Sex Differences in a Human Analogue of the Radial Arm Maze: The ''17-Box Maze Test''
ERIC Educational Resources Information Center
Rahman, Q.; Abrahams, S.; Jussab, F.
2005-01-01
This study investigated sex differences in spatial memory using a human analogue of the Radial Arm Maze: a revision on the Nine Box Maze originally developed by Abrahams, Pickering, Polkey, and Morris (1997) called the 17-Box Maze Test herein. The task encourages allocentric spatial processing, dissociates object from spatial memory, and…
Penley, Stephanie C; Gaudet, Cynthia M; Threlkeld, Steven W
2013-12-04
Working and reference memory are commonly assessed using the land based radial arm maze. However, this paradigm requires pretraining, food deprivation, and may introduce scent cue confounds. The eight-arm radial water maze is designed to evaluate reference and working memory performance simultaneously by requiring subjects to use extra-maze cues to locate escape platforms and remedies the limitations observed in land based radial arm maze designs. Specifically, subjects are required to avoid the arms previously used for escape during each testing day (working memory) as well as avoid the fixed arms, which never contain escape platforms (reference memory). Re-entries into arms that have already been used for escape during a testing session (and thus the escape platform has been removed) and re-entries into reference memory arms are indicative of working memory deficits. Alternatively, first entries into reference memory arms are indicative of reference memory deficits. We used this maze to compare performance of rats with neonatal brain injury and sham controls following induction of hypoxia-ischemia and show significant deficits in both working and reference memory after eleven days of testing. This protocol could be easily modified to examine many other models of learning impairment.
Analysis of behavioral asymmetries in the elevated plus-maze and in the T-maze.
Schwarting, Rainer K W; Borta, Andreas
2005-02-15
When studying functional asymmetries in normal laboratory rats, several behavioral tests have been applied and proven their utility, including turning in rotometers or open-fields, handedness in paw usage, T-maze alternation, and others. Here, we analyzed male Wistar rats in two tests, namely the elevated plus-maze and the T-maze. In these tests, behavioral asymmetries are rather likely to occur, since the animals have to show several types of turns towards the left or right when ambulating through these environments. In a first study using the plus-maze, we provide detailed data on (A) the types of turns which the animals showed when changing their direction within arms (i.e., 180 degrees turns), and (B) the types of turns when proceeding from one arm to an adjacent one (i.e., 90 degrees turns). With respect to asymmetry, we found moderate biases in favor of the right. On the 1st day of plus-maze testing, there was a trend for more rightward turns within arms. On the 2nd day of testing, there was a trend for turns towards the right when alternating between arms of the plus-maze. In a 2nd study, we asked for asymmetries in the plus-maze in animals, which had been treated acutely with the psychostimulatory amphetamine analogue 3,4-methylene-dioxymethamphetamine (MDMA). Psychostimulants drugs, especially amphetamine, have repeatedly been used before in work on functional asymmetry, since they can enhance or reveal asymmetries in normal rats. MDMA had dose-dependent effects on activity, which affected turns within arms, and turns between arms; however, there was only sparse evidence with respect to asymmetry. Interestingly, and if at all, asymmetry was in favor of the right. Finally, we present data for behavior in the T-maze, where we used a spontaneous test version, that is, the animals could explore the maze but had no task to solve. Asymmetries were measured as turns within the start arm (180 degrees), and as left- or rightward turns between arms (90 degrees ) at the T-point of the maze. In both measures, we again obtained evidence for asymmetries in favor of the right. This work supports previous studies showing that the T-maze is suitable to analyze behavioral asymmetries in rats. In addition, it provides new evidence with respect to the elevated plus-maze, indicating that this standard tool of anxiety research may also be useful in research on behavioral asymmetries and their underlying brain mechanisms. Behavioral biases in favor of the right, as shown here, have often been reported before, especially with Wistar rats. Such biases should be taken into account, since they can serve as an approach to study brain/behavior relationships, and since they may affect the outcome of physiological manipulations or behavioral trainings.
The Effects of Cache Modification on Food Caching and Retrieval Behavior by Rats
ERIC Educational Resources Information Center
McKenzie, T.L.B.; Bird, L.R.; Roberts, W.A.
2005-01-01
Rats cached pieces of cheese on four different arms of an eight-arm radial maze. On a retrieval test given 45min later, rats learned to return to arms where food was cached before arms where food had not been cached. Tests were then performed in which cache sites on one side of the maze were always modified (pilfered or degraded), but cache sites…
Sex differences in a human analogue of the Radial Arm Maze: the "17-Box Maze Test".
Rahman, Qazi; Abrahams, Sharon; Jussab, Fardin
2005-08-01
This study investigated sex differences in spatial memory using a human analogue of the Radial Arm Maze: a revision on the Nine Box Maze originally developed by called the 17-Box Maze Test herein. The task encourages allocentric spatial processing, dissociates object from spatial memory, and incorporates a within-participants design to provide measures of location and object, working and reference memory. Healthy adult males and females (26 per group) were administered the 17-Box Maze Test, as well as mental rotation and a verbal IQ test. Females made significantly fewer errors on this task than males. However, post hoc analysis revealed that the significant sex difference was specific to object, rather than location, memory measures. These were medium to large effect sizes. The findings raise the issue of task- and component-specific sexual dimorphism in cognitive mapping.
Aydin, Emel; Hritcu, Lucian; Dogan, Gulden; Hayta, Sukru; Bagci, Eyup
2016-11-01
In the present study, we identified the effects of inhaled Pimpinella peregrina essential oil (1 and 3 %, for 21 continuous days) on scopolamine-induced memory impairment, anxiety, and depression in laboratory rats. Y-maze and radial arm-maze tests were used for assessing memory processes. Also, the anxiety and depressive responses were studied by means of the elevated plus-maze and forced swimming tests. The scopolamine alone-treated rats exhibited the following: decrease of the spontaneous alternation percentage in Y-maze test, increase of the number of working and reference memory errors in radial arm-maze test, along with decrease of the exploratory activity, the percentage of the time spent and the number of entries in the open arm within elevated plus-maze test and decrease of swimming time and increase of immobility time within forced swimming test. Inhalation of the P. peregrina essential oil significantly improved memory formation and exhibited anxiolytic- and antidepressant-like effects in scopolamine-treated rats. Our results suggest that the P. peregrina essential oil inhalation ameliorates scopolamine-induced memory impairment, anxiety, and depression. Moreover, studies on the P. peregrina essential oil may open a new therapeutic window for the prevention of neurological abnormalities closely related to Alzheimer's disease.
Holmes, A; Rodgers, R J
1999-11-01
It has been widely reported that the anxiolytic efficacy of benzodiazepines in the elevated plus-maze test is abolished in subjects (rats or mice) that have been given a single prior undrugged experience of the test apparatus. The present series of experiments was designed to further characterise the key experiential determinants of this intriguing phenomenon in Swiss Webster mice. Using a standard 5 min test duration for both trials, Experiment 1 confirmed the anxiolytic efficacy of chlordiazepoxide (CDP; 5-20 mg/kg) in mice naive to the plus-maze, but a virtual elimination of drug effects in animals that had been pre-exposed to the maze 24 h earlier. Experiments 2 and 3 demonstrated that, while extending the duration of initial exposure to 10 min did not prevent the loss of CDP (10 mg/kg) efficacy in a standard-duration second trial, increasing the duration of both trials reinstated an anxiolytic profile for the compound. Finally, although trial 1 confinement to an open arm did not compromise CDP efficacy when animals were subsequently allowed to freely explore the maze (Experiment 4), closed arm confinement during initial exposure abolished the drug's anxiolytic action upon retest (Experiment 5). In contrast to previous findings in rats, these data suggest that the experientially induced loss of benzodiazepine efficacy in the mouse plus-maze depends rather critically upon prior discovery and exploration of relatively safe areas of the maze (i.e. closed arms). Results are discussed in relation to the hypothesis that the absence of an anxiolytic response to benzodiazepines in plus-maze-experienced subjects reflects the acquisition of an open arm phobia during trial 1.
Bagci, Eyup; Aydin, Emel; Ungureanu, Eugen; Hritcu, Lucian
2016-12-01
Anthriscus nemorosa (Bieb.) Sprengel is used for medicinal purposes in traditional medicine around the world, including Turkey. Ethnobotanical studies suggest that Anthriscus essential oil could improve memory in Alzheimer's disease. The current study was hypothesized to investigate the beneficial effects of inhaled Anthriscus nemorosa essential oil on memory, anxiety and depression in scopolamine-treated rats. Anthriscus nemorosa essential oil was administered by inhalation in the doses of 1% and 3% for 21 continuous days and scopolamine (0.7mg/kg) was injected intraperitoneally 30min before the behavioral testing. Y-maze and radial arm-maze tests were used for assessing memory processes. Also, the anxiety and depressive responses were studied by elevated plus-maze and forced swimming tests. As expected, the scopolamine alone-treated rats exhibited the following: decrease the percentage of the spontaneous alternation in Y-maze test, increase the number of working and reference memory errors in radial arm-maze test, decrease of the exploratory activity, the percentage of the time spent and the number of entries in the open arm within elevated plus-maze test and decrease of swimming time and increase of immobility time within forced swimming test. However, dual scopolamine and Anthriscus nemorosa essential oil-treated rats showed significant improvement of memory formation and exhibited anxiolytic- and antidepressant-like effects in scopolamine-treated rats. These results suggest that Anthriscus nemorosa essential oil inhalation can prevent scopolamine-induced memory impairment, anxiety and depression. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Yohn, Samantha E; Thompson, Christian; Randall, Patrick A; Lee, Christie A; Müller, Christa E; Baqi, Younis; Correa, Mercè; Salamone, John D
2015-04-01
Depressed people show effort-related motivational symptoms, such as anergia, retardation, lassitude, and fatigue. Animal tests can model these motivational symptoms, and the present studies characterized the effort-related effects of the vesicular monoamine transport (VMAT-2) inhibitor tetrabenazine. Tetrabenazine produces depressive symptoms in humans and, at low doses, preferentially depletes dopamine. The current studies investigated the effects of tetrabenazine on effort-based decision making using the T-maze barrier task. Rats were tested in a T-maze in which the choice arms of the maze contain different reinforcement densities, and under some conditions, a vertical barrier was placed in the high-density arm to provide an effort-related challenge. The first experiment assessed the effects of tetrabenazine under different maze conditions: a barrier in the arm with 4 food pellets and 2 pellets in the no barrier arm (4-2 barrier), 4 pellets in one arm and 2 pellets in the other with no barrier in either arm (no barrier), and 4 pellets in the barrier arm with no pellets in the other (4-0 barrier). Tetrabenazine (0.25-0.75 mg/kg IP) decreased selection of the high cost/high reward arm when the barrier was present, but had no effect on choice under the no barrier and 4-0 barrier conditions. The effects of tetrabenazine on barrier climbing in the 4-2 condition were reversed by the adenosine A2A antagonist MSX-3 and the catecholamine uptake inhibitor and antidepressant bupropion. These studies have implications for the development of animal models of the motivational symptoms of depression and other disorders.
Rapid learning of magnetic compass direction by C57BL/6 mice in a 4-armed 'plus' water maze.
Phillips, John B; Youmans, Paul W; Muheim, Rachel; Sloan, Kelly A; Landler, Lukas; Painter, Michael S; Anderson, Christopher R
2013-01-01
Magnetoreception has been demonstrated in all five vertebrate classes. In rodents, nest building experiments have shown the use of magnetic cues by two families of molerats, Siberian hamsters and C57BL/6 mice. However, assays widely used to study rodent spatial cognition (e.g. water maze, radial arm maze) have failed to provide evidence for the use of magnetic cues. Here we show that C57BL/6 mice can learn the magnetic direction of a submerged platform in a 4-armed (plus) water maze. Naïve mice were given two brief training trials. In each trial, a mouse was confined to one arm of the maze with the submerged platform at the outer end in a predetermined alignment relative to magnetic north. Between trials, the training arm and magnetic field were rotated by 180(°) so that the mouse had to swim in the same magnetic direction to reach the submerged platform. The directional preference of each mouse was tested once in one of four magnetic field alignments by releasing it at the center of the maze with access to all four arms. Equal numbers of responses were obtained from mice tested in the four symmetrical magnetic field alignments. Findings show that two training trials are sufficient for mice to learn the magnetic direction of the submerged platform in a plus water maze. The success of these experiments may be explained by: (1) absence of alternative directional cues (2), rotation of magnetic field alignment, and (3) electromagnetic shielding to minimize radio frequency interference that has been shown to interfere with magnetic compass orientation of birds. These findings confirm that mice have a well-developed magnetic compass, and give further impetus to the question of whether epigeic rodents (e.g., mice and rats) have a photoreceptor-based magnetic compass similar to that found in amphibians and migratory birds.
Rapid Learning of Magnetic Compass Direction by C57BL/6 Mice in a 4-Armed ‘Plus’ Water Maze
Phillips, John B.; Youmans, Paul W.; Muheim, Rachel; Sloan, Kelly A.; Landler, Lukas; Painter, Michael S.; Anderson, Christopher R.
2013-01-01
Magnetoreception has been demonstrated in all five vertebrate classes. In rodents, nest building experiments have shown the use of magnetic cues by two families of molerats, Siberian hamsters and C57BL/6 mice. However, assays widely used to study rodent spatial cognition (e.g. water maze, radial arm maze) have failed to provide evidence for the use of magnetic cues. Here we show that C57BL/6 mice can learn the magnetic direction of a submerged platform in a 4-armed (plus) water maze. Naïve mice were given two brief training trials. In each trial, a mouse was confined to one arm of the maze with the submerged platform at the outer end in a predetermined alignment relative to magnetic north. Between trials, the training arm and magnetic field were rotated by 180° so that the mouse had to swim in the same magnetic direction to reach the submerged platform. The directional preference of each mouse was tested once in one of four magnetic field alignments by releasing it at the center of the maze with access to all four arms. Equal numbers of responses were obtained from mice tested in the four symmetrical magnetic field alignments. Findings show that two training trials are sufficient for mice to learn the magnetic direction of the submerged platform in a plus water maze. The success of these experiments may be explained by: (1) absence of alternative directional cues (2), rotation of magnetic field alignment, and (3) electromagnetic shielding to minimize radio frequency interference that has been shown to interfere with magnetic compass orientation of birds. These findings confirm that mice have a well-developed magnetic compass, and give further impetus to the question of whether epigeic rodents (e.g., mice and rats) have a photoreceptor-based magnetic compass similar to that found in amphibians and migratory birds. PMID:24023673
Individual differences in the elevated plus-maze and the forced swim test.
Estanislau, Celio; Ramos, Anna Carolina; Ferraresi, Paula Daniele; Costa, Naiara Fernanda; de Carvalho, Heloisa Maria Cotta Pires; Batistela, Silmara
2011-01-01
The elevated plus-maze is an apparatus composed of enclosed and open (elevated) arms and time spent in the open arms by a rat can be increased/decreased by anxiolytic/anxiogenic agents. In the forced swim test, floating behavior is used as an index of behavioral despair and can be decreased by antidepressant agents. As the comorbidity between anxiety and depression is a remarkable issue in human behavioral disorders, a possible relationship between the behaviors seen in the cited tests is of great relevance. In the present study, fifty-four male rats (Rattus norvegicus) were submitted to a plus-maze session and to a 2-day forced swim protocol. According to their time in the open arms, they were divided into three groups: Low Open, Medium Open and High Open. Some plus-maze measures were found to be coherent with time in the open arms and are suggested to also be reliable anxiety indexes. In the forced swim test, the Low Open group showed decreases in floating duration from forced swim Session 1 to Session 2, an alteration opposite to that observed in the other groups (particularly, the Medium Open group). The Low Open group also showed increases in floating latency, again in sharp contrast with the alteration found in the other groups. Accordingly, positive and negative correlation were found between time in the open arms and floating duration and latency, respectively. Results are compared to previous studies and mediation of the effect by reactivity to aversive stimulation or alterations induced by open arm exposure is discussed. Copyright © 2010 Elsevier B.V. All rights reserved.
Lalonde, R; Strazielle, C
2008-06-15
The relations between open-field, elevated plus-maze, and emergence tests were examined in two strains of mice. In the open-field, C57BL/6J mice had more ambulatory movements and rears but not stereotyped movements relative to BALB/c. In addition, C57BL/6J mice entered more often than BALB/c into enclosed and open arms of the elevated plus-maze. When placed inside a large enclosure, C57BL/6J mice emerged more quickly than BALB/c from a small toy object. In the entire series of mice, ambulation and rears in the open-field were linearly correlated with open and enclosed arm visits in the elevated plus-maze. Ambulatory movements and rears were also correlated with emergence latencies. In contrast, stereotyped movements were correlated with emergence latencies, but not with any elevated plus-maze value. These results specify the extent and limits of association between the three tests.
Lalonde, Robert; Strazielle, Catherine
2010-06-01
Two 5HT(1A) receptor agonists and chlordiazepoxide were examined in open-field, elevated plus maze, and emergence tests. At doses with no effect in the open-field, chlordiazepoxide increased open and open/total arm visits as well as open arm duration in the elevated plus maze, whereas 5HT(1A) receptor agonists showed an anxiolytic response on a single measure. The anxiolytic action of chlordiazepoxide was limited to the less active BALB/c strain. Unlike the 5HT(1A) receptor agonists, chlordiazepoxide was also anxiolytic in the emergence test, once again only in BALB/c and not C57BL/6J mice. Significant correlations were found between emergence latencies and specific indicators of anxiety in the elevated plus-maze in chlordiazepoxide-treated but not in mice treated with buspirone and 8-OH-DPAT. These results indicate that elevated plus-maze and emergence tests depend on benzodiazepine receptors. In contrast, 5HT(1A) receptor agonists were ineffective in the emergence test and no correlation was found between emergence latencies and specific indicators of anxiety in the elevated plus-maze. Though superficially similar, the emergence test seems to tap into a partially separate facet of anxiety.
Corticosterone response to the plus-maze: high correlation with risk assessment in rats and mice.
Rodgers, R J; Haller, J; Holmes, A; Halasz, J; Walton, T J; Brain, P F
Exposure to the elevated plus-maze induces behavioural and physiological effects in rodents consistent with fear/anxiety. Maze-naive animals display high levels of risk assessment towards the open arms, and explore these areas less extensively than other parts of the maze while, immediately following the test, pain latencies, skin conductance levels, and plasma corticosterone titres (CORT) are significantly elevated. Although previous research has suggested a link between the plasma CORT response and open-arm exploration, significant elevations in CORT have also been found with restricted exposure to the closed arms. The present study employed ethological measures in an attempt to further characterise the relationship between behavioural and CORT responses to this widely used animal model of anxiety. Our results confirm that, relative to home-cage controls, 5-min exposure to the plus-maze significantly increases plasma CORT levels in test-naive male Wistar rats and male Swiss-Webster mice. Furthermore, in both species, the CORT response was found to be highly correlated with measures of risk assessment (mice: rs = +0.87; rats: rs = +0.58), but not with measures of open-arm activity (entries, time), general locomotor activity, rearing, or head dipping. Findings are discussed in relation to the functional significance of risk assessment in potentially dangerous situations and the potential involvement of glucocorticoids in this process. All rights reserved.
NASA Astrophysics Data System (ADS)
Shukitt-Hale, Barbara; Miller, Marshall; Carrihill-Knoll, Kirsty; Rabin, Bernard; Joseph, James
Previous research has shown that radiation exposure, particularly to particles of high energy and charge (HZE particles) which will be encountered on long-term space missions, can adversely affect the ability of rats to perform a variety of behavioral tasks. This outcome has implications for an astronaut's ability to successfully complete requirements associated with these missions. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. Therefore, in the present study, we used a combination of these two tests, the 8 arm radial water maze (RAWM), to measure spatial learning in rats which were irradiated at the NSRL with 0, 150cGy, or 200cGy of 56Fe radiation. Following irradiation the rats were shipped to the HNRCA and tested in the RAWM (2-3 months later) for 5 days, 3 trials/day. In this version of the RAWM, there were 4 hidden platforms that the rat needed to locate to successfully solve a trial. Once the rat located a platform, it was allowed to remain there for 15 sec before the platform sank, at which point the rat tried to locate the remaining ones. Reference (entering an arm that never contained the platform) and working (re-entering an arm in which the platform had already been found) memory errors were tabulated. Results showed that the irradiated rats had more reference and working memory errors while learning the maze, particularly on Day 3 of testing. Additionally, they utilized non-spatial strategies to solve the RAWM task whereas the control animals used spatial strategies. These results show that irradiation with 56Fe high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Supported by USDA Intramural and N.A.S.A. Grant NNX08AM66G
2007-01-01
AFRL-HE-BR-TR-2007-0008 Characterization of Maze Performance in Adrenalectomized Sleep Disrupted Rats: A Comparison of Radial Arm Maze Performance ...Sept 2005-Dec 2006 To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Characterization of Maze Performance in Adrenalectomized Sleep Disrupted Rats...A Comparison of Radial Arm Maze Performance Between Adrenalectomized and Sham Adrenalectomized Sleep Disrupted Rats 5b. GRANT NUMBER FA86500-05
ERIC Educational Resources Information Center
Rana, Shadna A.; Parker, Linda A.
2006-01-01
Recent evidence suggests that drug-induced conditioned taste avoidance may be mediated by conditioned fear (e.g., Parker, 2003). The experiments reported here evaluated the effect of exposure to a drug-paired flavor on open arm exploration in an elevated plus maze (EPM), a measure of fear. When rats were tested on a familiar (trial 2) EPM, but not…
Punzo, F; Farmer, C
2004-01-01
Studies were conducted to assess the spatial learning ability in adult males of the short-tailed opossum, Monodelphis domestica using a T-maze, complex maze and elevated radial 8-arm maze. This is the first study of maze learning in opossums. In the T-maze, the performance of these animals improved over an 8-day training period. Eighty percent of the subjects initially trained to turn to the right for food reinforcement reached criterion (80% correct responses) by day 3 and all reached criterion by day 4. Reversal training (subjects then trained to turn to the left) was more difficult and required 8 days for all subjects to reach criterion. In the complex maze, 89% of the animals achieved the criterion level of performance (3 consecutive trials with 5 or fewer errors) on the eighth day of training and all reached criterion by day 10. The relative importance of intramaze vs. extramaze cues in directing choice behavior was investigated in the radial arm maze. A discrimination procedure was used which selectively rewarded subjects for following only one set of cues. Animals in the intramaze group obtained a food pellet from a cup at the end of each arm. In the extramaze group, the food cups were placed on a small platform just beyond the end of each arm. All subjects were initially trained to visit each arm with the maze in a fixed position (controls) and did so within 15 test sessions. Following these initial trials, the maze was rotated to a different position after each choice. For subjects in the intramaze group, the food moved in conjunction with the rotation of the arms thereby increasing the relevance of intramaze cues. In the extramaze group, extramaze cues became more important because the food remained on the platforms in the same position in the room. Animals in the extramaze group performed significantly better than chance whereas the intramaze subjects did not. This indicates that intramaze cues are not as important as extramaze cues for accurate choice behavior in this marsupial. In addition, animals injected with tetraethyllead showed a significant impairment in running speed and T-maze learning ability as compared to saline-injected controls.
Novak, Janja; Bailoo, Jeremy D; Melotti, Luca; Rommen, Jonas; Würbel, Hanno
2015-01-01
Behavioural tests to assess affective states are widely used in human research and have recently been extended to animals. These tests assume that affective state influences cognitive processing, and that animals in a negative affective state interpret ambiguous information as expecting a negative outcome (displaying a negative cognitive bias). Most of these tests however, require long discrimination training. The aim of the study was to validate an exploration based cognitive bias test, using two different handling methods, as previous studies have shown that standard tail handling of mice increases physiological and behavioural measures of anxiety compared to cupped handling. Therefore, we hypothesised that tail handled mice would display a negative cognitive bias. We handled 28 female CD-1 mice for 16 weeks using either tail handling or cupped handling. The mice were then trained in an eight arm radial maze, where two adjacent arms predicted a positive outcome (darkness and food), while the two opposite arms predicted a negative outcome (no food, white noise and light). After six days of training, the mice were also given access to the four previously unavailable intermediate ambiguous arms of the radial maze and tested for cognitive bias. We were unable to validate this test, as mice from both handling groups displayed a similar pattern of exploration. Furthermore, we examined whether maze exploration is affected by the expression of stereotypic behaviour in the home cage. Mice with higher levels of stereotypic behaviour spent more time in positive arms and avoided ambiguous arms, displaying a negative cognitive bias. While this test needs further validation, our results indicate that it may allow the assessment of affective state in mice with minimal training-a major confound in current cognitive bias paradigms.
Novak, Janja; Bailoo, Jeremy D.; Melotti, Luca; Rommen, Jonas; Würbel, Hanno
2015-01-01
Behavioural tests to assess affective states are widely used in human research and have recently been extended to animals. These tests assume that affective state influences cognitive processing, and that animals in a negative affective state interpret ambiguous information as expecting a negative outcome (displaying a negative cognitive bias). Most of these tests however, require long discrimination training. The aim of the study was to validate an exploration based cognitive bias test, using two different handling methods, as previous studies have shown that standard tail handling of mice increases physiological and behavioural measures of anxiety compared to cupped handling. Therefore, we hypothesised that tail handled mice would display a negative cognitive bias. We handled 28 female CD-1 mice for 16 weeks using either tail handling or cupped handling. The mice were then trained in an eight arm radial maze, where two adjacent arms predicted a positive outcome (darkness and food), while the two opposite arms predicted a negative outcome (no food, white noise and light). After six days of training, the mice were also given access to the four previously unavailable intermediate ambiguous arms of the radial maze and tested for cognitive bias. We were unable to validate this test, as mice from both handling groups displayed a similar pattern of exploration. Furthermore, we examined whether maze exploration is affected by the expression of stereotypic behaviour in the home cage. Mice with higher levels of stereotypic behaviour spent more time in positive arms and avoided ambiguous arms, displaying a negative cognitive bias. While this test needs further validation, our results indicate that it may allow the assessment of affective state in mice with minimal training—a major confound in current cognitive bias paradigms. PMID:26154309
Abuhamdah, R M; Hussain, M D; Chazot, P L; Ennaceur, A
2016-10-01
Familiarity can imply a reduction of fear and anxiety, which may render learning and memory performance insensitive to NMDA receptor antagonism. Our previous study indicates that MK-801 (dizocilpine), NMDA antagonist, increased anxiety and prevented the acquisition of a spatial memory task. Here, we examined whether MK-801 will produce anxiety in mice that were familiar with the test environment. Male C57BL/6J mice were exposed, one session a day for 7days, to a 3D maze, which consisted of nine arms attached to upward inclined bridges radiating from a nonagonal platform. In this maze, high anxiety mice avoid the arms in the first sessions. One group of mice received saline (SAL) while a second group received MK-801 (MKD1), both on day one. A third group received saline in the first 3 sessions, and MK 801 in subsequent sessions (MKD4). Saline and MK-801 (0.1mg/kg) were administered intraperitoneally 30min before the test. MKD4 mice demonstrated an increase in bridge and arm visits, and reached arm/bridge entries ratio close to 1 in session 5. SAL mice also crossed frequently onto the arms, and reached a comparable ratio, but this was achieved with a lower number of arm visits. MKD1 mice demonstrated a reduced number of arm visits in each session compared to SAL and MKD4 mice. Dizocilpine produced anxiety in mice treated from day 1 of the test, but not in those treated from day 4. It also impaired habituation in animals familiar with the test environment; it produced sustained non-habituating hyperactivity. Copyright © 2016 Elsevier Inc. All rights reserved.
Mathematical methods to model rodent behavior in the elevated plus-maze.
Arantes, Rafael; Tejada, Julián; Bosco, Geraldine G; Morato, Silvio; Roque, Antonio C
2013-11-15
The elevated plus maze is a widely used experimental test to study anxiety-like rodent behavior. It is made of four arms, two open and two closed, connected at a central area forming a plus shaped maze. The whole apparatus is elevated 50 cm from the floor. The anxiety of the animal is usually assessed by the number of entries and duration of stay in each arm type during a 5-min period. Different mathematical methods have been proposed to model the mechanisms that control the animal behavior in the maze, such as factor analysis, statistical inference on Markov chains and computational modeling. In this review we discuss these methods and propose possible extensions of them as a direction for future research. Copyright © 2013 Elsevier B.V. All rights reserved.
Roberts, William A; Guitar, Nicole A; Marsh, Heidi L; MacDonald, Hayden
2016-05-01
The interaction of working and reference memory was studied in rats on an eight-arm radial maze. In two experiments, rats were trained to perform working memory and reference memory tasks. On working memory trials, they were allowed to enter four randomly chosen arms for reward in a study phase and then had to choose the unentered arms for reward in a test phase. On reference memory trials, they had to learn to visit the same four arms on the maze on every trial for reward. Retention was tested on working memory trials in which the interval between the study and test phase was 15 s, 15 min, or 30 min. At each retention interval, tests were performed in which the correct WM arms were either congruent or incongruent with the correct RM arms. Both experiments showed that congruency interacted with retention interval, yielding more forgetting at 30 min on incongruent trials than on congruent trials. The effect of reference memory strength on the congruency effect was examined in Experiment 1, and the effect of associating different contexts with working and reference memory on the congruency effect was studied in Experiment 2.
Anderson, Dean M; Murray, Leigh W
2013-01-01
Turning preferences among 309 white-faced ewes were individually evaluated in an enclosed, artificially lit T-maze, followed by each ewe choosing either a right or left return alley to return to peers. Data recorded included time in the start box, time in the T-maze, exit arm chosen to leave the T-maze, and return alley. Right and left arms of the T-maze were chosen 65.7% and 34.3% of the time, respectively, while right and left return alleys were chosen 32.4% and 67.6%, respectively. Exit arm and return alley were not independently chosen (p <.0001), with observed counts being higher than expected under independence when ewes made the same choice for exit and alley (RR or LL turn patterns) and being lower than expected for alternating choices (RL or LR). Out of the 309 ewes, 28.2% and 30.1% chose RR and LL turn patterns, respectively, while 37.5% chose the RL turn pattern, but only 13 (4.2%) chose the LR turning pattern. Overall, ewes that initially turned right when presented a second turning opportunity had a slight preference to alternate their turning direction, while ewes that initially turned left tended to continue turning left when given another chance to turn. Exit arm and return alley laterality was not related (α =.05) to time of day the test was administered, ewe's age or genetics, most recent liveweight, or most recent shorn fleece weight. The mean time spent in the start box (21 s) was not related to exit arm (p =.947) or return alley (p =.779). Mean time (15 s) spent in the T-maze was not related to exit arm (p =.086) or return alley (p =.952). More research will be required to understand sheep turning laterality and how it can impact working facilities and research equipment.
Onaolapo, Adejoke Y; Onaolapo, Olakunle J; Nwoha, Polycarp U
2017-03-01
Changes, in behaviour, oxidative markers of stress and hippocampal morphology were evaluated following aspartame administration. Mice, (20-22g each) were given vehicle (10ml/kg) or aspartame (20, 40, 80 and 160mg/kg) daily for 28days. They were tested in the Y-maze, radial-arm maze and elevated plus-maze (EPM) after the first and last dose of vehicle or aspartame; and then sacrificed. Hippocampal slices were analysed for aspartic acid, nitric oxide (NO) and superoxide dismutase (SOD); and processed for general histology and neuritic plaques. Glial fibrillary-acid protein (GFAP) expression and neuron-specific enolase (NSE) activities were determined. Radial-arm maze scores increased significantly after acute administration at 80 and 160mg/kg. Repeated administration at 20 and 40mg/kg (Y-maze) and at 40mg/kg (radial-arm maze) was also associated with increased scores, however, performance decreased at higher doses. EPM tests revealed anxiogenic responses following both acute and repeated administration. Significant increase in SOD and NO activities were observed at 40, 80 and 160mg/kg. Neuron counts reduced at higher doses of aspartame. At 40, 80 and 160mg/kg, fewer GFAP-reactive astrocytes were observed in the cornus ammonis, but increased GFAP-reactivity was observed in the dentate gyrus subgranular zone. NSE-positive neurons were readily identifiable within the dentate gyrus at the lower doses of aspartame; but at 160mg/kg, there was marked neuron loss and reduction in NSE-positive neurons. Oral aspartame significantly altered behaviour, anti-oxidant status and morphology of the hippocampus in mice; also, it may probably trigger hippocampal adult neurogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.
Chen, Xi; Sun, Weiwen; Pan, Ying; Yang, Quan; Cao, Kaiyi; Zhang, Jin; Zhang, Yizhi; Chen, Mincong; Chen, Feidi; Huang, Yueling; Dai, Lijun; Chen, Shengqiang
2013-10-01
To investigate whether lithium modifies open-field and elevated plus maze behavior, and brain phospho-glycogen synthase kinase 3 (P-GSK3beta) expression in Fmr1 knockout mice. One hundred and eighty FVB mice, including knockout and wild type, with an age of 30 days were used. An open-field and elevated plus maze was utilized to test behavior, while western blot was used to measure the P-GSK3beta expression. Six groups were formed: control (saline), lithium chloride 30, 60, 90, 120, and 200 mg/kg. The experiments were carried out in the Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China between January and June 2012. Lithium significantly decreased total distance, crossing, central area time, and center entry in the open-field test (p<0.05), and significantly reduced open-arm tracking, open-arm entry, and open-arm time in the elevated plus maze (p<0.05) in knockout mice. In wild type mice, significant changes were observed in both behavior tests in some treatment groups. Lithium ameliorated P-GSK3beta expression in the hippocampus of all the treatment groups in knockout mice (p<0.05). However, lithium did not modify either GSK3beta expression in tissues of knockout mice, or P-GSK3beta or GSK3beta expression in tissues of wild type mice. Lithium ameliorated open-field and elevated plus maze behaviors of Fmr1 knockout mice. This effect may be related to its enhancement of P-GSK3beta expression. Our findings suggest that lithium might have a therapeutic effect in fragile X syndrome.
Lamontagne, Steven J; Olmstead, Mary C; Menard, Janet L
2016-11-01
Both the lateral septum (LS) and anterior hypothalamus (AHA) regulate behavioural defense. We tested whether those two interconnected structures act in serial in that regard. Infusions of the GABAA agonist muscimol into one side of the LS and the contralateral (but not ipsilateral) AHA suppressed rats' burying in the shock-probe test whereas none of our muscimol infusion approaches altered their open-arm avoidance in the elevated plus-maze. These results suggest that the LS-AHA circuit serves a specialized role in defensive responses towards discrete, localizable threat stimuli but not towards potential threats. Copyright © 2016 Elsevier B.V. All rights reserved.
Wahl, Devin; Coogan, Sean CP; Solon-Biet, Samantha M; de Cabo, Rafael; Haran, James B; Raubenheimer, David; Cogger, Victoria C; Mattson, Mark P; Simpson, Stephen J; Le Couteur, David G
2017-01-01
Evaluation of behavior and cognition in rodent models underpins mechanistic and interventional studies of brain aging and neurodegenerative diseases, especially dementia. Commonly used tests include Morris water maze, Barnes maze, object recognition, fear conditioning, radial arm water maze, and Y maze. Each of these tests reflects some aspects of human memory including episodic memory, recognition memory, semantic memory, spatial memory, and emotional memory. Although most interventional studies in rodent models of dementia have focused on pharmacological agents, there are an increasing number of studies that have evaluated nutritional interventions including caloric restriction, intermittent fasting, and manipulation of macronutrients. Dietary interventions have been shown to influence various cognitive and behavioral tests in rodents indicating that nutrition can influence brain aging and possibly neurodegeneration. PMID:28932108
Okonogi, Toya; Nakayama, Ryota; Sasaki, Takuya; Ikegaya, Yuji
2018-01-01
Elevated plus maze (EPM) tests have been used to assess animal anxiety levels. Little information is known regarding how physiological activity patterns of the brain-body system are altered during EPM tests. Herein, we monitored cortical local field potentials (LFPs), electrocardiograms (ECGs), electromyograms (EMGs), and respiratory signals in individual mice that were repeatedly exposed to EPM tests. On average, mouse heart rates were higher in open arms. In closed arms, the mice occasionally showed decreased heart and respiratory rates lasting for several seconds or minutes, characterized as low-peripheral activity states of peripheral signals. The low-activity states were observed only when the animals were in closed arms, and the frequencies of the states increased as the testing days proceeded. During the low-activity states, the delta and theta powers of cortical LFPs were significantly increased and decreased, respectively. These results demonstrate that cortical oscillations crucially depend on whether an animal exhibits low-activity states in peripheral organs rather than the EPM arm in which the animal is located. These results suggest that combining behavioral tests with physiological makers enables a more accurate evaluation of rodent mental states.
Preliminary evidence that abscisic acid improves spatial memory in rats.
Qi, Cong-Cong; Ge, Jin-Fang; Zhou, Jiang-Ning
2015-02-01
Abscisic acid (ABA) is a crucial phytohormone that exists in a wide range of animals, including humans, and has multiple bioactivities. As direct derivatives of carotenoids, ABA and retinoic acid (RA) share similar molecular structures, and RA has been reported to improve spatial memory in rodents. To explore the potential effects of ABA on spatial learning and memory in rodents, 20mg/kg ABA was administered to young rats for 6weeks, and its effects on behaviour performance were evaluated through a series of behavioural tests. ABA pharmacokinetic analysis revealed that the exogenous ABA was distributed widely in the rat brain, characterised by rapid absorption and slow elimination. The behavioural tests showed that ABA increased both the duration spent in the target quadrant and the frequency it was entered in the probe test of the Morris water maze (MWM) and decreased the latency to locate the target quadrant. Moreover, ABA decreased the latency to enter the novel arm in the Y-maze test, accompanied by increases in the total entries and distance travelled in the three arms. However, there were no significant differences between the ABA-treated and control rats in the open field test and elevated plus-maze test. These results preliminarily indicate that ABA improves spatial memory in MWM and exploratory activity in Y-maze in young rats. Copyright © 2014 Elsevier Inc. All rights reserved.
Bang, Shraddha R; Ambavade, Shirishkumar D; Jagdale, Priti G; Adkar, Prafulla P; Waghmare, Arun B; Ambavade, Prashant D
2015-07-01
Lacosamide, a histone deacetylase (HDAC) inhibitor, has been approved for the treatment of epilepsy. Some HDAC inhibitors have been proven effective for the treatment of memory disorders. The present investigation was designed to evaluate the effect of lacosamide on memory and brain HDAC levels. The effect on memory was evaluated in animals with scopolamine-induced amnesia using the elevated plus maze, object recognition test, and radial arm maze. The levels of acetylcholinesterase and HDAC in the cerebral cortex were evaluated. Lacosamide at doses of 10 and 30mg/kg significantly reduced the transfer latency in the elevated plus maze. Lacosamide at a dose of 30mg/kg significantly increased the time spent with a familiar object in the object recognition test at the 24h interval and decreased the time spent in the baited arm. Moreover, at this dose, the number of errors in the radial arm maze at 3 and 24h intervals was minimized and a reduction in the level of HDAC1, but not acetylcholinesterase, was observed in the cerebral cortex. These effects of lacosamide are equivalent to those of piracetam at a dose of 300mg/kg. These results suggest that lacosamide at a 30mg/kg dose improves disrupted memory, possibly by inhibiting HDAC, and could be used to treat amnesic symptoms of Alzheimer's disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Radial maze performance in three strains of mice - Role of the fimbria/fornix
NASA Technical Reports Server (NTRS)
Reinstein, D. K.; Deboissiere, T.; Robinson, N.; Wurtman, R. J.
1983-01-01
Three strains of mice were tested on an 8-arm radial maze, an index of hippocampus-dependent spatial memory. Levels of performance differed betweens strains with C57Br/cdj greater than Balb/cj greater than C57B1/6j. Lesions of the fimbria/fornix disrupted performance in the C57Br and Balb strains: the C57Bl mice never performed better than chance before or after surgery. Choline acetyltransferase activity in hippocampus was not correlated with radial maze performance. These findings suggest a possible genetic contribution towards radial maze behavior.
Bak, Jia; Pyeon, Hae-In; Seok, Jin-I; Choi, Yun-Sik
2017-03-01
Y maze has been used to test spatial working memory in rodents. To this end, the percentage of spontaneous alternation has been employed. Alternation indicates sequential entries into all three arms; e.g., when an animal visits all three arms clockwise or counterclockwise sequentially, alternation is achieved. Interestingly, animals have a tendency to rotate or turn to a preferred side. Thus, when an animal has a high rotation preference, this may influence their alternation behavior. Here, we have generated a new analytical method, termed entropy of spontaneous alternation, to offset the effect of rotation preference on Y maze. To validate the entropy of spontaneous alternation, we employed a free rotation test using a cylinder and a spatial working memory test on Y maze. We identified that mice showed 65.1% rotation preference on average. Importantly, the percentage of spontaneous alternation in the high preference group (more than 70% rotation to a preferred side) was significantly higher than that in the no preference group (<55%). In addition, there was a clear correlation between rotation preference on cylinder and turning preference on Y maze. On the other hand, this potential leverage effect that arose from rotation preference disappeared when the animal behavior on Y maze was analyzed with the entropy of spontaneous alternation. Further, entropy of spontaneous alternation significantly determined the loss of spatial working memory by scopolamine administration. Combined, these data indicate that the entropy of spontaneous alternation provides higher credibility when spatial working memory is evaluated using Y maze. Copyright © 2016 Elsevier B.V. All rights reserved.
Shekhar, A; Sims, L S; Bowsher, R R
1993-11-05
In the previous report, we had shown that blockade and enhancement of GABAA receptors in the DMH of rats increased or decreased the level of anxiety, respectively, as measured by the elevated plus-maze test. The present study was conducted to assess the effects of enhancing GABAA neurotransmission in the DMH of rats on the physiological concomitants of anxiety such as increases in heart rate (HR), blood pressure (BP) and plasma norepinephrine (NE) levels while the animals were placed on the elevated plus-maze. Male Sprague-Dawley rats were equipped with arterial and venous catheters and stereotaxically implanted with microinjection cannulae in the cardiostimulatory region of the DMH where injection of bicuculline methiodide (BMI) elicited increases in heart rate under anesthesia. After recovery, rats were injected with either saline or the GABAA agonist muscimol and their HR, BP and plasma NE responses were measured when confined in the open or the closed arm of the elevated plus-maze. Injection of muscimol into the DMH reduced the increases seen in HR, BP and plasma NE when the rats were confined to either the closed or the open arms in addition to decreasing 'anxiety' in the plus-maze. Injection of muscimol into the areas of the hypothalamus surrounding the DMH did not significantly affect the changes in HR, BP and plasma NE in the plus-maze. Blocking the changes in HR and BP elicited by microinjecting GABAergic drugs into the DMH of rats, with systemic injections of a combination of atropine and the beta-blocker atenolol, did not block the behavioral effects of the GABAergic drugs in the plus-maze test.
McArthur, R A; Carfagna, N; Banfi, L; Cavanus, S; Cervini, M A; Fariello, R; Post, C
1997-01-01
The effects of chronic oral administration of nicergoline (5.0 mg/kg; bid) on locomotor activity, eight-arm radial maze performance plus striatal, cortical, and hippocampal acetylcholine (ACh) levels were examined in young and aged Wistar rats. Chronic nicergoline administration did not modify either the locomotor activity or radial maze learning in young rats. Young rats learned the radial maze procedure rapidly and improved their performance throughout the successive training sessions. Radial maze performance in young rats was characterised by very few arm reentries. Aged rats were hypoactive and did not explore or enter the radial maze arms, and consequently performed poorly in the radial maze throughout the training sessions. Nicergoline treatment did not significantly modify locomotor activity in aged rats. Aged rats treated with nicergoline also performed poorly initially but improved with repeated training in the radial maze. This improvement was associated with an increasing number of arms being entered and very few arm reentries. Reduced acetylcholine (ACh) levels were also associated with age. Aged rats had significantly reduced levels of ACh in the straitum and cortex, but not the hippocampus as compared to young rats. Nicergoline treatment did not change ACh levels in young rats, but substantially restored the reduced ACh levels in aged rats. These results indicate that nicergoline is an effective cognitive enhancer in a learning model of age-related deficits and that these results may be related to changes in the cholinergic system.
Hughes, Robert N; Otto, Maria T
2013-01-10
In groups of four same-sexed animals, PVG/c hooded rats were housed for 4.5 months in standard or enriched cages containing several objects that could be explored and manipulated. On separate occasions, each rat then experienced two consecutive daily trials in an open field, a light-dark box or a Y maze with arm inserts that enabled an acquisition trial comprising one black and one white arm to be changed for a retention trial consisting of two black arms. Before their trials in the open field and light-dark box, and following each acquisition trial in the Y maze, the rats received an intraperitoneal injection of 2 mg/kg scopolamine or isotonic saline. In the open field, enrichment led to higher levels of ambulation, walking, rearing and occupancy of the center of the apparatus and shorter emergence latencies from the dark into the light compartment of the light-dark box accompanied by more entries of this compartment. Enrichment also increased entries of and time spent in the changed (or novel) Y-maze arm only for male rats treated with scopolamine. The drug decreased rearing and increased grooming in the open field as well as increasing emergence latencies and decreasing entries of and the time spent on the light compartment of the light-dark box. The main results were interpreted as enrichment having attenuated anxiogenic effects of the behavioral testing and the action of scopolamine for male (but not female) rats in their choices of the novel arm in the Y maze. Copyright © 2012 Elsevier Inc. All rights reserved.
Farr, Susan A; Erickson, Michelle A; Niehoff, Michael L; Banks, William A; Morley, John E
2014-01-01
Alzheimer's disease (AD) is a progressive neurodegenerative disease. Currently, there are no therapies to stop or reverse the symptoms of AD. We have developed an antisense oligonucleotide (OL-1) against the amyloid-β protein precursor (AβPP) that can decrease AβPP expression and amyloid-β protein (Aβ) production. This antisense rapidly crosses the blood-brain barrier, reverses learning and memory impairments, reduces oxidative stress, and restores brain-to-blood efflux of Aβ in SAMP8 mice. Here, we examined the effects of this AβPP antisense in the Tg2576 mouse model of AD. We administered the OL-1 antisense into the lateral ventricle 3 times at 2week intervals. Seventy-two hours after the third injection, we tested learning and memory in T-maze foot shock avoidance. In the second study, we injected the mice with OL-1 antisense 3 times at 2-week intervals via the tail vein. Seventy-two hours later, we tested learning and memory T-maze, novel object recognition, and elevated plus maze. At the end of behavioral testing, brain tissue was collected. OL-1 antisense administered centrally improved acquisition and retention of T-maze foot shock avoidance. OL-1 antisense administered via tail vein improved learning and memory in both T-maze foot shock avoidance and novel object-place recognition. In the elevated plus maze, the mice which received OL-1 antisense spent less time in the open arms and had fewer entries into the open arms indicating reduced disinhibitation. Biochemical analyses reveal significant reduction of AβPP signal and a reduction of measures of neuroinflammation. The current findings support the therapeutic potential of OL-1 AβPP antisense.
Abuhamdah, Rushdie M A; van Rensburg, Ruan; Lethbridge, Natasha L; Ennaceur, Abdel; Chazot, Paul L
2012-01-01
The role of the histamine H(3) receptor (H(3)R) in anxiety is controversial, due to limitations in drug selectivity and limited validity of behavioral tests used in previous studies. In the present report, we describe two experiments. In the first one, Wistar rats were treated with an H(3)R agonist (methimepip), and exposed to an open-field. In the second one, Balb/c mice were treated with H(3)R agonist (methimepip) or antagonist (JNJ-5207852), and exposed to an open space 3D maze which is a modified version of the radial-arm maze. C57BL/6J saline treated mice were included for comparisons. When exposed to an empty open field, Wistar rats spent more time in the outer area and made very low number of brief crossings in the central area. However, when an object occupied the central area, rats crossed frequently into and spent a long time in the central area. Administration of a range of different doses of methimepip (selective H(3)R agonist) reduced the entries into the central area with a novel object, indicating enhanced avoidance response. In the 3D maze, both Balb/c and C57BL/6J saline-treated mice crossed frequently onto the bridges that radiate from the central platform but only C57BL/6J mice crossed onto the arms which extend the bridges. This suggests that Balb/c mice are more anxious than C57BL/6J mice. Neither methimepip nor JNJ-5207852 (selective H(3)R antagonist/inverse agonist) induced entry into the arms of the maze, indicative of lack of anxiolytic effects.
Hoffmann, L C; Schütte, S R M; Koch, M; Schwabe, K
2009-02-18
Enriched housing conditions (enriched environment, EE) during development has been shown to influence adult rat behavior and transmitter systems, especially dopamine function. We were interested in how different degrees of enrichment during development would affect adult rats' behavior and response to dopamine receptor challenge. Two groups of male Wistar rats (n=11-12) were raised under two different degrees of EE, i.e. "high enriched" and "low enriched" groups. A third group was kept under standard conditions and served as "non-enriched" control. As adults, rats were tested for anxiety (elevated plus-maze), for spatial learning (four-arm-baited eight-arm radial maze), and for motivation (breakpoint of the progressive ratio test). Finally, locomotor activity (activity box) and sensorimotor gating (prepulse inhibition (PPI) of the acoustic startle response (ASR)) were tested with and without challenge with the dopamine receptor agonist apomorphine. The time spent on the open or enclosed arms of the elevated plus-maze did not differ between groups, but the high enriched group showed higher rearing activity on the open arms. The breakpoint did not differ between groups. Learning and memory in the radial maze task only differed on the first few trials, but high enriched rats run faster compared with the other groups. In contrast, in the activity box enriched groups were less active, but apomorphine had the highest effect. Between groups, no difference in PPI and startle amplitude was found, but in the high and low EE group startle amplitude was enhanced after administration of apomorphine, while the PPI deficit induced by this drug was not different between groups. Altogether, we found no evidence that different amounts of environmental enrichment without differences in social EE affect rats' cognitive, emotional or motivational behavior. However, motor activity seems to be enhanced when rats are behaviorally or pharmacologically challenged by dopamine receptor agonists.
Loganathan, Sundareswaran; Rathinasamy, Sheeladevi
2016-01-01
Noise stress has different effects on memory and novelty and the link between them with an electroencephalogram (EEG) has not yet been reported. To find the effect of sub-acute noise stress on the memory and novelty along with EEG and neurotransmitter changes. Eight-arm maze (EAM) and Y-maze to analyze the memory and novelty by novel object test. Four groups of rats were used: Control, control treated with Scoparia dulcis extract, noise exposed, and noise exposed which received Scoparia extract. The results showed no marked difference observed between control and control treated with Scoparia extract on EAM, Y-maze, novel object test, and EEG in both prefrontal and occipital region, however, noise stress exposed rats showed significant increase in the reference memory and working memory error in EAM and latency delay, triad errors in Y-maze, and prefrontal and occipital EEG frequency rate with the corresponding increase in plasma corticosterone and epinephrine, and significant reduction in the novelty test, and significant reduction in the novelty test, amplitude of prefrontal, occipital EEG, and acetylcholine. These noise stress induced changes in EAM, Y-maze, novel object test, and neurotransmitters were significantly prevented when treated with Scoparia extract and these changes may be due to the normalizing action of Scoparia extract on the brain, which altered due to noise stress. Noise stress exposure causes EEG, behavior, and neurotransmitter alteration in the frontoparietal and occipital regions mainly involved in planning and recognition memoryOnly the noise stress exposed animals showed the significant alteration in the EEG, behavior, and neurotransmittersHowever, these noise stress induced changes in EEG behavior and neurotransmitters were significantly prevented when treated with Scoparia extractThese changes may be due to the normalizing action of Scoparia dulcis (adoptogen) on the brain which altered by noise stress. Abbreviations used: EEG: Electroencephalogram, dB: Decibel, EPI: Epinephrine, ACH: Acetylcholine, EAM: Eight-arm maze.
Loganathan, Sundareswaran; Rathinasamy, Sheeladevi
2016-01-01
Background: Noise stress has different effects on memory and novelty and the link between them with an electroencephalogram (EEG) has not yet been reported. Objective: To find the effect of sub-acute noise stress on the memory and novelty along with EEG and neurotransmitter changes. Materials and Methods: Eight-arm maze (EAM) and Y-maze to analyze the memory and novelty by novel object test. Four groups of rats were used: Control, control treated with Scoparia dulcis extract, noise exposed, and noise exposed which received Scoparia extract. Results: The results showed no marked difference observed between control and control treated with Scoparia extract on EAM, Y-maze, novel object test, and EEG in both prefrontal and occipital region, however, noise stress exposed rats showed significant increase in the reference memory and working memory error in EAM and latency delay, triad errors in Y-maze, and prefrontal and occipital EEG frequency rate with the corresponding increase in plasma corticosterone and epinephrine, and significant reduction in the novelty test, and significant reduction in the novelty test, amplitude of prefrontal, occipital EEG, and acetylcholine. Conclusion: These noise stress induced changes in EAM, Y-maze, novel object test, and neurotransmitters were significantly prevented when treated with Scoparia extract and these changes may be due to the normalizing action of Scoparia extract on the brain, which altered due to noise stress. SUMMARY Noise stress exposure causes EEG, behavior, and neurotransmitter alteration in the frontoparietal and occipital regions mainly involved in planning and recognition memoryOnly the noise stress exposed animals showed the significant alteration in the EEG, behavior, and neurotransmittersHowever, these noise stress induced changes in EEG behavior and neurotransmitters were significantly prevented when treated with Scoparia extractThese changes may be due to the normalizing action of Scoparia dulcis (adoptogen) on the brain which altered by noise stress. Abbreviations used: EEG: Electroencephalogram, dB: Decibel, EPI: Epinephrine, ACH: Acetylcholine, EAM: Eight-arm maze PMID:27041862
An elevated plus-maze in mixed reality for studying human anxiety-related behavior.
Biedermann, Sarah V; Biedermann, Daniel G; Wenzlaff, Frederike; Kurjak, Tim; Nouri, Sawis; Auer, Matthias K; Wiedemann, Klaus; Briken, Peer; Haaker, Jan; Lonsdorf, Tina B; Fuss, Johannes
2017-12-21
A dearth of laboratory tests to study actual human approach-avoidance behavior has complicated translational research on anxiety. The elevated plus-maze (EPM) is the gold standard to assess approach-avoidance behavior in rodents. Here, we translated the EPM to humans using mixed reality through a combination of virtual and real-world elements. In two validation studies, we observed participants' anxiety on a behavioral, physiological, and subjective level. Participants reported higher anxiety on open arms, avoided open arms, and showed an activation of endogenous stress systems. Participants' with high anxiety exhibited higher avoidance. Moreover, open arm avoidance was moderately predicted by participants' acrophobia and sensation seeking, with opposing influences. In a randomized, double blind, placebo controlled experiment, GABAergic stimulation decreased avoidance of open arms while alpha-2-adrenergic antagonism increased avoidance. These findings demonstrate cross-species validity of open arm avoidance as a translational measure of anxiety. We thus introduce the first ecologically valid assay to track actual human approach-avoidance behavior under laboratory conditions.
Aniracetam improves radial maze performance in rats.
Martin, J R; Cumin, R; Aschwanden, W; Moreau, J L; Jenck, F; Haefely, W E
1992-01-01
The memory enhancing effect of the pyrrolidinone derivative aniracetam was investigated in rats trained in a delayed-response task in an 8-arm radial maze. Oral administration of aniracetam (100, 200, 400, or 800 mg kg-1) 16 h and again 1 h prior to a first trial of exposure to a given configuration of 4 baited arms resulted in a significant improvement in performance during a second trial in the maze given 3 h later in which there was access to all 8 arms but only the other 4 arms were baited. The pattern of baited arms was varied daily. The performance enhancement was greatest for the highest doses. These results extend the demonstration of the cognition enhancing effects of aniracetam to a spatial memory task in rats.
Anxiolytic-like effect of Sonchus oleraceus L. in mice.
Cardoso Vilela, Fabiana; Soncini, Roseli; Giusti-Paiva, Alexandre
2009-07-15
Sonchus oleraceus L. has been used as a general tonic in Brazilian folk medicine. Nevertheless, available scientific information regarding this species is scarce; there are no reports related to its possible effect on the central nervous system. This study was conducted to establish the anxiolytic effect of extracts from the aerial parts of Sonchus oleraceus. This study evaluated the effect of hydroethanolic and dichloromethane extracts of Sonchus oleraceus in mice submitted to the elevated plus-maze and open-field tests. Clonazepam was used as the standard drug. In the elevated plus-maze test, the Sonchus oleraceus extracts increased the percentage of open arm entries (P<0.05) and time spent in the open-arm portions of the maze (P<0.05). The extracts induce an anti-thigmotactic effect, evidenced by increased locomotor activity into the central part of the open field set-up (P<0.05). The extracts administered at 30-300 mg/kg, p.o. had a similar anxiolytic effect to clonazepam (0.5 mg/kg, p.o.). These data indicate that Sonchus oleraceus extract exerts an anxiolytic-like effect on mice.
Hippocampal activation during the recall of remote spatial memories in radial maze tasks.
Schlesiger, Magdalene I; Cressey, John C; Boublil, Brittney; Koenig, Julie; Melvin, Neal R; Leutgeb, Jill K; Leutgeb, Stefan
2013-11-01
Temporally graded retrograde amnesia is observed in human patients with medial temporal lobe lesions as well as in animal models of medial temporal lobe lesions. A time-limited role for these structures in memory recall has also been suggested by the observation that the rodent hippocampus and entorhinal cortex are activated during the retrieval of recent but not of remote memories. One notable exception is the recall of remote memories for platform locations in the water maze, which requires an intact hippocampus and results in hippocampal activation irrespective of the age of the memory. These findings raise the question whether the hippocampus is always involved in the recall of spatial memories or, alternatively, whether it might be required for procedural computations in the water maze task, such as for calculating a path to a hidden platform. We performed spatial memory testing in radial maze tasks to distinguish between these possibilities. Radial maze tasks require a choice between spatial locations on a center platform and thus have a lesser requirement for navigation than the water maze. However, we used a behavioral design in the radial maze that retained other aspects of the standard water maze task, such as the use of multiple start locations and retention testing in a single trial. Using the immediate early gene c-fos as a marker for neuronal activation, we found that all hippocampal subregions were more activated during the recall of remote compared to recent spatial memories. In areas CA3 and CA1, activation during remote memory testing was higher than in rats that were merely reexposed to the testing environment after the same time interval. Conversely, Fos levels in the dentate gyrus were increased after retention testing to the extent that was also observed in the corresponding exposure control group. This pattern of hippocampal activation was also obtained in a second version of the task that only used a single start arm instead of multiple start arms. The CA3 and CA1 activation during remote memory recall is consistent with the interpretation that an older memory might require increased pattern completion and/or relearning after longer time intervals. Irrespective of whether the hippocampus is required for remote memory recall, the hippocampus might engage in computations that either support recall of remote memories or that update remote memories. Copyright © 2013 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Takahashi, Makoto; Ushitani, Tomokazu; Fujita, Kazuo
2008-01-01
Six tree shrews and 8 rats were tested for their ability to infer transitively in a spatial discrimination task. The apparatus was a semicircular radial-arm maze with 8 arms labeled A through H. In Experiment 1, the animals were first trained in sequence on 4 discriminations to enter 1 of the paired adjacent arms, AB, BC, CD, and DE, with right…
Behavioural characterization of vitamin D receptor knockout mice.
Burne, Thomas H J; McGrath, John J; Eyles, Darryl W; Mackay-Sim, Alan
2005-02-28
Vitamin D (calcitriol) is a nuclear transcription regulator acting via a nuclear hormone receptor (VDR). In addition to its role in the regulation of calcium and phosphate homeostasis and in bone formation, Vitamin D is also thought to be involved in brain function. The aim of this study was to behaviourally phenotype VDR knockout mice. We characterized the behaviour of VDR null mutant mice and wildtype littermate controls by subjecting them to a range of tests including a primary behavioural screen (using the SHIRPA protocol), rotarod, gait analysis, Y-maze, marble burying test, bedding test, holeboard test, elevated plus maze, open field test and prepulse inhibition of the acoustic startle response. There were no effects of genotype on most of the scores from the SHIRPA protocol except that VDR -/- mice had alopecia, were shorter and weighed less than VDR +/+ mice. VDR -/- mice had a shorter gait as well as impairments on the rotarod, in the bedding test and impaired habituation in both the open field and on the acoustic startle response. The VDR -/- mice had normal acoustic startle responses but had impaired PPI at long (256 ms) but not short (64 ms) prepulse to pulse intervals. The VDR -/- mice were less active in the open field and buried fewer marbles in the marble burying test. However, there were no differences in the time spent on the open arms of the elevated plus maze or in working memory as assessed by repeat arm entries on the Y-maze. Therefore, it appears that VDR -/- mice have muscular and motor impairments that significantly affects locomotor behaviour but seemingly no impairments in cognition as indicated by exploration, working memory or anxiety.
Nozari, Masoumeh; Mansouri, Farshad Alizadeh; Shabani, Mohammad; Nozari, Hojat; Atapour, Nafiseh
2015-07-01
Memory impairment has been documented in MK-801 (NMDA receptor antagonist) model of schizophrenia, but less is known on the rescue and/or differential effects of MK-801 on short- and long-term memories. We determined the effects of MK-801 treatment and/or enriched environment (EE) on acquisition of reference and working memory in developing rats. Female Wistar rats were injected with MK-801 (1 mg/kg) from postnatal days (P) 6-10. Task acquisition, working memory error (WME), and reference memory error (RME) were assessed in an eight-arm radial maze task. Behavioral performance of rats was also tested in an open field test before (P35-P40) and after (P65-P70) radial maze training to assess anxiety and locomotion. EE was applied from birth up to the end of experiments. MK-801 treatment did not influence task acquisition in the radial maze; however, by the end of training, MK-801-treated rats made significantly more WME, but not RME, compared to control rats. Ratio of WME to total error was also significantly higher in MK-801 group. EE prevented MK-801-associated behaviors in the open field but did not exert beneficial effects on working memory deficit in the radial maze task. EE per se affected behavioral performance of rats only in the open field test. Our results suggest that postnatal MK-801 treatment differentially affects working and reference memory in a young brain. Anxiety and hyperactivity associated with MK-801 are observed more severely in adulthood. Dissociation of the positive effects of EE may suggest selective modification of distinct pathways.
TRIMETHYLTIN, A SELECTIVE LIMBIC SYSTEM NEUROTOXICANT, IMPAIRS RADIAL-ARM MAZE PERFORMANCE
Rats were trained for fifteen sessions in an automated eight arm radial maze prior to treatment with 6 mg/kg trimethyltin chloride. This compound is a neurotoxicant which primarily damages the limbic system, in particular pyramidal cells in the CA3 region of the hippocampus. Foll...
Elevations of Endogenous Kynurenic Acid Produce Spatial Working Memory Deficits
Chess, Amy C.; Simoni, Michael K.; Alling, Torey E.; Bucci, David J.
2007-01-01
Kynurenic acid (KYNA) is a tryptophan metabolite that is synthesized and released by astrocytes and acts as a competitive antagonist of the glycine site of N-methyl-D-aspartate receptors at high concentrations and as a noncompetitive antagonist of the α7-nicotinic acetylcholine receptor at low concentrations. The discovery of increased cortical KYNA levels in schizophrenia prompted the hypothesis that elevated KYNA concentration may underlie the working memory dysfunction observed in this population that has been attributed to altered glutamatergic and/or cholinergic transmission. The present study investigated the effect of elevated endogenous KYNA on spatial working memory function in rats. Increased KYNA levels were achieved with intraperitoneal administration of kynurenine (100 mg/kg), the precursor of KYNA synthesis. Rats were treated with either kynurenine or a vehicle solution prior to testing in a radial arm maze task at various delays. Elevations of endogenous KYNA resulted in increased errors in the radial arm maze. In separate experiments, assessment of locomotor activity in an open field and latency to retrieve food reward from one of the maze arms ruled out the possibility that deficits in the maze were attributable to altered locomotor activity or motivation to consume food. These results provide evidence that increased KYNA levels produce spatial working memory deficits and are among the first to demonstrate the influence of glia-derived molecules on cognitive function. The implications for psychopathological conditions such as schizophrenia are discussed. PMID:16920787
ERIC Educational Resources Information Center
Plowright, C. M. S.; Simonds, V. M.; Butler, M. A.
2006-01-01
Two experiments examined the exploratory behaviour of flower-naive bumblebees. Bees were tested four times in a 12-arm radial arm maze in which they never received reward. Patterned and unpatterned stimuli were presented at the end of each corridor and the choices of the bees were recorded. We examined the effects of two variables, time and the…
Characterization of the rat exploratory behavior in the elevated plus-maze with Markov chains.
Tejada, Julián; Bosco, Geraldine G; Morato, Silvio; Roque, Antonio C
2010-11-30
The elevated plus-maze is an animal model of anxiety used to study the effect of different drugs on the behavior of the animal. It consists of a plus-shaped maze with two open and two closed arms elevated 50cm from the floor. The standard measures used to characterize exploratory behavior in the elevated plus-maze are the time spent and the number of entries in the open arms. In this work, we use Markov chains to characterize the exploratory behavior of the rat in the elevated plus-maze under three different conditions: normal and under the effects of anxiogenic and anxiolytic drugs. The spatial structure of the elevated plus-maze is divided into squares, which are associated with states of a Markov chain. By counting the frequencies of transitions between states during 5-min sessions in the elevated plus-maze, we constructed stochastic matrices for the three conditions studied. The stochastic matrices show specific patterns, which correspond to the observed behaviors of the rat under the three different conditions. For the control group, the stochastic matrix shows a clear preference for places in the closed arms. This preference is enhanced for the anxiogenic group. For the anxiolytic group, the stochastic matrix shows a pattern similar to a random walk. Our results suggest that Markov chains can be used together with the standard measures to characterize the rat behavior in the elevated plus-maze. Copyright © 2010 Elsevier B.V. All rights reserved.
Rosic, Gvozden; Joksimovic, Jovana; Selakovic, Dragica; Milovanovic, Dragan; Jakovljevic, Vladimir
2014-01-01
Nandrolone decanoate (ND) is frequently used anabolic androgenic steroid (AAS) among the athletes. Despite the health risks, there is significant increase in prevalence of AAS abuse. The aim of this study was to investigate the effects of chronic exposure to ND at supraphysiological dose (to mimic the doses for human AAS abusers) on anxiety levels in adult rats. We performed several behavioral tests (open field test, elevated plus maze test, beam-walking test, evoked beam-walking test and tail suspension test) for estimation of anxiety in rats. Adult rats received 20 mg/kg intraperitoneal injection of ND weekly for four weeks. Behavioral test were performed on the seventh day after the last dose of ND. Anxiogenic-like pattern of behavior was clearly observed in several behavioral tests, such as open field test (decrease of total distance moved and cumulative duration of moving, decrease of an average velocity of the animals, decrease of frequency and total time in centre zone); elevated plus maze (decreased total time spent in open arms and the number of entries in open arms of the elevated plus maze); evoked beam-walking test (decreased time to cross the beam) and tail suspension test (increased latency to first immobility and decreased total duration of immobility). Results of this study show that four-week treatment with the supraphysiological dose of ND produced anxiogenic effects in sedentary male rats. Our results show that rats after chronic treatment with a supraphysiological dose of ND exhibited anxiety-like behavior.
Release from proactive interference in rat spatial working memory.
Roberts, William A; MacDonald, Hayden; Brown, Lyn; Macpherson, Krista
2017-09-01
A three-phase procedure was used to produce proactive interference (PI) in one trial on an eight-arm radial maze. Rats were forced to enter four arms for reward on an initial interference phase, to then enter the four remaining arms on a target phase, and to then choose among all eight arms on a retention test, with only the arms not visited in the target phase containing reward. Control trials involved only the target phase and the retention test. Lower accuracy was found on PI trials than on control trials, but performance on PI trials significantly exceeded chance, showing some retention of target memories. Changes in temporal and reward variables between the interference, target, and retention test phases showed release from PI, but changes in context and pattern of arm entry did not. It is suggested that the release from PI paradigm can be used to understand spatial memory encoding in rats and other species.
Stern, C A J; Do Monte, F H M; Gazarini, L; Carobrez, A P; Bertoglio, L J
2010-09-29
The prelimbic (PL) subregion of medial prefrontal cortex has been implicated in anxiety regulation. It is unknown, however, whether PL cortex also serves to fine-tuning the level of anxiety-related behavior exhibited on the next exposure to the same potentially threatening situation. To address this, we infused cobalt (1.0 mM) to temporarily inactivate the PL cortex during testing, post-testing or retesting in the elevated plus-maze (EPM). This protocol was chosen because it allowed us to concurrently investigate anxiety and the process of aversive learning and memory. PL cortex inactivation during the EPM testing increased the exploration of open-arms, substantiating its role in anxiety. PL cortex inactivation during the EPM retesting counteracted the further avoidance to open-arms exhibited by rats. Interestingly, as evidenced by min-by-min analysis, the cobalt-treated group behaved on EPM retesting as did the vehicle-treated group on EPM testing. This result may imply that activity in PL cortex is necessary for retrieving previously learned information that adjusts the anxiety response level on EPM retesting. Alternatively, a simple reduction in anxiety could explain the cobalt-induced increase in retest open-arms exploration. Neither test nor post-test PL cortex inactivation affected the further avoidance to open-arms observed on EPM retesting. To extend the investigation of PL cortex role in the regulation of open-arms avoidance, we infused other drugs prior to testing or retesting in the EPM. Antagonism of PL cortex adrenergic beta-1 receptors with atenolol (10 nmol), cholinergic muscarinic receptors with scopolamine (20 nmol) or glutamatergic N-methyl-d-aspartic acid (NMDA) receptors with AP5 (6.0 nmol) interfered with the level of open-arms exploration on testing, but not on retesting. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Burger, J; Boarman, W; Kurzava, L; Gochfeld, M
1991-01-01
The abilities of hatchling pine snakes (Pituophis melanoleucus) and king snakes (Lampropeltis getulus) to discriminate the chemical trails of pine and king snakes was investigated inY-maze experiments. Pine snakes were housed for 17 days either with shavings impregnated with pine snake odor, king snake odor, or no odor to test for the effect of experience on choice. Both pine and king snake hatchlings entered the arm with the pine snake odor and did not enter the arm with the king snake odor. The data support the hypothesis that hatchlings of both species can distinguish conspecific odors from other odors and that our manipulation of previous experience was without effect for pine snake hatchlings.
Romão, Pedro R T; Lemos, Joelson C; Moreira, Jeverson; de Chaves, Gisele; Moretti, Morgana; Castro, Adalberto A; Andrade, Vanessa M; Boeck, Carina R; Quevedo, João; Gavioli, Elaine C
2011-01-01
Nevirapine (NVP) and efavirenz (EFV) belong to the class of anti-HIV drugs called non-nucleoside reverse transcriptase inhibitors (NNRTIs), commonly used as part of highly active antiretroviral therapy (HAART). Although the HAART is able to bring down viral load to undetectable levels and restore immune function, their prolonged use causes several adverse effects. It has been demonstrated that both NVP and EFV are able to cross the blood-brain barrier, causing important central nervous system-related side effects. Thus, this study investigated the effects of chronic administration of EFV (10 mg/kg) and NVP (3.3 mg/kg) in mice submitted to two distinct series of experiments, which aimed to evaluate: (1) the emotional behavior (elevated plus-maze, forced swimming, and open-field test) and (2) the cognitive performance (object recognition and inhibitory avoidance test) of mice. Our results demonstrated that EFV, but not NVP, reduced the exploration to open arms in the elevated plus-maze test. Neither NVP nor EFV altered mouse behavior in the forced swimming and open-field tests. Both drugs reduced the recognition index in the object recognition test, but only EFV significantly impaired the aversive memory assessed in the inhibitory avoidance test 24 h after training. In conclusion, our findings point to a genuine anxiogenic-like effect to EFV, since it reduced exploration to open arms of elevated plus-maze test without affecting spontaneous locomotion. Additionally, both drugs impaired recognition memory, while only the treatment with EFV impaired significantly aversive memory.
THE ROLE OF AMYGDALAR MU OPIOID RECEPTORS IN ANXIETY-RELATED RESPONSES IN TWO RAT MODELS
Wilson, Marlene A.; Junor, Lorain
2009-01-01
Amygdala opioids such as enkephalin appear to play some role in the control of anxiety and the anxiolytic effects of benzodiazepines, although the opioid receptor subtypes mediating such effects are unclear. This study compared the influences of mu opioid receptor (MOR) activation in the central nucleus of the amygdala (CEA) on unconditioned fear or anxiety-like responses in two models, the elevated plus maze and the defensive burying test. The role of MOR in the anxiolytic actions of the benzodiazepine agonist diazepam was also examined using both models. Either the MOR agonist [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin (DAMGO) or the MOR antagonists Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) or β-funaltrexamine (FNA) were bilaterally infused into the CEA of rats prior to testing. The results show that microinjection of DAMGO in the CEA decreased open arm time in the plus maze, while CTAP increased open arm behaviors. In contrast, DAMGO injections in the CEA reduced burying behaviors and increased rearing following exposure to a predator odor, suggesting a shift in the behavioral response in this context. Amygdala injections of the MOR agonist DAMGO or the MOR antagonist CTAP failed to change the anxiolytic effects of diazepam in either test. Our results demonstrate that MOR activation in the central amygdala exerts distinctive effects in two different models of unconditioned fear or anxiety-like responses, and suggest that opioids may exert context-specific regulation of amygdala output circuits and behavioral responses during exposure to potential threats (open arms of the maze) versus discrete threats (predator odor). PMID:18216773
Heredia-López, Francisco J; Álvarez-Cervera, Fernando J; Collí-Alfaro, José G; Bata-García, José L; Arankowsky-Sandoval, Gloria; Góngora-Alfaro, José L
2016-12-01
Continuous spontaneous alternation behavior (SAB) in a Y-maze is used for evaluating working memory in rodents. Here, the design of an automated Y-maze equipped with three infrared optocouplers per arm, and commanded by a reduced instruction set computer (RISC) microcontroller is described. The software was devised for recording only true entries and exits to the arms. Experimental settings are programmed via a keyboard with three buttons and a display. The sequence of arm entries and the time spent in each arm and the neutral zone (NZ) are saved as a text file in a non-volatile memory for later transfer to a USB flash memory. Data files are analyzed with a program developed under LabVIEW® environment, and the results are exported to an Excel® spreadsheet file. Variables measured are: latency to exit the starting arm, sequence and number of arm entries, number of alternations, alternation percentage, and cumulative times spent in each arm and NZ. The automated Y-maze accurately detected the SAB decrease produced in rats by the muscarinic antagonist trihexyphenidyl, and its reversal by caffeine, having 100 % concordance with the alternation percentages calculated by two trained observers who independently watched videos of the same experiments. Although the values of time spent in the arms and NZ measured by the automated system had small discrepancies with those calculated by the observers, Bland-Altman analysis showed 95 % concordance in three pairs of comparisons, while in one it was 90 %, indicating that this system is a reliable and inexpensive alternative for the study of continuous SAB in rodents.
Richter, Sophie Helene; Zeuch, Benjamin; Lankisch, Katja; Gass, Peter; Durstewitz, Daniel; Vollmayr, Barbara
2013-01-01
Disturbances in cognitive functioning are among the most debilitating problems experienced by patients with major depression. Investigations of these deficits in animals help to extend and refine our understanding of human emotional disorder, while at the same time providing valid tools to study higher executive functions in animals. We employ the “learned helplessness” genetic rat model of depression in studying working memory using an eight arm radial maze procedure with temporal delay. This so-called delayed spatial win-shift task consists of three phases, training, delay and test, requiring rats to hold information on-line across a retention interval and making choices based on this information in the test phase. According to a 2×2 factorial design, working memory performance of thirty-one congenitally helpless (cLH) and non-helpless (cNLH) rats was tested on eighteen trials, additionally imposing two different delay durations, 30 s and 15 min, respectively. While not observing a general cognitive deficit in cLH rats, the delay length greatly influenced maze performance. Notably, performance was most impaired in cLH rats tested with the shorter 30 s delay, suggesting a stress-related disruption of attentional processes in rats that are more sensitive to stress. Our study provides direct animal homologues of clinically important measures in human research, and contributes to the non-invasive assessment of cognitive deficits associated with depression. PMID:23614050
Models of anxiety: responses of mice to novelty and open spaces in a 3D maze.
Ennaceur, A; Michalikova, S; van Rensburg, R; Chazot, P L
2006-11-01
The present report describes the emotional responses of different strains of mice to exposure to a novel open space model of anxiety using a 3D spatial navigation task. The 3D maze is modification of the radial maze with flexible arms that can be raised above or lowered below the horizontal level of a central platform. To access the arms animals need to cross a bridge linking the arms to the central platform. In this model, mice are exposed to novelty in an unfamiliar open space setting with no safe alternative. Fear from novelty is compounded with the need to explore. The drive to escape and the drive to approach are intermingled making this open space model radically different from the current models of anxiety which provide animals with the choice between safe and anxiogenic spaces. In a series of experiments, we examined the behaviour of different groups of mice from C57, C3H, CD1 and Balb/c strains. In the first experiment, different groups of C57 mice were tested in one of the three arms configurations. In the second experiment, C57 mice were compared to C3H mice. In the third experiment, C57 mice were compared to CD1 and Balb/c mice in the raised arm configuration over three successive sessions. In the fourth experiment, we examined the behaviour of C57 mice in the lowered arm configuration with an open and an enclosed central. In the final experiment, we examined the difference between C57 and C3H mice of both genders. Using several spatio-temporal parameters of the transition responses between central platform, bridges and arms, we have been able to show consistent results demonstrating significant differences between C57 and C3H mice, and between Balb/c and both C57 and CD1 mice. C3H appear more anxious than C57 mice, and Balb/c mice seem more anxious than C57 and CD1 mice. We also observed significant differences between sexes in C3H mice but not in C57 mice. C3H male mice appear more anxious than C3H female mice and than both C57 male and female mice. In the lowered arm configuration with an enclosed central platform, C57 mice took longer time to make a first entry to an arm, made more visits to bridges before first entry to an arm and required longer time between re-entries to arms, spent longer time on the central platform and shorter time on arms compared to mice in the other arm configurations. They also made frequent entries to the centre and bridges compared to mice in the lowered arm with an open central platform. These results demonstrate not only the sensitivity of the parameters of the test but also the consistencies and concordances of the results which make this 3D maze a valuable new tool in the study of the underlying neural mechanisms of anxiety responses in addition to learning and memory, and in assessing the effects of potential anxiolytic drugs. In this report we examine methodological issues related to the design of animal behavioural paradigms and question the value and the construct validity of the current models of human anxiety.
Lalonde, R; Strazielle, C
2012-04-01
The effects of ethanol were examined on three tests of exploratory activity in two mouse strains. Although ethanol reduced open-field rearing in both strains, it increased ambulation only in the less active BALB/cAnN@Ico strain, not in the C57BL/6JIco strain. Likewise, ethanol increased open and enclosed arm entries in the elevated plus-maze only in the more anxious BALB/cAnN@Ico strain. However, both strains injected with ethanol emerged faster than placebo from a small chamber at doses not affecting behaviors in the other two tests. Significant correlations were found between emergence latencies on one hand and either slow stereotyped movements or open and enclosed arm entries on the other. The strain-specific effects may be attributable to differences in GABA(A) -related receptor binding or catalase activity. © 2011 The Authors Fundamental and Clinical Pharmacology © 2011 Société Française de Pharmacologie et de Thérapeutique.
The role of dopamine in the dorsomedial striatum in place and response learning.
Lex, B; Sommer, S; Hauber, W
2011-01-13
The posterior subregion of the dorsomedial striatum (pDMS) has been implicated in spatial learning. Here we investigated the role of dopamine (DA) signals in the pDMS in place and response learning using a T-maze task. Rats subjected to a DA depletion of the pDMS and sham controls were trained for 7 days to retrieve food from the west arm of the maze starting from the south, that is to make a left turn at the choice point. On day 8, a probe test was given in which the starting arm was inserted as the north arm. On days 9-16 animals received further training, and on day 17, a second probe test was performed. We examined whether animals responded on probe tests according to a response strategy (left turn at choice point) or to a place strategy (right turn at choice point). Our results revealed that, unlike sham controls, rats with a pDMS DA depletion preferentially used a response rather than a place strategy already on the first probe test. These findings provide further support for a role of the pDMS in spatially guided behavior and indicate that DA signals in the pDMS are critical for the use of a place strategy. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Diazepam-stress interactions in the rat: effects on autoanalgesia and a plus-maze model of anxiety.
Taukulis, H K; Goggin, C E
1990-03-01
On six occasions spaced at least a week apart, two groups of rats were subjected to a variety of stressful conditions consisting of a restraint/bright light complex, either alone or in combination with a tail pinch, whole-body inversion, or partial immersion in cold water. One of these groups was injected with diazepam (2.0 mg/kg) 30 min prior to the stressors, while the other group experienced the drug in their home cages the following day. A third group also received the diazepam but was not exposed to the stressors. In three test sessions all animals were injected with either diazepam or saline and were then exposed to a novel stressor: a plus-maze used as a screening device for anxiolytic drugs. This was immediately followed by a tail-flick measure of analgesia. The longest tail-flick latencies, indicating stress-induced analgesia ("autoanalgesia"), were observed in the group that had not been exposed to stress prior to testing. The other two groups exhibited substantially shorter latencies but did not differ from one another, thus showing a "stress inoculation" effect that was uninfluenced by diazepam. In the plus-maze, diazepam tends to increase the amount of time rats will spend in the two exposed arms of the maze relative to the two enclosed arms. This effect was significantly attenuated in the group that had previously experienced the variety of stressors after a diazepam injection, suggesting a learned association between drug and stress that resulted in a diminution of the drug's anxiolytic property.
Cuenya, Lucas; Sabariego, Marta; Donaire, Rocío; Callejas-Aguilera, José Enrique; Torres, Carmen; Fernández-Teruel, Alberto
2016-04-01
The sensation/novelty seeking behavioral trait refers to the exploration/preference for a novel environment. Novelty seeking increases during late adolescence and it has been associated with several neurobehavioral disorders. In this experiment, we asked whether inbred Roman high- and low-avoidance (RHA-I, RLA-I) rats (1) differ in novelty seeking in late adolescence and (2) whether late adolescent novelty seeking predicts this trait in adulthood. Thirty six male RHA-I and 36 RLA-I rats were exposed to a novel object exploration (NOE) test during late adolescence (pnd: 52-59; contact latency, contact time, contact frequency). Head-dipping (hole-board, HB), time and visits to a novel-arm (Y-maze), and latency-in and emergence latency (emergence test) were registered in adulthood (pnd: 83-105). The results showed strain differences in all these tests (RHA-I>RLA-I). Factor analysis (RHA-I+RLA-I) revealed two clusters. The first one grouped HB and emergence test measures. The second one grouped NOE and Y-maze variables. Time exploring a novel object (NOE) was a significant predictor of novel arm time (RHA-I+RLA, RHA-I); contact latency was a significant predictor of novel arm frequency (RLA-I). Present results show consistent behavioral associations across four novelty-seeking tests and suggest that late adolescent novelty seeking predicts this genetically-influenced temperamental trait in adult Roman rats. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of the estrous cycle and ovarian hormones on behavioral indices of anxiety in female rats.
Mora, S; Dussaubat, N; Díaz-Véliz, G
1996-10-01
The influence of the estrous cycle and the effects of exogenous administration of estradiol and progesterone on level of anxiety were studied in intact and ovariectomized rats. Intact Sprague-Dawley female rats were classified according to the stages of estrous cycle. Another group of rats was ovariectomized bilaterally and, 14 days after surgery, they received estradiol benzoate (10 micrograms/kg, s.c.) and/or progesterone (25 mg/kg, s.c.) or corn oil (1 ml/kg). The behavioral tests began 3 h after estradiol or 6 h after progesterone and consisted of: (1) exploration of an elevated plus-maze; and (2) retention of a passive avoidance response. Open-arm exploration of the plus-maze varied according to light intensity and the stages of the estrous cycle. There was a slight increase in open-arm exploration by rats in metestrus, under high light intensity. Low light intensity increased the exploration of the open arms by rats in proestrus and estrus, compared to the other phases of the cycle. Retention of the passive avoidance response was inhibited during proestrus and estrus. Progesterone increased open-arm exploration of the plus-maze under high light conditions, whereas estradiol antagonized this effect. Retention of passive avoidance was inhibited after estradiol or progesterone injection. These results suggest that the behavioral indices of anxiety can vary across the estrous cycle, that low light intensities have anxiolytic-like effects, and that the sensitivity to this effect is higher during proestrus and estrus. This could be explained through modulatory effects of ovarian hormones upon behavioral indices of anxiety.
Harsha, Singapura Nagesh; Anilakumar, Kandangath Raghavan
2013-01-01
Lactuca sativa, belonging to the Asteraceae family, is a leafy vegetable known for its medicinal properties. This study aimed to understand the mechanism of Lactuca sativa extract with respect to pharmacological action.We investigated the anxiolytic effects of hydro-alcoholic extract of leaves of Lactuca sativa on mice. The behavioral tests performed on mice models to assess anti-anxiety properties were: open field test (OFT), elevated plus maze test (EPM), elevated T maze test, and marble burying test. Increased locomotor activity and time spent in the "open-arm" were observed in extract fed group. Malondialdehyde (MDA) and nitrite levels were decreased, catalase and glutathione levels were increased in Lactuca sativa treated mice. The data obtained in the present study suggests that the extract of Lactuca sativa can afford significant protection against anxiolytic activity.
Dalvi, A; Rodgers, R J
1999-04-01
Although it is widely believed that benzodiazepines reduce anxiety through positive allosteric modulation of the GABA(A)-chloride channel complex, this is not the only mechanism through which agents of this class can modify CNS function. Furthermore, a significant number of reports of apparent flumazenil blockade of diazepam anxiolysis in animal models have paid limited attention to possible intrinsic behavioral actions of the antagonist per se. In the present study, ethological methods were employed to assess in detail the effects of diazepam, flumazenil, and their combination on the behavior of male DBA/2 mice in the elevated plus-maze paradigm. In two experiments, diazepam (1.5 mg/kg) alone reduced open-arm avoidance and increased head dipping, whereas flumazenil (10-40 mg/kg) alone was without significant behavioral effect. However, with the sole exception of head dipping, prior administration of flumazenil (10 and 40 mg/kg) failed to block the behavioral effects of diazepam under present test conditions. These findings imply that the anxiolytic effects of diazepam in the mouse plus-maze are not mediated through flumazenil-sensitive benzodiazepine receptors and that alternate mechanisms must be considered.
