Sample records for arithmetic algebra geometry

  1. Connecting Functions in Geometry and Algebra

    ERIC Educational Resources Information Center

    Steketee, Scott; Scher, Daniel

    2016-01-01

    One goal of a mathematics education is that students make significant connections among different branches of mathematics. Connections--such as those between arithmetic and algebra, between two-dimensional and three-dimensional geometry, between compass-and-straight-edge constructions and transformations, and between calculus and analytic…

  2. The language of mathematics: investigating the ways language counts for children's mathematical development.

    PubMed

    Vukovic, Rose K; Lesaux, Nonie K

    2013-06-01

    This longitudinal study examined how language ability relates to mathematical development in a linguistically and ethnically diverse sample of children from 6 to 9 years of age. Study participants were 75 native English speakers and 92 language minority learners followed from first to fourth grades. Autoregression in a structural equation modeling (SEM) framework was used to evaluate the relation between children's language ability and gains in different domains of mathematical cognition (i.e., arithmetic, data analysis/probability, algebra, and geometry). The results showed that language ability predicts gains in data analysis/probability and geometry, but not in arithmetic or algebra, after controlling for visual-spatial working memory, reading ability, and sex. The effect of language on gains in mathematical cognition did not differ between language minority learners and native English speakers. These findings suggest that language influences how children make meaning of mathematics but is not involved in complex arithmetical procedures whether presented with Arabic symbols as in arithmetic or with abstract symbols as in algebraic reasoning. The findings further indicate that early language experiences are important for later mathematical development regardless of language background, denoting the need for intensive and targeted language opportunities for language minority and native English learners to develop mathematical concepts and representations. Copyright © 2013. Published by Elsevier Inc.

  3. A Subject Classification of Math Lab Activities from School Science and Mathematics 1974-1980.

    ERIC Educational Resources Information Center

    Grinstein, Louise S.

    1982-01-01

    Presented here is an index which indicates the title and location of each activity by volume and page numbers. The majority of items relate to arithmetic, elementary algebra, and plane geometry, but material also covers such topics as statistics, probability, trigonometry set theory, topology, and modern algebra. (MP)

  4. Foundation Mathematics for the Physical Sciences

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2011-03-01

    1. Arithmetic and geometry; 2. Preliminary algebra; 3. Differential calculus; 4. Integral calculus; 5. Complex numbers and hyperbolic functions; 6. Series and limits; 7. Partial differentiation; 8. Multiple integrals; 9. Vector algebra; 10. Matrices and vector spaces; 11. Vector calculus; 12. Line, surface and volume integrals; 13. Laplace transforms; 14. Ordinary differential equations; 15. Elementary probability; Appendices; Index.

  5. Student Solution Manual for Foundation Mathematics for the Physical Sciences

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2011-03-01

    1. Arithmetic and geometry; 2. Preliminary algebra; 3. Differential calculus; 4. Integral calculus; 5. Complex numbers and hyperbolic functions; 6. Series and limits; 7. Partial differentiation; 8. Multiple integrals; 9. Vector algebra; 10. Matrices and vector spaces; 11. Vector calculus; 12. Line, surface and volume integrals; 13. Laplace transforms; 14. Ordinary differential equations; 15. Elementary probability; Appendix.

  6. The History of Mathematics and Mathematical Education

    ERIC Educational Resources Information Center

    Grattan-Guinness, I.

    1977-01-01

    Answers to questions which were asked after the author's various lectures in Australia are gathered here. Topics touched upon include "new" mathematics, unknown constants and free variables, propositional functions, linear algebra, arithmetic and geometry, and student assessment. (MN)

  7. An Arithmetic-Algebraic Work Space for the Promotion of Arithmetic and Algebraic Thinking: Triangular Numbers

    ERIC Educational Resources Information Center

    Hitt, Fernando; Saboya, Mireille; Cortés Zavala, Carlos

    2016-01-01

    This paper presents an experiment that attempts to mobilise an arithmetic-algebraic way of thinking in order to articulate between arithmetic thinking and the early algebraic thinking, which is considered a prelude to algebraic thinking. In the process of building this latter way of thinking, researchers analysed pupils' spontaneous production…

  8. Math Wonders to Inspire Teachers and Students.

    ERIC Educational Resources Information Center

    Posamentier, Alfred S.

    This book offers ideas to enrich instruction and help teachers explore the intrinsic beauty of math. Through dozens of examples from arithmetic, algebra, geometry, and probability, the symmetries, patterns, processes, paradoxes, and surprises that have facilitated generations of great thinkers are revealed. Activities include: (1) The Beauty in…

  9. Some Mathematics and Physics of Ball Games.

    ERIC Educational Resources Information Center

    Hughes, D. E.

    1985-01-01

    Gives examples on the applications of arithmetic, geometry, and some calculus, vector algebra, and mechanics to ball games. Suggestions for further interesting investigations are provided together with references to other articles and books on applications of mathematics and physics to ball games and sports in general. (JN)

  10. Matematicas Para El Primer Ciclo Secundario, Volumen I (Parte 1). Traduccion Preliminar de la Edicion Inglesa Revisada. (Mathematics for Junior High School, Volume I, Part 1, Preliminary Translation of the Revised English Edition).

    ERIC Educational Resources Information Center

    Anderson, R. D.; And Others

    This is part one of a two-part SMSG mathematics text for junior high school students. Key ideas emphasized are structure of arithmetic from an algebraic viewpoint, the real number system, and metric and non-metric relations in geometry. Topics included are numbers; cardinal numbers; geometry of lines, points, and planes; geometry of angles,…

  11. BIBLIOGRAPHIES, HIGH SCHOOL MATHEMATICS.

    ERIC Educational Resources Information Center

    WOODS, PAUL E.

    THIS ANNOTATED BIBLIOGRAPHY IS A COMPILATION OF A NUMBER OF HIGHLY REGARDED BOOK LISTS CONSISTING OF LIBRARY BOOKS AND TEXTBOOKS FOR GRADES 7-12. THE BOOKS IN THIS LIST ARE CURRENTLY IN PRINT AND THE CONTENT IS REPRESENTATIVE OF THE FOLLOWING AREAS OF MATHEMATICS--MATHEMATICAL RECREATION, COMPUTERS, ARITHMETIC, ALGEBRA, EUCLIDEAN GEOMETRY,…

  12. Transition Mathematics. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2007

    2007-01-01

    "Transition Mathematics" aims to increase 7th- through 12th-grade students' skills in applied arithmetic, pre-algebra, and pre-geometry. This one-year curriculum also addresses general application to different wordings of problems, types of numbers, and contexts for problems and aims to promote mathematical reading skills. The curriculum…

  13. A natural history of mathematics: George Peacock and the making of English algebra.

    PubMed

    Lambert, Kevin

    2013-06-01

    In a series of papers read to the Cambridge Philosophical Society through the 1820s, the Cambridge mathematician George Peacock laid the foundation for a natural history of arithmetic that would tell a story of human progress from counting to modern arithmetic. The trajectory of that history, Peacock argued, established algebraic analysis as a form of universal reasoning that used empirically warranted operations of mind to think with symbols on paper. The science of counting would suggest arithmetic, arithmetic would suggest arithmetical algebra, and, finally, arithmetical algebra would suggest symbolic algebra. This philosophy of suggestion provided the foundation for Peacock's "principle of equivalent forms," which justified the practice of nineteenth-century English symbolic algebra. Peacock's philosophy of suggestion owed a considerable debt to the early Cambridge Philosophical Society culture of natural history. The aim of this essay is to show how that culture of natural history was constitutively significant to the practice of nineteenth-century English algebra.

  14. Mathematics, Grade 5, Part 2.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY.

    This curriculum bulletin is designed to help teachers meet the diverse needs in mathematics of the children in fifth grade classes. In addition to the emphasis that is placed on arithmetic computational skills, the bulletin shows how to include other areas considered important, such as concepts, skills, and ideas from algebra and geometry. The 80…

  15. A Comparison between Mathematics Textbook Content and a Statewide Mathematics Proficiency Test.

    ERIC Educational Resources Information Center

    Chandler, Donald G.; Brosnan, Patricia A.

    1995-01-01

    Percentages of mathematics content for 7 text series, grades 1-8, were compared with percentages on the Ohio Ninth Grade Proficiency Test. Ratios of text:test percentages were arithmetic (63:30), measurement (10:25), geometry (12:15), data analysis (11:15), and algebra (4:15). Implications are discussed. (MSD)

  16. Mathematics for Junior High School, Volume II (Part 2).

    ERIC Educational Resources Information Center

    Anderson, R. D.; And Others

    This is part two of a two-part SMSG mathematics text for junior high school students. Key ideas emphasized are structure of arithmetic from an algebraic viewpoint, the real number system as a progressing development, and metric and non-metric relations in geometry. Chapter topics include real numbers, similar triangles, variation, non-metric…

  17. Contributions of Domain-General Cognitive Resources and Different Forms of Arithmetic Development to Pre-Algebraic Knowledge

    PubMed Central

    Fuchs, Lynn S.; Compton, Donald L.; Fuchs, Douglas; Powell, Sarah R.; Schumacher, Robin F.; Hamlett, Carol L.; Vernier, Emily; Namkung, Jessica M.; Vukovic, Rose K.

    2012-01-01

    The purpose of this study was to investigate the contributions of domain-general cognitive resources and different forms of arithmetic development to individual differences in pre-algebraic knowledge. Children (n=279; mean age=7.59 yrs) were assessed on 7 domain-general cognitive resources as well as arithmetic calculations and word problems at start of 2nd grade and on calculations, word problems, and pre-algebraic knowledge at end of 3rd grade. Multilevel path analysis, controlling for instructional effects associated with the sequence of classrooms in which students were nested across grades 2–3, indicated arithmetic calculations and word problems are foundational to pre-algebraic knowledge. Also, results revealed direct contributions of nonverbal reasoning and oral language to pre-algebraic knowledge, beyond indirect effects that are mediated via arithmetic calculations and word problems. By contrast, attentive behavior, phonological processing, and processing speed contributed to pre-algebraic knowledge only indirectly via arithmetic calculations and word problems. PMID:22409764

  18. A structural equation modeling analysis of students' understanding in basic mathematics

    NASA Astrophysics Data System (ADS)

    Oktavia, Rini; Arif, Salmawaty; Ferdhiana, Ridha; Yuni, Syarifah Meurah; Ihsan, Mahyus

    2017-11-01

    This research, in general, aims to identify incoming students' understanding and misconceptions of several basic concepts in mathematics. The participants of this study are the 2015 incoming students of Faculty of Mathematics and Natural Science of Syiah Kuala University, Indonesia. Using an instrument that were developed based on some anecdotal and empirical evidences on students' misconceptions, a survey involving 325 participants was administered and several quantitative and qualitative analysis of the survey data were conducted. In this article, we discuss the confirmatory factor analysis using Structural Equation Modeling (SEM) on factors that determine the new students' overall understanding of basic mathematics. The results showed that students' understanding on algebra, arithmetic, and geometry were significant predictors for their overall understanding of basic mathematics. This result supported that arithmetic and algebra are not the only predictors of students' understanding of basic mathematics.

  19. Arithmetic Circuit Verification Based on Symbolic Computer Algebra

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuki; Homma, Naofumi; Aoki, Takafumi; Higuchi, Tatsuo

    This paper presents a formal approach to verify arithmetic circuits using symbolic computer algebra. Our method describes arithmetic circuits directly with high-level mathematical objects based on weighted number systems and arithmetic formulae. Such circuit description can be effectively verified by polynomial reduction techniques using Gröbner Bases. In this paper, we describe how the symbolic computer algebra can be used to describe and verify arithmetic circuits. The advantageous effects of the proposed approach are demonstrated through experimental verification of some arithmetic circuits such as multiply-accumulator and FIR filter. The result shows that the proposed approach has a definite possibility of verifying practical arithmetic circuits.

  20. Examining Gender DIF on a Multiple-Choice Test of Mathematics: A Confirmatory Approach.

    ERIC Educational Resources Information Center

    Ryan, Katherine E.; Fan, Meichu

    1996-01-01

    Results for 3,244 female and 3,033 male junior high school students from the Second International Mathematics Study show that applied items in algebra, geometry, and computation were easier for males but arithmetic items were differentially easier for females. Implications of these findings for assessment and instruction are discussed. (SLD)

  1. Continuity in Representation between Children and Adults: Arithmetic Knowledge Hinders Undergraduates' Algebraic Problem Solving

    ERIC Educational Resources Information Center

    McNeil, Nicole M.; Rittle-Johnson, Bethany; Hattikudur, Shanta; Petersen, Lori A.

    2010-01-01

    This study examined if solving arithmetic problems hinders undergraduates' accuracy on algebra problems. The hypothesis was that solving arithmetic problems would hinder accuracy because it activates an operational view of equations, even in educated adults who have years of experience with algebra. In three experiments, undergraduates (N = 184)…

  2. Noncommutative geometry and arithmetics

    NASA Astrophysics Data System (ADS)

    Almeida, P.

    2009-09-01

    We intend to illustrate how the methods of noncommutative geometry are currently used to tackle problems in class field theory. Noncommutative geometry enables one to think geometrically in situations in which the classical notion of space formed of points is no longer adequate, and thus a “noncommutative space” is needed; a full account of this approach is given in [3] by its main contributor, Alain Connes. The class field theory, i.e., number theory within the realm of Galois theory, is undoubtedly one of the main achievements in arithmetics, leading to an important algebraic machinery; for a modern overview, see [23]. The relationship between noncommutative geometry and number theory is one of the many themes treated in [22, 7-9, 11], a small part of which we will try to put in a more down-to-earth perspective, illustrating through an example what should be called an “application of physics to mathematics,” and our only purpose is to introduce nonspecialists to this beautiful area.

  3. Spontaneous Meta-Arithmetic as a First Step toward School Algebra

    ERIC Educational Resources Information Center

    Caspi, Shai; Sfard, Anna

    2012-01-01

    Taking as the point of departure the vision of school algebra as a formalized meta-discourse of arithmetic, we have been following five pairs of 7th grade students as they progress in algebraic discourse during 24 months, from their informal algebraic talk to the formal algebraic discourse, as taught in school. Our analysis follows changes that…

  4. Teacher Actions to Facilitate Early Algebraic Reasoning

    ERIC Educational Resources Information Center

    Hunter, Jodie

    2015-01-01

    In recent years there has been an increased emphasis on integrating the teaching of arithmetic and algebra in primary school classrooms. This requires teachers to develop links between arithmetic and algebra and use pedagogical actions that facilitate algebraic reasoning. Drawing on findings from a classroom-based study, this paper provides an…

  5. Gauss Elimination: Workhorse of Linear Algebra.

    DTIC Science & Technology

    1995-08-05

    linear algebra computation for solving systems, computing determinants and determining the rank of matrix. All of these are discussed in varying contexts. These include different arithmetic or algebraic setting such as integer arithmetic or polynomial rings as well as conventional real (floating-point) arithmetic. These have effects on both accuracy and complexity analyses of the algorithm. These, too, are covered here. The impact of modern parallel computer architecture on GE is also

  6. Early Integration of Tutorial Support in Beginning Algebra

    ERIC Educational Resources Information Center

    Copus, Colleen; McKinney, Betsy

    2016-01-01

    Anecdotal observations reveal that most students with strong arithmetic skills will succeed in the Beginning Algebra course even if they have no previous experience with algebra. In trying to quantify this with an initial teacher-created survey of arithmetic skills, it was observed, for three consecutive semesters, that students who scored in the…

  7. Contributions of Domain-General Cognitive Resources and Different Forms of Arithmetic Development to Pre-Algebraic Knowledge

    ERIC Educational Resources Information Center

    Fuchs, Lynn S.; Compton, Donald L.; Fuchs, Douglas; Powell, Sarah R.; Schumacher, Robin F.; Hamlett, Carol L.; Vernier, Emily; Namkung, Jessica M.; Vukovic, Rose K.

    2012-01-01

    The purpose of this study was to investigate the contributions of domain-general cognitive resources and different forms of arithmetic development to individual differences in pre-algebraic knowledge. Children (n = 279, mean age = 7.59 years) were assessed on 7 domain-general cognitive resources as well as arithmetic calculations and word problems…

  8. Contextualizing symbol, symbolizing context

    NASA Astrophysics Data System (ADS)

    Maudy, Septiani Yugni; Suryadi, Didi; Mulyana, Endang

    2017-08-01

    When students learn algebra for the first time, inevitably they are experiencing transition from arithmetic to algebraic thinking. Once students could apprehend this essential mathematical knowledge, they are cultivating their ability in solving daily life problems by applying algebra. However, as we dig into this transitional stage, we identified possible students' learning obstacles to be dealt with seriously in order to forestall subsequent hindrance in studying more advance algebra. We come to realize this recurring problem as we undertook the processes of re-personalization and re-contextualization in which we scrutinize the very basic questions: 1) what is variable, linear equation with one variable and their relationship with the arithmetic-algebraic thinking? 2) Why student should learn such concepts? 3) How to teach those concepts to students? By positioning ourselves as a seventh grade student, we address the possibility of children to think arithmetically when confronted with the problems of linear equation with one variable. To help them thinking algebraically, Bruner's modes of representation developed contextually from concrete to abstract were delivered to enhance their interpretation toward the idea of variables. Hence, from the outset we designed the context for student to think symbolically initiated by exploring various symbols that could be contextualized in order to bridge student traversing the arithmetic-algebraic fruitfully.

  9. A systematic investigation of the link between rational number processing and algebra ability.

    PubMed

    Hurst, Michelle; Cordes, Sara

    2018-02-01

    Recent research suggests that fraction understanding is predictive of algebra ability; however, the relative contributions of various aspects of rational number knowledge are unclear. Furthermore, whether this relationship is notation-dependent or rather relies upon a general understanding of rational numbers (independent of notation) is an open question. In this study, college students completed a rational number magnitude task, procedural arithmetic tasks in fraction and decimal notation, and an algebra assessment. Using these tasks, we measured three different aspects of rational number ability in both fraction and decimal notation: (1) acuity of underlying magnitude representations, (2) fluency with which symbols are mapped to the underlying magnitudes, and (3) fluency with arithmetic procedures. Analyses reveal that when looking at the measures of magnitude understanding, the relationship between adults' rational number magnitude performance and algebra ability is dependent upon notation. However, once performance on arithmetic measures is included in the relationship, individual measures of magnitude understanding are no longer unique predictors of algebra performance. Furthermore, when including all measures simultaneously, results revealed that arithmetic fluency in both fraction and decimal notation each uniquely predicted algebra ability. Findings are the first to demonstrate a relationship between rational number understanding and algebra ability in adults while providing a clearer picture of the nature of this relationship. © 2017 The British Psychological Society.

  10. Matematicas Para El Primer Ciclo Secundario, Volumen II (Parte 2). Traduccion Preliminar de la Edicion en Ingles Revisada. (Mathematics for Junior High School, Volume II, Part 2. Preliminary Translation of the Revised English Edition).

    ERIC Educational Resources Information Center

    Anderson, R. D.; And Others

    This is part two of a two-part SMSG mathematics text for junior high school students. Key ideas emphasized are structure of arithmetic from an algebraic viewpoint, the real number system as a progressing development, and metric and non-metric relations in geometry. Chapter topics include real numbers, similar triangles, variation, polyhedrons,…

  11. Matematicas Para El Primer Ciclo Secundario, Volumen I (Parte 2). Traduccion Preliminar de la Edicion Inglesa Revisada. (Mathematics for Junior High School, Volume I, Part 2. Preliminary Translation of the Revised English Edition).

    ERIC Educational Resources Information Center

    Anderson, R. D.; And Others

    This is part two of a two-part SMSG mathematics text for junior high school students. Key ideas emphasized are structure of arithmetic from an algebraic viewpoint, the real number system, and metric and non-metric relations in geometry. Included are chapters on the rational number system; parallels, parallelograms, triangles, and right prisms;…

  12. Quantum mechanics problems in observer's mathematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khots, Boris; Khots, Dmitriy; iMath Consulting LLC, Omaha, Nebraska

    2012-11-06

    This work considers the ontology, guiding equation, Schrodinger's equation, relation to the Born Rule, the conditional wave function of a subsystem in a setting of arithmetic, algebra and topology provided by Observer's Mathematics (see www.mathrelativity.com). Observer's Mathematics creates new arithmetic, algebra, geometry, topology, analysis and logic which do not contain the concept of continuum, but locally coincide with the standard fields. Certain results and communications pertaining to solutions of these problems are provided. In particular, we prove the following theorems: Theorem I (Two-slit interference). Let {Psi}{sub 1} be a wave from slit 1, {Psi}{sub 2} - from slit 2, andmore » {Psi} = {Psi}{sub 1}+{Psi}{sub 2}. Then the probability of {Psi} being a wave equals to 0.5. Theorem II (k-bodies solution). For W{sub n} from m-observer point of view with m>log{sub 10}((2 Multiplication-Sign 10{sup 2n}-1){sup 2k}+1), the probability of standard expression of Hamiltonian variation is less than 1 and depends on n,m,k.« less

  13. The ALARM Experiment

    ERIC Educational Resources Information Center

    Gerhardt, Ira

    2015-01-01

    An experiment was conducted over three recent semesters of an introductory calculus course to test whether it was possible to quantify the effect that difficulty with basic algebraic and arithmetic computation had on individual performance. Points lost during the term were classified as being due to either algebraic and arithmetic mistakes…

  14. Matematicas Para El Primer Ciclo Secundario, Volumen II (Parte 1). Traduccion Preliminar de la Edicion en Ingles Revisada. (Mathematics for Junior High School, Volume II, Part 1. Preliminary Translation of the Revised English Edition).

    ERIC Educational Resources Information Center

    Anderson, R. D.; And Others

    This is part one of a two-part SMSG mathematics text for junior high school students. Key ideas emphasized are structure of arithmetic from an algebraic viewpoint, the real number system as a progressing development, and metric and non-metric relations in geometry. Chapter topics include number line and coordinates, equations, scientific notation,…

  15. Teaching Linear Algebra: Proceeding More Efficiently by Staying Comfortably within Z

    ERIC Educational Resources Information Center

    Beaver, Scott

    2015-01-01

    For efficiency in a linear algebra course the instructor may wish to avoid the undue arithmetical distractions of rational arithmetic. In this paper we explore how to write fraction-free problems of various types including elimination, matrix inverses, orthogonality, and the (non-normalizing) Gram-Schmidt process.

  16. SMP That Help Foster Algebraic Thinking

    ERIC Educational Resources Information Center

    Billings, Esther M. H.

    2017-01-01

    Arithmetic is a major mathematical focus in elementary school curriculum, and researchers such as Mason (2008) claim that "algebraic thinking is required in order to make sense of arithmetic" (p. 58). When adding, subtracting, multiplying, and dividing, learners must rely on a small set of fundamental properties also important for the…

  17. Special relativity from observer's mathematics point of view

    NASA Astrophysics Data System (ADS)

    Khots, Boris; Khots, Dmitriy

    2015-09-01

    When we create mathematical models for quantum theory of light we assume that the mathematical apparatus used in modeling, at least the simplest mathematical apparatus, is infallible. In particular, this relates to the use of "infinitely small" and "infinitely large" quantities in arithmetic and the use of Newton - Cauchy definitions of a limit and derivative in analysis. We believe that is where the main problem lies in contemporary study of nature. We have introduced a new concept of Observer's Mathematics (see www.mathrelativity.com). Observer's Mathematics creates new arithmetic, algebra, geometry, topology, analysis and logic which do not contain the concept of continuum, but locally coincide with the standard fields. We use Einstein special relativity principles and get the analogue of classical Lorentz transformation. This work considers this transformation from Observer's Mathematics point of view.

  18. Relational Thinking: The Bridge between Arithmetic and Algebra

    ERIC Educational Resources Information Center

    Kiziltoprak, Ayhan; Köse, Nilüfer Yavuzsoy

    2017-01-01

    The purpose of this study is to investigate the development of relational thinking skill, which is an important component of the transition from arithmetic to algebra, of 5th grade students. In the study, the qualitative research method of teaching experiment was used. The research data were collected from six secondary school 5th grade students…

  19. Making Algebra Work: Instructional Strategies that Deepen Student Understanding, within and between Algebraic Representations

    ERIC Educational Resources Information Center

    Star, Jon R.; Rittle-Johnson, Bethany

    2009-01-01

    Competence in algebra is increasingly recognized as a critical milestone in students' middle and high school years. The transition from arithmetic to algebra is a notoriously difficult one, and improvements in algebra instruction are greatly needed (National Research Council, 2001). Algebra historically has represented students' first sustained…

  20. Constructing Meanings and Utilities within Algebraic Tasks

    ERIC Educational Resources Information Center

    Ainley, Janet; Bills, Liz; Wilson, Kirsty

    2004-01-01

    The Purposeful Algebraic Activity project aims to explore the potential of spreadsheets in the introduction to algebra and algebraic thinking. We discuss two sub-themes within the project: tracing the development of pupils' construction of meaning for variable from arithmetic-based activity, through use of spreadsheets, and into formal algebra,…

  1. Metaphorical motion in mathematical reasoning: further evidence for pre-motor implementation of structure mapping in abstract domains.

    PubMed

    Fields, Chris

    2013-08-01

    The theory of computation and category theory both employ arrow-based notations that suggest that the basic metaphor "state changes are like motions" plays a fundamental role in all mathematical reasoning involving formal manipulations. If this is correct, structure-mapping inferences implemented by the pre-motor action planning system can be expected to be involved in solving any mathematics problems not solvable by table lookups and number line manipulations alone. Available functional imaging studies of multi-digit arithmetic, algebra, geometry and calculus problem solving are consistent with this expectation.

  2. The Adidactic Interaction with the Procedures of Peers in the Transition from Arithmetic to Algebra: A "Milieu" for the Emergence of New Questions

    ERIC Educational Resources Information Center

    Sadovsky, Patricia; Sessa, Carmen

    2005-01-01

    The purpose of the present article is to give an account of the emergence of knowledge pertaining to the transition from arithmetic to algebra in the course of a debate in a grade 7 classroom. This debate follows two other instances of work: (1) the adidactic interaction between each student and a given problem, (2) the adidactic interaction of…

  3. Rupture or Continuity: The Arithmetico-Algebraic Thinking as an Alternative in a Modelling Process in a Paper and Pencil and Technology Environment

    ERIC Educational Resources Information Center

    Hitt, Fernando; Saboya, Mireille; Zavala, Carlos Cortés

    2017-01-01

    Part of the research community that has followed the Early Algebra paradigm is currently delimiting the differences between arithmetic thinking and algebraic thinking. This trend could prevent new research approaches to the problem of learning algebra, hiding the importance of considering an arithmetico-algebraic thinking, a new approach which…

  4. A Balancing Act: Making Sense of Algebra

    ERIC Educational Resources Information Center

    Gavin, M. Katherine; Sheffield, Linda Jensen

    2015-01-01

    For most students, algebra seems like a totally different subject than the number topics they studied in elementary school. In reality, the procedures followed in arithmetic are actually based on the properties and laws of algebra. Algebra should be a logical next step for students in extending the proficiencies they developed with number topics…

  5. Learning to Apply Algebra in the Community for Adults with Intellectual Developmental Disabilities

    ERIC Educational Resources Information Center

    Rodriguez, Anthony M.

    2016-01-01

    Students with intellectual and developmental disabilities (IDD) are routinely excluded from algebra and other high-level mathematics courses. High school students with IDD take courses in arithmetic and life skills rather than having an opportunity to learn algebra. Yet algebra skills can support the learning of money and budgeting skills. This…

  6. Introducing Algebraic Structures through Solving Equations: Vertical Content Knowledge for K-12 Mathematics Teachers

    ERIC Educational Resources Information Center

    Wasserman, Nicholas H.

    2014-01-01

    Algebraic structures are a necessary aspect of algebraic thinking for K-12 students and teachers. An approach for introducing the algebraic structure of groups and fields through the arithmetic properties required for solving simple equations is summarized; the collective (not individual) importance of these axioms as a foundation for algebraic…

  7. Developing "Algebraic Thinking": Two Key Ways to Establish Some Early Algebraic Ideas in Primary Classrooms

    ERIC Educational Resources Information Center

    Ormond, Christine

    2012-01-01

    Primary teachers play a key role in their students' future mathematical success in the early secondary years. While the word "algebra" may make some primary teachers feel uncomfortable or worried, the basic arithmetic ideas underlying algebra are vitally important for older primary students as they are increasingly required to use "algebraic…

  8. The Duality Principle in Teaching Arithmetic and Geometric Series

    ERIC Educational Resources Information Center

    Yeshurun, Shraga

    1978-01-01

    The author discusses the use of the duality principle in combination with the hierarchy of algebraic operations in helping students to retain and use definitions and rules for arithmetic and geometric sequences and series. (MN)

  9. Observerʼs mathematics applications to quantum mechanics

    NASA Astrophysics Data System (ADS)

    Khots, B.; Khots, D.

    2014-12-01

    When we consider and analyze physical events with the purpose of creating corresponding models we often assume that the mathematical apparatus used in modeling is infallible. In particular, this relates to the use of infinity in various aspects and the use of Newton's definition of a limit in analysis. We believe that is where the main problem lies in the contemporary study of nature. This work considers physical aspects in a setting of arithmetic, algebra, geometry, analysis, and topology provided by Observer's Mathematics (see www.mathrelativity.com). In this paper, we consider Dirac equations for free electrons. Certain results and communications pertaining to solutions of these problems are provided.

  10. Algebridge. Concept Based Instructional Assessment.

    ERIC Educational Resources Information Center

    College Entrance Examination Board, Princeton, NJ.

    Students who study algebra are more likely to attend college than those who don't. A major hurdle for students in studying algebra is the transition from arithmetic to algebra. In response to overcoming this hurdle, the College Board and Educational Testing Service has developed "Algebridge," a teaching supplement that integrates…

  11. Network-Physics(NP) Bec DIGITAL(#)-VULNERABILITY Versus Fault-Tolerant Analog

    NASA Astrophysics Data System (ADS)

    Alexander, G. K.; Hathaway, M.; Schmidt, H. E.; Siegel, E.

    2011-03-01

    Siegel[AMS Joint Mtg.(2002)-Abs.973-60-124] digits logarithmic-(Newcomb(1881)-Weyl(1914; 1916)-Benford(1938)-"NeWBe"/"OLDbe")-law algebraic-inversion to ONLY BEQS BEC:Quanta/Bosons= digits: Synthesis reveals EMP-like SEVERE VULNERABILITY of ONLY DIGITAL-networks(VS. FAULT-TOLERANT ANALOG INvulnerability) via Barabasi "Network-Physics" relative-``statics''(VS.dynamics-[Willinger-Alderson-Doyle(Not.AMS(5/09)]-]critique); (so called)"Quantum-computing is simple-arithmetic(sans division/ factorization); algorithmic-complexities: INtractibility/ UNdecidability/ INefficiency/NONcomputability / HARDNESS(so MIScalled) "noise"-induced-phase-transitions(NITS) ACCELERATION: Cook-Levin theorem Reducibility is Renormalization-(Semi)-Group fixed-points; number-Randomness DEFINITION via WHAT? Query(VS. Goldreich[Not.AMS(02)] How? mea culpa)can ONLY be MBCS "hot-plasma" versus digit-clumping NON-random BEC; Modular-arithmetic Congruences= Signal X Noise PRODUCTS = clock-model; NON-Shor[Physica A,341,586(04)] BEC logarithmic-law inversion factorization:Watkins number-thy. U stat.-phys.); P=/=NP TRIVIAL Proof: Euclid!!! [(So Miscalled) computational-complexity J-O obviation via geometry.

  12. Does Calculation or Word-Problem Instruction Provide A Stronger Route to Pre-Algebraic Knowledge?

    PubMed Central

    Fuchs, Lynn S.; Powell, Sarah R.; Cirino, Paul T.; Schumacher, Robin F.; Marrin, Sarah; Hamlett, Carol L.; Fuchs, Douglas; Compton, Donald L.; Changas, Paul C.

    2014-01-01

    The focus of this study was connections among 3 aspects of mathematical cognition at 2nd grade: calculations, word problems, and pre-algebraic knowledge. We extended the literature, which is dominated by correlational work, by examining whether intervention conducted on calculations or word problems contributes to improved performance in the other domain and whether intervention in either or both domains contributes to pre-algebraic knowledge. Participants were 1102 children in 127 2nd-grade classrooms in 25 schools. Teachers were randomly assigned to 3 conditions: calculation intervention, word-problem intervention, and business-as-usual control. Intervention, which lasted 17 weeks, was designed to provide research-based linkages between arithmetic calculations or arithmetic word problems (depending on condition) to pre-algebraic knowledge. Multilevel modeling suggested calculation intervention improved calculation but not word-problem outcomes; word-problem intervention enhanced word-problem but not calculation outcomes; and word-problem intervention provided a stronger route than calculation intervention to pre-algebraic knowledge. PMID:25541565

  13. Working Memory and Literacy as Predictors of Performance on Algebraic Word Problems

    ERIC Educational Resources Information Center

    Lee, Kerry; Ng, Swee-Fong; Ng, Ee-Lynn; Lim, Zee-Ying

    2004-01-01

    Previous studies on individual differences in mathematical abilities have shown that working memory contributes to early arithmetic performance. In this study, we extended the investigation to algebraic word problem solving. A total of 151 10-year-olds were administered algebraic word problems and measures of working memory, intelligence quotient…

  14. Analyzing Algebraic Thinking Using "Guess My Number" Problems

    ERIC Educational Resources Information Center

    Patton, Barba; De Los Santos, Estella

    2012-01-01

    The purpose of this study was to assess student knowledge of numeric, visual and algebraic representations. A definite gap between arithmetic and algebra has been documented in the research. The researchers' goal was to identify a link between the two. Using four "Guess My Number" problems, seventh and tenth grade students were asked to write…

  15. A Structural Model of Algebra Achievement: Computational Fluency and Spatial Visualisation as Mediators of the Effect of Working Memory on Algebra Achievement

    ERIC Educational Resources Information Center

    Tolar, Tammy Daun; Lederberg, Amy R.; Fletcher, Jack M.

    2009-01-01

    The goal of this study was to develop and evaluate a structural model of the relations among cognitive abilities and arithmetic skills and college students' algebra achievement. The model of algebra achievement was compared to a model of performance on the Scholastic Assessment in Mathematics (SAT-M) to determine whether the pattern of relations…

  16. Students' Perceptions about the Symbols, Letters and Signs in Algebra and How Do These Affect Their Learning of Algebra: A Case Study in a Government Girls Secondary School Karachi

    ERIC Educational Resources Information Center

    Samo, Mashooque Ali

    2009-01-01

    Algebra uses symbols for generalizing arithmetic. These symbols have different meanings and interpretations in different situations. Students have different perceptions about these symbols, letters and signs. Despite the vast research by on the students' difficulties in understanding letters in Algebra, the overall image that emerges from the…

  17. A Framework for Understanding and Cultivating the Transition from Arithmetic to Algebraic Reasoning

    ERIC Educational Resources Information Center

    Nathan, Mitchell J.; Koellner, Karen

    2007-01-01

    Algebraic reasoning stands as a formidable gatekeeper for students in their efforts to progress in mathematics and science, and to obtain economic opportunities (Ladson-Billings, 1998; RAND, 2003). Currently, mathematics education research has focused on algebra in order to provide access and opportunities for more students. There is now a growing…

  18. Intertextuality and Sense Production in the Learning of Algebraic Methods

    ERIC Educational Resources Information Center

    Rojano, Teresa; Filloy, Eugenio; Puig, Luis

    2014-01-01

    In studies carried out in the 1980s the algebraic symbols and expressions are revealed through prealgebraic readers as non-independent texts, as texts that relate to other texts that in some cases belong to the reader's native language or to the arithmetic sign system. Such outcomes suggest that the act of reading algebraic texts submerges…

  19. Pre-Algebra Groups. Concepts & Applications.

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, Rockville, MD.

    Discussion material and exercises related to pre-algebra groups are provided in this five chapter manual. Chapter 1 (mappings) focuses on restricted domains, order of operations (parentheses and exponents), rules of assignment, and computer extensions. Chapter 2 considers finite number systems, including binary operations, clock arithmetic,…

  20. Geometrical and quantum mechanical aspects in observers' mathematics

    NASA Astrophysics Data System (ADS)

    Khots, Boris; Khots, Dmitriy

    2013-10-01

    When we create mathematical models for Quantum Mechanics we assume that the mathematical apparatus used in modeling, at least the simplest mathematical apparatus, is infallible. In particular, this relates to the use of "infinitely small" and "infinitely large" quantities in arithmetic and the use of Newton Cauchy definitions of a limit and derivative in analysis. We believe that is where the main problem lies in contemporary study of nature. We have introduced a new concept of Observer's Mathematics (see www.mathrelativity.com). Observer's Mathematics creates new arithmetic, algebra, geometry, topology, analysis and logic which do not contain the concept of continuum, but locally coincide with the standard fields. We prove that Euclidean Geometry works in sufficiently small neighborhood of the given line, but when we enlarge the neighborhood, non-euclidean Geometry takes over. We prove that the physical speed is a random variable, cannot exceed some constant, and this constant does not depend on an inertial coordinate system. We proved the following theorems: Theorem A (Lagrangian). Let L be a Lagrange function of free material point with mass m and speed v. Then the probability P of L = m 2 v2 is less than 1: P(L = m 2 v2) < 1. Theorem B (Nadezhda effect). On the plane (x, y) on every line y = kx there is a point (x0, y0) with no existing Euclidean distance between origin (0, 0) and this point. Conjecture (Black Hole). Our space-time nature is a black hole: light cannot go out infinitely far from origin.

  1. Secret Codes, Remainder Arithmetic, and Matrices.

    ERIC Educational Resources Information Center

    Peck, Lyman C.

    This pamphlet is designed for use as enrichment material for able junior and senior high school students who are interested in mathematics. No more than a clear understanding of basic arithmetic is expected. Students are introduced to ideas from number theory and modern algebra by learning mathematical ways of coding and decoding secret messages.…

  2. Algebra 2u, Mathematics (Experimental): 5216.26.

    ERIC Educational Resources Information Center

    Crawford, Glenda

    The sixth in a series of six guidebooks on minimum course content for second-year algebra, this booklet presents an introduction to sequences, series, permutation, combinations, and probability. Included are arithmetic and geometric progressions and problems solved by counting and factorials. Overall course goals are specified, a course outline is…

  3. Reflective thinking in solving an algebra problem: a case study of field independent-prospective teacher

    NASA Astrophysics Data System (ADS)

    Agustan, S.; Juniati, Dwi; Yuli Eko Siswono, Tatag

    2017-10-01

    Nowadays, reflective thinking is one of the important things which become a concern in learning mathematics, especially in solving a mathematical problem. The purpose of this paper is to describe how the student used reflective thinking when solved an algebra problem. The subject of this research is one female student who has field independent cognitive style. This research is a descriptive exploratory study with data analysis using qualitative approach to describe in depth reflective thinking of prospective teacher in solving an algebra problem. Four main categories are used to analyse the reflective thinking in solving an algebra problem: (1) formulation and synthesis of experience, (2) orderliness of experience, (3) evaluating the experience and (4) testing the selected solution based on the experience. The results showed that the subject described the problem by using another word and the subject also found the difficulties in making mathematical modelling. The subject analysed two concepts used in solving problem. For instance, geometry related to point and line while algebra is related to algebra arithmetic operation. The subject stated that solution must have four aspect to get effective solution, specifically the ability to (a) understand the meaning of every words; (b) make mathematical modelling; (c) calculate mathematically; (d) interpret solution obtained logically. To test the internal consistency or error in solution, the subject checked and looked back related procedures and operations used. Moreover, the subject tried to resolve the problem in a different way to compare the answers which had been obtained before. The findings supported the assertion that reflective thinking provides an opportunity for the students in improving their weakness in mathematical problem solving. It can make a grow accuracy and concentration in solving a mathematical problem. Consequently, the students will get the right and logic answer by reflective thinking.

  4. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

    PubMed

    Verburgt, Lukas M

    2016-01-01

    This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.

  5. Remarks on a one-parameter family of singular matrices

    NASA Astrophysics Data System (ADS)

    Sharma, Ramesh; Pariso, Chris; Duda, Michelle

    2015-01-01

    This short article will present to the reader a family of matrices that form an algebra over the reals. This presentation provides both current and former students of modern abstract algebra a better illustration of the concepts of rings, fields, and algebra itself. In addition, this article relates eigenspaces of 3×3 matrices with the arithmetic-geometric mean equality, an attribute that teachers might enjoy utilizing as a teaching tool in their classes.

  6. Algebraic Functions, Computer Programming, and the Challenge of Transfer

    ERIC Educational Resources Information Center

    Schanzer, Emmanuel Tanenbaum

    2015-01-01

    Students' struggles with algebra are well documented. Prior to the introduction of functions, mathematics is typically focused on applying a set of arithmetic operations to compute an answer. The introduction of functions, however, marks the point at which mathematics begins to focus on building up abstractions as a way to solve complex problems.…

  7. Advanced Linear Algebra: A Call for the Early Introduction of Complex Numbers

    ERIC Educational Resources Information Center

    Garcia, Stephan Ramon

    2017-01-01

    A second course in linear algebra that goes beyond the traditional lower-level curriculum is increasingly important for students of the mathematical sciences. Although many applications involve only real numbers, a solid understanding of complex arithmetic often sheds significant light. Many instructors are unaware of the opportunities afforded by…

  8. Tasks That Promote Functional Reasoning in Early Elementary School Students

    ERIC Educational Resources Information Center

    Payne, Nancy Tilley

    2012-01-01

    Algebra is often described as the gateway to higher mathematics (Carpenter, Franke, & Levi, 2003; Kaput, 2008; Kaput & Blanton, 2001; Mason, 2008). Unfortunately, many students do not navigate this gateway successfully. Kaput (2008) and Mason (2008) suggested that this is due in part to the abrupt switch from arithmetic to algebra that…

  9. Redundant binary number representation for an inherently parallel arithmetic on optical computers.

    PubMed

    De Biase, G A; Massini, A

    1993-02-10

    A simple redundant binary number representation suitable for digital-optical computers is presented. By means of this representation it is possible to build an arithmetic with carry-free parallel algebraic sums carried out in constant time and parallel multiplication in log N time. This redundant number representation naturally fits the 2's complement binary number system and permits the construction of inherently parallel arithmetic units that are used in various optical technologies. Some properties of this number representation and several examples of computation are presented.

  10. The Model Method: Singapore Children's Tool for Representing and Solving Algebraic Word Problems

    ERIC Educational Resources Information Center

    Ng, Swee Fong; Lee, Kerry

    2009-01-01

    Solving arithmetic and algebraic word problems is a key component of the Singapore elementary mathematics curriculum. One heuristic taught, the model method, involves drawing a diagram to represent key information in the problem. We describe the model method and a three-phase theoretical framework supporting its use. We conducted 2 studies to…

  11. IBM system/360 assembly language interval arithmetic software

    NASA Technical Reports Server (NTRS)

    Phillips, E. J.

