, and to familiarize nonspecialists with some major problems that must be resolved before these energy sources can become dependable supplies. The assessment includes descriptions of the processing and production technologies associated with the various plant species as well as recommendations for research procedures and development programs specific to arid lands. Suggestions about the agronomic and economic parameters of growing these plants as energy-source crops are also included.

  20. Managing Semi-Arid Rangelands for Carbon Storage: Grazing and Woody Encroachment Effects on Soil Carbon and Nitrogen

    PubMed Central

    Yusuf, Hasen M.; Treydte, Anna C.; Sauerborn, Jauchim

    2015-01-01

    High grazing intensity and wide-spread woody encroachment may strongly alter soil carbon (C) and nitrogen (N) pools. However, the direction and quantity of these changes have rarely been quantified in East African savanna ecosystem. As shifts in soil C and N pools might further potentially influence climate change mitigation, we quantified and compared soil organic carbon (SOC) and total soil nitrogen (TSN) content in enclosures and communal grazing lands across varying woody cover i.e. woody encroachment levels. Estimated mean SOC and TSN stocks at 0–40 cm depth varied across grazing regimes and among woody encroachment levels. The open grazing land at the heavily encroached site on sandy loam soil contained the least SOC (30 ± 2.1 Mg ha-1) and TSN (5 ± 0.57 Mg ha-1) while the enclosure at the least encroached site on sandy clay soil had the greatest mean SOC (81.0 ± 10.6 Mg ha-1) and TSN (9.2 ± 1.48 Mg ha-1). Soil OC and TSN did not differ with grazing exclusion at heavily encroached sites, but were twice as high inside enclosure compared to open grazing soils at low encroached sites. Mean SOC and TSN in soils of 0–20 cm depth were up to 120% higher than that of the 21–40 cm soil layer. Soil OC was positively related to TSN, cation exchange capacity (CEC), but negatively related to sand content. Our results show that soil OC and TSN stocks are affected by grazing, but the magnitude is largely influenced by woody encroachment and soil texture. We suggest that improving the herbaceous layer cover through a reduction in grazing and woody encroachment restriction are the key strategies for reducing SOC and TSN losses and, hence, for climate change mitigation in semi-arid rangelands. PMID:26461478

  1. Fire modulates climate change response of simulated aspen distribution across topoclimatic gradients in a semi-arid montane landscape

    USGS Publications Warehouse

    Yang, Jian; Weisberg, Peter J.; Shinneman, Douglas; Dilts, Thomas E.; Earnst, Susan L.; Scheller, Robert M

    2015-01-01

    Content Changing aspen distribution in response to climate change and fire is a major focus of biodiversity conservation, yet little is known about the potential response of aspen to these two driving forces along topoclimatic gradients. Objective This study is set to evaluate how aspen distribution might shift in response to different climate-fire scenarios in a semi-arid montane landscape, and quantify the influence of fire regime along topoclimatic gradients. Methods We used a novel integration of a forest landscape succession and disturbance model (LANDIS-II) with a fine-scale climatic water deficit approach to simulate dynamics of aspen and associated conifer and shrub species over the next 150 years under various climate-fire scenarios. Results Simulations suggest that many aspen stands could persist without fire for centuries under current climate conditions. However, a simulated 2–5 °C increase in temperature caused a substantial reduction of aspen coverage at lower elevations and a modest increase at upper elevations, leading to an overall reduction of aspen range at the landscape level. Increasing fire activity may favor aspen increase at its upper elevation limits adjacent to coniferous forest, but may also favor reduction of aspen at lower elevation limits adjacent to xeric shrubland. Conclusions Our study highlights the importance of incorporating fine-scale terrain effects on climatic water deficit and ecohydrology when modeling species distribution response to climate change. This modeling study suggests that climate mitigation and adaptation strategies that use fire would benefit from consideration of spatial context at landscape scales.

  2. Effects of Aridity and Fog Deposition on C3/CAM Photosynthesis and N-cycling in Welwitschia mirabilis

    NASA Astrophysics Data System (ADS)

    Soderberg, K.; Henschel, J.; Macko, S. A.

    2008-12-01

    Environmental controls on photosynthesis and N-cycling in Welwitschia mirabilis are evaluated through δ13C and δ15N analyses of leaf material from 26 individuals in the southermost population of this long-lived gymnosperm, which is endemic to the Namib Desert. The coastal Namib Desert in southwestern Africa is hyperarid in terms of rainfall, but receives up to 100 days of fog each year. This climate regime leads to interesting water relations in the Namib flora and fauna. Among many enigmatic characteristics, photosynthesis in W. mirabilis has puzzled researchers since the 1970's. Although it is predominantly a C3 plant, δ13C ranges from -17.5 to -23.5‰ in natural habitats, and can be as enriched as -14.4‰ under artificial growing conditions. Recently the CAM pathway has been confirmed, but the driver for CAM utilization has not been identified. In this study we incorporate new δ13C compositions for plants in the middle of the 100 km aridity gradient which spans the natural distribution of W. mirabilis. Initial results show an enriched δ13C signal (-20‰) in the more exposed individuals compared with those in a sandy drainage depression (-22‰). In addition, the documented correlation between rainfall and δ15N found in Kalahari C3 plants (Swap et al. 2004) is used to interpret the δ15N values in this W. mirabilis population. Initial results indicate that the fog deposition may significantly affect the nutrition of these unusual plants from the Namib Desert.