Methylphenidate improves performance on the radial arm maze in periadolescent rats
Dow-Edwards, Diana L.; Weedon, Jeremy C.; Hellmann, Esther
2008-01-01
Methylphenidate (Ritalin; MPD) is one of the most commonly prescribed drugs in childhood and adolescence and many clinical studies have documented its efficacy. Due to the limitations of conducting invasive research in humans, animal models can be beneficial for studying drug effects. However, few animal studies have demonstrated the effects of methylphenidate on cognitive processes. The objective of this study was to find a dose of methylphenidate that was effective in improving performance on a spatial working memory cognitive task when administered orally to periadolescent rats. Therefore, we dosed subjects with methylphenidate at 1 or 3 mg/kg/day via gastric intubation from postnatal day 22 to 59 and assessed the effects of the drug on performance on the radial arm maze each day. To enhance performance overall, a second experiment was conducted where the subjects were moderately food restricted (to 90% of the free-feeding weight). Results of Experiment 1 show that during the first week of testing only the 3mg/kg MPD-treated males showed improved performance (entries prior to repeated entry) when ad-lib fed and housed in pairs while the same dose significantly improved performance in both males and females under conditions of food-restriction and individual housing in Experiment 2. MPD also produced a pattern of increased errors and arms entered during the first week, especially in Experiment 2. MPD increased locomotor activity when tested at postnatal day 60 in both experiments. The data suggest that 3mg/kg oral methylphenidate improves performance on a spatial cognitive task only early in treatment in the rat. While males show improvement under conditions of both high and low motivation, females only show MPD effects when highly motivated. Hypothetically, methylphenidate may improve radial arm maze performance through increased attention and improved spatial working memory and/or alterations in locomotion, reactivity to novelty or anxiety. Regardless, the study supports the utility of the rat as a suitable model to examine the effects of low dose oral MPD. PMID:18538539
Faria, Raquel; Magalhães, Ana; Monteiro, Pedro R R; Gomes-Da-Silva, Joana; Amélia Tavares, Maria; Summavielle, Teresa
2006-08-01
Long-term behavioral consequences of the neurotoxicity produced by 3,4-methylenedioxymethamphetamine (MDMA) in the adolescent rat are still mostly unknown. Here, adolescent male rats (postnatal day 45 PND [45]) were exposed to 10 mg/kg of MDMA, intraperitoneally, every 2 h for 6 h. Controls were given 0.9% saline in the same protocol. Ten days after exposure, the behavioral effects of MDMA were assessed in the elevated plus-maze (n = 6 per group). After behavioral testing, animals were sacrificed and the amygdalae were dissected and processed for HPLC determination of dopamine (DA), serotonin (5-HT), and metabolites. Results showed a significant decrease in the 5-HT content (P < 0.05), but no significant alterations in DA or its metabolites. Behavioral observation in the elevated plus-maze showed a decreased number of entries in the unprotected arms (P < 0.05), which were correlated to the number of entries and time spent in the central platform. Rearing was also decreased (P < 0.05). No differences were observed in head dips, grooming, or number of entries in the protected arms of the apparatus. Therefore, we conclude that, as in the adult rat, exposure to MDMA in the adolescent rat is associated to long-term depletion of the 5-HT content and increased anxiety-like behavior.
Sleep Enhances Recognition Memory for Conspecifics as Bound into Spatial Context
Sawangjit, Anuck; Kelemen, Eduard; Born, Jan; Inostroza, Marion
2017-01-01
Social memory refers to the fundamental ability of social species to recognize their conspecifics in quite different contexts. Sleep has been shown to benefit consolidation, especially of hippocampus-dependent episodic memory whereas effects of sleep on social memory are less well studied. Here, we examined the effect of sleep on memory for conspecifics in rats. To discriminate interactions between the consolidation of social memory and of spatial context during sleep, adult Long Evans rats performed on a social discrimination task in a radial arm maze. The Learning phase comprised three 10-min sampling sessions in which the rats explored a juvenile rat presented at a different arm of the maze in each session. Then the rats were allowed to sleep (n = 18) or stayed awake (n = 18) for 120 min. During the following 10-min Test phase, the familiar juvenile rat (of the Learning phase) was presented along with a novel juvenile rat, each rat at an opposite arm of the maze. Significant social recognition memory, as indicated by preferential exploration of the novel over the familiar conspecific, occurred only after post-learning sleep, but not after wakefulness. Sleep, compared with wakefulness, significantly enhanced social recognition during the first minute of the Test phase. However, memory expression depended on the spatial configuration: Significant social recognition memory emerged only after sleep when the rat encountered the novel conspecific at a place different from that of the familiar juvenile in the last sampling session before sleep. Though unspecific retrieval-related effects cannot entirely be excluded, our findings suggest that sleep, rather than independently enhancing social and spatial aspects of memory, consolidates social memory by acting on an episodic representation that binds the memory of the conspecific together with the spatial context in which it was recently encountered. PMID:28270755
López-Vázquez, Miguel Ángel; López-Loeza, Elisa; Lajud Ávila, Naima; Gutiérrez-Guzmán, Blanca Erika; Hernández-Pérez, J Jesús; Reyes, Yoana Estrada; Olvera-Cortés, María Esther
2014-07-05
Hippocampal theta activity, which is strongly modulated by the septal medial/Broca׳s diagonal band neurons, has been linked to information processing of the hippocampus. Serotonin from the medial raphe nuclei desynchronises hippocampal theta activity, whereas inactivation or a lesion of this nucleus induces continuous and persistent theta activity in the hippocampus. Hippocampal serotonin depletion produces an increased expression of high-frequency theta activity concurrent with the facilitation of place learning in the Morris maze. The medial septum-diagonal band of Broca complex (MS/DBB) has been proposed as a key structure in the serotonin modulation of theta activity. We addressed whether serotonin depletion of the MS/DBB induces changes in the characteristics of hippocampal theta activity and whether the depletion is associated with learning in a working memory spatial task in the radial arm maze. Sprague Dawley rats were depleted of 5HT with the infusion of 5,7-dihydroxytriptamine (5,7-DHT) in MS/DBB and were subsequently trained in the standard test (win-shift) in the radial arm, while the CA1 EEG activity was simultaneously recorded through telemetry. The MS/DBB serotonin depletion induced a low level of expression of low-frequency (4.5-6.5Hz) and a higher expression of high-frequency (6.5-9.5Hz) theta activity concomitant to a minor number of errors committed by rats on the working memory test. Thus, the depletion of serotonin in the MS/DBB caused a facilitator effect on working memory and a predominance of high-frequency theta activity. Copyright © 2014 Elsevier B.V. All rights reserved.
Cognitive deficits induced by 56Fe radiation exposure
NASA Technical Reports Server (NTRS)
Shukitt-Hale, B.; Casadesus, G.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.
2003-01-01
Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Published by Elsevier Science Ltd on behalf of COSPAR.
Handling of Adolescent Rats Improves Learning and Memory and Decreases Anxiety
Costa, Rafaela; Tamascia, Mariana L; Nogueira, Marie D; Casarini, Dulce E; Marcondes, Fernanda K
2012-01-01
Some environmental interventions can result in physiologic and behavioral changes in laboratory animals. In this context, the handling of adolescent or adult rodents has been reported to influence exploratory behavior and emotionality. Here we examined the effects of handling on memory and anxiety levels of adolescent rats. Male Sprague–Dawley rats (age, 60 d) were divided into a control group and a handled group, which were handled for 5 min daily, 5 d per week, for 6 wk. During handling bouts, the rat was removed from its cage, placed in the experimenter's lap or on the top of a table, and had its neck and back gently stroked by the experimenter's fingers. During week 6, each rat's anxiety level was evaluated in the elevated plus-maze (EPM) test. Learning and memory were evaluated 48 h later, by measuring escape latency in the elevated plus-maze test. Plasma corticosterone and catecholamine levels were measured also. Norepinephrine levels were lower in the handled rats compared with control animals, with no differences in epinephrine and corticosterone. As compared with the control rats, the handled rats showed increases in the percentage of time spent in the open arms of the test apparatus, percentage of entries into open arms, and number of visits to the end of the open arms and decreases in the latency of the first open arm entry. Escape latency was lower in the handled rats compared with control rats in both the first and second trials. The data obtained suggest that handling decreases anxiety levels and improves learning skills and memory in rats. PMID:23312082
Methylene Blue Facilitates Memory Retention in Zebrafish in a Dose-Dependent Manner.
Echevarria, David J; Caramillo, Erika M; Gonzalez-Lima, Francisco
2016-12-01
Methylene blue (MB) is an FDA-grandfathered drug with memory-enhancing effects at low doses, but opposite effects at high doses. We investigated the effects of four MB doses (0.1, 0.5, 5.0, or 10.0 μM) on zebrafish memory retention in the T-maze task. After training fish to swim into a certain arm of the T-maze, the fish were placed into a tank containing one of the four MB doses or a control tank containing blue food dye. Subsequently, fish were placed into the T-maze for memory retention testing. Results indicated that MB produced hormetic dose-response effects on memory. Fish that received the 0.5 μM dose performed significantly better at the T-maze than those that received higher doses. Fish who received 5.0 μM did not exhibit a significant difference in performance from control fish, and the fish that received the 10.0 μM dose performed significantly worse than lower doses. These findings support the utility of zebrafish in comparative research and their potential value for testing of MB and other neuropsychopharmacological treatments in animal models of memory disorders.
Hughes, Robert N; Hancock, Nicola J
2017-03-15
For 20days male and female PVG/c hooded rats were provided with caffeinated (approximately 50mg/kg/day) or unadulterated drinking water, and then their anxiety-related behavior was observed in an open field and elevated plus maze. Their choices of a brightness change were also observed in a Y maze to assess any caffeine effects on spatial memory. 24h later, all rats were tested again following an intraperitoneal injection of 50mg/kg acute caffeine, or vehicle. Earlier chronic caffeine decreased ambulation, walking, rearing, center occupancy and increased immobility in the open field thereby suggesting increased anxiety. However, occupancy of the plus-maze open arms and the Y-maze novel arm were increased by caffeine for male rats, but decreased for females probably because of sex differences in control levels of the response rather than to drug effects on anxiety and memory respectively. Following caffeine withdrawal, acute caffeine had the opposite effect to chronic treatment namely, increased open-field ambulation, walking, center occupancy and decreased immobility and defecation for caffeine-naïve rats that were suggestive of decreased anxiety. Similar but more consistent effects (plus decreased emergence latencies from a darkened start box into the open field) also typified the caffeine-experienced rats which in this case may have been accentuated by caffeine withdrawal-reversal. There was no evidence of either chronic or acute caffeine affecting spatial memory measured in the Y maze. There were also examples of lower overall activity and higher anxiety in male rats, than in females, and some sex-dependent caffeine effects. Copyright © 2016 Elsevier B.V. All rights reserved.
Learning about cognition risk with the radial-arm maze in the developmental neurotoxicology battery.
Levin, Edward D
2015-01-01
Cognitive dysfunction has been found in epidemiological studies to be among the most sensitive impairments associated with developmental exposure to a variety of environmental contaminants from heavy metals to polyhalogenated hydrocarbons and pesticides. These chemicals have been also shown to impair cognitive function after developmental exposure in experimental animal models. The radial-arm maze (RAM) has proven to be a sensitive and reliable way to assess both learning and memory in a variety of species, most often in rats and mice. The RAM is a very adaptable test method that takes advantage of rodents' instinct to explore new places in the environment to forage. That is, rodents do not need to be trained to run through the maze; they will normally do this from the initial session of testing. Training with differential reinforcement for arm choices provides a more rigorous test of learning and memory. The RAM is quite adaptable for assessing various aspects of cognition. Although the RAM has been mostly used to assess spatial learning and memory, it can be configured to assess non-spatial memory as well. Both working and reference memory can be easily distinguished. The RAM can be run with both appetitive (food reinforced) and aversive (water escape) motivators. The RAM has been found to be sensitive to a wide variety of developmental toxicants including heavy metals such as mercury and pesticides such as chlorpyrifos. There is an extremely rich literature especially with rats showing the effects of many types of brain lesions and drug effects so that the participation of a wide variety of neural systems in RAM performance is known. These systems, notably the hippocampus and frontal cortex, and acetylcholine and glutamate neurotransmitter systems, are the same neural systems that have been shown in humans to be critical for learning and memory. This considerably aids the interpretation of neurobehavioral toxicity studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Dias, Glaecir Roseni Mundstock; Vieira, Francielli Araújo; Dobrachinski, Fernando; Bridi, Jéssika Cristina; Balk, Rodrigo de Souza; Soares, Félix Antunes; Nogueira, Cristina Wayne; Barbosa, Nilda Berenice de Vargas
2012-04-01
Cognitive deficits have been observed in different animal models of adult-onset hypothyroidism. Thus, this study was delineated to evaluate whether diphenyl diselenide, an organoselenium compound with neuroprotective and antioxidant properties, could afford protection against the detrimental effects of hypothyroidism on behavioral parameters. Hypothyroidism condition was induced in female rats by continuous exposure to methimazole (MTZ) at 20 mg/100 ml in the drinking water, during 3 months. MTZ-induced hypothyroid rats were fed with either standard or a diet containing 5 ppm of diphenyl diselenide for 3 months. Behavioral assessments were performed monthly, in the following order: elevated plus maze, open field and Morris water maze. The levels of thyroid hormones in the animals exposed to MTZ were lower than control until the end of experimental period. The rats exposed to MTZ had a significant weight loss from the first month, which was not modified by diphenyl diselenide supplementation. In elevated plus maze test, MTZ exposure caused a reduction on the number of entries of animals in closed arms, which was avoided by diphenyl diselenide supplementation. In Morris water maze, the parameters latency to reach the platform and distance performed to find the escape platform in the test session were significantly greater in MTZ group when compared to control. These cognitive deficits observed in MTZ-induced hypothyroid rats were restored by dietary diphenyl diselenide. The group fed with diphenyl diselenide alone exhibited a better spatial learning and memory capability in some parameters of Morris water maze when compared to the control group. In summary, our data provide evidence of the effectiveness of dietary diphenyl diselenide in improving the performance of control and hypothyroid rats in the water maze test. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.
Navarro, José Francisco; Maldonado, Enrique
2002-10-01
3,4-Methylenedioxymethamphetamine (MDMA) is a compound structurally similar to methamphetamine, which has become one of the most widely used illicit substances. Animal studies investigating acute effects of MDMA on anxiety are unclear since, although an anxiogenic-like action of MDMA in different animal models of anxiety has been mainly described, there is also evidence supporting an anxiolytic-like effect for this drug. An attempt was made to clarify the possible anxiogenic-like profile of MDMA (1, 8 and 15 mg/kg i.p.) by analyzing its effect on behavior of male mice in the elevated plus-maze test. Moreover, the possible development of tolerance to the effects of MDMA on anxiety after its subchronic administration for 5 consecutive days was examined. The parameters evaluated included: (1) total time in open arms, (2) total time in closed arms, (3) total time in central area, (4) number of open arm entries, (5) number of closed arm entries and (6) number of central area entries. Acute treatment with MDMA (8 mg/kg) significantly reduced the time spent in the open arms, as well as markedly increasing the number of entries in the closed arms and in the central area, as compared with the control group, suggesting that MDMA, at this dose, has an anxiogenic-like activity. Mice subchronically treated with the drug (1 and 8 mg/kg) displayed a notable reduction in the time spent in the open arms, accompanied by an increase in the time spent in the closed arms and in the central platform. These results indicate that the anxiogenic-like effect found after acute treatment is not only maintained but also more marked after subchronic treatment. In contrast, mice treated subchronically with the highest dose of MDMA (15 mg/kg) exhibited a significant increase in the time spent in the open arms as well as a marked reduction in the time spent in the closed arms, supporting an anxiolytic-like activity of the drug. A possible dual pharmacological property of MDMA on anxiety is suggested.
Gamberini, Maria Thereza; Rodrigues, Domingos Sávio; Rodrigues, Daniela; Pontes, Victoria Bottino
2015-06-20
Pimpinella anisum L. is considered one of the first plants used for medicinal purposes. Pharmacological actions of the plant on the central nervous system have been proven but previous analyses have focused on anticonvulsant and neuroprotective actions. In traditional medicine worldwide, the use of Pimpinella is commonly recommended as a tranquilizer, although no scientific information supporting this use is available. Therefore, it was decided to investigate the central actions of the plant to observe behavioral responses, with an emphasis on the emotional component. To investigate the effects of the aqueous extract of Pimpinella seeds on exploratory activity and emotional behavior in rats using the open field and elevated plus maze tests. Seeds of Pimpinella were extracted with distilled water, concentrated and freeze-dried yielding the aqueous extract(AE). Rats were divided into four groups: control(water 5 mL/kg, p.o.) and AE 0.5, 1.0 and 2.0 g/kg, p.o. Individual observations were performed in an open field and the parameters locomotor activity, rearing, grooming and defecation were recorded. In elevated plus maze test, rats were divided into four groups: control(water 5 mL/kg, p.o.) and AE 0.5, 1.0 and 2.0 g/kg, p.o. The parameters arm entries, total time spent in open and closed arms; and total number of arrivals at the end of an open or closed arm were recorded for each rat. Among the parameters assessed with the open field test, only rearing was reduced in the AE 0.5 g/kg group. When AE 1.0 g/kg was administered, only the initiation of exploratory activity was delayed, without impairing the animals' general activity. The highest dose of AE (2.0 g/kg) induced a reduction in the animals' habituation during the open field test within the same session, as evidenced by the maintenance of high levels of peripheral locomotion and rearing throughout the test. On the elevated plus maze test, no alterations were observed in the responses of the animals relative to controls for all doses tested. These results failed to support anxiety-related central action of the aqueous extract of Pimpinella seeds, invalidating popular beliefs regarding a tranquilizing effect. However, a habituation-related central action of the extract was demonstrated, suggesting action of bioactive compounds on central learning-related areas. The characterization of effects that may interfere with cognitive processes reinforces caution regarding indiscriminate consumption of the plant, especially in individuals with deficits, such as Alzheimer's Disease patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
The Preference for Symmetry in Flower-Naive and Not-so-Naive Bumblebees
ERIC Educational Resources Information Center
Plowright, C. M. S.; Evans, S. A.; Leung, J. Chew; Collin, C. A.
2011-01-01
Truly flower-naive bumblebees, with no prior rewarded experience for visits on any visual patterns outside the colony, were tested for their choice of bilaterally symmetric over asymmetric patterns in a radial-arm maze. No preference for symmetry was found. Prior training with rewarded black and white disks did, however, lead to a significant…
Self-administration of morphine into the lateral hypothalamus in the mouse.
Cazala, P; Darracq, C; Saint-Marc, M
1987-07-28
BALB/c mice were chronically and unilaterally implanted with a guide cannula, the tip of which was positioned 1 mm above the lateral hypothalamus (LH). On each experimental day, a stainless-steel injection cannula was inserted into the LH, and self-administration of morphine or vehicle in this brain area was studied by using a spatial discrimination test in a Y-maze. In a first experiment, we observed that when mice had access to morphine (0.1 microgram by injection) they rapidly discriminated the reinforced arm from the neutral arm of the maze in order to self administer, with increasing frequency, the drug into the LH. In contrast when only vehicle was present, the two arms were no longer discriminated. In a second experiment we compared the effects of 3 doses of morphine (0.1 microgram, 0.05 microgram and 0.025 microgram by injection); optimal discrimination was obtained with the lowest dose used. In a third experiment we observed that subcutaneous injections of naloxone (4 mg/kg) progressively reduced the number of self-administrations of morphine into the LH, a result which suggests that this response is dependent on an opiate receptor mechanism.
Gong, Mei-Fang; Wen, Rui-Ting; Xu, Ying; Pan, Jian-Chun; Fei, Ning; Zhou, Yan-Meng; Xu, Jiang-Ping; Liang, Jian-Hui; Zhang, Han-Ting
2017-10-01
Withdrawal symptoms stand as a core feature of alcohol dependence. Our previous results have shown that inhibition of phosphodiesterase-4 (PDE4) decreased ethanol seeking and drinking in alcohol-preferring rodents. However, little is known about whether PDE4 is involved in ethanol abstinence-related behavior. The objective of this study was to characterize the role of PDE4 in the development of anxiety- and depressive-like behavior induced by abstinence from ethanol exposure in different animal models. Using three rodent models of ethanol abstinence, we examined the effects of rolipram, a prototypical, selective PDE4 inhibitor, on (1) anxiety-like behavior induced by repeated ethanol abstinence in the elevated plus maze test in fawn-hooded (FH/Wjd) rats, (2) anxiety-like behavior in the open-field test and light-dark transition test following acute ethanol abstinence in C57BL/6J mice, and (3) anxiety- and depressive-like behavior induced by protracted ethanol abstinence in the elevated plus maze, forced-swim, and tail-suspension tests in C57BL/6J mice. Pretreatment with rolipram (0.1 or 0.2 mg/kg) significantly increased entries and time spent in the open arms of the elevated plus maze test in rats with repeated ethanol abstinence. Similarly, in mice with acute ethanol abstinence, administration of rolipram (0.25 or 0.5 mg/kg) dose-dependently increased the crossings in the central zone of the open-field test and duration and transitions on the light side of the light-dark transition test, suggesting anxiolytic-like effects of rolipram. Consistent with these, chronic treatment with rolipram (0.1, 0.3, or 1.0 mg/kg) increased entries in the open arms of the elevated plus maze test; it also reduced the increased duration of immobility in both the forced-swim and tail-suspension tests in mice after protracted ethanol abstinence, suggesting antidepressant-like effects of rolipram. These results provide the first demonstration for that PDE4 plays a role in modulating the development of negative emotional reactions associated with ethanol abstinence, including anxiety and depression. PDE4 inhibitors may be a novel class of drugs for treatment of alcoholism.
Dynamics of memory-guided choice behavior in Drosophila
ICHINOSE, Toshiharu; TANIMOTO, Hiromu
2016-01-01
Memory retrieval requires both accuracy and speed. Olfactory learning of the fruit fly Drosophila melanogaster serves as a powerful model system to identify molecular and neuronal substrates of memory and memory-guided behavior. The behavioral expression of olfactory memory has traditionally been tested as a conditioned odor response in a simple T-maze, which measures the result, but not the speed, of odor choice. Here, we developed multiplexed T-mazes that allow video recording of the choice behavior. Automatic fly counting in each arm of the maze visualizes choice dynamics. Using this setup, we show that the transient blockade of serotonergic neurons slows down the choice, while leaving the eventual choice intact. In contrast, activation of the same neurons impairs the eventual performance leaving the choice speed unchanged. Our new apparatus contributes to elucidating how the speed and the accuracy of memory retrieval are implemented in the fly brain. PMID:27725473
Spontaneous alternation: A potential gateway to spatial working memory in Drosophila.
Lewis, Sara A; Negelspach, David C; Kaladchibachi, Sevag; Cowen, Stephen L; Fernandez, Fabian
2017-07-01
Despite their ubiquity in biomedical research, Drosophila have yet to be widely employed as model organisms in psychology. Many complex human-like behaviors are observed in Drosophila, which exhibit elaborate displays of inter-male aggression and female courtship, self-medication with alcohol in response to stress, and even cultural transmission of social information. Here, we asked whether Drosophila can demonstrate behavioral indices of spatial working memory in a Y-maze, a classic test of memory function and novelty-seeking in rodents. Our data show that Drosophila, like rodents, alternate their visits among the three arms of a Y-maze and spontaneously favor entry into arms they have explored less recently versus ones they have just seen. These findings suggest that Drosophila possess some of the information-seeking and working memory facilities mammals depend on to navigate through space and might be relevant models for understanding human psychological phenomena such as curiosity. Copyright © 2017 Elsevier Inc. All rights reserved.
McDonald, R J; Hong, N S
2004-01-01
This experiment tested the idea that the amygdala-based learning and memory system covertly acquires a stimulus-reward (stimulus-outcome) association during acquisition of a stimulus-response (S-R) habit task developed for the eight-arm radial maze. Groups of rats were given dorso-lateral striatal or amygdala lesions and then trained on the S-R habit task on the eight-arm radial maze. Rats with neurotoxic damage to the dorso-lateral striatum were severely impaired on the acquisition of the S-R habit task but showed a conditioned-cue preference for the stimulus reinforced during S-R habit training. Rats with neurotoxic damage to the amygdala were able to acquire the S-R habit task but did not show a conditioned-cue preference for the stimulus reinforced during S-R habit training. This pattern of results represents a dissociation of learning and memory functions of the dorsal striatum and amygdala on the same task.
Taurine induces anti-anxiety by activating strychnine-sensitive glycine receptor in vivo.
Zhang, Cheng Gao; Kim, Sung-Jin
2007-01-01
Taurine has a variety of actions in the body such as cardiotonic, host-defensive, radioprotective and glucose-regulatory effects. However, its action in the central nervous system remains to be characterized. In the present study, we tested to see whether taurine exerts anti-anxiety effects and to explore its mechanism of anti-anxiety activity in vivo. The staircase test and elevated plus maze test were performed to test the anti-anxiety action of taurine. Convulsions induced by strychnine, picrotoxin, yohimbine and isoniazid were tested to explore the mechanism of anti-anxiety activity of taurine. The Rotarod test was performed to test muscle relaxant activity and the passive avoidance test was carried out to test memory activity in response to taurine. Taurine (200 mg/kg, p.o.) significantly reduced rearing numbers in the staircase test while it increased the time spent in the open arms as well as the number of entries to the open arms in the elevated plus maze test, suggesting that it has a significant anti-anxiety activity. Taurine's action could be due to its binding to and activating of strychnine-sensitive glycine receptor in vivo as it inhibited convulsion caused by strychnine; however, it has little effect on picrotoxin-induced convulsion, suggesting its anti-anxiety activity may not be linked to GABA receptor. It did not alter memory function and muscle activity. Taken together, these results suggest that taurine could be beneficial for the control of anxiety in the clinical situations. Copyright (c) 2007 S. Karger AG, Basel.
USDA-ARS?s Scientific Manuscript database
Turning preferences among 309 white-faced ewes were individually evaluated in an enclosed, artificially lighted, T-maze, followed by each ewe choosing either a right or left return alley to return to peers. Data recorded included time in the start box, time in the T-maze, exit arm chosen to leave th...
The anxiolytic activity of n-3 PUFAs enriched egg yolk phospholipids in rat behavioral studies.
Rutkowska, M; Słupski, W; Trocha, M; Szandruk, M; Rymaszewska, J
2016-11-02
Phospholipids play an important role in the biochemical and physiological processes of cells. An association between disturbed phospholipids metabolism in neuronal tissue and anxiety it was shown. The aim of this study was to examine the anxiolytic properties of phospholipids obtained from a new generation of eggs enriched in n-3 PUFA and its effect on locomotor activity in rat behavioral studies N-3 PUFA-enriched egg yolk phospholipids ("super lecithin") were added to the standard feed. Rats were fed by chow without (control group) or with (experimental group) addition of phospholipids. After six weeks of supplementation, the effect of phospholipids on locomotor activity in the open field test and anxiolytic properties in elevated plus maze and Vogel conflict test were examined. In the open field test the total distance traveled in the experimental group was similar to the control group. In the elevated plus maze test a six weeks phospholipids' administration significantly prolonged the time spent on the open arms by rats from experimental group compared to control group. The number of entries into the open arms was also increased but the difference was not statistically significant. The number of punished drinking water in the Vogel conflict test increased significantly in experimental versus control group. The obtained results suggest that the phospholipids isolated from n-3 PUFA enriched egg yolk have a specific anxiolytic effect, without general sedative influence.
López-Crespo, G A; Flores, P; Sánchez-Santed, F; Sánchez-Amate, M C
2009-11-01
Chlorpyrifos (CPF) is a broad spectrum organophosphate (OP) pesticide widely used in agriculture, industry and household. Several animal studies indicate emotional disturbances after CPF exposure, although the results are sometimes puzzling. Thus, both anxiolytic and anxiogenic effects of CPF have been reported in different animal models of anxiety [Sánchez-Amate MC, Flores P, Sánchez-Santed F. Effects of chlorpyrifos in the plus-maze model of anxiety. Behav Pharmacol 2001;12:285-92; Sánchez-Amate MC, Dávila E, Cañadas F, Flores P, Sánchez-Santed F. Chlorpyrifos shares stimulus properties with pentilenetetrazol as evaluated by and operant drug discrimination task. Neurotoxicology 2002;23:795-803; López-Crespo G, Carvajal F, Flores P, Sánchez-Santed F, Sánchez-Amate MC. Time-course of biochemical and behavioural effects of a single high dose of chlorpyrifos. Neurotoxicology 2007;28:541-7]. On the other hand, other behavioural effects of CPF are time-dependent [López-Crespo G, Carvajal F, Flores P, Sánchez-Santed F, Sánchez-Amate MC. Time-course of biochemical and behavioural effects of a single high dose of chlorpyrifos. Neurotoxicology 2007;28:541-7], raising the question that the effects of CPF could be task and post-administration time dependent. To test this hypothesis, three groups of rats were treated with a single high dose of CPF (250 mg/kg); one of the groups was tested on day 5 on the elevated plus-maze, to complete our previous study on day 2 [Sánchez-Amate MC, Flores P, Sánchez-Santed F. Effects of chlorpyrifos in the plus-maze model of anxiety. Behav Pharmacol 2001;12:285-92]. The remaining groups were tested on the elevated T-maze on days 2 and 5. CPF produced an increased open arm activity on the elevated plus-maze on day 5, an increased escape latency on the elevated T-maze on day 2 and an impaired inhibitory avoidance on day 5. Data are discussed taking together all studies carried out in our laboratory, confirming that CPF effects on emotional behaviour are dependent on both task contingencies and post-administration time.
Orexin-A (hypocretin-1) is possibly involved in generation of anxiety-like behavior.
Suzuki, Michiyuki; Beuckmann, Carsten T; Shikata, Kohdoh; Ogura, Hiroo; Sawai, Toru
2005-05-17
Orexins (hypocretins) are neuropeptides expressed specifically in neurons in the lateral hypothalamic area and are known to be involved in the regulation of vigilance and feeding behavior. However, the relationship between orexin and emotional behaviors like anxiety is still poorly understood. Therefore, in this report we evaluated the effect of intracerebroventricular injection of orexin-A in two major anxiety tests, the light-dark exploration test (mouse) and the elevated plus-maze test (mouse, rat). Orexin increased time spent in the dark compartment in the light-dark test and time spent on the closed arms in the elevated plus-maze test. These results were not caused by a hypothetical sedative or activity-inducing effect of orexin-A because spontaneous locomotor activity did not alter upon orexin-A application under novel conditions. We therefore suggest an anxiogenic effect of orexin-A. To our knowledge, this is the first report about a relationship between orexin-A and anxiety.
Kebebew, Zerihun; Shibeshi, Workineh
2013-11-25
Carica papaya has been used in the Ethiopian traditional medicine to relieve stress and other disease conditions. The present study was undertaken to evaluate the anxiolytic and sedative effects of 80% ethanolic Carica papaya (Caricaceae) pulp extract in mice. Carica papaya pulp extract was screened for anxiolytic effect by using elevated plus maze, staircase and open field tests, and ketamine-induced sleeping time test for sedation at doses of 50, 100, 200, 400 mg/kg. Distilled water and Diazepam were employed as negative and positive control groups, respectively. Carica papaya pulp extract 100 mg/kg significantly increased the percentage of open arm time and entry, and reduced the percentage of entry and time spent in closed arm in elevated plus maze test; reduced the number of rearing in the staircase test; and increased the time spent and entries in the central squares while the total number of entries into the open field were not significantly affected, suggesting anxiolytic activity without altering locomotor and sedative effects. A synergistic reduction in the number of rearing and an inverted U-shaped dose response curves were obtained with important parameters of anxiety The results of this study established a support for the traditional usage of Carica papaya as anxiolytic medicinal plant. © 2013 Elsevier Ireland Ltd. All rights reserved.
Leptin/LepRb in the Ventral Tegmental Area Mediates Anxiety-Related Behaviors
Liu, Jing; Guo, Ming
2016-01-01
Background: Leptin, an adipose-derived hormone, has been implicated in emotional regulation. We have previously shown that systemic administration of leptin produces anxiolytic-like effects and deletion of the leptin receptor, LepRb, in midbrain dopamine neurons leads to an anxiogenic phenotype. This study investigated whether activation or deletion of LepRb in the ventral tegmental area of adult mice is capable of inducing anxiolytic and anxiogenic effects, respectively. Methods: Mice were cannulated in the ventral tegmental area and received bilateral intra-ventral tegmental area infusions of leptin or the JAK2/STAT3 inhibitor AG490. Anxiety-like behaviors were assessed using the elevated plus-maze, light-dark box, and novelty suppressed feeding tests. Deletion of LepRb in the ventral tegmental area was achieved by bilateral injection of AAV-Cre into the ventral tegmental area of adult Leprflox/flox mice. Anxiety-related behaviors were evaluated 3 weeks after viral injection. Results: Intra-ventral tegmental area infusions of leptin reduced anxiety-like behaviors, as indicated by increased percent open-arm time and open-arm entries in the elevated plus-maze test, increased time spent in the light side and decreased latency to enter the light side of the light-dark box, and decreased latency to feed in the novelty suppressed feeding test. Blockade of JAK2/STAT3 signaling in the ventral tegmental area by AG490 attenuated the anxiolytic effect produced by systemic administration of leptin. Leprflox/flox mice injected with AAV-Cre into the ventral tegmental area showed decreased leptin-induced STAT3 phosphorylation and enhanced anxiety-like behaviors in the elevated plus-maze test and the novelty suppressed feeding test. Conclusions: These findings suggest that leptin-LepRb signaling in the ventral tegmental area plays an important role in the regulation of anxiety-related behaviors. PMID:26438799
Hritcu, Lucian; Noumedem, Jaurès A; Cioanca, Oana; Hancianu, Monica; Kuete, Victor; Mihasan, Marius
2014-04-01
The present study analyzed the possible memory-enhancing and antioxidant proprieties of the methanolic extract of Piper nigrum L. fruits (50 and 100 mg/kg, orally, for 21 days) in amyloid beta(1-42) rat model of Alzheimer's disease. The memory-enhancing effects of the plant extract were studied by means of in vivo (Y-maze and radial arm-maze tasks) approaches. Also, the antioxidant activity in the hippocampus was assessed using superoxide dismutase-, catalase-, glutathione peroxidase-specific activities and the total content of reduced glutathione, malondialdehyde, and protein carbonyl levels. The amyloid beta(1-42)-treated rats exhibited the following: decrease of spontaneous alternations percentage within Y-maze task and increase of working memory and reference memory errors within radial arm-maze task. Administration of the plant extract significantly improved memory performance and exhibited antioxidant potential. Our results suggest that the plant extract ameliorates amyloid beta(1-42)-induced spatial memory impairment by attenuation of the oxidative stress in the rat hippocampus.
Effects of age and exposure to heavy particles on a behavioral measure of anxiety
NASA Astrophysics Data System (ADS)
Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.; Carrihill-Knoll, K. L.; Carey, A.; Foster, B. C.
On forthcoming exploratory class missions astronauts will be expected to function in novel and possibly dangerous environments This requirement may produce anticipatory fear or anxiety Previous research has shown that exposure to HZE particles such as those experienced on missions beyond the protection provided by the magnetic shield of the earth can affect the performance of the organism on a variety of tasks In addition research has shown that there is an interaction between age and exposure to heavy particles on a variety of behavioral tasks such that older organisms are more susceptible to the deleterious effects of irradiation Because there are changes in exploration-induced anxiety as a function of age it is possible that exposure to HZE particles will also affect a middle-aged astronaut s ability to respond appropriately in anxiety producing situations The present experiment utilized the elevated plus-maze to evaluate the effects of age and exposure to HZE particle radiation on anxiety Fischer-344 rats 2 7 12 and 16 months of age at the time of irradiation were exposed to 56 Fe particles 1 GeV n 0 25-2 00 Gy in the NASA Space Radiation Laboratory at Brookhaven National Laboratory Control rats at each age were not irradiated At the time of testing the rats were 3- 11- 13- and 20-months old respectively Anxiety was studied using an elevated plus-maze The maze is composed of four arms in the shape of a sign placed 90 cm above the floor Two of the arms are enclosed and two of the arms are open The amount of
Prefrontal Cortical GABA Modulation of Spatial Reference and Working Memory
Auger, Meagan L.
2015-01-01
Background: Dysfunction in prefrontal cortex (PFC) GABA transmission has been proposed to contribute to cognitive dysfunction in schizophrenia, yet how this system regulates different cognitive and mnemonic functions remains unclear. Methods: We assessed the effects of pharmacological reduction of GABAA signaling in the medial PFC of rats on spatial reference/working memory using different versions of the radial-arm maze task. We used a massed-trials procedure to probe how PFC GABA regulates susceptibility to proactive interference. Male rats were well-trained to retrieve food from the same 4 arms of an 8-arm maze, receiving 5 trials/day (1–2min intervals). Results: Infusions of the GABAA receptor antagonist bicuculline (12.5–50ng) markedly increased working and reference memory errors and response latencies. Similar treatments also impaired short-term memory on an 8-baited arm task. These effects did not appear to be due to increased susceptibility to proactive interference. In contrast, PFC inactivation via infusion of GABA agonists baclofen/muscimol did not affect reference/working memory. In comparison to the pronounced effects on the 8-arm maze tasks, PFC GABAA antagonism only causes a slight and transient decrease in accuracy on a 2-arm spatial discrimination. Conclusions: These findings demonstrate that prefrontal GABA hypofunction severely disrupts spatial reference and short-term memory and that disinhibition of the PFC can, in some instances, perturb memory processes not normally dependent on the frontal lobes. Moreover, these impairments closely resemble those observed in schizophrenic patients, suggesting that perturbation in PFC GABA signaling may contribute to these types of cognitive deficits associated with the disorder. PMID:25552433
Behavioral responses of Pacific lamprey to alarm cues
Porter, Laurie L.; Hayes, Michael C.; Jackson, Aaron D.; Burke, Brian J.; Moser, Mary L.; Wagner, R. Steven
2017-01-01
Pacific lamprey (Entosphenus tridentatus), an anadromous ectoparasite, faces several challenges during adult migration to spawning grounds. Developing methods to address these challenges is critical to the success of ongoing conservation efforts. The challenges are diverse, and include anthropogenic alterations to the ecosystem resulting in loss of habitat, impassable barriers such as dams, climate change impacts, and altered predator fields. We conducted a behavioral study to understand how adult migrating Pacific lamprey respond to potential alarm cues: White Sturgeon (Acipenser transmontanus), human saliva, decayed Pacific lamprey, and river otter (Lontra canadensis). Research has shown that some species of lamprey can be guided to a location using odors and similar cues may be useful as a management tool for Pacific lamprey. Experiments were conducted over 2 nights and measured the number of entries (count) and duration of time spent (occupancy) by adult lamprey in each arm of a two-choice maze. During the first night, no odor was added to test for selection bias between arms. During the second night odor was added to one arm of the maze. Contrary to expectations, lamprey were significantly attracted to the river otter odor in both count and occupancy. No significant differences were found in the response of lamprey to the other three odors. Results from this study indicate that Pacific lamprey do respond to some odors; however, additional tests are necessary to better identify the types of odors and concentrations that elicit a repeatable response.
2014-01-01
Background Albizia adianthifolia (Schumach.) W. Wright (Fabaceae) is a traditional herb largely used in the African traditional medicine as analgesic, purgative, anti-inflammatory, antioxidant, antimicrobial and memory-enhancer drug. This study was undertaken in order to evaluate the possible cognitive-enhancing and antioxidative effects of the aqueous extract of A. adianthifolia leaves in the 6-hydroxydopamine-lesion rodent model of Parkinson’s disease. Methods The effect of the aqueous extract of A. adianthifolia leaves (150 and 300 mg/kg, orally, daily, for 21 days) on spatial memory performance was assessed using Y-maze and radial arm-maze tasks, as animal models of spatial memory. Pergolide - induced rotational behavior test was employed to validate unilateral damage to dopamine nigrostriatal neurons. Also, in vitro antioxidant activity was assessed through the estimation of total flavonoid and total phenolic contents along with determination of free radical scavenging activity. Statistical analyses were performed using two-way analysis of variance (ANOVA). Significant differences were determined by Tukey’s post hoc test. F values for which p < 0.05 were regarded as statistically significant. Pearson’s correlation coefficient and regression analysis were used in order to evaluate the association between behavioral parameters and net rotations in rotational behavior test. Results The 6-OHDA-treated rats exhibited the following: decrease of spontaneous alternations percentage within Y-maze task and increase of working memory errors and reference memory errors within radial arm maze task. Administration of the aqueous extract of A. adianthifolia leaves significantly improved these parameters, suggesting positive effects on spatial memory formation. Also, the aqueous extract of A. adianthifolia leaves showed potent in vitro antioxidant activity. Furthermore, in vivo evaluation, the aqueous extract of A. adianthifolia leaves attenuated the contralateral rotational asymmetry observed by pergolide challenge in 6-OHDA-treated rats. Conclusions Taken together, our results suggest that the aqueous extract of A. adianthifolia leaves possesses antioxidant potential and might provide an opportunity for management neurological abnormalities in Parkinson’s disease conditions. PMID:24884469
[Behavior of mice from different strains: modifications produced by noopept].
Bel'nik, A P; Ostrovskaia, R U; Poletaeva, I I
2007-01-01
Genotype-dependent behavioral effects were demonstrated in BALB/c, C57BL/6J [Russian character: see text] DBA/2J mice after injections of nootropic drug Noopept. In an elevated plus maze, drug administration induced an increase in the number of enterings into bright arms in BALB/c mice, whereas the opposite effect was observed in C57BL/6J. After the Noopept administration, animals from all the three strains increased the number of active avoidance reactions in stress-inducing slip-funnel test. A significant intensification of exploration behavior was observed in a closed plus-maze in BALB/c and C57BL/6J. The Noopept affected weakly or had no effect on the behavior of DBA/2J mice.
Hughes, Robert N; Hamilton, Jennifer J
2018-06-01
For fourteen days, male and female PVG/c hooded rats were provided continuously with either pure drinking water, or water containing caffeine in a quantity approximating a daily dose of 31.1 mg/kg. Then at intervals of 3 days, they were administered 1, 2 mg/kg methamphetamine (MA) or saline before being tested for anxiety-related behavior in a zero maze or a light/dark box, or their short-term spatial memory was assessed in a Y maze following introduction of a novel brightness change in one of the arms. Each rat experienced each type of apparatus with the same acute MA or saline treatment while still exposed to chronic caffeine or pure drinking water. While chronic caffeine on its own did not affect any behavioral measure, acute MA was anxiolytic for male rats suggested by increased entries and occupancy of zero-maze enclosed areas, and decreased emergence latencies and increased entries into the light/dark-box light compartment. Females were less affected than males by MA in both types of apparatus unless they also consumed caffeine. For male rats, choices of the Y-maze novel arm were affected by neither caffeine nor MA, but for females provided with unadulterated water, such choices were reduced by 1 mg/kg MA but increased for those exposed to caffeine, thereby suggesting either impaired or improved memory respectively. However, changes in anxiety could also explain these results. Overall, results generated in the three types of apparatus supported potentiation by caffeine of any effects of MA on anxiety for females only. Copyright © 2018 Elsevier B.V. All rights reserved.
Effects of testosterone on spatial learning and memory in adult male rats
Spritzer, Mark D.; Daviau, Emily D.; Coneeny, Meagan K.; Engelman, Shannon M.; Prince, W. Tyler; Rodriguez-Wisdom, Karlye N.
2011-01-01
A male advantage over females for spatial tasks has been well documented in both humans and rodents, but it remains unclear how the activational effects of testosterone influence spatial ability in males. In a series of experiments, we tested how injections of testosterone influenced the spatial working and reference memory of castrated male rats. In the eight-arm radial maze, testosterone injections (0.500 mg/rat) reduced the number of working memory errors during the early blocks of testing but had no effect on the number of reference memory errors relative to the castrated control group. In a reference memory version of the Morris water maze, injections of a wide range of testosterone doses (0.0625-1.000 mg/rat) reduced path lengths to the hidden platform, indicative of improved spatial learning. This improved learning was independent of testosterone dose, with all treatment groups showing better performance than the castrated control males. Furthermore, this effect was only observed when rats were given testosterone injections starting seven days prior to water maze testing and not when injections were given only on the testing days. We also observed that certain doses of testosterone (0.250 and 1.000 mg/rat) increased perseverative behavior in a reversal-learning task. Finally, testosterone did not have a clear effect on spatial working memory in the Morris water maze, although intermediate doses seemed to optimize performance. Overall, the results indicate that testosterone can have positive activational effects on spatial learning and memory, but the duration of testosterone replacement and the nature of the spatial task modify these effects. PMID:21295035
Sodium benzoate, a food preservative, induces anxiety and motor impairment in rats.
Noorafshan, Ali; Erfanizadeh, Mahboobeh; Karbalay-Doust, Saied
2014-01-01
To investigate the behavioral characteristics, including anxiety and motor impairment, in sodium benzoate (NaB) treated rats. The study was carried out between July and September 2012 in the Laboratory Animal Center of Shiraz University of Medical Sciences, Shiraz, Iran. The rats were divided into 2 groups receiving distilled water and NaB (200mg/kg/day). All the animals received daily gavages for 4 weeks. At the end of the fourth week, anxiety, and motor function were assessed in elevated plus maze and rotarod test. According to the results, NaB-treated rats spent less time in the open arm and had fewer entrances to the open arms in comparison with the control group (p<0.04). Also, the performance of the NaB-treated rats in fixed and accelerating speed rotarods was impaired, and the riding time (endurance) was lower than the control group (p<0.01). The performance of the NaB-treated rats was impaired in the elevated plus maze, an indicator of anxiety. Their riding time in fixed and accelerating speed rotarods was decreased, indicating motor impairment.
Spatial Cognition and Range Use in Free-Range Laying Hens
Campbell, Dana L. M.; Loh, Ziyang A.; Dyall, Tim R.; Lee, Caroline
2018-01-01
Simple Summary Individual free-range laying hens vary in their use of the outdoor range. The outdoor environment is typically more complex and variable than indoor housing and thus range use may be related to differences in spatial abilities. Individual adult hens that never went outside were slower to learn a T-maze task—which requires birds to repeatedly find a food reward in one arm of the maze, compared to outdoor-preferring hens. Pullets that were faster to learn the maze also showed more visits to the range in their first month of range access but only in one of two tested groups. Early enrichment improved learning of the maze but only when the birds were tested before onset of lay. Fear may play a role in inhibiting bird’s spatial learning and their range use. More studies of different enriched rearing treatments and their impacts on fear and learning would be needed to confirm these findings. Overall, these results contribute to our understanding of why some birds choose to never access the outdoor range area. Abstract Radio-frequency identification tracking shows individual free-range laying hens vary in range use, with some never going outdoors. The range is typically more environmentally complex, requiring navigation to return to the indoor resources. Outdoor-preferring hens may have improved spatial abilities compared to indoor-preferring hens. Experiment 1 tested 32 adult ISA Brown hens in a T-maze learning task that showed exclusively-indoor birds were slowest to reach the learning success criterion (p < 0.05). Experiment 2 tested 117 pullets from enriched or non-enriched early rearing treatments (1 pen replicate per treatment) in the same maze at 15–16 or 17–18 weeks. Enriched birds reached learning success criterion faster at 15–16 weeks (p < 0.05) but not at 17–18 weeks (p > 0.05), the age that coincided with the onset of lay. Enriched birds that were faster to learn the maze task showed more range visits in the first 4 weeks of range access. Enriched and non-enriched birds showed no differences in telencephalon or hippocampal volume (p > 0.05). Fear may reduce spatial abilities but further testing with more pen replicates per early rearing treatments would improve our understanding of the relationship between spatial cognitive abilities and range use. PMID:29419742
Muhia, Mary; Yee, Benjamin K; Feldon, Joram; Markopoulos, Foivos; Knuesel, Irene
2010-02-01
The brain-specific Ras/Rap-GTPase activating protein (SynGAP) is a prime candidate linking N-methyl-d-aspartate receptors to the regulation of the ERK/MAP kinase signalling cascade, suggested to be essential for experience-dependent synaptic plasticity. Here, we evaluated the behavioural phenotype of SynGAP heterozygous knockout mice (SG(+/-)), expressing roughly half the normal levels of SynGAP. In the cognitive domain, SG(+/-) mice demonstrated severe working and reference memory deficits in the radial arm maze task, a mild impairment early in the transfer test of the water maze task, and a deficiency in spontaneous alternation in an elevated T-maze. In the non-cognitive domain, SG(+/-) mice were hyperactive in the open field and appeared less anxious in the elevated plus maze test. In contrast, object recognition memory performance was not impaired in SG(+/-) mice. The reduction in SynGAP thus resulted in multiple behavioural traits suggestive of aberrant cognitive and non-cognitive processes normally mediated by the hippocampus. Immunohistochemical evaluation further revealed a significant reduction in calbindin-positive interneurons in the hippocampus and doublecortin-positive neurons in the dentate gyrus of adult SG(+/-) mice. Heterozygous constitutive deletion of SynGAP is therefore associated with notable behavioural as well as morphological phenotypes indicative of hippocampal dysfunction. Any suggestion of a possible causal link between them however remains a matter for further investigation.
Dorsal Hippocampus Function in Learning and Expressing a Spatial Discrimination
ERIC Educational Resources Information Center
White, Norman M.; Gaskin, Stephane
2006-01-01
Learning to discriminate between spatial locations defined by two adjacent arms of a radial maze in the conditioned cue preference paradigm requires two kinds of information: latent spatial learning when the rats explore the maze with no food available, and learning about food availability in two spatial locations when the rats are then confined…
Donatti, Alberto Ferreira; Soriano, Renato Nery; Leite-Panissi, Christie Ramos Andrade; Branco, Luiz G S; de Souza, Albert Schiaveto
2017-03-06
Hydrogen sulfide (H 2 S), an endogenous gaseous mediator, modulates many physiological functions in mammals but evidence of its involvement in emotional and behavioral aspects is currently scarce. We hypothesized that this gas plays a modulatory role in behavioral parameters in rats submitted to tests (for 5min) in the open field (OF) and elevated plus-maze (EPM - test and retest). Male Wistar rats (200-250g) were intraperitoneally injected with saline or Na 2 S (a H 2 S donor; 4, 8 and 12mg/kg) either once or for 8days, and submitted to the OF test or to the EPM test and retest. A third group (naïve) was not injected but exposed to the same experimental protocols. In the OF test, Na 2 S injected for 8days caused a decrease in self-cleaning (4, 8 and 12mg/kg) and freezing behaviors (8 and 12mg/kg), and a rise in the rate of line crossings in the central part of the arena (12mg/kg). In the EPM test and retest, Na 2 S at 12mg/kg for 8days caused an increase in the number of open arm entries and in the percentage of time spent on open arms. Our data are consistent with the notion that H 2 S exerts anxiolytic-like effects in rats submitted to the EPM and OF tests. Moreover, this gaseous modulator reduces aversive learning in the EPM retest. Copyright © 2017 Elsevier B.V. All rights reserved.
Anxiolytic effects of orcinol glucoside and orcinol monohydrate in mice.
Wang, Xiaohong; Li, Guiyun; Li, Peng; Huang, Linyuan; Huang, Jianmei; Zhai, Haifeng
2015-06-01
Anxiety is a common psychological disorder, often occurring in combination with depression, but therapeutic drugs with high efficacy and safety are lacking. Orcinol glucoside (OG) was recently found to have an antidepressive action. To study the therapeutic potential of OG and orcinol monohydrate (OM) as anxiolytic agents. Anxiolytic effects in mice were measured using the elevated plus-maze, hole-board, and open-field tests. Eight groups of mice were included in each test. Thirty minutes before each test, mice in each group received one oral administration of OG (5, 10, or 20 mg/kg), OM (2.5, 5, or 10 mg/kg), the positive control diazepam (1 or 5 mg/kg), or control vehicle. Each mouse underwent only one test. Uptake of orcinol (5 mg/kg) in the brain was qualitatively detected using the HPLC-MS method. OG (5, 10, and 20 mg/kg) and OM (2.5 and 5 mg/kg) increased the time spent in open arms and the number of entries into open arms in the elevated plus-maze test. OG (5 and 10 mg/kg) and OM (2.5 and 5 mg/kg) increased the number of head-dips in the hole-board test. At all tested doses, OG and OM did not significantly affect the locomotion of mice in the open-field test. Orcinol could be detected in the mouse brain homogenates 30 min after oral OM administration, having confirmed that OM is centrally active. The results demonstrated that OG and OM are anxiolytic agents without sedative effects, indicating their therapeutic potential for anxiety.
Marsh frogs, Pelophylax ridibundus, determine migratory direction by magnetic field.
Shakhparonov, Vladimir V; Ogurtsov, Sergei V
2017-01-01
Orientation by magnetic cues appears to be adaptive during animal migrations. Whereas the magnetic orientation in birds, mammals, and urodele amphibians is being investigated intensively, the data about anurans are still scarce. This study tests whether marsh frogs could determine migratory direction between the breeding pond and the wintering site by magnetic cues in the laboratory. Adult frogs (N = 32) were individually tested in the T-maze 127 cm long inside the three-axis Helmholtz coil system (diameter 3 m). The arms of the maze were positioned parallel to the natural migratory route of this population when measured in accordance with magnetic field. The frogs were tested under two-motivational conditions mediated by temperature/light regime: the breeding migratory state and the wintering state. The frogs' choice in a T-maze was evident only when analyzed in accordance with the direction of the magnetic field: they moved along the migratory route to the breeding pond and followed the reversion of the horizontal component of the magnetic field. This preference has been detected in both sexes only in the breeding migratory state. This suggests that adult ranid frogs can obtain directional information from the Earth's magnetic field as was shown earlier in urodeles and anuran larvae.
The Neuron-Specific Protein TMEM59L Mediates Oxidative Stress-Induced Cell Death.
Zheng, Qiuyang; Zheng, Xiaoyuan; Zhang, Lishan; Luo, Hong; Qian, Lingzhi; Fu, Xing; Liu, Yiqian; Gao, Yuehong; Niu, Mengxi; Meng, Jian; Zhang, Muxian; Bu, Guojun; Xu, Huaxi; Zhang, Yun-Wu
2017-08-01
TMEM59L is a newly identified brain-specific membrane-anchored protein with unknown functions. Herein we found that both TMEM59L and its homolog, TMEM59, are localized in Golgi and endosomes. However, in contrast to a ubiquitous and relatively stable temporal expression of TMEM59, TMEM59L expression was limited in neurons and increased during development. We also found that both TMEM59L and TMEM59 interacted with ATG5 and ATG16L1, and that overexpression of them triggered cell autophagy. However, overexpression of TMEM59L induced intrinsic caspase-dependent apoptosis more dramatically than TMEM59. In addition, downregulation of TMEM59L prevented neuronal cell death and caspase-3 activation caused by hydrogen peroxide insults and reduced the lipidation of LC3B. Finally, we found that AAV-mediated knockdown of TMEM59L in mice significantly ameliorated caspase-3 activation, increased mouse duration in the open arm during elevated plus maze test, reduced mouse immobility time during forced swim test, and enhanced mouse memory during Y-maze and Morris water maze tests. Together, our study indicates that TMEM59L is a pro-apoptotic neuronal protein involved in animal behaviors such as anxiety, depression, and memory, and that TMEM59L downregulation protects neurons against oxidative stress.
Behavioral deficits and cholinergic pathway abnormalities in male Sanfilippo B mice.
Kan, Shih-Hsin; Le, Steven Q; Bui, Quang D; Benedict, Braeden; Cushman, Jesse; Sands, Mark S; Dickson, Patricia I
2016-10-01
Sanfilippo B syndrome is a progressive neurological disorder caused by inability to catabolize heparan sulfate glycosaminoglycans. We studied neurobehavior in male Sanfilippo B mice and heterozygous littermate controls from 16 to 20 weeks of age. Affected mice showed reduced anxiety, with a decrease in the number of stretch-attend postures during the elevated plus maze (p=0.001) and an increased tendency to linger in the center of an open field (p=0.032). Water maze testing showed impaired spatial learning, with reduced preference for the target quadrant (p=0.01). In radial arm maze testing, affected mice failed to achieve above-chance performance in a win-shift working memory task (t-test relative to 50% chance: p=0.289), relative to controls (p=0.037). We found a 12.4% reduction in mean acetylcholinesterase activity (p<0.001) and no difference in choline acetyltransferase activity or acetylcholine in whole brain of affected male animals compared to controls. Cholinergic pathways are affected in adult-onset dementias, including Alzheimer disease. Our results suggest that male Sanfilippo B mice display neurobehavioral deficits at a relatively early age, and that as in adult dementias, they may display deficits in cholinergic pathways. Copyright © 2016 Elsevier B.V. All rights reserved.
Levin, Edward D; Hao, Ian; Burke, Dennis A; Cauley, Marty; Hall, Brandon J; Rezvani, Amir H
2014-10-01
Nicotine has been well characterized to improve memory and attention. Nicotine is the primary, but not only neuroactive compound in tobacco. Other tobacco constituents such as anabasine and anatabine also have agonist actions on nicotinic receptors. The current study investigated the effects of anabasine and anatabine on memory and attention. Adult female Sprague-Dawley rats were trained on a win-shift spatial working and reference memory task in the 16-arm radial maze or a visual signal detection operant task to test attention. Acute dose-effect functions of anabasine and anatabine over two orders of magnitude were evaluated for both tasks. In the radial-arm maze memory test, anabasine but not anatabine significantly reduced the memory impairment caused by the NMDA antagonist dizocilpine (MK-801). In the signal detection attentional task, anatabine but not anabasine significantly attenuated the attentional impairment caused by dizocilpine. These studies show that non-nicotine nicotinic agonists in tobacco, similar to nicotine, can significantly improve memory and attentional function. Both anabasine and anatabine produced cognitive improvement, but their effectiveness differed with regard to memory and attention. Follow-up studies with anabasine and anatabine are called for to determine their efficacy as therapeutics for memory and attentional dysfunction. © The Author(s) 2014.
Holguin, Sarah; Martinez, Joseph; Chow, Camille; Wurtman, Richard
2008-11-01
This study examined the effects on cognitive behaviors of giving normal adult gerbils three compounds, normally in the circulation, which interact to increase brain phosphatides, synaptic proteins, dendritic spines, and neurotransmitter release. Animals received supplemental uridine (as its monophosphate, UMP; 0.5%) and choline (0.1%) via the diet, and docosahexaenoic acid (DHA; 300 mg/kg/day) by gavage, for 4 wk, and then throughout the subsequent period of behavioral training and testing. As shown previously, giving all three compounds caused highly significant (P<0.001) increases in total brain phospholipids and in each major phosphatide; giving DHA or UMP (plus choline) produced smaller increases in some of the phosphatides. DHA plus choline improved performance on the four-arm radial maze, T-maze, and Y-maze tests; coadministering UMP further enhanced these increases. (Uridine probably acts by generating both CTP, which can be limiting in phosphatide synthesis, and UTP, which activates P2Y receptors coupled to neurite outgrowth and protein synthesis. All three compounds also act by enhancing the substrate-saturation of phosphatide-synthesizing enzymes.) These findings demonstrate that a treatment that increases synaptic membrane content can enhance cognitive functions in normal animals.
Prefrontal cortical GABA modulation of spatial reference and working memory.
Auger, Meagan L; Floresco, Stan B
2014-10-31
Dysfunction in prefrontal cortex (PFC) GABA transmission has been proposed to contribute to cognitive dysfunction in schizophrenia, yet how this system regulates different cognitive and mnemonic functions remains unclear. We assessed the effects of pharmacological reduction of GABAA signaling in the medial PFC of rats on spatial reference/working memory using different versions of the radial-arm maze task. We used a massed-trials procedure to probe how PFC GABA regulates susceptibility to proactive interference. Male rats were well-trained to retrieve food from the same 4 arms of an 8-arm maze, receiving 5 trials/day (1-2 min intervals). Infusions of the GABAA receptor antagonist bicuculline (12.5-50 ng) markedly increased working and reference memory errors and response latencies. Similar treatments also impaired short-term memory on an 8-baited arm task. These effects did not appear to be due to increased susceptibility to proactive interference. In contrast, PFC inactivation via infusion of GABA agonists baclofen/muscimol did not affect reference/working memory. In comparison to the pronounced effects on the 8-arm maze tasks, PFC GABAA antagonism only causes a slight and transient decrease in accuracy on a 2-arm spatial discrimination. These findings demonstrate that prefrontal GABA hypofunction severely disrupts spatial reference and short-term memory and that disinhibition of the PFC can, in some instances, perturb memory processes not normally dependent on the frontal lobes. Moreover, these impairments closely resemble those observed in schizophrenic patients, suggesting that perturbation in PFC GABA signaling may contribute to these types of cognitive deficits associated with the disorder. © The Author 2014. Published by Oxford University Press on behalf of CINP.
Ho, Ying-Jui; Pawlak, Cornelius R; Guo, Lianghao; Schwarting, Rainer K W
2004-03-02
Our previous work has shown that normal male Wistar rats can differ systematically in their behavioral response to the elevated plus-maze (EPM), where animals with high (HA) or low anxiety (LA) levels can be identified based on the percentage of time spent in the open arms. These animals also differ in other behavioral tests (e.g. active avoidance), and in their serotonin levels in the ventral striatum. Here, we tested whether such HA and LA rats might respond differently to the amphetamine analogue 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy"). This drug can affect psychomotor activation and anxiety; effects which are probably due to its pronounced serotonergic and dopaminergic impacts in the rat brain. Based on a routine screening procedure in the plus-maze, male Wistar rats were divided into HA and LA sub-groups, in which rectal temperature was measured. Thirty minutes after the i.p. injection of MDMA (7.5 or 15 mg/kg) or vehicle, they were again tested in the plus-maze. During the next 3 weeks, the animals underwent further behavioral tests (plus-maze, open field, active avoidance, forced swimming) to test for possible long-term consequences of MDMA. Rectal temperature was found to be higher in LA than HA rats and was especially increased with the higher dose of MDMA (15 mg/kg). In the acute plus-maze test, the lower dose of MDMA led to an anxiogenic-like profile, whereas the higher dose led to an anxiolytic-like profile, both in HA and LA rats. Possible long-term consequences of MDMA were only tested with 7.5 mg/kg MDMA, since the 15 mg/kg dose led to a high level of lethality. The analysis of open field, plus-maze (performed after 9-12 days), and forced swimming behavior (performed after 20-21 days) did not provide indications for lasting effects of MDMA. In contrast, active avoidance learning was impaired in LA- but not HA-rats treated with MDMA. A single injection of MDMA does not only have acute effects on anxiety and psychomotor activation, but can also have some prolonged or delayed task-dependent behavioral consequences. The detection of such sequels can require that individual differences are taken into account and here, determining anxiety levels in the EPM seems to serve as a useful approach.
Sebastian, Veronica; Diallo, Aissatou; Ling, Douglas S. F.; Serrano, Peter A.
2013-01-01
Globally, it is estimated that nearly 10 million people sustain severe brain injuries leading to hospitalization and/or death every year. Amongst survivors, traumatic brain injury (TBI) results in a wide variety of physical, emotional and cognitive deficits. The most common cognitive deficit associated with TBI is memory loss, involving impairments in spatial reference and working memory. However, the majority of research thus far has characterized the deficits associated with TBI on either reference or working memory systems separately, without investigating how they interact within a single task. Thus, we examined the effects of TBI on short-term working and long-term reference memory using the radial 8-arm maze (RAM) with a sequence of four baited and four unbaited arms. Subjects were given 10 daily trials for 6 days followed by a memory retrieval test 2 weeks after training. Multiple training trials not only provide robust training, but also test the subjects' ability to frequently update short-term memory while learning the reference rules of the task. Our results show that TBI significantly impaired short-term working memory function on previously acquired spatial information but has little effect on long-term reference memory. Additionally, TBI significantly increased working memory errors during acquisition and reference memory errors during retention testing 2 weeks later. With a longer recovery period after TBI, the robust RAM training mitigated the reference memory deficit in retention but not the short-term working memory deficit during acquisition. These results identify the resiliency and vulnerabilities of short-term working and long-term reference memory to TBI in the context of robust training. The data highlight the role of cognitive training and other behavioral remediation strategies implicated in attenuating deficits associated with TBI. PMID:23653600
Anand, Rashmi; Gulati, Kavita; Ray, Arunabha
2012-02-15
The present study evaluated the effects of the opioid agonist, morphine on stress induced anxiogenesis and the possible involvement of nitric oxide (NO) in such effects in rats. Acute restraint stress consistently induced an anxiety-like response in the elevated plus maze test, i.e. reduced number of open arm entries and time spent in the open arms as compared to controls. Pretreatment with morphine (1 and 5mg/kg), attenuated the restraint stress induced anxiogenic response in a dose related manner. Restraint stress induced neurobehavioral suppression was associated with reductions in brain NO oxidation products (NOx) levels, which were also reversed with morphine. Interaction studies showed that sub-effective doses of morphine and l-arginine (a NO precursor) had synergistic effects on stress induced elevated plus maze activity and brain NOx, whereas, l-NAME (a NO synthase inhibitor) neutralized these effects of morphine. Repeated restraint stress (×5) induced adaptative changes as evidenced by normalization of behavioral suppression and elevations in brain NOx, as compared to acute stress. Pretreatment with morphine in combination with repeated stress (×5) showed potentiating effects in the induction of behavioral adaptation in the elevated plus maze and elevations in brain NOx, as compared to repeated stress alone. Further, l-NAME, when administered prior to morphine, blocked this effect of morphine on stress adaptation. These results suggest differential morphine-NO interactions during acute and repeated restraint stress. Copyright © 2011 Elsevier B.V. All rights reserved.
Voĭtenkov, V B; Popovich, I G; Zabezhinskiĭ, M A; Iurova, M A; Piskunova, T A; Mikhaleva, I I
2009-01-01
Female SHR mice received 5-days long monthly courses of delta-sleep inducing peptide (DSIP) preparation "Deltaran" subcutaneously in dose 5 mkg/kg during all their lives. It was demonstrated, that last 10% (most aged) of mice which received Deltaran lived for 16% longer than the controls. They had significantly higher amount of vertical activity in the "open field" test, than the controls, starting from time when they were 6 months old and until their natural death. Mice of Deltaran group spent 73% more time in the open arms of elevated plus maze, and 9 times more often explored the extremities of this maze, than controls. Also Deltaran slowed the spontaneous carcinogenesis parameters. It's assumed that DSIP preparation "Deltaran" have geroprotective, anxiolytic and antitumor activity.
Anxiolytic-like effects of ursolic acid in mice.
Colla, André R S; Rosa, Julia M; Cunha, Mauricio P; Rodrigues, Ana Lúcia S
2015-07-05
Ursolic acid is a pentacyclic triterpenoid that possesses several biological and neuropharmacological effects including antidepressant-like activity. Anxiety disorders represent common and disability psychiatric conditions that are often associated with depressive symptoms. This work investigated the anxiolytic-like effects of ursolic acid administration in different behavioral paradigms that evaluate anxiety in mice: open field test, elevated plus maze test, light/dark box test and marble burying test. To this end, mice were administered with ursolic acid (0.1, 1 and 10mg/kg, p.o.) or diazepam (2mg/kg, p.o.), positive control, and submitted to the behavioral tests. The results show that ursolic acid (10mg/kg) elicited an anxiolytic-like effect observed by the increased total time in the center and decreased number of rearings responses in the open field test and an increased percentage of entries and total time spent in the open arms of elevated plus maze, similarly to diazepam. No significant effects of ursolic acid were shown in the light/dark box and marble burying test. These data indicate that ursolic acid exhibits anxiolytic-like effects in the open field and elevated plus maze test, but not in the light/dark box and marble burying test, showing the relevance of testing several behavioral paradigms in the evaluation of anxiolytic-like actions. Of note, the results extend the understanding on the effects of ursolic acid in the central nervous system and suggest that it may be a novel approach for the management of anxiety-related disorders. Copyright © 2015. Published by Elsevier B.V.
Yildiz Akar, Furuzan; Ulak, Guner; Tanyeri, Pelin; Erden, Faruk; Utkan, Tijen; Gacar, Nejat
2007-10-01
The role of nitric oxide (NO) on cognitive performance in a modified elevated plus-maze (mEPM) and passive-avoidance (PA) task was investigated by using the NO synthase (NOS) inhibitor 7-nitroindazole (7-NI) and an NO precursor l-arginine. The interaction between the activation of N-methyl-d-aspartate (NMDA) receptors and NO synthesis on memory retention was also studied. 7-NI, l-arginine or MK-801, a non-competitive NMDA receptor antagonist were injected intraperitoneally (i.p) to male Wistar rats 30 min before the first training session of the PA test or 30 min before on the first day testing (acquisition session) of mEPM task. Transfer latency, the time rat took to move from the open arm to the enclosed arm, was used as an index of learning and memory in a mEPM test. The retention session was performed 24 h after the acquisition one. In the PA task, the retention test was carried out 24 h after training and reduction of retention latency was used to evaluate the acquisition of learning and memory. Blood glucose level and locomotor activity of the rats was also evaluated. 7-NI (10, 20, 25, 50 mg/kg) and MK-801 (0.15 mg/kg) significantly prolonged the transfer latency on retention session in a mEPM test and shortened step-through latency in PA test. 7-NI-induced impairment in memory and learning was partly reversed by l-arginine (200 mg/kg), a competitive substrate for NOS. However subeffective doses of 7-NI (5 mg/kg) and MK-801 (0.075 mg/kg) given in combination significantly impaired plus-maze and PA performances in rats. Thus NMDA receptor mediated NO pathways may be implicated in the PA and mEPM behaviours in rats. Since 7-NI does not affect blood pressure and did not alter blood glucose level and locomotor activity in conscious rats, 7-NI-induced impairment of memory is not due to either hypertension, changes in blood glucose level or effects on locomotor activity.
Ribeiro, A; Ferraz-de-Paula, V; Pinheiro, M L; Palermo-Neto, J
2009-06-01
The endocannabinoid system is involved in the control of many physiological functions, including the control of emotional states. In rodents, previous exposure to an open field increases the anxiety-like behavior in the elevated plus-maze. Anxiolytic-like effects of pharmacological compounds that increase endocannabinoid levels have been well documented. However, these effects are more evident in animals with high anxiety levels. Several studies have described characteristic inverted U-shaped dose-response effects of drugs that modulate the endocannabinoid levels. However, there are no studies showing the effects of different doses of exogenous anandamide, an endocannabinoid, in animal models of anxiety. Thus, in the present study, we determined the dose-response effects of exogenous anandamide at doses of 0.01, 0.1, and 1.0 mg/kg in C57BL/6 mice (N = 10/group) sequentially submitted to the open field and elevated plus-maze. Anandamide was diluted in 0.9% saline, ethyl alcohol, Emulphor (18:1:1) and administered ip (0.1 mL/10 g body weight); control animals received the same volume of anandamide vehicle. Anandamide at the dose of 0.1 mg/kg (but not of 0.01 or 1 mg/kg) increased (P < 0.05) the time spent and the distance covered in the central zone of the open field, as well as the exploration of the open arms of the elevated plus-maze. Thus, exogenous anandamide, like pharmacological compounds that increase endocannabinoid levels, promoted a characteristic inverted U-shaped dose-response effect in animal models of anxiety. Furthermore, anandamide (0.1 mg/kg) induced an anxiolytic-like effect in the elevated plus-maze (P < 0.05) after exposing the animals to the open field test.
Sumnall, H R; O'Shea, E; Marsden, C A; Cole, J C
2004-04-01
Few preclinical studies have found long-term behavioural consequences of the serotonergic neurotoxicity produced by 3,4-methylenedioxymethamphetamine (MDMA). This study investigated whether pretreatment with MDMA altered the behavioural effects of other drugs of abuse. Adult male Lister hooded rats (n=10/group) were pretreated with 10 mg/kg MDMA or 1 ml/kg saline vehicle intraperitoneally every 2 h for 6 h. Fourteen days later, the behavioural effects of d-amphetamine (2 mg/kg), cocaine (10 mg/kg), ethanol (2.0 g/kg), heroin (0.5 mg/kg), or MDMA (10 mg/kg) were assessed in the elevated plus-maze test. MDMA pretreatment produced approximately 20-25% decrease in hippocampal 5-HT and 5-HIAA concentrations, and [(3)H]paroxetine binding when analysed 2 weeks later. Despite inducing neurotoxicity, this regimen had no effect upon the plus-maze behaviour induced by ethanol, heroin, and MDMA. Acutely, and independent of neurotoxic pretreatment, MDMA produced a clear anxiogenic-like behavioural profile with a reduction of open arm entries and suppression of explorative behaviours. Despite being acutely anxiogenic, pretreatment with a neurotoxic regimen of MDMA has little effect on the anxiety-related effects of other drugs of abuse. It is possible that extended time points would produce significant changes, although the available evidence suggests that the plus-maze may not be a suitable model for detection of behavioural dysfunction after neurotoxic MDMA.
Discrimination of What, When, and Where: Implications for Episodic-Like Memory in Rats
ERIC Educational Resources Information Center
Babb, S.J.; Crystal, J.D.
2005-01-01
We investigated the discrimination of what, when, and where in rats (n=5) using an eight-arm radial maze. Rats received daily training consisting of forced-choice visits to four baited arms, one of which was randomly chosen each day to contain chocolate (Phase 1). In Phase 2, all eight arms were available. After a short (30min) retention interval…
Invertebrate neurobiology: visual direction of arm movements in an octopus.
Niven, Jeremy E
2011-03-22
An operant task in which octopuses learn to locate food by a visual cue in a three-choice maze shows that they are capable of integrating visual and mechanosensory information to direct their arm movements to a goal. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cheng, Kwok Kin; Yeung, Chin Fung; Ho, Shuk Wai; Chow, Shing Fung; Chow, Albert H L; Baum, Larry
2013-04-01
The therapeutic effects of curcumin in treating Alzheimer's disease (AD) depend on the ability to penetrate the blood-brain barrier. The latest nanoparticle technology can help to improve the bioavailability of curcumin, which is affected by the final particle size and stability. We developed a stable curcumin nanoparticle formulation to test in vitro and in AD model Tg2576 mice. Flash nanoprecipitation of curcumin, polyethylene glycol-polylactic acid co-block polymer, and polyvinylpyrrolidone in a multi-inlet vortex mixer, followed by freeze drying with β-cyclodextrin, produced dry nanocurcumin with mean particle size <80 nm. Nanocurcumin powder, unformulated curcumin, or placebo was orally administered to Tg2576 mice for 3 months. Before and after treatment, memory was measured by radial arm maze and contextual fear conditioning tests. Nanocurcumin produced significantly (p=0.04) better cue memory in the contextual fear conditioning test than placebo and tendencies toward better working memory in the radial arm maze test than ordinary curcumin (p=0.14) or placebo (p=0.12). Amyloid plaque density, pharmacokinetics, and Madin-Darby canine kidney cell monolayer penetration were measured to further understand in vivo and in vitro mechanisms. Nanocurcumin produced significantly higher curcumin concentration in plasma and six times higher area under the curve and mean residence time in brain than ordinary curcumin. The P(app) of curcumin and tetrahydrocurcumin were 1.8×10(-6) and 1.6×10(-5)cm/s, respectively, for nanocurcumin. Our novel nanocurcumin formulation produced highly stabilized nanoparticles with positive treatment effects in Tg2576 mice.
NASA Astrophysics Data System (ADS)
Rabin, Bernard M.; Carrihill-Knoll, Kirsty L.; Carey, Amanda N.; Shukitt-Hale, Barbara; Joseph, James A.; Foster, Brian C.
The aging process is characterized by a series of changes in neurochemical functioning and in motor and cognitive performance. In addition to changes in cognitive/behavioral performance, aged rats also show an increase in baseline anxiety measured using the elevated plus-maze. Exposure to 56Fe particles, a component of cosmic rays, produces neurochemical and behavioral changes in young animals which are characteristic of aged organisms. The present study was designed to determine the relationships between aging and exposure to 56Fe particles on anxiety. Fischer-344 (F-344), which were 2, 7, 12, and 16 months of age at the time of irradiation, were exposed to 56Fe particles (50 200 cGy). Concordant with previous results, the oldest rats spent less time exploring the open arms of the maze. Exposure to 56Fe particles also produced decreased exploration of the open arms of the plus-maze. The dose needed to produce increased levels of anxiety was a function of age at the time of irradiation. The dose of 56Fe particles needed to produce a decrease in open arm exploration was significantly lower in the rats that were irradiated at 7 and 12 months of age than in the rats irradiated at 2 months of age. These results suggest the possibility that exposing middle-aged astronauts to cosmic rays during exploratory class missions outside the magnetosphere, and the resultant effects on exploration-induced anxiety, may affect their ability to successfully complete mission requirements.
Rapamycin blocks the antidepressant effect of ketamine in task-dependent manner.
Holubova, Kristina; Kleteckova, Lenka; Skurlova, Martina; Ricny, Jan; Stuchlik, Ales; Vales, Karel
2016-06-01
The aim of our study was to test whether ketamine produces an antidepressant effect in animal model of olfactory bulbectomy and assess the role of mammalian target of rapamycin (mTOR) pathway in ketamine's antidepressant effect. Bulbectomized (OBX) rats and sham controls were assigned to four subgroups according to the treatment they received (ketamine, saline, ketamine + rapamycin, and saline + rapamycin). The animals were subjected to open field (OF), elevated plus maze (EPM), passive avoidance (PA), Morris water maze (MWM), and Carousel maze (CM) tests. Blood samples were collected before and after drug administration for analysis of phosphorylated mTOR level. After behavioral testing, brains were removed for evaluation of brain-derived neurotrophic factor (BDNF) in prefrontal cortex (PFC) and hippocampus. Ketamine normalized hyperactivity of OBX animals in EPM and increased the time spent in open arms. Rapamycin pretreatment resulted in elimination of ketamine effect in EPM test. In CM test, ketamine + rapamycin administration led to cognitive impairment not observed in saline-, ketamine-, or saline + rapamycin-treated OBX rats. Prefrontal BDNF content was significantly decreased, and level of mTOR was significantly elevated in OBX groups. OBX animals significantly differed from sham controls in most of the tests used. Treatment had more profound effect on OBX phenotype than controls. Pretreatment with rapamycin eliminated the anxiolytic and antidepressant effects of ketamine in task-dependent manner. The results indicate that ketamine + rapamycin application resulted in impaired stress responses manifested by cognitive deficits in active place avoidance (CM) test. Intensity of stressor (mild vs. severe) used in the behavioral tests had opposite effect on controls and on OBX animals.
Influence of magnetic field on zebrafish activity and orientation in a plus maze.
Osipova, Elena A; Pavlova, Vera V; Nepomnyashchikh, Valentin A; Krylov, Viacheslav V
2016-01-01
We describe an impact of the geomagnetic field (GMF) and its modification on zebrafish's orientation and locomotor activity in a plus maze with four arms oriented to the north, east, south and west. Zebrafish's directional preferences were bimodal in GMF: they visited two arms oriented in opposed directions (east-west) most frequently. This bimodal preference remained stable for same individuals across experiments divided by several days. When the horizontal GMF component was turned 90° clockwise, the preference accordingly shifted by 90° to arms oriented to the north and south. Other modifications of GMF (reversal of both vertical and horizontal GMF components; reversal of vertical component only; and reversal of horizontal component only) did not exert any discernible effect on the orientation of zebrafish. The 90° turn of horizontal component also resulted in a significant increase of fish's locomotor activity in comparison with the natural GMF. This increase became even more pronounced when the horizontal component was repeatedly turned by 90° and back with 1min interval between turns. Our results show that GMF and its variations should be taken into account when interpreting zebrafish's directional preferences and locomotor activity in mazes and other experimental devices. Copyright © 2015. Published by Elsevier B.V.
Spontaneous laterality in mouse Crl:CD1.
Maciejewska, Maria; Zięba, Katarzyna; Szymańska, Justyna; Warońska, Magdalena
2016-01-01
Lateralization developed very early in evolution and it is a characteristic of a wide range of representatives from the animal kingdom. The aim of the present study was to examine the spontaneous laterality in mice (Mus musculus) with the T-maze test. We wanted to check if this kind of functional asymmetry occurs at a population level, and also if there are gender differences in this regard. The study involved 40 mice Crl:CD1. The research procedure was simple: mice had to choose one arm of the T-shaped apparatus to find the exit. The animals performed the 10 trails one after another. We took into account only the animals' fist reactions while preparing results. Most of the animals (68%) chose the right arm of the maze. The lateralization was stronger among females--75% of them had preferences for the right side. The majority of animals, which preferred the right side, were from the food deprivation group. However, the results did not unequivocally resolve whether mice evince the functional asymmetry at the population level, or whether there are gender differences in this area. Further research with a larger group and multiple observations for each animal are required to answer these questions.
Valizadegan, Farhad; Oryan, Shahrbanoo; Nasehi, Mohammad; Zarrindast, Mohammad Reza
2013-05-01
The amygdala is the key brain structure for anxiety and emotional memory storage. We examined the involvement of β-adrenoreceptors in the basolateral amygdala (BLA) and their interaction with morphine in modulating these behaviors. The elevated plus-maze has been employed for investigating anxiety and memory. Male Wistar rats were used for this test. We injected morphine (4, 5, and 6 mg/kg) intraperitoneally, while salbutamol (albuterol) (1, 2, and 4 μg/rat) and propranolol (1, 2, and 4 μg/rat) were injected into the BLA. Open- arms time percentage (%OAT), open- arms entry percentage (%OAE), and locomotor activity were determined by this behavioral test. Retention was tested 24 hours later. Intraperitoneal injection of morphine (6 mg/kg) had an anxiolytic-like effect and improvement of memory. The highest dose of salbutamol decreased the anxiety parameters in test session and improved the memory in retest session. Coadministration of salbutamol and ineffective dose of morphine presenting anxiolytic response. In this case, the memory was improved. Intra-BLA administration of propranolol (4 μg/rat) decreased %OAT in the test session, while had no effect on memory formation. Coadministration of propranolol and morphine (6 mg/kg) showed an increase in %OAT. There was not any significant change in the above- mentioned parameter in the retest session. Coadministration of morphine and propranolol with the effective dose of salbutamol showed that propranolol could reverse anxiolytic-like effect. We found that opioidergic and β-adrenergic systems have the same effects on anxiety and memory in the BLA; but these effects are independent of each other.
Wang, Wei-Ping; Lou, Yan; Li, Zhen-Zhong; Li, Pan; Duan, Rui-Sheng
2007-02-01
SD rats were utilized for the purpose of the exploration of effects of status epilepticus (SE) on their emotional behavior, spatial learning and memory, and explorating its molecular mechanism. Forty maturity male SD rats, weighing (200 +/- 20) g were divided randomly and equally into SE group (SG) and normal control group (NG). The SG rats were induced by Pentylenetetrazole (PTZ) and the control animals received a saline (0.9%) solution. The change of emotional behavior in two groups were tested in elevated plus maze. Furthermore, Morris water maze was applied to evaluate the effects by SE on spatial learning and memory in rats. At the same time, N-methyl-D-aspartate (NMDA) receptor NR1 subunit mRNA in the hippocampus was determined by reverse transcription polymerase chain reaction (RT-PCR). In elevated plus test, SE rats increased the times of visits as well as the time spent on the open arms of the elevated plus maze (P < 0.01). In Morris water maze, the mean escape latency for the SE rats looking for hidden platform in the place navigation test prolonged (P < 0.01). The efficiency of their search strategy was poor (P < 0.05). The swimming time in platform region and the percentage of their swimming time decreased (P < 0.01). The number of times they crossed the platform area decreased (P < 0.01). Meanwhile the expression of NR1 subunit mRNA in hippocampus was lower (P < 0.01). The experimental results showed that SE could result in the change of emotional behavior and damage of spatial learning and memory in rats. NR1 might be involved in the patho- and physiological process in causing these behavioral changes.
Buhot, M C; Chapuis, N; Scardigli, P; Herrmann, T
1991-07-01
The behaviour of sham-operated rats and rats with damage to the dorsal hippocampus was compared in a complex spatial problem-solving task using a 'hub-spoke-rim' wheel type maze. Compared to the classical Olton 8-arm radial maze and Morris water maze, this apparatus presents the animal with a series of possible alternative routes both direct and indirect to the goal (food). The task included 3 main stages: exploration, feeding and testing, as do the classic problem-solving tasks. During exploration, hippocampal rats were found to be more active than sham rats. Nevertheless, they displayed habituation and a relatively efficient circumnavigation, though, in both cases, different from those of sham rats. During test trials, hippocampal rats were characterized as being less accurate, making more errors than sham rats. Nevertheless, both groups increased their accuracy of first choices over trials. The qualitative analyses of test trial performance indicated that hippocampal rats were less accurate in terms of the initial error's deviation from the goal, and less efficient in terms of corrective behaviour than sham rats which used either the periphery or the spokes to attain economically the goal. Surprisingly, hippocampal rats were not limited to a taxon type orientation but learned to use the periphery, a tendency which developed over time. Seemingly, for sham rats, the problem-solving process took the form of updating information during transit. For hippocampal rats, the use of periphery reflected both an ability to discriminate its usefulness in reaching the goal via a taxis type behaviour, and some sparing of ability to generalize the closeness and the location of the goal. These results, especially the strategic correction patterns, are discussed in the light of Sutherland and Rudy's 'configurational association theory'.
Sex-dependent effects of letrozole on anxiety in middle-aged rats.