    1972-01-01

    Computer software designed to perform interval arithmetic is described. An interval is defined as the set of all real numbers between two given numbers including or excluding one or both endpoints. Interval arithmetic consists of the various elementary arithmetic operations defined on the set of all intervals, such as interval addition, subtraction, union, etc. One of the main applications of interval arithmetic is in the area of error analysis of computer calculations. For example, it has been used sucessfully to compute bounds on sounding errors in the solution of linear algebraic systems, error bounds in numerical solutions of ordinary differential equations, as well as integral equations and boundary value problems. The described software enables users to implement algorithms of the type described in references efficiently on the IBM 360 system.

  12. Acquiring Procedural Skills from Lesson Sequences.

    DTIC Science & Technology

    1985-08-13

    Teachers of Mathematics . Washington, D)C: NCTM . Brueckner, I..J. (1930) Diagnostic aund remedial teaching in arithmetic. Philadelphia. PA: Winston. Burton...arithmetic and algebra, fr-m multi-lesson curricula. The central hypothesis is that students and teachers obey cc: :-.entions that cause the goal hierarchy...students and • . teachers obey conventions that cause the goal hierarchy of the acquired procedure to be a particular structural function of the sequential

  13. A Symbolic Dance: The Interplay between Movement, Notation, and Mathematics on a Journey toward Solving Equations

    ERIC Educational Resources Information Center

    Hewitt, Dave

    2014-01-01

    This article analyzes the use of the software Grid Algebra with a mixed ability class of 21 nine-to-ten-year-old students who worked with complex formal notation involving all four arithmetic operations. Unlike many other models to support learning, Grid Algebra has formal notation ever present and allows students to "look through" that…

  14. What Kinds of Numbers Do Students Assign to Literal Symbols? Aspects of the Transition from Arithmetic to Algebra

    ERIC Educational Resources Information Center

    Christou, Konstantinos P.; Vosniadou, Stella

    2012-01-01

    Three experiments used multiple methods--open-ended assessments, multiple-choice questionnaires, and interviews--to investigate the hypothesis that the development of students' understanding of the concept of real variable in algebra may be influenced in fundamental ways by their initial concept of number, which seems to be organized around the…

  15. Programmed First Course in Algebra, Revised Form H, Student's Text, Part I, Unit 60.

    ERIC Educational Resources Information Center

    Buck, R. Creighton; And Others

    This is part one of a two-part SMSG Programed Algebra Text for high school students. The general plan of the course is to build upon the student's experience with arithmetic. The student is initially led to extract from his or her experience the fundamental properties of addition and multiplication. The text then introduces negative real numbers…

  16. Category-theoretic models of algebraic computer systems

    NASA Astrophysics Data System (ADS)

    Kovalyov, S. P.

    2016-01-01

    A computer system is said to be algebraic if it contains nodes that implement unconventional computation paradigms based on universal algebra. A category-based approach to modeling such systems that provides a theoretical basis for mapping tasks to these systems' architecture is proposed. The construction of algebraic models of general-purpose computations involving conditional statements and overflow control is formally described by a reflector in an appropriate category of algebras. It is proved that this reflector takes the modulo ring whose operations are implemented in the conventional arithmetic processors to the Łukasiewicz logic matrix. Enrichments of the set of ring operations that form bases in the Łukasiewicz logic matrix are found.

  17. Learning to Apply Algebra in the Community for Adults With Intellectual Developmental Disabilities.

    PubMed

    Rodriguez, Anthony M

    2016-02-01

    Students with intellectual and developmental disabilities (IDD) are routinely excluded from algebra and other high-level mathematics courses. High school students with IDD take courses in arithmetic and life skills rather than having an opportunity to learn algebra. Yet algebra skills can support the learning of money and budgeting skills. This study explores the feasibility of algebra instruction for adults with IDD through an experimental curriculum. Ten individuals with IDD participated in a 6-week course framing mathematics concepts within the context of everyday challenges in handling money. The article explores classroom techniques, discusses student strategies, and proposes possible avenues for future research analyzing mathematics instructional design strategies for individuals with IDD.

  18. Fault tolerant computing: A preamble for assuring viability of large computer systems

    NASA Technical Reports Server (NTRS)

    Lim, R. S.

    1977-01-01

    The need for fault-tolerant computing is addressed from the viewpoints of (1) why it is needed, (2) how to apply it in the current state of technology, and (3) what it means in the context of the Phoenix computer system and other related systems. To this end, the value of concurrent error detection and correction is described. User protection, program retry, and repair are among the factors considered. The technology of algebraic codes to protect memory systems and arithmetic codes to protect memory systems and arithmetic codes to protect arithmetic operations is discussed.

  19. Classical versus Computer Algebra Methods in Elementary Geometry

    ERIC Educational Resources Information Center

    Pech, Pavel

    2005-01-01

    Computer algebra methods based on results of commutative algebra like Groebner bases of ideals and elimination of variables make it possible to solve complex, elementary and non elementary problems of geometry, which are difficult to solve using a classical approach. Computer algebra methods permit the proof of geometric theorems, automatic…

  20. Children's understanding of fraction and decimal symbols and the notation-specific relation to pre-algebra ability.

    PubMed

    Hurst, Michelle A; Cordes, Sara

    2018-04-01

    Fraction and decimal concepts are notoriously difficult for children to learn yet are a major component of elementary and middle school math curriculum and an important prerequisite for higher order mathematics (i.e., algebra). Thus, recently there has been a push to understand how children think about rational number magnitudes in order to understand how to promote rational number understanding. However, prior work investigating these questions has focused almost exclusively on fraction notation, overlooking the open questions of how children integrate rational number magnitudes presented in distinct notations (i.e., fractions, decimals, and whole numbers) and whether understanding of these distinct notations may independently contribute to pre-algebra ability. In the current study, we investigated rational number magnitude and arithmetic performance in both fraction and decimal notation in fourth- to seventh-grade children. We then explored how these measures of rational number ability predicted pre-algebra ability. Results reveal that children do represent the magnitudes of fractions and decimals as falling within a single numerical continuum and that, despite greater experience with fraction notation, children are more accurate when processing decimal notation than when processing fraction notation. Regression analyses revealed that both magnitude and arithmetic performance predicted pre-algebra ability, but magnitude understanding may be particularly unique and depend on notation. The educational implications of differences between children in the current study and previous work with adults are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Discrimination in a General Algebraic Setting

    PubMed Central

    Fine, Benjamin; Lipschutz, Seymour; Spellman, Dennis

    2015-01-01

    Discriminating groups were introduced by G. Baumslag, A. Myasnikov, and V. Remeslennikov as an outgrowth of their theory of algebraic geometry over groups. Algebraic geometry over groups became the main method of attack on the solution of the celebrated Tarski conjectures. In this paper we explore the notion of discrimination in a general universal algebra context. As an application we provide a different proof of a theorem of Malcev on axiomatic classes of Ω-algebras. PMID:26171421

  2. Arithmetic and algebraic problem solving and resource allocation: the distinct impact of fluid and numerical intelligence.

    PubMed

    Dix, Annika; van der Meer, Elke

    2015-04-01

    This study investigates cognitive resource allocation dependent on fluid and numerical intelligence in arithmetic/algebraic tasks varying in difficulty. Sixty-six 11th grade students participated in a mathematical verification paradigm, while pupil dilation as a measure of resource allocation was collected. Students with high fluid intelligence solved the tasks faster and more accurately than those with average fluid intelligence, as did students with high compared to average numerical intelligence. However, fluid intelligence sped up response times only in students with average but not high numerical intelligence. Further, high fluid but not numerical intelligence led to greater task-related pupil dilation. We assume that fluid intelligence serves as a domain-general resource that helps to tackle problems for which domain-specific knowledge (numerical intelligence) is missing. The allocation of this resource can be measured by pupil dilation. Copyright © 2014 Society for Psychophysiological Research.

  3. Brain activity associated with translation from a visual to a symbolic representation in algebra and geometry.

    PubMed

    Leikin, Mark; Waisman, Ilana; Shaul, Shelley; Leikin, Roza

    2014-03-01

    This paper presents a small part of a larger interdisciplinary study that investigates brain activity (using event related potential methodology) of male adolescents when solving mathematical problems of different types. The study design links mathematics education research with neurocognitive studies. In this paper we performed a comparative analysis of brain activity associated with the translation from visual to symbolic representations of mathematical objects in algebra and geometry. Algebraic tasks require translation from graphical to symbolic representation of a function, whereas tasks in geometry require translation from a drawing of a geometric figure to a symbolic representation of its property. The findings demonstrate that electrical activity associated with the performance of geometrical tasks is stronger than that associated with solving algebraic tasks. Additionally, we found different scalp topography of the brain activity associated with algebraic and geometric tasks. Based on these results, we argue that problem solving in algebra and geometry is associated with different patterns of brain activity.

  4. The role of difficulty and gender in numbers, algebra, geometry and mathematics achievement

    NASA Astrophysics Data System (ADS)

    Rabab'h, Belal Sadiq Hamed; Veloo, Arsaythamby; Perumal, Selvan

    2015-05-01

    This study aims to identify the role of difficulty and gender in numbers, algebra, geometry and mathematics achievement among secondary schools students in Jordan. The respondent of the study were 337 students from eight public secondary school in Alkoura district by using stratified random sampling. The study comprised of 179 (53%) males and 158 (47%) females students. The mathematics test comprises of 30 items which has eight items for numbers, 14 items for algebra and eight items for geometry. Based on difficulties among male and female students, the findings showed that item 4 (fractions - 0.34) was most difficult for male students and item 6 (square roots - 0.39) for females in numbers. For the algebra, item 11 (inequality - 0.23) was most difficult for male students and item 6 (algebraic expressions - 0.35) for female students. In geometry, item 3 (reflection - 0.34) was most difficult for male students and item 8 (volume - 0.33) for female students. Based on gender differences, female students showed higher achievement in numbers and algebra compare to male students. On the other hand, there was no differences between male and female students achievement in geometry test. This study suggest that teachers need to give more attention on numbers and algebra when teaching mathematics.

  5. Exact solution of some linear matrix equations using algebraic methods

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1977-01-01

    A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.

  6. If Gravity is Geometry, is Dark Energy just Arithmetic?

    NASA Astrophysics Data System (ADS)

    Czachor, Marek

    2017-04-01

    Arithmetic operations (addition, subtraction, multiplication, division), as well as the calculus they imply, are non-unique. The examples of four-dimensional spaces, R+4 and (- L/2, L/2)4, are considered where different types of arithmetic and calculus coexist simultaneously. In all the examples there exists a non-Diophantine arithmetic that makes the space globally Minkowskian, and thus the laws of physics are formulated in terms of the corresponding calculus. However, when one switches to the `natural' Diophantine arithmetic and calculus, the Minkowskian character of the space is lost and what one effectively obtains is a Lorentzian manifold. I discuss in more detail the problem of electromagnetic fields produced by a pointlike charge. The solution has the standard form when expressed in terms of the non-Diophantine formalism. When the `natural' formalsm is used, the same solution looks as if the fields were created by a charge located in an expanding universe, with nontrivially accelerating expansion. The effect is clearly visible also in solutions of the Friedman equation with vanishing cosmological constant. All of this suggests that phenomena attributed to dark energy may be a manifestation of a miss-match between the arithmetic employed in mathematical modeling, and the one occurring at the level of natural laws. Arithmetic is as physical as geometry.

  7. Numerical algebraic geometry: a new perspective on gauge and string theories

    NASA Astrophysics Data System (ADS)

    Mehta, Dhagash; He, Yang-Hui; Hauensteine, Jonathan D.

    2012-07-01

    There is a rich interplay between algebraic geometry and string and gauge theories which has been recently aided immensely by advances in computational algebra. However, symbolic (Gröbner) methods are severely limited by algorithmic issues such as exponential space complexity and being highly sequential. In this paper, we introduce a novel paradigm of numerical algebraic geometry which in a plethora of situations overcomes these shortcomings. The so-called `embarrassing parallelizability' allows us to solve many problems and extract physical information which elude symbolic methods. We describe the method and then use it to solve various problems arising from physics which could not be otherwise solved.

  8. Calculator Cryptography.

    ERIC Educational Resources Information Center

    Hall, Matthew

    2003-01-01

    Uses cryptography to demonstrate the importance of algebra and the use of technology as an effective real application of mathematics. Explains simple encoding and decoding of messages for student learning of modular arithmetic. This elementary encounter with cryptography along with its historical and modern background serves to motivate student…

  9. The Problem-Solving Nemesis: Mindless Manipulation.

    ERIC Educational Resources Information Center

    Hawkins, Vincent J.

    1987-01-01

    Indicates that only 21% of respondents (secondary school math teachers) used computer-assisted instruction for tutorial work, physical models to interpret abstract concepts, or real-life application of the arithmetic or algebraic manipulation. Recommends that creative teaching methods be applied to problem solving. (NKA)

  10. The Slow Learner in Mathematics: Aids and Activities

    ERIC Educational Resources Information Center

    Maletsky, Evan M.

    1973-01-01

    Specific examples of effective use of multisensory aids are given. All can easily and inexpensively be made by the teacher or the students. Examples are grouped under the following major headings: number patterns, arithmetic skills, geometric concepts, algebraic concepts, and models. (LS)

  11. Early Understanding of Equality

    ERIC Educational Resources Information Center

    Leavy, Aisling; Hourigan, Mairéad; McMahon, Áine

    2013-01-01

    Quite a bit of the arithmetic in elementary school contains elements of algebraic reasoning. After researching and testing a number of instructional strategies with Irish third graders, these authors found effective methods for cultivating a relational concept of equality in third-grade students. Understanding equality is fundamental to algebraic…

  12. Calabi's conjecture and some new results in algebraic geometry

    PubMed Central

    Yau, Shing-Tung

    1977-01-01

    We announce a proof of Calabi's conjectures on the Ricci curvature of a compact Kähler manifold and then apply it to prove some new results in algebraic geometry and differential geometry. For example, we prove that the only Kähler structure on a complex projective space is the standard one. PMID:16592394

  13. Taiwanese Arithmetic and Algebra

    ERIC Educational Resources Information Center

    Lo, Jane-Jane; Tsai, Feng-Chiu

    2011-01-01

    Taiwanese students consistently rank near the top on international exams on mathematics and science. In 2007, Taiwan recorded the highest TIMSS math score for eighth grade. The central education agency in Taiwan publishes detailed mathematics curriculum guidelines, which textbooks and national exams follow closely. In May each year, all ninth…

  14. Visualizing the Arithmetic of Complex Numbers

    ERIC Educational Resources Information Center

    Soto-Johnson, Hortensia

    2014-01-01

    The Common Core State Standards Initiative stresses the importance of developing a geometric and algebraic understanding of complex numbers in their different forms (i.e., Cartesian, polar and exponential). Unfortunately, most high school textbooks do not offer such explanations much less exercises that encourage students to bridge geometric and…

  15. All-optical conversion scheme from binary to its MTN form with the help of nonlinear material based tree-net architecture

    NASA Astrophysics Data System (ADS)

    Maiti, Anup Kumar; Nath Roy, Jitendra; Mukhopadhyay, Sourangshu

    2007-08-01

    In the field of optical computing and parallel information processing, several number systems have been used for different arithmetic and algebraic operations. Therefore an efficient conversion scheme from one number system to another is very important. Modified trinary number (MTN) has already taken a significant role towards carry and borrow free arithmetic operations. In this communication, we propose a tree-net architecture based all optical conversion scheme from binary number to its MTN form. Optical switch using nonlinear material (NLM) plays an important role.

  16. Difficulties in initial algebra learning in Indonesia

    NASA Astrophysics Data System (ADS)

    Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja

    2014-12-01

    Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was significantly below the average student performance in other Southeast Asian countries such as Thailand, Malaysia, and Singapore. This fact gave rise to this study which aims to investigate Indonesian students' difficulties in algebra. In order to do so, a literature study was carried out on students' difficulties in initial algebra. Next, an individual written test on algebra tasks was administered, followed by interviews. A sample of 51 grade VII Indonesian students worked the written test, and 37 of them were interviewed afterwards. Data analysis revealed that mathematization, i.e., the ability to translate back and forth between the world of the problem situation and the world of mathematics and to reorganize the mathematical system itself, constituted the most frequently observed difficulty in both the written test and the interview data. Other observed difficulties concerned understanding algebraic expressions, applying arithmetic operations in numerical and algebraic expressions, understanding the different meanings of the equal sign, and understanding variables. The consequences of these findings on both task design and further research in algebra education are discussed.

  17. Photoelectric effect from observer's mathematics point of view

    NASA Astrophysics Data System (ADS)

    Khots, Boris; Khots, Dmitriy

    2014-12-01

    When we consider and analyze physical events with the purpose of creating corresponding models we often assume that the mathematical apparatus used in modeling is infallible. In particular, this relates to the use of infinity in various aspects and the use of Newton's definition of a limit in analysis. We believe that is where the main problem lies in contemporary study of nature. This work considers Physical aspects in a setting of arithmetic, algebra, geometry, analysis, topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided. In particular, we prove the following Theorems, which give Observer's Mathematics point of view on Einstein photoelectric effect theory and Lamb-Scully and Hanbury-Brown-Twiss experiments: Theorem 1. There are some values of light intensity where anticorrelation parameter A ∈ [0,1). Theorem 2. There are some values of light intensity where anticorrelation parameter A = 1. Theorem 3. There are some values of light intensity where anticorrelation parameter A > 1.

  18. Quantum Theory from Observer's Mathematics Point of View

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khots, Dmitriy; Khots, Boris

    2010-05-04

    This work considers the linear (time-dependent) Schrodinger equation, quantum theory of two-slit interference, wave-particle duality for single photons, and the uncertainty principle in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics, see [1]. Certain theoretical results and communications pertaining to these theorems are also provided.

  19. The Functionator 3000: Transforming Numbers and Children

    ERIC Educational Resources Information Center

    Fisher, Elaine Cerrato; Roy, George; Reeves, Charles

    2013-01-01

    Mrs. Fisher's class was learning about arithmetic functions by pretending to operate real-world "function machines" (Reeves 2006). Functions are a unifying mathematics topic, and a great deal of emphasis is placed on understanding them in prekindergarten through grade 12 (Kilpatrick and Izsák 2008). In its Algebra Content Standard, the…

  20. Math for Marines.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This course is designed to review the arithmetic skills used by many Marines in the daily pursuance of their duties. It consists of six study units: (1) number systems and operations; (2) fractions and percents; (3) introduction to algebra; (4) units of measurement (considering both the metric and United States systems); (5) geometric forms; and…

  1. Serving Young Gifted Math Students.

    ERIC Educational Resources Information Center

    Corazza, Luciano; And Others

    1995-01-01

    The Diagnostic Testing and Prescription model, developed by the Center for Talented Youth at Johns Hopkins University (MD), was implemented in seven sixth-grade classes at three Brooklyn schools. The selected 165 students were provided an accelerated curriculum (covering arithmetic, prealgebra, and in some cases, algebra) and completed from 1-2.5…

  2. Video Based Developmental Mathematics Learning System For Community College Students.

    ERIC Educational Resources Information Center

    Gormley, Tyrone D.

    The University of Maine at Augusta uses an individualized video-taped mathematics instructional system to eliminate students' math weaknesses before they attempt college math. The course, "1 Mth Developmental Mathematics," is part of the Educational Assistance Program and teaches basic skills and concepts of arithmetic and algebra. The…

  3. Fundamentals of Digital Logic.

    ERIC Educational Resources Information Center

    Noell, Monica L.

    This course is designed to prepare electronics personnel for further training in digital techniques, presenting need to know information that is basic to any maintenance course on digital equipment. It consists of seven study units: (1) binary arithmetic; (2) boolean algebra; (3) logic gates; (4) logic flip-flops; (5) nonlogic circuits; (6)…

  4. The algebraic decoding of the (41, 21, 9) quadratic residue code

    NASA Technical Reports Server (NTRS)

    Reed, Irving S.; Truong, T. K.; Chen, Xuemin; Yin, Xiaowei

    1992-01-01

    A new algebraic approach for decoding the quadratic residue (QR) codes, in particular the (41, 21, 9) QR code is presented. The key ideas behind this decoding technique are a systematic application of the Sylvester resultant method to the Newton identities associated with the code syndromes to find the error-locator polynomial, and next a method for determining error locations by solving certain quadratic, cubic and quartic equations over GF(2 exp m) in a new way which uses Zech's logarithms for the arithmetic. The algorithms developed here are suitable for implementation in a programmable microprocessor or special-purpose VLSI chip. It is expected that the algebraic methods developed here can apply generally to other codes such as the BCH and Reed-Solomon codes.

  5. Teacher's Guide to Secondary Mathematics.

    ERIC Educational Resources Information Center

    Duval County Schools, Jacksonville, FL.

    This is a teacher's guide to secondary school mathematics. Developed for use in the Duval County Public Schools, Jacksonville, Florida. Areas of mathematics covered are algebra, analysis, calculus, computer literacy, computer science, geometry, analytic geometry, general mathematics, consumer mathematics, pre-algebra, probability and statistics,…

  6. Origami, geometry and art

    NASA Astrophysics Data System (ADS)

    Wares, Arsalan; Elstak, Iwan

    2017-02-01

    The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra and geometry, like other branches of mathematics, are interrelated.

  7. Predicting course performance in freshman and sophomore physics courses: Women are more predictable than men

    NASA Astrophysics Data System (ADS)

    McCammon, Susan; Golden, Jeannie; Wuensch, Karl L.

    This study investigated the extent to which thinking skills and mathematical competency would predict the course performance of freshman and sophomore science majors enrolled in physics courses. Multiple-regression equations revealed that algebra and critical thinking skills were the best overall predictors across several physics courses. Although arithmetic skills, math anxiety, and primary mental abilities scores also correlated with performance, they were redundant with the algebra and critical thinking. The most surprising finding of the study was the differential validity by sex; predictor variables were successful in predicting course performance for women but not for men.

  8. Umbral Calculus and Holonomic Modules in Positive Characteristic

    NASA Astrophysics Data System (ADS)

    Kochubei, Anatoly N.

    2006-03-01

    In the framework of analysis over local fields of positive characteristic, we develop algebraic tools for introducing and investigating various polynomial systems. In this survey paper we describe a function field version of umbral calculus developed on the basis of a relation of binomial type satisfied by the Carlitz polynomials. We consider modules over the Weyl-Carlitz ring, a function field counterpart of the Weyl algebra. It is shown that some basic objects of function field arithmetic, like the Carlitz module, Thakur's hypergeometric polynomials, and analogs of binomial coefficients arising in the positive characteristic version of umbral calculus, generate holonomic modules.

  9. Associations of Non-Symbolic and Symbolic Numerical Magnitude Processing with Mathematical Competence: A Meta-Analysis

    ERIC Educational Resources Information Center

    Schneider, Michael; Beeres, Kassandra; Coban, Leyla; Merz, Simon; Schmidt, S. Susan; Stricker, Johannes; De Smedt, Bert

    2017-01-01

    Many studies have investigated the association between numerical magnitude processing skills, as assessed by the numerical magnitude comparison task, and broader mathematical competence, e.g. counting, arithmetic, or algebra. Most correlations were positive but varied considerably in their strengths. It remains unclear whether and to what extent…

  10. Contextualizing Arithmetic into Developmental Elementary Algebra Using Guided Problem Solving

    ERIC Educational Resources Information Center

    Guy, G. Michael; Cornick, Jonathan; Puri, Karan

    2016-01-01

    Many colleges are finding that the use of acceleration in developmental education is a promising direction for improved student progress toward a degree or certificate. Acceleration has been defined in the literature as the reorganization of curricula and instruction in ways that facilitate the completion of educational requirements in an…

  11. On Classification of Modular Categories by Rank: Table A.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruillard, Paul; Ng, Siu-Hung; Rowell, Eric C.

    2016-04-10

    The feasibility of a classification-by-rank program for modular categories follows from the Rank-Finiteness Theorem. We develop arithmetic, representation theoretic and algebraic methods for classifying modular categories by rank. As an application, we determine all possible fusion rules for all rank=5 modular categories and describe the corresponding monoidal equivalence classes.

  12. Stages in Constructing and Coordinating Units Additively and Multiplicatively (Part 2)

    ERIC Educational Resources Information Center

    Ulrich, Catherine

    2016-01-01

    This is the second of a two-part article that presents a theory of unit construction and coordination that underlies radical constructivist empirical studies of student learning ranging from young students' counting strategies to high school students' algebraic reasoning. In Part I, I discussed the formation of arithmetical units and composite…

  13. Stages in Constructing and Coordinating Units Additively and Multiplicatively (Part 1)

    ERIC Educational Resources Information Center

    Ulrich, Catherine

    2015-01-01

    This is the first of a two-part article that presents a theory of unit construction and coordination that underlies radical constructivist empirical studies of student learning ranging from young students' counting strategies to high school students' algebraic reasoning. My explanation starts with the formation of arithmetical units, which presage…

  14. Systems Engineering of Education V: Quantitative Concepts for Education Systems.

    ERIC Educational Resources Information Center

    Silvern, Leonard C.

    The fifth (of 14) volume of the Education and Training Consultant's (ETC) series on systems engineering of education is designed for readers who have completed others in the series. It reviews arithmetic and algebraic procedures and applies these to simple education and training systems. Flowchart models of example problems are developed and…

  15. Using Disks as Models for Proofs of Series

    ERIC Educational Resources Information Center

    Somchaipeng, Tongta; Kruatong, Tussatrin; Panijpan, Bhinyo

    2012-01-01

    Exploring and deriving proofs of closed-form expressions for series can be fun for students. However, for some students, a physical representation of such problems is more meaningful. Various approaches have been designed to help students visualize squares of sums and sums of squares; these approaches may be arithmetic-algebraic or combinatorial…

  16. A Comparative Study of Student Math Skills: Perceptions, Validation, and Recommendations

    ERIC Educational Resources Information Center

    Jones, Thomas W.; Price, Barbara A.; Randall, Cindy H.

    2011-01-01

    A study was conducted at a southern university in sophomore level production classes to assess skills such as the order of arithmetic operations, decimal and percent conversion, solving of algebraic expressions, and evaluation of formulas. The study was replicated using business statistics and quantitative analysis classes at a southeastern…

  17. Investigating middle school students’ difficulties in mathematical literacy problems level 1 and 2

    NASA Astrophysics Data System (ADS)

    Setiawati, S.; Herman, T.; Jupri, A.

    2017-11-01

    The background of this study is the lack of mathematical literacy skills of students. The proficiency of students’ mathematical literacy skills based on the results of the PISA 2015 study shows that Indonesian students at the proficiency level 1. This fact gave rise to this study which aims to investigate middle school students’ difficulties in mathematical literacy problems level 1 and 2. Qualitative research was used in this study. An individual written test on mathematical literacy problems was administered, followed by interviews. The subjects of the study were 61 students grade VII in Bandung and 26 of them were interviewed afterward. Data analysis revealed that students’ error in performing arithmetic most frequently observed. Other observed difficulties concerned understanding about algebra concept, applying arithmetic operation in algebraic expressions, and interpreting symbols to represent the unknown. In solving mathematical literacy problems, students use their prior knowledge, although sometimes not relevant to the questions. Based on the results, we suggest that mathematics learning in contextual learning and which invites students to participate in the processes of understanding the concepts.

  18. Working memory, worry, and algebraic ability.

    PubMed

    Trezise, Kelly; Reeve, Robert A

    2014-05-01

    Math anxiety (MA)-working memory (WM) relationships have typically been examined in the context of arithmetic problem solving, and little research has examined the relationship in other math domains (e.g., algebra). Moreover, researchers have tended to examine MA/worry separate from math problem solving activities and have used general WM tasks rather than domain-relevant WM measures. Furthermore, it seems to have been assumed that MA affects all areas of math. It is possible, however, that MA is restricted to particular math domains. To examine these issues, the current research assessed claims about the impact on algebraic problem solving of differences in WM and algebraic worry. A sample of 80 14-year-old female students completed algebraic worry, algebraic WM, algebraic problem solving, nonverbal IQ, and general math ability tasks. Latent profile analysis of worry and WM measures identified four performance profiles (subgroups) that differed in worry level and WM capacity. Consistent with expectations, subgroup membership was associated with algebraic problem solving performance: high WM/low worry>moderate WM/low worry=moderate WM/high worry>low WM/high worry. Findings are discussed in terms of the conceptual relationship between emotion and cognition in mathematics and implications for the MA-WM-performance relationship. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Misconceptions in Rational Numbers, Probability, Algebra, and Geometry

    ERIC Educational Resources Information Center

    Rakes, Christopher R.

    2010-01-01

    In this study, the author examined the relationship of probability misconceptions to algebra, geometry, and rational number misconceptions and investigated the potential of probability instruction as an intervention to address misconceptions in all 4 content areas. Through a review of literature, 5 fundamental concepts were identified that, if…

  20. A new application of algebraic geometry to systems theory

    NASA Technical Reports Server (NTRS)

    Martin, C. F.; Hermann, R.

    1976-01-01

    Following an introduction to algebraic geometry, the dominant morphism theorem is stated, and the application of this theorem to systems-theoretic problems, such as the feedback problem, is discussed. The Gaussian elimination method used for solving linear equations is shown to be an example of a dominant morphism.

  1. UCSMP Algebra. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2007

    2007-01-01

    "University of Chicago School Mathematics Project (UCSMP) Algebra," designed to increase students' skills in algebra, is appropriate for students in grades 7-10, depending on the students' incoming knowledge. This one-year course highlights applications, uses statistics and geometry to develop the algebra of linear equations and inequalities, and…

  2. Multilinear Computing and Multilinear Algebraic Geometry

    DTIC Science & Technology

    2016-08-10

    instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send...performance period of this project. 15. SUBJECT TERMS Tensors , multilinearity, algebraic geometry, numerical computations, computational tractability, high...Reset DISTRIBUTION A: Distribution approved for public release. DISTRIBUTION A: Distribution approved for public release. INSTRUCTIONS FOR COMPLETING

  3. Mathematics: Algebra and Geometry. GED Scoreboost.

    ERIC Educational Resources Information Center

    Hoyt, Cathy

    GED "Scoreboost" materials target exactly the skills one needs to pass the General Educational Development (GED) tests. This book focuses on the GED Mathematics test. To prepare for the test, the test taker needs to learn skills in number and operation sense, data and statistics, geometry and measurement, and algebra. To pass the test,…

  4. Role of linguistic skills in fifth-grade mathematics.

    PubMed

    Kleemans, Tijs; Segers, Eliane; Verhoeven, Ludo

    2018-03-01

    The current study investigated the direct and indirect relations between basic linguistic skills (i.e., phonological skills and grammatical ability) and advanced linguistic skills (i.e., academic vocabulary and verbal reasoning), on the one hand, and fifth-grade mathematics (i.e., arithmetic, geometry, and fractions), on the other, taking working memory and general intelligence into account and controlling for socioeconomic status, age, and gender. The results showed the basic linguistic representations of 167 fifth graders to be indirectly related to their geometric and fraction skills via arithmetic. Furthermore, advanced linguistic skills were found to be directly related to geometry and fractions after controlling for arithmetic. It can be concluded that linguistic skills directly and indirectly relate to mathematical ability in the upper grades of primary education, which highlights the importance of paying attention to such skills in the school curriculum. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Topical Modules in Secondary Mathematics. Final Project Report.

    ERIC Educational Resources Information Center

    Fresno City Unified School District, CA.

    Summative evaluation of an ESEA Title III project designed to raise the mathematics achievement scores of low achievers in grades 10 and 11 is reported. In a summer writing project, teachers developed 21 arithmetic modules and 11 algebra modules for use by students on an individual basis. Students used the modules at their own pace and stayed with…

  6. Substitution and Sameness: Two Components of a Relational Conception of the Equals Sign

    ERIC Educational Resources Information Center

    Jones, Ian; Inglis, Matthew; Gilmore, Camilla; Dowens, Margaret

    2012-01-01

    A sophisticated and flexible understanding of the equals sign (=) is important for arithmetic competence and for learning further mathematics, particularly algebra. Research has identified two common conceptions held by children: the equals sign as an operator and the equals sign as signaling the same value on both sides of the equation. We argue…

  7. Compound Interest Is As Easy As Pi. Teacher's Guide [and] Student Manual.

    ERIC Educational Resources Information Center

    Auman, L. Charles

    This document provides teaching guidelines and student material for a unit intended for use in 12th grade algebra classes. Time allotment is from four to six hours of classroom time. The objective of this capsule is to teach students how to solve compound interest problems using arithmetic, logorithms, and calculators. Prerequisites for the unit…

  8. The Cognitive Underpinnings of Emerging Mathematical Skills: Executive Functioning, Patterns, Numeracy, and Arithmetic

    ERIC Educational Resources Information Center

    Lee, Kerry; Ng, Swee Fong; Pe, Madeline Lee; Ang, Su Yin; Hasshim, Muhammad Nabil Azhar Mohd; Bull, Rebecca

    2012-01-01

    Background: Exposure to mathematical pattern tasks is often deemed important for developing children's algebraic thinking skills. Yet, there is a dearth of evidence on the cognitive underpinnings of pattern tasks and how early competencies on these tasks are related to later development. Aims: We examined the domain-specific and domain-general…

  9. Arithmetic and Algebra in the Schools: Recommendations for a Return to Reality.

    ERIC Educational Resources Information Center

    Ailles, Douglas S.; And Others

    The aim of this report is to suggest aspects of mathematics education that should be incorporated into curricula rather than to outline specific courses of study. General recommendations are made regarding curriculum, instructional methods, and textbooks. The suggestion that graphs and relations to be used as a unifying theme is followed by…

  10. Model Checking with Edge-Valued Decision Diagrams

    NASA Technical Reports Server (NTRS)

    Roux, Pierre; Siminiceanu, Radu I.

    2010-01-01

    We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library. We provide efficient algorithms for manipulating EVMDDs and review the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi- Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools. Compared to the CUDD package, our tool is several orders of magnitude faster

  11. Generalized Heisenberg Algebras, SUSYQM and Degeneracies: Infinite Well and Morse Potential

    NASA Astrophysics Data System (ADS)

    Hussin, Véronique; Marquette, Ian

    2011-03-01

    We consider classical and quantum one and two-dimensional systems with ladder operators that satisfy generalized Heisenberg algebras. In the classical case, this construction is related to the existence of closed trajectories. In particular, we apply these results to the infinite well and Morse potentials. We discuss how the degeneracies of the permutation symmetry of quantum two-dimensional systems can be explained using products of ladder operators. These products satisfy interesting commutation relations. The two-dimensional Morse quantum system is also related to a generalized two-dimensional Morse supersymmetric model. Arithmetical or accidental degeneracies of such system are shown to be associated to additional supersymmetry.

  12. Multi-loop Integrand Reduction with Computational Algebraic Geometry

    NASA Astrophysics Data System (ADS)

    Badger, Simon; Frellesvig, Hjalte; Zhang, Yang

    2014-06-01

    We discuss recent progress in multi-loop integrand reduction methods. Motivated by the possibility of an automated construction of multi-loop amplitudes via generalized unitarity cuts we describe a procedure to obtain a general parameterisation of any multi-loop integrand in a renormalizable gauge theory. The method relies on computational algebraic geometry techniques such as Gröbner bases and primary decomposition of ideals. We present some results for two and three loop amplitudes obtained with the help of the MACAULAY2 computer algebra system and the Mathematica package BASISDET.

  13. Algebra: Level II, Unit 8, Lesson 1; Powers and Roots: Lesson 2; Geometry: Lesson 3; Number Series: Lesson 4. Advanced General Education Program. A High School Self-Study Program.

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. Job Corps.

    This self-study program for high-school level contains lessons on: Algebra, Powers and Roots, Geometry, and Number Series. Each of the lessons concludes with a Mastery Test to be completed by the student. (DB)

  14. Analysis of Secondary School Students’ Algebraic Thinking and Math-Talk Learning Community to Help Students Learn

    NASA Astrophysics Data System (ADS)

    Nurhayati, D. M.; Herman, T.; Suhendra, S.

    2017-09-01

    This study aims to determine the difficulties of algebraic thinking ability of students in one of secondary school on quadrilateral subject and to describe Math-Talk Learning Community as the alternative way that can be done to overcome the difficulties of the students’ algebraic thinking ability. Research conducted by using quantitative approach with descriptive method. The population in this research was all students of that school and twenty three students as the sample that was chosen by purposive sampling technique. Data of algebraic thinking were collected through essay test. The results showed the percentage of achievement of students’ algebraic thinking’s indicators on three aspects: a) algebra as generalized arithmetic with the indicators (conceptually based computational strategies and estimation); b) algebra as the language of mathematics (meaning of variables, variable expressions and meaning of solution); c) algebra as a tool for functions and mathematical modelling (representing mathematical ideas using equations, tables, or words and generalizing patterns and rules in real-world contexts) is still low. It is predicted that because the secondary school students was not familiar with the abstract problem and they are still at a semi-concrete stage where the stage of cognitive development is between concrete and abstract. Based on the percentage achievement of each indicators, it can be concluded that the level of achievement of student’s mathematical communication using conventional learning is still low, so students’ algebraic thinking ability need to be improved.

  15. Performance and Preparation: Alignment between Student Achievement, Teacher Ratings, and Parent Perceptions in Urban Middle-Grades Mathematics Classrooms

    ERIC Educational Resources Information Center

    Mowrey, Sascha C.; Farran, Dale C.

    2016-01-01

    The middle grades are a critical transition period in students' mathematics trajectories, as students move from arithmetic to the more complex and abstract concepts of algebra. Teachers' and parents' judgments of students' math abilities in these years are important to instructional planning and decision making for teachers, and can advise parents…

  16. From Arithmetic to Algebra: Sequences and Patterns as an Introductory Lesson in Seventh Grade Mathematics

    ERIC Educational Resources Information Center

    Aniban, Diana Grace; Chua, Von Christopher; Garcia, Jellen; Elipane, Levi Esteban

    2014-01-01

    Guided by the principles of lesson study as applied to microteaching, this paper discusses the results and conclusions of a series of activities done by some graduate students of De La Salle University, Philippines, in an attempt to test the applicability of the lesson--Sequence and Patterns--to facilitate the transition of seventh graders from…

  17. Geometrical Meaning of Arithmetic Series [Image Omitted], [Image Omitted] and [Image Omitted] in Terms of the Elementary Combinatorics

    ERIC Educational Resources Information Center

    Kobayashi, Yukio

    2011-01-01

    The formula [image omitted] is closely related to combinatorics through an elementary geometric exercise. This approach can be expanded to the formulas [image omitted], [image omitted] and [image omitted]. These formulas are also nice examples of showing two approaches, one algebraic and one combinatoric, to a problem of counting. (Contains 6…

  18. Quantum error-correcting codes from algebraic geometry codes of Castle type

    NASA Astrophysics Data System (ADS)

    Munuera, Carlos; Tenório, Wanderson; Torres, Fernando

    2016-10-01

    We study algebraic geometry codes producing quantum error-correcting codes by the CSS construction. We pay particular attention to the family of Castle codes. We show that many of the examples known in the literature in fact belong to this family of codes. We systematize these constructions by showing the common theory that underlies all of them.

  19. Commutative Algebras of Toeplitz Operators in Action

    NASA Astrophysics Data System (ADS)

    Vasilevski, Nikolai

    2011-09-01

    We will discuss a quite unexpected phenomenon in the theory of Toeplitz operators on the Bergman space: the existence of a reach family of commutative C*-algebras generated by Toeplitz operators with non-trivial symbols. As it tuns out the smoothness properties of symbols do not play any role in the commutativity, the symbols can be merely measurable. Everything is governed here by the geometry of the underlying manifold, the hyperbolic geometry of the unit disk. We mention as well that the complete characterization of these commutative C*-algebras of Toeplitz operators requires the Berezin quantization procedure. These commutative algebras come with a powerful research tool, the spectral type representation for the operators under study, which permit us to answer to many important questions in the area.

  20. Oleanna Math Program Materials.

    ERIC Educational Resources Information Center

    Coole, Walter A.

    This document is a collection of course outlines, syllabi, and test materials designed for several high school level and lower division mathematics courses taught in an auto-tutorial learning laboratory at Skagit Valley College (Washington). The courses included are: Pre-Algebra, Basic Algebra, Plan Geometry, Intermediate Algebra, Probability and…

  1. Classification of digital affine noncommutative geometries

    NASA Astrophysics Data System (ADS)

    Majid, Shahn; Pachoł, Anna

    2018-03-01

    It is known that connected translation invariant n-dimensional noncommutative differentials dxi on the algebra k[x1, …, xn] of polynomials in n-variables over a field k are classified by commutative algebras V on the vector space spanned by the coordinates. These data also apply to construct differentials on the Heisenberg algebra "spacetime" with relations [xμ, xν] = λΘμν, where Θ is an antisymmetric matrix, as well as to Lie algebras with pre-Lie algebra structures. We specialise the general theory to the field k =F2 of two elements, in which case translation invariant metrics (i.e., with constant coefficients) are equivalent to making V a Frobenius algebra. We classify all of these and their quantum Levi-Civita bimodule connections for n = 2, 3, with partial results for n = 4. For n = 2, we find 3 inequivalent differential structures admitting 1, 2, and 3 invariant metrics, respectively. For n = 3, we find 6 differential structures admitting 0, 1, 2, 3, 4, 7 invariant metrics, respectively. We give some examples for n = 4 and general n. Surprisingly, not all our geometries for n ≥ 2 have zero quantum Riemann curvature. Quantum gravity is normally seen as a weighted "sum" over all possible metrics but our results are a step towards a deeper approach in which we must also "sum" over differential structures. Over F2 we construct some of our algebras and associated structures by digital gates, opening up the possibility of "digital geometry."

  2. Assessing non-uniqueness: An algebraic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasco, Don W.

    Geophysical inverse problems are endowed with a rich mathematical structure. When discretized, most differential and integral equations of interest are algebraic (polynomial) in form. Techniques from algebraic geometry and computational algebra provide a means to address questions of existence and uniqueness for both linear and non-linear inverse problem. In a sense, the methods extend ideas which have proven fruitful in treating linear inverse problems.

  3. Implementing the Curriculum and Evaluation Standards: First-Year Algebra.

    ERIC Educational Resources Information Center

    Kysh, Judith

    1991-01-01

    Described is an alternative first year algebra program developed to bridge the gap between the NCTM's Curriculum and Evaluation Standards and institutional demands of schools. Increased attention is given to graphing as a context for algebra, calculator use, solving "memorable problems," and incorporating geometry concepts, while…

  4. Geometry and Algebra: Glow with the Flow. NASA Connect: Program 2 in the 2000-2001 Series.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    This teaching unit is designed to help students in grades 5 to 8 explore the concepts of geometry and algebra in the context of the force of drag. The units in the series have been developed to enhance and enrich mathematics, science, and technology education and to accommodate different teaching and learning styles. Each unit consists of…

  5. Perceptions of 9th and 10th Grade Students on How Their Environment, Cognition, and Behavior Motivate Them in Algebra and Geometry Courses

    ERIC Educational Resources Information Center

    Harootunian, Alen

    2012-01-01

    In this study, relationships were examined between students' perception of their cognition, behavior, environment, and motivation. The purpose of the research study was to explore the extent to which 9th and 10th grade students' perception of environment, cognition, and behavior can predict their motivation in Algebra and Geometry courses. A…

  6. Multiple solution of linear algebraic systems by an iterative method with recomputed preconditioner in the analysis of microstrip structures

    NASA Astrophysics Data System (ADS)

    Ahunov, Roman R.; Kuksenko, Sergey P.; Gazizov, Talgat R.

