Bazar, Matthew A; Quinn, Michael J; Mozzachio, Kristie; Bleiler, John A; Archer, Christine R; Phillips, Carlton T; Johnson, Mark S
2010-05-01
The use of lead in military and civilian small arms projectiles is widely acknowledged to have resulted in high soil lead concentrations at many small arms ranges. These ranges are often adjacent to wildlife habitat or have become habitat when no longer used. To assess the potential toxicity of lead to terrestrial amphibians in contaminated areas, we exposed 100 red-backed salamanders (Plethodon cinereus) to either a control soil or one of four soil treatments amended with lead acetate for 28 days. Analytical mean soil concentrations were 14 (control), 553, 1700, 4700, and 9167 mg Pb/kg soil dry weight. An additional 60 salamanders were also exposed for 28 days to one of six field-collected soil samples from a small arms range and a skeet range. The field soil concentrations ranged from 11 (background) to 16,967 mg Pb/kg soil dry weight. Food consisted of uncontaminated flightless Drosophila melanogaster. Salamander survival was reduced in amended soil treatments of 4700 and 9167 mg/kg by 15% and 80%, respectively. Inappetence was observed at 4700 and 9167 mg/kg and growth decreased in the 9167 mg/kg treatment. Total white blood cells decreased 32% at 4700 mg/kg compared to controls and were 22% lower in the 9167 mg/kg treatment. In contrast, survival was 100% for all field-collected soils with no hematological effects. At 16,967 mg/kg there was evidence of soil avoidance and decreased growth. These data suggest marked differences in toxicity and bioavailability of the lead-amended soil in contrast to the field-collected soil containing lead.
Environmental Assessment of Lead at Camp Edwards, Massachusetts, Small Arms Ranges
2007-08-01
phosphates in soils as a method to immobilize lead. Environmental Science and Technology. 28(4):646–654. Rühling, A., and G. Tyler. 1973. Heavy metal ...control of heavy metals in a sandy soil . Environmental Science and Technology. 36(22):4804– 4810. Xia, K., W. Bleam, and P. A. Helmke. 1997. Studies...Military Training Sources of Lead and Soil Distribution at Camp Edwards ..............38 3.3 Projects Specific to Camp Edwards Small Arms Ranges
Evaluation of Small Arms Range Soils for Metal Contamination and Lead Bioavailability
2009-11-03
measured by an in vivo or in vitro method. Risk assessment and/or remediation of small arms ranges should therefore assume a high relative bioavailability of...lead for the eight soils was about 100% (108 ( 18% and 95 ( 6%, respectively) showing good agreement between both methods. Risk assessment and/ or...significant efforts in stewardship, environmental risk assessment , and reme- diation, so that training of personnel and future land use can be
USDA-ARS?s Scientific Manuscript database
Soil amendment of char products (biochar) from thermochemical processing (slow/fast pyrolysis and gasification) of biomass for biofuel production has received considerable interests for contaminant sorption, soil fertilization, and carbon sequestration. Of potential sites for biochar application, h...
Biochar-attenuated desorption of heavy metals in small arms range soils
USDA-ARS?s Scientific Manuscript database
Stabilization (capping/solidification) and dilution (e.g., washing, chelate-assisted phytoremediation) represent non-removal and removal remediation technologies for heavy metal contaminated soils. Biochar is stable in soil, and contains carboxyl and other surface ligands; these properties are usef...
Fate and Transport of Tungsten at Camp Edwards Small Arms Ranges
2007-08-01
area into the lower berm and/or trough. A similar approach was used in the lower berm area with samples collected from soil sloughing from the...bucket au- ger to collect samples beneath the bullet pockets and the trough. A multi - increment, subsurface soil sample was made by combining the...range. From these soil profiles, a total of 72 multi -increment subsurface soil sam- ples was collected (Table 2). The auger was cleaned between holes
2003-09-01
TRAINING AND MAINTENANCE RANGE AT MOODY AIR FORCE BASE, GA TABLE OF CONTENTS EXECUTIVE SUMMARY...1999). 3.1.3 Soils Soils found within Moody AFB are associated with the Tifton Upland District of the Lower Coastal Plain. Characteristics of...dominant soil associations on Moody AFB include the Tifton -Pelham-Fuquay and the Dasher associations. The majority of the main base consists of the
NASA Astrophysics Data System (ADS)
Shaw, A.; Arvidson, R.; Bonitz, R.; Carsten, J.; Keller, H.; Lemmon, M.; Mellon, M. T.; Robinson, M.; Trebi-Ollennu, A.; Volpe, R.
2008-12-01
The Phoenix Mars lander has had access to polygonal terrain; specifically, two polygons and a trough. Slopes in the trenches and dump piles created from the interaction of the Phoenix robotic arm (RA) with the soil around its landing site are similar to those seen on previous missions, such as the MER and Viking missions. This indicates similar cohesion and angle of internal friction to previous landing sites. For example, trench slopes typically range from 44-72° and dump pile slopes range from 20-30°. There are at least two very different types of materials at the site: a layer of soil which goes down to several centimeters below the surface and, below that, a layer of icy soil. The RA can easily dig through the top layer of soil, often using 20-30N force. However, when it encounters icy soil, the RA requires tens of scrapes with the lower tungsten carbide blade on its scoop to progress even a few millimeters. To verify soil property parameters, we analyze the normal and shear stresses exerted on the soil by digging, scraping, and rasping with the RA.
Application of TREECS to Small Arms Firing Ranges at Fort Leonard Wood, MO
2013-12-01
edited as necessary. The crop management factors (C) of the Universal Soil Loss Equation ( USLE ) were adjusted based upon the land-use description...ranges from approximately 750 to 1,150 feet above sea level near the northeastern installation boundary. The soils located at FLW are formed in the...official U.S. Department of Agriculture (USDA) soil types have been identified at FLW: Clarksville Gravelly Loam, Lebanon Silt Loam, and Huntington Loam
USDA-ARS?s Scientific Manuscript database
In situ application of heavy metal stabilizing agents has in some cases increased the mobility of target metal contaminants. Mechanistic understandings are necessary to better predict (1) the dynamic short- and long-term response to soil amendments, and (2) the utility of biochars in nonremoval and...
1997-09-01
8.8 WIND SOCK 8.9 SILT TRAP 8.10 BATTELLE SAMPLE PREPARATION AREA 8.11 RANGE 5 EXCAVATION PLAN 8.12 COMPONENTS THAT NEEDED MAINTENANCE, REPAIR...Pad Details 47 18 Soil Storage Bins 48 19 Power Distribution Station 49 20 Water Supply System 50 21 Wind Sock 50 22 Sample Preparation...washwater). Better process control, especially soil dewatering, would have reduced this occasional nuisance. The odor threshold for this acid is
Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil
USDA-ARS?s Scientific Manuscript database
Long-term effectiveness of biochar for heavy metal stabilization depends upon biochar’s sorptive property and recalcitrance in soil. To understand the role of carboxyl functional groups on heavy metal stabilization, cottonseed hull biochar and flax shive steam activated biochar having low O/C ratio...
Laboratory Evaluation of Remediation Alternatives for U.S. Coast Guard Small Arms Firing Ranges
1999-11-01
S) is an immobilization process that involves the mixing of a contaminated soil with a binder material to enhance the physical and chemical...samples were shipped to WES for laboratory analysis. Phase III: Homogenization of the Bulk Samples. Each of the bulk samples was separately mixed to...produce uniform samples for testing. These mixed bulk soil samples were analyzed for metal content. Phase IV: Characterization of the Bulk Soils
Mariussen, Espen; Johnsen, Ida Vaa; Strømseng, Arnljot Einride
2017-04-01
An environmental survey was performed on shooting ranges for small arms located on minerotrophic mires. The highest mean concentrations of Pb (13 g/kg), Cu (5.2 g/kg), Zn (1.1 g/kg), and Sb (0.83 g/kg) in the top soil were from a range located on a poor minerotrophic and acidic mire. This range had also the highest concentrations of Pb, Cu, Zn, and Sb in discharge water (0.18 mg/L Pb, 0.42 mg/L Cu, 0.63 mg/L Zn, and 65 μg/L Sb) and subsurface soil water (2.5 mg/L Pb, 0.9 mg/L Cu, 1.6 mg/L Zn, and 0.15 mg/L Sb). No clear differences in the discharge of ammunition residues between the mires were observed based on the characteristics of the mires. In surface water with high pH (pH ~7), there was a trend with high concentrations of Sb and lower relative concentrations of Cu and Pb. The relatively low concentrations of ammunition residues both in the soil and soil water, 20 cm below the top soil, indicates limited vertical migration in the soil. Channels in the mires, made by plant roots or soil layer of less decomposed materials, may increase the rate of transport of contaminated surface water into deeper soil layers and ground water. A large portion of both Cu and Sb were associated to the oxidizable components in the peat, which may imply that these elements form inner-sphere complexes with organic matter. The largest portion of Pb and Zn were associated with the exchangeable and pH-sensitive components in the peat, which may imply that these elements form outer-sphere complexes with the peat.
Dielectric constants of soils at microwave frequencies
NASA Technical Reports Server (NTRS)
Geiger, F. E.; Williams, D.
1972-01-01
A knowledge of the complex dielectric constant of soils is essential in the interpretation of microwave airborne radiometer data of the earth's surface. Measurements were made at 37 GHz on various soils from the Phoenix, Ariz., area. Extensive data have been obtained for dry soil and soil with water content in the range from 0.6 to 35 percent by dry weight. Measurements were made in a two arm microwave bridge and results were corrected for reflections at the sample interfaces by solution of the parallel dielectric plate problem. The maximum dielectric constants are about a factor of 3 lower than those reported for similar soils at X-band frequencies.
Magnetic Grain-size Proxies in Loessic Soils and Their Potential use in Paleorainfall Reconstruction
NASA Astrophysics Data System (ADS)
Machac, T. A.; Geiss, C. E.; Zanner, C. W.
2005-05-01
As part of our ongoing rock-magnetic study of loessic soil profiles we sampled over 70 in Nebraska, Iowa, Missouri and Illinois. Our sampling sites are located in stable upland positions and extend along a rainfall gradient which ranges from an average annual precipitation of less than 500 mm/year in southwestern Nebraska to almost 1000 mm/year in central Missouri. Soil cores were obtained with the aid of a hydraulic soil probe, described and subsampled into small plastic bags. Samples were air-dried in the laboratory and the < 2mm fraction was used for magnetic analyses. We measured magnetic susceptibility X and several remanence parameters (ARM, IRM) for all samples. Hysteresis measurements, IRM acquisition curves and time dependence of IRM acquisition were measured for a subset of samples. All samples show magnetically enhanced A- and B-horizons, which results in increased values of X, ARM and IRM. Changes in the ratio of ARM/IRM suggest an increase in the relative abundance of stable single domain (SSD) particles. VRM analyses show that the upper soil horizons are enhanced in ultrafine superparamagnetic (SP) ferrimagnets as well. Changes in the relative abundance of SP and SSD ferrimagnets along our transsect correlates well with the modern precipitation gradient, suggesting the use of grain-size dependent magnetic parameter as a potential paleorainfall proxy when analyzing paleosols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, F.; Wang, K.; Zhang, R.
2009-03-15
Preferential flow and solute transport are common processes in the unsaturated soil, in which distributions of soil water content and solute concentrations are often characterized as fractal patterns. An active region model (ARM) was recently proposed to describe the preferential flow and transport patterns. In this study, ARM governing equations were derived to model the preferential soil water flow and solute transport processes. To evaluate the ARM equations, dye infiltration experiments were conducted, in which distributions of soil water content and Cl{sup -} concentration were measured. Predicted results using the ARM and the mobile-immobile region model (MIM) were compared withmore » the measured distributions of soil water content and Cl{sup -} concentration. Although both the ARM and the MIM are two-region models, they are fundamental different in terms of treatments of the flow region. The models were evaluated based on the modeling efficiency (ME). The MIM provided relatively poor prediction results of the preferential flow and transport with negative ME values or positive ME values less than 0.4. On the contrary, predicted distributions of soil water content and Cl- concentration using the ARM agreed reasonably well with the experimental data with ME values higher than 0.8. The results indicated that the ARM successfully captured the macroscopic behavior of preferential flow and solute transport in the unsaturated soil.« less
2011-08-13
CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, spacecraft technicians discuss their readiness to stow the robotic arm on the Mars Science Laboratory (MSL) rover, Curiosity. The arm will hold and maneuver instruments that will help scientists analyze Martian rocks and soil. Much like a human arm, the robotic arm has flexibility through shoulder, elbow, and wrist joints that permit the arm to extend, bend, and angle precisely against rocks and soil to grind away layers, take microscopic images and analyze their elemental composition. At the end of the arm is a hand-like structure, the turret, for holding various tools that can spin through a 350-degree turning range. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Charisse Nahser
2011-08-13
CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the robotic arm of the Mars Science Laboratory (MSL) rover, Curiosity, has been stowed against the body of the spacecraft. The arm will hold and maneuver instruments that will help scientists analyze Martian rocks and soil. Much like a human arm, the robotic arm has flexibility through shoulder, elbow, and wrist joints that permit the arm to extend, bend, and angle precisely against rocks and soil to grind away layers, take microscopic images and analyze their elemental composition. At the end of the arm is a hand-like structure, the turret, for holding various tools that can spin through a 350-degree turning range. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Charisse Nahser
2011-08-13
CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, spacecraft technicians prepare to stow the robotic arm on the Mars Science Laboratory (MSL) rover, Curiosity. The arm will hold and maneuver instruments that will help scientists analyze Martian rocks and soil. Much like a human arm, the robotic arm has flexibility through shoulder, elbow, and wrist joints that permit the arm to extend, bend, and angle precisely against rocks and soil to grind away layers, take microscopic images and analyze their elemental composition. At the end of the arm is a hand-like structure, the turret, for holding various tools that can spin through a 350-degree turning range. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Charisse Nahser
2011-08-13
CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, preparations are under way to stow the robotic arm on the Mars Science Laboratory (MSL) rover, Curiosity. The arm will hold and maneuver instruments that will help scientists analyze Martian rocks and soil. Much like a human arm, the robotic arm has flexibility through shoulder, elbow, and wrist joints that permit the arm to extend, bend, and angle precisely against rocks and soil to grind away layers, take microscopic images and analyze their elemental composition. At the end of the arm is a hand-like structure, the turret, for holding various tools that can spin through a 350-degree turning range. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Charisse Nahser
NASA Technical Reports Server (NTRS)
Gompf, Raymond (Inventor); Buehler, Martin C. (Inventor)
2003-01-01
An array of triboelectric sensors is used for testing the electrostatic properties of a remote environment. The sensors may be mounted in the heel of a robot arm scoop. To determine the triboelectric properties of a planet surface, the robot arm scoop may be rubbed on the soil of the planet and the triboelectrically developed charge measured. By having an array of sensors, different insulating materials may be measured simultaneously. The insulating materials may be selected so their triboelectric properties cover a desired range. By mounting the sensor on a robot arm scoop, the measurements can be obtained during an unmanned mission.
Environmental Assessment for Construction of Small Arms Range at Tinker Air Force Base, Oklahoma
2008-11-01
Air Force Material Command Tinker Air Force Base, Oklahoma Prepared by: CHEROKEE CRC, LLC 916 West 23rd Street Tulsa, OK 74107...activities to avoid potential for short-term soil erosion which could result in adverse effects to water quality. Hazardous Materials and Waste...erosion which could result in adverse effects to water quality. Hazardous Materials and Waste. Soil from the remediation activities could potentially
Landmeyer, J.E.
1994-01-01
Ground-water samples were collected from four shallow water-table aquifer observation wells beneath the Small-Arms Firing Range study area at Shaw Air Force Base. Water-chemistry analyses indicated that total lead concentrations in shallow ground water beneath the study area do not exceed the U.S. Environmental Protection Agency maximum contaminant level established for lead in drinking water (0.05 milligrams per liter). All other trace element total concentrations in ground water beneath the study area were at or below the detection limit of the analytical methodology.
Laporte-Saumure, Mathieu; Martel, Richard; Mercier, Guy
2011-01-01
Backstop soils of four small-arms firing ranges (SAFRs) of the Canadian Force Bases (CFBs) were characterized in terms of their total soil Cu, Pb, Sb and Zn concentrations, grain size distribution, mineralogy, chemical properties, vertical in-depth contamination distribution (for one CFB), and scanning electron microscope (SEM-EDS) characterization. Metal availability from the soils was evaluated with three leaching tests: the toxicity characteristics leaching procedure (TCLP), representing a landfill leachate; the synthetic precipitation leaching procedure (SPLP), representing field conditions; and the gastric juice simulation test (GJST), representing the leachate of the human stomach during the digestive process and, therefore, the potential metal transfer to humans in the case of soil ingestion. Metal analyses of soils and leaching test extracts were conducted with an Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) instrument. Total soil results showed maximal concentrations of 27,100 mg/kg for Pb, 7720 mg/kg for Cu, 1080 mg/kg for Zn, and 570 mg/kg for Sb. The SEM-EDS analysis showed significant amounts of lead carbonates, which resulted from the alteration of the initial metallic Pb particles. Metal availability evaluation with the leaching tests showed that TCLP Pb and Sb thresholds were exceeded. For the SPLP and the GJST, the drinking water thresholds of the Ministère du Développement Durable, de l'Environnement et des Pares (MDDEP) of Quebec were exceeded by Pb and Sb. The metal availability assessment showed that SAFR backstop soils may pose a potential risk to the environment, groundwater and humans, and affect the management of such soils in order to minimize potential metal dispersion in the environment.
NASA Technical Reports Server (NTRS)
Tsegaye, T.; Coleman, T.; Tadesse, W.; Rajbhandari, N.; Senwo, Z.; Crosson, W.; Surrency, J.
1998-01-01
Understanding the spatial and temporal distribution of soil moisture near the soil surface is important to relate ground truth data to remotely sensed data using an electronically scanned thinned array radiometer (ESTAR). The research was conducted at the A-ARM EF site in the Little Washita Watershed in Chickasha Oklahoma. Soil moisture was measured on a 100 x 100-m grid on a quarter section (0.8 km by 0.8 km) size field where the DOE A-ARM SWATS is located. This site has several drainage channels and small ponds. The site is under four different land use practices, namely active pastureland, non-grazed pastureland covered with thick grass, forest area covered with trees, and a single residential area. Soil moisture was measured with a Time Domain Reflectometry (TDR) Delta-T 6-cm theta-probe and gravimetric soil moisture (GSM) technique for the top 6 cm of the soil depth. A fourth order polynomial equation was fitted to each probe calibration curve. The correlation between TDR and GSM measurement technique ranges from 0.81 to 0.91. Comparison of the spatial and temporal distribution of soil moisture measured by the TDR and GSM techniques showed very strong similarities. Such TDR probes can be used successfully to replace the GSM techniques to measure soil moisture content rapidly and accurately with site specific calibration.
Lead accumulation in woodchucks (Marmota monax) at small arms and skeet ranges.
Johnson, Mark S; Major, Michael A; Casteel, Stan W
2004-10-01
Increasing concern regarding the stewardship of US Army lands requires a proactive program to evaluate sites of potential risk. Small arms and upland skeet ranges are a potentially significant source of lead exposure for burrowing mammals. Woodchucks (Marmota monax) were evaluated for lead exposure in a previously used upland skeet range and a small arms range, respective to animals collected at two nearby reference locations. Soil lead concentrations collected at burrow entrances on the firing ranges were compared with blood, bone, kidney, liver, and fecal concentrations of woodchucks collected from the reference areas. No statistical differences were found in the lead concentrations in tissue between woodchucks in reference and firing ranges; concentrations of lead in liver and kidney were below detection limits. Levels in bone, blood, and feces suggest the bioavailability of lead at these various sites, although other factors (e.g., differences in foraging areas, age structure, habitat preferences, and environmental conditions) were also likely to influence exposure. Blood levels were below that which suggests toxicity. Further analysis of other ranges with higher lead concentrations and of small mammal species with smaller home ranges is recommended to further elucidate trends that could be extrapolated to other sites.
2011-08-13
CAPE CANAVERAL, Fla. -- Under the watchful eyes of the spacecraft technicians in the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the robotic arm of the Mars Science Laboratory (MSL) rover, Curiosity, moves into place against the body of the spacecraft. The arm will hold and maneuver instruments that will help scientists analyze Martian rocks and soil. Much like a human arm, the robotic arm has flexibility through shoulder, elbow, and wrist joints that permit the arm to extend, bend, and angle precisely against rocks and soil to grind away layers, take microscopic images and analyze their elemental composition. At the end of the arm is a hand-like structure, the turret, for holding various tools that can spin through a 350-degree turning range. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Charisse Nahser
2011-08-13
CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at Kennedy Space Center in Florida, spacecraft technicians monitor the movement of the robotic arm of the Mars Science Laboratory (MSL) rover, Curiosity, as it is stowed against the body of the spacecraft. The arm will hold and maneuver instruments that will help scientists analyze Martian rocks and soil. Much like a human arm, the robotic arm has flexibility through shoulder, elbow, and wrist joints that permit the arm to extend, bend, and angle precisely against rocks and soil to grind away layers, take microscopic images and analyze their elemental composition. At the end of the arm is a hand-like structure, the turret, for holding various tools that can spin through a 350-degree turning range. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Charisse Nahser
Uchimiya, Minori; Bannon, Desmond I
2013-08-14
Biochar is often considered a strong heavy metal stabilizing agent. However, biochar in some cases had no effects on, or increased the soluble concentrations of, heavy metals in soil. The objective of this study was to determine the factors causing some biochars to stabilize and others to dissolve heavy metals in soil. Seven small arms range soils with known total organic carbon (TOC), cation exchange capacity, pH, and total Pb and Cu contents were first screened for soluble Pb and Cu concentrations. Over 2 weeks successive equilibrations using weak acid (pH 4.5 sulfuric acid) and acetate buffer (0.1 M at pH 4.9), Alaska soil containing disproportionately high (31.6%) TOC had nearly 100% residual (insoluble) Pb and Cu. This soil was then compared with sandy soils from Maryland containing significantly lower (0.5-2.0%) TOC in the presence of 10 wt % (i) plant biochar activated to increase the surface-bound carboxyl and phosphate ligands (PS450A), (ii) manure biochar enriched with soluble P (BL700), and (iii) unactivated plant biochars produced at 350 °C (CH350) and 700 °C (CH500) and by flash carbonization (corn). In weak acid, the pH was set by soil and biochar, and the biochars increasingly stabilized Pb with repeated extractions. In pH 4.9 acetate buffer, PS450A and BL700 stabilized Pb, and only PS450A stabilized Cu. Surface ligands of PS450A likely complexed and stabilized Pb and Cu even under acidic pH in the presence of competing acetate ligand. Oppositely, unactivated plant biochars (CH350, CH500, and corn) mobilized Pb and Cu in sandy soils; the putative mechanism is the formation of soluble complexes with biochar-borne dissolved organic carbon. In summary, unactivated plant biochars can inadvertently increase dissolved Pb and Cu concentrations of sandy, low TOC soils when used to stabilize other contaminants.
NASA Astrophysics Data System (ADS)
Keller, H. U.; Hartwig, H.; Kramm, R.; Koschny, D.; Markiewicz, W. J.; Thomas, N.; Fernades, M.; Smith, P. H.; Reynolds, R.; Lemmon, M. T.; Weinberg, J.; Marcialis, R.; Tanner, R.; Boss, B. J.; Oquest, C.; Paige, D. A.
2001-08-01
The Robotic Arm Camera (RAC) is one of the key instruments newly developed for the Mars Volatiles and Climate Surveyor payload of the Mars Polar Lander. This lightweight instrument employs a front lens with variable focus range and takes images at distances from 11 mm (image scale 1:1) to infinity. Color images with a resolution of better than 50 μm can be obtained to characterize the Martian soil. Spectral information of nearby objects is retrieved through illumination with blue, green, and red lamp sets. The design and performance of the camera are described in relation to the science objectives and operation. The RAC uses the same CCD detector array as the Surface Stereo Imager and shares the readout electronics with this camera. The RAC is mounted at the wrist of the Robotic Arm and can characterize the contents of the scoop, the samples of soil fed to the Thermal Evolved Gas Analyzer, the Martian surface in the vicinity of the lander, and the interior of trenches dug out by the Robotic Arm. It can also be used to take panoramic images and to retrieve stereo information with an effective baseline surpassing that of the Surface Stereo Imager by about a factor of 3.
Multi-decadal analysis of root-zone soil moisture applying the exponential filter across CONUS
NASA Astrophysics Data System (ADS)
Tobin, Kenneth J.; Torres, Roberto; Crow, Wade T.; Bennett, Marvin E.
2017-09-01
This study applied the exponential filter to produce an estimate of root-zone soil moisture (RZSM). Four types of microwave-based, surface satellite soil moisture were used. The core remotely sensed data for this study came from NASA's long-lasting AMSR-E mission. Additionally, three other products were obtained from the European Space Agency Climate Change Initiative (CCI). These datasets were blended based on all available satellite observations (CCI-active, CCI-passive, and CCI-combined). All of these products were 0.25° and taken daily. We applied the filter to produce a soil moisture index (SWI) that others have successfully used to estimate RZSM. The only unknown in this approach was the characteristic time of soil moisture variation (T). We examined five different eras (1997-2002; 2002-2005; 2005-2008; 2008-2011; 2011-2014) that represented periods with different satellite data sensors. SWI values were compared with in situ soil moisture data from the International Soil Moisture Network at a depth ranging from 20 to 25 cm. Selected networks included the US Department of Energy Atmospheric Radiation Measurement (ARM) program (25 cm), Soil Climate Analysis Network (SCAN; 20.32 cm), SNOwpack TELemetry (SNOTEL; 20.32 cm), and the US Climate Reference Network (USCRN; 20 cm). We selected in situ stations that had reasonable completeness. These datasets were used to filter out periods with freezing temperatures and rainfall using data from the Parameter elevation Regression on Independent Slopes Model (PRISM). Additionally, we only examined sites where surface and root-zone soil moisture had a reasonably high lagged r value (r > 0. 5). The unknown T value was constrained based on two approaches: optimization of root mean square error (RMSE) and calculation based on the normalized difference vegetation index (NDVI) value. Both approaches yielded comparable results; although, as to be expected, the optimization approach generally outperformed NDVI-based estimates. The best results were noted at stations that had an absolute bias within 10 %. SWI estimates were more impacted by the in situ network than the surface satellite product used to drive the exponential filter. The average Nash-Sutcliffe coefficients (NSs) for ARM ranged from -0. 1 to 0.3 and were similar to the results obtained from the USCRN network (0.2-0.3). NS values from the SCAN and SNOTEL networks were slightly higher (0.1-0.5). These results indicated that this approach had some skill in providing an estimate of RZSM. In terms of RMSE (in volumetric soil moisture), ARM values actually outperformed those from other networks (0.02-0.04). SCAN and USCRN RMSE average values ranged from 0.04 to 0.06 and SNOTEL average RMSE values were higher (0.05-0.07). These values were close to 0.04, which is the baseline value for accuracy designated for many satellite soil moisture missions.
The Mars Surveyor '01 Rover and Robotic Arm
NASA Technical Reports Server (NTRS)
Bonitz, Robert G.; Nguyen, Tam T.; Kim, Won S.
1999-01-01
The Mars Surveyor 2001 Lander will carry with it both a Robotic Arm and Rover to support various science and technology experiments. The Marie Curie Rover, the twin sister to Sojourner Truth, is expected to explore the surface of Mars in early 2002. Scientific investigations to determine the elemental composition of surface rocks and soil using the Alpha Proton X-Ray Spectrometer (APXS) will be conducted along with several technology experiments including the Mars Experiment on Electrostatic Charging (MEEC) and the Wheel Abrasion Experiment (WAE). The Rover will follow uplinked operational sequences each day, but will be capable of autonomous reactions to the unpredictable features of the Martian environment. The Mars Surveyor 2001 Robotic Arm will perform rover deployment, and support various positioning, digging, and sample acquiring functions for MECA (Mars Environmental Compatibility Assessment) and Mossbauer Spectrometer experiments. The Robotic Arm will also collect its own sensor data for engineering data analysis. The Robotic Arm Camera (RAC) mounted on the forearm of the Robotic Arm will capture various images with a wide range of focal length adjustment during scientific experiments and rover deployment
2012-09-06
This engineering drawing shows the location of the arm on NASA Curiosity rover, in addition to the arm turret, which holds two instruments and three tools. The arm places and holds turret-mounted tools on rock and soil targets.
Ahmad, Mahtab; Lee, Sang Soo; Lim, Jung Eun; Lee, Sung-Eun; Cho, Ju Sik; Moon, Deok Hyun; Hashimoto, Yohey; Ok, Yong Sik
2014-01-01
Mussel shell (MS), cow bone (CB) and biochar (BC) were selected to immobilize metals in an army firing range soil. Amendments were applied at 5% (wt) and their efficacies were determined after 175 d. For metal phytoavailability test, maize (Zea mays L.) plants were cultivated for 3weeks. Results showed that all amendments decreased the exchangeable Pb by up to 99% in planted/unplanted soils. Contrarily, exchangeable Sb were increased in the MS- and CB-amended soils. The rise in soil pH (~1 unit) by the amendments affected Pb and Sb mobility in soils. Bioavailability of Pb to maize was reduced by up to 71% in the amended soils. The Sb uptake to maize was decreased by up to 53.44% in the BC-amended soil. Sequential chemical extractions showed the transformation of easily available Pb to stable residual form with the amendment treatments. Scanning electron microscopic elemental dot mapping revealed the Pb association with Al and Si in the MS-amended soil and that with P in the CB- and BC-amended soils. Additionally, the extended X-ray absorption fine structure spectroscopic analysis indicated the transformation of organic bound Pb in unamended control soil to relatively more stable Pb-hydroxide (Ksp=10(-17.1)), chloropyromorphite (Ksp=10(-84.4)) and Pb-phosphate (Ksp=10(-23.8)) in soils amended with MS, CB and BC, respectively. Application of BC was the best in decreasing the phytoavailability of Pb and Sb in the studied army firing range soil. Copyright © 2013 Elsevier Ltd. All rights reserved.
Validation of Land-Surface Mosaic Heterogeneity in the GEOS DAS
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Molod, Andrea; Houser, Paul R.; Schubert, Siegfried
1999-01-01
The Mosaic Land-surface Model (LSM) has been included into the current GEOS Data Assimilation System (DAS). The LSM uses a more advanced representation of physical processes than previous versions of the GEOS DAS, including the representation of sub-grid heterogeneity of the land-surface through the Mosaic approach. As a first approximation, Mosaic assumes that all similar surface types within a grid-cell can be lumped together as a single'tile'. Within one GCM grid-cell, there might be 1 - 5 different tiles or surface types. All tiles are subjected to the grid-scale forcing (radiation, air temperature and specific humidity, and precipitation), and the sub-grid variability is a function of the tile characteristics. In this paper, we validate the LSM sub-grid scale variability (tiles) using a variety of surface observing stations from the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement (ARM) Program. One of the primary goals of SGP ARM is to study the variability of atmospheric radiation within a G,CM grid-cell. Enough surface data has been collected by ARM to extend this goal to sub-grid variability of the land-surface energy and water budgets. The time period of this study is the Summer of 1998 (June I - September 1). The ARM site data consists of surface meteorology, energy flux (eddy correlation and bowen ratio), soil water observations spread over an area similar to the size of a G-CM grid-cell. Various ARM stations are described as wheat and alfalfa crops, pasture and range land. The LSM tiles considered at the grid-space (2 x 2.5) nearest the ARM site include, grassland, deciduous forests, bare soil and dwarf trees. Surface energy and water balances for each tile type are compared with observations. Furthermore, we will discuss the land-surface sub-grid variability of both the ARM observations and the DAS.
Environmental Assessment (EA): Proposed Missile Storage Improvements, Utah Test and Training Range
2013-06-11
Implementation Plan SOC Species of Concern SOx Oxides of Sulfur SO2 Sulfur Dioxide START Strategic Arms Reduction Treaty SWPPP Stormwater Pollution ...Discussions related to preventing soil erosion ( stormwater pollution prevention) are addressed under water quality effects (Section 4 of this...construction activities, this permit must be obtained and erosion and sediment controls must be installed according to a stormwater pollution
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-04-28
This health and safety plan sets forth the requirements and procedures to protect the personnel involved in the Lead Source Removal Project at the Former YS-86O Firing Ranges. This project will be conducted in a manner that ensures the protection of the safety and health of workers, the public, and the environment. The purpose of this removal action is to address lead contaminated soil and reduce a potential risk to human health and the environment. This site is an operable unit within the Upper East Fork Poplar Creek watershed. The removal action will contribute to early source actions within themore » watershed. The project will accomplish this through the removal of lead-contaminated soil in the target areas of the two small arms firing ranges. This plan covers the removal actions at the Former YS-86O Firing Ranges. These actions involve the excavation of lead-contaminated soils, the removal of the concrete trench and macadam (asphalt) paths, verification/confirmation sampling, grading and revegetation. The primary hazards include temperature extremes, equipment operation, noise, potential lead exposure, uneven and slippery working surfaces, and insects.« less
The MSP 2001 Mars Environmental Compatibility Assessment (MECA)
NASA Technical Reports Server (NTRS)
Hecht, M. H.; Meloy, T. P.; Anderson, M. S.; Buehler, M. G.; Frant, M. A.; Grannan, S. M.; Fuerstenau, D.; Keller, H. U.; Markiewicz, W. J.; Marshall, J.
1999-01-01
The Mars Environmental Compatibility Assessment (MECA) will evaluate the Martian environment for soil and dust-related hazards to human exploration as part of the Mars Surveyor Program 2001 Lander. Sponsored by the Human Exploration and Development of Space (HEDS) enterprise, MECA's goal is to evaluate potential geochemical and environmental hazards that may confront future Martian explorers, and to guide HEDS scientists in the development of high fidelity Mars soil simulants. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatics of the soil and its environment, and arrays of material patches to study the abrasive and adhesive properties of soil grains. The instrument will acquire soil samples with a robotic arm equipped with a camera. MECA will examine surface and subsurface soil and dust in order to characterize particle size, shape, hardness, and also physical characteristics that may provide clues to mineralogy. MECA will characterize soil/water mixtures with respect to pH, redox potential, total dissolved ions, and trace toxins. MECA will determine the nature of electrostatic charging associated with excavation of soil, and the influence of ionizing radiation on material properties. It will also observe natural dust accumulation on engineering materials. To accomplish these objectives, MECA is allocated a mass of 10 kg within an enclosure of 35 x 25 x 15 cm. The Wet Chemistry Laboratory (WCL) consists of four identical cells that will accept samples from surface and subsurface regions accessible to the Lander's robotic arm, mix them with water, and perform extensive analysis of the solution. Ion-selective electrodes and related sensors will evaluate total dissolved solids, redox potential, pH, and the concentration of many soluble ions and gases in wet Martian soil. These electrodes can detect potentially dangerous heavy-metal ions, emitted pathogenic gases, and the soil's corrosive potential. Experiments will include cyclic voltammetry and anodic stripping voltammetry. Complementary to the Viking experiments, the chemical laboratory will characterize the water-soil solution rather than emitted gases. Nonetheless, through analysis of dissolved gases it will be able to replicate many of the Viking observations related to oxidants. MECA's microscopy station combines optical and atomic-force microscopy (AFM) in an actively focused, controlled illumination environment to image particles from millimeters to nanometers in size. Careful selection of substrates allows controlled experiments in adhesion, abrasion, hardness, aggregation, magnetic and other properties. Special tools allow primitive manipulation (brushing and scraping) of samples. Soil particle properties including size, shape, color, hardness, adhesive potential (electrostatic and magnetic), will be determined using an array of sample receptacles and collection substrates. The simple, rugged atomic-force microscope will image in the submicron size range and has the capability of performing a particle-by-particle analysis of the dust and soil. On Earth, the earliest forms of life are preserved as microfossils. The atomic-force microscope will have the required resolution to image down to the scale of terrestrial microfossils and beyond. Mounted on the end of the robot arm, MECA's electrometer actually consists of four types of sensors: an electric field meter, several triboelectricity monitors, an ion gauge, and a thermometer. Tempered only by ultraviolet-light-induced ions and a low-voltage breakdown threshold, the dry, cold, dusty martian environment presents an imposing electrostatic hazard to both robots and humans. The field meter will measure the ambient field on nearby objects while the triboelectric sensors, using identical circuitry, will measure the charge accumulated on test substances as they are dragged through the soil by the arm. The ion chamber, open to the environment, will sense both charged dust and free ions in the air. Over and above the potential threat to electronics, the electrostatic environment holds one of the keys to transport of dust and, consequently, Martian meteorology. Viewed with the robot arm camera, the abrasion and adhesion plates are strategically placed to allow direct observation of the interaction between materials and soils on a macroscopic scale. Materials of graded hardness are placed directly under the robot arm scoop to sense wear and soil hardness. A second array, placed on the lander deck, is deployed after the dust plume of landing has settled. It can be manipulated in a primitive fashion by the arm, first having dirt deposited on it from the scoop and subsequently shaken clean. A third array will passively collect dust from the atmosphere. In addition to objectives related to human exploration, the MECA data set will be rich in information relevant to basic geology, paleoclimate, and exobiology issues. To understand both contemporaneous and ancient processes on Mars, the mineralogy, petrology, and reactivity of Martian surface materials should be constrained. The MECA experiment will shed light on these quantities through its combination of chemistry and microscopy. MECA will be capable of measuring the composition of ancient surface water environments, observing microscopic evidence of geological (and biological?) processes, inferring soil and dust transport, comminution and weathering mechanisms, and characterizing soil horizons that might be encountered during excavation.
Environmental factors affecting corrosion of munitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bundy, K.; Bricka, M.; Morales, A.
1995-12-31
Spent small arms munitions have accumulated for years at outdoor firing ranges operated by the DoD and other groups. Used bullets are often subjected to moisture sources. There is increasing concern that accumulations of lead-based munitions represent potential sources of water and soil pollution. To understand both the severity of and solutions to this problem, it is necessary to measure how rapidly bullets corrode and to determine the soil variables affecting the process. In this study M16 bullets were buried in samples of soil taken from Louisiana army firing ranges. Four environmental conditions were simulated; rain water, acid rain, seamore » water, and 50% sea water/50% acid rain. The three electrode technique was used to measure the bullet corrosion. Graphite rods served as counter electrodes. A saturated calomel reference electrode was used along with a specially constructed salt bridge. Electrochemical measurements were conducted using a computer-controlled potentiostat to determine corrosion potential, soil resistance, and corrosion current. The rate of corrosion was found to markedly increase with decreasing soil pH and increasing chloride and moisture contents, with the chloride content being the most influential variable. High soil resistance and noble corrosion potential were found to be associated with low corrosion rates. This is important since both parameters can be readily measured in the field.« less
Bioavailability of Lead in Small Arms Range Soils
2009-08-01
titanium TOC total organic carbon USEPA U.S. Environmental Protection Agency XRF X-ray fluorescence Zn zinc Zr zirconium 1 1.0 EXECUTIVE...particles of inert matrix such as rock or slag of variable size, shape, and association; these chemical and physical properties may influence the absorption...zirconium, Pb=lead, Cu=copper, Mn=manganese, Si=silicon, Zn= zinc , As=arsenic, Cd=cadmium, CEC= cation exchange capacity, TOC = total organic carbon, Sb
NASA Astrophysics Data System (ADS)
Tang, Q.; Xie, S.; Zhang, Y.
2016-12-01
The paucity of land/soil observations is a long-standing limitation for land-atmosphere (LA) coupling studies, in particular for estimating the spatial variability in the coupling strengths. Spatially dense atmospheric radiation measurement (ARM) sites deployed at the U.S. Southern Great Plains (SGP) covers a wide range of vegetation, surface, and soil types, and thus allow us to observe the spatial patterns of LA coupling. The upcoming "super site" at SGP will facilitate these studies at even finer scales. While many previous studies have focused only on the observations from the central facility (CF) site or the domain mean from multiple sites, in the present work we examine the robustness of many key surface and land observations (e.g., radiation, turbulence fluxes, soil moisture, etc.) at extended sites besides the CF site for a decade. The coupling strengths are estimated with temporal covariations between important variables. We subsample the data to different categories based on different cloud regimes (e.g., clear sky, shallow cumulus, and deep cumulus. These cloud regimes are strongly impacted by local factors. The spatial variability of coupling strengths at different ARM sites is assessed with respect to dominant drivers (i.e., vegetation, land type, etc.). The results of this study will provide insights for improving the representation of LA coupling in climate models by providing observational constraints to parameterizations, e.g., shallow convective schemes. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-698523
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-03-24
This health and safety plan sets forth the requirements and procedures to protect the personnel involved in the removal action project at the former YS-860 Firing Ranges. This project will be conducted in a manner that ensures the protection of the safety and health of workers, the public, and the environment. The purpose of this removal action is to address lead-contaminated soil and reduce a potential risk to human health and the environment. This site is an operable unit within the Upper East Fork Poplar Creek watershed. The removal action will contribute to early source actions within the watershed. Themore » project will accomplish this through the removal of lead-contaminated soil in the target areas of the two small arms firing ranges. The primary hazards include temperature extremes, equipment operation, noise, potential lead exposure, uneven and slippery working surfaces, and insects.« less
AmeriFlux Measurement Component (AMC) Instrument Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reichl, Ken; Biraud, Sebastien C.
2016-04-01
An AMC system was installed at the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility North Slope of Alaska (NSA) Barrow site, also known as NSA C1 at the ARM Data Archive, in August 2012. A second AMC system was installed at the third ARM Mobile Facility deployment at Oliktok Point, also known as NSA M1. This in situ system consists of 12 combination soil temperature and volumetric water content (VWC) reflectometers and one set of upwelling and downwelling photosynthetically active radiation (PAR) sensors, all deployed within the fetch of the Eddy Correlation Flux Measurement System.more » Soil temperature and VWC sensors placed at two depths (10 and 30 cm below the vegetation layer) at six locations (or microsites) allow soil property inhomogeneity to be monitored across a landscape.« less
Mars Environmental Compatibility Assessment (MECA): Identifying the Hazards of the Martian Soil
NASA Technical Reports Server (NTRS)
Meloy, T. P.; Hecht, M. H.; Anderson, M. S.; Frant, M. A.; Fuerstenau, S. D.; Keller, H. U.; Markiewicz, W. J.; Marshall, J.; Pike, W. T.; Quate, C. F.
1999-01-01
Sometime in the next decade NASA will decide whether to send a human expedition to explore the planet Mars. The Mars Environmental Compatibility Assessment (MECA) has been selected by NASA to evaluate the Martian environment for soil and dust hazards to human exploration. The integrated MECA payload contains three elements: a wet-chemistry laboratory, a microscopy station, and enhancements to a lander robot-arm system incorporating arrays of material patches and an electrometer to identify triboelectric charging during soil excavation. The wet-chemistry laboratory will evaluate samples of Martian soil in water to determine the total dissolved solids, redox potential, pH, and quantify the concentration of many soluble ions using ion-selective electrodes. These electrodes can detect potentially dangerous heavy-metal ions, emitted pathogenic gases, and the soil's corrosive potential. MECA's microscopy station combines optical and atomic-force microscopy with a robot-arm camera to provide imaging over nine orders of magnitude, from meters to nanometers. Soil particle properties including size, shape, color, hardness, adhesive potential (electrostatic and magnetic), will be determined on the microscope stage using an ar-ray of sample receptacles and collection substrates, and an abrasion tool,. The simple, rugged atomic-force microscope will image in the submicron size range and has the capability of performing a particle-by-particle analysis of the dust and soil. Although selected by NASA's Human Exploration and Development of Space Enterprise, the MECA instrument suite also has the capability to address basic geology, paleoclimate, and exobiology issues. To understand both contemporaneous and ancient processes on Mars, the mineralogical, petrological, and reactivity of Martian surface materials should be constrained: the NMCA experiment will shed light on these quantities through its combination of chemistry and microscopy. On Earth, the earliest forms of life are preserved as microfossils. The atomic-force microscope will have the required resolution to image down to the scale of terrestrial microfossils and beyond.
AmeriFlux Measurement Component (AMC) Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reichl, K.; Biraud, S. C.
An AMC system was installed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s North Slope Alaska (NSA) Barrow site, also known as NSA C1 at the ARM Data Archive, in August 2012. A second AMC system was installed at the third ARM Mobile Facility deployment at Oliktok Point, also known as NSA M1. This in situ system consists of 12 combination soil temperature and volumetric water content (VWC) reflectometers and one set of upwelling and downwelling PAR sensors, all deployed within the fetch of the Eddy Correlation Flux Measurement System. Soil temperature and VWC sensors placed at two depthsmore » (10 and 30 cm below the vegetation layer) at six locations (or microsites) allow soil property inhomogeneity to be monitored across a landscape. The soil VWC and temperature sensors used at NSA C1 are the Campbell Scientific CS650L and the sensors at NSA M1 use the Campbell Scientific CS655. The two sensors are nearly identical in function, and vendor specifications are based on the CS650 unless otherwise stated.« less
Bioavailability of Lead in Small Arms Range Soils
2007-09-01
minerals, and may also exist inside particles of inert matrix such as rock or slag of variable size, shape, and association; these chemical and...Abbreviations: Fe=iron, Pb=lead, Cu=copper, Ti=titanium, Zn= zinc , Sb=antimony, Rb=rubidium, Zr=zirconium, As=arsenic. Values are mean of three...20 30 40 50 60 70 80 FeOOH Cerussite Organic Phosphate PbMO PbAsO MnOOH Anglesite PbOOH PbCl4 Slag FeSO4 PbO Frequency of Occurrence Relative Pb
Working End of Robotic Arm on Phoenix
2007-08-02
This illustration shows some of the components on and near the end of the robotic arm on NASA Phoenix Mars Lander. Primary and secondary blades on the scoop that aided in the collection of soil samples.
NASA Astrophysics Data System (ADS)
Mockford, T.; Zobeck, T. M.; Lee, J. A.; Gill, T. E.; Dominguez, M. A.; Peinado, P.
2012-12-01
Understanding the controls of mineral dust emissions and their particle size distributions during wind-erosion events is critical as dust particles play a significant impact in shaping the earth's climate. It has been suggested that emission rates and particle size distributions are independent of soil chemistry and soil texture. In this study, 45 samples of wind-erodible surface soils from the Southern High Plains and Chihuahuan Desert regions of Texas, New Mexico, Colorado and Chihuahua were analyzed by the Lubbock Dust Generation, Analysis and Sampling System (LDGASS) and a Beckman-Coulter particle multisizer. The LDGASS created dust emissions in a controlled laboratory setting using a rotating arm which allows particle collisions. The emitted dust was transferred to a chamber where particulate matter concentration was recorded using a DataRam and MiniVol filter and dust particle size distribution was recorded using a GRIMM particle analyzer. Particle size analysis was also determined from samples deposited on the Mini-Vol filters using a Beckman-Coulter particle multisizer. Soil textures of source samples ranged from sands and sandy loams to clays and silts. Initial results suggest that total dust emissions increased with increasing soil clay and silt content and decreased with increasing sand content. Particle size distribution analysis showed a similar relationship; soils with high silt content produced the widest range of dust particle sizes and the smallest dust particles. Sand grains seem to produce the largest dust particles. Chemical control of dust emissions by calcium carbonate content will also be discussed.
Observational Evaluation of Simulated Land-Atmosphere Coupling on the U.S. Southern Great Plains
NASA Astrophysics Data System (ADS)
Phillips, T. J.; Klein, S. A.
2014-12-01
In a recent study of observed features of land-atmosphere coupling (LAC) at the ARM Southern Great Plains (ARM SGP) site in northern Oklahoma (Phillips and Klein, 2014 Journal of Geophysical Research), we identified statistically significant interactions between 1997-2008 summertime daily averages of soil moisture (at 10 cm depth) and a number of surface atmospheric variables, such as surface evaporation, relative humidity, and temperature. Here we will report on an evaluation of similar features of LAC simulated by version 5 of the global Community Atmosphere Model (CAM5), coupled to its native CLM4 land model, and downscaled to the vicinity of the ARM SGP site. In these case studies, the CAM5 was initialized from a 6-hourly atmospheric reanalysis for each day of the years 2008 and 2009 (where the CLM4 land state was equilibrated to the atmospheric model state), thus permitting a close comparison of the modeled and observed summer daily average features of the LAC in these years. Correlation coefficients R and "sensitivity indices" I (a measure of the comparative change of an atmospheric variable for a one-standard-deviation change in soil moisture) provided quantitative measures of the respective coupling strengths. Such a comparison of observed versus modeled LAC is complicated by differences in atmospheric forcings of the land; for example, the CAM5's summertime precipitation is too scant, and thus the model's upper soil layer often is drier than observed. The modeled daily average covariations of soil moisture with lower atmospheric variables also display less coherence (lower R values), but sometimes greater "sensitivity" (higher I values) than are observed at the ARM SGP site. Since the observational estimate of LAC may itself be sensitive to soil moisture measurement biases, we also will report on a planned investigation of the dependence of LAC on several alternative choices of soil moisture data sets local to the ARM SGP site. AcknowledgmentsThis work was funded by the U.S. Department of Energy Office of Science and was performed at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Sprinkle Test by Phoenix Robotic Arm Movie
2008-06-10
NASA Phoenix Mars Lander used its Robotic Arm during the mission 15th Martian day since landing June 9, 2008 to test a prinkle method for delivering small samples of soil to instruments on the lander deck.
Tian-Bi, Yves-Nathan T; Ouattara, Mamadou; Knopp, Stefanie; Coulibaly, Jean T; Hürlimann, Eveline; Webster, Bonnie; Allan, Fiona; Rollinson, David; Meïté, Aboulaye; Diakité, Nana R; Konan, Cyrille K; N'Goran, Eliézer K; Utzinger, Jürg
2018-01-29
To achieve a world free of schistosomiasis, the objective is to scale up control and elimination efforts in all endemic countries. Where interruption of transmission is considered feasible, countries are encouraged to implement a comprehensive intervention package, including preventive chemotherapy, information, education and communication (IEC), water, sanitation and hygiene (WASH), and snail control. In northern and central Côte d'Ivoire, transmission of Schistosoma haematobium is seasonal and elimination might be achieved. In a cluster-randomised trial, we will assess different treatment schemes to interrupt S. haematobium transmission and control soil-transmitted helminthiasis over a 3-year period. We will compare the impact of (i) arm A: annual mass drug administration (MDA) with praziquantel and albendazole before the peak schistosomiasis transmission season; (ii) arm B: annual MDA after the peak schistosomiasis transmission season; (iii) arm C: two yearly treatments before and after peak schistosomiasis transmission; and (iv) arm D: annual MDA before peak schistosomiasis transmission, coupled with chemical snail control using niclosamide. The prevalence and intensity of S. haematobium and soil-transmitted helminth infections will be assessed using urine filtration and Kato-Katz thick smears, respectively, in six administrative regions in northern and central parts of Côte d'Ivoire. Once a year, urine and stool samples will be collected and examined from 50 children aged 5-8 years, 100 children aged 9-12 years and 50 adults aged 20-55 years in each of 60 selected villages. Changes in S. haematobium and soil-transmitted helminth prevalence and intensity will be assessed between years and stratified by intervention arm. In the 15 villages randomly assigned to intervention arm D, intermediate host snails will be collected three times per year, before niclosamide is applied to the selected freshwater bodies. The snail abundance and infection rates over time will allow drawing inference on the force of transmission. This cluster-randomised intervention trial will elucidate whether in an area with seasonal transmission, the four different treatment schemes can interrupt S. haematobium transmission and control soil-transmitted helminthiasis. Lessons learned will help to guide schistosomiasis control and elimination programmes elsewhere in Africa. ISRCTN ISRCTN10926858 . Registered 21 December 2016. Retrospectively registered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brigmon, Robin; Wilson, Christina; Knox, Anna
Heavy metals including lead (Pb) are released continually into the environment as a result of industrial, recreational, and military activities. Lead ranked number two on the CERCLA Priority List of Hazardous Substances and was identified as a major hazardous chemical found on 47% of USEPA's National Priorities List sites (Hettiarachchi and Pierzynski 2004). In-situ remediation of lead (Pb) contaminated soils may be accomplished by changing the soil chemistry and structure with the application of microbial and phosphate amendments. Soil contaminated with lead bullets was collected from the surface of the berm at Savannah River Site (SRS) Small Arms Training Academymore » (SATA) in Aiken, SC. While uncontaminated soils typically have Pb levels ranging from 2 to 200 mg/kg (Berti et al. 1998), previous analysis show Pb levels of the SATA berm to reach 8,673 mg/kg. Biosurfactants are surface-active compounds naturally produced by soil bacteria that can bind metals. Biosurfactants have a wide variety of chemical structures that reduce interfacial surface tensions (Jennings and Tanner 2000) and have demonstrated efficient metal complexion (Lin 1996). Biosurfactants also have the potential to change the availability of natural organic matter (Strong-Gunderson 1995). Two types of bacteria, Alcaligenes piechaudii and Pseudomonas putida, were employed as amendments based on their ability to produce biosurfactants and survive in metal-contaminated soils. Apatites (calcium phosphate compounds) are important in the formation of Pb phosphates. Pb phosphates form rapidly when phosphate is available and are the most stable environmental form of lead in soil (Ruby et al.1998). Pyromorphites in particular remain insoluble under a wide range of environmental conditions (Zhang et al. 1998). The three apatites evaluated in the current study were North Carolina apatite (NCA), Florida apatite (FA), and biological apatite (BA). BA is ground fish bone that has few impurities such as As, Cr, or U and contains about 27% total phosphate, most of which is available. FA and NCA are two types of rock phosphates that release small amounts of phosphate over time. Total phosphate is around 30% with only 1-2% phosphate available (Knox et al. 2005). In this study, we describe the influence of combining the two microbial and three phosphate amendments on reducing lead bioavailability in shooting range soil.« less
NASA Technical Reports Server (NTRS)
2007-01-01
A vital instrument on NASA's Phoenix Mars Lander is the robotic arm, which will dig into the icy soil and bring samples back to the science deck of the spacecraft for analysis. In September 2006 at a Lockheed Martin Space Systems clean room facility near Denver, spacecraft technician Billy Jones inspects the arm during the assembly phase of the mission. Using the robotic arm -- built by the Jet Propulsion Laboratory, Pasadena -- the Phoenix mission will study the history of water and search for complex organic molecules in the ice-rich soil. The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.Influence of the Biosphere on Precipitation: July 1995 Studies with the ARM-CART Data
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Mocko, D. M.; Walker, G. K.; Koster, Randal D.
2000-01-01
Ensemble sets of simulation experiments were conducted with a single column model (SCM) using the Goddard GEOS II GCM physics containing a recent version of the Cumulus Scheme (McRAS) and a biosphere based land-fluxes scheme (SSiB). The study used the 18 July to 5 August 1995 ARM-CART (Atmospheric Radiation Measurement-Cloud Atmospheric Radiation Test-bed) data, which was collected at the ARM-CART site in the mid-western United States and analyzed for single column modeling (SCM) studies. The new findings affirm the earlier findings that the vegetation, which increases the solar energy absorption at the surface together with soil and soil-moisture dependent processes, which modulate the surface, fluxes (particularly evapotranspiration) together help to increase the local rainfall. In addition, the results also show that for the particular study period roughly 50% of the increased evaporation over the ARM-CART site would be converted into rainfall with the Column, while the remainder would be advected out to the large-scale. Notwithstanding the limitations of only one-way interaction (i.e., the large-scale influencing the regional physics and not vice versa), the current SCM simulations show a very robust relationship. The evaporation-precipitation relationship turns out to be independent of the soil types, and soil moisture; however, it is weakly dependent on the vegetation cover because of its surface-albedo effect. Clearly, these inferences are prone to weaknesses of the SCM physics, the assumptions of the large-scale being unaffected by gridscale (SCM-scale) changes in moist processes, and other limitations of the evaluation procedures.
Thermal and Electrical Conductivity Probe for Phoenix Mars Lander
NASA Technical Reports Server (NTRS)
2007-01-01
NASA's Phoenix Mars Lander will assess how heat and electricity move through Martian soil from one spike or needle to another of a four-spike electronic fork that will be pushed into the soil at different stages of digging by the lander's Robotic Arm. The four-spike tool, called the thermal and electrical conductivity probe, is in the middle-right of this photo, mounted near the end of the arm near the lander's scoop (upper left). In one type of experiment with this tool, a pulse of heat will be put into one spike, and the rate at which the temperature rises on the nearby spike will be recorded, along with the rate at which the heated spike cools. A little bit of ice can make a big difference in how well soil conducts heat. Similarly, soil's electrical conductivity -- also tested with this tool -- is a sensitive indicator of moisture in the soil. This device adapts technology used in soil-moisture gauges for irrigation-control systems. The conductivity probe has an additional role besides soil analysis. It will serve as a hunidity sensor when held in the air.NASA Astrophysics Data System (ADS)
Geiss, C. E.
2016-12-01
The analysis of a soil profile in western Iowa suggests that forest fires along the prairie-forest ecotone have little effect on the overall magnetic properties of the soil. The studied soil profile is located at Hitchcock Nature Center near Honey Creek, Iowa (41°25'15"N, -95°51'56"W) and developed in a narrow ravine in the Iowa Loess Hills. The surrounding vegetation consists of hardwoods, while the surrounding ridges are vegetated by oak savanna. The area has been subjected to prescribed fires for almost 20 years and is estimated to have burned approximately every 5 years in pre-European times [Stambaugh et al., 2006]. The profile contains several buried soils interspersed by often rapidly deposited loess. Paleosols consist of strongly developed A-horizons but show only weak magnetic enhancement in terms of magnetic susceptibility or ARM/IRM ratios. In a plot of χARM/χFD vs. χARM/χ, all but one sample plot far from the region that is generally associated with past burning [Oldfield and Crowther, 2007]. As shown earlier for prairie environments, fires in oak savanna do not seem to burn hot enough to cause widespread magnetic mineral transformations. Oldfield, F., and J. Crowther (2007), Establishing fire incidence in temperate soils using magnetic measurements, Paleogeogr. Paleoclim. Paleoecol., 249, 362-369. Stambaugh, M. C., R. P. Guyette, E. R. McMurry, and D. C. Dey (2006), Fire history at the eastern Great Plains margin, Missouri River Loess Hills, Great Plains Research, 16, 149-159.
Enhanced Soundings for Local Coupling Studies Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, Craig R; Santanello, Joseph A; Gentine, Pierre
This document presents initial analyses of the enhanced radiosonde observations obtained during the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Enhanced Soundings for Local Coupling Studies Field Campaign (ESLCS), which took place at the ARM Southern Great Plains (SGP) Central Facility (CF) from June 15 to August 31, 2015. During ESLCS, routine 4-times-daily radiosonde measurements at the ARM-SGP CF were augmented on 12 days (June 18 and 29; July 11, 14, 19, and 26; August 15, 16, 21, 25, 26, and 27) with daytime 1-hourly radiosondes and 10-minute ‘trailer’ radiosondes every 3 hours. These 12more » intensive operational period (IOP) days were selected on the basis of prior-day qualitative forecasts of potential land-atmosphere coupling strength. The campaign captured 2 dry soil convection advantage days (June 29 and July 14) and 10 atmospherically controlled days. Other noteworthy IOP events include: 2 soil dry-down sequences (July 11-14-19 and August 21-25-26), a 2-day clear-sky case (August 15-16), and the passing of Tropical Storm Bill (June 18). To date, the ESLCS data set constitutes the highest-temporal-resolution sampling of the evolution of the daytime planetary boundary layer (PBL) using radiosondes at the ARM-SGP. The data set is expected to contribute to: 1) improved understanding and modeling of the diurnal evolution of the PBL, particularly with regard to the role of local soil wetness, and (2) new insights into the appropriateness of current ARM-SGP CF thermodynamic sampling strategies.« less
NASA Technical Reports Server (NTRS)
2004-01-01
This elevation map of a soil target called 'Peak' was created from images taken by the microscopic imager located on the Mars Exploration Rover Spirit's instrument deployment device or 'arm.' The image reveals the various high and low points of this spot of soil after the Moessbauer spectrometer, another instrument on the rover's arm, was gently placed down on it. The blue areas are farthest away from the instrument; the red areas are closest. The variation in distance between blue and red areas is only 2 millimeters, or .08 of an inch. The images were acquired on sol 39 (February 11, 2004).