Borbélyová, Veronika; Domonkos, Emese; Csongová, Melinda; Kačmárová, Mária; Ostatníková, Daniela; Celec, Peter; Hodosy, Július
2017-12-01
Aromatase catalyzes the conversion of testosterone to estradiol and is involved in the physiological effects of sex hormones on brain function. Animal experiments have shown that the aromatase inhibitor, letrozole, can induce anxiety in young ovariectomized females that are used as a model of aging. Whether or not these effects would be similar in intact middle-aged animals is unknown. The aim of our study was to analyze the effects of letrozole on anxiety in middle-aged rats of both sexes. Fifteen month old male and female rats were treated daily with either letrozole or vehicle for 2 weeks. The elevated plus maze was used to test anxiety-like behaviour. Sex differences were found not only in plasma concentrations of testosterone but also in the effects of letrozole treatment on plasma testosterone (P<.05). The interaction between sex and treatment was also proven in locomotor activity (P<.05) and time spent in the open arms of the elevated plus maze (P<.05). Letrozole-treated male rats spent 95% less time in the open arms of the elevated plus maze than the control rats did (P<.05) suggesting an anxiogenic effect of aromatase inhibition. This difference was not found between letrozole-treated and vehicle-treated females. In contrast to previous experiments on young animals, letrozole seems to induce anxiety in male but not in female middle-aged rats. This sex-specific effect might be related to sex differences of oestrogen and androgen signalling in aging brains. These results should be taken into account in clinical applications of letrozole, especially in men. © 2017 John Wiley & Sons Australia, Ltd.
The effect of neonatal handling on adult feeding behavior is not an anxiety-like behavior.
Silveira, P P; Portella, A K; Clemente, Z; Gamaro, G D; Dalmaz, C
2005-02-01
Brief periods of handling during the neonatal period have been shown to have profound and long-lasting physiological consequences. Previous studies performed in our laboratory have demonstrated that handling the pups during the neonatal period leads to increased sweet food ingestion in adult life. The objective of this study is to verify if this effect could be explained by the enhanced anxiety levels in these animals. Litters were divided in: (1) intact; (2) handled (10 min in an incubator/day) and (3) handled + tactile stimulation (10 min/day). Procedures were performed on days 1-10 after birth. When adults, rats were tested in the elevated plus maze apparatus, light dark exploration test and open field test. They were also tested for sweet food ingestion, being injected with 2 mg/kg diazepam or vehicle 60 min before the test. Handling and handling + tactile stimulation do not alter performance in the plus maze test, but handled rats presented more crossings in the light/dark exploration test and open field (two-way ANOVA). Females also spent more % time in the open arms in the plus maze and more time in the lit compartment in the light/dark test, presenting more crossings in both tests. Both treated rats (handled and handled + tactile stimulation groups) consumed more sweet food than intact ones (two-way ANOVA). When diazepam was injected prior to the measurement of sweet food ingestion, there was no effect of the drug. We suggest that handling during the neonatal period leads to plastic alterations in the central nervous system of these animals, causing an increased ingestion of palatable food in adult life, and this alteration does not express an anxiety-like behavior.
Pompili, Assunta; Tomaz, Carlos; Arnone, Benedetto; Tavares, Maria Clotilde; Gasbarri, Antonella
2010-11-12
The results of many studies conducted over the past two decades suggested a role of estrogen on mammal's ability to learn and remember. In the present paper, we analyzed the influence that the endogenous fluctuation of estrogen, naturally present across the different phases of estrous cycle of female rats, can exert over the performance of tasks utilized to assess memory. In particular, we analyzed the performances in an eight arms radial maze task, dependent upon working memory, and in a water maze (WM) task, dependent upon spatial reference memory. The water maze is aversively motivated by the desire to escape onto a safe platform, whereas the radial arm maze (RAM) is motivated by food reward. The difference in reinforcement may affect the speed of learning, the strategy adopted and the necessity for accurate navigation. Therefore, coherent results obtained through the two different tasks can be due to mnemonic factors. The study was conducted during a long period of time, 14 months, utilizing gonadally intact females, without pharmacological and surgical treatments. In order to evaluate the post-acquisition phase we first trained the animals to reach the criterion in performing tasks, and then we submitted them to experimental phase. Our results show that estrogen can have an effect on memory processes, and that this effect may be different in relation to different kinds of memory. In fact, in our study, estrogen selectively improved working memory, but not reference memory, during post-acquisition performance of a RAM task with four baited and four un-baited arms. Moreover, WM performances showed that estrogen have a negative effect on spatial reference memory. (c) 2010 Elsevier B.V. All rights reserved.
Nigella sativa Oil Enhances the Spatial Working Memory Performance of Rats on a Radial Arm Maze
Sahak, Mohamad Khairul Azali; Mohamed, Abdul Majid; Hashim, Noor Hashida; Hasan Adli, Durriyyah Sharifah
2013-01-01
Nigella sativa, an established historical and religion-based remedy for a wide range of health problems, is a herbal medicine known to have antioxidant and neuroprotective effects. This present study investigated the effect of Nigella sativa oil (NSO) administration on the spatial memory performance (SMP) of male adult rats using eight-arm radial arm maze (RAM). Twelve Sprague Dawley rats (7–9 weeks old) were force-fed daily with 6.0 μL/100 g body weight of Nigella sativa oil (NSO group; n = 6) or 0.1 mL/100 g body weight of corn oil (control) (CO group; n = 6) for a period of 20 consecutive weeks. For each weekly evaluation of SMP, one day food-deprived rats were tested by allowing each of them 3 minutes to explore the RAM for food as their rewards. Similar to the control group, the SMP of the treated group was not hindered, as indicated by the establishment of the reference and working memory components of the spatial memory. The results demonstrated that lesser mean numbers of error were observed for the NSO-treated group in both parameters as compared to the CO-treated group. NSO could therefore enhance the learning and memory abilities of the rats; there was a significant decrease in the overall mean number of working memory error (WME) in the NSO-treated group. PMID:24454487
Gomes, Karina Santos; de Carvalho-Netto, Eduardo Ferreira; Monte, Kátia Cristina Da Silva; Acco, Bruno; Nogueira, Paulo José de Campos; Nunes-de-Souza, Ricardo Luiz
2009-03-30
The elevated T-maze (ETM) is an animal model of anxiety-like behavior that assesses two different defensive behavioral tasks in the same animal-acquisition of inhibitory avoidance and latency to escape from an open and elevated arm. In rats, cute and chronic treatments with anxiolytic-like drugs impair avoidance acquisition while only chronic administration of panicolytic-like drugs impairs open arm withdrawal. To date, only the acute effects of anxiolytic/anxiogenic or panicolytic/panicogenic drugs have been tested in the mouse ETM and the results have partially corroborated those found in the rat ETM. This study investigated the effects of acute (a single intraperitoneal injection 30 min before testing) and chronic (daily i.p. injections for 15 consecutive days) treatment with imipramine or fluoxetine, non-selective and selective serotonin reuptake inhibitors, respectively, on inhibitory avoidance and escape tasks in the mouse ETM. Neither acute nor chronic treatment with imipramine (0, 1, 5 or 10 mg/kg, i.p.) significantly changed the behavioral profile of mice in the two ETM tasks. Interestingly, while acute fluoxetine (0, 5, 10, 20 or 40 mg/kg, i.p.) facilitated inhibitory avoidance and impaired escape latency, chronic treatment (0, 5, 20 or 40 mg/kg, i.p.) with this selective serotonin reuptake inhibitor (SSRI) produced an opposite effect, i.e., it impaired inhibitory avoidance acquisition and facilitated open arm withdrawal. Importantly, acute or chronic treatment with imipramine (except at the highest dose that increased locomotion when given acutely) or fluoxetine failed to alter general locomotor activity in mice as assessed in an ETM in which all arms were enclosed by lateral walls (eETM). These results suggest that inhibitory avoidance acquisition is a useful task for the evaluation of acute and chronic effects of SSRI treatment on anxiety in mice. However, as open arm latency was actually increased and reduced by acute and chronic fluoxetine, respectively, this does not seem to be a useful measure of escape from a proximal threat in this species.
Effect of ketamine on exploratory behaviour in BALB/C and C57BL/6 mice.
Akillioglu, Kubra; Melik, Emine Babar; Melik, Enver; Boga, Ayper
2012-01-01
In this study, we evaluated the effect of ketamine on exploratory locomotion behaviours in the Balb/c and C57BL/6 strains of mice, which differ in their locomotion behaviours. Intraperitoneal administration of ketamine at three different doses (1, 5 or 10 mg/kg, 0.1 ml/10 gr body weight) was performed on adult male Balb/c and C57BL/6 mice. The same volume of saline was applied to the control group. The open-field and elevated plus maze apparatus were used to evaluate exploratory locomotion. In the open-field test, Balb/c mice less spend time in the centre of the field and was decreased locomotor activity compared to C57BL/6 mice (p<0.01). Ketamine treatment of Balb/c mice at 10 mg/kg dose caused an increase in locomotor activity and an increase in the amount of time spent in the centre in the open-field test, compared to the control group (p<0.05). In C57BL/6 mice, ketamine treatment (1 and 10 mg/kg) decreased locomotor activity (p<0.05). In C57BL/6 mice, the three different doses of ketamine application each caused a decrease in the frequency of centre crossing (p<0.001) and the spent time in the centre (p<0.05). In the elevated plus maze, the number of open-arm entries, the percentage of open-arm time and total arm entries were decreased in Balb/c mice compared to C57BL/6 mice (p<0.001). Ketamine treatment of Balb/c mice at 10 mg/kg dose caused an increase in the open-arm activity (p<0.001). Ketamine application (10 mg/kg) decreased the open-arm activity in C57BL/6 mice (p<0.05). A subanaesthetic dose of ketamine increased exploratory locomotion in Balb/c mice. In contrast, a subanaesthetic dose of ketamine decreased exploratory locomotion in C57BL/6 mice. In conclusion, hereditary factors may play an important role in ketamine-induced responses. Copyright © 2011 Elsevier Inc. All rights reserved.
Gupta, Avneet; Raj, Hem; Karchuli, Manvender Singh; Upmanyu, Neeraj
2013-12-01
The effects of ethanolic extracts of whole plants of Bacopa monnieri (BME), Evolvulus alsinoides (EAE), Tinospora cordifolia (TCE) and their combinations in equal proportion [CEP-1 (BME+EAE), CEP-2 (BME+TCE), CEP-3 (EAE+TCE) and CEP-4 (BME+EAE+TCE)] were tested in amnesic rats using Radial arm maze task performance (RAM) and Barnes maze test at 200 mg/kg p.o. The latency to find food and target hole was observed in RAM and Barnes maze respectively. Cognitive dysfunction was induced by scopolamine (0.3 mg/kg i.p.) treatment. BME, EAE, TCE and their combinations of equal proportion (CEPs) showed significant decrease in latency to find food and target hole in RAM and Barnes maze respectively. Inter comparison among single extract alone treated groups revealed that BME treated animals showed significant difference as compared to EAE and TCE treated animals. All combinations of equal proportion (CEPs) of these extracts showed significant difference in latency to find food and target hole as compared to single extracts treated animals. CEP-1 showed significantly better effect as compared to CEP-2 and CEP-3. Significant difference in latency to find food and target hole was also present between CEP-2 and CEP-3. Effect of CEP-4 was found to be significantly better than CEP-1, CEP-2 and CEP-3 treated rats in both models. From present investigation, it was concluded that ethanolic extract of Bacopa monnieri, Evolvulus alsinoides and Tinospora cordifolia provided better nootropic effect when used in combination.
He, F
2014-04-25
Prenatal exposure to ethanol has been shown to increase the risk of anxiety in offspring. Here, we tested the effect of prenatal ethanol exposure on adult male mandarin voles (Microtus mandarinus). We examined anxiety-like behavior in the open field and elevated plus-maze tests in males exposed to ethanol prenatally. One control group was not exposed to ethanol or saline, while another control group was exposed to saline. At the age of 90days, males were tested and levels of serum testosterone, androgen receptor immunoreactive neurons (AR-IRs) and arginine vasopressin immunoreactive neurons (AVP-IRs) were measured. Animals exposed to ethanol spent less time in the center of the chamber, covered less distance and conducted fewer crossings in the open-field test. These animals also spent less time and conducted fewer crossings in the open arms. However, they spent more time and made more entries in the closed arms, and traveled less total distance during the elevated plus-maze test, compared to the control voles. Serum T was lower in the ethanol group, and the AR-IR number in the bed nucleus of the stria terminalis (BNST), medial preoptic area (mPOA) and medial amygdaloid nucleus (MeA) was significantly lower. The number of AVP-IRs in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) of the ethanol group was higher than that of the control groups. Our findings suggest that prenatal ethanol exposure may lead to reduced serum T levels, decreased AR and increased AVP in the CNS and result in the development of anxiety-like behaviors. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Harmane induces anxiolysis and antidepressant-like effects in rats.
Aricioglu, Feyza; Altunbas, Hale
2003-12-01
A forced swim test (FST) and an elevated plus maze (EPM) were used to determine antidepressant and anxiolytic effects of harmane in rats in comparison with a known antidepressant, imipramine (30 mg/kg i.p.). Harmane (2.5, 5.0, or 10 mg/kg, i.p.), saline, or imipramine were given 30 minutes before the tests. Administration of harmane decreased the time of immobility in the FST dose-dependently and increased the time spent in open arms in the EPM, as compared with the saline group. As an endogenous substance, harmane therefore has anti-anxiety and antidepressant effects.
Rafati, Ali; Noorafshan, Ali; Jahangir, Mahboubeh; Hosseini, Leila; Karbalay-Doust, Saied
2018-01-01
Aspartame is an artificial sweetener used in about 6000 sugar-free products. Aspartame consumption could be associated with various neurological disorders. This study aimed to evaluate the effect of aspartame onmedial Prefrontal Cortex (mPFC) as well as neuroprotective effects of vitamin E. The rats were divided into seven groups, including distilled water, corn oil, vitamin E (100mg/kg/day), and low (acceptable daily dose) and high doses of aspartame (40 and 200mg/kg/day) respectively, with or without vitamin E consumption, for 8 weeks. Behavioral tests were recorded and the brain was prepared for stereological assessments. Novel objects test and eight-arm radial maze showed impairmentoflong- and short-termmemoriesin aspartame groups. Besides, mPFC volume, infralimbic volume, neurons number, glial cells number, dendrites length per neuron,and number of spines per dendrite length were decreased by 7-61% in the rats treated with aspartame. However, neurons' number, glial cells number, and rats' performance in eight-arm radial mazes were improved by concomitant consumption of vitamin E and aspartame. Yet, the mPFC volume and infralimbic cortex were protected only in the rats receiving the low dose of aspartame+vitamin E. On the other hand, dendrites length, spines number,and novel object recognition were not protected by treatment with vitamin E+aspartame. The acceptable daily dose or higher doses of aspartame could induce memory impairments and cortical cells loss in mPFC. However, vitamin E could ameliorate some of these changes. Copyright © 2017 Elsevier GmbH. All rights reserved.
1-Oleoyl Lysophosphatidic Acid: A New Mediator of Emotional Behavior in Rats
Castilla-Ortega, Estela; Escuredo, Leticia; Bilbao, Ainhoa; Pedraza, Carmen; Orio, Laura; Estivill-Torrús, Guillermo; Santín, Luis J.; de Fonseca, Fernando Rodríguez; Pavón, Francisco Javier
2014-01-01
The role of lysophosphatidic acid (LPA) in the control of emotional behavior remains to be determined. We analyzed the effects of the central administration of 1-oleoyl-LPA (LPA 18∶1) in rats tested for food consumption and anxiety-like and depression-like behaviors. For this purpose, the elevated plus-maze, open field, Y maze, forced swimming and food intake tests were performed. In addition, c-Fos expression in the dorsal periaqueductal gray matter (DPAG) was also determined. The results revealed that the administration of LPA 18∶1 reduced the time in the open arms of the elevated plus-maze and induced hypolocomotion in the open field, suggesting an anxiogenic-like phenotype. Interestingly, these effects were present following LPA 18∶1 infusion under conditions of novelty but not under habituation conditions. In the forced swimming test, the administration of LPA 18∶1 dose-dependently increased depression-like behavior, as evaluated according to immobility time. LPA treatment induced no effects on feeding. However, the immunohistochemical analysis revealed that LPA 18∶1 increased c-Fos expression in the DPAG. The abundant expression of the LPA1 receptor, one of the main targets for LPA 18∶1, was detected in this brain area, which participates in the control of emotional behavior, using immunocytochemistry. These findings indicate that LPA is a relevant transmitter potentially involved in normal and pathological emotional responses, including anxiety and depression. PMID:24409327
Behavioral characterization of CD36 knockout mice with SHIRPA primary screen.
Zhang, Shuxiao; Wang, Wei; Li, Juan; Cheng, Ke; Zhou, Jingjing; Zhu, Dan; Yang, Deyu; Liang, Zihong; Fang, Liang; Liao, Li; Xie, Peng
2016-02-15
CD36 is a member of the class B scavenger receptor family of cell surface proteins, which plays a major role in fatty acid, glucose and lipid metabolism. Besides, CD36 functions as a microglial surface receptor for amyloid beta peptide. Regarding this, we suggest CD36 might also contribute to neuropsychiatric disease. The aim of this study was to achieve a behavioral phenotype of CD36 knockout (CD36(-/-)) mice. We characterized the behavior of CD36(-/-) mice and C57BL/6J mice by subjecting them to a series of tests, which include SHIRPA primary behavioral screen test, 1% sucrose preference test, elevated plus-maze test, open-field test and forced swimming test. The results showed that CD36(-/-) mice traversed more squares, emitted more defecation, exhibited higher tail elevation and had more aggressive behaviors than C57BL/6J mice. The CD36(-/-) mice spent more time and traveled longer distance in periphery zone in the open-field test. Meanwhile, the numbers that CD36(-/-) mice entered in the open arms of elevated plus-maze were reduced. These findings suggest that CD36(-/-) mice present an anxious phenotype and might be involved in neuropsychiatric disorders. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Samuelson, Elizabeth E. W.; Chen-Wishart, Zachary P.; Gill, Richard J.; Leadbeater, Ellouise
2016-12-01
Pesticides, including neonicotinoids, typically target pest insects by being neurotoxic. Inadvertent exposure to foraging insect pollinators is usually sub-lethal, but may affect cognition. One cognitive trait, spatial working memory, may be important in avoiding previously-visited flowers and other spatial tasks such as navigation. To test this, we investigated the effect of acute thiamethoxam exposure on spatial working memory in the bumblebee Bombus terrestris, using an adaptation of the radial-arm maze (RAM). We first demonstrated that bumblebees use spatial working memory to solve the RAM by showing that untreated bees performed significantly better than would be expected if choices were random or governed by stereotyped visitation rules. We then exposed bees to either a high sub-lethal positive control thiamethoxam dose (2.5 ng-1 bee), or one of two low doses (0.377 or 0.091 ng-1) based on estimated field-realistic exposure. The high dose caused bees to make more and earlier spatial memory errors and take longer to complete the task than unexposed bees. For the low doses, the negative effects were smaller but statistically significant, and dependent on bee size. The spatial working memory impairment shown here has the potential to harm bees exposed to thiamethoxam, through possible impacts on foraging efficiency or homing.
Intact working memory in the absence of forebrain neuronal glycine transporter 1
Dubroqua, Sylvain; Serrano, Lucas; Boison, Detlev; Feldon, Joram; Gargiulo, Pascual A.; Yee, Benjamin K.
2012-01-01
Glycine transporter 1 (GlyT1) is a potential pharmacological target to ameliorate memory deficits attributable to N-methyl-d-aspartate receptor (NMDAR) hypofunction. Disruption of glycine-reuptake near excitatory synapses is expected to enhance NMDAR function by increasing glycine-B site occupancy. Genetic models with conditional GlyT1 deletion restricted to forebrain neurons have yielded several promising promnesic effects, yet its impact on working memory function remains essentially unanswered because a previous attempt had yielded un-interpretable outcomes. The present study clarified this important outstanding lacuna using a within-subject multi-paradigm approach. Here, a consistent lack of effects was convincingly demonstrated across three working memory test paradigms – the radial arm maze, the cheeseboard maze, and the water maze. These null outcomes contrasted with the phenotype of enhanced working memory performance seen in mutant mice with GlyT1 deletion extended to cortical/hippocampal glial cells. It follows that glial-based GlyT1 might be more closely linked to the modulation of working memory function, and raises the possibility that neuronal and glial GlyT1 may regulate cognitive functions via dissociable mechanisms. PMID:22342492
Sutherland, Robert J
2010-06-01
The article by Goodrich-Hunsaker and Hopkins (2010, this issue) takes up an important place among in the recent contributions on the role of the hippocampus in memory. They evaluate the effect of bilateral damage to the hippocampus on performance by human participants in a virtual 8-arm radial maze. The hippocampal damage appears to be highly selective and nearly complete. Exactly as with selective hippocampal damage in rats, the human participants showed a deficit in accurately choosing rewarded versus never-rewarded arms and a deficit in avoiding reentering recently visited arms. The results are triply significant: (1) They provide good support for the idea that the wealth of neurobiological information, from network to synapse to gene, on spatial memory in the rat may apply as a whole to the human hippocampal memory system; (2) They affirm the utility of human virtual task models of rat spatial memory tasks; (3) They support one interpretation of the dampening of the hippocampal functional MRI (fMRI) blood oxygen level-dependent (BOLD) signal during performance of the virtual radial arm maze observed by Astur et al. (2005).
Early effects of 16O radiation on neuronal morphology and cognition in a murine model
NASA Astrophysics Data System (ADS)
Carr, Hannah; Alexander, Tyler C.; Groves, Thomas; Kiffer, Frederico; Wang, Jing; Price, Elvin; Boerma, Marjan; Allen, Antiño R.
2018-05-01
Astronauts exposed to high linear energy transfer radiation may experience cognitive injury. The pathogenesis of this injury is unknown but may involve glutamate receptors or modifications to dendritic structure and/or dendritic spine density and morphology. Glutamate is the major excitatory neurotransmitter in the central nervous system, where it acts on ionotropic and metabotropic glutamate receptors located at the presynaptic terminal and in the postsynaptic membrane at synapses in the hippocampus. Dendritic spines are sites of excitatory synaptic transmission, and changes in spine structure and dendrite morphology are thought to be morphological correlates of altered brain function associated with hippocampal-dependent learning and memory. The aim of the current study is to assess whether behavior, glutamate receptor gene expression, and dendritic structure in the hippocampus are altered in mice after early exposure to 16O radiation in mice. Two weeks post-irradiation, animals were tested for hippocampus-dependent cognitive performance in the Y-maze. During Y-maze testing, mice exposed to 0.1 Gy and 0.25 Gy radiation failed to distinguish the novel arm, spending approximately the same amount of time in all 3 arms during the retention trial. Exposure to 16O significantly reduced the expression of Nr1 and GluR1 in the hippocampus and modulated spine morphology in the dentate gyrus and cornu Ammon 1 within the hippocampus. The present data provide evidence that 16O radiation has early deleterious effects on mature neurons that are associated with hippocampal learning and memory.
Riaz, Muhammad S; Bohlen, Martin O; Gunter, Barak W; Quentin, Henry; Stockmeier, Craig A; Paul, Ian A
2015-12-01
Exposure to unpredictable chronic mild stress (CUS) is a commonly used protocol in rats that is reported to evoke antidepressant-reversible behaviors such as loss of preference for a sweetened water solution which is taken as an analog of the anhedonia seen in major depression. However, the induction of anhedonic-like behavior by chronic mild stress, gauged by an animal's preference for sucrose solution, is not fully reproducible and consistent across laboratories. In this study, we compared a widely used behavioral marker of anhedonia - the sucrose preference test, with another phenotypic marker of emotional valence, social interaction-associated ultrasonic vocalizations as well as a marker of an anxiety-like phenotype, novelty-suppressed feeding, and cognitive performance in the eight arm radial maze task in adult male Sprague-Dawley rats. Chronic four-week exposure to unpredictable mild stressors resulted in 1) attenuation of social interaction-associated ultrasonic vocalizations 2) attenuation of spatial memory performance on the radial arm maze 3) attenuation of body weight gain and 4) increased latency to feed in a novelty-suppressed feeding task. However, chronic exposure to CUS did not result in any significant change in sucrose preference at one-week and three-week intervals. Our results argue for the utility of ultrasonic vocalizations in a social interaction context as a comparable alternative or adjunct to the sucrose preference test in determining the efficacy of CUS to generate an anhedonic-like phenotypic state. Copyright © 2015 Elsevier Inc. All rights reserved.
Rojas-Ortiz, Yoel Antonio; Rundle-González, Valerie; Rivera-Ramos, Isamar; Jorge, Juan Carlos
2006-01-01
Exposure to supraphysiological doses of androgens may disrupt affective components of behavior. In this study, behavior of adult C57Bl/6 male mice was studied after exposure to the anabolic androgenic steroid (AAS) 17alpha-methyltestosterone (17alpha-meT; 7.5 mg/kg) via a subcutaneous osmotic pump for 17 days. Controls received vehicle implants (0.9% NaCl + 30% cyclodextrine). On day 15, experimental animals were challenged with an ethanol (EtOH) injection (i.p.; 1 g/kg) while controls received saline injections. Five minutes after the injection, animals were tested in an automated elevated plus maze (EPM) or in automated activity chambers. In addition, injection-free animals were tested for ethanol consumption on day 16 after an overnight water deprivation period. Whereas chronic exposure to 17alpha-meT did not modulate open arm behavior, EtOH-exposed animals made more entries into the open arms than controls (P < 0.05). A significant reduction of risk assessment behaviors (rearing, flat approach behavior, and stretch attended posture) over the EPM was noted for EtOH-exposed animals whereas a reduction in stretch attended postures was observed among 17alpha-meT-exposed animals. Locomotor activity, and light-dark transitions in activity chambers remained unaltered. Exposure to AAS did not modulate EtOH consumption. Our data suggest that exposure to a supraphysiological dose of 17alpha-meT has minimal effects on exploratory-based anxiety.
Lee, Jong-Ho; Kim, Jin Young
2014-01-01
Background This study was conducted to examine the effects of ad libitum consumption of highly palatable food (HPF) during adolescence on the adverse behavioral outcome of neonatal maternal separation. Methods Male Sprague-Dawley pups were separated from dam for 3 hours daily during the first 2 weeks of birth (maternal separation, MS) or left undisturbed (nonhandled, NH). Half of MS pups received free access to chocolate cookies in addition to ad libitum chow from postnatal day 28 (MS+HPF). Pups were subjected to behavioral tests during young adulthood. The plasma corticosterone response to stress challenge was analyzed by radioimmunoassay. Results Daily caloric intake and body weight gain did not differ among the experimental groups. Ambulatory activities were decreased defecation activity and rostral grooming were increased in MS controls (fed with chow only) compared with NH rats. MS controls spent less time in open arms, and more time in closed arms during the elevated plus maze test, than NH rats. Immobility duration during the forced swim test was increased in MS controls compared with NH rats. Cookie access normalized the behavioral scores of ambulatory and defecation activities and grooming, but not the scores during the elevated plus maze and swim tests in MS rats. Stress-induced corticosterone increase was blunted in MS rats fed with chow only, and cookie access normalized it. Conclusion Prolonged access to HPF during adolescence and youth partly improves anxiety-related, but not depressive, symptoms in rats that experienced neonatal maternal separation, possibly in relation with improved function of the hypothalamic-pituitary-adrenal (HPA) axis. PMID:25031890
Computerized Maze Navigation and On-Road Performance by Drivers With Dementia
Ott, Brian R.; Festa, Elena K.; Amick, Melissa M.; Grace, Janet; Davis, Jennifer D.; Heindel, William C.
2012-01-01
This study examined the ability of computerized maze test performance to predict the road test performance of cognitively impaired and normal older drivers. The authors examined 133 older drivers, including 65 with probable Alzheimer disease, 23 with possible Alzheimer disease, and 45 control subjects without cognitive impairment. Subjects completed 5 computerized maze tasks employing a touch screen and pointer as well as a battery of standard neuropsychological tests. Parameters measured for mazes included errors, planning time, drawing time, and total time. Within 2 weeks, subjects were examined by a professional driving instructor on a standardized road test modeled after the Washington University Road Test. Road test total score was significantly correlated with total time across the 5 mazes. This maze score was significant for both Alzheimer disease subjects and control subjects. One maze in particular, requiring less than 2 minutes to complete, was highly correlated with driving performance. For the standard neuropsychological tests, highest correlations were seen with Trail Making A (TrailsA) and the Hopkins Verbal Learning Tests Trial 1 (HVLT1). Multiple regression models for road test score using stepwise subtraction of maze and neuropsychological test variables revealed significant independent contributions for total maze time, HVLT1, and TrailsA for the entire group; total maze time and HVLT1 for Alzheimer disease subjects; and TrailsA for normal subjects. As a visual analog of driving, a brief computerized test of maze navigation time compares well to standard neuropsychological tests of psychomotor speed, scanning, attention, and working memory as a predictor of driving performance by persons with early Alzheimer disease and normal elders. Measurement of maze task performance appears to be useful in the assessment of older drivers at risk for hazardous driving. PMID:18287166
Fole, Alberto; Miguéns, Miguel; Morales, Lidia; González-Martín, Carmen; Ambrosio, Emilio; Del Olmo, Nuria
2017-06-02
Lewis (LEW) and Fischer 344 (F344) rats are considered a model of genetic vulnerability to drug addiction. We previously showed important differences in spatial learning and memory between them, but in contrast with previous experiments demonstrating cocaine-induced enhanced learning in Morris water maze (MWM) highly demanding tasks, the eight-arm radial maze (RAM) performance was not modified either in LEW or F344 rats after chronic cocaine treatment. In the present work, chronically cocaine-treated LEW and F344 adult rats have been evaluated in learning and memory performance using the Y-maze, two RAM protocols that differ in difficulty, and a reversal protocol that tests cognitive flexibility. After one of the RAM protocols, we quantified dendritic spine density in hippocampal CA1 neurons and compared it to animals treated with cocaine but not submitted to RAM. LEW cocaine treated rats showed a better performance in the Y maze than their saline counterparts, an effect that was not evident in the F344 strain. F344 rats significantly took more time to learn the RAM task and made a greater number of errors than LEW animals in both protocols tested, whereas cocaine treatment induced deleterious effects in learning and memory in the highly difficult protocol. Moreover, hippocampal spine density was cocaine-modulated in LEW animals whereas no effects were found in F344 rats. We propose that differences in addictive-like behavior between LEW and F344 rats could be related to differences in hippocampal learning and memory processes that could be on the basis of individual vulnerability to cocaine addiction. Copyright © 2017 Elsevier Inc. All rights reserved.
Analysis of emotionality and locomotion in radio-frequency electromagnetic radiation exposed rats.
Narayanan, Sareesh Naduvil; Kumar, Raju Suresh; Paval, Jaijesh; Kedage, Vivekananda; Bhat, M Shankaranarayana; Nayak, Satheesha; Bhat, P Gopalakrishna
2013-07-01
In the current study the modulatory role of mobile phone radio-frequency electromagnetic radiation (RF-EMR) on emotionality and locomotion was evaluated in adolescent rats. Male albino Wistar rats (6-8 weeks old) were randomly assigned into the following groups having 12 animals in each group. Group I (Control): they remained in the home cage throughout the experimental period. Group II (Sham exposed): they were exposed to mobile phone in switch-off mode for 28 days, and Group III (RF-EMR exposed): they were exposed to RF-EMR (900 MHz) from an active GSM (Global system for mobile communications) mobile phone with a peak power density of 146.60 μW/cm(2) for 28 days. On 29th day, the animals were tested for emotionality and locomotion. Elevated plus maze (EPM) test revealed that, percentage of entries into the open arm, percentage of time spent on the open arm and distance travelled on the open arm were significantly reduced in the RF-EMR exposed rats. Rearing frequency and grooming frequency were also decreased in the RF-EMR exposed rats. Defecation boli count during the EPM test was more with the RF-EMR group. No statistically significant difference was found in total distance travelled, total arm entries, percentage of closed arm entries and parallelism index in the RF-EMR exposed rats compared to controls. Results indicate that mobile phone radiation could affect the emotionality of rats without affecting the general locomotion.
Characterization of behavioral and endocrine effects of LSD on zebrafish.
Grossman, Leah; Utterback, Eli; Stewart, Adam; Gaikwad, Siddharth; Chung, Kyung Min; Suciu, Christopher; Wong, Keith; Elegante, Marco; Elkhayat, Salem; Tan, Julia; Gilder, Thomas; Wu, Nadine; Dileo, John; Cachat, Jonathan; Kalueff, Allan V
2010-12-25
Lysergic acid diethylamide (LSD) is a potent hallucinogenic drug that strongly affects animal and human behavior. Although adult zebrafish (Danio rerio) are emerging as a promising neurobehavioral model, the effects of LSD on zebrafish have not been investigated previously. Several behavioral paradigms (the novel tank, observation cylinder, light-dark box, open field, T-maze, social preference and shoaling tests), as well as modern video-tracking tools and whole-body cortisol assay were used to characterize the effects of acute LSD in zebrafish. While lower doses (5-100 microg/L) did not affect zebrafish behavior, 250 microg/L LSD increased top dwelling and reduced freezing in the novel tank and observation cylinder tests, also affecting spatiotemporal patterns of activity (as assessed by 3D reconstruction of zebrafish traces and ethograms). LSD evoked mild thigmotaxis in the open field test, increased light behavior in the light-dark test, reduced the number of arm entries and freezing in the T-maze and social preference test, without affecting social preference. In contrast, LSD affected zebrafish shoaling (increasing the inter-fish distance in a group), and elevated whole-body cortisol levels. Overall, our findings show sensitivity of zebrafish to LSD action, and support the use of zebrafish models to study hallucinogenic drugs of abuse. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Abdolmaleki, Arash; Moghimi, Ali; Ghayour, Mohammad B; Rassouli, Morteza B
2016-10-15
Citicoline (cytidine-5'-diphosphocholine) is a neuroprotective agent that is administered following ischemic and traumatic brain injuries. There is little information about the antiseizure and anxiolytic effects of citicoline, which are therefore addressed in the present study. For evaluating the anticonvulsant effect of citicoline in the pentylentetrazole seizure model, a single intraperitoneal dose of citicoline was administered at 50, 100 or 150mg/kg. Sedative and anxiolytic effects of citicoline were examined via elevated plus maze and pentobarbital induced sleep tests. Results show that citicoline at the doses of 100 and 150mg/kg significantly delayed the latent period compared with the control (P<0.05). Citicoline at the doses of 100 and 150mg/kg significantly decreased total locomotion compared with the control (P<0.05). Additionally, citicoline at the doses of 100 and 150mg/kg significantly increased both percentage of entry and time spent in the open arms in the elevated plus maze test (P<0.05). The pentobarbital induced sleep test showed that citicoline significantly reduced the latency to sleep (P<0.05). Our results suggest that acute administration of citicoline has anticonvulsant activity and sedative effect. Copyright © 2016 Elsevier B.V. All rights reserved.
Sex differences in chronic stress effects on cognition in rodents
Luine, Victoria; Gomez, Juan; Beck, Kevin; Bowman, Rachel
2016-01-01
Chronic stress causes deleterious changes in physiological function in systems ranging from neural cells in culture to laboratory rodents, sub-human primates and humans. It is notable, however, that the vast majority of research in this area has been conducted in males. In this review, we provide information about chronic stress effects on cognition in female rodents and contrast it with responses in male rodents. In general, females show cognitive resilience to chronic stressors which impair male cognitive function using spatial tasks including the radial arm maze, radial arm water maze, Morris water maze, Y-maze and object placement. Moreover, stress often enhances female performance in some of these cognitive tasks. Memory in females is not affected by stress in non-spatial memory tasks like recognition memory and temporal order recognition memory while males show impaired memory following stress. We discuss possible bases for these sex-dependent differences including the use of different strategies by the sexes to solve cognitive tasks. Whether the sex differences result from changes in non-mnemonic factors is also considered. Sex-dependent differences in alcohol and drug influences on stress responses are also described. Finally, the role of neurally derived estradiol in driving sex differences and providing resilience to stress in females is shown. The importance of determining the nature and extent of sex differences in stress responses is that such differences may provide vital information for understanding why some stress related diseases have different incidence rates between the sexes and for developing novel therapeutic treatments. PMID:27566290
Pigeons (Columba livia) plan future moves on computerized maze tasks.
Miyata, Hiromitsu; Fujita, Kazuo
2008-07-01
Planning, the internal process of formulating an organized method about one's future behavior, should be advantageous for non-human animals as well as for humans. However, little is known about this process in avian species. We examined planning processes in pigeons (Columba livia) using a computerized maze task. In Experiment 1, we found that the pigeons plan their next one step, and in some cases even correctly adjust their actions after change of goal locations, while performing on a plus-shaped maze. We also showed that the pigeons might even plan two steps on familiar, well-practiced mazes. In Experiment 2, we discovered that the subjects plan the direction they would go first before starting to solve a four-arm shuriken (a Japanese traditional throwing knife)-shaped maze. The birds also corrected their previously planned actions after change of goal locations. Our results from these experiments suggest that planning ahead is within the cognitive capacity of a "bird brain", and that it may be more widespread in the animal kingdom than has been presumed.
Rodríguez-Arias, Marta; Maldonado, Concepción; Vidal-Infer, Antonio; Guerri, Consuelo; Aguilar, María A; Miñarro, José
2011-11-01
Heavy binge drinking is increasingly frequent among adolescents, while ethanol (EtOH) is often used in combination with 3,4-methylenedioxymethamphetamine (MDMA). The long-lasting effects of intermittent exposure to EtOH and MDMA during adolescence on motor activity, anxiety, and social behavior were evaluated in adult mice. The concentration of brain monoamines in the striatum, cortex, and hippocampus was measured following the behavioral test. Adolescent OF1 mice were exposed to ethanol (1.25 g/kg) on two consecutive days at 48-h intervals over a 14-day period (from PND 29 to 42). A total of eight injections of MDMA (10 or 20 mg/kg) were administered twice daily at 4-h intervals over two consecutive days, and this schedule was repeated 6 days later (PND 33, 34, 41, and 42). Behavioral tests and analysis of brain monoamines took place on PND 64 to 67. Exposure to MDMA during adolescence increased the anxiogenic response in the elevated plus maze, with adult mice spending less time in the open arms of the maze and exhibiting lower concentrations of DA in the striatum. A pattern of ethanol administration modeling binge drinking during adolescence enhanced these effects and undermined the hyperthermic response induced by MDMA. Passive avoidance was affected only when EtOH was administered alone. Juvenile administration of MDMA and alcohol was found to cause a decrease in monoamine levels in adulthood, as well as changes in social interaction behaviors, locomotor activity, increase measures of anxiety in the elevated plus maze (EPM), and decrease step-through latencies in passive avoidance test.
Burgess, Alison; Dubey, Sonam; Yeung, Sharon; Hough, Olivia; Eterman, Naomi; Aubert, Isabelle; Hynynen, Kullervo
2014-12-01
To validate whether repeated magnetic resonance (MR) imaging-guided focused ultrasound treatments targeted to the hippocampus, a brain structure relevant for Alzheimer disease ( AD Alzheimer disease ), could modulate pathologic abnormalities, plasticity, and behavior in a mouse model. All animal procedures were approved by the Animal Care Committee and are in accordance with the Canadian Council on Animal Care. Seven-month-old transgenic (TgCRND8) (Tg) mice and their nontransgenic (non-Tg) littermates were entered in the study. Mice were treated weekly with MR imaging-guided focused ultrasound in the bilateral hippocampus (1.68 MHz, 10-msec bursts, 1-Hz burst repetition frequency, 120-second total duration). After 1 month, spatial memory was tested in the Y maze with the novel arm prior to sacrifice and immunohistochemical analysis. The data were compared by using unpaired t tests and analysis of variance with Tukey post hoc analysis. Untreated Tg mice spent 61% less time than untreated non-Tg mice exploring the novel arm of the Y maze because of spatial memory impairments (P < .05). Following MR imaging-guided focused ultrasound, Tg mice spent 99% more time exploring the novel arm, performing as well as their non-Tg littermates. Changes in behavior were correlated with a reduction of the number and size of amyloid plaques in the MR imaging-guided focused ultrasound-treated animals (P < .01). Further, after MR imaging-guided focused ultrasound treatment, there was a 250% increase in the number of newborn neurons in the hippocampus (P < .01). The newborn neurons had longer dendrites and more arborization after MR imaging-guided focused ultrasound, as well (P < .01). Repeated MR imaging-guided focused ultrasound treatments led to spatial memory improvement in a Tg mouse model of AD Alzheimer disease . The behavior changes may be mediated by decreased amyloid pathologic abnormalities and increased neuronal plasticity. © RSNA, 2014.
Rao, Kalyan N; Sentir, Alena M; Engleman, Eric A; Bell, Richard L; Hulvershorn, Leslie A; Breier, Alan; Chambers, R Andrew
2016-12-01
Prefrontal cortical (PFC)-hippocampal-striatal circuits, interconnected via glutamatergic signaling, are dysfunctional in mental illnesses that involve addiction vulnerability. In healthy and neurodevelopmentally altered rats, we examined how Radial Arm Maze (RAM) performance estimates addiction vulnerability, and how starting a glutamatergic modulating agent, N-acetyl cysteine (NAC) in adolescence alters adult mental illness and/or addiction phenotypes. Rats with neonatal ventral hippocampal lesions (NVHL) vs. SHAM-operated controls were randomized to NAC vs. saline in adolescence followed by cognitive testing (RAM) in early adulthood and then cocaine behavioral sensitization (experiment 1; n = 80) or nicotine self-administration (experiment 2; n = 12). In experiment 1, NVHL rats showed over-consumption of food (Froot-Loops (FL)) baiting the RAM with poor working memory (low-arm entries to repeat (ETR)), producing an elevated FL to ETR ratio ("FLETR"; p < 0.001). FLETR was the best linear estimator (compared to FL or ETR) of magnitude of long-term cocaine sensitization (R 2 = 0.14, p < 0.001). NAC treatment did not alter FL, ETR, FLETR, or cocaine sensitization. In experiment 2, FLETR also significantly and uniquely correlated with subsequent drug seeking during nicotine-induced reinstatement after extinction of nicotine self-administration (R 2 = 0.47, p < 0.01). NAC did not alter RAM performance, but significantly reversed NVHL-induced increases in nicotine seeking during extinction and reinstatement. These findings demonstrate the utility of animal models of mental illness with addiction vulnerability for developing novel diagnostic measures of PFC-hippocampal-striatal circuit dysfunction that may reflect addiction risk. Such tests may direct pharmacological treatments prior to adulthood and addictive drug exposure, to prevent or treat adult addictions.
Choi, Yu-Jin; Choi, Yun-Sik
2016-02-01
Nonionizing radiation is emitted from electronic devices, such as smartphones. In this study, we intended to elucidate the effect of electromagnetic radiation from smartphones on spatial working memory and progenitor cell proliferation in the hippocampus. Both male and female mice were randomly separated into two groups (radiated and control) and the radiated group was exposed to electromagnetic radiation for 9 weeks and 11 weeks for male and female mice, respectively. Spatial working memory was examined with a Y maze, and proliferation of hippocampal progenitor cells were examined by 5-bromo-2'-deoxyuridine administration and immunohistochemical detection. When spatial working memory on a Y maze was examined in the 9(th) week, there was no significant difference in the spontaneous alternation score on the Y maze between the two groups. In addition, there was no significant difference in hippocampal progenitor cell proliferation. However, immunoreactivity to glial fibrillary acidic protein was increased in exposed animals. Next, to test the effect of recovery following chronic radiation exposure, the remaining female mice were further exposed to electromagnetic radiation for 2 more weeks (total 11 weeks), and spontaneous alternation was tested 4 weeks later. In this experiment, although there was no significant difference in the spontaneous alternation scores, the number of arm entry was significantly increased. These data indicate that although chronic electromagnetic radiation does not affect spatial working memory and hippocampal progenitor cell proliferation it can mediate astrocyte activation in the hippocampus and delayed hyperactivity-like behavior.
Pharmacological validation of in-silico guided novel nootropic potential of Achyranthes aspera L.
Gawande, Dinesh Yugraj; Goel, Rajesh Kumar
2015-12-04
Achyranthes aspera (A. aspera) has been used as a brain tonic in folk medicine. Although, ethnic use of medicinal plant has been basis for drug discovery from medicinal plants, but the available in-silico tools can be useful to find novel pharmacological uses of medicinal plants beyond their ethnic use. To validate in-silico prediction for novel nootropic effect of A. aspera by employing battery of tests in mice. Phytoconstituents of A. aspera reported in Dictionary of Natural Product were subjected to in-silico prediction using PASS and Pharmaexpert. The nootropic activity predicted for A. aspera was assessed using radial arm maze, passive shock avoidance and novel object recognition tests in mice. After behavioral evaluation animals were decapitated and their brains were collected and stored for estimation of glutamate levels and acetylcholinesterase activity. In-silico activity spectrum for majority of A. aspera phytoconstituents exhibited excellent prediction score for nootropic activity of this plant. A. aspera extract treatment significantly improved the learning and memory as evident by decreased working memory errors, reference memory errors and latency time in radial arm maze, step through latency in passive shock avoidance and increased recognition index in novel object recognition were observed, moreover significantly enhanced glutamate levels and reduced acetylcholinesterase activity in hippocampus and cortex were observed as compared to the saline treated group. In-silico and in-vivo results suggest that A. aspera plant may improve the learning and memory by modulating the brain glutamatergic and cholinergic neurotransmission. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Protective effect of exercise and sildenafil on acute stress and cognitive function.
Ozbeyli, Dilek; Gokalp, Ayse Gizem; Koral, Tolga; Ocal, Onur Yuksel; Dogan, Berkay; Akakin, Dilek; Yuksel, Meral; Kasimay, Ozgur
2015-11-01
There are contradictory results about the effects of exercise and sildenafil on cognitive functions. To investigate the effects of sildenafil pretreatment and chronic exercise on anxiety and cognitive functions. Wistar rats (n=42) were divided as sedentary and exercise groups. A moderate-intensity swimming exercise was performed for 6 weeks, 5 days/week, 1h/day. Some of the rats were administered orogastrically with sildenafil (25mg/kg/day) either acutely or chronically. Exposure to cat odor was used for induction of stress. The level of anxiety was evaluated by elevated plus maze test, while object recognition test was used to determine cognitive functions. Brain tissues were removed for the measurement of myeloperoxidase (MPO), malondialdehyde (MDA), nitric oxide levels, lucigenin-enhanced chemiluminescence, and for histological analysis. Increased MPO and MDA levels in sedentary-stressed rats were decreased with sildenafil applications. Chronic exercise inhibited the increase in MPO levels. Increased nitric oxide and lucigenin chemiluminescence levels in sedentary-stressed rats, were diminished with chronic sildenafil pretreatment. The time spent in the open arms of the plus maze was declined in sedentary-stressed rats, while chronic sildenafil pretreatment increased the time back to that in non-stressed rats. Acute sildenafil application to exercised rats prolonged the time spent in open arms as compared to non-treated exercise group. The time spent with the novel object, which was decreased in sedentary-stressed rats, was increased with sildenafil pretreatment. Our results suggest that sildenafil pretreatment or exercise exerts a protective effect against acute stress and improves cognitive functions by decreasing oxidative damage. Copyright © 2015 Elsevier Inc. All rights reserved.
Soman, Smijin; Korah, P K; Jayanarayanan, S; Mathew, Jobin; Paulose, C S
2012-09-01
In the present study we investigate the effect of Withania somnifera (WS) root extract and Withanolide A (WA) in restoring spatial memory deficit by inhibiting oxidative stress induced alteration in glutamergic neurotransmission. We demonstrate significant cellular loss in hippocampus of epileptic rats, visualized through decreased TOPRO stained neurons. Impaired spatial memory was observed in epileptic rats after Radial arm maze test. Treatment with WS and WA has resulted in increased number of TOPRO stained neurons. Enhanced performance of epileptic rats treated with WS and WA was observed in Radial arm maze test. The antioxidant activity of WS and WA was studied using superoxide dismutase (SOD) and Catalase (CAT) assays in the hippocampus of experimental rats. The SOD activity and CAT activity decreased significantly in epileptic group, treatment with WS and WA significantly reversed the enzymatic activities to near control. Real time gene expression studies of SOD and GPx showed significant up-regulation in epileptic group compared to control. Treatment with WS and WA showed significant reversal to near control. Lipid peroxidation quantified using TBARS assay, significantly increased in epileptic rats. Treatment with WS and WA showed significant reversal to near control. NMDA receptor expression decreased in epileptic rats. The treatment with WS and WA resulted in physiological expression of NMDA receptors. This data suggests that oxidative stress effects membrane constitution resulting in decreased NMDA receptor density leading to impaired spatial memory. Treatment with WS and WA has ameliorated spatial memory deficits by enhancing antioxidant system and restoring altered NMDA receptor density.
Fachinetto, Roselei; Villarinho, Jardel G; Wagner, Caroline; Pereira, Romaiana P; Avila, Daiana Silva; Burger, Marilise E; Calixto, João Batista; Rocha, João B T; Ferreira, Juliano
2007-10-01
Chronic treatment with classical neuroleptics in humans can produce a serious side effect, known as tardive dyskinesia (TD). Here, we examined the effects of V. officinalis, a medicinal herb widely used as calming and sleep-promoting, in an animal model of orofacial dyskinesia (OD) induced by long-term treatment with haloperidol. Adult male rats were treated during 12 weeks with haloperidol decanoate (38 mg/kg, i.m., each 28 days) and with V. officinalis (in the drinking water). Vacuous chewing movements (VCMs), locomotor activity and plus maze performance were evaluated. Haloperidol treatment produced VCM in 40% of the treated rats and the concomitant treatment with V. officinalis did not alter either prevalence or intensity of VCMs. The treatment with V. officinalis increased the percentage of the time spent on open arm and the number of entries into open arm in the plus maze test. Furthermore, the treatment with haloperidol and/or V. officinalis decreased the locomotor activity in the open field test. We did not find any difference among the groups when oxidative stress parameters were evaluated. Haloperidol treatment significantly decreased [(3)H]-dopamine uptake in striatal slices and V. officinalis was not able to prevent this effect. Taken together, our data suggest a mechanism involving the reduction of dopamine transport in the maintenance of chronic VCMs in rats. Furthermore, chronic treatment with V. officinalis seems not produce any oxidative damage to central nervous system (CNS), but it also seems to be devoid of action to prevent VCM, at least in the dose used in this study.
Ferraz-de-Paula, V; Stankevicius, D; Ribeiro, A; Pinheiro, M L; Rodrigues-Costa, E C; Florio, J C; Lapachinske, S F; Moreau, R L M; Palermo-Neto, J
2011-05-01
Anxiolytic and anxiogenic-like behavioral outcomes have been reported for methylenedioxymethamphetamine (MDMA or ecstasy) in rodents. In the present experiment, we attempted to identify behavioral, hormonal and neurochemical outcomes of MDMA treatment to clarify its effects on anxiety-related responses in 2-month-old Balb/c male mice (25-35 g; N = 7-10 mice/group). The behavioral tests used were open field, elevated plus maze, hole board, and defensive behavior against predator odor. Moreover, we also determined striatal dopamine and dopamine turnover, and serum corticosterone levels. MDMA was injected ip at 0.2, 1.0, 5.0, 8.0, 10, or 20 mg/kg. MDMA at 10 mg/kg induced the following significant (P < 0.05) effects: a) a dose-dependent increase in the distance traveled and in the time spent moving in the open field; b) decreased exploratory activity in the hole board as measured by number of head dips and time spent in head dipping; c) increased number of open arm entries and increased time spent in open arm exploration in the elevated plus maze; d) increased time spent away from an aversive stimulus and decreased number of risk assessments in an aversive odor chamber; e) increased serum corticosterone levels, and f) increased striatal dopamine level and turnover. Taken together, these data suggest an anxiogenic-like effect of acute MDMA treatment, despite the fact that behavioral anxiety expression was impaired in some of the behavioral tests used as a consequence of the motor stimulating effects of MDMA.
Wilkins, Leanne K; Girard, Todd A; Herdman, Katherine A; Christensen, Bruce K; King, Jelena; Kiang, Michael; Bohbot, Veronique D
2017-10-30
Different strategies may be spontaneously adopted to solve most navigation tasks. These strategies are associated with dissociable brain systems. Here, we use brain-imaging and cognitive tasks to test the hypothesis that individuals living with Schizophrenia Spectrum Disorders (SSD) have selective impairment using a hippocampal-dependent spatial navigation strategy. Brain activation and memory performance were examined using functional magnetic resonance imaging (fMRI) during the 4-on-8 virtual maze (4/8VM) task, a human analog of the rodent radial-arm maze that is amenable to both response-based (egocentric or landmark-based) and spatial (allocentric, cognitive mapping) strategies to remember and navigate to target objects. SSD (schizophrenia and schizoaffective disorder) participants who adopted a spatial strategy performed more poorly on the 4/8VM task and had less hippocampal activation than healthy comparison participants using either strategy as well as SSD participants using a response strategy. This study highlights the importance of strategy use in relation to spatial cognitive functioning in SSD. Consistent with a selective-hippocampal dependent deficit in SSD, these results support the further development of protocols to train impaired hippocampal-dependent abilities or harness non-hippocampal dependent intact abilities. Copyright © 2017 Elsevier B.V. All rights reserved.
Vertical T-maze Choice Assay for Arthropod Response to Odorants
Stelinski, Lukasz; Tiwari, Siddharth
2013-01-01
Given the economic importance of insects and arachnids as pests of agricultural crops, urban environments or as vectors of plant and human diseases, various technologies are being developed as control tools. A subset of these tools focuses on modifying the behavior of arthropods by attraction or repulsion. Therefore, arthropods are often the focus of behavioral investigations. Various tools have been developed to measure arthropod behavior, including wind tunnels, flight mills, servospheres, and various types of olfactometers. The purpose of these tools is to measure insect or arachnid response to visual or more often olfactory cues. The vertical T-maze oflactometer described here measures choices performed by insects in response to attractants or repellents. It is a high throughput assay device that takes advantage of the positive phototaxis (attraction to light) and negative geotaxis (tendency to walk or fly upward) exhibited by many arthropods. The olfactometer consists of a 30 cm glass tube that is divided in half with a Teflon strip forming a T-maze. Each half serves as an arm of the olfactometer enabling the test subjects to make a choice between two potential odor fields in assays involving attractants. In assays involving repellents, lack of normal response to known attractants can also be measured as a third variable. PMID:23439130
Vorhees, Charles V; Makris, Susan L
2015-01-01
Cognitive tests of learning and memory (L&M) have been required by U.S. Environmental Protection Agency (EPA) developmental neurotoxicity test (DNT) guidelines for more than two decades. To evaluate the utility of these guidelines, the EPA reviewed 69 pesticide DNT studies. This review found that the DNT provided or could provide the point-of-departure for risk assessment by showing the Lowest Observable Adverse Effect Level (LOAEL) in 28 of these studies in relation to other reported end points. Among the behavioral tests, locomotor activity and auditory/acoustic startle provided the most LOAELs, and tests of cognitive function and the Functional Observational Battery (FOB) the fewest. Two issues arose from the review: (1) what is the relative utility of cognitive tests versus tests of unconditioned behavior, and (2) how might cognitive tests be improved? The EPA sponsored a symposium to address this. Bushnell reviewed studies in which both screening (locomotor activity, FOB, reflex ontogeny, etc.) and complex tests (those requiring training) were used within the same study; he found relatively little evidence that complex tests provided a LOAEL lower than screening tests (with exceptions). Levin reviewed reasons for including cognitive tests in regulatory studies and methods and evidence for the radial arm maze and its place in developmental neurotoxicity assessments. Driscoll and Strupp reviewed the value of serial reaction time operant methods for assessing executive function in developmental neurotoxicity studies. Vorhees and Williams reviewed the value of allocentric (spatial) and egocentric cognitive tests and presented methods for using the Morris water maze for spatial and the Cincinnati water maze for egocentric cognitive assessment. They also reviewed the possible use of water radial mazes. The relatively lower impact of cognitive tests in previous DNT studies in the face of the frequency of human complaints of chemical-induced cognitive dysfunction indicates that animal cognitive tests need improvement. The contributors to this symposium suggest that if the guidelines are updated, they be made more specific by recommending preferred tests and providing greater detail on key characteristics of such tests. Additionally, it is recommended that guidance be developed to address important issues with cognitive tests and to provide the information needed to improve the design, conduct, and interpretation of tests of higher function within a regulatory context. These steps will maximize the value of cognitive tests for use in hazard evaluation and risk assessment. Copyright © 2015 Elsevier Inc. All rights reserved.
Comprehensive behavioral phenotyping of a new Semaphorin 3 F mutant mouse.
Matsuda, Ikuo; Shoji, Hirotaka; Yamasaki, Nobuyuki; Miyakawa, Tsuyoshi; Aiba, Atsu
2016-02-09
Semaphorin 3 F (Sema3F) is a secreted type of the Semaphorin family of axon guidance molecules. Sema3F and its receptor neuropilin-2 (Npn-2) are expressed in a mutually exclusive manner in the embryonic mouse brain regions including olfactory bulb, hippocampus, and cerebral cortex. Sema3F is thought to have physiological functions in the formation of neuronal circuitry and its refinement. However, functional roles of Sema3F in the brain remain to be clarified. Here, we examined behavioral effects of Sema3F deficiency through a comprehensive behavioral test battery in Sema3F knockout (KO) male mice to understand the possible functions of Sema3F in the brain. Male Sema3F KO and wild-type (WT) control mice were subjected to a battery of behavioral tests, including neurological screen, rotarod, hot plate, prepulse inhibition, light/dark transition, open field, elevated plus maze, social interaction, Porsolt forced swim, tail suspension, Barnes maze, and fear conditioning tests. In the open field test, Sema3F KO mice traveled shorter distance and spent less time in the center of the field than WT controls during the early testing period. In the light/dark transition test, Sema3F KO mice also exhibited decreased distance traveled, fewer number of transitions, and longer latency to enter the light chamber compared with WT mice. In addition, Sema3F KO mice traveled shorter distance than WT mice in the elevated plus maze test, although there were no differences between genotypes in open arm entries and time spent in open arms. Similarly, Sema3F KO mice showed decreased distance traveled in the social interaction test. Sema3F KO mice displayed reduced immobility in the Porsolt forced swim test whereas there was no difference in immobility between genotypes in the tail suspension test. In the fear conditioning test, Sema3F KO mice exhibited increased freezing behavior when exposed to a conditioning context and an altered context in absence of a conditioned stimulus. In the tests for assessing motor function, pain sensitivity, startle response to an acoustic stimulus, sensorimotor gating, or spatial reference memory, there were no significant behavioral differences between Sema3F KO and WT mice. These results suggest that Sema3F deficiency induces decreased locomotor activity and possibly abnormal anxiety-related behaviors and also enhances contextual memory and generalized fear in mice. Thus, our findings suggest that Sema3F plays important roles in the development of neuronal circuitry underlying the regulation of some aspects of anxiety and fear responses.
Molecular docking and panicolytic effect of 8-prenylnaringenin in the elevated T-maze.
Bagatin, Mariane Cristovão; Tozatti, Camila Santos Suniga; Abiko, Layara Akemi; Yamazaki, Diego Alberto dos Santos; Silva, Priscila Rebeca Alves; Perego, Leonardo Martins; Audi, Elisabeth Aparecida; Seixas, Flavio Augusto Vicente; Basso, Ernani Abicht; Gauze, Gisele de Freitas
2014-01-01
The purpose of this study was to investigate the effects of the chronic administration of a racemic mixture of 8-prenylnaringenin (8-PN) on rats submitted to the elevated T-maze (ETM) model of generalized anxiety and panic disorders. The selective serotonin (SERT) reuptake inhibitor fluoxetine was used as a positive control. Rat locomotion was assessed in a circular arena following each drug treatment. The administration of racemic 8-PN for 21 d in rats increased one-way escape latencies from the ETM open arm, indicating a panicolytic effect. To evaluate the interactions of 8-PN with monoamine transporters, a docking study was performed for both the R and S configurations of 8-PN towards SERT, norepinephrine (NET) and dopamine transporters (DAT). The application of the docking protocol showed that (R)-8-PN provides greater affinity to all transporters than does the S enantiomer. This result suggests that enantiomer (R)-8-PN is the active form in the in vivo test of the racemic mixture.
Wolff, Mathieu; Benhassine, Narimane; Costet, Pierre; Hen, Rene; Segu, Louis; Buhot, Marie-Christine
2003-01-01
Serotonin (5-HT) plays a modulatory role in mnemonic functions, especially by interacting with the cholinergic system. The 5-HT1B receptor is a key target of this interaction. The 5-HT1B receptor knockout mice were found previously to exhibit a facilitation in hippocampal-dependent spatial reference memory learning. In the present study, we submitted mice to a delayed spatial working memory task, allowing the introduction of various delays between an exposure trial and a test trial. The 5-HT1BKO and wild-type mice learned the task in a radial-arm water maze (returning to the most recent presented arm containing the escape platform), and exhibited a high level of performance at delays of 0 and 5 min. However, at the delay of 60 min, only 5-HT1BKO mice exhibited an impairment. At a delay of 90 min, all mice were impaired. Treatment by scopolamine (0.8 mg/kg) induced the same pattern of performance in wild type as did the mutation for short (5 min, no impairment) and long (60 min, impairment) delays. The 22-month-old wild-type and knockout mice exhibited an impairment at short delays (5 and 15 min). The effect of the mutation affected both young-adult and aged mice at delays of 15, 30, and 60 min. Neurobiological data show that stimulation of the 5-HT1B receptor inhibits the release of acetylcholine in the hippocampus, but stimulates this in the frontal cortex. This dual function might, at least in part, explain the opposite effect of the mutation on reference memory (facilitation) and delay-dependent working memory (impairment). These results support the idea that cholinergic-serotonergic interactions play an important role in memory processes.
Sex differences in chronic stress effects on cognition in rodents.
Luine, Victoria; Gomez, Juan; Beck, Kevin; Bowman, Rachel
2017-01-01
Chronic stress causes deleterious changes in physiological function in systems ranging from neural cells in culture to laboratory rodents, sub-human primates and humans. It is notable, however, that the vast majority of research in this area has been conducted in males. In this review, we provide information about chronic stress effects on cognition in female rodents and contrast it with responses in male rodents. In general, females show cognitive resilience to chronic stressors which impair male cognitive function using spatial tasks including the radial arm maze, radial arm water maze, Morris water maze, Y-maze and object placement. Moreover, stress often enhances female performance in some of these cognitive tasks. Memory in females is not affected by stress in non-spatial memory tasks like recognition memory and temporal order recognition memory while males show impaired memory following stress. We discuss possible bases for these sex-dependent differences including the use of different strategies by the sexes to solve cognitive tasks. Whether the sex differences result from changes in non-mnemonic factors is also considered. Sex-dependent differences in alcohol and drug influences on stress responses are also described. Finally, the role of neurally derived estradiol in driving sex differences and providing resilience to stress in females is shown. The importance of determining the nature and extent of sex differences in stress responses is that such differences may provide vital information for understanding why some stress related diseases have different incidence rates between the sexes and for developing novel therapeutic treatments. Copyright © 2016 Elsevier Inc. All rights reserved.
Coriandrum sativum: evaluation of its anxiolytic effect in the elevated plus-maze.
Emamghoreishi, Masoumeh; Khasaki, Mohammad; Aazam, Maryam Fath
2005-01-15
The clinical applications of benzodiazepines as anxiolytics are limited by their unwanted side effects. Therefore, the development of new pharmacological agents is well justified. Among medicinal plants, Coriandrum sativum L. has been recommended for relief of anxiety and insomnia in Iranian folk medicine. Nevertheless, no pharmacological studies have thus far evaluated its effects on central nervous system. Therefore, the aim of this study was to examine if the aqueous extract of Coriandrum sativum seed has anxiolytic effect in mice. Additionally, its effect on spontaneous activity and neuromuscular coordination were evaluated. The anxiolytic effect of aqueous extract (10, 25, 50, 100 mg/kg, i.p.) was examined in male albino mice using elevated plus-maze as an animal model of anxiety. The effects of the extract on spontaneous activity and neuromuscular coordination were assessed using Animex Activity Meter and rotarod, respectively. In the elevated plus-maze, aqueous extract at 100 mg/kg showed an anxiolytic effect by increasing the time spent on open arms and the percentage of open arm entries, compared to control group. Aqueous extract at 50, 100 and 500 mg/kg significantly reduced spontaneous activity and neuromuscular coordination, compared to control group. These results suggest that the aqueous extract of Coriandrum sativum seed has anxiolytic effect and may have potential sedative and muscle relaxant effects.
Effects of some dopamine antagonists on spatial memory performance in rats--experimental research.
Rusu, Gabriela; Popa, Gratiela; Ochiuz, Lacramioara; Nechifor, M; Tartau, Liliana
2014-01-01
Dopamine is a neurotransmitter with an important role in forming long-lasting memories for some time, especially in episodic memory. Literature data show that dopamine receptor stimulation may be detrimental to spatial working memory functions in lab animals. (R)-(+)-7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride derivative--SCH-23390 is a synthetic compound that acts as a selective, high-affinity antagonist of D1 receptors. Experimental studies suggest that SCH 23390 may prevent the spatial working memory disturbances induced by the active substances of marijuana. Melperone is an atypic antipsychotic drug presenting also dopaminergic D2 and 5-HT2A receptor antagonistic activity. This neuroleptic agent is used in the treatment of some types of schizophrenia. Experimental research on the effects of two dopamine receptor antagonists on spatial memory performance in rats. The experiment was carried out in white Wistar rats (200-250g), divided into 3 groups of 7 animals each, treated intraperitoneally with the same volume of solution for 14 days, as follows: Group I (Control): saline solution 0.1 ml/10g kbw; Group II (coded SCH): SCH-23390 0.3 mg/kbw; Group III (coded MLP): melperone 2 mg/kbw. The dopaminergic agent spatial memory performance was assessed by recording spontaneous alternation behavior in a single session in Y-maze. Each animal was placed at the end of one arm and allowed to move freely through the maze during an 8 min session. Alternation was defined as a consecutive entry in three different arms. The alternation percentage was computed with the following formula: number of alternations divided by total number of arm visits minus 2. Data were presented as +/- standard deviation and significance was tested by SPSS Statistics for Windows version 13.0 and ANOVA method. P-values less than 0.05 were considered statistically significant compared to those in the control group. Experimental researches were carried out in compliance with the regulations of our University Committee for Research and Ethical Issues. SCH-23390 (0.3 mg/kbw) and melperone (2 mg/kbw) intraperitoneal injection for 14 days determined a statistically significant (p < 0.05 and p < 0.01, respectively) increase in spontaneous alternation rate (compared to controls in Y-maze test). Our research revealed that the 14 consecutive days administration of these two dopamine receptor antagonists was associated with the improvement of short-term memory in rats, more intense for SCH-23390 compound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zizza, Merylin
The pesticide mancozeb (mz) is recognized as a potent inducer of oxidative stress due to its ability to catalyze the production of reactive oxygen species plus inhibiting mitochondrial respiration thus becoming an environmental risk for neurodegenerative diseases. Despite numerous toxicological studies on mz have been directed to mammals, attention on marine fish is still lacking. Thus, it was our intention to evaluate neurobehavioral activities of ornate wrasses (Thalassoma pavo) exposed to 0.2 mg/l of mz after a preliminary screening test (0.07–0.3 mg/l). Treated fish exhibited an evident (p < 0.001) latency to reach T-maze arms (> 1000%) while exploratory attitudesmore » (total arm entries) diminished (− 50%; p < 0.05) versus controls during spontaneous exploration tests. Moreover, they showed evident enhancements (+ 111%) of immobility in the cylinder test. Contextually, strong (− 88%; p < 0.01) reductions of permanence in light zone of the Light/Dark apparatus along with diminished crossings (− 65%) were also detected. Conversely, wrasses displayed evident enhancements (160%) of risk assessment consisting of fast entries in the dark side of this apparatus. From a molecular point of view, a notable activation (p < 0.005) of the brain transcription factor pCREB occurred during mz-exposure. Similarly, in situ hybridization supplied increased HSP90 mRNAs in most brain areas such as the lateral part of the dorsal telencephalon (Dl; + 68%) and valvula of the cerebellum (VCe; + 35%) that also revealed evident argyrophilic signals. Overall, these first indications suggest a possible protective role of the early biomarkers pCREB and HSP90 against fish toxicity. - Highlights: • Fish exposed to mancozeb exhibited an evident latency to reach T-maze arms. • Mancozeb caused immobility and reduction of explorative attitudes. • Fish exposed to mancozeb showed anxiogenic performances in the Light/Dark apparatus. • The brain of fish exposed to mancozeb supplied pCREB plus HSP90 mRNA up-regulations. • Some brain areas of fish exposed to mancozeb revealed an evident neurodegeneration.« less
Swiergiel, Artur H; Dunn, Adrian J
2007-04-01
It has been postulated that infections, inflammatory processes and resulting cytokines may be causative factors in emotional disorders, including depression and anxiety. Support for this possibility has been sought in studies of animal behavior following administration of interleukin-1 (IL-1) and lipopolysaccharide (LPS). However, such treatments induce a variety of behavioral responses, collectively known as sickness behavior, some of which could affect the performance in tests used to assess anxiety and depression. Thus the effects of peripheral administration of IL-1beta and LPS on the behavior of mice were studied in the elevated plus-maze (EPM) and the open field (OF). Mouse IL-1beta (30, 100, 300, and 1000 ng) was injected intraperitoneally 30 or 60 min, and LPS (0.5, 1 and 5 microg) 120 min before the tests. IL-1beta and LPS induced dose-dependent decreases in open arm entries and the time spent on the open arms in the EPM, effects considered to reflect anxiety-like behavior. However, entries to all arms were also reduced in a dose-dependent manner, indicating a decrease in general activity. In the OF, IL-1beta and LPS decreased the number of line crossings in the center of the field, that can also be considered to reflect anxiety-like behavior. However, this effect was accompanied by a similar decrease in line crossings in the periphery, as well as in rears and climbs. Thus the doses of IL-1beta and LPS necessary to induce these effects also decreased locomotor activity in the EPM and OF. Therefore, the behavioral responses induced by IL-1beta and LPS in the EPM and the OF considered to reflect anxiety must be interpreted in the light of this reduction in overall activity. Thus the results do not provide unequivocal support for the suggestion that LPS or IL-1 mediate anxiety. Nevertheless, because infections, endotoxins, and the ensuing cytokines cause alterations in CNS norepinephrine and serotonin, they may contribute to emotionality, and perhaps to anxiety.
Faillace, M P; Pisera-Fuster, A; Bernabeu, R
2018-06-08
The rewarding properties of drugs in zebrafish can be studied using the conditioned place preference (CPP) paradigm. Most devices that have been used for CPP consist of two-half tanks with or without a central chamber. Here we evaluated the rewarding effects of nicotine and caffeine using a tank with five arms distributed radially from a central chamber that we have denoted Fish Tank Radial Maze (FTRM). Zebrafish were trained to associate nicotine or caffeine with a coloured arm. In testing sessions to assess CPP induction, between two and five different arms were available to explore. We found that when offering the two arms, one of them associated to the drug mediating conditioning for 14 days, zebrafish showed nicotine-induced CPP but not caffeine-induced CPP. When zebrafish had the option to explore drug-paired arms together with new coloured arms as putative distractors, the nicotine-CPP strength was maintained for at least three days. The presence of novel environments induced caffeine-CPP, which was still positive after three days of testing sessions. Complementary behavioural data supported these findings. Nicotine-CPP was prevented by the histone deacetylase inhibitor phenylbutyrate administered during conditioning; however, there were no effects on caffeine-CPP. The specific acetylation of lysine 9 in histone 3 (H3-K9) was increased in nicotine-conditioned zebrafish brains. This study suggests that novel environmental cues facilitate drug-environment associations, and hence, the use of drugs of abuse. Copyright © 2018 Elsevier Inc. All rights reserved.
Mott, Allison M.; Nunes, Eric J.; Collins, Lyndsey E.; Port, Russell G.; Sink, Kelly S.; Hockemeyer, Jörg; Müller, Christa E.
2010-01-01
Rationale Mesolimbic dopamine (DA) is a critical component of the brain circuitry regulating behavioral activation and effort-related processes. Research involving choice tasks has shown that rats with impaired DA transmission reallocate their instrumental behavior away from food-reinforced tasks with high response requirements and instead select less effortful food-seeking behaviors. Objective Previous work showed that adenosine A2A antagonism can reverse the effects of the DA antagonist haloperidol in an operant task that assesses effort-related choice. The present work used a T-maze choice procedure to assess the effects of adenosine A2A and A1 antagonism. Materials and methods With this task, the two arms of the maze have different reinforcement densities (four vs. two food pellets), and a vertical 44 cm barrier is positioned in the arm with the higher density, presenting the animal with an effort-related challenge. Untreated rats strongly prefer the arm with the high density of food reward and climb the barrier in order to obtain the food. Results Haloperidol produced a dose-related (0.05–0.15 mg/kg i.p.) reduction in the number of trials in which the rats chose the high-barrier arm. Co-administration of the adenosine A2A receptor antagonist MSX-3 (0.75, 1.5, and 3.0 mg/kg i.p.), but not the A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine (0.75, 1.5, and 3.0 mg/kg i.p.), reversed the effects of haloperidol on effort-related choice and latency. Conclusions Adenosine A2A and D2 receptors interact to regulate effort-related decision making, which may have implications for the treatment of psychiatric symptoms such as psychomotor slowing or anergia that can be observed in depression, parkinsonism, and other disorders. PMID:19132351
Mott, Allison M; Nunes, Eric J; Collins, Lyndsey E; Port, Russell G; Sink, Kelly S; Hockemeyer, Jörg; Müller, Christa E; Salamone, John D
2009-05-01
Mesolimbic dopamine (DA) is a critical component of the brain circuitry regulating behavioral activation and effort-related processes. Research involving choice tasks has shown that rats with impaired DA transmission reallocate their instrumental behavior away from food-reinforced tasks with high response requirements and instead select less effortful food-seeking behaviors. Previous work showed that adenosine A(2A) antagonism can reverse the effects of the DA antagonist haloperidol in an operant task that assesses effort-related choice. The present work used a T-maze choice procedure to assess the effects of adenosine A(2A) and A(1) antagonism. With this task, the two arms of the maze have different reinforcement densities (four vs. two food pellets), and a vertical 44 cm barrier is positioned in the arm with the higher density, presenting the animal with an effort-related challenge. Untreated rats strongly prefer the arm with the high density of food reward and climb the barrier in order to obtain the food. Haloperidol produced a dose-related (0.05-0.15 mg/kg i.p.) reduction in the number of trials in which the rats chose the high-barrier arm. Co-administration of the adenosine A(2A) receptor antagonist MSX-3 (0.75, 1.5, and 3.0 mg/kg i.p.), but not the A(1) antagonist 8-cyclopentyl-1,3-dipropylxanthine (0.75, 1.5, and 3.0 mg/kg i.p.), reversed the effects of haloperidol on effort-related choice and latency. Adenosine A(2A) and D2 receptors interact to regulate effort-related decision making, which may have implications for the treatment of psychiatric symptoms such as psychomotor slowing or anergia that can be observed in depression, parkinsonism, and other disorders.
Rebolledo-Solleiro, Daniela; Crespo-Ramírez, Minerva; Roldán-Roldán, Gabriel; Hiriart, Marcia; Pérez de la Mora, Miguel
2013-08-15
Conflicting results have been obtained by several groups when studying the effects of streptozotocin (STZ)-treated rats in the elevated plus-maze (EPM). Since thirst is a prominent feature in STZ-induced diabetic-like condition, we studied whether the walls of the closed arms of the EPM, by limiting the search for water in the environment, may contribute to the observed differential behavioral outcomes. The aim of this study was to ascertain whether visual barriers within the EPM have an influence on the behavior of STZ-treated rats in this test of anxiety. A striking similarity between STZ-treated (50 mg/kg, i.p., in two consecutive days) and water deprived rats (72 h) was found in exploratory behavior in the EPM, showing an anxiolytic-like profile. However the anxiolytic response of STZ-treated rats exposed to the EPM shifts into an anxiogenic profile when they are subsequently tested in the open-field test, which unlike the EPM is devoid of visual barriers. Likewise, water deprived rats (72 h) also showed an anxiogenic profile when they were exposed to the open-field test. Our results indicate that experimental outcomes based on EPM observations can be misleading when studying physiological or pathological conditions, e.g. diabetes, in which thirst may increase exploratory behavior. © 2013.
Behavioral assays with mouse models of Alzheimer’s disease: practical considerations and guidelines
Puzzo, Daniela; Lee, Linda; Palmeri, Agostino; Calabrese, Giorgio; Arancio, Ottavio
2014-01-01
In Alzheimer’s disease (AD) basic research and drug discovery, mouse models are essential resources for uncovering biological mechanisms, validating molecular targets and screening potential compounds. Both transgenic and non-genetically modified mouse models enable access to different types of AD-like pathology in vivo. Although there is a wealth of genetic and biochemical studies on proposed AD pathogenic pathways, as a disease that centrally features cognitive failure, the ultimate readout for any interventions should be measures of learning and memory. This is particularly important given the lack of knowledge on disease etiology – assessment by cognitive assays offers the advantage of targeting relevant memory systems without requiring assumptions about pathogenesis. A multitude of behavioral assays are available for assessing cognitive functioning in mouse models, including ones specific for hippocampal-dependent learning and memory. Here we review the basics of available transgenic and non-transgenic AD mouse models and detail three well-established behavioral tasks commonly used for testing hippocampal-dependent cognition in mice – contextual fear conditioning, radial arm water maze and Morris water maze. In particular, we discuss the practical considerations, requirements and caveats of these behavioral testing paradigms. PMID:24462904
Effects of palmitoylethanolamide and luteolin in an animal model of anxiety/depression.
Crupi, Rosalia; Paterniti, Irene; Ahmad, Akbar; Campolo, Michela; Esposito, Emanuela; Cuzzocrea, Salvatore
2013-11-01
The antidepressant effect of a compound formed by co-ultramicronized palmitoylethanolamide (PEA) and luteolin (PEA+luteolin) was investigated in a mouse model of anxiety/depressive-like behavior. 129Sv/Ev mice were subjected to 6 weeks of corticosterone administration, and then behavior, neurogenesis, neuroplasticity, neurotrophic and apoptotic proteins expression were evaluated. The effect of PEA+luteolin compound treatment (1mg/kg, i.p.), on depression-like behaviour was assessed using different paradigms such as open field, novelty suppressed feeding, forced swim test and elevated plus maze. In particular in the open field, novelty suppressed feeding and elevated plus maze the time spent in the open arm was employed as an indicator of anxiety; forced swim test was used to evaluate the antidepressant capacity of PEA+luteolin on immobility time as an indicator of depression. Adult hippocampal neurogenesis and neuroplasticity were evaluated by immunohistochemical techniques; brain-derived neurotrophic factor and apoptotic protein (Bax and Bcl2) expression were studied by immunostaining and Western blot analysis. For the first time we demonstrated that PEA+luteolin compound exerts a significant antidepressant effect a low dose and may be considered as a novel therapeutic strategy in depression.
Protective effect of rutin on cognitive impairment caused by phenytoin
Dubey, Shagun; Ganeshpurkar, Aditya; Bansal, Divya; Dubey, Nazneen
2015-01-01
Objective: To study the effect of the co-administration of phenytoin (PHT) and rutin in comparison with PHT and piracetam (PIM) on seizure control, cognitive, and motor functions in mice. Materials and Methods: Increasing current electroshock seizure (ICES) test was used to evaluate the effect of the co-administration of PHT and PIM on convulsions. Cognitive functions in mice were assessed by a spontaneous alternation in behavior on a plus maze while motor functions were screened using rolling roller apparatus and by counting the number of arms entries on a plus maze. Brain acetyl-cholinesterase (AChE) activity was also estimated. Statistical Analysis: The expression of data was done as mean ± standard error of the mean. The normally distributed data were subjected to one-way ANOVA followed by Dunnett's test. P < 0.05 was considered significant. Results: The study showed that rutin when co-administered with PHT, significantly reversed PHT-induced reduction in spontaneous alternation without altering the efficacy of PHT against ICES, in both acute and chronic studies. Further, it also reversed PHT-induced increase in AChE activity. Conclusion: Rutin alleviated the PHT-induced cognitive impairment without compromising its antiepileptic efficacy. PMID:26729954
Ionita, Radu; Postu, Paula Alexandra; Beppe, Galba Jean; Mihasan, Marius; Petre, Brindusa Alina; Hancianu, Monica; Cioanca, Oana; Hritcu, Lucian
2017-03-28
Plants of the genus Markhamia have been traditionally used by different tribes in various parts of West African countries, including Cameroun. Markhamia tomentosa (Benth.) K. Schum. (Bignoniaceae) is used as an antimalarial, anti-inflammatory, analgesic, antioxidant and anti-Alzheimer agent. The current study was undertaken in order to investigate its anti-amnesic and antioxidant potential on scopolamine-induced cognitive impairment and to determine its possible mechanism of action. Rats were pretreated with the aqueous extract (50 and 200 mg/kg, p.o.), for 10 days, and received a single injection of scopolamine (0.7 mg/kg, i.p.) before training in Y-maze and radial arm-maze tests. The biochemical parameters in the rat hippocampus were also assessed to explore oxidative status. Statistical analyses were performed using two-way ANOVA followed by Tukey's post hoc test. F values for which p < 0.05 were regarded as statistically significant. In the scopolamine-treated rats, the aqueous extract improved memory in behavioral tests and decreased the oxidative stress in the rat hippocampus. Also, the aqueous extract exhibited anti-acetylcholinesterase activity. These results suggest that the aqueous extract ameliorates scopolamine-induced spatial memory impairment by attenuation of the oxidative stress in the rat hippocampus.
José Jaime, Herrera-Pérez; Venus, Benítez-Coronel; Graciela, Jiménez-Rubio; Tania, Hernández-Hernández Olivia; Lucía, Martínez-Mota
2016-01-01
In a previous study, we found that chronic mild stress (CMS) paradigm did not induce anhedonia in young-adult male rats but it reduced their body weight gain. These contrasting results encouraged us to explore other indicators of animal's vulnerability to stress such as anxious-like behaviors, since stress is an etiologic factor also for anxiety. Thus, in this study, we evaluated the vulnerability of these animals to CMS using behavioral tests of depression or anxiety and measuring serum corticosterone. Male Wistar rats were exposed to four weeks of CMS; the animals' body weight and sucrose preference (indicator of anhedonia) were assessed after three weeks, and, after the fourth week, some animals were evaluated in a behavioral battery (elevated plus maze, defensive burying behavior, and forced swimming tests); meanwhile, others were used to measure serum corticosterone. We found that CMS (1) did not affect sucrose preference, immobility behavior in the forced swimming test, or serum corticosterone; (2) decreased body weight gain; and (3) increased the rat's entries into closed arms of the plus maze and the cumulative burying behavior. These data indicate that young male rats' vulnerability to CMS is reflected as poor body weight gain and anxious-like instead of depressive-like behaviors.
José Jaime, Herrera-Pérez; Venus, Benítez-Coronel; Graciela, Jiménez-Rubio; Tania, Hernández-Hernández Olivia
2016-01-01
In a previous study, we found that chronic mild stress (CMS) paradigm did not induce anhedonia in young-adult male rats but it reduced their body weight gain. These contrasting results encouraged us to explore other indicators of animal's vulnerability to stress such as anxious-like behaviors, since stress is an etiologic factor also for anxiety. Thus, in this study, we evaluated the vulnerability of these animals to CMS using behavioral tests of depression or anxiety and measuring serum corticosterone. Male Wistar rats were exposed to four weeks of CMS; the animals' body weight and sucrose preference (indicator of anhedonia) were assessed after three weeks, and, after the fourth week, some animals were evaluated in a behavioral battery (elevated plus maze, defensive burying behavior, and forced swimming tests); meanwhile, others were used to measure serum corticosterone. We found that CMS (1) did not affect sucrose preference, immobility behavior in the forced swimming test, or serum corticosterone; (2) decreased body weight gain; and (3) increased the rat's entries into closed arms of the plus maze and the cumulative burying behavior. These data indicate that young male rats' vulnerability to CMS is reflected as poor body weight gain and anxious-like instead of depressive-like behaviors. PMID:27433469
Brito, Adriane F; Fajemiroye, James O; Neri, Hiasmin F S; Silva, Dayane M; Silva, Daiany P B; Sanz, Germán; Vaz, Boniek G; de Carvalho, Flávio S; Ghedini, Paulo C; Lião, Luciano M; Menegatti, Ricardo; Costa, Elson A
2017-09-01
In this study, we proposed the design, synthesis of a new compound 2-(4-((1-phenyl-1H-pyrazol-4-yl)methyl)piperazin-1-yl)ethan-1-ol (LQFM032), and pharmacological evaluation of its anxiolytic-like effect. This new compound was subjected to pharmacological screening referred to as Irwin test, prior to sodium pentobarbital-induced sleep, open-field and wire tests. The anxiolytic-like effect of this compound was evaluated using elevated plus maze and light-dark box tests. In addition, the mnemonic activity was evaluated through step-down test. In sodium pentobarbital-induced sleep test, LQFM032 decreased latency and increased duration of sleep. In the open-field test, LQFM032 altered behavioral parameter, that suggested anxiolytic-like activity, as increased in crossings and time spent at the center of open field. In the plus maze test and light-dark box test, the LQFM032 showed anxiolytic-like activity, increased entries and time spent on open arms, and increased in number of transitions and time spent on light area, respectively. Those effects was antagonized by flumazenil but not with 1-(2-Methoxyphenyl)-4-(4-phthalimidobutyl)piperazine (NAN-190). The LQFM032 did not alter mnemonic activity. Moreover, the anxiolytic-like activity of LQFM032 was antagonized by mecamylamine. In summary, LQFM032 showed benzodiazepine and nicotinic pathways mediated anxiolytic-like activity without altering the mnemonic activity. © 2017 John Wiley & Sons A/S.