    2016-06-01

    A multiple solution of linear algebraic systems with dense matrix by iterative methods is considered. To accelerate the process, the recomputing of the preconditioning matrix is used. A priory condition of the recomputing based on change of the arithmetic mean of the current solution time during the multiple solution is proposed. To confirm the effectiveness of the proposed approach, the numerical experiments using iterative methods BiCGStab and CGS for four different sets of matrices on two examples of microstrip structures are carried out. For solution of 100 linear systems the acceleration up to 1.6 times, compared to the approach without recomputing, is obtained.

  7. Funny Face Contest: A Formative Assessment

    ERIC Educational Resources Information Center

    Colen, Yong S.

    2010-01-01

    Many American students begin their high school mathematics study with the algebra 1-geometry-algebra 2 sequence. After algebra 2, then, students with average or below-average mathematical ability face a dilemma in choosing their next mathematics course. For students to succeed in higher mathematics, understanding the concept of functions is…

  8. University of Chicago School Mathematics Project (UCSMP) Algebra. WWC Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2009

    2009-01-01

    University of Chicago School Mathematics Project (UCSMP) Algebra is a one-year course covering three primary topics: (1) linear and quadratic expressions, sentences, and functions; (2) exponential expressions and functions; and (3) linear systems. Topics from geometry, probability, and statistics are integrated with the appropriate algebra.…

  9. Proceedings of the Conference of the International Group for the Psychology of Mathematics Education (22nd, Stellenbosch, South Africa, July 12-17, 1998). Volume 2.

    ERIC Educational Resources Information Center

    Olivier, Alwyn, Ed.; Newstead, Karen, Ed.

    The second volume of this proceedings contains the first portion of the research reports. Papers include: (1) "Learning Algebraic Strategies Using a Computerized Balance Model" (James Aczel); (2) "Children's Perception of Multiplicative Structure in Diagrams" (Bjornar Alseth); (3) "A Discussion of Different Approaches to Arithmetic Teaching"…

  10. Measure for Measure: What Combining Diverse Measures Reveals about Children's Understanding of the Equal Sign as An Indicator of Mathematical Equality

    ERIC Educational Resources Information Center

    Matthews, Percival; Rittle-Johnson, Bethany; McEldoon, Katherine; Taylor, Roger

    2012-01-01

    Knowledge of the equal sign as an indicator of mathematical equality is foundational to children's mathematical development and serves as a key link between arithmetic and algebra. The current findings reaffirmed a past finding that diverse items can be integrated onto a single scale, revealed the wide variability in children's knowledge of the…

  11. Differential Geometry and Lie Groups for Physicists

    NASA Astrophysics Data System (ADS)

    Fecko, Marián.

    2006-10-01

    Introduction; 1. The concept of a manifold; 2. Vector and tensor fields; 3. Mappings of tensors induced by mappings of manifolds; 4. Lie derivative; 5. Exterior algebra; 6. Differential calculus of forms; 7. Integral calculus of forms; 8. Particular cases and applications of Stoke's Theorem; 9. Poincaré Lemma and cohomologies; 10. Lie Groups - basic facts; 11. Differential geometry of Lie Groups; 12. Representations of Lie Groups and Lie Algebras; 13. Actions of Lie Groups and Lie Algebras on manifolds; 14. Hamiltonian mechanics and symplectic manifolds; 15. Parallel transport and linear connection on M; 16. Field theory and the language of forms; 17. Differential geometry on TM and T*M; 18. Hamiltonian and Lagrangian equations; 19. Linear connection and the frame bundle; 20. Connection on a principal G-bundle; 21. Gauge theories and connections; 22. Spinor fields and Dirac operator; Appendices; Bibliography; Index.

  12. Differential Geometry and Lie Groups for Physicists

    NASA Astrophysics Data System (ADS)

    Fecko, Marián.

    2011-03-01

    Introduction; 1. The concept of a manifold; 2. Vector and tensor fields; 3. Mappings of tensors induced by mappings of manifolds; 4. Lie derivative; 5. Exterior algebra; 6. Differential calculus of forms; 7. Integral calculus of forms; 8. Particular cases and applications of Stoke's Theorem; 9. Poincaré Lemma and cohomologies; 10. Lie Groups - basic facts; 11. Differential geometry of Lie Groups; 12. Representations of Lie Groups and Lie Algebras; 13. Actions of Lie Groups and Lie Algebras on manifolds; 14. Hamiltonian mechanics and symplectic manifolds; 15. Parallel transport and linear connection on M; 16. Field theory and the language of forms; 17. Differential geometry on TM and T*M; 18. Hamiltonian and Lagrangian equations; 19. Linear connection and the frame bundle; 20. Connection on a principal G-bundle; 21. Gauge theories and connections; 22. Spinor fields and Dirac operator; Appendices; Bibliography; Index.

  13. Integrand-level reduction of loop amplitudes by computational algebraic geometry methods

    NASA Astrophysics Data System (ADS)

    Zhang, Yang

    2012-09-01

    We present an algorithm for the integrand-level reduction of multi-loop amplitudes of renormalizable field theories, based on computational algebraic geometry. This algorithm uses (1) the Gröbner basis method to determine the basis for integrand-level reduction, (2) the primary decomposition of an ideal to classify all inequivalent solutions of unitarity cuts. The resulting basis and cut solutions can be used to reconstruct the integrand from unitarity cuts, via polynomial fitting techniques. The basis determination part of the algorithm has been implemented in the Mathematica package, BasisDet. The primary decomposition part can be readily carried out by algebraic geometry softwares, with the output of the package BasisDet. The algorithm works in both D = 4 and D = 4 - 2 ɛ dimensions, and we present some two and three-loop examples of applications of this algorithm.

  14. Algebraic geometry and Bethe ansatz. Part I. The quotient ring for BAE

    NASA Astrophysics Data System (ADS)

    Jiang, Yunfeng; Zhang, Yang

    2018-03-01

    In this paper and upcoming ones, we initiate a systematic study of Bethe ansatz equations for integrable models by modern computational algebraic geometry. We show that algebraic geometry provides a natural mathematical language and powerful tools for understanding the structure of solution space of Bethe ansatz equations. In particular, we find novel efficient methods to count the number of solutions of Bethe ansatz equations based on Gröbner basis and quotient ring. We also develop analytical approach based on companion matrix to perform the sum of on-shell quantities over all physical solutions without solving Bethe ansatz equations explicitly. To demonstrate the power of our method, we revisit the completeness problem of Bethe ansatz of Heisenberg spin chain, and calculate the sum rules of OPE coefficients in planar N=4 super-Yang-Mills theory.

  15. Prime factorization using quantum annealing and computational algebraic geometry

    NASA Astrophysics Data System (ADS)

    Dridi, Raouf; Alghassi, Hedayat

    2017-02-01

    We investigate prime factorization from two perspectives: quantum annealing and computational algebraic geometry, specifically Gröbner bases. We present a novel autonomous algorithm which combines the two approaches and leads to the factorization of all bi-primes up to just over 200000, the largest number factored to date using a quantum processor. We also explain how Gröbner bases can be used to reduce the degree of Hamiltonians.

  16. Carnegie Learning Curricula and Cognitive Tutor™. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2013

    2013-01-01

    "Carnegie Learning Curricula and Cognitive Tutor"®, published by Carnegie Learning, is a secondary math curricula that offers textbooks and interactive software to provide individualized, self-paced instruction based on student needs. The program includes pre-Algebra, Algebra I, Algebra II, and Geometry, as well as a three-course series…

  17. Lectures on Kähler Geometry - Series: London Mathematical Society Student Texts (No. 69)

    NASA Astrophysics Data System (ADS)

    Moroianu, Andrei

    2004-03-01

    Kähler geometry is a beautiful and intriguing area of mathematics, of substantial research interest to both mathematicians and physicists. This self-contained graduate text provides a concise and accessible introduction to the topic. The book begins with a review of basic differential geometry, before moving on to a description of complex manifolds and holomorphic vector bundles. Kähler manifolds are discussed from the point of view of Riemannian geometry, and Hodge and Dolbeault theories are outlined, together with a simple proof of the famous Kähler identities. The final part of the text studies several aspects of compact Kähler manifolds: the Calabi conjecture, Weitzenböck techniques, Calabi Yau manifolds, and divisors. All sections of the book end with a series of exercises and students and researchers working in the fields of algebraic and differential geometry and theoretical physics will find that the book provides them with a sound understanding of this theory. The first graduate-level text on Kähler geometry, providing a concise introduction for both mathematicians and physicists with a basic knowledge of calculus in several variables and linear algebra Over 130 exercises and worked examples Self-contained and presents varying viewpoints including Riemannian, complex and algebraic

  18. Prime factorization using quantum annealing and computational algebraic geometry

    PubMed Central

    Dridi, Raouf; Alghassi, Hedayat

    2017-01-01

    We investigate prime factorization from two perspectives: quantum annealing and computational algebraic geometry, specifically Gröbner bases. We present a novel autonomous algorithm which combines the two approaches and leads to the factorization of all bi-primes up to just over 200000, the largest number factored to date using a quantum processor. We also explain how Gröbner bases can be used to reduce the degree of Hamiltonians. PMID:28220854

  19. Mapping Computation with No Memory

    NASA Astrophysics Data System (ADS)

    Burckel, Serge; Gioan, Emeric; Thomé, Emmanuel

    We investigate the computation of mappings from a set S n to itself with in situ programs, that is using no extra variables than the input, and performing modifications of one component at a time. We consider several types of mappings and obtain effective computation and decomposition methods, together with upper bounds on the program length (number of assignments). Our technique is combinatorial and algebraic (graph coloration, partition ordering, modular arithmetics).

  20. Combining Automated Theorem Provers with Symbolic Algebraic Systems: Position Paper

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Koga, Dennis (Technical Monitor)

    1999-01-01

    In contrast to pure mathematical applications where automated theorem provers (ATPs) are quite capable, proof tasks arising form real-world applications from the area of Software Engineering show quite different characteristics: they usually do not only contain much arithmetic (albeit often quite simple one), but they also often contain reasoning about specific structures (e.g. graphics, sets). Thus, an ATP must be capable of performing reasoning together with a fair amount of simplification, calculation and solving. Therefore, powerful simplifiers and other (symbolic and semi-symbolic) algorithms seem to be ideally suited to augment ATPs. In the following we shortly describe two major points of interest in combining SASs (symbolic algebraic systems) with top-down automated theorem provers (here: SETHEO [Let92, GLMS94]).

  1. Packing a Box with Bricks.

    ERIC Educational Resources Information Center

    Jepsen, Charles H.

    1991-01-01

    Presented are solutions to variations of a combinatorics problem from a recent International Mathematics Olympiad. In particular, the matrix algebra solution illustrates an interaction among the undergraduate areas of geometry, combinatorics, linear algebra, and group theory. (JJK)

  2. Deriving Laws from Ordering Relations

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.

    2003-01-01

    It took much effort in the early days of non-Euclidean geometry to break away from the mindset that all spaces are flat and that two distinct parallel lines do not cross. Up to that point, all that was known was Euclidean geometry, and it was difficult to imagine anything else. We have suffered a similar handicap brought on by the enormous relevance of Boolean algebra to the problems of our age-logic and set theory. Previously, I demonstrated that the algebra of questions is not Boolean, but rather is described by the free distributive algebra. To get to this stage took much effort, as many obstacles-most self-placed-had to be overcome. As Boolean algebras were all I had ever known, it was almost impossible for me to imagine working with an algebra where elements do not have complements. With this realization, it became very clear that the sum and product rules of probability theory at the most basic level had absolutely nothing to do with the Boolean algebra of logical statements. Instead, a measure of degree of inclusion can be invented for many different partially ordered sets, and the sum and product rules fall out of the associativity and distributivity of the algebra. To reinforce this very important idea, this paper will go over how these constructions are made, while focusing on the underlying assumptions. I will derive the sum and product rules for a distributive lattice in general and demonstrate how this leads to probability theory on the Boolean lattice and is related to the calculus of quantum mechanical amplitudes on the partially ordered set of experimental setups. I will also discuss the rules that can be derived from modular lattices and their relevance to the cross-ratio of projective geometry.

  3. Matrix De Rham Complex and Quantum A-infinity algebras

    NASA Astrophysics Data System (ADS)

    Barannikov, S.

    2014-04-01

    I establish the relation of the non-commutative BV-formalism with super-invariant matrix integration. In particular, the non-commutative BV-equation, defining the quantum A ∞-algebras, introduced in Barannikov (Modular operads and non-commutative Batalin-Vilkovisky geometry. IMRN, vol. 2007, rnm075. Max Planck Institute for Mathematics 2006-48, 2007), is represented via de Rham differential acting on the supermatrix spaces related with Bernstein-Leites simple associative algebras with odd trace q( N), and gl( N| N). I also show that the matrix Lagrangians from Barannikov (Noncommutative Batalin-Vilkovisky geometry and matrix integrals. Isaac Newton Institute for Mathematical Sciences, Cambridge University, 2006) are represented by equivariantly closed differential forms.

  4. Model-Checking with Edge-Valued Decision Diagrams

    NASA Technical Reports Server (NTRS)

    Roux, Pierre; Siminiceanu, Radu I.

    2010-01-01

    We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library along with state-of-the-art algorithms for building the transition relation and the state space of discrete state systems. We provide efficient algorithms for manipulating EVMDDs and give upper bounds of the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi-Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools: EVMDDs for encoding arithmetic expressions, identity-reduced MDDs for representing the transition relation, and the saturation algorithm for reachability analysis. We compare our new symbolic model checking EVMDD library with the widely used CUDD package and show that, in many cases, our tool is several orders of magnitude faster than CUDD.

  5. MULTIVARIATERESIDUES : A Mathematica package for computing multivariate residues

    NASA Astrophysics Data System (ADS)

    Larsen, Kasper J.; Rietkerk, Robbert

    2018-01-01

    Multivariate residues appear in many different contexts in theoretical physics and algebraic geometry. In theoretical physics, they for example give the proper definition of generalized-unitarity cuts, and they play a central role in the Grassmannian formulation of the S-matrix by Arkani-Hamed et al. In realistic cases their evaluation can be non-trivial. In this paper we provide a Mathematica package for efficient evaluation of multivariate residues based on methods from computational algebraic geometry.

  6. Hearing the irrational: music and the development of the modern concept of number.

    PubMed

    Pesic, Peter

    2010-09-01

    Because the modern concept of number emerged within a quadrivium that included music alongside arithmetic, geometry, and astronomy, musical considerations affected mathematical developments. Michael Stifel embedded the then-paradoxical term "irrational numbers" (numerici irrationales) in a musical context (1544), though his philosophical aversion to the "cloud of infinity" surrounding such numbers finally outweighed his musical arguments in their favor. Girolamo Cardano gave the same status to irrational and rational quantities in his algebra (1545), for which his contemporaneous work on music suggested parallels and empirical examples. Nicola Vicentino's attempt to revive ancient "enharmonic" music (1555) required and hence defended the use of "irrational proportions" (proportiones inrationales) as if they were numbers. These developments emerged in richly interactive social and cultural milieus whose participants interwove musical and mathematical interests so closely that their intense controversies about ancient Greek music had repercussions for mathematics as well. The musical interests of Stifel, Cardano, and Vicentino influenced their respective treatments of "irrational numbers." Practical as well as theoretical music both invited and opened the way for the recognition of a radically new concept of number, even in the teeth of paradox.

  7. Geometric Algebra for Physicists

    NASA Astrophysics Data System (ADS)

    Doran, Chris; Lasenby, Anthony

    2007-11-01

    Preface; Notation; 1. Introduction; 2. Geometric algebra in two and three dimensions; 3. Classical mechanics; 4. Foundations of geometric algebra; 5. Relativity and spacetime; 6. Geometric calculus; 7. Classical electrodynamics; 8. Quantum theory and spinors; 9. Multiparticle states and quantum entanglement; 10. Geometry; 11. Further topics in calculus and group theory; 12. Lagrangian and Hamiltonian techniques; 13. Symmetry and gauge theory; 14. Gravitation; Bibliography; Index.

  8. Finite-dimensional integrable systems: A collection of research problems

    NASA Astrophysics Data System (ADS)

    Bolsinov, A. V.; Izosimov, A. M.; Tsonev, D. M.

    2017-05-01

    This article suggests a series of problems related to various algebraic and geometric aspects of integrability. They reflect some recent developments in the theory of finite-dimensional integrable systems such as bi-Poisson linear algebra, Jordan-Kronecker invariants of finite dimensional Lie algebras, the interplay between singularities of Lagrangian fibrations and compatible Poisson brackets, and new techniques in projective geometry.

  9. Exact evaluations of some Meijer G-functions and probability of all eigenvalues real for the product of two Gaussian matrices

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh

    2015-11-01

    We provide a proof to a recent conjecture by Forrester (2014 J. Phys. A: Math. Theor. 47 065202) regarding the algebraic and arithmetic structure of Meijer G-functions which appear in the expression for probability of all eigenvalues real for the product of two real Gaussian matrices. In the process we come across several interesting identities involving Meijer G-functions.

  10. Fundamentals of the Design and the Operation of an Intelligent Tutoring System for the Learning of the Arithmetical and Algebraic Way of Solving Word Problems

    ERIC Educational Resources Information Center

    Arnau, David; Arevalillo-Herraez, Miguel; Puig, Luis; Gonzalez-Calero, Jose Antonio

    2013-01-01

    Designers of interactive learning environments with a focus on word problem solving usually have to compromise between the amount of resolution paths that a user is allowed to follow and the quality of the feedback provided. We have built an intelligent tutoring system (ITS) that is able to both track the user's actions and provide adequate…

  11. A Mathematics Software Database Update.

    ERIC Educational Resources Information Center

    Cunningham, R. S.; Smith, David A.

    1987-01-01

    Contains an update of an earlier listing of software for mathematics instruction at the college level. Topics are: advanced mathematics, algebra, calculus, differential equations, discrete mathematics, equation solving, general mathematics, geometry, linear and matrix algebra, logic, statistics and probability, and trigonometry. (PK)

  12. The 1984 ARI Survey of Army Recruits: Supplementary User’s Manual for October 1984/February 1985 Administration

    DTIC Science & Technology

    1986-05-01

    league baseball playoffs 106. World Series 116. Which of the following mathematics 107. NBA basketball and technical courses, if any, did you take and pass...baseball playoffs 94. World Series (Mark all that apply) 95. NBA bdsketball A. Elementary Algebra B. Plane Geometry e 96. College basketball C...in high school? 108. College basketball (Mark all that apply) 109. NHL hockey A. Elementary Algebra 110. Professional wrestling S. Plane Geometry C

  13. Geometry of quantum state manifolds generated by the Lie algebra operators

    NASA Astrophysics Data System (ADS)

    Kuzmak, A. R.

    2018-03-01

    The Fubini-Study metric of quantum state manifold generated by the operators which satisfy the Heisenberg Lie algebra is calculated. The similar problem is studied for the manifold generated by the so(3) Lie algebra operators. Using these results, we calculate the Fubini-Study metrics of state manifolds generated by the position and momentum operators. Also the metrics of quantum state manifolds generated by some spin systems are obtained. Finally, we generalize this problem for operators of an arbitrary Lie algebra.

  14. A Hierarchy of Proof Rules for Checking Differential Invariance of Algebraic Sets

    DTIC Science & Technology

    2014-11-01

    linear hybrid systems by linear algebraic methods. In SAS, volume 6337 of LNCS, pages 373–389. Springer, 2010. [19] E. W. Mayr. Membership in polynomial...383–394, 2009. [31] A. Tarski. A decision method for elementary algebra and geometry. Bull. Amer. Math. Soc., 59, 1951. [32] A. Tiwari. Abstractions...A Hierarchy of Proof Rules for Checking Differential Invariance of Algebraic Sets Khalil Ghorbal1 Andrew Sogokon2 André Platzer1 November 2014 CMU

  15. Geometry for Pie Lovers.

    ERIC Educational Resources Information Center

    Fisher, William

    1982-01-01

    An approach to the instruction of maxima and minima problems that works with tools of geometry and algebra is presented. The focus is on a classic pie-cutting problem, which is viewed as an interesting and instructive task that is an excellent application of transformation geometry. (MP)

  16. Topics for Mathematics Clubs.

    ERIC Educational Resources Information Center

    Dalton, LeRoy C., Ed.; Snyder, Henry D., Ed.

    The ten chapters in this booklet cover topics not ordinarily discussed in the classroom: Fibonacci sequences, projective geometry, groups, infinity and transfinite numbers, Pascal's Triangle, topology, experiments with natural numbers, non-Euclidean geometries, Boolean algebras, and the imaginary and the infinite in geometry. Each chapter is…

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwala, Susama; Delaney, Colleen

    This paper defines a generalization of the Connes-Moscovici Hopf algebra, H(1), that contains the entire Hopf algebra of rooted trees. A relationship between the former, a much studied object in non-commutative geometry, and the latter, a much studied object in perturbative quantum field theory, has been established by Connes and Kreimer. The results of this paper open the door to study the cohomology of the Hopf algebra of rooted trees.

  18. Problem Solving in Calculus with Symbolic Geometry and CAS

    ERIC Educational Resources Information Center

    Todd, Philip; Wiechmann, James

    2008-01-01

    Computer algebra systems (CAS) have been around for a number of years, as has dynamic geometry. Symbolic geometry software is new. It bears a superficial similarity to dynamic geometry software, but differs in that problems may be set up involving symbolic variables and constants, and measurements are given as symbolic expressions. Mathematical…

  19. A Electro-Optical Image Algebra Processing System for Automatic Target Recognition

    NASA Astrophysics Data System (ADS)

    Coffield, Patrick Cyrus

    The proposed electro-optical image algebra processing system is designed specifically for image processing and other related computations. The design is a hybridization of an optical correlator and a massively paralleled, single instruction multiple data processor. The architecture of the design consists of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined in terms of basic operations of an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how it implements the natural decomposition of algebraic functions into spatially distributed, point use operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The implementation of the proposed design may be accomplished in many ways. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control a large variety of the arithmetic and logic operations of the image algebra's generalized matrix product. The generalized matrix product is the most powerful fundamental operation in the algebra, thus allowing a wide range of applications. No other known device or design has made this claim of processing speed and general implementation of a heterogeneous image algebra.

  20. Development of abstract mathematical reasoning: the case of algebra

    PubMed Central

    Susac, Ana; Bubic, Andreja; Vrbanc, Andrija; Planinic, Maja

    2014-01-01

    Algebra typically represents the students’ first encounter with abstract mathematical reasoning and it therefore causes significant difficulties for students who still reason concretely. The aim of the present study was to investigate the developmental trajectory of the students’ ability to solve simple algebraic equations. 311 participants between the ages of 13 and 17 were given a computerized test of equation rearrangement. Equations consisted of an unknown and two other elements (numbers or letters), and the operations of multiplication/division. The obtained results showed that younger participants are less accurate and slower in solving equations with letters (symbols) than those with numbers. This difference disappeared for older participants (16–17 years), suggesting that they had reached an abstract reasoning level, at least for this simple task. A corresponding conclusion arises from the analysis of their strategies which suggests that younger participants mostly used concrete strategies such as inserting numbers, while older participants typically used more abstract, rule-based strategies. These results indicate that the development of algebraic thinking is a process which unfolds over a long period of time. In agreement with previous research, we can conclude that, on average, children at the age of 15–16 transition from using concrete to abstract strategies while solving the algebra problems addressed within the present study. A better understanding of the timing and speed of students’ transition from concrete arithmetic reasoning to abstract algebraic reasoning might help in designing better curricula and teaching materials that would ease that transition. PMID:25228874

  1. Development of abstract mathematical reasoning: the case of algebra.

    PubMed

    Susac, Ana; Bubic, Andreja; Vrbanc, Andrija; Planinic, Maja

    2014-01-01

    Algebra typically represents the students' first encounter with abstract mathematical reasoning and it therefore causes significant difficulties for students who still reason concretely. The aim of the present study was to investigate the developmental trajectory of the students' ability to solve simple algebraic equations. 311 participants between the ages of 13 and 17 were given a computerized test of equation rearrangement. Equations consisted of an unknown and two other elements (numbers or letters), and the operations of multiplication/division. The obtained results showed that younger participants are less accurate and slower in solving equations with letters (symbols) than those with numbers. This difference disappeared for older participants (16-17 years), suggesting that they had reached an abstract reasoning level, at least for this simple task. A corresponding conclusion arises from the analysis of their strategies which suggests that younger participants mostly used concrete strategies such as inserting numbers, while older participants typically used more abstract, rule-based strategies. These results indicate that the development of algebraic thinking is a process which unfolds over a long period of time. In agreement with previous research, we can conclude that, on average, children at the age of 15-16 transition from using concrete to abstract strategies while solving the algebra problems addressed within the present study. A better understanding of the timing and speed of students' transition from concrete arithmetic reasoning to abstract algebraic reasoning might help in designing better curricula and teaching materials that would ease that transition.

  2. An Experience of the Czechoslovakian Experimental Center

    ERIC Educational Resources Information Center

    Vysin, J.

    1975-01-01

    The Czechoslovakian Academy of Sciences is sponsoring an experimental approach to the modernization of the geometry curriculum. Geometry is viewed as ancillary to other parts of the curriculum and is taught as appropriate to other subjects (e.g., algebra). Combinatorial geometry is taught formally. (SD)

  3. From geometry to algebra and vice versa: Realistic mathematics education principles for analyzing geometry tasks

    NASA Astrophysics Data System (ADS)

    Jupri, Al

    2017-04-01

    In this article we address how Realistic Mathematics Education (RME) principles, including the intertwinement and the reality principles, are used to analyze geometry tasks. To do so, we carried out three phases of a small-scale study. First we analyzed four geometry problems - considered as tasks inviting the use of problem solving and reasoning skills - theoretically in the light of the RME principles. Second, we tested two problems to 31 undergraduate students of mathematics education program and other two problems to 16 master students of primary mathematics education program. Finally, we analyzed student written work and compared these empirical to the theoretical results. We found that there are discrepancies between what we expected theoretically and what occurred empirically in terms of mathematization and of intertwinement of mathematical concepts from geometry to algebra and vice versa. We conclude that the RME principles provide a fruitful framework for analyzing geometry tasks that, for instance, are intended for assessing student problem solving and reasoning skills.

  4. An algebraic homotopy method for generating quasi-three-dimensional grids for high-speed configurations

    NASA Technical Reports Server (NTRS)

    Moitra, Anutosh

    1989-01-01

    A fast and versatile procedure for algebraically generating boundary conforming computational grids for use with finite-volume Euler flow solvers is presented. A semi-analytic homotopic procedure is used to generate the grids. Grids generated in two-dimensional planes are stacked to produce quasi-three-dimensional grid systems. The body surface and outer boundary are described in terms of surface parameters. An interpolation scheme is used to blend between the body surface and the outer boundary in order to determine the field points. The method, albeit developed for analytically generated body geometries is equally applicable to other classes of geometries. The method can be used for both internal and external flow configurations, the only constraint being that the body geometries be specified in two-dimensional cross-sections stationed along the longitudinal axis of the configuration. Techniques for controlling various grid parameters, e.g., clustering and orthogonality are described. Techniques for treating problems arising in algebraic grid generation for geometries with sharp corners are addressed. A set of representative grid systems generated by this method is included. Results of flow computations using these grids are presented for validation of the effectiveness of the method.

  5. The Standard Model in noncommutative geometry: fundamental fermions as internal forms

    NASA Astrophysics Data System (ADS)

    Dąbrowski, Ludwik; D'Andrea, Francesco; Sitarz, Andrzej

    2018-05-01

    Given the algebra, Hilbert space H, grading and real structure of the finite spectral triple of the Standard Model, we classify all possible Dirac operators such that H is a self-Morita equivalence bimodule for the associated Clifford algebra.

  6. Computer Classification of Triangles and Quadrilaterals--A Challenging Application

    ERIC Educational Resources Information Center

    Dennis, J. Richard

    1978-01-01

    Two computer exercises involving the classification of geometric figures are given. The mathematics required is relatively simple but comes from several areas--synthetic geometry, analytic geometry, and linear algebra. (MN)

  7. Solving Geometric Problems by Using Algebraic Representation for Junior High School Level 3 in Van Hiele at Geometric Thinking Level

    ERIC Educational Resources Information Center

    Suwito, Abi; Yuwono, Ipung; Parta, I. Nengah; Irawati, Santi; Oktavianingtyas, Ervin

    2016-01-01

    This study aims to determine the ability of algebra students who have 3 levels van Hiele levels. Follow its framework Dindyal framework (2007). Students are required to do 10 algebra shaped multiple choice, then students work 15 about the geometry of the van Hiele level in the form of multiple choice questions. The question has been tested levels…

  8. Software Reviews.

    ERIC Educational Resources Information Center

    Bitter, Gary G., Ed.

    1989-01-01

    Describes three software packages: (1) "MacMendeleev"--database/graphic display for chemistry, grades 10-12, Macintosh; (2) "Geometry One: Foundations"--geometry tutorial, grades 7-12, IBM; (3) "Mathematics Exploration Toolkit"--algebra and calculus tutorial, grades 8-12, IBM. (MVL)

  9. Secondary School Mathematics Curriculum Improvement Study Information Bulletin 7.

    ERIC Educational Resources Information Center

    Secondary School Mathematics Curriculum Improvement Study, New York, NY.

    The background, objectives, and design of Secondary School Mathematics Curriculum Improvement Study (SSMCIS) are summarized. Details are given of the content of the text series, "Unified Modern Mathematics," in the areas of algebra, geometry, linear algebra, probability and statistics, analysis (calculus), logic, and computer…

  10. Mathematics Unit Plans. PACE '94.

    ERIC Educational Resources Information Center

    Wiles, Clyde A., Ed.; Schoon, Kenneth J., Ed.

    This booklet contains mathematics unit plans for Algebra 1, Geometry, Math for Technology, Mathematical Problem Solving, and Pre-Algebra developed by PACE (Promoting Academic Excellence In Mathematics, Science & Technology for Workers of the 21st Century). Each unit plan contains suggested timing, objectives, skills to be acquired, workplace…

  11. Local algebraic analysis of differential systems

    NASA Astrophysics Data System (ADS)

    Kaptsov, O. V.

    2015-06-01

    We propose a new approach for studying the compatibility of partial differential equations. This approach is a synthesis of the Riquier method, Gröbner basis theory, and elements of algebraic geometry. As applications, we consider systems including the wave equation and the sine-Gordon equation.

  12. Computational algebraic geometry of epidemic models

    NASA Astrophysics Data System (ADS)

    Rodríguez Vega, Martín.

    2014-06-01

    Computational Algebraic Geometry is applied to the analysis of various epidemic models for Schistosomiasis and Dengue, both, for the case without control measures and for the case where control measures are applied. The models were analyzed using the mathematical software Maple. Explicitly the analysis is performed using Groebner basis, Hilbert dimension and Hilbert polynomials. These computational tools are included automatically in Maple. Each of these models is represented by a system of ordinary differential equations, and for each model the basic reproductive number (R0) is calculated. The effects of the control measures are observed by the changes in the algebraic structure of R0, the changes in Groebner basis, the changes in Hilbert dimension, and the changes in Hilbert polynomials. It is hoped that the results obtained in this paper become of importance for designing control measures against the epidemic diseases described. For future researches it is proposed the use of algebraic epidemiology to analyze models for airborne and waterborne diseases.

  13. Strategies Toward Automation of Overset Structured Surface Grid Generation

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    2017-01-01

    An outline of a strategy for automation of overset structured surface grid generation on complex geometries is described. The starting point of the process consists of an unstructured surface triangulation representation of the geometry derived from a native CAD, STEP, or IGES definition, and a set of discretized surface curves that captures all geometric features of interest. The procedure for surface grid generation is decomposed into an algebraic meshing step, a hyperbolic meshing step, and a gap-filling step. This paper will focus primarily on the high-level plan with details on the algebraic step. The algorithmic procedure for the algebraic step involves analyzing the topology of the network of surface curves, distributing grid points appropriately on these curves, identifying domains bounded by four curves that can be meshed algebraically, concatenating the resulting grids into fewer patches, and extending appropriate boundaries of the concatenated grids to provide proper overlap. Results are presented for grids created on various aerospace vehicle components.

  14. The Geometry of Generations

    NASA Astrophysics Data System (ADS)

    He, Yang-Hui; Jejjala, Vishnu; Matti, Cyril; Nelson, Brent D.; Stillman, Michael

    2015-10-01

    We present an intriguing and precise interplay between algebraic geometry and the phenomenology of generations of particles. Using the electroweak sector of the MSSM as a testing ground, we compute the moduli space of vacua as an algebraic variety for multiple generations of Standard Model matter and Higgs doublets. The space is shown to have Calabi-Yau, Grassmannian, and toric signatures, which sensitively depend on the number of generations of leptons, as well as inclusion of Majorana mass terms for right-handed neutrinos. We speculate as to why three generations is special.

  15. Triangle Geometry Processing for Surface Modeling and Cartesian Grid Generation

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J. (Inventor); Melton, John E. (Inventor); Berger, Marsha J. (Inventor)

    2002-01-01

    Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.

  16. Triangle geometry processing for surface modeling and cartesian grid generation

    DOEpatents

    Aftosmis, Michael J [San Mateo, CA; Melton, John E [Hollister, CA; Berger, Marsha J [New York, NY

    2002-09-03

    Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.

  17. Mathematical Logic in the Human Brain: Semantics

    PubMed Central

    Friedrich, Roland M.; Friederici, Angela D.

    2013-01-01

    As a higher cognitive function in humans, mathematics is supported by parietal and prefrontal brain regions. Here, we give an integrative account of the role of the different brain systems in processing the semantics of mathematical logic from the perspective of macroscopic polysynaptic networks. By comparing algebraic and arithmetic expressions of identical underlying structure, we show how the different subparts of a fronto-parietal network are modulated by the semantic domain, over which the mathematical formulae are interpreted. Within this network, the prefrontal cortex represents a system that hosts three major components, namely, control, arithmetic-logic, and short-term memory. This prefrontal system operates on data fed to it by two other systems: a premotor-parietal top-down system that updates and transforms (external) data into an internal format, and a hippocampal bottom-up system that either detects novel information or serves as an access device to memory for previously acquired knowledge. PMID:23301101

  18. A PVS Prover Strategy Package for Common Manipulations

    NASA Technical Reports Server (NTRS)

    DiVito, Ben L.

    2002-01-01

    Sequent manipulations for an interactive prover such as PVS can often be labor intensive. We describe an approach to tactic-based proving for improved interactive deduction in specialized domains. An experimental package of strategies (tactics) and support functions has been developed for PVS to reduce the tedium of arithmetic manipulation. Included are strategies aimed at algebraic simplification of real-valued expressions as well as term-access techniques applicable in arbitrary settings. The approach is general enough to serve in other mathematical domains and for provers other than PVS. This report presents the full set of arithmetic strategies and discusses how they are invoked within the prover. Included is a description of the extended expression notation for accessing terms as well as a substitution technique provided for higher-order strategies. Several sample proofs are displayed in full to show how the strategies might be used in practice.

  19. Mathematical logic in the human brain: semantics.

    PubMed

    Friedrich, Roland M; Friederici, Angela D

    2013-01-01

    As a higher cognitive function in humans, mathematics is supported by parietal and prefrontal brain regions. Here, we give an integrative account of the role of the different brain systems in processing the semantics of mathematical logic from the perspective of macroscopic polysynaptic networks. By comparing algebraic and arithmetic expressions of identical underlying structure, we show how the different subparts of a fronto-parietal network are modulated by the semantic domain, over which the mathematical formulae are interpreted. Within this network, the prefrontal cortex represents a system that hosts three major components, namely, control, arithmetic-logic, and short-term memory. This prefrontal system operates on data fed to it by two other systems: a premotor-parietal top-down system that updates and transforms (external) data into an internal format, and a hippocampal bottom-up system that either detects novel information or serves as an access device to memory for previously acquired knowledge.

  20. Invariant Tori in the Secular Motions of the Three-body Planetary Systems

    NASA Astrophysics Data System (ADS)

    Locatelli, Ugo; Giorgilli, Antonio

    We consider the problem of the applicability of KAM theorem to a realistic problem of three bodies. In the framework of the averaged dynamics over the fast angles for the Sun-Jupiter-Saturn system we can prove the perpetual stability of the orbit. The proof is based on semi-numerical algorithms requiring both explicit algebraic manipulations of series and analytical estimates. The proof is made rigorous by using interval arithmetics in order to control the numerical errors.

  1. 3D Navier-Stokes Flow Analysis for Shared and Distributed Memory MIMD Computers

    DTIC Science & Technology

    1992-09-15

    arithmetical averaged density or Stefan -Boltzmann constant (= 5.67032 x 10-8 ) Oai+1/2 intermediate term for Harten-Yee fluxes - k, O’ constants for k...system of algebraic equations. These equations I are solved using point Gauss- Seidel relaxation. This relaxation scheme is modified to be a lower-upper...interaction of the radiation with the gas. The radiative heat flux per unit area is then I = -(T [EwT - awTdb] (19) Here a is the Stefan Boltzmann

  2. Combinatorial Formulas for Characteristic Classes, and Localization of Secondary Topological Invariants.

    NASA Astrophysics Data System (ADS)

    Smirnov, Mikhail

    1995-01-01

    The problems solved in this thesis originated from combinatorial formulas for characteristic classes. This thesis deals with Chern-Simons classes, their generalizations and related algebraic and analytic problems. (1) In this thesis, I describe a new class of algebras whose elements contain Chern and generalized Chern -Simons classes. There is a Poisson bracket in these algebras, similar to the bracket in Kontsevich's noncommutative symplectic geometry (Kon). I prove that the Poisson bracket gives rise to a graded Lie algebra containing differential forms representing Chern and Chern-Simons classes. This is a new result. I describe algebraic analogs of the dilogarithm and higher polylogarithms in the algebra corresponding to Chern-Simons classes. (2) I study the properties of this bracket. It is possible to write the exterior differential and other operations in the algebra using this bracket. The bracket of any two Chern classes is zero and the bracket of a Chern class and a Chern-Simons class is d-closed. The construction developed here easily gives explicit formulas for known secondary classes and makes it possible to construct new ones. (3) I develop an algebraic model for the action of the gauge group and describe how elements of algebra corresponding to the secondary characteristic classes change under this action (see theorem 3 page xi). (4) It is possible give new explicit formulas for cocycles on a gauge group of a bundle and for the corresponding cocycles on the Lie algebra of the gauge group. I use formulas for secondary characteristic classes and an algebraic approach developed in chapter 1. I also use the work of Faddeev, Reiman and Semyonov-Tian-Shanskii (FRS) on cocycles as quantum anomalies. (5) I apply the methods of differential geometry of formal power series to construct universal characteristic and secondary characteristic classes. Given a pair of gauge equivalent connections using local formulas I obtain dilogarithmic and trilogarithmic analogs of Chern-Simons classes.

  3. A method to perform a fast fourier transform with primitive image transformations.

    PubMed

    Sheridan, Phil

    2007-05-01

    The Fourier transform is one of the most important transformations in image processing. A major component of this influence comes from the ability to implement it efficiently on a digital computer. This paper describes a new methodology to perform a fast Fourier transform (FFT). This methodology emerges from considerations of the natural physical constraints imposed by image capture devices (camera/eye). The novel aspects of the specific FFT method described include: 1) a bit-wise reversal re-grouping operation of the conventional FFT is replaced by the use of lossless image rotation and scaling and 2) the usual arithmetic operations of complex multiplication are replaced with integer addition. The significance of the FFT presented in this paper is introduced by extending a discrete and finite image algebra, named Spiral Honeycomb Image Algebra (SHIA), to a continuous version, named SHIAC.

  4. Curriculum Guide for Baccalaureate Oriented Courses in Mathematics.

    ERIC Educational Resources Information Center

    Darnes, G. Robert, Ed.

    A mathematics curriculum guide is presented for the purpose of offering statewide guidelines to colleges for determining the content of those courses which might be considered standard courses in the first two years of the college curriculum. Courses covered include: intermediate algebra, college algebra, trigonometry, analytic geometry,…

  5. Graphs and Zero-Divisors

    ERIC Educational Resources Information Center

    Axtell, M.; Stickles, J.

    2010-01-01

    The last ten years have seen an explosion of research in the zero-divisor graphs of commutative rings--by professional mathematicians "and" undergraduates. The objective is to find algebraic information within the geometry of these graphs. This topic is approachable by anyone with one or two semesters of abstract algebra. This article gives the…

  6. Studies in Mathematics, Volume X. Applied Mathematics in the High School.

    ERIC Educational Resources Information Center

    Schiffer, Max M.

    This publication contains a sequence of lectures given to high school mathematics teachers by the author. Applications of mathematics emphasized are elementary algebra, geometry, and matrix algebra. Included are: (1) an introduction concerning teaching applications of mathematics; (2) Chapter 1: Mechanics for the High School Student; (3) Chapter…

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchstaber, V M; Ustinov, A V

    We describe the coefficient rings of universal formal group laws which arise in algebraic geometry, algebraic topology and their application to mathematical physics. We also describe the homomorphisms of these coefficient rings coming from reductions of one formal group law to another. The proofs are based on the number-theoretic properties of binomial coefficients. Bibliography: 37 titles.

  8. Entanglement classification with algebraic geometry

    NASA Astrophysics Data System (ADS)

    Sanz, M.; Braak, D.; Solano, E.; Egusquiza, I. L.

    2017-05-01

    We approach multipartite entanglement classification in the symmetric subspace in terms of algebraic geometry, its natural language. We show that the class of symmetric separable states has the structure of a Veronese variety and that its k-secant varieties are SLOCC invariants. Thus SLOCC classes gather naturally into families. This classification presents useful properties such as a linear growth of the number of families with the number of particles, and nesting, i.e. upward consistency of the classification. We attach physical meaning to this classification through the required interaction length of parent Hamiltonians. We show that the states W N and GHZ N are in the same secant family and that, effectively, the former can be obtained in a limit from the latter. This limit is understood in terms of tangents, leading to a refinement of the previous families. We compute explicitly the classification of symmetric states with N≤slant4 qubits in terms of both secant families and its refinement using tangents. This paves the way to further use of projective varieties in algebraic geometry to solve open problems in entanglement theory.

  9. Geometry and physics

    PubMed Central

    Atiyah, Michael; Dijkgraaf, Robbert; Hitchin, Nigel

    2010-01-01

    We review the remarkably fruitful interactions between mathematics and quantum physics in the past decades, pointing out some general trends and highlighting several examples, such as the counting of curves in algebraic geometry, invariants of knots and four-dimensional topology. PMID:20123740

  10. Fractal Patterns and Chaos Games

    ERIC Educational Resources Information Center

    Devaney, Robert L.

    2004-01-01

    Teachers incorporate the chaos game and the concept of a fractal into various areas of the algebra and geometry curriculum. The chaos game approach to fractals provides teachers with an opportunity to help students comprehend the geometry of affine transformations.