  3. Managing Semi-Arid Rangelands for Carbon Storage: Grazing and Woody Encroachment Effects on Soil Carbon and Nitrogen.

    PubMed

    Yusuf, Hasen M; Treydte, Anna C; Sauerborn, Jauchim

    2015-01-01

    High grazing intensity and wide-spread woody encroachment may strongly alter soil carbon (C) and nitrogen (N) pools. However, the direction and quantity of these changes have rarely been quantified in East African savanna ecosystem. As shifts in soil C and N pools might further potentially influence climate change mitigation, we quantified and compared soil organic carbon (SOC) and total soil nitrogen (TSN) content in enclosures and communal grazing lands across varying woody cover i.e. woody encroachment levels. Estimated mean SOC and TSN stocks at 0-40 cm depth varied across grazing regimes and among woody encroachment levels. The open grazing land at the heavily encroached site on sandy loam soil contained the least SOC (30 ± 2.1 Mg ha-1) and TSN (5 ± 0.57 Mg ha-1) while the enclosure at the least encroached site on sandy clay soil had the greatest mean SOC (81.0 ± 10.6 Mg ha-1) and TSN (9.2 ± 1.48 Mg ha-1). Soil OC and TSN did not differ with grazing exclusion at heavily encroached sites, but were twice as high inside enclosure compared to open grazing soils at low encroached sites. Mean SOC and TSN in soils of 0-20 cm depth were up to 120% higher than that of the 21-40 cm soil layer. Soil OC was positively related to TSN, cation exchange capacity (CEC), but negatively related to sand content. Our results show that soil OC and TSN stocks are affected by grazing, but the magnitude is largely influenced by woody encroachment and soil texture. We suggest that improving the herbaceous layer cover through a reduction in grazing and woody encroachment restriction are the key strategies for reducing SOC and TSN losses and, hence, for climate change mitigation in semi-arid rangelands.

  4. Systematic revision of the marbled velvet geckos (Oedura marmorata species complex, Diplodactylidae) from the Australian arid and semi-arid zones.

    PubMed

    Oliver, Paul M; Doughty, Paul

    2016-01-01

    Lizards restricted to rocky habitats often comprise numerous deeply divergent lineages, reflecting the disjunct nature of their preferred habitat and the capacity of rocky habitats to function as evolutionary refugia. Here we review the systematics and diversity of the predominantly saxicoline Australian marbled velvet geckos (genus Oedura) in the Australian arid and semi-arid zones using newly-gathered morphological data and previously published genetic data. Earlier work showed that four largely allopatric and genetically divergent lineages are present: Western (Pilbara and Gascoyne regions), Gulf (west and south of the Gulf of Carpentaria), Central (central ranges) and Eastern (Cooper and Darling Basins). None of these four populations are conspecific with true O. marmorata, a seperate species complex that is restricted to the Top End region of the Northern Territory. Top End forms share a short, bulbous tail whereas the other four lineages treated here possess a long, tapering tail. Morphological differences among the arid and semi-arid lineages include smaller body size, tapering lamellae and a shorter tail for the Gulf population, and a partially divided rostral scale in the Western population compared to the Central and Eastern populations. Accordingly, we resurrect O. cincta de Vis from synonymy for the Central and Eastern lineages, and regard this species as being comprised of two evolutionary significant units. We also describe the Gulf and Western lineages as new species: Oedura bella sp. nov. and O. fimbria sp. nov., respectively. We note that a predominantly arboreal lineage (the Eastern lineage of O. cincta) is more widely distributed than the other lineages and is phylogenetically nested within a saxicoline clade, but tends to have a deeper head and shorter limbs, consistent with morphological variation observed in other lizard radiations including both saxicoline and arboreal taxa. PMID:27394333

  5. Systematic revision of the marbled velvet geckos (Oedura marmorata species complex, Diplodactylidae) from the Australian arid and semi-arid zones.

    PubMed

    Oliver, Paul M; Doughty, Paul

    2016-03-08

    Lizards restricted to rocky habitats often comprise numerous deeply divergent lineages, reflecting the disjunct nature of their preferred habitat and the capacity of rocky habitats to function as evolutionary refugia. Here we review the systematics and diversity of the predominantly saxicoline Australian marbled velvet geckos (genus Oedura) in the Australian arid and semi-arid zones using newly-gathered morphological data and previously published genetic data. Earlier work showed that four largely allopatric and genetically divergent lineages are present: Western (Pilbara and Gascoyne regions), Gulf (west and south of the Gulf of Carpentaria), Central (central ranges) and Eastern (Cooper and Darling Basins). None of these four populations are conspecific with true O. marmorata, a seperate species complex that is restricted to the Top End region of the Northern Territory. Top End forms share a short, bulbous tail whereas the other four lineages treated here possess a long, tapering tail. Morphological differences among the arid and semi-arid lineages include smaller body size, tapering lamellae and a shorter tail for the Gulf population, and a partially divided rostral scale in the Western population compared to the Central and Eastern populations. Accordingly, we resurrect O. cincta de Vis from synonymy for the Central and Eastern lineages, and regard this species as being comprised of two evolutionary significant units. We also describe the Gulf and Western lineages as new species: Oedura bella sp. nov. and O. fimbria sp. nov., respectively. We note that a predominantly arboreal lineage (the Eastern lineage of O. cincta) is more widely distributed than the other lineages and i