1990-12-01
34 Reflections, Winter 1989, 13. Matthews, William. "Commanders Downplay Women In Combat," Army Times, February 26, 1990, 9. Maze, Rick . "Byron: No Women in...Combat," Army Times, March 26, 1990. 18. Maze, Rick . "Women Need To Learn Infantry Skills, Warner Says," Arm7y Times, February 5, 1990, 10. McCarthy...January 4, 1990, 3. Yancey , Matt. "Women-Combat," Associated Press, January 14, 1990. Yarbrough, Jean. "The Feminist Mistake," Policy Review, 1983, 48
Gulati, Kavita; Chakraborti, Ayanabha; Ray, Arunabha
2007-11-02
The present study evaluated the effects of NO mimetics on stress-induced neurobehavioral changes and the possible involvement of ROS-RNS interactions in rats. Restraint stress (RS) suppressed both percent open arm entries and time spent in the open arms in the elevated plus maze (EPM) test. These RS-induced changes in EPM activity were attenuated by the NO mimetics, l-arginine, isosorbide dinitrate and molsidomine, in a differential manner. RS-exposed rats showed (a) increased lipid peroxidation (MDA) and (b) lowered reduced glutathione (GSH) and NO metabolites (NOx), in brain homogenates of these animals. Pretreatment with the NO mimetics also differentially influenced RS-induced changes in brain oxidative stress markers. The results suggest that NO may protect against stress-induced anxiogenic behavior and oxidative injury in the brain and highlight the significance of ROS-RNS interactions.
Aragão, G F; Carneiro, L M V; Junior, A P F; Vieira, L C; Bandeira, P N; Lemos, T L G; Viana, G S de B
2006-12-01
In the present study, we examined the anxiolytic and antidepressant effects of the mixture of alpha- and beta-amyrin (AMY), pentacyclic triterpenes isolated from the stem bark resin of Protium heptaphyllum. These effects of AMY were demonstrated by the open-field, elevated-plus-maze, rota rod, forced swimming, and pentobarbital-induced sleeping time tests, in mice. In the open-field test, AMY at the doses of 10, 25 and 50 mg/kg, after intraperitoneal or oral administrations, significantly decreased the number of crossings, grooming, and rearing. All these effects were reversed by the pre-treatment with flumazenil (2.5 mg/kg, i.p.), similarly to those observed with diazepam used as a positive standard. In the elevated-plus-maze test, AMY increased the time of permanence and the number of entrances in the open arms. On the contrary, the time of permanence and the number of entrances in the closed arms were decreased. All these effects were also completely reversed by flumazenil, an antagonist of benzodiazepine receptors. In the pentobarbital-induced sleeping time test, AMY at the same doses significantly increased the animals sleeping time duration. In the rota rod test, AMY did not alter motor coordination and, thus, was devoid of effects, as related to controls. Since AMY, at the doses of 10 and 25 mg/kg, showed a sedative effect in the open field test, lower doses (2.5 and 5.0 mg/kg) were used in the forced swimming test, producing a decrease in the immobility time, similarly to that of imipramine, the positive control. The effect of AMI was greater when it was administered 15 min after imipramine (10 mg/kg). However, the antidepressant AMY effects were not altered by the previous administration of paroxetine, a selective blocker of serotonin uptake. In addition, AMY effects in the forced swimming test were totally blocked by reserpine pretreatment, a drug known to induce depletion of biogenic amines. In conclusion, the present work evidenced sedative and anxiolytic effects of AMY that might involve an action on benzodiazepine-type receptors, and also an antidepressant effect where noradrenergic mechanisms will probably play a role.
Bangsgaard Bendtsen, Katja Maria; Krych, Lukasz; Sørensen, Dorte Bratbo; Pang, Wanyong; Nielsen, Dennis Sandris; Josefsen, Knud; Hansen, Lars H; Sørensen, Søren J; Hansen, Axel Kornerup
2012-01-01
Stress has profound influence on the gastro-intestinal tract, the immune system and the behavior of the animal. In this study, the correlation between gut microbiota composition determined by Denaturing Grade Gel Electrophoresis (DGGE) and tag-encoded 16S rRNA gene amplicon pyrosequencing (454/FLX) and behavior in the Tripletest (Elevated Plus Maze, Light/Dark Box, and Open Field combined), the Tail Suspension Test, and Burrowing in 28 female BALB/c mice exposed to two weeks of grid floor induced stress was investigated. Cytokine and glucose levels were measured at baseline, during and after exposure to grid floor. Stressing the mice clearly changed the cecal microbiota as determined by both DGGE and pyrosequencing. Odoribacter, Alistipes and an unclassified genus from the Coriobacteriaceae family increased significantly in the grid floor housed mice. Compared to baseline, the mice exposed to grid floor housing changed the amount of time spent in the Elevated Plus Maze, in the Light/Dark Box, and burrowing behavior. The grid floor housed mice had significantly longer immobility duration in the Tail Suspension Test and increased their number of immobility episodes from baseline. Significant correlations were found between GM composition and IL-1α, IFN-γ, closed arm entries of Elevated Plus Maze, total time in Elevated Plus Maze, time spent in Light/Dark Box, and time spent in the inner zone of the Open Field as well as total time in the Open Field. Significant correlations were found to the levels of Firmicutes, e.g. various species of Ruminococccaceae and Lachnospiraceae. No significant difference was found for the evaluated cytokines, except an overall decrease in levels from baseline to end. A significant lower level of blood glucose was found in the grid floor housed mice, whereas the HbA1c level was significantly higher. It is concluded that grid floor housing changes the GM composition, which seems to influence certain anxiety-related parameters.
Choi, Yu-Jin; Choi, Yun-Sik
2015-01-01
Objectives Nonionizing radiation is emitted from electronic devices, such as smartphones. In this study, we intended to elucidate the effect of electromagnetic radiation from smartphones on spatial working memory and progenitor cell proliferation in the hippocampus. Methods Both male and female mice were randomly separated into two groups (radiated and control) and the radiated group was exposed to electromagnetic radiation for 9 weeks and 11 weeks for male and female mice, respectively. Spatial working memory was examined with a Y maze, and proliferation of hippocampal progenitor cells were examined by 5-bromo-2′-deoxyuridine administration and immunohistochemical detection. Results When spatial working memory on a Y maze was examined in the 9th week, there was no significant difference in the spontaneous alternation score on the Y maze between the two groups. In addition, there was no significant difference in hippocampal progenitor cell proliferation. However, immunoreactivity to glial fibrillary acidic protein was increased in exposed animals. Next, to test the effect of recovery following chronic radiation exposure, the remaining female mice were further exposed to electromagnetic radiation for 2 more weeks (total 11 weeks), and spontaneous alternation was tested 4 weeks later. In this experiment, although there was no significant difference in the spontaneous alternation scores, the number of arm entry was significantly increased. Conclusion These data indicate that although chronic electromagnetic radiation does not affect spatial working memory and hippocampal progenitor cell proliferation it can mediate astrocyte activation in the hippocampus and delayed hyperactivity-like behavior. PMID:26981337
Kiffer, Frederico; Carr, Hannah; Groves, Thomas; Anderson, Julie E; Alexander, Tyler; Wang, Jing; Seawright, John W; Sridharan, Vijayalakshmi; Carter, Gwendolyn; Boerma, Marjan; Allen, Antiño R
2018-01-01
Radiation from galactic cosmic rays (GCR) poses a significant health risk for deep-space flight crews. GCR are unique in their extremely high-energy particles. With current spacecraft shielding technology, some of the predominant particles astronauts would be exposed to are 1 H + 16 O. Radiation has been shown to cause cognitive deficits in mice. The hippocampus plays a key role in memory and cognitive tasks; it receives information from the cortex, undergoes dendritic-dependent processing and then relays information back to the cortex. In this study, we investigated the effects of combined 1 H + 16 O irradiation on cognition and dendritic structures in the hippocampus of adult male mice three months postirradiation. Six-month-old male C57BL/6 mice were irradiated first with 1 H (0.5 Gy, 150 MeV/n) and 1 h later with 16 O (0.1 Gy, 600 MeV/n) at the NASA Space Radiation Laboratory (Upton, NY). Three months after irradiation, animals were tested for hippocampus-dependent cognitive performance using the Y-maze. Upon sacrifice, molecular and morphological assessments were performed on hippocampal tissues. During Y-maze testing, the irradiated mice failed to distinguish the novel arm, spending approximately the same amount of time in all three arms during the retention trial relative to sham-treated controls. Irradiated animals also showed changes in expression of glutamate receptor subunits and synaptic density-associated proteins. 1 H + 16 O radiation compromised dendritic morphology in the cornu ammonis 1 and dentate gyrus within the hippocampus. These data indicate cognitive injuries due to 1 H + 16 O at three months postirradiation.
Effects of fetal microwave radiation exposure on offspring behavior in mice
Zhang, Yanchun; Li, Zhihui; Gao, Yan; Zhang, Chenggang
2015-01-01
Abstract The recent rapid development of electronic communication techniques is resulting in a marked increase in exposure of humans to electromagnetic fields (EMFs). This has raised public concerns about the health hazards of long-term environmental EMF exposure for fetuses and children. Some studies have suggested EMF exposure in children could induce nervous system disorders. However, gender-dependent effects of microwave radiation exposure on cognitive dysfunction have not previously been reported. Here we investigated whether in utero exposure to 9.417-GHz microwave throughout gestation (Days 3.5–18) affected behavior, using the open field test (OFT), elevated-plus maze (EPM), tail suspension test (TST), forced swimming test (FST) and Morris water maze (MWM). We found that mice showed less movement in the center of an open field (using the OFT) and in an open arm (using the EPM) after in utero exposure to 9.417-GHz radiation, which suggested that the mice had increased anxiety-related behavior. Mice demonstrated reduced immobility in TST and FST after in utero exposure to 9.417-GHz radiation, which suggested that the mice had decreased depression-related behavior. From the MWM test, we observed that male offspring demonstrated decreased learning and memory, while females were not affected in learning and memory, which suggested that microwaves had gender-dependent effects. In summary, we have provided the first experimental evidence of microwaves inducing gender-dependent effects. PMID:25359903
Battery of behavioral tests in mice to study postoperative delirium
Peng, Mian; Zhang, Ce; Dong, Yuanlin; Zhang, Yiying; Nakazawa, Harumasa; Kaneki, Masao; Zheng, Hui; Shen, Yuan; Marcantonio, Edward R.; Xie, Zhongcong
2016-01-01
Postoperative delirium is associated with increased morbidity, mortality and cost. However, its neuropathogenesis remains largely unknown, partially owing to lack of animal model(s). We therefore set out to employ a battery of behavior tests, including natural and learned behavior, in mice to determine the effects of laparotomy under isoflurane anesthesia (Anesthesia/Surgery) on these behaviors. The mice were tested at 24 hours before and at 6, 9 and 24 hours after the Anesthesia/Surgery. Composite Z scores were calculated. Cyclosporine A, an inhibitor of mitochondria permeability transient pore, was used to determine potential mitochondria-associated mechanisms of these behavioral changes. Anesthesia/Surgery selectively impaired behaviors, including latency to eat food in buried food test, freezing time and time spent in the center in open field test, and entries and duration in the novel arm of Y maze test, with acute onset and various timecourse. The composite Z scores quantitatively demonstrated the Anesthesia/Surgery-induced behavior impairment in mice. Cyclosporine A selectively ameliorated the Anesthesia/Surgery-induced reduction in ATP levels, the increases in latency to eat food, and the decreases in entries in the novel arm. These findings suggest that we could use a battery of behavior tests to establish a mouse model to study postoperative delirium. PMID:27435513
Zakirova, Zuchra; Crynen, Gogce; Hassan, Samira; Abdullah, Laila; Horne, Lauren; Mathura, Venkatarajan; Crawford, Fiona; Ait-Ghezala, Ghania
2016-01-01
Gulf War Illness (GWI) is a chronic multisymptom illness with a central nervous system component that includes memory impairment as well as neurological and musculoskeletal deficits. Previous studies have shown that in the First Persian Gulf War conflict (1990–1991) exposure to Gulf War (GW) agents, such as pyridostigmine bromide (PB) and permethrin (PER), were key contributors to the etiology of GWI. For this study, we used our previously established mouse model of GW agent exposure (10 days PB+PER) and undertook an extensive lifelong neurobehavioral characterization of the mice from 11 days to 22.5 months post exposure in order to address the persistence and chronicity of effects suffered by the current GWI patient population, 24 years post-exposure. Mice were evaluated using a battery of neurobehavioral testing paradigms, including Open Field Test (OFT), Elevated Plus Maze (EPM), Three Chamber Testing, Radial Arm Water Maze (RAWM), and Barnes Maze (BM) Test. We also carried out neuropathological analyses at 22.5 months post exposure to GW agents after the final behavioral testing. Our results demonstrate that PB+PER exposed mice exhibit neurobehavioral deficits beginning at the 13 months post exposure time point and continuing trends through the 22.5 month post exposure time point. Furthermore, neuropathological changes, including an increase in GFAP staining in the cerebral cortices of exposed mice, were noted 22.5 months post exposure. Thus, the persistent neuroinflammation evident in our model presents a platform with which to identify novel biological pathways, correlating with emergent outcomes that may be amenable to therapeutic targeting. Furthermore, in this work we confirmed our previous findings that GW agent exposure causes neuropathological changes, and have presented novel data which demonstrate increased disinhibition, and lack of social preference in PB+PER exposed mice at 13 months after exposure. We also extended upon our previous work to cover the lifespan of the laboratory mouse using a battery of neurobehavioral techniques. PMID:26793076
Xu, Dongrong; Hao, Xuejun; Wang, Zhishun; Duan, Yunsuo; Liu, Feng; Marsh, Rachel; Yu, Shan; Peterson, Bradley S.
2015-01-01
An increasing number of functional brain imaging studies are employing computer-based virtual reality (VR) to study changes in brain activity during the performance of high-level psychological and cognitive tasks. We report the development of a VR radial arm maze that adapts for human use in a scanning environment with the same general experimental design of behavioral tasks as that has been used with remarkable effectiveness for the study of multiple memory systems in rodents. The software platform is independent of specific computer hardware and operating systems, as we aim to provide shared access to this technology by the research community. We hope that doing so will provide greater standardization of software platform and study paradigm that will reduce variability and improve the comparability of findings across studies. We report the details of the design and implementation of this platform and provide information for downloading of the system for demonstration and research applications. PMID:26366052
Kocahan, Sayad; Akillioglu, Kubra
2013-07-01
The elevated plus maze (EPM) is an animal model of anxiety used to test the effects of anxioselective drugs. The loss of the anxiolytic effect of drugs during the second exposure to the EPM is called the "one trial tolerance" (OTT) phenomenon. The present study was designed to investigate the relationship between the OTT phenomenon and N-methyl-D-aspartate (NMDA) receptor blockade in the early developmental period of rats. NMDA receptor blockade was accomplished using MK-801 treatment given between postnatal days 20-30. Beginning on postnatal day 20, the rats were subcutaneously injected with MK-801 twice a day at the nape of the neck for a period of 10 days (0.25 mg/kg). Increased open arm exploration was observed in MK-801-treated rats during trial 1 (p = 0.001) and trial 2 (p = 0.003). The rats spent less time in the closed arms as compared to the saline animals in trial 1 (p = 0.006), and this time decreased further in trial 2 (p = 0.02). The fecal boli of the MK-801 group was decreased in trial 1 as compared to the saline group (p = 0.01), but was not significantly different in trial 2 (p = 0.08). In conclusion, NMDA receptor blockade using MK-801 produced an anxiolytic-like effect in trials 1 and 2. Furthermore, OTT was not affected by NMDA receptor blockade.
Role of hippocampus in polymodal-cue guided tasks in rats.
Miniaci, Maria Concetta; Lippiello, Pellegrino; Monda, Marcellino; Scotto, Pietro
2016-09-01
To examine how signals from different sensory modalities are integrated to generate an appropriate goal-oriented behavior, we trained rats in an eight-arm radial maze to visit a cue arm provided with intramaze cues from different sensory modalities, i.e. visual, tactile and auditory, in order to obtain a reward. When the same rats were then examined on test trials in which the cue arm contained one of the stimuli that the animals were trained with (i.e. light, sound or rough sheet), they showed a significant impairment with respect to the performance on the polymodal-cue task. The contribution of the dorsal hippocampus to the acquisition and retention of polymodal-cue guided task was also examined. We found that rats with dorsal hippocampal lesions before training showed a significant deficit in the acquisition of polymodal-cue oriented task that improved with overtraining. The selective lesion of the dorsal hippocampus after training disrupted memory retention, but the animals' performance improved following retraining of the polymodal task. All hippocampal lesioned rats displayed an impaired performance on the unimodal test. These findings suggest that the dorsal hippocampus contributes to the processing of multimodal sensory information for the associative memory formation and consolidation. Copyright © 2016 Elsevier B.V. All rights reserved.
Che, Hongxia; Li, Qian; Zhang, Tiantian; Wang, Dandan; Yang, Lu; Xu, Jie; Yanagita, Teruyoshi; Xue, Changhu; Chang, Yaoguang; Wang, Yuming
2018-05-16
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with the characteristics of senile plaques, neuroinflammation, neurofibrillary tangles, and destruction of synapse structure stability. Previous studies have verified the protective effects of astaxanthin (AST). However, whether synthesized docosahexaenoic-acid-acylated AST diesters (AST-DHA) could delay AD pathogenesis remains unclear. In the present study, APP/PSEN1 (APP/PS1) double-transgenic mice were administrated with AST and AST-DHA for 2 months. The results of radial 8-arm maze and Morris water maze tests showed that AST-DHA exerted more significant effects than AST in enhancing learning and memory levels of APP/PS1 mice. Further mechanical studies suggested that AST-DHA was superior to AST in regulating the parameters of oxidative stress, reducing tau hyperphosphorylation, suppressing neuroinflammation, and regulating inflammasome expression and activation in APP/PS1 mice. The findings suggested that AST-DHA attenuated cognitive disorders by reducing pathological features in APP/PS1 mice, suggesting that AST-DHA might be a potential therapeutic agent for AD.
Berry, Alessandra; Aloe, Luigi; Rossi, Simona; Bonsignore, Luca T; Capone, Francesca; Alleva, Enrico; Cirulli, Francesca
2010-07-11
This study reports that peripheral administration of Nerve Growth Factor antibodies (ANA) affects behavior in aged female CD-1 mice. ANA increased the propensity of mice to stay and perform behaviors in the anxiogenic open arms of the maze, lowered pain sensitivity and reduced behavioral flexibility in a Morris water maze task, also reducing ChAT immunoreactivity in the basal forebrain. These findings support the hypothesis that topical eye application can represent an alternative route for delivering biologically active compounds into the brain allowing studying the role of NGF on brain cell function. Copyright 2010 Elsevier B.V. All rights reserved.
Hosseinzadeh, Hossein; Shahandeh, Shabnam; Shahsavand, Shabnam
2012-01-01
Background Research in the area of herbal psychopharmacology has clearly improved in recent decades. Self-administration of herbal medicines has been the most popular therapeutic alternative to standard medicine. Objectives Since the extract of Echium amoenum exhibits an anxiolytic effect, the aim of this study is to evaluate the anxiolytic and hypnotic effects in mice of the aqueous and ethanolic extracts of aerial parts of E. italicum, a member of the Boraginaceae family. Materials and Methods Mice were administered the agents intraperitoneally before the start of the experiments for evaluation of hypnotic activity (induced by sodium pentobarbital, 30 mg/kg, i.p.), anxiolytic activity (elevated plus-maze [EPM] test), locomotor activity (open field test), and motor coordination (rotarod test). Result The ethanolic and aqueous extracts of E. italicum, at doses of 1.2 and 2.1 g/kg, increased the percentage of time-spent and the percentage of arm entries in the open arms of the EPM and decreased the percentage of time-spent in the closed arms of the EPM. Moreover, both extracts decreased the pentobarbital-induced latency to sleep and significantly increased the total sleeping time induced by pentobarbital. In addition, locomotor activity was affected by aqueous extracts and ethanolic extract (at higher doses). Both extracts showed no effect in the rotarod test. Conclusions These results suggest that both ethanolic and aqueous extracts of E. italicum may have anxiolytic effects and sedative activity but no effect on muscle relaxation. PMID:24624158
de Almeida, Edvaldo Rodrigues; de Oliveira Rafael, Krissia Rayane; Couto, Geraldo Bosco Lindoso; Ishigami, Ana Beatriz Matos
2009-01-01
The aim of the present study is to demonstrate the anxiolytic and anticonvulsant effects of a hydroalcoholic extract obtained from the aerial parts of Cissus sicyoides L. (CS) (Vitaceae) on male and female mice using several behavioral assays. Groups of males and females treated via intraperitoneal (IP) with doses of 300, 600, and 1000 mg/kg of the extract showed significant action in the elevated plus-maze (EPM), time spent in the open arms, and number of entries in the open arms. The board-hole test also showed a significant increase in the time spent in head-dipping and in marble-burying test of the number of marbles buried. The same treatment increased the duration of sleeping time induced by sodium pentobarbital and also showed a significant increase in protection against pentylenotetrazole-induced convulsions. These results indicate an anxiolytic and anticonvulsant-like action from C. sicyoides L. extract on mice, probably due to the action of flavonoid(s), Linalool, and α-tocopherol present in the C. sicyoides leaves. PMID:19300520
l-fenfluramine in tests of dominance and anxiety in the rat.
File, S E; Guardiola-Lemaitre, B J
1988-01-01
l-Fenfluramine (1.25 and 2.5 mg/kg) significantly reduced the success of dominant rats competing with untreated middle rank rats for chocolate. In resident rats, l-fenfluramine (2.5 mg/kg) significantly increased the number of submissions, and the time spent submitting, to untreated rats intruding into their home-cage territory; it also significantly reduced the number of kicks directed at, and the time spent kicking, the intruder; and the incidence of, and time spent in, aggressively grooming the intruder. When the intruder rats were treated with l-fenfluramine the only significantly change was a decrease in the number of wrestling bouts and the time spent wrestling. Since l-fenfluramine did not change other behaviours in this test (e.g. sniffing the opponent) the decrease in dominance behaviours was probably not secondary to nonspecific sedation. In the social interaction test of anxiety, l-fenfluramine (2.5 and 5 mg/kg) significantly reduced the time spent in active social interaction, and decreased motor activity. Analyses of covariance indicated that these were two independent effects. In the elevated plus-maze, l-fenfluramine (1.25-5 mg/kg) significantly decreased the percent number of entries made onto open arms, and (2.5 and 5 mg/kg) significantly decreased the percent of times spent on the open arms. The total number of arm entries was reduced by all doses (0.625-5 mg/kg). Analysis of covariance indicated that the decrease in percent of time spent on the open arms was secondary to the drop in overall activity. Thus there was no evidence of anxiolytic action in either of these tests, the changes indicating, if anything, anxiogenic effects.(ABSTRACT TRUNCATED AT 250 WORDS)
Glucocorticoids mediate stress-induced impairment of retrieval of stimulus-response memory.
Atsak, Piray; Guenzel, Friederike M; Kantar-Gok, Deniz; Zalachoras, Ioannis; Yargicoglu, Piraye; Meijer, Onno C; Quirarte, Gina L; Wolf, Oliver T; Schwabe, Lars; Roozendaal, Benno
2016-05-01
Acute stress and elevated glucocorticoid hormone levels are well known to impair the retrieval of hippocampus-dependent 'declarative' memory. Recent findings suggest that stress might also impair the retrieval of non-hippocampal memories. In particular, stress shortly before retention testing was shown to impair the retrieval of striatal stimulus-response associations in humans. However, the mechanism underlying this stress-induced retrieval impairment of non-hippocampal stimulus-response memory remains elusive. In the present study, we investigated whether an acute elevation in glucocorticoid levels mediates the impairing effects of stress on retrieval of stimulus-response memory. Male Sprague-Dawley rats were trained on a stimulus-response task in an eight-arm radial maze until they learned to associate a stimulus, i.e., cue, with a food reward in one of the arms. Twenty-four hours after successful acquisition, they received a systemic injection of vehicle, corticosterone (1mg/kg), the corticosterone-synthesis inhibitor metyrapone (35mg/kg) or were left untreated 1h before retention testing. We found that the corticosterone injection impaired the retrieval of stimulus-response memory. We further found that the systemic injection procedure per se was stressful as the vehicle administration also increased plasma corticosterone levels and impaired the retrieval of stimulus-response memory. However, memory retrieval was not impaired when rats were tested 2min after the systemic vehicle injection, before any stress-induced elevation in corticosterone levels had occurred. Moreover, metyrapone treatment blocked the effect of injection stress on both plasma corticosterone levels and memory retrieval impairment, indicating that the endogenous corticosterone response mediates the stress-induced memory retrieval impairment. None of the treatments affected rats' locomotor activity or motivation to search for the food reward within the maze. These findings show that stress may affect memory processes beyond the hippocampus and that these stress effects are due to the action of glucocorticoids. Copyright © 2016 Elsevier Ltd. All rights reserved.
Caspani, Ombretta; Reitz, Marie-Céline; Ceci, Angelo; Kremer, Andreas; Treede, Rolf-Detlef
2014-09-01
Depression and anxiety are common comorbidities of neuropathic pain (NP). Pharmacological preclinical studies on NP have given abundant information on the effects of drugs on reflex measures of stimulus-evoked pain. However, few preclinical studies focus on relief of comorbidities evoked by NP. In this study, we investigated the effects of tramadol on nociceptive reflex, depression-associated and anxiety-related behaviors in a NP model in rats. We used chronic constriction injury (CCI) of the sciatic nerve as an animal model of neuropathic pain. We performed electronic von Frey tests (evF) to measure mechanical sensitivity, elevated plus maze tests (EPM) to record anxiety-related behaviors and forced swimming tests (FST) to evaluate depression-associated behaviors. In the evF, CCI rats showed a decrease of 82% of the paw withdrawal threshold (PWT) compared to sham (P<0.001). Tramadol increased the PWT by 336% in CCI rats (P<0.001) and by 16% in sham (P<0.05). On the EPM, CCI rats spent 45% less time than sham on the open arms of the maze (P<0.05). Tramadol increased the time spent on the open arms of CCI rats by 67% (P<0.05) and had no significant effect on sham. During the FST, CCI rats showed 28% longer immobility than sham (P<0.01). Tramadol reduced the immobility time in CCI rats by 22% (P<0.001), while having no effect on sham. Tramadol reversed the changes in mechanical sensitivity as well as anxiety-related and depression-associated behaviors that are caused by injury of the sciatic nerve with only minor effects in the absence of injury. These data suggest that tramadol relieves chronic pain and its indirect consequences and comorbidities, and that this study also is a model for pharmacological studies seeking to investigate the effect of drugs on the major disabling symptoms of NP. Copyright © 2014 Elsevier Inc. All rights reserved.
Komaki, Alireza; Abdollahzadeh, Fatemeh; Sarihi, Abdolrahman; Shahidi, Siamak; Salehi, Iraj
2014-01-01
Anxiety is among the most common and treatable mental disorders. Adrenergic and cannabinoid systems have an important role in the neurobiology of anxiety. The elevated plus-maze (EPM) has broadly been used to investigate anxiolytic and anxiogenic compounds. The present study investigated the effects of intraperitoneal (IP) injection of cannabinoid CB1 receptor antagonist (AM251) in the presence of alpha-1 adrenergic antagonist (Prazosin) on rat behavior in the EPM. In this study, the data were obtained from male Wistar rat, which weighing 200- 250 g. Animal behavior in EPM were videotaped and saved in computer for 10 min after IP injection of saline, AM251 (0.3 mg/kg), Prazosin (0.3 mg/kg) and AM251 + Prazosin, subsequently scored for conventional indices of anxiety. During the test period, the number of open and closed arms entries, the percentage of entries into the open arms of the EPM, and the spent time in open and closed arms were recorded. Diazepam was considered as a positive control drug with anxiolytic effect (0.3, 0.6, 1.2 mg/kg). Diazepam increased the number of open arm entries and the percentage of spent time on the open arms. IP injection of AM251 before EPM trial decreased open arms exploration and open arm entry. Whereas, Prazosin increased open arms exploration and open arm entry. This study showed that both substances in simultaneous injection have conflicting effects on the responses of each of these two compounds in a single injection. Injection of CB1 receptor antagonist may have an anxiogenic profile in rat, whereas adrenergic antagonist has an anxiolytic effect. Further investigations are essential for better understanding of anxiolytic and anxiogenic properties and neurobiological mechanisms of action and probable interactions of the two systems.
Davis, Maya M.; Olausson, Peter; Greengard, Paul; Taylor, Jane R.; Nairn, Angus C.
2013-01-01
Regulator of calmodulin (CaM) signaling (RCS), when phosphorylated by protein kinase A (PKA) on Ser55, binds to CaM and inhibits CaM-dependent signaling. RCS expression is high in the dorsal striatum, nucleus accumbens and amygdala, suggesting that the protein is involved in limbic-striatal function. To test this hypothesis, we examined RCS knockout (KO) mice in behavioral models dependent on these brain areas. Mice were tested for food-reinforced instrumental conditioning and responding under a progressive ratio (PR) schedule of reinforcement and in models of anxiety (elevated plus maze and open field). While RCS KO mice showed normal acquisition of a food-motivated instrumental response, they exhibited a lower breakpoint value when tested on responding under a PR schedule of reinforcement. RCS KO mice also displayed decreased exploration in both the open arms of an elevated plus maze and in the center region of an open field, suggesting an enhanced anxiety response. Biochemical studies revealed a reduction in the levels of dopamine and cAMP-regulated phosphoprotein (DARPP-32) in the striatum of RCS KO mice. DARPP-32 is important in reward-mediated behavior, suggestive of a possible role for DARPP-32 in mediating some of the effects of RCS. Together these results implicate a novel PKA-regulated phosphoprotein, RCS, in the etiology of motivational deficits and anxiety. PMID:22250817
Foyet, Harquin Simplice; Asongalem, Acha Emmanuel; Oben, Eyong Kenneth; Cioanca, Oana; Hancianu, Monica; Hritcu, Lucian
2016-10-01
Vitellaria paradoxa C.F. Gaertn (Sapotaceae) is a perennial three which naturally grows in the northern part of Cameroon. It has been traditionally used in the Cameroonian folk medicine for treating inflammation and pain. In the present study, we evaluate the possible anti-amnesic and antioxidative effects of the methanolic extract of V. paradoxa stem bark in an Alzheimer's disease (AD) rat model of scopolamine. Rats received a single injection of scopolamine (1.5 mg/kg) before behavioral testing and were treated with the methanolic extract (25 and 50 mg/kg), daily, for eight continuous days. Also, the antioxidant activity in the hippocampus was assessed using the total content of reduced glutathione and malondialdehyde levels. The scopolamine-treated rats exhibited the following: decrease of exploratory time and discrimination index within the novel object recognition test, decrease of spontaneous alternations percentage within Y-maze task, and increase of working memory errors, reference memory errors, and time taken to consume all five baits within radial arm-maze task. Administration of the methanolic extract significantly improved these parameters, suggesting positive effects on memory formation processes and antioxidant potential. Our results suggest that the methanolic extract ameliorates scopolamine-induced memory impairment by attenuation of the oxidative stress in the rat hippocampus.
Lactuca capensis reverses memory deficits in Aβ1-42-induced an animal model of Alzheimer's disease.
Postu, Paula Alexandra; Noumedem, Jaures A K; Cioanca, Oana; Hancianu, Monica; Mihasan, Marius; Ciorpac, Mitica; Gorgan, Dragos Lucian; Petre, Brindusa Alina; Hritcu, Lucian
2018-01-01
We investigated the neuropharmacological effects of the methanolic extract from Lactuca capensis Thunb. leaves (100 and 200 mg/kg) for 21 days on memory impairment in an Alzheimer's disease (AD) rat model produced by direct intraventricular delivery of amyloid-β1-42 (Aβ1-42). Behavioural assays such as Y-maze and radial arm maze test were used for assessing memory performance. Aβ1-42 decreased cognitive performance in the behavioural tests which were ameliorated by pre-treatment with the methanolic extract. Acetylcholinesterase activity and oxidant-antioxidant balance in the rat hippocampus were abnormally altered by Aβ1-42 treatment while these deficits were recovered by pre-treatment with the methanolic extract. In addition, rats were given Aβ1-42 exhibited in the hippocampus decreased brain-derived neurotrophic factor (BDNF) mRNA copy number and increased IL-1β mRNA copy number which was reversed by the methanolic extract administration. These findings suggest that the methanolic extract could be a potent neuropharmacological agent against dementia via modulating cholinergic activity, increasing of BDNF levels and promoting antioxidant action in the rat hippocampus. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
A test of the reward-value hypothesis.
Smith, Alexandra E; Dalecki, Stefan J; Crystal, Jonathon D
2017-03-01
Rats retain source memory (memory for the origin of information) over a retention interval of at least 1 week, whereas their spatial working memory (radial maze locations) decays within approximately 1 day. We have argued that different forgetting functions dissociate memory systems. However, the two tasks, in our previous work, used different reward values. The source memory task used multiple pellets of a preferred food flavor (chocolate), whereas the spatial working memory task provided access to a single pellet of standard chow-flavored food at each location. Thus, according to the reward-value hypothesis, enhanced performance in the source memory task stems from enhanced encoding/memory of a preferred reward. We tested the reward-value hypothesis by using a standard 8-arm radial maze task to compare spatial working memory accuracy of rats rewarded with either multiple chocolate or chow pellets at each location using a between-subjects design. The reward-value hypothesis predicts superior accuracy for high-valued rewards. We documented equivalent spatial memory accuracy for high- and low-value rewards. Importantly, a 24-h retention interval produced equivalent spatial working memory accuracy for both flavors. These data are inconsistent with the reward-value hypothesis and suggest that reward value does not explain our earlier findings that source memory survives unusually long retention intervals.
Resveratrol ameliorated the behavioral deficits in a mouse model of post-traumatic stress disorder.
Zhang, Ze-Shun; Qiu, Zhi-Kun; He, Jia-Li; Liu, Xu; Chen, Ji-Sheng; Wang, Yu-Lu
2017-10-01
Post-traumatic stress disorder (PTSD) has become a major psychiatric and neurological issue. Resveratrol is shown to be effective on depression and anxiety. However, the mechanism of anti-PTSD-like effects of resveratrol remains unknown. The present study aimed to explore the possible molecular and cellular mechanisms underlying the anti-PTSD-like effects of resveratrol. Following a 2-day exposure to inescapable electric foot shocks, animals were administered resveratrol (10, 20, and 40mg/kg, i.g.) during the behavioral tests, which included contextual freezing measurement, elevated plus maze test, staircase test, and open field test. Similar to the positive control drug sertraline (15mg/kg, i.g.), the behavioral deficits of stressed mice were blocked by resveratrol (20 and 40mg/kg, i.g.), which reversed the increased freezing time in contextual freezing measurement and the number of rears in the staircase test and blocked the decrease in time and number of entries in open arms in the elevated plus maze test without affecting the locomotor activity in the open field test. In addition, resveratrol (20 and 40mg/kg, i.g.) antagonized the decrease in the levels of progesterone and allopregnanolone in the prefrontal cortex and hippocampus. Furthermore, long-term resveratrol attenuated the dysfunctions of hypothalamic-pituitary-adrenal axis simultaneously. Collectively, the evidence indicated that the anti-PTSD-like effects of resveratrol were associated with the normalization of biosynthesis of neurosteroids in the brain and prevention of the hypothalamic-pituitary-adrenal axis dysfunction. Copyright © 2017. Published by Elsevier Inc.
A robust animal model of state anxiety: fear-potentiated behaviour in the elevated plus-maze.
Korte, S Mechiel; De Boer, Sietse F
2003-02-28
Fear (i.e., decreased percentage time spent on open-arm exploration) in the elevated plus-maze can be potentiated by prior inescapable stressor exposure, but not by escapable stress. The use of fear-potentiated plus-maze behaviour has several advantages as compared to more traditional animal models of anxiety. (a) In contrast to the traditional (spontaneous) elevated plus-maze, which measures innate fear of open spaces, fear-potentiated plus-maze behaviour reflects an enhanced anxiety state (allostatic state). This "state anxiety" can be defined as an unpleasant emotional arousal in face of threatening demands or dangers. A cognitive appraisal of threat is a prerequisite for the experience of this type of emotion. (b) Depending on the stressor used (e.g., fear of shock, predator odour, swim stress, restraint, social defeat, predator stress (cat)), this enhanced anxiety state can last from 90 min to 3 weeks. Stress effects are more severe when rats are isolated in comparison to group housing. (c) Drugs can be administered in the absence of the original stressor and after stressor exposure. As a consequence, retrieval mechanisms are not affected by drug treatment. (d) Fear-potentiated plus-maze behaviour is sensitive to proven/putative anxiolytics and anxiogenics which act via mechanisms related to the benzodiazepine-gamma-aminobutyric acid receptor, but it is also sensitive to corticotropin-releasing receptor antagonists and glucocorticoid receptor antagonists and serotonin receptor agonists/antagonists complex (high predictive validity). (e) Fear-potentiated plus-maze behaviour is very robust, and experiments can easily be replicated in other labs. (f) Fear-potentiated plus-maze behaviour can be measured both in males and females. (g) Neural mechanisms involved in contextual fear conditioning, fear potentiation and state anxiety can be studied.Thus, fear-potentiated plus-maze behaviour may be a valuable measure in the understanding of neural mechanisms involved in the development of anxiety disorders and in the search for novel anxiolytics. Finally, the involvement of corticotropin-releasing factor and corticosteroid-corticotropin-releasing factor interactions in the production of fear-potentiated plus-maze behaviour are discussed.
Choy, Kwok Ho Christopher; Dean, Olivia; Berk, Michael; Bush, Ashley I; van den Buuse, Maarten
2010-12-15
Glutathione (GSH) is the primary antioxidant in the body and is present in high levels in the brain. Levels of GSH and other antioxidants are significantly altered in major psychiatric illnesses, such as schizophrenia. Recent clinical trials have demonstrated that chronic treatment with N-acetyl-l-cysteine (NAC), a GSH precursor, improved symptoms in individuals with this illness. We previously showed in rats and mice that depletion of GSH by treatment with 2-cyclohexene-1-one (CHX) induced short-term spatial memory deficits in the Y-maze test. The aim of present study was to characterise the effect of NAC in this CHX-induced glutathione depletion model. Consistent with our previous studies, CHX treatment induced approximately 50% reduction of GSH levels in striatum, hippocampus and frontal cortex tissue. GSH depletion was significantly rescued by either 1.2 g/kg or 1.6 g/kg of NAC administration, with a full recovery observed in the frontal cortex after the high dose of NAC. CHX treatment also induced a disruption in short-term spatial recognition memory in Y-maze test, as measured by the duration of time spent in the novel arm. This disruption was reversed by treatment with 1.6 g/kg of NAC. In conclusion, this study suggests that rescue of depleted levels of GSH in the brain restores cognitive deficits, as measured by the Y-maze. These effects appear to be dose-dependent and region-specific. These results may be relevant to the understanding and management of the cognitive symptoms of schizophrenia and bipolar disorder. Copyright © 2010 Elsevier B.V. All rights reserved.
Affective and cognitive behavior in the alpha-galactosidase A deficient mouse model of Fabry disease
Karl, Franziska; Sommer, Claudia; Üçeyler, Nurcan
2017-01-01
Fabry disease is an X-linked inherited lysosomal storage disorder with intracellular accumulation of globotriaosylceramide (Gb3) due to α-galactosidase A (α-Gal A) deficiency. Fabry patients frequently report of anxiety, depression, and impaired cognitive function. We characterized affective and cognitive phenotype of male mice with α-Gal A deficiency (Fabry KO) and compared results with those of age-matched male wildtype (WT) littermates. Young (3 months) and old (≥ 18 months) mice were tested in the naïve state and after i.pl. injection of complete Freund`s adjuvant (CFA) as an inflammatory pain model. We used the elevated plus maze (EPM), the light-dark box (LDB) and the open field test (OF) to investigate anxiety-like behavior. The forced swim test (FST) and Morris water maze (MWM) were applied to assess depressive-like and learning behavior. The EPM test revealed no intergroup difference for anxiety-like behavior in naïve young and old Fabry KO mice compared to WT littermates, except for longer time spent in open arms of the EPM for young WT mice compared to young Fabry KO mice (p<0.05). After CFA injection, young Fabry KO mice showed increased anxiety-like behavior compared to young WT littermates (p<0.05) and naïve young Fabry KO mice (p<0.05) in the EPM as reflected by shorter time spent in EPM open arms. There were no relevant differences in the LDB and the OF test, except for longer time spent in the center zone of the OF by young WT mice compared to young Fabry KO mice (p<0.05). Complementary to this, depression-like and learning behavior were not different between genotypes and age-groups, except for the expectedly lower memory performance in older age-groups compared to young mice. Our results indicate that genetic influences on affective and cognitive symptoms in FD may be of subordinate relevance, drawing attention to potential influences of environmental and epigenetic factors. PMID:28662189
Burger, J
1989-03-01
The ability of hatchling pine snakes (Pituophis melanoleucus) to follow or avoid the chemical trails of conspecifics and a king snake (Lampropeltis getulus) on paper substrates was investigated inY-maze experiments. Hatchlings entered the arm with the adult conspecific trail and avoided the arm containing the king snake trail at a frequency much greater than that due to chance. The data support the hypotheses that pine snakes follow the chemical trails of adult conspecifics and avoid the chemical trails of a predator.
Hocking, Julia; Thomas, Hannah J; Dzafic, Ilvana; Williams, Rebecca J; Reutens, David C; Spooner, Donna M
2013-12-01
Neuropsychological tests requiring patients to find a path through a maze can be used to assess visuospatial memory performance in temporal lobe pathology, particularly in the hippocampus. Alternatively, they have been used as a task sensitive to executive function in patients with frontal lobe damage. We measured performance on the Austin Maze in patients with unilateral left and right temporal lobe epilepsy (TLE), with and without hippocampal sclerosis, compared to healthy controls. Performance was correlated with a number of other neuropsychological tests to identify the cognitive components that may be associated with poor Austin Maze performance. Patients with right TLE were significantly impaired on the Austin Maze task relative to patients with left TLE and controls, and error scores correlated with their performance on the Block Design task. The performance of patients with left TLE was also impaired relative to controls; however, errors correlated with performance on tests of executive function and delayed recall. The presence of hippocampal sclerosis did not have an impact on maze performance. A discriminant function analysis indicated that the Austin Maze alone correctly classified 73.5% of patients as having right TLE. In summary, impaired performance on the Austin Maze task is more suggestive of right than left TLE; however, impaired performance on this visuospatial task does not necessarily involve the hippocampus. The relationship of the Austin Maze task with other neuropsychological tests suggests that differential cognitive components may underlie performance decrements in right versus left TLE. © 2013.
Risher, Mary-Louise; Fleming, Rebekah L; Boutros, Nathalie; Semenova, Svetlana; Wilson, Wilkie A; Levin, Edward D; Markou, Athina; Swartzwelder, H Scott; Acheson, Shawn K
2013-01-01
Adolescence is not only a critical period of late-stage neurological development in humans, but is also a period in which ethanol consumption is often at its highest. Given the prevalence of ethanol use during this vulnerable developmental period we assessed the long-term effects of chronic intermittent ethanol (CIE) exposure during adolescence, compared to adulthood, on performance in the radial-arm maze (RAM) and operant food-reinforced responding in male rats. Male Sprague Dawley rats were exposed to CIE (or saline) and then allowed to recover. Animals were then trained in either the RAM task or an operant task using fixed- and progressive- ratio schedules. After baseline testing was completed all animals received an acute ethanol challenge while blood ethanol levels (BECs) were monitored in a subset of animals. CIE exposure during adolescence, but not adulthood decreased the amount of time that animals spent in the open portions of the RAM arms (reminiscent of deficits in risk-reward integration) and rendered animals more susceptible to the acute effects of an ethanol challenge on working memory tasks. The operant food reinforced task showed that these effects were not due to altered food motivation or to differential sensitivity to the nonspecific performance-disrupting effects of ethanol. However, CIE pre-treated animals had lower BEC levels than controls during the acute ethanol challenges indicating persistent pharmacokinetic tolerance to ethanol after the CIE treatment. There was little evidence of enduring effects of CIE alone on traditional measures of spatial and working memory. These effects indicate that adolescence is a time of selective vulnerability to the long-term effects of repeated ethanol exposure on neurobehavioral function and acute ethanol sensitivity. The positive and negative findings reported here help to further define the nature and extent of the impairments observed after adolescent CIE and provide direction for future research.
Piper, Brian J; Meyer, Jerrold S
2004-12-01
3,4-Methylenedioxymethamphetamine (MDMA, or "Ecstasy") is a popular recreational drug among adolescents that is often taken primarily on weekends. The goals of this study were to develop a model of the typical intermittent pattern of human MDMA use in periadolescent rats and to determine the behavioral consequences of MDMA exposure in this model. Male Sprague-Dawley rats received s.c. injections of 10 mg/kg of MDMA or saline twice daily with an interdose interval of 4 h. Treatments were given every fifth day from postnatal day (PD) 35 to PD 60. Beginning at PD 65, the animals were tested for open-field activity, object recognition memory, and anxiety-related behaviors in the elevated plus-maze. Brain tissues were collected at PD 70 for determination of radiolabeled paroxetine binding to the serotonin transporter (SERT) in the neocortex and hippocampus. Repeated MDMA administration led to a reduced rate of weight gain that was evident by PD 50. There was no treatment effect on ambulatory behavior in the open-field. However, the MDMA group displayed an impairment of object recognition memory and reduced anxiety as indicated by a twofold increase in open-arm duration in the elevated plus-maze. Only modest decreases in SERT binding were observed, although there was a significant negative correlation between hippocampal SERT levels and open-arm duration within the MDMA group. These findings demonstrate that intermittent MDMA exposure during the adolescent period of development can influence subsequent cognitive and affective functioning in the absence of severe serotonergic damage.
Guerra-Narbona, R; Delgado-García, J M; López-Ramos, J C
2013-06-15
The aim of this work was to reveal a hypothetical improvement of cognitive abilities in animals acclimatized to altitude and performing under ground level conditions, when looking at submaximal performance, once seen that it was not possible when looking at maximal scores. We modified contrasted cognitive tasks (object recognition, operant conditioning, eight-arm radial maze, and classical conditioning of the eyeblink reflex), increasing their complexity in an attempt to find performance differences in acclimatized animals vs. untrained controls. In addition, we studied, through immunohistochemical quantification, the expression of choline acetyltransferase and acetyl cholinesterase, enzymes involved in the synthesis and degradation of acetylcholine, in the septal area, piriform and visual cortexes, and the hippocampal CA1 area of animals submitted to acute hypobaric hypoxia, or acclimatized to this simulated altitude, to find a relationship between the cholinergic system and a cognitive improvement due to altitude acclimatization. Results showed subtle improvements of the cognitive capabilities of acclimatized animals in all of the tasks when performed under ground-level conditions (although not before 24 h), in the three tasks used to test explicit memory (object recognition, operant conditioning in the Skinner box, and eight-arm radial maze) and (from the first conditioning session) in the classical conditioning task used to evaluate implicit memory. An imbalance of choline acetyltransferase/acetyl cholinesterase expression was found in acclimatized animals, mainly 24 h after the acclimatization period. In conclusion, altitude acclimatization improves cognitive capabilities, in a process parallel to an imbalance of the cholinergic system.
Open field locomotor activity and anxiety-related behaviors in mucopolysaccharidosis type IIIA mice.
Lau, Adeline A; Crawley, Allison C; Hopwood, John J; Hemsley, Kim M
2008-08-05
Mucopolysaccharidosis (MPS) IIIA, or Sanfilippo syndrome, is a lysosomal storage disorder characterized by severe and progressive neuropathology. Following an asymptomatic period, patients may present with sleep disturbances, cognitive decline, aggressive tendencies and hyperactivity. A naturally-occurring mouse model of MPS IIIA also exhibits many of these behavioral features and has been recently back-crossed onto a C57BL/6 genetic background. To more thoroughly characterize the behavioral phenotype of congenic MPS IIIA mice, we assessed exploratory activity and unconditioned anxiety-related behavior in the elevated plus maze (EPM) and open field locomotor activity. Although MPS IIIA male mice were less active in the EPM at 18 and 20 weeks of age, they were more likely to explore the open arms than their normal counter-parts suggesting reduced anxiety. Repeated EPM testing reduced exploration of the open arms in MPS IIIA mice. In the open field test, significant reductions in activity were evident in naïve-tested male MPS IIIA mice from 10 weeks of age. Female normal and MPS IIIA mice displayed similar exploratory activity in the open field test. These differences in anxiety and locomotor activity will allow us to evaluate the efficacy of therapeutic regimes for MPS IIIA as a forerunner to developing safe and effective therapies for Sanfilippo patients.
Talboom, Joshua S; West, Stephen G; Engler-Chiurazzi, Elizabeth B; Enders, Craig K; Crain, Ian; Bimonte-Nelson, Heather A
2014-12-01
Aging is associated with progressive changes in learning and memory. A potential approach to attenuate age-related cognitive decline is cognitive training. In this study, adult male and female rats were given either repeated exposure to a T-maze, or no exposure to any maze, and then tested on a final battery of cognitive tasks. Two groups of each sex were tested from 6 to 18 months old on the same T-maze; Group one received a version testing spatial reference memory, and Group two received only the procedural testing components with minimal cognitive demand. Groups three and four of each sex had no maze exposure until the final battery, and were comprised of aged or young rats, respectively. The final maze battery included the practiced T-maze plus two novel tasks, one with a similar, and one with a different, memory type to the practice task. Group five of each sex was not maze tested, serving as an aged control for the effects of maze testing on neurotrophin protein levels in cognitive brain regions. Results showed that adult intermittent cognitive training enhanced performance on the practice task when aged in both sexes, that cognitive training benefits transferred to novel tasks only in females, and that cognitive demand was necessary for these effects, since rats receiving only the procedural testing components showed no improvement on the final maze battery. Further, for both sexes, rats that showed faster learning when young demonstrated better memory when aged. Age-related increases in neurotrophin concentrations in several brain regions were revealed, which were related to performance on the training task only in females. This longitudinal study supports the tenet that cognitive training can help one remember later in life, with broader enhancements and associations with neurotrophins in females. Published by Elsevier Inc.
Talboom, Joshua S.; West, Stephen G.; Engler-Chiurazzi, Elizabeth B.; Enders, Craig K.; Crain, Ian; Bimonte-Nelson, Heather A.
2014-01-01
Aging is associated with progressive changes in learning and memory. A potential approach to attenuate age-related cognitive decline is cognitive training. In this study, adult male and female rats were given either repeated exposure to a T-maze, or no exposure to any maze, and then tested on a final battery of cognitive tasks. Two groups of each sex were tested from 6-18 months old on the same T-maze; one group received a version testing spatial reference memory, and the other group received only the procedural testing components with minimal cognitive demand. Groups three and four of each sex had no maze exposure until the final battery, and were comprised of aged or young rats. The final maze battery included the practiced T-maze plus two novel tasks, one with a similar, and one with a different, memory type to the practice task. The fifth group of each sex was not maze tested, serving as an aged control for the effects of maze testing on neurotrophin protein levels in cognitive brain regions. Results showed that adult intermittent cognitive training enhanced performance on the practice task when aged in both sexes, that cognitive training benefits transferred to novel tasks only in females, and that cognitive demand was necessary for these effects since rats receiving only the procedural testing components showed no improvement on the final maze battery. Further, for both sexes, rats that showed faster learning when young demonstrated better memory when aged. Age-related increases in neurotrophin concentrations in several brain regions were revealed, which was related to performance on the training task only in females. This longitudinal study supports the tenet that cognitive training can help one remember later in life, with broader enhancements and associations with neurotrophins in females. PMID:25104561
The Effects of Inflammatory Tooth Pain on Anxiety in Adult Male Rats
Raoof, Maryam; Ebrahimnejad, Hamed; Abbasnejad, Mehdi; Amirkhosravi, Ladan; Raoof, Ramin; Esmaeili Mahani, Saeed; Ramazani, Mohsen; Shokouhinejad, Noushin; Khoshkhounejad, Mehrfam
2016-01-01
Introduction: This study aimed to examine the effects of induced inflammatory tooth pain on anxiety level in adult male rats. Methods: The mandibular incisors of 56 adult male rats were cut off and prefabricated crowns were fixed on the teeth. Formalin and capsaicin were injected intradentally to induce inflammatory tooth pain. Diazepam treated group received diazepam 30 minutes before intradental injection. The anxiety-related behavior was evaluated with elevated plus maze test. Results: Intradental application of chemical noxious stimuli, capsaicin and formalin, significantly affected nociceptive behaviors (P<0.001). Capsaicin (P<0.001) and formalin (P<0.01) significantly increased the anxiety levels in rats by decrease in the duration of time spent in open arm and increase in the duration of time spent in closed arm. Rats that received capsaicin made fewer open arm entries compared to the control animals (P<0.05). Capsaicin (P<0.001) and formalin (P<0.01) treated rats showed more stretch attend postures compared to the control and sham operated animals. In diazepampretreated rats, capsaicin induced algesic effect was prevented (P<0.001). Conclusion: Inflammatory pulpal pain has anxiogenic effect on rats, whereas diazepam premedication showed both anxiolytic and pain reducing effects. PMID:27563419
Acute effects of bergamot oil on anxiety-related behaviour and corticosterone level in rats.
Saiyudthong, Somrudee; Marsden, Charles A
2011-06-01
Bergamot essential oil (BEO), Citrus aurantium subsp. bergamia (Risso) Wright & Arn. (Rutaceae), is used widely in aromatherapy to reduce stress and anxiety despite limited scientific evidence. A previous study showed that BEO significantly increased gamma-aminobutyric acid levels in rat hippocampus, suggesting potential anxiolytic properties. The aim of this study was to investigate the effect of BEO (1.0%, 2.5% and 5.0% w/w) administered to rats on both anxiety-related behaviours (the elevated plus-maze (EPM) and hole-board tests) and stress-induced levels of plasma corticosterone in comparison with the effects of diazepam. Inhalation of BEO (1% and 2.5%) and injection of diazepam (1 mg/kg, i.p.) significantly increased the percentage of open arm entries on the EPM. The percentage time spent in the open arms was also significantly enhanced following administration of either BEO (2.5% and 5%) or diazepam. Total arm entries were significantly increased with the highest dose (5%), suggesting an increase in locomotor activity. In the hole-board test, 2.5% BEO and diazepam significantly increased the number of head dips. 2.5% BEO and diazepam attenuated the corticosterone response to acute stress caused by exposure to the EPM. In conclusion, both BEO and diazepam exhibited anxiolytic-like behaviours and attenuated HPA axis activity by reducing the corticosterone response to stress. Copyright © 2010 John Wiley & Sons, Ltd.
Rahmati, Batool; Kiasalari, Zahra; Roghani, Mehrdad; Khalili, Mohsen; Ansari, Fariba
2017-12-01
Anxiety and depression are common in Alzheimer's disease (AD). Despite some evidence, it is difficult to confirm Lavandula officinalis Chaix ex Vill (Lamiaceae) as an anxiolytic and antidepressant drug. The effects of L. officinalis extract were studied in scopolamine-induced memory impairment, anxiety and depression-like behaviour. Male NMRI rats were divided into control, scopolamine alone-treated group received scopolamine (0.1 mg/kg) intraperitoneally (i.p.), daily and 30 min prior to performing behavioural testing on test day, for 12 continuous days and extract pretreated groups received aerial parts hydro alcoholic extract (i.p.) (100, 200 and 400 mg/kg), 30 min before each scopolamine injection. Memory impairment was assessed by Y-maze task, while, elevated plus maze and forced swimming test were used to measure anxiolytic and antidepressive-like activity. Spontaneous alternation percentage in Y maze is reduced by scopolamine (36.42 ± 2.60) (p ≤ 0.001), whereas lavender (200 and 400 mg/kg) enhanced it (83.12 ± 5.20 and 95 ± 11.08, respectively) (p ≤ 0.05). Also, lavender pretreatment in 200 and 400 mg/kg enhanced time spent on the open arms (15.4 ± 3.37 and 32.1 ± 3.46, respectively) (p ≤ 0.001). On the contrary, while immobility time was enhanced by scopolamine (296 ± 4.70), 100, 200 and 400 mg/kg lavender reduced it (193.88 ± 22.42, 73.3 ± 8.25 and 35.2 ± 4.22, respectively) in a dose-dependent manner (p ≤ 0.001). Lavender extracts improved scopolamine-induced memory impairment and also reduced anxiety and depression-like behaviour in a dose-dependent manner.
Smith, Sheryl S; Ruderman, Yevgeniy; Frye, Cheryl; Homanics, Gregg; Yuan, Maoli
2006-06-01
3alpha-OH-5alpha[beta]-pregnan-20-one (THP) is a positive modulator of the GABAA receptor (GABAR), which underlies its reported anxiolytic effect. However, there are conditions such as premenstrual dysphoric disorder (PMDD) where increases in THP levels can be associated with adverse mood. In order to test for conditions where THP might be anxiogenic, we developed a mouse model of THP withdrawal. Because delta-containing GABAR are highly sensitive to THP modulation, results were compared in wild-type and delta knockout mice. Finasteride, a 5alpha-reductase blocker, was administered for 3 days to female wild-type or delta knockout mice. Then, animals were tested in the elevated plus maze, following acute administration of THP, lorazepam, flumazenil, or 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), and results compared to vehicle-injected controls. CA1 hippocampal GABAR alpha4 subunit levels were assessed by Western blot. After THP withdrawal, THP produced anxiogenic effects, decreasing open arm entries on the elevated plus maze, following a brief shock, in contrast to its expected anxiolytic effects. As we have shown in rats, THP withdrawal also resulted in increased expression of the alpha4 subunit in mouse CA1 hippocampus. As expected for increases in alpha4-containing GABAR, THP withdrawn mice were relatively insensitive to the benzodiazepine (BDZ) lorazepam and had atypical responses to the BDZ antagonist flumazenil when tested on the plus maze. In contrast, they showed a greater anxiolytic response to THIP, which has greater efficacy at alpha4betadelta than other GABAR. Although THP withdrawal in delta knockout mice also increased the alpha4 GABAR subunit, the anxiogenic effects of THP and the anxiolytic effects of THIP were not observed, implicating alpha4betadelta GABAR in these effects. Based on these behavioral and pharmacological findings, we suggest that THP withdrawal in the mouse may serve as a rodent model of PMDD.
Glow discharge based device for solving mazes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubinov, Alexander E., E-mail: dubinov-ae@yandex.ru; Mironenko, Maxim S.; Selemir, Victor D.
2014-09-15
A glow discharge based device for solving mazes has been designed and tested. The device consists of a gas discharge chamber and maze-transformer of radial-azimuth type. It allows changing of the maze pattern in a short period of time (within several minutes). The device has been tested with low pressure air. Once switched on, a glow discharge has been shown to find the shortest way through the maze from the very first attempt, even if there is a section with potential barrier for electrons on the way. It has been found that ionization waves (striations) can be excited in themore » maze along the length of the plasma channel. The dependancy of discharge voltage on the length of the optimal path through the maze has been measured. A reduction in discharge voltage with one or two potential barriers present has been found and explained. The dependency of the magnitude of discharge ignition voltage on the length of the optimal path through the maze has been measured. The reduction of the ignition voltage with the presence of one or two potential barriers has been observed and explained.« less
Ghofrani, Saeed; Joghataei, Mohammad-Taghi; Mohseni, Simin; Baluchnejadmojarad, Tourandokht; Bagheri, Maryam; Khamse, Safoura; Roghani, Mehrdad
2015-10-05
Alzheimer's disease (AD) is one of the prevalent neurological disorders of the central nervous system hallmarked by increased beta-amyloid (Aβ) deposition and ensuing learning and memory deficit. In the present study, the beneficial effect of naringenin on improvement of learning and memory was evaluated in an Alzheimer's disease rat model. The Aβ-injected rats showed a lower alternation score in Y-maze task, impairment of retention and recall capability in passive avoidance test, and lower correct choices and higher errors in radial arm maze (RAM) task as compared to sham group in addition to enhanced oxidative stress and apoptosis. Naringenin, but not a combination of naringenin and fulvestrant (an estrogenic receptor antagonist) significantly improved the performance of Aβ-injected rats in passive avoidance and RAM tasks. Naringenin pretreatment of Aβ-injected rats also lowered hippocampal malondialdehyde (MDA) with no significant effect on nitrite and superoxide dismutase (SOD) activity in addition to lowering apoptosis. These results suggest naringenin pretreatment attenuates Aβ-induced impairment of learning and memory through mitigation of lipid peroxidation and apoptosis and its beneficial effect is somewhat mediated via estrogenic pathway. Copyright © 2015 Elsevier B.V. All rights reserved.
Acute behavioural and neurotoxic effects of MDMA plus cocaine in adolescent mice.
Daza-Losada, M; Rodríguez-Arias, M; Maldonado, C; Aguilar, M A; Guerri, C; Miñarro, J
2009-01-01
The poly-drug pattern is the most common among those observed in MDMA users, with cocaine being a frequently associated drug. This study evaluates the acute effects of MDMA (5, 10 and 20 mg/kg), alone or in combination with cocaine (25 mg/kg), on motor activity, anxiety (elevated plus maze and social interaction test), memory and brain monoamines in adolescent mice. Both drugs, administered alone or concurrently, produced hyperactivity and a decrease in social contacts. However, an anxiolytic effect, studied by means of the elevated plus maze and expressed as an increase in the time spent on the open arms, was observed only in those animals treated with cocaine and MDMA. The passive avoidance task was affected only with the highest MDMA dose (20 mg/kg). Mice treated with MDMA did not present significant changes in brain monoamines, while those receiving MDMA and cocaine showed a decrease in DA in the striatum, which was accompanied by an increase in the serotonin concentration in the striatum and cortex 30 min after acute administration. In conclusion, the combined use of MDMA and cocaine produces a predominance of serotonin over DA, which is associated with an anxiolytic profile, defensive behaviours and fewer social contacts.
Barnes maze testing strategies with small and large rodent models.
Rosenfeld, Cheryl S; Ferguson, Sherry A
2014-02-26
Spatial learning and memory of laboratory rodents is often assessed via navigational ability in mazes, most popular of which are the water and dry-land (Barnes) mazes. Improved performance over sessions or trials is thought to reflect learning and memory of the escape cage/platform location. Considered less stressful than water mazes, the Barnes maze is a relatively simple design of a circular platform top with several holes equally spaced around the perimeter edge. All but one of the holes are false-bottomed or blind-ending, while one leads to an escape cage. Mildly aversive stimuli (e.g. bright overhead lights) provide motivation to locate the escape cage. Latency to locate the escape cage can be measured during the session; however, additional endpoints typically require video recording. From those video recordings, use of automated tracking software can generate a variety of endpoints that are similar to those produced in water mazes (e.g. distance traveled, velocity/speed, time spent in the correct quadrant, time spent moving/resting, and confirmation of latency). Type of search strategy (i.e. random, serial, or direct) can be categorized as well. Barnes maze construction and testing methodologies can differ for small rodents, such as mice, and large rodents, such as rats. For example, while extra-maze cues are effective for rats, smaller wild rodents may require intra-maze cues with a visual barrier around the maze. Appropriate stimuli must be identified which motivate the rodent to locate the escape cage. Both Barnes and water mazes can be time consuming as 4-7 test trials are typically required to detect improved learning and memory performance (e.g. shorter latencies or path lengths to locate the escape platform or cage) and/or differences between experimental groups. Even so, the Barnes maze is a widely employed behavioral assessment measuring spatial navigational abilities and their potential disruption by genetic, neurobehavioral manipulations, or drug/ toxicant exposure.
Lima, Eliane Brito Cortez; de Sousa, Caren Nádia Soares; Meneses, Lucas Nascimento; E Silva Pereira, Yuri Freitas; Matos, Natália Castelo Branco; de Freitas, Rayanne Brito; Lima, Nycole Brito Cortez; Patrocínio, Manoel Cláudio Azevedo; Leal, Luzia Kalyne Almeida Moreira; Viana, Glauce Socorro Barros; Vasconcelos, Silvânia Maria Mendes
2017-01-01
Extracts from the husk fiber of Cocos nucifera are used in folk medicine, but their actions on the central nervous system have not been studied. Here, the anxiolytic and antidepressant effects of the standardized hydroalcoholic extract of C. nucifera husk fiber (HECN) were evaluated. Male Swiss mice were treated with HECN (50, 100, or 200 mg/kg) 60 min before experiments involving the plus maze test, hole-board test, tail suspension test, and forced swimming test (FST). HECN was administered orally (p.o.) in acute and repeated-dose treatments. The forced swimming test was performed with dopaminergic and noradrenergic antagonists, as well as a serotonin release inhibitor. Administration of HECN in the FST after intraperitoneal (i.p.) pretreatment of mice with sulpiride (50 mg/kg), prazosin (1 mg/kg), or p-chlorophenylalanine (PCPA, 100 mg/kg) caused the actions of these three agents to be reversed. However, this effect was not observed after pretreating the animals with SCH23390 (15 µg/kg, i.p.) or yohimbine (1 mg/kg, i.p.) The dose chosen for HECN was 100 mg/kg, p.o., which increased the number of entries as well as the permanence in the open arms of the maze after acute and repeated doses. In both the forced swimming and the tail suspension tests, the same dose decreased the time spent immobile but did not disturb locomotor activity in an open-field test. The anxiolytic effect of HECN appears to be related to the GABAergic system, while its antidepressant effect depends upon its interaction with the serotoninergic, noradrenergic (α1 receptors), and dopaminergic (D2 dopamine receptors) systems.
Sanderson, David J; Good, Mark A; Skelton, Kathryn; Sprengel, Rolf; Seeburg, Peter H; Rawlins, J Nicholas P; Bannerman, David M
2009-06-01
The GluA1 AMPA receptor subunit is a key mediator of hippocampal synaptic plasticity and is especially important for a rapidly-induced, short-lasting form of potentiation. GluA1 gene deletion impairs hippocampus-dependent, spatial working memory, but spares hippocampus-dependent spatial reference memory. These findings may reflect the necessity of GluA1-dependent synaptic plasticity for short-term memory of recently visited places, but not for the ability to form long-term associations between a particular spatial location and an outcome. This hypothesis is in concordance with the theory that short-term and long-term memory depend on dissociable psychological processes. In this study we tested GluA1-/- mice on both short-term and long-term spatial memory using a simple novelty preference task. Mice were given a series of repeated exposures to a particular spatial location (the arm of a Y-maze) before their preference for a novel spatial location (the unvisited arm of the maze) over the familiar spatial location was assessed. GluA1-/- mice were impaired if the interval between the trials was short (1 min), but showed enhanced spatial memory if the interval between the trials was long (24 h). This enhancement was caused by the interval between the exposure trials rather than the interval prior to the test, thus demonstrating enhanced learning and not simply enhanced performance or expression of memory. This seemingly paradoxical enhancement of hippocampus-dependent spatial learning may be caused by GluA1 gene deletion reducing the detrimental effects of short-term memory on subsequent long-term learning. Thus, these results support a dual-process model of memory in which short-term and long-term memory are separate and sometimes competitive processes.
Place and direction learning in a spatial T-maze task by neonatal piglets
Elmore, Monica R. P.; Dilger, Ryan N.; Johnson, Rodney W.
2013-01-01
Pigs are a valuable animal model for studying neurodevelopment in humans due to similarities in brain structure and growth. The development and validation of behavioral tests to assess learning and memory in neonatal piglets are needed. The present study evaluated the capability of 2-wk old piglets to acquire a novel place and direction learning spatial T-maze task. Validity of the task was assessed by the administration of scopolamine, an anti-cholinergic drug that acts on the hippocampus and other related structures, to impair spatial memory. During acquisition, piglets were trained to locate a milk reward in a constant place in space, as well as direction (east or west), in a plus-shaped maze using extra-maze visual cues. Following acquisition, reward location was reversed and piglets were re-tested to assess learning and working memory. The performance of control piglets in the maze improved over time (P < 0.0001), reaching performance criterion (80% correct) on day 5 of acquisition. Correct choices decreased in the reversal phase (P < 0.0001), but improved over time. In a separate study, piglets were injected daily with either phosphate buffered saline (PBS; control) or scopolamine prior to testing. Piglets administered scopolamine showed impaired performance in the maze compared to controls (P = 0.03), failing to reach performance criterion after 6 days of acquisition testing. Collectively, these data demonstrate that neonatal piglets can be tested in a spatial T-maze task to assess hippocampal-dependent learning and memory. PMID:22526690
Casarrubea, M; Magnusson, M S; Roy, V; Arabo, A; Sorbera, F; Santangelo, A; Faulisi, F; Crescimanno, G
2014-08-30
Aim of this article is to illustrate the application of a multivariate approach known as t-pattern analysis in the study of rat behavior in elevated plus maze. By means of this multivariate approach, significant relationships among behavioral events in the course of time can be described. Both quantitative and t-pattern analyses were utilized to analyze data obtained from fifteen male Wistar rats following a trial 1-trial 2 protocol. In trial 2, in comparison with the initial exposure, mean occurrences of behavioral elements performed in protected zones of the maze showed a significant increase counterbalanced by a significant decrease of mean occurrences of behavioral elements in unprotected zones. Multivariate t-pattern analysis, in trial 1, revealed the presence of 134 t-patterns of different composition. In trial 2, the temporal structure of behavior become more simple, being present only 32 different t-patterns. Behavioral strings and stripes (i.e. graphical representation of each t-pattern onset) of all t-patterns were presented both for trial 1 and trial 2 as well. Finally, percent distributions in the three zones of the maze show a clear-cut increase of t-patterns in closed arm and a significant reduction in the remaining zones. Results show that previous experience deeply modifies the temporal structure of rat behavior in the elevated plus maze. In addition, this article, by highlighting several conceptual, methodological and illustrative aspects on the utilization of t-pattern analysis, could represent a useful background to employ such a refined approach in the study of rat behavior in elevated plus maze. Copyright © 2014 Elsevier B.V. All rights reserved.
Contó, Marcos Brandão; de Carvalho, José Gilberto Barbosa; Benedito, Marco Antonio Campana
2005-11-01
In epileptic patients, there is a high incidence of psychiatric comorbidities, such as anxiety. Gamma-aminobutyric acid (GABA) ionotropic receptor GABA(A)/benzodiazepine allosteric site is involved in both epilepsy and anxiety. This involvement is based on the fact that benzodiazepine allosteric site agonists are anticonvulsant and anxiolytic drugs; on the other hand, benzodiazepine inverse agonists are potent convulsant and anxiogenic drugs. The aim of this work was to determine if subgroups of rats selected according to their susceptibility to clonic convulsions induced by a convulsant dose 50% (CD50) of DMCM, a benzodiazepine inverse agonist, would differ in behavioral tests commonly used to measure anxiety (elevated plus-maze, open field) and depression (forced swimming test). In the first experiment, subgroups of adult male Wistar rats were selected after a single dose of DMCM and in the second experiment they were selected after two injections of DMCM given after an interval of 1 week. Those rats presenting full clonic convulsions were termed Low Threshold rats to DMCM-induced clonic convulsions (LTR) and those not having clonic convulsions High Threshold rats to DMCM-induced clonic convulsions (HTR). In both experiments, only those rats presenting full clonic convulsions induced by DMCM and those not showing any signs of motor disturbances were used in the behavioral tests. The results showed that the LTR subgroup selected after two injections of a CD50 of DMCM spent a significantly lower time in the open arms of the elevated plus-maze and in the off the walls area of the open field; moreover, this group also presented a higher number of rearings in the open field. There were no significant differences between HTR and LTR subgroups in the forced swimming test. LTR and HTR subgroups selected after only one injection of DMCM did not differ in the three behavioral tests. To verify if the behavioral differences between HTR and LTR subgroups of rats selected after two injections of DMCM were due to the clonic convulsion, another experiment was carried out in which subgroups of rats susceptible and nonsusceptible to clonic convulsions induced by a CD50 of picrotoxin, a GABA(A) receptor channel blocker, were selected and submitted to the elevated plus-maze and open field tests. The results obtained did not show any significant differences between these two subgroups in the elevated plus-maze and open field tests. In another approach to determine the relation between fear/anxiety and susceptibility to clonic convulsions, subgroups of rats were selected in the elevated plus-maze as more or less fearful/anxious. The CD50 for clonic convulsions induced by DMCM was determined for each of these two subgroups. The results showed a significantly lower CD50 for the more fearful/anxious subgroup, which means a higher susceptibility to clonic convulsions induced by DMCM. The present findings show a relation between susceptibility to clonic convulsions and fear/anxiety and vice versa which may be due to differences in the assembly of GABA(A)/allosteric benzodiazepine site receptors in regions of the brain.
Hritcu, Lucian; Ionita, Radu; Motei, Diana Elena; Babii, Cornelia; Stefan, Marius; Mihasan, Marius
2017-02-01
6-Hydroxy-l-nicotine (6HLN), a nicotine derivative from nicotine degradation by Arthrobacter nicotinovorans pAO1 strain was found to improve behavioral deficits and to reverse oxidative stress in the rat hippocampus. Rats were given CHL (10mg/kg, i.p.) were used as an Alzheimer's disease-like model. The nicotine (0.3mg/kg) and 6HLN (0.3mg/kg) were administered alone or in combination in the CHL-treated rats. Memory-related behaviors were evaluated using Y-maze and radial arm-maze tests. The antioxidant enzymes activity and the levels of the biomarkers of oxidative stress were measured in the hippocampus. Statistical analyses were performed using two-way ANOVA and Tukey's post hoc test. F values for which p<0.05 were regarded as statistically significant. CHL-caused memory deficits and oxidative stress enhancing were observed. Both nicotine and 6HLN administration attenuated the cognitive deficits and recovered the antioxidant capacity in the rat hippocampus of the CHL rat model. Our results suggest that 6HLN versus nicotine confers anti-amnesic properties in the CHL-induced a rat model of memory impairment via reversing cholinergic function and decreasing brain oxidative stress, suggesting the use of this compound as an alternative agent in AD treatment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Hammami-Abrand Abadi, Arezoo; Miladi-Gorji, Hossein; Bigdeli, Imanollah
2016-04-01
This study was designed to examine the effect of environmental enrichment during morphine dependency and withdrawal on the severity of naloxone-precipitated withdrawal signs, anxiety, and depressive-like behaviors and voluntary morphine consumption in morphine-dependent rats. The rats were injected with bi-daily doses (10 mg/kg, 12 h intervals) of morphine for 14 days following rearing in a standard environment (SE) or enriched environment (EE) during the development of morphine dependence and withdrawal. Then, rats were tested for withdrawal signs after naloxone injection, anxiety (the elevated plus maze) and depression-related behavior (sucrose preference test), and voluntary consumption of morphine using a two-bottle choice paradigm, in morphine-dependent and morphine-withdrawn rats. The results showed that EE decreased naloxone-precipitated withdrawal signs, but not anxiety or sucrose preference during dependence on morphine. The EE-withdrawn rats showed an increase in the elevated plus maze open arm time and entries and higher levels of sucrose preference than SE rats. Voluntary consumption of morphine was lower in the EE-withdrawn rats than in the SE groups in the second period of drug intake. Thus, exposure to EE reduced the severity of morphine dependence and voluntary consumption of morphine, alongside reductions in anxiety and depression-related behavior in morphine-withdrawn rats.
The effects of long-term honey, sucrose or sugar-free diets on memory and anxiety in rats.
Chepulis, Lynne M; Starkey, Nicola J; Waas, Joseph R; Molan, Peter C
2009-06-22
Sucrose is considered by many to be detrimental to health, giving rise to deterioration of the body associated with ageing. This study was undertaken to determine whether replacing sucrose in the diet long-term with honey that has a high antioxidant content could decrease deterioration in brain function during ageing. Forty-five 2-month old Sprague Dawley rats were fed ad libitum for 52 weeks on a powdered diet that was either sugar-free or contained 7.9% sucrose or 10% honey (which is the equivalent amount of sugar). Anxiety levels were assessed using an Elevated Plus Maze, whilst a Y maze and an Object Recognition task were used to assess memory. Locomotor activity was also measured using an Open Field task to ensure that differences in activity levels did not bias results in the other tasks. Anxiety generally decreased overall from 3 to 12 months, but the honey-fed rats showed significantly less anxiety at all stages of ageing compared with those fed sucrose. Honey-fed animals also displayed better spatial memory throughout the 12-month period: at 9 and 12 months a significantly greater proportion of honey-fed rats recognised the novel arm as the unvisited arm of the maze compared to rats on a sugar-free or sucrose-based diet. No significant differences among groups were observed in the Object Recognition task, and there appeared to be no differences in locomotor activity among groups at either 6 or 12 months. In conclusion, it appears that consumption of honey may reduce anxiety and improve spatial memory in middle age.
Ravenelle, Rebecca; Berman, Ariel K; La, Jeffrey; Mason, Briana; Asumadu, Evans; Yelleswarapu, Chandra; Donaldson, S Tiffany
2018-04-01
In humans and animal models, sex differences are reported for anxiety-like behavior and response to anxiogenic stimuli. In the current work, we studied anxiety-like behavior and response to the prototypical anti-anxiety drug, diazepam. We used 6th generation outbred lines of adult Long Evans rats with high and low anxiety-like behavior phenotypes to investigate the impact of proestrus on the baseline and diazepam-induced behavior. At three doses of diazepam (0, 0.1, and 1.0 mg/kg, i.p.), we measured anxiogenic responses on the elevated plus maze of adult male and female rats. We assessed parvalbumin and brain-derived neurotrophin protein levels in forebrain and limbic structures implicated in anxiety/stress using immunohistochemistry. At baseline, we saw significant differences between anxiety lines, with high anxiety lines displaying less time on the open arms of the elevated plus maze, and less open arm entries, regardless of sex. During proestrus, high anxiety females showed less anxiety-like behavior at 0.1 mg/kg, while low anxiety females displayed less anxiety-like behavior at 0.1 and 1.0 doses, relative to males. Brain-derived neurotrophin protein was elevated in females in the medial prefrontal cortex and central amygdala, while parvalbumin-immunoreactive cells were greater in males in the medial prefrontal cortex. Parvalbumin-positive cells in high anxiety females were higher in CA2 and dentate gyrus relative to males from the same line. In sum, when tested in proestrus, females showed greater anxiolytic effects of diazepam relative to males, and this correlated with increases in neurotrophin and parvalbumin neuron density in corticolimbic structures. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Wong-Goodrich, Sarah J.E.; Glenn, Melissa J.; Mellott, Tiffany J.; Blusztajn, Jan K.; Meck, Warren H.; Williams, Christina L.
2009-01-01
Altered dietary choline availability early in life leads to persistent changes in spatial memory and hippocampal plasticity in adulthood. Developmental programming by early choline nutrition may determine the range of adult choline intake that is optimal for the types of neural plasticity involved in cognitive function. To test this, male Sprague-Dawley rats were exposed to a choline chloride deficient (DEF), sufficient (CON), or supplemented (SUP) diet during embryonic days 12-17 and then returned to a control diet (1.1 g choline chloride/kg). At 70 days of age, we found that DEF and SUP rats required fewer choices to locate 8 baited arms of a 12-arm radial maze than CON rats. When switched to a choline-deficient diet (0 g/kg), SUP rats showed impaired performance while CON and DEF rats were unaffected. In contrast, when switched to a choline-supplemented diet (5.0 g/kg), DEF rats' performance was significantly impaired while CON and SUP rats were less affected. These changes in performance were reversible when the rats were switched back to a control diet. In a second experiment, DEF, CON, and SUP rats were either maintained on a control diet, or the choline-supplemented diet. After 12 weeks, DEF rats were significantly impaired by choline supplementation on a matching-to-place water-maze task, which was also accompanied by a decrease in dentate cell proliferation in DEF rats only. IGF-1 levels were elevated by both prenatal and adult choline supplementation. Taken together, these findings suggest that the in utero availability of an essential nutrient, choline, causes differential behavioral and neuroplastic sensitivity to the adult choline supply. PMID:18778697
Wong-Goodrich, Sarah J E; Glenn, Melissa J; Mellott, Tiffany J; Blusztajn, Jan K; Meck, Warren H; Williams, Christina L
2008-10-27
Altered dietary choline availability early in life leads to persistent changes in spatial memory and hippocampal plasticity in adulthood. Developmental programming by early choline nutrition may determine the range of adult choline intake that is optimal for the types of neural plasticity involved in cognitive function. To test this, male Sprague-Dawley rats were exposed to a choline chloride deficient (DEF), sufficient (CON), or supplemented (SUP) diet during embryonic days 12-17 and then returned to a control diet (1.1 g choline chloride/kg). At 70 days of age, we found that DEF and SUP rats required fewer choices to locate 8 baited arms of a 12-arm radial maze than CON rats. When switched to a choline-deficient diet (0 g/kg), SUP rats showed impaired performance while CON and DEF rats were unaffected. In contrast, when switched to a choline-supplemented diet (5.0 g/kg), DEF rats' performance was significantly impaired while CON and SUP rats were less affected. These changes in performance were reversible when the rats were switched back to a control diet. In a second experiment, DEF, CON, and SUP rats were either maintained on a control diet, or the choline-supplemented diet. After 12 weeks, DEF rats were significantly impaired by choline supplementation on a matching-to-place water-maze task, which was also accompanied by a decrease in dentate cell proliferation in DEF rats only. IGF-1 levels were elevated by both prenatal and adult choline supplementation. Taken together, these findings suggest that the in utero availability of an essential nutrient, choline, causes differential behavioral and neuroplastic sensitivity to the adult choline supply.
Liu, Weiqing; Wang, Xiuyan; Hong, Wenjuan; Wang, Dong; Chen, Xiaogang
2017-02-01
Although an increasing amount of evidence supports a "two-hit" hypothesis for the neurodevelopmental model of schizophrenia, there has been no development in animal models to test this hypothesis. An animal model was established by chronic administration of 0.1, 0.3, and 0.5mg/kg MK-801 in P7-P21 rats followed by four weeks of social isolation in childhood and then five days of social housing. Animal behaviors were measured by the open field (OF) test, the novel object recognition (NOR) test, the prepulse inhibition (PPI) test, and the elevated plus maze (EPM) test. We found a significant decrease in the NOR index in adolescent rats compared to saline control rats when administering 0.5mg/kg of MK-801 (P=0.02). We found that social isolation had no significant effect on NOR index, though social isolation significantly increased the total distance traveled and significantly decreased the resting time in adolescent rats in the OF test (P<0.001 and P=0.003, respectively). In contrast, we observed that MK-801 administration showed no significant effects on either total distance traveled or resting time. Both MK-801 administration and social isolation had no significant effect on the percent of PPI and startle amplitudes in adolescent rats. Social isolation significantly reduced the open arm entries in adolescent rats in the EPM test (P=0.023), but it did not reduce the ratio to enter the open arms and the stay time in open arm. Administration of MK-801 showed no significant effect on the indexes of entering the open arms in the EPM test on adolescent rats. MK-801 intervention in infancy is associated with the damage of long-term visual memory, whereas social isolation in childhood is associated with the increased spontaneous activity and anxiety levels. Administration of MK-801 in infancy and social isolation in childhood are two independent factors on the neurodevelopmental defects. Copyright © 2017 Elsevier Inc. All rights reserved.
Early olfactory environment influences social behaviour in adult Octodon degus.
Márquez, Natalia; Martínez-Harms, Jaime; Vásquez, Rodrigo A; Mpodozis, Jorge
2015-01-01
We evaluated the extent to which manipulation of early olfactory environment can influence social behaviours in the South American Hystricognath rodent Octodon degus. The early olfactory environment of newborn degus was manipulated by scenting all litter members with eucalyptol during the first month of life. The social behaviour of sexually mature animals (5-7 months old) towards conspecifics was then assessed using a y-maze to compare the response of control (naïve) and treated animals to two different olfactory configurations (experiment 1): (i) a non-familiarized conspecific impregnated with eucalyptol (eucalyptol arm) presented against (ii) a non-familiarized unscented conspecific (control arm). In addition, in dyadic encounters, we assessed the behaviour of control and eucalyptol treated animals towards a non-familiarized conspecific scented with eucalyptol (experiment 2). We found that control subjects explored and spent significantly less time in the eucalyptol arm, indicating neophobic behaviours towards the artificially scented conspecific. Treated subjects explored and spent similar time in both arms of the maze, showing the same interest for both olfactory stimuli presented. During dyadic encounters in experiment 2, an interaction effect between early experience and sex was observed. Control males escaped and avoided their scented partner more frequently than eucalyptol treated male subjects and than females. Both groups did not differ in the exploration of their scented partners, suggesting that avoidance within agonistic context does not relate to neophobic behaviours. Our results suggest that the exposure to eucalyptol during early ontogeny decreases evasive behaviours within an agonistic context as a result of olfactory learning. Altogether, these results indicate that olfactory cues learned in early ontogeny can influence olfactory-guided behaviours in adult degus.
Ennaceur, A; Michalikova, S; van Rensburg, R; Chazot, P L
2011-01-01
C57BL/6J mice were introduced to a nine arm radial maze without prior habituation and trained in the acquisition of a working memory task in 16 sessions, one session per day. In this maze mice need to climb onto an upward inclined bridge in order to reach and cross onto an arm. They received in each session an i.p. injection of MK-801 (0.1 mg/kg) 30 min before training or immediately after training. MK-801 pre-treated mice made significantly more entries onto the bridges, fewer entries onto the arms and took significantly longer time to make a first arm visit compared to saline and MK-801 post-treated mice during the first 3 session blocks (4 sessions per block). These results indicate that MK-801 induced anxiety which was extended throughout the first 3 session blocks. MK-801 pre-treated mice made also significantly more errors and required more sessions to reach the criterion compared to saline and MK-801 post-treated mice. Administration of MK-801 after training did not affect the acquisition of the task. The present results indicate that MK-801 pre-treatment impaired the acquisition of a spatial task and this can be accounted for by its effect on the baseline level of anxiety which was elevated. The introduction of mice to the acquisition of the task without prior habituation demonstrates that a drug treatment can affect learning and memory by increasing and/or prolonging anxiety. Such effect may be confounded with learning and memory performance and not detected with pre-habituation training procedures, particularly when the number of sessions is determined a-priori. Copyright © 2011 Elsevier Ltd. All rights reserved.
Spatial Memory in Rats after 25 Hours
ERIC Educational Resources Information Center
Crystal, Jonathon D.; Babb, Stephanie J.