  11. Some applications of mathematics in theoretical physics - A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bora, Kalpana

    2016-06-21

    Mathematics is a very beautiful subject−very much an indispensible tool for Physics, more so for Theoretical Physics (by which we mean here mainly Field Theory and High Energy Physics). These branches of Physics are based on Quantum Mechanics and Special Theory of Relativity, and many mathematical concepts are used in them. In this work, we shall elucidate upon only some of them, like−differential geometry, infinite series, Mellin transforms, Fourier and integral transforms, special functions, calculus, complex algebra, topology, group theory, Riemannian geometry, functional analysis, linear algebra, operator algebra, etc. We shall also present, some physics issues, where these mathematical toolsmore » are used. It is not wrong to say that Mathematics is such a powerful tool, without which, there can not be any Physics theory!! A brief review on our research work is also presented.« less

  12. Higher symmetries of the Schrödinger operator in Newton-Cartan geometry

    NASA Astrophysics Data System (ADS)

    Gundry, James

    2017-03-01

    We establish several relationships between the non-relativistic conformal symmetries of Newton-Cartan geometry and the Schrödinger equation. In particular we discuss the algebra sch(d) of vector fields conformally-preserving a flat Newton-Cartan spacetime, and we prove that its curved generalisation generates the symmetry group of the covariant Schrödinger equation coupled to a Newtonian potential and generalised Coriolis force. We provide intrinsic Newton-Cartan definitions of Killing tensors and conformal Schrödinger-Killing tensors, and we discuss their respective links to conserved quantities and to the higher symmetries of the Schrödinger equation. Finally we consider the role of conformal symmetries in Newtonian twistor theory, where the infinite-dimensional algebra of holomorphic vector fields on twistor space corresponds to the symmetry algebra cnc(3) on the Newton-Cartan spacetime.

  13. Some applications of mathematics in theoretical physics - A review

    NASA Astrophysics Data System (ADS)

    Bora, Kalpana

    2016-06-01

    Mathematics is a very beautiful subject-very much an indispensible tool for Physics, more so for Theoretical Physics (by which we mean here mainly Field Theory and High Energy Physics). These branches of Physics are based on Quantum Mechanics and Special Theory of Relativity, and many mathematical concepts are used in them. In this work, we shall elucidate upon only some of them, like-differential geometry, infinite series, Mellin transforms, Fourier and integral transforms, special functions, calculus, complex algebra, topology, group theory, Riemannian geometry, functional analysis, linear algebra, operator algebra, etc. We shall also present, some physics issues, where these mathematical tools are used. It is not wrong to say that Mathematics is such a powerful tool, without which, there can not be any Physics theory!! A brief review on our research work is also presented.

  14. Sound Off! Don't Sacrifice Geometry on the Common Core Altar

    ERIC Educational Resources Information Center

    Nirode, Wayne

    2013-01-01

    Although high school geometry could be a meaningful course in exploring, reasoning, proving, and communicating, it often lacks authentic proof and has become just another course in algebra. This article examines why geometry is important to learn and provides an outline of what that learning experience should be.

  15. The Pontryagin class for pre-Courant algebroids

    NASA Astrophysics Data System (ADS)

    Liu, Zhangju; Sheng, Yunhe; Xu, Xiaomeng

    2016-06-01

    In this paper, we show that the Jacobiator J of a pre-Courant algebroid is closed naturally. The corresponding equivalence class [J♭ ] is defined as the Pontryagin class, which is the obstruction of a pre-Courant algebroid to be deformed into a Courant algebroid. We construct a Leibniz 2-algebra and a Lie 2-algebra associated to a pre-Courant algebroid and prove that these algebraic structures are isomorphic under deformations. Finally, we introduce the twisted action of a Lie algebra on a manifold to give more examples of pre-Courant algebroids, which include the Cartan geometry.

  16. Two-year colleges, Physics, and Teacher Preparation

    NASA Astrophysics Data System (ADS)

    Clay, Keith

    2002-05-01

    In the midst of a teacher shortage no field suffers more than physics. Half of our secondary physics teachers have less than a minor in physics. Meanwhile half of our future teachers start out at two-year colleges with physicists on staff. The opportunity for community colleges to have an impact on K-12 teaching is tremendous. Project TEACH has been honored as an outstanding teacher preparation program. It is a collaboration of colleges and K-12 schools dedicated to the improvement of teacher preparation, especially in science and math. Based at Green River Community College, Project TEACH unites certification institutions, community colleges, and K-12 school districts in the pre-service and in-service training of teachers. Activities of Project TEACH include recruitment and advising of future teachers, field experience for education students, creation of pre-teaching and para-educator degrees, tutoring from elementary school through college, in-service courses for current teachers, and special math and science courses aimed at future teachers. The yearlong interdisciplinary science sequence blends chemistry, physics, geology, and biology in a hands-on inquiry-based environment. The yearlong math sequence covers arithmetic, algebra, geometry, and probability with inquiry-based pedagogy. The programs developed by Project TEACH are being disseminated to colleges across Washington State and beyond.

  17. High-performance image processing architecture

    NASA Astrophysics Data System (ADS)

    Coffield, Patrick C.

    1992-04-01

    The proposed architecture is a logical design specifically for image processing and other related computations. The design is a hybrid electro-optical concept consisting of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined by an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how elegantly it handles the natural decomposition of algebraic functions into spatially distributed, point-wise operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The logical architecture may take any number of physical forms. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control all the arithmetic and logic operations of the image algebra's generalized matrix product. This is the most powerful fundamental formulation in the algebra, thus allowing a wide range of applications.

  18. Weaving Geometry and Algebra Together

    ERIC Educational Resources Information Center

    Cetner, Michelle

    2015-01-01

    When thinking about student reasoning and sense making, teachers must consider the nature of tasks given to students along with how to plan to use the tasks in the classroom. Students should be presented with tasks in a way that encourages them to draw connections between algebraic and geometric concepts. This article focuses on the idea that it…

  19. The Symmetry Group of the Permutahedron

    ERIC Educational Resources Information Center

    Crisman, Karl-Dieter

    2011-01-01

    Although it can be visualized fairly easily and its symmetry group is easy to calculate, the permutahedron is a somewhat neglected combinatorial object. We propose it as a useful case study in abstract algebra. It supplies concrete examples of group actions, the difference between right and left actions, and how geometry and algebra can work…

  20. University of Chicago School Mathematics Project 6-12 Curriculum. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2011

    2011-01-01

    The "University of Chicago School Mathematics Project ("UCSMP") 6-12 Curriculum" is a series of yearlong courses--(1) Transition Mathematics; (2) Algebra; (3) Geometry; (4) Advanced Algebra; (5) Functions, Statistics, and Trigonometry; and (6) Precalculus and Discrete Mathematics--emphasizing problem solving, real-world applications, and the use…

  1. Enhancing Mathematical Communication for Virtual Math Teams

    ERIC Educational Resources Information Center

    Stahl, Gerry; Çakir, Murat Perit; Weimar, Stephen; Weusijana, Baba Kofi; Ou, Jimmy Xiantong

    2010-01-01

    The Math Forum is an online resource center for pre-algebra, algebra, geometry and pre-calculus. Its Virtual Math Teams (VMT) service provides an integrated web-based environment for small teams of people to discuss math and to work collaboratively on math problems or explore interesting mathematical micro-worlds together. The VMT Project studies…

  2. Student Distractor Choices on the Mathematics Virginia Standards of Learning Middle School Assessments

    ERIC Educational Resources Information Center

    Lewis, Virginia Vimpeny

    2011-01-01

    Number Concepts; Measurement; Geometry; Probability; Statistics; and Patterns, Functions and Algebra. Procedural Errors were further categorized into the following content categories: Computation; Measurement; Statistics; and Patterns, Functions, and Algebra. The results of the analysis showed the main sources of error for 6th, 7th, and 8th…

  3. Focus in High School Mathematics: Reasoning and Sense Making in Algebra

    ERIC Educational Resources Information Center

    Graham, Karen; Cuoco, Albert; Zimmermann, Gwendolyn

    2010-01-01

    This book examines the five key elements (meaningful use of symbols, mindful manipulation, reasoned solving, connection algebra with geometry, and linking expressions and functions) identified in "Focus in High School Mathematics: Reasoning and Sense Making" in more detail and elaborates on the associated reasoning habits. This volume is one of a…

  4. Algebraic multigrid domain and range decomposition (AMG-DD / AMG-RD)*

    DOE PAGES

    Bank, R.; Falgout, R. D.; Jones, T.; ...

    2015-10-29

    In modern large-scale supercomputing applications, algebraic multigrid (AMG) is a leading choice for solving matrix equations. However, the high cost of communication relative to that of computation is a concern for the scalability of traditional implementations of AMG on emerging architectures. This paper introduces two new algebraic multilevel algorithms, algebraic multigrid domain decomposition (AMG-DD) and algebraic multigrid range decomposition (AMG-RD), that replace traditional AMG V-cycles with a fully overlapping domain decomposition approach. While the methods introduced here are similar in spirit to the geometric methods developed by Brandt and Diskin [Multigrid solvers on decomposed domains, in Domain Decomposition Methods inmore » Science and Engineering, Contemp. Math. 157, AMS, Providence, RI, 1994, pp. 135--155], Mitchell [Electron. Trans. Numer. Anal., 6 (1997), pp. 224--233], and Bank and Holst [SIAM J. Sci. Comput., 22 (2000), pp. 1411--1443], they differ primarily in that they are purely algebraic: AMG-RD and AMG-DD trade communication for computation by forming global composite “grids” based only on the matrix, not the geometry. (As is the usual AMG convention, “grids” here should be taken only in the algebraic sense, regardless of whether or not it corresponds to any geometry.) Another important distinguishing feature of AMG-RD and AMG-DD is their novel residual communication process that enables effective parallel computation on composite grids, avoiding the all-to-all communication costs of the geometric methods. The main purpose of this paper is to study the potential of these two algebraic methods as possible alternatives to existing AMG approaches for future parallel machines. As a result, this paper develops some theoretical properties of these methods and reports on serial numerical tests of their convergence properties over a spectrum of problem parameters.« less

  5. Lunar terrain mapping and relative-roughness analysis

    USGS Publications Warehouse

    Rowan, Lawrence C.; McCauley, John F.; Holm, Esther A.

    1971-01-01

    Terrain maps of the equatorial zone (long 70° E.-70° W. and lat 10° N-10° S.) were prepared at scales of 1:2,000,000 and 1:1,000,000 to classify lunar terrain with respect to roughness and to provide a basis for selecting sites for Surveyor and Apollo landings as well as for Ranger and Lunar Orbiter photographs. The techniques that were developed as a result of this effort can be applied to future planetary exploration. By using the best available earth-based observational data and photographs 1:1,000,000-scale and U.S. Geological Survey lunar geologic maps and U.S. Air Force Aeronautical Chart and Information Center LAC charts, lunar terrain was described by qualitative and quantitative methods and divided into four fundamental classes: maria, terrae, craters, and linear features. Some 35 subdivisions were defined and mapped throughout the equatorial zone, and, in addition, most of the map units were illustrated by photographs. The terrain types were analyzed quantitatively to characterize and order their relative-roughness characteristics. Approximately 150,000 east-west slope measurements made by a photometric technique (photoclinometry) in 51 sample areas indicate that algebraic slope-frequency distributions are Gaussian, and so arithmetic means and standard deviations accurately describe the distribution functions. The algebraic slope-component frequency distributions are particularly useful for rapidly determining relative roughness of terrain. The statistical parameters that best describe relative roughness are the absolute arithmetic mean, the algebraic standard deviation, and the percentage of slope reversal. Statistically derived relative-relief parameters are desirable supplementary measures of relative roughness in the terrae. Extrapolation of relative roughness for the maria was demonstrated using Ranger VII slope-component data and regional maria slope data, as well as the data reported here. It appears that, for some morphologically homogeneous mare areas, relative roughness can be extrapolated to the large scales from measurements at small scales.

  6. Transforming Middle School Geometry: Designing Professional Development Materials that Support the Teaching and Learning of Similarity

    ERIC Educational Resources Information Center

    Seago, Nanette; Jacobs, Jennifer; Driscoll, Mark

    2010-01-01

    Although there are increasing numbers of professional development (PD) materials intended to foster teachers' mathematical knowledge for teaching within the topics of number and algebra, little attention has been given to geometry. In this article we describe the Learning and Teaching Geometry project's approach to the development of PD materials…

  7. PREFACE: Algebra, Geometry, and Mathematical Physics 2010

    NASA Astrophysics Data System (ADS)

    Stolin, A.; Abramov, V.; Fuchs, J.; Paal, E.; Shestopalov, Y.; Silvestrov, S.

    2012-02-01

    This proceedings volume presents results obtained by the participants of the 6th Baltic-Nordic workshop 'Algebra, Geometry, and Mathematical Physics (AGMP-6)' held at the Sven Lovén Centre for Marine Sciences in Tjärnö, Sweden on October 25-30, 2010. The Baltic-Nordic Network AGMP 'Algebra, Geometry, and Mathematical Physics' http://www.agmp.eu was created in 2005 on the initiative of two Estonian universities and two Swedish universities: Tallinn University of Technology represented by Eugen Paal (coordinator of the network), Tartu University represented by Viktor Abramov, Lund University represented by Sergei Silvestrov, and Chalmers University of Technology and the University of Gothenburg represented by Alexander Stolin. The goal was to promote international and interdisciplinary cooperation between scientists and research groups in the countries of the Baltic-Nordic region in mathematics and mathematical physics, with special emphasis on the important role played by algebra and geometry in modern physics, engineering and technologies. The main activities of the AGMP network consist of a series of regular annual international workshops, conferences and research schools. The AGMP network also constitutes an important educational forum for scientific exchange and dissimilation of research results for PhD students and Postdocs. The network has expanded since its creation, and nowadays its activities extend beyond countries in the Baltic-Nordic region to universities in other European countries and participants from elsewhere in the world. As one of the important research-dissimilation outcomes of its activities, the network has a tradition of producing high-quality research proceedings volumes after network events, publishing them with various international publishers. The PDF also contains the following: List of AGMP workshops and other AGMP activities Main topics discussed at AGMP-6 Review of AGMP-6 proceedings Acknowledgments List of Conference Participants

  8. Horizon fluffs: In the context of generalized minimal massive gravity

    NASA Astrophysics Data System (ADS)

    Setare, Mohammad Reza; Adami, Hamed

    2018-02-01

    We consider a metric which describes Bañados geometries and show that the considered metric is a solution of the generalized minimal massive gravity (GMMG) model. We consider the Killing vector field which preserves the form of the considered metric. Using the off-shell quasi-local approach we obtain the asymptotic conserved charges of the given solution. Similar to the Einstein gravity in the presence of negative cosmological constant, for the GMMG model, we also show that the algebra among the asymptotic conserved charges is isomorphic to two copies of the Virasoro algebra. Eventually, we find a relation between the algebra of the near-horizon and the asymptotic conserved charges. This relation shows that the main part of the horizon fluffs proposed by Afshar et al., Sheikh-Jabbari and Yavartanoo appear for generic black holes in the class of Bañados geometries in the context of the GMMG model.

  9. Descriptions of Free and Freeware Software in the Mathematics Teaching

    NASA Astrophysics Data System (ADS)

    Antunes de Macedo, Josue; Neves de Almeida, Samara; Voelzke, Marcos Rincon

    2016-05-01

    This paper presents the analysis and the cataloging of free and freeware mathematical software available on the internet, a brief explanation of them, and types of licenses for use in teaching and learning. The methodology is based on the qualitative research. Among the different types of software found, it stands out in algebra, the Winmat, that works with linear algebra, matrices and linear systems. In geometry, the GeoGebra, which can be used in the study of functions, plan and spatial geometry, algebra and calculus. For graphing, can quote the Graph and Graphequation. With Graphmatica software, it is possible to build various graphs of mathematical equations on the same screen, representing cartesian equations, inequalities, parametric among other functions. The Winplot allows the user to build graphics in two and three dimensions functions and mathematical equations. Thus, this work aims to present the teachers some free math software able to be used in the classroom.

  10. Evaluation of Mathematics Teacher Candidates' the Ellipse Knowledge According to the Revised Bloom's Taxonomy

    ERIC Educational Resources Information Center

    Kurtulus, Aytaç; Ada, Aytaç

    2017-01-01

    In this study, the teacher candidates who learnt to find the algebraic equation corresponding to geometric structure of the ellipse in analytic geometry classes were requested to find the algebraic representations corresponding to the structures that contained ellipses in different positions. Thus, it would be possible to determine higher order…

  11. The Koslowski-Sahlmann representation: quantum configuration space

    NASA Astrophysics Data System (ADS)

    Campiglia, Miguel; Varadarajan, Madhavan

    2014-09-01

    The Koslowski-Sahlmann (KS) representation is a generalization of the representation underlying the discrete spatial geometry of loop quantum gravity (LQG), to accommodate states labelled by smooth spatial geometries. As shown recently, the KS representation supports, in addition to the action of the holonomy and flux operators, the action of operators which are the quantum counterparts of certain connection dependent functions known as ‘background exponentials’. Here we show that the KS representation displays the following properties which are the exact counterparts of LQG ones: (i) the abelian * algebra of SU(2) holonomies and ‘U(1)’ background exponentials can be completed to a C* algebra, (ii) the space of semianalytic SU(2) connections is topologically dense in the spectrum of this algebra, (iii) there exists a measure on this spectrum for which the KS Hilbert space is realized as the space of square integrable functions on the spectrum, (iv) the spectrum admits a characterization as a projective limit of finite numbers of copies of SU(2) and U(1), (v) the algebra underlying the KS representation is constructed from cylindrical functions and their derivations in exactly the same way as the LQG (holonomy-flux) algebra except that the KS cylindrical functions depend on the holonomies and the background exponentials, this extra dependence being responsible for the differences between the KS and LQG algebras. While these results are obtained for compact spaces, they are expected to be of use for the construction of the KS representation in the asymptotically flat case.

  12. Tropical geometry of statistical models.

    PubMed

    Pachter, Lior; Sturmfels, Bernd

    2004-11-16

    This article presents a unified mathematical framework for inference in graphical models, building on the observation that graphical models are algebraic varieties. From this geometric viewpoint, observations generated from a model are coordinates of a point in the variety, and the sum-product algorithm is an efficient tool for evaluating specific coordinates. Here, we address the question of how the solutions to various inference problems depend on the model parameters. The proposed answer is expressed in terms of tropical algebraic geometry. The Newton polytope of a statistical model plays a key role. Our results are applied to the hidden Markov model and the general Markov model on a binary tree.

  13. Extended Riemannian geometry II: local heterotic double field theory

    NASA Astrophysics Data System (ADS)

    Deser, Andreas; Heller, Marc Andre; Sämann, Christian

    2018-04-01

    We continue our exploration of local Double Field Theory (DFT) in terms of symplectic graded manifolds carrying compatible derivations and study the case of heterotic DFT. We start by developing in detail the differential graded manifold that captures heterotic Generalized Geometry which leads to new observations on the generalized metric and its twists. We then give a symplectic pre-N Q-manifold that captures the symmetries and the geometry of local heterotic DFT. We derive a weakened form of the section condition, which arises algebraically from consistency of the symmetry Lie 2-algebra and its action on extended tensors. We also give appropriate notions of twists — which are required for global formulations — and of the torsion and Riemann tensors. Finally, we show how the observed α'-corrections are interpreted naturally in our framework.

  14. Eigenmode computation of cavities with perturbed geometry using matrix perturbation methods applied on generalized eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Gorgizadeh, Shahnam; Flisgen, Thomas; van Rienen, Ursula

    2018-07-01

    Generalized eigenvalue problems are standard problems in computational sciences. They may arise in electromagnetic fields from the discretization of the Helmholtz equation by for example the finite element method (FEM). Geometrical perturbations of the structure under concern lead to a new generalized eigenvalue problems with different system matrices. Geometrical perturbations may arise by manufacturing tolerances, harsh operating conditions or during shape optimization. Directly solving the eigenvalue problem for each perturbation is computationally costly. The perturbed eigenpairs can be approximated using eigenpair derivatives. Two common approaches for the calculation of eigenpair derivatives, namely modal superposition method and direct algebraic methods, are discussed in this paper. Based on the direct algebraic methods an iterative algorithm is developed for efficiently calculating the eigenvalues and eigenvectors of the perturbed geometry from the eigenvalues and eigenvectors of the unperturbed geometry.

  15. Asymptotic symmetries and geometry on the boundary in the first order formalism

    NASA Astrophysics Data System (ADS)

    Korovin, Yegor

    2018-03-01

    Proper understanding of the geometry on the boundary of a spacetime is a critical step on the way to extending holography to spaces with non-AdS asymptotics. In general the boundary cannot be described in terms of the Riemannian geometry and the first order formalism is more appropriate as we show. We analyze the asymptotic symmetries in the first order formalism for large classes of theories on AdS, Lifshitz or flat space. In all cases the asymptotic symmetry algebra is realized on the first order variables as a gauged symmetry algebra. First order formalism geometrizes and simplifies the analysis. We apply our framework to the issue of scale versus conformal invariance in AdS/CFT and obtain new perspective on the structure of asymptotic expansions for AdS and flat spaces.

  16. Gauss-Manin Connection in Disguise: Calabi-Yau Threefolds

    NASA Astrophysics Data System (ADS)

    Alim, Murad; Movasati, Hossein; Scheidegger, Emanuel; Yau, Shing-Tung

    2016-06-01

    We describe a Lie Algebra on the moduli space of non-rigid compact Calabi-Yau threefolds enhanced with differential forms and its relation to the Bershadsky-Cecotti-Ooguri-Vafa holomorphic anomaly equation. In particular, we describe algebraic topological string partition functions {{F}g^alg, g ≥ 1}, which encode the polynomial structure of holomorphic and non-holomorphic topological string partition functions. Our approach is based on Grothendieck's algebraic de Rham cohomology and on the algebraic Gauss-Manin connection. In this way, we recover a result of Yamaguchi-Yau and Alim-Länge in an algebraic context. Our proofs use the fact that the special polynomial generators defined using the special geometry of deformation spaces of Calabi-Yau threefolds correspond to coordinates on such a moduli space. We discuss the mirror quintic as an example.

  17. Classical integrable many-body systems disconnected with semi-simple Lie algebras

    NASA Astrophysics Data System (ADS)

    Inozemtsev, V. I.

    2017-05-01

    The review of the results in the theory of integrable many-body systems disconnected with semisimple Lie algebras is done. The one-dimensional systems of light Calogero-Sutherland-Moser particles interacting with one particle of infinite mass located at the origin are described in detail. In some cases the exact solutions of the equations of motion are obtained. The general theory of integration of the equations of motion needs the methods of algebraic geometry. The Lax pairs with spectral parameter are constructed for this purpose. The theory still contains many unsolved problems.

  18. Calculus of Elementary Functions, Part I. Teacher's Commentary. Revised Edition.

    ERIC Educational Resources Information Center

    Herriot, Sarah T.; And Others

    This course is intended for students who have a thorough knowledge of college preparatory mathematics including algebra, axiomatic geometry, trigonometry, and analytic geometry. It does not assume they have acquired a background of elementary functions. This teacher's guide contains background information, suggested instructional procedures, and…

  19. Does Watching "Do the Math" Affect Self-Efficacy and Achievement in Mathematics?

    ERIC Educational Resources Information Center

    Cavazos, Blanca Guadalupe

    2014-01-01

    "Do The Math," a 1-hour, live, educational television program provides on-air instruction in general math, geometry, pre-algebra and algebra to a target audience of 4th-12th graders. A team of math teachers also provides tutoring to students who call in for help with homework. The purpose of this study was to investigate whether watching…

  20. Math Ties: Problem Solving, Logic Teasers, and Math Puzzles All "Tied" To the Math Curriculum. Book B1.

    ERIC Educational Resources Information Center

    Santi, Terri

    This book contains a classroom-tested approach to the teaching of problem solving to all students in Grades 6-8, regardless of ability. Information on problem solving in general is provided, then mathematical problems on logic, exponents, fractions, pre-algebra, algebra, geometry, number theory, set theory, ratio, proportion, percent, probability,…

  1. Are Parents Ready for New High School Curriculum Requirements? Policy Report 28

    ERIC Educational Resources Information Center

    Landauer-Menchik, Bettie

    2006-01-01

    The State Board of Education has recommended the implementation of a new, more rigorous curriculum for Michigan high schools. All students would be required to take four years of English; one year each of Algebra I, Geometry, Algebra II, and an additional math class in the senior year; one year each of Biology, Physics or Chemistry, and one…

  2. Marriages of mathematics and physics: A challenge for biology.

    PubMed

    Islami, Arezoo; Longo, Giuseppe

    2017-12-01

    The human attempts to access, measure and organize physical phenomena have led to a manifold construction of mathematical and physical spaces. We will survey the evolution of geometries from Euclid to the Algebraic Geometry of the 20th century. The role of Persian/Arabic Algebra in this transition and its Western symbolic development is emphasized. In this relation, we will also discuss changes in the ontological attitudes toward mathematics and its applications. Historically, the encounter of geometric and algebraic perspectives enriched the mathematical practices and their foundations. Yet, the collapse of Euclidean certitudes, of over 2300 years, and the crisis in the mathematical analysis of the 19th century, led to the exclusion of "geometric judgments" from the foundations of Mathematics. After the success and the limits of the logico-formal analysis, it is necessary to broaden our foundational tools and re-examine the interactions with natural sciences. In particular, the way the geometric and algebraic approaches organize knowledge is analyzed as a cross-disciplinary and cross-cultural issue and will be examined in Mathematical Physics and Biology. We finally discuss how the current notions of mathematical (phase) "space" should be revisited for the purposes of life sciences. Copyright © 2017. Published by Elsevier Ltd.

  3. On Fock-space representations of quantized enveloping algebras related to noncommutative differential geometry

    NASA Astrophysics Data System (ADS)

    Jurčo, B.; Schlieker, M.

    1995-07-01

    In this paper explicitly natural (from the geometrical point of view) Fock-space representations (contragradient Verma modules) of the quantized enveloping algebras are constructed. In order to do so, one starts from the Gauss decomposition of the quantum group and introduces the differential operators on the corresponding q-deformed flag manifold (assumed as a left comodule for the quantum group) by a projection to it of the right action of the quantized enveloping algebra on the quantum group. Finally, the representatives of the elements of the quantized enveloping algebra corresponding to the left-invariant vector fields on the quantum group are expressed as first-order differential operators on the q-deformed flag manifold.

  4. Moving frames and prolongation algebras

    NASA Technical Reports Server (NTRS)

    Estabrook, F. B.

    1982-01-01

    Differential ideals generated by sets of 2-forms which can be written with constant coefficients in a canonical basis of 1-forms are considered. By setting up a Cartan-Ehresmann connection, in a fiber bundle over a base space in which the 2-forms live, one finds an incomplete Lie algebra of vector fields in the fields in the fibers. Conversely, given this algebra (a prolongation algebra), one can derive the differential ideal. The two constructs are thus dual, and analysis of either derives properties of both. Such systems arise in the classical differential geometry of moving frames. Examples of this are discussed, together with examples arising more recently: the Korteweg-de Vries and Harrison-Ernst systems.

  5. On Some Algebraic and Combinatorial Properties of Dunkl Elements

    NASA Astrophysics Data System (ADS)

    Kirillov, Anatol N.

    2013-06-01

    We introduce and study a certain class of nonhomogeneous quadratic algebras together with the special set of mutually commuting elements inside of each, the so-called Dunkl elements. We describe relations among the Dunkl elements. This result is a further generalization of similar results obtained in [S. Fomin and A. N. Kirillov, Quadratic algebras, Dunkl elements and Schubert calculus, in Advances in Geometry (eds. J.-S. Brylinski, V. Nistor, B. Tsygan and P. Xu), Progress in Math. Vol. 172 (Birkhäuser Boston, Boston, 1995), pp. 147-182, A. Postnikov, On a quantum version of Pieri's formula, in Advances in Geometry (eds. J.-S. Brylinski, R. Brylinski, V. Nistor, B. Tsygan and P. Xu), Progress in Math. Vol. 172 (Birkhäuser Boston, 1995), pp. 371-383 and A. N. Kirillov and T. Maenor, A Note on Quantum K-Theory of Flag Varieties, preprint]. As an application we describe explicitly the set of relations among the Gaudin elements in the group ring of the symmetric group, cf. [E. Mukhin, V. Tarasov and A. Varchenko, Bethe Subalgebras of the Group Algebra of the Symmetric Group, preprint arXiv:1004.4248]. Also we describe a few combinatorial properties of some special elements in the associative quasi-classical Yang-Baxter algebra in a connection with the values of the β-Grothendieck polynomials for some special permutations, and on the other hand, with the Ehrhart polynomial of the Chan-Robbins polytope.

  6. On Some Algebraic and Combinatorial Properties of Dunkl Elements

    NASA Astrophysics Data System (ADS)

    Kirillov, Anatol N.

    2012-11-01

    We introduce and study a certain class of nonhomogeneous quadratic algebras together with the special set of mutually commuting elements inside of each, the so-called Dunkl elements. We describe relations among the Dunkl elements. This result is a further generalization of similar results obtained in [S. Fomin and A. N. Kirillov, Quadratic algebras, Dunkl elements and Schubert calculus, in Advances in Geometry (eds. J.-S. Brylinski, V. Nistor, B. Tsygan and P. Xu), Progress in Math. Vol. 172 (Birkhäuser Boston, Boston, 1995), pp. 147-182, A. Postnikov, On a quantum version of Pieri's formula, in Advances in Geometry (eds. J.-S. Brylinski, R. Brylinski, V. Nistor, B. Tsygan and P. Xu), Progress in Math. Vol. 172 (Birkhäuser Boston, 1995), pp. 371-383 and A. N. Kirillov and T. Maenor, A Note on Quantum K-Theory of Flag Varieties, preprint]. As an application we describe explicitly the set of relations among the Gaudin elements in the group ring of the symmetric group, cf. [E. Mukhin, V. Tarasov and A. Varchenko, Bethe Subalgebras of the Group Algebra of the Symmetric Group, preprint arXiv:1004.4248]. Also we describe a few combinatorial properties of some special elements in the associative quasi-classical Yang-Baxter algebra in a connection with the values of the β-Grothendieck polynomials for some special permutations, and on the other hand, with the Ehrhart polynomial of the Chan-Robbins polytope.

  7. Multilinear Computing and Multilinear Algebraic Geometry

    DTIC Science & Technology

    2016-08-10

    landmark paper titled “Most tensor problems are NP-hard” (see [14] in Section 3) in the Journal of the ACM, the premier journal in Computer Science ...Higher-order cone programming,” Machine Learning Thematic Trimester, International Centre for Mathematics and Computer Science , Toulouse, France...geometry-and-data-analysis • 2014 SIMONS INSTITUTE WORKSHOP: Workshop on Tensors in Computer Science and Geometry, University of California, Berkeley, CA

  8. Arithmetic and Hyperbolic Structures in String Theory

    NASA Astrophysics Data System (ADS)

    Persson, Daniel

    2010-01-01

    This monograph is an updated and extended version of the author's PhD thesis. It consists of an introductory text followed by two separate parts which are loosely related but may be read independently of each other. In Part I we analyze certain hyperbolic structures arising when studying gravity in the vicinity of a spacelike singularity (the "BKL-limit"). In this limit, spatial points decouple and the dynamics exhibits ultralocal behaviour which may be described in terms of a (possibly chaotic) hyperbolic billiard. In all supergravities arising as low-energy limits of string theory or M-theory, the billiard dynamics takes place within the fundamental Weyl chambers of certain hyperbolic Kac-Moody algebras, suggesting that these algebras generate hidden infinite-dimensional symmetries of the theory. Part II of the thesis is devoted to a study of how (U-)dualities in string theory provide powerful constraints on perturbative and non-perturbative quantum corrections. These dualities are described by certain arithmetic groups G(Z) which are conjectured to be preserved in the effective action. The exact couplings are given by automorphic forms on the double quotient G(Z)G/K. We discuss in detail various methods of constructing automorphic forms, with particular emphasis on non-holomorphic Eisenstein series. We provide detailed examples for the physically relevant cases of SL(2,Z) and SL(3,Z), for which we construct their respective Eisenstein series and compute their (non-abelian) Fourier expansions. We also show how these techniques can be applied to hypermultiplet moduli spaces in type II Calabi-Yau compactifications, and we provide a detailed analysis for the universal hypermultiplet.

  9. Does mean mean MEAN!? Digits For A Very Long Time Giving Us The Finger!: 1881 Statistics Log-Law was: Quanta=Digits!: BEC; Zipf 1/f-Law; Information-Thy; Random-#s = Euler V Bernoulli; Q-Computing = Arithmetic; P=/=NP SANS Complexity: Euclid 3-Mille

    NASA Astrophysics Data System (ADS)

    Siegel, Edward

    2008-03-01

    Classic statistics digits Newcomb[Am.J.Math.4,39,1881]-Weyl[Goett.Nachr.1912]-Benford[Proc.Am.Phil.Soc.78,4,51,1938]("NeWBe")probability ON-AVERAGE/MEAN log-law: =log[1+1/d]=log[(d+1)/d][google:``Benford's-Law'';"FUZZYICS": Siegel[AMS Nat.-Mtg.:2002&2008)]; Raimi[Sci.Am.221,109,1969]; Hill[Proc.AMS,123,3,887,1996]=log-base=units=SCALE-INVARIANCE!. Algebraic-inverse d=1/[ê(w)-1]: BOSONS(1924)=DIGITS(<1881): Energy-levels:ground=(d=0),first-(d=1)-excited ,... No fractions; only digit-integer-differences=quanta! Quo vadis digit =oo vs. <<,... simple-arithmetic!

  10. Secondary Schools Curriculum Guide, Mathematics, Grades 10-12. Revised.

    ERIC Educational Resources Information Center

    Cranston School Dept., RI.

    Behavioral objectives for grades 10 through 12 are specified for plane geometry, algebra, general mathematics, computer mathematics, slide rule mathematics, basic college mathematics, trigonometry, analytic geometry, calculus and probability. Most sections present material in terms of portions of a school year. At least one major objective is…

  11. Holography for a De Sitter-Esque geometry

    NASA Astrophysics Data System (ADS)

    Anninos, Dionysios; de Buyl, Sophie; Detournay, Stéphane

    2011-05-01

    Warped dS3 arises as a solution to topologically massive gravity (TMG) with positive cosmological constant +1/ ℓ 2 and Chern-Simons coefficient 1/ μ in the region μ 2 ℓ 2 < 27. It is given by a real line fibration over two-dimensional de Sitter space and is equivalent to the rotating Nariai geometry at fixed polar angle. We study the thermodynamic and asymptotic structure of a family of geometries with warped dS3 asymptotics. Interestingly, these solutions have both a cosmological horizon and an internal one, and their entropy is unbounded from above unlike black holes in regular de Sitter space. The asymptotic symmetry group resides at future infinity and is given by a semi-direct product of a Virasoro algebra and a current algebra. The right moving central charge vanishes when μ 2 ℓ 2 = 27/5. We discuss the possible holographic interpretation of these de Sitter-esque spacetimes.

  12. Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guth, Larry, E-mail: lguth@math.mit.edu; Lubotzky, Alexander, E-mail: alex.lubotzky@mail.huji.ac.il

    2014-08-15

    Using 4-dimensional arithmetic hyperbolic manifolds, we construct some new homological quantum error correcting codes. They are low density parity check codes with linear rate and distance n{sup ε}. Their rate is evaluated via Euler characteristic arguments and their distance using Z{sub 2}-systolic geometry. This construction answers a question of Zémor [“On Cayley graphs, surface codes, and the limits of homological coding for quantum error correction,” in Proceedings of Second International Workshop on Coding and Cryptology (IWCC), Lecture Notes in Computer Science Vol. 5557 (2009), pp. 259–273], who asked whether homological codes with such parameters could exist at all.

  13. Learning coefficient of generalization error in Bayesian estimation and vandermonde matrix-type singularity.

    PubMed

    Aoyagi, Miki; Nagata, Kenji

    2012-06-01

    The term algebraic statistics arises from the study of probabilistic models and techniques for statistical inference using methods from algebra and geometry (Sturmfels, 2009 ). The purpose of our study is to consider the generalization error and stochastic complexity in learning theory by using the log-canonical threshold in algebraic geometry. Such thresholds correspond to the main term of the generalization error in Bayesian estimation, which is called a learning coefficient (Watanabe, 2001a , 2001b ). The learning coefficient serves to measure the learning efficiencies in hierarchical learning models. In this letter, we consider learning coefficients for Vandermonde matrix-type singularities, by using a new approach: focusing on the generators of the ideal, which defines singularities. We give tight new bound values of learning coefficients for the Vandermonde matrix-type singularities and the explicit values with certain conditions. By applying our results, we can show the learning coefficients of three-layered neural networks and normal mixture models.

  14. Veronese geometry and the electroweak vacuum moduli space

    NASA Astrophysics Data System (ADS)

    He, Yang-Hui; Jejjala, Vishnu; Matti, Cyril; Nelson, Brent D.

    2014-09-01

    We explain the origin of the Veronese surface in the vacuum moduli space geometry of the MSSM electroweak sector. While this result appeared many years ago using techniques of computational algebraic geometry, it has never been demonstrated analytically. Here, we present an analytical derivation of the vacuum geometry of the electroweak theory by understanding how the F- and D-term relations lead to the Veronese surface. We moreover give a detailed description of this geometry, realising an extra branch as a zero-dimensional point when quadratic Higgs lifting deformations are incorporated into the superpotential.

  15. Mathematics Framework for California Public Schools, Kindergarten Through Grade Twelve.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    This report, prepared by a statewide Mathematics Advisory Committee, revises the framework in the Second Strands Report of 1972, expanding it to encompass kindergarten through grade 12. Strands for kindergarten through grade 8 are: arithmetic, numbers, and operations; geometry; measurement, problem solving/ applications; probability and…

  16. Space Mathematics: A Resource for Secondary School Teachers

    NASA Technical Reports Server (NTRS)

    Kastner, Bernice

    1985-01-01

    A collection of mathematical problems related to NASA space science projects is presented. In developing the examples and problems, attention was given to preserving the authenticity and significance of the original setting while keeping the level of mathematics within the secondary school curriculum. Computation and measurement, algebra, geometry, probability and statistics, exponential and logarithmic functions, trigonometry, matrix algebra, conic sections, and calculus are among the areas addressed.

  17. Two and three dimensional grid generation by an algebraic homotopy procedure

    NASA Technical Reports Server (NTRS)

    Moitra, Anutosh

    1990-01-01

    An algebraic method for generating two- and three-dimensional grid systems for aerospace vehicles is presented. The method is based on algebraic procedures derived from homotopic relations for blending between inner and outer boundaries of any given configuration. Stable properties of homotopic maps have been exploited to provide near-orthogonality and specified constant spacing at the inner boundary. The method has been successfully applied to analytically generated blended wing-body configurations as well as discretely defined geometries such as the High-Speed Civil Transport Aircraft. Grid examples representative of the capabilities of the method are presented.

  18. Weak Lie symmetry and extended Lie algebra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goenner, Hubert

    2013-04-15

    The concept of weak Lie motion (weak Lie symmetry) is introduced. Applications given exhibit a reduction of the usual symmetry, e.g., in the case of the rotation group. In this context, a particular generalization of Lie algebras is found ('extended Lie algebras') which turns out to be an involutive distribution or a simple example for a tangent Lie algebroid. Riemannian and Lorentz metrics can be introduced on such an algebroid through an extended Cartan-Killing form. Transformation groups from non-relativistic mechanics and quantum mechanics lead to such tangent Lie algebroids and to Lorentz geometries constructed on them (1-dimensional gravitational fields).

  19. HOMAR: A computer code for generating homotopic grids using algebraic relations: User's manual

    NASA Technical Reports Server (NTRS)

    Moitra, Anutosh

    1989-01-01

    A computer code for fast automatic generation of quasi-three-dimensional grid systems for aerospace configurations is described. The code employs a homotopic method to algebraically generate two-dimensional grids in cross-sectional planes, which are stacked to produce a three-dimensional grid system. Implementation of the algebraic equivalents of the homotopic relations for generating body geometries and grids are explained. Procedures for controlling grid orthogonality and distortion are described. Test cases with description and specification of inputs are presented in detail. The FORTRAN computer program and notes on implementation and use are included.

  20. Foundations of Tensor Analysis for Students of Physics and Engineering With an Introduction to the Theory of Relativity

    NASA Technical Reports Server (NTRS)

    Kolecki, Joseph C.

    2005-01-01

    Tensor analysis is one of the more abstruse, even if one of the more useful, higher math subjects enjoined by students of physics and engineering. It is abstruse because of the intellectual gap that exists between where most physics and engineering mathematics leave off and where tensor analysis traditionally begins. It is useful because of its great generality, computational power, and compact, easy to use, notation. This paper bridges the intellectual gap. It is divided into three parts: algebra, calculus, and relativity. Algebra: In tensor analysis, coordinate independent quantities are sought for applications in physics and engineering. Coordinate independence means that the quantities have such coordinate transformations as to leave them invariant relative to a particular observer s coordinate system. Calculus: Non-zero base vector derivatives contribute terms to dynamical equations that correspond to pseudoaccelerations in accelerated coordinate systems and to curvature or gravity in relativity. These derivatives have a specific general form in tensor analysis. Relativity: Spacetime has an intrinsic geometry. Light is the tool for investigating that geometry. Since the observed geometry of spacetime cannot be made to match the classical geometry of Euclid, Einstein applied another more general geometry differential geometry. The merger of differential geometry and cosmology was accomplished in the theory of relativity. In relativity, gravity is equivalent to curvature.

  1. Bridging Algebra & Geometry with "n"-Gram Proofs

    ERIC Educational Resources Information Center

    Craven, Joshua D.