The MSP 2001 Mars Environmental Compatibility Assessment (MECA)
NASA Technical Reports Server (NTRS)
Hecht, M. H.; Meloy, T. P.; Anderson, M. S.; Buehler, M. G.; Frant, M. A.; Grannan, S. M.; Fuerstenau, S. D.; Keller, H. U.; Markiewicz, W. J.; Marshall, J.
1999-01-01
A chemical analysis of soil-water mixtures and the first microscopic images of martian soil will be among the results to be returned by the Mars Environmental Compatibility Assessment (MECA) payload on the Mars Surveyor Program 2001 Lander. Sponsored by the Human Exploration and Development of Space (HEDS) enterprise, MECA's primary goal is to evaluate potential geochemical and environmental hazards that may confront future martian explorers, and to guide HEDS scientists in the development of high fidelity Mars soil simulants. As a survey of soil properties, the MECA data set will also be rich in information relevant to basic geology, paleoclimate, and exobiology. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatics of the soil and its environment, and arrays of material patches to study the abrasive and adhesive properties of soil grains. MECA is allocated a mass of 10 kg and a peak power usage of 15 W within an enclosure of 35 x 25 x 15 cm. The Wet Chemistry Laboratory (WCL) consists of four identical cells that will accept samples from surface and subsurface regions accessible to the Lander's robotic arm, mix them with water, and perform extensive analysis of the solution. Ion-selective electrodes and related sensors will evaluate total dissolved solids, redox potential, pH, and the concentration of many soluble ions and gases. Cyclic voltammetry will address oxidants, and anodic stripping voltammetry will probe potentially hazardous trace metals. MECA's microscopy station combines optical and atomic-force microscopy (AFM) in a controlled illumination environment to image dust and soil particles from millimeters to nanometers in size. Careful selection of substrates and an abrasion tool allows experimental study of size distribution, adhesion, abrasion, hardness, color, shape, aggregation, magnetic and other properties. Mounted on the end of the robot arm, MECA's electrometer consists of four types of sensors: an electric field meter, several triboelectricity monitors, an ion gauge, and a thermometer. Tempered only by ultra-violet- light-induced ions and a low-voltage break-down threshold, the dry, cold, dusty martian environment presents an imposing electrostatic hazard to both robots and humans. In addition, the electrostatic environment is key to transport of dust and, consequently, martian meteorology. MECA will also observe natural dust accumulation on engineering materials. Viewed with the robot arm camera, the abrasion and adhesion plates are strategically placed to allow direct observation of the inter-action between materials and soils on a macroscopic scale. Materials of graded hardness are placed directly under the robot arm scoop to sense wear and soil hardness. A second array, placed on the lander deck, is deployed after the dust plume of landing has settled. It can be manipulated in a primitive fashion by the arm, first having dirt deposited on it from the scoop and subsequently shaken clean. Dust accumulation as a function of conductivity, magnetic field strength, and other parameters will be explored. The MECA instruments described above will assess potential hazards that the Martian soil might present to human explorers and their equipment. In addition, MECA will provide information on the composition of ancient surface water environments, observing microscopic evidence of geological (and biological?) processes, inferring soil and dust transport, comminution and weathering mechanisms, and characterizing soil horizons that might be encountered during excavation. Additional information is contained in the original extended abstract.
Moessbauer Footprint in the Soil
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D image taken by the microscopic imager onboard the Mars Exploration Rover Opportunity shows a circular imprint left in the Meridiani Planum soil by the rover's Moessbauer spectrometer, an instrument located on its arm that detects iron-bearing minerals. Scientists are studying the curiously rounded grains for clues about the soil's history. The observed area is 3 centimeters (1.2 inches) across.
Pan, Hung-Yin; Chen, Carton W; Huang, Chih-Hung
2018-04-17
Soil bacteria Streptomyces are the most important producers of secondary metabolites, including most known antibiotics. These bacteria and their close relatives are unique in possessing linear chromosomes, which typically harbor 20 to 30 biosynthetic gene clusters of tens to hundreds of kb in length. Many Streptomyces chromosomes are accompanied by linear plasmids with sizes ranging from several to several hundred kb. The large linear plasmids also often contain biosynthetic gene clusters. We have developed a targeted recombination procedure for arm exchanges between a linear plasmid and a linear chromosome. A chromosomal segment inserted in an artificially constructed plasmid allows homologous recombination between the two replicons at the homology. Depending on the design, the recombination may result in two recombinant replicons or a single recombinant chromosome with the loss of the recombinant plasmid that lacks a replication origin. The efficiency of such targeted recombination ranges from 9 to 83% depending on the locations of the homology (and thus the size of the chromosomal arm exchanged), essentially eliminating the necessity of selection. The targeted recombination is useful for the efficient engineering of the Streptomyces genome for large-scale deletion, addition, and shuffling.
'Mister Badger' Pushing Mars Rock
NASA Technical Reports Server (NTRS)
1976-01-01
Viking's soil sampler collector arm successfully pushed a rock on the surface of Mars during the afternoon of Friday, October 8. The irregular-shaped rock was pushed several inches by the Lander's collector arm, which displaced the rock to the left of its original position, leaving it cocked slightly upward. Photographs and other information verified the successful rock push. Photo at left shows the soil sampler's collector head pushing against the rock, named 'Mister Badger' by flight controllers. Photo at right shows the displaced rock and the depression whence it came. Part of the soil displacement was caused by the collector s backhoe. A soil sample will be taken from the site Monday night, October 11. It will then be delivered to Viking s organic chemistry instrument for a series of analyses during the next few weeks. The sample is being sought from beneath a rock because scientists believe that, if there are life forms on Mars, they may seek rocks as shelter from the Sun s intense ultraviolet radiation.
Keidan, Ilan; Sidi, Avner; Ben-Menachem, Erez; Tene, Yael; Berkenstadt, Haim
2014-02-01
To determine the accuracy and precision of simultaneous noninvasive blood pressure (NIBP) measurement in the arm, forearm, and ankle in anesthetized children. Prospective, randomized study. University medical center. 101 ASA physical status 1 and 2 children (aged 1-8 yrs) scheduled for elective surgery with general anesthesia. Simultaneous NIBP measurements were recorded at the arm, forearm, and ankle at 5-minute intervals. The systolic blood pressure difference between the arm-forearm or the arm-ankle was within the ± 10% range in 63% and 29% of measurements, and within the ± 20% range in 85% and 67% of measurements, respectively. The diastolic blood pressure difference between the arm-forearm or the arm-ankle was within the ± 10% range in 42% and 44% and within the ± 20% range in 67% and 74% of measurements, respectively. In patients in whom the initial three NIBP measurements were within the ± 20% range between the forearm and arm, 86% of the subsequent measurements were also within that limit. Forearm and ankle NIBP measurements are unreliable and inconsistent with NIBP measured in the arm of anesthetized children. These alternative BP measurement sites are not reliable in accuracy (comparison with reference "gold" standard) and precision (reproducibility). Copyright © 2014 Elsevier Inc. All rights reserved.
Genome Sequences of Four Cluster P Mycobacteriophages.
Doyle, Erin L; Fillman, Christy L; Reyna, Nathan S; Tobiason, Deborah M; Westholm, Daniel E; Askins, Jonathan L; Backus, Brittany P; Baker, Ashlynn C; Ballard, Harrison S; Bisesi, Paul J; Bond, Logan; Byrnes, Deanna; Carlstedt, Hannah; Dodson, Kinnon S; Fallert, Megan J; Foster, Kyla J; Games, Daniel N; Grams, Tristan R; Guild, Nancy A; Hurd, Autumn; Iwata, Nicholas; Kepler, Cassidy R; Krenzke, Lucinda R; Luekens, Kelly; Lewis, Jackie; McEntee, Cali; McGee, Justin C; Nalley, Noah; Plymale, Ruth C; Prochaska, Jade; Rogers, Reid G; Schipper, Jessica B; Snyder, Kelsey; Uhrich, Kali; Vermillion, Chelsey D; Vickers, Sarah K; Wenta, Meredyth D; Yates, Tyler Z; Young, Chas F; Stoner, Ty H; Pope, Welkin H; Jacobs-Sera, Deborah; Garlena, Rebecca A; Russell, Daniel A; Cresawn, Steven G; Hatfull, Graham F
2018-01-11
Four bacteriophages infecting Mycobacterium smegmatis mc 2 155 (three belonging to subcluster P1 and one belonging to subcluster P2) were isolated from soil and sequenced. All four phages are similar in the left arm of their genomes, but the P2 phage differs in the right arm. All four genomes contain features of temperate phages. Copyright © 2018 Doyle et al.
Martian Soil Delivery to Analytical Instrument on Phoenix
NASA Technical Reports Server (NTRS)
2008-01-01
The Robotic Arm of NASA's Phoenix Mars Lander released a sample of Martian soil onto a screened opening of the lander's Thermal and Evolved-Gas Analyzer (TEGA) during the 12th Martian day, or sol, since landing (June 6, 2008). TEGA did not confirm that any of the sample had passed through the screen. The Robotic Arm Camera took this image on Sol 12. Soil from the sample delivery is visible on the sloped surface of TEGA, which has a series of parallel doors. The two doors for the targeted cell of TEGA are the one positioned vertically, at far right, and the one partially open just to the left of that one. The soil between those two doors is resting on a screen designed to let fine particles through while keeping bigger ones Efrom clogging the interior of the instrument. Each door is about 10 centimeters (4 inches) long. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.The Phoenix Mars Lander Robotic Arm
NASA Technical Reports Server (NTRS)
Bonitz, Robert; Shiraishi, Lori; Robinson, Matthew; Carsten, Joseph; Volpe, Richard; Trebi-Ollennu, Ashitey; Arvidson, Raymond E.; Chu, P. C.; Wilson, J. J.; Davis, K. R.
2009-01-01
The Phoenix Mars Lander Robotic Arm (RA) has operated for over 150 sols since the Lander touched down on the north polar region of Mars on May 25, 2008. During its mission it has dug numerous trenches in the Martian regolith, acquired samples of Martian dry and icy soil, and delivered them to the Thermal Evolved Gas Analyzer (TEGA) and the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The RA inserted the Thermal and Electrical Conductivity Probe (TECP) into the Martian regolith and positioned it at various heights above the surface for relative humidity measurements. The RA was used to point the Robotic Arm Camera to take images of the surface, trenches, samples within the scoop, and other objects of scientific interest within its workspace. Data from the RA sensors during trenching, scraping, and trench cave-in experiments have been used to infer mechanical properties of the Martian soil. This paper describes the design and operations of the RA as a critical component of the Phoenix Mars Lander necessary to achieve the scientific goals of the mission.
NASA Astrophysics Data System (ADS)
Bender, A. M.; Witter, R. C.; Munk, L. A.
2012-12-01
Nearly the entire 4000-km-long Alaska-Aleutian megathrust has ruptured in large or great (Mw ≥8) earthquakes in the past 100 years, yet paleoseismic records of earlier events are only documented east of Kodiak Is. in the region of the 1964 Alaska earthquake. The Mw 9.2 1964 earthquake dropped the coast along Cook Inlet and Turnagain Arm by ≤1.8 m and raised shore platforms around Prince William Sound by ≤3 m. Evidence of sudden (coseismic) vertical displacements during megathrust earthquakes are archived in coastal sediments as sharp stratigraphic contacts that record rapid relative sea-level (RSL) changes. We use geochemical analyses of coastal sediments to detect sudden RSL changes at 2 sites above the Alaska-Aleutian megathrust. One site on Knik Arm near Anchorage subsided ~0.6 m during the 1964 earthquake. The other site overlies the Shumagin Islands segment of the megathrust, without rupture since before 1903. Relative to terrestrial sources of sediment, marine sources should be enriched in δ13C, δ15N, and have higher C:N, and Cl- concentrations. Our analyses will test whether these geochemical proxies can provide evidence for sudden RSL change across stratigraphic contacts that record coseismic uplift or subsidence. Coseismic subsidence should be represented by contacts that place sediment with enriched δ13C, δ15N signatures, elevated C:N and Cl- concentrations over sediment with lower values of these geochemical proxies and the reverse for coseismic uplift. A 1-2 m tall, ~0.5-km-long bluff along Knik Arm exposes three buried wetland soils overlain by gray mud. The soils become faint and pinch out to the northeast near a large tidal channel. Other studies of similar buried soils at adjacent sites suggest the youngest soil at Knik Arm subsided in 1964. 14C analyses of plant fossils in two older soils will provide age estimates for earlier events. We will apply the proposed geochemical methods to 20 samples collected along a forested upland to tidal mud flat transect to distinguish terrestrial from marine sediment. On Simeonof Is., stratigraphy beneath a peat bog adjacent to a tidal lagoon consists of basal marine sand overlain by ~0.6-1.5 m of peat. The presence of Arachnoidiscus japonicas, benthic marine diatom, implies a marine sand source. Sphagnum spp. and absence of marine foraminifera indicate freshwater peat. We analyzed δ13C, δ15N, and C:N from bulk sediment, and Cl- from water soluble fraction of sediment in a 1.3-m bog core. Freshwater peat at depths of 0.0-26.0, and 33.0-78.5 cm have δ13C ranging from -25.02 to -27.35 ‰, δ15N from 3.30-9.93‰, C:N of 10.16-17.89, and Cl- concentrations of 0.9-25.9 mg/L. Sand dominated intervals at 26.0-33.0, and 78.5-130 cm have δ13C ranging from -17.24 to -26.50‰, δ15N from 8.30-11.11‰ , C:N of 0.30-29.6 and Cl- concentrations of 0.7-19.3 mg/L. The data also indicate that average δ13C and δ15N values are enriched in marine sand relative to freshwater peat, respectively by 3.27‰ and 3.10‰. Also C:N ratios and Cl- concentrations are lower in marine sand, respectively by 23.1 and 0.1 mg/L. Hence, δ13C and δ15N show promise as geochemical proxies to distinguish terrestrial from marine sediment for future Alaska-Aleutian paleoseismic studies west of Kodiak Is.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Station, Point Mugu, Small Arms Range, Ventura County, California; danger zone. 334.1125 Section 334.1125 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE... Arms Range, Ventura County, California; danger zone. (a) The area. A triangular area extending...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Station, Point Mugu, Small Arms Range, Ventura County, California; danger zone. 334.1125 Section 334.1125 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE... Arms Range, Ventura County, California; danger zone. (a) The area. A triangular area extending...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Station, Point Mugu, Small Arms Range, Ventura County, California; danger zone. 334.1125 Section 334.1125 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE... Arms Range, Ventura County, California; danger zone. (a) The area. A triangular area extending...
Soil Water and Temperature System (SWATS) Instrument Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, David R.
2016-04-01
The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models tomore » determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.« less
NASA Technical Reports Server (NTRS)
2004-01-01
This image was taken by the microscopic imager, an instrument located on the Mars Exploration Rover Opportunity 's instrument deployment device, or 'arm.' The image shows the imprint of the donut-shaped plate on the rover's Moessbauer spectrometer instrument, also located on the 'arm.' The Moessbauer spectrometer was deployed within the trench to investigate the fine-grained soil for iron-bearing minerals. The area in this image measures approximately 3 centimeters (1.2 inches) across.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill. 334.830 Section 334.830 Navigation and Navigable... REGULATIONS § 334.830 Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill. 334.830 Section 334.830 Navigation and Navigable... REGULATIONS § 334.830 Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. 334.1120 Section 334.1120 Navigation and Navigable... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. 334.1120 Section 334.1120 Navigation and Navigable... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. 334.1120 Section 334.1120 Navigation and Navigable... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. 334.1120 Section 334.1120 Navigation and Navigable... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill. 334.830 Section 334.830 Navigation and Navigable... REGULATIONS § 334.830 Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill. 334.830 Section 334.830 Navigation and Navigable... REGULATIONS § 334.830 Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. 334.1120 Section 334.1120 Navigation and Navigable... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill. 334.830 Section 334.830 Navigation and Navigable... REGULATIONS § 334.830 Lake Michigan; small-arms range adjacent to U.S. Naval Training Center, Great Lakes, Ill...
Mechanical impedance of soil crusts and water content in loamy soils
NASA Astrophysics Data System (ADS)
Josa March, Ramon; Verdú, Antoni M. C.; Mas, Maria Teresa
2013-04-01
Soil crust development affects soil water dynamics and soil aeration. Soil crusts act as mechanical barriers to fluid flow and, as their mechanical impedance increases with drying, they also become obstacles to seedling emergence. As a consequence, the emergence of seedling cohorts (sensitive seeds) might be reduced. However, this may be of interest to be used as an effective system of weed control. Soil crusting is determined by several factors: soil texture, rain intensity, sedimentation processes, etc. There are different ways to characterize the crusts. One of them is to measure their mechanical impedance (MI), which is linked to their moisture level. In this study, we measured the evolution of the mechanical impedance of crusts formed by three loamy soil types (clay loam, loam and sandy clay loam, USDA) with different soil water contents. The aim of this communication was to establish a mathematical relationship between the crust water content and its MI. A saturated soil paste was prepared and placed in PVC cylinders (50 mm diameter and 10 mm height) arranged on a plastic tray. Previously the plastic tray was sprayed with a hydrophobic liquid to prevent the adherence of samples. The samples on the plastic tray were left to air-dry under laboratory conditions until their IM was measured. To measure IM, a food texture analyzer was used. The equipment incorporates a mobile arm, a load cell to apply force and a probe. The arm moves down vertically at a constant rate and the cylindrical steel probe (4 mm diameter) penetrates the soil sample vertically at a constant rate. The equipment is provided with software to store data (time, vertical distance and force values) at a rate of up to 500 points per second. Water content in crust soil samples was determined as the loss of weight after oven-drying (105°C). From the results, an exponential regression between MI and the water content was obtained (determination coefficient very close to 1). This methodology allows the prediction of the potential mechanical behaviour of soil crusts generated during soil drying, from initial saturated soil conditions (e.g. waterlogging conditions).
Surface Energy Balance System (SEBS) Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, D. R.
2016-01-01
A Surface Energy Balance System (SEBS) has been installed collocated with each deployed Eddy Correlation Flux Measurement System (ECOR) at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, North Slope of Alaska (NSA) site, first ARM Mobile Facility (AMF1), second ARM Mobile Facility (AMF2), and third ARM Mobile Facility (AMF3) at Oliktok Point (OLI). A SEBS was also deployed with the Tropical Western Pacific (TWP) site, before it was decommissioned. Data from these sites, including the retired TWP, are available in the ARM Data Archive. The SEBS consists of upwelling and downwelling solar and infraredmore » radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.« less
In-Situ Water Vapor Probe for a Robot Arm-Mounted, Compact Water Vapor Analyzer: Preliminary Results
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Niles, Paul B.; Cabiran, Mike; Rossi, Chris; Sun, Tao
2013-01-01
This work describes the ongoing development of an instrument package for the in-situ detection and isotopic analysis of water (from ice, icy soils, and hydrated minerals) on future lunar, asteroid, or martian exploration missions. This instrument is intended to be mounted on a robotic arm and be brought to the sample, rather than necessitating expensive and complicated sample handling to bring the sample to the instrument.
Sprinkle Test by Phoenix's Robotic Arm (Movie)
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's Phoenix Mars Lander used its Robotic Arm during the mission's 15th Martian day since landing (June 9, 2008) to test a 'sprinkle' method for delivering small samples of soil to instruments on the lander deck. This sequence of four images from the spacecraft's Surface Stereo Imager covers a period of 20 minutes from beginning to end of the activity. In the single delivery of a soil sample to a Phoenix instrument prior to this test, the arm brought the scooped up soil over the instrument's opened door and turned over the scoop to release the soil. The sprinkle technique, by contrast, holds the scoop at a steady angle and vibrates the scoop by running the motorized rasp located beneath the scoop. This gently jostles some material out of the scoop to the target below. For this test, the target was near the upper end the cover of the Microscopy, Electrochemistry and Conductivity Analyzer instrument suite, or MECA. The cover is 20 centimeters (7.9 inches) across. The scoop is about 8.5 centimeters (3.3 inches) across. Based on the test's success in delivering a small quantity and fine-size particles, the Phoenix team plans to use the sprinkle method for delivering samples to MECA and to the Thermal and Evolved-Gas Analyzer, or TEGA. The next planned delivery is to MECA's Optical Microscope, via the port in the MECA cover visible at the bottom of these images. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.NASA Technical Reports Server (NTRS)
2008-01-01
The robotic arm on NASA's Phoenix Mars Lander slid a rock out of the way during the mission's 117th Martian day (Sept. 22, 2008) to gain access to soil that had been underneath the rock.The lander's Surface Stereo Imager took the two images for this stereo view later the same day, showing the rock, called 'Headless,' after the arm pushed it about 40 centimeters (16 inches) from its previous location. 'The rock ended up exactly where we intended it to,' said Matt Robinson of NASA's Jet Propulsion Laboratory, robotic arm flight software lead for the Phoenix team. The arm had enlarged the trench near Headless two days earlier in preparation for sliding the rock into the trench. The trench was dug to about 3 centimeters (1.2 inches) deep. The ground surface between the rock's prior position and the lip of the trench had a slope of about 3 degrees downward toward the trench. Headless is about the size and shape of a VHS videotape. The Phoenix science team sought to move the rock in order to study the soil and the depth to subsurface ice underneath where the rock had been. This image was taken at about 12:30 p.m., local solar time on Mars. The view is to the north northeast of the lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...
Military Training Lands Historic Context: Small Arms Ranges
2010-03-01
ER D C/ CE R L TR -1 0 -1 1 Military Training Lands Historic Context Small Arms Ranges Dan Archibald, Adam Smith, Sunny Adams, and...unlimited. ERDC/CERL TR-10-11 March 2010 Military Training Lands Historic Context Small Arms Ranges Dan Archibald, Adam Smith, Sunny Adams...context for military training lands, written to satisfy a part of Section 110 of the National Historic Preservation Act (NHPA) of 1966 as amended
Martian Soil Ready for Robotic Laboratory Analysis
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's Phoenix Mars Lander scooped up this Martian soil on the mission's 11th Martian day, or sol, after landing (June 5, 2008) as the first soil sample for delivery to the laboratory on the lander deck. The material includes a light-toned clod possibly from crusted surface of the ground, similar in appearance to clods observed near a foot of the lander. This approximately true-color view of the contents of the scoop on the Robotic Arm comes from combining separate images taken by the Robotic Arm Camera on Sol 11, using illumination by red, green and blue light-emitting diodes on the camera. The scoop loaded with this sample was poised over an open sample-delivery door of Thermal and Evolved-Gas Analyzer at the end of Sol 11, ready to be dumped into the instrument on the next sol. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.NASA Astrophysics Data System (ADS)
Quijano, Laura; Chaparro, Marcos A. E.; Marié, Débora C.; Gaspar, Leticia; Navas, Ana
2014-09-01
The main sources of magnetic minerals in soils unaffected by anthropogenic pollution are iron oxides and hydroxides derived from parent materials through soil formation processes. Soil magnetic minerals can be used as indicators of environmental factors including soil forming processes, degree of pedogenesis, weathering processes and biological activities. In this study measurements of magnetic susceptibility are used to detect the presence and the concentration of soil magnetic minerals in topsoil and bulk samples in a small cultivated field, which forms a hydrological unit that can be considered to be representative of the rainfed agroecosystems of Mediterranean mountain environments. Additional magnetic studies such as isothermal remanent magnetization (IRM), anhysteretic remanent magnetization (ARM) and thermomagnetic measurements are used to identify and characterize the magnetic mineralogy of soil minerals. The objectives were to analyse the spatial variability of the magnetic parameters to assess whether topographic factors, soil redistribution processes, and soil properties such as soil texture, organic matter and carbonate contents analysed in this study, are related to the spatial distribution pattern of magnetic properties. The medians of mass specific magnetic susceptibility at low frequency (χlf) were 36.0 and 31.1 × 10-8 m3 kg-1 in bulk and topsoil samples respectively. High correlation coefficients were found between the χlf in topsoil and bulk core samples (r = 0.951, p < 0.01). In addition, volumetric magnetic susceptibility was measured in situ in the field (κis) and values varied from 13.3 to 64.0 × 10-5 SI. High correlation coefficients were found between χlf in topsoil measured in the laboratory and volumetric magnetic susceptibility field measurements (r = 0.894, p < 0.01). The results obtained from magnetic studies such as IRM, ARM and thermomagnetic measurements show the presence of magnetite, which is the predominant magnetic carrier, and hematite. The predominance of superparamagnetic minerals in upper soil layers suggests enrichment in pedogenic minerals. The finer soil particles, the organic matter content and the magnetic susceptibility values are statistically correlated and their spatial variability is related to similar physical processes. Runoff redistributes soil components including magnetic minerals and exports fine particles out the field. This research contributed to further knowledge on the application of soil magnetic properties to derive useful information on soil processes in Mediterranean cultivated soils.
The rotate-plus-shift C-arm trajectory. Part I. Complete data with less than 180° rotation.
Ritschl, Ludwig; Kuntz, Jan; Fleischmann, Christof; Kachelrieß, Marc
2016-05-01
In the last decade, C-arm-based cone-beam CT became a widely used modality for intraoperative imaging. Typically a C-arm CT scan is performed using a circular or elliptical trajectory around a region of interest. Therefore, an angular range of at least 180° plus fan angle must be covered to ensure a completely sampled data set. However, mobile C-arms designed with a focus on classical 2D applications like fluoroscopy may be limited to a mechanical rotation range of less than 180° to improve handling and usability. The method proposed in this paper allows for the acquisition of a fully sampled data set with a system limited to a mechanical rotation range of at least 180° minus fan angle using a new trajectory design. This enables CT like 3D imaging with a wide range of C-arm devices which are mainly designed for 2D imaging. The proposed trajectory extends the mechanical rotation range of the C-arm system with two additional linear shifts. Due to the divergent character of the fan-beam geometry, these two shifts lead to an additional angular range of half of the fan angle. Combining one shift at the beginning of the scan followed by a rotation and a second shift, the resulting rotate-plus-shift trajectory enables the acquisition of a completely sampled data set using only 180° minus fan angle of rotation. The shifts can be performed using, e.g., the two orthogonal positioning axes of a fully motorized C-arm system. The trajectory was evaluated in phantom and cadaver examinations using two prototype C-arm systems. The proposed trajectory leads to reconstructions without limited angle artifacts. Compared to the limited angle reconstructions of 180° minus fan angle, image quality increased dramatically. Details in the rotate-plus-shift reconstructions were clearly depicted, whereas they are dominated by artifacts in the limited angle scan. The method proposed here employs 3D imaging using C-arms with less than 180° rotation range adding full 3D functionality to a C-arm device retaining both handling comfort and the usability of 2D imaging. This method has a clear potential for clinical use especially to meet the increasing demand for an intraoperative 3D imaging.
The rotate-plus-shift C-arm trajectory. Part I. Complete data with less than 180° rotation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritschl, Ludwig; Fleischmann, Christof; Kuntz, Jan, E-mail: j.kuntz@dkfz.de
Purpose: In the last decade, C-arm-based cone-beam CT became a widely used modality for intraoperative imaging. Typically a C-arm CT scan is performed using a circular or elliptical trajectory around a region of interest. Therefore, an angular range of at least 180° plus fan angle must be covered to ensure a completely sampled data set. However, mobile C-arms designed with a focus on classical 2D applications like fluoroscopy may be limited to a mechanical rotation range of less than 180° to improve handling and usability. The method proposed in this paper allows for the acquisition of a fully sampled datamore » set with a system limited to a mechanical rotation range of at least 180° minus fan angle using a new trajectory design. This enables CT like 3D imaging with a wide range of C-arm devices which are mainly designed for 2D imaging. Methods: The proposed trajectory extends the mechanical rotation range of the C-arm system with two additional linear shifts. Due to the divergent character of the fan-beam geometry, these two shifts lead to an additional angular range of half of the fan angle. Combining one shift at the beginning of the scan followed by a rotation and a second shift, the resulting rotate-plus-shift trajectory enables the acquisition of a completely sampled data set using only 180° minus fan angle of rotation. The shifts can be performed using, e.g., the two orthogonal positioning axes of a fully motorized C-arm system. The trajectory was evaluated in phantom and cadaver examinations using two prototype C-arm systems. Results: The proposed trajectory leads to reconstructions without limited angle artifacts. Compared to the limited angle reconstructions of 180° minus fan angle, image quality increased dramatically. Details in the rotate-plus-shift reconstructions were clearly depicted, whereas they are dominated by artifacts in the limited angle scan. Conclusions: The method proposed here employs 3D imaging using C-arms with less than 180° rotation range adding full 3D functionality to a C-arm device retaining both handling comfort and the usability of 2D imaging. This method has a clear potential for clinical use especially to meet the increasing demand for an intraoperative 3D imaging.« less
Atmospheric release model for the E-area low-level waste facility: Updates and modifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The atmospheric release model (ARM) utilizes GoldSim® Monte Carlo simulation software (GTG, 2017) to evaluate the flux of gaseous radionuclides as they volatilize from E-Area disposal facility waste zones, diffuse into the air-filled soil pores surrounding the waste, and emanate at the land surface. This report documents the updates and modifications to the ARM for the next planned E-Area PA considering recommendations from the 2015 PA strategic planning team outlined by Butcher and Phifer.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...″, longitude 82°33′02.44″; and thence to a point on the shore line of MacDill Air Force Base at latitude 27°50...
Spirit Robotic Stretch on Sol 2052
2009-10-19
NASA Mars Exploration Rover Spirit recorded this forward view of its arm and surroundings; bright soil in the left half of the image is loose, fluffy material churned by the rover left-front wheel as Spirit.
Kinematics of preferred and non-preferred handballing in Australian football.
Parrington, Lucy; Ball, Kevin; MacMahon, Clare
2015-01-01
In Australian football (AF), handballing proficiently with both the preferred and non-preferred arm is important at elite levels; yet, little information is available for handballing on the non-preferred arm. This study compared preferred and non-preferred arm handballing techniques. Optotrak Certus (100 Hz) collected three-dimensional data for 19 elite AF players performing handballs with the preferred and non-preferred arms. Position data, range of motion (ROM), and linear and angular velocities were collected and compared between preferred and non-preferred arms using dependent t-tests. The preferred arm exhibited significantly greater forearm and humerus ROM and angular velocity and significantly greater shoulder angular velocity at ball contact compared to the non-preferred arm. In addition, the preferred arm produced a significantly greater range of lateral bend and maximum lower-trunk speed, maximum strike-side hip speed and hand speed at ball contact than the non-preferred arm. The non-preferred arm exhibited a significantly greater shoulder angle and lower- and upper-trunk orientation angle, but significantly lower support-elbow angle, trunk ROM, and trunk rotation velocity compared to the preferred arm. Reduced ROM and angular velocities found in non-preferred arm handballs indicates a reduction in the degrees of freedom and a less developed skill. Findings have implication for development of handballing on the non-preferred arm.
Rock Moved by Mars Lander Arm, Stereo View
NASA Technical Reports Server (NTRS)
2008-01-01
The robotic arm on NASA's Phoenix Mars Lander slid a rock out of the way during the mission's 117th Martian day (Sept. 22, 2008) to gain access to soil that had been underneath the rock.The lander's Surface Stereo Imager took the two images for this stereo view later the same day, showing the rock, called 'Headless,' after the arm pushed it about 40 centimeters (16 inches) from its previous location. 'The rock ended up exactly where we intended it to,' said Matt Robinson of NASA's Jet Propulsion Laboratory, robotic arm flight software lead for the Phoenix team. The arm had enlarged the trench near Headless two days earlier in preparation for sliding the rock into the trench. The trench was dug to about 3 centimeters (1.2 inches) deep. The ground surface between the rock's prior position and the lip of the trench had a slope of about 3 degrees downward toward the trench. Headless is about the size and shape of a VHS videotape. The Phoenix science team sought to move the rock in order to study the soil and the depth to subsurface ice underneath where the rock had been. This left-eye and right-eye images for this stereo view were taken at about 12:30 p.m., local solar time on Mars. The scene appears three-dimensional when seen through blue-red glasses.The view is to the north northeast of the lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.Muscle short-range stiffness can be used to estimate the endpoint stiffness of the human arm
Hu, Xiao; Murray, Wendy M.
2011-01-01
The mechanical properties of the human arm are regulated to maintain stability across many tasks. The static mechanics of the arm can be characterized by estimates of endpoint stiffness, considered especially relevant for the maintenance of posture. At a fixed posture, endpoint stiffness can be regulated by changes in muscle activation, but which activation-dependent muscle properties contribute to this global measure of limb mechanics remains unclear. We evaluated the role of muscle properties in the regulation of endpoint stiffness by incorporating scalable models of muscle stiffness into a three-dimensional musculoskeletal model of the human arm. Two classes of muscle models were tested: one characterizing short-range stiffness and two estimating stiffness from the slope of the force-length curve. All models were compared with previously collected experimental data describing how endpoint stiffness varies with changes in voluntary force. Importantly, muscle properties were not fit to the experimental data but scaled only by the geometry of individual muscles in the model. We found that force-dependent variations in endpoint stiffness were accurately described by the short-range stiffness of active arm muscles. Over the wide range of evaluated arm postures and voluntary forces, the musculoskeletal model incorporating short-range stiffness accounted for 98 ± 2, 91 ± 4, and 82 ± 12% of the variance in stiffness orientation, shape, and area, respectively, across all simulated subjects. In contrast, estimates based on muscle force-length curves were less accurate in all measures, especially stiffness area. These results suggest that muscle short-range stiffness is a major contributor to endpoint stiffness of the human arm. Furthermore, the developed model provides an important tool for assessing how the nervous system may regulate endpoint stiffness via changes in muscle activation. PMID:21289133
Sample Analysis at Mars for Curiosity
2010-10-08
The Sample Analysis at Mars SAM instrument will analyze samples of Martian rock and soil collected by the rover arm to assess carbon chemistry through a search for organic compounds, and to look for clues about planetary change.
'Rosy Red' Soil in Phoenix's Scoop
NASA Technical Reports Server (NTRS)
2008-01-01
This image shows fine-grained material inside the Robotic Arm scoop as seen by the Robotic Arm Camera (RAC) aboard NASA's Phoenix Mars Lander on June 25, 2008, the 30th Martian day, or sol, of the mission. The image shows fine, fluffy, red soil particles collected in a sample called 'Rosy Red.' The sample was dug from the trench named 'Snow White' in the area called 'Wonderland.' Some of the Rosy Red sample was delivered to Phoenix's Optical Microscope and Wet Chemistry Laboratory for analysis. The RAC provides its own illumination, so the color seen in RAC images is color as seen on Earth, not color as it would appear on Mars. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Monyeki, Kotsedi Daniel; Sekhotha, Michael Matome
2016-05-01
Height is required for the assessment of growth and nutritional status, as well as for predictions and standardization of physiological parameters. To determine whether arm span, mid-upper arm and waist circumferences and sum of four skinfolds can be used to predict height, the relationships between these anthropometric variables were assessed among Ellisras rural children aged 8-18 years. The following parameters were measured according to the International Society for the Advancement of Kinathropometry: height, arm span, mid-upper arm circumference, waist circumference and four skinfolds (suprailiac, subscapular, triceps and biceps). Associations between the variables were assessed using Pearson correlation coefficients and linear regression models. Ellisras Longitudinal Study (ELS), Limpopo Province, South Africa. Boys (n 911) and girls (n 858) aged 8-18 years. Mean height was higher than arm span, with differences ranging from 4 cm to 11·5 cm between boys and girls. The correlation between height and arm span was high (ranging from 0·74 to 0·91) with P<0·001. The correlation between height and mid-upper arm circumference, waist circumference and sum of four skinfolds was low (ranging from 0·15 to 0·47) with P<0·00 among girls in the 15-18 years age group. Arm span was found to be a good predictor of height. The sum of four skinfolds was significantly associated with height in the older age groups for girls, while waist circumference showed a negative significant association in the same groups.
Addo, O Yaw; Himes, John H; Zemel, Babette S
2017-01-01
Midupper arm circumference (MUAC) has long been used in anthropometric assessments of nutritional status in field settings, especially in emergency situations, but percentile ranges for healthy, well-nourished children are currently unavailable. We developed reference curves for MUAC and derived measures of arm muscle area (AMA) and arm fat area (AFA) on the basis of the population used in the current CDC body mass index growth charts. We analyzed cross-sectional MUAC and triceps (triceps skinfold thickness) data from 32,952 US children aged 1-20 y. Generalized additive models for location, scale, and shape were used to calculate semiparametric smoothed percentiles and L, M, and S coefficients needed for z-score estimation by age and sex. Equations were developed with the use of the height-for-age z score (HAZ) to adjust for the associations of stature with upper arm measures. MUAC increased with age steadily throughout the growing period. For children <5 y old, lower percentile ranges varied markedly across age and sex such that the single cutoff (<11.5 or 12.5 cm) for field screening of acute malnutrition did not track along the same percentile. AFA and AMA growth patterns exhibited sex-specific trends including multiple distinct age-related inflections that were more pronounced in males for AFA-for-age than in females. HAZ and age were substantially and independently related with all arm measures. The new reference percentile ranges for midupper arm measures for healthy children provide a useful nutritional assessment tool in a wide variety of settings. Height status (HAZ) has complex independent associations with arm measures irrespective of the distributional ranking by age and sex. Prediction equations that account for these effects further extend the practical use of the new curves. © 2017 American Society for Nutrition.
Jordanova, N; Petrovský, E; Kapicka, A; Jordanova, D; Petrov, P
2017-04-01
Copper ore mining and processing are among the most harmful anthropogenic influences for the environment and they are a subject of international and national law regulations. Recultivation of areas influenced by mining and processing industry is commonly applied and monitored in order to restore as much as possible the natural environment. In this study, environmental magnetic methods are applied in order to assess the degree of soil restoration in terms of soil development, after remediation of waste dump from Cu-processing plant. Soils developed under birch forest stands of different age (5, 15, and 25 years) as well as raw waste material were sampled along depth down to 20-30 cm. Variations in magnetic parameters and ratios obtained (magnetic susceptibility, frequency-dependent magnetic susceptibility, anhysteretic remanence (ARM), isothermal remanence (IRM), ARM/IRM 100mT ) suggest the presence of magnetic enhancement in the upper 0-15 cm, the thickness of this layer varying depending on the age of the forest stand. Magnetic mineral responsible for this enhancement is of magnetite type, while waste material contains a large amount of hematite, as evidenced by coercivity analysis of IRM acquisition curves and thermal demagnetization of composite IRM. Magnetic grain-sized proxy parameters suggest that magnetite particles are coarser, magnetically stable, while no or minor amount of superparamagnetic grains were detected at room temperature. A well-defined linear regression between the topsoil magnetic susceptibility and the approximate age of the forest stand provides an indication that the magnetic enhancement is of pedogenic origin. It is concluded that the observed magnetic enhancement of recultivated soils studied is linked to a combined effect of pedogenic contribution and possible additions of industrial ashes as a liming agent for soil restoration.
Fetal tele-echography using a robotic arm and a satellite link.
Arbeille, P; Ruiz, J; Herve, P; Chevillot, M; Poisson, G; Perrotin, F
2005-09-01
To design a method for conducting fetal ultrasound examinations in isolated hospital sites using a dedicated remotely controlled robotic arm (tele-echography). Tele-echography was performed from our hospital (expert center) on 29 pregnant women in an isolated maternity hospital (patient site) 1700 km away, and findings were compared with those of conventional ultrasound examinations. At the patient site, a robotic arm holding the real ultrasound probe was placed on the patient's abdomen by an assistant with no experience of performing ultrasound. The robotic arm, remotely controlled with a fictive (expert) probe, reproduced the exact movements (tilting and rotating) of the expert hand on the real ultrasound probe. In 93.1% of the cases, all biometric parameters, placental location and amniotic fluid volume, were correctly assessed using the teleoperated robotic arm. In two cases, femur length could not be correctly measured. The mean duration of fetal ultrasound examination was 14 min (range, 10-18) and 18 min (range, 13-23) by conventional and tele-echography methods, respectively. The mean number of times the robotic arm was repositioned on the patient's abdomen was seven (range, 5-9). Tele-echography using a robotic arm provides the main information needed to assess fetal growth and the intrauterine environment within a limited period of time.
Siu, Aaron; Schinkel-Ivy, Alison; Drake, Janessa Dm
2016-10-01
To understand the activation patterns of the trunk musculature, it is also important to consider the implications of adjacent structures such as the upper limbs, and the muscles that act to move the arms. This study investigated the effects of arm positions on the activation patterns and co-activation of the trunk musculature and muscles that move the arm during trunk range-of-motion movements (maximum trunk axial twist, flexion, and lateral bend). Fifteen males and fifteen females, asymptomatic for low back pain, performed maximum trunk range-of-motion movements, with three arm positions for axial twist (loose, crossed, abducted) and two positions for flexion and lateral bend (loose, crossed). Electromyographical data were collected for eight muscles bilaterally, and activation signals were cross-correlated between trunk muscles and the muscles that move the arms (upper trapezius, latissimus dorsi). Results revealed consistently greater muscle co-activation (higher cross-correlation coefficients) between the trunk muscles and upper trapezius for the abducted arm position during maximum trunk axial twist, while results for the latissimus dorsi-trunk pairings were more dependent on the specific trunk muscles (either abdominal or back) and latissimus dorsi muscle (either right or left side), as well as the range-of-motion movement. The findings of this study contribute to the understanding of interactions between the upper limbs and trunk, and highlight the influence of arm positions on the trunk musculature. In addition, the comparison of the present results to those of individuals with back or shoulder conditions may ultimately aid in elucidating underlying mechanisms or contributing factors to those conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Thomas J.; Klein, Stephen A.; Ma, Hsi -Yen
Several independent measurements of warm-season soil moisture and surface atmospheric variables recorded at the ARM Southern Great Plains (SGP) research facility are used to estimate the terrestrial component of land-atmosphere coupling (LAC) strength and its regional uncertainty. The observations reveal substantial variation in coupling strength, as estimated from three soil moisture measurements at a single site, as well as across six other sites having varied soil and land cover types. The observational estimates then serve as references for evaluating SGP terrestrial coupling strength in the Community Atmospheric Model coupled to the Community Land Model. These coupled model components are operatedmore » in both a free-running mode and in a controlled configuration, where the atmospheric and land states are reinitialized daily, so that they do not drift very far from observations. Although the controlled simulation deviates less from the observed surface climate than its free-running counterpart, the terrestrial LAC in both configurations is much stronger and displays less spatial variability than the SGP observational estimates. Preliminary investigation of vegetation leaf area index (LAI) substituted for soil moisture suggests that the overly strong coupling between model soil moisture and surface atmospheric variables is associated with too much evaporation from bare ground and too little from the vegetation cover. Lastly, these results imply that model surface characteristics such as LAI, as well as the physical parameterizations involved in the coupling of the land and atmospheric components, are likely to be important sources of the problematical LAC behaviors.« less
Phillips, Thomas J.; Klein, Stephen A.; Ma, Hsi -Yen; ...
2017-10-13
Several independent measurements of warm-season soil moisture and surface atmospheric variables recorded at the ARM Southern Great Plains (SGP) research facility are used to estimate the terrestrial component of land-atmosphere coupling (LAC) strength and its regional uncertainty. The observations reveal substantial variation in coupling strength, as estimated from three soil moisture measurements at a single site, as well as across six other sites having varied soil and land cover types. The observational estimates then serve as references for evaluating SGP terrestrial coupling strength in the Community Atmospheric Model coupled to the Community Land Model. These coupled model components are operatedmore » in both a free-running mode and in a controlled configuration, where the atmospheric and land states are reinitialized daily, so that they do not drift very far from observations. Although the controlled simulation deviates less from the observed surface climate than its free-running counterpart, the terrestrial LAC in both configurations is much stronger and displays less spatial variability than the SGP observational estimates. Preliminary investigation of vegetation leaf area index (LAI) substituted for soil moisture suggests that the overly strong coupling between model soil moisture and surface atmospheric variables is associated with too much evaporation from bare ground and too little from the vegetation cover. Lastly, these results imply that model surface characteristics such as LAI, as well as the physical parameterizations involved in the coupling of the land and atmospheric components, are likely to be important sources of the problematical LAC behaviors.« less
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Chavez Dagostino, Miguel; Arellanes, Adan O.; Aguirre Lopez, Arturo
2016-09-01
We develop a multi-band spectrometer with a few spatially parallel optical arms for the combined processing of their data flow. Such multi-band capability has various applications in astrophysical scenarios at different scales: from objects in the distant universe to planetary atmospheres in the Solar system. Each optical arm exhibits original performances to provide parallel multi-band observations with different scales simultaneously. Similar possibility is based on designing each optical arm individually via exploiting different materials for acousto-optical cells operating within various regimes, frequency ranges and light wavelengths from independent light sources. Individual beam shapers provide both the needed incident light polarization and the required apodization to increase the dynamic range of a system. After parallel acousto-optical processing, data flows are united by the joint CCD matrix on the stage of the combined electronic data processing. At the moment, the prototype combines still three bands, i.e. includes three spatial optical arms. The first low-frequency arm operates at the central frequencies 60-80 MHz with frequency bandwidth 40 MHz. The second arm is oriented to middle-frequencies 350-500 MHz with frequency bandwidth 200-300 MHz. The third arm is intended for ultra-high-frequency radio-wave signals about 1.0-1.5 GHz with frequency bandwidth <300 MHz. To-day, this spectrometer has the following preliminary performances. The first arm exhibits frequency resolution 20 KHz; while the second and third arms give the resolution 150-200 KHz. The numbers of resolvable spots are 1500- 2000 depending on the regime of operation. The fourth optical arm at the frequency range 3.5 GHz is currently under construction.
Normal values for segmental bioimpedance spectroscopy in pediatric patients.
Avila, Maria Laura; Ward, Leigh C; Feldman, Brian M; Montoya, Madeline I; Stinson, Jennifer; Kiss, Alex; Brandão, Leonardo R
2015-01-01
Localized limb edema is a clinically relevant sign in diseases such as post-thrombotic syndrome and lymphedema. Quantitative evaluation of localized edema in children is mainly done by measuring the absolute difference in limb circumference, which includes fat and fat-free mass. Bioimpedance spectroscopy (BIS) provides information on the fluid volume of a body segment. Our objective was to determine normal ranges for segmental (arm and leg) BIS measurements in healthy children. Additionally, we determined the normal ranges for the difference in arm and ankle circumference and explored the influence of handedness and the correlation between techniques. Healthy children aged 1-18 years were recruited. The ratio of extracellular fluid content between contralateral limbs (estimated as the inter-arm and inter-leg extracellular impedance ratio), and the ratio of extracellular to intracellular fluid content for each limb (estimated as the intracellular to extracellular impedance ratio) were determined with a bioimpedance spectrometer. Arm and ankle circumference was determined with a Gulick II tape. We recruited 223 healthy children (48 infants, 54 preschoolers, 66 school-aged children, and 55 teenagers). Normal values for arm and leg BIS measurements, and for the difference in arm and ankle circumference were estimated for each age category. No influence of handedness was found. We found a statistically significant correlation between extracellular impedance ratio and circumference difference for arms among teenagers. We determined normal BIS ranges for arms and legs and for the difference in circumference between arms and between ankles in children. There was no statistically significant correlation between extracellular impedance ratio and difference in circumference, except in the case of arms in adolescents. This may indicate that limb circumference measures quantities other than fluid, challenging the adequacy of this technique to determine the presence of localized edema in most age groups.
Mineralogy and Elemental Composition of Wind Drift Soil at Rocknest, Gale Crater
NASA Technical Reports Server (NTRS)
Blake, D. F.; Bish, D. L.; Morris, R. V.; Downs, R. T.; Trieman, A. H.; Morrison, S. M.; Chipera, S. J.; Ming, D. W.; Yen, A. S.; Vaniman, D. T.;
2013-01-01
The Mars Science Laboratory rover Curiosity has been exploring Mars since August 5, 2012, conducting engineering and first-time activities with its mobility system, arm, sample acquisition and processing system (SA/SPaH-CHIMRA) and science instruments. Curiosity spent 54 sols at a location named "Rocknest," collecting and processing five scoops of loose, unconsolidated materials ("soil") acquired from an aeolian bedform (Fig. 1). The Chemistry and Mineralogy (CheMin) instrument analyzed portions of scoops 3, 4, and 5, to obtain the first quantitative mineralogical analysis of Mars soil, and to provide context for Sample Analysis at Mars (SAM) measurements of volatiles, isotopes and possible organic materials.
Kobayashi, Kazuyoshi; Ando, Kei; Ito, Kenyu; Tsushima, Mikito; Morozumi, Masayoshi; Tanaka, Satoshi; Machino, Masaaki; Ota, Kyotaro; Ishiguro, Naoki; Imagama, Shiro
2018-05-01
The O-arm ® navigation system allows intraoperative CT imaging that can facilitate highly accurate instrumentation surgery, but radiation exposure is higher than with X-ray radiography. This is a particular concern in pediatric surgery. The purpose of this study is to examine intraoperative radiation exposure in pediatric spinal scoliosis surgery using O-arm. The subjects were 38 consecutive patients (mean age 12.9 years, range 10-17) with scoliosis who underwent spinal surgery with posterior instrumentation using O-arm. The mean number of fused vertebral levels was 11.0 (6-15). O-arm was performed before and after screw insertion, using an original protocol for the cervical, thoracic, and lumbar spine doses. The average scanning range was 6.9 (5-9) intervertebral levels per scan, with 2-7 scans per patient (mean 4.0 scans). Using O-arm, the dose per scan was 92.5 (44-130) mGy, and the mean total dose was 401 (170-826) mGy. This dose was 80.2% of the mean preoperative CT dose of 460 (231-736) mGy (P = 0.11). The total exposure dose and number of scans using intraoperative O-arm correlated strongly and significantly with the number of fused levels; however, there was no correlation with the patient's height. As the fused range became wider, several scans were required for O-arm, and the total radiation exposure became roughly the same as that in preoperative CT. Use of O-arm in our original protocol can contribute to reduction in radiation exposure.
Worm Grunting, Fiddling, and Charming—Humans Unknowingly Mimic a Predator to Harvest Bait
Catania, Kenneth C.
2008-01-01
Background For generations many families in and around Florida's Apalachicola National Forest have supported themselves by collecting the large endemic earthworms (Diplocardia mississippiensis). This is accomplished by vibrating a wooden stake driven into the soil, a practice called “worm grunting”. In response to the vibrations, worms emerge to the surface where thousands can be gathered in a few hours. Why do these earthworms suddenly exit their burrows in response to vibrations, exposing themselves to predation? Principal Findings Here it is shown that a population of eastern American moles (Scalopus aquaticus) inhabits the area where worms are collected and that earthworms have a pronounced escape response from moles consisting of rapidly exiting their burrows to flee across the soil surface. Recordings of vibrations generated by bait collectors and moles suggest that “worm grunters” unknowingly mimic digging moles. An alternative possibility, that worms interpret vibrations as rain and surface to avoid drowning is not supported. Conclusions Previous investigations have revealed that both wood turtles and herring gulls vibrate the ground to elicit earthworm escapes, indicating that a range of predators may exploit the predator-prey relationship between earthworms and moles. In addition to revealing a novel escape response that may be widespread among soil fauna, the results show that humans have played the role of “rare predators” in exploiting the consequences of a sensory arms race. PMID:18852902
Palatini, Paolo; Fania, Claudio; Gasparotti, Federica
2018-04-01
The aim of this study was to determine the accuracy of the WatchBP Office ABI monitor for office blood pressure measurement over a wide range of arm circumferences using the ANSI/AAMI/ISO 81060-2:2013 protocol. The device accuracy was tested in 88 participants whose mean±SD age was 54.5±17.6 years, whose arm circumference was 30.6±8.3 cm (range: 15-46 cm), and whose entry blood pressure (BP) was 138.3±23.4 mmHg for systolic and 83.7±14.6 mmHg for diastolic BP. Four cuffs (small, standard, large, and extra-large) suitable for arm circumferences ranging from 14.0 to 52.0 cm were used. The mean device-observer difference in the 264 separate BP data pairs was 0.7±3.8 mmHg for systolic BP and was 0.0±3.7 mmHg for diastolic BP. These data were in agreement with criterion 1 of the ANSI/AAMI/ISO 81060-2:2013 standard requirements (≤5±8 mmHg). Moreover, criterion 2 was satisfied, the mean±SD device-observer difference of the 88 participants being 0.7±3.1 and 0.0±3.2 mmHg, respectively, for systolic and diastolic BP. Good agreement between observer and device was present across the whole range of arm circumferences. These data show that the Microlife WatchBP Office ABI monitor satisfied the ANSI/AAMI/ISO 81060-2:2013 standard requirements across a wide range of arm sizes.
Curiosity Uses X-ray Instrument Data for Proximity Placement
2013-09-23
NASA Mars rover Curiosity used a new technique, with added autonomy for the rover, in placement of the tool-bearing turret on its robotic arm. The technique is used to assess how close the instrument is to a soil or rock surface.
Swiss Armed Forces Conscription and Militia System: Must They Change?
2013-12-13
anthropogenic disasters, we list industrial accidents of the Chernobyl type (radioactive leaks) or of the...a nuclear accident, with a damage scale comparable to Chernobyl , happening on Helvetic soil or close by, or the direct or indirect risk given by
van Cingel, Robert; Habets, Bas; Willemsen, Linn; Staal, Bart
2018-03-01
To compare glenohumeral range of motion and shoulder rotator muscle strength in healthy female junior elite handball players and controls. Cross-sectional case-control study. Sports medical center. Forty elite female handball players and 30 controls active in nonoverhead sports participated in this study. Passive external rotator (ER), internal rotator (IR), and total range of motion (TROM) of the dominant and nondominant arm were examined with a goniometer. An isokinetic dynamometer was used to evaluate concentric and eccentric rotator muscle strength at 60 and 120 degrees/s with dynamic control ratio (DCR = ERecc:IRcon) as the main outcome parameter. Except for the ER range of motion in the nondominant arm, no significant differences were found between groups for IR, ER of the dominant arm, and the TROM. Within the handball group, the side-to-side difference for IR of the dominant arm was -1.4 degrees. The ER and the TROM of the dominant arm were significantly larger, 6.3 and 4.9 degrees, respectively. For both groups, the DCR values were above 1 and no significant differences were found between the dominant and nondominant arm. The DCR values in the handball group were significantly lower than in the control group. Based on the adopted definitions for muscle imbalance, glenohumeral internal range of motion deficit and TROM deficit our elite female handball players seem not at risk for shoulder injuries. Prospective studies are needed to support the belief that a DCR below 1 places the shoulder at risk for injury.
Morbidity after conventional dissection of axillary lymph nodes in breast cancer patients
2014-01-01
Background Conventional axillary lymph node dissection (ALND) has recently become less radical. The treatment morbidity effects of reduced ALND aggressiveness are unknown. This article investigates the prevalence of the main complications of ALND: lymphedema, range-of-motion restriction, and arm paresthesia and pain. Methods This cross-sectional study included 200 women with invasive breast cancer who underwent breast-conserving surgery (82.5%, n = 165) or mastectomy (17.5%, n = 35) with ALND from 2007 to 2011. Arm perimetry was used to assess lymphedema, defined as a difference >2 cm in the upper arm circumference between the nonsurgical and surgical arms. Range-of-motion restriction was assessed by evaluating the degree of arm abduction. Paresthesia was measured in the inner and proximal arm regions. Arm pain was assessed by directly questioning the patients and defined as either present or absent. Results The average (±SD) time between ALND and morbidity evaluation was 35 ± 18 months (range, 7-60 months). The average dissected lymph node number per patient was 14 ± 4 (range, 6-30 lymph nodes). Only 3.5% (n = 7) of the patients presented with lymphedema. Single-incision approaches to breast tumor and ALND (P = 0.04) and the presence of a postoperative seroma (P = 0.02) were associated with lymphedema in univariate analysis. Paresthesia was the most frequent side effect observed (53% of patients, n = 106). This complication was associated with increased age (P < 0.0001) and a larger dissected lymph node number (P = 0.01) in univariate and multivariate analysis. Additionally, 24% (n = 48) of patients had noticeable limited arm abduction. Among the patients, 27.5% (n = 55) experienced sporadic arm pain corresponding to the surgically treated armpit. In multivariate analysis, the pain risk was 1.9-fold higher in patients who underwent ALND corresponding to their dominant arm (95% CI, 1.0-3.7, P = 0.04). Conclusion Conventional ALND in breast cancer patients can result in unwanted complications. However, the current lymphedema prevalence is lower than that of the other analyzed side effects. PMID:24670000
Understanding the conventional arms trade
NASA Astrophysics Data System (ADS)
Stohl, Rachel
2017-11-01
The global conventional arms trade is worth tens of billions of dollars every year and is engaged in by every country in the world. Yet, it is often difficult to control the legal trade in conventional arms and there is a thriving illicit market, willing to arm unscrupulous regimes and nefarious non-state actors. This chapter examines the international conventional arms trade, the range of tools that have been used to control it, and challenges to these international regimes.
Surface Energy Balance System (SEBS) Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, DR
2011-02-14
A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system at the Southern Great Plains (SGP), North Slope of Alaska (NSA), Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.
Clausen, J L; Georgian, T; Gardner, K H; Douglas, T A
2018-01-01
This study compares conventional grab sampling to incremental sampling methodology (ISM) to characterize metal contamination at a military small-arms-range. Grab sample results had large variances, positively skewed non-normal distributions, extreme outliers, and poor agreement between duplicate samples even when samples were co-located within tens of centimeters of each other. The extreme outliers strongly influenced the grab sample means for the primary contaminants lead (Pb) and antinomy (Sb). In contrast, median and mean metal concentrations were similar for the ISM samples. ISM significantly reduced measurement uncertainty of estimates of the mean, increasing data quality (e.g., for environmental risk assessments) with fewer samples (e.g., decreasing total project costs). Based on Monte Carlo resampling simulations, grab sampling resulted in highly variable means and upper confidence limits of the mean relative to ISM.
Revamping of entisol soil physical characteristics with compost treatment
NASA Astrophysics Data System (ADS)
Sumono; Loka, S. P.; Nasution, D. L. S.