2008-01-01
We investigated the time course of spatial-memory decay in rats using an eight-arm radial maze. It is well established that performance remains high with retention intervals as long as 4 h, but declines to chance with a 24-h retention interval (Beatty, W. W., & Shavalia, D. A. (1980b). Spatial memory in rats: time course of working memory and…
Kocahan, Sayad; Akillioglu, Kubra; Binokay, Secil; Sencar, Leman; Polat, Sait
2013-05-01
The N-Methyl-D-Aspartate (NMDA) receptor is expressed abundantly in the brain and plays an important role in neuronal development, learning and memory, neurodegenerative diseases, and neurogenesis. In this study, we evaluated the effects of NMDA receptor blockade during the early neurodevelopmental period on exploratory locomotion, anxiety-like behaviors and cognitive functions of adolescent Wistar rats. NMDA receptor hypofunction was induced 7-10 days after birth using MK-801 in rats (0.25 mg/kg twice a day for 4 days via intraperitoneal injection). The open-field (OF), elevated plus maze (EPM) and passive avoidance (PA) tests were used to evaluate exploratory locomotion, anxiety-like behaviors and cognitive functions. In the OF test, MK-801 caused an increase in locomotion behavior (p < 0.01) and in the frequency of rearing (p < 0.05). In the EPM test, MK-801 treatment increased the time spent in the open arms, the number of open arm entries and the amount of head dipping (p < 0.01). MK-801 treatment caused no statistical difference compared to the control group in the PA test (p > 0.05). Chronic NMDA receptor blockade during the critical period of maturation for the glutamatergic brain system (postnatal days 7-10) produces locomotor hyperactivity and decreased anxiety levels, but has no significant main effect on cognitive function during adolescence.
Smith, Amanda L.; Hill, Courtney A.; Alexander, Michelle; Szalkowski, Caitlin E.; Chrobak, James J.; Rosenkrantz, Ted S.; Fitch, R. Holly
2014-01-01
Hypoxia-ischemia (HI; reduction in blood/oxygen supply) is common in infants with serious birth complications, such as prolonged labor and cord prolapse, as well as in infants born prematurely (<37 weeks gestational age; GA). Most often, HI can lead to brain injury in the form of cortical and subcortical damage, as well as later cognitive/behavioral deficits. A common domain of impairment is working memory, which can be associated with heightened incidence of developmental disorders. To further characterize these clinical issues, the current investigation describes data from a rodent model of HI induced on postnatal (P)7, an age comparable to a term (GA 36–38) human. Specifically, we sought to assess working memory using an eight-arm radial water maze paradigm. Study 1 used a modified version of the paradigm, which requires a step-wise change in spatial memory via progressively more difficult tasks, as well as multiple daily trials for extra learning opportunity. Results were surprising and revealed a small HI deficit only for the final and most difficult condition, when a delay before test trial was introduced. Study 2 again used the modified radial arm maze, but presented the most difficult condition from the start, and only one daily test trial. Here, results were expected and revealed a robust and consistent HI deficit across all weeks. Combined results indicate that male HI rats can learn a difficult spatial working memory task if it is presented in a graded multi-trial format, but performance is poor and does not appear to remediate if the task is presented with high initial memory demand. Male HI rats in both studies displayed impulsive characteristics throughout testing evidenced as reduced choice latencies despite more errors. This aspect of behavioral results is consistent with impulsiveness as a core symptom of ADHD—a diagnosis common in children with HI insult. Overall findings suggest that task specific behavioral modifications are crucial to accommodating memory deficits in children suffering from cognitive impairments following neonatal HI. PMID:24961760
Iodice, Pierpaolo; Ferrante, Claudio; Brunetti, Luigi; Cabib, Simona; Protasi, Feliciano; Walton, Mark E; Pezzulo, Giovanni
2017-04-03
During decisions, animals balance goal achievement and effort management. Despite physical exercise and fatigue significantly affecting the levels of effort that an animal exerts to obtain a reward, their role in effort-based choice and the underlying neurochemistry are incompletely known. In particular, it is unclear whether fatigue influences decision (cost-benefit) strategies flexibly or only post-decision action execution and learning. To answer this question, we trained mice on a T-maze task in which they chose between a high-cost, high-reward arm (HR), which included a barrier, and a low-cost, low-reward arm (LR), with no barrier. The animals were parametrically fatigued immediately before the behavioural tasks by running on a treadmill. We report a sharp choice reversal, from the HR to LR arm, at 80% of their peak workload (PW), which was temporary and specific, as the mice returned to choose the HC when the animals were successively tested at 60% PW or in a two-barrier task. These rapid reversals are signatures of flexible choice. We also observed increased subcortical dopamine levels in fatigued mice: a marker of individual bias to use model-based control in humans. Our results indicate that fatigue levels can be incorporated in flexible cost-benefits computations that improve foraging efficiency.
Rajput, Muhammad Ali; Khan, Rafeeq Alam
2017-06-01
Recently use of herbal therapies and diet rich in flavonoids and vitamin C have increased significantly to treat minor to modest anxiety disorders and various forms of depression. But further research and studies are necessary to evaluate the pharmacological & toxicological effects of plants. Hence present study was designed to conduct phytochemical screening, acute toxicity study, anxiolytic and antidepressant activities of the ethanol extract of Nelumbo nucifera fruit in order to ascertain its therapeutic potential. The qualitative phytochemical screening of the seed pods of the N. nucifera fruit extract exposed the existence of flavonoids, saponins, alkaloids, tannins and terpenoids in it. The acute toxicity of the N. nucifera fruit extract in mice revealed its LD 50 value to be greater than 5000 mg/kg. Antianxiety activity was determined by elevated plus maze and light and dark test using 35 male Wister rats weighing 200-220 g which were equally divided in to 5 groups. The animals used in EPM underwent testing in light and dark box just 30 min after EPM. The antidepressant effect was assessed by forced swimming test using 35 male albino mice weighing 20-25 g equally divided in to 5 groups. In elevated plus maze, N. nucifera fruit extract exhibited substantial rise in number of open arm entries and time spent in open arms at dose 50 mg/kg while highly noteworthy increase in both parameters were observed at extract doses 100 and 200 mg/kg as compared to control. In light dark test highly significant increase in the percentage of time spent in light compartment was observed as compared to control. In forced swimming test highly noteworthy decline in duration of immobility was recorded at doses 100 and 200 mg/kg on 15th day i-e after administration of 14 doses, as compared to control; whereas same doses demonstrated significant decrease as compared to control in duration of immobility after single dose administration i-e on 2nd day of experiment. Thus N. nucifera fruit have exhibited strong anxiolytic and antidepressant effects and proved to have a great potential for therapeutic applications such as anxiety and depression and thus encourage more preclinical and clinical trials in this field.
Zarrindast, Mohammad Reza; Nasehi, Mohammad; Piri, Morteza; Heidari, Negar
2011-11-14
Some investigations have shown that the glutamate receptors play a critical role in cognitive processes such as learning and anxiety. The possible involvement of the cholinergic system of the dorsal hippocampus in the anxiolytic-like response induced by MK-801, NMDA receptor antagonist, was investigated in the present study. Male Wistar rats were used in the elevated plus maze apparatus to test the parameters: open arm time (%OAT), open arm entries (%OAE), close arm time (%CAT), close arm entries (%CAE) and other exploratory behaviors (locomotor activity, grooming, rearing and defecation) of anxiety-like response. The data indicated that intra-CA1 administration of MK-801 increased %OAT (2μg/rat) and %OAE (1 and 2μg/rat) while decreased %CAT and %CAE and did not alter other exploratory behaviors, indicating an anxiolytic-like effect. Moreover, intra-hippocampal injections of mecamylamine, a cholinergic receptor antagonists (2μg/rat) and scopolamine (4μg/rat), by themselves, 5min before testing, increased %OAT and %OAE but decreased %CAT and %CAE and did not alter locomotor activity and other exploratory behaviors, suggesting an anxiolytic-like effect. On the other hand, intra-CA1 co-administration of an ineffective dose of scopolamine (3μg/rat), but not mecamylamine (1μg/rat), with an ineffective dose of MK-801 (0.5μg/rat) increased %OAT and %OAE and decreased %CAT and %CAE. The data may indicate the possible involvement of the cholinergic system of the CA1 in the anxiolytic-like response induced by MK-801. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
What Does the CBM-Maze Test Measure?
ERIC Educational Resources Information Center
Muijselaar, Marloes M. L.; Kendeou, Panayiota; de Jong, Peter F.; van den Broek, Paul W.
2017-01-01
In this study, we identified the code-related (decoding, fluency) and language comprehension (vocabulary, listening comprehension) demands of the CBM-Maze test, a formative assessment, and compared them to those of the Gates-MacGinitie test, a standardized summative assessment. The demands of these reading comprehension tests and their…
Short- and long-term antidepressant effects of ketamine in a rat chronic unpredictable stress model.
Jiang, Yinghong; Wang, Yiqiang; Sun, Xiaoran; Lian, Bo; Sun, Hongwei; Wang, Gang; Du, Zhongde; Li, Qi; Sun, Lin
2017-08-01
This research was aimed to evaluate the behaviors of short- or long-term antidepressant effects of ketamine in rats exposed to chronic unpredictable stress (CUS). Ketamine, a glutamate noncompetitive NMDA receptor antagonist, regulates excitatory amino acid functions, such as anxiety disorders and major depression, and plays an important role in synaptic plasticity and learning and memory. After 42 days of CUS model, male rats received either a single injection of ketamine (10 mg/kg; day 43) or 15 daily injections (days 43-75). The influence of ketamine on behavioral reactivity was assessed 24 hr (short-term) or 7 weeks after ketamine treatment (long-term). Behavioral tests used to assess the effects of these treatments included the sucrose preference (SP), open field (OF), elevated plus maze (EPM), forced swimming (FS), and water maze (WM) to detect anxiety-like behavior (OF and EPM), forced swimming (FS), and water maze (WM). Results: Short-term ketamine administration resulted in increases of body weight gain, higher sensitivity to sucrose, augmented locomotor activity in the OF, more entries into the open arms of the EPM, along increased activity in the FS test; all responses indicative of reductions in depression/despair in anxiety-eliciting situations. No significant differences in these behaviors were obtained under conditions of long-term ketamine administration ( p > .05). The CUS + Ketamine group showed significantly increased activity as compared with the CUS + Vehicle group for analysis of the long-term effects of ketamine (* p < .05). Nor were significant differences obtained in learning and memory performance in rats receiving ketamine ( p > .05). Taken together these findings demonstrate that a short-term administration of ketamine induced rapid antidepressant-like effects in adult male rats exposed to CUS conditions, effects that were not observed in response to the long-term treatment regime.
Sex differences in virtual navigation influenced by scale and navigation experience.
Padilla, Lace M; Creem-Regehr, Sarah H; Stefanucci, Jeanine K; Cashdan, Elizabeth A
2017-04-01
The Morris water maze is a spatial abilities test adapted from the animal spatial cognition literature and has been studied in the context of sex differences in humans. This is because its standard design, which manipulates proximal (close) and distal (far) cues, applies to human navigation. However, virtual Morris water mazes test navigation skills on a scale that is vastly smaller than natural human navigation. Many researchers have argued that navigating in large and small scales is fundamentally different, and small-scale navigation might not simulate natural human navigation. Other work has suggested that navigation experience could influence spatial skills. To address the question of how individual differences influence navigational abilities in differently scaled environments, we employed both a large- (146.4 m in diameter) and a traditional- (36.6 m in diameter) scaled virtual Morris water maze along with a novel measure of navigation experience (lifetime mobility). We found sex differences on the small maze in the distal cue condition only, but in both cue-conditions on the large maze. Also, individual differences in navigation experience modulated navigation performance on the virtual water maze, showing that higher mobility was related to better performance with proximal cues for only females on the small maze, but for both males and females on the large maze.
Cerebral morphology and functional sparing after prenatal frontal cortex lesions in rats.
Kolb, B; Cioe, J; Muirhead, D
1998-03-01
Rats were given suction lesions of the presumptive frontal cortex on embryonic day 18 (E18) and subsequently tested, as adults, on tests of spatial navigation (Morris water task, radial arm maze), motor tasks (Whishaw reaching task, beam walking), and locomotor activity. Frontal cortical lesions at E18 affected cerebral morphogenesis, producing unusual morphological structures including abnormal patches of neurons in the cortex and white matter as well as neuronal bridges between the hemispheres. A small sample of E18 operates also had hydrocephaly. The animals with E18 lesions without hydrocephalus were behaviorally indistinguishable from littermate controls. The results demonstrate that animals with focal lesions of the presumptive frontal cortex have gross abnormalities in cerebral morphology but the lesions leave the functions normally subserved by the frontal cortex in adult rats unaffected. The results are discussed in the context of a hypothesis regarding the optimal times for functional recovery from cortical injury.
Lee, Inah; Kim, Jangjin
2010-08-01
Hippocampal-dependent tasks often involve specific associations among stimuli (including egocentric information), and such tasks are therefore prone to interference from irrelevant task strategies before a correct strategy is found. Using an object-place paired-associate task, we investigated changes in neural firing patterns in the hippocampus in association with a shift in strategy during learning. We used an object-place paired-associate task in which a pair of objects was presented in two different arms of a radial maze. Each object was associated with reward only in one of the arms, thus requiring the rats to consider both object identity and its location in the maze. Hippocampal neurons recorded in CA1 displayed a dynamic transition in their firing patterns during the acquisition of the task across days, and this corresponded to a shift in strategy manifested in behavioral data. Specifically, before the rats learned the task, they chose an object that maintained a particular egocentric relationship with their body (response strategy) irrespective of the object identity. However, as the animal acquired the task, it chose an object according to both its identity and the associated location in the maze (object-in-place strategy). We report that CA1 neurons in the hippocampus changed their prospective firing correlates according to the dominant strategy (i.e., response versus object-in-place strategy) employed at a given stage of learning. The results suggest that neural firing pattern in the hippocampus is heavily influenced by the task demand hypothesized by the animal and the firing pattern changes flexibly as the perceived task demand changes.
Prosocial Choice in Rats Depends on Food-Seeking Behavior Displayed by Recipients.
Márquez, Cristina; Rennie, Scott M; Costa, Diana F; Moita, Marta A
2015-06-29
Animals often are prosocial, displaying behaviors that result in a benefit to one another [1-15] even in the absence of self-benefit [16-21] (but see [22-25]). Several factors have been proposed to modulate these behaviors, namely familiarity [6, 13, 18, 20] or display of seeking behavior [16, 21]. Rats have been recently shown to be prosocial under distress [17, 18] (but see [26-29]); however, what drives prosociality in these animals remains unclear. To address this issue, we developed a two-choice task in which prosocial behavior did not yield a benefit or a cost to the focal rat. We used a double T-maze in which only the focal rat controlled access to the food-baited arms of its own and the recipient rat's maze. In this task, the focal rat could choose between one side of the maze, which yielded food only to itself (selfish choice), and the opposite side, which yielded food to itself and the recipient rat (prosocial choice). Rats showed a high proportion of prosocial choices. By manipulating reward delivery to the recipient and its ability to display a preference for the baited arm, we found that the display of food-seeking behavior leading to reward was necessary to drive prosocial choices. In addition, we found that there was more social investigation between rats in selfish trials than in prosocial trials, which may have influenced the focals' choices. This study shows that rats provide access to food to others in the absence of added direct self-benefit, bringing new insights into the factors that drive prosociality. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kim, Jin Young; Kim, Doyun; Park, Kyungpyo; Lee, Jong-Ho; Jahng, Jeong Won
2017-04-11
This study was conducted to examine the sexual dimorphic effects of highly palatable food (HPF) access during adolescence on the neurochemistry and depression-/anxiety-like behaviors of rats. Male and female Sprague-Dawley pups had free access to chocolate cookie rich in fat (HPF) from postnatal day 28 in addition to ad libitum chow, and the control groups received only chow. The food conditions were continued throughout the entire experimental period, and the neurochemical and behavioral measurements were performed during young adulthood. Rats were subjected to the ambulatory activity, elevated plus maze, and forced swim tests. Corticosterone levels during 2 h of restraint stress were analyzed with radioimmunoassay, and ΔFosB and brain-derived neurotrophic factor (BDNF) expression in the nucleus accumbens (NAc) with Western blot analysis. Cookie access did not affect body weight gain and total caloric intake in both sexes; however, it increased retroperitoneal fat depot only in males. The time spent in open arms during elevated plus maze test was decreased and immobility during forced swim test was increased in cookie-fed males, but not in cookie-fed females. Main effect of food condition on the stress-induced corticosterone increase was observed in males, but not in females, and cookie access increased BDNF expression in the NAc only in males. Increased BDNF expression in the NAc and fat depot, in addition to the stress axis dysfunction, may play roles in the pathophysiology of depression- and/or anxiety-like behaviors induced by cookie access.
Lapmanee, Sarawut; Charoenphandhu, Jantarima; Charoenphandhu, Narattaphol
2013-08-01
Rodents exposed to mild but repetitive stress may develop anxiety- and depression-like behaviors. Whether this stress response could be alleviated by pharmacological treatments or exercise interventions, such as wheel running, was unknown. Herein, we determined anxiety- and depression-like behaviors in restraint stressed rats (2h/day, 5 days/week for 4 weeks) subjected to acute diazepam treatment (30min prior to behavioral test), chronic treatment with fluoxetine, reboxetine or venlafaxine (10mg/kg/day for 4 weeks), and/or 4-week voluntary wheel running. In elevated plus-maze (EPM) and forced swimming tests (FST), stressed rats spent less time in the open arms and had less swimming duration than the control rats, respectively, indicating the presence of anxiety- and depression-like behaviors. Stressed rats also developed learned fear as evaluated by elevated T-maze test (ETM). Although wheel running could reduce anxiety-like behaviors in both EPM and ETM, only diazepam was effective in the EPM, while fluoxetine, reboxetine, and venlafaxine were effective in the ETM. Fluoxetine, reboxetine, and wheel running, but not diazepam and venlafaxine, also reduced depression-like behavior in FST. Combined pharmacological treatment and exercise did not further reduce anxiety-like behavior in stressed rats. However, stressed rats treated with wheel running plus reboxetine or venlafaxine showed an increase in climbing duration in FST. In conclusion, regular exercise (voluntary wheel running) and pharmacological treatments, especially fluoxetine and reboxetine, could alleviate anxiety- and depression-like behaviors in stressed male rats. Copyright © 2013 Elsevier B.V. All rights reserved.
Temple, Meredith D; Kosik, Kenneth S; Steward, Oswald
2002-09-01
This study evaluated the cognitive mapping abilities of rats that spent part of their early development in a microgravity environment. Litters of male and female Sprague-Dawley rat pups were launched into space aboard the National Aeronautics and Space Administration space shuttle Columbia on postnatal day 8 or 14 and remained in space for 16 days. These animals were designated as FLT groups. Two age-matched control groups remained on Earth: those in standard vivarium housing (VIV) and those in housing identical to that aboard the shuttle (AGC). On return to Earth, animals were tested in three different tasks that measure spatial learning ability, the Morris water maze (MWM), and a modified version of the radial arm maze (RAM). Animals were also tested in an open field apparatus to measure general activity and exploratory activity. Performance and search strategies were evaluated in each of these tasks using an automated tracking system. Despite the dramatic differences in early experience, there were remarkably few differences between the FLT groups and their Earth-bound controls in these tasks. FLT animals learned the MWM and RAM as quickly as did controls. Evaluation of search patterns suggested subtle differences in patterns of exploration and in the strategies used to solve the tasks during the first few days of testing, but these differences normalized rapidly. Together, these data suggest that development in an environment without gravity has minimal long-term impact on spatial learning and memory abilities. Any differences due to development in microgravity are quickly reversed after return to earth normal gravity.
NASA Technical Reports Server (NTRS)
Temple, Meredith D.; Kosik, Kenneth S.; Steward, Oswald
2002-01-01
This study evaluated the cognitive mapping abilities of rats that spent part of their early development in a microgravity environment. Litters of male and female Sprague-Dawley rat pups were launched into space aboard the National Aeronautics and Space Administration space shuttle Columbia on postnatal day 8 or 14 and remained in space for 16 days. These animals were designated as FLT groups. Two age-matched control groups remained on Earth: those in standard vivarium housing (VIV) and those in housing identical to that aboard the shuttle (AGC). On return to Earth, animals were tested in three different tasks that measure spatial learning ability, the Morris water maze (MWM), and a modified version of the radial arm maze (RAM). Animals were also tested in an open field apparatus to measure general activity and exploratory activity. Performance and search strategies were evaluated in each of these tasks using an automated tracking system. Despite the dramatic differences in early experience, there were remarkably few differences between the FLT groups and their Earth-bound controls in these tasks. FLT animals learned the MWM and RAM as quickly as did controls. Evaluation of search patterns suggested subtle differences in patterns of exploration and in the strategies used to solve the tasks during the first few days of testing, but these differences normalized rapidly. Together, these data suggest that development in an environment without gravity has minimal long-term impact on spatial learning and memory abilities. Any differences due to development in microgravity are quickly reversed after return to earth normal gravity.
Barnes Maze Procedure for Spatial Learning and Memory in Mice.
Pitts, Matthew W
2018-03-05
The Barnes maze is a dry-land based rodent behavioral paradigm for assessing spatial learning and memory that was originally developed by its namesake, Carol Barnes. It represents a well-established alternative to the more popular Morris Water maze and offers the advantage of being free from the potentially confounding influence of swimming behavior. Herein, the Barnes maze experimental setup and corresponding procedures for testing and analysis in mice are described in detail.
Cohen, Lisa J.; Nesci, Cristina; Steinfeld, Matthew; Haeri, Sophia; Galynker, Igor
2011-01-01
Disorders of driven sexual behavior have been conceptualized as sexual addictions. In the following study, we compared 51 subjects with pedophilia, 53 subjects with opiate addiction, and 84 healthy control subjects on neuropsychological tests that tap executive functions. The test battery included the Wisconsin Card Sorting Test (WCST), Stroop Color-Word Test, the Matching Familiar Figures Test (MFFT), Porteus Mazes, Controlled Word Association (COWA), and Trailmaking Test. The groups differed on tests of cognitive flexibility and set switching (WCST), sustained attention (Stroop), and impulsivity (MFFT and Porteus Mazes). There were no differences on verbal fluency (COWA). The subjects with pedophilia differed significantly from those with opiate addiction on several tests, with longer latency to response on MFFT and fewer completed mazes but also fewer errors on Porteus Mazes. Thus, while both subjects with pedophilia and those with opiate addiction show executive dysfunction, the nature of that dysfunction may differ between the two groups; specifically, opiate addicted subjects may be more prone to cognitive impulsivity. PMID:21107145
Cohen, Lisa J; Nesci, Cristina; Steinfeld, Matthew; Haeri, Sophia; Galynker, Igor
2010-11-01
Disorders of driven sexual behavior have been conceptualized as sexual addictions. In the following study, we compared 51 subjects with pedophilia, 53 subjects with opiate addiction, and 84 healthy control subjects on neuropsychological tests that tap executive functions. The test battery included the Wisconsin Card Sorting Test (WCST), Stroop Color-Word Test, the Matching Familiar Figures Test (MFFT), Porteus Mazes, Controlled Word Association (COWA), and Trailmaking Test. The groups differed on tests of cognitive flexibility and set switching (WCST), sustained attention (Stroop), and impulsivity (MFFT and Porteus Mazes). There were no differences on verbal fluency (COWA). The subjects with pedophilia differed significantly from those with opiate addiction on several tests, with longer latency to response on MFFT and fewer completed mazes but also fewer errors on Porteus Mazes. Thus, while both subjects with pedophilia and those with opiate addiction show executive dysfunction, the nature of that dysfunction may differ between the two groups; specifically, opiate addicted subjects may be more prone to cognitive impulsivity.
Kalinichev, Mikhail; Easterling, Keith W; Plotsky, Paul M; Holtzman, Stephen G
2002-08-01
Early neonatal environmental factors appear to have powerful and long-lasting influences on an organism's physiology and behavior. Long-Evans male rats separated from their dam for 3 h daily over the first 2 weeks of life (maternally separated, MS rats) when tested as adults exhibit exaggerated behavioral and neuroendocrine responses to stress compared to 15-min separated (handled, H) animals. The purpose of this study was to compare male and female adult rats that were MS, H or were undisturbed (nonhandled, NH) as neonates in anxiety-like behaviors, in the elevated plus-maze, and in response to startle-inducing auditory stimuli. We confirmed that MS males oversecrete corticosterone (CORT; 2.5-5 times) in response to mild handling stress. MS males and females were less likely to explore open arms of the plus-maze. MS males exhibited 35% higher startle amplitudes compared to controls. Furthermore, MS males were more likely to emit ultrasonic vocalizations in response to startle than were H controls. However, MS and control females did not differ in auditory startle response or in startle-induced ultrasonic vocalizations. Therefore, experiencing maternal separation results in a long-lasting increase in anxiety-like behaviors that occurs in a sex-dependent manner.
Cannabis-induced Moto-Cognitive Dysfunction in Wistar Rats: Ameliorative Efficacy of Nigella Sativa.
Imam, Aminu; Ajao, Moyosore Saliu; Amin, Abdulbasit; Abdulmajeed, Wahab Imam; Ibrahim, Abdulmumin; Olajide, Olayemi Joseph; Ajibola, Musa Iyiola; Alli-Oluwafuyi, Abdulmusawir; Balogun, Wasiu Gbolahan
2016-09-01
Cannabis is a widely used illicit drug with various threats of personality syndrome, and Nigella sativa has been widely implicated as having therapeutic efficacy in many neurological diseases. The present study investigates the ameliorative efficacy of Nigella sativa oil (NSO) on cannabis-induced moto-cognitive defects. Scopolamine (1 mg/kg i.p.) was given to induce dementia as a standard base line for cannabis (20 mg/kg)-induced cognitive impairment, followed by an oral administration of NSO (1 ml/kg) for 14 consecutive days. The Morris water maze (MWM) paradigm was used to assess the memory index, the elevated plus maze was used for anxiety-like behaviour, and the open field test was used for locomotor activities; thereafter, the rats were sacrificed and their brains were removed for histopathologic studies. Cannabis-like Scopolamine caused memory impairment, delayed latency in the MWM, and anxiety-like behaviour, coupled with alterations in the cerebello-hippocampal neurons. The post-treatment of rats with NSO mitigated cannabis-induced cognitive dysfunction as with scopolamine and impaired anxiety-like behaviour by increasing open arm entry, line crossing, and histological changes. The observed ameliorative effects of NSO make it a promising agent against moto-cognitive dysfunction and cerebelo-hippocampal alterations induced by cannabis.
Cannabis-induced Moto-Cognitive Dysfunction in Wistar Rats: Ameliorative Efficacy of Nigella Sativa
Imam, Aminu; Ajao, Moyosore Saliu; Amin, Abdulbasit; Abdulmajeed, Wahab Imam; Ibrahim, Abdulmumin; Olajide, Olayemi Joseph; Ajibola, Musa Iyiola; Alli-Oluwafuyi, Abdulmusawir; Balogun, Wasiu Gbolahan
2016-01-01
Background Cannabis is a widely used illicit drug with various threats of personality syndrome, and Nigella sativa has been widely implicated as having therapeutic efficacy in many neurological diseases. The present study investigates the ameliorative efficacy of Nigella sativa oil (NSO) on cannabis-induced moto-cognitive defects. Methods Scopolamine (1 mg/kg i.p.) was given to induce dementia as a standard base line for cannabis (20 mg/kg)-induced cognitive impairment, followed by an oral administration of NSO (1 ml/kg) for 14 consecutive days. The Morris water maze (MWM) paradigm was used to assess the memory index, the elevated plus maze was used for anxiety-like behaviour, and the open field test was used for locomotor activities; thereafter, the rats were sacrificed and their brains were removed for histopathologic studies. Results Cannabis-like Scopolamine caused memory impairment, delayed latency in the MWM, and anxiety-like behaviour, coupled with alterations in the cerebello-hippocampal neurons. The post-treatment of rats with NSO mitigated cannabis-induced cognitive dysfunction as with scopolamine and impaired anxiety-like behaviour by increasing open arm entry, line crossing, and histological changes. Conclusions The observed ameliorative effects of NSO make it a promising agent against moto-cognitive dysfunction and cerebelo-hippocampal alterations induced by cannabis. PMID:27904421
Long-term Behavioral Consequences of Brief, Repeated Neonatal Isolation
Knuth, Emily D.; Etgen, Anne M.
2007-01-01
Rats subjected to stressful stimuli during the stress hyporesponsive period exhibit varied neuroendocrine and behavioral changes as neonates, adolescents and adults. The current work examined the effects of neonatal isolation stress, using a within-litter design, on adult anxiety-related behavior and endocrine stress reactivity. Neonatal rats were isolated daily for 1 hr from postnatal day (P) 4-9, a manipulation previously shown to induce hypothalamic-pituitary-adrenal (HPA) responses on P9 (Knuth and Etgen, 2005). Control animals were either handled briefly or left undisturbed (with-dam). Adult rats were tested for anxiety-related behavior using the elevated plus maze and open field, and for endocrine responses following restraint stress. Neonatal isolation decreased center exploration of the open field following 1 hr restraint, including decreased time in the center compared to with-dam or handled controls, and decreased center entries and distance traveled in the center compared to with-dam controls. It also decreased time in and entries into the open arms of the elevated plus maze compared to handled controls, suggesting enhanced anxiety-related behavior. Neonatal isolation had no effect on basal or restraint-induced levels of ACTH or corticosterone. These findings indicate that neonatal isolation may enhance anxiety-related behaviors, especially in response to stress, without altering HPA function. Section: Cognitive and Behavioral Neuroscience PMID:17125746
Anxiolytic effects of the aqueous extract of Uncaria rhynchophylla.
Jung, Ji Wook; Ahn, Nam Yoon; Oh, Hye Rim; Lee, Bo Kyung; Lee, Kang Jin; Kim, Sun Yeou; Cheong, Jae Hoon; Ryu, Jong Hoon
2006-11-24
The purpose of this study was to characterize the putative anxiolytic-like effects of the aqueous extract of hooks with stem of Uncaria rhynchophylla using the elevated plus maze (EPM) and the hole-board apparatus in rats and mice. Control rats were treated with an equal volume of saline, and positive control rats with buspirone (1 mg/kg). Single or repeated treatments of the aqueous extract of Uncaria rhynchophylla (200 mg/kg/day, p.o.) for 7 days significantly increased the time-spent and entries into open arms of the EPM, and reduced the time-spent and entries into the closed arms versus saline controls (P<0.05). However, no changes in spontaneous locomotor activity or myorelaxant effects were observed versus saline controls. In the hole-board test, repeated treatment with the aqueous extract of Uncaria rhynchophylla (100 or 200 mg/kg/day, p.o.) significantly increased the number of head-dips (P<0.05). In addition, the anxiolytic-like effects of Uncaria rhynchophylla extract as assessed using the EPM test were abolished by WAY 100635 (0.3 mg/kg, i.p.), a 5-HT(1A) receptor antagonist. These results suggest that Uncaria rhynchophylla is an effective anxiolytic agent, and acts via the serotonergic nervous system.
Kohara, Yumi; Kuwahara, Rika; Kawaguchi, Shinichiro; Jojima, Takeshi; Yamashita, Kimihiro
2014-05-10
This study investigated the effects of perinatal genistein (GEN) exposure on the central nervous system of rat offspring. Pregnant dams orally received GEN (1 or 10 mg/kg/day) or vehicle (1 ml/kg/day) from gestation day 10 to postnatal day 14. In order to assess the effects of GEN on rat offspring, we used a battery of behavioral tests, including the open-field, elevated plus-maze, MAZE and step-through passive avoidance tests. MAZE test is an appetite-motivation test, and we used this mainly for assessing spatial learning and memory. In the MAZE test, GEN groups exhibited shorter latency from start to goal than the vehicle-treated group in both sexes. On the other hand, performances in the step-through passive avoidance test were non-monotonically inhibited by GEN in both sexes, and a significant difference was observed in low dose of the GEN-treated group compared to the vehicle-treated group in female rats. Furthermore, we found that perinatal exposure to GEN did not significantly alter locomotor activity or emotionality as assessed by the open-field and elevated-plus maze tests. These results suggest that perinatal exposure to GEN improved spatial learning and memory of rat offspring, but impaired their passive avoidance learning and memory. Copyright © 2014 Elsevier Inc. All rights reserved.
Roncon, Camila Marroni; Biesdorf de Almeida, Camila; Klein, Traudi; de Mello, João Carlos Palazzo; Audi, Elisabeth Aparecida
2011-02-01
The objective of this study was to investigate the effects of chronic administration of a semi-purified extract (Purified Extract A--PEA; 4, 8, or 16 mg/kg) of PAULLINIA CUPANA (guaraná) seeds on rats submitted to the elevated T-maze (ETM) model of generalized anxiety and panic disorders. The selective serotonin (5-HT) reuptake inhibitor (SSRI) paroxetine (PAR; 3 mg/kg), was used as a positive control. To evaluate possible serotonergic and dopaminergic neurotransmission involvement in the action of PEA during the ETM test, ineffective doses of metergoline (MET; 5-HT (2A/2C) antagonist receptor) or sulpiride (SUL; dopaminergic receptor antagonist) were acutely administered together with the PEA. The locomotion of the rats was assessed in a circular arena following each drug treatment. Both PEA (8 and 16 mg/kg) and PAR (3 mg/kg) increased one-way escape latencies from the open arm of the ETM, indicating a panicolytic effect compared to the control group. MET, in higher doses (1, 2 or 3 mg/kg), produced a panicolytic effect in the ETM test, whereas SUL did not (10, 20 or 40 mg/kg). The panicolytic effect produced by PEA (8 mg/kg) was blocked by both MET (2 mg/kg) and SUL (20 mg/kg), whereas the panicolytic effect produced by PAR (3 mg/kg) was blocked only by MET (2 mg/kg). These results show that chronic treatment with PEA produces a panicolytic effect during the ETM test, and that the dopaminergic and the serotonergic neurotransmission systems are involved in this effect. © Georg Thieme Verlag KG Stuttgart · New York.
Hritcu, Lucian; Noumedem, Jaurès A; Cioanca, Oana; Hancianu, Monica; Postu, Paula; Mihasan, Marius
2015-03-29
Piper nigrum L. (Piperaceae) is employed in traditional medicine of many countries as analgesic, antiinflammatory, anticonvulsant, antioxidant, antidepressant and cognitive-enhancing agent. This study was undertaken in order to evaluate the possible anxiolytic, antidepressant and antioxidant properties of the methanolic extract of Piper nigrum fruits in beta-amyloid (1-42) rat model of Alzheimer's disease. The anxiolytic- and antidepressant-like effects of the methanolic extract were studied by means of in vivo (elevated plus-maze and forced swimming tests) approaches. Also, the antioxidant activity in the amygdala was assessed using superoxide dismutase, glutathione peroxidase and catalase specific activities, the total content of the reduced glutathione, protein carbonyl and malondialdehyde levels. Statistical analyses were performed using one-way analysis of variance (ANOVA). Significant differences were determined by Tukey's post hoc test. F values for which p < 0.05 were regarded as statistically significant. Pearson's correlation coefficient and regression analysis were used in order to evaluate the connection between behavioral measures, the antioxidant defence and lipid peroxidation. The beta-amyloid (1-42)-treated rats exhibited the following: decrease of the exploratory activity, the percentage of the time spent and the number of entries in the open arm within elevated plus-maze test and decrease of swimming time and increase of immobility time within forced swimming test. Administration of the methanolic extract significantly exhibited anxiolytic- and antidepressant-like effects and also antioxidant potential. Taken together, our results suggest that the methanolic extract ameliorates beta-amyloid (1-42)-induced anxiety and depression by attenuation of the oxidative stress in the rat amygdala.
da Cruz, Kellen Rosa; Turones, Larissa Córdova; Camargo-Silva, Gabriel; Gomes, Karina Pereira; Mendonça, Michelle Mendanha; Galdino, Pablinny; Rodrigues-Silva, Christielly; Santos, Robson Augusto Souza; Costa, Elson Alves; Ghedini, Paulo Cesar; Ianzer, Danielle; Xavier, Carlos Henrique
2017-12-01
LVV-hemorphin-7 (LVV-h7) is bioactive peptide resulting from degradation of hemoglobin β-globin chain. LVV-h7 is a specific agonist of angiotensin IV receptor. This receptor belongs to the class of insulin-regulated aminopeptidases (IRAP), which displays oxytocinase activity. Herein, our aims were to assess whether: i) LVV-h7 modifies centrally organized behavior and cardiovascular responses to stress and ii) mechanisms underlying LVV-h7 effects involve activation of oxytocin (OT) receptors, probably as result of reduction of IRAP proteolytic activity upon OT. Adult male Wistar rats (270-370g) received (i.p.) injections of LVV-h7 (153nmol/kg), or vehicle (0.1ml). Different protocols were used: i) open field (OP) test for locomotor/exploratory activities; ii) Elevated Plus Maze (EPM) for anxiety-like behavior; iii) forced swimming test (FST) test for depression-like behavior and iv) air jet for cardiovascular reactivity to acute stress exposure. Diazepam (2mg/kg) and imipramine (15mg/kg) were used as positive control for EPM and FST, respectively. The antagonist of OT receptors (OTr), atosiban (1 and 0,1mg/kg), was used to determine the involvement of oxytocinergic paths. We found that LVV-h7: i) increased the number of entries and the time spent in open arms of the maze, an indicative of anxiolysis; ii) provoked antidepressant effect in the FS test; and iii) increased the exploration and locomotion; iv) did not change the cardiovascular reactivity and neuroendocrine responses to acute stress. Also, increases in locomotion and the antidepressant effects evoked by LVV-h7 were reverted by OTr antagonist. We conclude that LVV-h7 modulates behavior, displays antidepressant and anxiolytic effects that are mediated in part by oxytocin receptors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yadav, Roopali; Hillman, Brandon G.; Gupta, Subhash C.; Suryavanshi, Pratyush; Bhatt, Jay M.; Pavuluri, Ratnamala; Stairs, Dustin J.; Dravid, Shashank M.
2013-01-01
Glutamate delta-1 (GluD1) receptors are expressed throughout the forebrain during development with high levels in the hippocampus during adulthood. We have recently shown that deletion of GluD1 receptor results in aberrant emotional and social behaviors such as hyperaggression and depression-like behaviors and social interaction deficits. Additionally, abnormal expression of synaptic proteins was observed in amygdala and prefrontal cortex of GluD1 knockout mice (GluD1 KO). However the role of GluD1 in learning and memory paradigms remains unknown. In the present study we evaluated GluD1 KO in learning and memory tests. In the eight-arm radial maze GluD1 KO mice committed fewer working memory errors compared to wildtype mice but had normal reference memory. Enhanced working memory in GluD1 KO was also evident by greater percent alternation in the spontaneous Y-maze test. No difference was observed in object recognition memory in the GluD1 KO mice. In the Morris water maze test GluD1 KO mice showed no difference in acquisition but had longer latency to find the platform in the reversal learning task. GluD1 KO mice showed a deficit in contextual and cue fear conditioning but had normal latent inhibition. The deficit in contextual fear conditioning was reversed by D-Cycloserine (DCS) treatment. GluD1 KO mice were also found to be more sensitive to foot-shock compared to wildtype. We further studied molecular changes in the hippocampus, where we found lower levels of GluA1, GluA2 and GluK2 subunits while a contrasting higher level of GluN2B in GluD1 KO. Additionally, we found higher postsynaptic density protein 95 (PSD95) and lower glutamate decarboxylase 67 (GAD67) expression in GluD1 KO. We propose that GluD1 is crucial for normal functioning of synapses and absence of GluD1 leads to specific abnormalities in learning and memory. These findings provide novel insights into the role of GluD1 receptors in the central nervous system. PMID:23560106
El Hage, Cynthia; Rappeneau, Virginie; Etievant, Adeline; Morel, Anne-Laure; Scarna, Hélène; Zimmer, Luc; Bérod, Anne
2012-01-01
Discontinuation of drug intake in cocaine abusers commonly produces a variety of adverse withdrawal symptoms among which anxiety and depression-related behavior are prevailing during the initial period of abstinence. The aim of this study was to provide further insight into the neurobiological dysregulations that might contribute to these pathological states. Rats were treated with cocaine or saline for 14 days (20 mg/kg; i.p) and anxiety-related behavior was assessed in different paradigms (elevated plus-maze (EPM), confinement to an open arm of the EPM and shock-probe burying tests) for up to 4 weeks after withdrawal. Depression-like behavior was assessed by the forced swim test and sucrose preference test. Altogether our results demonstrated that cocaine withdrawal induced persistent heightened levels of anxiety that last for at least 28 days but did not affect depression-like behavior. We then used Fos immunohistochemistry to map neuronal activation patterns in withdrawn rats confined to one open arm of an EPM, and a double labeling procedure using Fos immunohistochemistry and in situ hybridization of glutamic acid decarboxylase or vesicular glutamate transporter mRNAs to identify the phenotype of the activated neurons. Our data showed that the exacerbated anxiety observed in cocaine withdrawn rats exposed to an elevated open arm was accompanied by an altered reactivity of the dorsal part of the medial prefrontal cortex (anterior cingulate and dorsal prelimbic cortices), the paraventricular thalamic nucleus and the lateral and anterior areas of the hypothalamus. In the medial prefrontal cortex, we evidenced a negative correlation between Fos expression in its dorsal part and open arm-induced freezing in NaCl-treated rats but not in cocaine withdrawn rats. We also found that more than 65% of activated neurons were glutamatergic projection neurons. The present study provides new insights into the neuroanatomical regions and neuronal cell types that may underlie pathological anxiety during cocaine withdrawal. PMID:22916276
Barkley-Levenson, Amanda M; Crabbe, John C
2015-02-01
Alcohol use disorders and anxiety disorders are highly comorbid in humans. In rodent lines selected for alcohol drinking, differences in anxiety-like behavior are also seen. The High Drinking in the Dark (HDID) lines of mice are selectively bred for drinking to intoxication during limited access to alcohol, and these mice represent a genetic model of risk for binge-like drinking. The present studies investigated whether these selected lines differ from control (HS) mice in basal anxiety behavior or in anxiolytic response to alcohol. We also assessed the genetic correlation between alcohol drinking in the dark (DID) and basal anxiety-like behavior using existing inbred strain data. Mice of both sexes and HDID replicates (HDID-1 and HDID-2) were tested on an elevated zero maze immediately following a DID test. In general, HDID mice showed more time spent in the open arms after drinking alcohol than HS mice, and open-arm time was significantly correlated with blood alcohol concentration. HDID-1 male mice also showed less anxiety-like behavior at baseline (water-drinking controls). In a separate experiment, HDID-1 and HS mice were tested for anxiolytic dose-response to acute alcohol injections. Both genotypes showed increasing time spent in the open arms with increasing alcohol doses, and HDID-1 and female mice had greater open-arm time across all doses. HDID-1 control males showed lower anxiety-like behavior than the HS control males. Inbred strain data analysis also showed no significant genetic relationship between alcohol DID and anxiety. These findings suggest that HDID selection has not produced systematic changes in anxiety-like behavior or sensitivity to alcohol-induced anxiolysis, though there is a tendency in the male mice of the first replicate toward reduced basal anxiety-like behavior. Therefore, anxiety state and sensitivity to alcohol's anxiolytic effects do not appear to contribute significantly to the high drinking behavior of the HDID mice. Copyright © 2015 Elsevier Inc. All rights reserved.
Strychnine and taurine modulation of amygdala-associated anxiety-like behavior is 'state' dependent.
McCool, Brian A; Chappell, Ann
2007-03-12
Strychnine-sensitive glycine receptors are expressed in many adult forebrain regions, yet the biological function of these receptors outside the spinal cord/brainstem is poorly understood. We have recently shown that rat lateral/basolateral amygdala neurons express strychnine-sensitive glycine-gated currents whose pharmacological and molecular characteristics are consistent with those established for classic ligand-gated chloride channels. The current studies were undertaken to establish the behavioral role, if any, of these strychnine-sensitive glycine receptors. Adult Long-Evans male rats were implanted with guide cannulae targeted at the lateral amygdala and were microinjected with standard artificial cerebrospinal fluid with or without various doses of strychnine or taurine. Anxiety-like behaviors were assessed with the elevated plus maze or the light/dark box. In the elevated plus maze, strychnine decreased closed-arm time and increased open-arm time, suggestive of an anxiolytic effect. Similarly, strychnine produced a modest anxiolytic effect in the light/dark box. Post hoc analysis of 'open-arm' time and 'light-side' time indicated that aCSF-treated animals were distributed into two apparent groups that displayed either high or low amounts of anxiety-like behavior in a given apparatus. Surprisingly, the pharmacological effects of both strychnine and taurine in these assays were dependent upon a given animal's behavioral phenotype. Together, these findings are significant because they suggest that the basal 'emotional state' of the animal could influence the behavioral outcome associated with drug application directly into the lateral/basolateral amygdala. Furthermore, our findings also suggest that compounds acting at amygdala strychnine-sensitive glycine receptors may actively modulate this basal anxiety-like state.
Akillioglu, Kubra; Binokay, Secil; Kocahan, Sayad
2012-07-15
N-methyl-D-aspartate (NMDA) receptors play an important role in brain maturation and developmental processes. In our study, we evaluated the effects of neonatal NMDA receptor blockade on exploratory locomotion and anxiety-like behaviors of adult BALB/c and C57BL/6 mice. In this study, NMDA receptor hypofunction was induced 7-10 days after birth using MK-801 in BALB/c and C57BL/6 mice (0.25mg/kg twice a day for 4 days via intraperitoneal injection). The open-field (OF) and elevated plus maze (EPM) tests were used to evaluate exploratory locomotion and anxiety-like behaviors. In the OF, BALB/c mice spent less time in the center of the field (p<0.05) and had less vertical locomotor activity (p<0.01) compared to C57BL/6 mice. In BALB/c mice, MK-801 caused a decrease in vertical and horizontal locomotor activity in the OF test, compared to the control group (p<0.05). In C57BL/6 mice, MK-801 treatment increased horizontal locomotor activity and decreased time spent in the center in the OF test (p<0.05). In the EPM, the number of open-arm entries, the percentage of open-arm time (p<0.01) and total arm entries (p<0.05) were lower in BALB/c mice compared to C57BL/6 mice. In BALB/c mice, MK-801 caused an increase in the percentage of open-arm time compared to the control group (p<0.05). In C57BL/6 mice, MK-801 caused a decrease in the percentage of open-arm time compared to the control group (p<0.05). MK-801 decreased exploratory and anxiety-like behaviors in BALB/c mice. In contrast, MK-801 increased exploratory and anxiety-like behaviors in C57BL/6 mice. In conclusion, hereditary factors may play an important role in neonatal NMDA receptor blockade-induced responses. Copyright © 2012 Elsevier B.V. All rights reserved.
A Distributed Model for Mobile Robot Environment-Learning and Navigation
1990-05-01
are unex- pectedly removed, the bats continue to navigate around, as if they continue to be present [ Gallistel 89]. This behavior indicates the...itself ( Gallistel 80]. 11.2.2 Bees The behavior of bees has been intriguing biologists, behaviorists, and ethol- ogists for centuries. Bee hives...corresponding to their previous length [ Gallistel 80]. In experiments with rotated radial mazes, rats enter already sampled arms without realizing the
2009-06-01
Chambliss; Colonel Michael Stickney; Colonel Eric Mathewson; Lieutenant Colonel Robert Kiebler; Lieutenant Colonel Kenneth Kilmurray; Lieutenant...16 Peter Layton , Group Captain, Royal Air Force, “Hedging Strategies, UCAVs, budgets, and improbable threats,” Armed Forces Journal...10 Colonel Eric Mathewson, US Air Force HAF/A2 DCS ISR, “Air Force ISR in a Changed World: ISR Transformation, the Importance
Reward-Based Spatial Learning in Teens With Bulimia Nervosa
Cyr, Marilyn; Wang, Zhishun; Tau, Gregory Z.; Zhao, Guihu; Friedl, Eve; Stefan, Mihaela; Terranova, Kate; Marsh, Rachel
2016-01-01
Objective To assess the functioning of mesolimbic and fronto-striatal areas involved in reward-based spatial learning in teenaged girls with bulimia nervosa (BN) that might be involved in the development and maintenance of maladaptive behaviors characteristic of the disorder. Method We compared functional magnetic resonance imaging blood oxygen level dependent response in 27 adolescent girls with BN to that of 27 healthy, age-matched control participants during a reward-based learning task that required learning to use extra-maze cues to navigate a virtual 8-arm radial maze to find hidden rewards. We compared groups in their patterns of brain activation associated with reward-based spatial learning versus a control condition in which rewards were unexpected because they were allotted pseudo-randomly to experimentally prevent learning. Results Both groups learned to navigate the maze to find hidden rewards, but group differences in brain activity associated with maze navigation and reward processing were detected in fronto-striatal regions and right anterior hippocampus. Unlike healthy adolescents, those with BN did not engage right inferior frontal gyrus during maze navigation, activated right anterior hippocampus during the receipt of unexpected rewards (control condition), and deactivated left superior frontal gyrus and right anterior hippocampus during expected reward receipt (learning condition). These patterns of hippocampal activation in the control condition were significantly associated with the frequency of binge-eating episodes. Conclusion Adolescents with BN displayed abnormal functioning of anterior hippocampus and fronto-striatal regions during reward-based spatial learning. These findings suggest that an imbalance in control and reward circuits may arise early in the course of BN. Clinical trial registration information An fMRI Study of Self-regulation in Adolescents With Bulimia Nervosa; https://clinicaltrials.gov/ct2/show/NCT00345943; NCT00345943. PMID:27806864
Octopus vulgaris uses visual information to determine the location of its arm.
Gutnick, Tamar; Byrne, Ruth A; Hochner, Binyamin; Kuba, Michael
2011-03-22
Octopuses are intelligent, soft-bodied animals with keen senses that perform reliably in a variety of visual and tactile learning tasks. However, researchers have found them disappointing in that they consistently fail in operant tasks that require them to combine central nervous system reward information with visual and peripheral knowledge of the location of their arms. Wells claimed that in order to filter and integrate an abundance of multisensory inputs that might inform the animal of the position of a single arm, octopuses would need an exceptional computing mechanism, and "There is no evidence that such a system exists in Octopus, or in any other soft bodied animal." Recent electrophysiological experiments, which found no clear somatotopic organization in the higher motor centers, support this claim. We developed a three-choice maze that required an octopus to use a single arm to reach a visually marked goal compartment. Using this operant task, we show for the first time that Octopus vulgaris is capable of guiding a single arm in a complex movement to a location. Thus, we claim that octopuses can combine peripheral arm location information with visual input to control goal-directed complex movements. Copyright © 2011 Elsevier Ltd. All rights reserved.
The evaluation of the neutron dose equivalent in the two-bend maze.
Tóth, Á Á; Petrović, B; Jovančević, N; Krmar, M; Rutonjski, L; Čudić, O
2017-04-01
The purpose of this study was to explore the effect of the second bend of the maze, on the neutron dose equivalent, in the 15MV linear accelerator vault, with two bend maze. These two bends of the maze were covered by 32 points where the neutron dose equivalent was measured. There is one available method for estimation of the neutron dose equivalent at the entrance door of the two bend maze which was tested using the results of the measurements. The results of this study show that the neutron equivalent dose at the door of the two bend maze was reduced almost three orders of magnitude. The measured TVD in the first bend (closer to the inner maze entrance) is about 5m. The measured TVD result is close to the TVD values usually used in the proposed models for estimation of neutron dose equivalent at the entrance door of the single bend maze. The results also determined that the TVD in the second bend (next to the maze entrance door) is significantly lower than the TVD values found in the first maze bend. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
de Fiebre, Nancyellen C; Sumien, Nathalie; Forster, Michael J; de Fiebre, Christopher M
2006-09-01
Two tests often used in aging research, the elevated path test and the Morris water maze test, were examined for their application to the study of brain aging in a large sample of C57BL/6JNia mice. Specifically, these studies assessed: (1) sensitivity to age and the degree of interrelatedness among different behavioral measures derived from these tests, (2) the effect of age on variation in the measurements, and (3) the reliability of individual differences in performance on the tests. Both tests detected age-related deficits in group performance that occurred independently of each other. However, analysis of data obtained on the Morris water maze test revealed three relatively independent components of cognitive performance. Performance in initial acquisition of spatial learning in the Morris maze was not highly correlated with performance during reversal learning (when mice were required to learn a new spatial location), whereas performance in both of those phases was independent of spatial performance assessed during a single probe trial administered at the end of acquisition training. Moreover, impaired performance during initial acquisition could be detected at an earlier age than impairments in reversal learning. There were modest but significant age-related increases in the variance of both elevated path test scores and in several measures of learning in the Morris maze test. Analysis of test scores of mice across repeated testing sessions confirmed reliability of the measurements obtained for cognitive and psychomotor function. Power calculations confirmed that there are sufficiently large age-related differences in elevated path test performance, relative to within age variability, to render this test useful for studies into the ability of an intervention to prevent or reverse age-related deficits in psychomotor performance. Power calculations indicated a need for larger sample sizes for detection of intervention effects on cognitive components of the Morris water maze test, at least when implemented at the ages tested in this study. Variability among old mice in both tests, including each of the various independent measures in the Morris maze, may be useful for elucidating the biological bases of different aspects of dysfunctional brain aging.
van Mier, Hanneke I; Petersen, Steven E
2006-01-01
Results from our earlier brain imaging studies regarding motor learning have shown different areas activated during naive and practiced performance. When right handed participants moved a pen either with the dominant or non-dominant hand continuously through a cut-out maze as quickly and accurately as possible, practice resulted in decreased brain activity in right premotor and parietal areas as well as left cerebellum, while increased activity was found in the supplementary motor area (SMA). These lateralized practiced-related changes in brain activation suggest effector-independent abstract coding of information. To test this hypothesis more extensively, intermanual transfer of learning was examined in 24 male and female participants (12 right- and 12 left-handed) using the same maze-learning task. It was hypothesized that if an abstract representation of the movement is learned and stored, intermanual transfer effects should be more pronounced when participants transferred to a same maze as opposed to a mirror image of the maze. Errors and velocity were measured during the following conditions: initial naive performance (Naive); after practice on the maze (Prac); during intermanual transfer to the same maze (Transfer Identical); and to the mirror maze (Transfer Mirror). Transfer direction was tested from the dominant to non-dominant hand and vice versa. No significant differences were found between right- and left-handed participants, males and females, and transfer directions. However, intermanual transfer of learning was significantly greater to the identical maze as opposed to the mirror maze. These results showed that learning was indeed taking place at an abstract effector independent level.
Development of locomotor activity of rat pups in figure-eight mazes.
Ruppert, P H; Dean, K F; Reiter, L W
1985-05-01
In a series of four experiments, social and experiential factors that influence the development of motor activity in rat pups were examined. Motor activity was monitored from postnatal Days 13 to 21 as photocell interruptions in figure-eight mazes and comparisons were made between pups maintained in a nest box containing a dam and siblings and allowed access to the maze for 23 hr/day, pups tested daily for 1 hr/day vs pups tested only on postnatal Days 15, 18, or 21, pups tested daily for either 5 min, 30 min, or 1 hr/day, and pups tested daily for 30 min/day either singly in a maze, paired with a littermate, or paired with an anesthetized pup of the same age. A monotonic increase in activity was seen for nest-box testing, minimal developmental change was seen for pups tested on only a single day or for pups tested with an anesthetized pup, whereas all other groups showed an inverted U-shaped profile of activity which was influenced by the duration of testing and/or the presence of a littermate. These data emphasize the relevance of environmental factors as determinants of preweaning behavior.
ERIC Educational Resources Information Center
Enkin, Elizabeth
2016-01-01
The maze task is a psycholinguistic experimental procedure that measures real-time incremental sentence processing. The task has recently been tested as a language learning tool with promising results. Therefore, the present study examines the merits of a contextualized version of this task: the story maze. The findings are consistent with…
ERIC Educational Resources Information Center
McCane-Bowling, Sara J.; Strait, Andrea D.; Guess, Pamela E.; Wiedo, Jennifer R.; Muncie, Eric
2014-01-01
This study examined the predictive utility of five formative reading measures: words correct per minute, number of comprehension questions correct, reading comprehension rate, number of maze correct responses, and maze accurate response rate (MARR). Broad Reading cluster scores obtained via the Woodcock-Johnson III (WJ III) Tests of Achievement…
Lalonde, Robert; Strazielle, Catherine
2017-07-26
When injected via the intracerebroventricular route, corticosterone-releasing hormone (CRH) reduced exploration in the elevated plus-maze, the center region of the open-field, and the large chamber in the defensive withdrawal test. The anxiogenic action of CRH in the elevated plus-maze also occurred when infused in the basolateral amygdala, ventral hippocampus, lateral septum, bed nucleus of the stria terminalis, nucleus accumbens, periaqueductal grey, and medial frontal cortex. The anxiogenic action of CRH in the defensive withdrawal test was reproduced when injected in the locus coeruleus, while the amygdala, hippocampus, lateral septum, nucleus accumbens, and lateral globus pallidus contribute to center zone exploration in the open-field. In addition to elevated plus-maze and open-field tests, the amygdala appears as a target region for CRH-mediated anxiety in the elevated T-maze. Thus, the amygdala is the principal brain region identified with these three tests, and further research must identify the neural circuits underlying this form of anxiety.
Samad, Noreen; Muneer, Aqsa; Ullah, Najeeb; Zaman, Aqal; Ayaz, M Mazhar; Ahmad, Ijaz
2017-05-01
The present study was aimed to investigate the anti-stress and memory enhancing effects of banana (Musa sapientum L.) fruit pulp and peel extract in male mice. Locally bred albino Wistar mice were divided into control and 2 test groups (n=10). Control rats received drinking water while test groups were treated with banana fruit pulp (600 mg/kg; oral administration) and extract of banana peel (400mg/kg; oral administration). Behavioral activities of animals were monitored 14 days post administration of banana pulp and peel extract. Depression-like symptoms were measured by forced swimming test (FST). Anxiety like behavior was monitored using light-dark activity (LDA) test and plus maze activity (PMA) test and memory functions of rats were assessed by morris water maze (MWM) test. Following 2 weeks animals were decapitated and brain was removed for estimation of antioxidant enzymes such as catalase (CAT), super oxide dismutase (SOD) and reduced glutathione (GSH). In the present study both banana peel and pulp increased the time spent in light box and open arm, suggesting anxiolytic effects. A significant decrease in immobility time was observed in FST in both banana pulp and peel treated animals suggesting antidepressant like effects. Moreover, learning and memory assessed by MWM showed decrease in time to reach platform in both short term and long term memory test suggested increased memory function in both banana pulp and peel treated animals as compared to control animals. The activities of all antioxidant enzymes were significantly (p<0.05) greater in banana pulp and peel treated animals than control. It is concluded that both banana pulp and peel have anti-anxiety, antidepressant effect as well as strengthen the memory possibly via its antioxidant mechanism. Therefore, it is recommended that supplementation of banana could be taken a vital role in stress (anxiety and depression) relief and increased in memory function possibly by phyto-antioxidants.
An intra-hippocampal injection of nandrolone induces learning and memory impairments in rat.
Karamian, A; Pakdel, F G; Ilkhanipoor, M; Farokhi, F; Ahmadi, A
2015-01-01
This study was investigated to evaluate the effect of intra-hippocampal injection of the nandrolone on spatial learning task in rats. The drug or vehicle was manually injected into the hippocampus with a 10-µl Hamilton syringe attached via polyethylene tubing to 27-gauge stainless-steel injection cannula. After 6 days of recovery, learning behaviors were evaluated using an 8-arm radial maze. The results showed that intra-hippocampal injection of nandrolone can impair trained spatial learning at a dose of 5 µl. We also observed a dense cytoplasm and nucleus in CA1 neurons as well as signs of necrosis. Nandrolone can impair the time required to reach the baited arm as well as the frequency of successful arm entries. At the 10 µl dose of nandrolone, neural hypertrophy and increased dentate gyrus volume were also observed. © Georg Thieme Verlag KG Stuttgart · New York.
The effects of response cost and species-typical behaviors on a daily time-place learning task.
Deibel, Scott H; Thorpe, Christina M
2013-03-01
Two theories that have been hypothesized to mediate acquisition in daily time-place learning (TPL) tasks were investigated in a free operant daily TPL task: the response cost hypothesis and the species-typical behavior hypothesis. One lever at the end of one of the choice arms of a T-maze provided food in the morning, and 6 h later, a lever in the other choice arm provided food. Four groups were used to assess the effect of two possible sources of response cost: physical effort of the task and costs associated with foraging ecology. One group was used to assess the effect of explicitly allowing for species-typical behaviors. If only first arm choice data were considered, there was little evidence of learning. However, both first press and percentage of presses on the correct lever prior to the first reinforcement revealed evidence of TPL in most rats tested. Unexpectedly, the high response cost groups for both of the proposed sources did not perform better than the low response cost groups. The groups that allowed animals to display species-typical behaviors performed the worst. Skip session probe trials confirmed that the majority of the rats that acquired the task were using a circadian timing strategy. The results from the present study suggest that learning in free operant daily TPL tasks might not be dependent on response cost.
Endogenous IL-1 in Cognitive Function and Anxiety: A Study in IL-1RI−/− Mice
Murray, Carol L.; Obiang, Pauline; Bannerman, David; Cunningham, Colm
2013-01-01
Interleukin-1 (IL-1) is a key pro-inflammatory cytokine, produced predominantly by peripheral immune cells but also by glia and some neuronal populations within the brain. Its signalling is mediated via the binding of IL-1α or IL-1β to the interleukin-1 type one receptor (IL-1RI). IL-1 plays a key role in inflammation-induced sickness behaviour, resulting in depressed locomotor activity, decreased exploration, reduced food and water intake and acute cognitive deficits. Conversely, IL-1 has also been suggested to facilitate hippocampal-dependent learning and memory: IL-1RI−/− mice have been reported to show deficits on tasks of visuospatial learning and memory. We sought to investigate whether there is a generalised hippocampal deficit in IL-1RI−/− animals. Therefore, in the current study we compared wildtype (WT) mice to IL-1RI−/− mice using a variety of hippocampal-dependent learning and memory tasks, as well as tests of anxiety and locomotor activity. We found no difference in performance of the IL-1RI−/− mice compared to WT mice in a T-maze working memory task. In addition, the IL-1RI−/− mice showed normal learning in various spatial reference memory tasks including the Y-maze and Morris mater maze, although there was a subtle deficit in choice behaviour in a spatial discrimination, beacon watermaze task. IL-1RI−/− mice also showed normal memory for visuospatial context in the contextual fear conditioning paradigm. In the open field, IL-1RI−/− mice showed a significant increase in distance travelled and rearing behaviour compared to the WT mice and in the elevated plus-maze spent more time in the open arms than did the WT animals. The data suggest that, contrary to prior studies, IL-1RI−/− mice are not robustly impaired on hippocampal-dependent memory and learning but do display open field hyperactivity and decreased anxiety compared to WT mice. The results argue for a careful evaluation of the roles of endogenous IL-1 in hippocampal and limbic system function. PMID:24205219
Delayed-matching-to-place Task in a Dry Maze to Measure Spatial Working Memory in Mice.
Feng, Xi; Krukowski, Karen; Jopson, Timothy; Rosi, Susanna
2017-07-05
The delayed-matching-to-place (DMP) dry maze test is a variant of DMP water maze (Steele and Morris, 1999; Faizi et al. , 2012) which measures spatial working/episodic-like learning and memory that depends on both hippocampal and cortical functions (Wang and Morris, 2010; Euston et al. , 2012). Using this test we can detect normal aging related spatial working memory decline, as well as trauma induced working memory deficits. Furthermore, we recently reported that fractionated whole brain irradiation does not affect working memory in mice (Feng et al. , 2016). Here we describe the experimental setup and procedures of this behavioral test.
Validating the Electric Maze Task as a Measure of Planning
ERIC Educational Resources Information Center
Sheppard, Kelly W.; Cheatham, Carol L.
2017-01-01
The Electric Maze Task (EMT) is a novel planning task designed to allow flexible testing of planning abilities across a broad age range and to incorporate manipulations to test underlying planning abilities, such as working-memory and inhibitory control skills. The EMT was tested in a group of 63 typically developing 7- to 12-year-olds.…
Serrano Sponton, Lucas Ezequiel; Soria, Gonzalo Jose; Dubroqua, Sylvain; Singer, Philipp; Feldon, Joram; Gargiulo, Pascual A; Yee, Benjamin K
2018-02-26
The water maze is one of the most widely employed spatial learning paradigms in the cognitive profiling of genetically modified mice. Oftentimes, tests of reference memory (RM) and working memory (WM) in the water maze are sequentially evaluated in the same animals. However, critical difference in the rules governing efficient escape from the water between WM and RM tests is expected to promote the adoption of incompatible mnemonic or navigational strategies. Hence, performance in a given test is likely poorer if it follows the other test instead of being conducted first. Yet, the presence of such negative transfer effects (or proactive interference) between WM and RM training in the water maze is often overlooked in the literature. To gauge whether this constitutes a serious concern, the present study determined empirically the magnitude, persistence, and directionality of the transfer effect in wild-type C57BL/6 mice. We contrasted the order of tests between two cohorts of mice. Performance between the two cohorts in the WM and RM tests were then separately compared. We showed that prior training of either test significantly reduced performance in the subsequent one. The statistical effect sizes in both directions were moderate to large. Although extended training could overcome the deficit, it could re-emerge later albeit in a more transient fashion. Whenever RM and WM water maze tests are conducted sequentially in the same animals - regardless of the test order, extra caution is necessary when interpreting the outcomes in the second test. Counterbalancing test orders between animals is recommended. Copyright © 2017 Elsevier B.V. All rights reserved.
Tobinaga, Seisho; Hashimoto, Michio; Utsunomiya, Iku; Taguchi, Kyoji; Nakamura, Morihiko; Tsunematsu, Tokugoro
2012-01-01
Cardanol (ginkgol) extracted from Ginkgo biloba leaves and cashew nutshell liquid enhances the growth of NSC-34 immortalized motor neuron-like cells and, when chronically administered to young rats, improves working memory-related learning ability as assessed by eight-arm radial maze tasks. These findings suggest that cardanol is one of the components in Ginkgo biloba leaves that improves cognitive learning ability.
CBM Maze-Scores as Indicators of Reading Level and Growth for Seventh-Grade Students
ERIC Educational Resources Information Center
Chung, Siuman; Espin, Christine A.; Stevenson, Claire E.
2018-01-01
The technical adequacy of CBM maze-scores as indicators of reading level and growth for seventh-grade secondary-school students was examined. Participants were 452 Dutch students who completed weekly maze measures over a period of 23 weeks. Criterion measures were school level, dyslexia status, scores and growth on a standardized reading test.…
Early Exposure to Dynamic Environments Alters Patterns of Motor Exploration throughout the Lifespan
Hong, S. Lee; Estrada-Sánchez, Ana María; Barton, Scott J.; Rebec, George V.
2016-01-01
We assessed early rearing conditions on aging-related changes in mouse behavior. Two isolated-housing groups, Running Wheel (IHRW) and Empty Cage (IHEC), were compared against two enriched environments, Static (EEST) and Dynamic (EEDY), both of which included toys and other mice. For EEDY, the location of toys and sources of food and water changed daily, but remained constant for EEST. All mice, randomly assigned to one of the four groups at ~4 weeks of age, remained in their respective environments for 25 weeks followed by single housing in empty cages. Beginning at ~40 weeks of age, all mice were tested at monthly intervals in a plus-shaped maze in which we measured the number of arm entries and the probability of entering a perpendicular arm. Despite making significantly more arm entries than any other group, IHEC mice also were less likely to turn into the left or right arm, a sign of motor inflexibility. Both EEDY and EEST mice showed enhanced turning relative to IHRW and IHEC groups, but only EEDY mice maintained their turning performance for up to ~100 weeks of age. EEDY and EEST mice also were unique in showing an increase in expression of the major glutamate transporter (GLT1) in striatum, but a decrease in motor cortex, suggesting a need for further assessment of environmental manipulations on long-term changes in forebrain glutamate transmission. Our behavioral results indicate that early exposure to continually changing environments, rather than socialization or exercise alone, results in life-long changes in patterns of motor exploration. PMID:26778790
Farook, Justin M; Morrell, Dennis J; Lewis, Ben; Littleton, John M; Barron, Susan
2007-01-01
Topiramate has emerged as one of the promising drugs for the treatment of alcoholism and alcohol addiction. Recent studies have shown that topiramate reduces harmful drinking and initiates abstinence in humans, but little is known as to why this drug is effective. In the present study, we examined the effects of topiramate in reducing convulsions during alcohol withdrawal using a procedure called the handling-induced convulsion (HIC) test in male Swiss-Webster mice. In addition, we examined the ability of topiramate to reduce alcohol conditioned and anxiety related behaviours during conditioned abstinence using the elevated plus maze (EPM) test. HICs were examined 10 h after the 3rd daily alcohol (2.5 g/kg; 20% w/v)+4 methylpyrazole (4MP) (9 mg/kg) intraperitoneal (i.p.) injection with topiramate (0, 10 or 20 mg/kg ip) administered 30 min before testing. In the EPM, alcohol (1.75 g/kg; 20%, i.p.) or saline was administered daily for 9 days and subjects were immediately placed on the maze. Anxiety related behaviours included the amount of time spent and number of entries in the open or closed arms and grooming bouts, and conditioned behaviours including the stretched-attend posture were examined 24 h after the last day of alcohol injection. Topiramate (10 and 20 mg/kg) significantly reduced HIC scores (P<0.05) compared to the alcohol/saline group. In the EPM, topiramate (20 mg/kg) reduced the stretched-attend postures (P<0.001) compared to the alcohol/saline group. These findings suggest that topiramate reduces HICs during alcohol withdrawal and alcohol-conditioned behaviours during conditioned abstinence in Swiss-Webster mice.
Notaras, Michael J; Vivian, Billie; Wilson, Carey; van den Buuse, Maarten
2017-07-13
Psychotic disorders, such as schizophrenia, as well as some mood disorders, such as bipolar disorder, have been suggested to share common biological risk factors. One such factor is reelin, a large extracellular matrix glycoprotein that regulates neuronal migration during development as well as numerous activity-dependent processes in the adult brain. The current study sought to evaluate whether a history of stress exposure interacts with endogenous reelin levels to modify behavioural endophenotypes of relevance to psychotic and mood disorders. Heterozygous Reeler Mice (HRM) and wildtype (WT) controls were treated with 50mg/L of corticosterone (CORT) in their drinking water from 6 to 9weeks of age, before undergoing behavioural testing in adulthood. We assessed methamphetamine-induced locomotor hyperactivity, prepulse inhibition (PPI) of acoustic startle, short-term spatial memory in the Y-maze, and depression-like behaviour in the Forced-Swim Test (FST). HRM genotype or CORT treatment did not affect methamphetamine-induced locomotor hyperactivity, a model of psychosis-like behaviour. At baseline, HRM showed decreased PPI at the commonly used 100msec interstimulus interval (ISI), but not at the 30msec ISI or following challenge with apomorphine. A history of CORT exposure potentiated immobility in the FST amongst HRM, but not WT mice. In the Y-maze, chronic CORT treatment decreased novel arm preference amongst HRM, reflecting reduced short-term spatial memory. These data confirm a significant role of endogenous reelin levels on stress-related behaviour, supporting a possible role in both bipolar disorder and schizophrenia. However, an interaction of reelin deficiency with dopaminergic regulation of psychosis-like behaviour remains unclear. Copyright © 2017 Elsevier B.V. All rights reserved.
Varga, János; Domokos, Agnes; Barna, István; Jankord, Ryan; Bagdy, György; Zelena, Dóra
2011-01-15
Vasopressin (VP) plays an important role in hypothalamo-pituitary-adrenal (HPA) axis regulation and in stress-related disorders. Our previous studies confirmed the role of VP in acute situations, where VP-deficient Brattleboro rats had less depression-like behaviour compared to animals that express VP. In this study, we test the hypothesis that VP-deficient rats are more resistant to the development of chronic HPA axis hyperactivity and depression-like symptoms after chronic unpredictable stress (CUS). Male VP-deficient Brattleboro rats were compared to their heterozygous littermates (controls). CUS consisted of different mild stimuli for 5 weeks. Elevated plus maze and forced swim test were used for behavioural characterization, while organs and blood for HPA axis parameters were collected at the end of the experiment. In controls, CUS resulted in the development of chronic stress state characterized by typical somatic (body weight reduction, thymus involution) and endocrine changes (resting plasma ACTH and corticosterone elevation and POMC mRNA elevation in anterior lobe of the pituitary). Floating time in the forced swim test was enhanced together with reduced open arm entries on elevated plus maze and a reduction in daily food intake. Unexpectedly, the lack of VP did not alter the effect of CUS on the somatic and behavioural measures, but only prevented CUS-induced corticosterone changes. In conclusion, lifelong VP-deficiency has a positive effect on corticosterone elevation following CUS but does not affect the behavioural consequences of CUS. It is likely that the interplay of several related factors, rather than an alteration in a single neuropeptide, modulates behaviour and disease pathogenesis. Copyright © 2010 Elsevier Inc. All rights reserved.
Thornton, S N; Padzys, G S; Trabalon, M
2014-05-01
The present study was designed to examine behavioral responses (interpreted as preferences) to olfactory cues (nest bedding odor and odors of estrous and anestrus females) in adult male rats after they had a short term reversible, bilateral, nasal obstruction (RbNO) as developing rat pups. These results were compared to behavior of control (untreated) and sham operated male littermates. Behavioral tests and physiological parameters were analyzed 90 days after recovery of nasal breathing. Experiments investigated the time spent in arms or the center of a maze of male rats in response to odors from the nest bedding or from adult females. There were no differences in responses between untreated, sham and RbNO adult male rats to fresh and nest bedding odors. RbNO males spent more time in the center of the maze when given a choice of estrus or anestrus female odors, or bedding odors from untreated or sham operated female rats. In contrast untreated and sham male rats preferred the odors of estrous females and of untreated or sham females. Plasma corticosterone levels in the males increased during the behavioral tests. Plasma testosterone levels were significantly lower in RbNO males compared to untreated males and did not increase during the behavioral tests compared to sham operated males. Males from all groups had similar preferences for the odor of bedding from adult RbNO females. Plasma levels of cholesterol and triglycerides were increased in RbNO adults. In conclusion, short term nasal obstruction in males while juvenile has long term consequences on hormones and behavioral preferences, thus potential partner selection when adult. Copyright © 2014 Elsevier Inc. All rights reserved.
Rainer, Quentin; Speziali, Simona; Rubino, Tiziana; Dominguez-Lopez, Sergio; Bambico, Francis Rodriguez; Gobbi, Gabriella; Parolaro, Daniela
2014-08-01
Nandrolone decanoate, an anabolic androgen steroid (AAS) illicitly used by adult and adolescent athletes to enhance physical performance and body image, induces psychiatric side effects, such as aggression, depression as well as a spectrum of adverse physiological impairments. Since adolescence represents a neurodevelopmental window that is extremely sensitive to the detrimental effects of drug abuse, we investigated the long-term behavioral and neurophysiological consequences of nandrolone abuse during adolescence. Adolescent rats received daily injections of nandrolone decanoate (15 mg/kg, i.m.) for 14 days (PND 40-53). At early adulthood (PND 68), forced swim, sucrose preference, open field and elevated plus maze tests were performed to assess behavioral changes. In vivo electrophysiological recordings were carried out to monitor changes in electrical activity of serotonergic neurons of the dorsal raphe nucleus (DRN) and noradrenergic neurons of the locus coeruleus (LC). Our results show that after early exposure to nandrolone, rats display depression-related behavior, characterized by increased immobility in the forced swim test and reduced sucrose intake in the sucrose preference test. In addition, adult rats presented anxiety-like behavior characterized by decreased time and number of entries in the central zone of the open field and decreased time spent in the open arms of the elevated plus maze. Nandrolone decreased the firing rate of spontaneously active serotonergic neurons in the DRN while increasing the firing rate of noradrenergic neurons in the LC. These results provide evidence that nandrolone decanoate exposure during adolescence alters the emotional profile of animals in adulthood and significantly modifies both serotonergic and noradrenergic neurotransmission. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lee, Maan-Gee; Jun, Gayoung; Choi, Hyo-Soon; Jang, Hwan Soo; Bae, Yong Chul; Suk, Kyoungho; Jang, Il-Sung; Choi, Byung-Ju
2010-07-01
Operant conditioning is often used to train a desired behavior in an animal. The contingency between a specific behavior and a reward is required for successful training. Here, we compared the effectiveness of two different mazes for training turning behaviors in response to directional cues in Sprague-Dawley rats. Forty-three rats were implanted with electrodes into the medial forebrain bundle and the left and right somatosensory cortices for reward and cues. Among them, thirteen rats discriminated between the left and right somatosensory stimulations to obtain rewards. They were trained to learn ipsilateral turning response to the stimulation of the left or right somatosensory cortex in either the T-maze (Group T) or the E| maze (Group W). Performance was measured by the navigation speed in the mazes. Performances of rats in Group T were enhanced faster than those in Group W. A significant correlation between performances during training and performance in final testing was observed in Group T starting with the fifth training session while such a correlation was not observed in Group W until the tenth training session. The training mazes did not however affect the performances in the final test. These results suggest that a simple maze is better than a complicated maze for training animals to learn directions and direct cortical stimulation can be used as a cue for direction training. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Behavioral consequences of predator stress in the rat elevated T-maze.
Bulos, Erika Mondin; Pobbe, Roger Luis Henschel; Zangrossi, Helio
2015-07-01
Analyses of the behavioral reactions of rodents to predators have greatly contributed to the understanding of defense-related human psychopathologies such as anxiety and panic.We here investigated the behavioral consequences of exposing male Wistar rats to a live cat using the elevated T-maze test of anxiety. This test allows the measurement of two defensive responses: inhibitory avoidance and escape, which in terms of pathology have been associated with generalized anxiety and panic disorders, respectively. For comparative reasons, the effects of exposure to the cat were also assessed in the elevated plus-maze. The results showed that a 5-min exposure to the cat selectively facilitated inhibitory avoidance acquisition, an anxiogenic effect, without affecting escape expression in the elevated T-maze. This was seen immediately but not 30 min after contact with the predator. This short-lived anxiogenic effect was also detected in the elevated plus-maze. Previous administration of the benzodiazepine anxiolytic diazepam (2 mg/kg) decreased the immediate avoidance response to the predator and the neophobic reaction to a dummy cat used as a control stimulus. The drug also impaired inhibitory avoidance acquisition in the elevated T-maze, indicating an anxiolytic effect, without affecting escape performance. The results indicate that the state of anxiety evoked during contact with the predator generalizes to both elevated plus- and T-mazes, impacting on defensive responses associated with generalized anxiety disorder.
IL-6 deficiency alters spatial memory in 4- and 24-month-old mice.
Bialuk, Izabela; Taranta, Andrzej; Winnicka, Maria Małgorzata
2018-06-19
Significance of interleukin 6 (IL-6) deficiency in cognitive processes was evaluated in 4- and 24-month-old C57BL/6J IL-6-deficient (IL-6 KO) and control (WT) mice in Morris water maze (MWM), holeboard test (HB) and elevated plus maze (EPM). During 3-day learning escape latency time (ELT) was longer in IL-6 KO than in WT mice, however their swimming was slower, floating longer, and path length did not differ. The comparison of ELT and the distance traveled between the first and the third learning day within each group revealed significant decrease of ELT in all groups with the highest difference in 4-month-old WT mice, and significant decrease of distance traveled only in both groups of WT mice. In a single probe trial, performed 24 h after the last learning session, there were no major differences in the absolute values of ELT, but ELT turned out to be significantly shorter in both IL-6 KO groups, when it was compared to the ELT on the last learning day, indicating on better memory retrieval. In HB test only significant increase in number of rearings in aged WT mice, and in EPM significant prolongation of open arm time and higher number of open arm entries in 4-month-old IL-6 KO mice were observed. Results of HB and EPM tests showed that alterations of learning and reference memory observed in MWM were specific to cognition. Attenuation of learning ability in young adult IL-6-deficient mice assessed in MWM suggests that physiological level of IL-6 is involved in mechanisms engaged in proper memory formation, and it may also indicate on the importance of IL-6 signaling in brain development. Maintained on similar level in both 4- and 24-month-old IL-6 KO mice learning ability and its attenuation in 24-month-old vs 4-month-old WT mice indicates on slower age-related memory decline in mice not expressing IL-6. Better performance of IL-6 KO mice in the probe trial points to their reference memory improvement and may also indicate that IL-6 plays a role in mechanism responsible for cognitive flexibility. Copyright © 2018 Elsevier Inc. All rights reserved.
Winocur, G; Moscovitch, M
1990-08-01
Young adult rats with bilateral lesions to the hippocampus or prefrontal cortex, young operated controls, and normal old rats were tested on two complex mazes in the Hebb-Williams series. Approximately half the animals were previously trained on one of the mazes; the remainder received no previous training. The trained hippocampal rats showed sparing of memory for the general skill of maze learning but poor recall of the specific maze on which they had been previously trained. The opposite pattern was observed in trained prefrontal rats. In contrast, the aged rats' memory for maze-specific and maze-general information was impaired. The results confirmed the importance of the hippocampus for recalling highly specific information and pointed to a possible role for the frontal lobes in learning and remembering nonspecific skill-related information. The generalized deficit of the aged rats indicates that both types of memory were compromised and offers further evidence of frontal lobe and hippocampal dysfunction in normal aging.
Leiter, Emily; Hitchcock, Gavin; Godwin, Stuart; Johnson, Michelle; Sedgwick, William; Jones, Wendy; McCall, Suzanne; Ceremuga, Thomas E
2011-04-01
The purpose of this study was to investigate the anxiolytic effects of myristicin, a major compound found in nutmeg, and its potential interaction with the gamma-aminobutyric acid (GABA(A)) receptor in male Sprague-Dawley rats. Nutmeg has traditionally been used as a spice in food preparation and as an herbal remedy in the treatment of many medical conditions, including anxiety. Fifty-five rats were divided equally into 5 groups: control (vehicle); myristicin; midazolam (positive control); flumazenil and myristicin; and midazolam and myristicin. The behavioral component of anxiety was examined by using the elevated plus-maze (open-arm and closed-arm times) along with analysis of gross and fine motor movements. Data analysis was performed using a 2-tailed multivariate analysis of variance (MANOVA) and least significant difference post-hoc test. Our data suggest that myristicin does not decrease anxiety by modulation of the GABA(A) receptor but may promote anxiogenesis. When myristicin was combined with midazolam, an antagonist-like effect similar to the flumazenil and myristicin combination was exhibited by a decrease in anxiolysis compared with the midazolam-only group. Myristicin may antagonize the anxiolytic effects of midazolam, increase anxiety, and affect motor movements.
Latha, K.; Rammohan, B.; Sunanda, B. P. V.; Maheswari, M. S. Uma; Mohan, Surapaneni Krishna
2015-01-01
Objectives: To evaluate the anxiolytic effect of Coriandrum sativum (CS) aqueous extract in mice. To compare the antianxiety activity of CS against standard drug diazepam (3 mg/kg). Materials and Methods: After obtaining Institutional Animal Ethics Committee approval, Swiss albino mice (18–25 g) of either sex were randomly divided into five groups of six animals each. Dried powder of CS leaves was boiled with distilled water, cooled, filtered, placed on a hotplate for complete evaporation, finally weighed and stored. The control group, test group, and standard drugs group received saline, CS extract (50, 100, and 200 mg/kg), diazepam (3 mg/kg), respectively, by oral feeding. The antianxiety effect was assessed by elevated plus maze (EPM) in mice. Results: In EPM, it implied that CS 50 mg/kg (Group III), 100 mg/kg (Group IV), and 200 mg/kg (Group V) significantly (P < 0.001) increases the number of entries in open arms compared to control. The time spent in open arms also increased in all the doses of CS extract significantly. Conclusion: The current study demonstrates statistically significant dose-dependent antianxiety activity of CS leaves. PMID:26109787
Delayed-matching-to-place Task in a Dry Maze to Measure Spatial Working Memory in Mice
Feng, Xi; Krukowski, Karen; Jopson, Timothy; Rosi, Susanna
2017-01-01
The delayed-matching-to-place (DMP) dry maze test is a variant of DMP water maze (Steele and Morris, 1999; Faizi et al., 2012) which measures spatial working/episodic-like learning and memory that depends on both hippocampal and cortical functions (Wang and Morris, 2010; Euston et al., 2012). Using this test we can detect normal aging related spatial working memory decline, as well as trauma induced working memory deficits. Furthermore, we recently reported that fractionated whole brain irradiation does not affect working memory in mice (Feng et al., 2016). Here we describe the experimental setup and procedures of this behavioral test. PMID:28944261
Mason, L.C.; Savidge, J.A.; Rodda, G.H.; Yackel Adams, A.A.
2011-01-01
Current methods for controlling the invasive Brown Treesnake (Boiga irregularis) on Guam include a modified minnow trap with a live mouse lure. We investigated the effects on capture success of augmenting these traps with scented guide ropes leading to trap entrances. Initial screening of scent preferences was based on time spent in scented and unscented arms of a Y-maze. Preferences of large and small snakes were scored for six different prey scents (live and carrion gecko, skink, and mouse). Large snakes spent more time in the maze arm scented with live gecko and carrion gecko, whereas small snakes spent more time in the arm scented with carrion mouse and carrion gecko. After the laboratory study, a pilot trapping session was conducted in the field using three treatments (live mouse-scented ropes, carrion gecko-scented ropes, and carrion mouse-scented ropes) and two controls (traps with unscented guide ropes and those with no ropes attached). Contrary to laboratory results, live mouse-scented ropes were most effective. We conducted a second trapping session using live mouse-scented ropes as well as the two controls used in the pilot study. For snakes of below-average to average condition, the number of captures for traps with live mouse-scented ropes was higher than for traps with no ropes. However, for snakes of above-average condition, there were no differences in capture rates between trap treatments. Overall, treatment effects were weaker than latent individual heterogeneity and the influence of snake body size, with large snakes trapped more readily. ?? 2011 Society for the Study of Amphibians and Reptiles.