    2010-01-01

    For many students, geometry is the first course in which mathematical proof takes center stage. To help ease students into writing proofs, the author tries to create lessons and activities throughout the year that challenge students to prove their own conjectures by using tools learned in previous mathematics courses. Teachers cannot get all…

  2. Calculus of Elementary Functions, Part II. Teacher's Commentary. Revised Edition.

    ERIC Educational Resources Information Center

    Herriot, Sarah T.; And Others

    This course is intended for students who have a thorough knowledge of college preparatory mathematics, including algebra, axiomatic geometry, trigonometry, and analytic geometry. This teacher's guide is for Part II of the course. It is designed to follow Part I of the text. The guide contains background information, suggested instructional…

  3. Calculus of Elementary Functions, Part I. Student Text. Revised Edition.

    ERIC Educational Resources Information Center

    Herriot, Sarah T.; And Others

    This course is intended for students who have a thorough knowledge of college preparatory mathematics, including algebra, axiomatic geometry, trigonometry, and analytic geometry. This text, Part I, contains the first five chapters of the course and two appendices. Chapters included are: (1) Polynomial Functions; (2) The Derivative of a Polynomial…

  4. Calculus of Elementary Functions, Part II. Student Text. Revised Edition.

    ERIC Educational Resources Information Center

    Herriot, Sarah T.; And Others

    This course is intended for students who have a thorough knowledge of college preparatory mathematics, including algebra, axiomatic geometry, trigonometry, and analytic geometry. This text, Part II, contains material designed to follow Part I. Chapters included in this text are: (6) Derivatives of Exponential and Related Functions; (7) Area and…

  5. Secondary Schools Curriculum Guide, Mathematics, Grades 10-12, Levels 87-112.

    ERIC Educational Resources Information Center

    Rogers, Arnold R., Ed.; And Others

    Behavioral objectives for geometry, algebra, computer mathematics, trigonometry, analytic geometry, calculus, and probability are specified for grades 10 through 12. General objectives are stated for major areas under each topic and are followed by a list of specific objectives for that area. This work was prepared under an ESEA Title III…

  6. Origami, Geometry and Art

    ERIC Educational Resources Information Center

    Wares, Arsalan; Elstak, Iwan

    2017-01-01

    The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…

  7. Game Building with Complex-Valued Functions

    ERIC Educational Resources Information Center

    Dittman, Marki; Soto-Johnson, Hortensia; Dickinson, Scott; Harr, Tim

    2017-01-01

    In this paper, we describe how we integrated complex analysis into the second semester of a geometry course designed for preservice secondary mathematics teachers. As part of this inquiry-based course, the preservice teachers incorporated their geometric understanding of the arithmetic of complex numbers and complex-valued functions to create a…

  8. Utilising a construct of teacher capacity to examine national curriculum reform in mathematics

    NASA Astrophysics Data System (ADS)

    Zhang, Qinqiong; Stephens, Max

    2013-12-01

    This study involving 120 Australian and Chinese teachers introduces a construct of teacher capacity to analyse how teachers help students connect arithmetic learning and emerging algebraic thinking. Four criteria formed the basis of our construct of teacher capacity: knowledge of mathematics, interpretation of the intentions of official curriculum documents, understanding of students' thinking, and design of teaching. While these key elements connect to what other researchers refer to as mathematical knowledge for teaching, several differences are made clear. Qualitative and quantitative analyses show that our construct was robust and effective in distinguishing between different levels of teacher capacity.

  9. THE SMALLEST FIELD OF DEFINITION OF A SUBGROUP OF THE GROUP \\mathrm{PSL}_2

    NASA Astrophysics Data System (ADS)

    Vinberg, È. B.

    1995-02-01

    As previously proved by the author, for each semisimple algebraic group of adjoint type that is dense in the Zariski topology there exists a smallest field of definition which is an invariant of the class of commensurable subgroups. In the present paper an algorithm is given for finding the smallest field of definition of a dense finitely generated subgroup of the group \\mathrm{PSL}_2(\\mathbb{C}). A criterion for arithmeticity of a lattice in \\mathrm{PSL}_2(\\mathbb{R}) or \\mathrm{PSL}_2(\\mathbb{C}) in terms of this field is presented.Bibliography: 7 titles.

  10. Finite-band solutions of the coupled dispersionless hierarchy

    NASA Astrophysics Data System (ADS)

    Li, Zhu

    2016-08-01

    The coupled dispersionless hierarchy is derived with the help of the zero curvature equation. Based on the Lax matrix, we introduce an algebraic curve {{ K }}n of arithmetic genus n, from which we establish the corresponding meromorphic function ϕ, the Baker-Akhiezer function {\\varphi }1, and Dubrovin-type equations. The straightening out of all the flows is given under the Abel-Jacobi coordinates. Using the asymptotic properties of ϕ and {\\varphi }1, we obtain the explicit theta function representations of the meromorphic function ϕ, the Baker-Akhiezer function {\\varphi }1 and of solutions for the whole hierarchy.

  11. The Relationship between School-Facilitated Parental Involvement and Academic Math Achievement of High School Students in Virginia Who Receive Special Education Services

    ERIC Educational Resources Information Center

    Stein, Allison

    2017-01-01

    This study examined how school-facilitated parental involvement affects Standards of Learning (SOL) end-of-course exams for high school students in Virginia who are receiving special education services. This study examined test results from the 2012-2013, 2013-2014, and 2014-2015 school years for the Algebra I, Geometry, and Algebra II SOL exams,…

  12. Generalized -deformed correlation functions as spectral functions of hyperbolic geometry

    NASA Astrophysics Data System (ADS)

    Bonora, L.; Bytsenko, A. A.; Guimarães, M. E. X.

    2014-08-01

    We analyze the role of vertex operator algebra and 2d amplitudes from the point of view of the representation theory of infinite-dimensional Lie algebras, MacMahon and Ruelle functions. By definition p-dimensional MacMahon function, with , is the generating function of p-dimensional partitions of integers. These functions can be represented as amplitudes of a two-dimensional c = 1 CFT, and, as such, they can be generalized to . With some abuse of language we call the latter amplitudes generalized MacMahon functions. In this paper we show that generalized p-dimensional MacMahon functions can be rewritten in terms of Ruelle spectral functions, whose spectrum is encoded in the Patterson-Selberg function of three-dimensional hyperbolic geometry.

  13. Generalized Kähler geometry and current algebras in classical N=2 superconformal WZW model

    NASA Astrophysics Data System (ADS)

    Parkhomenko, S. E.

    2018-04-01

    I examine the Generalized Kähler (GK) geometry of classical N = (2, 2) superconformal WZW model on a compact group and relate the right-moving and left-moving Kac-Moody superalgebra currents to the GK geometry data using biholomorphic gerbe formulation and Hamiltonian formalism. It is shown that the canonical Poisson homogeneous space structure induced by the GK geometry of the group manifold is crucial to provide N = (2, 2) superconformal σ-model with the Kac-Moody superalgebra symmetries. Then, the biholomorphic gerbe geometry is used to prove that Kac-Moody superalgebra currents are globally defined.

  14. Network-Physics (NP) BEC DIGITAL(#)-VULNERABILITY; ``Q-Computing"=Simple-Arithmetic;Modular-Congruences=SignalXNoise PRODUCTS=Clock-model;BEC-Factorization;RANDOM-# Definition;P=/=NP TRIVIAL Proof!!!

    NASA Astrophysics Data System (ADS)

    Pi, E. I.; Siegel, E.

    2010-03-01

    Siegel[AMS Natl.Mtg.(2002)-Abs.973-60-124] digits logarithmic- law inversion to ONLY BEQS BEC:Quanta/Bosons=#: EMP-like SEVERE VULNERABILITY of ONLY #-networks(VS.ANALOG INvulnerability) via Barabasi NP(VS.dynamics[Not.AMS(5/2009)] critique);(so called)``quantum-computing''(QC) = simple-arithmetic (sansdivision);algorithmiccomplexities:INtractibility/UNdecidabi lity/INefficiency/NONcomputability/HARDNESS(so MIScalled) ``noise''-induced-phase-transition(NIT)ACCELERATION:Cook-Levin theorem Reducibility = RG fixed-points; #-Randomness DEFINITION via WHAT? Query(VS. Goldreich[Not.AMS(2002)] How? mea culpa)= ONLY MBCS hot-plasma v #-clumping NON-random BEC; Modular-Arithmetic Congruences = Signal x Noise PRODUCTS = clock-model; NON-Shor[Physica A,341,586(04)]BEC logarithmic-law inversion factorization: Watkins #-theory U statistical- physics); P=/=NP C-S TRIVIAL Proof: Euclid!!! [(So Miscalled) computational-complexity J-O obviation(3 millennia AGO geometry: NO:CC,``CS'';``Feet of Clay!!!'']; Query WHAT?:Definition: (so MIScalled)``complexity''=UTTER-SIMPLICITY!! v COMPLICATEDNESS MEASURE(S).

  15. On superintegrable monopole systems

    NASA Astrophysics Data System (ADS)

    Fazlul Hoque, Md; Marquette, Ian; Zhang, Yao-Zhong

    2018-02-01

    Superintegrable systems with monopole interactions in flat and curved spaces have attracted much attention. For example, models in spaces with a Taub-NUT metric are well-known to admit the Kepler-type symmetries and provide non-trivial generalizations of the usual Kepler problems. In this paper, we overview new families of superintegrable Kepler, MIC-harmonic oscillator and deformed Kepler systems interacting with Yang-Coulomb monopoles in the flat and curved Taub-NUT spaces. We present their higher-order, algebraically independent integrals of motion via the direct and constructive approaches which prove the superintegrability of the models. The integrals form symmetry polynomial algebras of the systems with structure constants involving Casimir operators of certain Lie algebras. Such algebraic approaches provide a deeper understanding to the degeneracies of the energy spectra and connection between wave functions and differential equations and geometry.

  16. Elliptic Curve Integral Points on y2 = x3 + 3x ‑ 14

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhong

    2018-03-01

    The positive integer points and integral points of elliptic curves are very important in the theory of number and arithmetic algebra, it has a wide range of applications in cryptography and other fields. There are some results of positive integer points of elliptic curve y 2 = x 3 + ax + b, a, b ∈ Z In 1987, D. Zagier submit the question of the integer points on y 2 = x 3 ‑ 27x + 62, it count a great deal to the study of the arithmetic properties of elliptic curves. In 2009, Zhu H L and Chen J H solved the problem of the integer points on y 2 = x 3 ‑ 27x + 62 by using algebraic number theory and P-adic analysis method. In 2010, By using the elementary method, Wu H M obtain all the integral points of elliptic curves y 2 = x 3 ‑ 27x ‑ 62. In 2015, Li Y Z and Cui B J solved the problem of the integer points on y 2 = x 3 ‑ 21x ‑ 90 By using the elementary method. In 2016, Guo J solved the problem of the integer points on y 2 = x 3 + 27x + 62 by using the elementary method. In 2017, Guo J proved that y 2 = x 3 ‑ 21x + 90 has no integer points by using the elementary method. Up to now, there is no relevant conclusions on the integral points of elliptic curves y 2 = x 3 + 3x ‑ 14, which is the subject of this paper. By using congruence and Legendre Symbol, it can be proved that elliptic curve y 2 = x 3 + 3x ‑ 14 has only one integer point: (x, y) = (2, 0).

  17. Nonlinear secret image sharing scheme.

    PubMed

    Shin, Sang-Ho; Lee, Gil-Je; Yoo, Kee-Young

    2014-01-01

    Over the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack. Renvall and Ding proposed a new secret sharing technique based on nonlinear combination polynomial arithmetic in order to solve this threat. It is hard to apply to the secret image sharing. In this paper, we propose a (t, n)-threshold nonlinear secret image sharing scheme with steganography concept. In order to achieve a suitable and secure secret image sharing scheme, we adapt a modified LSB embedding technique with XOR Boolean algebra operation, define a new variable m, and change a range of prime p in sharing procedure. In order to evaluate efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB) and 1.74t⌈log2 m⌉ bit-per-pixel (bpp), respectively.

  18. Nonlinear Secret Image Sharing Scheme

    PubMed Central

    Shin, Sang-Ho; Yoo, Kee-Young

    2014-01-01

    Over the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack. Renvall and Ding proposed a new secret sharing technique based on nonlinear combination polynomial arithmetic in order to solve this threat. It is hard to apply to the secret image sharing. In this paper, we propose a (t, n)-threshold nonlinear secret image sharing scheme with steganography concept. In order to achieve a suitable and secure secret image sharing scheme, we adapt a modified LSB embedding technique with XOR Boolean algebra operation, define a new variable m, and change a range of prime p in sharing procedure. In order to evaluate efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB) and 1.74t⌈log2⁡m⌉ bit-per-pixel (bpp), respectively. PMID:25140334

  19. Staff Development Project--Mathematics. Grades K-6. Revision.

    ERIC Educational Resources Information Center

    Shaw, Jean M.; And Others

    This manual was designed for use in conducting staff development sessions for elementary teachers of mathematics in Mississippi in grades K-6. The four topical areas treated in the document are: (1) measurement and geometry; (2) fractions; (3) procedural errors in arithmetic; and (4) problem solving. The number of instructional hours necessary for…

  20. Examining Opportunity-to-Learn and Success in High School Mathematics Performance in California under NCLB

    ERIC Educational Resources Information Center

    Gavrilovic, Daniel Miodrag

    2013-01-01

    The No Child Left Behind Act of 2001 has put many schools under a lot of pressure to meet its high demands. In this quantitative study, the effects that the NCLB act has had on students' opportunity to learn (OTL) and Subject Level Success (SS) from 2004 to 2012 in 9th, 10th, and 11th grade math coursework (Algebra 1, Geometry, Algebra 2, and…

  1. Geometry Of Discrete Sets With Applications To Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Sinha, Divyendu

    1990-03-01

    In this paper we present a new framework for discrete black and white images that employs only integer arithmetic. This framework is shown to retain the essential characteristics of the framework for Euclidean images. We propose two norms and based on them, the permissible geometric operations on images are defined. The basic invariants of our geometry are line images, structure of image and the corresponding local property of strong attachment of pixels. The permissible operations also preserve the 3x3 neighborhoods, area, and perpendicularity. The structure, patterns, and the inter-pattern gaps in a discrete image are shown to be conserved by the magnification and contraction process. Our notions of approximate congruence, similarity and symmetry are similar, in character, to the corresponding notions, for Euclidean images [1]. We mention two discrete pattern recognition algorithms that work purely with integers, and which fit into our framework. Their performance has been shown to be at par with the performance of traditional geometric schemes. Also, all the undesired effects of finite length registers in fixed point arithmetic that plague traditional algorithms, are non-existent in this family of algorithms.

  2. Noncommutative Differential Geometry of Generalized Weyl Algebras

    NASA Astrophysics Data System (ADS)

    Brzeziński, Tomasz

    2016-06-01

    Elements of noncommutative differential geometry of Z-graded generalized Weyl algebras A(p;q) over the ring of polynomials in two variables and their zero-degree subalgebras B(p;q), which themselves are generalized Weyl algebras over the ring of polynomials in one variable, are discussed. In particular, three classes of skew derivations of A(p;q) are constructed, and three-dimensional first-order differential calculi induced by these derivations are described. The associated integrals are computed and it is shown that the dimension of the integral space coincides with the order of the defining polynomial p(z). It is proven that the restriction of these first-order differential calculi to the calculi on B(p;q) is isomorphic to the direct sum of degree 2 and degree -2 components of A(p;q). A Dirac operator for B(p;q) is constructed from a (strong) connection with respect to this differential calculus on the (free) spinor bimodule defined as the direct sum of degree 1 and degree -1 components of A(p;q). The real structure of KO-dimension two for this Dirac operator is also described.

  3. Spectral geometry of {kappa}-Minkowski space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Andrea, Francesco

    After recalling Snyder's idea [Phys. Rev. 71, 38 (1947)] of using vector fields over a smooth manifold as 'coordinates on a noncommutative space', we discuss a two-dimensional toy-model whose 'dual' noncommutative coordinates form a Lie algebra: this is the well-known {kappa}-Minkowski space [Phys. Lett. B 334, 348 (1994)]. We show how to improve Snyder's idea using the tools of quantum groups and noncommutative geometry. We find a natural representation of the coordinate algebra of {kappa}-Minkowski as linear operators on an Hilbert space (a major problem in the construction of a physical theory), study its 'spectral properties', and discuss how tomore » obtain a Dirac operator for this space. We describe two Dirac operators. The first is associated with a spectral triple. We prove that the cyclic integral of Dimitrijevic et al. [Eur. Phys. J. C 31, 129 (2003)] can be obtained as Dixmier trace associated to this triple. The second Dirac operator is equivariant for the action of the quantum Euclidean group, but it has unbounded commutators with the algebra.« less

  4. Floating-point geometry: toward guaranteed geometric computations with approximate arithmetics

    NASA Astrophysics Data System (ADS)

    Bajard, Jean-Claude; Langlois, Philippe; Michelucci, Dominique; Morin, Géraldine; Revol, Nathalie

    2008-08-01

    Geometric computations can fail because of inconsistencies due to floating-point inaccuracy. For instance, the computed intersection point between two curves does not lie on the curves: it is unavoidable when the intersection point coordinates are non rational, and thus not representable using floating-point arithmetic. A popular heuristic approach tests equalities and nullities up to a tolerance ɛ. But transitivity of equality is lost: we can have A approx B and B approx C, but A not approx C (where A approx B means ||A - B|| < ɛ for A,B two floating-point values). Interval arithmetic is another, self-validated, alternative; the difficulty is to limit the swell of the width of intervals with computations. Unfortunately interval arithmetic cannot decide equality nor nullity, even in cases where it is decidable by other means. A new approach, developed in this paper, consists in modifying the geometric problems and algorithms, to account for the undecidability of the equality test and unavoidable inaccuracy. In particular, all curves come with a non-zero thickness, so two curves (generically) cut in a region with non-zero area, an inner and outer representation of which is computable. This last approach no more assumes that an equality or nullity test is available. The question which arises is: which geometric problems can still be solved with this last approach, and which cannot? This paper begins with the description of some cases where every known arithmetic fails in practice. Then, for each arithmetic, some properties of the problems they can solve are given. We end this work by proposing the bases of a new approach which aims to fulfill the geometric computations requirements.

  5. Numerical algebraic geometry for model selection and its application to the life sciences

    PubMed Central

    Gross, Elizabeth; Davis, Brent; Ho, Kenneth L.; Bates, Daniel J.

    2016-01-01

    Researchers working with mathematical models are often confronted by the related problems of parameter estimation, model validation and model selection. These are all optimization problems, well known to be challenging due to nonlinearity, non-convexity and multiple local optima. Furthermore, the challenges are compounded when only partial data are available. Here, we consider polynomial models (e.g. mass-action chemical reaction networks at steady state) and describe a framework for their analysis based on optimization using numerical algebraic geometry. Specifically, we use probability-one polynomial homotopy continuation methods to compute all critical points of the objective function, then filter to recover the global optima. Our approach exploits the geometrical structures relating models and data, and we demonstrate its utility on examples from cell signalling, synthetic biology and epidemiology. PMID:27733697

  6. Linear systems with structure group and their feedback invariants

    NASA Technical Reports Server (NTRS)

    Martin, C.; Hermann, R.

    1977-01-01

    A general method described by Hermann and Martin (1976) for the study of the feedback invariants of linear systems is considered. It is shown that this method, which makes use of ideas of topology and algebraic geometry, is very useful in the investigation of feedback problems for which the classical methods are not suitable. The transfer function as a curve in the Grassmanian is examined. The general concepts studied in the context of specific systems and applications are organized in terms of the theory of Lie groups and algebraic geometry. Attention is given to linear systems which have a structure group, linear mechanical systems, and feedback invariants. The investigation shows that Lie group techniques are powerful and useful tools for analysis of the feedback structure of linear systems.

  7. Deformation Theory and Physics Model Building

    NASA Astrophysics Data System (ADS)

    Sternheimer, Daniel

    2006-08-01

    The mathematical theory of deformations has proved to be a powerful tool in modeling physical reality. We start with a short historical and philosophical review of the context and concentrate this rapid presentation on a few interrelated directions where deformation theory is essential in bringing a new framework - which has then to be developed using adapted tools, some of which come from the deformation aspect. Minkowskian space-time can be deformed into Anti de Sitter, where massless particles become composite (also dynamically): this opens new perspectives in particle physics, at least at the electroweak level, including prediction of new mesons. Nonlinear group representations and covariant field equations, coming from interactions, can be viewed as some deformation of their linear (free) part: recognizing this fact can provide a good framework for treating problems in this area, in particular global solutions. Last but not least, (algebras associated with) classical mechanics (and field theory) on a Poisson phase space can be deformed to (algebras associated with) quantum mechanics (and quantum field theory). That is now a frontier domain in mathematics and theoretical physics called deformation quantization, with multiple ramifications, avatars and connections in both mathematics and physics. These include representation theory, quantum groups (when considering Hopf algebras instead of associative or Lie algebras), noncommutative geometry and manifolds, algebraic geometry, number theory, and of course what is regrouped under the name of M-theory. We shall here look at these from the unifying point of view of deformation theory and refer to a limited number of papers as a starting point for further study.

  8. Using Dynamic Geometry and Computer Algebra Systems in Problem Based Courses for Future Engineers

    ERIC Educational Resources Information Center

    Tomiczková, Svetlana; Lávicka, Miroslav

    2015-01-01

    It is a modern trend today when formulating the curriculum of a geometric course at the technical universities to start from a real-life problem originated in technical praxis and subsequently to define which geometric theories and which skills are necessary for its solving. Nowadays, interactive and dynamic geometry software plays a more and more…

  9. Pre-Service Elementary Teachers Make Connections between Geometry and Algebra through the Use of Technology

    ERIC Educational Resources Information Center

    Mohr, Doris J.

    2008-01-01

    In a geometry content course for pre-service elementary teachers, technology was utilized to assist students in making sense of shapes. They learned to write simple procedures in Logo that would program a turtle to draw various quadrilaterals. In the context of writing these procedures, the pre-service teachers used variables to represent the…

  10. Exceptional quantum geometry and particle physics

    NASA Astrophysics Data System (ADS)

    Dubois-Violette, Michel

    2016-11-01

    Based on an interpretation of the quark-lepton symmetry in terms of the unimodularity of the color group SU (3) and on the existence of 3 generations, we develop an argumentation suggesting that the "finite quantum space" corresponding to the exceptional real Jordan algebra of dimension 27 (the Euclidean Albert algebra) is relevant for the description of internal spaces in the theory of particles. In particular, the triality which corresponds to the 3 off-diagonal octonionic elements of the exceptional algebra is associated to the 3 generations of the Standard Model while the representation of the octonions as a complex 4-dimensional space C ⊕C3 is associated to the quark-lepton symmetry (one complex for the lepton and 3 for the corresponding quark). More generally it is suggested that the replacement of the algebra of real functions on spacetime by the algebra of functions on spacetime with values in a finite-dimensional Euclidean Jordan algebra which plays the role of "the algebra of real functions" on the corresponding almost classical quantum spacetime is relevant in particle physics. This leads us to study the theory of Jordan modules and to develop the differential calculus over Jordan algebras (i.e. to introduce the appropriate notion of differential forms). We formulate the corresponding definition of connections on Jordan modules.

  11. Generalized Cartan Calculus in general dimension

    DOE PAGES

    Wang, Yi -Nan

    2015-07-22

    We develop the generalized Cartan Calculus for the groups G = SL(2,R) × R +, SL(5,R) and SO(5,5). They are the underlying algebraic structures of d=9,7,6 exceptional field theory, respectively. These algebraic identities are needed for the "tensor hierarchy" structure in exceptional field theory. The validity of Poincar\\'e lemmas in this new differential geometry is also discussed. Lastly, we explore some possible extension of the generalized Cartan calculus beyond the exceptional series.

  12. Diagonalization of the symmetrized discrete i th right shift operator

    NASA Astrophysics Data System (ADS)

    Fuentes, Marc

    2007-01-01

    In this paper, we consider the symmetric part of the so-called ith right shift operator. We determine its eigenvalues as also the associated eigenvectors in a complete and closed form. The proposed proof is elementary, using only basical skills such as Trigonometry, Arithmetic and Linear algebra. The first section is devoted to the introduction of the tackled problem. Second and third parts contain almost all the ?technical? stuff of the proofE Afterwards, we continue with the end of the proof, provide a graphical illustration of the results, as well as an application on the polyhedral ?sandwiching? of a special compact of arising in Signal theory.

  13. Minásbate Equivalents of Mathematical Concepts: Their Socio-Cultural Undertones

    ERIC Educational Resources Information Center

    Balbuena, Sherwin E.; Cantoria, Uranus E.; Cantoria, Amancio L., Jr.; Ferriol, Eny B.

    2015-01-01

    This paper presents the collection and analysis of Minásbate equivalents of some concepts used in the study of arithmetic, counting, and geometry as provided by the elderly residents of the province of Masbate. The glossary of mathematical terms derived from interviews would serve as an authoritative reference for mother tongue teachers in the…

  14. A brief historical development of classical mathematics before the Renaissance

    NASA Astrophysics Data System (ADS)

    Debnath, Lokenath

    2011-07-01

    'If you wish to foresee the future of mathematics our proper course is to study the history and present condition of the science.' Henri Poincaré 'It is India that gave us the ingenious method of expressing all numbers by ten symbols, each symbol receiving a value of position, as well as an absolute value. We shall appreciate the grandeur of the achievement when we remember that it escaped the genius of Archimedes and Apollonius.' P.S. Laplace 'The Greeks were the first mathematicians who are still 'real' to us today. Oriental mathematics may be an interesting curiosity, but Greek mathematics is the real thing. The Greek first spoke of a language which modern mathematicians can understand.' G.H. Hardy This article deals with a short history of mathematics and mathematical scientists during the ancient and medieval periods. Included are some major developments of the ancient, Indian, Arabic, Egyptian, Greek and medieval mathematics and their significant impact on the Renaissance mathematics. Special attention is given to many results, theorems, generalizations, and new discoveries of arithmetic, algebra, number theory, geometry and astronomy during the above periods. A number of exciting applications of the above areas is discussed in some detail. It also contains a wide variety of important material accessible to college and even high school students and teachers at all levels. Included also is mathematical information that puts the professionals and prospective mathematical scientists at the forefront of current research.

  15. Newton-Cartan gravity and torsion

    NASA Astrophysics Data System (ADS)

    Bergshoeff, Eric; Chatzistavrakidis, Athanasios; Romano, Luca; Rosseel, Jan

    2017-10-01

    We compare the gauging of the Bargmann algebra, for the case of arbitrary torsion, with the result that one obtains from a null-reduction of General Relativity. Whereas the two procedures lead to the same result for Newton-Cartan geometry with arbitrary torsion, the null-reduction of the Einstein equations necessarily leads to Newton-Cartan gravity with zero torsion. We show, for three space-time dimensions, how Newton-Cartan gravity with arbitrary torsion can be obtained by starting from a Schrödinger field theory with dynamical exponent z = 2 for a complex compensating scalar and next coupling this field theory to a z = 2 Schrödinger geometry with arbitrary torsion. The latter theory can be obtained from either a gauging of the Schrödinger algebra, for arbitrary torsion, or from a null-reduction of conformal gravity.

  16. True orbit simulation of piecewise linear and linear fractional maps of arbitrary dimension using algebraic numbers

    NASA Astrophysics Data System (ADS)

    Saito, Asaki; Yasutomi, Shin-ichi; Tamura, Jun-ichi; Ito, Shunji

    2015-06-01

    We introduce a true orbit generation method enabling exact simulations of dynamical systems defined by arbitrary-dimensional piecewise linear fractional maps, including piecewise linear maps, with rational coefficients. This method can generate sufficiently long true orbits which reproduce typical behaviors (inherent behaviors) of these systems, by properly selecting algebraic numbers in accordance with the dimension of the target system, and involving only integer arithmetic. By applying our method to three dynamical systems—that is, the baker's transformation, the map associated with a modified Jacobi-Perron algorithm, and an open flow system—we demonstrate that it can reproduce their typical behaviors that have been very difficult to reproduce with conventional simulation methods. In particular, for the first two maps, we show that we can generate true orbits displaying the same statistical properties as typical orbits, by estimating the marginal densities of their invariant measures. For the open flow system, we show that an obtained true orbit correctly converges to the stable period-1 orbit, which is inherently possessed by the system.

  17. Can a Crescent Mars Ever Be Seen from Earth?

    ERIC Educational Resources Information Center

    Lamb, John F., Jr.

    1990-01-01

    Described is an activity that incorporates a computer, geometry, algebra, trigonometry, and calculus to answer questions about the planet Mars. A possible crescent of Mars is compared to those of Venus and Mercury. (KR)

  18. Research issues of geometry-based visual languages and some solutions

    NASA Astrophysics Data System (ADS)

    Green, Thorn G.

    This dissertation addresses the problem of how to design visual language systems that are based upon Geometric Algebra, and provide a visual coupling of algebraic expressions and geometric depictions. This coupling of algebraic expressions and geometric depictions provides a new means for expressing both mathematical and geometric relationships present in mathematics, physics, and Computer-Aided Geometric Design (CAGD). Another significant feature of such a system is that the result of changing a parameter (by dragging the mouse) can be seen immediately in the depiction(s) of all expressions that use that parameter. This greatly aides the cognition of the relationships between variables. Systems for representing such a coupling of algebra and geometry have characteristics of both visual language systems, and systems for scientific visualization. Instead of using a parsing or dataflow paradigm for the visual language representation, the systems instead represent equations as manipulatible constrained diagrams for their visualization. This requires that the design of such a system have (but is not limited to) a means for parsing equations entered by the user, a scheme for producing a visual representation of these equations; techniques for maintaining the coupling between the expressions entered and the diagrams displayed; algorithms for maintaining the consistency of the diagrams; and, indexing capabilities that are efficient enough to allow diagrams to be created, and manipulated in a short enough period of time. The author proposes solutions for how such a design can be realized.

  19. Zooming in on AdS3/CFT2 near a BPS bound

    NASA Astrophysics Data System (ADS)

    Hartong, Jelle; Lei, Yang; Obers, Niels; Oling, Gerben

    2018-05-01

    Any ( d + 1)-dimensional CFT with a U(1) flavor symmetry, a BPS bound and an exactly marginal coupling admits a decoupling limit in which one zooms in on the spectrum close to the bound. This limit is an Inönü-Wigner contraction of so(2 , d+1)⊕ u(1) that leads to a relativistic algebra with a scaling generator but no conformal generators. In 2D CFTs, Lorentz boosts are abelian and by adding a second u(1) we find a contraction of two copies of sl(2, ℝ) ⊕ u(1) to two copies of P 2 c , the 2-dimensional centrally extended Poincaré algebra. We show that the bulk is described by a novel non-Lorentzian geometry that we refer to as pseudo-Newton-Cartan geometry. Both the Chern-Simons action on sl(2, ℝ) ⊕ u(1) and the entire phase space of asymptotically AdS3 spacetimes are well-behaved in the corresponding limit if we fix the radial component for the u(1) connection. With this choice, the resulting Newton-Cartan foliation structure is now associated not with time, but with the emerging holographic direction. Since the leaves of this foliation do not mix, the emergence of the holographic direction is much simpler than in AdS3 holography. Furthermore, we show that the asymptotic symmetry algebra of the limit theory consists of a left- and a right-moving warped Virasoro algebra.

  20. Analyzing and Comparing the Two Grade-Ten Mathematics Textbooks Versions (Arabic and English) Used in Abu Dhabi Schools

    ERIC Educational Resources Information Center

    Abosalem, Yousef

    2016-01-01

    This study was conducted to compare two grade-ten mathematics textbooks according to Bloom's Taxonomies. In the Arabic version, 37 out of 70 periods (55.29%) were given to plane geometry and trigonometry, whereas 29 out of 70 periods (41.41%) were allocated for geometry and trigonometry. Also, 12 periods (17.14%) were allocated for algebra in the…

  1. Geometric model of topological insulators from the Maxwell algebra

    NASA Astrophysics Data System (ADS)

    Palumbo, Giandomenico

    2017-11-01

    We propose a novel geometric model of time-reversal-invariant topological insulators in three dimensions in presence of an external electromagnetic field. Their gapped boundary supports relativistic quantum Hall states and is described by a Chern-Simons theory, where the gauge connection takes values in the Maxwell algebra. This represents a non-central extension of the Poincaré algebra and takes into account both the Lorentz and magnetic-translation symmetries of the surface states. In this way, we derive a relativistic version of the Wen-Zee term and we show that the non-minimal coupling between the background geometry and the electromagnetic field in the model is in agreement with the main properties of the relativistic quantum Hall states in the flat space.

  2. Vector-matrix-quaternion, array and arithmetic packages: All HAL/S functions implemented in Ada

    NASA Technical Reports Server (NTRS)

    Klumpp, Allan R.; Kwong, David D.

    1986-01-01

    The HAL/S avionics programmers have enjoyed a variety of tools built into a language tailored to their special requirements. Ada is designed for a broader group of applications. Rather than providing built-in tools, Ada provides the elements with which users can build their own. Standard avionic packages remain to be developed. These must enable programmers to code in Ada as they have coded in HAL/S. The packages under development at JPL will provide all of the vector-matrix, array, and arithmetic functions described in the HAL/S manuals. In addition, the linear algebra package will provide all of the quaternion functions used in Shuttle steering and Galileo attitude control. Furthermore, using Ada's extensibility, many quaternion functions are being implemented as infix operations; equivalent capabilities were never implemented in HAL/S because doing so would entail modifying the compiler and expanding the language. With these packages, many HAL/S expressions will compile and execute in Ada, unchanged. Others can be converted simply by replacing the implicit HAL/S multiply operator with the Ada *. Errors will be trapped and identified. Input/output will be convenient and readable.

  3. Novel 3D Compression Methods for Geometry, Connectivity and Texture

    NASA Astrophysics Data System (ADS)

    Siddeq, M. M.; Rodrigues, M. A.

    2016-06-01

    A large number of applications in medical visualization, games, engineering design, entertainment, heritage, e-commerce and so on require the transmission of 3D models over the Internet or over local networks. 3D data compression is an important requirement for fast data storage, access and transmission within bandwidth limitations. The Wavefront OBJ (object) file format is commonly used to share models due to its clear simple design. Normally each OBJ file contains a large amount of data (e.g. vertices and triangulated faces, normals, texture coordinates and other parameters) describing the mesh surface. In this paper we introduce a new method to compress geometry, connectivity and texture coordinates by a novel Geometry Minimization Algorithm (GM-Algorithm) in connection with arithmetic coding. First, each vertex ( x, y, z) coordinates are encoded to a single value by the GM-Algorithm. Second, triangle faces are encoded by computing the differences between two adjacent vertex locations, which are compressed by arithmetic coding together with texture coordinates. We demonstrate the method on large data sets achieving compression ratios between 87 and 99 % without reduction in the number of reconstructed vertices and triangle faces. The decompression step is based on a Parallel Fast Matching Search Algorithm (Parallel-FMS) to recover the structure of the 3D mesh. A comparative analysis of compression ratios is provided with a number of commonly used 3D file formats such as VRML, OpenCTM and STL highlighting the performance and effectiveness of the proposed method.

  4. A polymorphic reconfigurable emulator for parallel simulation

    NASA Technical Reports Server (NTRS)

    Parrish, E. A., Jr.; Mcvey, E. S.; Cook, G.

    1980-01-01

    Microprocessor and arithmetic support chip technology was applied to the design of a reconfigurable emulator for real time flight simulation. The system developed consists of master control system to perform all man machine interactions and to configure the hardware to emulate a given aircraft, and numerous slave compute modules (SCM) which comprise the parallel computational units. It is shown that all parts of the state equations can be worked on simultaneously but that the algebraic equations cannot (unless they are slowly varying). Attempts to obtain algorithms that will allow parellel updates are reported. The word length and step size to be used in the SCM's is determined and the architecture of the hardware and software is described.

  5. AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.

    1994-01-01

    This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.

  6. How to Orbit the Earth.

    ERIC Educational Resources Information Center

    Quimby, Donald J.

    1984-01-01

    Discusses the geometry, algebra, and logic involved in the solution of a "Mindbenders" problem in "Discover" magazine and applies it to calculations of satellite orbital velocity. Extends the solution of this probe to other applications of falling objects. (JM)

  7. Reflective Properties of a Parabolic Mirror.

    ERIC Educational Resources Information Center

    Ramsey, Gordon P.

    1991-01-01

    An incident light ray parallel to the optical axis of a parabolic mirror will be reflected at the focal point and vice versa. Presents a mathematical proof that uses calculus, algebra, and geometry to prove this reflective property. (MDH)

  8. 42 CFR Appendix A to Part 75 - Standards for Accreditation of Educational Programs for Radiographers

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... film evaluation; (k) Methods of patient care; (l) Pathology; (m) Radiologic physics; and (n) Radiation.... Courses in physics, chemistry, biology, algebra, and geometry are strongly recommended. (b) The number of...

  9. 42 CFR Appendix A to Part 75 - Standards for Accreditation of Educational Programs for Radiographers

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... film evaluation; (k) Methods of patient care; (l) Pathology; (m) Radiologic physics; and (n) Radiation.... Courses in physics, chemistry, biology, algebra, and geometry are strongly recommended. (b) The number of...

  10. 42 CFR Appendix A to Part 75 - Standards for Accreditation of Educational Programs for Radiographers

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... film evaluation; (k) Methods of patient care; (l) Pathology; (m) Radiologic physics; and (n) Radiation.... Courses in physics, chemistry, biology, algebra, and geometry are strongly recommended. (b) The number of...

  11. 42 CFR Appendix A to Part 75 - Standards for Accreditation of Educational Programs for Radiographers

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... film evaluation; (k) Methods of patient care; (l) Pathology; (m) Radiologic physics; and (n) Radiation.... Courses in physics, chemistry, biology, algebra, and geometry are strongly recommended. (b) The number of...

  12. Calculation of turbulence-driven secondary motion in ducts with arbitrary cross section

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1989-01-01

    Calculation methods for turbulent duct flows are generalized for ducts with arbitrary cross-sections. The irregular physical geometry is transformed into a regular one in computational space, and the flow equations are solved with a finite-volume numerical procedure. The turbulent stresses are calculated with an algebraic stress model derived by simplifying model transport equations for the individual Reynolds stresses. Two variants of such a model are considered. These procedures enable the prediction of both the turbulence-driven secondary flow and the anisotropy of the Reynolds stresses, in contrast to some of the earlier calculation methods. Model predictions are compared to experimental data for developed flow in triangular duct, trapezoidal duct and a rod-bundle geometry. The correct trends are predicted, and the quantitative agreement is mostly fair. The simpler variant of the algebraic stress model procured better agreement with the measured data.

  13. Using EEG To Detect and Monitor Mental Fatigue

    NASA Technical Reports Server (NTRS)

    Montgomery, Leslie; Luna, Bernadette; Trejo, Leonard J.; Montgomery, Richard

    2001-01-01

    This project aims to develop EEG-based methods for detecting and monitoring mental fatigue. Mental fatigue poses a serious risk, even when performance is not apparently degraded. When such fatigue is associated with sustained performance of a single type of cognitive task it may be related to the metabolic energy required for sustained activation of cortical areas specialized for that task. The objective of this study was to adapt EEG to monitor cortical energy over a long period of performance of a cognitive task. Multielectrode event related potentials (ERPs) were collected every 15 minutes in nine subjects who performed a mental arithmetic task (algebraic sum of four randomly generated negative or positive digits). A new problem was presented on a computer screen 0.5 seconds after each response; some subjects endured for as long as three hours. ERPs were transformed to a quantitative measure of scalp electrical field energy. The average energy level at electrode P3 (near the left angular gyrus), 100-300 msec latency, was compared over the series of ERPs. For most subjects, scalp energy density at P3 gradually fell over the period of task performance and dramatically increased just before the subject was unable to continue the task. This neural response can be simulated for individual subjects using, a differential equation model in which it is assumed that the mental arithmetic task requires a commitment of metabolic energy that would otherwise be used for brain activities that are temporarily neglected. Their cumulative neglect eventually requires a reallocation of energy away from the mental arithmetic task.

  14. Quantum Koszul formula on quantum spacetime

    NASA Astrophysics Data System (ADS)

    Majid, Shahn; Williams, Liam

    2018-07-01

    Noncommutative or quantum Riemannian geometry has been proposed as an effective theory for aspects of quantum gravity. Here the metric is an invertible bimodule map Ω1⊗AΩ1 → A where A is a possibly noncommutative or 'quantum' spacetime coordinate algebra and (Ω1 , d) is a specified bimodule of 1-forms or 'differential calculus' over it. In this paper we explore the proposal of a 'quantum Koszul formula' in Majid [12] with initial data a degree - 2 bilinear map ⊥ on the full exterior algebra Ω obeying the 4-term relations

  15. Aspects géométriques et intégrables des modèles de matrices aléatoires

    NASA Astrophysics Data System (ADS)

    Marchal, Olivier

    2010-12-01

    This thesis deals with the geometric and integrable aspects associated with random matrix models. Its purpose is to provide various applications of random matrix theory, from algebraic geometry to partial differential equations of integrable systems. The variety of these applications shows why matrix models are important from a mathematical point of view. First, the thesis will focus on the study of the merging of two intervals of the eigenvalues density near a singular point. Specifically, we will show why this special limit gives universal equations from the Painlevé II hierarchy of integrable systems theory. Then, following the approach of (bi) orthogonal polynomials introduced by Mehta to compute partition functions, we will find Riemann-Hilbert and isomonodromic problems connected to matrix models, making the link with the theory of Jimbo, Miwa and Ueno. In particular, we will describe how the hermitian two-matrix models provide a degenerate case of Jimbo-Miwa-Ueno's theory that we will generalize in this context. Furthermore, the loop equations method, with its central notions of spectral curve and topological expansion, will lead to the symplectic invariants of algebraic geometry recently proposed by Eynard and Orantin. This last point will be generalized to the case of non-hermitian matrix models (arbitrary beta) paving the way to "quantum algebraic geometry" and to the generalization of symplectic invariants to "quantum curves". Finally, this set up will be applied to combinatorics in the context of topological string theory, with the explicit computation of an hermitian random matrix model enumerating the Gromov-Witten invariants of a toric Calabi-Yau threefold.

  16. High School Students with Learning Disabilities: Mathematics Instruction, Study Skills, and High Stakes Tests

    ERIC Educational Resources Information Center

    Steele, Marcee M.

    2010-01-01

    This article reviews characteristics of high school students with learning disabilities and presents instructional modifications and study skills to help them succeed in algebra and geometry courses and on high stakes mathematics assessments.

  17. Editors' preface for the topical issue on Seven papers on Noncommutative Geometry and Operator Algebras

    NASA Astrophysics Data System (ADS)

    Guido, Daniele; Landi, Giovanni; Vassout, Stéphane

    2016-07-01

    This topical issue grew out of the International Conference ;Noncommutative Geometry and Applications; held 16-21 June 2014 at Villa Mondragone, Frascati (Roma). The main purpose of the conference was to have a unified view of different incarnations of noncommutative geometry and its applications. The seven papers collected in the present topical issue represent a good sample of the topics covered at the workshop. The conference itself was one of the climaxes of the Franco-Italian project GREFI-GENCO, which was initiated in 2007 by CNRS and INDAM to promote and enhance collaboration and exchanges between French and Italian researchers in the area of noncommutative geometry.

  18. GeoGebra: A Global Platform for Teaching and Learning Math Together and Using the Synergy of Mathematicians

    NASA Astrophysics Data System (ADS)

    Kllogjeri, Pellumb

    In present age we are witnesses and practioners of computer-based education which is highly speed progressing. The computer-based education allows educators and students to use educational programming language and e-tutors to teach and learn, to interact with one another and share together the results of their work. The computer-based education is done possible by special electronic tools among which the most important are the mathematical programmes. There are many mathematical programmes, but one which is being embraced and used by a daily increasing number of users throughout the world is GeoGebra. The recently published software GeoGebra by Markus Hohenwater (2004) explicitly links geometry and algebra. GeoGebra affords a bidirectional combination of geometry and algebra that differs from earlier software forms. The bidirectional combination means that, for instance, by typing in an equation in the algebra window, the graph of the equation will be shown in the dynamic and graphic window. This programme is so much preferred because of its three main features: the double representation of the mathematical object(geometric and algebraic), there are not strong requirements as to the age and the knowledge in using it(the students of the elementary school can use it as well) and, it is offered free of charge(simply by downloading it). In this paper we are concentrating in the double representation of the mathematical object and its advantages in explaining and forming mathematical concepts and performing operations, in the global opportunities for using GeoGebra and the benefits of using it by cooperating and sharing experiences.