2018-02-01
Physical characteristic of Entisol soil is an important factor for the growth of plant. The aim of this research was to know the effect of compost application on physical characteristics of Entisol soil. The research method used was experimental method with 6 (six) treatments and 3 replications of which K1 = 10 kg Entisol soil without compost, K2 = 9 Kg Entisol soil with 1 kg compost, K3 = 8 kg Entisol soil with 2 kg compost, K4 = 7 kg Entisol soilwith3 kg compost, K5 = 6 kg Entisol soil with 4 kg compost and K6 = 5 kg Entisol soil with 5 kg compost. The observed parameters were soil texture, soil organic matter, soil thickness, porosity, soil pore size, soil permeability and water availability. The results showed that the Entisol soil texture was loamy sand texture, the value of soil organic matter ranged from 0.74% to 4.69%, soil thickness ranged from 13.83 to 20.16 cm, porosity ranged from16% to 37%, soil pore size ranged from 2.859 to 5.493 µm, permeability ranged from 1.24 to 5.64 cm/hour and water availability ranged from 6.67% to 9.12% by each treatment.
NASA Technical Reports Server (NTRS)
Hoffman, John H.; Hedgecock, Jud; Nienaber, Terry; Cooper, Bonnie; Allen, Carlton; Ming, Doug
2000-01-01
The Regolith Evolved Gas Analyzer (REGA) is a high-temperature furnace and mass spectrometer instrument for determining the mineralogical composition and reactivity of soil samples. REGA provides key mineralogical and reactivity data that is needed to understand the soil chemistry of an asteroid, which then aids in determining in-situ which materials should be selected for return to earth. REGA is capable of conducting a number of direct soil measurements that are unique to this instrument. These experimental measurements include: (1) Mass spectrum analysis of evolved gases from soil samples as they are heated from ambient temperature to 900 C; and (2) Identification of liberated chemicals, e.g., water, oxygen, sulfur, chlorine, and fluorine. REGA would be placed on the surface of a near earth asteroid. It is an autonomous instrument that is controlled from earth but does the analysis of regolith materials automatically. The REGA instrument consists of four primary components: (1) a flight-proven mass spectrometer, (2) a high-temperature furnace, (3) a soil handling system, and (4) a microcontroller. An external arm containing a scoop or drill gathers regolith samples. A sample is placed in the inlet orifice where the finest-grained particles are sifted into a metering volume and subsequently moved into a crucible. A movable arm then places the crucible in the furnace. The furnace is closed, thereby sealing the inner volume to collect the evolved gases for analysis. Owing to the very low g forces on an asteroid compared to Mars or the moon, the sample must be moved from inlet to crucible by mechanical means rather than by gravity. As the soil sample is heated through a programmed pattern, the gases evolved at each temperature are passed through a transfer tube to the mass spectrometer for analysis and identification. Return data from the instrument will lead to new insights and discoveries including: (1) Identification of the molecular masses of all of the gases liberated from heated soil samples; (2) Identification of the asteroid soil mineralogy to aid in the selection process for returned samples; (3) Existence of oxygen in the asteroid soil and the potential for in-situ resource utilization (ISRU); and (4) Existence of water and other volatiles in the asteroid soil. Additional information is contained in the original extended abstract.
'Berries' on the Ground 2 (3-D)
NASA Technical Reports Server (NTRS)
2004-01-01
This is the 3-D anaglyph showing a microscopic image taken of soil featuring round, blueberry-shaped rock formations on the crater floor at Meridiani Planum, Mars. This image was taken on the 13th day of the Mars Exploration Rover Opportunity's journey, after the Moessbauer spectrometer, an instrument located on the rover's instrument deployment device, or 'arm,' was pressed down to measure the soil's iron mineralogy. Note the donut-shaped imprint of the instrument in the lower part of the image. The area in this image is approximately 3 centimeters (1.2 inches) across.
Worldwide Report, Arms Control.
1985-07-19
on measures of substantially reducing medium -range nuclear arms to agreed-upon levels on the basis of reciprocity and in strict conformity with the ...to the United States to reach agreement on the immediate discontinua- tion by the United States of the deployment of medium -range missiles in Europe... by unilaterally imposing a moratorium on the
Chandler, Mark H; DiMatteo, Laura; Hasenboehler, Erik A; Temple, Michael
2007-01-01
Background Despite considerable analysis and preventive strategies, brachial plexus injuries remain fairly common in the perioperative setting. These injuries range from brief periods of numbness or discomfort in the immediate postoperative period to, in rare cases, profound, prolonged losses of sensation and function. We present a case of an orthopedic surgery patient who suffered a brachial plexus injury while under anesthesia after trying to sit upright with his arms restrained. Case presentation After the uneventful placement of an intramedullary tibial nail, an 18 year old patient tried to sit upright with his arms restrained while still under the influence of anesthesia. In the immediate postoperative period, the patient complained of a profound loss of sensation in his left arm and an inability to flex his left elbow, suppinate his arm, or abduct and rotate his shoulder. Neurological examination and subsequent studies revealed a C5-6 brachial plexus injury. The patient underwent range of motion physical therapy and, over the next three months, regained the full function and sensation of his left arm. Conclusion Restraining arms during general anesthesia to prevent injury remains a wise practice. However, to avoid injuring the brachial plexus while the arms are restrained, extra caution must be used to prevent unexpected patient movement and to ensure gentle emergence. PMID:18271944
2016-02-01
forecasting the risk of munitions constituents (MC), such as high explosives and metals , that leave firing and training ranges and contaminate the...quality terrestrial natural infrastructure exist down- range of small arms training ranges on Department of Defense (DoD) in- stallations. Live- fire ...CERL TN-16-1 iv Illustrations Figures A-1 Initial horizontal trajectory of a tracer bullet fired at a 600 m target at the Malone 5 range on Fort
Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes
Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang
2015-04-21
A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.
Does Timing Matter? Temporal Stability of Soil-Magnetic Climate Proxies
NASA Astrophysics Data System (ADS)
Geiss, C. E.
2013-12-01
Numerous studies have shown that the rock-magnetic properties of soils can serve as valuable proxies of continental climates. Many studies average the magnetic properties of several closely spaced sites to reconstruct regional climate signals, but little is known about the temporal variability of soil-magnetic properties. We analyzed the magnetic properties of five, closely spaced (within 20 m from each other) soil profiles that were sampled over a period of five years between 2002 and 2006. The soil profiles are well-developed and display strong magnetic enhancement. According to land records, agricultural influence was minimal as the site had never been plowed and solely been used as pasture. Detailed soil descriptions and measurements of magnetic susceptibility (χ), anhysteretic and isothermal remanent magnetization (ARM, IRM), as well as coercivity parameters show that all studied profiles have very similar horizination and magnetic properties are virtually unchanged from year to year. The only differences between the soil profiles are the position and strength of redoximorphic features. These nanocrystalline iron-oxide deposits have little influence on the magnetic properties of the soils and the timing of soil sampling for magnetic analyses is not a critical factor when sampling for climatic reconstructions.
Mid-Level Soil Sample for Oven Number Seven
NASA Technical Reports Server (NTRS)
2008-01-01
Soil from a sample called Burning Coals was delivered through the doors of cell number seven (left) of the Thermal and Evolved-Gas Analyzer on NASA's Phoenix Mars Lander on Aug. 20, 2008, during the 85th Martian day, or sol, since Phoenix landed. This image from Phoenix's Robotic Arm Camera shows some of the soil on the screen beneath the doors. One of the cell's two doors is fully open, the other partially open. This soil sample comes from an intermediate depth between the ground surface and the hard, underground icy layer at the Phoenix site. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Chavez Dagostino, Miguel; Arellanes, Adan Omar; Tepichin Rodriguez, Eduardo
2017-08-01
We describe a potential prototype of modern spectrometer based on acousto-optical technique with three parallel optical arms for analysis of radio-wave signals specific to astronomical observations. Each optical arm exhibits original performances to provide parallel multi-band observations with different scales simultaneously. Similar multi-band instrument is able to realize measurements within various scenarios from planetary atmospheres to attractive objects in the distant Universe. The arrangement under development has two novelties. First, each optical arm represents an individual spectrum analyzer with its individual performances. Such an approach is conditioned by exploiting various materials for acousto-optical cells operating within various regimes, frequency ranges, and light wavelengths from independent light sources. Individually produced beam shapers give both the needed incident light polarization and the required apodization for light beam to increase the dynamic range of the system as a whole. After parallel acousto-optical processing, a few data flows from these optical arms are united by the joint CCD matrix on the stage of the combined extremely high-bit rate electronic data processing that provides the system performances as well. The other novelty consists in the usage of various materials for designing wide-aperture acousto-optical cells exhibiting the best performances within each of optical arms. Here, one can mention specifically selected cuts of tellurium dioxide, bastron, and lithium niobate, which overlap selected areas within the frequency range from 40 MHz to 2.0 GHz. Thus one yields the united versatile instrument for comprehensive studies of astronomical objects simultaneously with precise synchronization in various frequency ranges.
Hearing Protection Evaluation for the Combat Arms Earplug at Idaho National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
James Lovejoy
2007-03-01
The Idaho National Laboratory (INL) is managed by Battelle Energy Alliance, LLC (BEA) for the Department of Energy. The INL Protective Security Forces (Pro Force) are involved in training exercises that generate impulse noise by small arms fire. Force-on-force (FOF) training exercises that simulate real world scenarios require the Pro Force to engage the opposition force (OPFOR) while maintaining situational awareness through verbal communications. The Combat Arms earplug was studied to determine if it provides adequate hearing protection in accordance with the requirements of MIL-STD-1474C/D. The Combat Arms earplug uses a design that allows continuous noise through a critical orificemore » while effectively attenuating high-energy impulse noise. The earplug attenuates noise on a non linear scale, as the sound increases the attenuation increases. The INL studied the effectiveness of the Combat Arms earplug with a Bruel & Kjaer (B&K) head and torso simulator used with a selection of small arms to create impulse sound pressures. The Combat Arms earplugs were inserted into the B&K head and torso ears, and small arms were then discharged to generate the impulse noise. The INL analysis of the data indicates that the Combat Arms earplug does provide adequate protection, in accordance with MIL-STD-1474C/D, when used to protect against impulse noise generated by small arms fire using blank ammunition. Impulse noise generated by small arms fire ranged from 135–160 dB range unfiltered un-weighted. The Combat Arms earplug attenuated the sound pressure 10–25 dB depending on the impulse noise pressure. This assessment is consistent with the results of previously published studies on the Combat Arms earplug (see Section 5, “References”). Based upon these result, the INL intends to use the Combat Arms earplug for FOF training exercises.« less
In Brief: NASA's Phoenix spacecraft lands on Mars
NASA Astrophysics Data System (ADS)
Showstack, Randy; Kumar, Mohi
2008-06-01
After a 9.5-month, 679-million-kilometer flight from Florida, NASA's Phoenix spacecraft made a soft landing in Vastitas Borealis in Mars's northern polar region on 25 May. The lander, whose camera already has returned some spectacular images, is on a 3-month mission to examine the area and dig into the soil of this site-chosen for its likelihood of having frozen water near the surface-and analyze samples. In addition to a robotic arm and robotic arm camera, the lander's instruments include a surface stereo imager; thermal and evolved-gas analyzer; microscopy, electrochemistry, and conductivity analyzer; and a meteorological station that is tracking daily weather and seasonal changes.
Rasp Tool on Phoenix Robotic Arm Model
NASA Technical Reports Server (NTRS)
2008-01-01
This close-up photograph taken at the Payload Interoperability Testbed at the University of Arizona, Tucson, shows the motorized rasp protruding from the bottom of the scoop on the engineering model of NASA's Phoenix Mars Lander's Robotic Arm. The rasp will be placed against the hard Martian surface to cut into the hard material and acquire an icy soil sample for analysis by Phoenix's scientific instruments. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.A manipulator arm for zero-g simulations
NASA Technical Reports Server (NTRS)
Brodie, S. B.; Grant, C.; Lazar, J. J.
1975-01-01
A 12-ft counterbalanced Slave Manipulator Arm (SMA) was designed and fabricated to be used for resolving the questions of operational applications, capabilities, and limitations for such remote manned systems as the Payload Deployment and Retrieval Mechanism (PDRM) for the shuttle, the Free-Flying Teleoperator System, the Advanced Space Tug, and Planetary Rovers. As a developmental tool for the shuttle manipulator system (or PDRM), the SMA represents an approximate one-quarter scale working model for simulating and demonstrating payload handling, docking assistance, and satellite servicing. For the Free-Flying Teleoperator System and the Advanced Tug, the SMA provides a near full-scale developmental tool for satellite servicing, docking, and deployment/retrieval procedures, techniques, and support equipment requirements. For the Planetary Rovers, it provides an oversize developmental tool for sample handling and soil mechanics investigations. The design of the SMA was based on concepts developed for a 40-ft NASA technology arm to be used for zero-g shuttle manipulator simulations.
NASA Technical Reports Server (NTRS)
2004-01-01
This image shows the Mars Exploration Rover Spirit's view from its new location inside the shallow depression dubbed 'Laguna Hollow.' To get a better look at the soil making up the hollow, Spirit drove forward a bit, wiggled its wheels, then turned and backed up. The result - a scrape on the floor and a clod of dirt stuck on one of Spirit's wheels - told scientists that the soil is sticky and reminiscent of that observed at the airbag drag mark nicknamed 'Magic Carpet.' Spirit will further investigate this disturbed patch of soil with its robotic arm beginning today (Feb. 19, 2004). It will also dig a trench at 'Laguna Hollow' with one of its wheels. This fish-eye image was taken by the rover's hazard-avoidance camera.
Phoenix Again Carries Soil to Wet Chemistry Lab
NASA Technical Reports Server (NTRS)
2008-01-01
This image taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander shows the lander's Robotic Arm scoop positioned over the Wet Chemistry Lab Cell 1 delivery funnel on Sol 41, the 42nd Martian day after landing, or July 6, 2008, after a soil sample was delivered to the instrument. The instrument's Cell 1 is second one from the foreground of the image. The first cell, Cell 0, received a soil sample two weeks earlier. This image has been enhanced to brighten the scene. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Baldys, Stanley
2009-01-01
The U.S. Geological Survey, in cooperation with the City of Dallas Water Utilities Division, collected water-quality data from 11 sites on Lake Texoma, a reservoir on the Texas-Oklahoma border, during April 2007-September 2008. At 10 of the sites, physical properties (depth, specific conductance, pH, temperature, dissolved oxygen, and alkalinity) were measured and samples were collected for analysis of selected dissolved constituents (bromide, calcium, magnesium, potassium, sodium, carbonate, bicarbonate, chloride, and sulfate); at one site, only physical properties were measured. The primary constituent of interest was bromide. Bromate can form when ozone is used to disinfect raw water containing bromide, and bromate is a suspected human carcinogen. Chloride and sulfate were of secondary interest. Only the analytical results for bromide, chloride, sulfate, and measured specific conductance are discussed in this report. Median dissolved bromide concentrations ranged from 0.28 to 0.60 milligrams per liter. The largest median dissolved bromide concentration (0.60 milligram per liter at site 11) was from the Red River arm of Lake Texoma. Dissolved bromide concentrations generally were larger in the Red River arm of Lake Texoma than in the Washita arm of the lake. Median dissolved chloride concentrations were largest in the Red River arm of Lake Texoma at site 11 (431 milligrams per liter) and smallest at site 8 (122 milligrams per liter) in the Washita arm. At site 11 in the Red River arm, the mean and median chloride concentrations exceeded the secondary maximum contaminant level of 300 milligrams per liter for chloride established by the 'Texas Surface Water Quality Standards' for surface-water bodies designated for the public water supply use. Median dissolved sulfate concentrations ranged from 182 milligrams per liter at site 4 in the Big Mineral arm to 246 milligrams per liter at site 11 in the Red River arm. None of the mean or median sulfate concentrations exceeded the secondary maximum contaminant level of 300 milligrams per liter. Median specific conductance measurements at sites ranged from 1,120 microsiemens per centimeter at site 8 in the Washita arm to 2,100 microsiemens per centimeter in the Red River arm. The spatial distribution of specific conductance in Lake Texoma was similar to that of bromide and chloride, with larger specific conductance values in the Red River arm compared to those in the Washita arm.
A phase II study of lapatinib in recurrent/metastatic squamous cell carcinoma of the head and neck.
de Souza, Jonas A; Davis, Darren W; Zhang, Yujian; Khattri, Arun; Seiwert, Tanguy Y; Aktolga, Serdal; Wong, Stuart J; Kozloff, Mark F; Nattam, Sreenivasa; Lingen, Mark W; Kunnavakkam, Rangesh; Stenson, Kerstin M; Blair, Elizabeth A; Bozeman, Jeffrey; Dancey, Janet E; Vokes, Everett E; Cohen, Ezra E W
2012-04-15
This study sought to determine the efficacy and safety profile of lapatinib in patients with recurrent/metastatic squamous cell carcinoma of the head and neck (SCCHN). This phase II multiinstitutional study enrolled patients with recurrent/metastatic SCCHN into two cohorts: those without (arm A) and those with (arm B) before exposure to an epidermal growth factor receptor (EGFR) inhibitor. All subjects were treated with lapatinib 1,500 mg daily. Primary endpoints were response rate (arm A) and progression-free survival (PFS; arm B). The biologic effects of lapatinib on tumor growth and survival pathways were assessed in paired tumor biopsies obtained before and after therapy. Forty-five patients were enrolled, 27 in arm A and 18 in arm B. Diarrhea was the most frequent toxicity occurring in 49% of patients. Seven patients experienced related grade 3 toxicity (3 fatigue, 2 hyponatremia, 1 vomiting, and 1 diarrhea). In an intent-to-treat analysis, no complete or partial responses were observed, and stable disease was the best response observed in 41% of arm A (median duration, 50 days, range, 34-159) and 17% of arm B subjects (median, 163 days, range, 135-195). Median PFS was 52 days in both arms. Median OS was 288 (95% CI, 62-374) and 155 (95% CI, 75-242) days for arms A and B, respectively. Correlative analyses revealed an absence of EGFR inhibition in tumor tissue. Lapatinib as a single agent in recurrent/metastatic SCCHN, although well tolerated, appears to be inactive in either EGFR inhibitor naive or refractory subjects. ©2012 AACR.
Popov, I P; Jelić, S B; Krivokapić, Z V; Jezdić, S D; Pesko, P M; Micev, M T; Babić, D R
2008-01-01
To investigate the activity and toxicity of high dose (HD) infusional 5-FU in comparison to EAP regimen as first-line chemotherapy in patients with advanced gastric cancer. Histologically confirmed measurable advanced gastric cancer, age < 72 yr, ECOG performance status 0-2, no prior chemo- and radiotherapy, adequate organ functions. EAP arm: doxorubicin (40 mg/m(2)), etoposide (360 mg/m(2)), and cisplatin (80 mg/m(2)) every 28 d; HD 5-FU arm: 5-FU 2.6 g/m(2) 24 h infusion, biweekly. Sixty patients were randomized. Patient characteristics (arms EAP/HD 5-FU): Median age 57/55 yr, median PS 1/1, LAD (patients) 3/8, M1 (patients) 27/22. Median number of cycles (range): EAP arm 4 (2-8), HD 5-FU arm 2 (1-8). Worst toxicity per cycle (grade 3 and 4 in%): Neutropenia 20/3, thrombocytopenia 9/0, anemia 9/13, diarrhea 3/10, nausea 17/7, vomiting 10/0 for EAP and HD 5-FU arms, respectively. All patients were eligible for response in both arms. Confirmed response rate (95%CI): EAP arm 34% [16-50%]/HD 5-FU arm 10% (0-21%), no change: 46/40%, progression of disease: 20/50, respectively. Overall survival (range): EAP arm A 7 mo [3-27], HD 5-FU arm 6 mo (4-25). Infusional HD 5-FU showed a low incidence of severe toxicity. But given the low efficacy of 5-FU in the dosage we applied in the study, it cannot be recommended as a single treatment for further studies. Assessment of higher dose intensity and/or dose density of 5-FU, with introduction of other active drugs in combination, could be an option for further studies.
Chang, Pyung Hun; Kang, Sang Hoon
2010-05-30
The basic assumption of stochastic human arm impedance estimation methods is that the human arm and robot behave linearly for small perturbations. In the present work, we have identified the degree of influence of nonlinear friction in robot joints to the stochastic human arm impedance estimation. Internal model based impedance control (IMBIC) is then proposed as a means to make the estimation accurate by compensating for the nonlinear friction. From simulations with a nonlinear Lugre friction model, it is observed that the reliability and accuracy of the estimation are severely degraded with nonlinear friction: below 2 Hz, multiple and partial coherence functions are far less than unity; estimated magnitudes and phases are severely deviated from that of a real human arm throughout the frequency range of interest; and the accuracy is not enhanced with an increase of magnitude of the force perturbations. In contrast, the combined use of stochastic estimation and IMBIC provides with accurate estimation results even with large friction: the multiple coherence functions are larger than 0.9 throughout the frequency range of interest and the estimated magnitudes and phases are well matched with that of a real human arm. Furthermore, the performance of suggested method is independent of human arm and robot posture, and human arm impedance. Therefore, the IMBIC will be useful in measuring human arm impedance with conventional robot, as well as in designing a spatial impedance measuring robot, which requires gearing. (c) 2010 Elsevier B.V. All rights reserved.
De Groef, An; Van Kampen, Marijke; Tieto, Elena; Schönweger, Petra; Christiaens, Marie-Rose; Neven, Patrick; Geraerts, Inge; Gebruers, Nick; Devoogdt, Nele
2016-10-01
The aim of this study is (1) to investigate the prevalence rate of arm lymphedema, pain, impaired shoulder range of motion, strength and shoulder function one year after a sentinel lymph node biopsy (SLNB) for breast cancer and (2) to determine predictive factors for these complications. A longitudinal study was performed. One hundred patients with a sentinel-lymph node negative breast cancer were included. All patients were measured before surgery and one year after. Arm lymphedema was measured with the perimeter, pain with the Visual Analogue Scale, shoulder range of motion with an inclinometer, strength with a handheld dynamometer and shoulder function with the Disability of Arm, Shoulder and Hand questionnaire. Patient-, breast cancer- and treatment-related variables were recorded. One year after surgery 8% of sentinel node-negative breast cancer patients had developed arm lymphedema. Fifty percent of patients had pain, 30% had an impaired shoulder range of motion, 8% had a decreased handgrip strength and 49% had an impaired shoulder function. Pain, shoulder range of motion, strength and shoulder dysfunctions changed significantly over one year (p < 0.001). Higher Body Mass Index is a predictive variable for shoulder dysfunctions one year post-SLNB. Prevalence rate of lymphedema and other upper limb impairments may not be underestimated after SLNB. Pain, shoulder range of motion, handgrip strength and shoulder function change significantly up to one year compared to preoperative values in sentinel node-negative breast cancer patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
The U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD) is the scientific research arm of EPA. ORD conducts research on ways to prevent pollution, protect human health, and reduce risk. Much of the research related to demonstration and evaluation o...
Detection of antipersonnel (AP) mines using mechatronics approach
NASA Astrophysics Data System (ADS)
Shahri, Ali M.; Naghdy, Fazel
1998-09-01
At present there are approximately 110 million land-mines scattered around the world in 64 countries. The clearance of these mines takes place manually. Unfortunately, on average for every 5000 mines cleared one mine clearer is killed. A Mine Detector Arm (MDA) using mechatronics approach is under development in this work. The robot arm imitates manual hand- prodding technique for mine detection. It inserts a bayonet into the soil and models the dynamics of the manipulator and environment parameters, such as stiffness variation in the soil to control the impact caused by contacting a stiff object. An explicit impact control scheme is applied as the main control scheme, while two different intelligent control methods are designed to deal with uncertainties and varying environmental parameters. Firstly, a neuro-fuzzy adaptive gain controller (NFAGC) is designed to adapt the force gain control according to the estimated environment stiffness. Then, an adaptive neuro-fuzzy plus PID controller is employed to switch from a conventional PID controller to neuro-fuzzy impact control (NFIC), when an impact is detected. The developed control schemes are validated through computer simulation and experimental work.
NASA Technical Reports Server (NTRS)
2004-01-01
The Mars Exploration Rover Opportunity dragged one of its wheels back and forth across the sandy soil at Meridiani Planum to create a hole (bottom of image) measuring approximately 50 centimeters (19.7 inches) long by 20 centimeters (7.9 inches) wide by 9 centimeters (3.5 inches) deep. The rover's instrument deployment device, or arm, will begin studying the fresh soil at the bottom of this trench later today for clues to its mineral composition and history. Scientists chose this particular site for digging because previous data taken by the rover's miniature thermal emission spectrometer indicated that it contains crystalline hematite, a mineral that sometimes forms in the presence of water. The brightness of the newly-exposed soil is thought to be either intrinsic to the soil itself, or a reflection of the Sun. The rock outcrop lining the inner edge of the small crater encircling the rover and lander can be seen on the horizon. This fish-eye image was taken by the rover's hazard-avoidance camera.
NASA Astrophysics Data System (ADS)
Blomquist, Richard S.
1995-05-01
On July 4,1997, the Mars Pathfinder spacecraft lands on Mars and starts conducting technological and scientific experiments. One experiment, the Alpha-Proton-X-ray Spectrometer, uses a sensor head placed against rocks and soil to determine their composition. To guarantee proper placement, a deployment mechanism mounted on the Mars Rover aligns the sensor head to within 20 deg of the rock and soil surfaces. In carrying out its task, the mechanism mimics the action of a human hand and arm. Consisting of a flexible wrist, a parallel link arm, a brush dc motor actuator, and a revolutionary non-pyrotechnic fail-safe release device, the mechanism correctly positions the sensor head on rocks as high as 0.29 m and on targets whose surfaces are tilted as much as 45 deg from the nominal orientation of the sensor head face. The mechanism weighs less than 0.5 kg, can withstand 100 g's, and requires less than 2.8 N x m of actuation torque. The fail-safe coupler utilizes Cerrobend, a metal alloy that melts at 60 C, to fuse the actuator and the rest of the mechanism together. A film heater wrapped around the coupler melts the metal, and Negator springs drive the mechanism into its stowed position. The fail-safe actuates using 6.75 Watts for 5 minutes in the event of an actuator failure.
NASA Technical Reports Server (NTRS)
Blomquist, Richard S.
1995-01-01
On July 4,1997, the Mars Pathfinder spacecraft lands on Mars and starts conducting technological and scientific experiments. One experiment, the Alpha-Proton-X-ray Spectrometer, uses a sensor head placed against rocks and soil to determine their composition. To guarantee proper placement, a deployment mechanism mounted on the Mars Rover aligns the sensor head to within 20 deg of the rock and soil surfaces. In carrying out its task, the mechanism mimics the action of a human hand and arm. Consisting of a flexible wrist, a parallel link arm, a brush dc motor actuator, and a revolutionary non-pyrotechnic fail-safe release device, the mechanism correctly positions the sensor head on rocks as high as 0.29 m and on targets whose surfaces are tilted as much as 45 deg from the nominal orientation of the sensor head face. The mechanism weighs less than 0.5 kg, can withstand 100 g's, and requires less than 2.8 N x m of actuation torque. The fail-safe coupler utilizes Cerrobend, a metal alloy that melts at 60 C, to fuse the actuator and the rest of the mechanism together. A film heater wrapped around the coupler melts the metal, and Negator springs drive the mechanism into its stowed position. The fail-safe actuates using 6.75 Watts for 5 minutes in the event of an actuator failure.
The Doe Water Cycle Pilot Study.
NASA Astrophysics Data System (ADS)
Miller, N. L.; King, A. W.; Miller, M. A.; Springer, E. P.; Wesely, M. L.; Bashford, K. E.; Conrad, M. E.; Costigan, K.; Foster, P. N.; Gibbs, H. K.; Jin, J.; Klazura, J.; Lesht, B. M.; Machavaram, M. V.; Pan, F.; Song, J.; Troyan, D.; Washington-Allen, R. A.
2005-03-01
A Department of Energy (DOE) multilaboratory Water Cycle Pilot Study (WCPS) investigated components of the local water budget at the Walnut River watershed in Kansas to study the relative importance of various processes and to determine the feasibility of observational water budget closure. An extensive database of local meteorological time series and land surface characteristics was compiled. Numerical simulations of water budget components were generated and, to the extent possible, validated for three nested domains within the Southern Great Plains-the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Cloud Atmospheric Radiation Testbed (CART), the Walnut River watershed (WRW), and the Whitewater watershed (WW), in Kansas.A 2-month intensive observation period (IOP) was conducted to gather extensive observations relevant to specific details of the water budget, including finescale precipitation, streamflow, and soil moisture measurements that were not made routinely by other programs. Event and seasonal water isotope (d18O, dD) sampling in rainwater, streams, soils, lakes, and wells provided a means of tracing sources and sinks within and external to the WW, WRW, and the ARM CART domains. The WCPS measured changes in the leaf area index for several vegetation types, deep groundwater variations at two wells, and meteorological variables at a number of sites in the WRW. Additional activities of the WCPS include code development toward a regional climate model that includes water isotope processes, soil moisture transect measurements, and water-level measurements in groundwater wells.
Comparison of upper arm and forearm blood pressure.
Domiano, Kathy L; Hinck, Susan M; Savinske, Debra L; Hope, Kathryn L
2008-11-01
The upper arm is the primary site used to obtain a blood pressure measurement (BPM); however, when it is not possible to use the upper arm, the forearm is a commonly used alternate site. This study determines if there is a significant difference between upper arm and forearm BPMs among adults and examines the relationship of participant characteristics to the BPM difference. A convenience sample was recruited from a low-income, independent-living, 104-apartment complex in the Midwest. Of the 106 participants, 64% were female and 89% were White. Ages ranged from 20 to 85 years (M = 50.7). The investigators calculated the BMIs (range = 18 to 42, M = 29.3, SD = 5.4) for the 89% (n = 94) of participants who reported their weight. The forearm tended to have higher BPMs than the upper arm (M difference = 4.0 mm Hg systolic, 2.3 mm Hg diastolic). However, site differences were greatest for men, obese adults, and middle aged (36 to 65) adults.
Hilf, Jeannette; Schulze, Patricia; Seiwert, Jan; Frey, Holger
2014-01-01
Multi-arm star copolymers based on a hyperbranched poly(propylene oxide) polyether-polyol (hbPPO) as a core and poly(propylene carbonate) (PPC) arms are synthesized in two steps from propylene oxide (PO), a small amount of glycidol and CO2 . The PPC arms are prepared via carbon dioxide (CO2 )/PO copolymerization, using hbPPO as a multifunctional macroinitiator and the (R,R)-(salcy)CoOBzF5 catalyst. Star copolymers with 14 and 28 PPC arms, respectively, and controlled molecular weights in the range of 2700-8800 g mol(-1) are prepared (Mw /Mn = 1.23-1.61). Thermal analysis reveals lowered glass transition temperatures in the range of -8 to 10 °C for the PPC star polymers compared with linear PPC, which is due to the influence of the flexible polyether core. Successful conversion of the terminal hydroxyl groups with phenylisocyanate demonstrates the potential of the polycarbonate polyols for polyurethane synthesis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Phillips, T. J.; Klein, S. A.; Ma, H. Y.; Tang, Q.
2016-12-01
Statistically significant coupling between summertime soil moisture and various atmospheric variables has been observed at the U.S. Southern Great Plains (SGP) facilities maintained by the U.S. DOE Atmospheric Radiation Measurement (ARM) program (Phillips and Klein, 2014 JGR). In the current study, we employ several independent measurements of shallow-depth soil moisture (SM) and of the surface evaporative fraction (EF) over multiple summers in order to estimate the range of SM-EF coupling strength at seven sites, and to approximate the SGP regional-scale coupling strength (and its uncertainty). We will use this estimate of regional-scale SM-EF coupling strength to evaluate its representation in version 5.1 of the global Community Atmosphere Model (CAM5.1) coupled to the CLM4 Land Model. Two experimental cases are considered for the 2003-2011 study period: 1) an Atmospheric Model Intercomparison Project (AMIP) run with historically observed sea surface temperatures specified, and 2) a more constrained hindcast run in which the CAM5.1 atmospheric state is initialized each day from the ERA Interim reanalysis, while the CLM4 initial conditions are obtained from an offline run of the land model using observed surface net radiation, precipitation, and wind as forcings. These twin experimental cases allow a distinction to be drawn between the land-atmosphere coupling in the free-running CAM5.1/CLM4 model and that in which the land and atmospheric states are constrained to remain closer to "reality". The constrained hindcast case, for example, should allow model errors in coupling strength to be related more closely to potential deficiencies in land-surface or atmospheric boundary-layer parameterizations. AcknowledgmentsThis work was funded by the U.S. Department of Energy Office of Science and was performed at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Phoenix Carries Soil to Wet Chemistry Lab
NASA Technical Reports Server (NTRS)
2008-01-01
This image taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander shows the lander's Robotic Arm scoop positioned over the Wet Chemistry Lab delivery funnel on Sol 29, the 29th Martian day after landing, or June 24, 2008. The soil will be delivered to the instrument on Sol 30. This image has been enhanced to brighten the scene. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.NASA Astrophysics Data System (ADS)
Arvidson, R.
1999-01-01
The 2001 Mars Surveyor Program Mission includes an orbiter with a gamma ray spectrometer and a multispectral thermal imager, and a lander with an extensive set of instrumentation, a robotic arm, and the Marie Curie Rover. The Mars 2001 Science Operations Working Group (SOWG), a subgroup of the Project Science Group, has been formed to provide coordinated planning and implementation of scientific observations, particularly for the landed portion of the mission. The SOWG will be responsible for delivery of a science plan and, during operations, generation and delivery of conflict-free sequences. This group will also develop an archive plan that is compliant with Planetary Data System (PDS) standards, and will oversee generation, validation, and delivery of integrated archives to the PDS. In this abstract we cover one element of the SOWG planning activities, the development of a set of six science campaign themes that maximize the scientific return from lander-based observations by treating the instrument packages as an integrated payload. Scientific objectives for the lander mission have been defined. They include observations focused on determining the bedrock geology of the site through analyses of rocks and also local materials found in the soils, and the surficial geology of the site, including windblown deposits and the nature and history of formation of indurated sediments such as duricrust. Of particular interest is the identification and quantification of processes related to early warm, wet conditions and the presence of hydrologic or hydrothermal cycles. Determining the nature and origin of duricrust and associated salts is very important in this regard. Specifically, did these deposits form in the vadose zone as pore water evaporated from soils or did they form by other processes, such as deposition of volcanic aerosols? Basic information needed to address these questions includes the morphology, topography, and geologic context of landforms and materials exposed at the site, together with quantitative information on material mineralogy, chemistry, and physical properties (rock textures; soil grain size and shape distributions; degree and nature of soil induration; soil magnetic properties). Observations from the APEX, MECA, and MIP Experiments, including use of the robotic arm robotic arm camera (RAC) and the Marie Curie rover, will be used to address these parameters in a synergistic way. Further, calibration targets on APEX will provide radiometric and mineralogical control surfaces, and magnet targets will allow observations of magnetic phases. Patch plates on MECA will be imaged to determine adhesive and abrasive properties of soils. Coordinated mission planning is crucial for optimizing the measurement synergy among the packages included on the lander. This planning has already begun through generation of multi-sol detailed operations activities.
Bruno Braunerde und die Bodentypen - The German-speaking friends of the Scottish soil characters
NASA Astrophysics Data System (ADS)
Hofmann, Anett
2014-05-01
Cartoon figures of soil profiles with faces, legs, arms and funny names: the Scottish soil characters Rusty (Cambisol), Heather (Podzol), Pete (Histosol) and five others were developed at the James Hutton Institute in Aberdeen for outreach activities. They represent eight soil types that are common in Scotland. Recently they have become movie stars in an animated film, where they speak with a Scottish accent. The Scottish soil characters are a true soil science communication success story and it would be great if they had friends in many places to tell some stories from the underground in the respective native languages. This contribution will introduce the draft for 13 German-speaking soil characters that represent the most common soil types in Austria, Germany and Switzerland. Each name is a play on words with respect to German soil classification terms and serves as a mnemonic for typical characteristics of these soils. The 'hair' shows detailed vegetation and the context with common land use. For non-soil scientists the soil characters can be used as story-tellers, e.g. about their life (soil evolution), home (spatial distribution), job (function), fears (threats) and joys (best-practice land use, restoration). Because the International Year of Soil (2015) is an excellent opportunity for new outreach activities, the aim is to publish the German-speaking soil characters as a collaboration of the Austrian, German and Swiss Soil Science Societies. The soil characters could be used in print or online formats, and even - as can be seen in Aberdeen - as human-sized walking soil profiles.
Totonchi, Samer; Elgin, Robert; Monahan, Michael; Johnston, William K
2014-08-01
Abstract Background and Purpose: Placement of the fourth arm (4th arm) in the lower quadrant (LQ) is commonly described for robot-assisted renal surgical procedures but has anatomic restrictions and limited ergonomics. An alternative, upper quadrant (UQ) location is desirable, but patient habitus and spacing may restrict robotic attachment. We investigate current trends in 4th arm port placement and propose an alternative method at attaching the robot-the "Floating Arm" (FLA). Robotic surgeons from the Endourological Society were surveyed. A 20-cm extra-long (XL Protype) da Vinci instrument was developed for the FLA technique. A dry lab allowed quantitative comparison of spacing and ranges of motion for standard da Vinci ports (dVP), bariatric dVP, telescoping dVP, and FLA. There were 108 respondents who participated. Half of the respondents avoid using the 4th arm (30% lack of need and 20% because of interference). The majority (90%) typically positions the 4th arm in the LQ, but many reported limitations in this location. Few (5%) place 4th arm in the UQ, while most (73%) have never heard of UQ placement. Existing techniques may increase shoulder height clearance but inversely shorten the working length of the instrument intracorporeally. Alternatively, the XL Protype significantly increased the shoulder length and maintained available working distances intracorporeally. Adjacent arm interference angle was essentially identical (27 degrees) for all ports except a greater range of movement for the XL Protype (35 degrees). Few surgeons are using an UQ positioning or use techniques to improve attachment of the 4th arm. The greatest freedom may be obtained by implementing the FLA, but this necessitates production of a longer instrument.
Ribociclib plus letrozole in early breast cancer: A presurgical, window-of-opportunity study.
Curigliano, G; Gómez Pardo, P; Meric-Bernstam, F; Conte, P; Lolkema, M P; Beck, J T; Bardia, A; Martínez García, M; Penault-Llorca, F; Dhuria, S; Tang, Z; Solovieff, N; Miller, M; Di Tomaso, E; Hurvitz, S A
2016-08-01
Cyclin D-cyclin-dependent kinase (CDK) 4/6-inhibitor of CDK4/6-retinoblastoma (Rb) pathway hyperactivation is associated with hormone receptor-positive (HR+) breast cancer (BC). This study assessed the biological activity of ribociclib (LEE011; CDK4/6 inhibitor) plus letrozole compared with single-agent letrozole in the presurgical setting. Postmenopausal women (N = 14) with resectable, HR+, human epidermal growth factor receptor 2-negative (HER2-) early BC were randomized 1:1:1 to receive 2.5 mg/day letrozole alone (Arm 1), or with 400 or 600 mg/day ribociclib (Arm 2 or 3). Circulating tumor DNA and tumor biopsies were collected at baseline and, following 14 days of treatment, prior to or during surgery. The primary objective was to assess antiproliferative response per Ki67 levels in Arms 2 and 3 compared with Arm 1. Additional assessments included safety, pharmacokinetics, and genetic profiling. Mean decreases in the Ki67-positive cell fraction from baseline were: Arm 1 69% (range 38-100%; n = 2), Arm 2 96% (range 78-100%; n = 6), Arm 3 92% (range 75-100%; n = 3). Decreased phosphorylated Rb levels and CDK4, CDK6, CCND2, CCND3, and CCNE1 gene expression were observed following ribociclib treatment. Ribociclib and letrozole pharmacokinetic parameters were consistent with single-agent data. The ribociclib plus letrozole combination was well tolerated, with no Grade 3/4 adverse events over the treatment. The results suggest absence of a drug-drug interaction between ribociclib and letrozole and indicate ribociclib plus letrozole may reduce Ki67 expression in HR+, HER2- BC (NCT01919229). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Amouyal, G; Pernot, S; Déan, C; Cholley, B; Scotté, F; Sapoval, M; Pellerin, O
2017-11-01
The aim of this study was to assess the feasibility, safety and efficacy of percutaneous radiofrequency ablation of lung metastases from colorectal carcinoma using C-arm cone beam computed tomography (CBCT) guidance. This single-center prospective observational study was performed from August 2013 to August 2016, and included consecutive patients referred for radiofrequency ablation of lung metastases from colorectal cancer. Radiofrequency ablation procedures were performed under C-arm CBCT guidance. Feasibility was assessed by probe accuracy placement, time to accurate placement and number of C-arm CBCT acquisitions to reach the target lesion. Safety was assessed by the report of adverse event graded using the common terminology criteria for adverse events (CTCAE-V4.0). Efficacy was assessed by metastases response rate using RECIST 1.1 and 18 FDG-PET-CT tumor uptake at 6months. Fifty-four consecutive patients (32 men, 22 women) with a mean age of 63±8 (SD) years (range: 51-81years) with a total of 56 lung metastasis from colorectal metastases were treated in a single session. The mean tumor diameter was 25.6±4.5 (SD)mm (range: 17-31mm). Median time to insert the needle into the target lesion was 10min (range: 5-25min). Median number of needles repositioning and C-arm CBCT acquisition per patient was 1 (range: 0-3) and 4 (range: 3-6) respectively. The accuracy for radiofrequency ablation probe placement was 2±0.2 (SD)mm (range: 0-9mm). Pneumothorax requiring chest tube placement occurred in one patient (CTCAE-V4.0 grade 3). At 6months, all patients were alive with tumor response rate of -27% and had no significant activity on the 18 FDG-PET CT follow-up. Percutaneous radiofrequency ablation of lung metastases from colorectal cancer under C-arm CBCT guidance is feasible and safe, with immediate and short-term results similar to those obtained using conventional CT guidance. Copyright © 2017 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.
Can the soil fauna of boreal forests recover from lead-derived stress in a shooting range area?
Selonen, Salla; Liiri, Mira; Setälä, Heikki
2014-04-01
The responses of soil faunal communities to lead (Pb) contamination in a shooting range area and the recovery of these fauna after range abandonment were studied by comparing the communities at an active shotgun shooting range, an abandoned shooting range, and a control site, locating in the same forest. Despite the similar overall Pb pellet load at the shooting ranges, reaching up to 4 kg m(-2), Pb concentrations in the top soil of the abandoned range has decreased due to the accumulation of detritus on the soil surface. As a consequence, soil animal communities were shown to recover from Pb-related disturbances by utilizing the less contaminated soil layer. Microarthropods showed the clearest signs of recovery, their numbers and community composition being close to those detected at the control site. However, in the deepest organic soil layer, the negative effects of Pb were more pronounced at the abandoned than at the active shooting range, which was detected as altered microarthropod and nematode community structures, reduced abundances of several microarthropod taxa, and the total absence of enchytraeid worms. Thus, although the accumulation of fresh litter on soil surface can promote the recovery of decomposer communities in the top soil, the gradual release of Pb from corroding pellets may pose a long-lasting risk for decomposer taxa deeper in the soil.
An overview and categorization of dynamic arm supports for people with decreased arm function.
Van der Heide, Loek A; van Ninhuijs, Bob; Bergsma, Arjen; Gelderblom, Gert Jan; van der Pijl, Dick J; de Witte, Luc P
2014-08-01
Assistive devices that augment arm function were already introduced during the polio era. Devices are still being developed, but a review has not been performed thus far. To create an overview and categorize assistive devices facilitating arm function in activities of daily living for people with decreased arm function. Literature review. A systematic review in three scientific literature databases. Conference proceedings, assistive technology databases, and references were searched and experts consulted. This resulted in a database of dynamic arm supports. Product information was added, and the devices were categorized. A total of 104 dynamic arm supports were found. These could be categorized as nonactuated devices (N = 39), passively actuated devices (N = 24), actively actuated devices (N = 34), or devices using the functional electrical stimulation principle (N = 7). Functionality analysis resulted in second-level categorization: tremor suppression, facilitation of anti-gravity movement, and assistance of specific joint motion. All devices could be ordered in a categorization of low complexity. Many have been developed; most have disappeared and have been succeeded by similar devices. Limitations of the devices found mainly concern interfacing and the range of motion facilitated. Future devices could make use of whatever residual strength is available in the users' arm for control. The provided overview of devices in this article and the classification developed is relevant for practitioners seeking assistive solutions for their clients as it makes the range of developed solutions both accessible and comprehensible. © The International Society for Prosthetics and Orthotics 2013.
A dynamic model for generating actuator specifications for small arms barrel active stabilization
NASA Astrophysics Data System (ADS)
Pathak, Anupam; Brei, Diann; Luntz, Jonathan; Lavigna, Chris
2006-03-01
Due to stresses encountered in combat, it is known that soldier marksmanship noticeably decreases regardless of prior training. Active stabilization systems in small arms have potential to address this problem to increase soldier survivability and mission effectiveness. The key to success is proper actuator design, but this is highly dependent on proper specification which is challenging due to the human/weapon interaction. This paper presents a generic analytical dynamic model which is capable of defining the necessary actuation specifications for a wide range of small arms platforms. The model is unique because it captures the human interface--shoulder and arm--that introduces the jitter disturbance in addition to the geometry, inertial properties and active stabilization stiffness of the small arms platform. Because no data to date is available for actual shooter-induced disturbance in field conditions, a method is given using the model to back-solve from measured shooting range variability data the disturbance amplitude information relative to the input source (arm or shoulder). As examples of the applicability of the model to various small arms systems, two different weapon systems were investigated: the M24 sniper weapon and the M16 assault rifle. In both cases, model based simulations provided valuable insight into impact on the actuation specifications (force, displacement, phase, frequency) due to the interplay of the human-weapon-active stabilization interface including the effect of shooter-disturbance frequency, disturbance location (shoulder vs. arm), and system parameters (stiffness, barrel rotation).
Three-dimensional moment arms and architecture of chimpanzee (Pan troglodytes) leg musculature
Holowka, Nicholas B; O'Neill, Matthew C
2013-01-01
The muscular and skeletal morphology of the chimpanzee ankle and foot differs from that of humans in many important respects. However, little information is available on the moment arms and architecture of the muscles that function around chimpanzee ankle and foot joints. The main goals of this study were to determine the influence of changes in leg and foot position on the moment arms of these muscle–tendon units (MTUs), and provide new measurements of their architecture. Three-dimensional moment arm data were collected from two adult, cadaveric Pan troglodytes specimens for 11 MTUs that cross the ankle and foot joints. Tendon-excursion measurements were made throughout the full range of plantarflexion–dorsiflexion (PF–DF) and eversion–inversion (EV–IN), including repeated measurements for mm. gastrocnemius at 0 °, 45 °, 90 ° and 135 ° of knee flexion. The total range of motion was calculated from three-dimensional joint motion data while ensuring that foot movement was restricted to a single plane. Measurements of muscle mass, fascicle length, pennation angle and physiological cross-sectional area were then collected for each MTU. Our results demonstrate that joint position has a significant effect on moment arm lengths, and that in some cases this effect is counterintuitive. These new data contribute to filling a significant gap in previously published chimpanzee moment arm data, providing a comprehensive characterization of the MTUs that move the chimpanzee ankle and foot joints. They also provide empirical support to the notion that chimpanzees have larger ranges of motion at these joints than humans. Comparison of osteometric estimates of moment arm lengths to direct tendon-excursion measures provides some guidance for the use of skeletal features in estimations of PF–DF moment arms. Finally, muscle architecture data are consistent with the findings of previous studies, and increase the sample size of the chimpanzee data that are currently available. PMID:24117363
Cyr, Amy E; Tucker, Natalia; Ademuyiwa, Foluso; Margenthaler, Julie A; Aft, Rebecca L; Eberlein, Timothy J; Appleton, Catherine M; Zoberi, Imran; Thomas, Maria A; Gao, Feng; Gillanders, William E
2016-08-01
Axillary surgery is not considered therapeutic in patients with clinical T1-T2 N0 breast cancer. The importance of axillary staging is eroding in an era in which tumor biology, as defined by biomarker and gene expression profile, is increasingly important in medical decision making. We hypothesized that axillary ultrasound (AUS) is a noninvasive alternative to sentinel lymph node biopsy (SLNB), and AUS could replace SLNB without compromising patient care. Patients with clinical T1-T2 N0 breast cancer and normal AUS were eligible for enrollment. Subjects were randomized to no further axillary staging (arm 1) vs SLNB (arm 2). Descriptive statistics were used to describe the results of the pilot phase of the randomized controlled trial. Sixty-eight subjects were enrolled in the pilot phase of the trial (34 subjects in arm 1, no further staging; 32 subjects in arm 2, SLNB; and 2 subjects voluntarily withdrew from the trial). The median age was 61 years (range 40 to 80 years) in arm 1 and 59 years (range 31 to 81 years) in arm 2, and there were no significant clinical or pathologic differences between the arms. Median follow-up was 17 months (range 1 to 32 months). The negative predictive value (NPV) of AUS for identification of clinically significant axillary disease (>2.0 mm) was 96.9%. No axillary recurrences have been observed in either arm. Successful completion of the pilot phase of the randomized controlled trial confirms the feasibility of the study design, and provides prospective evidence supporting the ability of AUS to exclude clinically significant disease in the axilla. The results provide strong support for a phase 2 randomized controlled trial. Copyright © 2016 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Cyr, Amy E; Tucker, Natalia; Ademuyiwa, Foluso; Margenthaler, Julie A; Aft, Rebecca L; Eberlein, Timothy J; Appleton, Catherine M; Zoberi, Imran; Thomas, Maria A; Gao, Feng; Gillanders, William E
2016-01-01
Background Axillary surgery is not considered therapeutic in patients with clinical T1-T2 N0 breast cancer. The importance of axillary staging is eroding in an era where tumor biology, as defined by biomarker and gene expression profile, is increasingly important in medical decision making. We hypothesize that axillary ultrasound (AUS) is a noninvasive alternative to sentinel lymph node biopsy (SLNB), and AUS could replace SLNB without compromising patient care. Study Design Patients with clinical T1-T2 N0 breast cancer and normal AUS were eligible for enrollment. Subjects were randomized to no further axillary staging (Arm 1) versus SLNB (Arm 2). Descriptive statistics were used to describe the results of the pilot phase of the randomized controlled trial. Results 68 subjects were enrolled in the pilot phase of the trial (34 subjects in Arm 1, no further staging; 32 subjects in Arm 2, SLNB, and 2 subjects voluntarily withdrew from the trial). The median age was 61 years (range 40-80) in Arm 1 and 59 years (range 31-81) in Arm 2, and there were no significant clinical or pathologic differences between the arms. Median follow-up was 17 months (range 1-32). The negative predictive value (NPV) of AUS for identification of clinically significant axillary disease (> 2.0 mm) was 96.9%. No axillary recurrences have been observed in either arm. Conclusions Successful completion of the pilot phase of the randomized controlled trial confirms the feasibility of the study design, and provides prospective evidence supporting the ability of AUS to exclude clinically significant disease in the axilla. The results provide strong support for a phase 2 randomized controlled trial. PMID:27212005
The MVACS Soil Temperature Probe
NASA Astrophysics Data System (ADS)
Wood, S. E.; Paige, D. A.; Nguyen, A.; Crisp, D.; Alleruzzo, R.; Labaw, C.; Mahoney, C.; Vargas, R.; Gunderson, H.; Braun, D.; Slostad, J.; Manvi, R.; Brown, K.; Oakes, E.
1999-09-01
As part of the Mars Volatiles and Climate Surveyor (MVACS) payload on Mars Polar Lander, currently on its way to a Dec. 3, 1999 landing on the south polar layered deposits, the Soil Temperature Probe (STP) will make direct measurements of the temperatures and thermophysical properties of soils and/or ices accessible by the Robotic Arm (RA). The STP consists of a thin, rigid fiberglass tube 15 cm long containing 2 platinum resistance temperature sensors; one in the metal tip which can be heated (PRT-1), and another inside the tube (PRT-2). It is mounted on the side of the scoop at the end of the RA. To make measurements, the RA places the STP in the desired location on or beneath the surface, and Robotic Arm Camera (RAC) image(s) are taken to verify its position, using ruler markings on the STP to measure its depth. The temperatures of both PRT's are recorded every 3 seconds. Data and commanding are handled through the meteorology instruments (MET) electronics package. Measurement of thermophysical properties can be done actively or passively. In active mode, PRT-1 is heated at a constant rate ( 10 mW). The thermal conductivity of the surrounding soil can be derived from the asymptotic temperature rise. The thermal diffusivity (alpha ) can be derived from the transient response. In passive mode alpha can also be determined by measuring the change in the amplitude and phase of the diurnal thermal wave at different depths. The temperature and thermophysical property measurements obtained with the STP will be very useful for interpreting other MVACS observations including air temperature and humidity, the presence or absence of subsurface ice, the identity of any surface frosts (CO_2 or H_2O), and Thermal Evolved Gas Analyzer soil sample analysis. These STP measurements will also provide invaluable "ground truth" for comparison with data from orbiting spacecraft such as Mars Global Surveyor and Mars Climate Orbiter.
Rebois, R. V.
1973-01-01
The effect of soil water content on Rotylenchulus reniformis infectivity of 'Lee' soybean roots was investigated in an autoclaved sandy clay loam. Nematodes were introduced into soil masses maintained at constant soil water levels ranging from 3.4 to 19% by weight. Seedling growth and the soil water content-water potential relationships of the soil were determined. Nematode infectivity was greatest when the soil water content was maintained just below field capacity in the 7.2 (-1/3 bar) to 13.0% (-1/7 bar) ranges. Nematode invasion of roots was reduced in the wetter 15.5 (-1/10 bar) to 19.0% (-1 /2 0 bar) soil moisture ranges and in the dryer 3.4 (-15 bar) to 5.8% (-3/4 bar) soil moisture ranges. PMID:19319344
Effect of snow cover on soil frost penetration
NASA Astrophysics Data System (ADS)
Rožnovský, Jaroslav; Brzezina, Jáchym
2017-12-01
Snow cover occurrence affects wintering and lives of organisms because it has a significant effect on soil frost penetration. An analysis of the dependence of soil frost penetration and snow depth between November and March was performed using data from 12 automated climatological stations located in Southern Moravia, with a minimum period of measurement of 5 years since 2001, which belong to the Czech Hydrometeorological institute. The soil temperatures at 5 cm depth fluctuate much less in the presence of snow cover. In contrast, the effect of snow cover on the air temperature at 2 m height is only very small. During clear sky conditions and no snow cover, soil can warm up substantially and the soil temperature range can be even higher than the range of air temperature at 2 m height. The actual height of snow is also important - increased snow depth means lower soil temperature range. However, even just 1 cm snow depth substantially lowers the soil temperature range and it can therefore be clearly seen that snow acts as an insulator and has a major effect on soil frost penetration and soil temperature range.
Identification of qSOR1, a major rice QTL involved in soil-surface rooting in paddy fields.
Uga, Yusaku; Hanzawa, Eiko; Nagai, Shinsei; Sasaki, Kazuhiro; Yano, Masahiro; Sato, Tadashi
2012-01-01
Specific Indonesian lowland rice (Oryza sativa L.) cultivars elongate thick primary roots on the soil surface of paddy fields. To clarify the genetic factors controlling soil-surface rooting, we performed quantitative trait locus (QTL) analyses using 124 recombinant inbred lines (RILs) derived from a cross between Gemdjah Beton, an Indonesian lowland rice cultivar with soil-surface roots, and Sasanishiki, a Japanese lowland rice cultivar without soil-surface roots. These cultivars and the RILs were tested for soil-surface rooting in a paddy field. We identified four regions of chromosomes 3, 4, 6, and 7 that were associated with soil-surface rooting in the field. Among them, one major QTL was located on the long arm of chromosome 7. This QTL explained 32.5-53.6% of the total phenotypic variance across three field evaluations. To perform fine mapping of this QTL, we measured the basal root growth angle of crown roots at the seedling stage in seven BC(2)F(3) recombinant lines grown in small cups in a greenhouse. The QTL was mapped between markers RM21941 and RM21976, which delimit an 812-kb interval in the reference cultivar Nipponbare. We have designated this QTL qSOR1 (quantitative trait locus for SOIL SURFACE ROOTING 1).
Limited angle C-arm tomosynthesis reconstruction algorithms
NASA Astrophysics Data System (ADS)
Malalla, Nuhad A. Y.; Xu, Shiyu; Chen, Ying
2015-03-01
In this paper, C-arm tomosynthesis with digital detector was investigated as a novel three dimensional (3D) imaging technique. Digital tomosythses is an imaging technique to provide 3D information of the object by reconstructing slices passing through the object, based on a series of angular projection views with respect to the object. C-arm tomosynthesis provides two dimensional (2D) X-ray projection images with rotation (-/+20 angular range) of both X-ray source and detector. In this paper, four representative reconstruction algorithms including point by point back projection (BP), filtered back projection (FBP), simultaneous algebraic reconstruction technique (SART) and maximum likelihood expectation maximization (MLEM) were investigated. Dataset of 25 projection views of 3D spherical object that located at center of C-arm imaging space was simulated from 25 angular locations over a total view angle of 40 degrees. With reconstructed images, 3D mesh plot and 2D line profile of normalized pixel intensities on focus reconstruction plane crossing the center of the object were studied with each reconstruction algorithm. Results demonstrated the capability to generate 3D information from limited angle C-arm tomosynthesis. Since C-arm tomosynthesis is relatively compact, portable and can avoid moving patients, it has been investigated for different clinical applications ranging from tumor surgery to interventional radiology. It is very important to evaluate C-arm tomosynthesis for valuable applications.
The Strategic Bomber and Low-Intensity Conflict
1990-05-01
of combat forces can be limited by current capabilities and other constraints. Aplication for Strategic Bombers Although the total United States...labeled the long-range combat aircraft. (31:1) The bomber’s characteristic of long-range provides mobility and mission flexibility which is not available...Summer 1989, pp. 46-55. 47. Ropelewski, Robert R. "Target Mobility , Arms Control Challenge SAC Modernization," Armed Forces Journo-1 £Dt~raflii~1
Datta Banik, Sudip
2011-11-01
This study aimed to understand the interrelationship between height and arm span and also to estimate nutritional status from arm span. In an anthropometric survey conducted among the Dhimals (227 males and 223 females, total = 450) of Naxalbari in West Bengal, India, measurements were recorded in age groups ranging between 10-59 years. Males were taller and had longer arm spans than females. The height-arm span ratio was 0.98-0.99, indicating height to be slightly less than arm span in both sexes. High correlation between these two dimensions was also observed. Regression equations provided a good model for estimating height from arm span (predictor). In all age groups of both sexes, values of standardized coefficient beta exhibited high significance (p ( 0.001). Residuals showed no pattern and were random. No significant difference between height-based body mass index or BMI (body weight/height(2)) and estimated arm span-based BMI (body weight/arm span(2)) was observed in any age group. Arm span was found to be an effective surrogate measure for BMI.
[Effects of massage on delayed-onset muscle soreness].