Amemiya, S; Noji, T; Kubota, N; Nishijima, T; Kita, I
2014-04-18
Deliberation between possible options before making a decision is crucial to responding with an optimal choice. However, the neural mechanisms regulating this deliberative decision-making process are still unclear. Recent studies have proposed that the locus coeruleus-noradrenaline (LC-NA) system plays a role in attention, behavioral flexibility, and exploration, which contribute to the search for an optimal choice under uncertain situations. In the present study, we examined whether the LC-NA system relates to the deliberative process in a T-maze spatial decision-making task in rats. To quantify deliberation in rats, we recorded vicarious trial-and-error behavior (VTE), which is considered to reflect a deliberative process exploring optimal choices. In experiment 1, we manipulated the difficulty of choice by varying the amount of reward pellets between the two maze arms (0 vs. 4, 1 vs. 3, 2 vs. 2). A difficulty-dependent increase in VTE was accompanied by a reduction of choice bias toward the high reward arm and an increase in time required to select one of the two arms in the more difficult manipulation. In addition, the increase of c-Fos-positive NA neurons in the LC depended on the task difficulty and the amount of c-Fos expression in LC-NA neurons positively correlated with the occurrence of VTE. In experiment 2, we inhibited LC-NA activity by injection of clonidine, an agonist of the alpha2 autoreceptor, during a decision-making task (1 vs. 3). The clonidine injection suppressed occurrence of VTE in the early phase of the task and subsequently impaired a valuable choice later in the task. These results suggest that the LC-NA system regulates the deliberative process during decision-making. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Shanmugasundaram, Bharanidharan; Sase, Ajinkya; Miklosi, András G; Sialana, Fernando J; Subramaniyan, Saraswathi; Aher, Yogesh D; Gröger, Marion; Höger, Harald; Bennett, Keiryn L; Lubec, Gert
2015-08-01
Several neurotransmitter receptors have been proposed to be involved in memory formation. However, information on receptor complexes (RCs) in the radial arm maze (RAM) is missing. It was therefore the aim of this study to determine major neurotransmitter RCs levels that are modulated by RAM training because receptors are known to work in homo-or heteromeric assemblies. Immediate early gene Arc expression was determined by immunohistochemistry to show if prefrontal cortices (PFC) and hippocampi were activated following RAM training as these regions are known to be mainly implicated in spatial memory. Twelve rats per group, trained and untrained in the twelve arm RAM were used, frontal cortices and hippocampi were taken, RCs in membrane protein were quantified by blue-native PAGE immunoblotting. RCs components were characterised by co-immunoprecipitation followed by mass spectrometrical analysis and by the use of the proximity ligation assay. Arc expression was significantly higher in PFC of trained as compared to untrained rats whereas it was comparable in hippocampi. Frontal cortical levels of RCs containing AMPA receptors GluA1, GluA2, NMDA receptors GluN1 and GluN2A, dopamine receptor D1, acetylcholine nicotinic receptor alpha 7 (nAChR-α7) and hippocampal levels of RCs containing D1, GluN1, GluN2B and nAChR-α7 were increased in the trained group; phosphorylated dopamine transporter levels were decreased in the trained group. D1 and GluN1 receptors were shown to be in the same complex. Taken together, distinct RCs were paralleling performance in the RAM which is relevant for interpretation of previous and design of future work on RCs in memory studies. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
O'Leary, Timothy P.; Brown, Richard E.
2013-01-01
We have previously shown that apparatus design can affect visual-spatial cue use and memory performance of mice on the Barnes maze. The present experiment extends these findings by determining the optimal behavioral measures and test procedure for analyzing visuo-spatial learning and memory in three different Barnes maze designs. Male and female…
Siqueira, Ionara Rodrigues; Vanzella, Cláudia; Bianchetti, Paula; Rodrigues, Marco Antonio Siqueira; Stülp, Simone
2011-01-01
The leather industry is a major producer of wastewaters and releases large quantities of many different chemical agents used in hide processing into the environment. Since the central nervous system is sensitive to many different contaminants, our aim was to investigate the neurobehavioral effects of exposure of mice to tannery effluents using animal models of depression and anxiety, namely forced swim and elevated plus-maze. In order to propose a clean technology for the treatment of this effluent, we also investigated the exposure of mice to effluents treated by photoelectrooxidation process (PEO). Adult male Swiss albino mice (CF1 strain) were given free access to water bottles containing an effluent treated by a tannery (non-PEO) or PEO-treated tannery wastewater (0.1 and 1% in drinking water). Exposure to tannery wastewater induced behavioural changes in the mice in elevated plus-maze. Exposure to non-PEO 1% decreased the percentage of time spent in the open arms, indicating anxiety-like behaviour. Exposure to tannery wastewater did not alter immobility time in the forced swim test, suggesting that tannery effluents did not induce depression-like behaviour in the mice. These behavioural data suggest that non-PEO tannery effluent has an anxiogenic effect, whereas PEO-treated tannery effluents do not alter anxiety levels. Copyright © 2011 Elsevier Inc. All rights reserved.
Effects of melatonin on aluminium-induced neurobehavioral and neurochemical changes in aging rats.
Allagui, M S; Feriani, A; Saoudi, M; Badraoui, R; Bouoni, Z; Nciri, R; Murat, J C; Elfeki, A
2014-08-01
This study aimed to investigate the potential protective effects of melatonin (Mel) against aluminium-induced neurodegenerative changes in aging Wistar rats (24-28months old). Herein, aluminium chloride (AlCl3) (50mg/kg BW/day) was administered by gavage, and melatonin (Mel) was co-administered to a group of Al-treated rats by an intra-peritoneal injection at a daily dose of 10mg/kg BW for four months. The findings revealed that aluminium administration induced a significant decrease in body weight associated with marked mortality for the old group of rats, which was more pronounced in old Al-treated rats. Behavioural alterations were assessed by 'open fields', 'elevated plus maze' and 'Radial 8-arms maze' tests. The results demonstrated that Mel co-administration alleviated neurobehavioral changes in both old and old Al-treated rats. Melatonin was noted to play a good neuroprotective role, reducing lipid peroxidation (TBARs), and enhancing enzymatic (SOD, CAT and GPx) activities in the brain organs of old control and old Al-treated rats. Mel treatment also reversed the decrease of AChE activity in the brain tissues, which was confirmed by histological sections. Overall, the results showed that Mel administration can induce beneficial effects for the treatment of Al-induced neurobehavioral and neurochemical changes in the central nervous system (CNS). Copyright © 2014 Elsevier Ltd. All rights reserved.
Walker, Q. David; Schramm-Sapyta, Nicole L.; Caster, Joseph M.; Waller, Samuel T.; Brooks, Matthew P.; Kuhn, Cynthia M.
2009-01-01
The present studies assessed the roles of sex, age, novelty-seeking and plus-maze behavior on cocaine drinking in rats. Cocaine/saccharin solution was available in three daily, 5-hour sessions then a saccharin-only solution was also available in following sessions. In the one-bottle drinking phase, early and late adolescent males, post-natal day 28 (PN28) and PN42, consumed more cocaine/saccharin solution than young adults (PN65), but females did not exhibit significant age differences. Adolescents of both sexes consumed more cocaine/saccharin than adults during choice drinking. Saccharin availability in the two-bottle trials decreased cocaine/saccharin consumption in PN28 and PN65 rats. After a drug-free period, cocaine-stimulated locomotion was lower in cocaine/saccharin drinking than saccharin-only males, indicating tolerance. We tested the hypothesis that individual differences in pre-screened behavioral traits would correlate with cocaine/saccharin consumption in PN28 and PN65 male rats. High locomotor responses to novelty were associated with greater cocaine/saccharin drinking in adults in one-bottle sessions. In the subsequent choice drinking phase, correlations were age-specific. Adolescents with high novelty-induced locomotion and adults that spent less time on open arms of the elevated plus-maze drank more cocaine/saccharin. Thus, behavioral phenotypes correlated with individual differences in cocaine/saccharin consumption in an age-related manner. PMID:18790706
Hu, Congli; Luo, Ying; Wang, Hong; Kuang, Shengnan; Liang, Guojuan; Yang, Yang; Mai, Shaoshan; Yang, Junqing
2017-01-01
The chronic unpredictable mild stress model of depression has been widely used as an experimental tool to investigate human psychopathology. Our objective was to provide an update on the validity and reliability of the chronic unpredictable mild stress model, by analyzing the interrelationships among the indexes using stepwise discriminant analysis and Pearson correlation coefficient to examine the possible combinations. We evaluated the depressive rats in both the presence and the absence of chronic unpredictable mild stress, using weight change, percentage of sucrose preference, coat state, splash test, open-field test, elevated plus-maze test, forced swimming test, and Morris water maze test. The results showed that 6-week-long chronic unpredictable mild stress produces significant depression and anxiety-like behavior. The combination of body weight change, percentage of sucrose preference, coat state score, open-field score, grooming latency of splash test, immobility time in force swimming test, and platform crossing in the Morris water maze test can effectively discriminate between normal and chronic unpredictable mild stress rats. Strong interrelationships were noted among these indexes in both open-field test and elevated plus-maze test. In conclusion, there might be certain criteria for the combination of behavioral endpoints, which is advantageous to more effectively and reliably assess the chronic unpredictable mild stress induced depression model. PMID:28931086
Network analysis of exploratory behaviors of mice in a spatial learning and memory task
Suzuki, Yusuke
2017-01-01
The Barnes maze is one of the main behavioral tasks used to study spatial learning and memory. The Barnes maze is a task conducted on “dry land” in which animals try to escape from a brightly lit exposed circular open arena to a small dark escape box located under one of several holes at the periphery of the arena. In comparison with another classical spatial learning and memory task, the Morris water maze, the negative reinforcements that motivate animals in the Barnes maze are less severe and less stressful. Furthermore, the Barnes maze is more compatible with recently developed cutting-edge techniques in neural circuit research, such as the miniature brain endoscope or optogenetics. For this study, we developed a lift-type task start system and equipped the Barnes maze with it. The subject mouse is raised up by the lift and released into the maze automatically so that it can start navigating the maze smoothly from exactly the same start position across repeated trials. We believe that a Barnes maze test with a lift-type task start system may be useful for behavioral experiments when combined with head-mounted or wire-connected devices for online imaging and intervention in neural circuits. Furthermore, we introduced a network analysis method for the analysis of the Barnes maze data. Each animal’s exploratory behavior in the maze was visualized as a network of nodes and their links, and spatial learning in the maze is described by systematic changes in network structures of search behavior. Network analysis was capable of visualizing and quantitatively analyzing subtle but significant differences in an animal’s exploratory behavior in the maze. PMID:28700627
The effect of opiodergic system and testosterone on anxiety behavior in gonadectomized rats.
Khakpai, Fatemeh
2014-04-15
Removal of the testes (gonadectomy; GDX), the primary source of androgens, increases anxiety behavior in several tasks. Opioids are known to play a role in mediating the effects of androgen. In the present study, the effect of testosterone and opioidergic system on anxiety behavior was investigated. Adult male Wistar rats were bilaterally castrated. The elevated plus maze which is a useful test to investigate the effects of anxiogenic or anxiolytic drugs in rodents was used. The data indicated that there is a decrease, 10 days after castration, in the percentage of OAT (the ratio of time spent in the open arms to total times spent in any arms × 100) and OAE (the ratio of entries into open arms to total entries × 100) but not locomotor activity, showing anxiogenic-like effects of gonadectomy. Intraperitoneal injection of testosterone (200, 300 and 450 mg/kg) and morphine (2.5, 5 and 7.5mg/kg), before testing 10 days after castration, showed an increase in OAT and OAE. Furthermore, injection of naloxone (5 and 7.5mg/kg, i.p.), 5 min before testing 10 days after castration, decreased OAT and OAE. Also, injection of a significant dose of testosterone (300 mg/kg, i.p.), 1h before the injection of different doses of morphine (1, 2.5, 5 and 7.5mg/kg, i.p.), 10 days after castration, did not significantly alter OAT, OAE and locomotor activity. While, administration of a significant dose of testosterone (300 mg/kg, i.p.), 1h before the infusion of different doses of naloxone (1, 2.5, 5 and 7.5mg/kg, i.p.), 10 days after castration, decreased OAT and OAE. The results show the involvement of testosterone and opioidergic system in anxiogenic-like behaviors induced by gonadectomy. Copyright © 2014 Elsevier B.V. All rights reserved.
Stress-induced endocrine response and anxiety: the effects of comfort food in rats.
Ortolani, Daniela; Garcia, Márcia Carvalho; Melo-Thomas, Liana; Spadari-Bratfisch, Regina Celia
2014-05-01
The long-term effects of comfort food in an anxiogenic model of stress have yet to be analyzed. Here, we evaluated behavioral, endocrine and metabolic parameters in rats submitted or not to chronic unpredictable mild stress (CUMS), with access to commercial chow alone or to commercial chow and comfort food. Stress did not alter the preference for comfort food but decreased food intake. In the elevated plus-maze (EPM) test, stressed rats were less likely to enter/remain in the open arms, as well as being more likely to enter/remain in the closed arms, than were control rats, both conditions being more pronounced in the rats given access to comfort food. In the open field test, stress decreased the time spent in the centre, independent of diet; neither stress nor diet affected the number of crossing, rearing or grooming episodes. The stress-induced increase in serum corticosterone was attenuated in rats given access to comfort food. Serum concentration of triglycerides were unaffected by stress or diet, although access to comfort food increased total cholesterol and glucose. It is concluded that CUMS has an anorexigenic effect. Chronic stress and comfort food ingestion induced an anxiogenic profile although comfort food attenuated the endocrine stress response. The present data indicate that the combination of stress and access to comfort food, common aspects of modern life, may constitute a link among stress, feeding behavior and anxiety.
The Behavioral Toxicology of High-Peak, Low Average Power, Pulsed Microwave Irradiation
1993-01-25
Psychometrika, 47, 95-99. Raslear, T. G. (1983). A test of the Pfanzagl bisection model in rats. Journal of Experimental Psychology : Animal Behavior Processes, 9...temporal bisection, Y-maze, treadmill running, food motivation (behavioraleconomics), and Persolt swim test . Reliable effects were found with the...subsequent task performance: temporal bisection, Y-maze, treadmill running, food motivation (behavioral economics), and Porsolt swim test . Reliable effects
Melo, Francisca Helvira Cavalcante; Venâncio, Edith Teles; de Sousa, Damião Pergentino; de França Fonteles, Marta Maria; de Vasconcelos, Silvânia Maria Mendes; Viana, Glauce Socorro Barros; de Sousa, Francisca Cléa Florenço
2010-08-01
Carvacrol (5-isopropyl-2-methylphenol) is a monoterpenic phenol present in the essencial oil of many plants. It is the major component of the essential oil fraction of oregano and thyme. This work presents the behavioral effects of carvacrol in animal models of elevated plus maze (EPM), open field, Rotarod and barbiturate-induced sleeping time tests in mice. Carvacrol (CVC) was administered orally, in male mice, at single doses of 12.5; 25 and 50 mg/kg while diazepam 1 or 2 mg/kg was used as standard drug and flumazenil (2.5 mg/kg) was used to elucidate the possible anxiolytic mechanism of CVC on the plus maze test. The results showed that CVC, at three doses, had no effect on the spontaneous motor activity in the Rotarod test nor in the number of squares crossed in the open-field test. However, CVC decreased the number of groomings in the open-field test. In the plus maze test, CVC, at three doses significantly increased all the observed parameters in the EPM test and flumazenil was able to reverse the effects of diazepam and CVC. Therefore, CVC did not alter the sleep latency and sleeping time in the barbiturate-induced sleeping time test. These results show that CVC presents anxiolytic effects in the plus maze test which are not influenced by the locomotor activity in the open-field test.
Akt2 deficiency is associated with anxiety and depressive behavior in mice.
Leibrock, Christina; Ackermann, Teresa F; Hierlmeier, Michael; Lang, Florian; Borgwardt, Stefan; Lang, Undine E
2013-01-01
The economic burden associated with major depressive disorder and anxiety disorders render both disorders the most common and debilitating psychiatric illnesses. To date, the exact cellular and molecular mechanisms underlying the pathophysiology, successful treatment and prevention of these highly associated disorders have not been identified. Akt2 is a key protein in the phosphatidylinositide-3 (PI3K) / glycogen synthase 3 kinase (GSK3) signaling pathway, which in turn is involved in brain-derived neurotrophic factor (BDNF) effects on fear memory, mood stabilisation and action of several antidepressant drugs. The present study thus explored the impact of Akt2 on behaviour of mice. Behavioural studies (Open-Field, Light-Dark box, O-Maze, Forced Swimming Test, Emergence Test, Object Exploration Test, Morris Water Maze, Radial Maze) have been performed with Akt2 knockout mice (akt(-/-)) and corresponding wild type mice (akt(+/+)). Anxiety and depressive behavior was significantly higher in akt(-/-) than in akt(+/+) mice. The akt(-/-) mice were cognitively unimpaired but displayed increased anxiety in several behavioral tests (O-Maze test, Light-Dark box, Open Field test). Moreover, akt(-/-) mice spent more time floating in the Forced Swimming test, which is a classical feature of experimental depression. Akt2 might be a key factor in the pathophysiology of depression and anxiety. © 2013 S. Karger AG, Basel.
Page, Rachel A; von Merten, Sophie; Siemers, Björn M
2012-07-01
Two common strategies for successful foraging are learning to associate specific sensory cues with patches of prey ("associative learning") and using set decision-making rules to systematically scan for prey ("algorithmic search"). We investigated whether an animal's life history affects which of these two foraging strategies it is likely to use. Natterer's bats (Myotis nattereri) have slow life-history traits and we predicted they would be more likely to use associative learning. Common shrews (Sorex araneus) have fast life-history traits and we predicted that they would rely more heavily on routine-based search. Apart from their marked differences in life-history traits, these two mammals are similar in body size, brain weight, habitat, and diet. We assessed foraging strategy, associative learning ability, and retention time with a four-arm maze; one arm contained a food reward and was marked with four sensory stimuli. Bats and shrews differed significantly in their foraging strategies. Most bats learned to associate the sensory stimuli with the reward and remembered this association over time. Most shrews searched the maze using consistent decision-making rules, but did not learn or remember the association. We discuss these results in terms of life-history traits and other key differences between these species. Our results suggest a link between an animal's life-history strategy and its use of associative learning.
To develop behavioral tests of vestibular functioning in the Wistar rat
NASA Technical Reports Server (NTRS)
Nielson, H. C.
1980-01-01
Two tests of vestibular functioning in the rat were developed. The first test was the water maze. In the water maze the rat does not have the normal proprioceptive feedback from its limbs to help it maintain its orientation, and must rely primarily on the sensory input from its visual and vestibular systems. By altering lighting conditions and visual cues the vestibular functioning without visual cues was assessed. Whether there was visual compensation for some vestibular dysfunction was determined. The second test measured vestibular functioning of the rat's behavior on a parallel swing. In this test the rat's postural adjustments while swinging on the swing with the otoliths being stimulated were assessed. Less success was achieved in developing the parallel swing as a test of vestibular functioning than with the water maze. The major problem was incorrect initial assumptions of what the rat's probable behavior on the parallel swing would be.
Planning in human children (Homo sapiens) assessed by maze problems on the touch screen.
Miyata, Hiromitsu; Itakura, Shoji; Fujita, Kazuo
2009-02-01
The authors examined how human children perform on maze tasks on the touch screen and whether the children plan the solution of the mazes. In Experiment 1, the authors exposed children around 3 years of age to a maze having an L-shaped line as a barrier that can be solved by moving an illustration of a dog (the target) to that of a bone (the goal) with their fingers. The participants successfully solved the maze by taking efficient routes more frequently than chance, although the authors found no evidence that a preview of the maze before starting to solve the task facilitated their performance. In Experiment 2, using a plus-shaped maze, the authors found that 3- and 4-year-old children plan and adjust their moves while solving the maze, with 4-year-olds showing more advanced and higher-level planning than 3-year-olds. Similarity of these results to what the authors previously found in pigeons tested in the same tasks may suggest an analogy for planning capacity in the behavioral level across taxa and developmental stages. Copyright 2009 APA, all rights reserved.
Revealing past memories: proactive interference and ketamine-induced memory deficits.
Chrobak, James J; Hinman, James R; Sabolek, Helen R
2008-04-23
Memories of events that occur often are sensitive to interference from memories of similar events. Proactive interference plays an important and often unexamined role in memory testing for spatially and temporally unique events ("episodes"). Ketamine (NMDA receptor antagonist) treatment in humans and other mammals induces a constellation of cognitive deficits, including impairments in working and episodic memory. We examined the effects of the ketamine (2.5-100 mg/kg) on the acquisition, retrieval, and retention of memory in a delayed-match-to-place radial water maze task that can be used to assess proactive interference. Ketamine (2.5-25 mg/kg, i.p.) given 20 min before the sample trial, impaired encoding. The first errors made during the test trial were predominantly to arms located spatially adjacent to the goal arm, suggesting an established albeit weakened representation. Ketamine (25-100 mg/kg) given immediately after the sample trial had no effect on retention. Ketamine given before the test trial impaired retrieval. First errors under the influence of ketamine were predominantly to the goal location of the previous session. Thus, ketamine treatment promoted proactive interference. These memory deficits were not state dependent, because ketamine treatment at both encoding and retrieval only increased the number of errors during the test session. These data demonstrate the competing influence of distinct memory representations during the performance of a memory task in the rat. Furthermore, they demonstrate the subtle disruptive effects of the NMDA antagonist ketamine on both encoding and retrieval. Specifically, ketamine treatment disrupted retrieval by promoting proactive interference from previous episodic representations.
Wartman, Brianne C.; Holahan, Matthew R.
2014-01-01
Consolidation processes, involving synaptic and systems level changes, are suggested to stabilize memories once they are formed. At the synaptic level, dendritic structural changes are associated with long-term memory storage. At the systems level, memory storage dynamics between the hippocampus and anterior cingulate cortex (ACC) may be influenced by the number of sequentially encoded memories. The present experiment utilized Golgi-Cox staining and neuron reconstruction to examine recent and remote structural changes in the hippocampus and ACC following training on three different behavioral procedures. Rats were trained on one hippocampal-dependent task only (a water maze task), two hippocampal-dependent tasks (a water maze task followed by a radial arm maze task), or one hippocampal-dependent and one non-hippocampal-dependent task (a water maze task followed by an operant conditioning task). Rats were euthanized recently or remotely. Brains underwent Golgi-Cox processing and neurons were reconstructed using Neurolucida software (MicroBrightField, Williston, VT, USA). Rats trained on two hippocampal-dependent tasks displayed increased dendritic complexity compared to control rats, in neurons examined in both the ACC and hippocampus at recent and remote time points. Importantly, this behavioral group showed consistent, significant structural differences in the ACC compared to the control group at the recent time point. These findings suggest that taxing the demand placed upon the hippocampus, by training rats on two hippocampal-dependent tasks, engages synaptic and systems consolidation processes in the ACC at an accelerated rate for recent and remote storage of spatial memories. PMID:24795581
Does Chronic Unpredictable Stress during Adolescence Affect Spatial Cognition in Adulthood?
Chaby, Lauren E; Sheriff, Michael J; Hirrlinger, Amy M; Lim, James; Fetherston, Thomas B; Braithwaite, Victoria A
2015-01-01
Spatial abilities allow animals to retain and cognitively manipulate information about their spatial environment and are dependent upon neural structures that mature during adolescence. Exposure to stress in adolescence is thought to disrupt neural maturation, possibly compromising cognitive processes later in life. We examined whether exposure to chronic unpredictable stress in adolescence affects spatial ability in late adulthood. We evaluated spatial learning, reference and working memory, as well as long-term retention of visuospatial cues using a radial arm water maze. We found that stress in adolescence decreased the rate of improvement in spatial learning in adulthood. However, we found no overall performance impairments in adult reference memory, working memory, or retention caused by adolescent-stress. Together, these findings suggest that adolescent-stress may alter the strategy used to solve spatial challenges, resulting in performance that is more consistent but is not refined by incorporating available spatial information. Interestingly, we also found that adolescent-stressed rats showed a shorter latency to begin the water maze task when re-exposed to the maze after an overnight delay compared with control rats. This suggests that adolescent exposure to reoccurring stressors may prepare animals for subsequent reoccurring challenges. Overall, our results show that stress in adolescence does not affect all cognitive processes, but may affect cognition in a context-dependent manner.
Does Chronic Unpredictable Stress during Adolescence Affect Spatial Cognition in Adulthood?
Chaby, Lauren E.; Sheriff, Michael J.; Hirrlinger, Amy M.; Lim, James; Fetherston, Thomas B.; Braithwaite, Victoria A.
2015-01-01
Spatial abilities allow animals to retain and cognitively manipulate information about their spatial environment and are dependent upon neural structures that mature during adolescence. Exposure to stress in adolescence is thought to disrupt neural maturation, possibly compromising cognitive processes later in life. We examined whether exposure to chronic unpredictable stress in adolescence affects spatial ability in late adulthood. We evaluated spatial learning, reference and working memory, as well as long-term retention of visuospatial cues using a radial arm water maze. We found that stress in adolescence decreased the rate of improvement in spatial learning in adulthood. However, we found no overall performance impairments in adult reference memory, working memory, or retention caused by adolescent-stress. Together, these findings suggest that adolescent-stress may alter the strategy used to solve spatial challenges, resulting in performance that is more consistent but is not refined by incorporating available spatial information. Interestingly, we also found that adolescent-stressed rats showed a shorter latency to begin the water maze task when re-exposed to the maze after an overnight delay compared with control rats. This suggests that adolescent exposure to reoccurring stressors may prepare animals for subsequent reoccurring challenges. Overall, our results show that stress in adolescence does not affect all cognitive processes, but may affect cognition in a context-dependent manner. PMID:26580066
Mixed Effects Modeling of Morris Water Maze Data: Advantages and Cautionary Notes
ERIC Educational Resources Information Center
Young, Michael E.; Clark, M. H.; Goffus, Andrea; Hoane, Michael R.
2009-01-01
Morris water maze data are most commonly analyzed using repeated measures analysis of variance in which daily test sessions are analyzed as an unordered categorical variable. This approach, however, may lack power, relies heavily on post hoc tests of daily performance that can complicate interpretation, and does not target the nonlinear trends…
Central depressant activity of butanol fraction of Securinega virosa root bark in mice.
Magaji, Mohammed Garba; Yaro, Abdullahi Hamza; Musa, Aliyu Muhammad; Anuka, Joseph Akponso; Abdu-Aguye, Ibrahim; Hussaini, Isa Marte
2012-05-07
Securinega virosa is a commonly used medicinal plant in African traditional medicine in the management of epilepsy and mental illness. Previous studies in our laboratory showed that the crude methanol root bark extract of the plant possesses significant behavioral effect in laboratory animals. In an attempt to isolate and characterize the biological principles responsible for the observed activity, this study is aimed at evaluating the central depressant activity of the butanol fraction of the methanol root bark extract of Securinega virosa. The medial lethal dose of the butanol fraction was estimated using the method of Lorke. Preliminary phytochemical screening was conducted on the butanol fraction using standard protocol. The behavioral effect of the butanol fraction (75, 150 and 300mg/kg) was evaluated using diazepam induced sleep test, hole-board test, beam walking assay, staircase test, open field test and elevated plus maze assay, all in mice. The median lethal dose of the butanol fraction was estimated to be 1256.9mg/kg. The preliminary phytochemical screening revealed the presence of tannins, saponins, alkaloids, flavonoids, cardiac glycosides, similar to those found in the crude methanol extract. The butanol fraction significantly (P<0.001) reduced the mean onset of sleep in mice and doubled the mean duration of sleep in mice at the dose of 75mg/kg. The butanol fraction and diazepam (0.5mg/kg) significantly (P<0.01-0.001) reduced the number of head dips in the hole-board test suggesting sedative effect. The sedative effect of the butanol fraction was further corroborated by its significant (P<0.01-0.001) reduction of the number of step climbed and rearing in the staircase test. The butanol fraction did not significantly increase the time taken to complete the task and number of foot slips in the beam walking assay, suggesting that it does not induce significant motor coordination deficit. Diazepam (2mg/kg), the standard agent used significantly (P<0.01) increased the number of foot slips. In the open field test, the butanol fraction significantly reduced the number of square crossed as well as the number of rearing. However, the butanol fraction did not significantly alter the behavior of mice in the elevated plus maze assay, while diazepam (0.5mg/kg) significantly (P<0.05) increased the time spent in the open arm and reduced the number of closed arm entry. The findings of this study suggest that the butanol fraction of Securinega virosa root bark contains some bioactive principles that are sedative in nature. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Ceremuga, Tomás Eduardo; Valdivieso, Debra; Kenner, Catherine; Lucia, Amy; Lathrop, Keith; Stailey, Owen; Bailey, Heather; Criss, Jonathan; Linton, Jessica; Fried, Jordan; Taylor, Andrew; Padron, Gina; Johnson, Arthur Don
2015-04-01
Herbal medication use continues to rise and interactions with existing medications propose risks and may have significant effects and consequences on the administration of anesthesia. The purpose of this study was to investigate the anxiolytic and antidepressant effects of asiatic acid and its potential modulation of the γ-aminobutyric acid (GABAA) receptor. Fifty-five male Sprague Dawley rats were divided into 5 groups: vehicle (DMSO), asiatic acid (AA), midazolam, or a combination of flumazenil + AA or midazolam + AA, and injected intraperitoneally 30 minutes prior to testing. The rats were tested on the Elevated Plus Maze (EPM) and the Forced Swim Test (FST). Data were analyzed using a two-tailed multivariate analysis of variance (MANOVA). Significance was found regarding the ratio of open arm time, maximum speed, and time spent mobile in the AA group and the midazolam + AA group (P < .05). Flumazenil decreased the anxiolytic effects, suggesting that AA modulates the benzodiazepine site on the GABAA receptor. Further studies are recommended to determine the efficacy of prolonged treatment for anxiety and depression.
An automated maze task for assessing hippocampus-sensitive memory in mice☆
Pioli, Elsa Y.; Gaskill, Brianna N.; Gilmour, Gary; Tricklebank, Mark D.; Dix, Sophie L.; Bannerman, David; Garner, Joseph P.
2014-01-01
Memory deficits associated with hippocampal dysfunction are a key feature of a number of neurodegenerative and psychiatric disorders. The discrete-trial rewarded alternation T-maze task is highly sensitive to hippocampal dysfunction. Normal mice have spontaneously high levels of alternation, whereas hippocampal-lesioned mice are dramatically impaired. However, this is a hand-run task and handling has been shown to impact crucially on behavioural responses, as well as being labour-intensive and therefore unsuitable for high-throughput studies. To overcome this, a fully automated maze was designed. The maze was attached to the mouse's home cage and the subject earned all of its food by running through the maze. In this study the hippocampal dependence of rewarded alternation in the automated maze was assessed. Bilateral hippocampal-lesioned mice were assessed in the standard, hand-run, discrete-trial rewarded alternation paradigm and in the automated paradigm, according to a cross-over design. A similarly robust lesion effect on alternation performance was found in both mazes, confirming the sensitivity of the automated maze to hippocampal lesions. Moreover, the performance of the animals in the automated maze was not affected by their handling history whereas performance in the hand-run maze was affected by prior testing history. By having more stable performance and by decreasing human contact the automated maze may offer opportunities to reduce extraneous experimental variation and therefore increase the reproducibility within and/or between laboratories. Furthermore, automation potentially allows for greater experimental throughput and hence suitability for use in assessment of cognitive function in drug discovery. PMID:24333574
Anxiolytic effect of saponins from Panax quinquefolium in mice.
Wei, Xiu-Yan; Yang, Jing-Yu; Wang, Jin-Hui; Wu, Chun-Fu
2007-05-22
The anxiolytic effect of the saponins from Aniliaeea Panax quinquefolium L. (PQS) was studied in male mice by using a number of experimental paradigms of anxiety and compared with that of the known anxiolytic compound diazepam. Use of the elevated plus-maze test revealed that PQS (50 mg/kg, p.o.) and diazepam (2.5 mg/kg, p.o.) increased the percentage of time and entries spent in open arms. In the light/dark test, PQS (50 and 100 mg/kg, p.o.) and diazepam (2.5 mg/kg, p.o.) prolonged the time spent in the light area. In the hole-board test, PQS (50 and 100 mg/kg, p.o.) and diazepam (2.5 mg/kg, p.o.) significantly increased both head-dip counts and head-dip duration. Both PQS (50 and 100 mg/kg, p.o.) and diazepam (2.5 mg/kg, p.o.) decreased the total fighting time in the isolation-induced aggressive test. Since PQS, in contrast to diazepam, had no effect on locomotion in these tests, its side-effect profile might be considered superior to the benzodiazepines. Thus, the present findings suggest that PQS might be a potential candidate for use as an anxiolytic drug.
Reward-Based Spatial Learning in Teens With Bulimia Nervosa.
Cyr, Marilyn; Wang, Zhishun; Tau, Gregory Z; Zhao, Guihu; Friedl, Eve; Stefan, Mihaela; Terranova, Kate; Marsh, Rachel
2016-11-01
To assess the functioning of mesolimbic and fronto-striatal areas involved in reward-based spatial learning in teenaged girls with bulimia nervosa (BN) that might be involved in the development and maintenance of maladaptive behaviors characteristic of the disorder. We compared functional magnetic resonance imaging blood oxygen level-dependent response in 27 adolescent girls with BN to that of 27 healthy, age-matched control participants during a reward-based learning task that required learning to use extra-maze cues to navigate a virtual 8-arm radial maze to find hidden rewards. We compared groups in their patterns of brain activation associated with reward-based spatial learning versus a control condition in which rewards were unexpected because they were allotted pseudo-randomly to experimentally prevent learning. Both groups learned to navigate the maze to find hidden rewards, but group differences in brain activity associated with maze navigation and reward processing were detected in the fronto-striatal regions and right anterior hippocampus. Unlike healthy adolescents, those with BN did not engage the right inferior frontal gyrus during maze navigation, activated the right anterior hippocampus during the receipt of unexpected rewards (control condition), and deactivated the left superior frontal gyrus and right anterior hippocampus during expected reward receipt (learning condition). These patterns of hippocampal activation in the control condition were significantly associated with the frequency of binge-eating episodes. Adolescents with BN displayed abnormal functioning of the anterior hippocampus and fronto-striatal regions during reward-based spatial learning. These findings suggest that an imbalance in control and reward circuits may arise early in the course of BN. Clinical trial registration information-An fMRI Study of Self-Regulation in Adolescents With Bulimia Nervosa; https://clinicaltrials.gov/; NCT00345943. Copyright © 2016 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Tiger salamanders' (Ambystoma tigrinum) response learning and usage of visual cues.
Kundey, Shannon M A; Millar, Roberto; McPherson, Justin; Gonzalez, Maya; Fitz, Aleyna; Allen, Chadbourne
2016-05-01
We explored tiger salamanders' (Ambystoma tigrinum) learning to execute a response within a maze as proximal visual cue conditions varied. In Experiment 1, salamanders learned to turn consistently in a T-maze for reinforcement before the maze was rotated. All learned the initial task and executed the trained turn during test, suggesting that they learned to demonstrate the reinforced response during training and continued to perform it during test. In a second experiment utilizing a similar procedure, two visual cues were placed consistently at the maze junction. Salamanders were reinforced for turning towards one cue. Cue placement was reversed during test. All learned the initial task, but executed the trained turn rather than turning towards the visual cue during test, evidencing response learning. In Experiment 3, we investigated whether a compound visual cue could control salamanders' behaviour when it was the only cue predictive of reinforcement in a cross-maze by varying start position and cue placement. All learned to turn in the direction indicated by the compound visual cue, indicating that visual cues can come to control their behaviour. Following training, testing revealed that salamanders attended to stimuli foreground over background features. Overall, these results suggest that salamanders learn to execute responses over learning to use visual cues but can use visual cues if required. Our success with this paradigm offers the potential in future studies to explore salamanders' cognition further, as well as to shed light on how features of the tiger salamanders' life history (e.g. hibernation and metamorphosis) impact cognition.
Li, Lei; Yu, Liling; Kong, Qingxia
2013-11-01
One of the major pathological characteristics of Alzheimer's disease (AD) is the presence of enhanced deposits of beta-amyloid peptide (Aβ). The neuropeptide galanin (GAL) and its receptors are overexpressed in degenerating brain regions in AD. The functional consequences of galaninergic systems plasticity in AD are unclear. The objective of the present study was to investigate whether exogenous galanin could attenuate spatial memory impairment and hippocampal Aβ aggregation in rat model of AD. The effects of Aβ, galanin, galanin receptor 1 agonist M617 and galanin receptor 2 agonist AR-M1896 on spatial memory were tested by Morris water maze. The effects of Aβ, galanin, M617 and AR-M1896 on hippocampal Aβ protein expression were evaluated by western blot assay. The expression of galanin, galanin receptors 1 and 2 in rats' hippocampus were detected by real time PCR and western blot assay. The results showed that (1) Galanin administration was effective in improving the spatial memory and decreasing hippocampal Aβ levels after intracerebroventricular injection of Aβ; (2) AR-M1896 rather than M617 could imitate these effects of galanin; (3) GAL and GALR2 mRNA and protein levels increased significantly in hippocampus after Aβ administration, while GALR1 mRNA and protein levels did not change; (4) GAL, AR-M1896 and M617 administration did not show significant effect on GAL, GalR1 and GalR2 mRNA and protein levels in hippocampus after Aβ administration. These results implied that galanin receptor 2, but not receptor 1 was involved in the protective effects against spatial memory impairment and hippocampal Aβ aggregation.
Ludwig, V; Mihov, Y; Schwarting, R K W
2008-05-16
Using the elevated plus-maze (EPM), Wistar rats can be distinguished into high (HA) or low anxiety (LA) subjects. These differences seem to reflect traits, since HA and LA rats vary also in other anxiety-dependent tasks, neurochemical mechanisms, and psychopharmacological reactivity, including lasting consequences after single treatment with 3,4-methylenedioxymethamphetamine (MDMA). Here, we tested whether multiple MDMA treatments also have subject-dependent effects. Based on routine EPM screening, male Wistar rats were divided into HA and LA sub-groups, which received five (i.e. multiple) daily injections of MDMA (5 mg/kg) or saline, followed by a test battery, including a challenge test with MDMA, a retest in the EPM, a novel-object test, and a final neurochemical analysis. Acutely, MDMA led to comparable hyperactivity in HA and LA rats. After multiple MDMA, behavioral sensitization was observed, especially in LA rats. Open arm time during the EPM retest (min 0-5) correlated with that of the initial one only in those rats, which had received a single injection of MDMA. Rats with multiple MDMA, especially LA-rats, showed more open-arm time and locomotion during the subsequent 5-10 min of the retest. In a novel-object test, rats with multiple MDMA, again especially LA subjects, showed more exploratory bouts towards the novel object. Neurochemically, multiple MDMA led to moderately lower serotonin in the ventral striatum, and higher dopamine levels in the frontal cortex as compared to single MDMA; these effects were also moderated by subject-dependent factors. Our data show that low-dosed multiple MDMA can lead to behavioral sensitization and outlasting consequences, which affect behavior in the EPM and a novel object task. Detecting such sequels partly requires consideration of individual differences.
Oosthuizen, Maria Kathleen; Scheibler, Anne-Gita; Bennett, Nigel Charles; Amrein, Irmgard
2013-01-01
A large number of laboratory and field based studies are being carried out on mole-rats, both in our research group and others. Several studies have highlighted the development of adverse behaviours in laboratory animals and have emphasised the importance of enrichment for captive animals. Hence we were interested in evaluating how laboratory housing would affect behavioural performance in mole-rats. We investigated exploratory behaviour, the ability to discriminate between novel and familiar environments and reference memory in the solitary Cape mole-rat (Georychus capensis). Our data showed that both wild and captive animals readily explore open spaces and tunnels. Wild animals were however more active than their captive counterparts. In the Y maze two trial discrimination task, wild animals failed to discriminate between novel and familiar environments, while laboratory housed mole-rats showed preferential spatial discrimination in terms of the length of time spent in the novel arm. The performance of the laboratory and wild animals were similar when tested for reference memory in the Y maze, both groups showed a significant improvement compared to the first day, from the 3rd day onwards. Wild animals made more mistakes whereas laboratory animals were slower in completing the task. The difference in performance between wild and laboratory animals in the Y-maze may be as a result of the lower activity of the laboratory animals. Laboratory maintained Cape mole-rats show classic behaviours resulting from a lack of stimulation such as reduced activity and increased aggression. However, they do display an improved novelty discrimination compared to the wild animals. Slower locomotion rate of the laboratory animals may increase the integration time of stimuli, hence result in a more thorough inspection of the surroundings. Unlike the captive animals, wild animals show flexibility in their responses to unpredictable events, which is an important requirement under natural living conditions.
Oosthuizen, Maria Kathleen; Scheibler, Anne-Gita; Charles Bennett, Nigel; Amrein, Irmgard
2013-01-01
A large number of laboratory and field based studies are being carried out on mole-rats, both in our research group and others. Several studies have highlighted the development of adverse behaviours in laboratory animals and have emphasised the importance of enrichment for captive animals. Hence we were interested in evaluating how laboratory housing would affect behavioural performance in mole-rats. We investigated exploratory behaviour, the ability to discriminate between novel and familiar environments and reference memory in the solitary Cape mole-rat ( Georychus capensis ). Our data showed that both wild and captive animals readily explore open spaces and tunnels. Wild animals were however more active than their captive counterparts. In the Y maze two trial discrimination task, wild animals failed to discriminate between novel and familiar environments, while laboratory housed mole-rats showed preferential spatial discrimination in terms of the length of time spent in the novel arm. The performance of the laboratory and wild animals were similar when tested for reference memory in the Y maze, both groups showed a significant improvement compared to the first day, from the 3rd day onwards. Wild animals made more mistakes whereas laboratory animals were slower in completing the task. The difference in performance between wild and laboratory animals in the Y-maze may be as a result of the lower activity of the laboratory animals. Laboratory maintained Cape mole-rats show classic behaviours resulting from a lack of stimulation such as reduced activity and increased aggression. However, they do display an improved novelty discrimination compared to the wild animals. Slower locomotion rate of the laboratory animals may increase the integration time of stimuli, hence result in a more thorough inspection of the surroundings. Unlike the captive animals, wild animals show flexibility in their responses to unpredictable events, which is an important requirement under natural living conditions. PMID:24040422
Neuronal nicotinic receptor antagonist reduces anxiety-like behavior in mice.
Roni, Monzurul Amin; Rahman, Shafiqur
2011-10-31
Brain cholinergic neurotransmission has been implicated in the modulation of anxiety in humans and evidence suggests that drugs targeting neuronal nicotinic acetylcholine receptor (nAChR) could have potential for the treatment of anxiety. The objective of present study was to examine anxiolytic effects of lobeline (0.04 or 0.1 mg/kg), a nAChR antagonist, in C57BL/6J mice using elevated plus-maze (EPM) and marble-burying test. Lobeline (0.04 mg/kg) significantly increased open arm time on EPM and reduced number of marbles buried. Similarly, mecamylamine (0.3 mg/kg) produced anxiolytic effects, while peripherally acting hexamethonium (0.3 mg/kg) failed to produce any response. These results provide evidence that lobeline has anxiolytic potential and nAChR antagonists may represent a new class of anxiolytics in humans. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Cline, Michael; Taylor, John E; Flores, Jesus; Bracken, Samuel; McCall, Suzanne; Ceremuga, Thomas E
2008-02-01
The purpose of our study was to investigate the anxiolytic effects of linalool and its potential interaction with the GABAA receptor in Sprague-Dawley rats. Lavender has been used traditionally as an herbal remedy in the treatment of many medical conditions, including anxiety. Linalool is a major component of the essential oil of lavender. Forty-four rats were divided into 4 groups: control, linalool, midazolam (positive control), and flumazenil and linalool. The behavioral and the neurohormonal/physiological components of anxiety were evaluated. The behavioral component was examined by using the elevated plus maze (open arm time/total time) and the neurohormonal/physiological component by measuring serum catecholamine and corticosterone levels. Data analysis was performed using a 2-tailed Multivariate Analysis of Variance and Sheffe post-hoc test. Our data suggest that linalool does not produce anxiolysis by modulation of the GABAA receptor; however, linalool may modulate motor movements and locomotion.
Gandhi, Réno M; Kogan, Cary S; Messier, Claude
2014-01-01
Fragile X Syndrome (FXS) is caused by the lack of expression of the fragile X mental retardation protein (FMRP), which results in intellectual disability and other debilitating symptoms including impairment of visual-spatial functioning. FXS is the only single-gene disorder that is highly co-morbid with autism spectrum disorder and can therefore provide insight into its pathophysiology. Lack of FMRP results in altered group I metabotropic glutamate receptor (mGluR) signaling, which is a target for putative treatments. The Hebb-Williams (H-W) mazes are a set of increasingly complex spatial navigation problems that depend on intact hippocampal and thus mGluR-5 functioning. In the present investigation, we examined whether an antagonist of mGluR-5 would reverse previously described behavioral deficits in fragile X mental retardation 1 knock-out (Fmr1 KO) mice. Mice were trained on a subset of the H-W mazes and then treated with either 20 mg/kg of an mGluR-5 antagonist, 2-Methyl-6-(phenylethynyl) pyridine (MPEP; n = 11) or an equivalent dose of saline (n = 11) prior to running test mazes. Latency and errors were dependent variables recorded during the test phase. Immediately after completing each test, marble-burying behavior was assessed, which confirmed that the drug treatment was pharmacologically active during maze learning. Although latency was not statistically different between the groups, MPEP treated Fmr1 KO mice made significantly fewer errors on mazes deemed more difficult suggesting a reversal of the behavioral deficit. MPEP treated mice were also less perseverative and impulsive when navigating mazes. Furthermore, MPEP treatment reversed post-synaptic density-95 (PSD-95) protein deficits in Fmr1 KO treated mice, whereas levels of a control protein (β-tubulin) remained unchanged. These data further validate MPEP as a potentially beneficial treatment for FXS. Our findings also suggest that adapted H-W mazes may be a useful tool to document alterations in behavioral functioning following pharmacological intervention in FXS.
Papp, Mariusz; Gruca, Piotr; Lason-Tyburkiewicz, Magdalena; Willner, Paul
2017-02-01
Ketamine is the prototype of a new generation of antidepressant drugs, which is reported in clinical studies to be effective in treatment-resistant patients, with an effect that appears within hours and lasts for a few days. Chronic mild stress (CMS) is a well-established and widely used animal model of depression, in which anhedonia, anxiogenesis and cognitive dysfunction can be observed reliably. Studies using acute or brief ketamine treatment following withdrawal from CMS have replicated the clinical finding of a rapid onset of antidepressant action. However, there have been no CMS studies of chronic daily ketamine treatment or continued stress following ketamine treatment, which would have greater translational potential in relation to the long-term maintenance of antidepressant effects. Wistar rats were drug treated following an initial 2 weeks of CMS exposure, which continued alongside daily drug treatment. A first experiment tested a range of chronic (5 weeks) ketamine doses (5-30 mg/kg); a second compared the effects of subacute (3-5 days) and chronic (5 weeks) treatment. CMS-induced anhedonic, anxiogenic and dyscognitive effects, as measured, respectively, by decreased sucrose intake, avoidance of open arms in the elevated plus maze and loss of discrimination in the novel object recognition test. A sustained antidepressant-like effect of ketamine in the sucrose intake test was observed in both experiments, with an onset at around 1 week, faster than imipramine, and an optimum dose of 10 mg/kg. Anxiogenic and dyscognitive effects of CMS, in the elevated plus maze and novel object recognition test, respectively, were fully reversed by both subacute and chronic ketamine treatment. Daily treatment with ketamine in the CMS model causes sustained long-term antidepressant, anxiolytic and procognitive effects. The demonstration of a procognitive effect of ketamine may have particular translational value.
Gacsályi, István; Móricz, Krisztina; Gigler, Gábor; Wellmann, János; Nagy, Katalin; Ling, István; Barkóczy, József; Haller, József; Lambert, Jeremy J; Szénási, Gábor; Spedding, Michael; Antoni, Ferenc A
2017-10-01
Previous work has shown that S44819 is a novel GABAA receptor (GABA A R) antagonist, which is selective for extrasynaptic GABA A Rs incorporating the α5 subunit (α5-GABA A Rs). The present study reports on the preclinical neuropsychopharmacological profile of S44819. Significantly, no sedative or pro-convulsive side effects of S44819 were found at doses up to 30 mg/kg i.p. Object recognition (OR) memory in intact mice was enhanced by S44819 (0.3 mg/kg p.o.) given before the acquisition trial. Mice treated with phencyclidine for two weeks and tested six days after the cessation of treatment failed to show OR memory. This deficit was corrected by a single administration of S44819 (0.1, 0.3 or 1 mg/kg p.o.) prior to the acquisition trial. The amnestic effect of ketamine in rats tested in the eight-arm radial maze (reference and working memory versions) was blocked by S44819 (3 mg/kg p.o.). Extinction of cued fear was preserved during treatment with S44819 (3 mg/kg/diem i.p.). Administration of S44819 had no significant effect in the Vogel-conflict test, the elevated plus maze, the forced swim, the marble-burying and the tail-suspension tests. In contrast, anxiolytic/antidepressant-like effects of the compound were found in paradigms that have mnemonic components, such as social interaction, fear-potentiated startle and social avoidance induced by negative life experience. In summary, S44819 enhanced intact recognition memory and ameliorated memory deficits induced by inhibition of NMDA receptors. Anxiolytic/antidepressant efficacy was limited to paradigms involving cognitive function. In conclusion, S44819 is a novel psychoactive pro-cognitive compound with potential as a therapeutic agent in dementia. Copyright © 2017 Elsevier Ltd. All rights reserved.
Llano Lopez, L; Hauser, J; Feldon, J; Gargiulo, P A; Yee, B K
2010-05-01
The Morris water maze (WM) is a common spatial memory test in rats. It has been adapted for evaluating genetic manipulations in mice. One major acknowledged problem of this cross-species translation is floating. We investigated here in mice the feasibility and practicality of an alternative paradigm-the cheeseboard (CB), which is a dry version of the WM, in a within-subject design allowing direct comparison with the conventional WM. Under identical task demands (reference or working memory), mice learned in the CB as efficiently as in the WM. Furthermore, individual differences in learning rate correlated between the two reference memory tests conducted separately in the two mazes. However, no such correlation was found with respect to reference memory retention or working memory performance. This study demonstrated that the CB is an effective alternative to the WM as spatial cognition test. Additional tests in the CB confirmed that the mice relied on extra maze cues in their spatial search. We would recommend the CB as a valuable addition to, rather than a replacement of the WM in phenotyping transgenic mice, because the two apparatus might diverge in the ability to detect individual differences in various domains of mnemonic functions.
P7C3 Attenuates the Scopolamine-Induced Memory Impairments in C57BL/6J Mice.
Jiang, Bo; Song, Lu; Huang, Chao; Zhang, Wei
2016-05-01
Memory impairment is the most common symptom in patients with Alzheimer's disease. The purpose of this study is to evaluate the memory enhancing effects of P7C3, a recently identified compound with robust proneurogenic and neuroprotective effects, on the cognitive impairment induced by scopolamine, a muscarinic acetylcholine receptor antagonist. Different behavior tests including the Y-maze, Morris water maze, and passive avoidance tests were performed to measure cognitive functions. Scopolamine significantly decreased the spontaneous alternation and step-through latency of C57BL/6J mice in Y-maze test and passive avoidance test, whereas increased the time of mice spent to find the hidden platform in Morris water maze test. Importantly, intraperitoneal administration of P7C3 effectively reversed those Scopolamine-induced cognitive impairments in C57BL/6J mice. Furthermore, P7C3 treatment significantly enhanced the level of brain-derived neurotrophic factor (BDNF) signaling pathway in the cortex and hippocampus, and the usage of selective BDNF signaling inhibitor fully blocked the anti-amnesic effects of P7C3. Therefore, these findings suggest that P7C3 could improve the scopolamine-induced learning and memory impairment possibly through activation of BDNF signaling pathway, thereby exhibiting a cognition-enhancing potential.
Refsgaard, Louise K; Pickering, Darryl S; Andreasen, Jesper T
2017-02-01
Evidence suggests that N-methyl-D-aspartate receptor (NMDAR) antagonists could be efficacious in treating depression and anxiety, but side effects constitute a challenge. This study evaluated the antidepressant-like and anxiolytic-like actions, and cognitive and motor side effects of four NMDAR antagonists. MK-801, ketamine, S-ketamine, RO 25-6981 and the positive control, citalopram, were tested for antidepressant-like and anxiolytic-like effects in mice using the forced-swim test, the elevated zero maze and the novelty-induced hypophagia test. Side effects were assessed using a locomotor activity test, the modified Y-maze and the rotarod test. All compounds increased swim distance in the forced-swim test. In the elevated zero maze, the GluN2B subtype-selective RO 25-6981 affected none of the measured parameters, whereas all other compounds showed anxiolytic-like effects. In the novelty-induced hypophagia test, citalopram and MK-801 showed anxiogenic-like action. All NMDAR antagonists induced hyperactivity. The high doses of ketamine and MK-801 impaired performance in the modified Y-maze test, whereas S-ketamine and RO 25-6891 showed no effects in this test. Only MK-801 impaired rotarod performance. The study supports that NMDARs could be a possible therapeutic target for treating depression and anxiety. However, selective antagonism of GluN2B subunit-containing NMDARs showed no effect on anxiety-like behaviours in this study.
Unbiased classification of spatial strategies in the Barnes maze.
Illouz, Tomer; Madar, Ravit; Clague, Charlotte; Griffioen, Kathleen J; Louzoun, Yoram; Okun, Eitan
2016-11-01
Spatial learning is one of the most widely studied cognitive domains in neuroscience. The Morris water maze and the Barnes maze are the most commonly used techniques to assess spatial learning and memory in rodents. Despite the fact that these tasks are well-validated paradigms for testing spatial learning abilities, manual categorization of performance into behavioral strategies is subject to individual interpretation, and thus to bias. We have previously described an unbiased machine-learning algorithm to classify spatial strategies in the Morris water maze. Here, we offer a support vector machine-based, automated, Barnes-maze unbiased strategy (BUNS) classification algorithm, as well as a cognitive score scale that can be used for memory acquisition, reversal training and probe trials. The BUNS algorithm can greatly benefit Barnes maze users as it provides a standardized method of strategy classification and cognitive scoring scale, which cannot be derived from typical Barnes maze data analysis. Freely available on the web at http://okunlab.wix.com/okunlab as a MATLAB application. eitan.okun@biu.ac.ilSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Fodor, Anna; Klausz, Barbara; Pintér, Ottó; Daviu, Nuria; Rabasa, Cristina; Rotllant, David; Balazsfi, Diana; Kovacs, Krisztina B; Nadal, Roser; Zelena, Dóra
2012-09-01
Early mother-infant relationships exert important long-term effects in offspring and are disturbed by factors such as postpartum depression. We aimed to clarify if lack of vasopressin influences maternal behavior paralleled by the development of a depressive-like phenotype. We compared vasopressin-deficient Brattleboro mothers with heterozygous and homozygous normal ones. The following parameters were measured: maternal behavior (undisturbed and separation-induced); anxiety by the elevated plus maze; sucrose and saccharin preference and forced swim behavior. Underlying brain areas were examined by c-fos immunocytochemistry among rest and after swim-stress. In another group of rats, vasopressin 2 receptor agonist was used peripherally to exclude secondary changes due to diabetes insipidus. Results showed that vasopressin-deficient rats spend less time licking-grooming their pups through a centrally driven mechanism. There was no difference between genotypes during the pup retrieval test. Vasopressin-deficient mothers tended to explore more the open arms of the plus maze, showed more preference for sucrose and saccharin and struggled more in the forced swim test, suggesting that they act as less depressive. Under basal conditions, vasopressin-deficient mothers had more c-fos expression in the medial preoptic area, shell of nucleus accumbens, paraventricular nucleus of the hypothalamus and amygdala, but not in other structures. In these areas the swim-stress-induced activation was smaller. In conclusion, vasopressin-deficiency resulted in maternal neglect due to a central effect and was protective against depressive-like behavior probably as a consequence of reduced activation of some stress-related brain structures. The conflicting behavioral data underscores the need for more sex specific studies. Copyright © 2012 Elsevier Inc. All rights reserved.
Girish, Chandrashekaran; Raj, Vishnu; Arya, Jayasree; Balakrishnan, Sadasivam
2013-06-15
Anxiolytic-like effects of dietary flavonoids are relatively well known. Ellagic acid is a naturally occurring flavonoid compound which is abundant in many plants and fruits. The present study was designed to investigate the antianxiety-like effect of ellagic acid in mice using an elevated plus-maze test. The involvement of the GABAergic and serotonergic systems in the antianxiety-like activity of ellagic acid was also studied. Our results showed that ellagic acid treatment (25, 50 and 100 mg/kg, p.o.), produced a significant increase in the percentage of time spent and entry into the open arms, with a profile comparable to that of diazepam (1 mg/kg, p.o.). Unlike diazepam, the anxiolytic doses of ellagic acid did not prolong the duration of sodium thiopental-induced loss of righting reflex, indicating that this flavonoid is non-hypnotic. The anxiolytic effect observed with ellagic acid treatment (25 mg/kg, p.o.) was antagonized by pretreatment with picrotoxin (a non-competitive GABAA receptor antagonist, 1 mg/kg, i.p.) and flumazenil (a benzodiazepine site antagonist, 1 mg/kg, i.p.) but not with p-chlorophenylalanine (a serotonin synthesis inhibitor, 100 mg/kg, i.p.) and pindolol (a β-adrenoceptors blocker/5-HT1A/1B receptor antagonist, 10 mg/kg, i.p.). Taken together, the data demonstrated that acute and chronic administration of ellagic acid to mice has produced antianxiety-like effect when tested in the elevated plus-maze. The experiments with different receptor blockers suggest an involvement of GABAergic system in the anxiolytic action of this bioflavonoid. However, this action is not seems to be mediated through serotonergic system. Copyright © 2013 Elsevier B.V. All rights reserved.
Thompson, Barbara L; Levitt, Pat
2015-01-01
Our laboratory discovered that the gene encoding the receptor tyrosine kinase, MET, contributes to autism risk. Expression of MET is reduced in human postmortem temporal lobe in autism and Rett Syndrome. Subsequent studies revealed a role for MET in human and mouse functional and structural cortical connectivity. To further understand the contribution of Met to brain development and its impact on behavior, we generated two conditional mouse lines in which Met is deleted from select populations of central nervous system neurons. Mice were then tested to determine the consequences of disrupting Met expression. Mating of Emx1 (cre) and Met (fx/fx) mice eliminates receptor signaling from all cells arising from the dorsal pallium. Met (fx/fx) and Nestin (cre) crosses result in receptor signaling elimination from all neural cells. Behavioral tests were performed to assess cognitive, emotional, and social impairments that are observed in multiple neurodevelopmental disorders and that are in part subserved by circuits that express Met. Met (fx/fx) /Emx1 (cre) null mice displayed significant hypoactivity in the activity chamber and in the T-maze despite superior performance on the rotarod. Additionally, these animals showed a deficit in spontaneous alternation. Surprisingly, Met (fx/fx; fx/+) /Nestin (cre) null and heterozygous mice exhibited deficits in contextual fear conditioning, and Met (fx/+) /Nestin (cre) heterozygous mice spent less time in the closed arms of the elevated plus maze. These data suggest a complex contribution of Met in the development of circuits mediating social, emotional, and cognitive behavior. The impact of disrupting developmental Met expression is dependent upon circuit-specific deletion patterns and levels of receptor activity.
Fountain, M D; Tao, H; Chen, C-A; Yin, J; Schaaf, C P
2017-07-01
MAGEL2 is one of five protein-coding, maternally imprinted, paternally expressed genes in the Prader-Willi syndrome (PWS)-critical domain on chromosome 15q11-q13. Truncating pathogenic variants of MAGEL2 cause Schaaf-Yang syndrome (SHFYNG) (OMIM #615547), a neurodevelopmental disorder related to PWS. Affected individuals manifest a spectrum of neurocognitive and behavioral phenotypes, including intellectual disability and autism spectrum disorder (ASD). Magel2 knockout mice carrying a maternally inherited, imprinted wild-type (WT) allele and a paternally inherited Magel2-lacZ knock-in allele, which abolishes endogenous Magel2 gene function, exhibit several features reminiscent of the human Prader-Willi phenotypes, including neonatal growth retardation, excessive weight gain after weaning and increased adiposity in adulthood. They were shown to have altered circadian rhythm, reduced motor activity and reduced fertility. An extensive assessment for autism-like behaviors in this mouse model was warranted, because of the high prevalence of ASD in human patients. The behavior of Magel2 knockout mice and their WT littermates were assayed via open field, elevated plus maze, tube, three-chamber and partition tests. Our studies confirm decreased horizontal activity of male and female mice and increased vertical activity of females, in the open field. Both sexes spent more time in the open arm of the elevated plus maze, suggestive of reductions in anxiety. Both sexes displayed a lack of preference for social novelty, via a lack of discrimination between known and novel partners in the partition test. The in-depth investigation of behavioral profiles caused by Magel2 loss-of-function helps to elucidate the etiology of behavioral phenotypes both for SHFYNG and PWS in general. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
ERIC Educational Resources Information Center
Shin, Jaehyun
2017-01-01
The purpose of this study was to examine the validity of two widely used Curriculum-Based Measurement (CBM) in reading--oral reading and maze task--in relation to reading comprehension on state tests using a meta-analysis. A total of 61 studies (132 correlations) were identified across Grades 1 to 10. A random-effects meta-analysis was conducted…
Distance and direction, but not light cues, support response reversal learning.
Wright, S L; Martin, G M; Thorpe, C M; Haley, K; Skinner, D M
2018-03-05
Across three experiments, we examined the cuing properties of metric (distance and direction) and nonmetric (lighting) cues in different tasks. In Experiment 1, rats were trained on a response problem in a T-maze, followed by four reversals. Rats that experienced a change in maze orientation (Direction group) or a change in the length of the start arm (Distance group) across reversals showed facilitation of reversal learning relative to a group that experienced changes in room lighting across reversals. In Experiment 2, rats learned a discrimination task more readily when distance or direction cues were used than when light cues were used as the discriminative stimuli. In Experiment 3, performance on a go/no-go task was equivalent using both direction and lighting cues. The successful use of both metric and nonmetric cues in the go/no-go task indicates that rats are sensitive to both types of cues and that the usefulness of different cues is dependent on the nature of the task.
Kruk, Marta; Miszkiel, Joanna; McCreary, Andrew C; Przegaliński, Edmund; Filip, Małgorzata; Biała, Grażyna
2012-01-01
The strong correlation between central histaminergic and cholinergic pathways on cognitive processes has been reported extensively. However, the role of histamine H(3) receptor mechanisms interacting with nicotinic mechanisms has not previously been extensively investigated. The current study was conducted to determine the interactions of nicotinic and histamine H(3) receptor systems with regard to learning and memory function using a modified elevated plus-maze test in mice. In this test, the latency for mice to move from the open arm to the enclosed arm (i.e., transfer latency) was used as an index of memory. We tested whether ABT-239 (4-(2-{2-[(2R)-2-methylpyrrolidinyl]ethyl}-benzofuran-5-yl), an H(3) receptor antagonist/inverse agonist, had influence on two different stages of memory, i.e., memory acquisition and consolidation (administered prior to or immediately after the first trial, respectively) and whether ABT-239 influenced nicotine-induced memory enhancement. Our results revealed that the acute administration of nicotine (0.035 and 0.175 mg/kg), but not of ABT-239 (0.1-3 mg/kg) reduced transfer latency in the acquisition and consolidation phases. In combination studies, concomitant administration of either ABT-239 (1 and 3 mg/kg) and nicotine (0.035 mg/kg), or ABT-239 (0.1 mg/kg) and nicotine (0.0175 mg/kg) further increased nicotine-induced improvement in both memory acquisition and consolidation. The present data confirm an important role for H(3) receptors in regulating nicotine-induced mnemonic effects since inhibition of H(3) receptors augmented nicotine-induced memory enhancement in mice.
Anxiety is correlated with running in adolescent female mice undergoing activity-based anorexia
Wable, Gauri S.; Min, Jung-Yun; Chen, Yi-Wen; Aoki, Chiye
2015-01-01
Activity-based anorexia (ABA) is a widely used animal model for identifying the biological basis of excessive exercise and starvation, two hallmarks of anorexia nervosa (AN). Anxiety is correlated with exercise in AN. Yet the anxiety level of animals in ABA has not been reported. We asked: Does food restriction as part of ABA induction change the anxiety level of animals? If so, is the degree of anxiety correlated with degree of hyperactivity? We used the open field test before food restriction and the elevated plus maze test (EPM) during food restriction to quantify anxiety among singly housed adolescent female mice and determined whether food restriction alone or combined with exercise (i.e., ABA induction) abates or increases anxiety. We show that food restriction, with or without exercise, reduced anxiety significantly, as measured by the proportion of entries into the open arms of EPM (35.73 %, p= .04). Moreover, ABA-induced individuals varied in their open arm time measure of anxiety and this value was highly and negatively correlated to the individual’s food restriction-evoked wheel activity during the 24 hours following the anxiety test (R = − .75, p= .004, N = 12). This correlation was absent among the exercise-only controls. Additionally, mice with higher increase in anxiety ran more following food restriction. Our data suggest that food restriction-evoked wheel running hyperactivity can be used as a reliable and continuous measure of anxiety in ABA. The parallel relationship between anxiety level and activity in AN and ABA-induced female mice strengthens the animal model. PMID:25730124
Kolyaduke, Olga V; Hughes, Robert N
2013-02-01
Subsequent behavioral effects in adulthood of daily exposure to MDMA during early or late adolescence were assessed in both male and female rats. From either postnatal day (PND) 35 (early adolescence) or PND45 (late adolescence), PVG/c rats of each sex were exposed via intraperitoneal injections to saline or 10mg/kg MDMA for 10 consecutive days. They were regularly weighed during treatment and again on PND90. At this age, their anxiety-related behavior was determined from frequencies of ambulation, rearing, grooming, defecation and occupancy of the center and corners of an open field, as well as entries into and time spent in the light compartment of a light-dark box. Spatial and working memories were assessed by preferences for a novel Y-maze arm, and by recognition of a novel object. MDMA-exposed rats gained less weight during treatment than saline controls but were heavier on PND90 depending on their sex or age when treated. As shown by decreased open-field ambulation (for males only) and increased defecation plus fewer entries into the light compartment of the light-dark box and entries into both arms of a Y maze, MDMA exposure increased adult anxiety-related behavior particularly for rats treated during late adolescence. There was no evidence of any effects on either spatial or working memory. Copyright © 2012 Elsevier Inc. All rights reserved.
Hemmati, Ali Asghar; Ahangarpour, Akram
2018-01-01
The present study aimed to evaluate the cinnamic acid effect on memory impairment, oxidative stress, and cholinergic dysfunction in streptozotocin (STZ)-induced diabetic model in mice. In this experimental study, 48 male Naval Medical Research Institute (NMRI) mice (30–35 g) were chosen and were randomly divided into six groups: control, cinnamic acid (20 mg/kg day, i.p. ), diabetic, and cinnamic acid-treated diabetic (10, 20 and 40 mg/kg day, i.p. ). Memory was impaired by administering an intraperitoneal STZ injection of 50 mg/kg. Cinnamic acid was injected for 40 days starting from the 21st day after confirming STZ-induced dementia to observe its therapeutic effect. Memory function was assessed using cross-arm maze, morris water maze and passive avoidance test. After the administration, biochemical parameters of oxidative stress and cholinergic function were estimated in the brain. Present data indicated that inducing STZ caused significant memory impairment, whereas administration of cinnamic acid caused significant and dose-dependent memory improvement. Assessment of brain homogenates indicated cholinergic dysfunction, increase in lipid peroxidation and reactive oxygen species (ROS) levels, and decrease in glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities in the diabetic group compared to the control animals, whereas cinnamic acid administration ameliorated these indices in the diabetic mice. The present study demonstrated that cinnamic acid improves memory by reducing the oxidative stress and cholinergic dysfunction in the brain of diabetic mice. PMID:29719448
Hemmati, Ali Asghar; Alboghobeish, Soheila; Ahangarpour, Akram
2018-05-01
The present study aimed to evaluate the cinnamic acid effect on memory impairment, oxidative stress, and cholinergic dysfunction in streptozotocin (STZ)-induced diabetic model in mice. In this experimental study, 48 male Naval Medical Research Institute (NMRI) mice (30-35 g) were chosen and were randomly divided into six groups: control, cinnamic acid (20 mg/kg day, i.p. ), diabetic, and cinnamic acid-treated diabetic (10, 20 and 40 mg/kg day, i.p. ). Memory was impaired by administering an intraperitoneal STZ injection of 50 mg/kg. Cinnamic acid was injected for 40 days starting from the 21st day after confirming STZ-induced dementia to observe its therapeutic effect. Memory function was assessed using cross-arm maze, morris water maze and passive avoidance test. After the administration, biochemical parameters of oxidative stress and cholinergic function were estimated in the brain. Present data indicated that inducing STZ caused significant memory impairment, whereas administration of cinnamic acid caused significant and dose-dependent memory improvement. Assessment of brain homogenates indicated cholinergic dysfunction, increase in lipid peroxidation and reactive oxygen species (ROS) levels, and decrease in glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities in the diabetic group compared to the control animals, whereas cinnamic acid administration ameliorated these indices in the diabetic mice. The present study demonstrated that cinnamic acid improves memory by reducing the oxidative stress and cholinergic dysfunction in the brain of diabetic mice.
NASA Astrophysics Data System (ADS)
Shukitt-Hale, B.; Casadesus, G.; Carey, A.; Rabin, B. M.; Joseph, J. A.
Previous studies have shown that radiation exposure, particularly to particles of high energy and charge (HZE particles), produces deficits in spatial learning and memory. These adverse behavioral effects are similar to those seen in aged animals. It is possible that these shared effects may be produced by the same mechanism; oxidative stress damage to the central nervous system caused by an increased release of reactive oxygen species is likely responsible for the deficits seen in aging and following irradiation. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. These rats have decrements in the ability to build spatial representations of the environment and they utilize non-spatial strategies to solve tasks. Furthermore, they show a lack of spatial preference, due to a decline in the ability to process or retain place (position of a goal with reference to a "map" provided by the configuration of numerous cues in the environment) information. These declines in spatial memory occur in measures dependent on both reference and working memory, and in the flexibility to reset mental images. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Supported by NASA Grants NAG9-1190 and NAG9-1529
Long-term behavioral consequences of prenatal MDMA exposure.
Thompson, Valerie B; Heiman, Justin; Chambers, James B; Benoit, Stephen C; Buesing, William R; Norman, Mantana K; Norman, Andrew B; Lipton, Jack W
2009-03-23
The current study sought to determine whether prenatal 3,4-methylenedioxy-N-methamphetamine (MDMA) exposure from E14-20 in the rat resulted in behavioral sequelae in adult offspring. Prenatal MDMA exposure results in increased dopaminergic fiber density in the prefrontal cortex, striatum and nucleus accumbens of young rats. Since these areas are critical in response to novelty, reward, attention and locomotor activity, we hypothesized that prenatal MDMA exposure would produce significant changes in the performance of tasks that examine such behaviors in adult rats. Adult rats prenatally exposed to MDMA exhibited greater activity and spent more time in the center during a novel open field test as compared to controls. This increased activity was not reflected in normal home cage activity. Prenatal exposure to MDMA did not affect feeding or food reward. It did not alter cocaine self-administration behaviors, nor did it have an effect on the locomotor response to amphetamine challenge. Finally, while prenatal MDMA did not affect performance in the radial arm maze or the Morris water maze (MWM), these animals demonstrated altered performance in a cued MWM paradigm. Prenatal MDMA exposure resulted in perseverative attendance to a hanging cue when the platform in the MWM was removed as compared to controls. Together, these data demonstrate that prenatal exposure to MDMA results in a behavioral phenotype in adult rats characterized by reduced anxiety, a heightened response to novelty, and "hyperattentiveness" to environmental cues during spatial learning.
Spatial water maze learning using celestial cues by the meadow vole, Microtus pennsylvanicus.
Kavaliers, M; Galea, L A
1994-03-31
The Morris water maze is widely used to evaluate to evaluate the spatial learning ability of rodents under laboratory settings. The present study demonstrates that reproductive male meadow voles, Microtus pennsylvanicus, are able to acquire and retain a spatial water maze task using celestial cues. Voles were able to acquire a modified outdoor Morris water maze task over 4 trials per day, whereby they had to learn and remember the location of a submerged hidden platform, using the position of the sun and associated celestial cues. Their proficiency on this task was related to the availability of the celestial cues, with voles displaying significantly poorer spatial navigation on overcast than clear days and when the testing time (and position of the sun and associated celestial cues) was shifted from morning to afternoon. These findings with meadow voles support the ecological relevance of the water maze task.
Holzmann, Iandra; Cechinel Filho, Valdir; Mora, Ticiana C.; Cáceres, Armando; Martínez, Jose Vicente; Cruz, Sully M.; de Souza, Márcia Maria
2011-01-01
There are few studies on the pharmacological properties of Valeriana prionophylla Standl. (VP), known as “Valeriana del monte”, and used in Mesoamerican folk medicine to treat sleep disorders. This study examines the pharmacological effects of the hydroalcoholic extract of the dry rhizome using the open field, rota rod, elevated plus-maze (EPM), forced swimming (FST), strychnine- and pentobarbital-induced sleeping time, PTZ-induced seizures, and the inhibitory avoidance tests. VP did not show any protective effect against PTZ-induced convulsions. In the EPM, exhibited an anxiolytic-like effect through the effective enhancement of the entries (38.5%) and time spent (44.7%) in the open arms, when compared with control group. Time spent and the numbers of entrances into the enclosed arms were decreased, similar to those effects observed with diazepam. In the FST, acute treatment with VP, produced a dose-dependent decrease in immobility time, similarly to imipramine. VP also produced a significant dose-dependent decrease in the latency of sleeping time, while producing an increase in total duration of sleep; influenced memory consolidation of the animals only at lower doses, unlike those that produced anti-depressant and anxiolytic effects. In summary, the results suggest that VP presents several psychopharmacological activities, including anxiolytic, antidepressant, and hypno-sedative effects. PMID:21754942
Guimarães Marques, Marcia J.; Reyes-Garcia, Selvin Z.; Marques-Carneiro, José E.; Lopes-Silva, Leonardo B.; Andersen, Monica L.; Cavalheiro, Esper A.; Scorza, Fulvio A.; Scorza, Carla A.
2018-01-01
Proechimys are small terrestrial rodents from Amazon rainforest. Each animal species is adapted to a specific environment in which the animal evolved therefore without comparative approaches unique characteristics of distinct species cannot be fully recognized. Laboratory rodents are exceedingly inbred strains dissociated from their native habitats and their fundamental ecological aspects are abstracted. Thus, the employment of exotic non-model species can be informative and complement conventional animal models. With the aim of promoting comparative studies between the exotic wildlife populations in the laboratory and traditional rodent model, we surveyed a type of synaptic plasticity intimately related to memory encoding in animals. Using theta-burst paradigm, in vitro long-term potentiation (LTP) in the CA1 subfield of hippocampal slices was assessed in the Amazon rodents Proechimys and Wistar rats. Memory, learning and anxiety were investigated through the plus-maze discriminative avoidance task (PM-DAT) and object recognition test. In PM-DAT, both animal species were submitted to two test sessions (3-h and 24-h) after the conditioning training. Proechimys exhibited higher anxiety-like behavior in the training session but during test sessions both species exhibited similar patterns of anxiety-related behavior. After 3-h of the training, Proechimys and Wistar spent significantly less time in the aversive enclosed arm than in the non-aversive arm. But, at 24-h after training, Wistar rats remained less time in the aversive closed arm in comparison with the non-aversive one, while Proechimys rodents spent the same amount of time in both enclosed arms. In the object recognition test, both species were evaluated at 24-h after the acquisition session and similar findings than those of the PM-DAT (24-h) were obtained, suggesting that long-term memory duration did not persist for 24-h in the Amazon rodent. Field excitatory post-synaptic potentials recordings revealed that LTP decays rapidly over time reaching basal levels at 90 min after theta-burst stimulation in Proechimys, contrasting to the stable LTP found in the Wistar rats which was observed throughout 3-h recording period. These findings suggest a link between the LTP decay and the lack of 24-h long-lasting memory process in Proechimys. Nevertheless, why early-phase LTP in Proechimys decays very rapidly remains to be elucidated. PMID:29410617
Guimarães Marques, Marcia J; Reyes-Garcia, Selvin Z; Marques-Carneiro, José E; Lopes-Silva, Leonardo B; Andersen, Monica L; Cavalheiro, Esper A; Scorza, Fulvio A; Scorza, Carla A
2018-01-01
Proechimys are small terrestrial rodents from Amazon rainforest. Each animal species is adapted to a specific environment in which the animal evolved therefore without comparative approaches unique characteristics of distinct species cannot be fully recognized. Laboratory rodents are exceedingly inbred strains dissociated from their native habitats and their fundamental ecological aspects are abstracted. Thus, the employment of exotic non-model species can be informative and complement conventional animal models. With the aim of promoting comparative studies between the exotic wildlife populations in the laboratory and traditional rodent model, we surveyed a type of synaptic plasticity intimately related to memory encoding in animals. Using theta-burst paradigm, in vitro long-term potentiation (LTP) in the CA1 subfield of hippocampal slices was assessed in the Amazon rodents Proechimys and Wistar rats. Memory, learning and anxiety were investigated through the plus-maze discriminative avoidance task (PM-DAT) and object recognition test. In PM-DAT, both animal species were submitted to two test sessions (3-h and 24-h) after the conditioning training. Proechimys exhibited higher anxiety-like behavior in the training session but during test sessions both species exhibited similar patterns of anxiety-related behavior. After 3-h of the training, Proechimys and Wistar spent significantly less time in the aversive enclosed arm than in the non-aversive arm. But, at 24-h after training, Wistar rats remained less time in the aversive closed arm in comparison with the non-aversive one, while Proechimys rodents spent the same amount of time in both enclosed arms. In the object recognition test, both species were evaluated at 24-h after the acquisition session and similar findings than those of the PM-DAT (24-h) were obtained, suggesting that long-term memory duration did not persist for 24-h in the Amazon rodent. Field excitatory post-synaptic potentials recordings revealed that LTP decays rapidly over time reaching basal levels at 90 min after theta-burst stimulation in Proechimys , contrasting to the stable LTP found in the Wistar rats which was observed throughout 3-h recording period. These findings suggest a link between the LTP decay and the lack of 24-h long-lasting memory process in Proechimys . Nevertheless, why early-phase LTP in Proechimys decays very rapidly remains to be elucidated.
Vicens, Paloma; Carrasco, M. Carmen; Redolat, Rosa
2003-01-01
This research aimed to evaluate the effect of nicotine treatment and prior training on a spatial learning task in differently aged NMRI male mice. In a longitudinal study, mice were randomly assigned to one of 14 experimental groups receiving different combinations of chronically injected nicotine (0.35 mg/kg) administered for 10 days (5 days before and during 5 days acquisition of task) or control treatments and training in the water maze at different ages. The mice displayed shorter escape latencies when evaluated at 6 and 10 months than when tested in this task at 2 months for the first time, demonstrating that early training preserves performance in the water maze up to 8 months after the initial experience. Nicotine treatment did not significantly change performance in the water maze at any age tested. Early practice in a spatial reference memory task appears to have lasting consequences and can potentially contribute to preventing some age-related spatial learning deficits. PMID:15152984
Pooriamehr, Alireza; Sabahi, Parviz; Miladi-Gorji, Hossein
2017-08-24
Chronic morphine exposure during puberty increased morphine-induced rewarding effects and sensitization in the next generation. Given the well-known beneficial effects of environmental enrichment on the severity of physical and psychological dependence on morphine, we examined effects of enriched environment during morphine abstinence in morphine dependent parental rats before mating on the anxiety and depressive-like behaviors, and voluntary morphine consumption in their offspring. Paternal and/or maternal rats were injected with bi-daily doses (10mg/kg, 12h intervals) of morphine for 14days followed by rearing in a standard environment (SE) or enriched environment (EE) during 30days of morphine abstinence before mating. The pubertal male and female rat offspring were tested for anxiety (the elevated plus maze- EPM) and depression (sucrose preference test-SPT), and voluntary morphine consumption using a two-bottle choice (TBC) paradigm. The results showed that EE experience in morphine-dependent both parents result in an increase in the percentage of time spent into open arms/time spent on both arms using EPM in male offspring, higher levels of sucrose preference in female offspring and lower levels of voluntary morphine consumption in male and female offspring. Thus, EE experience in morphine-dependent both parents reduced anxiety, depressive-like behavior and also the voluntary morphine consumption in their offspring during puberty which may prevent the vulnerability of the next generation to drug abuse. Copyright © 2017 Elsevier B.V. All rights reserved.
Maurmann, Natasha; Reolon, Gustavo Kellermann; Rech, Sandra Beatriz; Fett-Neto, Arthur Germano; Roesler, Rafael
2011-01-01
Plants of the genus Valeriana (Valerianaceae) are used in traditional medicine as a mild sedative, antispasmodic and tranquilizer in many countries. This study was undertaken to explore the neurobehavioral effects of systemic administration of a valepotriate extract fraction of known quantitative composition of Valeriana glechomifolia (endemic of southern Brazil) in mice. Adult animals were treated with a single intraperitoneal injection of valepotriate fraction (VF) in the concentrations of 1, 3 or 10 mg kg−1, or with vehicle in the pre-training period before each behavioral test. During the exploration of an open field, mice treated with 10 mg kg−1 of VF showed reduced locomotion and exploratory behavior. Although overall habituation sessions for locomotion and exploratory behavior among vehicle control and doses of VF were not affected, comparison between open-field and habituation sessions within each treatment showed that VF administration at 1 and 10 mg kg−1 impaired habituation. In the elevated plus-maze test, mice treated with VF (10 mg kg−1) showed a significant increase in the percentage of time spent in the open arms without significant effects in the number of total arm entries. VF at 3 mg kg−1 produced an impairment of novel-object recognition memory. In contrast, VF did not affect fear-related memory assessed in an inhibitory avoidance task. The results indicate that VF can have sedative effects and affect behavioral parameters related to recognition memory. PMID:20047889
Prenatal and lactational exposure to low-doses of bisphenol A alters adult mice behavior.
Nakamura, Keiko; Itoh, Kyoko; Dai, Hongmei; Han, Longzhe; Wang, Xiaohang; Kato, Shingo; Sugimoto, Tohru; Fushiki, Shinji
2012-01-01
Bisphenol A (BPA) is an endocrine-disrupting chemical, widely used in dentistry and various industries. We previously reported that BPA affected murine neocortical development by accelerating neuronal differentiation/migration, resulting in abnormal neocortical architecture as well as aberrant thalamocortical connections in the brains of adult mice. The aim of this study was to investigate whether prenatal and lactational BPA exposure affected behavior in adult mice. Pregnant mice were injected subcutaneously with 20μg/kg of BPA daily from embryonic day 0 (E0) until postnatal day 21 (P21). Control animals received a vehicle alone. Behavioral tests (n=15-20) were conducted at postnatal 3weeks (P3W) and P10-15W. After an open-field test, an elevated plus maze and Morris water maze tests were performed. The total distance in the elevated plus maze test at P3W and in the open-field test at P10W was significantly decreased in the BPA-exposed group, compared with the control group. Significant sex differences were observed in the time spent in the central area in the open-field test at P3W and in the total distance in the elevated plus maze test at P11W. These results indicated that prenatal and lactational BPA exposure disturbed the murine behavior in the postnatal development period and the adult mice. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Han, Song-Hee; Kim, Sung-June; Yun, Young Won; Nam, Sang Yoon; Lee, Hu-Jang; Lee, Beom-Jun
2018-03-01
This study was performed to investigate the effect of a concentrate of fermented wild ginseng root culture (HLJG0701) on memory improvement in the scopolamine (SPL)-induced memory-deficient mouse model. Eight-week-old male ICR mice were used to evaluate the protective effect of HLJG0701 against the SPL-induced memory loss animal model. The Morris water maze test, which measures hippocampus-dependent learning ability, and the Y-maze test, a short-term memory assessment test, were performed and related markers were analyzed. HLJG0701-treated groups displayed significantly reduced acetylcholinesterase activity and increased acetylcholine level compared with the SPL-administered group (SPL-G) ( P <0.05). In the Y-maze test, the spontaneous alternation in al HLJG0711-treated groups was significantly increased compared with that in SPL-G ( P <0.05). In the Morris water maze test, the escape latency and time spent in the target quadrant in all HLJG0701-treated groups were significantly decreased and increased, respectively, compared with those in SPL-G ( P <0.05). In addition, the brain-derived neurotrophic factor level in groups treated with HLJG0701 300 and 600 mg/kg body weight was significantly increased compared with that in SPL-G ( P <0.05). These results suggest that the HLJG0701 may protect against memory loss by inhibiting acetylcholinesterase activity and preventing acetylcholine deficiency.
Laureano-Melo, Roberto; Império, Güínever Eustáquio do; da Silva-Almeida, Claudio; Kluck, George Eduardo Gabriel; Cruz Seara, Fernando de Azevedo; da Rocha, Fábio Fagundes; da Silveira, Anderson Luiz Bezerra; Reis, Luís Carlos; Ortiga-Carvalho, Tania Maria; da Silva Côrtes, Wellington
2015-11-01
Selenium is a micronutrient which is part of selenoprotein molecules and participates in a vast number of physiological roles and, among them,we have fetal and neonatal development. Therefore, the aimof this studywas to evaluate possible behavioral changes in offspring of female rats supplemented during pregnancy and lactation with sodium selenite. To address that, we treated two groups of female rats by saline or sodium selenite at a dose of 1mg/kg through oral route and performed neurochemical and behavioral tests. In the offspring, the thyroid profile and hippocampal neurochemistrywere evaluated. Behavioral testswere performed in pups both during childhood and adulthood. We found out that selenium (Se) supplementation increased serum levels of triiodothyronine (25%, p b 0.001) and thyroxine (18%, p b 0.05) and promoted a tryptophan hydroxylase 2 (TPH 2) expression decrease (17%, p b 0.01) and tyrosine hydroxylase (TH) expression increase (202%, p b 0.01) in the hippocampus. The cholinesterase activity was decreased (28%, p b 0.01) in Se supplemented rats, suggesting a neurochemical modulation in the hippocampal activity. During childhood, the Sesupplemented offspring had a reduction in anxiety-like behavior both in elevated plus maze test and in light–dark box test. In adulthood, Se-treated pups had an increase in the locomotor activity (36%, p b 0.05) and in rearing episodes (77%, p b 0.001) in the open field test, while in the elevated plus maze test they also exhibited an increase in the time spent in the open arms (243%, p b 0.01). For the object recognition test, Se-treated offspring showed increase in the absolute (230.16%, p b 0.05) and relative index discrimination (234%, p b 0.05). These results demonstrate that maternal supplementation by sodium selenite promoted psychobiological changes both during childhood and adulthood. Therefore, the behavioral profile observed possibly can be explained by neurochemical changes induced by thyroid hormones during the critical period of the central nervous system ontogeny.