  19. FINAL REPORT: GEOMETRY AND ELEMENTARY PARTICLE PHYSICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Isadore M.

    2008-03-04

    The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists’ quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energymore » for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.« less

  20. The transition to formal thinking in mathematics

    NASA Astrophysics Data System (ADS)

    Tall, David

    2008-09-01

    This paper focuses on the changes in thinking involved in the transition from school mathematics to formal proof in pure mathematics at university. School mathematics is seen as a combination of visual representations, including geometry and graphs, together with symbolic calculations and manipulations. Pure mathematics in university shifts towards a formal framework of axiomatic systems and mathematical proof. In this paper, the transition in thinking is formulated within a framework of `three worlds of mathematics'- the `conceptual-embodied' world based on perception, action and thought experiment, the `proceptual-symbolic' world of calculation and algebraic manipulation compressing processes such as counting into concepts such as number, and the `axiomatic-formal' world of set-theoretic concept definitions and mathematical proof. Each `world' has its own sequence of development and its own forms of proof that may be blended together to give a rich variety of ways of thinking mathematically. This reveals mathematical thinking as a blend of differing knowledge structures; for instance, the real numbers blend together the embodied number line, symbolic decimal arithmetic and the formal theory of a complete ordered field. Theoretical constructs are introduced to describe how genetic structures set before birth enable the development of mathematical thinking, and how experiences that the individual has met before affect their personal growth. These constructs are used to consider how students negotiate the transition from school to university mathematics as embodiment and symbolism are blended with formalism. At a higher level, structure theorems proved in axiomatic theories link back to more sophisticated forms of embodiment and symbolism, revealing the intimate relationship between the three worlds.

  1. Who can escape the natural number bias in rational number tasks? A study involving students and experts.

    PubMed

    Obersteiner, Andreas; Hoof, Jo Van; Verschaffel, Lieven; Dooren, Wim Van

    2016-08-01

    Many learners have difficulties with rational number tasks because they persistently rely on their natural number knowledge, which is not always applicable. Studies show that such a natural number bias can mislead not only children but also educated adults. It is still unclear whether and under what conditions mathematical expertise enables people to be completely unaffected by such a bias on tasks in which people with less expertise are clearly biased. We compared the performance of eighth-grade students and expert mathematicians on the same set of algebraic expression problems that addressed the effect of arithmetic operations (multiplication and division). Using accuracy and response time measures, we found clear evidence for a natural number bias in students but no traces of a bias in experts. The data suggested that whereas students based their answers on their intuitions about natural numbers, expert mathematicians relied on their skilled intuitions about algebraic expressions. We conclude that it is possible for experts to be unaffected by the natural number bias on rational number tasks when they use strategies that do not involve natural numbers. © 2015 The British Psychological Society.

  2. Quantum correlations are weaved by the spinors of the Euclidean primitives

    PubMed Central

    2018-01-01

    The exceptional Lie group E8 plays a prominent role in both mathematics and theoretical physics. It is the largest symmetry group associated with the most general possible normed division algebra, namely, that of the non-associative real octonions, which—thanks to their non-associativity—form the only possible closed set of spinors (or rotors) that can parallelize the 7-sphere. By contrast, here we show how a similar 7-sphere also arises naturally from the algebraic interplay of the graded Euclidean primitives, such as points, lines, planes and volumes, which characterize the three-dimensional conformal geometry of the ambient physical space, set within its eight-dimensional Clifford-algebraic representation. Remarkably, the resulting algebra remains associative, and allows us to understand the origins and strengths of all quantum correlations locally, in terms of the geometry of the compactified physical space, namely, that of a quaternionic 3-sphere, S3, with S7 being its algebraic representation space. Every quantum correlation can thus be understood as a correlation among a set of points of this S7, computed using manifestly local spinors within S3, thereby extending the stringent bounds of ±2 set by Bell inequalities to the bounds of ±22 on the strengths of all possible strong correlations, in the same quantitatively precise manner as that predicted within quantum mechanics. The resulting geometrical framework thus overcomes Bell’s theorem by producing a strictly deterministic and realistic framework that allows a locally causal understanding of all quantum correlations, without requiring either remote contextuality or backward causation. We demonstrate this by first proving a general theorem concerning the geometrical origins of the correlations predicted by arbitrarily entangled quantum states, and then reproducing the correlations predicted by the EPR-Bohm and the GHZ states. The raison d’être of strong correlations turns out to be the Möbius-like twists in the Hopf bundles of S3 and S7. PMID:29893385

  3. Novel symmetries in Christ-Lee model

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Shukla, A.

    2016-07-01

    We demonstrate that the gauge-fixed Lagrangian of the Christ-Lee model respects four fermionic symmetries, namely; (anti-)BRST symmetries, (anti-)co-BRST symmetries within the framework of BRST formalism. The appropriate anticommutators amongst the fermionic symmetries lead to a unique bosonic symmetry. It turns out that the algebra obeyed by the symmetry transformations (and their corresponding conserved charges) is reminiscent of the algebra satisfied by the de Rham cohomological operators of differential geometry. We also provide the physical realizations of the cohomological operators in terms of the symmetry properties. Thus, the present model provides a simple model for the Hodge theory.

  4. A tour about existence and uniqueness of dg enhancements and lifts

    NASA Astrophysics Data System (ADS)

    Canonaco, Alberto; Stellari, Paolo

    2017-12-01

    This paper surveys the recent advances concerning the relations between triangulated (or derived) categories and their dg enhancements. We explain when some interesting triangulated categories arising in algebraic geometry have a unique dg enhancement. This is the case, for example, for the unbounded derived category of quasi-coherent sheaves on an algebraic stack or for its full triangulated subcategory of perfect complexes. Moreover we give an account of the recent results about the possibility to lift exact functors between the bounded derived categories of coherent sheaves on smooth schemes to dg (quasi-)functors.

  5. Pointless strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Periwal, V.

    1988-01-01

    The author proves that bosonic string perturbation theory diverges and is not Borel summable. This is an indication of a non-perturbative instability of the bosonic string vacuum. He formulates two-dimensional sigma models in terms of algebras of functions. He extends this formulation to general C* algebras. He illustrates the utility of these algebraic notions by calculating some determinants of interest in the study of string propagation in orbifold backgrounds. He studies the geometry of spaces of field theories and show that the vanishing of the curvature of the natural Gel'fand-Naimark-Segal metric on such spaces is exactly the strong associativity conditionmore » of the operator product expansion.He shows that string scattering amplitudes arise as invariants of renormalization, when he formulates renormalization in terms of rescalings of the metric on the string world-sheet.« less

  6. A Brief Historical Introduction to Determinants with Applications

    ERIC Educational Resources Information Center

    Debnath, L.

    2013-01-01

    This article deals with a short historical introduction to determinants with applications to the theory of equations, geometry, multiple integrals, differential equations and linear algebra. Included are some properties of determinants with proofs, eigenvalues, eigenvectors and characteristic equations with examples of applications to simple…

  7. Teaching Environmental Awareness in Mathematics

    ERIC Educational Resources Information Center

    Jianguo, Mao

    2004-01-01

    This article is all about the integration of environmental education to the middle school mathematics in China. To raise environmental awareness and improve environmental quality, environmental education is a must. Environment-related materials can be found in middle school algebra and geometry textbooks. In order to provide environmental…

  8. Mathematics. Exceptional Child Education Curriculum K-12.

    ERIC Educational Resources Information Center

    Jordon, Thelma; And Others

    The mathematics curriculum provides a framework of instruction for exceptional child education in grades K-12. Content areas include: numeration, whole numbers, rational numbers, real/complex numbers, calculator literacy, measurement, geometry, statistics, functions/relations, computer literacy, and pre-algebra. The guide is organized by content…

  9. Introducing Group Theory through Music

    ERIC Educational Resources Information Center

    Johnson, Craig M.

    2009-01-01

    The central ideas of postcalculus mathematics courses offered in college are difficult to introduce in middle and secondary schools, especially through the engineering and sciences examples traditionally used in algebra, geometry, and trigonometry textbooks. However, certain concepts in music theory can be used to expose students to interesting…

  10. Comparison of Virginia's College and Career Ready Mathematics Performance Expectations with the Common Core State Standards for Mathematics

    ERIC Educational Resources Information Center

    Virginia Department of Education, 2010

    2010-01-01

    This paper presents a comparison of Virginia's mathematics performance expectations with the common core state standards for mathematics. The comparison focuses on number and quantity, algebra, functions, geometry, and statistics and probability. (Contains 1 footnote.)

  11. The International Mathematical Olympiad Training Session.

    ERIC Educational Resources Information Center

    Rousseau, Cecil; Patruno, Gregg

    1985-01-01

    The Mathematical Olympiad Training Session is designed to give United States students a problem-oriented exposure to subject areas (algebra, geometry, number theory, combinatorics, and inequalities) through an intensive three-week course. Techniques used during the session, with three sample problems and their solutions, are presented. (JN)

  12. Technology Tips: Investigating Extrema with GeoGebra

    ERIC Educational Resources Information Center

    Cullen, Craig J.; Hertel, Joshua T.; John, Sheryl

    2013-01-01

    The NCTM Algebra Standard suggests that students use technology to explore the effects of varying the parameters in y = ax2 + bx + c. This article discusses an extension of this task that incorporates dynamic geometry software to engage students in generating, testing, and proving mathematical conjectures.

  13. Curriculum Change in Secondary School Mathematics

    ERIC Educational Resources Information Center

    Alspaugh, John W.; and others

    1970-01-01

    Discusses six major trends in mathematics curriculum development: lowering of grade placement, teaching methods from memorization to discovery, introduction and deletion of content, integration of plane and solid geometry, algebra, and trigonometry, emphasis upon needs and characteristics of student, and increasing rate of curriculum change.…

  14. Multiple-block grid adaption for an airplane geometry

    NASA Technical Reports Server (NTRS)

    Abolhassani, Jamshid Samareh; Smith, Robert E.

    1988-01-01

    Grid-adaption methods are developed with the capability of moving grid points in accordance with several variables for a three-dimensional multiple-block grid system. These methods are algebraic, and they are implemented for the computation of high-speed flow over an airplane configuration.

  15. Algebras Generated by Geometric Scalar Forms and their Applications in Physics and Social Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Jaime

    2008-09-17

    The present paper analyzes the consequences of defining that the geometric scalar form is not necessarily quadratic, but in general K-atic, that is obtained from the K{sup th} power of the linear form, requiring {l_brace}e{sub i};i = 1,...,N;(e{sub i}){sup K} = 1{r_brace} and d-vector {sigma}{sub i}x{sub i}e{sub i}. We consider the algebras which are thus generated, for positive integer K, a generalization of the geometric algebras we know under the names of Clifford or Grassmann algebras. We then obtain a set of geometric K-algebras. We also consider the generalization of special functions of geometry which corresponds to the K-order scalarmore » forms (as trigonometric functions and other related geometric functions which are based on the use of quadratic forms). We present an overview of the use of quadratic forms in physics as in our general theory, we have called START. And, in order to give an introduction to the use of the more general K-algebras and to the possible application to sciences other than physics, the application to social sciences is considered.For the applications to physics we show that quadratic spaces are a fundamental clue to understand the structure of theoretical physics (see, for example, Keller in ICNAAM 2005 and 2006)« less

  16. On creativity of slime mould

    NASA Astrophysics Data System (ADS)

    Adamatzky, Andrew; Armstrong, Rachel; Jones, Jeff; Gunji, Yukio-Pegio

    2013-07-01

    Slime mould Physarum polycephalum is large single cell with intriguingly smart behaviour. The slime mould shows outstanding abilities to adapt its protoplasmic network to varying environmental conditions. The slime mould can solve tasks of computational geometry, image processing, logics and arithmetics when data are represented by configurations of attractants and repellents. We attempt to map behavioural patterns of slime onto the cognitive control vs. schizotypy spectrum phase space and thus interpret slime mould's activity in terms of creativity.

  17. Connected Mathematics Project (CMP). What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2010

    2010-01-01

    The "Connected Mathematics Project" ("CMP") is a mathematics curriculum designed for students in grades 6-8. Each grade level of the curriculum is a full-year program and covers numbers, algebra, geometry/measurement, probability, and statistics. The curriculum uses an investigative approach, and students utilize interactive…

  18. Two Essays in Economic Education

    ERIC Educational Resources Information Center

    Evans, Brent A.

    2013-01-01

    Prior researchers (Anderson et al. 1994; Ballard & Johnson 2004; Hoag & Benedict 2010) have shown that different math abilities do not equally correlate with success in economics, yet no research has specifically compared algebra and geometry skills as predictors of economics success. In the first essay, I find that students' standardized…

  19. Remote Symbolic Computation of Loci

    ERIC Educational Resources Information Center

    Abanades, Miguel A.; Escribano, Jesus; Botana, Francisco

    2010-01-01

    This article presents a web-based tool designed to compute certified equations and graphs of geometric loci specified using standard Dynamic Geometry Systems (DGS). Complementing the graphing abilities of the considered DGS, the equations of the loci produced by the application are remotely computed using symbolic algebraic techniques from the…

  20. Computers as Cognitive Tools.

    ERIC Educational Resources Information Center

    Lajoie, Susanne P., Ed.; Derry, Sharon J., Ed.

    This book provides exemplars of the types of computer-based learning environments represented by the theoretical camps within the field and the practical applications of the theories. The contributors discuss a variety of computer applications to learning, ranging from school-related topics such as geometry, algebra, biology, history, physics, and…

  1. 46 CFR 310.55 - Scholastic requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SAT. A candidate electing to use the ACT, shall take all the tests, namely, English, Mathematics... Mathematics (from algebra, geometry and trigonometry); (B) 3 units of English; and (C) 1 unit of Physics or... science; (B) Foreign language; (C) Economics; and, (D) Social science. (2) Evidence of academic work...

  2. Cultivating Deductive Thinking with Angle Chasing

    ERIC Educational Resources Information Center

    Edwards, Michael todd; Quinlan, James; Harper, Suzanne R.; Cox, Dana C.; Phelps, Steve

    2014-01-01

    Despite Common Core State Standards for Mathematics (CCSSI 2010) recommendations, too often students' introduction to proof consists of the study of formal axiomatic systems--for example, triangle congruence proofs--typically in an introductory geometry course with no connection back to previous work in earlier algebra courses. Van Hiele…

  3. Platonic Symmetry and Geometric Thinking

    ERIC Educational Resources Information Center

    Zsombor-Murray, Paul

    2007-01-01

    Cubic symmetry is used to build the other four Platonic solids and some formalism from classical geometry is introduced. Initially, the approach is via geometric construction, e.g., the "golden ratio" is necessary to construct an icosahedron with pentagonal faces. Then conventional elementary vector algebra is used to extract quantitative…

  4. Mathematics Assessment Sampler 3-5

    ERIC Educational Resources Information Center

    National Council of Teachers of Mathematics, 2005

    2005-01-01

    The sample assessment items in this volume are sorted according to the strands of number and operations, algebra, geometry, measurement, and data analysis and probability. Because one goal of assessment is to determine students' abilities to communicate mathematically, the writing team suggests ways to extend or modify multiple-choice and…

  5. Hawking fluxes, fermionic currents, W{sub 1+{infinity}} algebra, and anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonora, L.; Cvitan, M.; Theoretical Physics Department, Faculty of Science, University of Zagreb Bijenicka cesta 32, HR-10002 Zagreb

    2009-10-15

    We complete the analysis carried out in previous papers by studying the Hawking radiation for a Kerr black hole carried to infinity by fermionic currents of any spin. We find agreement with the thermal spectrum of the Hawking radiation for fermionic degrees of freedom. We start by showing that the near-horizon physics for a Kerr black hole is approximated by an effective two-dimensional field theory of fermionic fields. Then, starting from two-dimensional currents of any spin that form a W{sub 1+{infinity}} algebra, we construct an infinite set of covariant currents, each of which carries the corresponding moment of the Hawkingmore » radiation. All together they agree with the thermal spectrum of the latter. We show that the predictive power of this method is based not on the anomalies of the higher-spin currents (which are trivial) but on the underlying W{sub 1+{infinity}} structure. Our results point toward the existence in the near-horizon geometry of a symmetry larger than the Virasoro algebra, which very likely takes the form of a W{sub {infinity}} algebra.« less

  6. Quantum gravity from noncommutative spacetime

    NASA Astrophysics Data System (ADS)

    Lee, Jungjai; Yang, Hyun Seok

    2014-12-01

    We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative ★-algebra) of quantum gravity.

  7. Geometric Model of Topological Insulators from the Maxwell Algebra

    NASA Astrophysics Data System (ADS)

    Palumbo, Giandomenico

    I propose a novel geometric model of time-reversal-invariant topological insulators in three dimensions in presence of an external electromagnetic field. Their gapped boundary supports relativistic quantum Hall states and is described by a Chern-Simons theory, where the gauge connection takes values in the Maxwell algebra. This represents a non-central extension of the Poincare' algebra and takes into account both the Lorentz and magnetic-translation symmetries of the surface states. In this way, I derive a relativistic version of the Wen-Zee term and I show that the non-minimal coupling between the background geometry and the electromagnetic field in the model is in agreement with the main properties of the relativistic quantum Hall states in the flat space. This work is part of the DITP consortium, a program of the Netherlands Organisation for Scientific Research (NWO) that is funded by the Dutch Ministry of Education, Culture and Science (OCW).

  8. Invariant classification of second-order conformally flat superintegrable systems

    NASA Astrophysics Data System (ADS)

    Capel, J. J.; Kress, J. M.

    2014-12-01

    In this paper we continue the work of Kalnins et al in classifying all second-order conformally-superintegrable (Laplace-type) systems over conformally flat spaces, using tools from algebraic geometry and classical invariant theory. The results obtained show, through Stäckel equivalence, that the list of known nondegenerate superintegrable systems over three-dimensional conformally flat spaces is complete. In particular, a seven-dimensional manifold is determined such that each point corresponds to a conformal class of superintegrable systems. This manifold is foliated by the nonlinear action of the conformal group in three dimensions. Two systems lie in the same conformal class if and only if they lie in the same leaf of the foliation. This foliation is explicitly described using algebraic varieties formed from representations of the conformal group. The proof of these results rely heavily on Gröbner basis calculations using the computer algebra software packages Maple and Singular.

  9. RANS modeling of scalar dispersion from localized sources within a simplified urban-area model

    NASA Astrophysics Data System (ADS)

    Rossi, Riccardo; Capra, Stefano; Iaccarino, Gianluca

    2011-11-01

    The dispersion of a passive scalar downstream a localized source within a simplified urban-like geometry is examined by means of RANS scalar flux models. The computations are conducted under conditions of neutral stability and for three different incoming wind directions (0°, 45°, 90°) at a roughness Reynolds number of Ret = 391. A Reynolds stress transport model is used to close the flow governing equations whereas both the standard eddy-diffusivity closure and algebraic flux models are employed to close the transport equation for the passive scalar. The comparison with a DNS database shows improved reliability from algebraic scalar flux models towards predicting both the mean concentration and the plume structure. Since algebraic flux models do not increase substantially the computational effort, the results indicate that the use of tensorial-diffusivity can be promising tool for dispersion simulations for the urban environment.

  10. The First Fundamental Theorem of Invariant Theory for the Orthosymplectic Supergroup

    NASA Astrophysics Data System (ADS)

    Lehrer, G. I.; Zhang, R. B.

    2017-01-01

    We give an elementary and explicit proof of the first fundamental theorem of invariant theory for the orthosymplectic supergroup by generalising the geometric method of Atiyah, Bott and Patodi to the supergroup context. We use methods from super-algebraic geometry to convert invariants of the orthosymplectic supergroup into invariants of the corresponding general linear supergroup on a different space. In this way, super Schur-Weyl-Brauer duality is established between the orthosymplectic supergroup of superdimension ( m|2 n) and the Brauer algebra with parameter m - 2 n. The result may be interpreted either in terms of the group scheme OSp( V) over C, where V is a finite dimensional super space, or as a statement about the orthosymplectic Lie supergroup over the infinite dimensional Grassmann algebra {Λ}. We take the latter point of view here, and also state a corresponding theorem for the orthosymplectic Lie superalgebra, which involves an extra invariant generator, the super-Pfaffian.

  11. Geometric descriptions of entangled states by auxiliary varieties

    NASA Astrophysics Data System (ADS)

    Holweck, Frédéric; Luque, Jean-Gabriel; Thibon, Jean-Yves

    2012-10-01

    The aim of the paper is to propose geometric descriptions of multipartite entangled states using algebraic geometry. In the context of this paper, geometric means each stratum of the Hilbert space, corresponding to an entangled state, is an open subset of an algebraic variety built by classical geometric constructions (tangent lines, secant lines) from the set of separable states. In this setting, we describe well-known classifications of multipartite entanglement such as 2 × 2 × (n + 1), for n ⩾ 1, quantum systems and a new description with the 2 × 3 × 3 quantum system. Our results complete the approach of Miyake and make stronger connections with recent work of algebraic geometers. Moreover, for the quantum systems detailed in this paper, we propose an algorithm, based on the classical theory of invariants, to decide to which subvariety of the Hilbert space a given state belongs.

  12. Assessment of an Explicit Algebraic Reynolds Stress Model

    NASA Technical Reports Server (NTRS)

    Carlson, Jan-Renee

    2005-01-01

    This study assesses an explicit algebraic Reynolds stress turbulence model in the in the three-dimensional Reynolds averaged Navier-Stokes (RANS) solver, ISAAC (Integrated Solution Algorithm for Arbitrary Con gurations). Additionally, it compares solutions for two select configurations between ISAAC and the RANS solver PAB3D. This study compares with either direct numerical simulation data, experimental data, or empirical models for several different geometries with compressible, separated, and high Reynolds number flows. In general, the turbulence model matched data or followed experimental trends well, and for the selected configurations, the computational results of ISAAC closely matched those of PAB3D using the same turbulence model.

  13. Combinatorial quantisation of the Euclidean torus universe

    NASA Astrophysics Data System (ADS)

    Meusburger, C.; Noui, K.

    2010-12-01

    We quantise the Euclidean torus universe via a combinatorial quantisation formalism based on its formulation as a Chern-Simons gauge theory and on the representation theory of the Drinfel'd double DSU(2). The resulting quantum algebra of observables is given by two commuting copies of the Heisenberg algebra, and the associated Hilbert space can be identified with the space of square integrable functions on the torus. We show that this Hilbert space carries a unitary representation of the modular group and discuss the role of modular invariance in the theory. We derive the classical limit of the theory and relate the quantum observables to the geometry of the torus universe.

  14. The Chess and Mathematics Connection: More than Just a Game

    ERIC Educational Resources Information Center

    Berkman, Robert M.

    2004-01-01

    This article describes connections between chess and mathematics, including examples of activities that connect chess with set theory, patterns, algebra, geometry, combinatorics, and Pascal's triangle. The author observes that competitive games play a dual purpose in advancing the work of mathematics educators: to reinforce a specific skill and to…

  15. A Brief History of the Most Remarkable Numbers "e," "i" and "?" in Mathematical Sciences with Applications

    ERIC Educational Resources Information Center

    Debnath, Lokenath

    2015-01-01

    This paper deals with a brief history of the most remarkable Euler numbers "e,"?"i"?and?"?" in mathematical sciences. Included are many properties of the constants "e,"?"i"?and?"?" and their applications in algebra, geometry, physics, chemistry, ecology, business and industry. Special…

  16. Chattanooga Math Trail: Community Mathematics Modules, Volume 1.

    ERIC Educational Resources Information Center

    McAllister, Deborah A.; Mealer, Adrian; Moyer, Peggy S.; McDonald, Shirley A.; Peoples, John B.

    This collection of community mathematics modules, or "math trail", is appropriate for middle grades and high school students (grades 5-12). Collectively, the modules pay attention to all 10 of the National Council of Teachers of Mathematics (NCTM) standards which include five content standards (Number and Operations, Algebra, Geometry,…

  17. Adaptive Technologies for Training and Education

    ERIC Educational Resources Information Center

    Durlach, Paula J., Ed; Lesgold, Alan M., Ed.

    2012-01-01

    This edited volume provides an overview of the latest advancements in adaptive training technology. Intelligent tutoring has been deployed for well-defined and relatively static educational domains such as algebra and geometry. However, this adaptive approach to computer-based training has yet to come into wider usage for domains that are less…

  18. New Trends in Mathematics Teaching, Volume III.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    Each of the ten chapters in this volume is intended to present an objective analysis of the trends of some important subtopic in mathematics education and each includes a bibliography for fuller study. The chapters cover primary school mathematics, algebra, geometry, probability and statistics, analysis, logic, applications of mathematics, methods…

  19. Core-Plus Mathematics. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2010

    2010-01-01

    "Core-Plus Mathematics" is a four-year curriculum that replaces the traditional sequence with courses that each feature interwoven strands of algebra and functions, statistics and probability, geometry and trigonometry, and discrete mathematics. The first three courses in the series provide a common core of broadly useful mathematics,…

  20. STEM Picks Up Speed

    ERIC Educational Resources Information Center

    Demski, Jennifer

    2009-01-01

    Algebra, geometry, earth science, physics--these require patience and perseverance to master. That kind of academic stamina is hard to advertise to kids nurtured on the instant engagement and gratification of modern digital technology. And there's little hope they'll be sustained by an intrinsic interest in math and science; they have to be shown…

  1. Teaching with New Technology: Four "Early Majority" Teachers

    ERIC Educational Resources Information Center

    Pierce, Robyn; Stacey, Kaye

    2013-01-01

    This paper explores how four good teachers, who do not have a special interest in technology, meet the challenge of introducing the rapidly developing mathematics analysis software (e.g. spreadsheets, function graphers, symbolic algebra manipulation and dynamic geometry) into their classrooms. These teachers' practice is viewed through the…

  2. Prospective Secondary Mathematics Teachers' Perspectives and Mathematical Knowledge for Teaching

    ERIC Educational Resources Information Center

    Karagöz-Akar, Gülseren

    2016-01-01

    This study investigated the relationship between prospective secondary mathematics teachers' perspectives and their mathematical knowledge for teaching in action. Data from two prospective teachers' practice-teachings, one in geometry and one in algebra, their lesson plans and self-reflections were analyzed with Teacher Perspectives and Knowledge…

  3. Everyday Mathematics. Revised. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2007

    2007-01-01

    "Everyday Mathematics," published by Wright Group/McGraw-Hill, is a core curriculum for students in kindergarten through grade 6 covering numeration and order, operations, functions and sequences, data and chance, algebra, geometry and spatial sense, measures and measurement, reference frames, and patterns. At each grade level, the…

  4. Advanced Placement Mathematics Calculus, Grade 12 Curriculum Guide.

    ERIC Educational Resources Information Center

    Scharf, John; And Others

    This document is a guide to the advanced placement program in calculus for grade 12 in the city schools in Warren, Ohio. The program covers analytic geometry, differential and integral calculus of algebraic functions, elementary transcendental functions, and applications of differentiation and integration. The philosophy and aims of the program…

  5. Exploring the Effects of Project-Based Learning in Secondary Mathematics Education

    ERIC Educational Resources Information Center

    Holmes, Vicki-Lynn; Hwang, Yooyeun

    2016-01-01

    This mixed-method, longitudinal study investigated the benefits of project-based learning (PBL) on secondary-mathematics students' academic skill development and motivated strategies for learning (i.e., cognitive, social, and motivational). The focus of this study was academic skill development (algebra- and geometry-assessment scores) and other…

  6. Everyday Mathematics. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2006

    2006-01-01

    "Everyday Mathematics," published by Wright Group/McGraw-Hill, is a core curriculum for students in kindergarten through grade 6 covering numeration and order, operations, functions and sequences, data and chance, algebra, geometry and spatial sense, measures and measurement, reference frames, and patterns. At each grade level, the "Everyday…

  7. Connected Mathematics Project (CMP). What Works Clearinghouse Intervention Report. Updated

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2017

    2017-01-01

    "Connected Mathematics Project" (CMP) is a math curriculum for students in grades 6-8. It uses interactive problems and everyday situations to explore mathematical ideas, with a goal of fostering a problem-centered, inquiry-based learning environment. At each grade level, the curriculum covers numbers, algebra, geometry/measurement,…

  8. Using Technology to Promote Mathematical Discourse Concerning Women in Mathematics

    ERIC Educational Resources Information Center

    Phy, Lyn

    2008-01-01

    This paper discusses uses of technology to facilitate mathematical discourse concerning women in mathematics. Such a topic can be introduced in various traditional courses such as algebra, geometry, trigonometry, probability and statistics, or calculus, but it is not included in traditional textbooks. Through the ideas presented here, you can…

  9. Stretching Probability Explorations with Geoboards

    ERIC Educational Resources Information Center

    Wheeler, Ann; Champion, Joe

    2016-01-01

    Students are faced with many transitions in their middle school mathematics classes. To build knowledge, skills, and confidence in the key areas of algebra and geometry, students often need to practice using numbers and polygons in a variety of contexts. Teachers also want students to explore ideas from probability and statistics. Teachers know…

  10. DIFFERENTIAL AND INTEGRAL CALCULUS. A TENTATIVE CURRICULUM GUIDE.

    ERIC Educational Resources Information Center

    BRANT, VINCENT; GERARDI, WILLIAM

    A GUIDE FOR A 1-YEAR COURSE IN DIFFERENTIAL AND INTEGRAL CALCULUS PREREQUISITED KNOWLEDGE IN ALGEBRA, ANALYTIC TRIGONOMETRY, AND ELEMENTARY ANALYSIS. EACH ASSIGNMENT CONTAINED BOTH NEW AND REVIEW WORK TO REINFORCE THE NEW WORK. THERE WERE ELEVEN UNITS OF STUDY USING THE FOLLOWING FOUR BOOKS--"CALCULUS AND ANALYTIC GEOMETRY, THIRD…

  11. Teaching Multistep Equations with Virtual Manipulatives to Secondary Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Satsangi, Rajiv; Hammer, Rachel; Evmenova, Anya S.

    2018-01-01

    Students with learning disabilities often struggle with the academic demands presented in secondary mathematics curricula. To combat these students' struggles, researchers have studied various pedagogical practices and classroom technologies for teaching standards covered in subjects such as algebra and geometry. However, as the role of computer-…

  12. Teachers' Reactions to Pre-Differentiated and Enriched Mathematics Curricula

    ERIC Educational Resources Information Center

    Rubenstein, Lisa DaVia; Gilson, Cindy M.; Bruce-Davis, Micah N.; Gubbins, E. Jean

    2015-01-01

    Modern classrooms are often comprised of a heterogeneous student population with varying abilities. To address this variance, third-grade teachers implemented researcher-designed, pre-differentiated, and enriched math curricula in algebra, geometry and measurement, and graphing and data analysis. The goal of the curricula was to provide academic…

  13. Teaching Third-Degree Price Discrimination

    ERIC Educational Resources Information Center

    Round, David K.; McIver, Ron P.

    2006-01-01

    Third-degree price discrimination is taught in almost every intermediate microeconomics class. The theory, geometry, and the algebra behind the concept are simple, and the phenomenon is commonly associated with the sale of many of the goods and services used frequently by students. Classroom discussion is usually vibrant as students can relate…

  14. Hermann-Bernoulli-Laplace-Hamilton-Runge-Lenz Vector.

    ERIC Educational Resources Information Center

    Subramanian, P. R.; And Others

    1991-01-01

    A way for students to refresh and use their knowledge in both mathematics and physics is presented. By the study of the properties of the "Runge-Lenz" vector the subjects of algebra, analytical geometry, calculus, classical mechanics, differential equations, matrices, quantum mechanics, trigonometry, and vector analysis can be reviewed. (KR)

  15. Physics for Water and Wastewater Operators.

    ERIC Educational Resources Information Center

    Koundakjian, Philip

    This physics course covers the following main subject areas: (1) liquids; (2) pressure; (3) liquid flow; (4) temperature and heat; and (5) electric currents. The prerequisites for understanding this material are basic algebra and geometry. The lessons are composed mostly of sample problems and calculations that water and wastewater operators have…

  16. A Geometric Solution of a Cournot Ogilopoly with Nonidentical Firms.

    ERIC Educational Resources Information Center

    Sarkar, Jyotirmoy; Gupta, Barnali; Pal, Debashis

    1998-01-01

    Maintains that a proper understanding of the Augustin Cournot model of imperfect competition and strategic interactions among firms in various contexts is essential for economics education. Although most models rely on complicated algebra, this one requires nothing more than high school level geometry. Includes a graphical analysis. (MJP)

  17. On equivalent resistance of electrical circuits

    NASA Astrophysics Data System (ADS)

    Kagan, Mikhail

    2015-01-01

    While the standard (introductory physics) way of computing the equivalent resistance of nontrivial electrical circuits is based on Kirchhoff's rules, there is a mathematically and conceptually simpler approach, called the method of nodal potentials, whose basic variables are the values of the electric potential at the circuit's nodes. In this paper, we review the method of nodal potentials and illustrate it using the Wheatstone bridge as an example. We then derive a closed-form expression for the equivalent resistance of a generic circuit, which we apply to a few sample circuits. The result unveils a curious interplay between electrical circuits, matrix algebra, and graph theory and its applications to computer science. The paper is written at a level accessible by undergraduate students who are familiar with matrix arithmetic. Additional proofs and technical details are provided in appendices.

  18. Quanta of geometry and unification

    NASA Astrophysics Data System (ADS)

    Chamseddine, Ali H.

    2016-11-01

    This is a tribute to Abdus Salam’s memory whose insight and creative thinking set for me a role model to follow. In this contribution I show that the simple requirement of volume quantization in spacetime (with Euclidean signature) uniquely determines the geometry to be that of a noncommutative space whose finite part is based on an algebra that leads to Pati-Salam grand unified models. The Standard Model corresponds to a special case where a mathematical constraint (order one condition) is satisfied. This provides evidence that Salam was a visionary who was generations ahead of his time.

  19. Global differential geometry: An introduction for control engineers

    NASA Technical Reports Server (NTRS)

    Doolin, B. F.; Martin, C. F.

    1982-01-01

    The basic concepts and terminology of modern global differential geometry are discussed as an introduction to the Lie theory of differential equations and to the role of Grassmannians in control systems analysis. To reach these topics, the fundamental notions of manifolds, tangent spaces, vector fields, and Lie algebras are discussed and exemplified. An appendix reviews such concepts needed for vector calculus as open and closed sets, compactness, continuity, and derivative. Although the content is mathematical, this is not a mathematical treatise but rather a text for engineers to understand geometric and nonlinear control.

  20. On the computation of steady Hopper flows. II: von Mises materials in various geometries

    NASA Astrophysics Data System (ADS)

    Gremaud, Pierre A.; Matthews, John V.; O'Malley, Meghan

    2004-11-01

    Similarity solutions are constructed for the flow of granular materials through hoppers. Unlike previous work, the present approach applies to nonaxisymmetric containers. The model involves ten unknowns (stresses, velocity, and plasticity function) determined by nine nonlinear first order partial differential equations together with a quadratic algebraic constraint (yield condition). A pseudospectral discretization is applied; the resulting problem is solved with a trust region method. The important role of the hopper geometry on the flow is illustrated by several numerical experiments of industrial relevance.

  1. Quanta of Geometry and Unification

    NASA Astrophysics Data System (ADS)

    Chamseddine, Ali H.

    This is a tribute to Abdus Salam's memory whose insight and creative thinking set for me a role model to follow. In this contribution I show that the simple requirement of volume quantization in space-time (with Euclidean signature) uniquely determines the geometry to be that of a noncommutative space whose finite part is based on an algebra that leads to Pati-Salam grand unified models. The Standard Model corresponds to a special case where a mathematical constraint (order one condition) is satisfied. This provides evidence that Salam was a visionary who was generations ahead of his time.

  2. Developing Fair Tests for Mathematics Curriculum Comparison Studies: The Role of Content Analyses

    ERIC Educational Resources Information Center

    Chavez, Oscar; Papick, Ira; Ross, Daniel J.; Grouws, Douglas A.

    2011-01-01

    This article describes the process of development of assessment instruments for a three-year longitudinal comparative study that focused on evaluating American high school students' mathematics learning from two distinct approaches to content organization: curriculum built around a sequence of three full-year courses (Algebra 1, Geometry, and…

  3. The Mathematics of Skateboarding: A Relevant Application of the 5Es of Constructivism

    ERIC Educational Resources Information Center

    Robertson, William H.; Meyer, Rachelle D.; Wilkerson, Trena L.

    2012-01-01

    Getting high school students to enjoy mathematics and to connect concepts to their daily lives is a challenge for many educators. The Mathematics of Skateboarding demonstrated innovative and creative ways to engage students in content and skills mapped to state requirements for high school students in Algebra and Geometry.

  4. The Path to College Calculus: The Impact of High School Mathematics Coursework

    ERIC Educational Resources Information Center

    Sadler, Philip; Sonnert, Gerhard

    2018-01-01

    This study addresses a longstanding question among high school mathematics teachers and college mathematics professors: Which is the best preparation for college calculus-- (a) a high level of mastery of mathematics considered preparatory for calculus (algebra, geometry, precalculus) or (b) taking calculus itself in high school? We used a data set…

  5. The Effect of Geogebra on Students' Conceptual and Procedural Knowledge: The Case of Applications of Derivative

    ERIC Educational Resources Information Center

    Ocal, Mehmet Fatih

    2017-01-01

    Integrating the properties of computer algebra systems and dynamic geometry environments, Geogebra became an effective and powerful tool for teaching and learning mathematics. One of the reasons that teachers use Geogebra in mathematics classrooms is to make students learn mathematics meaningfully and conceptually. From this perspective, the…

  6. Steps Forward and Back in Adult Numeracy Teacher Professional Development: A Reflection on a Teacher Workshop Experience

    ERIC Educational Resources Information Center

    Saliga, Linda Marie; Daviso, Al; Stuart, Denise; Pachnowski, Lynne

    2015-01-01

    In this project, a university team of teacher education and mathematics professors conducted eight professional development sessions for General Educational Development (GED) teachers in the area of mathematics teaching. Topics included concretely modeling mathematics concepts in algebra, number sense, geometry, and differentiating instruction in…

  7. Geometric and Applied Optics, Science (Experimental): 5318.04.

    ERIC Educational Resources Information Center

    Sanderson, Robert C.

    This unit of instruction presents a laboratory-oriented course which relates the sources and behaviors of light to man's control and uses of light. Successful completion of Algebra I and Plane Geometry is strongly recommended as indicators of success. The course is recommended if the student plans further studies in science, optical technology, or…

  8. Ideas for the Classroom

    ERIC Educational Resources Information Center

    Mathematics Teaching Incorporating Micromath, 2006

    2006-01-01

    In this article, the author shares some of the activities for the classroom invented by Gill Hatch. One of those activities is the activity for older students, which is for the five-year-olds through to post-graduates. Card-sorting game, geometry games, algebra games, and loop games are also some of those activities for the classroom invented by…

  9. Using Nonlinear Programming in International Trade Theory: The Factor-Proportions Model

    ERIC Educational Resources Information Center

    Gilbert, John

    2004-01-01

    Students at all levels benefit from a multi-faceted approach to learning abstract material. The most commonly used technique in teaching the pure theory of international trade is a combination of geometry and algebraic derivations. Numerical simulation can provide a valuable third support to these approaches. The author describes a simple…

  10. Student and Teacher Perceptions of Teacher Oral Communication Behavior in Algebra and Geometry Classrooms

    ERIC Educational Resources Information Center

    Assuah, Charles K.

    2010-01-01

    Oral communication in mathematics classroom plays an essential role in the mathematics learning process, because it allows students to share ideas, refine their thoughts, reflect on their methods, and clarify their understanding (NCTM, 2000). Knowledge about teacher oral communication behaviors allows researchers and policy makers to identify and…

  11. From "Work-and-Walk-By" to "Sherpa-at-Work"

    ERIC Educational Resources Information Center

    Drijvers, Paul

    2011-01-01

    Nowadays, many technological means are available to support teaching, such as the interactive whiteboard, class sets of laptop or netbook computers, and high speed internet access. For mathematics education there are advanced software packages for geometry, algebra, calculus, and statistics, which in many cases are available on line at no cost.…

  12. Australian Curriculum Linked Lessons. Fluency

    ERIC Educational Resources Information Center

    Hurrell, Derek

    2014-01-01

    In this article, Derek Hurrell, points out that while it's easy to fall into the impression that the proficiency strand "Fluency" is all about knowing basic number facts in all its many and splendid ways. He add it is easy to overlook, that within Fluency there are requirements that are based in Algebra; Measurement and Geometry; and…

  13. State College- and Career-Ready High School Graduation Requirements. Updated

    ERIC Educational Resources Information Center

    Achieve, Inc., 2013

    2013-01-01

    Research by Achieve, ACT, and others suggests that for high school graduates to be prepared for success in a wide range of postsecondary settings, they need to take four years of challenging mathematics--covering Advanced Algebra; Geometry; and data, probability, and statistics content--and four years of rigorous English aligned with college- and…

  14. Math in the Box

    ERIC Educational Resources Information Center

    DeYoung, Mary J.

    2009-01-01

    This article describes how to make an origami paper box and explores the algebra, geometry, and other mathematics that unfolds. A set of origami steps that transforms the paper into an open box can hold mathematical surprises for both students and teachers. An origami lesson can engage students in an open-ended exploration of the relationship…

  15. On the Axiomatization of Mathematical Understanding: Continuous Functions in the Transition to Topology

    ERIC Educational Resources Information Center

    Cheshire, Daniel C.

    2017-01-01

    The introduction to general topology represents a challenging transition for students of advanced mathematics. It requires the generalization of their previous understanding of ideas from fields like geometry, linear algebra, and real or complex analysis to fit within a more abstract conceptual system. Students must adopt a new lexicon of…

  16. Pre Service Teachers' Usage of Dynamic Mathematics Software

    ERIC Educational Resources Information Center

    Bulut, Mehmet; Bulut, Neslihan

    2011-01-01

    Aim of this study is about mathematics education and dynamic mathematics software. Dynamic mathematics software provides new opportunities for using both computer algebra system and dynamic geometry software. GeoGebra selected as dynamic mathematics software in this research. In this study, it is investigated that what is the usage of pre service…

  17. Modelling the Landing of a Plane in a Calculus Lab

    ERIC Educational Resources Information Center

    Morante, Antonio; Vallejo, Jose A.

    2012-01-01

    We exhibit a simple model of a plane landing that involves only basic concepts of differential calculus, so it is suitable for a first-year calculus lab. We use the computer algebra system Maxima and the interactive geometry software GeoGebra to do the computations and graphics. (Contains 5 figures and 1 note.)