Bakowski, Paweł; Musielak, Bartosz; Sip, Paweł; Biegański, Grzegorz
2008-01-01
Delayed onset muscle soreness (DOMS) is the pain or discomfort often felt 12 to 24 hours after exercising and subsides generally within 4 to 6 days. Once thought to be caused by lactic acid buildup, a more recent theory is that it is caused by inflammatory process or tiny tears in the muscle fibers caused by eccentric contraction, or unaccustomed training levels. Exercises that involve many eccentric contractions will result in the most severe DOMS. Fourteen healthy men with no history of upper arm injury and no experience in resistance training were recruited. The mean age, height, and mass of the subjects were 22.8 +/- 1.2 years, 178.3 +/- 10.3 cm, and 75.0 +/- 14.2 kg, respectively. Subjects performed 8 sets of concentric and eccentric actions of the elbow flexors with each arm according to Stay protocol. One arm received 10 minutes of massage 30 minutes after exercise, the contralateral arm received no treatment. Measurements were taken at 9 assessment times: pre-exercise and postexercise at 10 min, 6, 12, 24, 36, 48, 72 and 96 hours. Dependent variables were range of motion, perceived soreness and upper arm circumference. There was noticed difference in perceived soreness across time between groups. The analysis indicated that massage resulted in a 10% to 20% decrease in the severity of soreness, but the differences were not significant. Difference in range of motion and arm circumference was not observed. Massage administered 30 minutes after exercises could have a beneficial influence on DOMS but without influence on muscle swelling and range of motion.
Takagi, Akiko; Yagi, Minoru; Tanaka, Yoshiaki; Asagiri, Kimio; Asakawa, Takahiro; Tanaka, Hiroaki; Ishii, Shinji; Egami, Hideaki; Akaiwa, Masao; Tsuru, Tomomitsu
2010-01-01
Fecoflowmetry (FFM) has been introduced to simulate natural anorectal evacuation. So far, few reports have described the effect of the herbal medicine Daikenchuto (DKT) on impaired anorectal motor function. The aim of this pilot study was to assess anorectal motor function by FFM in postoperatively impaired patients with an anorectal malformation (ARM) before and after administration of DKT. Six postoperative patients with ARM (mean age, 7.8 years) who complained of intractable constipation with soiling in spite of administration of magnesia as a laxative were assessed over an extended period. These patients received 0.3 g/kg/d of DKT for an average of 128 days. Evacuative rate and maximum fecal stream flow were seen to increase significantly after administration of DKT when compared with values before administration of DKT. In conclusion, DKT had a favorable clinical effect on anorectal motor function in postoperative patients with ARM.
Highest Resolution Image of Dust and Sand Yet Acquired on Mars
NASA Technical Reports Server (NTRS)
2008-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Click on image for Figure 1Click on image for Figure 2Click on image for Figure 3 This mosaic of four side-by-side microscope images (one a color composite) was acquired by the Optical Microscope, a part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on NASA's Phoenix Mars Lander. Taken on the ninth Martian day of the mission, or Sol 9 (June 3, 2008), the image shows a 3 millimeter (0.12 inch) diameter silicone target after it has been exposed to dust kicked up by the landing. It is the highest resolution image of dust and sand ever acquired on Mars. The silicone substrate provides a sticky surface for holding the particles to be examined by the microscope. Martian Particles on Microscope's Silicone Substrate In figure 1, the particles are on a silcone substrate target 3 millimeters (0.12 inch) in diameter, which provides a sticky surface for holding the particles while the microscope images them. Blow-ups of four of the larger particles are shown in the center. These particles range in size from about 30 microns to 150 microns (from about one one-thousandth of an inch to six one-thousandths of an inch). Possible Nature of Particles Viewed by Mars Lander's Optical Microscope In figure 2, the color composite on the right was acquired to examine dust that had fallen onto an exposed surface. The translucent particle highlighted at bottom center is of comparable size to white particles in a Martian soil sample (upper pictures) seen two sols earlier inside the scoop of Phoenix's Robotic Arm as imaged by the lander's Robotic Arm Camera. The white particles may be examples of the abundant salts that have been found in the Martian soil by previous missions. Further investigations will be needed to determine the white material's composition and whether translucent particles like the one in this microscopic image are found in Martian soil samples. Scale of Phoenix Optical Microscope Images This set of pictures in figure 3 gives context for the size of individual images from the Optical Microscope on NASA's Mars Phoenix Lander. The picture in the upper left was taken on Mars by the Surface Stereo Imager on Phoenix. It shows a portion of the microscope's sample stage exposed to accept a sample. In this case, the sample was of dust kicked up by the spacecraft thrusters during landers. Later samples will include soil delivered by the Robotic Arm. The other pictures were taken on Earth. They show close-ups of circular substrates on which the microscopic samples rest when the microscope images them. Each circular substrate target is 3 millimeters (about one-tenth of an inch) in diameter. Each image taken by the microscope covers and area 2 millimeters by 1 millimeter (0.08 inch by 0.04 inch), the size of a large grain of sand. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Phoenix Makes an Impression on Mars
NASA Technical Reports Server (NTRS)
2008-01-01
This view from the Surface Stereo Imager on NASA's Phoenix Mars Lander shows the first impression dubbed Yeti and looking like a wide footprint -- made on the Martian soil by the Robotic Arm scoop on Sol 6, the sixth Martian day of the mission, (May 31, 2008). Touching the ground is the first step toward scooping up soil and ice and delivering the samples to the lander's experiments. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.The Illogic of the Biological Weapons Taboo
2010-01-01
strategic approach to arms control is consistent with well- known theo ries of international relations (IR). Most prominently, many realists have long ...strike retaliatory systems, such as long -range bomber forces or nuclear-armed submarines. Schelling and Halperin also argued that arms control can...of biological pathogens—bacteria, viruses, fungi and toxins—to kill or incapacitate one’s enemies has a long pedigree that includes not only Scythian
The Value Range of Contact Stiffness Factor between Pile and Soil Based on Penalty Function
NASA Astrophysics Data System (ADS)
Chen, Sandy H. L.; Wu, Xinliu
2018-03-01
The value range of contact stiffness factor based on penalty function is studied when we use finite element software ANSYS to analyze contact problems, take single pile and soil of a certain project for example, the normal contact between pile and soil is analyzed with 2D simplified model in horizontal load. The study shows that when adopting linear elastic model to simulate soil, the maximum contact pressure and penetration approach steady value as the contact stiffness factor increases. The reasonable value range of contact stiffness factor reduces as the underlying element thickness decreases, but the rule reverses when refers to the soil stiffness. If choose DP model to simulate soil, the stiffness factor should be magnified 100 times compares to the elastic model regardless of the soil bears small force and still in elastic deformation stage or into the plastic deformation stage. When the soil bears big force and into plastic deformation stage, the value range of stiffness factor relates to the plastic strain range of the soil, and reduces as the horizontal load increases.
Zhang, Ling; Zhang, Yaojun; Wang, Hong; Zou, Jianwen; Siemann, Evan
2013-01-01
Two mechanisms that have been proposed to explain success of invasive plants are unusual biotic interactions, such as enemy release or enhanced mutualisms, and increased resource availability. However, while these mechanisms are usually considered separately, both may be involved in successful invasions. Biotic interactions may be positive or negative and may interact with nutritional resources in determining invasion success. In addition, the effects of different nutrients on invasions may vary. Finally, genetic variation in traits between populations located in introduced versus native ranges may be important for biotic interactions and/or resource use. Here, we investigated the roles of soil biota, resource availability, and plant genetic variation using seedlings of Triadica sebifera in an experiment in the native range (China). We manipulated nitrogen (control or 4 g/m(2)), phosphorus (control or 0.5 g/m(2)), soil biota (untreated or sterilized field soil), and plant origin (4 populations from the invasive range, 4 populations from the native range) in a full factorial experiment. Phosphorus addition increased root, stem, and leaf masses. Leaf mass and height growth depended on population origin and soil sterilization. Invasive populations had higher leaf mass and growth rates than native populations did in fresh soil but they had lower, comparable leaf mass and growth rates in sterilized soil. Invasive populations had higher growth rates with phosphorus addition but native ones did not. Soil sterilization decreased specific leaf area in both native and exotic populations. Negative effects of soil sterilization suggest that soil pathogens may not be as important as soil mutualists for T. sebifera performance. Moreover, interactive effects of sterilization and origin suggest that invasive T. sebifera may have evolved more beneficial relationships with the soil biota. Overall, seedlings from the invasive range outperformed those from the native range, however, an absence of soil biota or low phosphorus removed this advantage.
Zhang, Ling; Zhang, Yaojun; Wang, Hong; Zou, Jianwen; Siemann, Evan
2013-01-01
Two mechanisms that have been proposed to explain success of invasive plants are unusual biotic interactions, such as enemy release or enhanced mutualisms, and increased resource availability. However, while these mechanisms are usually considered separately, both may be involved in successful invasions. Biotic interactions may be positive or negative and may interact with nutritional resources in determining invasion success. In addition, the effects of different nutrients on invasions may vary. Finally, genetic variation in traits between populations located in introduced versus native ranges may be important for biotic interactions and/or resource use. Here, we investigated the roles of soil biota, resource availability, and plant genetic variation using seedlings of Triadica sebifera in an experiment in the native range (China). We manipulated nitrogen (control or 4 g/m2), phosphorus (control or 0.5 g/m2), soil biota (untreated or sterilized field soil), and plant origin (4 populations from the invasive range, 4 populations from the native range) in a full factorial experiment. Phosphorus addition increased root, stem, and leaf masses. Leaf mass and height growth depended on population origin and soil sterilization. Invasive populations had higher leaf mass and growth rates than native populations did in fresh soil but they had lower, comparable leaf mass and growth rates in sterilized soil. Invasive populations had higher growth rates with phosphorus addition but native ones did not. Soil sterilization decreased specific leaf area in both native and exotic populations. Negative effects of soil sterilization suggest that soil pathogens may not be as important as soil mutualists for T. sebifera performance. Moreover, interactive effects of sterilization and origin suggest that invasive T. sebifera may have evolved more beneficial relationships with the soil biota. Overall, seedlings from the invasive range outperformed those from the native range, however, an absence of soil biota or low phosphorus removed this advantage. PMID:24023930
Opportunity Trenches Martian Soil
NASA Technical Reports Server (NTRS)
2004-01-01
The Mars Exploration Rover Opportunity dragged one of its wheels back and forth across the sandy soil at Meridiani Planum to create a hole (bottom left corner) approximately 50 centimeters (19.7 inches) long by 20 centimeters (7.9 inches) wide by 9 centimeters (3.5 inches) deep. The rover's instrument deployment device, or arm, will begin studying the fresh soil at the bottom of this trench later today for clues to its mineral composition and history. Scientists chose this particular site for digging because previous data taken by the rover's miniature thermal emission spectrometer indicated that it contains crystalline hematite, a mineral that sometimes forms in the presence of water. The brightness of the newly-exposed soil is thought to be either intrinsic to the soil itself, or a reflection of the Sun. Opportunity's lander is in the center of the image, and to the left is the rock outcrop lining the inner edge of the small crater that encircles the rover and lander. This mosaic image is made up of data from the rover's navigation and hazard-avoidance cameras.
NASA Technical Reports Server (NTRS)
2004-01-01
This close-up image of the Mars Exploration Rover Spirit's instrument deployment device, or 'arm,' shows the donut-shaped plate on the Moessbauer spectrometer. This image makes it easy to recognize the imprint left by the instrument in the martian soil at a location called 'Peak' on sol 43 (February 16, 2004). This image was taken by the rover's panoramic camera on sol 39 (February 11, 2004).
Phoenix Conductivity Probe Inserted into Martian Soil
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's Phoenix Mars Lander inserted the four needles of its thermal and conductivity probe into Martian soil during the 98th Martian day, or sol, of the mission and left it in place until Sol 99 (Sept. 4, 2008). The Robotic Arm Camera on Phoenix took this image on the morning of Sol 99 while the probe's needles were in the ground. The science team informally named this soil target 'Gandalf.' The thermal and conductivity probe measures how fast heat and electricity move from one needle to an adjacent one through the soil or air between the needles. Conductivity readings can be indicators about water vapor, water ice and liquid water. The probe is part of Phoenix's Microscopy, Electrochemistry and Conductivity suite of instruments. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.SWATS: Diurnal Trends in the Soil Temperature Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, David; Theisen, Adam
During the processing of data for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ARMBE2D Value-Added Product (VAP), the developers noticed that the SWATS soil temperatures did not show a decreased temporal variability with increased depth with the new E30+ Extended Facilities (EFs), unlike the older EFs at ARM’s Southern Great Plains (SGP) site. The instrument mentor analyzed the data and reported that all SWATS locations have shown this behavior but that the magnitude of the problem was greatest at EFs E31-E38. The data were analyzed to verify the initial assessments of: 1. 5 cmmore » SWATS data were valid for all EFs and 15 cm soil temperature measurements were valid at all EFs other than E31-E38, 2. Use only nighttime SWATS soil temperature measurements to calculate daily average soil temperatures, 3. Since it seems likely that the soil temperature measurements below 15cm were affected by the solar heating of the enclosure at all but E31-38, and at all depths below 5cm at E31-38, individual measurements of soil temperature at these depths during daylight hours, and daily averages of the same, can ot be trusted on most (particularly sunny) days.« less
Soils as a Solution: The Potential of Rangelands to Contribute to Climate Change Mitigation
NASA Astrophysics Data System (ADS)
Silver, W. L.; Ryals, R.; DeLonge, M. S.; Owen, J. J.
2015-12-01
The majority of soil-related climate change research has focused on describing the problem - estimating rates of carbon (C) losses and greenhouse gas (GHG) emissions from natural and managed ecosystems. More research is needed to explore potential solutions to climate change through mitigation and adaptation. Here we report on an integrated set of studies aimed at critically evaluating the biogeochemical potential of rangeland soils to help mitigate climate change, while improving the sustainability and productivity of food production systems. We explored direct effects through enhanced net primary production (NPP) and soil C sequestration, and indirect effects through diversion of high emitting sources to lower emitting organic matter dynamics. We used a combination of long- and short-term field experiments, modeling, laboratory assays, life cycle assessment (LCA), and meta-analyses in consultation with a diverse group of stakeholders from both the private and public sectors. We found that organic matter amendments held particularly strong potential. Compost amendments increased soil C storage by 0.5-1.0 Mg C ha-1 y-1 in surface soils over 5 y, and increased NPP and water holding capacity. We measured 1.0 Mg of new C ha-1 y-1 over 3 y. Long-term amendment of cattle manure increased surface soil C by 19.0±7.3 Mg C ha-1 relative to unmanured fields. However, field and modeling experiments suggested that manure amendments lead to large nitrous oxide emissions that eventually eliminated CO2e benefits, whereas compost amendments continued to benefit climate for decades longer. An LCA identified a broader range of climate impacts. When scaled to an area of 25% of California's rangelands, new C sequestered following compost amendments (21 million Mg CO2e) exceeded emissions from cattle (15 million Mg CO2e); diverting organics from waste streams to amendments led to additional GHG savings. In collaboration with our partners, our research contributed to the development of a protocol for compost amendments, which is being used by stakeholders in C markets and by government agencies in climate action planning. In summary, we hope that our research and related activities will serve as a "call to arms" to the scientific community by highlighting a new and much needed arena for rigorous scientific research.
Variation in microbial activity in histosols and its relationship to soil moisture.
Tate, R L; Terry, R E
1980-08-01
Microbial biomass, dehydrogenase activity, carbon metabolism, and aerobic bacterial populations were examined in cropped and fallow Pahokee muck (a lithic medisaprist) of the Florida Everglades. Dehydrogenase activity was two- to sevenfold greater in soil cropped to St. Augustinegrass (Stenotaphrum secundatum (Walt) Kuntz) compared with uncropped soil, whereas biomass ranged from equivalence in the two soils to a threefold stimulation in the cropped soil. Biomass in soil cropped to sugarcane (Saccharum spp. L) approximated that from the grass field, whereas dehydrogenase activities of the cane soil were nearly equivalent to those of the fallow soil. Microbial biomass, dehydrogenase activity, aerobic bacterial populations, and salicylate oxidation rates all correlated with soil moisture levels. These data indicate that within the moisture ranges detected in the surface soils, increased moisture stimulated microbial activity, whereas within the soil profile where moisture ranges reached saturation, increased moisture inhibited aerobic activities and stimulated anaerobic processes.
Variation in Microbial Activity in Histosols and Its Relationship to Soil Moisture †
Tate, Robert L.; Terry, Richard E.
1980-01-01
Microbial biomass, dehydrogenase activity, carbon metabolism, and aerobic bacterial populations were examined in cropped and fallow Pahokee muck (a lithic medisaprist) of the Florida Everglades. Dehydrogenase activity was two- to sevenfold greater in soil cropped to St. Augustinegrass (Stenotaphrum secundatum (Walt) Kuntz) compared with uncropped soil, whereas biomass ranged from equivalence in the two soils to a threefold stimulation in the cropped soil. Biomass in soil cropped to sugarcane (Saccharum spp. L) approximated that from the grass field, whereas dehydrogenase activities of the cane soil were nearly equivalent to those of the fallow soil. Microbial biomass, dehydrogenase activity, aerobic bacterial populations, and salicylate oxidation rates all correlated with soil moisture levels. These data indicate that within the moisture ranges detected in the surface soils, increased moisture stimulated microbial activity, whereas within the soil profile where moisture ranges reached saturation, increased moisture inhibited aerobic activities and stimulated anaerobic processes. PMID:16345610
Revealing the Physical Properties of GMC Complexes in the Spiral Arms of NGC 6946
NASA Astrophysics Data System (ADS)
Topal, Selçuk; Bayet, Estelle; Bureau, Martin; Walsh, Wilfred; Davis, Timothy A.
2013-03-01
In this study, we probe for the first time the molecular gas physical properties of several star forming regions located in the arms and inter-arms of the spiral galaxy NGC 6946. Combining our observations with additional data found in the literature, we provide in this study the most complete CO ladder ever obtained in these inter-arm and arm regions, i.e. the CO(1-0, 2-1, 3-2, 4-3, 6-5) and 13CO(1-0, 2-1) transitions. For each region studied, we use more precisely the large velocity gradient (LVG) assumption in order to derive the beam-averaged molecular gas physical properties. Namely, we obtained the gas kinetic temperature (i.e. 'best' T K), volume number gas density (i.e. 'best' n(H2)) and CO column density (i.e. 'best' N(CO)) which best reproduce the data for 8 regions investigated. Optical depths were also estimated for a large variety of CO lines in these regions. To identify the best values found, we used two complementary theoretical approaches when comparing the model predictions with the observations, i.e. the χ2 minimisation and the likelihood. Very different physical conditions for the molecular gas from a region to another have been obtained: T K ranges from 10 to 250 K, n(H2) ranges from 102.3 to 107.0 cm-3 and N(CO) ranges from 1015.0 to 1019.3 cm-2 among the arm and inter-arm regions. For each region probed, we also published for the first time the CO spectral line energy distribution (SLED) from CO(1-0) to CO(10-9) for this galaxy, mixing observations and model predictions which provide an essential insight for future follow-up observational programmes. Finally, in this work, we discuss the physical properties we obtained for each region in relation with the presence of young stellar population characteristics such as supernovae remnants (SNRs), Hi holes, Hii regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Blanche, Alain F.; Pautas, Eric; Gouin, Isabelle
Purpose. To evaluate routine use of access sites in the arm for percutaneous caval filter placement (PCFP) in elderly patients. Neck arthritis, patient anxiety, access site thrombosis or fecal/urinary incontinence complicating jugular or femoral access may require alternative access sites in this population. Methods. Access via the right arm was chosen for PCFP (VenaTech LP). The indication for PCFP was deep vein thrombosis, a history of pulmonary embolism, and a contraindication to anticoagulant therapy. Ultrasound-guided puncture was performed after diameter measurement of the arm veins (O{sub AV}). The filter was inserted with standard imaging procedures. Procedural difficulty was graded andmore » compared with O{sub AV} and the angle from the arm vein to the superior vena cava ({alpha}{sub AV/SVC}). Results. Over 2 years, 16 patients (14 women, 2 men) with an average age of 90 years (range 79-97 years) were included in the study. The average O{sub AV} value of the basilic or brachial veins was 4.2 mm (range 3.0-5.1 mm). The minimal O{sub AV} for successful access was determined after the first 15 patients. No hematoma occurred at the puncture sites. The average {alpha}{sub AV/SVC} value was 62 deg. (range 29 deg. - 90 deg.). Arm access was possible in 12 of 16 patients (75%) with O{sub AV} {>=} 3.5 mm and {alpha}{sub AV/SVC} {>=} 29 deg. Every procedure via the arm was graded 'easy' by the operator, regardless of angulation values. Femoral access was used in one case due to the impossibility of traversing the heart (patient no. 2), and jugular access was used in 3 of 16 (19%) patients due to puncture failure (patient no. 4), small O{sub AV} (3 mm) (patient no. 6), and stenosis of the distal right subclavian vein (patient no.16), respectively. Conclusion. PCFP via the arm can be routinely accomplished in patients older than 75 years, provided O{sub AV} {>=} 3.5 mm, and {alpha}{sub AV/SVC} {>=} 200119 d.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, Jae; Chang, John
A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.
Muthuswamy, M B; Thomas, B N; Williams, D; Dingley, J
2014-09-01
Patients recovering from critical illness especially those with critical illness related neuropathy, myopathy, or burns to face, arms and hands are often unable to communicate by writing, speech (due to tracheostomy) or lip reading. This may frustrate both patient and staff. Two low cost movement tracking systems based around a laptop webcam and a laser/optical gaming system sensor were utilised as control inputs for on-screen text creation software and both were evaluated as communication tools in volunteers. Two methods were used to control an on-screen cursor to create short sentences via an on-screen keyboard: (i) webcam-based facial feature tracking, (ii) arm movement tracking by laser/camera gaming sensor and modified software. 16 volunteers with simulated tracheostomy and bandaged arms to simulate communication via gross movements of a burned limb, communicated 3 standard messages using each system (total 48 per system) in random sequence. Ten and 13 minor typographical errors occurred with each system respectively, however all messages were comprehensible. Speed of sentence formation ranged from 58 to 120s with the facial feature tracking system, and 60-160s with the arm movement tracking system. The average speed of sentence formation was 81s (range 58-120) and 104s (range 60-160) for facial feature and arm tracking systems respectively, (P<0.001, 2-tailed independent sample t-test). Both devices may be potentially useful communication aids in patients in general and burns critical care units who cannot communicate by conventional means, due to the nature of their injuries. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
2006-06-01
Soil Loss Equation ( USLE ) and the Revised Universal Soil Loss Equation (RUSLE) continue to be widely accepted methods for estimating sediment loss...range areas. Therefore, a generalized design methodology using the Universal Soil Loss Equation ( USLE ) is presented to accommodate the variations...constructed use the slope most suitable to the area topography (3:1 or 4:1). Step 4: Using the Universal Soil Loss equation, USLE , find the values of A
Soil classification based on cone penetration test (CPT) data in Western Central Java
NASA Astrophysics Data System (ADS)
Apriyono, Arwan; Yanto, Santoso, Purwanto Bekti; Sumiyanto
2018-03-01
This study presents a modified friction ratio range for soil classification i.e. gravel, sand, silt & clay and peat, using CPT data in Western Central Java. The CPT data was obtained solely from Soil Mechanic Laboratory of Jenderal Soedirman University that covers more than 300 sites within the study area. About 197 data were produced from data filtering process. IDW method was employed to interpolated friction ratio values in a regular grid point for soil classification map generation. Soil classification map was generated and presented using QGIS software. In addition, soil classification map with respect to modified friction ratio range was validated using 10% of total measurements. The result shows that silt and clay dominate soil type in the study area, which is in agreement with two popular methods namely Begemann and Vos. However, the modified friction ratio range produces 85% similarity with laboratory measurements whereby Begemann and Vos method yields 70% similarity. In addition, modified friction ratio range can effectively distinguish fine and coarse grains, thus useful for soil classification and subsequently for landslide analysis. Therefore, modified friction ratio range proposed in this study can be used to identify soil type for mountainous tropical region.
NASA Astrophysics Data System (ADS)
Willgoose, G. R.; Chen, M.; Cohen, S.; Saco, P. M.; Hancock, G. R.
2013-12-01
In humid areas it is generally considered that soil moisture scales spatially according to the wetness index of the landscape. This scaling arises from lateral flow downslope of ground water within the soil zone. However, in semi-arid and drier regions, this lateral flow is small and fluxes are dominated by vertical flows driven by infiltration and evapotranspiration. Thus, in the absence of runon processes, soil moisture at a location is more driven by local factors such as soil and vegetation properties at that location rather than upstream processes draining to that point. The 'apparent' spatial randomness of soil and vegetation properties generally suggests that soil moisture for semi-arid regions is spatially random. In this presentation a new analysis of neutron probe data during summer from the Tarrawarra site near Melbourne, Australia shows persistent spatial organisation of soil moisture over several years. This suggests a link between permanent features of the catchment (e.g. soil properties) and soil moisture distribution, even though the spatial pattern of soil moisture during the 4 summers monitored appears spatially random. This and other data establishes a prima facie case that soil variations drive spatial variation in soil moisture. Accordingly, we used a previously published spatial scaling relationship for soil properties derived using the mARM pedogenesis model to simulate the spatial variation of soil grading. This soil grading distribution was used in the Rosetta pedotransfer model to derive a spatial distribution of soil functional properties (e.g. saturated hydraulic conductivity, porosity). These functional properties were then input into the HYDRUS-1D soil moisture model and soil moisture simulated for 3 years at daily resolution. The HYDRUS model used had previously been calibrated to field observed soil moisture data at our SASMAS field site. The scaling behaviour of soil moisture derived from this modelling will be discussed and compared with observed data from our SASMAS field sites.
Arm-Locking with the GRACE Follow-On Laser Ranging Instrument
NASA Technical Reports Server (NTRS)
Thorpe, James Ira; Mckenzie, Kirk
2016-01-01
Arm-locking is a technique for stabilizing the frequency of a laser in an inter-spacecraft interferometer by using the spacecraft separation as the frequency reference. A candidate technique for future space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA), arm-locking has been extensive studied in this context through analytic models, time-domain simulations, and hardware-in-the-loop laboratory demonstrations. In this paper we show the Laser Ranging Instrument flying aboard the upcoming Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission provides an appropriate platform for an on-orbit demonstration of the arm-locking technique. We describe an arm-locking controller design for the GRACE-FO system and a series of time-domain simulations that demonstrate its feasibility. We conclude that it is possible to achieve laser frequency noise suppression of roughly two orders of magnitude around a Fourier frequency of 1Hz with conservative margins on the system's stability. We further demonstrate that `pulling' of the master laser frequency due to fluctuating Doppler shifts and lock acquisition transients is less than 100MHz over several GRACE-FO orbits. These findings motivate further study of the implementation of such a demonstration.
Arm locking with the GRACE follow-on laser ranging interferometer
NASA Astrophysics Data System (ADS)
Thorpe, James Ira; McKenzie, Kirk
2016-02-01
Arm locking is a technique for stabilizing the frequency of a laser in an interspacecraft interferometer by using the spacecraft separation as the frequency reference. A candidate technique for future space-based gravitational wave detectors such as the Laser Interferometer Space Antenna, arm locking has been extensive studied in this context through analytic models, time-domain simulations, and hardware-in-the-loop laboratory demonstrations. In this paper we show the laser ranging interferometer instrument flying aboard the upcoming Gravity Recovery and Climate Experiment follow-on (GRACE-FO) mission provides an appropriate platform for an on-orbit demonstration of the arm-locking technique. We describe an arm-locking controller design for the GRACE-FO system and a series of time-domain simulations that demonstrate its feasibility. We conclude that it is possible to achieve laser frequency noise suppression of roughly 2 orders of magnitude around a Fourier frequency of 1 Hz with conservative margins on the system's stability. We further demonstrate that "pulling" of the master laser frequency due to fluctuating Doppler shifts and lock acquisition transients is less than 100 MHz over several GRACE-FO orbits. These findings motivate further study of the implementation of such a demonstration.
Campaign datasets for ARM Cloud Aerosol Precipitation Experiment (ACAPEX)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, L. Ruby; Mei, Fan; Comstock, Jennifer
This campaign consisted of the deployment of the DOE ARM Mobile Facility 2 (AMF2) and the ARM Aerial Facility (AAF) G-1 in a field campaign called ARM Cloud Aerosol Precipitation Experiment (ACAPEX), which took place in conjunction with CalWater 2- a NOAA field campaign. The joint CalWater 2/ACAPEX field campaign aimed to improve understanding and modeling of large-scale dynamics and cloud and precipitation processes associated with ARs and aerosol-cloud interactions that influence precipitation variability and extremes in the western U.S. The observational strategy consisted of the use of land and offshore assets to monitor: 1. the evolution and structure ofmore » ARs from near their regions of development 2. the long-range transport of aerosols in the eastern North Pacific and potential interactions with ARs 3. how aerosols from long-range transport and local sources influence cloud and precipitation in the U.S. West Coast where ARs make landfall and post-frontal clouds are frequent.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, C.S.
1988-02-01
Projections of levels of radioactive fallout from a nuclear war are sensitive to assumptions about the structure of the nuclear stockpiles as well as the assumed scenarios for a nuclear war. Recent arms control proposals would change these parameters. This paper examines the implications of the proposed (Intermediate-range Nuclear Forces) INF treaty and (Strategic Arms Reduction Treaty) START on fallout projections from a major nuclear war. We conclude that the INF reductions are likely to have negligible effects on estimates of global and local fallout, whereas the START reductions could result in reductions in estimates of local fallout that rangemore » from significant to dramatic, depending upon the nature of the reduced strategic forces. Should a major war occur, projections of total fatalities from direct effects of blast, thermal radiation, a nd fallout, and the phenomenon known as nuclear winter, would not be significantly affected by INF and START initiatives as now drafted. 14 refs.« less
González García, M M; Sánchez Rojas, F; Bosch Ojeda, C; García de Torres, A; Cano Pavón, J M
2003-04-01
A method to determine trace amounts of platinum in different samples based on electrothermal atomic absorption spectrometry is described. The preconcentration step is performed on a chelating resin microcolumn [1,5-bis(2-pyridyl)-3-sulfophenyl methylene thiocarbonohydrazide (PSTH) immobilized on an anion-exchange resin (Dowex 1x8-200)] placed in the autosampler arm. The combination of a peristaltic pump for sample loading and the atomic absorption spectrometer pumps for elution through a selection valve simplifies the hardware. The peristaltic pump and the selection valve are easily controlled electronically with two switches placed in the autosampler, which are activated when the autosampler arm is down. Thus, the process is fully automated without any modification of the software of the atomic absorption spectrometer. Under the optimum conditions with a 60-s preconcentration time, a sample flow rate of 2.4 mL min(-1), and an injection volume of eluent of 40 microL, a linear calibration graph was obtained in the range 0-100 ng mL(-1). The enrichment factor was 14. The detection limit under these conditions is 1 ng mL(-1), and the relative standard deviation (RSD) is 1.6% for 10 ng mL(-1) of Pt. The method has been applied to the determination of platinum in catalyst, vegetation, soil, and natural water samples. The results showed good agreement with the certified value and the recoveries of Pt added to samples were 98-105%.
Heavy-metal contamination on training ranges at the Grafenwoehr Training Area, Germany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zellmer, S.D.; Schneider, J.F.
1993-05-01
Large quantities of lead and other heavy metals are deposited in the environment of weapons ranges during training exercises. This study was conducted to determine the type, degree, and extent of heavy-metal contamination on selected handgun, rifle, and hand-grenade ranges at Grafenwoehr Training Area, Germany. Soil, vegetation, and surface-water samples were collected and analyzed using the inductively-coupled plasma atomic-emission spectroscopy (ICP-AES) method and the toxic characterization leaching procedure (TCLP). The ICP-AES results show that above-normal levels of lead and copper are in the surface soil at the handgun range, high concentrations of lead and copper are in the berm andmore » soil surface at the rifle range, and elevated levels of cadmium and above-normal concentrations of arsenic, copper, and zinc are present in the surface soil at the hand-grenade range. The TCLP results show that surface soils can be considered hazardous waste because of lead content at the rifle range and because of cadmium concentration at the hand-grenade range. Vegetation at the handgun and rifle ranges has above-normal concentrations of lead. At the hand-grenade range, both vegetation and surface water have high levels of cadmium. A hand-held X-ray fluorescence (XRF) spectrum analyzer was used to measure lead concentrations in soils in a field test of the method. Comparison of XRF readings with ICP-AES results for lead indicate that the accuracy and precision of the hand-held XRF unit must improve before the unit can be used as more than a screening tool. Results of this study show that heavy-metal contamination at all three ranges is limited to the surface soil; heavy metals are not being leached into the soil profile or transported into adjacent areas.« less
Curado, Marco Rocha; Cossio, Eliana Garcia; Broetz, Doris; Agostini, Manuel; Cho, Woosang; Brasil, Fabricio Lima; Yilmaz, Oezge; Liberati, Giulia; Lepski, Guilherme
2015-01-01
Background Abnormal upper arm-forearm muscle synergies after stroke are poorly understood. We investigated whether upper arm function primes paralyzed forearm muscles in chronic stroke patients after Brain-Machine Interface (BMI)-based rehabilitation. Shaping upper arm-forearm muscle synergies may support individualized motor rehabilitation strategies. Methods Thirty-two chronic stroke patients with no active finger extensions were randomly assigned to experimental or sham groups and underwent daily BMI training followed by physiotherapy during four weeks. BMI sessions included desynchronization of ipsilesional brain activity and a robotic orthosis to move the paretic limb (experimental group, n = 16). In the sham group (n = 16) orthosis movements were random. Motor function was evaluated with electromyography (EMG) of forearm extensors, and upper arm and hand Fugl-Meyer assessment (FMA) scores. Patients performed distinct upper arm (e.g., shoulder flexion) and hand movements (finger extensions). Forearm EMG activity significantly higher during upper arm movements as compared to finger extensions was considered facilitation of forearm EMG activity. Intraclass correlation coefficient (ICC) was used to test inter-session reliability of facilitation of forearm EMG activity. Results Facilitation of forearm EMG activity ICC ranges from 0.52 to 0.83, indicating fair to high reliability before intervention in both limbs. Facilitation of forearm muscles is higher in the paretic as compared to the healthy limb (p<0.001). Upper arm FMA scores predict facilitation of forearm muscles after intervention in both groups (significant correlations ranged from R = 0.752, p = 0.002 to R = 0.779, p = 0.001), but only in the experimental group upper arm FMA scores predict changes in facilitation of forearm muscles after intervention (R = 0.709, p = 0.002; R = 0.827, p<0.001). Conclusions Residual upper arm motor function primes recruitment of paralyzed forearm muscles in chronic stroke patients and predicts changes in their recruitment after BMI training. This study suggests that changes in upper arm-forearm synergies contribute to stroke motor recovery, and provides candidacy guidelines for similar BMI-based clinical practice. PMID:26495971
Curado, Marco Rocha; Cossio, Eliana Garcia; Broetz, Doris; Agostini, Manuel; Cho, Woosang; Brasil, Fabricio Lima; Yilmaz, Oezge; Liberati, Giulia; Lepski, Guilherme; Birbaumer, Niels; Ramos-Murguialday, Ander
2015-01-01
Abnormal upper arm-forearm muscle synergies after stroke are poorly understood. We investigated whether upper arm function primes paralyzed forearm muscles in chronic stroke patients after Brain-Machine Interface (BMI)-based rehabilitation. Shaping upper arm-forearm muscle synergies may support individualized motor rehabilitation strategies. Thirty-two chronic stroke patients with no active finger extensions were randomly assigned to experimental or sham groups and underwent daily BMI training followed by physiotherapy during four weeks. BMI sessions included desynchronization of ipsilesional brain activity and a robotic orthosis to move the paretic limb (experimental group, n = 16). In the sham group (n = 16) orthosis movements were random. Motor function was evaluated with electromyography (EMG) of forearm extensors, and upper arm and hand Fugl-Meyer assessment (FMA) scores. Patients performed distinct upper arm (e.g., shoulder flexion) and hand movements (finger extensions). Forearm EMG activity significantly higher during upper arm movements as compared to finger extensions was considered facilitation of forearm EMG activity. Intraclass correlation coefficient (ICC) was used to test inter-session reliability of facilitation of forearm EMG activity. Facilitation of forearm EMG activity ICC ranges from 0.52 to 0.83, indicating fair to high reliability before intervention in both limbs. Facilitation of forearm muscles is higher in the paretic as compared to the healthy limb (p<0.001). Upper arm FMA scores predict facilitation of forearm muscles after intervention in both groups (significant correlations ranged from R = 0.752, p = 0.002 to R = 0.779, p = 0.001), but only in the experimental group upper arm FMA scores predict changes in facilitation of forearm muscles after intervention (R = 0.709, p = 0.002; R = 0.827, p<0.001). Residual upper arm motor function primes recruitment of paralyzed forearm muscles in chronic stroke patients and predicts changes in their recruitment after BMI training. This study suggests that changes in upper arm-forearm synergies contribute to stroke motor recovery, and provides candidacy guidelines for similar BMI-based clinical practice.
Efficient high-throughput sequencing of a laser microdissected chromosome arm
2013-01-01
Background Genomic sequence assemblies are key tools for a broad range of gene function and evolutionary studies. The diploid amphibian Xenopus tropicalis plays a pivotal role in these fields due to its combination of experimental flexibility, diploid genome, and early-branching tetrapod taxonomic position, having diverged from the amniote lineage ~360 million years ago. A genome assembly and a genetic linkage map have recently been made available. Unfortunately, large gaps in the linkage map attenuate long-range integrity of the genome assembly. Results We laser dissected the short arm of X. tropicalis chromosome 7 for next generation sequencing and computational mapping to the reference genome. This arm is of particular interest as it encodes the sex determination locus, but its genetic map contains large gaps which undermine available genome assemblies. Whole genome amplification of 15 laser-microdissected 7p arms followed by next generation sequencing yielded ~35 million reads, over four million of which uniquely mapped to the X. tropicalis genome. Our analysis placed more than 200 previously unmapped scaffolds on the analyzed chromosome arm, providing valuable low-resolution physical map information for de novo genome assembly. Conclusion We present a new approach for improving and validating genetic maps and sequence assemblies. Whole genome amplification of 15 microdissected chromosome arms provided sufficient high-quality material for localizing previously unmapped scaffolds and genes as well as recognizing mislocalized scaffolds. PMID:23714049
Spirit Switches on Its X-ray Vision
NASA Technical Reports Server (NTRS)
2004-01-01
This image shows the Mars Exploration Rover Spirit probing its first target rock, Adirondack. At the time this picture was snapped, the rover had begun analyzing the rock with the alpha particle X-ray spectrometer located on its robotic arm. This instrument uses alpha particles and X-rays to determine the elemental composition of martian rocks and soil. The image was taken by the rover's hazard-identification camera.
A Novel Source of DOC and DON to Watershed Soils
NASA Astrophysics Data System (ADS)
Aitkenhead-Peterson, J. A.
2017-12-01
A source of dissolved organic carbon (DOC) and nitrogen (DON) to soils and groundwater is that emanating from decomposing mammals. Although there is an increase in human donor facilities (body farms) in the USA and in mass mortality events (MME) worldwide, this injection of DOC and DON into watershed soils has received little attention. Studies at two human donor facilities in Texas, USA have revealed that the purge fluid associated with decomposition is extremely high in DOC and DON and migrates down the soil profile. Two studies were carried out 1) The southeast Texas Applied Forensic Science (STAFS) facility on an Alfisol with a saturated hydraulic conductivity of 331 mm hr-1 and 83% sand and 2) the Forensic Anthropology Research Facility (FARF) on Mollisols with a saturated hydraulic conductivity of 3.6-9.7 mm hr-1 and 28-33% sand. The numbers of days since donors were laid in the environment ranged from 219-680 d at STAFS and 306-960 d at FACTS. Purge can occur between 5 and 30 d dependent on the time of year the body is placed and the resultant phenomenon is termed cadaver decomposition island (CDI). Soil cores were taken at 5 cm increments to a depth of 30 cm in the sandy soil and 15 cm in the clayey/rocky soil. In the sandy soils, DOC concentrations were significantly higher in all the CDI soils when compared to control soils at depths of 15, 20, 25 and 30 cm and ranged from 121.7 µg g-1 (30 cm) to 167.6 µg g-1 (15 cm) in control soils and 461.9 µg g-1 (30 cm) to 660.4 µg g-1 (15 cm) in CDI soils, representing a three- to four-fold increase in DOC relative to control soils. DON in all CDI soils was not significantly higher than control soils until 30 cm depth and ranged from 9.9-32.3 µg g-1 in CDI soils and 121.7 µg g-1 in control soil, representing a two- to seven-fold increase in DON relative to control soils. DOC concentrations in control soils at the FARF site at 15 cm ranged 215-365 µg g-1 while in the CDI soils DOC was higher (range: 270-1175 µg g-1 and average: 567 µg g-1) suggesting a two-fold increase. DON at the FARF site at 15 cm ranged 9.5-10.4 µg g-1 in control soils while in the CDI soils the range was higher (range: 5.6-86.6; average: 38.7 µg g-1). This study highlights the implications for what could be expected during MMEs especially those which exceed 1,000's of deaths in creating hotspots of organic C and organic N across the landscape.
The role of belowground plant-microbe interactions in climate change induced range shifts
NASA Astrophysics Data System (ADS)
Ramirez, Kelly; Snoek, Basten; van der Putten, Wim
2017-04-01
With climate change, plants have been able to shift their ranges into novel environments were conditions have been made suitable due to warming temperature and changes in precipitation. Much belowground range expansion research has focused on either positive plant-soil interactions, such as AMF symbiosis, or on negative plant-soil interactions, such as pathogens. Less focus has been given to the core microbiome of plant hosts. Many unknowns remain in how the soil microbiome may contribute to plant adaptation to climate change, and how this may feedback to plant-soil interactions and ecosystem functions. Using high-throughput Illumina sequencing we assessed soil and root microbial communities under native and range expanding plant species spanning a north-south latitudinal transect in central Europe. As expected, the soil and root microbiomes are both strongly influenced by the plant species under which they grow. Specifically, about 10% of the microbiome could be related to the host plant species. Interestingly, we found that microbiomes associated with range shifting species are less variable than those associated with native species. Further, the enrichment of microbes in roots (from the soil) is stronger with range expanding species than with native plant species. Our research indicates that the soil and root microbiomes can provide insight into plant range shifts and may be important for plant establishment. Our results are also important at a continental and global level, as ecosystems and plant communities worldwide are effected by climate change induced range-expansions.
Interactions between Soil Habitat and Geographic Range Location Affect Plant Fitness
Stanton-Geddes, John; Shaw, Ruth G.; Tiffin, Peter
2012-01-01
Populations are often found on different habitats at different geographic locations. This habitat shift may be due to biased dispersal, physiological tolerances or biotic interactions. To explore how fitness of the native plant Chamaecrista fasciculata depends on habitat within, at and beyond its range edge, we planted seeds from five populations in two soil substrates at these geographic locations. We found that with reduced competition, lifetime fitness was always greater or equivalent in one habitat type, loam soils, though early-season survival was greater on sand soils. At the range edge, natural populations are typically found on sand soil habitats, which are also less competitive environments. Early-season survival and fitness differed among source populations, and when transplanted beyond the range edge, range edge populations had greater fitness than interior populations. Our results indicate that even when the optimal soil substrate for a species does not change with geographic range location, the realized niche of a species may be restricted to sub-optimal habitats at the range edge because of the combined effects of differences in abiotic and biotic effects (e.g. competitors) between substrates. PMID:22615745
Gong, Yi; Cao, Kai-wu; Xu, Jin-song; Li, Ju-xiang; Hong, Kui; Cheng, Xiao-shu; Su, Hai
2015-01-01
This study aimed to establish a normal range for ankle systolic blood pressure (SBP). A total of 948 subjects who had normal brachial SBP (90-139 mmHg) at investigation were enrolled. Supine BP of four limbs was simultaneously measured using four automatic BP measurement devices. The ankle-arm difference (An-a) on SBP of both sides was calculated. Two methods were used for establishing normal range of ankle SBP: the 99% method was decided on the 99% reference range of actual ankle BP, and the An-a method was the sum of An-a and the low or up limits of normal arm SBP (90-139 mmHg). Whether in the right or left side, the ankle SBP was significantly higher than the arm SBP (right: 137.1 ± 16.9 vs 119.7 ± 11.4 mmHg, P<0.05). Based on the 99% method, the normal range of ankle SBP was 94~181 mmHg for the total population, 84~166 mmHg for the young (18-44 y), 107~176 mmHg for the middle-aged(45-59 y) and 113~179 mmHg for the elderly (≥ 60 y) group. As the An-a on SBP was 13 mmHg in the young group and 20 mmHg in both middle-aged and elderly groups, the normal range of ankle SBP on the An-a method was 103-153 mmHg for young and 110-160 mmHg for middle-elderly subjects. A primary reference for normal ankle SBP was suggested as 100-165 mmHg in the young and 110-170 mmHg in the middle-elderly subjects.
Selonen, Salla; Setälä, Heikki
2015-06-15
The effects of shooting-derived lead (Pb) on the structure and functioning of a forest ecosystem, and the recovery of the ecosystem after range abandonment were studied at an active shotgun shooting range, an abandoned shooting range where shooting ceased 20 years earlier and an uncontaminated control site. Despite numerous lead-induced changes in the soil food web, soil processes were only weakly related to soil food web composition. However, decomposition of Scots pine (Pinus sylvestris) needle litter was retarded at the active shooting range, and microbial activity, microbial biomass and the rate of decomposition of Pb-contaminated grass litter decreased with increasing soil Pb concentrations. Tree (P. sylvestris) radial growth was suppressed at the active shooting range right after shooting activities started. In contrast, the growth of pines improved at the abandoned shooting range after the cessation of shooting, despite reduced nitrogen and phosphorus contents of the needles. Higher litter degradation rates and lower Pb concentrations in the topmost soil layer at the abandoned shooting range suggest gradual recovery after range abandonment. Our findings suggest that functions in lead-contaminated coniferous forest ecosystems depend on the successional stage of the forest as well as the time since the contamination source has been eliminated, which affects, e.g., the vertical distribution of the contaminant in the soil. However, despite multiple lead-induced changes throughout the ecosystem, the effects were rather weak, indicating high resistance of coniferous forest ecosystems to this type of stress. Copyright © 2015 Elsevier B.V. All rights reserved.
Delivery to the Wet Chemistry Laboratory
NASA Technical Reports Server (NTRS)
2008-01-01
This portion of a picture acquired by NASA's Phoenix Mars Lander's Robotic Arm Camera documents the delivery of soil to one of four Wet Chemistry Laboratory (WCL) cells on the 30th Martian day, or sol, of the mission. Approximately one cubic centimeter of this soil was then introduced into the cell and mixed with water for chemical analysis. WCL is part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on board the Phoenix lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Lee, Kwang Won; Kim, Yong In; Kim, Ha Yong; Yang, Dae Suk; Lee, Gyu Sang; Choy, Won Sik
2016-09-01
There have been few reports on altered kinematics of the shoulder after reverse total shoulder arthroplasty (RTSA). We investigated differences in 3-dimensional (3D) scapular motions assessed using an optical tracking system between RTSA treated shoulders and asymptomatic contralateral shoulders during arm motion. Thirteen patients who underwent RTSA were assessed for active arm elevation in 2 distinct elevation planes (sagittal plane flexion and scapular plane abduction). Their mean age was 72 years (range, 69 to 79 years) and the mean follow-up was 24.4 months (range, 13 to 48 months). The dominant side was the right side in all the 13 patients, and it was also the side treated with RTSA. Scapular kinematics was recorded with an optical tracking system. The scapular kinematics and the scapulohumeral rhythm (SHR) of the RTSA shoulders and asymptomatic contralateral shoulders were recorded and analyzed during arm elevation. There were no significant differences in internal/external rotation and anterior/posterior tilting of the scapula between shoulders during arm motion (p > 0.05). However, upward rotation of the scapula differed significantly during arm motion (p = 0.035 for sagittal plane flexion; p = 0.046 for scapular plane abduction). There were significant differences in the SHR between the two shoulders (p = 0.016 for sagittal plane flexion; p = 0.021 for scapular plane abduction). The shoulder kinematics after RTSA showed significant differences from the contralateral asymptomatic shoulders. Increased upward rotation and decreased SHR after RTSA indicate that RTSA shoulders use more scapulothoracic motion and less glenohumeral motion to elevate the arm.
Lee, Kwang Won; Kim, Ha Yong; Yang, Dae Suk; Lee, Gyu Sang; Choy, Won Sik
2016-01-01
Background There have been few reports on altered kinematics of the shoulder after reverse total shoulder arthroplasty (RTSA). We investigated differences in 3-dimensional (3D) scapular motions assessed using an optical tracking system between RTSA treated shoulders and asymptomatic contralateral shoulders during arm motion. Methods Thirteen patients who underwent RTSA were assessed for active arm elevation in 2 distinct elevation planes (sagittal plane flexion and scapular plane abduction). Their mean age was 72 years (range, 69 to 79 years) and the mean follow-up was 24.4 months (range, 13 to 48 months). The dominant side was the right side in all the 13 patients, and it was also the side treated with RTSA. Scapular kinematics was recorded with an optical tracking system. The scapular kinematics and the scapulohumeral rhythm (SHR) of the RTSA shoulders and asymptomatic contralateral shoulders were recorded and analyzed during arm elevation. Results There were no significant differences in internal/external rotation and anterior/posterior tilting of the scapula between shoulders during arm motion (p > 0.05). However, upward rotation of the scapula differed significantly during arm motion (p = 0.035 for sagittal plane flexion; p = 0.046 for scapular plane abduction). There were significant differences in the SHR between the two shoulders (p = 0.016 for sagittal plane flexion; p = 0.021 for scapular plane abduction). Conclusions The shoulder kinematics after RTSA showed significant differences from the contralateral asymptomatic shoulders. Increased upward rotation and decreased SHR after RTSA indicate that RTSA shoulders use more scapulothoracic motion and less glenohumeral motion to elevate the arm. PMID:27583116
Garn, Joshua V; Brumback, Babette A; Drews-Botsch, Carolyn D; Lash, Timothy L; Kramer, Michael R; Freeman, Matthew C
2016-09-01
We conducted a cluster-randomized water, sanitation, and hygiene trial in 185 schools in Nyanza province, Kenya. The trial, however, had imperfect school-level adherence at many schools. The primary goal of this study was to estimate the causal effects of school-level adherence to interventions on pupil diarrhea and soil-transmitted helminth infection. Schools were divided into water availability groups, which were then randomized separately into either water, sanitation, and hygiene intervention arms or a control arm. School-level adherence to the intervention was defined by the number of intervention components-water, latrines, soap-that had been adequately implemented. The outcomes of interest were pupil diarrhea and soil-transmitted helminth infection. We used a weighted generalized structural nested model to calculate prevalence ratio. In the water-scarce group, there was evidence of a reduced prevalence of diarrhea among pupils attending schools that adhered to two or to three intervention components (prevalence ratio = 0.28, 95% confidence interval: 0.10, 0.75), compared with what the prevalence would have been had the same schools instead adhered to zero components or one. In the water-available group, there was no evidence of reduced diarrhea with better adherence. For the soil-transmitted helminth infection and intensity outcomes, we often observed point estimates in the preventive direction with increasing intervention adherence, but primarily among girls, and the confidence intervals were often very wide. Our instrumental variable point estimates sometimes suggested protective effects with increased water, sanitation, and hygiene intervention adherence, although many of the estimates were imprecise.
Agricultural Practice and Regional Climate Interactions in a Coupled Land Surface Mesoscale Model
NASA Astrophysics Data System (ADS)
Cooley, H. S.; Riley, W. J.; Torn, M. S.
2003-12-01
Regional climate affects the timing of harvest for rain-fed crops. In response to dry conditions, for example, farmers may harvest crops earlier than they do under wet conditions. This removal of vegetation alters the land surface characteristics and may, in turn, affect regional climate conditions. We studied the dynamic relationship between land use practice, i.e. winter wheat harvest, and regional climate by applying a coupled climate (MM5) and land-surface (LSM1) model to the ARM-CART region of the Southern Great Plains. We compared early and late harvest scenarios, with winter wheat harvested on June 5 and July 5, respectively. Winter wheat is grown in a fairly uniform belt that accounts for 20% of the total land area over the domain of the ARM-CART. Results showed that harvest dramatically affects energy, momentum, and water fluxes. Regionally-averaged, 2 m air temperatures were 0.5-1\\deg C warmer in the early- compared to late-harvest case, with peak warming of 5\\deg C centered over the harvested area. Soils in the harvested area were drier and warmer in the top 10 cm. Near-surface soil water-filled pore space was reduced by 7% across the region, with a peak drying of 22% centered over the harvested area. Soils were up to 10\\deg C warmer, with area-averaged warming of ~0.6\\deg C at mid-day two weeks after harvest. Differences between scenarios were greatest during an initial two-week dry period. A subsequent wet period greatly reduced these differences.
Stergiou, G S; Tzamouranis, D; Nasothimiou, E G; Protogerou, A D
2008-11-01
An appropriate cuff according to the individual's arm circumference is recommended with all blood pressure (BP) monitors. An electronic device for home monitoring has been developed (Visomat Comfort 20/40) that estimates the individual's arm circumference by measuring the cuff filing volume and makes an adjustment of measured BP taking into account the estimated arm circumference. Thus the manufacturer recommends the use of a single cuff for arm circumference 23-43 cm. The device accuracy was assessed using the European Society of Hypertension International Protocol. Simultaneous BP measurements were obtained in 33 adults by two observers (connected mercury sphygmomanometers) four times, sequentially with three measurements taken using the tested device. Absolute device-observer BP differences were classified into < or =5, < or =10 and < or =15 mm Hg zones. For each participant the number of measurements with a difference < or =5 mm Hg was calculated. The device produced 60/89/97 measurements within 5/10/15 mm Hg respectively for systolic BP, and 72/97/98 for diastolic. Twenty-three subjects had at least two of their systolic BP differences < or =5 mm Hg and three had no differences < or =5 mm Hg (for diastolic 27 and 1, respectively). Mean device-observer BP difference (systolic/diastolic) was 3.7 +/- 5.6/-1.5 +/- 4.7 mm Hg (4.7 +/- 4.9/ - 1.7 +/- 4.3 in arm circumference 23-29 cm [39 readings] and 3.1 +/- 5.9/-1.4 +/- 5.0 in arm 30-34 cm [60 readings], P=NS). In conclusion, the device fulfils the International Protocol requirements and can be recommended for clinical use. Interestingly, the device was accurate using a single cuff in a wide range of arm circumference (23-34 cm). This study provides no information about the device accuracy in larger arms.
Franck, Johan Anton; Smeets, Rob Johannes Elise Marie; Seelen, Henk Alexander Maria
2018-01-09
To investigate the usability and effectiveness of a functional hand orthosis, combined with electrical stimulation adjunct to therapy-as-usual, on functional use of the moderately/severely impaired hand in sub-acute stroke patients. Single case experiment (A-B-A'-design) involving eight sub-acute stroke patients. The functional hand orthosis and electrical stimulation were used for six weeks, four days/week, 45'/day. Action_Research_Arm_Test, Intrinsic_Motivation_Inventory. At group level, patients improved 19.2 points (median value) (interquartile range: [8.8, 29.5] points) on the Action_Research_Arm_Test (p = 0.001). After correcting for spontaneous recovery and/or therapy-as-usual effects Action_Research_Arm_Test scores still improved significantly (median: 17.2 points; interquartile range: [5.1, 29.2] points) (p = 0.002). At individual level, six patients had improved as to arm-hand skill performance at follow-up (p < = 0.010). In one patient, arm-hand skill performance improvement did not attain statistical significance. In another patient, no arm-hand skill performance improvement was observed. Average Intrinsic_Motivation_Inventory sub-scores were between 4.6 and 6.3 (maximum: 7), except for 'perceived pressure/tension' (3.3). Sub-acute stroke patients who display only little/modest improvement on their capacity to perform daily activities, seem to benefit from training with a dynamic arm orthosis in combination with electrical stimulation. Patients' perceived intrinsic motivation and sense of self-regulation was high. Implications for rehabilitation Arm-hand training featuring the dynamic hand orthosis in combination with electrical stimulation shows a shift from no dexterity to dexterity. As to the users' experience regarding the dynamic hand orthosis, patients perceive a high-intrinsic motivation and sense of self-regulation. Combining the orthosis with electrical stimulation creates opportunities for a nonfunctional hand towards task-oriented training.
Selonen, Salla; Setälä, Heikki
2017-02-01
Despite the known toxicity of lead (Pb), Pb pellets are widely used at shotgun shooting ranges over the world. However, the impacts of Pb on soil nutrients and soil microbes, playing a crucial role in nutrient cycling, are poorly understood. Furthermore, it is unknown whether these impacts change with time after the cessation of shooting. To shed light on these issues, three study sites in the same coniferous forest in a shooting range area were studied: an uncontaminated control site and an active and an abandoned shooting range, both sharing a similar Pb pellet load in the soil, but the latter with a 20-year longer contamination history. Soil pH and nitrate concentration increased, whilst soil phosphate concentration and fungal phospholipid fatty acid (PLFA) decreased due to Pb contamination. Our results imply that shooting-derived Pb can influence soil nutrients and microbes not only directly but also indirectly by increasing soil pH. However, these mechanisms cannot be differentiated here. Many of the Pb-induced changes were most pronounced at the abandoned range, and nutrient leaching was increased only at that site. These results suggest that Pb disturbs the structure and functions of the soil system and impairs a crucial ecosystem service, the ability to retain nutrients. Furthermore, the risks of shooting-derived Pb to the environment increase with time.
8. VIEW, LOOKING SOUTHEAST, SHOWING DETAIL OF RANGE 3 TARGET ...
8. VIEW, LOOKING SOUTHEAST, SHOWING DETAIL OF RANGE 3 TARGET END, Interior - Winchester Repeating Arms Company, Tract K Shooting Range, 125 Munson Street (rear section), New Haven, New Haven County, CT
6. VIEW, LOOKING SOUTHEAST, SHOWING DETAIL OF RANGE 1 TARGET ...
6. VIEW, LOOKING SOUTHEAST, SHOWING DETAIL OF RANGE 1 TARGET END, Interior - Winchester Repeating Arms Company, Tract K Shooting Range, 125 Munson Street (rear section), New Haven, New Haven County, CT
Coupling Landform Evolution and Soil Pedogenesis - Initial Results From the SSSPAM5D Model
NASA Astrophysics Data System (ADS)
Willgoose, G. R.; Welivitiya, W. D. D. P.; Hancock, G. R.; Cohen, S.
2015-12-01
Evolution of soil on a dynamic landform is a crucial next step in landscape evolution modelling. Some attempts have been taken such as MILESD by Vanwalleghem et al. to develop a first model which is capable of simultaneously evolving both the soil profile and the landform. In previous work we have presented physically based models for soil pedogenesis, mARM and SSSPAM. In this study we present the results of coupling a landform evolution model with our SSSPAM5D soil pedogenesis model. In previous work the SSSPAM5D soil evolution model was used to identify trends of the soil profile evolution on a static landform. Two pedogenetic processes, namely (1) armouring due to erosion, and (2) physical and chemical weathering were used in those simulations to evolve the soil profile. By incorporating elevation changes (due to erosion and deposition) we have advanced the SSSPAM5D modelling framework into the realm of landscape evolution. Simulations have been run using elevation and soil grading data of the engineered landform (spoil heap) at the Ranger Uranium Mine, Northern Territory, Australia. The results obtained for the coupled landform-soil evolution simulations predict the erosion of high slope areas, development of rudimentary channel networks in the landform and deposition of sediments in lowland areas, and qualitatively consistent with landform evolution models on their own. Examination of the soil profile characteristics revealed that hill crests are weathering dominated and tend to develop a thick soil layer. The steeper hillslopes at the edge of the landform are erosion dominated with shallow soils while the foot slopes are deposition dominated with thick soil layers. The simulation results of our coupled landform and soil evolution model provide qualitatively correct and timely characterization of the soil evolution on a dynamic landscape. Finally we will compare the characteristics of erosion and deposition predicted by the coupled landform-soil SSSPAM landscape simulator, with landform evolution simulations using a static soil.