Ashwell, Rachel; Ito, Rutsuko
2014-01-01
The prelimbic and infralimbic regions of the rat medial prefrontal cortex (mPFC) are important components of the limbic cortico-striatal circuit, receiving converging projections from the hippocampus (HPC) and amygdala. Mounting evidence points to these regions having opposing roles in the regulation of the expression of contextual fear and context-induced cocaine-seeking. To investigate this functional differentiation in motivated behavior further, this study employed a novel radial maze task previously shown to be dependent on the integrity of the hippocampus and its functional connection to the nucleus accumbens (NAc) shell, to investigate the effects of selective excitotoxic lesions of the prelimbic (PL) and infralimbic (IL) upon the spatial contextual control over reward learning. To this end, rats were trained to develop discriminative responding towards a reward-associated discrete cue presented in three out of six spatial locations (3 arms out of 6 radial maze arms), and to avoid the same discrete cue presented in the other three spatial locations. Once acquired, the reward contingencies of the spatial locations were reversed, such that responding to the cue presented in a previously rewarded location was no longer rewarded. Furthermore, the acquisition of spatial learning was probed separately using conditioned place preference (CPP) and the monitoring of arm selection at the beginning of each training session. Lesions of the PL transiently attenuated the acquisition of the initial cue approach training and spatial learning, while leaving reversal learning intact. In contrast, IL lesions led to a significantly superior performance of spatial context-dependent discriminative cue approach and reversal learning, in the absence of a significant preference for the new reward-associated spatial locations. These results indicate that the PL and IL have functionally dissociative, and potentially opposite roles in the regulation of spatial contextual control over appetitive learning. PMID:24616678
Etaee, Farshid; Asadbegi, Masoumeh; Taslimi, Zahra; Shahidi, Siamak; Sarihi, Abdolrahman; Soleimani Asl, Sara; Komaki, Alireza
2017-08-10
Methamphetamine (Meth) abuse and dependence are major global problems. Most of previous studies showed that Meth is anxiogenic. While buprenorphine (Bup) is used to treat anxiety-related behaviors, the effects of Meth in combination with Bup on anxiety-like behavior are unclear. In this study, we examined the effects of these drugs on anxiety-like behavior with the elevated plus maze (EPM) and open field (OF) tests, which are widely used to assess anxiety-like behavior in small rodents. Forty male Wistar rats were divided into four groups: sham, Meth, Bup, and Bup+Meth. The groups were administered their assigned treatments for 7days. The time spent in the open arms, and number of total entries into the arms (total activity) in the EPM were recorded. In addition, locomotor activity and number of entrances into the center area in the OF were recorded. The 7-day administration of Meth or Bup increased open arm exploration in the EPM. In contrast, the combined administration of Bup and Meth had the opposite effects. In addition, Meth and Bup had no effects on total and locomotor activity. Furthermore, the rats in the Meth and Bup groups spent more time in the center of the OF, while the group given both Bup and Meth spent less time in the center of the OF. The administration of Meth and Bup alone was anxiolytic in rats, whereas the coadministration of Bup and Meth was anxiogenic. Copyright © 2017 Elsevier B.V. All rights reserved.
Memory deficits associated with sublethal cyanide poisoning relative to cyanate toxicity in rodents.
Kimani, S; Sinei, K; Bukachi, F; Tshala-Katumbay, D; Maitai, C
2014-03-01
Food (cassava) linamarin is metabolized into neurotoxicants cyanide and cyanate, metabolites of which we sought to elucidate the differential toxicity effects on memory. Young 6-8 weeks old male rats were treated intraperitoneally with either 2.5 mg/kg body weight (bw) cyanide (NaCN), or 50 mg/kg bw cyanate (NaOCN), or 1 μl/g bw saline, daily for 6 weeks. Short-term and long-term memories were assessed using a radial arm maze (RAM) testing paradigm. Toxic exposures had an influence on short-term working memory with fewer correct arm entries (F(2, 19) = 4.57 p < 0.05), higher working memory errors (WME) (F(2, 19) = 5.09, p < 0.05) and longer RAM navigation time (F(2, 19) = 3.91, p < 0.05) for NaOCN relative to NaCN and saline treatments. The long-term working memory was significantly impaired by cyanide with fewer correct arm entries (F(2, 19) = 7.45, p < 0.01) and increased working memory errors (F(2, 19) = 9.35 p < 0.05) in NaCN relative to NaOCN or vehicle treated animals. Reference memory was not affected by either cyanide or cyanate. Our study findings provide an experimental evidence for the biological plausibility that cassava cyanogens may induce cognition deficits. Differential patterns of memory deficits may reflect the differences in toxicity mechanisms of NaOCN relative to NaCN. Cognition deficits associated with cassava cyanogenesis may reflect a dual toxicity effect of cyanide and cyanate.
Memory deficits associated with sublethal cyanide poisoning relative to cyanate toxicity in rodents
Kimani, S.; Sinei, K.; Bukachi, F.; Tshala-Katumbay, D.; Maitai, C.
2014-01-01
Background Food (cassava) linamarin is metabolized into neurotoxicants cyanide and cyanate, metabolites of which we sought to elucidate the differential toxicity effects on memory. Methods Young 6-8 weeks old male rats were treated intraperitoneally with either 2.5 mg/kg body weight (bw) cyanide (NaCN), or 50 mg/kg bw cyanate (NaOCN), or 1 μl/g bw saline, daily for 6 weeks. Short-term and long-term memories were assessed using a radial arm maze (RAM) testing paradigm. Results Toxic exposures had an influence on short-term working memory with fewer correct arm entries (F 2, 19 = 4.57 p <0.05), higher working memory errors (WME) (F 2, 19 = 5.09, p <0.05) and longer RAM navigation time (F2, 19 = 3.91, p <0.05) for NaOCN relative to NaCN and saline treatments. The long-term working memory was significantly impaired by cyanide with fewer correct arm entries (F 2, 19 = 7.45, p <0.01) and increased working memory errors (F 2, 19 = 9.35 p <0.05) in NaCN relative to NaOCN or vehicle treated animals. Reference memory was not affected by either cyanide or cyanate. Conclusion Our study findings provide an experimental evidence for the biological plausibility that cassava cyanogens may induce cognition deficits. Differential patterns of memory deficits may reflect the differences in toxicity mechanisms of NaOCN relative to NaCN. Cognition deficits associated with cassava cyanogenesis may reflect a dual toxicity effect of cyanide and cyanate. PMID:24293006
Hattori, Satoko; Takao, Keizo; Tanda, Koichi; Toyama, Keiko; Shintani, Norihito; Baba, Akemichi; Hashimoto, Hitoshi; Miyakawa, Tsuyoshi
2012-01-01
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. PACAP is widely expressed throughout the brain and exerts its functions through the PACAP-specific receptor (PAC1). Recent studies reveal that genetic variants of the PACAP and PAC1 genes are associated with mental disorders, and several behavioral abnormalities of PACAP knockout (KO) mice are reported. However, an insufficient number of backcrosses was made using PACAP KO mice on the C57BL/6J background due to their postnatal mortality. To elucidate the effects of PACAP on neuropsychiatric function, the PACAP gene was knocked out in F1 hybrid mice (C57BL/6J × 129SvEv) for appropriate control of the genetic background. The PACAP KO mice were then subjected to a behavioral test battery. PACAP deficiency had no significant effects on neurological screen. As shown previously, the mice exhibited significantly increased locomotor activity in a novel environment and abnormal anxiety-like behavior, while no obvious differences between genotypes were shown in home cage (HC) activity. In contrast to previous reports, the PACAP KO mice showed normal prepulse inhibition (PPI) and slightly decreased depression-like behavior. Previous study demonstrates that the social interaction (SI) in a resident-intruder test was decreased in PACAP KO mice. On the other hand, we showed that PACAP KO mice exhibited increased SI in Crawley's three-chamber social approach test, although PACAP KO had no significant impact on SI in a HC. PACAP KO mice also exhibited mild performance deficit in working memory in an eight-arm radial maze (RM) and the T-maze (TM), while they did not show any significant abnormalities in the left-right discrimination task in the TM. These results suggest that PACAP has an important role in the regulation of locomotor activity, social behavior, anxiety-like behavior and, potentially, working memory. PMID:23060763
Wanasuntronwong, Aree; Jansri, Ukkrit; Srikiatkhachorn, Anan
2017-01-03
Patients with medication-overuse headache suffer not only from chronic headache, but often from psychiatric comorbidities, such as anxiety and depression. The mechanisms underlying these comorbidities are unclear, but the amygdala is likely to be involved in their pathogenesis. To investigate the mechanisms underlying the comorbidities we used elevated plus maze and open field tests to assess anxiety-like behavior in rats chronically treated with analgesics. We measured the electrical properties of neurons in the amygdala, and examined the cortical spreading depression (CSD)-evoked expression of Fos in the trigeminal nucleus caudalis (TNC) and amygdala of rats chronically treated with analgesics. CSD, an analog of aura, evokes Fos expression in the TNC of rodents suggesting trigeminal nociception, considered to be a model of migraine. Increased anxiety-like behavior was seen both in elevated plus maze and open field tests in a model of medication overuse produced in male rats by chronic treatment with aspirin or acetaminophen. The time spent in the open arms of the maze by aspirin- or acetaminophen-treated rats (53 ± 36.1 and 37 ± 29.5 s, respectively) was significantly shorter than that spent by saline-treated vehicle control rats (138 ± 22.6 s, P < 0.001). Chronic treatment with the analgesics increased the excitability of neurons in the central nucleus of the amygdala as indicated by their more negative threshold for action potential generation (-54.6 ± 5.01 mV for aspirin-treated, -55.2 ± 0.97 mV for acetaminophen-treated, and -31.50 ± 5.34 mV for saline-treated rats, P < 0.001). Chronic treatment with analgesics increased the CSD-evoked expression of Fos in the TNC and amygdala [18 ± 10.2 Fos-immunoreactive (IR) neurons per slide in the amygdala of rats treated with aspirin, 11 ± 5.4 IR neurons per slide in rats treated with acetaminophen, and 4 ± 3.7 IR neurons per slide in saline-treated control rats, P < 0.001]. Chronic treatment with analgesics can increase the excitability of neurons in the amygdala, which could underlie the anxiety seen in patients with medication-overuse headache.
Nie, Lina; Di, Tianqi; Li, Yu; Cheng, Peng; Li, Ming; Gao, Jun
2018-06-23
Appetitive aspect of rat maternal behavior, such as pup retrieval, is motivationally driven and sensitive to dopamine disturbances. Activation or blockade of dopamine D 2 receptors causes a similar disruption of pup retrieval, which may also reflect an increase in maternal anxiety and/or a disruption of executive function. Recent work indicates that serotonin 5-HT 2A receptors also play an important role in rat maternal behavior. Given the well-known modulation of 5-HT 2A on the mesolimbic and mesocortical dopamine functions, the present study examined the extent to which blockade of 5-HT 2A receptors on dopamine D 2 -mediated maternal effects using a pup retrieval on the elevated plus maze (EPM) test. Sprague-Dawley postpartum female rats were acutely injected with quinpirole (a D 2 agonist, 0.10 and 0.25 mg/kg, sc), or haloperidol (a D 2 antagonist, 0.1 or 0.2 mg/kg, sc), in combination of MDL100907 (a 5-HT 2A receptor antagonist, 1.0 mg/kg, sc, 30 min before quinpirole or haloperidol injection) or saline and tested at 30, 90 and 240 min after quinpirole or haloperidol injection on postpartum days 3 and 7. Quinpirole and haloperidol decreased the number of pup retrieved (an index of maternal motivation) and sequential retrieval score (an index of executive function), prolonged the pup retrieval latencies, reduced the percentage of time spent on the open arms (an index of maternal anxiety), and decreased the distance travelled on the maze in a dose-dependent and time-dependent fashion. MDL100907 treatment by itself had no effect on pup retrieval, but it exacerbated the quinpirole-induced disruption of pup retrieval, but had no effect on the haloperidol-induced one. These findings suggest a complex interactive effect between 5-HT 2A and D 2 receptors on one or several maternal processes (maternal motivation, anxiety and executive function), and support the idea that one molecular mechanism by which 5-HT 2A receptors mediate maternal behavior is through its modulation of D 2 receptors. Copyright © 2018. Published by Elsevier Inc.
Protective Effects of Lithium on Sumatriptan-Induced Memory Impairment in Mice.
Nikoui, Vahid; Javadi-Paydar, Mehrak; Salehi, Mahtab; Behestani, Selda; Dehpour, Ahmad-Reza
2016-04-01
Lithium is a drug used for the treatment of bipolar disorder. It has several mechanisms of action, and recently it is shown that lithium can antagonize the 5-HT1B/1D serotonin receptors. Sumatriptan is a 5-HT1B/1D receptor agonist used for the treatment of cluster headaches and migraine which might cause memory impairment as a potential side effect. In this study, effects of lithium on sumatriptan-induced memory impairment have been determined in a two-trial recognition Y-maze and passive avoidance tests. Male mice weighing 25-30 g were divided into several groups randomly. In Y-maze test, effects of lithium (1,5,10,20,40,80 mg/kg) and sumatriptan (1,5,10 mg/kg) were assessed on memory acquisition, then lithium (0.1,1,10 mg/kg) and sumatriptan (1,10 mg/kg) were studied in passive avoidance test. Effects of lithium (1mg/kg) on sumatriptan (10 mg/kg)-induced memory impairment were studied in both of tests. The present study demonstrated that sumatriptan impaired memory in Y-maze and passive avoidance tests (P<0.05, P<0.01, respectively). Lithium did not show any significant effect on memory function compared to saline-treated control group in both tests (P>0.05), but significantly reversed sumatriptan-induced memory impairment in Y-maze and passive avoidance tests (P<0.001, P<0.05, respectively). It is concluded that lithium reverses the sumatriptan-induced memory impairment probably through 5-HT1B/1D receptors antagonism.
Schulz, Daniela; Buddenberg, Tim; Huston, Joseph P
2007-05-01
In former studies, we found evidence for the hypothesis that withdrawal of negative reinforcement presents a major source for stress and despair. Specifically, the removal of a hidden platform in the water maze induced extinction of previously reinforced escape behavior and behavioral immobility, indicative of "despair", which also correlated with indices of fear. Here, we tested the effects of antidepressants on extinction in the water maze, and expected that such drugs would attenuate the rate of extinction of a conditioned place preference (CPP) and also any emotionally relevant behavior that is induced by the loss of reinforcement, such as immobility. Adult male Wistar rats were trained to escape onto a hidden platform for 10 days. Daily treatment with desipramine hydrochloride (DMI, 10mg/kg) or fluoxetine (FLX, 10 mg/kg) commenced 1 day before the first of 11 extinction trials without the platform, administered 48 h apart, and continued thereafter, as the rats were tested in an open field and elevated-plus maze. As compared to controls, DMI increased the resistance-to-extinction of CPP, attenuated immobility, and increased wall climbing behavior. In the open field, DMI reduced activity levels, but was without effect on traditional fear parameters in the elevated-plus maze. FLX, by contrast, increased immobility during the extinction trials and fear in the elevated-plus maze. The withdrawal of reinforcement induced "despair" that was alleviated by the noradrenaline reuptake inhibitor DMI. The effects of the selective serotonin reuptake inhibitor FLX on immobility and fear may be explained in terms of its side effect profile.
Guccione, Lisa; Djouma, Elvan; Penman, Jim; Paolini, Antonio G
2013-02-17
Among its many beneficial effects, calorie restriction (CR) has also been found to reduce anxiety related behavior in the rodent. With heightened levels of stress and anxiety implicated as a key precipitating factor of relapse and alcohol addiction, it was found that a 25% CR in addition to inducing anxiolytic effects also had the capacity to reduce intake of alcohol and inhibit relapse within a model of operant self-administration. The aim of this study was to investigate if a 25% CR would also display similar effects in a two-bottle free choice paradigm, whereby 24 h ad libitum access to both 10% ethanol and water is provided. All animals were initially tested on the elevated plus maze (EPM) and open field test prior to commencing the two-bottle free choice paradigm. Differences between control and CR25% animals demonstrated the anxiolytic effects of CR, with the CR25% group displaying greater percentage of open arm/total arm duration and open arm/total arm entries in the EPM. During the acquisition phase of the two-bottle free choice paradigm, CR25% animals showed a reduced intake of 10% ethanol in ml/kg, in comparison to the control group. Whilst control animals displayed a strong preference for 10% ethanol, the CR25% group consumed both 10% ethanol and water equally with no differences found in total fluid intake between groups. Similarly this was also the case following forced deprivation. In addition to reduced intake and lack of preference for 10% ethanol, CR 25% animals unlike controls failed to display a typical alcohol deprivation effect following abstinence. Taken collectively the results of this study suggest that CR may act as a protective factor against addiction and relapse in the alcohol preferring (iP) rat. In addition, given CR25% animals did not display a preference for 10% ethanol, results also suggest that CR may be altering the hedonic impact of ethanol within this group. Copyright © 2012 Elsevier Inc. All rights reserved.
Ari, Csilla; Kovács, Zsolt; Juhasz, Gabor; Murdun, Cem; Goldhagen, Craig R.; Koutnik, Andrew P.; Poff, Angela M.; Kesl, Shannon L.; D’Agostino, Dominic P.
2016-01-01
Nutritional ketosis has been proven effective for seizure disorders and other neurological disorders. The focus of this study was to determine the effects of ketone supplementation on anxiety-related behavior in Sprague-Dawley (SPD) and Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. We tested exogenous ketone supplements added to food and fed chronically for 83 days in SPD rats and administered sub-chronically for 7 days in both rat models by daily intragastric gavage bolus followed by assessment of anxiety measures on elevated plus maze (EPM). The groups included standard diet (SD) or SD + ketone supplementation. Low-dose ketone ester (LKE; 1,3-butanediol-acetoacetate diester, ~10 g/kg/day, LKE), high dose ketone ester (HKE; ~25 g/kg/day, HKE), beta-hydroxybutyrate-mineral salt (βHB-S; ~25 g/kg/day, KS) and βHB-S + medium chain triglyceride (MCT; ~25 g/kg/day, KSMCT) were used as ketone supplementation for chronic administration. To extend our results, exogenous ketone supplements were also tested sub-chronically on SPD rats (KE, KS and KSMCT; 5 g/kg/day) and on WAG/Rij rats (KE, KS and KSMCT; 2.5 g/kg/day). At the end of treatments behavioral data collection was conducted manually by a blinded observer and with a video-tracking system, after which blood βHB and glucose levels were measured. Ketone supplementation reduced anxiety on EPM as measured by less entries to closed arms (sub-chronic KE and KS: SPD rats and KSMCT: WAG/Rij rats), more time spent in open arms (sub-chronic KE: SPD and KSMCT: WAG/Rij rats; chronic KSMCT: SPD rats), more distance traveled in open arms (chronic KS and KSMCT: SPD rats) and by delayed latency to entrance to closed arms (chronic KSMCT: SPD rats), when compared to control. Our data indicates that chronic and sub-chronic ketone supplementation not only elevated blood βHB levels in both animal models, but reduced anxiety-related behavior. We conclude that ketone supplementation may represent a promising anxiolytic strategy through a novel means of inducing nutritional ketosis. PMID:27999529
Four-Dimensional Spatial Reasoning in Humans
ERIC Educational Resources Information Center
Aflalo, T. N.; Graziano, M. S. A.
2008-01-01
Human subjects practiced navigation in a virtual, computer-generated maze that contained 4 spatial dimensions rather than the usual 3. The subjects were able to learn the spatial geometry of the 4-dimensional maze as measured by their ability to perform path integration, a standard test of spatial ability. They were able to travel down a winding…
ERIC Educational Resources Information Center
Witzel, Jeffrey; Witzel, Naoko
2016-01-01
This study investigates preverbal structural and semantic processing in Japanese, a head-final language, using the maze task. Two sentence types were tested--simple scrambled sentences (Experiment 1) and control sentences (Experiment 2). Experiment 1 showed that even for simple, mono-clausal Japanese sentences, (1) there are online processing…
2017-09-01
water maze hippocampus neurogenesis synaptic plasticity neurotrophins corticosterone priming inflammatory mediators gene expression...remaining studies conducted on the project at the University of Illinois at Chicago. The Morris water maze was the initial behavioral test of spatial...experience with this paradigm. In this test a mouse must learn the location of an escape platform by swimming in a pool of water at room temperature
Hoeger, Harald; Bubna-Littitz, Herrmann; Engelmann, Mario; Schwerdtner, Ingrid; Schmid, Diethard; Lahoda, Robert; Seidl, Rainer; Lubec, Gert; Lubec, Barbara
2003-07-01
In a recent publication, we described neurodegeneration along with neurotransmitter deficits and impaired differentiation in the guinea pig 3 months following severe perinatal asphyxia (PA). We were therefore interested in the clinical features in terms of neurology, cognitive functions, and behavior. We tested the long-term effects of PA in an animal model, which in the rat are well documented and resemble the clinical situation. Examinations consisted of an observational battery for motor and reflex functions and the acoustic startle response setting. We tested cognitive functions in the multiple T-maze and evaluated behavior using the elevated plus maze and open field studies. No neurologic deficits were observed in the observational battery, including the acoustic startle response. Cognitive functions of memory and learning were not impaired in the multiple T-maze. In the open field and in the elevated plus maze, the system to test anxiety-related behavior, guinea pigs performed well. Our findings of patent neurology, cognitive functions, and behavior do not reflect the prominent morphologic findings of neurodegeneration. This is in agreement with corresponding studies on PA in the rat at the identical time point. We learned from this study that both test systems, although representing the standard in neuroscience, are either not sensitive enough or central nervous system lesions are clinically fully compensated.
Coimbra, Norberto C; Paschoalin-Maurin, Tatiana; Bassi, Gabriel S; Kanashiro, Alexandre; Biagioni, Audrey F; Felippotti, Tatiana T; Elias-Filho, Daoud H; Mendes-Gomes, Joyce; Cysne-Coimbra, Jade P; Almada, Rafael C; Lobão-Soares, Bruno
2017-01-01
To compare prey and snake paradigms performed in complex environments to the elevated plus-maze (EPM) and T-maze (ETM) tests for the study of panic attack- and anticipatory anxiety-like behaviors in rodents. PubMed was reviewed in search of articles focusing on the plus maze test, EPM, and ETM, as well as on defensive behaviors displayed by threatened rodents. In addition, the authors' research with polygonal arenas and complex labyrinth (designed by the first author for confrontation between snakes and small rodents) was examined. The EPM and ETM tests evoke anxiety/fear-related defensive responses that are pharmacologically validated, whereas the confrontation between rodents and snakes in polygonal arenas with or without shelters or in the complex labyrinth offers ethological conditions for studying more complex defensive behaviors and the effects of anxiolytic and panicolytic drugs. Prey vs. predator paradigms also allow discrimination between non-oriented and oriented escape behavior. Both EPM and ETM simple labyrinths are excellent apparatuses for the study of anxiety- and instinctive fear-related responses, respectively. The confrontation between rodents and snakes in polygonal arenas, however, offers a more ethological environment for addressing both unconditioned and conditioned fear-induced behaviors and the effects of anxiolytic and panicolytic drugs.
Li, Qian; Wu, Fengjuan; Wen, Min; Yanagita, Teruyoshi; Xue, Changhu; Zhang, Tiantian; Wang, Yuming
2018-02-01
Alzheimer's disease (AD) is a common neurodegenerative disorder, and oxidative stress plays a vital role in its progression. Antarctic krill oil (AKO) is rich in polyunsaturated fatty acids, which has various biological activities, such as improving insulin sensitivity, alleviating inflammation and ameliorating oxidative stress. In this study, the protective effect of AKO against AD were investigated in senescence-accelerated prone mouse strain 8 (SAMP8) mice. Results showed that treatment with AKO could effectively ameliorate learning and memory deficits and ease the anxiety in SAMP8 mice by Morris water maze, Barnes maze test and open-field test. Further analysis indicated that AKO might reduce β-amyloid (Aβ) accumulation in hippocampus through decreasing the contents of malondialdehyde (MDA) and 7,8-dihydro-8-oxoguanine (8-oxo-G), increasing the superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in the brain of SAMP8 mice. The results of Morris water maze, Barnes maze test and open-field test indicated that Antarctic krill oil (AKO) improved the cognitive function and anxiety of SAMP8 mice. AKO reduced the Aβ 42 level in hippocampus of SAMP8 mice. AKO ameliorated oxidative stress in brain rather than in serum and liver of SAMP8 mice. © 2018 Institute of Food Technologists®.
Effect of Different Starvation Levels on Cognitive Ability in Mice
NASA Astrophysics Data System (ADS)
Li, Xiaobing; Zhi, Guoguo; Yu, Yi; Cai, Lingyu; Li, Peng; Zhang, Danhua; Bao, Shuting; Hu, Wenlong; Shen, Haiyan; Song, Fujuan
2018-01-01
Objective: To study the effect of different starvation levels on cognitive ability in mice. Method: Mice were randomly divided into four groups: normal group, dieting group A, dieting group B, dieting group C. The mice of normal group were given normal feeding amount, the rest of groups were given 3/4 of normal feeding amount, 2/4 of normal feeding amount and 1/4 of normal feeding amount. After feeding mice four days, the weight was observed and T-maze experiment, Morris water maze test, open field test and Serum Catalase activity were detected. Result: Compared with the normal group, the correct rate of the intervention group in the T-maze experiment was decreased and dieting group A> dieting group B> dieting group C. In the Morris water maze test, Compared with the normal group, the correct rate of the intervention group was increased. Among these three intervention groups, dieting group A had the highest correct rate and the difference of dieting group B and dieting group C were similar. In the open field test, Compared with the normal group, the exploration rate of the surrounding environment in the intervention group was increased. In the Serum Catalase test, Compared with the normal group, the activities of serum peroxidase in the intervention groups were decreased and dieting group A> dieting group B> dieting group C. Conclusion: A certain level of starvation could affect the cognitive ability of mice. In a certain range, the level of starvation is inversely proportional to cognitive ability in mice.
Merritt, Jennifer; Rhodes, Justin S.
2014-01-01
Moderate levels of aerobic exercise broadly enhance cognition throughout the lifespan. One hypothesized contributing mechanism is increased adult hippocampal neurogenesis. Recently, we measured the effects of voluntary wheel running on adult hippocampal neurogenesis in 12 different mouse strains, and found increased neurogenesis in all strains, ranging from 2 to 5 fold depending on the strain. The purpose of this study was to determine the extent to which increased neurogenesis from wheel running is associated with enhanced performance on the water maze for 5 of the 12 strains, chosen based on their levels of neurogenesis observed in the previous study (C57BL/6J, 129S1/SvImJ, B6129SF1/J, DBA/2J, and B6D2F1/J). Mice were housed with or without a running wheels for 30 days then tested for learning and memory on the plus water maze, adapted for multiple strains, and rotarod test of motor performance. The first 10 days, animals were injected with BrdU to label dividing cells. After behavioral testing animals were euthanized to measure adult hippocampal neurogenesis using standard methods. Levels of neurogenesis depended on strain but all mice had a similar increase in neurogenesis in response to exercise. All mice acquired the water maze but performance depended on strain. Exercise improved water maze performance in all strains to a similar degree. Rotarod performance depended on strain. Exercise improved rotarod performance only in DBA/2J and B6D2F1/J mice. Taken together, results demonstrate that despite different levels of neurogenesis, memory performance and motor coordination in these mouse strains, all strains have the capacity to increase neurogenesis and improve learning on the water maze through voluntary wheel running. PMID:25435316
Memory modulates journey-dependent coding in the rat hippocampus
Ferbinteanu, J.; Shirvalkar, P.; Shapiro, M. L.
2011-01-01
Neurons in the rat hippocampus signal current location by firing in restricted areas called place fields. During goal-directed tasks in mazes, place fields can also encode past and future positions through journey-dependent activity, which could guide hippocampus-dependent behavior and underlie other temporally extended memories, such as autobiographical recollections. The relevance of journey-dependent activity for hippocampal-dependent memory, however, is not well understood. To further investigate the relationship between hippocampal journey-dependent activity and memory we compared neural firing in rats performing two mnemonically distinct but behaviorally identical tasks in the plus maze: a hippocampus-dependent spatial navigation task, and a hippocampus-independent cue response task. While place, prospective, and retrospective coding reflected temporally extended behavioral episodes in both tasks, memory strategy altered coding differently before and after the choice point. Before the choice point, when discriminative selection of memory strategy was critical, a switch between the tasks elicited a change in a field’s coding category, so that a field that signaled current location in one task coded pending journeys in the other task. After the choice point, however, when memory strategy became irrelevant, the fields preserved coding categories across tasks, so that the same field consistently signaled either current location or the recent journeys. Additionally, on the start arm firing rates were affected at comparable levels by task and journey, while on the goal arm firing rates predominantly encoded journey. The data demonstrate a direct link between journey-dependent coding and memory, and suggest that episodes are encoded by both population and firing rate coding. PMID:21697365
Aher, Yogesh D.; Subramaniyan, Saraswathi; Shanmugasundaram, Bharanidharan; Sase, Ajinkya; Saroja, Sivaprakasam R.; Holy, Marion; Höger, Harald; Beryozkina, Tetyana; Sitte, Harald H.; Leban, Johann J.; Lubec, Gert
2016-01-01
Various psychostimulants targeting monoamine neurotransmitter transporters (MATs) have been shown to rescue cognition in patients with neurological disorders and improve cognitive abilities in healthy subjects at low doses. Here, we examined the effects upon cognition of a chemically synthesized novel MAT inhibiting compound 2-(benzhydrylsulfinylmethyl)-4-methylthiazole (named as CE-104). The efficacy of CE-104 in blocking MAT [dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter] was determined using in vitro neurotransmitter uptake assay. The effect of the drug at low doses (1 and 10 mg/kg) on spatial memory was studied in male rats in the radial arm maze (RAM). Furthermore, the dopamine receptor and transporter complex levels of frontal cortex (FC) tissue of trained and untrained animals treated either with the drug or vehicle were quantified on blue native PAGE (BN-PAGE). The drug inhibited dopamine (IC50: 27.88 μM) and norepinephrine uptake (IC50: 160.40 μM), but had a negligible effect on SERT. In the RAM, both drug-dose groups improved spatial working memory during the performance phase of RAM as compared to vehicle. BN-PAGE Western blot quantification of dopamine receptor and transporter complexes revealed that D1, D2, D3, and DAT complexes were modulated due to training and by drug effects. The drug’s ability to block DAT and its influence on DAT and receptor complex levels in the FC is proposed as a possible mechanism for the observed learning and memory enhancement in the RAM. PMID:26941626
Behavioral Traits are Affected by Selective Breeding for Increased Wheel-Running Behavior in Mice
Jónás, I.; Schubert, K. A.; Reijne, A. C.; Scholte, J.; Garland, T.; Gerkema, M. P.; Scheurink, A. J. W.; Nyakas, C.
2010-01-01
Voluntary physical activity may be related to personality traits. Here, we investigated these relations in two mouse lines selectively bred for high voluntary wheel-running behavior and in one non-selected control line. Selection lines were more explorative and “information gathering” in the open-field test, either with increased upright positions or horizontal locomotion toward the middle ring. Furthermore, one of the selection lines had an increased risk-taking behavior relative to the control line in approaching a novel object placed in the center of the open field. However, anxiety behavior was increased in selection lines during the plus-maze test. Maze learning was not statistically different among lines, but routine behavior was increased in both selection lines when the maze exit after 2 days of testing was displaced. Specifically, in the displaced maze, selected mice traveled more frequently to the old, habituated exit, bypassing the new exit attached to their home cage. Although the generality of the results would need to be confirmed in future studies including all eight lines in the selection experiment, the increased routine and exploratory behavior (at least in the lines used in the present study) may be adaptive to sustain high activity levels. PMID:20369280
Effects of caffeine on behavioural and cognitive deficits in rats.
Assis, Melissa S; Soares, Aluízio C; de Sousa, Dircilei N; Eudes-Filho, João; Faro, Lilian Rosana F; Carneiro, Fabiana P; da Silva, Mônica V; Motoyama, Andrea B; de Souza, Greice Maria R; Marchiori, Stéphanie; de Lima, Nadyelle T; Boëchat-Barros, Raphael; Ferreira, Vania M
2018-05-07
There are many studies that have sought to find drug therapies to prevent harm arising from sepsis. Such studies have represented a progress in the support to septic patients and also in the development of new pharmacological alternatives. Our interest was to investigate the caffeine effect on sepsis behavioural and memory impairments. Male rats were anaesthetized and the surgery was made to allow exposure of the cecum, which was then squeezed to extrude a small amount of faeces from the perforation site, which was later placed back into the peritoneal cavity. This procedure, which served to generate experimental sepsis, is herein referred to as ceccum ligation and perforation (CLP). The caffeine (10 mg/kg) was administered by gavage route, once daily, during 7 or 14 consecutive days to investigate the effects of acute or subchronic caffeine treatment on long-term behavioural and cognitive deficits induced by CLP. On the last day, one hour after caffeine administration, the animals were submitted to open-field, elevated plus-maze (EPM), forced swimming, and step-down inhibitory avoidance tests. The results showed that caffeine increased the percentage of open arm entries and open arm time in the EPM test, and reduced the immobility time when compared to the sham-operated group. The caffeine also increased the latency in the inhibitory avoidance test platform. Our results demonstrated that the caffeine improved behavioural changes and improved the neurocognitive deficits of sepsis-surviving animals. It is possible that blockage of the adenosine receptors may be responsible for the results here observed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Spangler, Edward L; Patel, Namisha; Speer, Dorey; Hyman, Michael; Hengemihle, John; Markowska, Alicja; Ingram, Donald K
2002-02-01
Two strains of the senescence accelerated mouse, P8 and R1,were tested in footshock-motivated passive avoidance (PA; P8, 3-21 months; R1, 3-24 months) and 14-unit T-maze (P8 and R1, 9, and 15 months) tasks. For PA, entry to a dark chamber from a lighted chamber was followed by a brief shock. Latency to enter the dark chamber 24 hours later served as a measure of retention. Two days of active avoidance training in a straight runway preceded 2 days (8 trials/day) of testing in the 14-unit T-maze. For PA retention, older P8 mice entered the dark chamber more quickly than older R1 mice, whereas no differences were observed between young P8 or R1 mice. In the 14-unit T-maze, age-related learning performance deficits were reflected in higher error scores for older mice. P8 mice were actually superior learners; that is, they had lower error scores compared with those of age-matched R1 counterparts. Although PA learning results were in agreement with other reports, results obtained in the 14-unit T-maze were not consistent with previous reports of learning impairments in the P8 senescence accelerated mouse.
Specific and diversive curiosity in gifted elementary students.
Johnson, L; Beer, J
1992-10-01
Twenty-nine gifted students in Grades 2 to 6 from the small school districts in north central Kansas completed the Maze test and the Which-to-Discuss test. Background information such as age, sex, grade, and marital status of parents was also collected. There were no significant differences between boys and girls or for students from divorced and nondivorced parents on either the Which-to-Discuss test (specific curiosity) or the Maze test scores (diversive curiosity). The students scored significantly higher on the former test than chance guessing which suggests the students were displaying specific curiosity. Scores of these gifted students on these two tests of curiosity were significantly and positively correlated.
Maaroufi, Karima; Had-Aissouni, Laurence; Melon, Christophe; Sakly, Mohsen; Abdelmelek, Hafedh; Poucet, Bruno; Save, Etienne
2014-01-01
The increasing use of mobile phone technology over the last decade raises concerns about the impact of high frequency electromagnetic fields (EMF) on health. More recently, a link between EMF, iron overload in the brain and neurodegenerative disorders including Parkinson's and Alzheimer's diseases has been suggested. Co-exposure to EMF and brain iron overload may have a greater impact on brain tissues and cognitive processes than each treatment by itself. To examine this hypothesis, Long-Evans rats submitted to 900 MHz exposure or combined 900 MHz EMF and iron overload treatments were tested in various spatial learning tasks (navigation task in the Morris water maze, working memory task in the radial-arm maze, and object exploration task involving spatial and non spatial processing). Biogenic monoamines and metabolites (dopamine, serotonin) and oxidative stress were measured. Rats exposed to EMF were impaired in the object exploration task but not in the navigation and working memory tasks. They also showed alterations of monoamine content in several brain areas but mainly in the hippocampus. Rats that received combined treatment did not show greater behavioral and neurochemical deficits than EMF-exposed rats. None of the two treatments produced global oxidative stress. These results show that there is an impact of EMF on the brain and cognitive processes but this impact is revealed only in a task exploiting spontaneous exploratory activity. In contrast, there are no synergistic effects between EMF and a high content of iron in the brain. Copyright © 2013 Elsevier B.V. All rights reserved.
Loxton, David; Canales, Juan J
2017-03-06
A high proportion of young methamphetamine (MA) users simultaneously consume alcohol. However, the potential neurological and behavioural alterations induced by such a drug combination have not been systematically examined. We studied in adolescent rats the long-term effects of alcohol, MA, and alcohol and MA combined on anxiety-like behaviour, memory, and neurogenesis in the adult hippocampus. Rats received saline, ethanol (ETOH, 1.5g/kg), MA (MA, 2mg/kg), or ethanol and MA combined (ETHOH-MA, 1.5g/kg ethanol plus 2mg/kg MA) via oral gavage, once daily for 5 consecutive days. Open field (OF), elevated plus maze (EPM) and radial arm maze (RAM) tests were conducted following a 15-day withdrawal period. The results showed alterations in exploratory behaviour in the OF in the MA and ETOH-MA groups, and anxiety-like effects in the EPM in all three drug treatment groups. All three drug groups exhibited reference memory deficits in the RAM, but only the combination treatment group displayed alterations in working memory. Both MA and ETOH-MA treatments increased the length of doublecortin (DCX)-void gaps in the dentate gyrus but only ETOH-MA treatment increased the number of such gaps. An increased number and length of DCX-void gaps correlated with decreased exploratory activity in the OF, and impaired working memory in the RAM was associated with an augmented number of gaps. These findings suggest that alterations in adult hippocampal neurogenesis are linked to the persistent cognitive and behavioural deficits produced by alcohol and MA exposure. Copyright © 2016 Elsevier Inc. All rights reserved.
Gray, Vanessa C; Hughes, Robert N
2015-03-15
In an effort to address the need to include both sexes in studies of effects of the SSRI fluoxetine, the NRI reboxetine and the SNRI venlafaxine on anxiety-related behavior and memory along with the use of chronic drug administration, male and female PVG/c rats were fed diets containing two doses of each drug for 21 days. The rats' anxiety level was then assessed in an open field. Short-term spatial memory for a brightness change in a Y maze was also measured. While there was little evidence of anxiolytic effects of any of the drugs, both fluoxetine and, to a lesser extent, venlafaxine appeared to be mainly anxiogenic in their action depending on both dose and sex. Reboxetine was relatively ineffective in this respect. Ability to locate the Y-maze arm that had changed (from white to black) seemed to be impaired for male (but not female) rats by both fluoxetine and venlafaxine and, to a much lesser extent, by reboxetine. Given the relative ineffectiveness of reboxetine in either test, it is possible that the effects of the other two drugs on both anxiety and memory were mainly due to their serotonin reuptake inhibiting properties. The differences that occurred between males and females in responsiveness to all three drugs supported the long-held view that both sexes should be investigated in studies of this sort, especially in view of reports of sex differences in effects of clinically prescribed antidepressants. Copyright © 2014 Elsevier B.V. All rights reserved.
NMDA/glutamate mechanism of magnesium-induced anxiolytic-like behavior in mice.
Poleszak, Ewa; Wlaź, Piotr; Wróbel, Andrzej; Fidecka, Sylwia; Nowak, Gabriel
2008-01-01
The anxiolytic-like activity of magnesium in mice during the elevated plus maze (EPM) has been demonstrated previously. In the present study, we examined the involvement of NMDA/glutamate receptor ligands on the magnesium effect on the EPM. We demonstrated that low, ineffective doses of NMDA antagonists (the competitive NMDA antagonist CGP 37849, 0.3 mg/kg; an antagonist of the glycineB sites, L-701,324, 1 mg/kg; a partial agonist of the glycineB sites, D-cycloserine, 2.5 mg/kg; and the non-competitive NMDA antagonist MK-801, 0.05 mg/kg) administered together with an ineffective dose of magnesium (10 mg/kg) evoked a significant increase in the percentage of time spent in the open arm of the maze (an index of anxiety). Moreover, magnesium-induced anxiolytic-like activity (20 mg/kg) was antagonized by D-serine (100 nmol/mouse), an agonist of glycineB site of the NMDA receptor complex. The present study demonstrates the involvement of the NMDA/glutamate pathway in the magnesium anxiolytic-like activity in the EPM in mice, and that this activity particularly involves the glycineB sites.
Wang, Jixiang; Zhang, Yuliang; Guo, Zhenzhen; Li, Rui; Xue, Xingchen; Sun, Zilong; Niu, Ruiyan
2018-04-01
To investigate the effects of perinatal fluoride exposure on learning and memory ability of mouse offspring, ICR female mice were received different doses of sodium fluoride (0, 25, 50, 100 mg/L NaF) from pregnant day 7 to lactational day 21. Pups were exposed to fluoride through the cord blood and breast milk. Open field test showed that compared to the control group, perinatal fluoride exposure significantly decreased the number of entries into the center zone in 100 mg/L NaF group. In the eight-arm maze test, the number of working memory errors, reference memory errors, and the total arm entries were significantly increased in fluoride treatment groups, compared to the control group. Additionally, 100 mg/L NaF significantly elevated the expression levels of miR-124, miR-132, and DiGeorge syndrome chromosomal region 8 (DGCR8) in hippocampus of mouse pups at postnatal day (PND) 21. Contrarily, methyl CpG binding protein 2 (MeCP2) were dramatically reduced in 50 and 100 mg/L NaF groups, while cAMP-response element binding protein (CREB) mRNA level was significantly decreased in all fluoride groups. These findings suggested that the impairment of learning and memory in mouse offspring induced by perinatal fluoride exposure may partly result from the enhanced miR-124 and miR-132 and the alterations of their target genes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Piracetam Attenuates LPS-Induced Neuroinflammation and Cognitive Impairment in Rats.
Tripathi, Alok; Paliwal, Pankaj; Krishnamurthy, Sairam
2017-11-01
The present study was performed to investigate the effect of piracetam on neuroinflammation induced by lipopolysaccharide (LPS) and resulting changes in cognitive behavior. Neuroinflammation was induced by a single dose of LPS solution infused into each of the lateral cerebral ventricles in concentrations of 1 μg/μl, at a rate of 1 μl/min over a 5-min period, with a 5-min waiting period between the two infusions. Piracetam in doses of 50, 100, and 200 mg/kg i.p. was administered 30 min before LPS infusion and continued for 9 days. On ninth day, the behavioral test for memory and anxiety was done followed by blood collection and microdissection of the hippocampus (HIP) and prefrontal cortex brain regions. Piracetam attenuated the LPS-induced decrease in coping strategy to novel environment indicating anxiolytic activity. It also reversed the LPS-induced changes in the known arm and novel arm entries in the Y-maze test indicating amelioration of spatial memory impairment. Further, piracetam moderated LPS-induced decrease in the mitochondrial complex enzyme activities (I, II, IV, and V) and mitochondrial membrane potential. It ameliorated changes in hippocampal lipid peroxidation and nitrite levels including the activity of superoxide dismutase. Piracetam region specifically ameliorated LPS-induced increase in the level of IL-6 in HIP indicating anti-neuroinflammatory effect. Further, piracetam reduced HIP Aβ (1-40) and increased blood Aβ level suggesting efflux of Aβ from HIP to blood. Therefore, the present study indicates preclinical evidence for the use of piracetam in the treatment of neuroinflammatory disorders.
Chee, San-San A; Patel, Ronak; Menard, Janet L
2015-01-01
The lateral septum (LS) is implicated in behavioral defense. We tested whether bilateral infusions of the GABAA receptor agonist muscimol into the LS suppress rats' defensive responses to cat odor. Rats received intra-LS infusions of either saline or muscimol (40 ng/rat) and were exposed to either a piece of a cat collar that had been previously worn by a cat or to a control (cat odor free) collar. Rats exposed to the cat odor collar displayed more head-out postures, while intra-LS application of muscimol reduced the number of head-out postures. However, this reduction was also present in rats exposed to a control (cat odor free) collar. This latter finding suggests that despite its involvement in other defensive behaviors (e.g., open arm avoidance in the elevated plus maze), the LS does not selectively regulate rats' receptor defensive responding to the olfactory cues present in our cat odor stimulus. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Moreira, Eduardo L G; Rial, Daniel; Duarte, Filipe S; de Carvalho, Cristiane Ribeiro; Horst, Heros; Pizzolatti, Moacir G; Prediger, Rui D S; Ribeiro-do-Valle, Rosa Maria
2010-08-01
The aim of the present study was to evaluate the possible neurobehavioural effects in rats of the proanthocyanidin-rich fraction (PRF) isolated from the bark of Croton celtidifolius (Euphorbiaceae). Adult Wistar rats were treated with the PRF (0.3-30 mg/kg) and evaluated in different behavioural paradigms classically used for the screening of drugs with psychoactive effects. Acute intraperitoneal (i.p.) administration of PRF decreased spontaneous locomotor activity (open field arena and activity cage), enhanced the duration of ethyl ether-induced hypnosis, increased the latency to the first convulsion induced by pentylenetetrazole (60 mg/kg, i.p.) and attenuated apomorphine-induced (0.5 mg/kg, i.p.) stereotyped behaviour. In lower doses, PRF (0.3 or 3 mg/kg, i.p.) increased the frequency of open arm entries in the elevated plus-maze test. The present findings suggest that the systemic administration of PRF induces a wide spectrum of behavioural alterations in rats, consistent with the putative existence of hypnosedative, anticonvulsant and anxiolytic compounds.
Social Involvement Modulates the Response to Novel and Adverse Life Events in Mice.
Colnaghi, Luca; Clemenza, Kelly; Groleau, Sarah E; Weiss, Shira; Snyder, Anna M; Lopez-Rosas, Mariana; Levine, Amir A
2016-01-01
Epidemiological findings suggest that social involvement plays a major role in establishing resilience to adversity, however, the neurobiology by which social involvement confers protection is not well understood. Hypothesizing that social involvement confers resilience by changing the way adverse life events are encoded, we designed a series of behavioral tests in mice that utilize the presence or absence of conspecific cage mates in measuring response to novel and adverse events. We found that the presence of cage mates increased movement after exposure to a novel environment, increased time spent in the open arms of the elevated plus maze, and decreased freezing time after a foot shock as well as expedited fear extinction, therefore significantly changing the response to adversity. This is a first description of a mouse model for the effects of social involvement on adverse life events. Understanding how social involvement provides resilience to adversity may contribute to the future treatment and prevention of mental and physical illness.
Fritz, Ann‐Kristina; Amrein, Irmgard
2017-01-01
Although most nervous system diseases affect women and men differentially, most behavioral studies using mouse models do not include subjects of both sexes. Many researchers worry that data of female mice may be unreliable due to the estrous cycle. Here, we retrospectively evaluated sex effects on coefficient of variation (CV) in 5,311 mice which had performed the same place navigation protocol in the water‐maze and in 4,554 mice tested in the same open field arena. Confidence intervals for Cohen's d as measure of effect size were computed and tested for equivalence with 0.2 as equivalence margin. Despite the large sample size, only few behavioral parameters showed a significant sex effect on CV. Confidence intervals of effect size indicated that CV was either equivalent or showed a small sex difference at most, accounting for less than 2% of total group to group variation of CV. While female mice were potentially slightly more variable in water‐maze acquisition and in the open field, males tended to perform less reliably in the water‐maze probe trial. In addition to evaluating variability, we also directly compared mean performance of female and male mice and found them to be equivalent in both water‐maze place navigation and open field exploration. Our data confirm and extend other large scale studies in demonstrating that including female mice in experiments does not cause a relevant increase of data variability. Our results make a strong case for including mice of both sexes whenever open field or water‐maze are used in preclinical research. PMID:28654717
Fritz, Ann-Kristina; Amrein, Irmgard; Wolfer, David P
2017-09-01
Although most nervous system diseases affect women and men differentially, most behavioral studies using mouse models do not include subjects of both sexes. Many researchers worry that data of female mice may be unreliable due to the estrous cycle. Here, we retrospectively evaluated sex effects on coefficient of variation (CV) in 5,311 mice which had performed the same place navigation protocol in the water-maze and in 4,554 mice tested in the same open field arena. Confidence intervals for Cohen's d as measure of effect size were computed and tested for equivalence with 0.2 as equivalence margin. Despite the large sample size, only few behavioral parameters showed a significant sex effect on CV. Confidence intervals of effect size indicated that CV was either equivalent or showed a small sex difference at most, accounting for less than 2% of total group to group variation of CV. While female mice were potentially slightly more variable in water-maze acquisition and in the open field, males tended to perform less reliably in the water-maze probe trial. In addition to evaluating variability, we also directly compared mean performance of female and male mice and found them to be equivalent in both water-maze place navigation and open field exploration. Our data confirm and extend other large scale studies in demonstrating that including female mice in experiments does not cause a relevant increase of data variability. Our results make a strong case for including mice of both sexes whenever open field or water-maze are used in preclinical research. © 2017 The Authors. American Journal of Medical Genetics Part C Published by Wiley Periodicals, Inc.
Study on cognitive impairment in diabetic rats by different behavioral experiments
NASA Astrophysics Data System (ADS)
Yu-bin, Ji; Zeng-yi, Li; Guo-song, Xin; Chi, Wei; Hong-jian, Zhu
2017-12-01
Object recognition test and Y maze test are widely used in learning and memory behavior evaluation techniques and methods. It was found that in the new object recognition experiment, the diabetic rats did more slowly than the normal rats in the discrimination of the old and new objects, and the learning and memory of the rats in the diabetic rats were injured. And the ratio of retention time and the number of errors in the Y maze test was much higher than that in the blank control group. These two methods can reflect the cognitive impairment in diabetic rats.
Human sex differences in solving a virtual navigation problem.
Astur, Robert S; Purton, Andrea J; Zaniewski, Melanie J; Cimadevilla, Jose; Markus, Etan J
2016-07-15
The current study examined sex differences in initial and subsequent strategies in solving a navigational problem within a virtual reality environment. We tested 163 undergraduates on a virtual T-maze task that included probe trials designed to assess whether participants were responding using either a place or response strategy. Participants were also tested on a mental rotation task and memory of the details of the virtual room. There were no differences between the sexes in copying or recalling a map of the room or on first trial performance of the T-maze. However, at trial two, males show a significant advantage in solving the task, and approximately 80% of the males adopt a place strategy to solve the T-maze whereas females at that point showed no strategy preference. Across all testing, both males and females preferentially used a place strategy. We discuss how factors such as spatial priming affect strategy preferences and how such factors may differentially affect males and females. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of Tong Luo Jiu Nao on Aβ-degrading enzymes in AD rat brains.
Liu, Yuan; Hua, Qian; Lei, Hongtao; Li, Pengtao
2011-09-02
Tong Luo Jiu Nao (TLJN) is a modern Chinese formula based on Traditional Chinese Medicine theory that has been used to treat ischemic cerebral stroke and vascular dementia. TLJN belongs to the ethnopharmacological family of medicines. In this study, we investigated the mechanism of the TLJN effect on Alzheimer's disease (AD). To investigate the effect of TLJN on β-amyloid-degrading enzymes and learning and memory in the AD rat brain. AD rats whose disease was induced by Aβ(25-35) injection into the bilateral hippocampus CA1 region were subjected to intragastric administration of various preparations. The experimental animals were healthy male Sprague-Dawley rats which were randomly divided into normal, sham, model, TLJN min, TLJN max and donepezil hydrochloride groups. Spontaneous alternation and passive avoidance behavior, which are regarded as measures of spatial learning and memory, were investigated using Y-maze testing. Western blotting and immunohistochemistry were used to observe the therapeutic effect of TLJN on the deposits of amyloid plaque and on the expression of synaptophysin, insulin-degrading enzyme and neprilysin. Y-maze results showed that the AD model group presented with spatial learning and memory impairments. Hematoxylin-eosin and Congo red staining indicated neuronal impairment and deposits of amyloid plaque in the model group and these results were consistent with their learning and memory deficits in the Y-maze. The TLJN-treated groups exhibited prolonged a cavity delitescence, decreased arm entries and improvement in learning and memory. Moreover, the structure of the neurons of the treated groups was restored and the expression of synaptophysin increased in both the hippocampus and cortex. In addition, their levels of insulin-degrading enzyme and neprilysin in the cortex and hippocampus were upregulated and the amyloid plaque was decreased. TLJN can improve learning and memory, up-regulate insulin-degrading enzyme and neprilysin levels, promote the degrading of Aβ and clear amyloid plaque from the AD rat brain. In future, TLJN may have significant therapeutic potential in the treatment of AD patients. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Vasil'eva, E V; Salimov, R M; Kovalev, G I
2012-01-01
Exploratory behavior, locomotor activity, and anxiety in inbred mice of C57BL/6 and BALB/c strains subchronically treated with placebo or various types of nootropic (cognition enhancing) drugs (piracetam, phenotropil, noopept, semax, pantogam, nooglutil) have been evaluated using the exploratory cross-maze test. It was found that BALB/c mice in comparison to C57BL/6 mice are characterized by greater anxiety and lower efficiency of exploratory behavior in the previously unfamiliar environment. All tested drugs clearly improved the exploratory behavior in BALB/c mice only. In BALB/c mice, piracetam, phenotropil, noopept, and semax also reduced anxiety, while phenotropil additionally increased locomotor activity. Thus, the nootropic drugs displayed clear positive modulation of spontaneous orientation in the mice strain with initially low exploratory efficiency (BALB/c) in the cross-maze test. Some drugs (pantogam, nooglutil) exhibited only nootropic properties, while the other drugs exhibited both nootropic effects on the exploratory activity and produced modulation of the anxiety level (piracetam, fenotropil, noopept, semax) and locomotor activity (fenotropil).
Hasegawa, Yasushi; Inoue, Tatsuro; Kawaminami, Satoshi; Fujita, Miho
2016-07-01
To evaluate the neuroprotective effects of the organic components of scallop shells (scallop shell extract) on memory impairment and locomotor activity induced by scopolamine or 5-methyl-10,11-dihydro-5H-dibenzo (a,d) cyclohepten-5,10-imine (MK801). Effect of the scallop shell extract on memory impairment and locomotor activity was investigated using the Y-maze test, the Morris water maze test, and the open field test. Scallop shell extract significantly reduced scopolamine-induced short-term memory impairment and partially reduced scopolamine-induced spatial memory impairment in the Morris water maze test. Scallop shell extract suppressed scopolamine-induced elevation of acetylcholine esterase activity in the cerebral cortex. Treatment with scallop shell extract reversed the increase in locomotor activity induced by scopolamine. Scallop shell extract also suppressed the increase in locomotor activity induced by MK801. Our results provide initial evidence that scallop shell extract reduces scopolamine-induced memory impairment and suppresses MK-801-induced hyperlocomotion. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.
Trofimov, S S; Voronina, T A; Guzevatykh, L S
2005-06-01
We studied the effect of a new nootropic dipeptide Noopept and reference nootropic preparation piracetam injected subcutaneously on days 8-20 of life on learning of alternative feeding response in a 6-arm-maze in male and female rats. Early postnatal administration of Noopept disturbed the dynamics of learning by parameters of declarative and procedural memory. Piracetam impaired learning by parameters of procedural, but not declarative memory (only in males). Both preparations decreased the ratio of successfully learned males (but not females). The observed effects were not associated with changes in locomotor activity.
Kawaharada, Soichi; Nakanishi, Miki; Nakanishi, Nobuto; Hazama, Keisuke; Higashino, Masato; Yasuhiro, Tetsuya; Lewis, Arwel; Clark, Gary S; Chambers, Mark S; Maidment, Scott A; Katsumata, Seishi; Kaneko, Shuji
2018-07-01
GABA A receptors containing α 5 subunits (GABA A α 5) are highly expressed in the hippocampus and negatively involved in memory processing, as shown by the fact that GABA A α 5-deficient mice show higher hippocampus-dependent performance than wild-type mice. Accordingly, small-molecule GABA A α 5 negative allosteric modulators (NAMs) are known to enhance spatial learning and memory in rodents. Here we introduce a new, orally available GABA A α 5 NAM that improves hippocampal functions. ONO-8590580 [1-(cyclopropylmethyl)-5-fluoro-4-methyl- N -[5-(1-methyl-1H-imidazol-4-yl)-2-pyridinyl]-1H-benzimidazol-6-amine] binds to the benzodiazepine binding sites on recombinant human α 5-containing GABA A receptors with a K i of 7.9 nM, and showed functionally selective GABA A α 5 NAM activity for GABA-induced Cl - channel activity with a maximum 44.4% inhibition and an EC 50 of 1.1 nM. In rat hippocampal slices, tetanus-induced long-term potentiation of CA1 synapse response was significantly augmented in the presence of 300 nM ONO-8590580. Orally administered ONO-8590580 (1-20 mg/kg) dose-dependently occupied hippocampal GABA A α 5 in a range of 40%-90% at 1 hour after intake. In the rat passive avoidance test, ONO-8590580 (3-20 mg/kg, by mouth) significantly prevented (+)-MK-801 hydrogen maleate (MK-801)-induced memory deficit. In addition, ONO-8590580 (20 mg/kg, p.o.) was also effective in improving the cognitive deficit induced by scopolamine and MK-801 in the rat eight-arm radial maze test with equal or greater activity than 0.5 mg/kg donepezil. No anxiogenic-like or proconvulsant effect was associated with ONO-8590580 at 20 mg/kg p.o. in the elevated plus maze test or pentylenetetrazole-induced seizure test, respectively. In sum, ONO-8590580 is a novel GABA A α 5 NAM that enhances hippocampal memory function without an anxiogenic or proconvulsant risk. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
Behavioral effects of ketamine and toxic interactions with psychostimulants
Hayase, Tamaki; Yamamoto, Yoshiko; Yamamoto, Keiichi
2006-01-01
Background The anesthetic drug ketamine (KT) has been reported to be an abused drug and fatal cases have been observed in polydrug users. In the present study, considering the possibility of KT-enhanced toxic effects of other drugs, and KT-induced promotion of an overdose without making the subject aware of the danger due to the attenuation of several painful subjective symptoms, the intraperitoneal (i.p.) KT-induced alterations in behaviors and toxic interactions with popular co-abused drugs, the psychostimulants cocaine (COC) and methamphetamine (MA), were examined in ICR mice. Results A single dose of KT caused hyperlocomotion in a low (30 mg/kg, i.p.) dose group, and hypolocomotion followed by hyperlocomotion in a high (100 mg/kg, i.p.) dose group. However, no behavioral alterations derived from enhanced stress-related depression or anxiety were observed in the forced swimming or the elevated plus-maze test. A single non-fatal dose of COC (30 mg/kg, i.p.) or MA (4 mg/kg, i.p.) caused hyperlocomotion, stress-related depression in swimming behaviors in the forced swimming test, and anxiety-related behavioral changes (preference for closed arms) in the elevated plus-maze test. For the COC (30 mg/kg) or MA (4 mg/kg) groups of mice simultaneously co-treated with KT, the psychostimulant-induced hyperlocomotion was suppressed by the high dose KT, and the psychostimulant-induced behavioral alterations in the above tests were reversed by both low and high doses of KT. For the toxic dose COC (70 mg/kg, i.p.)- or MA (15 mg/kg, i.p.)-only group, mortality and severe seizures were observed in some animals. In the toxic dose psychostimulant-KT groups, KT attenuated the severity of seizures dose-dependently. Nevertheless, the mortality rate was significantly increased by co-treatment with the high dose KT. Conclusion Our results demonstrated that, in spite of the absence of stress-related depressive and anxiety-related behavioral alterations following a single dose of KT treatment, and in spite of the KT-induced anticonvulsant effects and attenuation of stress- and anxiety-related behaviors caused by COC or MA, the lethal effects of these psychostimulants were increased by KT. PMID:16542420
What is the Most Sensitive Measure of Water Maze Probe Test Performance?
Maei, Hamid R.; Zaslavsky, Kirill; Teixeira, Cátia M.; Frankland, Paul W.
2009-01-01
The water maze is commonly used to assay spatial cognition, or, more generally, learning and memory in experimental rodent models. In the water maze, mice or rats are trained to navigate to a platform located below the water's surface. Spatial learning is then typically assessed in a probe test, where the platform is removed from the pool and the mouse or rat is allowed to search for it. Performance in the probe test may then be evaluated using either occupancy-based (percent time in a virtual quadrant [Q] or zone [Z] centered on former platform location), error-based (mean proximity to former platform location [P]) or counting-based (platform crossings [X]) measures. While these measures differ in their popularity, whether they differ in their ability to detect group differences is not known. To address this question we compiled five separate databases, containing more than 1600 mouse probe tests. Random selection of individual trials from respective databases then allowed us to simulate experiments with varying sample and effect sizes. Using this Monte Carlo-based method, we found that the P measure consistently outperformed the Q, Z and X measures in its ability to detect group differences. This was the case regardless of sample or effect size, and using both parametric and non-parametric statistical analyses. The relative superiority of P over other commonly used measures suggests that it is the most appropriate measure to employ in both low- and high-throughput water maze screens. PMID:19404412
Modified radial v/s biatrial maze for atrial fibrillation in rheumatic valvular heart surgery.
Sayed, Sajid A; Katewa, Ashish; Srivastava, Vivek; Jana, Sujit; Patwardhan, Anil M
2014-01-01
Atrial fibrillation (AF) is commonest sustained atrial arrhythmia producing high morbidity. Although Cox's Maze III procedure cures AF in majority, reduced atrial transport function (ATF) is a concern. Radial approach with ablation lines radial from sinus node towards atrioventricular annulii and parallel to atrial coronary arteries, has shown better ATF. Single blind open randomized prospective study of 80 patients was undertaken in two groups (40 each) of modified Cox's maze III and modified radial approach, to evaluate conversion to normal sinus rhythm (NSR) and ATF. Patients undergoing surgery for rheumatic valvular heart disease with continuous AF were prospectively randomized. Ablation lines were created with radiofrequency (RF) bipolar coagulation with cryoablation for the isthmal lesions and coronary sinus. Results were compared at 6 months and ATF was evaluated by atrial filling fraction (AFF) and A/E ratio on echocardiography. The rate of conversion to NSR in both groups was statistically insignificant by Fisher's exact test (p > 0.05). ATF was better in modified radial approach compared to modified Cox's Maze III (A/E compared by unpaired t test:0.52 ± 0.08 v/s 0.36 ± 0.10; p < 0.05. AFF compared using Mann Whitney U test: median AFF for radial group was 23 v/s 20 for biatrial group; p < 0.05). In patients with AF undergoing rheumatic valvular surgery, radiofrequency radial approach is as effective as modified Cox's maze III for conversion to NSR with better atrial transport function. Copyright © 2014 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.
Zhang, Kai; Yao, Lei
2018-05-15
Essential oil from Juniperus virginiana L. (eastern red cedarwood essential oil, CWO) has been used to relax mind and enhance comfort for medical purposes. Few reports showed its effect on anxiety behaviors in animal models. The present study investigated the anxiolytic effect of CWO using two anxiety tests in mice, then determined the major active constituents, examined the change of neurotransmitters after intraperitoneal (i.p.) administration. Analysis using GC/MS revealed that the CWO contained (-)-α-cedrene (28.11%), (+)-β-cedrene (7.81%), (-)-thujopsene (17.71%) and (+)-cedrol (24.58%). CWO at 400-800mg/kg increased the percentage of open arm entries and the percentage of the time spent in open arms in the elevated plus maze (EPM), suggesting that the oil has anxiolytic effect. However, it didn't show anxiolytic effect in the light-dark box (LDB) test. Tests of the cedrene did not show anxiolytic effect in either test, but rather induced anxiety-related behaviors and inhibited the locomotor activity in EPM and LDB. Cedrol produced significant anxiolytic effect in both EPM and LDB tests at 400-1600mg/kg and 800-1600mg/kg, respectively. A more significant increase in locomotor activity was observed in cedrol at 200-1600mg/kg administration than CWO. CWO increased the 5-hydroxytryptamine (5-HT) concentration at 800mg/kg, whereas it didn't affect the dopamine (DA) concentration. Cedrol significantly reduced the DA level at 100-200mg/kg and elevated the 5-HT level at 1200-1600mg/kg. Moreover, it changed the ratio of 5-hydroxyindoleacetic acid/5-HT and 3, 4-dihydroxyphenyl acetic acid/DA at 1200-1600mg/kg. CWO and cedrol, in particular might act in an anxiolytic effect through the 5-HTnergic and DAnergic pathways. Copyright © 2018. Published by Elsevier Inc.
Mennenga, Sarah E; Gerson, Julia E; Dunckley, Travis; Bimonte-Nelson, Heather A
2015-01-01
Harmine is a naturally occurring monoamine oxidase inhibitor that has recently been shown to selectively inhibit the dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (DYRK1A). We investigated the cognitive effects of 1mg (low) Harmine and 5mg (high) Harmine using the delayed-match-to-sample (DMS) asymmetrical 3-choice water maze task to evaluate spatial working and recent memory, and the Morris water maze task (MM) to test spatial reference memory. Animals were also tested on the visible platform task, a water-escape task with the same motor, motivational, and reinforcement components as the other tasks used to evaluate cognition, but differing in its greater simplicity and that the platform was visible above the surface of the water. A subset of the Harmine-high treated animals showed clear motor impairments on all behavioral tasks, and the visible platform task confirmed a lack of competence to perform the procedural components of water maze testing. After excluding animals from the high dose group that could not perform the procedural components of a swim task, it was revealed that both high- and low-dose treatment with Harmine enhanced performance on the latter portion of DMS testing, but had no effect on MM performance. Thus, this study demonstrates the importance of confirming motor and visual competence when studying animal cognition, and verifies the one-day visible platform task as a reliable measure of ability to perform the procedural components necessary for completion of a swim task. Copyright © 2014. Published by Elsevier Inc.
Beran, Michael J; Parrish, Audrey E; Futch, Sara E; Evans, Theodore A; Perdue, Bonnie M
2015-05-01
Human and nonhuman primates are not mentally constrained to the present. They can remember the past and-at least to an extent-anticipate the future. Anticipation of the future ranges from long-term prospection such as planning for retirement to more short-term future-oriented cognition such as planning a route through a maze. Here we tested a great ape species (chimpanzees), an Old World monkey species (rhesus macaques), a New World monkey species (capuchin monkeys), and human children on a computerized maze task. All subjects had to move a cursor through a maze to reach a goal at the bottom of the screen. For best performance on the task, subjects had to "plan ahead" to the end of the maze to move the cursor in the correct direction, avoid traps, and reverse directions if necessary. Mazes varied in difficulty. Chimpanzees were better than both monkey species, and monkeys showed a particular deficit when moving away from the goal or changing directions was required. Children showed a similar pattern to monkeys regarding the effects of reversals and moves away from the goal, but their overall performance in terms of correct maze completion was similar to the chimpanzees. The results highlight similarities as well as differences in planning across species and the role that inhibitory control may play in future-oriented cognition in primates. (c) 2015 APA, all rights reserved).
Continuous recognition of spatial and nonspatial stimuli in hippocampal-lesioned rats.
Jackson-Smith, P; Kesner, R P; Chiba, A A
1993-03-01
The present experiments compared the performance of hippocampal-lesioned rats to control rats on a spatial continuous recognition task and an analogous nonspatial task with similar processing demands. Daily sessions for Experiment 1 involved sequential presentation of individual arms on a 12-arm radial maze. Each arm contained a Froot Loop reinforcement the first time it was presented, and latency to traverse the arm was measured. A subset of the arms were repeated, but did not contain reinforcement. Repeated arms were presented with lags ranging from 0 to 6 (0 to 6 different arm presentations occurred between the first and the repeated presentation). Difference scores were computed by subtracting the latency on first presentations from the latency on repeated presentations, and these scores were high in all rats prior to surgery, with a decreasing function across lag. There were no differences in performance following cortical control or sham surgery. However, there was a total deficit in performance following large electrolytic lesions of the hippocampus. The second experiment employed the same continuous recognition memory procedure, but used three-dimensional visual objects (toys, junk items, etc., in various shapes, sizes, and textures) as stimuli on a flat runway. As in Experiment 1, the stimuli were presented successively and latency to run to and move the object was measured. Objects were repeated with lags ranging from 0 to 4. Performance on this task following surgery did not differ from performance prior to surgery for either the control group or the hippocampal lesion group. These results provide support for Kesner's attribute model of hippocampal function in that the hippocampus is assumed to mediate data-based memory for spatial locations, but not three-dimensional visual objects.
Carbone, S; Ponzo, O J; Gobetto, N; Samaniego, Y A; Reynoso, R; Moguilevsky, J A; Cutrera, R A
2018-01-01
The endocrine disruptor di-(2-ethylhexyl) phthalate (DEHP) is used in a variety of consumer products made with polyvinyl chloride and also in the manufacture of medical devices. DEHP disrupts reproductive tract development in an antiandrogenic manner and also may induce neurobehavioral changes. The aim of this study was to investigate the effects of chronic postnatal exposure to DEHP (30 mg/kg body weight/day, orally from birth to day 60) on the neuroendocrine regulation of the gonadal axis and its impact on the anxiety-like behavior in adult male rats, as well as the probable participation of the GABAergic system in these effects. DEHP produced a significant increase in plasmatic luteinizing hormone and follicle stimulating hormone, as well as significant testosterone decrease, accompanied with a decrease in hypothalamic gamma-aminobutyric acid (GABA) concentration. On the other hand, DEHP increased the anxiety-like behavior in the elevated plus maze test, evidenced by a significant decrease in the percentages of time spent in the open arms and the frequency in the open arm entries and a significant increase in the percentage of time spent in closed arms. Neuroendocrine and behavioral effects were reversed by GABA agonists, muscimol (2 mg/kg i.p. ) and baclofen (10 mg/kg i.p.). In conclusion, chronic DEHP postnatal exposure induced a disruption in the neuroendocrine regulation of the testicular axis in young adult male rats, and this effect was correlated with an anxiety-like behavior. Since GABA agonists reversed these effects, the results suggest that GABA could participate in the modulation of reproductive and behavioral DEHP effects.
ERIC Educational Resources Information Center
Broadbent, Nicola J.; Squire, Larry R.; Clark, Robert E.
2006-01-01
Conventional lesion methods have shown that damage to the rodent hippocampus can impair previously acquired spatial memory in tasks such as the water maze. In contrast, work with reversible lesion methods using a different spatial task has found remote memory to be spared. To determine whether the finding of spared remote spatial memory depends on…
ERIC Educational Resources Information Center
Ortega, Leonardo A.; Prado-Rivera, Mayerli A.; Cardenas-Poveda, D. Carolina; McLinden, Kristina A.; Glueck, Amanda C.; Gutierrez, German; Lamprea, Marisol R.; Papini, Mauricio R.
2013-01-01
The present research explored the effects of restraint stress on two situations involving incentive downshift: consummatory successive negative contrast (cSNC) and extinction of escape behavior in the Barnes maze. First, Experiment 1 confirmed that the restraint stress procedure used in these experiments increased levels of circulating…
Rao, Y; Xiao, P; Xu, S
2001-02-09
Effects of intrahippocampal treatment of aniracetam, a selective agonist for DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproionic acid (AMPA) receptors, on Y-maze avoidance learning task and behavioral long-term potentiation (LTP) in perforant path-dentate gyrus were studied in freely moving rats by using in vivo electrophysiology combined with behavioral tests. The results were as follows: (1) intrahippocampal treatment of aniracetam reversibly enhanced basal synaptic transmission in perforant path to dentate gyrus in a dosage dependent manner; (2) aniracetam produced improvement in Y-maze learning performance when administration occurred 5 min prior to maze learning; (3) aniracetam administration significantly facilitated behavioral LTP in dentate gyrus, while the maximal amplitude of LTP has no significant difference when compared to saline group. The present results indicate that hippocampal AMPA receptors are involved in learning and memory.
Kumar, Dinesh; Bhat, Zulfiqar Ali; Shah, M Y
2012-09-01
Angelica archangelica Linn. is widely used in food and liquor preparations and also in Kashmiri folk medicine to reduce anxiety. We evaluated the anxiolytic effect of successive extracts of A. archangelica linn. (SAE) on rats tested in the elevated T-maze test (an animal model of generalized anxiety) at doses that exhibit antidepressant-like activity in humans. A. archangelica (1 kg) was subjected to successive extraction in a soxhlet apparatus with solvents [petroleum ether (40-60 degrees C), chloroform, ethyl acetate, methanol and decoction with water] in order of increasing polarity (yield: 6.9%, 7.3%, 5.1%, 11.88% and 8.2% w/w, respectively). SAE were evaluated for anxiolytic effects using the elevated T-maze and forced swimming tests in rats. Oral dosing of diazepam (1 mg/kg) and extracts (50, 100 and 200 mg/kg) clearly showed an anxiolytic-like profile in the elevated T-maze test: it increased one-way escape and decreased inhibitory avoidance on the first, third and seventh day. In the forced swimming test, imipramine and SAE showed antidepressant- and anxiolytic-like effects as reflected by increased climbing time, swimming time and decreased immobility time on the first, third and seventh day. Aqueous and methanol extracts showed the most, petroleum ether (40-60 degrees C) and chloroform intermediate, and ethyl acetate the least anxiolytic activity (*P<0.05, **P<0.01, ***P< 0.001) in both models. These results suggest the anti-anxiety activity of various extracts of A. archangelica and strongly justify its use in traditional Indian medicine for the treatment of anxiety.
Increased sensitivity to the acute effects of MDMA ("ecstasy") in female rats.
Palenicek, T; Votava, M; Bubenikova, V; Horacek, J
2005-11-15
Behavioral effects of +/-3,4-methylenedioxymethamphetamine (MDMA, ecstasy) are relatively well described in humans as well as in animals. However, little is known about gender differences to the effects of MDMA. The aim of our study was to evaluate gender differences in stimulant effects of MDMA (2.5, 5.0, and 10.0 mg/kg subcutaneously (s.c.)) in male and female Wistar rats. We have used three behavioral methods (activity cage, open field, and elevated plus-maze) each describing a different pattern of spontaneous behavior. In the activity cage, 30 min after the MDMA administration, horizontal and vertical locomotor activities were registered for a period of 3 min. In the open field test rats were placed into an arena 15 min after drug treatment and locomotor activity was registered for a period of 30 min. Finally, in the elevated plus-maze test, rats were given MDMA 30 min prior to measurements and subsequently they were tested in the maze for a period of 5 min. In our experiments we observed a dose-dependent locomotion-enhancing effect of MDMA both in male and female rats in both locomotor tests. Female rats were more sensitive to the locomotor-stimulating effect than males in both tests, suggesting higher sensitivity to the stimulatory effect of MDMA. Further on, MDMA increased thigmotaxis in female rats in the open field test and decreased "anxious-like" behavior in the elevated plus-maze in both genders. In conclusion, we observed higher sensitivity of females to the locomotor-stimulant effect of MDMA. Increased sensitivity of females to the behavioral effects of MDMA can be explained by increased reactivity of serotonergic and dopaminergic systems.
Mehrotra, Arpit; Sandhir, Rajat
2014-03-15
The present study was carried out to evaluate the beneficial effect of mitochondrial cofactors; alpha-lipoic acid (ALA) and acetyl-l-carnitine (ALCAR) in 3-nitropropionic acid (3-NP) induced experimental model of Huntington's disease (HD). HD was developed by administering sub-chronic doses of 3-NP, intraperitoneally, twice daily for 17 days. The animals were assessed for their behavioral performance in terms of motor (spontaneous locomotor activity, narrow beam walk test, footprint analysis and rotarod test) and cognitive (elevated plus maze and T-maze tests) functions. 3-NP treated animals showed impairment in motor coordination such as decreased stride length, increased distance between inner toes, and increased gait angle. Increased transfer latency on elevated plus maze and T-maze tasks revealed cognition deficits in 3-NP treated animals. Increased lipid peroxidation and concomitant decrease in thiol levels were also observed. 3-NP administration also induced histopathological changes in terms of enhanced striatal lesion volume, presence of pyknotic nuclei and astrogliosis. However, combined supplementation with ALA+ALCAR to 3-NP administered animals for 21 days was able to efficiently improve behavioral deficits, attenuate oxidative stress and histological changes, suggesting a putative role of these two supplements if given together in ameliorating 3-NP induced impairments and thus could be engaged in managing HD. Copyright © 2014 Elsevier B.V. All rights reserved.
[Learning to solve a spatial task in a water maze in aggressive and submissive mice].
Dubrovina, N I; Tomilenko, R A
2007-01-01
Learning and retention of the spatial memory were studied in mice with alternative under conditions of various experimental protocols. Visible and hidden platform acquisition in a simple model of the water maze was similarly fast both in aggressive and submissive mice, but extinction differed. Retention of the platform location preference persisted in aggressive mice in four testing trials. In submissive mice, extiction of the spatial memory was accompanied with a prolongation of search with parallel production of episodes of "passive drift". Differences in spatial learning between aggressive and submissive mice were revealed in a water maze complicated with partitions. In this case, aggressors were able to learn the position of a hidden platform (in contrast to submissive mice with the dominant response of "passive drift"). During testing the response, aggressive mice longer retained the spatial preference without extinction.
Maeta, Kazuhiro; Hattori, Satoko; Ikutomo, Junji; Edamatsu, Hironori; Bilasy, Shymaa E; Miyakawa, Tsuyoshi; Kataoka, Tohru
2018-05-10
Rapgef2 and Rapgef6 define a subfamily of guanine nucleotide exchange factors for Rap small GTPases, characterized by the possession of the Ras/Rap-associating domain. Previous genomic analyses suggested their possible involvement in the etiology of schizophrenia. We recently demonstrated the development of an ectopic cortical mass (ECM), which resembles the human subcortical band heterotopia, in the dorsal telencephalon-specific Rapgef2 conditional knockout (Rapgef2-cKO) brains. Additional knockout of Rapgef6 in Rapgef2-cKO mice resulted in gross enlargement of the ECM whereas knockout of Rapgef6 alone (Rapgef6-KO) had no discernible effect on the brain morphology. Here, we performed a battery of behavioral tests to examine the effects of Rapgef2 or Rapgef6 deficiency on higher brain functions. Rapgef2-cKO mice exhibited hyperlocomotion phenotypes. They showed decreased anxiety-like behavior in the elevated plus maze and the open-field tests as well as increased depression-like behavior in the Porsolt forced swim and tail suspension tests. They also exhibited increased sociability especially in novel environments. They showed defects in cognitive function as evidenced by reduced learning ability in the Barnes circular maze test and by impaired working memory in the T maze tests. In contrast, although Rapgef6 and Rapgef2 share similarities in biochemical roles, Rapgef6-KO mice exhibited mild behavioral abnormalities detected with a number of behavioral tests, such as hyperlocomotion phenotype in the open-field test and the social interaction test with a novel environment and working-memory defects in the T-maze test. In conclusion, although there were differences in their brain morphology and the magnitude of the behavioral abnormalities, Rapgef2-cKO mice and Rapgef6-KO mice exhibited hyperlocomotion phenotype and working-memory defect, both of which could be recognized as schizophrenia-like behavior.
The antidepressant-like effect of Ocimum basilicum in an animal model of depression.
Ali, S S; Abd El Wahab, M G; Ayuob, N N; Suliaman, M
2017-01-01
We investigated the efficacy of Ocimum basilicum (OB) essential oils for treating depression related behavioral, biochemical and histopathological changes caused by exposure to chronic unpredictable mild stress (CUMS) in mice and to explore the mechanism underlying the pathology. Male albino mice were divided into four groups: controls; CUMS; CUMS plus fluoxetine, the antidepressant administered for pharmacological validation of OB; and CUMS plus OB. Behavioral tests included the forced swim test (FST), elevated plus-maze (EPM) and the open field test (OFT); these tests were performed at the end of the experiment. We assessed serum corticosterone level, protein, gene and immunoexpression of brain-derived neurotropic factor (BDNF) and glucocorticoid receptors (GRs) as well as immunoexpression of glial fibrillary acidic protein (GFAP), Ki67, caspase-3 in the hippocampus. CUMS caused depression in the mice as evidenced by prolonged immobility in the FST, prolonged time spent in the open arms during the EPM test and reduction of open field activity in the OFT. OB ameliorated the CUMS induced depressive status. OB significantly reduced the corticosterone level and up-regulated protein and gene expressions of BDNF and GR. OB reduced CUMS induced hippocampal neuron atrophy and apoptosis, and increased the number of the astrocytes and new nerve cells. OB significantly increased GFAP-positive cells as well as BDNF and GR immunoexpression in the hippocampus.
Chronic consumption of distilled sugarcane spirit induces anxiolytic-like effects in mice.
Sena, Maria Clecia P; Nunes, Fabíola C; Salvadori, Mirian G S Stiebbe; Carvalho, Cleyton Charles D; Morais, Liana Clebia S L; Braga, Valdir A
2011-01-01
Chronic ethanol consumption is a major public health problem throughout the world. We investigated the anxiolytic-like effects and the possible ever injury induced by the chronic consumption of ethanol or sugarcane spirit in mice. Adult mice were exposed to a two-bottle free-choice paradigm for 6 weeks. The mice in Group A (n = 16) had access to sugarcane spirit + distilled water, the mice in Group B (n = 15) had access to ethanol + distilled water, and the mice in Group C (control, n = 14) had access to distilled water + distilled water. The ethanol content in the beverages offered to Groups A and B was 2% for the first week, 5% for the second week and 10% for the remaining four weeks. At the end of the experimental period, the mice were evaluated using the elevated-plus maze and the hole-board test to assess their anxiety-related behaviors. We also determined the serum aspartate aminotransferase and alanine aminotransferase levels. In the elevated-plus maze, the time spent in the open arms was increased in the mice exposed to chronic ethanol (32 ± 8 vs. 7 ± 2 s, n = 9) or sugarcane spirit (36 ± 9 vs. 7 ± 2 s, n = 9) compared to the controls. In the hole-board test, the mice exposed to ethanol or sugarcane spirit displayed increases in their head-dipping frequency (16 ± 1 for the control group, 27 ± 2 for the ethanol group, and 31 ± 3 for the sugarcane-spirit group; n = 9 for each group). In addition, the mice exposed to sugarcane spirit displayed an increase in the aspartate aminotransferase / alanine aminotransferase ratio compared to the ethanol group (1.29 ± 0.17 for the control group and 2.67 ± 0.17 for the sugarcane spirit group; n = 8 for each group). The chronic consumption of sugarcane-spirit produces liver injury and anxiolytic-like effects and the possible liver injury in mice.
Motivational Disturbances and Effects of L-dopa Administration in Neurofibromatosis-1 Model Mice
Wozniak, David F.; Diggs-Andrews, Kelly A.; Conyers, Sara; Yuede, Carla M.; Dearborn, Joshua T.; Brown, Jacquelyn A.; Tokuda, Kazuhiro; Izumi, Yukitoshi; Zorumski, Charles F.; Gutmann, David H.
2013-01-01
Children with neurofibromatosis type 1 (NF1) frequently have cognitive and behavioral deficits. Some of these deficits have been successfully modeled in Nf1 genetically-engineered mice that develop optic gliomas (Nf1 OPG mice). In the current study, we show that abnormal motivational influences affect the behavior of Nf1 OPG mice, particularly with regard to their response to novel environmental stimuli. For example, Nf1 OPG mice made fewer spontaneous alternations in a Y-maze and fewer arm entries relative to WT controls. However, analysis of normalized alternation data demonstrated that these differences were not due to a spatial working memory deficit. Other reported behavioral results (e.g., open-field test, below) suggest that differential responses to novelty and/or other motivational influences may be more important determinants of these kinds of behavior than simple differences in locomotor activity/spontaneous movements. Importantly, normal long-term depression was observed in hippocampal slices from Nf1 OPG mice. Results from elevated plus maze testing showed that differences in exploratory activity between Nf1 OPG and WT control mice may be dependent on the environmental context (e.g., threatening or non-threatening) under which exploration is being measured. Nf1 OPG mice also exhibited decreased exploratory hole poking in a novel holeboard and showed abnormal olfactory preferences, although L-dopa (50 mg/kg) administration resolved the abnormal olfactory preference behaviors. Nf1 OPG mice displayed an attenuated response to a novel open field in terms of decreased ambulatory activity and rearing but only during the first 10 min of the session. Importantly, Nf1 OPG mice demonstrated investigative rearing deficits with regard to a novel hanging object suspended on one side of the field which were not rescued by L-dopa administration. Collectively, our results provide new data important for evaluating therapeutic treatments aimed at ameliorating NF1-associated cognitive/behavioral deficits. PMID:23762458
Wang, Xiaolong; Yu, Hao; You, Jiabin; Wang, Changliang; Feng, Chunmei; Liu, Zhaodi; Li, Ya; Wei, Rucheng; Xu, Siqi; Zhao, Rui; Wu, Xu; Zhang, Guohua
2018-05-22
Chronic ethanol intake can induce neuronal apoptosis, leading to dementia. We investigated the protective effects of memantine on spatial memory impairment induced by chronic ethanol exposure in mice. Male C57BL/6 mice were administered 10% (m/V) or 20% (m/V) ethanol as the only choice of drinking water. Mice were treated for 60 d, 90 d, or 180 d. Mice were treated with memantine for the same duration (daily 10 mg/kg oral). The Morris water maze and radial arm maze test were used to measure spatial memory. Mice were sacrificed after the behavioral tests. Brains were removed to prepare for paraffin sections, and hippocampi were isolated for protein and RNA extraction. 4',6-diamidino-2-phenylindole (DAPI) staining and immunohistochemical staining of cleaved caspase-3 were performed. Western blot analysis was used to detect the expression of cleaved caspase-3 and calcium-related proteins, including N-methyl-d-aspartic acid receptor 1 (NR1), 1,4,5-trisphosphate receptor 1 (IP3R1), and sarco/endoplasmic reticulum calcium adenosine triphosphatase 1 (SERCA1). The changes of NR1, IP3R1 and SERCA1 mRNA were detected using quantitative polymerase chain reaction (qPCR). The results revealed that chronic ethanol exposure induced spatial memory impairment in mice, as well as increasing the expression of NR1, IP3R1 and SERCA1, the activation of caspase-3 and apoptosis in hippocampus. The effect was particularly prominent in the 20% ethanol group after 180 d exposure. Memantine decreased ethanol-induced spatial memory impairment, caspase-3 activation and apoptosis in the mouse hippocampus. These results suggest that disruption of intracellular calcium balance by ethanol can induce caspase-3 activation and apoptosis, which underlies subsequent spatial memory impairment in mice. Copyright © 2018 Elsevier B.V. All rights reserved.