  18. A brief survey of constrained mechanics and variational problems in terms of differential forms

    NASA Technical Reports Server (NTRS)

    Hermann, Robert

    1994-01-01

    There has been considerable interest recently in constrained mechanics and variational problems. This is in part due to applied interests (such as 'non-holonomic mechanics in robotics') and in other part due to the fact that several schools of 'pure' mathematics have found that this classical subject is of importance for what they are trying to do. I have made various attempts at developing these subjects since my Lincoln lab days of the late 1950's. In this Chapter, I will sketch a Unified point of view, using Cartan's approach with differential forms. This has the advantage from the C-O-R viewpoint being developed in this Volume that the extension from 'smooth' to 'generalized' data is very systematic and algebraic. (I will only deal with the 'smooth' point of view in this Chapter; I will develop the 'generalized function' material at a later point.) The material presented briefly here about Variational Calculus and Constrained Mechanics can be found in more detail in my books, 'Differential Geometry and the Calculus of Variations', 'Lie Algebras and Quantum Mechanics', and 'Geometry, Physics and Systems'.

  19. Quantum coherence generating power, maximally abelian subalgebras, and Grassmannian geometry

    NASA Astrophysics Data System (ADS)

    Zanardi, Paolo; Campos Venuti, Lorenzo

    2018-01-01

    We establish a direct connection between the power of a unitary map in d-dimensions (d < ∞) to generate quantum coherence and the geometry of the set Md of maximally abelian subalgebras (of the quantum system full operator algebra). This set can be seen as a topologically non-trivial subset of the Grassmannian over linear operators. The natural distance over the Grassmannian induces a metric structure on Md, which quantifies the lack of commutativity between the pairs of subalgebras. Given a maximally abelian subalgebra, one can define, on physical grounds, an associated measure of quantum coherence. We show that the average quantum coherence generated by a unitary map acting on a uniform ensemble of quantum states in the algebra (the so-called coherence generating power of the map) is proportional to the distance between a pair of maximally abelian subalgebras in Md connected by the unitary transformation itself. By embedding the Grassmannian into a projective space, one can pull-back the standard Fubini-Study metric on Md and define in this way novel geometrical measures of quantum coherence generating power. We also briefly discuss the associated differential metric structures.

  20. Gerberto, scienziato e Papa

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino

    2004-10-01

    Gerbert d'Aurillac was Pope Sylvester II since 999 through 1003. His history is presented in order to understand his outstanding contribution in the establishment of quadrivium sciences (arithmetics, music, geometry and astronomy) in the curricula studiorum of cathedral schools and therefore of forthcoming universitates studiorum. Gerbert allowed the first sharing of arabic scientific culture (e.g. introducing in his didactic method the astrolabium, the abacus and the monochord) with Christian world participating in person to the "mini-renaissance" of the 10th century.

  1. Slimeware: engineering devices with slime mold.

    PubMed

    Adamatzky, Andrew

    2013-01-01

    The plasmodium of the acellular slime mold Physarum polycephalum is a gigantic single cell visible to the unaided eye. The cell shows a rich spectrum of behavioral patterns in response to environmental conditions. In a series of simple experiments we demonstrate how to make computing, sensing, and actuating devices from the slime mold. We show how to program living slime mold machines by configurations of repelling and attracting gradients and demonstrate the workability of the living machines on tasks of computational geometry, logic, and arithmetic.

  2. Quantum dressing orbits on compact groups

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Šťovíček, Pavel

    1993-02-01

    The quantum double is shown to imply the dressing transformation on quantum compact groups and the quantum Iwasawa decompositon in the general case. Quantum dressing orbits are described explicitly as *-algebras. The dual coalgebras consisting of differential operators are related to the quantum Weyl elements. Besides, the differential geometry on a quantum leaf allows a remarkably simple construction of irreducible *-representations of the algebras of quantum functions. Representation spaces then consist of analytic functions on classical phase spaces. These representations are also interpreted in the framework of quantization in the spirit of Berezin applied to symplectic leaves on classical compact groups. Convenient “coherent states” are introduced and a correspondence between classical and quantum observables is given.

  3. On genera of curves from high-loop generalized unitarity cuts

    NASA Astrophysics Data System (ADS)

    Huang, Rijun; Zhang, Yang

    2013-04-01

    Generalized unitarity cut of a Feynman diagram generates an algebraic system of polynomial equations. At high-loop levels, these equations may define a complex curve or a (hyper-)surface with complicated topology. We study the curve cases, i.e., a 4-dimensional L-loop diagram with (4 L-1) cuts. The topology of a complex curve is classified by its genus. Hence in this paper, we use computational algebraic geometry to calculate the genera of curves from two and three-loop unitarity cuts. The global structure of degenerate on-shell equations under some specific kinematic configurations is also sketched. The genus information can also be used to judge if a unitary cut solution could be rationally parameterized.

  4. Analysis on singular spaces: Lie manifolds and operator algebras

    NASA Astrophysics Data System (ADS)

    Nistor, Victor

    2016-07-01

    We discuss and develop some connections between analysis on singular spaces and operator algebras, as presented in my sequence of four lectures at the conference Noncommutative geometry and applications, Frascati, Italy, June 16-21, 2014. Therefore this paper is mostly a survey paper, but the presentation is new, and there are included some new results as well. In particular, Sections 3 and 4 provide a complete short introduction to analysis on noncompact manifolds that is geared towards a class of manifolds-called ;Lie manifolds; -that often appears in practice. Our interest in Lie manifolds is due to the fact that they provide the link between analysis on singular spaces and operator algebras. The groupoids integrating Lie manifolds play an important background role in establishing this link because they provide operator algebras whose structure is often well understood. The initial motivation for the work surveyed here-work that spans over close to two decades-was to develop the index theory of stratified singular spaces. Meanwhile, several other applications have emerged as well, including applications to Partial Differential Equations and Numerical Methods. These will be mentioned only briefly, however, due to the lack of space. Instead, we shall concentrate on the applications to Index theory.

  5. Generalizations of the classical Yang-Baxter equation and O-operators

    NASA Astrophysics Data System (ADS)

    Bai, Chengming; Guo, Li; Ni, Xiang

    2011-06-01

    Tensor solutions (r-matrices) of the classical Yang-Baxter equation (CYBE) in a Lie algebra, obtained as the classical limit of the R-matrix solution of the quantum Yang-Baxter equation, is an important structure appearing in different areas such as integrable systems, symplectic geometry, quantum groups, and quantum field theory. Further study of CYBE led to its interpretation as certain operators, giving rise to the concept of {O}-operators. The O-operators were in turn interpreted as tensor solutions of CYBE by enlarging the Lie algebra [Bai, C., "A unified algebraic approach to the classical Yang-Baxter equation," J. Phys. A: Math. Theor. 40, 11073 (2007)], 10.1088/1751-8113/40/36/007. The purpose of this paper is to extend this study to a more general class of operators that were recently introduced [Bai, C., Guo, L., and Ni, X., "Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras," Commun. Math. Phys. 297, 553 (2010)], 10.1007/s00220-010-0998-7 in the study of Lax pairs in integrable systems. Relations between O-operators, relative differential operators, and Rota-Baxter operators are also discussed.

  6. Non-geometric fluxes, quasi-Hopf twist deformations, and nonassociative quantum mechanics

    NASA Astrophysics Data System (ADS)

    Mylonas, Dionysios; Schupp, Peter; Szabo, Richard J.

    2014-12-01

    We analyse the symmetries underlying nonassociative deformations of geometry in non-geometric R-flux compactifications which arise via T-duality from closed strings with constant geometric fluxes. Starting from the non-abelian Lie algebra of translations and Bopp shifts in phase space, together with a suitable cochain twist, we construct the quasi-Hopf algebra of symmetries that deforms the algebra of functions and the exterior differential calculus in the phase space description of nonassociative R-space. In this setting, nonassociativity is characterised by the associator 3-cocycle which controls non-coassociativity of the quasi-Hopf algebra. We use abelian 2-cocycle twists to construct maps between the dynamical nonassociative star product and a family of associative star products parametrized by constant momentum surfaces in phase space. We define a suitable integration on these nonassociative spaces and find that the usual cyclicity of associative noncommutative deformations is replaced by weaker notions of 2-cyclicity and 3-cyclicity. Using this star product quantization on phase space together with 3-cyclicity, we formulate a consistent version of nonassociative quantum mechanics, in which we calculate the expectation values of area and volume operators, and find coarse-graining of the string background due to the R-flux.

  7. Non-local geometry inside Lifshitz horizon

    NASA Astrophysics Data System (ADS)

    Hu, Qi; Lee, Sung-Sik

    2017-07-01

    Based on the quantum renormalization group, we derive the bulk geometry that emerges in the holographic dual of the fermionic U( N ) vector model at a nonzero charge density. The obstruction that prohibits the metallic state from being smoothly deformable to the direct product state under the renormalization group flow gives rise to a horizon at a finite radial coordinate in the bulk. The region outside the horizon is described by the Lifshitz geometry with a higher-spin hair determined by microscopic details of the boundary theory. On the other hand, the interior of the horizon is not described by any Riemannian manifold, as it exhibits an algebraic non-locality. The non-local structure inside the horizon carries the information on the shape of the filled Fermi sea.

  8. A Novel Approach to Realize of All Optical Frequency Encoded Dibit Based XOR and XNOR Logic Gates Using Optical Switches with Simulated Verification

    NASA Astrophysics Data System (ADS)

    Ghosh, B.; Hazra, S.; Haldar, N.; Roy, D.; Patra, S. N.; Swarnakar, J.; Sarkar, P. P.; Mukhopadhyay, S.

    2018-03-01

    Since last few decades optics has already proved its strong potentiality for conducting parallel logic, arithmetic and algebraic operations due to its super-fast speed in communication and computation. So many different logical and sequential operations using all optical frequency encoding technique have been proposed by several authors. Here, we have keened out all optical dibit representation technique, which has the advantages of high speed operation as well as reducing the bit error problem. Exploiting this phenomenon, we have proposed all optical frequency encoded dibit based XOR and XNOR logic gates using the optical switches like add/drop multiplexer (ADM) and reflected semiconductor optical amplifier (RSOA). Also the operations of these gates have been verified through proper simulation using MATLAB (R2008a).

  9. Minimal models of compact symplectic semitoric manifolds

    NASA Astrophysics Data System (ADS)

    Kane, D. M.; Palmer, J.; Pelayo, Á.

    2018-02-01

    A symplectic semitoric manifold is a symplectic 4-manifold endowed with a Hamiltonian (S1 × R) -action satisfying certain conditions. The goal of this paper is to construct a new symplectic invariant of symplectic semitoric manifolds, the helix, and give applications. The helix is a symplectic analogue of the fan of a nonsingular complete toric variety in algebraic geometry, that takes into account the effects of the monodromy near focus-focus singularities. We give two applications of the helix: first, we use it to give a classification of the minimal models of symplectic semitoric manifolds, where "minimal" is in the sense of not admitting any blowdowns. The second application is an extension to the compact case of a well known result of Vũ Ngọc about the constraints posed on a symplectic semitoric manifold by the existence of focus-focus singularities. The helix permits to translate a symplectic geometric problem into an algebraic problem, and the paper describes a method to solve this type of algebraic problem.

  10. On the stabilizability of multivariable systems by minimum order compensation

    NASA Technical Reports Server (NTRS)

    Byrnes, C. I.; Anderson, B. D. O.

    1983-01-01

    In this paper, a derivation is provided of the necessary condition, mp equal to or greater than n, for stabilizability by constant gain feedback of the generic degree n, p x m system. This follows from another of the main results, which asserts that generic stabilizability is equivalent to generic solvability of a deadbeat control problem, provided mp equal to or less than n. Taken together, these conclusions make it possible to make some sharp statements concerning minimum order stabilization. The techniques are primarily drawn from decision algebra and classical algebraic geometry and have additional consequences for problems of stabilizability and pole-assignability. Among these are the decidability (by a Sturm test) of the equivalence of generic pole-assignability and generic stabilizability, the semi-algebraic nature of the minimum order, q, of a stabilizing compensator, and the nonexistence of formulae involving rational operations and extraction of square roots for pole-assigning gains when they exist, answering in the negative a question raised by Anderson, Bose, and Jury (1975).

  11. Geometric descriptions of entangled states by auxiliary varieties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holweck, Frederic; Luque, Jean-Gabriel; Thibon, Jean-Yves

    2012-10-15

    The aim of the paper is to propose geometric descriptions of multipartite entangled states using algebraic geometry. In the context of this paper, geometric means each stratum of the Hilbert space, corresponding to an entangled state, is an open subset of an algebraic variety built by classical geometric constructions (tangent lines, secant lines) from the set of separable states. In this setting, we describe well-known classifications of multipartite entanglement such as 2 Multiplication-Sign 2 Multiplication-Sign (n+ 1), for n Greater-Than-Or-Slanted-Equal-To 1, quantum systems and a new description with the 2 Multiplication-Sign 3 Multiplication-Sign 3 quantum system. Our results complete themore » approach of Miyake and make stronger connections with recent work of algebraic geometers. Moreover, for the quantum systems detailed in this paper, we propose an algorithm, based on the classical theory of invariants, to decide to which subvariety of the Hilbert space a given state belongs.« less

  12. Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility

    NASA Astrophysics Data System (ADS)

    Guo, J.; Bücherl, T.; Zou, Y.; Guo, Z.

    2011-09-01

    Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.

  13. The 6th International Conference on Computer Science and Computational Mathematics (ICCSCM 2017)

    NASA Astrophysics Data System (ADS)

    2017-09-01

    The ICCSCM 2017 (The 6th International Conference on Computer Science and Computational Mathematics) has aimed to provide a platform to discuss computer science and mathematics related issues including Algebraic Geometry, Algebraic Topology, Approximation Theory, Calculus of Variations, Category Theory; Homological Algebra, Coding Theory, Combinatorics, Control Theory, Cryptology, Geometry, Difference and Functional Equations, Discrete Mathematics, Dynamical Systems and Ergodic Theory, Field Theory and Polynomials, Fluid Mechanics and Solid Mechanics, Fourier Analysis, Functional Analysis, Functions of a Complex Variable, Fuzzy Mathematics, Game Theory, General Algebraic Systems, Graph Theory, Group Theory and Generalizations, Image Processing, Signal Processing and Tomography, Information Fusion, Integral Equations, Lattices, Algebraic Structures, Linear and Multilinear Algebra; Matrix Theory, Mathematical Biology and Other Natural Sciences, Mathematical Economics and Financial Mathematics, Mathematical Physics, Measure Theory and Integration, Neutrosophic Mathematics, Number Theory, Numerical Analysis, Operations Research, Optimization, Operator Theory, Ordinary and Partial Differential Equations, Potential Theory, Real Functions, Rings and Algebras, Statistical Mechanics, Structure Of Matter, Topological Groups, Wavelets and Wavelet Transforms, 3G/4G Network Evolutions, Ad-Hoc, Mobile, Wireless Networks and Mobile Computing, Agent Computing & Multi-Agents Systems, All topics related Image/Signal Processing, Any topics related Computer Networks, Any topics related ISO SC-27 and SC- 17 standards, Any topics related PKI(Public Key Intrastructures), Artifial Intelligences(A.I.) & Pattern/Image Recognitions, Authentication/Authorization Issues, Biometric authentication and algorithms, CDMA/GSM Communication Protocols, Combinatorics, Graph Theory, and Analysis of Algorithms, Cryptography and Foundation of Computer Security, Data Base(D.B.) Management & Information Retrievals, Data Mining, Web Image Mining, & Applications, Defining Spectrum Rights and Open Spectrum Solutions, E-Comerce, Ubiquitous, RFID, Applications, Fingerprint/Hand/Biometrics Recognitions and Technologies, Foundations of High-performance Computing, IC-card Security, OTP, and Key Management Issues, IDS/Firewall, Anti-Spam mail, Anti-virus issues, Mobile Computing for E-Commerce, Network Security Applications, Neural Networks and Biomedical Simulations, Quality of Services and Communication Protocols, Quantum Computing, Coding, and Error Controls, Satellite and Optical Communication Systems, Theory of Parallel Processing and Distributed Computing, Virtual Visions, 3-D Object Retrievals, & Virtual Simulations, Wireless Access Security, etc. The success of ICCSCM 2017 is reflected in the received papers from authors around the world from several countries which allows a highly multinational and multicultural idea and experience exchange. The accepted papers of ICCSCM 2017 are published in this Book. Please check http://www.iccscm.com for further news. A conference such as ICCSCM 2017 can only become successful using a team effort, so herewith we want to thank the International Technical Committee and the Reviewers for their efforts in the review process as well as their valuable advices. We are thankful to all those who contributed to the success of ICCSCM 2017. The Secretary

  14. Triangles with Integer Side Lengths and Rational Internal Radius P and External Radius R

    ERIC Educational Resources Information Center

    Zelator, Konstantine

    2005-01-01

    This paper is written on a level accessible to college/university students of mathematics who are taking second-year, algebra based, mathematics courses beyond calculus I. This article combines material from geometry, trigonometry, and number theory. This integration of various techniques is an excellent experience for the serious student. The…

  15. Teachers' Implementation of Pre-Constructed Dynamic Geometry Tasks in Technology-Intensive Algebra 1 Classrooms

    ERIC Educational Resources Information Center

    Cayton, Charity Sue-Adams

    2012-01-01

    Technology use and a focus on 21st century skills, coupled with recent adoption of Common Core State Standards for Mathematics, marks a new challenge for mathematics teachers. Communication, discourse, and tools for enhancing discourse (NCTM, 1991, 2000) play an integral role in successful implementation of technology and mathematics standards.…

  16. Higher-dimensional lifts of Killing-Yano forms with torsion

    NASA Astrophysics Data System (ADS)

    Chow, David D. K.

    2017-01-01

    Using a Kaluza-Klein-type lift, it is shown how Killing-Yano forms with torsion can remain symmetries of a higher-dimensional geometry, subject to an algebraic condition between the Kaluza-Klein field strength and the Killing-Yano form. The lift condition’s significance is highlighted, and is satisfied by examples of black holes in supergravity.

  17. Descartes, René (1596-1650)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Mathematician and philosopher, born in La Haye (now Descartes), Touraine, France, settled in Holland. His work, La Géométrie, formulated geometry in terms of algebra, from which comes the concept of Cartesian coordinates. Studied Aristotelian philosophy and was attracted to mathematics, and the purely logical analysis of practically everything. Wrote Discours de la Méthode pour bien Conduire sa R...

  18. The Development of an Individualized Instructional Program in Beginning College Mathematics Utilizing Computer Based Resource Units. Final Report.

    ERIC Educational Resources Information Center

    Rockhill, Theron D.

    Reported is an attempt to develop and evaluate an individualized instructional program in pre-calculus college mathematics. Four computer based resource units were developed in the areas of set theory, relations and function, algebra, trigonometry, and analytic geometry. Objectives were determined by experienced calculus teachers, and…

  19. Waiting for the Paradigm Shift: What We Did and Why We Did It.

    ERIC Educational Resources Information Center

    Borelli, Jan G.

    1995-01-01

    Public schools are failing because they still provide a classical, rather than an applied, education that prepares students for the real world beyond high school. An Oklahoma high school has revamped its ninth-grade math curriculum to include only algebra and geometry (using calculators and real-world applications) and requires four years of math…

  20. A Follow-up Study of Two Methods of Teaching Mathematics: Traditional versus New Math

    ERIC Educational Resources Information Center

    Walton, Gene A.; And Others

    1977-01-01

    When high school mathematics grades and test scores were analyzed, findings showed that high- and middle-ability students who had a modern mathematics course in the seventh grade received significantly higher grades in Algebra I, II, III, and Geometry than did students who had a traditional seventh grade mathematics course. (DT)

  1. Nonsymbolic number and cumulative area representations contribute shared and unique variance to symbolic math competence

    PubMed Central

    Lourenco, Stella F.; Bonny, Justin W.; Fernandez, Edmund P.; Rao, Sonia

    2012-01-01

    Humans and nonhuman animals share the capacity to estimate, without counting, the number of objects in a set by relying on an approximate number system (ANS). Only humans, however, learn the concepts and operations of symbolic mathematics. Despite vast differences between these two systems of quantification, neural and behavioral findings suggest functional connections. Another line of research suggests that the ANS is part of a larger, more general system of magnitude representation. Reports of cognitive interactions and common neural coding for number and other magnitudes such as spatial extent led us to ask whether, and how, nonnumerical magnitude interfaces with mathematical competence. On two magnitude comparison tasks, college students estimated (without counting or explicit calculation) which of two arrays was greater in number or cumulative area. They also completed a battery of standardized math tests. Individual differences in both number and cumulative area precision (measured by accuracy on the magnitude comparison tasks) correlated with interindividual variability in math competence, particularly advanced arithmetic and geometry, even after accounting for general aspects of intelligence. Moreover, analyses revealed that whereas number precision contributed unique variance to advanced arithmetic, cumulative area precision contributed unique variance to geometry. Taken together, these results provide evidence for shared and unique contributions of nonsymbolic number and cumulative area representations to formally taught mathematics. More broadly, they suggest that uniquely human branches of mathematics interface with an evolutionarily primitive general magnitude system, which includes partially overlapping representations of numerical and nonnumerical magnitude. PMID:23091023

  2. A geometric modeler based on a dual-geometry representation polyhedra and rational b-splines

    NASA Technical Reports Server (NTRS)

    Klosterman, A. L.

    1984-01-01

    For speed and data base reasons, solid geometric modeling of large complex practical systems is usually approximated by a polyhedra representation. Precise parametric surface and implicit algebraic modelers are available but it is not yet practical to model the same level of system complexity with these precise modelers. In response to this contrast the GEOMOD geometric modeling system was built so that a polyhedra abstraction of the geometry would be available for interactive modeling without losing the precise definition of the geometry. Part of the reason that polyhedra modelers are effective is that all bounded surfaces can be represented in a single canonical format (i.e., sets of planar polygons). This permits a very simple and compact data structure. Nonuniform rational B-splines are currently the best representation to describe a very large class of geometry precisely with one canonical format. The specific capabilities of the modeler are described.

  3. GENIE(++): A Multi-Block Structured Grid System

    NASA Technical Reports Server (NTRS)

    Williams, Tonya; Nadenthiran, Naren; Thornburg, Hugh; Soni, Bharat K.

    1996-01-01

    The computer code GENIE++ is a continuously evolving grid system containing a multitude of proven geometry/grid techniques. The generation process in GENIE++ is based on an earlier version. The process uses several techniques either separately or in combination to quickly and economically generate sculptured geometry descriptions and grids for arbitrary geometries. The computational mesh is formed by using an appropriate algebraic method. Grid clustering is accomplished with either exponential or hyperbolic tangent routines which allow the user to specify a desired point distribution. Grid smoothing can be accomplished by using an elliptic solver with proper forcing functions. B-spline and Non-Uniform Rational B-splines (NURBS) algorithms are used for surface definition and redistribution. The built in sculptured geometry definition with desired distribution of points, automatic Bezier curve/surface generation for interior boundaries/surfaces, and surface redistribution is based on NURBS. Weighted Lagrance/Hermite transfinite interpolation methods, interactive geometry/grid manipulation modules, and on-line graphical visualization of the generation process are salient features of this system which result in a significant time savings for a given geometry/grid application.

  4. A New Reynolds Stress Algebraic Equation Model

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Zhu, Jiang; Lumley, John L.

    1994-01-01

    A general turbulent constitutive relation is directly applied to propose a new Reynolds stress algebraic equation model. In the development of this model, the constraints based on rapid distortion theory and realizability (i.e. the positivity of the normal Reynolds stresses and the Schwarz' inequality between turbulent velocity correlations) are imposed. Model coefficients are calibrated using well-studied basic flows such as homogeneous shear flow and the surface flow in the inertial sublayer. The performance of this model is then tested in complex turbulent flows including the separated flow over a backward-facing step and the flow in a confined jet. The calculation results are encouraging and point to the success of the present model in modeling turbulent flows with complex geometries.

  5. BPS Jumping Loci are Automorphic

    NASA Astrophysics Data System (ADS)

    Kachru, Shamit; Tripathy, Arnav

    2018-06-01

    We show that BPS jumping loci-loci in the moduli space of string compactifications where the number of BPS states jumps in an upper semi-continuous manner—naturally appear as Fourier coefficients of (vector space-valued) automorphic forms. For the case of T 2 compactification, the jumping loci are governed by a modular form studied by Hirzebruch and Zagier, while the jumping loci in K3 compactification appear in a story developed by Oda and Kudla-Millson in arithmetic geometry. We also comment on some curious related automorphy in the physics of black hole attractors and flux vacua.

  6. The Compatibility of Developed Mathematics Textbooks' Content in Saudi Arabia (Grades 6-8) with NCTM Standards

    ERIC Educational Resources Information Center

    Alshehri, Mohammed Ali; Ali, Hassan Shawki

    2016-01-01

    This study aimed to investigate the compatibility of developed mathematics textbooks' content (grades 6-8) in Saudi Arabia with NCTM standards in the areas of: number and operations, algebra, geometry, measurement, data analysis and probability. To achieve that goal, a list of (NCTM) standards for grades (6-8) were translated to Arabic language,…

  7. Can You Fathom This? Connecting Data Analysis, Algebra, and Geometry with Probability Simulation

    ERIC Educational Resources Information Center

    Edwards, Michael Todd; Phelps, Steve

    2008-01-01

    Data analysis plays a prominent role in various facets of modern life: Schools evaluate and revise programs on the basis of test scores; policymakers make decisions on the basis of information gleaned from polling data; supermarkets stock shelves on the basis of data collected at checkout lanes. Data analysis provides teachers with new tools and…

  8. A Historical Survey of the Contributions of Francois-Joseph Servois to the Development of the Rigorous Calculus

    ERIC Educational Resources Information Center

    Petrilli, Salvatore John, Jr.

    2009-01-01

    Historians of mathematics considered the nineteenth century to be the Golden Age of mathematics. During this time period many areas of mathematics, such as algebra and geometry, were being placed on rigorous foundations. Another area of mathematics which experienced fundamental change was analysis. The drive for rigor in calculus began in 1797…

  9. The Effects of Blue Ink Print on Students' Memory Retention of Math Terms and Definitions.

    ERIC Educational Resources Information Center

    Din, Feng S.; Barnes, Kahlon

    This study investigated whether students' memory retention rate improved when they were provided with blue ink printed material. A pretest, treatment, posttest with control group design was used. The participants were 93 10th and 11th grade students in algebra and geometry courses, and there were 2 classes in each course. The treatment lasted for…

  10. Special Bohr-Sommerfeld Lagrangian submanifolds

    NASA Astrophysics Data System (ADS)

    Tyurin, N. A.

    2016-12-01

    We introduce a new notion in symplectic geometry, that of speciality for Lagrangian submanifolds satisfying the Bohr- Sommerfeld condition. We show that it enables one to construct finite-dimensional moduli spaces of special Bohr- Sommerfeld Lagrangian submanifolds with respect to any ample line bundle on an algebraic variety with a Hodge metric regarded as the symplectic form. This construction can be used to study mirror symmetry.

  11. Afterbody External Aerodynamic and Performance Prediction at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Carlson, John R.

    1999-01-01

    This CFD experiment concludes that the potential difference between the flow between a flight Reynolds number test and a sub-scale wind tunnel test are substantial for this particular nozzle boattail geometry. The early study was performed using a linear k-epsilon turbulence model. The present study was performed using the Girimaji formulation of a algebraic Reynolds stress turbulent simulation.

  12. Hitting the Bull's-Eye: A Dart Game Simulation Using Graphing Calculator Technology

    ERIC Educational Resources Information Center

    Mittag, Kathleen Cage; Taylor, Sharon E.

    2006-01-01

    One problem that students have with mathematics is that they often view the topic as a series of unrelated ideas. Sometimes they are aware that they have to know one concept to move to the next, but what is done in geometry is not necessarily related to anything in algebra. This failure to recognize mathematical connections limits students'…

  13. Plasma anisotropy and the radial particle flux in a rippled tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazeltine, R. D.

    We show that an often used relation between the radial particle flux and the divergence of the gyrotropic stress is an algebraic identity, unrelated to momentum conservation. Our calculation is completely general with regard to toroidal geometry and plasma collisionality. The result bears on the role of anisotropy in momentum relaxation and also clarifies certain methodological issues.

  14. Some Applications of Gröbner Bases in Robotics and Engineering

    NASA Astrophysics Data System (ADS)

    Abłamowicz, Rafał

    Gröbner bases in polynomial rings have numerous applications in geometry, applied mathematics, and engineering. We show a few applications of Gröbner bases in robotics, formulated in the language of Clifford algebras, and in engineering to the theory of curves, including Fermat and Bézier cubics, and interpolation functions used in finite element theory.

  15. Investigating the Relationship between High School Technology Education and Test Scores for Algebra 1 and Geometry

    ERIC Educational Resources Information Center

    Dyer, Richard R.; Reed, Philip A.; Berry, Robert Q.

    2006-01-01

    The standards-based reform movement in education that began in the 1980s has evolved. In the 1990s, the focus was on producing subject-area content standards and modifying instruction. Today, the focus has shifted to assessment, and for technology education, demonstrating the impact on children and the efficacy of the discipline within general…

  16. End of Course Grades and End of Course Tests in the Virtual Environment: A Study of Correlation

    ERIC Educational Resources Information Center

    Philipp, Jamie Gilbert

    2014-01-01

    The purpose of this correlational study is to understand the relationship between end-of-course grades as assigned by teachers and standardized end-of-course scores earned by students in Algebra, Geometry, Biology, Physical Science, and U.S. History courses at one virtual charter school in the State of Georgia. Pearson Product-Moment Correlation…

  17. Integrating Algebra and Proof in High School Mathematics: An Exploratory Study

    ERIC Educational Resources Information Center

    Martinez, Mara V.; Brizuela, Barbara M.; Superfine, Alison Castro

    2011-01-01

    Frequently, in the US students' work with proofs is largely concentrated to the domain of high school geometry, thus providing students with a distorted image of what proof entails, which is at odds with the central role that proof plays in mathematics. Despite the centrality of proof in mathematics, there is a lack of studies addressing how to…

  18. Using Virtual Manipulative Instruction to Teach the Concepts of Area and Perimeter to Secondary Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Satsangi, Rajiv; Bouck, Emily C.

    2015-01-01

    Secondary students with a learning disability in mathematics often struggle with the academic demands presented in advanced mathematics courses, such as algebra and geometry. With greater emphasis placed on problem solving and higher level thinking skills in these subject areas, students with a learning disability in mathematics often fail to keep…

  19. Integrand Reduction Reloaded: Algebraic Geometry and Finite Fields

    NASA Astrophysics Data System (ADS)

    Sameshima, Ray D.; Ferroglia, Andrea; Ossola, Giovanni

    2017-01-01

    The evaluation of scattering amplitudes in quantum field theory allows us to compare the phenomenological prediction of particle theory with the measurement at collider experiments. The study of scattering amplitudes, in terms of their symmetries and analytic properties, provides a theoretical framework to develop techniques and efficient algorithms for the evaluation of physical cross sections and differential distributions. Tree-level calculations have been known for a long time. Loop amplitudes, which are needed to reduce the theoretical uncertainty, are more challenging since they involve a large number of Feynman diagrams, expressed as integrals of rational functions. At one-loop, the problem has been solved thanks to the combined effect of integrand reduction, such as the OPP method, and unitarity. However, plenty of work is still needed at higher orders, starting with the two-loop case. Recently, integrand reduction has been revisited using algebraic geometry. In this presentation, we review the salient features of integrand reduction for dimensionally regulated Feynman integrals, and describe an interesting technique for their reduction based on multivariate polynomial division. We also show a novel approach to improve its efficiency by introducing finite fields. Supported in part by the National Science Foundation under Grant PHY-1417354.

  20. Nonlinear External Kink Computing with NIMROD

    NASA Astrophysics Data System (ADS)

    Bunkers, K. J.; Sovinec, C. R.

    2016-10-01

    Vertical displacement events (VDEs) during disruptions often include non-axisymmetric activity, including external kink modes, which are driven unstable as contact with the wall eats into the q-profile. The NIMROD code is being applied to study external-kink-unstable tokamak profiles in toroidal and cylindrical geometries. Simulations with external kinks show the plasma swallowing a vacuum bubble, similar to. NIMROD reproduces external kinks in both geometries, using an outer vacuum region (modeled as a plasma with a large resistivity), but as the boundary between the vacuum and plasma regions becomes more 3D, the resistivity becomes a 3D function, and it becomes more difficult for algebraic solves to converge. To help allow non-axisymmetric, nonlinear VDE calculations to proceed without restrictively small time-steps, several computational algorithms have been tested. Flexible GMRES, using a Fourier and real space representation for the toroidal angle has shown improvements. Off-diagonal preconditioning and a multigrid approach were tested and showed little improvement. A least squares finite element method (LSQFEM) has also helped improve the algebraic solve. This effort is supported by the U.S. Dept. of Energy, Award Numbers DE-FG02-06ER54850 and DE-FC02-08ER54975.

  1. High-Order Automatic Differentiation of Unmodified Linear Algebra Routines via Nilpotent Matrices

    NASA Astrophysics Data System (ADS)

    Dunham, Benjamin Z.

    This work presents a new automatic differentiation method, Nilpotent Matrix Differentiation (NMD), capable of propagating any order of mixed or univariate derivative through common linear algebra functions--most notably third-party sparse solvers and decomposition routines, in addition to basic matrix arithmetic operations and power series--without changing data-type or modifying code line by line; this allows differentiation across sequences of arbitrarily many such functions with minimal implementation effort. NMD works by enlarging the matrices and vectors passed to the routines, replacing each original scalar with a matrix block augmented by derivative data; these blocks are constructed with special sparsity structures, termed "stencils," each designed to be isomorphic to a particular multidimensional hypercomplex algebra. The algebras are in turn designed such that Taylor expansions of hypercomplex function evaluations are finite in length and thus exactly track derivatives without approximation error. Although this use of the method in the "forward mode" is unique in its own right, it is also possible to apply it to existing implementations of the (first-order) discrete adjoint method to find high-order derivatives with lowered cost complexity; for example, for a problem with N inputs and an adjoint solver whose cost is independent of N--i.e., O(1)--the N x N Hessian can be found in O(N) time, which is comparable to existing second-order adjoint methods that require far more problem-specific implementation effort. Higher derivatives are likewise less expensive--e.g., a N x N x N rank-three tensor can be found in O(N2). Alternatively, a Hessian-vector product can be found in O(1) time, which may open up many matrix-based simulations to a range of existing optimization or surrogate modeling approaches. As a final corollary in parallel to the NMD-adjoint hybrid method, the existing complex-step differentiation (CD) technique is also shown to be capable of finding the Hessian-vector product. All variants are implemented on a stochastic diffusion problem and compared in-depth with various cost and accuracy metrics.

  2. Calabi-Yau Geometries: Algorithms, Databases and Physics

    NASA Astrophysics Data System (ADS)

    He, Yang-Hui

    2013-08-01

    With a bird's-eye view, we survey the landscape of Calabi-Yau threefolds, compact and noncompact, smooth and singular. Emphasis will be placed on the algorithms and databases which have been established over the years, and how they have been useful in the interaction between the physics and the mathematics, especially in string and gauge theories. A skein which runs through this review will be algorithmic and computational algebraic geometry and how, implementing its principles on powerful computers and experimenting with the vast mathematical data, new physics can be learnt. It is hoped that this interdisciplinary glimpse will be of some use to the beginning student.

  3. Constructing an explicit AdS/CFT correspondence with Cartan geometry

    NASA Astrophysics Data System (ADS)

    Hazboun, Jeffrey S.

    2018-04-01

    An explicit AdS/CFT correspondence is shown for the Lie group SO (4 , 2). The Lie symmetry structures allow for the construction of two physical theories through the tools of Cartan geometry. One is a gravitational theory that has anti-de Sitter symmetry. The other is also a gravitational theory but is conformally symmetric and lives on 8-dimensional biconformal space. These "extra" four dimensions have the degrees of freedom used to construct a Yang-Mills theory. The two theories, based on AdS or conformal symmetry, have a natural correspondence in the context of their Lie algebras alone where neither SUSY, nor holography, is necessary.

  4. Modelling Plane Geometry: the connection between Geometrical Visualization and Algebraic Demonstration

    NASA Astrophysics Data System (ADS)

    Pereira, L. R.; Jardim, D. F.; da Silva, J. M.

    2017-12-01

    The teaching and learning of Mathematics contents have been challenging along the history of the education, both for the teacher, in his dedicated task of teaching, as for the student, in his arduous and constant task of learning. One of the topics that are most discussed in these contents is the difference between the concepts of proof and demonstration. This work presents an interesting discussion about such concepts considering the use of the mathematical modeling approach for teaching, applied to some examples developed in the classroom with a group of students enrolled in the discipline of Geometry of the Mathematics curse of UFVJM.

  5. What is behind small deviations of quantum mechanics theory from experiments? Observer's mathematics point of view

    NASA Astrophysics Data System (ADS)

    Khots, Boris; Khots, Dmitriy

    2014-12-01

    Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We consider the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided.

  6. Exploring hurdles to transfer : student experiences of applying knowledge across disciplines

    NASA Astrophysics Data System (ADS)

    Lappalainen, Jouni; Rosqvist, Juho

    2015-04-01

    This paper explores the ways students perceive the transfer of learned knowledge to new situations - often a surprisingly difficult prospect. The novel aspect compared to the traditional transfer studies is that the learning phase is not a part of the experiment itself. The intention was only to activate acquired knowledge relevant to the transfer target using a short primer immediately prior to the situation where the knowledge was to be applied. Eight volunteer students from either mathematics or computer science curricula were given a task of designing an adder circuit using logic gates: a new context in which to apply knowledge of binary arithmetic and Boolean algebra. The results of a phenomenographic classification of the views presented by the students in their post-experiment interviews are reported. The degree to which the students were conscious of the acquired knowledge they employed and how they applied it in a new context emerged as the differentiating factors.

  7. Deriving Laws from Ordering Relations

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.

    2004-01-01

    The effect of Richard T. Cox's contribution to probability theory was to generalize Boolean implication among logical statements to degrees of implication, which are manipulated using rules derived from consistency with Boolean algebra. These rules are known as the sum rule, the product rule and Bayes Theorem, and the measure resulting from this generalization is probability. In this paper, I will describe how Cox s technique can be further generalized to include other algebras and hence other problems in science and mathematics. The result is a methodology that can be used to generalize an algebra to a calculus by relying on consistency with order theory to derive the laws of the calculus. My goals are to clear up the mysteries as to why the same basic structure found in probability theory appears in other contexts, to better understand the foundations of probability theory, and to extend these ideas to other areas by developing new mathematics and new physics. The relevance of this methodology will be demonstrated using examples from probability theory, number theory, geometry, information theory, and quantum mechanics.

  8. The Standard Model Algebra - a summary

    NASA Astrophysics Data System (ADS)

    Cristinel Stoica, Ovidiu

    2017-08-01

    A generation of leptons and quarks and the gauge symmetries of the Standard Model can be obtained from the Clifford algebra ℂℓ 6. An instance of ℂℓ 6 is implicitly generated by the Dirac algebra combined with the electroweak symmetry, while the color symmetry gives another instance of ℂℓ 6 with a Witt decomposition. The minimal mathematical model proposed here results by identifying the two instances of ℂℓ 6. The left ideal decomposition generated by the Witt decomposition represents the leptons and quarks, and their antiparticles. The SU(3)c and U(1)em symmetries of the SM are the symmetries of this ideal decomposition. The patterns of electric charges, colors, chirality, weak isospins, and hypercharges, follow from this, without predicting additional particles or forces, or proton decay. The electroweak symmetry is present in its broken form, due to the geometry. The predicted Weinberg angle is given by sin2 W = 0.25. The model shares common features with previously known models, particularly with Chisholm and Farwell, 1996, Trayling and Baylis, 2004, and Furey, 2016.

  9. a Perspective on the Magic Square and the "special Unitary" Realization of Real Simple Lie Algebras

    NASA Astrophysics Data System (ADS)

    Santander, Mariano

    2013-07-01

    This paper contains the last part of the minicourse "Spaces: A Perspective View" delivered at the IFWGP2012. The series of three lectures was intended to bring the listeners from the more naive and elementary idea of space as "our physical Space" (which after all was the dominant one up to the 1820s) through the generalization of the idea of space which took place in the last third of the 19th century. That was a consequence of first the discovery and acceptance of non-Euclidean geometry and second, of the views afforded by the works of Riemann and Klein and continued since then by many others, outstandingly Lie and Cartan. Here we deal with the part of the minicourse which centers on the classification questions associated to the simple real Lie groups. We review the original introduction of the Magic Square "á la Freudenthal", putting the emphasis in the role played in this construction by the four normed division algebras ℝ, ℂ, ℍ, 𝕆. We then explore the possibility of understanding some simple real Lie algebras as "special unitary" over some algebras 𝕂 or tensor products 𝕂1 ⊗ 𝕂2, and we argue that the proper setting for this construction is not to confine only to normed division algebras, but to allow the split versions ℂ‧, ℍ‧, 𝕆‧ of complex, quaternions and octonions as well. This way we get a "Grand Magic Square" and we fill in all details required to cover all real forms of simple real Lie algebras within this scheme. The paper ends with the complete lists of all realizations of simple real Lie algebras as "special unitary" (or only unitary when n = 2) over some tensor product of two *-algebras 𝕂1, 𝕂2, which in all cases are obtained from ℝ, ℂ, ℂ‧, ℍ, ℍ‧, 𝕆, 𝕆‧ as sets, endowing them with a *-conjugation which usually but not always is the natural complex, quaternionic or octonionic conjugation.

  10. Explorations in fuzzy physics and non-commutative geometry

    NASA Astrophysics Data System (ADS)

    Kurkcuoglu, Seckin

    Fuzzy spaces arise as discrete approximations to continuum manifolds. They are usually obtained through quantizing coadjoint orbits of compact Lie groups and they can be described in terms of finite-dimensional matrix algebras, which for large matrix sizes approximate the algebra of functions of the limiting continuum manifold. Their ability to exactly preserve the symmetries of their parent manifolds is especially appealing for physical applications. Quantum Field Theories are built over them as finite-dimensional matrix models preserving almost all the symmetries of their respective continuum models. In this dissertation, we first focus our attention to the study of fuzzy supersymmetric spaces. In this regard, we obtain the fuzzy supersphere S2,2F through quantizing the supersphere, and demonstrate that it has exact supersymmetry. We derive a finite series formula for the *-product of functions over S2,2F and analyze the differential geometric information encoded in this formula. Subsequently, we show that quantum field theories on S2,2F are realized as finite-dimensional supermatrix models, and in particular we obtain the non-linear sigma model over the fuzzy supersphere by constructing the fuzzy supersymmetric extensions of a certain class of projectors. We show that this model too, is realized as a finite-dimensional supermatrix model with exact supersymmetry. Next, we show that fuzzy spaces have a generalized Hopf algebra structure. By focusing on the fuzzy sphere, we establish that there is a *-homomorphism from the group algebra SU(2)* of SU(2) to the fuzzy sphere. Using this and the canonical Hopf algebra structure of SU(2)* we show that both the fuzzy sphere and their direct sum are Hopf algebras. Using these results, we discuss processes in which a fuzzy sphere with angular momenta J splits into fuzzy spheres with angular momenta K and L. Finally, we study the formulation of Chern-Simons (CS) theory on an infinite strip of the non-commutative plane. We develop a finite-dimensional matrix model, whose large size limit approximates the CS theory on the infinite strip, and show that there are edge observables in this model obeying a finite-dimensional Lie algebra, that resembles the Kac-Moody algebra.