Sokal, Brad; Uswatte, Gitendra; Vogtle, Laura; Byrom, Ezekiel; Barman, Joydip
2015-01-01
In adults with hemiparesis amount of movement of the more-affected arm is related to its amount of use in daily life. In children, little is known about everyday arm use. This report examines the relationships between everyday movement of the more-affected arm and its (a) everyday use and (b) motor capacity in children with hemiparesis. Participants were 28 children with a wide range of upper-extremity hemiparesis subsequent to cerebral palsy due to pre- or peri-natal stroke. Everyday movement of the more-affected arm was assessed by putting accelerometers on the children's forearms for three days. Everyday use of that arm and its motor capacity were assessed with the Pediatric Motor Activity Log-Revised and Pediatric Arm Function Test, respectively. Intensity of everyday movement of the more-affected arm was correlated with its motor capacity (rs ≥ 0.52, ps ≤ 0.003). However, everyday movement of that arm was not correlated with its everyday use (rs ≤ 0.30, ps ≥ $ 0.126). In children with upper-extremity hemiparesis who meet the study intake criteria amount of movement of the more-affected arm in daily life is not related to its amount to use, suggesting that children differ from adults in this respect.
NASA Technical Reports Server (NTRS)
2008-01-01
This image, acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on Sol 7, the seventh day of the mission (June 1, 2008), shows the so-called 'Knave of Hearts' first-dig test area to the north of the lander. The Robotic Arm's scraping blade left a small horizontal depression above where the sample was taken. Scientists speculate that white material in the depression left by the dig could represent ice or salts that precipitated into the soil. This material is likely the same white material observed in the sample in the Robotic Arm's scoop. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Phoenix Test Sample Site in Color
NASA Technical Reports Server (NTRS)
2008-01-01
This color image, acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on Sol 7, the seventh day of the mission (June 1, 2008), shows the so-called 'Knave of Hearts' first-dig test area to the north of the lander. The Robotic Arm's scraping blade left a small horizontal depression above where the sample was taken. Scientists speculate that white material in the depression left by the dig could represent ice or salts that precipitated into the soil. This material is likely the same white material observed in the sample in the Robotic Arm's scoop. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.The Apocalyptic Premise: Nuclear Arms Debated.
ERIC Educational Resources Information Center
Lefever, Ernest W., Ed.; Hunt, E. Stephen, Ed.
This document contains 31 position papers that reflect a wide range of views on nuclear arms policy held by political leaders, religious authorities, scholars, policy experts, journalists, and political activists. Since no judgments are made, the reader is left to decide which arguments are most compelling. Each position paper is arranged into one…
Forearm versus upper arm grafts for vascular access.
Gage, Shawn M; Lawson, Jeffrey H
2017-03-06
Forearm and upper arm arteriovenous grafts perform similarly in terms of patency and complications. Primary patency at 1 year for forearm arteriovenous grafts versus upper arm grafts ranges from 22%-50% versus 22%-42%, and secondary patency at 1 year ranges from 78%-89% versus 52%-67%), respectively. Secondary patency at 2 years, ranges from 30%-64% versus 35%-60% for forearm and upper arteriovenous graft, respectively. Ample pre-operative planning is essential to improved clinical success and the decision to place a graft at one location versus the other should be based solely on previous access history, physical exam, appropriate venous imaging, and other factors that make up the clinical picture. Operative implant strategies and risk of complications are very similar between the two configurations. Postoperative ischemia due to steal syndrome is a potential complication that requires immediate attention. Utilization of the proximal radial or ulnar artery for inflow for the graft can minimize risk of clinically relevant steal syndrome.
Cooling Rate Determination in Additively Manufactured Aluminum Alloy 2219
NASA Astrophysics Data System (ADS)
Brice, Craig A.; Dennis, Noah
2015-05-01
Metallic additive manufacturing processes generally utilize a conduction mode, welding-type approach to create beads of deposited material that can be arranged into a three-dimensional structure. As with welding, the cooling rates in the molten pool are relatively rapid compared to traditional casting techniques. Determination of the cooling rate in the molten pool is critical for predicting the solidified microstructure and resultant properties. In this experiment, wire-fed electron beam additive manufacturing was used to melt aluminum alloy 2219 under different thermal boundary conditions. The dendrite arm spacing was measured in the remelted material, and this information was used to estimate cooling rates in the molten pool based on established empirical relationships. The results showed that the thermal boundary conditions have a significant effect on the resulting cooling rate in the molten pool. When thermal conduction is limited due to a small thermal sink, the dendrite arm spacing varies between 15 and 35 µm. When thermal conduction is active, the dendrite arm spacing varies between 6 and 12 µm. This range of dendrite arm spacing implies cooling rates ranging from 5 to 350 K/s. Cooling rates can vary greatly as thermal conditions change during deposition. A cooling rate at the higher end of the range could lead to significant deviation from microstructural equilibrium during solidification.
Floating-point performance of ARM cores and their efficiency in classical molecular dynamics
NASA Astrophysics Data System (ADS)
Nikolskiy, V.; Stegailov, V.
2016-02-01
Supercomputing of the exascale era is going to be inevitably limited by power efficiency. Nowadays different possible variants of CPU architectures are considered. Recently the development of ARM processors has come to the point when their floating point performance can be seriously considered for a range of scientific applications. In this work we present the analysis of the floating point performance of the latest ARM cores and their efficiency for the algorithms of classical molecular dynamics.
Visual control of robots using range images.
Pomares, Jorge; Gil, Pablo; Torres, Fernando
2010-01-01
In the last years, 3D-vision systems based on the time-of-flight (ToF) principle have gained more importance in order to obtain 3D information from the workspace. In this paper, an analysis of the use of 3D ToF cameras to guide a robot arm is performed. To do so, an adaptive method to simultaneous visual servo control and camera calibration is presented. Using this method a robot arm is guided by using range information obtained from a ToF camera. Furthermore, the self-calibration method obtains the adequate integration time to be used by the range camera in order to precisely determine the depth information.
Spirit Greets New Terrain, New Season on Mars
NASA Technical Reports Server (NTRS)
2006-01-01
In time to survive the Martian winter, NASA's Mars Exploration Rover Spirit has driven to and parked on a north-facing slope in the 'Columbia Hills.' This vantage point will optimize solar power during the upcoming winter season and maximize the vehicle's ability to communicate with the NASA Odyssey orbiter. Top science priorities for the coming months are a detailed, 360-degree panorama using all 13 filters of the panoramic camera, a study of surface and subsurface soil properties, and monitoring of the atmosphere and its changes. The planned subsurface soil experiments will be a first for the Mars Exploration Rover mission. To conduct the study, Spirit will use the brush on the rock abrasion tool to carefully sweep away soil, much the way an archaeologist uses a brush to uncover artifacts. At each level, Spirit will measure the mineral and chemical properties and assess the physical nature (such as grain size, texture, hardness) of the material, using the Athena science instruments on the robotic arm. Of particular interest are vertical variations in soil characteristics that may indicate water-related deposition of sulfates and other minerals. Panoramic images will provide important information about the nature and origin of surrounding rocks and soils. Spirit will also study the mineralogy of the surrounding terrain using the thermal emission spectrometer and search for surface changes caused by high winds. After the winter solstice in August, depending on energy levels, scientists may direct the rover to pivot around the disabled, right front wheel to get different targets within reach of the arm. When the winter season is over and solar energy levels rise again, scientists will direct Spirit to leave its winter campaign site and continue examining the 'Columbia Hills.' Spirit acquired the images in this mosaic with the navigation camera on the rover's 807th Martian day, or sol, of exploring Gusev Crater on Mars (April 11, 2006). Approaching from the east are the rover's tracks, including a shallow trench created by the dragging front wheel. On the horizon, in the center of the panorama, is 'McCool Hill.' This view is presented in a cylindrical projection with geometric seam correction.Eolian additions to late Quaternary alpine soils, Indian Peaks Wilderness Area, Colorado Front Range
Muhs, D.R.; Benedict, J.B.
2006-01-01
Surface horizons of many alpine soils on Quaternary deposits in high-mountain settings are enriched in silt. The origin of these particles has been debated, particularly in the Rocky Mountain region of North America. The most common explanations are frost shattering of coarser particles and eolian additions from distant sources. We studied soil A horizons on alpine moraines of late-glacial (Satanta Peak) age in the Colorado Front Range. Surface horizons of soils on these moraines are enriched in silt and have a particle size distribution that resembles loess and dust deposits found elsewhere. The compositions of sand and silt fractions of the soils were compared to possible local source rocks, using immobile trace elements Ti, Nb, Zr, Ce, and Y. The sand fractions of soils have a wide range of trace element ratios, similar to the range of values in the local biotite gneiss bedrock. In contrast, silt fractions have narrower ranges of trace element ratios that do not overlap the range of these ratios in biotite gneiss. The particle size and geochemical results support an interpretation that silts in these soils are derived from airborne dust. Eolian silts were most likely derived from distant sources, such as the semiarid North Park and Middle Park basins to the west. We hypothesize that much of the eolian influx to soils of the Front Range occurred during an early to mid-Holocene warm period, when sediment availability in semiarid source basins was at a maximum.
NASA Astrophysics Data System (ADS)
Wong, Fiona; Alegria, Henry A.; Jantunen, Liisa M.; Bidleman, Terry F.; Salvador-Figueroa, Miguel; Gold-Bouchot, Gerardo; Ceja-Moreno, Victor; Waliszewski, Stefan M.; Infanzon, Raul
The extent of organochlorine pesticides (OCs) contamination in southern Mexico was investigated in this study. Biweekly air samplings were carried out in two sites in the state of Chiapas (during 2002-2003), and one in each state of Veracruz and Tabasco (during 2003-2004). Corresponding to the air sampling locations, soil samples were also collected to gauge the soil-air exchange of OCs in the region. ∑DDTs in soils ranged from 0.057 to 360 ng g -1 whereas those in air ranged from 240 to 2400 pg m -3. DDT and metabolite DDE were expressed as fractional values, FDDTe = p, p'-DDT/( p, p'-DDT + p, p'-DDE) and FDDTo = p,p'-DDT/( p,p'-DDT + o,p'-DDT). FDDTe in soils ranged from 0.30 to 0.69 while those in air ranged from 0.45 to 0.84. FDDTe in air at a farm in Chiapas (0.84) was closer to that of technical DDT (0.95) which is suggestive of fresh DDT input. Enantiomer fractions (EF) of o,p'-DDT in air were racemic at all locations (0.500-0.504). However, nonracemic o,p'-DDT was seen in the soils (EFs = 0.456-0.647). Fugacities of OCs in soil ( fs) and air ( fa) were calculated, and the fugacity fraction, ff = fs/( fs + fa) of DDTs ranged from 0.013 to 0.97 which indicated a mix of net deposition ( ff < 0.5) and volatilization ( ff > 0.5) from soil among the sites. It is suggested that DDTs in Mexico air are due to a combination of ongoing regional usage and re-emission of old DDT residues from soils. Total toxaphene in soils ranged from 0.066 to 69 ng g -1 while levels in air ranged from 6.2 to 230 pg m -3. Chromatographic profiles of toxaphenes in both air and soil showed depletion of Parlar congeners 39 and 42. Fugacity fractions of toxaphene were within the equilibrium range or above the upper equilibrium threshold boundary. These findings suggested that soil emission of old residues is the main source of toxaphenes to the atmosphere. Results from this study provide baseline data for establishing a long-term OC monitoring program in Mexico.
Planet-driven Spiral Arms in Protoplanetary Disks. II. Implications
NASA Astrophysics Data System (ADS)
Bae, Jaehan; Zhu, Zhaohuan
2018-06-01
We examine whether various characteristics of planet-driven spiral arms can be used to constrain the masses of unseen planets and their positions within their disks. By carrying out two-dimensional hydrodynamic simulations varying planet mass and disk gas temperature, we find that a larger number of spiral arms form with a smaller planet mass and a lower disk temperature. A planet excites two or more spiral arms interior to its orbit for a range of disk temperatures characterized by the disk aspect ratio 0.04≤slant {(h/r)}p≤slant 0.15, whereas exterior to a planet’s orbit multiple spiral arms can form only in cold disks with {(h/r)}p≲ 0.06. Constraining the planet mass with the pitch angle of spiral arms requires accurate disk temperature measurements that might be challenging even with ALMA. However, the property that the pitch angle of planet-driven spiral arms decreases away from the planet can be a powerful diagnostic to determine whether the planet is located interior or exterior to the observed spirals. The arm-to-arm separations increase as a function of planet mass, consistent with previous studies; however, the exact slope depends on disk temperature as well as the radial location where the arm-to-arm separations are measured. We apply these diagnostics to the spiral arms seen in MWC 758 and Elias 2–27. As shown in Bae et al., planet-driven spiral arms can create concentric rings and gaps, which can produce a more dominant observable signature than spiral arms under certain circumstances. We discuss the observability of planet-driven spiral arms versus rings and gaps.
NASA Technical Reports Server (NTRS)
2004-01-01
This mosaic image shows an extreme close-up of round, blueberry-shaped formations in the martian soil near a part of the rock outcrop at Meridiani Planum called Stone Mountain. Scientists are studying these curious formations for clues about the area's past environmental conditions. The image, one of the highest resolution images ever taken by the microscopic imager, an instrument located on the Mars Exploration Rover Opportunity's instrument deployment device or 'arm.'
Bulgaria in European Security and Defense Policy
2013-03-01
simple message that, countries like Israel the U.S. and others are the "eternal enemy". Despite arms control and efforts to counter the proliferation...or alter its distribution; this will reduce the fish food source and trigger migration from mid- latitudes in the northern waters. Forests provide...have long-term effects on climate, soil, and their storage.4 Global food production, including genetically modified food, will continue to grow
Law of Armed Conflict Deskbook
2012-01-01
recorded as the first five books (Genesis, Exodus, Leviticus, Numbers, and Deuteronomy) of the Hebrew Bible , approximately 1400 B.C.. a. There is an...revenues for five years. The sum was ultimately paid under the watchful eye of Richard’s mother, Eleanor of Aquitaine, and he returned to English soil...Group, supposedly commanded by General Patton, in Kent, England across the English Channel from Calais. The desire was to mislead the Germans to
Centen, Andrew; Lowrey, Catherine R; Scott, Stephen H; Yeh, Ting-Ting; Mochizuki, George
2017-06-19
Spasticity is a common sequela of stroke. Traditional assessment methods include relatively coarse scales that may not capture all characteristics of elevated muscle tone. Thus, the aim of this study was to develop a tool to quantitatively assess post-stroke spasticity in the upper extremity. Ninety-six healthy individuals and 46 individuals with stroke participated in this study. The kinematic assessment of passive stretch (KAPS) protocol consisted of passive elbow stretch in flexion and extension across an 80° range in 5 movement durations. Seven parameters were identified and assessed to characterize spasticity (peak velocity, final angle, creep (or release), between-arm peak velocity difference, between-arm final angle, between-arm creep, and between-arm catch angle). The fastest movement duration (600 ms) was most effective at identifying impairment in each parameter associated with spasticity. A decrease in peak velocity during passive stretch between the affected and unaffected limb was most effective at identifying individuals as impaired. Spasticity was also associated with a decreased passive range (final angle) and a classic 'catch and release' as seen through between-arm catch and creep metrics. The KAPS protocol and robotic technology can provide a sensitive and quantitative assessment of post-stroke elbow spasticity not currently attainable through traditional measures.
Multifrequency remote sensing of soil moisture. [Guymon, Oklahoma and Dalhart, Texas
NASA Technical Reports Server (NTRS)
Theis, S. W.; Mcfarland, M. J.; Rosenthal, W. D.; Jones, C. L. (Principal Investigator)
1982-01-01
Multifrequency sensor data collected at Guymon, Oklahoma and Dalhart, Texas using NASA's C-130 aircraft were used to determine which of the all-weather microwave sensors demonstrated the highest correlation to surface soil moisture over optimal bare soil conditions, and to develop and test techniques which use visible/infrared sensors to compensate for the vegetation effect in this sensor's response to soil moisture. The L-band passive microwave radiometer was found to be the most suitable single sensor system to estimate soil moisture over bare fields. In comparison to other active and passive microwave sensors the L-band radiometer (1) was influenced least by ranges in surface roughness; (2) demonstrated the most sensitivity to soil moisture differences in terms of the range of return from the full range of soil moisture; and (3) was less sensitive to errors in measurement in relation to the range of sensor response. L-band emissivity related more strongly to soil moisture when moisture was expressed as percent of field capacity. The perpendicular vegetation index as determined from the visible/infrared sensors was useful as a measure of the vegetation effect on the L-band radiometer response to soil moisture.
Ekstrand, Elisabeth; Lexell, Jan; Brogårdh, Christina
2015-09-01
To evaluate the test-retest reliability of isometric and isokinetic muscle strength measurements in the upper extremity after stroke. A test-retest design. Forty-five persons with mild to moderate paresis in the upper extremity > 6 months post-stroke. Isometric arm strength (shoulder abduction, elbow flexion), isokinetic arm strength (elbow extension/flexion) and isometric grip strength were measured with electronic dynamometers. Reliability was evaluated with intra-class correlation coefficients (ICC), changes in the mean, standard error of measurements (SEM) and smallest real differences (SRD). Reliability was high (ICCs: 0.92-0.97). The absolute and relative (%) SEM ranged from 2.7 Nm (5.6%) to 3.0 Nm (9.4%) for isometric arm strength, 2.6 Nm (7.4%) to 2.9 Nm (12.6%) for isokinetic arm strength, and 22.3 N (7.6%) to 26.4 N (9.2%) for grip strength. The absolute and relative (%) SRD ranged from 7.5 Nm (15.5%) to 8.4 Nm (26.1%) for isometric arm strength, 7.1 Nm (20.6%) to 8.0 Nm (34.8%) for isokinetic arm strength, and 61.8 N (21.0%) to 73.3 N (25.6%) for grip strength. Muscle strength in the upper extremity can be reliably measured in persons with chronic stroke. Isometric measurements yield smaller measurement errors than isokinetic measurements and might be preferred, but the choice depends on the research question.
On hydrodynamics of drag and lift of the human arm.
Gardano, Paola; Dabnichki, Peter
2006-01-01
The work presents results on drag and lift measurement conducted in a low speed wind tunnel on a replica of the entire human arm. The selected model positions were identical to those during purely rotational front crawl stroke in quasi-static conditions. A computational fluid dynamics model using Fluent showed close correspondence with the experimental results and confirmed the suitability of low speed wind tunnel for the drag and lift measurement in quasi-static conditions. The obtained profiles of the hydrodynamic forces were similar to the dynamic data presented in an earlier study suggesting that shape drag is a major contributing factor in propulsive force generation. The aim of this study was to underline the importance of the entire arm analysis, the elbow angle and a newly defined angle of attack representing the angle of shoulder rotation. It was found that both the maximum value of the drag force at 160 degrees elbow flexion angle and the momentum generated by it exceed the respective magnitudes for the fully extended arm. The latter is underlined by a prolonged plateau of near maximum drag that was obtained at shoulder angle range of 50-140 degrees suggesting that optimal arm configuration in terms of propulsive force generation requires elbow flexion. Furthermore it was found that drag trend is not consistent with the widely assumed and used sinus wave profile. A gap in the existing experimental research was filled as for the first time the entire arm lift and drag was measured across the entire stroke range.
Forms of organic phosphorus in wetland soils
NASA Astrophysics Data System (ADS)
Cheesman, A. W.; Turner, B. L.; Reddy, K. R.
2014-12-01
Phosphorus (P) cycling in freshwater wetlands is dominated by biological mechanisms, yet there has been no comprehensive examination of the forms of biogenic P (i.e., forms derived from biological activity) in wetland soils. We used solution 31P NMR spectroscopy to identify and quantify P forms in surface soils of 28 palustrine wetlands spanning a range of climatic, hydrogeomorphic, and vegetation types. Total P concentrations ranged between 51 and 3516 μg P g-1, of which an average of 58% was extracted in a single-step NaOH-EDTA procedure. The extracts contained a broad range of P forms, including phosphomonoesters (averaging 24% of the total soil P), phosphodiesters (averaging 10% of total P), phosphonates (up to 4% of total P), and both pyrophosphate and long-chain polyphosphates (together averaging 6% of total P). Soil P composition was found to be dependant upon two key biogeochemical properties: organic matter content and pH. For example, stereoisomers of inositol hexakisphosphate were detected exclusively in acidic soils with high mineral content, while phosphonates were detected in soils from a broad range of vegetation and hydrogeomorphic types but only under acidic conditions. Conversely inorganic polyphosphates occurred in a broad range of wetland soils, and their abundance appears to reflect more broadly that of a "substantial" and presumably active microbial community with a significant relationship between total inorganic polyphosphates and microbial biomass P. We conclude that soil P composition varies markedly among freshwater wetlands but can be predicted by fundamental soil properties.
Forms of organic phosphorus in wetland soils
NASA Astrophysics Data System (ADS)
Cheesman, A. W.; Turner, B. L.; Reddy, K. R.
2014-06-01
Phosphorus (P) cycling in freshwater wetlands is dominated by biological mechanisms, yet there has been no comprehensive examination of the forms of biogenic P (i.e. forms derived from biological activity) in wetland soils. We used solution 31P NMR spectroscopy to identify and quantify P forms in surface soils of 28 palustrine wetlands spanning a range of climatic, hydro-geomorphic and vegetation types. Total P concentrations ranged between 51 and 3516 μg P g
Biogenic nitric oxide from wastewater land application
NASA Astrophysics Data System (ADS)
Rammon, Desirée A.; Peirce, J. Jeffrey
The importance of municipal wastewater land application to nitric oxide production and transport in soil was studied through the formulation and conduct of a comprehensive laboratory testing protocol. Nitric oxide (NO) is a precursor in the formation of tropospheric ozone which can directly impact public health and the environment. It is the uncertainty in the NO budget, and its relation to O 3, that motivates the need for measurements and modeling of NO flux from soils. Wastewater-amended soil is potentially one important component of that budget. NO emissions reported here were measured from: a well-characterized unamended soil, water-amended soil, and wastewater-amended soil in the laboratory in a dynamic test chamber. Laboratory results indicate that NO emissions from the selected sandy loam soil ranged from 0.3 to 0.4 ng N m -2 s -1 per cm 2 of unamended soil, while water-amended soil emissions ranged from 0.4 to 0.7 ng N m -2 s -1 per cm 2. NO flux from wastewater-amended soil ranged from 1.0 to 1.2 ng N m -2 s -1 per cm 2 of applied soil.
Looking for Changes in Soil over Time
NASA Technical Reports Server (NTRS)
2006-01-01
The grinding teeth have worn away on the rock abrasion tool of NASA's Mars Exploration Rover Spirit (after exposing interiors of five time more rock targets than its design goal of three rocks) but the tool still has useful wire bristles for brushing targets. In this image, a figure-eight-like imprint in the Martian soil marks the spot where Spirit has begun examining subsurface deposits layer by layer. The circular indentations resulted from brushing by the rock abrasion tool, one of several instruments on the rover's robotic arm. As an effective brushing tool it is now fulfilling a soil profiling experiment on a target called 'Progress.' The experiment is a multi-step process of carefully brushing away fine layers of soil and then using the Moessbauer and alpha particle X-ray spectrometers, microscopic imager, and panoramic camera to examine the exposed surfaces during the long Martian winter. This view is a mosaic of exposures taken by Spirit's microscopic imager during the rover's 830th Martian day (May 4, 2006). The total area shown is about 6 centimeters (2.4 inches) square.Römbke, J; Jänsch, S; Junker, T; Pohl, B; Scheffczyk, A; Schallnass, H-J
2007-05-01
Chemical bioavailability in Organisation for Economic Co-operation and Development (OECD) artificial soil can contrast with bioavailability in natural soils and produce ecotoxicologic benchmarks that are not representative of species' exposure conditions in the field. Initially, reproduction and growth of earthworm and Collembolan species, and early seedling growth of a dicotyledonous plant species, in nine natural soils (with a wide range of physicochemical properties) and in OECD soil were evaluated. Soils that supported reproduction and growth of the test species were then used to investigate the toxicity of tributyltin-oxide (TBT-O). Natural soils caused greater toxicity of TBT-O to earthworms (EC(50) values varied from 0.5 to 4.7 mg/kg soil dry weight [dw]) compared with toxicity in OECD soil (EC(50) = 13.4 mg/kg dw). Collembolans were less sensitive to TBT-O than earthworms in natural soils, with EC(50) values ranging from 23.4 to 177.8 mg/kg dw. In contrast, the toxicity of TBT-O to collembolans in OECD soil (EC(50) = 104.0 mg/kg dw) was within the range of EC(50) values in natural soils. Phytotoxicity tests revealed even greater difference between the effects in natural soils (EC(50) values ranged from 10.7 to 189.2 mg/kg dw) and in OECD soil (EC(50) = 535.5 mg/kg dw) compared with results of the earthworm tests. Studies also showed that EC(50) values were a more robust end point compared with EC(10) values based on comparisons of coefficients of variation. These results show that toxicity testing should include studies with natural soils in addition to OECD soil to better reflect exposure conditions in the field.
Nerz, Corinna; Schwickert, Lars; Becker, Clemens; Studier-Fischer, Stefan; Müßig, Janina Anna; Augat, Peter
2017-12-06
The incidence of proximal humeral fractures increases with age. The functional recovery of the upper arm after such fractures is slow, and results are often disappointing. Treatment is associated with long immobilisation periods. Evidence-based exercise guidelines are missing. Loss of muscle mass as well as reduced range of motion and motor performance are common consequences. These losses could be partly counteracted by training interventions using robot-assisted arm support of the affected arm derived from neurorehabilitation. Thus, shorter immobilisation could be reached. Thus far, this approach has been tested in only a few small studies. The aim of the present study is to examine whether assistive robotic training augmenting conventional occupational and physical therapy can improve functional shoulder outcomes. Patients aged between 35 and 66 years with proximal humeral fracture and surgical treatment will be recruited at three different clinics in Germany and randomised into an intervention group and a control group. Participants will be assessed before randomisation and followed after completing an intervention period of 3 weeks and additionally after 3, 6 and 12 months. The baseline assessment will include cognition (Short Orientation-Memory-Concentration Test); level of pain in the affected arm; ability to work; gait speed (10-m walk); disability of the arm, shoulder and hand (Disabilities of the Arm, Shoulder and Hand Outcome Measure [DASH]); range of motion of the affected arm (goniometer measurement); visual acuity; and motor function of orthopaedic patients (Wolf Motor Function Test-Orthopaedic version [WMFT-O]). Clinical follow-up directly after the intervention will include assessment of disability of the arm, shoulder and hand (DASH) as well as range of motion and motor function (WMFT-O). The primary outcome parameter will be the DASH, and the secondary outcome parameter will be the WMFT-O. The long-term results will be assessed prospectively by postal follow-up. All patients will receive conventional occupational and physical therapy. The intervention group will receive additional robot-assisted training using the Armeo®Spring robot for 3 weeks. This study protocol describes a phase II, randomised, controlled, single-blind, multicentre intervention study. The results will guide and possibly improve methods of rehabilitation after proximal humeral fracture. Clinicaltrials.gov, NCT03100201 . Registered on 28 March 2017.
Criscitiello, Carmen; Golshan, Mehra; Barry, William T; Viale, Giulia; Wong, Stephanie; Santangelo, Michele; Curigliano, Giuseppe
2018-05-04
We conducted a meta-analysis of randomised trials evaluating pathological complete response (pCR) and surgical outcomes after neoadjuvant systemic therapy (NST) in patients with early breast cancer (EBC). The primary outcome was breast-conserving surgery (BCT) rate. Secondary outcomes were pCR rate and association to BCT. Meta-analyses were performed using random effects models that use inverse-variance weighting for each treatment arm based on evaluable patients. Point estimates are reported with 95% confidence interval (CI), and p < 0.05 was considered statistically significant. Thirty-six studies were identified (N = 12,311 patients). We selected for the analysis 16 of 36 studies reporting both pCR and BCT for at least one treatment arm. Arms per study ranged from one to six; 42 independent units were available to evaluate the association between pCR and BCT. BCT rate ranged 5-76% across arms with an average BCT of 57% (95% CI 52-62%). Significant heterogeneity was observed among the trials (Cochrane Q = 787, p < 0.001, I 2 = 97%). In the meta-regression model, BCT rates were not significantly associated with year of first patient-in (p = 0.89), grade (p = 0.93) and hormone-receptor status (p = 0.39). Clinical N-stage (p = 0.01) and human epidermal growth factor receptor (HER2) status (p = 0.03) were significantly associated with BCT. pCR rate ranged 3-60% across studies. The average pCR across all study arms was 24% (95% CI 19-29%). No association was observed between pCR rate in a study arm and the resulting BCT rate in a univariate model (p = 0.34) nor after adjusting for HER2 and clinical nodal status (p = 0.82). In the subset of 14 multi-arm studies, no significant association was seen between the differences in pCR and BCT between treatment arms (p = 0.27). pCR does not increase BCT in patients receiving NST for EBC. Copyright © 2018 Elsevier Ltd. All rights reserved.
Shibata, Nobuyuki; Hosoya, Naoki; Maeda, Setsuo
2008-12-01
Prolonged exposure to hand-arm vibration (HAV) due to use of hand-held power tools leads to an increased occurrence of symptoms of disorders in the vascular, neurological, and osteo-articular systems of the upper limbs called hand-arm vibration syndrome (HAVS). Biodynamic responses of the hand-arm system to vibration can be suggestive parameters that give us better assessment of exposure to HAV and fundamental data for design of low-vibration-exposure power tools. Recently, a single axis hand-arm vibration system has been installed in the Japan National Institute of Occupational Safety and Health (NIOSH). The aims of this study were to obtain the fundamental dynamic characteristics of an instrumented handle and to validate the performance and measurement accuracy of the system applied to dynamic response measurement. A pseudo-random vibration signal with a frequency range of 5-1,250 Hz and a power spectrum density of 1.0 (m/s2)2/Hz was used in this study. First the dynamic response of the instrumented handle without any weight was measured. After this measurement, the dynamic response measurement of the handle with weights mounted on the handle was performed. The apparent mass of a weight itself was obtained by using the mass cancellation method. The mass of the measuring cap on the instrumented handle was well compensated by using the mass cancellation method. Based on the 10% error tolerance, this handle can reliably measure the dynamic response represented by an apparent mass with a minimum weight of 2.0 g in a frequency range of 10.0 to 1,000 Hz. A marked increase in the AM magnitude of the weights of 15 g and 20 g in frequency ranges greater than 800 Hz is attributed not to the fundamental resonance frequency of the handle with weights, but to the fixation of the weight to the measuring cap. In this aspect, the peak of the AM magnitude can be reduced and hence should not be an obstacle to the biodynamic response measurement of the human hand-arm system. On the basis of the results obtained in this study, we conclude that this hand-arm vibration test system can be used to measure biodynamic response parameters of the human hand-arm system.
Caldwell, Andral W.; Falls, W. Fred; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2011-01-01
Soil gas and soil were assessed for contaminants at the Patterson Anti-Tank Range at Fort Gordon, Georgia, from October 2009 to September 2010. The assessment included identifying and delineating organic contaminants present in soil-gas samplers from the area estimated to be the Patterson Anti-Tank Range and in the hyporheic zone and floodplain of Brier Creek. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samplers in the hyporheic zone and floodplain of Brier Creek contained total petroleum hydrocarbons, benzene, octane, and pentadecane concentrations above method detection levels. All soil-gas samplers within the boundary of the Patterson Anti-Tank Range contained total petroleum hydrocarbons above the method detection level. The highest total petroleum hydrocarbon mass detected was 147.09 micrograms in a soil-gas sampler located near the middle of the site and near the remnants of a manmade earthen mound and trench. The highest toluene mass detected was 1.04 micrograms and was located in the center of the Patterson Anti-Tank Range and coincides with a manmade earthen mound. Some soil-gas samplers installed detected undecane masses greater than the method detection level of 0.04 microgram, with the highest detection of soil-gas undecane mass of 58.64 micrograms collected along the southern boundary of the site. Some soil-gas samplers were installed in areas of high-contaminant mass to assess for explosives and chemical agents. Explosives or chemical agents were not detected above their respective method detection levels for all soil-gas samplers installed.
A satellite orbital testbed for SATCOM using mobile robots
NASA Astrophysics Data System (ADS)
Shen, Dan; Lu, Wenjie; Wang, Zhonghai; Jia, Bin; Wang, Gang; Wang, Tao; Chen, Genshe; Blasch, Erik; Pham, Khanh
2016-05-01
This paper develops and evaluates a satellite orbital testbed (SOT) for satellite communications (SATCOM). SOT can emulate the 3D satellite orbit using the omni-wheeled robots and a robotic arm. The 3D motion of satellite is partitioned into the movements in the equatorial plane and the up-down motions in the vertical plane. The former actions are emulated by omni-wheeled robots while the up-down motions are performed by a stepped-motor-controlled-ball along a rod (robotic arm), which is attached to the robot. The emulated satellite positions will go to the measure model, whose results will be used to perform multiple space object tracking. Then the tracking results will go to the maneuver detection and collision alert. The satellite maneuver commands will be translated to robots commands and robotic arm commands. In SATCOM, the effects of jamming depend on the range and angles of the positions of satellite transponder relative to the jamming satellite. We extend the SOT to include USRP transceivers. In the extended SOT, the relative ranges and angles are implemented using omni-wheeled robots and robotic arms.
Basunia, S; Landsberger, S
2001-10-01
Pantex firing range soil samples were analyzed for Pb, Cu, Sb, Zn, and As. One hundred ninety-seven samples were collected from the firing range and vicinity area. There was a lack of knowledge about the distribution of Pb in the firing range, so a random sampling with proportional allocation was chosen. Concentration levels of Pb and Cu in the firing range were found to be in the range of 11-4675 and 13-359 mg/kg, respectively. Concentration levels of Sb were found to be in the range of 1-517 mg/kg. However, the Zn and As concentration levels were close to average soil background levels. The Sn concentration level was expected to be higher in the Pantex firing range soil samples. However, it was found to be below the neutron activation analysis (NAA) detection limit of 75 mg/kg. Enrichment factor analysis showed that Pb and Sb were highly enriched in the firing range with average magnitudes of 55 and 90, respectively. Cu was enriched approximately 6 times more than the usual soil concentration levels. Toxicity characteristic leaching procedure (TCLP) was carried out on size-fractionated homogeneous soil samples. The concentration levels of Pb in leachates were found to be approximately 12 times higher than the U.S. Environmental Protection Agency (EPA) regulatory concentration level of 5 mg/L. Sequential extraction (SE) was also performed to characterize Pb and other trace elements into five different fractions. The highest Pb fraction was found with organic matter in the soil.
Fayiga, A O; Saha, U K
2016-09-01
The total lead (Pb) concentrations of the surface soil, sub surface soil, vegetation and surface waters of outdoor shooting ranges are extremely high and above regulatory limits. Lead is dangerous at high concentrations and can cause a variety of serious health problems. Shooters and range workers are exposed to lead dust and can even take Pb dust home to their families while some animals around the shooting range can ingest the Pb bullets. The toxicity of Pb depends on its bioavailability which has been determined to be influenced greatly by the geochemical properties of each site. The bioavailability of Pb in shooting ranges has been found to be higher than other metal contaminated soils probably because of its very low residual Pb (<1%). Despite being an immobile element in the soil, migration of Pb within shooting ranges and offsite has been reported in literature. Best management practices to reduce mobility of Pb in shooting ranges involve an integrated Pb management program which has been described in the paper. The adoption of the non-toxic "green bullet" which has been developed to replace Pb bullets may reduce or prevent environmental pollution at shooting ranges. However, the contaminated soil resulting from decades of operation of several shooting ranges still needs to be restored to its natural state. Copyright © 2016 Elsevier Ltd. All rights reserved.
Continuous recognition of spatial and nonspatial stimuli in hippocampal-lesioned rats.
Jackson-Smith, P; Kesner, R P; Chiba, A A
1993-03-01
The present experiments compared the performance of hippocampal-lesioned rats to control rats on a spatial continuous recognition task and an analogous nonspatial task with similar processing demands. Daily sessions for Experiment 1 involved sequential presentation of individual arms on a 12-arm radial maze. Each arm contained a Froot Loop reinforcement the first time it was presented, and latency to traverse the arm was measured. A subset of the arms were repeated, but did not contain reinforcement. Repeated arms were presented with lags ranging from 0 to 6 (0 to 6 different arm presentations occurred between the first and the repeated presentation). Difference scores were computed by subtracting the latency on first presentations from the latency on repeated presentations, and these scores were high in all rats prior to surgery, with a decreasing function across lag. There were no differences in performance following cortical control or sham surgery. However, there was a total deficit in performance following large electrolytic lesions of the hippocampus. The second experiment employed the same continuous recognition memory procedure, but used three-dimensional visual objects (toys, junk items, etc., in various shapes, sizes, and textures) as stimuli on a flat runway. As in Experiment 1, the stimuli were presented successively and latency to run to and move the object was measured. Objects were repeated with lags ranging from 0 to 4. Performance on this task following surgery did not differ from performance prior to surgery for either the control group or the hippocampal lesion group. These results provide support for Kesner's attribute model of hippocampal function in that the hippocampus is assumed to mediate data-based memory for spatial locations, but not three-dimensional visual objects.
Wang, Yucheng; Chen, Kangwu; Chen, Hao; Zhang, Kai; Lu, Jian; Mao, Haiqing; Yang, Huilin
2018-06-06
This retrospective cohort study aims to evaluate the effects of introducing the O-arm-based navigation technique into the traditional posterior lumbar interbody fusion (PLIF) procedure treating elderly patients with three-level lumbar degenerative diseases. Forty-one consecutive elderly patients were enrolled according to the criteria. There were 21 patients in the free-hand group and 20 patients in the O-arm group. Both two groups underwent the PLIF with or without the O-arm-based navigation technique. The demographic features, clinical data and outcomes, and radiological information were collected for further analysis. The average follow-up time was 18.3 (range, 12-28) months in the free-hand group and 16.7 (range, 12-24) months in the O-arm group. Comparison between two groups revealed no significant difference regarding demographic features. The operation time took in the navigation group was significantly less than that in the free-hand group (222.55 ± 38.00 mins versus 255.19 ± 40.26 mins, P < 0.05). Both VAS and ODI were improved post-operatively in two groups while comparison between groups showed no difference. The accuracy rate of pedicle screw positioning was 88.7% in the free-hand group to 96.9% in the O-arm group (P < 0.05). The O-arm-based navigation is an efficacious auxiliary technique which could significantly improve the accuracy of pedicle screw insertion, especially in cases of patients with complex anatomic degenerative diseases, without sacrificing the feasibility and reliable outcome of traditional PLIF.
Brion, A; Mahé, B; Kolb, B; Audhuy, B; Colombat, P; Maisonneuve, H; Foussard, C; Bureau, A; Ferrand, C; Lesesve, J F; Béné, M C; Feugier, P
2012-04-01
The relevance of high-dose chemotherapy followed by auto-SCT in CLL remains to be defined. The aim of the prospective, randomized, GOELAMS LLC 98 trial was to compare two strategies in previously untreated CLL patients aged <60 years. Conventional chemotherapy (Arm A) consisted of six monthly courses of CHOP followed by six CHOP courses in every 3 months in those achieving a complete or PR. Arm A was compared with high-dose therapy with auto-SCT (Arm B), used as consolidation after three CHOP courses in case of CR or very good PR. A total of 86 patients were enrolled, of which 39 and 43 patients were evaluable in arm A and arm B, respectively. The primary endpoint was PFS. On an intent-to-treat basis and with a median follow-up time of 77.1 (range 1-135.5) months, the median PFS was 22 months in Arm A and 53 months in Arm B (P<0.0001). Median survival time was 104.7 months in arm A and 107.4 months in arm B. This trial demonstrates that frontline high-dose therapy with auto-SCT prolongs PFS but does not translate into a survival advantage in advanced CLL patients in the pre-rituximab era.
Gas and stellar spiral arms and their offsets in the grand-design spiral galaxy M51
NASA Astrophysics Data System (ADS)
Egusa, Fumi; Mentuch Cooper, Erin; Koda, Jin; Baba, Junichi
2017-02-01
Theoretical studies on the response of interstellar gas to a gravitational potential disc with a quasi-stationary spiral arm pattern suggest that the gas experiences a sudden compression due to standing shock waves at spiral arms. This mechanism, called a galactic shock wave, predicts that gas spiral arms move from downstream to upstream of stellar arms with increasing radius inside a corotation radius. In order to investigate if this mechanism is at work in the grand-design spiral galaxy M51, we have measured azimuthal offsets between the peaks of stellar mass and gas mass distributions in its two spiral arms. The stellar mass distribution is created by the spatially resolved spectral energy distribution fitting to optical and near-infrared images, while the gas mass distribution is obtained by high-resolution CO and H I data. For the inner region (r ≤ 150 arcsec), we find that one arm is consistent with the galactic shock while the other is not. For the outer region, results are less certain due to the narrower range of offset values, the weakness of stellar arms, and the smaller number of successful offset measurements. The results suggest that the nature of two inner spiral arms is different, which is likely due to an interaction with the companion galaxy.
Developing a 3-DOF Compliant Perching Arm for a Free-Flying Robot on the International Space Station
NASA Technical Reports Server (NTRS)
Park, In-Won; Smith, Marion F.; Sanchez, Hugo S.; Wong, Sze Wun; Piacenza, Pedro; Ciocarlie, Matei
2017-01-01
This paper presents the design and control of the 3-DOF compliant perching arm for the free-flying Astrobee robots that will operate inside the International Space Station (ISS). The robots are intended to serve as a flexible platform for future guest scientists to use for zero-gravity robotics research - thus, the arm is designed to support manipulation research. It provides a 1-DOF underactuated tendon-driven gripper capable of enveloping a range of objects of different shapes and sizes. Co-located RGB camera and LIDAR sensors provide perception. The Astrobee robots will be capable of grasping each other in flight, to simulate orbital capture scenarios. The arm's end-effector module is swappable on-orbit, allowing guest scientists to add upgraded grippers, or even additional arm degrees of freedom. The design of the arm balances research capabilities with Astrobee's operational need to perch on ISS handrails to reduce power consumption. Basic arm functioning and grip strength were evaluated using an integrated Astrobee prototype riding on a low-friction air bearing.
Grover-Páez, Fernando; Cardona-Muñoz, Ernesto G; Cardona-Müller, David; Guzmán-Saldívar, Víctor H; Rodríguez-De la Cerda, Mariana; Jiménez-Cázarez, Mayra B; Totsuka-Sutto, Sylvia E; Alanis-Sánchez, Guillermo A; Ramos-Becerra, Carlos G
2017-12-01
The aim of this study was to determine the accuracy of the Omron HEM-7320-LA with Intelli Wrap technology cuff HEM-FL1 for self-measurement and clinic blood pressure (BP) measurement according to the European Society of Hypertension International Protocol revision 2010. The evaluation was performed in 39 individuals. The mean age of the participants was 47.9±14 years; systolic BP was 145.2±24.3 mmHg (range: 97-190), diastolic BP was 90.9±12.9 mmHg (range: 68-120), and arm circumference was 30.8±4 cm (range: 25-38.5). The device successfully fulfilled the established criteria of the validation protocol. The device overestimated systolic BP by 0.6±5.7 mmHg and diastolic BP by 2.2±5.1 mmHg. The specially designed cuff HEM-FL1 to cover a broad range of arm circumferences and self-placement fulfilled the requirements of the International Protocol.
Phytoextraction of lead from firing range soils with Vetiver grass
E. W. Wilde; R. L. Brigmon; D. L. Dunn; M. A. Heitkamp; D. C. Dagnan
2007-01-01
Vetiver grass (Vetiveria zizanoides) along with soil amendments were evaluated for phytoextraction of lead and other metals (zinc, copper, and iron) from the soil of an active firing range at the Savannah River Site, SC. Lead-contaminated soil (300-4,500 ppm/kg) was collected, dried, placed in pots, fertilized, and used as a medium for growing...
Smith, James R A; Amirfeyz, Rouin
2016-05-01
Rehabilitation protocols after distal biceps repair are highly variable, with many surgeons favoring at least 2 weeks of immobilization. Is this conservative approach necessary to protect the repair? This was a consecutive series of 22 distal biceps tendon repairs in which a cortical button system was used. Patients were encouraged to mobilize their elbow actively from the day of surgery. Physiotherapy commenced at 3 weeks, with strengthening exercises when full range of movement (ROM) was achieved. The primary outcome measured was the clinical integrity of the repaired tendon. Secondary outcomes comprised wound or nerve complication, elbow ROM, and patient-reported outcome measures (the 11-item version of the Disabilities of Arm, Shoulder and Hand, Mayo Elbow Performance Index, and Oxford Elbow Score). All patients were male, and the dominant arm was repaired in 60%. Mean age was 40.6 years (range, 27-62 years), and mean time to surgery was 17 days (range, 5-99 days). Mean follow-up was 16.6 months (range, 3.8-29 months). All tendons were clinically intact at time of review. No wound breakdown occurred. Mean extension was -6° (range, -10° to 10°), and flexion was 144° (range, 135°-150°). All patients achieved full pronosupination. ROM was equivalent to the uninjured arm (P = .7). The mean 11-item version of the Disabilities of Arm, Shoulder and Hand score was 2.7 (range, 0-15.9), the Mayo Elbow Performance Index was 97.8 (range, 70-100), and the Oxford Elbow Score was 46.9 (range, 43-48) at the latest follow-up. One-third of patients experienced a transient sensory neurapraxia. Immediate mobilization after biceps tendon repair with a cortical button is possible, and in this series was not associated with failure of the repair, wound breakdown, or patient dissatisfaction. However, this series emphasizes the high incidence of nerve complication that can be associated with the single transverse incision technique. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Salam, Mir Md Abdus; Kaipiainen, Erik; Mohsin, Muhammad; Villa, Aki; Kuittinen, Suvi; Pulkkinen, Pertti; Pelkonen, Paavo; Mehtätalo, Lauri; Pappinen, Ari
2016-12-01
Salix schwerinii was tested in a pot experiment to assess plant growth performance i.e., relative height and dry biomass and the potential for heavy metal uptake in soils polluted with chromium, zinc, copper, nickel and total petroleum hydrocarbons. The soil used in the pot experiment was collected from a landfill area in Finland. Peat soil was added at different quantities to the polluted soil to stimulate plant growth. The plants were irrigated with tap water or processed water (municipal waste water) to further investigate the effects of nutrient loading on plant biomass growth. The soil was treated at two pH levels (4 and 6). The results showed that the addition of 40-70% peat soil at pH 6 to a polluted soil, and irrigation with processed water accelerated plant growth and phytoextraction efficiency. In the pot experiment, Salix grown in chromium, zinc, copper, nickel and total petroleum hydrocarbons -contaminated field soil for 141 days were unaffected by the contaminated soil and took up excess nutrients from the soil and water. Total mean chromium concentration in the plant organs ranged from 17.05 to 250.45 mg kg -1 , mean zinc concentration ranged from 142.32 to 1616.59 mg kg -1 , mean copper concentration ranged from 12.11 to 223.74 mg kg -1 and mean nickel concentration ranged from 10.11 to 75.90 mg kg -1 . Mean chromium concentration in the plant organs ranged from 46 to 94%, mean zinc concentration ranged from 44 to 76%, mean copper concentration ranged from 19 to 54% and mean nickel concentration ranged from 8 to 21% across all treatments. Under the different treatments, chromium was taken up by Salix in the largest quantities, followed by zinc, copper and nickel respectively. Salix also produced a moderate reduction in total petroleum total petroleum hydrocarbons in the polluted soil. The results from the pot experiment suggest that Salix schwerinii has the potential to accumulate significant amounts of chromium, zinc, copper and nickel. However, long term research is needed to verify the phytoextraction abilities of Salix observed in the pot experiment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vanadium bioavailability and toxicity to soil microorganisms and plants.
Larsson, Maja A; Baken, Stijn; Gustafsson, Jon Petter; Hadialhejazi, Golshid; Smolders, Erik
2013-10-01
Vanadium, V, is a redox-sensitive metal that in solution, under aerobic conditions, prevails as the oxyanion vanadate(V). There is little known regarding vanadium toxicity to soil biota, and the present study was set up to determine the toxicity of added vanadate to soil organisms and to investigate the relationship between toxicity and vanadium sorption in soils. Five soils with contrasting properties were spiked with 7 different doses (3.2-3200 mg V kg(-1)) of dissolved vanadate, and toxicity was measured with 2 microbial and 3 plant assays. The median effective concentration (EC50) thresholds of the microbial assays ranged from 28 mg added V kg(-1) to 690 mg added V kg(-1), and the EC50s in the plant assays ranged from 18 mg added V kg(-1) to 510 mg added V kg(-1). The lower thresholds were in the concentration range of the background vanadium in the untreated control soils (15-58 mg V kg(-1)). The vanadium toxicity to plants decreased with a stronger soil vanadium sorption strength. The EC50 values for plants expressed on a soil solution basis ranged from 0.8 mg V L(-1) to 15 mg V L(-1) and were less variable among soils than corresponding values based on total vanadium in soil. It is concluded that sorption decreases the toxicity of added vanadate and that soil solution vanadium is a more robust measure to determine critical vanadium concentrations across soils. © 2013 SETAC.
NASA Astrophysics Data System (ADS)
Taylor, M. D.; Mackay, A. D.; Dominati, E.; Hill, R. B.
2012-04-01
This paper presents the process used to review soil quality monitoring in New Zealand to better align indicators and indicator target ranges with critical values of change in soil function. Since its inception in New Zealand 15 year ago, soil quality monitoring has become an important state of the environment reporting tool for Regional Councils. This tool assists councils to track the condition of soils resources, assess the impact of different land management practices, and provide timely warning of emerging issues to allow early intervention and avoid irreversible loss of natural capital stocks. Critical to the effectiveness of soil quality monitoring is setting relevant, validated thresholds or target ranges. Provisional Target Ranges were set in 2003 using expert knowledge available and data on production responses. Little information was available at that time for setting targets for soil natural capital stocks other than those for food production. The intention was to revise these provisional ranges as further information became available and extend target ranges to cover the regulating and cultural services provided by soils. A recently developed ecosystems service framework was used to explore the feasibility of linking soil natural capital stocks measured by the current suite of soil quality indicators to the provision of ecosystem services by soils. Importantly the new approach builds on and utilises the time series data sets collected by current suite of soil quality indicators, adding value to the current effort, and has the potential to set targets ranges based on the economic and environmental outcomes required for a given farm, catchment or region. It is now timely to develop a further group of environmental indicators for measuring specific soil issues. As with the soil quality indicators, these environmental indicators would be aligned with the provision of ecosystem services. The toolbox envisaged is a set of indicators for specific soil issues with appropriate targets tied to ecosystem services and changes in critical soil function. Such indicators would be used for specific purposes for limited periods, rather than long-term, continuous monitoring. Some examples will be presented. An important step needed to successfully initiate and complete the review was assigning national oversight. Reigniting scientific interest (which had declined with the cessation of funding in 2003) and documentation of the process were other important steps. We had to extend the recently developed ecosystem service approach to accommodate the catchment scale. This required additional attributes in the framework and recognition that some of the proxies will change with scale as will the techniques to value the services. The framework was originally developed for use at the farm scale. Macroporosity, one of the two indicators used to monitor the physical condition of the soil, was used to illustrate how the ecosystem service framework could be used to link a change in the physical condition of the soil with the provision of services. The sum of the dollar values of selected soil ecosystem services were used to inform the state of soil natural capital stocks. This estimate provides a new insight into the value of the soil quality indicators and existing target ranges. Doing so will enable targets to be more closely aligned and integrated with the provision of a range of ecosystem services, going far beyond food production.
Water at the Phoenix landing site
NASA Astrophysics Data System (ADS)
Smith, Peter Hollingsworth
The Phoenix mission investigated patterned ground and climate in the northern arctic region of Mars for 5 months starting May 25, 2008. A shallow ice table was uncovered by the robotic arm in a nearby polygon's edge and center at depths of 5-15 cm. In late summer snowfall and frost blanket the surface at night; water ice and vapor constantly interact with the soil. Analysis reveals an alkaline Ph with CaCO 3 , aqueous minerals, and salts making up several wt% of the soil; liquid water is implicated as having been important in creating these components. In combination with the oxidant perchlorate (~1 wt%), an energy source for terrestrial microbes, and a prior epoch of higher temperatures and humidity, this region may have been a habitable zone.
Conductivity Probe Inserted in Martian Soil, Sol 46
NASA Technical Reports Server (NTRS)
2008-01-01
This image taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander shows the lander's Thermal and Electrical Conductivity Probe (TECP), at the end of the Robotic Arm, on the 46th Martian day, or sol, of the mission (July 11, 2008). The TECP is inserted at a site called Vestri, which was monitored several times over the course of the mission. The probe's measurements at this site yielded evidence that water was exchanged, daily and seasonally, between the soil and atmosphere. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.La Delfa, Nicholas J; Potvin, Jim R
2017-03-01
This paper describes the development of a novel method (termed the 'Arm Force Field' or 'AFF') to predict manual arm strength (MAS) for a wide range of body orientations, hand locations and any force direction. This method used an artificial neural network (ANN) to predict the effects of hand location and force direction on MAS, and included a method to estimate the contribution of the arm's weight to the predicted strength. The AFF method predicted the MAS values very well (r 2 = 0.97, RMSD = 5.2 N, n = 456) and maintained good generalizability with external test data (r 2 = 0.842, RMSD = 13.1 N, n = 80). The AFF can be readily integrated within any DHM ergonomics software, and appears to be a more robust, reliable and valid method of estimating the strength capabilities of the arm, when compared to current approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jones, R. T.; McGlynn, B. L.; McDermott, T.; Dore, J. E.
2015-12-01
Gas concentrations (CH4, CO2, N2O, and O2), soil properties (soil water content and pH), and microbial community composition were measured from soils at 32 sites across the Stringer Creek Watershed in the Tenderfoot Creek Experimental Forest 7 times between June 3, 2013 and September 20, 2013. Soils were fully saturated during the initial sampling period and dried down over the course of the summer. Soils and gas were sampled from 5cm and 20cm at each site and also at 50cm at eight riparian sites. In total, 496 individual soil samples were collected. Soil moisture ranged from 3.7% to fully saturated; soil pH ranged from 3.60 to 6.68. Methane concentrations in soils ranged from 0.426 ppm to 218 ppm; Carbon dioxide concentrations ranged from 550 ppm to 42,990 ppm; Nitrous oxide concentrations ranged from 0.220 ppm to 2.111 ppm; Oxygen concentrations ranged from 10.2% to 21.5%. Soil microbial communities were characterized by DNA sequences covering the V4 region of the 16S rRNA gene. DNA sequences were generated (~30,000,000 sequences) from the 496 soil samples using the Illumina MiSeq platform. Operational Taxonomic Units were generated using USEARCH, and representative sequences were taxonomically classified according the Ribosomal Database Project's taxonomy scheme. Analysis of similarity revealed that microbial communities found within a landscape type (high upland forest, low upland forest, riparian) were more similar than among landscape types (R = 0.600; p<0.001). Similarly, communities from unique site x depths were similar across the 7 collection periods (R = 0.646; p<0.001) despite changes in soil moisture. Euclidean distances of soil properties and gas concentrations were compared to Bray-Curtis community dissimilarity matrices using Mantel tests to determine how community structure co-varies with the soil environment and gas concentrations. All variables measured significantly co-varied with microbial community membership (pH: R = 0.712, p < 0.001; CO2: R = 0.578, p < 0.001; O2: R = 0.517, p < 0.001; Soil moisture: R = 0.408, p < 0.001; N2O: R = 0.218, p = 0.003; CH4: R = 0.195, p = 0.008). Despite the rather low co-variation between methane concentrations and microbial community composition, relative abundances of methanotrophic and methanogenic lineages did co-vary strongly with methane concentrations.
WE-EF-207-02: The Rotate-Plus-Shift C-Arm Trajectory: Theory and First Clinical Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritschl, L; Kachelriess, M; Kuntz, J
Purpose: The proposed method enables the acquisition of a complete dataset for 3D reconstruction of C-Arm data using less than 180° rotation. Methods: Typically a C–arm cone–beam CT scan is performed using a circle–like trajectory around a region of interest. Therefore an angular range of at least 180° plus fan–angle must be covered to ensure a completely sampled data set. This fact defines some constraints on the geometry and technical specifications of a C–arm system, for example a larger C radius or a smaller C opening respectively. This is even more important for mobile C-arm devices which are typically usedmore » in surgical applications.To overcome these limitations we propose a new trajectory which requires only 180° minusfan–angle of rotation for a complete data set. The trajectory consists of three parts: A rotation of the C around a defined iso–center and two translational movements parallel to the detector plane at the begin and at the end of the rotation (rotate plus shift trajectory). This enables the acquisition of a completely sampled dataset using only 180° minus fan–angle of rotation. Results: For the evaluation of the method we show simulated and measured data. The results show, that the rotate plus shift scan yields equivalent image quality compared to the short scan which is assumed to be the gold standard for C-arm CT today. Compared to the pure rotational scan over only 165°, the rotate plus shift scan shows strong improvements in image quality. Conclusion: The proposed method makes 3D imaging using C–arms with less than 180° rotation range possible. This enables integrating full 3D functionality into a C- arm device without any loss of handling and usability for 2D imaging.« less
Stereo View of Phoenix Test Sample Site
NASA Technical Reports Server (NTRS)
2008-01-01
This anaglyph image, acquired by NASA's Phoenix Lander's Surface Stereo Imager on Sol 7, the seventh day of the mission (June 1, 2008), shows a stereoscopic 3D view of the so-called 'Knave of Hearts' first-dig test area to the north of the lander. The Robotic Arm's scraping blade left a small horizontal depression above where the sample was taken. Scientists speculate that white material in the depression left by the dig could represent ice or salts that precipitated into the soil. This material is likely the same white material observed in the sample in the Robotic Arm's scoop. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrado, C L; Hamilton, T F; Robison, W L
1999-01-01
The US conducted a series of nuclear tests from 1946 to 1958 at Bikini, a coral atoll, in the Marshall Islands (MI). The aquatic and terrestrial environments of the atoll are still contaminated with several long-lived radionuclides that were generated during testing. The four major radionuclides found in terrestrial plants and soils are Cesium-137 ({sup 137}Cs), Strontium-90 ({sup 90}Sr), Plutonium-239+240 ({sup 239+240}Pu) and Americium-241 ({sup 241}Am). {sup 137}Cs in the coral soils is more available for uptake by plants than {sup 137}Cs associated with continental soils of North America or Europe. Soil-to-plant {sup 137}Cs median concentration ratios (CR) (kBq kg{supmore » {minus}1} dry weight plant/kBq kg{sup {minus}1} dry weight soil) for tropical fruits and vegetables range between 0.8 and 36, much larger than the range of 0.005 to 0.5 reported for vegetation in temperate zones. Conversely, {sup 90}Sr median CRs range from 0.006 to 1.0 at the atoll versus a range from 0.02 to 3.0 for continental silica-based soils. Thus, the relative uptake of {sup 137}Cs and {sup 90}Sr by plants in carbonate soils is reversed from that observed in silica-based soils. The CRs for {sup 239+240}Pu and {sup 241}Am are very similar to those observed in continental soils. Values range from 10{sup {minus}6} to 10{sup {minus}4} for both {sup 239+240}Pu and {sup 241}Am. No significant difference is observed between the two in coral soil.« less
Wang, Zhichao; Hu, Lijun; Jin, Xianqing; Li, Xiaoqing; Xu, Lixia
2016-03-01
The aim of this study was to assess the postoperative anorectal anatomy and function in children with congenital anorectal malformations (ARM) using endoanal ultrasonography (EUS) and anorectal manometry. This study included 47 children who had undergone posterior sagittal anorectoplasty (PSARP) or transperineal anorectoplasty for the repair of an ARM. Children were grouped according to symptoms of defecation disorder, including normal defecation, fecal soiling, fecal incontinence, and constipation. Ten children with no history of anal or rectal diseases served as healthy controls. A well-established scoring system was used for the evaluation of anal function and defecation disorder. EUS showed significant differences in the thickness of the interior sphincter between the ARM patients and the healthy controls (P<0.05). However, no significant difference was found in the thickness of the interior sphincters between the PSARP group and transperineal anorectoplasty group (P>0.05). Anorectal manometry showed that the balloon volumes were significantly different between the surgical group and the control group (P<0.01), and between the low defect group and the intermediate-high defect group (P=0.022). Balloon volume was significantly correlated with anal function scores (r=-0.30, P<0.05). EUS and anorectal manometry can provide objective assessment of postoperative anorectal anatomy and function in children with ARM. Copyright © 2016 Elsevier Inc. All rights reserved.