Holmstrand, Ericka C.; Lund, David; Cherian, Ajeesh Koshy; Wright, Jane; Martin, Rolicia F.; Ennis, Elizabeth A.; Stanwood, Gregg D.; Sarter, Martin; Blakely, Randy D.
2014-01-01
The hemicholinium-3 (HC-3) sensitive, high-affinity choline transporter (CHT) sustains cholinergic signaling via the presynaptic uptake of choline derived from dietary sources or from acetylcholinesterase (AChE)-mediated hydrolysis of acetylcholine (ACh). Loss of cholinergic signaling capacity is associated with cognitive and motor deficits in humans and in animal models. Whereas genetic elimination of CHT has revealed the critical nature of CHT in maintaining ACh stores and sustaining cholinergic signaling, the consequences of elevating CHT expression have yet to be studied. Using bacterial artificial chromosome (BAC)-mediated transgenic methods, we generated mice with integrated additional copies of the mouse Slc5a7 gene. BAC–CHT mice are viable, appear to develop normally, and breed at wild-type (WT) rates. Biochemical studies revealed a 2 to 3-fold elevation in CHT protein levels in the CNS and periphery, paralleled by significant increases in [3H]HC-3 binding and synaptosomal choline transport activity. Elevations of ACh in the BAC–CHT mice occurred without compensatory changes in the activity of either choline acetyltransferase (ChAT) or AChE. Immunohistochemistry for CHT in BAC–CHT brain sections revealed markedly elevated CHT expression in the cell bodies of cholinergic neurons and in axons projecting to regions known to receive cholinergic innervation. Behaviorally, BAC–CHT mice exhibited diminished fatigue and increased speeds on the treadmill test without evidence of increased strength. Finally, BAC–CHT mice displayed elevated horizontal activity in the open field test, diminished spontaneous alteration in the Y-maze, and reduced time in the open arms of the elevated plus maze. Together, these studies provide biochemical, pharmacological and behavioral evidence that CHT protein expression and activity can be elevated beyond that seen in wild-type animals. BAC–CHT mice thus represent a novel tool to examine both the positive and negative impact of constitutively elevated cholinergic signaling capacity. PMID:24274995
The Canine Sand Maze: An Appetitive Spatial Memory Paradigm Sensitive to Age-Related Change in Dogs
ERIC Educational Resources Information Center
Salvin, Hannah E.; McGreevy, Paul D.; Sachdev, Perminder S.; Valenzuela, Michael J.
2011-01-01
Aged dogs exhibit a spectrum of cognitive abilities including a syndrome similar to Alzheimer's disease. A major impediment to research so far has been the lack of a quick and accurate test of visuospatial memory appropriate for community-based animals. We therefore report on the development and validation of the Canine Sand Maze. A 4.5-m-diameter…
Strychnine and Taurine Modulation of Amygdala-associated Anxiety-like Behavior is ‘State’ Dependent
McCool, Brian A.; Chappell, Ann
2007-01-01
Strychnine-sensitive glycine receptors are expressed in many adult forebrain regions, yet the biological function of these receptors outside the spinal cord/brainstem is poorly understood. We have recently shown that rat lateral/basolateral amygdala neurons express strychnine-sensitive glycine-gated currents whose pharmacological and molecular characteristics are consistent with those established for classic ligand-gated chloride channels. The current studies were undertaken to establish the behavioral role, if any, of these strychnine-sensitive glycine receptors. Adult Long-Evans male rats were implanted with guide cannulae targeted at the lateral amygdala and were micro-injected with standard artificial cerebrospinal fluid with or without various doses of strychnine or taurine. Anxiety-like behaviors were assessed with the elevated plus-maze or the light/dark box. In the elevated plus maze, strychnine decreased closed-arm time and increased open-arm time, suggestive of an anxiolytic effect. Similarly, strychnine produced a modest anxiolytic effect in the light/dark box. Post-hoc analysis of ‘open-arm’ time and ‘light-side’ time indicated that aCSF-treated animals were distributed into two apparent groups that displayed either high or low amounts of anxiety-like behavior in a given apparatus. Surprisingly, the pharmacological effects of both strychnine and taurine in these assays were dependent upon a given animal’s behavioral phenotype. Together, these findings are significant because they suggest that the basal ‘emotional state’ of the animal could influence the behavioral outcome associated with drug application directly into the lateral/basolateral amygdala. Furthermore, our findings also suggest that compounds acting at amygdala strychnine-sensitive glycine receptors may actively modulate this basal anxiety-like state. PMID:17207866
Xu, Peng; Qiu, Yi; Zhang, Yizhi; Βai, Yanping; Xu, Pengfei; Liu, Yuan; Kim, Jee Hyun; Shen, Hao-wei
2016-04-01
4-Methylethcathinone is a drug that belongs to the second generation of synthetic cathinones, and recently it has been ranked among the most popular "legal highs". Although it has similar in vitro neurochemical actions to other drugs such as cocaine, the behavioral effects of 4-methylethcathinone remain to be determined. The addictive potential and locomotor potentiation by 4-methylethcathinone were investigated in rats using the conditioned place preference and sensitization paradigm. Methamphetamine was used as a positive control. Because synthetic cathinones can have psychological effects, we also examined anxiety-like behavior using the elevated plus maze. A conditioning dose of 10 mg/kg 4-methylethcathinone was able to induce conditioned place preference and reinstatement (following 2 weeks of withdrawal). Acute or repeated injections of 4-methylethcathinone at 3 or 10mg/kg failed to alter locomotor activity. At 30 mg/kg, however, acute 4-methylethcathinone increased locomotor activity compared with saline, while chronic 4-methylethcathinone induced a delayed and attenuated sensitization compared with methamphetamine. Additionally, repeated daily injections of 4-methylethcathinone (30 mg/kg) reduced, whereas methamphetamine increased time spent by rats in the open arm of an elevated plus maze compared with saline injections. Interestingly, a 2-week withdrawal period following chronic injections of 4-methylethcathinone or methamphetamine increased time spent in the open arm in all rats. The rewarding properties of 4-methylethcathinone were found to be dissociated from its effects on locomotor activity. Additionally, chronic 4-methylethcathinone use may trigger abnormal anxious behaviors. These behavioral effects caused by 4-methylethcathinone appear to last even after a withdrawal period. © The Author 2015. Published by Oxford University Press on behalf of CINP.
Hawley, Wayne R; Grissom, Elin M; Moody, Nicole M; Dohanich, Gary P; Vasudevan, Nandini
2014-04-01
In ovariectomized rats, administration of estradiol, or selective estrogen receptor agonists that activate either the α or β isoforms, have been shown to enhance spatial cognition on a variety of learning and memory tasks, including those that capitalize on the preference of rats to seek out novelty. Although the effects of the putative estrogen G-protein-coupled receptor 30 (GPR30) on hippocampus-based tasks have been reported using food-motivated tasks, the effects of activation of GPR30 receptors on tasks that depend on the preference of rats to seek out spatial novelty remain to be determined. Therefore, the aim of the current study was to determine if short-term treatment of ovariectomized rats with G-1, an agonist for GPR30, would mimic the effects on spatial recognition memory observed following short-term estradiol treatment. In Experiment 1, ovariectomized rats treated with a low dose (1 μg) of estradiol 48 h and 24 h prior to the information trial of a Y-maze task exhibited a preference for the arm associated with the novel environment on the retention trial conducted 48 h later. In Experiment 2, treatment of ovariectomized rats with G-1 (25 μg) 48 h and 24 h prior to the information trial of a Y-maze task resulted in a greater preference for the arm associated with the novel environment on the retention trial. Collectively, the results indicated that short-term treatment of ovariectomized rats with a GPR30 agonist was sufficient to enhance spatial recognition memory, an effect that also occurred following short-term treatment with a low dose of estradiol. Copyright © 2014 Elsevier B.V. All rights reserved.
Deficits in novelty exploration after controlled cortical impact.
Wagner, Amy K; Postal, Brett A; Darrah, Shaun D; Chen, Xiangbai; Khan, Amina S
2007-08-01
Experimental models of traumatic brain injury (TBI) have been utilized to characterize the behavioral derangements associated with brain trauma. Several studies exist characterizing motor function in the controlled cortical impact (CCI) injury model of TBI, but less research has focused on how CCI affects exploratory behavior. The goal of this study was to characterize deficits in three novelty exploration tasks after the CCI. Under anesthesia, 37 adult male Sprague Dawley rats received CCI (2.7 mm and 2.9 mm; 4 m/sec) over the right parietal cortex or sham surgery. For days 1-6 post-surgery, the beam balance and beam walking tasks were used to assess motor deficits. The Open Field, Y-Maze, and Free Choice Novelty (FCN) tasks were used to measure exploratory deficits from days 7-14 post-surgery. Injured rats displayed a significant, but transient, deficit on each motor task (p < 0.0001). Open Field results showed that injured rats had lower activity levels than shams (p < 0.0001), displayed less habituation to the task, and had more anxiety related behaviors (thigmotaxis) across days (p < 0.0001). Y-maze results suggest that injured rats spent less time in the novel arm versus the familiar arms when compared to shams (p < 0.0001). For FCN, injured rats were less active (p < 0.05) and spent less time and had fewer interactions with objects in the novel environment compared to shams (p < 0.05). These results suggest that several ethological factors contribute to exploratory deficits after CCI and can be effectively characterized with the behavioral tasks described. Future work will utilize these tasks to evaluate the neural substrates underlying exploratory deficits after TBI.
Qiu, Zhi-Kun; Liu, Chun-Hui; Gao, Zhuo-Wei; He, Jia-Li; Liu, Xu; Wei, Qing-Lan; Chen, Ji-Sheng
2016-10-01
Post-traumatic stress disorder (PTSD) is a severe psychiatric condition. The allopregnanolone biosynthesis has been implicated as one of the possible contributors to PTSD. Inulin-type oligosaccharides of morinda officinalis (IOMO) had been shown to be effective in the therapy of depression. However, few studies concern the anti-PTSD-like effects of IOMO. To evaluate this, the single prolonged stress (SPS) model was used in the present study. It had been shown that the behavioral deficits of SPS-treated rats were reversed by IOMO (25.0 and 50.0 mg/kg, i.p.), which reversed the increased freezing time in contextual fear paradigm (CFP) and the decreased time and entries in open arms in the elevated plus maze (EPM) test without affecting the locomotor activity in the open field (OF) test. In addition, the decreased allopregnanolone in the prefrontal cortex, hippocampus, and amygdala was reversed by IOMO (25.0 and 50.0 mg/kg, i.p.), respectively. In summary, the present study indicated that the IOMO exert anti-PTSD-like behaviors, which maybe associated with the brain allopregnanolone biosynthesis.
Ortiz-Pulido, R; Hernández-Briones, Z S; Tamariz-Rodríguez, A; Hernández, M E; Aranda-Abreu, G E; Coria-Avila, G A; Manzo, J; García, L I
2017-06-01
Cortical motor areas are influenced not only by peripheral sensory afferents and prefrontal association areas, but also by the basal ganglia, specifically the striatum. The dorsomedial striatum (DMS) and dorsolateral striatum are involved in both spatial and stimulus-response learning; however, each of these areas may mediate different components of learning. The aim of the study is to determine the effect of electrolytic lesion to the DMS on the learning and performance of sexual behaviour and locomotor activity in male rats. Once the subjects had learned to perform motor tests of balance, maze navigation, ramp ascent, and sexual behaviour, they underwent electrolytic lesion to the DMS. Five days later, the tests were repeated on 2 occasions and researchers compared performance latencies for each test. Average latency values for performance on the maze and balance tests were higher after the lesion. However, the average values for the ramp test and for sexual behaviour did not differ between groups. Electrolytic lesion of the DMS modifies the performance of locomotor activity (maze test and balance), but not of sexual behaviour. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Diniz, Derlange B; de Oliveira, Suzana L; Melo, Liana L; Amaya-Farfan, Jaime
2009-09-01
The purpose of this work was to investigate the influence of energy restriction and vitamin E supplementation on memory, learning, anxiety and spontaneous locomotion in adult rats. Three-month-old male Wistar rats were grouped according to diet: Control (AIN 93-M; n=18), Supplemented (AIN 93-M + 1425 IU all-rac-alpha-tocopheryl acetate/kg diet; n=22) and Restricted (AIN 93-M with 30% reduction in carbohydrate energy; n=23). Sixteen weeks after, the passive avoidance (PA), elevated plus-maze (EPM) and open field (OF) tests were applied. In the EPM test, the behavioral profile of the supplemented group was characterized by a lower frequency of entries into the open arms (P < 0,026), whereas the restricted group showed a lower frequency of head dipping (P < 0,003). The ratio between the time span of the shocks and the number of attempts were larger for the supplemented than for the non-supplemented animals (P = 0,0474), thus suggesting a delay in learning in the PA test. Taken together, these results suggest that a long-term combination of carbohydrate energy restriction in rats should not cause negative behavioral alterations. Compared with vitamin E supplementation, the restricted diet performed equally or better in rats as an alternate antioxidant diet.
Lee, Bombi; Yun, Hye-Yeon; Shim, Insop; Lee, Hyejung; Hahm, Dae-Hyun
2012-03-01
Previous studies have demonstrated that repeated restraint stress in rodents produces increases in depression and anxietylike behaviors and alters the expression of corticotrophinreleasing factor (CRF) in the hypothalamus. The current study focused on the impact of Bupleurum falcatum (BF) extract administration on repeated restraint stress-induced behavioral responses using the forced swimming test (FST) and elevated plus maze (EPM) test. Immunohistochemical examinations of tyrosine hydroxylase (TH) expression in rat brain were also conducted. Male rats received daily doses of 20, 50, or 100 mg/kg (i.p.) BF extract for 15 days, 30 min prior to restraint stress (4 h/day). Hypothalamicpituitary- adrenal axis activation in response to repeated restraint stress was confirmed base on serum corticosterone levels and CRF expression in the hypothalamus. Animals that were pre-treated with BF extract displayed significantly reduced immobility in the FST and increased open-arm exploration in the EPM test in comparison with controls. BF also blocked the increase in TH expression in the locus coeruleus of treated rats that experienced restraint stress. Together, these results demonstrate that BF extract administration prior to restraint stress significantly reduces depression and anxiety-like behaviors, possibly through central adrenergic mechanisms, and they suggest a role for BF extract in the treatment of depression and anxiety disorders.
Role of beta1-adrenoceptor in the basolateral amygdala of rats with anxiety-like behavior.
Fu, Ailing; Li, Xiaorong; Zhao, Baoquan
2008-05-23
There are evidence suggesting that the function of adrenergic receptor is affected in the amygdala of animals with anxiety-like behavior. However, beta-adrenoceptor (beta-AR) subtypes, consisting of three subtypes, exert different effects on anxiety regulation. In order to determine the function of the beta1-AR subtype in anxiety-like behavior, we investigated the change of beta1-AR expression by immunostaining in the basolateral amygdala (BLA) of rats treated by conditional fear training. The results indicated that the level of beta1-AR was significantly increased in the BLA of fear-conditioned animals as compared that of controls. In animal behavioral tests, animals treated with selective beta1-AR antagonist metoprolol before conditional fear training exhibited a significant attenuation of anxiety-like behavior characterized by increased percentage of time spent and percentage of entries in the open arms, and increased number of head-dips in the elevated plus-maze (EPM) test compared with the animals treated with only saline. Furthermore, the rats pretreated with metoprolol in the conditional fear training significantly decreased the freezing behavior in the test compared with the controls. The results suggested that the beta1-AR played an important role in anxiety-like behavior, and inhibition of the beta1-AR in the BLA could produce anxiolytic effect.
Orientation of lizards in a Morris water-maze: roles of the sun compass and the parietal eye.
Foà, Augusto; Basaglia, Francesca; Beltrami, Giulia; Carnacina, Margherita; Moretto, Elisa; Bertolucci, Cristiano
2009-09-15
The present study examined for the first time whether a Morris water-maze can be used to explore compass and other orientation mechanisms in the ruin lizard Podarcis sicula. In the open field, during sunny days, lizards were individually trained to swim from the center of the water maze onto a hidden platform (the goal), positioned at the periphery of the maze in a single compass direction. The goal was invisible because it was placed just beneath the water surface and the water was rendered opaque. The results showed that lizards learn to swim directly towards the hidden goal under the sun in the absence of visual feature cues. We further examined whether the observed orientation response would be due to lizards learning the spatial position of the goal relative to the sun's azimuth, i.e. to the use of a time-compensated sun compass. Lizards reaching learning criteria were subjected to 6 h clock-shift (fast or slow), and tested for goal orientation in the Morris water-maze. Results demonstrated that the learned orientation response is mediated by a time-compensated sun compass. Further investigations provided direct evidence that in ruin lizards an intact parietal eye is required to perform goal orientation under the sun inside a Morris water-maze, and that other brain photoreceptors, like the pineal or deep brain photoreceptors, are not involved in orientation.
van Gerven, Dustin J H; Ferguson, Thomas; Skelton, Ronald W
2016-07-01
Stress and stress hormones are known to influence the function of the hippocampus, a brain structure critical for cognitive-map-based, allocentric spatial navigation. The caudate nucleus, a brain structure critical for stimulus-response-based, egocentric navigation, is not as sensitive to stress. Evidence for this comes from rodent studies, which show that acute stress or stress hormones impair allocentric, but not egocentric navigation. However, there have been few studies investigating the effect of acute stress on human spatial navigation, and the results of these have been equivocal. To date, no study has investigated whether acute stress can shift human navigational strategy selection between allocentric and egocentric navigation. The present study investigated this question by exposing participants to an acute psychological stressor (the Paced Auditory Serial Addition Task, PASAT), before testing navigational strategy selection in the Dual-Strategy Maze, a modified virtual Morris water maze. In the Dual-Strategy maze, participants can chose to navigate using a constellation of extra-maze cues (allocentrically) or using a single cue proximal to the goal platform (egocentrically). Surprisingly, PASAT stress biased participants to solve the maze allocentrically significantly more, rather than less, often. These findings have implications for understanding the effects of acute stress on cognitive function in general, and the function of the hippocampus in particular. Copyright © 2016 Elsevier Inc. All rights reserved.
Amodeo, Leslie R.; Greenfield, Venuz Y.; Humphrey, Danielle E.; Varela, Veronica; Pipkin, Joseph A.; Eaton, Shannon E.; Johnson, Jelesa D.; Plant, Christopher P.; Harmony, Zachary R.; Wang, Li; Crawford, Cynthia A.
2015-01-01
Rationale The SSRI antidepressant fluoxetine is one of the few drugs that is effective at treating depression in adolescent humans. In contrast, the SSRI paroxetine has limited efficacy and is more at risk for inducing suicidal behavior. Objective The purpose of the present study was to more fully characterize the differential actions of paroxetine and fluoxetine. Methods In Experiment 1, male and female rats were injected with paroxetine (2.5 or 10 mg/kg), fluoxetine (10 mg/kg), or vehicle for 10 days starting on postnatal day (PD) 35, and affective behaviors were assessed using sucrose preference and elevated plus maze tasks. A separate set of rats were used to examine monoamine levels. In Experiment 2, rats were injected with paroxetine (2.5, 5 or 10 mg/kg), fluoxetine (5, 10 or 20 mg/kg), or vehicle during the same time frame as Experiment 1 and anxiety-like behaviors were measured using elevated plus maze, light/dark box, and acoustic startle. Results Repeated SSRI treatment failed to alter sucrose preference, although both paroxetine and fluoxetine reduced time spent in the open arms of the elevated plus maze and light compartment of the light/dark box. Paroxetine, but not fluoxetine, enhanced acoustic startle and interfered with habituation. Serotonin turnover was decreased by both acute and repeated fluoxetine treatment but unaltered by paroxetine administration. Discussion These results show that repeated treatment with paroxetine and fluoxetine has dissociable actions in adolescent rats. In particular, paroxetine, but not fluoxetine, increases acoustic startle at low doses and may increase sensitivity to environmental stressors. PMID:26141193
Amodeo, Leslie R; Greenfield, Venuz Y; Humphrey, Danielle E; Varela, Veronica; Pipkin, Joseph A; Eaton, Shannon E; Johnson, Jelesa D; Plant, Christopher P; Harmony, Zachary R; Wang, Li; Crawford, Cynthia A
2015-10-01
The SSRI antidepressant fluoxetine is one of the few drugs that is effective at treating depression in adolescent humans. In contrast, the SSRI paroxetine has limited efficacy and is more at risk for inducing suicidal behavior. The purpose of the present study was to more fully characterize the differential actions of paroxetine and fluoxetine. In experiment 1, male and female rats were injected with paroxetine (2.5 or 10 mg/kg), fluoxetine (10 mg/kg), or vehicle for 10 days starting on postnatal day (PD) 35, and affective behaviors were assessed using sucrose preference and elevated plus maze tasks. A separate set of rats were used to examine monoamine levels. In experiment 2, rats were injected with paroxetine (2.5, 5, or 10 mg/kg), fluoxetine (5, 10, or 20 mg/kg), or vehicle during the same time frame as experiment 1, and anxiety-like behaviors were measured using elevated plus maze, light/dark box, and acoustic startle. Repeated SSRI treatment failed to alter sucrose preference, although both paroxetine and fluoxetine reduced time spent in the open arms of the elevated plus maze and light compartment of the light/dark box. Paroxetine, but not fluoxetine, enhanced acoustic startle and interfered with habituation. Serotonin turnover was decreased by both acute and repeated fluoxetine treatment but unaltered by paroxetine administration. These results show that repeated treatment with paroxetine and fluoxetine has dissociable actions in adolescent rats. In particular, paroxetine, but not fluoxetine, increases acoustic startle at low doses and may increase sensitivity to environmental stressors.
Sex differences in the neurochemical and functional effects of MDMA in Sprague-Dawley rats.
Walker, Q David; Williams, Christina N; Jotwani, Rakesh P; Waller, Samuel T; Francis, Reynold; Kuhn, Cynthia M
2007-01-01
3,4-Methylenedioxymethamphetamine (MDMA; "Ecstasy") use has been associated with acute toxicities and persistent depletion of the neurotransmitter serotonin (5-HT). This study investigates whether sex differences in the acute and long-term effects of MDMA exist. Male and female rats received saline or 15 mg/kg MDMA, ip, bid for 4 days. Temperature was monitored on days 1 and 4. Locomotor activity was measured in a second cohort of animals on days 1 and 4 and after recovery on day 14. The effects of MDMA on performance in a plus maze task and brain levels of serotonin (5-HT) and the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) were determined in a third cohort of animals 2 weeks after the last MDMA treatment. Locomotor activity and temperature increased after MDMA administration on day 1. The drug-induced increases in temperature but not locomotion attenuated with repeated MDMA administration. Male and female MDMA-treated rats spent less time in the open arms of the elevated plus maze and had less 5-HT and 5-HIAA in all brain regions 2 weeks after the end of treatment. Temperature effects of MDMA and persistent effects on plus maze and brain serotonin content were similar in males and females. In contrast, females exhibited markedly greater locomotor stimulation after acute MDMA and also showed sensitization to an acute challenge 2 weeks later. MDMA elicits substantially greater locomotor activation in female rats than in males, but persistent effects on anxiety and serotonin content were similar in males and females.
[Reverse learning in WAG/Rij rats with depression-like behavior].
Malyshev, A V; Zakharov, A M; Sarkisova, K Iu; Dubynin, V A
2012-01-01
Learning and reverse learning in a complex maze, behavior in the open field test, novelty-suppressed feeding test, and forced swimming test were studies in WAG/Rij and Wistar rats. As compared with Wistar rats, WAG/Rij rats more slowly learned the spatial task, more slowly performed in the learning and reverse learning tasks, and made more errors in the complex maze (18% of WAG/Rij rats didn't reach learning criterion). Moreover, WAG/Rij rats exhibited reduced grooming reactions in the open field test, longer latency of approaching to food in the novel open field, reduced amount of food consumed in the home cage in the novelty-suppressed feeding test, and increased immobility time in the forced swimming test. The results suggest cognitive impaiment in WAG/Rij rats with depression-like behavior.
Neonatal exposure to fenoterol and betamethasone: effects on the behavioral development in the rat.
Pitzer, Martina; Schmidt, Martin H
2009-01-01
We investigated longitudinally the behavioral development in the rat following exposure to beta-agonists and glucocorticoids (GC). Neonatal rats received either 1 mg/kg fenoterol (FEN), 0.3 mg/kg betamethasone (BET), or saline (SAL). Weanling and young adult rats were tested in the open field, the elevated-plus maze, and the water maze. FEN-treated as well as BET-treated animals displayed increased anxiety-like behavior. Furthermore, BET-treated adult animals showed a reduced locomotor activity. An enhanced 24-h memory in the water maze in both treatment groups may be facilitated by emotional arousal due to the increased anxiety levels. The possible neurobiological underpinnings are discussed in detail.
Braden, B Blair; Andrews, Madeline G; Acosta, Jazmin I; Mennenga, Sarah E; Lavery, Courtney; Bimonte-Nelson, Heather A
2017-03-30
For decades, progestins have been included in hormone therapies (HT) prescribed to women to offset the risk of unopposed estrogen-induced endometrial hyperplasia. However, the potential effects on cognition of subcategories of clinically used progestins have been largely unexplored. In two studies, the present investigation evaluated the cognitive effects of norethindrone acetate (NETA), levonorgestrel (LEVO), and medroxyprogesterone acetate (MPA) on the water radial-arm maze (WRAM) and Morris water maze (MM) in middle-aged ovariectomized rats. In Study 1, six-weeks of a high-dose NETA treatment impaired learning and delayed retention on the WRAM, and impaired reference memory on the MM. Low-dose NETA treatment impaired delayed retention on the WRAM. In Study 2, high-dose NETA treatment was reduced to four-weeks and compared to MPA and LEVO. As previously shown, MPA impaired working memory performance during the lattermost portion of testing, at the highest working memory load, impaired delayed retention on the WRAM, and impaired reference memory on the MM. NETA also impaired performance on these WRAM and MM measures. Interestingly, LEVO did not impair performance, but instead enhanced learning on the WRAM. The current study corroborates previous evidence that the most commonly prescribed FDA-approved progestin for HT, MPA, impairs learning and memory in the ovariectomized middle-aged rat. When progestins from two different additional subcategories were investigated, NETA impaired learning and memory similarly to MPA, but LEVO enhanced learning. Future research is warranted to determine LEVO's potential as an ideal progestin for optimal health in women, including for cognition. Copyright © 2016 Elsevier B.V. All rights reserved.
An ontogenic study of the behavioral effects of chronic intermittent exposure to ayahuasca in mice.
Correa-Netto, N F; Masukawa, M Y; Nishide, F; Galfano, G S; Tamura, F; Shimizo, M K; Marcato, M P; Santos, J G; Linardi, A
2017-06-05
Ayahuasca is a beverage obtained from decoctions of the Banisteriopsis caapi plus Psychotria viridis. In religious contexts, ayahuasca is used by different age groups. However, little is known of the effects of ayahuasca during ontogenic development, particularly with regard to the functional characteristics of the central nervous system. Animal models are useful for studying the ontogenic effects of ayahuasca because they allow exclusion of the behavioral influence associated with the ritualistic use. We investigated the effects of exposure to ayahuasca (1.5 mL/kg, orally, twice a week) on memory and anxiety in C57BL/6 mice, with the post-natal day (PND) being used as the ontogenic criterion for classification: childhood (PND21 to PND35), adolescence (PND35 to PND63), adulthood (PND90-PND118), childhood-adolescence (PND21 to PND63), childhood-adulthood (PND21 to PND118) and adolescence-adulthood (PND35 to PND118). One day after the last ayahuasca exposure, the mice were subjected to the Morris water maze (MWM), open field and elevated plus maze tasks (EPM). Ayahuasca did not affect locomotion in the open field or open arms exploration in the EPM, but increased the risk assessment behavior in the childhood group. Ayahuasca did not cause any change in acquisition of spatial reference memory in the MWM task, but decreased the time spent on the platform quadrant during the test session in the adolescence group. These results suggest that, in mice, exposure to ayahuasca in childhood and adolescence promoted anxiety and memory impairment, respectively. However, these behavioral changes were not long-lasting since they were not observed in the childhood-adulthood and adolescence-adulthood groups.
An ontogenic study of the behavioral effects of chronic intermittent exposure to ayahuasca in mice
Correa-Netto, N.F.; Masukawa, M.Y.; Nishide, F.; Galfano, G.S.; Tamura, F.; Shimizo, M.K.; Marcato, M.P.; Santos, J.G.; Linardi, A.
2017-01-01
Ayahuasca is a beverage obtained from decoctions of the Banisteriopsis caapi plus Psychotria viridis. In religious contexts, ayahuasca is used by different age groups. However, little is known of the effects of ayahuasca during ontogenic development, particularly with regard to the functional characteristics of the central nervous system. Animal models are useful for studying the ontogenic effects of ayahuasca because they allow exclusion of the behavioral influence associated with the ritualistic use. We investigated the effects of exposure to ayahuasca (1.5 mL/kg, orally, twice a week) on memory and anxiety in C57BL/6 mice, with the post-natal day (PND) being used as the ontogenic criterion for classification: childhood (PND21 to PND35), adolescence (PND35 to PND63), adulthood (PND90-PND118), childhood-adolescence (PND21 to PND63), childhood-adulthood (PND21 to PND118) and adolescence-adulthood (PND35 to PND118). One day after the last ayahuasca exposure, the mice were subjected to the Morris water maze (MWM), open field and elevated plus maze tasks (EPM). Ayahuasca did not affect locomotion in the open field or open arms exploration in the EPM, but increased the risk assessment behavior in the childhood group. Ayahuasca did not cause any change in acquisition of spatial reference memory in the MWM task, but decreased the time spent on the platform quadrant during the test session in the adolescence group. These results suggest that, in mice, exposure to ayahuasca in childhood and adolescence promoted anxiety and memory impairment, respectively. However, these behavioral changes were not long-lasting since they were not observed in the childhood-adulthood and adolescence-adulthood groups. PMID:28591379
NASA Astrophysics Data System (ADS)
Shukitt-Hale, Barbara; Casadesus, Gemma; Carey, Amanda N.; Rabin, Bernard M.; Joseph, James A.
Previous studies have shown that radiation exposure, particularly to particles of high energy and charge (HZE particles) such as 56Fe, produces deficits in spatial learning and memory. These adverse behavioral effects are similar to those seen in aged animals. It is possible that these shared effects may be produced by the same mechanism. For example, an increased release of reactive oxygen species, and the subsequent oxidative stress and inflammatory damage caused to the central nervous system, is likely responsible for the deficits seen in aging and following irradiation. Therefore, dietary antioxidants, such as those found in fruits and vegetables, could be used as countermeasures to prevent the behavioral changes seen in these conditions. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. These rats have decrements in the ability to build spatial representations of the environment, and they utilize non-spatial strategies to solve tasks. Furthermore, they show a lack of spatial preference, due to a decline in the ability to process or retain place (position of a goal with reference to a “map” provided by the configuration of numerous cues in the environment) information. These declines in spatial memory occur in measures dependent on both reference and working memory, and in the flexibility to reset mental images. These results show that irradiation with 56Fe high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts, particularly middle-aged ones, to perform critical tasks during long-term space travel beyond the magnetosphere.
Gross, Moshe; Stanciu, Emanuel; Kenigsbuch-Sredni, Dvora; Sredni, Benjamin; Pinhasov, Albert
2017-09-01
Ammonium trichloro (dioxoethylene-O,O') tellurate (AS101) is a synthetic organotellurium compound with potent immunomodulatory and neuroprotective properties shown to inhibit the function of integrin αvβ3, a presynaptic cell-surface-adhesion receptor. As partial deletion of αvβ3 downregulated reuptake of serotonin by the serotonin transporter, we hypothesized that AS101 may influence pathways regulating anxiety. AS101 was tested in the modulation of anxiety-like behavior using the selectively bred Submissive (Sub) mouse strain that develop anxiety-like behavior in response to an i.p. injection. Mice were treated daily with AS101 (i.p., 125 or 200 μg/kg) or vehicle for 3 weeks, after which their anxiety-like behavior was measured in the elevated plus maze. Animals were then culled for the measurement of serum corticosterone levels by ELISA and hippocampal expression of brain-derived neurotrophic factor (BDNF) by RT-PCR. Chronic administration of AS101 significantly reduced anxiety-like behavior of Sub mice in the elevated plus maze, according to both time spent and entries to open arms, relative to vehicle-treated controls. AS101 also markedly reduced serum corticosterone levels of the treated mice and increased their hippocampal BDNF expression. Anxiolytic-like effects of AS101 may be attributed to the modulation of the regulatory influence integrin of αvβ3 upon the serotonin transporter, suggesting a multifaceted mechanism by which AS101 buffers the hypothalamic-pituitary-adrenal axis response to injection stress, enabling recovery of hippocampal BDNF expression and anxiety-like behavior in Sub mice. Further studies should advance the potential of AS101 in the context of anxiety-related disorders.
Lotufo, Bruna M; Tenório, Frank; Barradas, Penha C; Guedes, Paulo L; Lima, Sebastião S; Rocha, Michael L M; Duarte-Pinheiro, Vitor Hugo; Rodrigues, Vanessa S T; Lisboa, Patrícia C; Filgueiras, Cláudio C; Abreu-Villaça, Yael; Manhães, Alex C
2018-04-01
It is well established that chronic undernutrition has detrimental impacts on brain development and maturation. However, protein malnutrition during the period specifically encompassing the brain growth spurt has not been widely studied, particularly regarding its effects on adolescent and adult offspring behavior. Here, we assessed the effects of a protein-free diet during the 1st 10 postnatal days on the macronutrient content of the milk produced by lactating Wistar rats, on their maternal behavior, and on the offspring's behavior. Lactating dams were fed either a protein-free or a normoprotein diet from litter parturition to Postnatal Day 10 (P10). All dams received the normoprotein diet after P10. Offspring were tested in the elevated plus-maze (anxiety-like behavior), hole board arena (novelty-seeking and locomotor activity), and radial arm water maze (memory-learning) at either P40 (adolescents) or P90 (adults). The protein-free diet reduced milk protein content at P10 but not at P20. Carbohydrate and lipid contents were unaffected. Serum corticosterone levels in the offspring (at P10, P40, or P90) and dams (at P21) were not affected by the protein-free diet. Maternal behavior was also unchanged. In the offspring, no differences were observed between groups regarding anxiety-like behaviors at both ages. The protein-free diet increased adolescent locomotor activity as well as adult novelty-seeking behavior and memory performance. Our results indicate that the brain growth spurt period is particularly sensitive to protein malnutrition, showing that even a brief nutritional insult during this period can cause specific age-dependent behavioral effects on the offspring. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Koh, Ming Teng; Rosenzweig-Lipson, Sharon; Gallagher, Michela
2013-01-01
A condition of excess activity in the hippocampal formation is observed in the aging brain and in conditions that confer additional risk during aging for Alzheimer's disease. Compounds that act as positive allosteric modulators at GABA(A) α5 receptors might be useful in targeting this condition because GABA(A) α5 receptors mediate tonic inhibition of principal neurons in the affected network. While agents to improve cognitive function in the past focused on inverse agonists, which are negative allosteric modulators at GABA(A) α5 receptors, research supporting that approach used only young animals and predated current evidence for excessive hippocampal activity in age-related conditions of cognitive impairment. Here, we used two compounds, Compound 44 [6,6-dimethyl-3-(3-hydroxypropyl)thio-1-(thiazol-2-yl)-6,7-dihydro-2-benzothiophen-4(5H)-one] and Compound 6 [methyl 3,5-diphenylpyridazine-4-carboxylate], with functional activity as potentiators of γ-aminobutyric acid at GABA(A) α5 receptors, to test their ability to improve hippocampal-dependent memory in aged rats with identified cognitive impairment. Improvement was obtained in aged rats across protocols differing in motivational and performance demands and across varying retention intervals. Significant memory improvement occurred after either intracereboventricular infusion with Compound 44 (100 μg) in a water maze task or systemic administration with Compound 6 (3 mg/kg) in a radial arm maze task. Furthermore, systemic administration improved behavioral performance at dosing shown to provide drug exposure in the brain and in vivo receptor occupancy in the hippocampus. These data suggest a novel approach to improve neural network function in clinical conditions of excess hippocampal activity. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.
Schulz, Daniela; Huston, Joseph P; Buddenberg, Tim; Topic, Bianca
2007-03-01
We have previously reported that extinction of escape behavior in the water maze due to the removal of the platform coincided with the development of behavioral "despair" in aged and adult rats, as assessed by immobility. The present study examines further predictions derived from the hypothesis that the withholding of reinforcement induces behaviors akin to depression. We tested for correlations between extinction performance and immobility, as well as between immobility and measures of anxiety in aged and adult rats. Age comparisons were also performed on these variables. Forty aged and 29 adult male Wistar rats (24 and 3 months old, respectively) were examined in the open field, black/white box and elevated-plus maze followed by 6 days of training in the water maze hidden platform task and 8 days of extinction without the platform. Indices of immobility increased over trials of extinction, with the aged showing higher levels, earlier onsets and larger slope increases of immobility than the adults. A lower resistance-to-extinction was predictive of more "despair" in both age groups. Between-group differences in the open field, black/white box and elevated-plus maze indicated that the aged showed more anxiety-like behavior than the adults and/or explored these environments less. Within the aged group, indicators of fearfulness in the three tests were predictive of higher levels of "despair". The extinction-despair model is held to provide the promise of a conceptual and empirical model of human depression that is the consequence of withdrawal of reinforcement.
Search Strategies Used by "APP" Transgenic Mice during Navigation in the Morris Water Maze
ERIC Educational Resources Information Center
Janus, Christopher
2004-01-01
TgCRND8 mice represent a transgenic mouse model of Alzheimer's disease, with onset of cognitive impairment and increasing amyloid-[beta] plaques in their brains at 12 weeks of age. In this study, the spatial memory in 25- to 30-week-old TgCRND8 mice was analyzed in two reference and one working memory Morris water maze (MWM) tests. In reference…
ERIC Educational Resources Information Center
Walsh, Christine M.; Booth, Victoria; Poe, Gina R.
2011-01-01
This first test of the role of REM (rapid eye movement) sleep in reversal spatial learning is also the first attempt to replicate a much cited pair of papers reporting that REM sleep deprivation impairs the consolidation of initial spatial learning in the Morris water maze. We hypothesized that REM sleep deprivation following training would impair…
Sex differences and the role of acute stress in the open-field tower maze.
Lipatova, Olga; Campolattaro, Matthew M; Dixon, Dawndra C; Durak, Ayse
2018-05-15
Many studies provide evidence that differences in spatial learning exist between males and females. However, it is necessary to consider non-mnemonic factors that may influence these findings. The present experiment investigated acquisition, retention, and the effects of stress on response- and place-learning in male and female rats. Rats were trained in an open-field tower maze. Procedures were used to minimize stress in the rats, and their ability to solve place- or response-learning in the maze was determined by analyzing a response variable (i.e., first choice correct response) that was not influenced by general locomotor activity. The results revealed that male and female rats acquire place- and response-learning at the same rate even though females moved significantly faster in the maze. However, females showed better retrieval of place-, but not response-learning compared to male rats. This effect appeared to be enhanced when the rats were tested immediately following an acute restraint stress. Furthermore, both female and male rats that were exposed to acute restraint stress showed less impairment than controls when subsequently tested in a novel situation. These findings have clinical implications that a mild physiological stress response can make one more cognitively resistant to adversities later in life. Copyright © 2018 Elsevier Inc. All rights reserved.
Sudakov, S K; Nazarova, G A; Alekseeva, E V; Bashkatova, V G
2013-07-01
We compared individual anxiety assessed by three standard tests, open-field test, elevated plus-maze test, and Vogel conflict drinking test, in the same animals. No significant correlations between the main anxiety parameters were found in these three experimental models. Groups of animals with high and low anxiety rats were formed by a single parameter and subsequent selection of two extreme groups (10%). It was found that none of the tests could be used for reliable estimation of individual anxiety in rats. The individual anxiety level with high degree of confidence was determined in high-anxiety and low-anxiety rats demonstrating behavioral parameters above and below the mean values in all tests used. Therefore, several tests should be used for evaluation of the individual anxiety or sensitivity to emotional stress.
Assessment of attention and inhibitory control in rodent developmental neurotoxicity studies.
Driscoll, Lori L; Strupp, Barbara J
2015-01-01
In designing screens to assess potential neurotoxicants, the paramount goal is that the selected assessment tools detect dysfunction if it exists. This goal is particularly challenging in the case of cognitive assessments. Cognition is not a unitary phenomenon, and indeed there is growing evidence that different aspects of cognitive functioning are subserved by distinct neural systems. As a result, if a particular neurotoxicant selectively damages certain neural systems but not others, it can impair some cognitive, sensory, or affective functions, but leave many others intact. Accordingly, studies with human subjects use batteries of cognitive tests, cognizant of the fact that no one test is capable of detecting all forms of cognitive dysfunction. In contrast, assessment of cognitive functioning in non-human animal developmental neurotoxicity (DNT) studies typically consists of a single, presumably representative, "learning and memory" task that is expected to detect all potential effects on cognitive functioning. Streamlining the cognitive assessment in these studies saves time and money, but these shortcuts can have serious consequences if the aspect of cognitive functioning that is impaired is not tapped by the single selected task. In particular, executive functioning - a constellation of cognitive functions which enables the organism to focus on multiple streams of information simultaneously, and revise plans as necessary - is poorly assessed in most animal DNT studies. The failure to adequately assess these functions - which include attention, working memory, inhibitory control, and planning - is particularly worrisome in light of evidence that the neural systems that subserve these functions may be uniquely vulnerable to early developmental insults. We illustrate the importance of tapping these areas of functioning in DNT studies by describing the pattern of effects produced by early developmental Pb exposure. Rats exposed to lead (Pb) early in development were tested on a series of automated attention tasks, as well as on a radial arm maze task. The lead-exposed rats were not impaired in this demanding radial arm maze task, despite conditions which tapped the limits of both working and long-term memory. In contrast, the automated tests designed to assess rodent executive functioning revealed selective and functionally important deficits in attention and regulation of emotion or negative affect (produced by committing an error or not receiving an expected reward). This example underscores the importance of including tasks to specifically tap executive functioning in DNT batteries. Such tasks are not only sensitive but can also shed light on the specific nature of the dysfunction, and they can implicate dysfunction of specific neural systems, information which can be used to design therapeutic interventions. Although the use of such tasks increases the time and effort needed to complete the battery, the benefits outweigh the cost, in light of the greater sensitivity of the battery and the more complete characterization of effects. Copyright © 2014 Elsevier Inc. All rights reserved.
Womersley, Jacqueline S; Hsieh, Jennifer H; Kellaway, Lauriston A; Gerhardt, Greg A; Russell, Vivienne A
2011-12-01
Attention-deficit/hyperactivity disorder (ADHD) is a developmental disorder characterised by symptoms of inattention, impulsivity and hyperactivity. The spontaneously hypertensive rat (SHR) is a well-characterised model of this disorder and has been shown to exhibit dopamine dysregulation, one of the hypothesised causes of ADHD. Since stress experienced in the early stages of life can have long-lasting effects on behaviour, it was considered that early life stress may alter development of the dopaminergic system and thereby contribute to the behavioural characteristics of SHR. It was hypothesized that maternal separation would alter dopamine regulation by the transporter (DAT) in ways that distinguish SHR from control rat strains. SHR and control Wistar-Kyoto (WKY) rats were subjected to maternal separation for 3 hours per day from postnatal day 2 to 14. Rats were tested for separation-induced anxiety-like behaviour followed by in vivo chronoamperometry to determine whether changes had occurred in striatal clearance of dopamine by DAT. The rate of disappearance of ejected dopamine was used as a measure of DAT function. Consistent with a model for ADHD, SHR were more active than WKY in the open field. SHR entered the inner zone more frequently and covered a significantly greater distance than WKY. Maternal separation increased the time that WKY spent in the closed arms and latency to enter the open arms of the elevated plus maze, consistent with other rat strains. Of note is that, maternal separation failed to produce anxiety-like behaviour in SHR. Analysis of the chronoamperometric data revealed that there was no difference in DAT function in the striatum of non-separated SHR and WKY. Maternal separation decreased the rate of dopamine clearance (k-1) in SHR striatum. Consistent with this observation, the dopamine clearance time (T100) was increased in SHR. These results suggest that the chronic mild stress of maternal separation impaired the function of striatal DAT in SHR. The present findings suggest that maternal separation failed to alter the behaviour of SHR in the open field and elevated plus maze. However, maternal separation altered the dopaminergic system by decreasing surface expression of DAT and/or the affinity of DAT for dopamine, increasing the time to clear dopamine from the extracellular fluid in the striatum of SHR.
Richter-Levin, G
1998-06-02
As a consequence of a brief but significantly extreme stressor, an individual will experience a stress response, which may sometimes develop into Acute Stress Disorder (ASD) or Post-Traumatic Stress Disorder (PTSD). Though a rat model for ASD and PTSD is not expected to encompass the richness and complexity of the disorders in humans, it will enable the study of the common underlying mechanisms that generate the disorders, the study of pre-trauma etiological aspects of the disorders and the screening of drugs with potential relevance to the treatment of the disorders. One well-documented aspect of PTSD is the enhancing influence of contextual elements on the appearance of symptoms of the post-stress trauma. To exploit this effect, we have chosen to assess the effects of an underwater trauma in the Morris water maze since the effects of such trauma on memory and attention can be later evaluated in the context of the trauma. At both 1 h and 3 weeks after the trauma, significant behavioral deficits were observed in the water maze. The effects of the underwater trauma on the performance of rats in the water maze were context specific. Underwater trauma in a different (out-of-context) water container had no effects on the ability of rats to perform a spatial memory task in the water maze. An elevated level of anxiety was found in the plus maze test, independently of whether the trauma was performed in the water maze or in a different (out-of-context) water container. The results indicate that a within-context underwater trauma has both acute and lasting behavioral consequences which can be assessed using a spatial memory test in the context of the trauma. The results are discussed in relation to their relevance to stress and PTSD.
Possible Modulation of the Anexiogenic Effects of Vitex Agnus-castus by the Serotonergic System.
Yaghmaei, Parichehr; Oryan, Shahrbanoo; Fatehi Gharehlar, Laleh; Salari, Ali-Akbar; Solati, Jalal
2012-03-01
There is well documented evidence for the increase in widespread use of complementary and alternative medicine in the treatment of physical and psychiatric symptoms and disorders within the populations. In the present study, we investigated the influence of V itex agnus-castus (vitex) on anxiety-like behaviors of rats. Elevated plus maze which is one of the methods used for testing anxiety is used in our present study. Rats were orally administrated with vitex for two week. The anxiety test was carried out after two weeks of oral administration of vitex. For evaluating interaction of vitex and serotonergic systems, rats were anaesthetized with ketamine and special cannulas were inserted stereotaxically into the third ventricle (TV) of brain. After 1 week recovery, the effects of serotonegic agents on anxiety were studied. Oral administration of vitex (100, 200, 300 mg/kg) for two weeks induced an anxiogenic-like effect which was shown through specific decreases in the percentages of open arm time (OAT %) and open arm entries (OAE %). Intra - TV infusion of 5HT1A receptor agonist, 8-OH-DPAT (5, 10 and 25 ng/rat) increased OAT% and OAE%, indicating anxiolytic-like behavior. However, injection of 5HT1A receptor antagonist NAN190 (0.25, 0.5 and 1 µg/rat) produced anxiogenic-like behavior. The most effective dose of 8-OH-DPAT (10 ng/rat), when co-administered with vitex (100, 200, 300 mg/kg), attenuated the anxiogenic-like effects of vitex significantly. Injection of the less effective dose of NAN190 (0.5 µg/rat), in combination with vitex (100, 200, 300 mg/kg), potentiate anxiogenic effects of vitex. These results illustrate that 5HT1A receptor is involved in the anxiogenic effects of vitex.
Dashiani, M G; Kruashvili, L B; Rusadze, Kh Z; Matatradze, S B; Beselia, G V
2015-02-01
In the present study electrolytic and the immunotoxins (192 IgG saporin and GAT1-SAP) lesions of medial septal area (MS) were used to investigate the importance of cholinergic and GABAergic MS neurons in spatial working memory using spatial alternation task. In our experiments electrolytic lesions destroyed on average 69% of the intact MS. Examination of the AChE stained sections showed that after injections of 192 IgG saporin into the MS, animals exhibited significantly less AChE staining in MS as compared to sections obtained from control animals. Intraseptal GAT1-SAP preferentially reduced GABAergic neurons as compared to cholinergic neurons in the MS. The results of present study indicate that spatial short-term memory is affected only by electrolytic but not 192 IgG saporin or GAT1-SAP lesions. The behavioral testing showed that 192 IgG saporin treated rats, relative to control rats, had a significantly lower level in the number of arms entered during the testing session. However, the groups did not differ in the level of alternation behavior. GAT1-SAP lesioned rats showed that the percent alternation scores and the number of arms that the rat entered in the maze were not significantly different from control rats. These findings indicate that deficits observed after septal electrolytic lesions cannot be accounted solely to the loss of cholinergic or GABAergic septohippocampal projections. To determine more definitively whether septohippocampal projection neurons are required for the spatial short-term memory it would be ideal to produce in future combined lesions of the cholinergic and GABA-ergic septohippocampal projection neurons using 192 IgG-saporin and GAT1-SAP.
Possible Modulation of the Anexiogenic Effects of Vitex Agnus-castus by the Serotonergic System
Yaghmaei, Parichehr; Oryan, Shahrbanoo; Fatehi Gharehlar, Laleh; Salari, Ali-Akbar; Solati, Jalal
2012-01-01
Objective(s) There is well documented evidence for the increase in widespread use of complementary and alternative medicine in the treatment of physical and psychiatric symptoms and disorders within the populations. In the present study, we investigated the influence of Vitex agnus-castus (vitex) on anxiety-like behaviors of rats. Materials and Methods Elevated plus maze which is one of the methods used for testing anxiety is used in our present study. Rats were orally administrated with vitex for two week. The anxiety test was carried out after two weeks of oral administration of vitex. For evaluating interaction of vitex and serotonergic systems, rats were anaesthetized with ketamine and special cannulas were inserted stereotaxically into the third ventricle (TV) of brain. After 1 week recovery, the effects of serotonegic agents on anxiety were studied. Results Oral administration of vitex (100, 200, 300 mg/kg) for two weeks induced an anxiogenic-like effect which was shown through specific decreases in the percentages of open arm time (OAT %) and open arm entries (OAE %). Intra-TV infusion of 5HT1A receptor agonist, 8-OH-DPAT (5, 10 and 25 ng/rat) increased OAT% and OAE%, indicating anxiolytic–like behavior. However, injection of 5HT1A receptor antagonist NAN190 (0.25, 0.5 and 1 µg/rat) produced anxiogenic-like behavior. The most effective dose of 8-OH-DPAT (10 ng/rat), when co-administered with vitex (100, 200, 300 mg/kg), attenuated the anxiogenic-like effects of vitex significantly. Injection of the less effective dose of NAN190 (0.5 µg/rat), in combination with vitex (100, 200, 300 mg/kg), potentiate anxiogenic effects of vitex. Conclusions These results illustrate that 5HT1A receptor is involved in the anxiogenic effects of vitex. PMID:23493923
Langley, Erika A; Krykbaeva, Marina; Blusztajn, Jan Krzysztof; Mellott, Tiffany J
2015-02-01
Autism is a neurodevelopmental disorder with multiple genetic and environmental risk factors. Choline is a fundamental nutrient for brain development and high choline intake during prenatal and/or early postnatal periods is neuroprotective. We examined the effects of perinatal choline supplementation on social behavior, anxiety, and repetitive behaviors in the BTBR T+Itpr3tf/J (BTBR) mouse model of autism. The BTBR or the more "sociable" C57BL/6J (B6) strain females were fed a control or choline-supplemented diet from mating, throughout pregnancy and lactation. After weaning to a control diet, all offspring were evaluated at one or two ages [postnatal days 33-36 and 89-91] using open field (OF), elevated plus maze (EPM), marble burying (MB), and three-chamber social interaction tests. As expected, control-diet BTBR mice displayed higher OF locomotor activity, impaired social preference, and increased digging behavior during the MB test compared to control-diet B6 mice. Choline supplementation significantly decreased digging behavior, elevated the percentage of open arm entries and time spent in open arms in the EPM by BTBR mice, but had no effect on locomotion. Choline supplementation did not alter social interaction in B6 mice but remarkably improved impairments in social interaction in BTBR mice at both ages, indicating that the benefits of supplementation persist long after dietary choline returns to control levels. In conclusion, our results suggest that high choline intake during early development can prevent or dramatically reduce deficits in social behavior and anxiety in an autistic mouse model, revealing a novel strategy for the treatment/prevention of autism spectrum disorders. Copyright © 2014 Elsevier B.V. All rights reserved.
Nootropic and anxiolytic activity of saponins of Albizzia lebbeck leaves.
Une, H D; Sarveiya, V P; Pal, S C; Kasture, V S; Kasture, S B
2001-01-01
The effect of saponin containing, n-butanolic fraction (BF), extracted from dried leaves of Albizzia lebbeck, was studied on cognitive behavior and anxiety in albino mice. The elevated plus maze was used for assessment of both nootropic and anxiolytic activity. The nootropic activity was evaluated by recording the effect of BF (0, 10, 25, and 50 mg/kg) on the transfer latency, whereas anxiolytic activity was assessed by studying its effect on the duration of occupancy in the closed arm. Results showed significant improvement in the retention ability of the normal and amnesic mice as compared to their respective controls. Animals treated with BF (25 mg/kg) spent more time in the open arm in a dose-dependent manner. The BF was without any significant effect on motor coordination. However, it significantly inhibited passivity and hypothermia induced by baclofen (10 mg/kg), a GABA(B) agonist. The data emanated in the present study suggests involvement of gamma-aminobutyric acid (GABA) in the nootropic and anxiolytic activity of saponins obtained from A. lebbeck.
Bum, Elisabeth Ngo; Taïwé, Germain Sotoing; Ngoupaye, Gwladys Temkou; Sidiki, Neteydji; Moto, Fleur Clarisse Okomolo; Kouemou, Nadège; Njapdounke, Stephanie Jacqueline Kameni; Nkantchoua, Gisele; Omam, Jean Pierre Omam; Mairaira, Veronique
2017-01-01
Aim. To assess memory improvement and neuroprotective and antioxidant effects of Mitragyna inermis (M. inermis) leaf decoction on the central nervous system. Methodology. Leaf decoction of M. inermis was tested on learning and memory in normal and scopolamine-induced cognitive impairment in mice using memory behavioral tests such as the Morris water maze, object recognition task, and elevated plus maze. Oxidative stress enzymes—catalase, superoxide dismutase, and the thiobarbituric acid reactive substance, a product of lipid peroxidation—were quantified. In each test, mice 18 to 25 g were divided into groups of 5. Results. The extract reversed the effects of scopolamine in mice. The extract significantly increased discrimination index in the object recognition task test and inflexion ratio in the elevated plus maze test. The times spent in target quadrant in MWM increased while the transfer latency decreased in mice treated by M. inermis at the dose of 196.5 mg/kg. The activity levels of superoxide dismutase and catalase were significantly increased, whereas the thiobarbituric acid reactive substance was significantly decreased after 8 consecutive days of treatment with M. inermis at the dose of 393 mg/kg. Conclusion. These results suggest that M. inermis leaf extract possess potential antiamnesic effects. PMID:28386162
Smith, Dani; Aherrera, Angela; Lopez, Armando; Neptune, Enid; Winickoff, Jonathan P; Klein, Jonathan D; Chen, Gang; Lazarus, Philip; Collaco, Joseph M; McGrath-Morrow, Sharon A
2015-01-01
Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG) or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains. Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not. Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth.
Assessment of anxiety in open field and elevated plus maze using infrared thermography.
Lecorps, Benjamin; Rödel, Heiko G; Féron, Christophe
2016-04-01
Due to their direct inaccessibility, affective states are classically assessed by gathering concomitant physiological and behavioral measures. Although such a dual approach to assess emotional states is frequently used in different species including humans, the invasiveness of procedures for physiological recordings particularly in smaller-sized animals strongly restricts their application. We used infrared thermography, a non-invasive method, to assess physiological arousal during open field and elevated plus maze tests in mice. By measuring changes in surface temperature indicative of the animals' emotional response, we aimed to improve the inherently limited and still controversial information provided by behavioral parameters commonly used in these tests. Our results showed significant and consistent thermal responses during both tests, in accordance with classical physiological responses occurring in stressful situations. Besides, we found correlations between these thermal responses and the occurrence of anxiety-related behaviors. Furthermore, initial temperatures measured at the start of each procedure (open field, elevated plus maze), which can be interpreted as a measure of the animals' initial physiological arousal, predicted the levels of activity and of anxiety-related behaviors displayed during the tests. Our results stress the strong link between physiological correlates of emotions and behaviors expressed during unconditioned fear tests. Copyright © 2016 Elsevier Inc. All rights reserved.
Leão, Anderson H F F; Medeiros, André M; Apolinário, Gênedy K S; Cabral, Alícia; Ribeiro, Alessandra M; Barbosa, Flávio F; Silva, Regina H
2016-05-01
The plus-maze discriminative avoidance task (PMDAT) has been used to investigate interactions between aversive memory and an anxiety-like response in rodents. Suitable performance in this task depends on the activity of the basolateral amygdala, similar to other aversive-based memory tasks. However, the role of spatial cues and hippocampal-dependent learning in the performance of PMDAT remains unknown. Here, we investigated the role of proximal and distal cues in the retrieval of this task. Animals tested under misplaced proximal cues had diminished performance, and animals tested under both misplaced proximal cues and absent distal cues could not discriminate the aversive arm. We also assessed the role of the dorsal hippocampus (CA1) in this aversive memory task. Temporary bilateral inactivation of dorsal CA1 was conducted with muscimol (0.05 μg, 0.1 μg, and 0.2 μg) prior to the training session. While the acquisition of the task was not altered, muscimol impaired the performance in the test session and reduced the anxiety-like response in the training session. We also performed a spreading analysis of a fluorophore-conjugated muscimol to confirm selective inhibition of CA1. In conclusion, both distal and proximal cues are required to retrieve the task, with the latter being more relevant to spatial orientation. Dorsal CA1 activity is also required for aversive memory formation in this task, and interfered with the anxiety-like response as well. Importantly, both effects were detected by different parameters in the same paradigm, endorsing the previous findings of independent assessment of aversive memory and anxiety-like behavior in the PMDAT. Taken together, these findings suggest that the PMDAT probably requires an integration of multiple systems for memory formation, resembling an episodic-like memory rather than a pure conditioning behavior. Furthermore, the concomitant and independent assessment of emotionality and memory in rodents is relevant to elucidate how these memory systems interact during aversive memory formation. Thus, the PMDAT can be useful for studying hippocampal-dependent memory when it involves emotional content. Copyright © 2016 Elsevier B.V. All rights reserved.
Neural Development Under Conditions of Spaceflight
NASA Technical Reports Server (NTRS)
Kosik, Kenneth S.; Steward, Oswald; Temple, Meredith D.; Denslow, Maria J.
2003-01-01
One of the key tasks the developing brain must learn is how to navigate within the environment. This skill depends on the brain's ability to establish memories of places and things in the environment so that it can form cognitive maps. Earth's gravity defines the plane of orientation of the spatial environment in which animals navigate, and cognitive maps are based on this plane of orientation. Given that experience during early development plays a key role in the development of other aspects of brain function, experience in a gravitational environment is likely to be essential for the proper organization of brain regions mediating learning and memory of spatial information. Since the hippocampus is the brain region responsible for cognitive mapping abilities, this study evaluated the development of hippocampal structure and function in rats that spent part of their early development in microgravity. Litters of male and female Sprague-Dawley rats were launched into space aboard the Space Shuttle Columbia on either postnatal day eight (P8) or 14 (P14) and remained in space for 16 days. Upon return to Earth, the rats were tested for their ability to remember spatial information and navigate using a variety of tests (the Morris water maze, a modified radial arm maze, and an open field apparatus). These rats were then tested physiologically to determine whether they exhibited normal synaptic plasticity in the hippocampus. In a separate group of rats (flight and controls), the hippocampus was analyzed using anatomical, molecular biological, and biochemical techniques immediately postlanding. There were remarkably few differences between the flight groups and their Earth-bound controls in either the navigation and spatial memory tasks or activity-induced synaptic plasticity. Microscopic and immunocytochemical analyses of the brain also did not reveal differences between flight animals and ground-based controls. These data suggest that, within the developmental window studied, microgravity has minimal long-term impact on cognitive mapping function and cellular substrates important for this function. Any differences due to development in microgravity were transient and returned to normal soon after return to Earth.
Albrechet-Souza, Lucas; Viola, Thiago W; Grassi-Oliveira, Rodrigo; Miczek, Klaus A; de Almeida, Rosa M M
2017-01-01
Stress exposure has been identified as one risk factor for alcohol abuse that may facilitate the transition from social or regulated use to the development of alcohol dependence. Preclinical studies have shown that dysregulation of the corticotropin releasing factor (CRF) neurotransmission has been implicated in stress-related psychopathologies such as depression and anxiety, and may affect alcohol consumption. The bed nucleus of the stria terminalis (BNST) contains CRF-producing neurons which seem to be sensitive to stress. In this study, adult male C57BL/6 mice previously defeated in resident-intruder confrontations were evaluated in the elevated plus-maze and tail suspension test. Mice were also tested for sweet solution intake before and after social stress. After having had continuous access to ethanol (20% weight/volume) for 4 weeks, control and stressed mice had CRF type 1 (CRFR1) or type 2 (CRFR2) receptor antagonists infused into the BNST and then had access to ethanol for 24 h. In separate cohorts of control and stressed mice, we assessed mRNA levels of BNST CRF, CRFR1 and CRFR2 . Stressed mice increased their intake of sweet solution after ten sessions of social defeat and showed reduced activity in the open arms of the elevated plus-maze. When tested for ethanol consumption, stressed mice persistently drank significantly more than controls during the 4 weeks of access. Also, social stress induced higher BNST CRF mRNA levels. The selective blockade of BNST CRFR1 with CP376,395 effectively reduced alcohol drinking in non-stressed mice, whereas the selective CRFR2 antagonist astressin2B produced a dose-dependent increase in ethanol consumption in both non-stressed controls and stressed mice. The 10-day episodic defeat stress used here elicited anxiety- but not depressive-like behaviors, and promoted an increase in ethanol drinking. CRF-CRFR1 signaling in the BNST seems to underlie ethanol intake in non-stressed mice, whereas CRFR2 modulates alcohol consumption in both socially defeated and non-stressed mice with a history of chronic intake.
Hritcu, Lucian; Bagci, Eyup; Aydin, Emel; Mihasan, Marius
2015-09-01
Ferulago angulata (Apiaceae) is a shrub indigenous to western Iran, Turkey and Iraq. In traditional medicine, F. angulata is recommended for treating digestive pains, hemorrhoids, snake bite, ulcers and as sedative. In the present study, the effects of inhaled F. angulata essential oil (1 and 3%, daily, for 21 days) on spatial memory performance were assessed in scopolamine-treated rats. Scopolamine-induced memory impairments were observed, as measured by the Y-maze and radial arm-maze tasks. Decreased activities of superoxide dismutase, glutathione peroxidase and catalase along with increase of acetylcholinesterase activity and decrease of total content of reduced glutathione were observed in the rat hippocampal homogenates of scopolamine-treated animals as compared with control. Production of protein carbonyl and malondialdehyde significantly increased in the rat hippocampal homogenates of scopolamine-treated animals as compared with control, as a consequence of impaired antioxidant enzymes activities. Additionally, in scopolamine-treated rats exposure to F. angulata essential oil significantly improved memory formation and decreased oxidative stress, suggesting memory-enhancing and antioxidant effects. Therefore, our results suggest that multiple exposures to F. angulata essential oil ameliorate scopolamine-induced spatial memory impairment by attenuation of the oxidative stress in the rat hippocampus.
Valeriana officinalis root extracts have potent anxiolytic effects in laboratory rats.
Murphy, K; Kubin, Z J; Shepherd, J N; Ettinger, R H
2010-07-01
Valerian root (Valeriana officinalis) is a popular and widely available herbal supplement, primarily used to treat insomnia and anxiety. Until recently, its mechanism of action has remained unknown. Neurobiological research has begun to show that the herb, with its active valerenic acid, interacts with the GABA(A)-ergic system, a mechanism of action similar to the benzodiazepine drugs. This series of experiments sought to corroborate these findings with behavioral measures, compare them to the benzodiazepine diazepam, and to analyze the chemical composition of Valeriana officinalis. Rats were administered either ethanol (1 ml/kg), diazepam (1mg/kg), valerian root extract (3 ml/kg), valerenic acid (3mg/kg), or a solution of valerenic acid and exogenous GABA (75 microg/kg and 3.6 microg/kg, respectively) and assessed for the number of entries and time spent on the open arms of an elevated plus maze. Results showed that there was a significant reduction in anxious behavior when valerian extract or valerenic acid exposed subjects were compared to the ethanol control group. The evidence supports Valeriana officinalis as a potential alternative to the traditional anxiolytics as measured by the elevated plus maze. (c) 2009 Elsevier GmbH. All rights reserved.
A Barnes maze for juvenile rats delineates the emergence of spatial navigation ability.
McHail, Daniel G; Valibeigi, Nazanin; Dumas, Theodore C
2018-03-01
The neural bases of cognition may be greatly informed by relating temporally defined developmental changes in behavior with concurrent alterations in neural function. A robust improvement in performance in spatial learning and memory tasks occurs at 3 wk of age in rodents. We reported that the developmental increase of spontaneous alternation in a Y-maze was related to changes in temporal dynamics of fast glutamatergic synaptic transmission in the hippocampus. We also showed that, during allothetic behaviors in the Y-maze, network oscillation power increased at frequency bands known to support spatial learning and memory in adults. However, there are no discrete learning and memory phases during free exploration in the Y-maze. Thus, we adapted the Barnes maze for use with juvenile rats. Following a single platform exposure in dim light on the day before training (to encourage exploration), animals were trained on the subsequent 2 d in bright light to find a hidden escape box and then underwent a memory test 24 h later. During escape training, the older animals learned the task in 1 d, while the younger animals required 2 d and did not reach the performance of older animals. Long-term memory performance was also superior in the older animals. Thus, we have validated the use of the Barnes maze for this developmental period and established a timeline for the ontogeny of spatial navigation ability in this maze around 3 wk of age. Subsequent work will pair in vivo recording of hippocampal oscillations and single units with this task to help identify how hippocampal maturation might relate to performance improvements. © 2018 McHail et al.; Published by Cold Spring Harbor Laboratory Press.
Interactions of atenolol with alprazolam/escitalopram on anxiety, depression and oxidative stress.
Shahzad, Naiyer; Ahmad, Javed; Khan, Wajahatullah; Al-Ghamdi, Saeed S; Ain, M Ruhal; Ibrahim, Ibrahim Abdel Aziz; Akhtar, Mohd; Khanam, Razia
2014-02-01
Anxiety and depression are highly comorbid disorders possibly sharing a common neurobiological mechanism. The dysfunction of serotoninergic, noradrenergic and dopaminergic neurotransmission, abnormal regulation in the hypothalamic-pituitary-adrenal axis (HPA), disturbance of cellular plasticity including reduced neurogenesis, or chronic inflammation connected with high oxidative damage play a crucial role in the development of anxiety and depression. The present study was aimed to investigate the effects of atenolol alone and in combination with alprazolam/escitalopram on anxiety, depression and oxidative stress. Wistar albino rats were subjected to 21 day treatment of drugs then exposed to elevated-plus maze (EPM) and modified forced swim test (MFST), and oxidative stress markers were estimated in isolated brain tissue of all groups. The results indicated that atenolol in combination with alprazolam/escitalopram exhibited antidepressant effects by significantly decreasing the immobility and increasing the swimming behavior in the MFST and anti-anxiety effects by increasing the percentage preference and number of open arm entries as well as time spent in open arm in EPM. Pretreatment with atenolol alone and combination with alprazolam/escitalopram also ameliorated tissue glutathione (GSH) and decreased malondialdehyde (MDA) level significantly which explore antioxidant properties of drugs, and combination augments the therapeutic response of monotherapy in depression. In conclusion behavioral and biological findings indicate that the combination of atenolol with alprazolam/escitalopram has the potential of being highly efficacious in treating anxiety and depressive disorders as well as oxidative stress. Copyright © 2013 Elsevier Inc. All rights reserved.
Koltunowska, D; Gibula-Bruzda, E; Kotlinska, J H
2013-08-01
Chronic amphetamine use results in anxiety-like states after drug cessation. The aim of the study was to determine a role of ionotropic and metabotropic glutamate receptor ligands in amphetamine-evoked withdrawal anxiety in the elevated plus-maze test in rats. In our study memantine (8 and 12 mg/kg), a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist did not reduce amphetamine withdrawal anxiety. Acamprosate (NMDA and metabotropic glutamate 5 receptor (mGluR5) antagonist) at the dose 200 and 400mg/kg showed anxiolytic-like effect, thus increasing the percent of time spent in open arms and a number of open arm entries. mGluR5 selective antagonist, MTEP (3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine hydrochloride) and mGluR2/3 agonist, LY354740 (1S,2S,5R,6S)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid), caused effects similar to acamprosate at doses 1.25-5mg/kg and 2.5-5mg/kg, respectively. None of the glutamate ligands influenced locomotor activity of rats when given to the saline-treated group. Taking into account the positive correlation between amphetamine withdrawal-induced anxiety and relapse to amphetamine taking, our results suggest that modulation of mGluRs may prevent relapse to amphetamine and might pose a new direction in amphetamine abuse therapy. Copyright © 2013 Elsevier Inc. All rights reserved.
Karimi, Sara; Mesdaghinia, Azam; Farzinpour, Zahra; Hamidi, Gholamali; Haghparast, Abbas
2017-11-01
The Lateral hypothalamus (LH) is an important component of the networks underlying the control of feeding and other motivated behaviors. Cost-benefit decision-making is mediated largely by the prefrontal cortex (PFC) which strongly innervates the LH. Therefore, in the current study, we conducted a series of experiments to elucidate the role of the perifornical area of the lateral hypothalamus (PeF-LH) in effort and/or delay-based decision-making. We trained different groups of rats in a delay-based and/or an effort-based form of cost-benefit T-maze decision- making task in which they could either choose to pay the cost to obtain a high reward in one arm or could obtain a low reward in the other arm with no cost. During test days, the rats received local injections of either vehicle or lidocaine4% (0.5 μl/side), in the PeF-LH. In an effort-based decision task, PeF-LH inactivation led to decrease in high reward choice. Similarly, in a delay-based decision task animals' preference changed to a low but immediately available reward. This was not caused by a spatial memory or motor deficit. PeF-LH inactivation modified decision behavior. The results imply that PeF-LH is important for allowing the animal to pay a cost to acquire greater rewards. Copyright © 2017 Elsevier Inc. All rights reserved.
Preclinical animal anxiety research - flaws and prejudices.
Ennaceur, Abdelkader; Chazot, Paul L
2016-04-01
The current tests of anxiety in mice and rats used in preclinical research include the elevated plus-maze (EPM) or zero-maze (EZM), the light/dark box (LDB), and the open-field (OF). They are currently very popular, and despite their poor achievements, they continue to exert considerable constraints on the development of novel approaches. Hence, a novel anxiety test needs to be compared with these traditional tests, and assessed against various factors that were identified as a source of their inconsistent and contradictory results. These constraints are very costly, and they are in most cases useless as they originate from flawed methodologies. In the present report, we argue that the EPM or EZM, LDB, and OF do not provide unequivocal measures of anxiety; that there is no evidence of motivation conflict involved in these tests. They can be considered at best, tests of natural preference for unlit and/or enclosed spaces. We also argued that pharmacological validation of a behavioral test is an inappropriate approach; it stems from the confusion of animal models of human behavior with animal models of pathophysiology. A behavioral test is developed to detect not to produce symptoms, and a drug is used to validate an identified physiological target. In order to overcome the major methodological flaws in animal anxiety studies, we proposed an open space anxiety test, a 3D maze, which is described here with highlights of its various advantages over to the traditional tests.
Nootropic activity of Celastrus paniculatus seed.
Bhanumathy, M; Harish, M S; Shivaprasad, H N; Sushma, G
2010-03-01
The effect of Celastrus paniculatus Willd. (Celastraceae) seed aqueous extract on learning and memory was studied using elevated plus maze and passive avoidance test (sodium nitrite induced amnesia rodent model). The aqueous seed extract was administered orally in two different doses to rats (350 and 1050 mg/kg) and to mice (500 and 1500 mg/kg). The results were compared to piracetam (100 mg/kg, p.o.) used as a standard drug. Chemical hypoxia was induced by subcutaneous administration of sodium nitrite (35 mg/kg), immediately after acquisition training. In elevated plus maze and sodium nitrite-induced amnesia model, Celastrus paniculatus extract has showed statistically significant improvement in memory process when compared to control. The estimation of acetylcholinesterase enzyme in rat brain supports the plus maze and passive avoidance test by reducing acetylcholinesterase activity which helps in memory performance. The study reveals that the aqueous extract of Celastrus paniculatus seed has dose-dependent cholinergic activity, thereby improving memory performance. The mechanism by which Celastrus paniculatus enhances cognition may be due to increased acetylcholine level in rat brain.
Effect of the estrous cycle on water maze acquisition depends on the temperature of the water.
Rubinow, Marisa J; Arseneau, Linda M; Beverly, J Lee; Juraska, Janice M
2004-08-01
The literature on the effects of ovarian hormones on rodent learning and memory is mixed. In this study, the authors examined the role of task stressfulness. Female hooded rats were tested during proestrus or estrus on the hidden-platform water maze in warm (33 degrees C) or cold (19 degrees C) water. There were no effects of cycle or temperature, but estrous phase interacted with temperature such that proestrous rats performed better overall under the warm condition and estrous rats performed better under the cold condition. Plasma corticosterone, measured after 4 trials, varied significantly with estrous phase. Water temperature, perhaps through stress, influences the effect of estrous phase on water maze performance.
Anyan, Jeffrey; Verwey, Michael; Amir, Shimon
2017-01-01
Disrupted circadian rhythms are a core feature of mood and anxiety disorders. Circadian rhythms are coordinated by a light-entrainable master clock located in the suprachiasmatic nucleus. Animal models of mood and anxiety disorders often exhibit blunted rhythms in locomotor activity and clock gene expression. Interestingly, the changes in circadian rhythms correlate with mood-related behaviours. Although animal models of depression and anxiety exhibit aberrant circadian rhythms in physiology and behavior, it is possible that the methodology being used to induce the behavioral phenotype (e.g., brain lesions, chronic stress, global gene deletion) affect behavior independently of circadian system. This study investigates the relationship between individual differences in circadian locomotor parameters and mood-related behaviors in healthy rats. The circadian phenotype of male Lewis rats was characterized by analyzing wheel running behavior under standard 12h:12h LD conditions, constant dark, constant light, and rate of re-entrainment to a phase advance. Rats were then tested on a battery of behavioral tests: activity box, restricted feeding, elevated plus maze, forced swim test, and fear conditioning. Under 12h:12h LD conditions, percent of daily activity in the light phase and variability in activity onset were associated with longer latency to immobility in the forced swim test. Variability in onset also correlated positively with anxiety-like behavior in the elevated plus maze. Rate of re-entrainment correlated positively with measures of anxiety in the activity box and elevated plus maze. Lastly, we found that free running period under constant dark was associated with anxiety-like behaviors in the activity box and elevated plus maze. Our results provide a previously uncharacterized relationship between circadian locomotor parameters and mood-related behaviors in healthy rats and provide a basis for future examination into circadian clock functioning and mood.
Wang, Bo; Jin, Xin; Kuang, Xin; Tian, Shaowen
2017-11-13
Previous studies have shown that cyclooxygenase-2, a key enzyme that converts arachidonic acid to prostaglandins, is involved in anxiety and cognitive processes, but few studies have investigated the effects of chronic administration of cyclooxygenase-2 inhibitors on anxiety, learning and memory under normal physiological conditions. The aim of the study was to investigate the effects of chronic administration of parecoxib, a cyclooxygenase-2 inhibitor, on anxiety behavior and memory performance under normal physiological conditions and to explore the possible neural mechanism underlying parecoxib-mediated effects. Adult male ICR mice were randomly divided into four groups: the control group and three parecoxib groups. Mice received normal saline or parecoxib (2.5, 5.0 or 10 mg/kg) intraperitoneal injection once a day for 21 days, respectively. Elevated plus-maze, novel object recognition and Y maze tests were conducted on day 23, 24 and 26, respectively. Four additional groups that received same drug treatment were used to measure synaptophysin protein levels by western blot and prostaglandin E2 (PGE2) levels by ELISA in the amygdala and hippocampus on day 26. Chronic parecoxib exerted an anxiolytic-like effect in the plus-maze test test, and enhanced memory performance in the novel object recognition and Y maze tests. Western blot analysis showed that chronic parecoxib down-regulated synaptophysin levels in the amygdala and up-regulated synaptophysin levels in the hippocampus. ELISA assay showed that chronic parecoxib inhibited PGE2 in the hippocampus but not amygdala. Chronic parecoxib exerts anxiolytic-like and memory enhancing effects, which might be mediated through differential modulation of synaptophysin and PGE2 in the amygdala and hippocampus.
Santos, Raliny O; de Assunção, Gabriela L M; de Medeiros, Diogo M B; de Sousa Pinto, Icaro A; de Barros, Keizianny S; Soares, Bruno L; André, Eunice; Gavioli, Elaine C; de Paula Soares-Rachetti, Vanessa
2014-02-01
Sibutramine is a serotonin and norepinephrine reuptake inhibitor indicated for the treatment of obesity. A pre-clinical study showed that acute administration of sibutramine promoted anxiolytic- and panicolytic-like effects in male rats. However, in clinical reports, sibutramine favoured the onset of panic attacks in women. In this study, the effect of sibutramine on experimental anxiety in females and the relevance of different oestrous cycle phases for this effect were analysed. In experiment 1, both male and female rats were submitted to acute intraperitoneal injection of sibutramine or vehicle 30 min. before testing in the elevated T-maze (ETM) and in the open-field test (OF). Females in the pro-oestrus (P), oestrus (E), early dioestrus (ED) and late dioestrus (LD) phases were tested in the ETM and OF (experiment 2) or in the elevated plus-maze (EPM) 30 min. after the injection of sibutramine. Sibutramine impaired the escape response in the ETM in both males and females. This effect was observed for P, E and ED, but not for LD females. Sibutramine altered neither the inhibitory avoidance in the ETM nor the behaviour of females in the EPM. Thus, sibutramine promoted a panicolytic-like effect in female rats cycling at P, E and ED, but not in the LD phase and did not alter behaviours related to anxiety in both ETM and EPM. Considering that pre-clinical studies aiming the screening of anxiolytic drugs employ male rodents, data here obtained reinforce the importance of better understanding the effects of drugs in females. © 2013 Nordic Pharmacological Society. Published by John Wiley & Sons Ltd.
2013-01-01
Background The Grin1 (glutamate receptor, ionotropic, NMDA1) gene expresses a subunit of N-methyl-D-aspartate (NMDA) receptors that is considered to play an important role in excitatory neurotransmission, synaptic plasticity, and brain development. Grin1 is a candidate susceptibility gene for neuropsychiatric disorders, including schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD). In our previous study, we examined an N-ethyl-N-nitrosourea (ENU)-generated mutant mouse strain (Grin1Rgsc174/Grin1+) that has a non-synonymous mutation in Grin1. These mutant mice showed hyperactivity, increased novelty-seeking to objects, and abnormal social interactions. Therefore, Grin1Rgsc174/Grin1+ mice may serve as a potential animal model of neuropsychiatric disorders. However, other behavioral characteristics related to these disorders, such as working memory function and sensorimotor gating, have not been fully explored in these mutant mice. In this study, to further investigate the behavioral phenotypes of Grin1Rgsc174/Grin1+ mice, we subjected them to a comprehensive battery of behavioral tests. Results There was no significant difference in nociception between Grin1Rgsc174/Grin1+ and wild-type mice. The mutants did not display any abnormalities in the Porsolt forced swim and tail suspension tests. We confirmed the previous observations that the locomotor activity of these mutant mice increased in the open field and home cage activity tests. They displayed abnormal anxiety-like behaviors in the light/dark transition and the elevated plus maze tests. Both contextual and cued fear memory were severely deficient in the fear conditioning test. The mutant mice exhibited slightly impaired working memory in the eight-arm radial maze test. The startle amplitude was markedly decreased in Grin1Rgsc174/Grin1+ mice, whereas no significant differences between genotypes were detected in the prepulse inhibition (PPI) test. The mutant mice showed no obvious deficits in social behaviors in three different social interaction tests. Conclusions This study demonstrated that the Grin1Rgsc174/Grin1+ mutation causes abnormal anxiety-like behaviors, a deficiency in fear memory, and a decreased startle amplitude in mice. Although Grin1Rgsc174/Grin1+ mice only partially recapitulate symptoms of patients with ADHD, schizophrenia, and bipolar disorder, they may serve as a unique animal model of a certain subpopulation of patients with these disorders. PMID:23688147
Kougias, Daniel G; Hankosky, Emily R; Gulley, Joshua M; Juraska, Janice M
2017-03-01
Beta-hydroxy-beta-methylbutyrate (HMB) is commonly supplemented to maintain muscle in elderly and clinical populations and has potential as a nootropic. Previously, we have shown that in both male and female rats, long-term HMB supplementation prevents age-related dendritic shrinkage within the medial prefrontal cortex (mPFC) and improves cognitive flexibility and working memory performance that are both age- and sex-specific. In this study, we further explore the cognitive effects by assessing visuospatial learning and memory with the Morris water maze. Female rats were ovariectomized at 11months of age to model human menopause. At 12months of age, male and female rats received relatively short- or long-term (1- or 7-month) dietary HMB (450mg/kg/dose) supplementation twice a day prior to testing. Spatial reference learning and memory was assessed across four days in the water maze with four trials daily and a probe trial on the last day. Consistent with previous work, there were age-related deficits in water maze performance in both sexes. However, these deficits were ameliorated in HMB-treated males during training and in both sexes during probe trial performance. Thus, HMB supplementation prevented the age-related decrement in water maze performance, especially in male rats. Copyright © 2016 Elsevier Inc. All rights reserved.
Peña, Ike dela; Yoon, Seo Young; Kim, Hee Jin; Park, Sejin; Hong, Eun Young; Ryu, Jong Hoon; Park, Il Ho; Cheong, Jae Hoon
2013-01-01
Background Although ginsenosides such as Rg1, Rb1 and Rg3 have shown promise as potential nutraceuticals for cognitive impairment, their use has been limited due to high production cost and low potency. In particular, the process of extracting pure Rg3 from ginseng is laborious and expensive. Methods We described the methods in preparing ginseol k-g3, an Rg3-enriched fraction, and evaluated its effects on scopolamine-induced memory impairment in mice. Results Ginseol k-g3 (25–200 mg/kg) significantly reversed scopolamine-induced cognitive impairment in the passive avoidance, but not in Y-maze testing. Ginseol k-g3 (50 and 200 mg/kg) improved escape latency in training trials and increased swimming times within the target zone of the Morris water maze. The effect of ginseol k-g3 on the water maze task was more potent than that of Rg3 or Red ginseng. Acute or subchronic (6 d) treatment of ginseol k-g3 did not alter normal locomotor activity of mice in an open field. Ginseol k-g3 did not inhibit acetylcholinesterase activity, unlike donezepil, an acetylcholinesterase inhibitor. Rg3 enrichment through the ginseol k-g3 fraction enhanced the efficacy of Rg3 in scopolamine-induced memory impairment in mice as demonstrated in the Morris water maze task. Conclusion The effects of ginseol k-g3 in ameliorating scopolamine-induced memory impairment in the passive avoidance and Morris water maze tests indicate its specific influence on reference or long-term memory. The mechanism underlying the reversal of scopolamine-induced amnesia by ginseol k-g3 is not yet known, but is not related to anticholinesterase-like activity. PMID:24558303
Innate Color Preference of Zebrafish and Its Use in Behavioral Analyses.
Park, Jong-Su; Ryu, Jae-Ho; Choi, Tae-Ik; Bae, Young-Ki; Lee, Suman; Kang, Hae Jin; Kim, Cheol-Hee
2016-10-01
Although innate color preference of motile organisms may provide clues to behavioral biases, it has remained a longstanding question. In this study, we investigated innate color preference of zebrafish larvae. A cross maze with different color sleeves around each arm was used for the color preference test (R; red, G; green, B; blue, Y; yellow). The findings showed that 5 dpf zebrafish larvae preferred blue over other colors (B > R > G > Y). To study innate color recognition further, tyrosinase mutants were generated using CRISPR/Cas9 system. As a model for oculocutaneous albinism (OCA) and color vision impairment, tyrosinase mutants demonstrated diminished color sensation, indicated mainly by hypopigmentation of the retinal pigment epithelium (RPE). Due to its relative simplicity and ease, color preference screening using zebrafish larvae is suitable for high-throughput screening applications. This system may potentially be applied to the analysis of drug effects on larval behavior or the detection of sensory deficits in neurological disorder models, such as autism-related disorders, using mutant larvae generated by the CRISPR/Cas9 technique.