  11. Connes distance function on fuzzy sphere and the connection between geometry and statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devi, Yendrembam Chaoba, E-mail: chaoba@bose.res.in; Chakraborty, Biswajit, E-mail: biswajit@bose.res.in; Prajapat, Shivraj, E-mail: shraprajapat@gmail.com

    An algorithm to compute Connes spectral distance, adaptable to the Hilbert-Schmidt operatorial formulation of non-commutative quantum mechanics, was developed earlier by introducing the appropriate spectral triple and used to compute infinitesimal distances in the Moyal plane, revealing a deep connection between geometry and statistics. In this paper, using the same algorithm, the Connes spectral distance has been calculated in the Hilbert-Schmidt operatorial formulation for the fuzzy sphere whose spatial coordinates satisfy the su(2) algebra. This has been computed for both the discrete and the Perelemov’s SU(2) coherent state. Here also, we get a connection between geometry and statistics which ismore » shown by computing the infinitesimal distance between mixed states on the quantum Hilbert space of a particular fuzzy sphere, indexed by n ∈ ℤ/2.« less

  12. What's in a Teacher Test? Assessing the Relationship between Teacher Licensure Test Scores and Student STEM Achievement and Course-Taking. Working Paper 158

    ERIC Educational Resources Information Center

    Goldhaber, Dan; Gratz, Trevor; Theobald, Roddy

    2016-01-01

    We investigate the relationship between teacher licensure test scores and student test achievement and high school course-taking. We focus on three subject/grade combinations--middle school math, ninth-grade algebra and geometry, and ninth-grade biology--and find evidence that a teacher's basic skills test scores are modestly predictive of student…

  13. Examining the Effects of Gender, Poverty, Attendance, and Ethnicity on Algebra, Geometry, and Trigonometry Performance in a Public High School

    ERIC Educational Resources Information Center

    Shafiq, Hasan

    2013-01-01

    Over the last few decades school accountability for student performance has become an issue at the forefront of education. The federal No Child Left Behind Act of 2001 (NCLB) and various regulations by individual states have set standards for student performance at both the district and individual public and charter school levels, and certain…

  14. Case Study Projects for College Mathematics Courses Based on a Particular Function of Two Variables

    ERIC Educational Resources Information Center

    Shi, Y.

    2007-01-01

    Based on a sequence of number pairs, a recent paper (Mauch, E. and Shi, Y., 2005, Using a sequence of number pairs as an example in teaching mathematics, "Mathematics and Computer Education," 39(3), 198-205) presented some interesting examples that can be used in teaching high school and college mathematics classes such as algebra, geometry,…

  15. Effect of the Presence of External Representations on Accuracy and Reaction Time in Solving Mathematical Double-Choice Problems by Students of Different Levels of Instruction

    ERIC Educational Resources Information Center

    Leikin, Roza; Leikin, Mark; Waisman, Ilana; Shaul, Shelley

    2013-01-01

    This study explores the effects of the "presence of external representations of a mathematical object" (ERs) on problem solving performance associated with short double-choice problems. The problems were borrowed from secondary school algebra and geometry, and the ERs were either formulas, graphs of functions, or drawings of geometric…

  16. Geometry and Algebra: The Future Flight Equation. A Lesson Guide with Activities in Mathematics, Science, and Technology. NASA CONNECT.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    This activity, part of the NASA CONNECT Series, is designed to help students in grades 6-8 learn how NASA engineers develop experimental aircraft. It consists of an overview of the program, details of the hands-on activity, a series of blackline master student worksheets, teacher materials, and a guide to further resources. (MM)

  17. Heat transfer predictions for two turbine nozzle geometries at high Reynolds and Mach numbers

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Jackson, R.

    1995-01-01

    Predictions of turbine vane and endwall heat transfer and pressure distributions are compared with experimental measurements for two vane geometries. The differences in geometries were due to differences in the hub profile, and both geometries were derived from the design of a high rim speed turbine (HRST). The experiments were conducted in the Isentropic Light Piston Facility (ILPF) at Pyestock at a Reynolds number of 5.3 x 10(exp 6), a Mach number of 1.2, and a wall-to-gas temperature ratio of 0.66. Predictions are given for two different steady-state three-dimensional Navier-Stokes computational analyses. C-type meshes were used, and algebraic models were employed to calculate the turbulent eddy viscosity. The effects of different turbulence modeling assumptions on the predicted results are examined. Comparisons are also given between predicted and measured total pressure distributions behind the vane. The combination of realistic engine geometries and flow conditions proved to be quite demanding in terms of the convergence of the CFD solutions. An appropriate method of grid generation, which resulted in consistently converged CFD solutions, was identified.

  18. Algebraic-geometry approach to integrability of birational plane mappings. Integrable birational quadratic reversible mappings. I

    NASA Astrophysics Data System (ADS)

    Rerikh, K. V.

    1998-02-01

    Using classic results of algebraic geometry for birational plane mappings in plane CP 2 we present a general approach to algebraic integrability of autonomous dynamical systems in C 2 with discrete time and systems of two autonomous functional equations for meromorphic functions in one complex variable defined by birational maps in C 2. General theorems defining the invariant curves, the dynamics of a birational mapping and a general theorem about necessary and sufficient conditions for integrability of birational plane mappings are proved on the basis of a new idea — a decomposition of the orbit set of indeterminacy points of direct maps relative to the action of the inverse mappings. A general method of generating integrable mappings and their rational integrals (invariants) I is proposed. Numerical characteristics Nk of intersections of the orbits Φn- kOi of fundamental or indeterminacy points Oi ɛ O ∩ S, of mapping Φn, where O = { O i} is the set of indeterminacy points of Φn and S is a similar set for invariant I, with the corresponding set O' ∩ S, where O' = { O' i} is the set of indeterminacy points of inverse mapping Φn-1, are introduced. Using the method proposed we obtain all nine integrable multiparameter quadratic birational reversible mappings with the zero fixed point and linear projective symmetry S = CΛC-1, Λ = diag(±1), with rational invariants generated by invariant straight lines and conics. The relations of numbers Nk with such numerical characteristics of discrete dynamical systems as the Arnold complexity and their integrability are established for the integrable mappings obtained. The Arnold complexities of integrable mappings obtained are determined. The main results are presented in Theorems 2-5, in Tables 1 and 2, and in Appendix A.

  19. Algebraic Structure of tt * Equations for Calabi-Yau Sigma Models

    NASA Astrophysics Data System (ADS)

    Alim, Murad

    2017-08-01

    The tt * equations define a flat connection on the moduli spaces of {2d, \\mathcal{N}=2} quantum field theories. For conformal theories with c = 3 d, which can be realized as nonlinear sigma models into Calabi-Yau d-folds, this flat connection is equivalent to special geometry for threefolds and to its analogs in other dimensions. We show that the non-holomorphic content of the tt * equations, restricted to the conformal directions, in the cases d = 1, 2, 3 is captured in terms of finitely many generators of special functions, which close under derivatives. The generators are understood as coordinates on a larger moduli space. This space parameterizes a freedom in choosing representatives of the chiral ring while preserving a constant topological metric. Geometrically, the freedom corresponds to a choice of forms on the target space respecting the Hodge filtration and having a constant pairing. Linear combinations of vector fields on that space are identified with the generators of a Lie algebra. This Lie algebra replaces the non-holomorphic derivatives of tt * and provides these with a finer and algebraic meaning. For sigma models into lattice polarized K3 manifolds, the differential ring of special functions on the moduli space is constructed, extending known structures for d = 1 and 3. The generators of the differential rings of special functions are given by quasi-modular forms for d = 1 and their generalizations in d = 2, 3. Some explicit examples are worked out including the case of the mirror of the quartic in {\\mathbbm{P}^3}, where due to further algebraic constraints, the differential ring coincides with quasi modular forms.

  20. Mathematics skills in good readers with hydrocephalus.

    PubMed

    Barnes, Marcia A; Pengelly, Sarah; Dennis, Maureen; Wilkinson, Margaret; Rogers, Tracey; Faulkner, Heather

    2002-01-01

    Children with hydrocephalus have poor math skills. We investigated the nature of their arithmetic computation errors by comparing written subtraction errors in good readers with hydrocephalus, typically developing good readers of the same age, and younger children matched for math level to the children with hydrocephalus. Children with hydrocephalus made more procedural errors (although not more fact retrieval or visual-spatial errors) than age-matched controls; they made the same number of procedural errors as younger, math-level matched children. We also investigated a broad range of math abilities, and found that children with hydrocephalus performed more poorly than age-matched controls on tests of geometry and applied math skills such as estimation and problem solving. Computation deficits in children with hydrocephalus reflect delayed development of procedural knowledge. Problems in specific math domains such as geometry and applied math, were associated with deficits in constituent cognitive skills such as visual spatial competence, memory, and general knowledge.

  1. Towards Cohomology of Renormalization: Bigrading the Combinatorial Hopf Algebra of Rooted Trees

    NASA Astrophysics Data System (ADS)

    Broadhurst, D. J.; Kreimer, D.

    The renormalization of quantum field theory twists the antipode of a noncocommutative Hopf algebra of rooted trees, decorated by an infinite set of primitive divergences. The Hopf algebra of undecorated rooted trees, ℌR, generated by a single primitive divergence, solves a universal problem in Hochschild cohomology. It has two nontrivial closed Hopf subalgebras: the cocommutative subalgebra ℌladder of pure ladder diagrams and the Connes-Moscovici noncocommutative subalgebra ℌCM of noncommutative geometry. These three Hopf algebras admit a bigrading by n, the number of nodes, and an index k that specifies the degree of primitivity. In each case, we use iterations of the relevant coproduct to compute the dimensions of subspaces with modest values of n and k and infer a simple generating procedure for the remainder. The results for ℌladder are familiar from the theory of partitions, while those for ℌCM involve novel transforms of partitions. Most beautiful is the bigrading of ℌR, the largest of the three. Thanks to Sloane's superseeker, we discovered that it saturates all possible inequalities. We prove this by using the universal Hochschild-closed one-cocycle B+, which plugs one set of divergences into another, and by generalizing the concept of natural growth beyond that entailed by the Connes-Moscovici case. We emphasize the yet greater challenge of handling the infinite set of decorations of realistic quantum field theory.

  2. Spacetime algebra as a powerful tool for electromagnetism

    NASA Astrophysics Data System (ADS)

    Dressel, Justin; Bliokh, Konstantin Y.; Nori, Franco

    2015-08-01

    We present a comprehensive introduction to spacetime algebra that emphasizes its practicality and power as a tool for the study of electromagnetism. We carefully develop this natural (Clifford) algebra of the Minkowski spacetime geometry, with a particular focus on its intrinsic (and often overlooked) complex structure. Notably, the scalar imaginary that appears throughout the electromagnetic theory properly corresponds to the unit 4-volume of spacetime itself, and thus has physical meaning. The electric and magnetic fields are combined into a single complex and frame-independent bivector field, which generalizes the Riemann-Silberstein complex vector that has recently resurfaced in studies of the single photon wavefunction. The complex structure of spacetime also underpins the emergence of electromagnetic waves, circular polarizations, the normal variables for canonical quantization, the distinction between electric and magnetic charge, complex spinor representations of Lorentz transformations, and the dual (electric-magnetic field exchange) symmetry that produces helicity conservation in vacuum fields. This latter symmetry manifests as an arbitrary global phase of the complex field, motivating the use of a complex vector potential, along with an associated transverse and gauge-invariant bivector potential, as well as complex (bivector and scalar) Hertz potentials. Our detailed treatment aims to encourage the use of spacetime algebra as a readily available and mature extension to existing vector calculus and tensor methods that can greatly simplify the analysis of fundamentally relativistic objects like the electromagnetic field.

  3. What's in a Teacher Test? Assessing the Relationship between Teacher Licensure Test Scores and Student STEM Achievement and Course-Taking. CEDR Working Paper. WP #2016-11

    ERIC Educational Resources Information Center

    Goldhaber, Dan; Gratz, Trevor; Theobald, Roddy

    2016-01-01

    We investigate the relationship between teacher licensure test scores and student test achievement and high school course-taking. We focus on three subject/grade combinations-- middle school math, ninth-grade algebra and geometry, and ninth-grade biology--and find evidence that a teacher's basic skills test scores are modestly predictive of…

  4. Degrees of Freedom: Diversifying Math Requirements for College Readiness and Graduation (Report 1 of a 3-Part Series)

    ERIC Educational Resources Information Center

    Burdman, Pamela

    2015-01-01

    Since the mid-20th century, the standard U.S. high school and college math curriculum has been based on two years of algebra and a year of geometry, preparing students to take classes in pre-calculus followed by calculus. Students' math pursuits have been differentiated primarily by how far or how rapidly they proceed along a clearly defined…

  5. A Study of Topic and Topic Change in Conversational Threads

    DTIC Science & Technology

    2009-09-01

    AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS( ES ) 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND...ADDRESS( ES ) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES...unigrams. By converting documents to a vector space representations, the tools of geometry and algebra can be applied, and questions of difference

  6. Integrating Algebra and Proof in High School: Students' Work with Multiple Variables and a Single Parameter in a Proof Context

    ERIC Educational Resources Information Center

    Martinez, Mara V.; Castro Superfine, Alison

    2012-01-01

    In the United States, researchers argue that proof is largely concentrated in the domain of high school geometry, thus providing students a distorted image of what proof entails, which is at odds with the central role that proof plays in mathematics. Despite the centrality of proof, there is a lack of studies addressing how to integrate proof into…

  7. Compressive Information Extraction: A Dynamical Systems Approach

    DTIC Science & Technology

    2016-01-24

    sparsely encoded in very large data streams. (a) Target tracking in an urban canyon; (b) and (c) sample frames showing contextually abnormal events: onset...extraction to identify contextually abnormal se- quences (see section 2.2.3). Formally, the problem of interest can be stated as establishing whether a noisy...relaxations with optimality guarantees can be obtained using tools from semi-algebraic geometry. 2.2 Application: Detecting Contextually Abnormal Events

  8. Low Density Parity Check Codes Based on Finite Geometries: A Rediscovery and More

    NASA Technical Reports Server (NTRS)

    Kou, Yu; Lin, Shu; Fossorier, Marc

    1999-01-01

    Low density parity check (LDPC) codes with iterative decoding based on belief propagation achieve astonishing error performance close to Shannon limit. No algebraic or geometric method for constructing these codes has been reported and they are largely generated by computer search. As a result, encoding of long LDPC codes is in general very complex. This paper presents two classes of high rate LDPC codes whose constructions are based on finite Euclidean and projective geometries, respectively. These classes of codes a.re cyclic and have good constraint parameters and minimum distances. Cyclic structure adows the use of linear feedback shift registers for encoding. These finite geometry LDPC codes achieve very good error performance with either soft-decision iterative decoding based on belief propagation or Gallager's hard-decision bit flipping algorithm. These codes can be punctured or extended to obtain other good LDPC codes. A generalization of these codes is also presented.

  9. Oscillator strengths, first-order properties, and nuclear gradients for local ADC(2).

    PubMed

    Schütz, Martin

    2015-06-07

    We describe theory and implementation of oscillator strengths, orbital-relaxed first-order properties, and nuclear gradients for the local algebraic diagrammatic construction scheme through second order. The formalism is derived via time-dependent linear response theory based on a second-order unitary coupled cluster model. The implementation presented here is a modification of our previously developed algorithms for Laplace transform based local time-dependent coupled cluster linear response (CC2LR); the local approximations thus are state specific and adaptive. The symmetry of the Jacobian leads to considerable simplifications relative to the local CC2LR method; as a result, a gradient evaluation is about four times less expensive. Test calculations show that in geometry optimizations, usually very similar geometries are obtained as with the local CC2LR method (provided that a second-order method is applicable). As an exemplary application, we performed geometry optimizations on the low-lying singlet states of chlorophyllide a.

  10. Effects of bleed-hole geometry and plenum pressure on three-dimensional shock-wave/boundary-layer/bleed interactions

    NASA Technical Reports Server (NTRS)

    Chyu, Wei J.; Rimlinger, Mark J.; Shih, Tom I.-P.

    1993-01-01

    A numerical study was performed to investigate 3D shock-wave/boundary-layer interactions on a flat plate with bleed through one or more circular holes that vent into a plenum. This study was focused on how bleed-hole geometry and pressure ratio across bleed holes affect the bleed rate and the physics of the flow in the vicinity of the holes. The aspects of the bleed-hole geometry investigated include angle of bleed hole and the number of bleed holes. The plenum/freestream pressure ratios investigated range from 0.3 to 1.7. This study is based on the ensemble-averaged, 'full compressible' Navier-Stokes (N-S) equations closed by the Baldwin-Lomax algebraic turbulence model. Solutions to the ensemble-averaged N-S equations were obtained by an implicit finite-volume method using the partially-split, two-factored algorithm of Steger on an overlapping Chimera grid.

  11. Algebraic grid generation for coolant passages of turbine blades with serpentine channels and pin fins

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Roelke, R. J.; Steinthorsson, E.

    1991-01-01

    In order to study numerically details of the flow and heat transfer within coolant passages of turbine blades, a method must first be developed to generate grid systems within the very complicated geometries involved. In this study, a grid generation package was developed that is capable of generating the required grid systems. The package developed is based on an algebraic grid generation technique that permits the user considerable control over how grid points are to be distributed in a very explicit way. These controls include orthogonality of grid lines next to boundary surfaces and ability to cluster about arbitrary points, lines, and surfaces. This paper describes that grid generation package and shows how it can be used to generate grid systems within complicated-shaped coolant passages via an example.

  12. The link between middle school mathematics course placement and achievement.

    PubMed

    Domina, Thurston

    2014-01-01

    The proportion of eighth graders in United States public schools enrolled in algebra or a more advanced mathematics course doubled between 1990 and 2011. This article uses Early Childhood Longitudinal Study's Kindergarten Cohort data to consider the selection process into advanced middle school mathematics courses and estimate the effects of advanced courses on students' mathematics achievement (n = 6,425; mean age at eighth grade = 13.7). Eighth-grade algebra and geometry course placements are academically selective, but considerable between-school variation exists in students' odds of taking these advanced courses. While analyses indicate that advanced middle school mathematics courses boost student achievement, these effects are most pronounced in content areas closely related to class content and may be contingent on student academic readiness. © 2014 The Author. Child Development © 2014 Society for Research in Child Development, Inc.

  13. Observables and dispersion relations in κ-Minkowski spacetime

    NASA Astrophysics Data System (ADS)

    Aschieri, Paolo; Borowiec, Andrzej; Pachoł, Anna

    2017-10-01

    We revisit the notion of quantum Lie algebra of symmetries of a noncommutative spacetime, its elements are shown to be the generators of infinitesimal transformations and are naturally identified with physical observables. Wave equations on noncommutative spaces are derived from a quantum Hodge star operator. This general noncommutative geometry construction is then exemplified in the case of κ-Minkowski spacetime. The corresponding quantum Poincaré-Weyl Lie algebra of in-finitesimal translations, rotations and dilatations is obtained. The d'Alembert wave operator coincides with the quadratic Casimir of quantum translations and it is deformed as in Deformed Special Relativity theories. Also momenta (infinitesimal quantum translations) are deformed, and correspondingly the Einstein-Planck relation and the de Broglie one. The energy-momentum relations (dispersion relations) are consequently deduced. These results complement those of the phenomenological literature on the subject.

  14. Comparison of algebraic and analytical approaches to the formulation of the statistical model-based reconstruction problem for X-ray computed tomography.

    PubMed

    Cierniak, Robert; Lorent, Anna

    2016-09-01

    The main aim of this paper is to investigate properties of our originally formulated statistical model-based iterative approach applied to the image reconstruction from projections problem which are related to its conditioning, and, in this manner, to prove a superiority of this approach over ones recently used by other authors. The reconstruction algorithm based on this conception uses a maximum likelihood estimation with an objective adjusted to the probability distribution of measured signals obtained from an X-ray computed tomography system with parallel beam geometry. The analysis and experimental results presented here show that our analytical approach outperforms the referential algebraic methodology which is explored widely in the literature and exploited in various commercial implementations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Predicting Arithmetic Abilities: The Role of Preparatory Arithmetic Markers and Intelligence

    ERIC Educational Resources Information Center

    Stock, Pieter; Desoete, Annemie; Roeyers, Herbert

    2009-01-01

    Arithmetic abilities acquired in kindergarten are found to be strong predictors for later deficient arithmetic abilities. This longitudinal study (N = 684) was designed to examine if it was possible to predict the level of children's arithmetic abilities in first and second grade from their performance on preparatory arithmetic abilities in…

  16. High-order computer-assisted estimates of topological entropy

    NASA Astrophysics Data System (ADS)

    Grote, Johannes

    The concept of Taylor Models is introduced, which offers highly accurate C0-estimates for the enclosures of functional dependencies, combining high-order Taylor polynomial approximation of functions and rigorous estimates of the truncation error, performed using verified interval arithmetic. The focus of this work is on the application of Taylor Models in algorithms for strongly nonlinear dynamical systems. A method to obtain sharp rigorous enclosures of Poincare maps for certain types of flows and surfaces is developed and numerical examples are presented. Differential algebraic techniques allow the efficient and accurate computation of polynomial approximations for invariant curves of certain planar maps around hyperbolic fixed points. Subsequently we introduce a procedure to extend these polynomial curves to verified Taylor Model enclosures of local invariant manifolds with C0-errors of size 10-10--10 -14, and proceed to generate the global invariant manifold tangle up to comparable accuracy through iteration in Taylor Model arithmetic. Knowledge of the global manifold structure up to finite iterations of the local manifold pieces enables us to find all homoclinic and heteroclinic intersections in the generated manifold tangle. Combined with the mapping properties of the homoclinic points and their ordering we are able to construct a subshift of finite type as a topological factor of the original planar system to obtain rigorous lower bounds for its topological entropy. This construction is fully automatic and yields homoclinic tangles with several hundred homoclinic points. As an example rigorous lower bounds for the topological entropy of the Henon map are computed, which to the best knowledge of the authors yield the largest such estimates published so far.

  17. Acceleration of linear stationary iterative processes in multiprocessor computers. II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romm, Ya.E.

    1982-05-01

    For pt.I, see Kibernetika, vol.18, no.1, p.47 (1982). For pt.I, see Cybernetics, vol.18, no.1, p.54 (1982). Considers a reduced system of linear algebraic equations x=ax+b, where a=(a/sub ij/) is a real n*n matrix; b is a real vector with common euclidean norm >>>. It is supposed that the existence and uniqueness of solution det (0-a) not equal to e is given, where e is a unit matrix. The linear iterative process converging to x x/sup (k+1)/=fx/sup (k)/, k=0, 1, 2, ..., where the operator f translates r/sup n/ into r/sup n/. In considering implementation of the iterative process (ip) inmore » a multiprocessor system, it is assumed that the number of processors is constant, and are various values of the latter investigated; it is assumed in addition, that the processors perform elementary binary arithmetic operations of addition and multiestimates only include the time of execution of arithmetic operations. With any paralleling of individual iteration, the execution time of the ip is proportional to the number of sequential steps k+1. The author sets the task of reducing the number of sequential steps in the ip so as to execute it in a time proportional to a value smaller than k+1. He also sets the goal of formulating a method of accelerated bit serial-parallel execution of each successive step of the ip, with, in the modification sought, a reduced number of steps in a time comparable to the operation time of logical elements. 6 references.« less

  18. Assessing the sense of `good at' and `not good at' toward learning topics of mathematics with conjoint analysis

    NASA Astrophysics Data System (ADS)

    Izuta, Giido; Nishikawa, Tomoko

    2017-05-01

    Over the past years, educational psychology and pedagogy communities have focused on the metacognition formalism as a helpful approach to carry out investigations on the feeling of difficulty in mastering some classroom materials that students acquire through their subjective experiences of learning in schools. Motivated by hitherto studies, this work deals with the assessment of the awareness of `good at' and `not good at' that Japanese junior high school students have towards the main learning modules in their three years of mathematics. More specifically, the aims here are (i) to shed some light into how the awareness varies across the grades and gender; (ii) to get some insights into the extent to what the conjoint analysis can be applied to understand the students' feelings toward learning activities. To accomplish them, a conjoint analysis survey with three conjoint attributes, each with two levels, were designed to assess the learners' perceptions of `good at' and `not good at' with respect to arithmetic (algebraic operations), geometry and functions, which make up the three major modules of their curricula. The measurements took place in a public junior high school with 616 school children. It turned out that the conjoint analyses for boys and girls of each grade generated the partial utility and importance graphs which along with a pre-established precision of measurement allowed us to form groups of pupils according to their `sense of being good at' characteristics. Moreover, the results showed that the number of groups obtained differed for boys and girls as well as grades when the gender and school years were considered for comparisons. These findings suggesting that female students outnumbers their peers in number of `good at' despite the low number of females pursuing careers in mathematics and related fields imply that investigation on the causes of this juxtaposition has to be taken into account in the future.

  19. The rational parameterization theorem for multisite post-translational modification systems.

    PubMed

    Thomson, Matthew; Gunawardena, Jeremy

    2009-12-21

    Post-translational modification of proteins plays a central role in cellular regulation but its study has been hampered by the exponential increase in substrate modification forms ("modforms") with increasing numbers of sites. We consider here biochemical networks arising from post-translational modification under mass-action kinetics, allowing for multiple substrates, having different types of modification (phosphorylation, methylation, acetylation, etc.) on multiple sites, acted upon by multiple forward and reverse enzymes (in total number L), using general enzymatic mechanisms. These assumptions are substantially more general than in previous studies. We show that the steady-state modform concentrations constitute an algebraic variety that can be parameterized by rational functions of the L free enzyme concentrations, with coefficients which are rational functions of the rate constants. The parameterization allows steady states to be calculated by solving L algebraic equations, a dramatic reduction compared to simulating an exponentially large number of differential equations. This complexity collapse enables analysis in contexts that were previously intractable and leads to biological predictions that we review. Our results lay a foundation for the systems biology of post-translational modification and suggest deeper connections between biochemical networks and algebraic geometry.

  20. Mathematical biology modules based on modern molecular biology and modern discrete mathematics.

    PubMed

    Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network.

  1. Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics

    PubMed Central

    Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network. PMID:20810955

  2. NEW APPROACHES: A hot air balloon from dustbin liners

    NASA Astrophysics Data System (ADS)

    Weaver, Nicholas

    1998-07-01

    This article describes how a simple hot air balloon, inflated by a hair dryer, can be made out of household bin liners and Sellotape. It can be used at sixth-form level as an application of the ideal gas equation, = constant, and is rather more exciting than heated pistons. It gives a taste of a simple engineering design process, although the students do have to be reasonably adept at geometry and algebra.

  3. Comparative Effectiveness of TI-84 Graphing Calculators on Algebra I and Geometry Outcomes: A Report of Randomized Experiments in the East Side Union High School District and San Diego Unified School District. Research Report

    ERIC Educational Resources Information Center

    Miller, Gloria I.; Jaciw, Andrew; Hoshiko, Brandon; Wei, Xin

    2007-01-01

    Texas Instruments has undertaken a research program with the goal of producing scientifically-based evidence of the effectiveness of graphing calculators and the "TI-Navigator"[TM] classroom networking system in the context of a professional development and curriculum framework. The program includes a two-year longitudinal study. The…

  4. Quantum cosmology of a Bianchi III LRS geometry coupled to a source free electromagnetic field

    NASA Astrophysics Data System (ADS)

    Karagiorgos, A.; Pailas, T.; Dimakis, N.; Terzis, Petros A.; Christodoulakis, T.

    2018-03-01

    We consider a Bianchi type III axisymmetric geometry in the presence of an electromagnetic field. A first result at the classical level is that the symmetry of the geometry need not be applied on the electromagnetic tensor Fμν the algebraic restrictions, implied by the Einstein field equations to the stress energy tensor Tμν, suffice to reduce the general Fμν to the appropriate form. The classical solution thus found contains a time dependent electric and a constant magnetic charge. The solution is also reachable from the corresponding mini-superspace action, which is strikingly similar to the Reissner-Nordstr{öm one. This points to a connection between the black hole geometry and the cosmological solution here found, which is the analog of the known correlation between the Schwarzschild and the Kantowski-Sachs metrics. The configuration space is drastically modified by the presence of the magnetic charge from a 3D flat to a 3D pp wave geometry. We map the emerging linear and quadratic classical integrals of motion, to quantum observables. Along with the Wheeler-DeWitt equation these observables provide unique, up to constants, wave functions. The employment of a Bohmian interpretation of these quantum states results in deterministic (semi-classical) geometries most of which are singularity free.

  5. Compression of 3D Point Clouds Using a Region-Adaptive Hierarchical Transform.

    PubMed

    De Queiroz, Ricardo; Chou, Philip A

    2016-06-01

    In free-viewpoint video, there is a recent trend to represent scene objects as solids rather than using multiple depth maps. Point clouds have been used in computer graphics for a long time and with the recent possibility of real time capturing and rendering, point clouds have been favored over meshes in order to save computation. Each point in the cloud is associated with its 3D position and its color. We devise a method to compress the colors in point clouds which is based on a hierarchical transform and arithmetic coding. The transform is a hierarchical sub-band transform that resembles an adaptive variation of a Haar wavelet. The arithmetic encoding of the coefficients assumes Laplace distributions, one per sub-band. The Laplace parameter for each distribution is transmitted to the decoder using a custom method. The geometry of the point cloud is encoded using the well-established octtree scanning. Results show that the proposed solution performs comparably to the current state-of-the-art, in many occasions outperforming it, while being much more computationally efficient. We believe this work represents the state-of-the-art in intra-frame compression of point clouds for real-time 3D video.

  6. The Math Gap: a description of the mathematics performance of preschool-aged deaf/hard-of-hearing children.

    PubMed

    Pagliaro, Claudia M; Kritzer, Karen L

    2013-04-01

    Over decades and across grade levels, deaf/hard-of-hearing (d/hh) student performance in mathematics has shown a gap in achievement. It is unclear, however, exactly when this gap begins to emerge and in what areas. This study describes preschool d/hh children's knowledge of early mathematics concepts. Both standardized and nonstandardized measures were used to assess understanding in number, geometry, measurement, problem solving, and patterns, reasoning and algebra. Results present strong evidence that d/hh students' difficulty in mathematics may begin prior to the start of formal schooling. Findings also show areas of strength (geometry) and weakness (problem solving and measurement) for these children. Evidence of poor foundational performance may relate to later academic achievement.

  7. Generalizing the extensibility of a dynamic geometry software

    NASA Astrophysics Data System (ADS)

    Herceg, Đorđe; Radaković, Davorka; Herceg, Dejana

    2012-09-01

    Plug-and-play visual components in a Dynamic Geometry Software (DGS) enable development of visually attractive, rich and highly interactive dynamic drawings. We are developing SLGeometry, a DGS that contains a custom programming language, a computer algebra system (CAS engine) and a graphics subsystem. The basic extensibility framework on SLGeometry supports dynamic addition of new functions from attribute annotated classes that implement runtime metadata registration in code. We present a general plug-in framework for dynamic importing of arbitrary Silverlight user interface (UI) controls into SLGeometry at runtime. The CAS engine maintains a metadata storage that describes each imported visual component and enables two-way communication between the expressions stored in the engine and the UI controls on the screen.

  8. A network-analysis-based comparative study of the throughput behavior of polymer melts in barrier screw geometries

    NASA Astrophysics Data System (ADS)

    Aigner, M.; Köpplmayr, T.; Kneidinger, C.; Miethlinger, J.

    2014-05-01

    Barrier screws are widely used in the plastics industry. Due to the extreme diversity of their geometries, describing the flow behavior is difficult and rarely done in practice. We present a systematic approach based on networks that uses tensor algebra and numerical methods to model and calculate selected barrier screw geometries in terms of pressure, mass flow, and residence time. In addition, we report the results of three-dimensional simulations using the commercially available ANSYS Polyflow software. The major drawbacks of three-dimensional finite-element-method (FEM) simulations are that they require vast computational power and, large quantities of memory, and consume considerable time to create a geometric model created by computer-aided design (CAD) and complete a flow calculation. Consequently, a modified 2.5-dimensional finite volume method, termed network analysis is preferable. The results obtained by network analysis and FEM simulations correlated well. Network analysis provides an efficient alternative to complex FEM software in terms of computing power and memory consumption. Furthermore, typical barrier screw geometries can be parameterized and used for flow calculations without timeconsuming CAD-constructions.

  9. Holomorphic Hartree-Fock Theory: The Nature of Two-Electron Problems.

    PubMed

    Burton, Hugh G A; Gross, Mark; Thom, Alex J W

    2018-02-13

    We explore the existence and behavior of holomorphic restricted Hartree-Fock (h-RHF) solutions for two-electron problems. Through algebraic geometry, the exact number of solutions with n basis functions is rigorously identified as 1 / 2 (3 n - 1), proving that states must exist for all molecular geometries. A detailed study on the h-RHF states of HZ (STO-3G) then demonstrates both the conservation of holomorphic solutions as geometry or atomic charges are varied and the emergence of complex h-RHF solutions at coalescence points. Using catastrophe theory, the nature of these coalescence points is described, highlighting the influence of molecular symmetry. The h-RHF states of HHeH 2+ and HHeH (STO-3G) are then compared, illustrating the isomorphism between systems with two electrons and two electron holes. Finally, we explore the h-RHF states of ethene (STO-3G) by considering the π electrons as a two-electron problem and employ NOCI to identify a crossing of the lowest energy singlet and triplet states at the perpendicular geometry.

  10. Large calculation of the flow over a hypersonic vehicle using a GPU

    NASA Astrophysics Data System (ADS)

    Elsen, Erich; LeGresley, Patrick; Darve, Eric

    2008-12-01

    Graphics processing units are capable of impressive computing performance up to 518 Gflops peak performance. Various groups have been using these processors for general purpose computing; most efforts have focussed on demonstrating relatively basic calculations, e.g. numerical linear algebra, or physical simulations for visualization purposes with limited accuracy. This paper describes the simulation of a hypersonic vehicle configuration with detailed geometry and accurate boundary conditions using the compressible Euler equations. To the authors' knowledge, this is the most sophisticated calculation of this kind in terms of complexity of the geometry, the physical model, the numerical methods employed, and the accuracy of the solution. The Navier-Stokes Stanford University Solver (NSSUS) was used for this purpose. NSSUS is a multi-block structured code with a provably stable and accurate numerical discretization which uses a vertex-based finite-difference method. A multi-grid scheme is used to accelerate the solution of the system. Based on a comparison of the Intel Core 2 Duo and NVIDIA 8800GTX, speed-ups of over 40× were demonstrated for simple test geometries and 20× for complex geometries.

  11. On curve veering and flutter of rotating blades

    NASA Technical Reports Server (NTRS)

    Afolabi, Dare; Mehmed, Oral

    1993-01-01

    The eigenvalues of rotating blades usually change with rotation speed according to the Stodola-Southwell criterion. Under certain circumstances, the loci of eigenvalues belonging to two distinct modes of vibration approach each other very closely, and it may appear as if the loci cross each other. However, our study indicates that the observable frequency loci of an undamped rotating blade do not cross, but must either repel each other (leading to 'curve veering'), or attract each other (leading to 'frequency coalescence'). Our results are reached by using standard arguments from algebraic geometry--the theory of algebraic curves and catastrophe theory. We conclude that it is important to resolve an apparent crossing of eigenvalue loci into either a frequency coalescence or a curve veering, because frequency coalescence is dangerous since it leads to flutter, whereas curve veering does not precipitate flutter and is, therefore, harmless with respect to elastic stability.

  12. The effects of experience and attrition for novice high-school science and mathematics teachers.

    PubMed

    Henry, Gary T; Fortner, C Kevin; Bastian, Kevin C

    2012-03-02

    Because of the current high proportion of novice high-school teachers, many students' mastery of science and mathematics depends on the effectiveness of early-career teachers. In this study, which used value-added models to analyze high-school teachers' effectiveness in raising test scores on 1.05 million end-of-course exams, we found that the effectiveness of high-school science and mathematics teachers increased substantially with experience but exhibited diminishing rates of return by their fourth year; that teachers of algebra 1, algebra 2, biology, and physical science who continued to teach for at least 5 years were more effective as novice teachers than those who left the profession earlier; and that novice teachers of physics, chemistry, physical science, geometry, and biology exhibited steeper growth in effectiveness than did novice non-science, technology, engineering, and mathematics teachers.

  13. Conformal superalgebras via tractor calculus

    NASA Astrophysics Data System (ADS)

    Lischewski, Andree

    2015-01-01

    We use the manifestly conformally invariant description of a Lorentzian conformal structure in terms of a parabolic Cartan geometry in order to introduce a superalgebra structure on the space of twistor spinors and normal conformal vector fields formulated in purely algebraic terms on parallel sections in tractor bundles. Via a fixed metric in the conformal class, one reproduces a conformal superalgebra structure that has been considered in the literature before. The tractor approach, however, makes clear that the failure of this object to be a Lie superalgebra in certain cases is due to purely algebraic identities on the spinor module and to special properties of the conformal holonomy representation. Moreover, it naturally generalizes to higher signatures. This yields new formulas for constructing new twistor spinors and higher order normal conformal Killing forms out of existing ones, generalizing the well-known spinorial Lie derivative. Moreover, we derive restrictions on the possible dimension of the space of twistor spinors in any metric signature.

  14. Quality of Arithmetic Education for Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Jenks, Kathleen M.; de Moor, Jan; van Lieshout, Ernest C. D. M.; Withagen, Floortje

    2010-01-01

    The aim of this exploratory study was to investigate the quality of arithmetic education for children with cerebral palsy. The use of individual educational plans, amount of arithmetic instruction time, arithmetic instructional grouping, and type of arithmetic teaching method were explored in three groups: children with cerebral palsy (CP) in…

  15. The unique and shared contributions of arithmetic operation understanding and numerical magnitude representation to children's mathematics achievement.

    PubMed

    Wong, Terry Tin-Yau

    2017-12-01

    The current study examined the unique and shared contributions of arithmetic operation understanding and numerical magnitude representation to children's mathematics achievement. A sample of 124 fourth graders was tested on their arithmetic operation understanding (as reflected by their understanding of arithmetic principles and the knowledge about the application of arithmetic operations) and their precision of rational number magnitude representation. They were also tested on their mathematics achievement and arithmetic computation performance as well as the potential confounding factors. The findings suggested that both arithmetic operation understanding and numerical magnitude representation uniquely predicted children's mathematics achievement. The findings highlight the significance of arithmetic operation understanding in mathematics learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Cognitive mechanisms underlying third graders' arithmetic skills: Expanding the pathways to mathematics model.

    PubMed

    Träff, Ulf; Olsson, Linda; Skagerlund, Kenny; Östergren, Rickard

    2018-03-01

    A modified pathways to mathematics model was used to examine the cognitive mechanisms underlying arithmetic skills in third graders. A total of 269 children were assessed on tasks tapping the four pathways and arithmetic skills. A path analysis showed that symbolic number processing was directly supported by the linguistic and approximate quantitative pathways. The direct contribution from the four pathways to arithmetic proficiency varied; the linguistic pathway supported single-digit arithmetic and word problem solving, whereas the approximate quantitative pathway supported only multi-digit calculation. The spatial processing and verbal working memory pathways supported only arithmetic word problem solving. The notion of hierarchical levels of arithmetic was supported by the results, and the different levels were supported by different constellations of pathways. However, the strongest support to the hierarchical levels of arithmetic were provided by the proximal arithmetic skills. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. New Hybrid Algorithms for Estimating Tree Stem Diameters at Breast Height Using a Two Dimensional Terrestrial Laser Scanner

    PubMed Central

    Kong, Jianlei; Ding, Xiaokang; Liu, Jinhao; Yan, Lei; Wang, Jianli

    2015-01-01

    In this paper, a new algorithm to improve the accuracy of estimating diameter at breast height (DBH) for tree trunks in forest areas is proposed. First, the information is collected by a two-dimensional terrestrial laser scanner (2DTLS), which emits laser pulses to generate a point cloud. After extraction and filtration, the laser point clusters of the trunks are obtained, which are optimized by an arithmetic means method. Then, an algebraic circle fitting algorithm in polar form is non-linearly optimized by the Levenberg-Marquardt method to form a new hybrid algorithm, which is used to acquire the diameters and positions of the trees. Compared with previous works, this proposed method improves the accuracy of diameter estimation of trees significantly and effectively reduces the calculation time. Moreover, the experimental results indicate that this method is stable and suitable for the most challenging conditions, which has practical significance in improving the operating efficiency of forest harvester and reducing the risk of causing accidents. PMID:26147726

  18. What is behind small deviations of quantum mechanics theory from experiments? Observer's mathematics point of view

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khots, Boris, E-mail: bkhots@cccglobal.com; Khots, Dmitriy, E-mail: dkhots@imathconsulting.com

    2014-12-10

    Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We considermore » the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided.« less

  19. Exploiting data representation for fault tolerance

    DOE PAGES

    Hoemmen, Mark Frederick; Elliott, J.; Sandia National Lab.; ...

    2015-01-06

    Incorrect computer hardware behavior may corrupt intermediate computations in numerical algorithms, possibly resulting in incorrect answers. Prior work models misbehaving hardware by randomly flipping bits in memory. We start by accepting this premise, and present an analytic model for the error introduced by a bit flip in an IEEE 754 floating-point number. We then relate this finding to the linear algebra concepts of normalization and matrix equilibration. In particular, we present a case study illustrating that normalizing both vector inputs of a dot product minimizes the probability of a single bit flip causing a large error in the dot product'smore » result. Moreover, the absolute error is either less than one or very large, which allows detection of large errors. Then, we apply this to the GMRES iterative solver. We count all possible errors that can be introduced through faults in arithmetic in the computationally intensive orthogonalization phase of GMRES, and show that when the matrix is equilibrated, the absolute error is bounded above by one.« less

  20. Optimal economic order quantity for buyer-distributor-vendor supply chain with backlogging derived without derivatives

    NASA Astrophysics Data System (ADS)

    Teng, Jinn-Tsair; Cárdenas-Barrón, Leopoldo Eduardo; Lou, Kuo-Ren; Wee, Hui Ming

    2013-05-01

    In this article, we first complement an inappropriate mathematical error on the total cost in the previously published paper by Chung and Wee [2007, 'Optimal the Economic Lot Size of a Three-stage Supply Chain With Backlogging Derived Without Derivatives', European Journal of Operational Research, 183, 933-943] related to buyer-distributor-vendor three-stage supply chain with backlogging derived without derivatives. Then, an arithmetic-geometric inequality method is proposed not only to simplify the algebraic method of completing prefect squares, but also to complement their shortcomings. In addition, we provide a closed-form solution to integral number of deliveries for the distributor and the vendor without using complex derivatives. Furthermore, our method can solve many cases in which their method cannot, because they did not consider that a squared root of a negative number does not exist. Finally, we use some numerical examples to show that our proposed optimal solution is cheaper to operate than theirs.

Top