Gundale, Michael J; Kardol, Paul; Nilsson, Marie-Charlotte; Nilsson, Urban; Lucas, Richard W; Wardle, David A
2014-04-01
Studies evaluating plant-soil biota interactions in both native and introduced plant ranges are rare, and thus far have lacked robust experimental designs to account for several potential confounding factors. Here, we investigated the effects of soil biota on growth of Pinus contorta, which has been introduced from Canada to Sweden. Using Swedish and Canadian soils, we conducted two glasshouse experiments. The first experiment utilized unsterilized soil from each country, with a full-factorial cross of soil origin, tree provenance, and fertilizer addition. The second experiment utilized gamma-irradiated sterile soil from each country, with a full-factorial cross of soil origin, soil biota inoculation treatments, tree provenance, and fertilizer addition. The first experiment showed higher seedling growth on Swedish soil relative to Canadian soil. The second experiment showed this effect was due to differences in soil biotic communities between the two countries, and occurred independently of all other experimental factors. Our results provide strong evidence that plant interactions with soil biota can shift from negative to positive following introduction to a new region, and are relevant for understanding the success of some exotic forest plantations, and invasive and range-expanding native species. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Soil and ecological sites of the Santa Rita Experimental Range
Donald J. Breckenfeld; Daniel Robinett
2003-01-01
A soil survey and rangeland resource inventory of the Santa Rita Experimental Range (SRER) was conducted by staff from the Tucson office of the Natural Resources Conservation Service (NRCS) during April and May of 1997. Thirty-two soils series and taxadjuncts were mapped on the SRER and delineated in 24 different mapping units. These soils all occur in an Aridic and...
Spectral reflectance and soil morphology characteristics of Santa Rita Experimental Range soils
A. Karim Batchily; Donald F. Post; R. B. Bryant; Donald J. Breckenfeld
2003-01-01
The Santa Rita Experimental Range (SRER) soils are mostly transported alluvial sediments that occur on the piedmont slope flanking the Santa Rita Mountains in Arizona. The major geomorphic land forms are alluvial fans or fan terraces, but there are also areas of residual soils formed on granite and limestone bedrock, basin floor, stream terraces, and flood plains. The...
Cérémonie, Hélène; Buret, François; Simonet, Pascal; Vogel, Timothy M.
2006-01-01
The lightning-competent Pseudomonas sp. strain N3, recently isolated from soil, has been used to study the extent of natural electrotransformation (NET) or lightning transformation as a horizontal gene transfer mechanism in soil. The variation of electrical fields applied to the soil with a laboratory-scale lightning system provides an estimate of the volume of soil affected by NET. Based on the range of the electric field that induces NET of Pseudomonas strain N3, the volume of soil, where NET could occur, ranges from 2 to 950 m3 per lightning strike. The influence of DNA parameters (amount, size, and purity) and DNA soil residence time were also investigated. NET frequencies (electrotransformants/recipient cells) ranged from 10−8 for cell lysate after 1 day of residence in soil to 4 × 10−7 with a purified plasmid added immediately before the lightning. The electrical field gradient (in kilovolts per cm) also played a role as NET frequencies ranging from 1 × 10−5 at 2.3 kV/cm to 1.7 × 10−4 at 6.5 kV/cm. PMID:16597934
Development of a WES Centrifuge,
1992-09-01
soil container 2 flexible strips 6 catch pieces 3 centrifuge arm 7 minature jacks 4 springs 8 underlying decking Fig. B 1 The spring-actuated shaker...flow (and so the heat transfer) evenly across the model; "* air may be injected downwards through a central hole above the model and vented through... holes at the sides or vice versa; "* air can be injected at several locations and then vented at intermediate positions. The choice will be determined
Guidance for Soil Sampling for Energetics and Metals
2011-10-01
from tracer rounds used in machine guns ), and polycyclic aromatic hydrocarbons (from clay targets and “wad- ding” from shotgun shells) (USEPA 2003a...Sieving .......................................................................................................................... 63 8.2.4 Machine ...Ampleman et al. 2009 Grenade 40-mmHEDP M2 NG 144 76 5 Walsh M.R. et al. 2010 40-mm TP F15080 NG 127 2.2 5 Small Arms 5.56-mm Rifle WC844 NG 100
MMRP Guidance Document for Soil Sampling of Energetics and Metals
2011-10-01
from tracer rounds used in machine guns ), and polycyclic aromatic hydrocarbons (from clay targets and “wad- ding” from shotgun shells) (USEPA 2003a...Sieving .......................................................................................................................... 63 8.2.4 Machine ...Ampleman et al. 2009 Grenade 40-mmHEDP M2 NG 144 76 5 Walsh M.R. et al. 2010 40-mm TP F15080 NG 127 2.2 5 Small Arms 5.56-mm Rifle WC844 NG 100
Leung, M W Y; Wong, B P Y; Leung, A K P; Cho, J S Y; Leung, E T Y; Chao, N S Y; Chung, K W; Kwok, W K; Liu, K K W
2006-12-01
We report our experience of electrical stimulation and biofeedback exercise of pelvic floor muscle for children with faecal incontinence after surgery for anorectal malformation (ARM). Electrical stimulation and biofeedback exercise of pelvic floor muscle were performed on children with post-operative faecal soiling following repair of intermediate or high type ARM. Children under the age of 5 years or with learning difficulties were excluded. They had 6 months supervised programme in the Department of Physiotherapy followed by 6 months home based programme. Bowel management including toilet training, dietary advice, medications and enemas were started before the pelvic floor muscle exercise and continued throughout the programme. Soiling frequency rank, Rintala continence score, sphincter muscle electromyography (EMG) and anorectal manometry were assessed before and after the programme. Wilcoxon signed rank test was performed for statistical analysis. From March 2001 to May 2006, 17 children were referred to the programme. Twelve patients (M:F = 10:2; age = 5-17 years) completed the programme. There was a trend of improvement in Rintala score at sixth month (p = 0.206) and at the end of programme (p = 0.061). Faecal soiling was significantly improved at sixth month (p = 0.01) and at the end of the programme (p = 0.004). Mean sphincter muscle EMG before treatment was 1.699 microV. Mean EMG at sixth month and after the programme was 3.308 microV (p = 0.034) and 3.309 microV (p = 0.002) respectively. After the programme, there was a mean increase in anal sphincter squeeze pressure of 29.9 mmHg (p = 0.007). Electrical stimulation and biofeedback exercise of pelvic floor muscle is an effective adjunct for the treatment of faecal incontinence in children following surgery for anorectal malformation.
Lamb, Dane T; Ming, Hui; Megharaj, Mallavarapu; Naidu, Ravi
2009-11-15
We investigated the pore-water content and speciation of copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in a range of uncontaminated and long-term contaminated soils in order to establish their potential bioaccessibility to soil biota, plants and humans. Among the samples, soil pH (0.01 M CaCl(2)) ranged from 4.9 to 8.2. The total metal content of the uncontaminated soils ranged from 3.8 to 93.8 mg Cu kg(-1), 10.3 to 95 mg kg(-1) Zn, 0.1 to 1.8 mg Cd kg(-1) and 5.2 to 183 mg kg(-1) Pb, while metal content in the contaminated soils ranged from 104 to 6841 mg Cu kg(-1), 312 to 39,000 mg kg(-1) Zn, 6 to 302 mg Cd kg(-1) and 609 to 12,000 mg kg(-1) Pb. Our analysis of pore-water found the Cu concentrations to be much higher in contaminated soils than in uncontaminated soils, with the distribution coefficients (K(d)) correlating significantly with the log of dissolved organic carbon concentrations. Despite the high total metal content of the contaminated soil, Zn, Cd and Pb were not generally found at elevated levels in the pore-water with the exception of a single contaminated soil. A long period of ageing and soil weathering may have led to a substantial reduction in heavy metal concentrations in the pore-water of contaminated soils. On the other hand, Pb bioaccessibility was found to be comparatively high in Pb contaminated soils, where it tended to exceed the total Pb values by more than 80%. We conclude that, despite the extensive ageing of some contaminated soils, the bioaccessibility of Pb remains relatively high.
Soil transference patterns on bras: Image processing and laboratory dragging experiments.
Murray, Kathleen R; Fitzpatrick, Robert W; Bottrill, Ralph S; Berry, Ron; Kobus, Hilton
2016-01-01
In a recent Australian homicide, trace soil on the victim's clothing suggested she was initially attacked in her front yard and not the park where her body was buried. However the important issue that emerged during the trial was how soil was transferred to her clothing. This became the catalyst for designing a range of soil transference experiments (STEs) to study, recognise and classify soil patterns transferred onto fabric when a body is dragged across a soil surface. Soil deposits of interest in this murder were on the victim's bra and this paper reports the results of anthropogenic soil transfer to bra-cups and straps caused by dragging. Transfer patterns were recorded by digital photography and photomicroscopy. Eight soil transfer patterns on fabric, specific to dragging as the transfer method, appeared consistently throughout the STEs. The distinctive soil patterns were largely dependent on a wide range of soil features that were measured and identified for each soil tested using X-ray Diffraction and Non-Dispersive Infra-Red analysis. Digital photographs of soil transfer patterns on fabric were analysed using image processing software to provide a soil object-oriented classification of all soil objects with a diameter of 2 pixels and above transferred. Although soil transfer patterns were easily identifiable by naked-eye alone, image processing software provided objective numerical data to support this traditional (but subjective) interpretation. Image software soil colour analysis assigned a range of Munsell colours to identify and compare trace soil on fabric to other trace soil evidence from the same location; without requiring a spectrophotometer. Trace soil from the same location was identified by linking soils with similar dominant and sub-dominant Munsell colour peaks. Image processing numerical data on the quantity of soil transferred to fabric, enabled a relationship to be discovered between soil type, clay mineralogy (smectite), particle size and soil moisture content that would not have been possible otherwise. Soil type (e.g. Anthropogenic, gravelly sandy loam soil or Natural, organic-rich soil), clay mineralogy (smectite) and soil moisture content were the greatest influencing factors in all the dragging soil transference tests (both naked eye and measured properties) to explain the eight categories of soil transference patterns recorded. This study was intended to develop a method for dragging soil transference laboratory experiments and create a baseline of preliminary soil type/property knowledge. Results confirm the need to better understand soil behaviour and properties of clothing fabrics by further testing of a wider range of soil types and clay mineral properties. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Characteristic variations in reflectance of surface soils
NASA Technical Reports Server (NTRS)
Stoner, E. R.; Baumgardner, M. F. (Principal Investigator)
1982-01-01
Surface soil samples from a wide range of naturally occurring soils were obtained for the purpose of studying the characteristic variations in soil reflectance as these variations relate to other soil properties and soil classification. A total 485 soil samples from the U.S. and Brazil representing 30 suborders of the 10 orders of 'Soil Taxonomy' was examined. The spectral bidirectional reflectance factor was measured on uniformly moist soils over the 0.52 to 2.32 micron wavelength range with a spectroradiometer adapted for indoor use. Five distinct soil spectral reflectance curve forms were identified according to curve shape, the presence or absence of absorption bands, and the predominance of soil organic matter and iron oxide composition. These curve forms were further characterized according to generically homogeneous soil properties in a manner similar to the subdivisions at the suborder level of 'Soil Taxonomy'. Results indicate that spectroradiometric measurements of soil spectral bidirectional reflectance factor can be used to characterize soil reflectance in terms that are meaningful to soil classification, genesis, and survey.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-18
... small arms, large arms, bombs, rockets, missiles, and pyrotechnics. All munitions used at BT-11 are... shapes each time. Mine simulation shapes include MK76, MK80 series, and BDU practice bombs ranging from... disabling enemy ships or boats. During training, fixed wing or rotary wing aircraft deliver bombs against...
Arm and Hand Movement in Children Suspected of Having Autism Spectrum Disorder
ERIC Educational Resources Information Center
Braddock, Barbara A.; Hilton, Jane C.
2016-01-01
The aim of this study was to describe arm and hand movement in children suspected of having autism spectrum disorder (ASD; age range 29-43 months). A videotaped retrospective review of five children with symptoms of ASD during "Communication Temptation Tasks" was completed at two time points (pre-testing and 6 weeks later). Categories of…
Russian-American Security Cooperation After St. Petersburg: Challenges and Opportunities
2007-04-01
appears to have prompted several Russian inquiries as to how Wash- ington would react if Moscow withdrew from the 1987 Intermediate-Range Nuclear Forces...Arms Control Today, Vol. 36, No. 2, March 2006, pp. 37-38. 74. Peter Eisler , “U.S., Russia Break Impasse on Plan to Keep Arms From Rogue Users,” USA
Cardio-Respiratory Responses to Maximal Work During Arm and Bicycle Ergometry.
ERIC Educational Resources Information Center
Israel, Richard G.; Hardison, George T.
This study compared cardio-respiratory responses during maximal arm work using a Monarch Model 880 Rehab Trainer to cardio-respiratory responses during maximal leg work on a Monarch Model 850 Bicycle Ergometer. Subjects for the investigation were 17 male university students ranging from 18 to 28 years of age. The specific variables compared…
In Situ Strategy of the 2011 Mars Science Laboratory to Investigate the Habitability of Ancient Mars
NASA Technical Reports Server (NTRS)
Mahaffy, Paul R.
2011-01-01
The ten science investigations of the 2011 Mars Science Laboratory (MSL) Rover named "Curiosity" seek to provide a quantitative assessment of habitability through chemical and geological measurements from a highly capable robotic' platform. This mission seeks to understand if the conditions for life on ancient Mars are preserved in the near-surface geochemical record. These substantial payload resources enabled by MSL's new entry descent and landing (EDL) system have allowed the inclusion of instrument types nevv to the Mars surface including those that can accept delivered sample from rocks and soils and perform a wide range of chemical, isotopic, and mineralogical analyses. The Chemistry and Mineralogy (CheMin) experiment that is located in the interior of the rover is a powder x-ray Diffraction (XRD) and X-ray Fluorescence (XRF) instrument that provides elemental and mineralogical information. The Sample Analysis at Mars (SAM) suite of instruments complements this experiment by analyzing the volatile component of identically processed samples and by analyzing atmospheric composition. Other MSL payload tools such as the Mast Camera (Mastcam) and the Chemistry & Camera (ChemCam) instruments are utilized to identify targets for interrogation first by the arm tools and subsequent ingestion into SAM and CheMin using the Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem. The arm tools include the Mars Hand Lens Imager (MAHLI) and the Chemistry and Alpha Particle X-ray Spectrometer (APXX). The Dynamic Albedo of Neutrons (DAN) instrument provides subsurface identification of hydrogen such as that contained in hydrated minerals
Kootenay Lake Fertilization Experiment; Years 11 and 12, Technical Report 2002-2003.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schindler, E.
This report examines the results from the eleventh and twelfth years (2002 and 2003) of the Kootenay Lake fertilization experiment. Experimental fertilization has occurred with an adaptive management approach since 1992 in order to restore productivity lost as a result of upstream dams. One of the main objectives of the experiment is to restore kokanee (Oncorhynchus nerka) populations, which are a main food source for Gerrard rainbow trout (Oncorhynchus mykiss). Kootenay Lake is located between the Selkirk and Purcell mountains in southeastern British Columbia. It has an area of 395 km2, a maximum depth of 150 m, a mean depthmore » of 94 m, and a water renewal time of approximately two years. The quantity of agricultural grade liquid fertilizer (10-34-0, ammonium polyphosphate and 28-0-0, urea ammonium nitrate) added to Kootenay Lake in 2002 and 2003 was similar to that added from 1992 to 1996. After four years of decreased fertilizer loading (1997 to 2000), results indicated that kokanee populations had declined, and the decision was made to increase the loads again in 2001. The total load of fertilizer in 2002 was 47.1 tonnes of phosphorus and 206.7 tonnes of nitrogen. The total fertilizer load in 2003 was 47.1 tonnes of phosphorus and 240.8 tonnes of nitrogen. Additional nitrogen was added in 2003 to compensate for nitrogen depletion in the epilimnion. The fertilizer was applied to a 10 km stretch in the North Arm from 3 km south of Lardeau to 3 km south of Schroeder Creek. The maximum surface water temperature in 2002, measured on July 22, was 22 C in the North Arm and 21.3 C in the South Arm. In 2003, the maxima were recorded on August 5 at 20.6 C in the North Arm and on September 2 at 19.7 C in the South Arm. The maximum water temperature in the West Arm was 18.7 C on September 2, 2003. Kootenay Lake had oxygen-saturated water throughout the sampling season with values ranging from about 11-16 mg/L in 2002 and 2003. In both years, Secchi depth followed the expected pattern for an oligo-mesotrophic lake of decreasing in May, June, and early July, concurrent with the spring phytoplankton bloom, and clearing again as the summer progressed. Total phosphorus (TP) ranged from 2-11 {micro}g/L in 2002 and 2-21 {micro}g/L in 2003. With average TP values generally in the range of 3-10 {micro}g/L, Kootenay Lake is considered to be an oligotrophic to oligo-mesotrophic lake. Total dissolved phosphorus (TDP) followed the same seasonal trends as TP in 2002 and 2003 and ranged from 2-7 {micro}g/L in 2002 and from 2-10 {micro}g/L in 2003. Total nitrogen (TN) ranged from 90-380 {micro}g/L in 2002 and 100-210 {micro}g/L in 2003. During both the 2002 and 2003 sampling seasons, TN showed an overall decline in concentration with mid-summer and fall increases at some stations, which is consistent with previous years results. Dissolved inorganic nitrogen (DIN) concentrations showed a more pronounced declining trend over the sampling season compared with TN, corresponding to nitrate (the dominant component of DIN) being used by phytoplankton during summer stratification. DIN ranged from 7-176 {micro}g/L in 2002 and from 8-147 {micro}g/L in 2003. During 2003, discrete depth sampling occurred, and a more detailed look at the nitrate concentrations in the epilimnion was undertaken. There was a seasonal decline in nitrate concentrations, which supports the principle of increasing the nitrogen loading and the nitrogen to phosphorus (N:P) ratio during the fertilizer application period. Chlorophyll a (Chl a) concentrations in Kootenay Lake were in the range of 1.4-5.1 {micro}g/L in 2002 and 0.5-4.9 {micro}g/L in 2003. Over the sampling season, Chl a at North Arm stations generally increased in spring corresponding with the phytoplankton bloom, decreased during the summer, and increased again in the fall with mixing of the water column. The trend was similar, but less pronounced, at South Arm stations in these years, and spring Chl a concentrations were lower. During 2002, total algal biomass averaged during June, July and August was lower in the North Arm than the South Arm. This was the first time this occurred since the commencement of the North Arm fertilization experiment. Results in 2002 indicated Kootenay lake continues to be a diatom dominated lake (80 to 89% of the total average biomass). The overall trend observed throughout the 2003 sampling season was one of a slight decline in algal biomass from the North Arm stations towards those in the South Arm. Kootenay Lake continued to be a diatom-dominated lake (76-83% of total average biomass). Synedra spp. and some Asterionella, as in the previous three years, dominated the early biomass increase in 2003, but the peak biomass in July was largely due to Tabellaria.« less
Biophysical processes supporting the diversity of microbial life in soil
Tecon, Robin
2017-01-01
Abstract Soil, the living terrestrial skin of the Earth, plays a central role in supporting life and is home to an unimaginable diversity of microorganisms. This review explores key drivers for microbial life in soils under different climates and land-use practices at scales ranging from soil pores to landscapes. We delineate special features of soil as a microbial habitat (focusing on bacteria) and the consequences for microbial communities. This review covers recent modeling advances that link soil physical processes with microbial life (termed biophysical processes). Readers are introduced to concepts governing water organization in soil pores and associated transport properties and microbial dispersion ranges often determined by the spatial organization of a highly dynamic soil aqueous phase. The narrow hydrological windows of wetting and aqueous phase connectedness are crucial for resource distribution and longer range transport of microorganisms. Feedbacks between microbial activity and their immediate environment are responsible for emergence and stabilization of soil structure—the scaffolding for soil ecological functioning. We synthesize insights from historical and contemporary studies to provide an outlook for the challenges and opportunities for developing a quantitative ecological framework to delineate and predict the microbial component of soil functioning. PMID:28961933
Soil mechanics on the Moon, Mars, and Mulberry
NASA Technical Reports Server (NTRS)
Carrier, W. D., III
1988-01-01
From a soil mechanics point of view, the Moon is a relatively simple place. Without any water, organics, or clay minerals, the geotechnical properties of the lunar soil are confined to a fairly limited range. Furthermore, the major soil-forming agent is meteorite impact, which breaks the big particles into little particles; and simultaneously, cements the little particles back together again with molten glass. After about a hundred million years of exposure to meteorite impact, the distribution of particle sizes in the soil achieves a sort of steady state. The majority of the returned lunar soil samples have been found to be well-graded silty-sand to sandy-silt (SM in the Unified Soil Classification System). Each of the particle size distributions plots within a relatively narrow band, which appears to be uniform over the entire lunar surface. This further restricts the range of physical properties of the lunar surface. In contrast, Martian soils should exhibit an extremely wide range of properties. We already know that there is a small amount of water in the soil, greater than in the Martian atmosphere. Furthermore, the soil is suspected to be smectitic clay. That makes two out of the three factors that greatly affect the properties of terrestrial soils.
The, Bertram; Brutty, Mike; Wang, Allan; Campbell, Peter T.; Halliday, Michael J. C.; Ackland, Timothy R.
2014-01-01
Introduction: The objective of this study is to evaluate the biomechanical function of the upper arm after arthroscopic long head of biceps (LHB) tenotomy at long-term follow-up. Materials and Methods: Twenty-five male subjects ranging from 30 to 63 years old were evaluated at a mean follow-up of 7.0 years after tenotomy. Bilateral isokinetic testing was performed to obtain peak torque values, as well as total work done throughout the full range of elbow flexion and supination. Results: Magnetic resonance imaging scans revealed nine unrecognized LHB ruptures in the contralateral arm, leaving 16 subjects to complete the testing protocol. The mean quickDASH score was 8.1 (standard error [SE] 2.5). The mean oxford elbow score was 97.9 (SE 1.6). The tenotomy arm recorded a decrease in peak flexion torque of 7.0% (confidence interval [CI] 1.2-12.8), and a decrease in the peak supination torque of 9.1% (CI 1.8-16.4) relative to the contralateral arm. The total work carried out through the full range of joint motion was reduced in elbow flexion by 5.1% (CI −1.3-11.4) and in forearm supination by 5.7% (CI-2.4-13.9). Discussion: Maximum strength in elbow flexion and forearm supination is significantly reduced compared with the contralateral arm. However, this impairment is partially compensated for by relatively greater strength sustained through the latter stages of joint motion. This results in comparable total work measurements between the tenotomised and contralateral side, potentially accounting for ongoing high levels of patient satisfaction and clinical function in the long term after LHB tenotomy. Level of Evidence IV: Case series without comparison group. PMID:25258498
Stephen-Haynes, Jackie; Stephens, Claire
2013-12-01
The study involves 95 subjects within a UK Primary Care Organisation and was undertaken in two arms. The objective was to determine the clinical outcomes and clinical acceptability of a newly available range of no-sting barrier film and no-sting barrier cream products offering significant financial benefits. The importance of undertaking this study is underpinned by evidence in the literature relating to the use of no-sting barrier preparations within clinical practice. The first part of the study (arm 1) involved extensive evaluation of either the film or cream barrier in 36 patients and was compared to existing standardised barrier protection care within the organisation. The results indicated that the new product range met all the criteria for formulary inclusion and following this the barrier range was further evaluated in arm 2, 33 patients with barrier cream and 26 patients with barrier film. The entire study was conducted over a 3-month period with patient treatment lasting a minimum of 2 days to a maximum 4-week period adhering to the agreed evaluation protocol as approved by clinical governance. In arm 1 (n = 36), the clinical expectation of the product was met in 32 cases relating to ease of use, conformability, no-sting, quick drying, ease of absorption, compatibility with devices, frequency of application, prevention and management including visual skin improvement resulting in a recommendation for formulary listing in 31 of 36 cases. In arm 2 (n = 59), barrier film and barrier cream performance was consistently rated same as, better than or much better than the existing barrier used. A formulary listing recommendation was made in 51 of 59 cases. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.
Aerobic power and peak power of elite America's Cup sailors.
Neville, Vernon; Pain, Matthew T G; Folland, Jonathan P
2009-05-01
Big-boat yacht racing is one of the only able bodied sporting activities where standing arm-cranking ('grinding') is the primary physical activity. However, the physiological capabilities of elite sailors for standing arm-cranking have been largely unreported. The purpose of the study was to assess aerobic parameters, VO(2peak) and onset of blood lactate (OBLA), and anaerobic performance, torque-crank velocity and power-crank velocity relationships and therefore peak power (P (max)) and optimum crank-velocity (omega(opt)), of America's Cup sailors during standing arm-cranking. Thirty-three elite professional sailors performed a step test to exhaustion, and a subset of ten grinders performed maximal 7 s isokinetic sprints at different crank velocities, using a standing arm-crank ergometer. VO(2peak) was 4.7 +/- 0.5 L/min (range 3.6-5.5 L/min) at a power output of 332 +/- 44 W (range 235-425 W). OBLA occurred at a power output of 202 +/- 31 W (61% of W(max)) and VO(2) of 3.3 +/- 0.4 L/min (71% of VO(2peak)). The torque-crank velocity relationship was linear for all participants (r = 0.9 +/- 0.1). P (max) was 1,420 +/- 37 W (range 1,192-1,617 W), and omega(opt) was 125 +/- 6 rpm. These data are among the highest upper-body anaerobic and aerobic power values reported. The unique nature of these athletes, with their high fat-free mass and specific selection and training for standing arm cranking, likely accounts for the high values. The influence of crank velocity on peak power implies that power production during on-board 'grinding' may be optimised through the use of appropriate gear-ratios and the development of efficient gear change mechanisms.
The, Bertram; Brutty, Mike; Wang, Allan; Campbell, Peter T; Halliday, Michael J C; Ackland, Timothy R
2014-07-01
The objective of this study is to evaluate the biomechanical function of the upper arm after arthroscopic long head of biceps (LHB) tenotomy at long-term follow-up. Twenty-five male subjects ranging from 30 to 63 years old were evaluated at a mean follow-up of 7.0 years after tenotomy. Bilateral isokinetic testing was performed to obtain peak torque values, as well as total work done throughout the full range of elbow flexion and supination. Magnetic resonance imaging scans revealed nine unrecognized LHB ruptures in the contralateral arm, leaving 16 subjects to complete the testing protocol. The mean quickDASH score was 8.1 (standard error [SE] 2.5). The mean oxford elbow score was 97.9 (SE 1.6). The tenotomy arm recorded a decrease in peak flexion torque of 7.0% (confidence interval [CI] 1.2-12.8), and a decrease in the peak supination torque of 9.1% (CI 1.8-16.4) relative to the contralateral arm. The total work carried out through the full range of joint motion was reduced in elbow flexion by 5.1% (CI -1.3-11.4) and in forearm supination by 5.7% (CI-2.4-13.9). Maximum strength in elbow flexion and forearm supination is significantly reduced compared with the contralateral arm. However, this impairment is partially compensated for by relatively greater strength sustained through the latter stages of joint motion. This results in comparable total work measurements between the tenotomised and contralateral side, potentially accounting for ongoing high levels of patient satisfaction and clinical function in the long term after LHB tenotomy. Case series without comparison group.
Soil clay content underlies prion infection odds
David Walter, W.; Walsh, Daniel P.; Farnsworth, Matthew L.; Winkelman, Dana L.; Miller, Michael W.
2011-01-01
Environmental factors—especially soil properties—have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings. PMID:21326232
Soil clay content underlies prion infection odds.
David Walter, W; Walsh, Daniel P; Farnsworth, Matthew L; Winkelman, Dana L; Miller, Michael W
2011-02-15
Environmental factors-especially soil properties-have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings.
Time Domain Simulations of Arm Locking in LISA
NASA Technical Reports Server (NTRS)
Thorpe, J. I.; Maghami, P.; Livas, Jeff
2011-01-01
Arm locking is a technique that has been proposed for reducing laser frequency fluctuations in the Laser Interferometer Space Antenna (LISA). a gravitational-wave observatory sensitive' in the milliHertz frequency band. Arm locking takes advantage of the geometric stability of the triangular constellation of three spacecraft that comprise LISA to provide a frequency reference with a stability in the LISA measurement band that exceeds that available from a standard reference such as an optical cavity or molecular absorption line. We have implemented a time-domain simulation of arm locking including the expected limiting noise sources (shot noise, clock noise. spacecraft jitter noise. and residual laser frequency noise). The effect of imperfect a priori knowledge of the LISA heterodyne frequencies and associated "pulling" of an arm locked laser is included. We find that our implementation meets requirements both on the noise and dynamic range of the laser frequency.
A simple integrated ratiometric wavelength monitor based on multimode interference structure
NASA Astrophysics Data System (ADS)
Hatta, Agus Muhamad; Farrell, Gerald; Wang, Qian
2008-09-01
Wavelength measurement or monitoring can be implemented using a ratiometric power measurement technique. A ratiometric wavelength monitor normally consists of a Y-branch splitter with two arms: an edge filter arm with a well defined spectral response and a reference arm or alternatively, two edge filters arms with opposite slope spectral responses. In this paper, a simple configuration for an integrated ratiometric wavelength monitor based on a single multimode interference structure is proposed. By optimizing the length of the MMI and the two output port positions, opposite spectral responses for the two output ports can be achieved. The designed structure demonstrates a spectral response suitable for wavelength measurement with potentially a 10 pm resolution over a 100 nm wavelength range.
The future of U.S.-Russia nuclear arms control
NASA Astrophysics Data System (ADS)
Pifer, Steven
2017-11-01
Nuclear arms control has long made contributions to U.S.-Soviet and U.S.-Russian security, but the current regime is at risk. The 1987 Intermediate-range Nuclear Forces Treaty may be headed for collapse. Both the United States and Russia are modernizing their strategic forces, and the fate of the 2010 New Strategic Arms Reduction Treaty is unclear. In the unlikely case that the sides are prepared to go beyond New START, there are ways to address further reductions and related issues. A collapse of the arms control regime, on the other hand, would mean the end of constraints on U.S. and Russian nuclear forces, a significant loss of transparency, and potential costs to U.S. security.
Reducing Extra-Terrestrial Excavation Forces with Percussion
NASA Technical Reports Server (NTRS)
Schuler, Jason; Mueller, Robert; Smith, Drew; Nick, Andrew; Lippitt, Thomas
2012-01-01
High launch costs and mission requirements drive the need for low mass excavators with mobility platforms, which in turn have little traction and excavation reaction capacity in low gravity environments. This presents the need for precursor and long term future missions with low mass robotic mining technology to perform In-Situ Resource Utilization (ISRU) tasks. This paper discusses a series of experiments that investigate the effectiveness of a percussive digging device to reduce excavation loads and thereby the mass of the excavator itself. The goal of percussive excavation is to fluidize dry regolith in front of the leading edge of the tool by mechanically separating the microscopic interlocking grains resulting in a reduced force needed to shear the soil. There are several variables involved with this technique; this experiment varied: Impact energy, frequency, and excavation speed and held constant: impact direction, depth of cut, angle of tool, and soil bulk density. The test apparatus consisted of an aluminum truss bridge with a central pivoting arm. Attached to the arm was a winch with a load cell in line that recorded the tension in the cable and therefore the excavation load. The arm could be adjusted for excavation depth which was recorded along with the arm angle relative to the bridge. A percussive mechanism and 30" wide pivoting bucket were attached at the end of the arm simulating a basic backhoe with a percussion direction tangent to the direction of . movement. Internally the mechanism used a set of die springs and barrel cam to produce the percussive blow. By changing the springs and the speed of the motor the impact energy and frequency of percussion could be varied independently. Impact energies from 11.2J to 30.5J and frequencies from 0 BPM to 700 BPM were investigated. A reduction in excavation force of as much as 51% was achieved in this experimental investigation. Smaller percussive digging implements, tested by others, have achieved a reduction of as much as 72%. This paper will examine the effects of impact energy, frequency, scaling and their effect on excavation forces in a dry granular material such as lunar regolith. The past several years have shown an increasing interest in mining space resources both for exploration and commercial enterprises. This work studied the benefits and risks of percussive excavation and preliminry results indicate that this technique may become an enabling technology for extra-terrestrial excavation of regolith and ice.
Homann, Nils; Pauligk, Claudia; Illerhaus, Gerald; Martens, Uwe M.; Stoehlmacher, Jan; Schmalenberg, Harald; Luley, Kim B.; Prasnikar, Nicole; Egger, Matthias; Probst, Stephan; Messmann, Helmut; Moehler, Markus; Fischbach, Wolfgang; Hartmann, Jörg T.; Mayer, Frank; Höffkes, Heinz-Gert; Koenigsmann, Michael; Arnold, Dirk; Kraus, Thomas W.; Grimm, Kersten; Berkhoff, Stefan; Post, Stefan; Jäger, Elke; Bechstein, Wolf; Ronellenfitsch, Ulrich; Mönig, Stefan; Hofheinz, Ralf D.
2017-01-01
Importance Surgical resection has a potential benefit for patients with metastatic adenocarcinoma of the stomach and gastroesophageal junction. Objective To evaluate outcome in patients with limited metastatic disease who receive chemotherapy first and proceed to surgical resection. Design, Setting, and Participants The AIO-FLOT3 (Arbeitsgemeinschaft Internistische Onkologie–fluorouracil, leucovorin, oxaliplatin, and docetaxel) trial is a prospective, phase 2 trial of 252 patients with resectable or metastatic gastric or gastroesophageal junction adenocarcinoma. Patients were enrolled from 52 cancer care centers in Germany between February 1, 2009, and January 31, 2010, and stratified to 1 of 3 groups: resectable (arm A), limited metastatic (arm B), or extensive metastatic (arm C). Data cutoff was January 2012, and the analysis was performed in March 2013. Interventions Patients in arm A received 4 preoperative cycles of fluorouracil, leucovorin, oxaliplatin, and docetaxel (FLOT) followed by surgery and 4 postoperative cycles. Patients in arm B received at least 4 cycles of neoadjuvant FLOT and proceeded to surgical resection if restaging (using computed tomography and magnetic resonance imaging) showed a chance of margin-free (R0) resection of the primary tumor and at least a macroscopic complete resection of the metastatic lesions. Patients in arm C were offered FLOT chemotherapy and surgery only if required for palliation. Patients received a median (range) of 8 (1-15) cycles of FLOT. Main Outcomes and Measures The primary end point was overall survival. Results In total, 238 of 252 patients (94.4%) were eligible to participate. The median (range) age of participants was 66 (36-79) years in arm A (n = 51), 63 (28-79) years in arm B (n = 60), and 65 (23-83) years in arm C (n = 127). Patients in arm B (n = 60) had only retroperitoneal lymph node involvement (27 patients [45%]), liver involvement (11 [18.3%]), lung involvement (10 [16.7%]), localized peritoneal involvement (4 [6.7%]), or other (8 [13.3%]) incurable sites. Median overall survival was 22.9 months (95% CI, 16.5 to upper level not achieved) for arm B, compared with 10.7 months (95% CI, 9.1-12.8) for arm C (hazard ratio, 0.37; 95% CI, 0.25-0.55) (P < .001). The response rate for arm B was 60% (complete, 10%; partial, 50%), which is higher than the 43.3% for arm C. In arm B, 36 of 60 patients (60%) proceeded to surgery. The median overall survival was 31.3 months (95% CI, 18.9-upper level not achieved) for patients who proceeded to surgery and 15.9 months (95% CI, 7.1-22.9) for the other patients. Conclusions and Relevance Patients with limited metastatic disease who received neoadjuvant chemotherapy and proceeded to surgery showed a favorable survival. The AIO-FLOT3 trial provides a rationale for further randomized clinical trials. Trial Registration clinicaltrials.gov identifier: NCT00849615 PMID:28448662
Al-Batran, Salah-Eddin; Homann, Nils; Pauligk, Claudia; Illerhaus, Gerald; Martens, Uwe M; Stoehlmacher, Jan; Schmalenberg, Harald; Luley, Kim B; Prasnikar, Nicole; Egger, Matthias; Probst, Stephan; Messmann, Helmut; Moehler, Markus; Fischbach, Wolfgang; Hartmann, Jörg T; Mayer, Frank; Höffkes, Heinz-Gert; Koenigsmann, Michael; Arnold, Dirk; Kraus, Thomas W; Grimm, Kersten; Berkhoff, Stefan; Post, Stefan; Jäger, Elke; Bechstein, Wolf; Ronellenfitsch, Ulrich; Mönig, Stefan; Hofheinz, Ralf D
2017-09-01
Surgical resection has a potential benefit for patients with metastatic adenocarcinoma of the stomach and gastroesophageal junction. To evaluate outcome in patients with limited metastatic disease who receive chemotherapy first and proceed to surgical resection. The AIO-FLOT3 (Arbeitsgemeinschaft Internistische Onkologie-fluorouracil, leucovorin, oxaliplatin, and docetaxel) trial is a prospective, phase 2 trial of 252 patients with resectable or metastatic gastric or gastroesophageal junction adenocarcinoma. Patients were enrolled from 52 cancer care centers in Germany between February 1, 2009, and January 31, 2010, and stratified to 1 of 3 groups: resectable (arm A), limited metastatic (arm B), or extensive metastatic (arm C). Data cutoff was January 2012, and the analysis was performed in March 2013. Patients in arm A received 4 preoperative cycles of fluorouracil, leucovorin, oxaliplatin, and docetaxel (FLOT) followed by surgery and 4 postoperative cycles. Patients in arm B received at least 4 cycles of neoadjuvant FLOT and proceeded to surgical resection if restaging (using computed tomography and magnetic resonance imaging) showed a chance of margin-free (R0) resection of the primary tumor and at least a macroscopic complete resection of the metastatic lesions. Patients in arm C were offered FLOT chemotherapy and surgery only if required for palliation. Patients received a median (range) of 8 (1-15) cycles of FLOT. The primary end point was overall survival. In total, 238 of 252 patients (94.4%) were eligible to participate. The median (range) age of participants was 66 (36-79) years in arm A (n = 51), 63 (28-79) years in arm B (n = 60), and 65 (23-83) years in arm C (n = 127). Patients in arm B (n = 60) had only retroperitoneal lymph node involvement (27 patients [45%]), liver involvement (11 [18.3%]), lung involvement (10 [16.7%]), localized peritoneal involvement (4 [6.7%]), or other (8 [13.3%]) incurable sites. Median overall survival was 22.9 months (95% CI, 16.5 to upper level not achieved) for arm B, compared with 10.7 months (95% CI, 9.1-12.8) for arm C (hazard ratio, 0.37; 95% CI, 0.25-0.55) (P < .001). The response rate for arm B was 60% (complete, 10%; partial, 50%), which is higher than the 43.3% for arm C. In arm B, 36 of 60 patients (60%) proceeded to surgery. The median overall survival was 31.3 months (95% CI, 18.9-upper level not achieved) for patients who proceeded to surgery and 15.9 months (95% CI, 7.1-22.9) for the other patients. Patients with limited metastatic disease who received neoadjuvant chemotherapy and proceeded to surgery showed a favorable survival. The AIO-FLOT3 trial provides a rationale for further randomized clinical trials. clinicaltrials.gov identifier: NCT00849615.
Giatsis, George; Panoutsakopoulos, Vassilios; Kollias, Iraklis A
2018-05-01
The purpose of this study was to investigate the possible arm swing effect on the biomechanical parameters of vertical counter movement jump due to differences of the compliance of the take-off surface. Fifteen elite male beach-volleyball players (26.2 ± 5.9 years; 1.87 ± 0.05 m; 83.4 ± 6.0 kg; mean ± standard deviation, respectively) performed counter movement jumps on sand and on a rigid surface with and without an arm swing. Results showed significant (p < .05) surface effects on the jump height, the ankle joint angle at the lowest height of the body center of mass and the ankle angular velocity. Also, significant arm swing effects were found on jump height, maximum power output, temporal parameters, range of motion and angular velocity of the hip. These findings could be attributed to the instability of the sand, which resulted in reduced peak power output due to the differences of body configuration at the lowest body position and lower limb joints' range of motion. The combined effect of the backward arm swing and the recoil of the sand that resulted in decreased resistance at ankle plantar flexion should be controlled at the preparation of selected jumping tasks in beach-volleyball.
Lithosequence of soils and associated vegetation on subalpine range of the Wasatch Plateau, Utah.
James O. Klemmedson; Arthur R. Tiedemann
1998-01-01
On degraded subalpine range in Utah, the authors examined the role of soil and parent material nutrients and organic carbon (Corg) in the development of soil and plants on a transect across six strata that formed visible concentric alternating bands of high and low productivity. Relations for soil and parent material phosphorus (P) and sulfur (S) were of particular...
Short-term Forecasting Tools for Agricultural Nutrient Management.
Easton, Zachary M; Kleinman, Peter J A; Buda, Anthony R; Goering, Dustin; Emberston, Nichole; Reed, Seann; Drohan, Patrick J; Walter, M Todd; Guinan, Pat; Lory, John A; Sommerlot, Andrew R; Sharpley, Andrew
2017-11-01
The advent of real-time, short-term farm management tools is motivated by the need to protect water quality above and beyond the general guidance offered by existing nutrient management plans. Advances in high-performance computing and hydrologic or climate modeling have enabled rapid dissemination of real-time information that can assist landowners and conservation personnel with short-term management planning. This paper reviews short-term decision support tools for agriculture that are under various stages of development and implementation in the United States: (i) Wisconsin's Runoff Risk Advisory Forecast (RRAF) System, (ii) New York's Hydrologically Sensitive Area Prediction Tool, (iii) Virginia's Saturated Area Forecast Model, (iv) Pennsylvania's Fertilizer Forecaster, (v) Washington's Application Risk Management (ARM) System, and (vi) Missouri's Design Storm Notification System. Although these decision support tools differ in their underlying model structure, the resolution at which they are applied, and the hydroclimates to which they are relevant, all provide forecasts (range 24-120 h) of runoff risk or soil moisture saturation derived from National Weather Service Forecast models. Although this review highlights the need for further development of robust and well-supported short-term nutrient management tools, their potential for adoption and ultimate utility requires an understanding of the appropriate context of application, the strategic and operational needs of managers, access to weather forecasts, scales of application (e.g., regional vs. field level), data requirements, and outreach communication structure. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wharton, Sonia; Simpson, Matthew; Osuna, Jessica
The Weather Research and Forecasting (WRF) model is used to investigate choice of land surface model (LSM) on the near-surface wind profile, including heights reached by multi-megawatt wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil-plant-atmosphere feedbacks for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) Central Facility in Oklahoma. Surface-flux and wind-profile measurements were available for validation. The WRF model was run for three two-week periods during which varying canopy and meteorological conditions existed. Themore » LSMs predicted a wide range of energy-flux and wind-shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil-plant-atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear also were sensitive to LSM choice and were partially related to the accuracy of energy flux data. The variability of LSM performance was relatively high, suggesting that LSM representation of energy fluxes in the WRF model remains a significant source of uncertainty for simulating wind turbine inflow conditions.« less
Hejrati, Babak; Chesebrough, Sam; Bo Foreman, K; Abbott, Jake J; Merryweather, Andrew S
2016-10-01
Previous studies have shown that inclusion of arm swing in gait rehabilitation leads to more effective walking recovery in patients with walking impairments. However, little is known about the correct arm-swing trajectories to be used in gait rehabilitation given the fact that changes in walking conditions affect arm-swing patterns. In this paper we present a comprehensive look at the effects of a variety of conditions on arm-swing patterns during walking. The results describe the effects of surface slope, walking speed, and physical characteristics on arm-swing patterns in healthy individuals. We propose data-driven mathematical models to describe arm-swing trajectories. Thirty individuals (fifteen females and fifteen males) with a wide range of height (1.58-1.91m) and body mass (49-98kg), participated in our study. Based on their self-selected walking speed, each participant performed walking trials with four speeds on five surface slopes while their whole-body kinematics were recorded. Statistical analysis showed that walking speed, surface slope, and height were the major factors influencing arm swing during locomotion. The results demonstrate that data-driven models can successfully describe arm-swing trajectories for normal gait under varying walking conditions. The findings also provide insight into the behavior of the elbow during walking. Copyright © 2016. Published by Elsevier B.V.
[Aerodynamic characteristics of crewman's arms during windblast].
Zhang, Yun-ran; Wu, Gui-rong
2003-10-01
To study the aerodynamic characteristics of crewman's arms with or without protective devices in the status with raised legs or not. The experiments were performed in an FL-24 transonic and supersonic wind tunnel, over Mach number range of 0.4-2.0, with 5 degrees-30 degrees angles of attack, 0 degrees - 90 degrees sideslip angles and Re number of (0.93-3.1) x 10(6). The test model was a 1/5-scale crewman/ejection seat combination. The aerodynamic characteristics of the various sections of crewman's arms were studied and analyzed. The results showed that 1) The effect of raised leg on the aerodynamic characteristics of the crewman's arms was very evident, and was related to the status of leg raising; 2) The sideslip considerably increased aerodynamic loads on the crewman's arms, in particular when beta=50 degrees the loads was severe in the test; 3) The tested protective devices was valid, the effectiveness of wind deflector in protecting crewman's arms was evident; 4) A formula for calculating aerodynamic force acting on crewman's arms was presented. 1)The tested protective devices was valid, and the effectiveness of wind deflector in protecting crewman's arms was evident; 2) An aerodynamic basis for the development of crewman windblast protective device was presented; 3)The calculation formula presented is useful in estimating aerodynamic forces of crewman's arms.
Cloud, Aerosol, and Complex Terrain Interactions (CACTI) Preliminary Science Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varble, Adam; Nesbitt, Steve; Salio, Paola
General circulation models and downscaled regional models exhibit persistent biases in deep convective initiation location and timing, cloud top height, stratiform area and precipitation fraction, and anvil coverage. Despite important impacts on the distribution of atmospheric heating, moistening, and momentum, nearly all climate models fail to represent convective organization, while system evolution is not represented at all. Improving representation of convective systems in models requires characterization of their predictability as a function of environmental conditions, and this characterization depends on observing many cases of convective initiation, non-initiation, organization, and non-organization. The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) experiment inmore » the Sierras de Córdoba mountain range of north-central Argentina is designed to improve understanding of cloud life cycle and organization in relation to environmental conditions so that cumulus, microphysics, and aerosol parameterizations in multi-scale models can be improved. The Sierras de Córdoba range has a high frequency of orographic boundary-layer clouds, many reaching congestus depths, many initiating into deep convection, and some organizing into mesoscale systems uniquely observable from a single fixed site. Some systems even grow upscale to become among the deepest, largest, and longest-lived in the world. These systems likely contribute to an observed regional trend of increasing extreme rainfall, and poor prediction of them likely contributes to a warm, dry bias in climate models downstream of the Sierras de Córdoba range in a key agricultural region. Many environmental factors influence the convective lifecycle in this region including orographic, low-level jet, and frontal circulations, surface fluxes, synoptic vertical motions influenced by the Andes, cloud detrainment, and aerosol properties. Local and long-range transport of smoke resulting from biomass burning as well as blowing dust are common in the austral spring, while changes in land surface properties as the wet season progresses impact surface fluxes and boundary layer evolution on daily and seasonal time scales that feed back to cloud and rainfall generation. This range of environmental conditions and cloud properties coupled with a high frequency of events makes this an ideal location for improving our understanding of cloud-environment interactions. The following primary science questions will be addressed through coordinated first ARM Mobile Facility (AMF1), mobile C-band Scanning ARM Precipitation Radar (C-SAPR2), guest instrumentation, and potential ARM Aerial Facility (AAF) Gulfstream-1 (G-1) observations: 1. How are the properties and lifecycles of orographically generated cumulus humulis, mediocris, and congestus clouds affected by environmental kinematics, thermodynamics, aerosols, and surface properties? How do these cloud types alter these environmental conditions? 2. How do environmental kinematics, thermodynamics, and aerosols impact deep convective initiation, upscale growth, and mesoscale organization? How are soil moisture, surface fluxes, and aerosol properties altered by deep convective precipitation events and seasonal accumulation of precipitation? This multi-faceted experiment involves a long term 8.5-month Extended Observing Period (EOP, 15 August, 2018-30 April, 2019) as well as a 6-week Intensive Observation Period (IOP, 1 November-15 December) that will coincide with the international multi-agency RELAMPAGO field campaign.« less
Integrative rehabilitation of elderly stroke survivors: the design and evaluation of the BrightArm™.
Rabin, Bryan A; Burdea, Grigore C; Roll, Doru T; Hundal, Jasdeep S; Damiani, Frank; Pollack, Simcha
2012-07-01
To describe the development of the BrightArm upper extremity rehabilitation system, and to determine its clinical feasibility with older hemiplegic patients. The BrightArm adjusted arm gravity loading through table tilting. Patients wore an arm support that sensed grasp strength and communicated wirelessly with a personal computer. Games were written to improve cognitive, psychosocial and the upper extremity motor function and adapted automatically to each patient. The system underwent feasibility trials spanning 6 weeks. Participants were evaluated pre-therapy, post-therapy, and at 6 weeks follow-up using standardized clinical measures. Computerized measures of supported arm reach and game performance were stored on a remote server. Five participants had clinically significant improvements in their active range of shoulder movement, shoulder strength, grasp strength, and their ability to focus. Several participants demonstrated substantially higher arm function (measured with the Fugl-Meyer test) and two were less-depressed (measured with the Becks Depression Inventory, Second Edition). The BrightArm technology was well-accepted by the participants, who gave it an overall subjective rating of 4.1 on a 5 point Likert scale. Given these preliminary findings, it will be beneficial to evaluate the BrightArm through controlled clinical trials and to investigate its application to other clinical populations.
Integrative rehabilitation of elderly stroke survivors: The design and evaluation of the BrightArm™
Rabin, Bryan A.; Burdea, Grigore C.; Roll, Doru T.; Hundal, Jasdeep S.; Damiani, Frank; Pollack, Simcha
2011-01-01
Purpose To describe the development of the BrightArm upper extremity rehabilitation system, and to determine its clinical feasibility with older hemiplegic patients. Method The BrightArm adjusted arm gravity loading through table tilting. Patients wore an arm support that sensed grasp strength and communicated wirelessly with a personal computer. Games were written to improve cognitive, psychosocial and the upper extremity motor function and adapted automatically to each patient. The system underwent feasibility trials spanning 6 weeks. Participants were evaluated pre-therapy, post-therapy, and at 6 weeks follow-up using standardized clinical measures. Computerized measures of supported arm reach and game performance were stored on a remote server. Results Five participants had clinically significant improvements in their active range of shoulder movement, shoulder strength, grasp strength, and their ability to focus. Several participants demonstrated substantially higher arm function (measured with the Fugl-Meyer test) and two were less-depressed (measured with the Becks Depression Inventory, Second Edition). The BrightArm technology was well-accepted by the participants, who gave it an overall subjective rating of 4.1 on a 5 point Likert scale. Conclusions Given these preliminary findings, it will be beneficial to evaluate the BrightArm through controlled clinical trials and to investigate its application to other clinical populations. PMID:22107353
After Attempted Sample Delivery on Sol 60, False Color
NASA Technical Reports Server (NTRS)
2008-01-01
This view from the Surface Stereo Imager on NASA's Phoenix Mars Lander on the mission's 60th Martian day, or sol, (July 26, 2008) was taken after the lander's scoop sprinkled a soil sample over Thermal and Evolved-Gas Analyzer (TEGA). The upper part of the picture shows the robotic arm scoop parked open-face down above the TEGA after delivery. The TEGA doors farthest to the right were open to receive the sample into one of TEGA's eight ovens. Not enough material reached the oven to allow an analysis to begin. Some of the soil sample can be seen at the bottom of the adjacent pair of doors. This view is presented in false color, which makes the reddish color of the soil-sample material easy to see. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Modern soil system constraints on reconstructing deep-time atmospheric CO2
NASA Astrophysics Data System (ADS)
Montañez, Isabel P.
2013-01-01
Paleosol carbonate-based estimates of paleo-atmospheric CO2 play a prominent role in constraining radiative-forcing and climate sensitivity in the deep-time. Large uncertainty in paleo-CO2 estimates made using the paleosol-carbonate CO2-barometer, however, arises primarily from their sensitivity to soil-respired CO2 (S(z)). This parameter is poorly constrained due to a paucity of soil CO2 measurements during carbonate formation in modern soils and a lack of widely applicable proxies of paleo-soil CO2. Here the δ13C values of carbonate and soil organic matter (SOM) pairs from 130 Holocene soils are applied to a two-component CO2-mixing equation to define soil order-specific ranges of soil CO2 applicable for constraining S(z) in their corresponding paleosol analogs. Equilibrium carbonate-SOM pairs, characterized by Δ13Ccarb-SOM values of 12.2-15.8‰, define a mean effective fractionation of 14.1‰ and overall inferred total soil CO2 contents during calcite formation of <1000-10,000 ppmv. For those Aridisols and Alfisols, characterized by a net soil-moisture deficit, and their paleosol analogs (Calcisols and Argillisols), a best estimate of S(z) during calcite formation is 1500-2000 ppmv (range of 500-2500 ppmv). Overall higher values (2000-5000 ppmv) are indicated by the subset of these soils characterized by higher moisture content and productivity. Near atmospheric levels (400 ± 200 ppmv) of estimated S(z) are indicated by immature soils, recording their low soil productivity. Vertisols define the largest range in total soil CO2 (<1000 to >25,000 ppmv) reflecting their seasonally driven dynamic hydrochemistry. A S(z) range of 1000-10,000 ppmv is suggested for paleo-Vertisols for which calcite precipitation can be constrained to have occurred in an open system with two-component CO2 mixing, with a best estimate of 2000 ppmv ± 1000 ppmv appropriate for paleo-Vertisols for which evidence of protracted water saturation is lacking. Mollisol pairs define a best estimate of S(z) of 2500 ppmv (range of 600-4000 ppmv) for late Cretaceous and Cenozoic analogs. Non-equilibrium pairs with Δ13C values >16‰ make up 51% of the dataset, lending support to the hypothesis that pedogenic carbonate precipitation occurs during periods of low productivity in a soil atmosphere with a large component of atmospheric CO2. Predictable scaling between estimated soil CO2 and the difference in δ13C between measured pedogenic carbonate and that predicted to have formed from soil-respired CO2 (inferred from measured SOM) can be used to further constrain appropriate ranges of S(z) for reconstruction of paleo-atmospheric pCO2. Soil CO2 estimates are poorly correlated to mean annual precipitation likely reflecting that for carbonate-bearing soils, where moisture limits CO2 production, total soil CO2 is most strongly influenced by actual evapotranspiration.
Morphological analysis of the hindlimb in apes and humans. II. Moment arms
Payne, R C; Crompton, R H; Isler, K; Savage, R; Vereecke, E E; Günther, M M; Thorpe, S K S; D'Août, K
2006-01-01
Flexion/extension moment arms were obtained for the major muscles crossing the hip, knee and ankle joints in the orang-utan, gibbon, gorilla (Eastern and Western lowland) and bonobo. Moment arms varied with joint motion and were generally longer in proximal limb muscles than distal limb muscles. The shape of the moment arm curves (i.e. the plots of moment arm against joint angle) differed in different hindlimb muscles and in the same muscle in different subjects (both in the same and in different ape species). Most moment arms increased with increasing joint flexion, a finding which may be understood in the context of the employment of flexed postures by most non-human apes (except orang-utans) during both terrestrial and arboreal locomotion. When compared with humans, non-human great apes tended to have muscles better designed for moving the joints through large ranges. This was particularly true of the pedal digital flexors in orang-utans. In gibbons, the only lesser ape studied here, many of the moment arms measured were relatively short compared with those of great apes. This study was performed on a small sample of apes and thus differences noted here warrant further investigation in larger populations. PMID:16761974
House, G; Burdea, G; Polistico, K; Roll, D; Kim, J; Grampurohit, N; Damiani, F; Keeler, S; Hundal, J; Pollack, S
2016-11-01
To describe the novel BrightArm Duo bimanual upper extremity (UE) rehabilitation system; to determine its technology acceptance and clinical benefit for older hemiplegic participants. The system table tilted to adjust arm gravity loading. Participants wore arm supports that sensed grasp strength and wrist position on the table. Wrist weights further increased shoulder exertion. Games were designed to improve UE strength, motor function, cognition and emotive state and adapted automatically to each participant. The system underwent feasibility trials spanning 8 weeks in two skilled nursing facilities (SNFs). Participants were evaluated pre-therapy and post-therapy using standardized clinical measures. Computerized measures of supported arm reach, table tilt and number of arm repetitions were stored on a remote server. Seven participants had significant improvements in their active range of shoulder movement, supported arm reach, shoulder strength, grasp strength and their ability to focus. The group demonstrated higher arm function measured with FMA (p = 0.01) and CAHAI (p = 0.05), and had an improvement in depression (Becks Depression Inventory, II). BrightArm Duo technology was well accepted by participants with a rating of 4.4 out of 5 points. Given these findings, it will be beneficial to evaluate the BrightArm Duo application in SNF maintenance programs. Implications for Rehabilitation Integrative rehabilitation that addresses both physical and cognitive domains is promising for post-stroke maintenance in skilled nursing facilities. Simultaneous bilateral arm exercise may improve arm function in older hemiplegic patients several years after stroke. Virtual reality games that adapt to the patient can increase attention and working memory while decreasing depression in elderly.
Erodibility of selected soils and estimates of sediment yields in the San Juan Basin, New Mexico
Summer, Rebecca M.
1981-01-01
Onsite rainfall-simulation experiments were conducted to derive field-erodibility indexes for rangeland soils and soils disturbed by mining in coal fields of northwestern New Mexico. Mean indexes on rangeland soils range from 0 grams (of detached soil) on dune soil to 121 grams on wash-transport zones. Mean field-erodibility-index values of soils disturbed by mining range from 16 to 32 grams; they can be extrapolted to nearby coal fields where future mining is expected. Because field-erodibility-index data allow differentiation of erodibilities across a variable landscape, these indexes were used to adjust values of K, the erodibility factor of the Universal Soil Loss Equation. Estimates of soil loss and sediment yield were then calculated for a small basin following mining. (USGS)
Psychrophilic Microorganisms from Areas Associated with the Viking Spacecraft
Foster, Terry L.; Winans, Luther
1975-01-01
Microorganisms capable of growth at 7 C were enumerated and isolated from soil samples from the manufacture and assembly areas of the Viking spacecraft. Populations ranging from 4.2 × 103 to 7.7 × 106/g of soil were isolated from the 15 soil samples examined. Temperature requirements were determined, and those growing at 3 C, but not at 32 C, were designated as obligate psychrophiles in this investigation. Populations of soil bacteria, including aerobic sporeformers, ranging from 1.5 × 102 to 9.8 × 105/g were capable of growth at 3 C, but not at 32 C. Bacterial isolates were identified to major generic groups. No psychrophilic sporeformers were isolated from soil from the manufacture area, but psychrophilic sporeformers ranged from 0 to 6.1 × 103/g from soil from the assembly area. PMID:1190759
Shelmerdine, Paula A; Black, Colin R; McGrath, Steve P; Young, Scott D
2009-05-01
Pteris vittata plants were grown on twenty-one UK soils contaminated with arsenic (As) from a wide range of natural and anthropogenic sources. Arsenic concentration was measured in fern fronds, soil and soil pore water collected with Rhizon samplers. Isotopically exchangeable soil arsenate was determined by equilibration with (73)As(V). Removal of As from the 21 soils by three sequential crops of P. vittata ranged between 0.1 and 13% of total soil As. Ferns grown on a soil subjected to long-term sewage sludge application showed reduced uptake of As because of high available phosphate concentrations. A combined solubility-uptake model was parameterised to enable prediction of phytoremediation success from estimates of soil As, 'As-lability' and soil pH. The model was used to demonstrate the remediation potential of P. vittata under different soil conditions and with contrasting assumptions regarding re-supply of the labile As pool from unavailable forms.
NASA Astrophysics Data System (ADS)
Schaller, M. F.; Pettitt, E.; Knobbe, T.
2017-12-01
Proxies for the concentration of O2 in the ancient atmosphere are scarce. We have developed a potential new proxy for ancient atmospheric O2 content based on soil carbonate-hosted fluid inclusions. Soils are in continuous atmospheric communication, and relatively static equilibration between soil gas and atmospheric gas during formation, such that a predictable amount of atmosphere infiltrates a soil. This atmosphere is trapped by inclusions during carbonate precipitation. Here we show that carbonate hosted fluid inclusions are faithful recorders of soil gas concentrations and isotope ratios, and specifically that soil O2 partial pressures can be derived from the total gas contents of these inclusions. Using carbonate nodules from a span of depths in a modern vertisol near Dallas, TX, as a test case, we employ an online crushing technique to liberate gases from soil carbonates into a small custom-built quadrupole mass spectrometer where all gases are measured in real time. We quantify the total oxygen content of the gas using a matrix-matched calibration, and define each species as a partial pressure of the total gas released from the nodule. Atmospheric pO2 is very simply derived from the soil-nodule partial pressures by accounting for the static productivity of the soil (using a small correction based on the CO2 concentration). When corrected for aqueous solubility using Henry's Law, these soil-carbonate hosted gas results reveal soil O2 concentrations that are comparable to modern-day dry atmosphere. Armed with this achievement in modern soils, and as a test on the applicability of the approach to ancient samples, we successfully apply the new proxy to nodules from the Late Triassic Chinle formation from the Petrified Forest National Park Core, taken as part of the Colorado Plateau Coring Project. Analysis of soil O2 from soil gas monitoring wells paired with measurements from contemporaneous soil carbonate nodules is needed to precisely calibrate the new proxy.
ERIC Educational Resources Information Center
Iverson, Jana M.; Hall, Amanda J.; Nickel, Lindsay; Wozniak, Robert H.
2007-01-01
This study examined changes in rhythmic arm shaking and laterality biases in infants observed longitudinally at three points: just prior to, at, and just following reduplicated babble onset. Infants (ranging in age from 4 to 9 months at babble onset) were videotaped at home as they played with two visually identical audible and silent rattles…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-29
... arms, large arms, bombs, rockets, missiles, and pyrotechnics. All munitions used at BT-11 are inert... shapes each time. Mine simulation shapes include MK76, MK80 series, and BDU practice bombs ranging from... bombs against surface maritime targets at BT-9 or BT-11,day or night, using either unguided or precision...
Reliability and feasibility of physical fitness tests in female fibromyalgia patients.
Carbonell-Baeza, A; Álvarez-Gallardo, I C; Segura-Jiménez, V; Castro-Piñero, J; Ruiz, J R; Delgado-Fernández, M; Aparicio, V A
2015-02-01
The aim of the present study was to determine the reliability and feasibility of physical fitness tests in female fibromyalgia patients. 100 female fibromyalgia patients (aged 50.6±8.6 years) performed the following tests twice (7 days interval test-retest): chair sit and reach, back scratch, handgrip strength, arm curl, chair stand, 8 feet up and go, and 6-min walk. Significant differences between test and retest were found in the arm curl (mean difference: 1.25±2.16 repetitions, Cohen d=0.251), chair stand (0.99±1.7 repetitions, Cohen d=0.254) and 8 feet up and go (-0.38±1.09 s, Cohen d=0.111) tests. Intraclass correlation coefficients (ICC) range from 0.92 in the arm curl test to 0.96 in the back scratch test. The feasibility of the tests (patients able to complete the test) ranged from 89% in the arm curl test to 100% in the handgrip strength test. Therefore, the reliability and feasibility of the physical fitness tests examined is acceptable for female fibromyalgia patients. © Georg Thieme Verlag KG Stuttgart · New York.
Stark, Sari; Julkunen-Tiitto, Riitta; Kumpula, Jouko
2007-03-01
Mammalian herbivores commonly alter the concentrations of secondary compounds in plants and, by this mechanism, have indirect effects on litter decomposition and soil carbon and nutrient cycling. In northernmost Fennoscandia, the subarctic mountain birch (Betula pubescens ssp. czerepanovii) forests are important pasture for the semidomestic reindeer (Rangifer tarandus). In the summer ranges, mountain birches are intensively browsed, whereas in the winter ranges, reindeer feed on ground lichens, and the mountain birches remain intact. We analyzed the effect of summer browsing on the concentrations of secondary substances, litter decomposition, and soil nutrient pools in areas that had been separated as summer or winter ranges for at least 20 years, and we predicted that summer browsing may reduce levels of secondary compounds in the mountain birch and, by this mechanism, have an indirect effect on the decomposition of mountain birch leaf litter and soil nutrient cycling. The effect of browsing on the concentration of secondary substances in the mountain birch leaves varied between different years and management districts, but in some cases, the concentration of condensed tannins was lower in the summer than in the winter ranges. In a reciprocal litter decomposition trial, both litter origin and emplacement significantly affected the litter decomposition rate. Decomposition rates were faster for the litter originating from and placed into the summer range. Soil inorganic nitrogen (N) concentrations were higher in the summer than in the winter ranges, which indicates that reindeer summer browsing may enhance the soil nutrient cycling. There was a tight inverse relationship between soil N and foliar tannin concentrations in the winter range but not in the summer range. This suggests that in these strongly nutrient-limited ecosystems, soil N availability regulates the patterns of resource allocation to condensed tannins in the absence but not in the presence of browsing.
A medium scale mobile rainfall simulator for experiments on soil erosion and soil hydrology
NASA Astrophysics Data System (ADS)
Kavka, Petr; Dostál, Tomáš; Iserloh, Thomas; Davidová, Tereza; Krása, Josef; David, Václav; Vopravil, Jan; Khel, Tomáš; Bauer, Miroslav
2015-04-01
Numerous types of rainfall simulators (RS) have been used to the study the behaviour of surface runoff and sediment transport caused by rainfall. It has been documented, that reproducibility and the knowledge of test conditions are essential for gathering necessary and comparable data. Therefore medium, to large scale field rainfall simulators are very desirable. Such devices are nevertheless very much time and laboratory consuming and their weakness is especially a high water consumption. A new, compact and mobile medium scale rainfall simulator has been developed under close cooperation of CTU Prague and Research Institute of Soil Conservation. The main idea was to develop a device, which is easily to handle by 4 persons, transportable with trailer behind an off-road car and independent of additional water sources and energy. Therefore, a special construction fixed on a standard trailer has been developed. It consists of an aggregate to produce power, an electric pump and a water tank with a capacity up to 1000 l. The pump can work in reverse mode, what allows filling the water tank from any source, including stream or pond. The capacity of the tank is normally sufficient for experiments with duration up to 30 minutes. The RS itself consist of a folding arm, which carries 4 nozzles (SS Full Jet 40WSQ), controlled by electromagnetic valves, which allow to set up desired rainfall intensity by opening intervals. A simple logical unit allows programming various schemes of operation of individual nozzles, to keep low pressure fluctuation in the system. The arm is first unfolded into total length of 9.6 m and then lifted up, using simple crab to its operation position which is 2.3 - 2.65 m above terrain surface. The distance between individual nozzles had been optimized based on number of calibrating experiments on 2.4 m. There is also special space at the trailer for transportation of metal sheets and collector (for experimental plot), additional equipment, tools and measurement devices. To prevent the wind effect, whole construction can be easily covered by tarpaulin. The experimental plot has a basic size of 9.5 x 2 m, however, we usually use only 8 x 2 m. The nozzles are fed with a water pressure of about 0.8 bars. Various schemes of opened nozzles allow varying rainfall intensities between 40 and 80 mm.h-1. Rainfall collectors were used to measure spatial rainfall distribution. The spatial rainfall distribution on the entire plot is higher than 80% (Christiansen-Uniformity Coefficient). Drop size distribution and drop fall velocities were analyzed by means of a Laser Precipitation Monitor (by Thies) with satisfactory results. The mean drop sizes ranging between 0.75 - 2.00 mm depending on applied intensity. Resulting kinetic energies ranging from 188 - 582 J m-2 mm-1. The measured rainfall variables show low fluctuations throughout the tests and are therefore reproducible in field investigations. The research has been supported by the research projects SGS14/180/OHK1/3T/11 and QJ330118.
Acid precipitation effects on soil pH and base saturation of exchange sites
W. W. McFee; J. M. Kelly; R. H. Beck
1976-01-01
The typical values and probable ranges of acid-precipitation are evaluated in terms of their theoretical effects on pH and cation exchange equilibrium of soils characteristic of the humid temperature region. The extent of probable change in soil pH and the time required to cause such a change are calculated for a range of common soils. Hydrogen ion input by acid...
Directed evolution of adaptive traits
USDA-ARS?s Scientific Manuscript database
As a species, switchgrass is adapted to an amazingly broad range of environments, spanning hardiness zones ranging from HZ3 to HZ9 (Canada to Mexico), from the mid-grass prairie to the Atlantic Seaboard, from sandy soils to heavy clay soils, from acid to alkaline soils, and from wetland to dryland h...
Fania, Claudio; Albertini, Federica; Palatini, Paolo
2017-08-01
The aim of this study was to determine the accuracy of the A&D UM-201 device coupled to several cuffs for different arm sizes for office blood pressure (BP) measurement according to the International Protocol of the European Society of Hypertension. Evaluation was carried out in 33 individuals. The mean age of the individuals was 59.3±13.2 years, systolic BP was 145.4±20.6 mmHg (range: 109-186 mmHg), diastolic BP was 87.3±18.0 mmHg (range: 50-124 mmHg), and arm circumference was 30.4±4.2 cm (range: 23-39 cm). The protocol requirements were followed precisely. The UM-201 monitor passed all requirements, fulfilling the standards of the protocol. On average, the device overestimated systolic BP by 3.0±2.1 mmHg and diastolic BP by 2.6±2.0 mmHg. These data show that the A&D UM-201 device coupled to several cuffs for different ranges of arm circumference fulfilled the requirements for validation by the International Protocol and can be recommended for clinical use in the adult population.
Chen, Wan; Zeng, Zhaolin; Li, Lizhi; Wan, Xiaofen; Wan, Yi
2014-10-01
This study aimed to validate the Pangao PG-800B5 upper arm blood pressure monitor according to the European Society of Hypertension International Protocol revision 2010. A total of 33 participants, 16 men and 17 women, were included in the device evaluation. The protocol requirements were followed precisely. The mean age of the participants was 56.4±21.0 years (range 22-84 years). The mean systolic blood pressure was 143.6±25.5 mmHg (range 98-188 mmHg), the mean diastolic blood pressure was 85.7±17.2 mmHg (range 49-125 mmHg), and the mean arm circumference was 26.1±2.2 cm (range 23-32 cm). On average, the device overestimated the systolic blood pressure by 0.9±4.2 mmHg and diastolic blood pressure by 0.7±4.5 mmHg. The device passed all requirements, fulfilling the standards of the protocol. Therefore, the Pangao PG-800B5 upper arm blood pressure monitor can be recommended for clinical use and self-measurement in an adult population.
[Soil macropore characteristics under typical vegetations in Liupan Mountains].
Shi, Zhong-Jie; Wang, Yan-Hui; Xu, Li-Hong; Yu, Peng-Tao; Xiong, Wei; Xu, Da-Ping
2007-12-01
The radius and density of soil macropores under eight typical vegetations in Liupan Mountains of Northwest China were studied by using water breakthrough curves and Poiseuille equation. The results indicated that the radii of soil macropores ranged from 0.4 mm to 2.3 mm, and the weighted mean radii ranged from 0.57 mm to 1.21 mm, with a mean of 0.89 mm. The density of soil macropores ranged from 57 individuals per dm2 to 1 117 individuals per dm2, with a mean of 408 individuals per dm2. The macropores with radii bigger than 1.4 mm had a lower density, accounting for only 6.86% of the total. The area proportion of soil macropores ranged from 0.76% to 31.26%, with a mean of 10.82%. In study area, the density of soil macropores was higher in broadleaf forest than in coniferous forest, but basically the same in sub-alpine meadow and in broadleaf forest, as well as in shrubs and in coniferous forest. As for the area proportion of soil macropores, it was also higher in broadleaf forest than in coniferous forest, but basically the same in shrubs and in broadleaf forest soil, as well as in sub-alpine meadow and in coniferous forest.
Ahmad, Mahtab; Soo Lee, Sang; Yang, Jae E; Ro, Hee-Myong; Han Lee, Young; Sik Ok, Yong
2012-05-01
Bioavailability and bioaccessibility determine the level of metal toxicity in the soils. Inorganic soil amendments may decrease metal bioavailability and enhance soil quality. This study used mussel shell, cow bone, and biochar to reduce lead (Pb) toxicity in the highly contaminated military shooting range soil in Korea. Water-soluble and 1-M ammonium nitrate extractions, and a modified physiologically based extraction test (PBET) were performed to determine Pb bioavailability and bioaccessibility in the soil, respectively. Active C in the soil was also measured to evaluate the effects of the amendments on biological soil quality. The Pb contaminated soil was diluted in serial with uncontaminated soil for the bioassays. Seed germination and root elongation tests using lettuce (Lactuca sativa) showed increases in germination percentage and root length in soil treated with the amendments. Biochar was most effective and increased seed germination by 360% and root length by 189% compared to the unamended soil. Up to 20% soil dilution resulted in more than 50% seed germination. Bioavailability and bioaccessibility of Pb in the soils were decreased by 92.5% and 48.5% with mussel shell, by 84.8% and 34.5% with cow bone, and by 75.8% and 12.5% with biochar, respectively, compared to the unamended soil. We found that the Pb availability in the military shooting range soil can be reduced effectively by the tested amendments or soil dilution alternately, thereby decreasing the risk of ecotoxicity. Furthermore, the increasing active C from the amendments revitalized the soil contaminated with Pb. Copyright © 2012 Elsevier Inc. All rights reserved.
McAvoy, Drew C; Pittinger, Charles A; Willis, Alison M
2016-09-01
The biotransformation of tetrabromobisphenol A (TBBPA) was evaluated in anaerobic digester sludge, soils, and freshwater sediments. In anaerobic digester sludge, TBBPA biotransformed rapidly with a 50% disappearance time (DT50) of 19 days, though little mineralization (1.1%) was observed. In aerobic soils, mineralization of TBBPA ranged from 17.5% to 21.6% with 55.3-83.6% of the TBBPA incorporated into the soils as a non-extractable bound residue. The DT50 for TBBPA in aerobic soils ranged from 5.3 to 7.7 days. In anaerobic soils, 48.3-100% of the TBBPA was incorporated into the soils as non-extractable bound residue with <4% mineralized. The soil fate studies demonstrated extensive incorporation of TBBPA into the solid matrix and this association was related to the amount of organic carbon in the soils (i.e., greater association of TBBPA with soil at higher organic carbon content). In anaerobic sediments the DT50 for TBBPA ranged from 28 to 42 days, whereas in aerobic sediments the DT50 for TBBPA ranged from 48 to 84 days and depended on the initial dose concentration. Most of the TBBPA in the sediment studies was incorporated as a non-extractable bound residue with little mineralization observed. Sediment extracts revealed three unknown biotransformation products and bisphenol A (BPA). These results were consistent with previously published studies where TBBPA biotransformed in anaerobic environments (digester sludge and sediments) by debromination and slowly mineralized in the test environments (anaerobic digester sludge, soils, and freshwater sediments). Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
'Berries' on the Ground 2 (3-D)
NASA Technical Reports Server (NTRS)
2004-01-01
This is the 3-D anaglyph showing a microscopic image taken of soil featuring round, blueberry-shaped rock formations on the crater floor at Meridiani Planum, Mars. This image was taken on the 13th day of the Mars Exploration Rover Opportunity's journey, before the Moessbauer spectrometer, an instrument located on the rover's instrument deployment device, or 'arm,' was pressed down to take measurements. The area in this image is approximately 3 centimeters (1.2 inches) across.
2004-02-12
This mosaic image shows an extreme close-up of round, blueberry-shaped formations in the martian soil near a part of the rock outcrop at Meridiani Planum called Stone Mountain. Scientists are studying these curious formations for clues about the area's past environmental conditions. The image, one of the highest resolution images ever taken by the microscopic imager, an instrument located on the Mars Exploration Rover Opportunity's instrument deployment device or "arm." http://photojournal.jpl.nasa.gov/catalog/PIA05273
Benjamin-Chung, Jade; Amin, Nuhu; Ercumen, Ayse; Arnold, Benjamin F; Hubbard, Alan E; Unicomb, Leanne; Rahman, Mahbubur; Luby, Stephen P; Colford, John M
2018-03-27
Water, sanitation, and handwashing interventions may confer spillover effects on neighbors of intervention recipients by interrupting pathogen transmission. We measured geographically local spillovers in WASH Benefits, a cluster-randomized trial in rural Bangladesh, by comparing outcomes among neighbors of intervention vs. control participants. WASH Benefits randomly allocated geographically-defined clusters to a compound-level intervention (chlorinated drinking water, upgraded sanitation, and handwashing promotion) or control. From January to August 2015, in 180 clusters, we enrolled 1,799 neighboring children age-matched to trial participants that would have been eligible for WASH Benefits had they been conceived slightly earlier or later. After 28 months of intervention, we quantified fecal indicator bacteria in toy rinse and drinking water samples, measured soil-transmitted helminth infections, and recorded caregiver-reported diarrhea and respiratory illness. Neighbors' characteristics were balanced across arms. The prevalence of detectable E. coli in tubewell samples was lower for neighbors of intervention vs. control trial participants (prevalence ratio = 0.83; 0.73, 0.95). There was no difference in fecal indicator bacteria prevalence between arms for other environmental samples. Prevalence was similar in neighbors of intervention vs. control participants for soil-transmitted helminth infection, diarrhea, and respiratory illness. A compound-level water, sanitation, and handwashing intervention reduced neighbors' tubewell water contamination but did not impact neighboring children's health.
Schulenburg, Hinrich; Ewbank, Jonathan J
2004-11-22
Co-evolutionary arms races between parasites and hosts are considered to be of immense importance in the evolution of living organisms, potentially leading to highly dynamic life-history changes. The outcome of such arms races is in many cases thought to be determined by frequency dependent selection, which relies on genetic variation in host susceptibility and parasite virulence, and also genotype-specific interactions between host and parasite. Empirical evidence for these two prerequisites is scarce, however, especially for invertebrate hosts. We addressed this topic by analysing the interaction between natural isolates of the soil nematode Caenorhabditis elegans and the pathogenic soil bacterium Serratia marcescens. Our analysis reveals the presence of i) significant variation in host susceptibility, ii) significant variation in pathogen virulence, and iii) significant strain- and genotype-specific interactions between the two species. The results obtained support the previous notion that highly specific interactions between parasites and animal hosts are generally widespread. At least for C. elegans, the high specificity is observed among isolates from the same population, such that it may provide a basis for and/or represent the outcome of co-evolutionary adaptations under natural conditions. Since both C. elegans and S. marcescens permit comprehensive molecular analyses, these two species provide a promising model system for inference of the molecular basis of such highly specific interactions, which are as yet unexplored in invertebrate hosts.
Schulenburg, Hinrich; Ewbank, Jonathan J
2004-01-01
Background Co-evolutionary arms races between parasites and hosts are considered to be of immense importance in the evolution of living organisms, potentially leading to highly dynamic life-history changes. The outcome of such arms races is in many cases thought to be determined by frequency dependent selection, which relies on genetic variation in host susceptibility and parasite virulence, and also genotype-specific interactions between host and parasite. Empirical evidence for these two prerequisites is scarce, however, especially for invertebrate hosts. We addressed this topic by analysing the interaction between natural isolates of the soil nematode Caenorhabditis elegans and the pathogenic soil bacterium Serratia marcescens. Results Our analysis reveals the presence of i) significant variation in host susceptibility, ii) significant variation in pathogen virulence, and iii) significant strain- and genotype-specific interactions between the two species. Conclusions The results obtained support the previous notion that highly specific interactions between parasites and animal hosts are generally widespread. At least for C. elegans, the high specificity is observed among isolates from the same population, such that it may provide a basis for and/or represent the outcome of co-evolutionary adaptations under natural conditions. Since both C. elegans and S. marcescens permit comprehensive molecular analyses, these two species provide a promising model system for inference of the molecular basis of such highly specific interactions, which are as yet unexplored in invertebrate hosts. PMID:15555070
Woodside, Michael D.
1994-01-01
The City of Virginia Beach currently (1994) supplies water to about 400,000 people in southeastern Virginia. The city plans to withdraw water from the Pea Hill Arm of Lake Gaston to meet projected water needs of the population to the year 2030. The purpose of this report is to (1) describe the temporal and spatial distribution of selected water-quality constituents, (2) document current (1989) land use and land cover in the Pea Hill Arm drainage basin, and (3) discuss relations, if any, between the quality of water in the inlets within the Pea Hill Arm and land uses. The report focuses on water-quality problems in the basin, including changes in concentrations of major ions, nutrients, and algae associated with urban development adjacent to water bodies.The Pea Hill Arm was classified as mesotrophic on the basis of the range of concentrations of total phosphorus (0.001 to 0.61 milligrams per liter); the range of concentrations of total organic-plus-ammonia nitrogen (0.2 to 1.4 milligrams per liter); and the range of concentrations of chlorophyll a (1.4 to 56 micrograms per liter). These water-quality data were collected at 3 feet below the water surface during water years 1989-90.Thermal stratification in Pea Hill Arm generally began in April and ended in September. Water below a depth of about 25 feet generally became anoxic by June. Destratification generally began in late September and was completed by November. Lake Gaston followed the same general stratification and destratification pattern as Pea Hill Arm, except Lake Gaston was partially destratified during the summer when large amounts of water were released from John H. Kerr Reservoir and Lake Gaston Dams. During water year 1988, streamflows were 33 percent below the long-term mean-annual streamflows at one of the major streams to Lake Gaston. Low streamflows contributed to elevated specific conductances and concentrations of sodium, calcium, magnesium, and alkalinity from October 1988 to February 1989 at sampling stations in the Pea Hill Arm and Lake Gaston.About 75 percent of the land use in the Pea Hill Arm is forest land. The remaining 25 percent of the Pea Hill Arm drainage basin is 8 percent pasture/open land, 8 percent open water, 6 percent residential land, and 3 percent cropland. No statistical relations are present between water-quality constituents measured and developed land uses within 11 basins in the Pea Hill Arm Basin, except during periods of stormwater runoff. During a stormwater-runoff event, there was a relation between total nitrite plus nitrate and land use (Kendall's tau correlation coefficient of 0.69). The relation between the developed land use and total nitrite plus nitrate can also be related to the increased ground-water inputs during high base-flow periods.Spatial differences in water-quality constituents as determined by Wilcoxon (matched-pairs) signed-rank tests and cluster analyses were longitudinal and primarily grouped into riverine, transition, and lacustrine zones. These zones were grouped on the basis of flow characteristics and nutrient concentrations.
Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils
NASA Astrophysics Data System (ADS)
Schindlbacher, Andreas; Zechmeister-Boltenstern, Sophie; Butterbach-Bahl, Klaus
2004-09-01
Emissions of NO, NO2, and N2O to the atmosphere were measured with a fully automated laboratory system from undisturbed soil columns obtained from five different temperate and one boreal forest sites. The soils were chosen to cover a transect through Europe, sandy and loamy textures, and different atmospheric nitrogen deposition rates. In a two-factorial experimental design, soil cores were kept under varying conditions with respect to temperature (range 5-20°C) and soil moisture (range 0-300 kPa). The combination of soil temperature and soil moisture could explain a better part of variations in NO (up to 74%) and N2O (up to 86%) emissions for individual soils, but average emissions differed significantly between various forest soils. Generally, NO and N2O were emitted from all soils except from the boreal pine forest soil, where NO was consumed. NO emissions from the German spruce forest receiving highest yearly nitrogen inputs of >35 kg ha-1 yr-1 ranged from 1.3 to 608.9 μg NO-N m-2 h-1 and largely exceeded emissions from other soils. Average N2O emissions from this soil tended also to be highest (171.7 ± 42.2 μg N2O-N m-2 h-1), but did not differ significantly from other soils. NO2 deposition occurred in all soils and strongly correlated to NO emissions. NO and N2O emissions showed a positive exponential relationship to soil temperature. With activation energies between 57 and 133 kJ mol-1, N2O emissions from the various soils responded more uniformely to temperature than NO emissions with 41 and 199 kJ mol-1. The two Austrian beech forest soils showed exceptionally high activation energies for NO emissions, which might be attributed to chemodenitrification. N2O emissions increased with increasing water filled pore space (WFPS) or decreasing water tension, respectively. Maximal N2O emissions were measured between 80 and 95% WFPS or 0 kPa water tension. Optimal moisture for NO emission differed significantly between the soils, and ranged between 15% WFPS in sandy Italian floodplain soil and 65% in loamy Austrian beech forest soils. These differences may be related to the specific adaptation of the microbial communities to draught conditions.
Dissolved organic carbon and nitrogen release from Holocene permafrost and seasonally frozen soils
NASA Astrophysics Data System (ADS)
Wickland, K.; Waldrop, M. P.; Koch, J. C.; Jorgenson, T.; Striegl, R. G.
2017-12-01
Permafrost (perennially frozen) soils store vast amounts of carbon (C) and nitrogen (N) that are vulnerable to mobilization to the atmosphere as greenhouse gases and to terrestrial and aquatic ecosystems as dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) upon thaw. Such releases will affect the biogeochemistry of arctic and boreal regions, yet little is known about active layer (seasonally frozen) and permafrost source variability that determines DOC and TDN mobilization. We quantified DOC and TDN leachate yields from a range of active layer and permafrost soils in Alaska varying in age and C and N content to determine potential release upon thaw. Soil cores from the upper 1 meter were collected in late winter, when soils were frozen, from three locations representing a range in geographic position, landscape setting, permafrost depth, and soil types across interior Alaska. Two 15 cm-thick segments were extracted from each core: a deep active-layer horizon and a shallow permafrost horizon. Soils were thawed and leached for DOC and TDN yields, dissolved organic matter optical properties, and DOC biodegradability; soils were analyzed for C and N content, and radiocarbon content. Soils had wide-ranging C and N content (<1-44% C, <0.1-2.3% N), and varied in radiocarbon age from 450-9200 years before present - thus capturing typical ranges of boreal and arctic soils. Soil DOC and TDN yields increased linearly with soil C and N content, and decreased with increasing radiocarbon age. However, across all sites DOC and TDN yields were significantly greater from permafrost soils (0.387 ± 0.324 mg DOC g-1 soil; 0.271 ± 0.0271 mg N g-1 soil) than from active layer soils (0.210 ± 0.192 mg DOC g-1 soil; 0.00716 ± 0.00569 mg N g-1 soil). DOC biodegradability increased with increasing radiocarbon age, and was statistically similar for active layer and permafrost soils. Our findings suggest that the continuously frozen state of permafrost soils has preserved higher relative potential DOC and TDN yields compared to seasonally thawed soils exposed to annual leaching and decomposition, and that frozen soils undergo microbial processes that produce labile DOC over time.
Distribution and variation of arsenic in Wisconsin surface soils, with data on other trace elements
Stensvold, Krista A.
2012-01-01
Soils with sandy glacial outwash as a parent material have a lower median arsenic concentration (1.0 mg/kg) than soils forming in other parent materials (1.5 to 3.0 mg/kg). Soil texture and drainage category also influence median arsenic concentration. Finer grained soils have a higher observed range of concentrations. For loamy and loess-dominated soil groups, drainage category influences the median arsenic concentration and observed range of values, but a consistent relationship within the data is not apparent. Statistical analysis of the 16 other elements are presented in this report, but the relationships of concentrations to soil properties or geographic areas were not examined.
NASA Astrophysics Data System (ADS)
Exbrayat, J.-F.; Pitman, A. J.; Abramowitz, G.
2014-03-01
Recent studies have identified the first-order parameterization of microbial decomposition as a major source of uncertainty in simulations and projections of the terrestrial carbon balance. Here, we use a reduced complexity model representative of the current state-of-the-art parameterization of soil organic carbon decomposition. We undertake a systematic sensitivity analysis to disentangle the effect of the time-invariant baseline residence time (k) and the sensitvity of microbial decomposition to temperature (Q10) on soil carbon dynamics at regional and global scales. Our simulations produce a range in total soil carbon at equilibrium of ~ 592 to 2745 Pg C which is similar to the ~ 561 to 2938 Pg C range in pre-industrial soil carbon in models used in the fifth phase of the Coupled Model Intercomparison Project. This range depends primarily on the value of k, although the impact of Q10 is not trivial at regional scales. As climate changes through the historical period, and into the future, k is primarily responsible for the magnitude of the response in soil carbon, whereas Q10 determines whether the soil remains a sink, or becomes a source in the future mostly by its effect on mid-latitudes carbon balance. If we restrict our simulations to those simulating total soil carbon stocks consistent with observations of current stocks, the projected range in total soil carbon change is reduced by 42% for the historical simulations and 45% for the future projections. However, while this observation-based selection dismisses outliers it does not increase confidence in the future sign of the soil carbon feedback. We conclude that despite this result, future estimates of soil carbon, and how soil carbon responds to climate change should be constrained by available observational data sets.
NASA Astrophysics Data System (ADS)
Exbrayat, J.-F.; Pitman, A. J.; Abramowitz, G.
2014-12-01
Recent studies have identified the first-order representation of microbial decomposition as a major source of uncertainty in simulations and projections of the terrestrial carbon balance. Here, we use a reduced complexity model representative of current state-of-the-art models of soil organic carbon decomposition. We undertake a systematic sensitivity analysis to disentangle the effect of the time-invariant baseline residence time (k) and the sensitivity of microbial decomposition to temperature (Q10) on soil carbon dynamics at regional and global scales. Our simulations produce a range in total soil carbon at equilibrium of ~ 592 to 2745 Pg C, which is similar to the ~ 561 to 2938 Pg C range in pre-industrial soil carbon in models used in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). This range depends primarily on the value of k, although the impact of Q10 is not trivial at regional scales. As climate changes through the historical period, and into the future, k is primarily responsible for the magnitude of the response in soil carbon, whereas Q10 determines whether the soil remains a sink, or becomes a source in the future mostly by its effect on mid-latitude carbon balance. If we restrict our simulations to those simulating total soil carbon stocks consistent with observations of current stocks, the projected range in total soil carbon change is reduced by 42% for the historical simulations and 45% for the future projections. However, while this observation-based selection dismisses outliers, it does not increase confidence in the future sign of the soil carbon feedback. We conclude that despite this result, future estimates of soil carbon and how soil carbon responds to climate change should be more constrained by available data sets of carbon stocks.
Kumarathilaka, Prasanna; Ahmad, Mahtab; Herath, Indika; Mahatantila, Kushani; Athapattu, B C L; Rinklebe, Jörg; Ok, Yong Sik; Usman, Adel; Al-Wabel, Mohammad I; Abduljabbar, Adel; Vithanage, Meththika
2018-06-01
Presence of organic and inorganic acids influences the release rates of trace metals (TMs) bound in contaminated soil systems. This study aimed to investigate the influence of bioenergy waste biochar, derived from Gliricidia sepium (GBC), on the proton and ligand-induced bioavailability of Pb and Cu in a shooting range soil (17,066mg Pb and 1134mg Cu per kg soil) in the presence of inorganic (sulfuric, nitric, and hydrochloric) and organic acids (acetic, citric, and oxalic). Release rates of Pb and Cu in the shooting range soil were determined under different acid concentrations (0.05, 0.1, 0.5, 1, 5, and 10mM) and in the presence/absence of GBC (10% by weight of soil). The dissolution rates of Pb and Cu increased with increasing acid concentrations. Lead was preferentially released (2.79×10 -13 to 8.86×10 -13 molm -2 s -1 ) than Cu (1.07×10 -13 to 1.02×10 -13 molm -2 s -1 ) which could be due to the excessive Pb concentrations in soil. However, the addition of GBC to soil reduced Pb and Cu dissolution rates to a greater extent of 10.0 to 99.5% and 15.6 to 99.5%, respectively, under various acid concentrations. The increased pH in the medium and different adsorption mechanisms, including electrostatic attractions, surface diffusion, ion exchange, precipitation, and complexation could immobilize Pb and Cu released by the proton and ligands in GBC amended soil. Overall, GBC could be utilized as an effective soil amendment to immobilize Pb and Cu in shooting range soil even under the influence of soil acidity. Copyright © 2017. Published by Elsevier B.V.
Soil Sample Poised at TEGA Door
NASA Technical Reports Server (NTRS)
2008-01-01
This image was taken by NASA's Phoenix Mars Lander's Surface Stereo Imager on Sol 11 (June 5, 2008), the eleventh day after landing. It shows the Robotic Arm scoop containing a soil sample poised over the partially open door of the Thermal and Evolved-Gas Analyzer's number four cell, or oven. Light-colored clods of material visible toward the scoop's lower edge may be part of the crusted surface material seen previously near the foot of the lander. The material inside the scoop has been slightly brightened in this image. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Testing amendments for remediation of military range contaminated soil.
Siebielec, Grzegorz; Chaney, Rufus L
2012-10-15
Military range soils are often strongly contaminated with metals. Information on the effectiveness of remediation of these soils is scarce. We tested the effectiveness of compost and mineral treatments for remediation and revegetation of military range soil collected in Aberdeen, MD. The soil was barren due to zinc (Zn) phytotoxicity while lead (Pb) posed a substantial risk to soil biota, wildlife and humans through various pathways. Seven treatments were tested: untreated control, agricultural NPK fertilization, high phosphate fertilization plus agricultural rates of NK, CaCO(3), "Orgro" biosolid compost, "Orgro" + CaCO(3), "Orgro" + CaCO(3) + Mn sulfate. All compost treatments alleviated Zn phytotoxicity to tall fescue; however compost combined with liming reduced plant Zn content up to 158-162 mg kg(-1). Compost added with lime reduced Pb in-vitro bioaccessibility from 32.5 to 20.4% of total Pb and was the most effective among the tested treatments. The study revealed the effectiveness of biosolids compost and lime mixture in the rapid stabilization of metals and revegetation of military range contaminated soils. The persistence of the remediation needs to be, however, confirmed in the long-term field study. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fu, Qiang; Yan, Peiru; Li, Tianxiao; Cui, Song; Peng, Li
2018-04-01
To study the effect of straw mulching on soil water evaporation, it is necessary to measure soil water evaporation under different conditions of straw mulching during the soil thawing period. A field experiment was conducted in winter, and soil evaporation was measured using a microlysimeter on bare land (LD) and 4500 (GF4500), 9000 (GF9000) and 13500 kg/hm2 (GF13500) straw mulch. The influence of different quantities of straw mulch on soil water evaporation during the thawing period was analyzed using the Mallat algorithm, statistical analysis and information cost function. The results showed that straw mulching could delay the thawing of the surface soil by 3-6 d, decrease the speed at which the surface soil thaws by 0.40-0.80 cm/d, delay the peak soil liquid water content, increase the soil liquid water content, reduce the cumulative evaporation by 2.70-7.40 mm in the thawing period, increase the range of soil evaporation by 0.04-0.10 mm in the early stage of the thawing period, and reduce the range of soil evaporation by 0.25-0.90 mm in the late stage of the thawing period. Straw mulching could reduce the range of and variation in soil evaporation and can reduce the effect of random factors on soil evaporation. When the amount of straw mulch exceeded 9000 kg/hm2, the effect of increasing the amount of straw mulch on daily soil water evaporation was small.
Jacob, Louis; Uvarova, Maria; Boulet, Sandrine; Begaj, Inva; Chevret, Sylvie
2016-06-02
Multi-Arm Multi-Stage designs aim at comparing several new treatments to a common reference, in order to select or drop any treatment arm to move forward when such evidence already exists based on interim analyses. We redesigned a Bayesian adaptive design initially proposed for dose-finding, focusing our interest in the comparison of multiple experimental drugs to a control on a binary criterion measure. We redesigned a phase II clinical trial that randomly allocates patients across three (one control and two experimental) treatment arms to assess dropping decision rules. We were interested in dropping any arm due to futility, either based on historical control rate (first rule) or comparison across arms (second rule), and in stopping experimental arm due to its ability to reach a sufficient response rate (third rule), using the difference of response probabilities in Bayes binomial trials between the treated and control as a measure of treatment benefit. Simulations were then conducted to investigate the decision operating characteristics under a variety of plausible scenarios, as a function of the decision thresholds. Our findings suggest that one experimental treatment was less efficient than the control and could have been dropped from the trial based on a sample of approximately 20 instead of 40 patients. In the simulation study, stopping decisions were reached sooner for the first rule than for the second rule, with close mean estimates of response rates and small bias. According to the decision threshold, the mean sample size to detect the required 0.15 absolute benefit ranged from 63 to 70 (rule 3) with false negative rates of less than 2 % (rule 1) up to 6 % (rule 2). In contrast, detecting a 0.15 inferiority in response rates required a sample size ranging on average from 23 to 35 (rules 1 and 2, respectively) with a false positive rate ranging from 3.6 to 0.6 % (rule 3). Adaptive trial design is a good way to improve clinical trials. It allows removing ineffective drugs and reducing the trial sample size, while maintaining unbiased estimates. Decision thresholds can be set according to predefined fixed error decision rates. ClinicalTrials.gov Identifier: NCT01342692 .
Henninger, Heath B; Barg, Alexej; Anderson, Andrew E; Bachus, Kent N; Tashjian, Robert Z; Burks, Robert T
2012-04-01
No clear recommendations exist regarding optimal humeral component version and deltoid tension in reverse total shoulder arthroplasty (TSA). A biomechanical shoulder simulator tested humeral versions (0°, 10°, 20° retroversion) and implant thicknesses (-3, 0, +3 mm from baseline) after reverse TSA in human cadavers. Abduction and external rotation ranges of motion as well as abduction and dislocation forces were quantified for native arms and arms implanted with 9 combinations of humeral version and implant thickness. Resting abduction angles increased significantly (up to 30°) after reverse TSA compared with native shoulders. With constant posterior cuff loads, native arms externally rotated 20°, whereas no external rotation occurred in implanted arms (20° net internal rotation). Humeral version did not affect rotational range of motion but did alter resting abduction. Abduction forces decreased 30% vs native shoulders but did not change when version or implant thickness was altered. Humeral center of rotation was shifted 17 mm medially and 12 mm inferiorly after implantation. The force required for lateral dislocation was 60% less than anterior and was not affected by implant thickness or version. Reverse TSA reduced abduction forces compared with native shoulders and resulted in limited external rotation and abduction ranges of motion. Because abduction force was reduced for all implants, the choice of humeral version and implant thickness should focus on range of motion. Lateral dislocation forces were less than anterior forces; thus, levering and inferior/posterior impingement may be a more probable basis for dislocation (laterally) than anteriorly directed forces. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
García-Alsina, Joan; García Almazan, Concepción; Moranta Mesquida, José; Pleguezuelos Cobo, Eulogio
2005-11-01
To define the normal range, velocity and consistency of the movement of active arm elevation with humerus in neutral or in external rotation using a simplified kinematic model. Nine normal volunteers and the non-involved side of twenty five patients with unilateral shoulder lesion participated. A 3D optoelectronic tracking system was used to register the movement of raising the arm from the normal upright position to maximal elevation in a repetitive way. Peak humeral position, range of movement, velocity of motion and consistency of cycles were analyzed. Descriptive statistics, correlation between variables and with sex, age and side are presented, including differences between performances of movement done in neutral or external rotation. Data of the six variables were: maximal abduction 142 degrees [137.4-147.0], range of motion 118.1 degrees [112-124], maximal velocity 238 degrees/s [209-265]; mean velocity 113 degrees/s [96-130]; coefficient of variation of maximal angular abduction was 2.2% [1.7-2.7]; coefficient of variation of maximal velocity 8.6% [7.3-9.9]. No significant differences were observed either on side, sex or between the shoulder of normal volunteers or that of the patients with opposite shoulder lesions. Participants older than 45 years old showed only a significant slightly lower average velocity. The study confirms the weak association between dependent (biomechanical) and independent variables. As it is described here, analysis of arm elevation has not been previously studied and shows that has a good consistency in angular position, velocity and repeatability of motion in normal conditions which permits a picture of the overall performance of the shoulder.
[Epidemiological health surveillance among the troops during combat operations in armed conflicts].
Mel'nichenko, P I
1997-08-01
With local wars and armed conflicts the sanitary-epidemiological situation for the troops and local population shows a tendency to worsen. The main objects of the military medical service at the period of deployment are the preventive measures against troops infection from local sources by virus hepatitis A, bacterial dysentery, typhoid, cholera etc. As a rule, combat actions result in communal service destruction, low quality of potable water, soil contamination and worsening sanitary norms and standards. Also, there is a danger of reactivation of the natural centres of infection due to large-scale defence earthworks in the region of operations. The experience of the military medical service in Afghanistan and Chechnya proves, that a multimedia approach to preventive antiepidemic measures is necessary together with the emphasis on the most important actions against infections that represent the biggest danger for the land troops.
Martian Dust Collected by Phoenix's Arm
NASA Technical Reports Server (NTRS)
2008-01-01
This image from NASA's Phoenix Lander's Optical Microscope shows particles of Martian dust lying on the microscope's silicon substrate. The Robotic Arm sprinkled a sample of the soil from the Snow White trench onto the microscope on July 2, 2008, the 38th Martian day, or sol, of the mission after landing. Subsequently, the Atomic Force Microscope, or AFM, zoomed in one of the fine particles, creating the first-ever image of a particle of Mars' ubiquitous fine dust, the most highly magnified image ever seen from another world. The Atomic Force Microscope was developed by a Swiss-led consortium in collaboration with Imperial College London. The AFM is part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Developing and using artificial soils to analyze soil microbial processes
NASA Astrophysics Data System (ADS)
Gao, X.; Cheng, H. Y.; Boynton, L.; Masiello, C. A.; Silberg, J. J.
2017-12-01
Microbial diversity and function in soils are governed by soil characteristics such as mineral composition, particles size and aggregations, soil organic matter (SOM), and availability of nutrients and H2O. The spatial and temporal heterogeneity of soils creates a range of niches (hotspots) differing in the availability of O2, H2O, and nutrients, which shapes microbial activities at scales ranging from nanometer to landscape. Synthetic biologists often examine microbial response trigged by their environment conditions in nutrient-rich aqueous media using single strain microbes. While these studies provided useful insight in the role of soil microbes in important soil biogeochemical processes (e.g., C cycling, N cycling, etc.), the results obtained from the over-simplified model systems are often not applicable natural soil systems. On the contrary, soil microbiologists examine microbial processes in natural soils using longer incubation time. However, due to its physical, chemical and biological complexity of natural soils, it is often difficult to examine soil characteristics independently and understand how each characteristic influences soil microbial activities and their corresponding soil functioning. Therefore, it is necessary to bridge the gap and develop a model matrix to exclude unpredictable influences from the environment while still reliably mimicking real environmental conditions. The objective of this study is to design a range of ecologically-relevant artificial soils with varying texture (particle size distribution), structure, mineralogy, SOM content, and nutrient heterogeneity. We thoroughly characterize the artificial soils for pH, active surface area and surface morphology, cation exchange capacity (CEC), and water retention curve. We demonstrate the effectiveness of the artificial soils as useful matrix for microbial processes, such as microbial growth and horizontal gene transfer (HGT), using the gas-reporting biosensors recently developed in our lab.
Soil clay content underlies prion infection odds
David, Walter W.; Walsh, D.P.; Farnsworth, Matthew L.; Winkelman, D.L.; Miller, M.W.
2011-01-01
Environmental factors-especially soil properties-have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings. ?? 2011 Macmillan Publishers Limited. All rights reserved.
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site] Click for larger view
This high-resolution image from the panoramic camera on the Mars Exploration Rover Spirit shows the region containing the patch of soil scientists examined at Gusev Crater just after Spirit rolled off the Columbia Memorial Station. Scientists examined this patch on the 13th and 15th martian days, or sols, of Spirit's journey. Using nearly all the science instruments located on the rover's instrument deployment device or 'arm,' scientists yielded some puzzling results including the detection of a mineral called olivine and the appearance that the soil is stronger and more cohesive than they expected. Like detectives searching for clues, the science team will continue to peruse the landscape for explanations of their findings.Data taken from the camera's red, green and blue filters were combined to create this approximate true color picture, acquired on the 12th martian day, or sol, of Spirit's journey.The yellow box (see inset above) in this high-resolution image from the panoramic camera on the Mars Exploration Rover Spirit outlines the patch of soil scientists examined at Gusev Crater just after Spirit rolled off the Columbia Memorial Station.Measuring Water Quality in Hong Kong using an Underwater Remotely Operated Vehicle
NASA Astrophysics Data System (ADS)
Evans, J. W.
2017-12-01
Clean water is a vital necessity in our day to day lives, with all living organisms depending on it for survival and countless others relying on it as their habitat. The waters surrounding Hong Kong are home to a wide diversity of marine animals and organisms but are polluted for a variety of reasons. This pollution includes marine debris, industrial and construction waste, a high concentration of organic material, and other pollutants. This research project will focus on collecting water and soil samples from various locations around the Hong Kong ocean waters for analytical chemical sampling. A Remote Operated Vehicle (ROV) will be designed, built and used for collecting the water and soil samples. ROVs are used around the world in oceans and other deep water applications. ThisROV will be tethered with a control system and equipped with a camera, mechanical arms for collections water and soil samples and sensors for testing basic water parameters. Using a ROV will allow for long term sampling in the same location to occur as required. The collected samples will be tested in the lab to determine overall water and soil quality, allowing conclusions to be drawn about the conditions of the tested area.
Short-range variation in a Wisconsin soilscape (USA)
NASA Astrophysics Data System (ADS)
Hartemink, A. E.; Gennadiyev, A. N.; Bockheim, J. G.; Bero, N.
2017-02-01
Here we report on the variation of a soilscape in south central Wisconsin, USA. The variation in soil properties and soil features results in four soil order (Entisols, Inceptisols, Alfisols and Mollisols). Observations were made along a 200 m transect in a field that was cultivated since 1870. Slopes ranged from 7.5% on the back slope to 0% in the lower part. The soilscape had a total relief difference of 7.0 m. The soils were studied by 41 soil pits (60 cm), 6 soil pits (125 cm), 15 soil augers (100 cm), and ground-penetrating radar imagery. The summit and shoulder consist of coarse glacial outwash (loamy sands) over limestone whereas the lower part is lacustrine sediments over coarse outwash (loams, silty loams). The A-horizon thickness ranged from 14 to 52 cm with thick A horizons at the toeslope that also had the lowest soil pH. The soil organic carbon (SOC) contents of the A horizons ranged from 11.6 to 46.9 g C kg-1, and the higher contents are in the lower part of the soilscape. SOC stocks (0-20 cm depth) ranged from 50 to 70 Mg C ha-1 on the summit and backslope, but were 80 to 95 Mg C ha-1 in the flat part of the soilscape. The lowest soybean yields (1.6 Mg ha-1) were found at the summit and the highest yield (6.3 Mg ha-1) at the lower end of the backslope. Soybean yields were correlated to the thickness of the A horizon, and every 10 cm increase in A horizon thickness yielded an extra 0.6 Mg soybeans ha-1. Analysis of spherical magnetic particles was used to estimate soil erosion rates that were highest on the backslope (16.2 Mg ha-1 yr-1) and rates of soil deposition in the lowest part of the soilscape was 18.8 Mg haP1 yr-1. It seems that there is no net soil and SOC loss within this soilscape. All in all, we found 4 soil taxonomic orders within 200 m. The variation in this soilscape was substantial and probably enhanced by 140 years of cultivation.
Terahertz Spectroscopy for Proximal Soil Sensing: An Approach to Particle Size Analysis
Dworak, Volker; Mahns, Benjamin; Selbeck, Jörn; Weltzien, Cornelia
2017-01-01
Spatially resolved soil parameters are some of the most important pieces of information for precision agriculture. These parameters, especially the particle size distribution (texture), are costly to measure by conventional laboratory methods, and thus, in situ assessment has become the focus of a new discipline called proximal soil sensing. Terahertz (THz) radiation is a promising method for nondestructive in situ measurements. The THz frequency range from 258 gigahertz (GHz) to 350 GHz provides a good compromise between soil penetration and the interaction of the electromagnetic waves with soil compounds. In particular, soil physical parameters influence THz measurements. This paper presents investigations of the spectral transmission signals from samples of different particle size fractions relevant for soil characterization. The sample thickness ranged from 5 to 17 mm. The transmission of THz waves was affected by the main mineral particle fractions, sand, silt and clay. The resulting signal changes systematically according to particle sizes larger than half the wavelength. It can be concluded that THz spectroscopic measurements provide information about soil texture and penetrate samples with thicknesses in the cm range. PMID:29048392
Sorption-desorption of indaziflam in selected agricultural soils.
Alonso, Diego G; Koskinen, William C; Oliveira, Rubem S; Constantin, Jamil; Mislankar, Suresh
2011-12-28
Indaziflam, a new alkylazine herbicide that inhibits cellulose biosynthesis, is under current development for soil applications in perennial crops and nonagricultural areas. Sorption and desorption of indaziflam in six soils from Brazil and three soils from the United States, with different physical chemical properties, were investigated using the batch equilibration method. Sorption kinetics demonstrated that soil-solution equilibrium was attained in <24 h. The Freundlich equation described the sorption behavior of the herbicide for all soils (R(2) > 0.99). K(f) values of the Brazilian oxisols ranged from 4.66 to 29.3, and 1/n values were ≥ 0.95. Sorption was positively correlated to %OC and clay contents. U.S. mollisol K(f) values ranged from 6.62 to 14.3; 1/n values for sorption were ≥ 0.92. K(f) values from mollisols were also positively correlated with %OC. These results suggest that indaziflam potential mobility, based solely on its sorption coefficients, would range from moderate to low in soil. Desorption was hysteretic on all soils, further decreasing its potential mobility for offsite transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J; Yu, Y
Purpose: RTOG 1005 requires density correction in the dose calculation of breast cancer radiation treatment. The aim of the study was to evaluate the impact of density correction on the dose calculation. Methods: Eight cases were studied, which were planned on an XiO treatment planning system with pixel-by-pixel density correction using a superposition algorithm, following RTOG 1005 protocol requirements. Four were protocol Arm 1 (standard whole breast irradiation with sequential boost) cases and four were Arm 2 (hypofractionated whole breast irradiation with concurrent boost) cases. The plans were recalculated with the same monitor units without density correction. Dose calculations withmore » and without density correction were compared. Results: Results of Arm 1 and Arm 2 cases showed similar trends in the comparison. The average differences between the calculations with and without density correction (difference = Without - With) among all the cases were: -0.82 Gy (range: -2.65∼−0.18 Gy) in breast PTV Eval D95, −0.75 Gy (range: −1.23∼0.26 Gy) in breast PTV Eval D90, −1.00 Gy (range: −2.46∼−0.29 Gy) in lumpectomy PTV Eval D95, −0.78 Gy (range: −1.30∼0.11 Gy) in lumpectomy PTV Eval D90, −0.43% (range: −0.95∼−0.14%) in ipsilateral lung V20, −0.81% (range: −1.62∼−0.26%) in V16, −1.95% (range: −4.13∼−0.84%) in V10, −2.64% (−5.55∼−1.04%) in V8, −4.19% (range: −6.92∼−1.81%) in V5, and −4.95% (range: −7.49∼−2.01%) in V4, respectively. The differences in other normal tissues were minimal. Conclusion: The effect of density correction was observed in breast target doses (an average increase of ∼1 Gy in D95 and D90, compared to the calculation without density correction) and exposed ipsilateral lung volumes in low dose region (average increases of ∼4% and ∼5% in V5 and V4, respectively)« less
National Snow and Ice Data Center |
Temperature Glaciers Ice Sheets Permafrost Sea Ice Soil Moisture Snow ...search for more Scientific Data Web pages Data Sets Drought on the range Drought on the range Using satellite soil moisture data as a tool for drought monitoring. Read more ... SMAP Soil Moisture Active Passive Data (SMAP) NASA SMAP data
NASA Astrophysics Data System (ADS)
Ahmed, Ahmed S. F.; Raghavan, Vijaya
2018-01-01
Amendment of soil with biochar has been shown to enhance fertility and increase crop productivity, but the specific influence of biochar on soil workability remains unclear. Select physico-mechanical and chemical properties of clay loam and sandy loam soils were measured after amendment with wood-derived biochar of two particle size ranges (0.5-425 and 425-850 µm) at five dosages ranging from 0.5 to 10% dry weight. Whereas the clay loam soil workability decreased when the finer wood-derived biochar was applied at rates of 6 or 10%, soil fertility was not enhanced. The sandy loam soil, due to Proctor compaction, significantly decreased in bulk density with 6 and 10% wood-derived biochar amendments indicating higher soil resistance to compaction.
Horowitz, A.J.; Elrick, K.A.; Callender, E.
1988-01-01
Six cores, ranging in length from 1 to 2 m, were collected in the Cheyenne River arm of Lake Oahe, South Dakota, to investigate potential impacts from gold-mining operations around Lead, South Dakota. Sedimentation rates in the river arm appear to be event-dominated and rapid, on the order of 6-7 cm yr.-1. All the chemical concentrations in the core samples fall within the wide ranges previously reported for the Pierre Shale of Cretaceous age and with the exception of As, generally are similar to bed sediment levels in the Cheyenne River, Lake Oahe and Foster Bay. Based on the downcore distribution of Mn, it appears that reducing conditions exist in the sediment column of the river arm below 2-3 cm. The reducing conditions do not appear to be severe enough to produce differentiation of Fe and Mn throughout the sediment column in the river arm. Cross-correlations for high-level metal-bearing strata within the sediment column can be made for several strata and for several cores; however, cross-correlations for all the high-level metal-bearing strata are not feasible. As is the only element which appears enriched in the core samples compared to surface sediment levels. Well-crystallized arsenopyrite was found in high-As bearing strata from two cores and probably was transported in that form from reducing sediment-storage sites in the banks or floodplains of Whitewood Creek and the Belle Fourche River. It has not oxidized due to the reducing conditions in the sediment column of the Cheyenne River arm. Some As may also be transported in association with Fe- and Mn-oxides and -hydroxides, remobilized under the reducing conditions in the river arm, and then reprecipitated in authigenic sulfide phases. In either case, the As appears to be relatively immobile in the sediment column. ?? 1988.
Durrand, J W; Batterham, A M; O'Neill, B R; Danjoux, G R
2013-12-01
Inter-arm differences in blood pressure may confound haemodynamic management in vascular surgery. We evaluated 898 patients in the vascular pre-assessment clinic to determine the prevalence of inter-arm differences in systolic and mean arterial pressure, quantify the consequent risk of clinical error in siting monitoring peri-operatively and evaluate systolic inter-arm difference as a predictor of all-cause mortality (median follow-up 49 months). The prevalence of a systolic inter-arm difference ≥ 15 mmHg was 26% (95% CI 23-29%). The prevalence of an inter-arm mean arterial pressure difference ≥ 10 mmHg was 26% (95% CI 23-29%) and 11% (95% CI 9-13%) for a difference ≥ 15 mmHg. Monitoring could be erroneously sited in an arm reading lower for systolic pressure once in every seven to nine patients. The hazard ratio for a systolic inter-arm difference ≥ 15 mmHg vs < 15 mmHg was 1.03 (95% CI 0.78-1.36, p = 0.84). Large inter-arm blood pressure differences are common in this population, with a high potential for monitoring errors. Systolic inter-arm difference was not associated with medium-term mortality. [Correction added on 17 October 2013, after first online publication: In the Summary the sentence beginning 'We evaluated 898 patients' was corrected from (median (IQR [range]) follow-up 49 months) to read (median follow up 49 months)]. © 2013 The Association of Anaesthetists of Great Britain and Ireland.
Newton, Michael J; Sacco, Paul; Chapman, Dale; Nosaka, Kazunori
2013-03-01
Two common models to investigate the effect of interventions on muscle damage include using two groups in which one group receives an intervention while the other acts as control, and using contralateral limbs of one group. The latter model is based on the assumption that changes in markers of muscle damage are similar between limbs, but this has not been examined systematically. This study compared changes in muscle damage markers between dominant and non-dominant arms following maximal eccentric exercise of the elbow flexors. Eighteen men performed 60 maximal eccentric elbow flexions of each arm separated by 4 weeks with the order of testing between arms randomised. Maximal voluntary isometric torque, range of motion, upper arm circumference, plasma creatine kinase (CK) activity and muscle soreness before and for 7 days following exercise were compared between arms using two-way repeated measures ANOVA. No significant differences between arms were evident for any of the markers, but significant (P<0.05) differences between first and second bouts were evident for changes in strength, circumference and CK with smaller changes following the second bout. A poor correlation was found for the magnitude of changes in the markers between dominant and non-dominant arms, suggesting that responses to eccentric exercise were not necessarily the same between arms. These results show that the order affected the responses of dominant and non-dominant arms to the eccentric exercise; however, the contralateral limb design appears to be usable if bout order is counterbalanced and randomised among participants. Copyright © 2012. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Thongkhao, Thanakrit; Phantuwongraj, Sumet; Choowong, Montri; Thitimakorn, Thanop; Charusiri, Punya
2015-11-01
One devastating landslide event in northern Thailand occurred in 2006 at Ban Nong Pla village, Chiang Klang highland of Nan province after, a massive amount of residual soil moved from upstream to downstream, via creek tributaries, into a main stream after five days of unusual heavy rainfall. In this paper, the geological and engineering properties of residual soil derived fromsedimentary rocks were analyzed and integrated. Geological mapping, electrical resistivity survey and test pits were carried out along three transect lines together with systematic collection of undisturbed and disturbed residual soil samples. As a result, the average moisture content in soil is 24.83% with average specific gravity of 2.68,whereas the liquid limit is 44.93%, plastic limit is 29.35% and plastic index is 15.58%. The cohesion of soil ranges between 0.096- 1.196 ksc and the angle of internal friction is between 11.51 and 35.78 degrees. This suggests that the toughness properties of soil change when moisture content increases. Results from electrical resistivity survey reveal that soil thicknesses above the bedrock along three transects range from 2 to 9 m. The soil shear strength reach the rate of high decreases in the range of 72 to 95.6% for residual soil from shale, siltstone and sandstone, respectively. Strength of soil decreaseswhen the moisture content in soil increases. Shear strength also decreases when the moisture content changes. Therefore, the natural soil slope in the study area will be stable when the moisture content in soil level is equal to one, but when the moisture content between soil particle increases, strength of soil will decrease resulting in soil strength decreasing.
Kopec, Jacek A.; Colangelo, Linda H.; Land, Stephanie R.; Julian, Thomas B.; Brown, Ann M.; Anderson, Stewart J.; Krag, David N.; Ashikaga, Takamaru; Costantino, Joseph P.; Wolmark, Norman; Ganz, Patricia A.
2012-01-01
Background The impact of arm morbidity following breast cancer surgery on patient-observed changes in daily functioning and health-related quality of life (HRQoL) have not been well-studied. Objective To examine the association of objective measures such as range of motion (ROM) and lymphedema, with patient-reported outcomes (PROs) in the arm and breast, upper extremity function, activities, and HRQoL. Methods The National Surgical Adjuvant Breast and Bowel Project Protocol B-32 was a randomized trial comparing sentinel node resection (SNR) with axillary dissection (AD) in women with node-negative breast cancer. ROM and arm volume were measured objectively. PROs included symptoms; arm function; limitations in social, recreational, occupational, and other regular activities; and a global index of HRQoL. Statistical methods included cross-tabulations and multivariable linear regression models. Results In all, 744 women provided at least 1 postsurgery assessment. About one-third of the patients experienced arm mobility restrictions. A similar number of patients avoided the use of the arm 6 months after surgery. Limitations in work and other regular activities were reported by about a quarter of the patients. In this multivariable analysis, arm mobility and sensory neuropathy were predictors of patient-reported arm function and overall HRQoL. Predictors for activity limitations also included side of surgery (dominant vs nondominant). Edema was not significant after adjustment for sensory neuropathy and ROM. Limitations Arm mobility and edema were measured simultaneously only once during the follow-up (6 months). Conclusion Clinical measures of sensory neuropathy and restrictions in arm mobility following breast cancer surgery are associated with self-reported limitations in activity and reductions in overall HRQoL. PMID:22951047
Schmidt, Lena; Depper, Lena; Kerkhoff, Georg
2013-01-01
Position sense is an important proprioceptive ability. Disorders of arm position sense (APS) often occur after unilateral stroke, and are associated with a negative functional outcome. In the present study we assessed horizontal APS by measuring angular deviations from a visually defined target separately for each arm in a large group of healthy subjects. We analyzed the accuracy and instability of horizontal APS as a function of age, sex and arm. Subjects were required to specify verbally the position of their unseen arm on a 0-90° circuit by comparing the current position with the target position indicated by a LED lamp, while the arm was passively moved by the examiner. Eighty-seven healthy subjects participated in the study, ranging from 20 to 77 years, subdivided into three age groups. The results revealed that APS was not a function of age or sex, but was significantly better in the non-dominant (left) arm in absolute errors (AE) but not in constant errors (CE) across all age groups of right-handed healthy subjects. This indicates a right-hemisphere superiority for left APS in right-handers and neatly fits to the more frequent and more severe left-sided body-related deficits in patients with unilateral stroke (i.e. impaired APS in left spatial neglect, somatoparaphrenia) or in individuals with abnormalities of the right cerebral hemisphere. These clinical issues will be discussed. PMID:24399962
Decontamination of stethoscope membranes with chlorhexidine: Should it be recommended?
Álvarez, José A; Ruíz, Susana R; Mosqueda, Juan L; León, Ximena; Arreguín, Virginia; Macías, Alejandro E; Macias, Juan H
2016-11-01
To determine differences in the recontamination of stethoscope membranes after cleaning with chlorhexidine, triclosan, or alcohol. Experimental, controlled, blinded trial to determine differences in the bacterial load on stethoscope membranes. Membranes were cultured by direct imprint after disinfection with 70% isopropyl alcohol, 1% triclosan, or 1% chlorhexidine and normal use for 4 hours. As a baseline and an immediate effect control, bacterial load of membranes without disinfection and after 1 minute of disinfection with isopropyl alcohol was determined as well. Three hundred seventy cultures of in-use stethoscopes were taken, 74 from each arm. In the baseline arm the median growth was 10 CFU (interquartile range [IQR], 32-42 CFU); meanwhile, in the isopropyl alcohol immediate-effect arm it was 0 CFU (IQR, 0-0 CFU). In the arms cultured after 4 hours, a median growth of 8 CFU (IQR, 1-28 CFU) in the isopropyl alcohol arm, 4 CFU (IQR, 0-17 CFU) in the triclosan arm, and 0 CFU (IQR, 0-1 CFU) in the chlorhexidine arm were seen. No significant differences were observed between the bacterial load of the chlorhexidine arm (after 4 hours of use) and that of the isopropyl alcohol arm (after 1 minute without use) (Z= 2.41; P > .05). Chlorhexidine can inhibit recontamination of stethoscope membranes and its use could help avoid cross-infection. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Schmidt, Lena; Depper, Lena; Kerkhoff, Georg
2013-01-01
Position sense is an important proprioceptive ability. Disorders of arm position sense (APS) often occur after unilateral stroke, and are associated with a negative functional outcome. In the present study we assessed horizontal APS by measuring angular deviations from a visually defined target separately for each arm in a large group of healthy subjects. We analyzed the accuracy and instability of horizontal APS as a function of age, sex and arm. Subjects were required to specify verbally the position of their unseen arm on a 0-90° circuit by comparing the current position with the target position indicated by a LED lamp, while the arm was passively moved by the examiner. Eighty-seven healthy subjects participated in the study, ranging from 20 to 77 years, subdivided into three age groups. The results revealed that APS was not a function of age or sex, but was significantly better in the non-dominant (left) arm in absolute errors (AE) but not in constant errors (CE) across all age groups of right-handed healthy subjects. This indicates a right-hemisphere superiority for left APS in right-handers and neatly fits to the more frequent and more severe left-sided body-related deficits in patients with unilateral stroke (i.e. impaired APS in left spatial neglect, somatoparaphrenia) or in individuals with abnormalities of the right cerebral hemisphere. These clinical issues will be discussed.
Code of Federal Regulations, 2013 CFR
2013-01-01
... soil, water, air, plant, and animal resources with consideration of the many human (economic and... specialties, including soil science, soil conservation, agronomy, biology, agroecology, range conservation... formerly the Soil Conservation Service (SCS) which was established by the Soil Conservation Act of 1935...
Code of Federal Regulations, 2014 CFR
2014-01-01
... soil, water, air, plant, and animal resources with consideration of the many human (economic and... specialties, including soil science, soil conservation, agronomy, biology, agroecology, range conservation... formerly the Soil Conservation Service (SCS) which was established by the Soil Conservation Act of 1935...
Code of Federal Regulations, 2011 CFR
2011-01-01
... soil, water, air, plant, and animal resources with consideration of the many human (economic and... specialties, including soil science, soil conservation, agronomy, biology, agroecology, range conservation... formerly the Soil Conservation Service (SCS) which was established by the Soil Conservation Act of 1935...
Code of Federal Regulations, 2012 CFR
2012-01-01
... soil, water, air, plant, and animal resources with consideration of the many human (economic and... specialties, including soil science, soil conservation, agronomy, biology, agroecology, range conservation... formerly the Soil Conservation Service (SCS) which was established by the Soil Conservation Act of 1935...
Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Sun, Shiyou
2014-01-01
Accurate estimation of soil water retention curve (SWRC) at the dry region is required to describe the relation between soil water content and matric suction from saturation to oven dryness. In this study, the extrapolative capability of two models for predicting the complete SWRC from limited ranges of soil water retention data was evaluated. When the model parameters were obtained from SWRC data in the 0-1500 kPa range, the FX model (Fredlund and Xing, 1994) estimations agreed well with measurements from saturation to oven dryness with RMSEs less than 0.01. The GG model (Groenevelt and Grant, 2004) produced larger errors at the dry region, with significantly larger RMSEs and MEs than the FX model. Further evaluations indicated that when SWRC measurements in the 0-100 kPa suction range was applied for model establishment, the FX model was capable of producing acceptable SWRCs across the entire water content range. For a higher accuracy, the FX model requires soil water retention data at least in the 0- to 300-kPa range to extend the SWRC to oven dryness. Comparing with the Khlosi et al. (2006) model, which requires measurements in the 0-500 kPa range to reproduce the complete SWRCs, the FX model has the advantage of requiring less SWRC measurements. Thus the FX modeling approach has the potential to eliminate the processes for measuring soil water retention in the dry range.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-08
... include small arms, large arms, bombs, rockets, missiles, and pyrotechnics. All munitions used at BT-11... shapes include MK76, MK80 series, and BDU practice bombs ranging from 25 to 2,000 pounds in weight. There... training, fixed wing or rotary wing aircraft deliver bombs against surface maritime targets at BT-9 or BT...
Chen, Zhao-jin; Sheng, Xia-fang; He, Lin-yan; Huang, Zhi; Zhang, Wen-hui
2013-01-15
Two metal-resistant and plant growth-promoting bacteria (Burkholderia sp. J62 and Pseudomonas thivervalensis Y-1-3-9) were evaluated for their impacts on plant growth promotion, Cd availability in soil, and Cd uptake in rape (Brassica napus) grown in different level (0, 50, and 100 mg kg(-1)) of Cd-contaminated soils. The impacts of the bacteria on the rape-associated bacterial community structures were also evaluated using denaturing gradient gel electrophoresis (DGGE) analysis of bacterial DNA extracted from the root interior and rhizosphere and bulk soil samples collected at day 60 after inoculation. Canonical correspondence analysis (CCA) was used to have a comparative analysis of DGGE profiles. Inoculation with live bacteria not only significantly increased root (ranging from 38% to 86%), stem (ranging from 27% to 65%) and leaf (ranging from 23% to 55%) dry weights and water-extractive Cd contents (ranging from 59% to 237%) in the rhizosphere soils of the rape but also significantly increased root (ranging from 10% to 61%), stem (ranging from 41% to 57%) and leaf (ranging from 46% to 68%) total Cd uptake of rape compared to the dead bacterial-inoculated controls. DGGE and sequence analyses showed that the bacteria could colonize the rhizosphere soils and root interiors of rape plants. DGGE-CCA also showed that root interior and rhizosphere and bulk soil community profiles from the live bacteria-inoculated rape were significantly different from those from the dead bacteria-inoculated rape respectively. These results suggested that the bacteria had the potential to promote the growth and Cd uptake of rape and to influence the development of the rape-associated bacterial community structures. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Unseren, M.A.; Baker, J.E.
We discuss a series of surface following experiments using a range finder mounted on the end of an arm that is mounted on a vehicle. The goal is to keep the range finder at a fixed distance from an unknown surface and to keep the orientation of the range finder perpendicular to the surface. During the experiments, the vehicle moves along a predefined trajectory while planning software determines the position and orientation of the arm. To keep the range finder perpendicular to the surface, the planning software calculates the surface normal for the unknown surface. We assume that the unknownmore » surface is a cylinder (the surface depends on x and y but does not depend on z). To calculate the surface normal, the planning software must calculate the locations (x,y) of points on the surface in world coordinates. The calculation requires data on the position and orientation of the vehicle, the position and orientation of the arm, and the distance from the range finder to the surface. We discuss four series of experiments. During the first series of experiments, the calculated surface normal values had large high frequency random variations. A filter was used to produce an average value for the surface normal and we limited the rate of change in the yaw angle target for the arm. We performed the experiment for a variety of concave and convex surfaces. While the experiments were qualitative successes, the measured distance to the surface was significantly different than the target. The distance errors were systematic, low frequency, and had magnitudes up to 25 mm. During the second series of experiments, we reduced the variations in the calculated surface normal values. While reviewing the data collected while following the surface of a barrel, we found that the radius of the calculated surface was significantly different than the measured radius of the barrel.« less
Hydroponic system design with real time OS based on ARM Cortex-M microcontroller
NASA Astrophysics Data System (ADS)
Atmadja, Wiedjaja; Liawatimena, Suryadiputra; Lukas, Jonathan; Nata, Eka Putra Leo; Alexander, Ivan
2017-12-01
Hydroponic is the process of growing plants without soil, plant root flooded or moist with nutrient-rich solutions in inert material. Hydroponics has become a reality for greenhouse growers in virtually all climates. Large hydroponic installations exist throughout the world for growing flowers, vegetables and some short period fruit like tomato and cucumber. In soilless culture, we must maintain stable pH and conductivity level of nutrient solution to make plant grow well, large variation of pH of certain time will poisoned plant. This paper describes development complete automation hydroponic system, from maintaining stable nutrient composition (conductivity and pH), grow light, and monitor plant environment such as CO2, temperature and humidity. The heart of our automation is ARM Cortex-M4 from ST Microelectronic running ARM mbed OS, the official Real Time Operating System (RTOS) for ARM Cortex-M microcontroller. Using RTOS gives us flexibility to have multithreaded process. Results show that system capable to control desired concentration level with variation of less than 3%, pH sensor show good accuracy 5.83% from pH value 3.23-10. Growing light intensity measurement show result 105 μmol/m2/s therefore we need turn on the light at least 17 hours/day to fulfil plant light requirement. RTOS give good performance with latency and jitter less than 15 us, system overall show good performance and accuracy for automating hydroponic plant in vegetative phase of growth.
Rasch measurement: the Arm Activity measure (ArmA) passive function sub-scale.
Ashford, Stephen; Siegert, Richard J; Alexandrescu, Roxana
2016-01-01
To evaluate the conformity of the Arm Activity measure (ArmA) passive function sub-scale to the Rasch model. A consecutive cohort of patients (n = 92) undergoing rehabilitation, including upper limb rehabilitation and spasticity management, at two specialist rehabilitation units were included. Rasch analysis was used to examine scaling and conformity to the model. Responses were analysed using Rasch unidimensional measurement models (RUMM 2030). The following aspects were considered: overall model and individual item fit statistics and fit residuals, internal reliability, item response threshold ordering, item bias, local dependency and unidimensionality. ArmA contains both active and passive function sub-scales, but in this analysis only the passive function sub-scale was considered. Four of the seven items in the ArmA passive function sub-scale initially had disordered thresholds. These items were rescored to four response options, which resulted in ordered thresholds for all items. Once the items with disordered thresholds had been rescored, item bias was not identified for age, global disability level or diagnosis, but with a small difference in difficulty between males and females for one item of the scale. Local dependency was not observed and the unidimensionality of the sub-scale was supported and good fit to the Rasch model was identified. The person separation index (PSI) was 0.95 indicating that the scale is able to reliably differentiate at least two groups of patients. The ArmA passive function sub-scale was shown in this evaluation to conform to the Rasch model once disordered thresholds had been addressed. Using the logit scores produced by the Rasch model it was possible to convert this back to the original scale range. Implications for Rehabilitation The ArmA passive function sub-scale was shown, in this evaluation, to conform to the Rasch model once disordered thresholds had been addressed and therefore to be a clinically applicable and potentially useful hierarchical measure. Using Rasch logit scores it has be possible to convert back to the original ordinal scale range and provide an indication of real change to enable evaluation of clinical outcome of importance to patients and clinicians.
Aldien, Yasser; Marcotte, Pierre; Rakheja, Subhash; Boileau, Paul-Emile
2005-07-01
The biodynamic responses of the hand-arm system under x(h)-axis vibration are investigated in terms of the driving point mechanical impedance (DPMI) and absorbed power in a laboratory study. For this purpose, seven healthy male subjects are exposed to two levels of random vibration in the 8-1,000 Hz frequency range, using three instrumented cylindrical handles of different diameters (30, 40 and 50 mm), and different combinations of grip (10, 30 and 50 N) and push (0, 25 and 50 N) forces. The experiments involve grasping the handle while adopting two different postures, involving elbow flexion of 90 degrees and 180 degrees, with wrist in the neutral position for both postures. The analyses of the results revealed peak DPMI magnitude and absorbed power responses near 25 Hz and 150 Hz, for majority of the test conditions considered. The frequency corresponding to the peak response increased with increasing hand forces. Unlike the absorbed power, the DPMI response was mostly observed to be insensitive to variations in the excitation magnitude. The handle diameter revealed obvious effects on the DPMI magnitude, specifically at frequencies above 250 Hz, which was not evident in the absorbed power due to relatively low velocity at higher frequencies. The influence of hand forces was also evident on the DPMI magnitude response particularly at frequencies. above 100 Hz, while the effect of hand-arm posture on the DPMI magnitude was nearly negligible. The magnitude of power absorbed within the hand and arm was observed to be strongly dependent upon the excitation level over the entire frequency range, while the influence of hand-arm posture on the total absorbed power was observed to be important. The effect of variations in the hand forces on the absorbed power was relatively small for the bent elbow posture, while an increase in either the grip or the push force coupled with the extended arm posture resulted in considerably higher energy absorption. The results suggested that the handle size, hand-arm posture and hand forces, produce coupled effect on the biodynamic response of the hand-arm system.
A method for removing arm backscatter from EPID images
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Brian W.; Greer, Peter B.; School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, New South Wales 2308
2013-07-15
Purpose: To develop a method for removing the support arm backscatter from images acquired using current Varian electronic portal imaging devices (EPIDs).Methods: The effect of arm backscatter on EPID images was modeled using a kernel convolution method. The parameters of the model were optimized by comparing on-arm images to off-arm images. The model was used to develop a method to remove the effect of backscatter from measured EPID images. The performance of the backscatter removal method was tested by comparing backscatter corrected on-arm images to measured off-arm images for 17 rectangular fields of different sizes and locations on the imager.more » The method was also tested using on- and off-arm images from 42 intensity modulated radiotherapy (IMRT) fields.Results: Images generated by the backscatter removal method gave consistently better agreement with off-arm images than images without backscatter correction. For the 17 rectangular fields studied, the root mean square difference of in-plane profiles compared to off-arm profiles was reduced from 1.19% (standard deviation 0.59%) on average without backscatter removal to 0.38% (standard deviation 0.18%) when using the backscatter removal method. When comparing to the off-arm images from the 42 IMRT fields, the mean {gamma} and percentage of pixels with {gamma} < 1 were improved by the backscatter removal method in all but one of the images studied. The mean {gamma} value (1%, 1 mm) for the IMRT fields studied was reduced from 0.80 to 0.57 by using the backscatter removal method, while the mean {gamma} pass rate was increased from 72.2% to 84.6%.Conclusions: A backscatter removal method has been developed to estimate the image acquired by the EPID without any arm backscatter from an image acquired in the presence of arm backscatter. The method has been shown to produce consistently reliable results for a wide range of field sizes and jaw configurations.« less
Use of high-dimensional spectral data to evaluate organic matter, reflectance relationships in soils
NASA Technical Reports Server (NTRS)
Henderson, T. L.; Baumgardner, M. F.; Coster, D. C.; Franzmeier, D. P.; Stott, D. E.
1990-01-01
Recent breakthroughs in remote sensing technology have led to the development of a spaceborne high spectral resolution imaging sensor, HIRIS, to be launched in the mid-1990s for observation of earth surface features. The effects of organic carbon content on soil reflectance over the spectral range of HIRIS, and to examine the contributions of humic and fulvic acid fractions to soil reflectance was evaluated. Organic matter from four Indiana agricultural soils was extracted, fractionated, and purified, and six individual components of each soil were isolated and prepared for spectral analysis. The four soils, ranging in organic carbon content from 0.99 percent, represented various combinations of genetic parameters such as parent material, age, drainage, and native vegetation. An experimental procedure was developed to measure reflectance of very small soil and organic component samples in the laboratory, simulating the spectral coverage and resolution of the HIRIS sensor. Reflectance in 210 narrow (10 nm) bands was measured using the CARY 17D spectrophotometer over the 400 to 2500 nm wavelength range. Reflectance data were analyzed statistically to determine the regions of the reflective spectrum which provided useful information about soil organic matter content and composition. Wavebands providing significant information about soil organic carbon content were located in all three major regions of the reflective spectrum: visible, near infrared, and middle infrared. The purified humic acid fractions of the four soils were separable in six bands in the 1600 to 2400 nm range, suggesting that longwave middle infrared reflectance may be useful as a non-destructive laboratory technique for humic acid characterization.
NASA Astrophysics Data System (ADS)
Solehah, A. R.; Yasir, M. S.; Samat, S. B.
2016-11-01
The activity concentrations of the natural radionuclides 226Ra, 232Th, and 40K were determined in vegetable crops consumed by Malaysian people in Sungai Besar, Selangor. Sample of vegetables and the soil where the crops were cultivated and collected at five different location. The activity concentrations in Bq/kg of 226Ra, 232Th, and 40K were measured by the gamma-ray spectroscopy using the high purity germanium detector. The range activity concentration in soil is between 51.81 and 71.84 Bq/kg, 64.18 and 78.00 Bq/kg, and 210.49 and 244.29 Bq/kg for 226Ra, 232Th, and 40K, respectively. The activity concentration of 226Ra, 232Th, and 40K in vegetables were found to be in the range of 2.06 to 5.44 Bq/kg, Not Detectable to 0.61 Bq/kg, and 101.00 to 1223.09 Bq/kg, respectively. The activity concentration in both soil and vegetables were all less than lower limit stated by UNSCEAR. The Transfer Factors range value for 226Ra, 232Th, and 40K varied from 0.02 to 0.06, 0.003 to 0.008, and 1.79 to 5.19 respectively. Radium equivalent for soil range from 165.57 to 194.84 Bq/kg. It was within the international accepted value (370 Bq/kg). Absorb dose rate for soil range between 73.5 to 86.40 nGyh-1, in safe range from limit of international accepted value (55nGyh-1). Effective dose rate is found to be in range of 0.09 to 0.11 mSvy-1 for soil which is less than 2.4 mSv/y. External and Internal Hazard indices of soil was all below 1, within agreement of other researcher and UNSCEAR. The estimation of the consequent radiological risk due to the presence of those radionuclides is significantly low.
Cosmic-Ray Moisture Probe on North Slope of Alaska Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desilets, Darin
2016-06-15
In September of 2014 a wide-area snow monitoring device was installed at the U.S. Department of Energy (DOE)’s Barrow, Alaska Atmospheric Radiation Measurement (ARM) Climate Research Facility site. The device is special in that it uses measurements of cosmic-ray neutrons as a proxy for snow water equivalent (SWE) depth. A unique characteristic of the technology is that it integrates over a wide area (as much as 40 ha), in contrast to conventional ground-based technologies, which essentially give point samples. Conventional point-scale technologies are problematic in the Arctic, both because extreme weather conditions are taxing on equipment, and because point measurementsmore » can fail to accurately characterize the average SWE over a larger area, even when excellent precision is obtained. The sensor installed in Barrow is, by far, the northernmost of a constellation of sites that makeup the U.S. COsmic ray Soil Moisture Observing System (COSMOS). The sensor is used for SWE measurements in winter and soil moisture measurements in summer. The ability of this type of sensor to operate in the Arctic had not been verified until now. The cosmic-ray sensor was installed on a tripod located approximately 150 m south of the ARM User Facility (Figure 1), and within boundaries of land managed by the ARM Facility. The sensor consists of both “bare” and “moderated” channels, where the moderated channel is the primary output used to calculate SWE. A QDL2100 data logger with pressure sensor was located inside of the User Facility, and a Campbell CS215 temperature and humidity sensor was attached to a rail on the upper deck of the User Facility, to enable near-real-time absolute humidity corrections to the data. The cosmic-ray sensors are connected to the data logger using an armored Cat5e cable that lies on top of the tundra. Data are retrieved hourly via Iridium satellite link.« less
Least limiting water range of Udox soil under degraded pastures on different sun-exposed faces
NASA Astrophysics Data System (ADS)
Passos, Renato Ribeiro; Marciano da Costa, Liovando; Rodrigues de Assis, Igor; Santos, Danilo Andrade; Ruiz, Hugo Alberto; Guimarães, Lorena Abdalla de Oliveira Prata; Andrade, Felipe Vaz
2017-07-01
The efficient use of water is increasingly important and proper soil management, within the specificities of each region of the country, allows achieving greater efficiency. The South and Caparaó regions of Espírito Santo, Brazil are characterized by relief of `hill seas' with differences in the degree of pasture degradation due to sun exposure. The objective of this study was to evaluate the least limiting water range in Udox soil under degraded pastures with two faces of exposure to the sun and three pedoenvironments. In each pedoenvironment, namely Alegre, Celina, and Café, two areas were selected, one with exposure on the North/West face and the other on the South/East face. In each of these areas, undisturbed soil samples were collected at 0-10 cm depth to determine the least limiting water range. The exposed face of the pasture that received the highest solar incidence (North/West) presented the lowest values in least limiting water range. The least limiting water range proved to be a physical quality indicator for Udox soil under degraded pastures.
Multipoint sensing with a low-coherence source using single-arm frequency-shifted interferometry
Zhang, Yiwei; Ye, Fei; Qi, Bing; ...
2016-07-12
We demonstrate that multiple-site sensing along an optical fiber can be done with incoherent continuous-wave light. Here, using a broadband low-coherence noise source, a slow detector, and an optical modulator, we construct a single-arm frequency-shifted interferometer (SA-FSI) capable of simultaneously sensing multiple weak-reflection sites distributed either in parallel or in series along fiber links. By scanning the driving frequency of an electro-optic amplitude modulator in the range of 2.7–3.2 GHz at steps of 41.7 KHz, we demonstrate a spatial resolution of 0.3 m and a measurement range of over 1 km.
Acoustic ranging of small arms fire using a single sensor node collocated with the target.
Lo, Kam W; Ferguson, Brian G
2015-06-01
A ballistic model-based method, which builds upon previous work by Lo and Ferguson [J. Acoust. Soc. Am. 132, 2997-3017 (2012)], is described for ranging small arms fire using a single acoustic sensor node collocated with the target, without a priori knowledge of the muzzle speed and ballistic constant of the bullet except that they belong to a known two-dimensional parameter space. The method requires measurements of the differential time of arrival and differential angle of arrival of the muzzle blast and ballistic shock wave at the sensor node. Its performance is evaluated using both simulated and real data.
S-World: A high resolution global soil database for simulation modelling (Invited)
NASA Astrophysics Data System (ADS)
Stoorvogel, J. J.
2013-12-01
There is an increasing call for high resolution soil information at the global level. A good example for such a call is the Global Gridded Crop Model Intercomparison carried out within AgMIP. While local studies can make use of surveying techniques to collect additional techniques this is practically impossible at the global level. It is therefore important to rely on legacy data like the Harmonized World Soil Database. Several efforts do exist that aim at the development of global gridded soil property databases. These estimates of the variation of soil properties can be used to assess e.g., global soil carbon stocks. However, they do not allow for simulation runs with e.g., crop growth simulation models as these models require a description of the entire pedon rather than a few soil properties. This study provides the required quantitative description of pedons at a 1 km resolution for simulation modelling. It uses the Harmonized World Soil Database (HWSD) for the spatial distribution of soil types, the ISRIC-WISE soil profile database to derive information on soil properties per soil type, and a range of co-variables on topography, climate, and land cover to further disaggregate the available data. The methodology aims to take stock of these available data. The soil database is developed in five main steps. Step 1: All 148 soil types are ordered on the basis of their expected topographic position using e.g., drainage, salinization, and pedogenesis. Using the topographic ordering and combining the HWSD with a digital elevation model allows for the spatial disaggregation of the composite soil units. This results in a new soil map with homogeneous soil units. Step 2: The ranges of major soil properties for the topsoil and subsoil of each of the 148 soil types are derived from the ISRIC-WISE soil profile database. Step 3: A model of soil formation is developed that focuses on the basic conceptual question where we are within the range of a particular soil property at a particular location given a specific soil type. The soil properties are predicted for each grid cell based on the soil type, the corresponding ranges of soil properties, and the co-variables. Step 4: Standard depth profiles are developed for each of the soil types using the diagnostic criteria of the soil types and soil profile information from the ISRIC-WISE database. The standard soil profiles are combined with the the predicted values for the topsoil and subsoil yielding unique soil profiles at each location. Step 5: In a final step, additional soil properties are added to the database using averages for the soil types and pedo-transfer functions. The methodology, denominated S-World (Soils of the World), results in readily available global maps with quantitative pedon data for modelling purposes. It forms the basis for the Global Gridded Crop Model Intercomparison carried out within AgMIP.
NASA Astrophysics Data System (ADS)
Kessouri, P.; Buvat, S.; Tabbagh, A.
2012-12-01
Both electrical conductivity and dielectric permittivity of soil are influenced by its water content. Dielectric permittivity is usually measured in the high frequency range, using GPR or TDR, where the sensitivity to water content is high. However, its evaluation is limited by a low investigation depth, especially for clay rich soils. Electrical conductivity is closely related not only to soil water content, but also to clay content and soil structure. A simultaneous estimation of these electrical parameters can allow the mapping of soil water content variations for an investigation depth close to 1m. In order to estimate simultaneously both soil electrical conductivity and dielectric permittivity, an electromagnetic device working in the medium frequency range (between 100 kHz and 10 MHz) has been designed. We adopted Slingram geometry for the EM prototype: its PERP configuration (vertical transmission loop Tx and horizontal measuring loop Rx) was defined using 1D ground models. As the required investigation depth is around 1m, the coil spacing was fixed to 1.2m. This prototype works in a frequency range between 1 and 5 MHz. After calibration, we tested the response of prototype to objects with known properties. The first in situ measurements were led on experimental sites with different types of soils and different water content variations (artificially created or natural): sandy alluvium on a plot of INRA (French National Institute for Agricultural Research) in Orléans (Centre, France), a clay-loam soil on an experimental site in Estrée-Mons (Picardie, France) and fractured limestone at the vicinity of Grand (Vosges, France). In the case of the sandy alluvium, the values of dielectric permittivity measured are close to those of HF permittivity and allow the use of existing theoretical models to determine the soil water content. For soils containing higher amount of clay, the coupled information brought by the electrical conductivity and the dielectric permittivity is used. Variations of water content detected by the EM prototype are confirmed by additional DC electrical profiling and direct mass water content measurements along depth. For the clay-loam soil, containing more than 20% of clay, the relative dielectric permittivity values, ranging from 63 to 138, are much higher than those expected in the high frequency range (above 20 MHz, the highest measured permittivity is equal to 81 for water). In the medium frequency range, those values are very likely due to interfacial polarization. This effect, also known as Maxwell-Wagner polarization, should increase with the soil clay content. The first measuring trial is coherent with the gravimetric water content as well as DC electrical profiling measurements. For a clay rich soil, the EM prototype is able to detect water content variations for an investigation depth close to 1m with both electrical conductivity and dielectric permittivity in the medium frequency range. Other field experiments are scheduled to confirm these results on other types of soils.
Guo, Rongbo; Chen, Jiping; Zhang, Qing; Wu, Wenzhong; Liang, Xinmiao
2004-01-01
Using the methanol-water mixtures as mobile phases of soil column liquid chromatography (SCLC), prediction of soil adsorption coefficients (K(d)) by SCLC was validated in a wide range of soil types. The correlations between the retention factors measured by SCLC and soil adsorption coefficients measured by batch experiments were studied for five soils with different properties, i.e., Eurosoil 1#, 2#, 3#, 4# and 5#. The results show that good correlations existed between the retention factors and soil adsorption coefficients for Eurosoil 1#, 2#, 3# and 4#. For Eurosoil 5# which has a pH value of near 3, the correlation between retention factors and soil adsorption coefficients was unsatisfactory using methanol-water as mobile phase of SCLC. However, a good correlation was obtained using a methanol-buffer mixture with pH 3 as the mobile phase. This study proved that the SCLC is suitable for the prediction of soil adsorption coefficients.
Smernik, Ronald J; Kookana, Rai S
2015-01-01
Sorption of non-ionic organic compounds to soil is usually expressed as the carbon-normalized partition coefficient (KOC), because it is assumed that the main factor that influences the amount sorbed is the organic carbon content of the soil. However, KOC can vary by a factor of at least ten across a range of soils. We investigated two potential causes of variation in diuron KOC - organic matter-mineral interactions and organic matter chemistry - for a diverse set of 34 soils from Sri Lanka, representing a wide range of soil types. Treatment with hydrofluoric acid (HF-treatment) was used to concentrate soil organic matter. HF-treatment increased KOC for the majority of soils (average factor 2.4). We attribute this increase to the blocking of organic matter sorption sites in the whole soils by minerals. There was no significant correlation between KOC for the whole soils and KOC for the HF-treated soils, indicating that the importance of organic matter-mineral interactions varied greatly amongst these soils. There was as much variation in KOC across the HF-treated soils as there was across the whole soils, indicating that the nature of soil organic matter is also an important contributor to KOC variability. Organic matter chemistry, determined by solid-state (13)C nuclear magnetic resonance (NMR) spectroscopy, was correlated with KOC for the HF-treated soils. In particular, KOC increased with the aromatic C content (R=0.64, p=1×10(-6)), and decreased with O-alkyl C (R=-0.32, p=0.03) and alkyl C (R=-0.41, p=0.004) content. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multiscale variability of soil aggregate stability: implications for rangeland hydrology and erosion
USDA-ARS?s Scientific Manuscript database
Conservation of soil and water resources in rangelands is a crucial step in stopping desertification processes. The formation of water-stable soil aggregates reduces soil erodibility and can increase infiltration capacity in many soils. Soil aggregate stability is highly variable at scales ranging f...
Ultrasound Algorithm Derivation for Soil Moisture Content Estimation
NASA Technical Reports Server (NTRS)
Belisle, W.R.; Metzl, R.; Choi, J.; Aggarwal, M. D.; Coleman, T.
1997-01-01
Soil moisture content can be estimated by evaluating the velocity at which sound waves travel through a known volume of solid material. This research involved the development of three soil algorithms relating the moisture content to the velocity at which sound waves moved through dry and moist media. Pressure and shear wave propagation equations were used in conjunction with soil property descriptions to derive algorithms appropriate for describing the effects of moisture content variation on the velocity of sound waves in soils with and without complete soil pore water volumes, An elementary algorithm was used to estimate soil moisture contents ranging from 0.08 g/g to 0.5 g/g from sound wave velocities ranging from 526 m/s to 664 m/s. Secondary algorithms were also used to estimate soil moisture content from sound wave velocities through soils with pores that were filled predominantly with air or water.
NASA Astrophysics Data System (ADS)
Jafery, Khawarizmi Mohd; Embong, Zaidi; Khee, Yee See; Haimi Dahlan, Samsul; Tajudin, Saiful Azhar Ahmad; Ahmad, Salawati; Kudnie Sahari, Siti; Maxwell, Omeje
2018-01-01
The correlation of natural background gamma radiation and real part of the complex relative permittivity (dielectric constant) for various species Malaysian soils was investigated in this research. The sampling sites were chosen randomly according to soils groups that consist of sedentary, alluvial and miscellaneous soil which covered the area of Batu Pahat, Kluang and Johor Bahru, Johor state of Malaysia. There are 11 types of Malaysian soil species that have been studied; namely Peat, Linau-Sedu, Selangor-Kangkong, Kranji, Telemong-Akob-Local Alluvium, Holyrood-Lunas, Batu Anam-Melaka-Tavy, Harimau Tampoi, Kulai-Yong Peng, Rengam-Jerangau, and Steepland soils. In-situ exposure rates of each soil species were measured by using portable gamma survey meter and ex-situ analysis of real part of relative permittivity was performed by using DAK (Dielectric Assessment Kit assist by network analyser). Results revealed that the highest and the lowest background dose rate were 94 ± 26.28 μR hr-1 and 7 ± 0.67 μR hr-1 contributed by Rengam Jerangau and Peat soil species respectively. Meanwhile, dielectric constant measurement, it was performed in the range of frequency between 100 MHz to 3 GHz. The measurements of each soils species dielectric constant are in the range of 1 to 3. At the lower frequencies in the range of 100 MHz to 600 MHz, it was observed that the dielectric constant for each soil species fluctuated and inconsistent. But it remained consistent in plateau form of signal at higher frequency at range above 600 MHz. From the comparison of dielectric properties of each soil at above 600 MHz of frequency, it was found that Rengam-Jerangau soil species give the highest reading and followed by Selangor-Kangkong species. The average dielectric measurement for both Selangor-Kangkong and Rengam-Jerangau soil species are 2.34 and 2.35 respectively. Meanwhile, peat soil species exhibits the lowest dielectric measurement of 1.83. It can be clearly seen that the pattern of dielectric measurement for every soil at the frequency above 600 MHz demonstrated a specific distribution which can be classified into two main regions which are higher and lower between the ranges of 1.83 to 2.35. Pearson correlation analysis between the frequency of 100 MHz and 2.6 GHz with respect to exposure rate for every soil species was r = 0.38 and r = 0.51, respectively. This indicates that there was no strong correlation between both parameter, natural background dose and soils dielectric for each soils sample. This factor could be contributed by major and minor elements contained in each soils sample species, especially Ferum, Fe and Silica, Si.
Long Term Effects of Poultry Litter on Soil Physical and Chemical Properties in Cotton Plots
NASA Technical Reports Server (NTRS)
Surrency, J.; Tsegaye, T.; Coleman, T.; Fahsi, A.; Reddy, C.
1998-01-01
Poultry litter and compost can alter the moisture holding capacity of a soil. These organic materials can also increase the nutrient status of a soil during the decomposition process by microbial actions. The objective of this study was to evaluate the effect of poultry litter and compost on the dielectric constant and moisture holding capacity of soil. The Delta-T theta-probe was used to measure volumetric soil water content and the apparent dielectric constant of the upper 6-cm of the soil profile. Soil texture, pH, and organic matter were also determined for each plot. Results of these analyses indicated that the pH of the soil ranged from 6.4 to 7.7 and the volumetric soil moisture content ranged from 0.06 to 0.18 cu m/cu m for the upper 6-cm of the soil profile. The effect of poultry litter and compost on soil properties resulted in an increase in the volumetric moisture content and dielectric constant of the soil due to the improvement of the soil structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrado, C.L.; Hamilton, T.F.; Robison, W.L.
1998-09-01
The United States conducted a series of nuclear tests from 1946 to 1958 at Bikini, a coral atoll, in the Marshall Islands (MI). The aquatic and terrestrial environments of the atoll are still contaminated with several long-lived radionuclides that were generated during testing. The four major radionuclides found in terrestrial plants and soils are Cesium-137 ({sup 137} Cs), Strontium-90 ({sup 90} Sr), Plutonium-239+ 240 ({sup 239+240}Pu) and Americium-241 ({sup 241}Am). {sup 137}Cs in the coral soils is more available for uptake by plants than {sup 137}Cs associated with continental soils of North America or Europe. Soil-to-plant {sup 137}Cs median concentrationmore » ratios (CR) (kBq kg{sup {minus}1} dry weight plant/kBq kg {sup {minus}1} dry weight soil) for tropical fruits and vegetables range between 0.8 and 36, much larger than the range of 0.005 to 0.5 reported for vegetation in temperate zones. Conversely, {sup 90}Sr median CRs range from 0.006 to 1.0 at the atoll versus a range from 0.02 to 3.0 for continental silica-based soils. Thus, the relative uptake of {sup 137}Cs and {sup 90}Sr by plants in carbonate soils is reversed from that observed in silica-based soils. The CRs for {sup 239+240}Pu and {sup 241}Am are very similar to those observed in continental soils. Values range from 10{sup {minus}6} to 10{sup {minus}4} for both {sup 239+240}Pu and {sup 241}Am. No significant difference is observed between the two in coral soil. The uptake of {sup 137}Cs by plants is enhanced because of the absence of mineral binding sites and the low concentration of potassium in the coral soil. {sup 137}Cs is bound to the organic fraction of the soil, whereas {sup 90}Sr, {sup 239+240}Pu and {sup 241}Am are primarily bound to soil particles. Assessment of plant uptake for {sup 137}Cs and {sup 90}Sr into locally grown food crops was a major contributing factor in (1) reliably predicting the radiological dose for returning residents, and (2) developing a strategy to limit the availability and uptake of {sup 137}Cs into locally g« less
Assessing Habitability: Lessons from the Phoenix Mission
NASA Technical Reports Server (NTRS)
Stoker, Carol R.
2013-01-01
The Phoenix mission's key objective was to search for a habitable zone. The Phoenix lander carried a robotic arm with digging scoop to collect soil and icy material for analysis with an instrument payload that included volatile mineral and organic analysis(3) and soil ionic chemistry analysis (4). Results from Phoenix along with theoretical modeling and other previous mission results were used to evaluate the habitability of the landing site by considering four factors that characterize the environments ability to support life as we know it: the presence of liquid water, the presence of an energy source to support metabolism, the presence of nutrients containing the fundamental building blocks of life, and the absence of environmental conditions that are toxic to or preclude life. Phoenix observational evidence for the presence of liquid water (past or present) includes clean segregated ice, chemical etching of soil grains, calcite minerals in the soil and variable concentrations of soluble salts5. The maximum surface temperature measured was 260K so unfrozen water can form only in adsorbed films or saline brines but warmer climates occur cyclically on geologically short time scales due to variations in orbital parameters. During high obliquity periods, temperatures allowing metabolism extend nearly a meter into the subsurface. Phoenix discovered 1%w/w perchlorate salt in the soil, a chemical energy source utilized by a wide range of microbes. Nutrient sources including C, H, N, O, P and S compounds are supplied by known atmospheric sources or global dust. Environmental conditions are within growth tolerance for terrestrial microbes. Summer daytime temperatures are sufficient for metabolic activity, the pH is 7.8 and is well buffered and the projected water activity of a wet soil will allow growth. In summary, martian permafrost in the north polar region is a viable location for modern life. Stoker et al. presented a formalism for comparing the habitability of various regions visited to date on Mars that involved computing a habitability probability, defined as the product of probabilities for the presence of liquid water (P(sub lw)), energy (P(sub e)), nutrients (P(sub ch)), and a benign environment (P(sub b)). Using this formalism, they argued that the Phoenix site was the most habitable of any site visited to date by landed missions and warranted a follow up mission to search for modern evidence of life. This paper will review that conclusion in view of more recent information from the Mars Exploration Rovers and Mars Science Lander missions.
Drake, M J P; Hill, J S
2013-05-01
Upper-arm non-invasive blood pressure measurement during caesarean section can be uncomfortable and unreliable because of movement artefact in the conscious parturient. We aimed to determine whether ankle blood pressure measurement could be used instead in this patient group by comparing concurrent arm and ankle blood pressure measured throughout elective caesarean section under regional anaesthesia in 64 term parturients. Bland-Altman analysis of mean difference (95% limits of agreement [range]) between the ankle and arm was 11.2 (-20.3 to +42.7 [-67 to +102]) mmHg for systolic arterial pressure, -0.5 (-21.0 to +19.9 [-44 to +91]) mmHg for mean arterial pressure and -3.8 (-25.3 to +17.8 [-41 to +94]) mmHg for diastolic arterial pressure. Although ankle blood pressure measurement is well tolerated and allows greater mobility of the arms than measurement from the arm, the degree of discrepancy between the two sites is unacceptable to allow routine use of ankle blood pressure measurement, especially for systolic arterial pressure. However, ankle blood pressure measurement may be a useful alternative in situations where arm blood pressure measurement is difficult or impossible. Anaesthesia © 2013 The Association of Anaesthetists of Great Britain and Ireland.
Soil feedback and pathogen activity in Prunus serotina throughout its native range
Kurt O. Reinhart; Alejandro Royo; Wim H. Van der Putten; Keith Clay
2005-01-01
1 Oomycete soil pathogens are known to have a negative effect on Prunus serotina seedling establishment and to promote tree diversity in a deciduous forest in Indiana, USA. Here, we investigate whether negative feedbacks operate widely in its native range in eastern USA. 2 In laboratory experiments, soil sterilization was used to test the...
Environmental Assessment: Armed Forces Reserve Center Fairchild Air Force Base, Washington
2007-01-01
and are a major part of the landscape from the Spokane area southwestward to Moses Lake and as far south as the Columbia River . Soils in the...turkey vulture, Caspian tern , black tern , and osprey. The white-tailed jackrabbit, a state candidate species, is known to occur adjacent to FAFB but... Columbia River Basalt Group. The uppermost basalt is referred to as Basalt A, and the deeper basalt sequence is referred to as Basalt B. The top
NASA Astrophysics Data System (ADS)
Wu, C.; Margulis, S. A.
2007-12-01
Wastewater re-use via crop irrigation has the potential to be an effective means of wastewater disposal. However, nitrate in wastewater may contaminate groundwater if it does not decay before reaching the groundwater table. In order to dispose of wastewater while preventing long-term groundwater pollution, irrigation rates need to be optimized based on the current and predicted states of the soil, such as soil moisture content and/or nitrate concentration. A real-time soil states estimation system using the Ensemble Kalman Filter (EnKF) has been developed for application to a test bed for wastewater re-use in Palmdale, CA. This test bed, covered with alfalfa, is a 30-acre irrigation plot with a 200-meter long rotating pivot arm that irrigates the area with reclaimed wastewater. A sensor network is deployed in the soil near the surface. The data assimilation system has shown the ability to characterize soil states and fluxes from sparse measurements. The real-time estimation system will then be used to explore the potential feedback for optimizing the sprinkler operation (i.e. maximizing the magnitude of wastewater release while minimizing the ultimate groundwater pollution). In optimization models, soil states and fluxes can be regarded as functions of irrigation rate. Through optimization, the irrigation rate in a finite horizon can be maximized while still satisfying all criteria in soil states and fluxes to ensure the safety of groundwater. Since the data assimilation system provides reliable estimation of soil states and fluxes, it is expected to define the optimal irrigation rate with higher confidence compared to using models or sensors only.
NASA Astrophysics Data System (ADS)
Willgoose, G. R.; Cohen, S.; Svoray, T.; Sela, S.; Hancock, G. R.
2010-12-01
Numerical models are an important tool for studying landscape processes as they allow us to isolate specific processes and drivers and test various physics and spatio-temporal scenarios. Here we use a distributed physically-based soil evolution model (mARM4D) to describe the drivers and processes controlling soil-landscape evolution on a field-site at the fringe between the Mediterranean and desert regions of Israel. This study is an initial effort in a larger project aimed at improving our understanding of the mechanisms and drivers that led to the extensive removal of soils from the loess covered hillslopes of this region. This specific region is interesting as it is located between the Mediterranean climate region in which widespread erosion from hillslopes was attributed to human activity during the Holocene and the arid region in which extensive removal of loess from hillslopes was shown to have been driven by climatic changes during the late-Pleistocene. First we study the sediment transport mechanism of the soil-landscape evolution processes in our study-site. We simulate soil-landscape evolution with only one sediment transport process (fluvial or diffusive) at a time. We find that diffusive sediment transport is likely the dominant process in this site as it resulted in soil distributions that better corresponds to current observations. We then simulate several realistic climatic/anthropogenic scenarios (based on the literature) in order to quantify the sensitivity of the soil-landscape evolution process to temporal fluctuations. We find that this site is relatively insensitive to short term (several thousands of years) sharp, changes. This suggests that climate, rather then human activity, was the main driver for the extensive removal of loess from the hillslopes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Mei C., E-mail: meizheng@princeton.edu; Gmachl, Claire F.; Liu, Peter Q.
2013-11-18
We report on the experimental demonstration of a widely tunable single mode quantum cascade laser with Asymmetric Mach-Zehnder (AMZ) interferometer type cavities with separately biased arms. Current and, consequently, temperature tuning of the two arms of the AMZ type cavity resulted in a single mode tuning range of 20 cm{sup −1} at 80 K in continuous-wave mode operation, a ten-fold improvement from the lasers under a single bias current. In addition, we also observed a five fold increase in the tuning rate as compared to the AMZ cavities controlled by one bias current.
In-situ observation of switchable nanoscale topography for y-shaped binary brushes in fluids.
Lin, Yen-Hsi; Teng, Jing; Zubarev, Eugene R; Shulha, Hennady; Tsukruk, Vladimir V
2005-03-01
Direct, in-fluid observation of the surface morphology and nanomechanical properties of the mixed brushes composed of Y-shaped binary molecules PS-PAA revealed nanoscale network-like surface topography formed by coexisting stretched soluble PAA arms and collapsed insoluble PS chains in water. Placement of Y-shaped brushes in different fluids resulted in dramatic reorganization ranging from soft repellent layer covered by swollen PS arms in toluene to an adhesive, mixed layer composed of coexisting swollen PAA and collapsed PS arms in water. These binary layers with the overall nanoscale thickness can serve as adaptive nanocoatings with stimuli-responsive properties.
25 CFR 161.202 - How are range units established?
Code of Federal Regulations, 2012 CFR
2012-04-01
... unified areas for which range management plans can be developed to improve and maintain soil and forage resources. Physical land features, watersheds, drainage patterns, vegetation, soil, resident concentration...
25 CFR 161.202 - How are range units established?
Code of Federal Regulations, 2013 CFR
2013-04-01
... unified areas for which range management plans can be developed to improve and maintain soil and forage resources. Physical land features, watersheds, drainage patterns, vegetation, soil, resident concentration...
25 CFR 161.202 - How are range units established?
Code of Federal Regulations, 2010 CFR
2010-04-01
... unified areas for which range management plans can be developed to improve and maintain soil and forage resources. Physical land features, watersheds, drainage patterns, vegetation, soil, resident concentration...
25 CFR 161.202 - How are range units established?
Code of Federal Regulations, 2014 CFR
2014-04-01
... unified areas for which range management plans can be developed to improve and maintain soil and forage resources. Physical land features, watersheds, drainage patterns, vegetation, soil, resident concentration...
25 CFR 161.202 - How are range units established?
Code of Federal Regulations, 2011 CFR
2011-04-01
... unified areas for which range management plans can be developed to improve and maintain soil and forage resources. Physical land features, watersheds, drainage patterns, vegetation, soil, resident concentration...
The reliability of a simplified water displacement instrument: a method for measuring arm volume.
Sagen, Ase; Kåresen, Rolf; Risberg, May Arna
2005-01-01
To present a new water displacement measurement, the Simplified Water Displacement Instrument (SWDI), and to evaluate its intra- and intertester reliability. Reliability design. Hospital setting. Fifty-six healthy people were studied. Intratester reliability was evaluated once a week for 4 weeks in 20 women and 10 men. Intertester reliability was assessed by 2 physical therapists in 26 people. Not applicable. Coefficients of variation (CVs) and intraclass correlation coefficients (ICCs). The intratester reliability showed a CV range of 2.2% to 2.6% and an ICC range of .98 to .99. The intertester reliability showed a CV of 1.3% and an ICC of .99. There was a significant increase in arm volume in men compared with women. There were no significant differences in changes in volume over the 4 weeks. There was a significant greater right arm volume (3.3%) among the right-handed subjects (P<.001). Both intra- and intertester reliability were satisfactory for the SWDI.
AmeriFlux US-AR2 ARM USDA UNL OSU Woodward Switchgrass 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billesbach, Dave; Bradford, James
This is the AmeriFlux version of the carbon flux data for the site US-AR2 ARM USDA UNL OSU Woodward Switchgrass 2. Site Description - The ARM USDA UNL OSU Woodward Switchgrass 2 tower is located on public land owned by the USDA-ARS Southern Plains Range Research Station in Woodward, Oklahoma. The site is on a former wheat field that is in the process of changing to switchgrass. A companion site (ARM USDA UNL OSU Woodward Switchgrass 1) is on a former native prairie. Previous wheat was planted in Fall 2008. In Spring 2009, herbicide was applied to kill the wheatmore » prior to switchgrass planting. Later in the year, the site was sprayed with post-emergence herbicide. In 2010, fertilization occurred before herbicide was sprayed for broadleaf control.« less
A comparison of soil moisture sensors for space flight applications
NASA Technical Reports Server (NTRS)
Norikane, J. H.; Prenger, J. J.; Rouzan-Wheeldon, D. T.; Levine, H. G.
2005-01-01
Plants will be an important part of future long-term space missions. Automated plant growth systems require accurate and reliable methods of monitoring soil moisture levels. There are a number of different methods to accomplish this task. This study evaluated sensors using the capacitance method (ECH2O), the heat-pulse method (TMAS), and tensiometers, compared to soil water loss measured gravimetrically in a side-by-side test. The experiment monitored evaporative losses from substrate compartments filled with 1- to 2-mm baked calcinated clay media. The ECH2O data correlated well with the gravimetric measurements, but over a limited range of soil moisture. The averaged TMAS sensor data overstated soil moisture content levels. The tensiometer data appeared to track evaporative losses in the 0.5- to 2.5-kPa range of matric potential that corresponds to the water content needed to grow plants. This small range is characteristic of large particle media, and thus high-resolution tensiometers are required to distinguish changing moisture contents in this range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKenzie, Kirk; Spero, Robert E.; Shaddock, Daniel A.
For the Laser Interferometer Space Antenna (LISA) to reach its design sensitivity, the coupling of the free-running laser frequency noise to the signal readout must be reduced by more than 14 orders of magnitude. One technique employed to reduce the laser frequency noise will be arm locking, where the laser frequency is locked to the LISA arm length. In this paper we detail an implementation of arm locking. We investigate orbital effects (changing arm lengths and Doppler frequencies), the impact of errors in the Doppler knowledge that can cause pulling of the laser frequency, and the noise limit of armmore » locking. Laser frequency pulling is examined in two regimes: at lock acquisition and in steady state. The noise performance of arm locking is calculated with the inclusion of the dominant expected noise sources: ultrastable oscillator (clock) noise, spacecraft motion, and shot noise. We find that clock noise and spacecraft motion limit the performance of dual arm locking in the LISA science band. Studying these issues reveals that although dual arm locking [A. Sutton and D. A. Shaddock, Phys. Rev. D 78, 082001 (2008)] has advantages over single (or common) arm locking in terms of allowing high gain, it has disadvantages in both laser frequency pulling and noise performance. We address this by proposing a modification to the dual arm-locking sensor, a hybrid of common and dual arm-locking sensors. This modified dual arm-locking sensor has the laser frequency pulling characteristics and low-frequency noise coupling of common arm locking, but retains the control system advantages of dual arm locking. We present a detailed design of an arm-locking controller and perform an analysis of the expected performance when used with and without laser prestabilization. We observe that the sensor phase changes beneficially near unity-gain frequencies of the arm-locking controller, allowing a factor of 10 more gain than previously believed, without degrading stability. With a time-delay error of 3 ns (equivalent of 1 m interspacecraft ranging error), time-delay interferometry (TDI) is capable of suppressing 300 Hz/{radical}(Hz) of laser frequency noise to the required level. We show that if no interspacecraft laser links fail, arm locking alone surpasses this noise performance for the entire mission. If one interspacecraft laser link fails, arm locking alone will achieve this performance for all but approximately 1 h per year, when the arm length mismatch of the two remaining arms passes through zero. Therefore, the LISA sensitivity can be realized with arm locking and time-delay interferometry only, without any form of prestabilization.« less
Historical Perspectives and Future Needs in the Development of the Soil Series Concept
NASA Astrophysics Data System (ADS)
Beaudette, Dylan E.; Brevik, Eric C.; Indorante, Samuel J.
2016-04-01
The soil series concept is an ever-evolving understanding of soil profile observations, their connection to the landscape, and functional limits on the range in characteristics that affect management. Historically, the soil series has played a pivotal role in the development of soil-landscape theory, modern soil survey methods, and concise delivery of soils information to the end-user-- in other words, soil series is the palette from which soil survey reports are crafted. Over the last 20 years the soil series has received considerable criticism as a means of soil information organization (soil survey development) and delivery (end-user application of soil survey data), with increasing pressure (internal and external) to retire the soil series. We propose that a modern re-examination of soil series information could help address several of the long-standing critiques of soil survey: consistency across survey vintage and political divisions and more robust estimates of soil properties and associated uncertainty. A new library of soil series data would include classic narratives describing morphology and management, quantitative descriptions of soil properties and their ranges, graphical depiction of the relationships between associated soil series, block diagrams illustrating soil-landscape models, maps of series distribution, and a probabilistic representation of a "typical" soil profile. These data would be derived from re-correlation of existing morphologic and characterization data informed by modern statistical methods and regional expertise.
Molecular clouds in the Carina arm
NASA Technical Reports Server (NTRS)
Grabelsky, D. A.
1986-01-01
Results from the first large-scale survey in the CO(J = 1 to 0) line of the Vela-Carina-Centaurus region of the Southern Milky Way are reported. The observations, made with the Columbia University 1.2 m millimeter-wave telescope at Cerro Tololo, were spaced every beamwidth (0.125 deg) in the range 270 deg is less than or = l is less than or = 300 deg and -1 deg less than or = b less then or = 1 deg, with latitude extensions to cover all Carina arm emission beyond absolute b = 1 deg. In a concurrent survey made with the same telescope, every half-degree in latitude and longitude was sampled. Both surveys had a spectral coverage of 330 km/s with a resolution of 1.3 km/s. The Carina arm is the dominant feature in the data. Its abrupt tangent at l is approx. = 280 deg and characteristic loop in the l,v diagram are unmistakable evidence for CO spiral structure. When the emission is integrated over velocity and latitude, the height of the step seen in the tangent direction suggests that the arm-interarm contrast is at least 13:1. Comparison of the CO and H I data shows close agreement between these two species in a segment of the arm lying outside the solar circle. The distribution of the molecular layer about the galactic plane in the outer Galaxy is determined. Between R = 10.5 and 12.5 kpc, the average CO midplane dips from z = -48 to -167 pc below the b = 0 deg plane, following a similar well-known warping of the H I layer. In the same range of radii the half-thickness of the CO layer increases from 112 to 182 pc. Between l = 270 deg and 300 deg, 27 molecular clouds are identified and cataloged along with heliocentric distances and masses. An additional 16 clouds beyond 300 deg are cataloged from an adjoining CO survey made with the same telescope. The average mass for the Carina arm clouds is 1.4x 10(6)M (solar), and the average intercloud spacing along the arm is 700 pc. Comparison of the distribution of the Carina arm clouds with that of similarly massive molecular clouds in the first and second quadrants strongly suggests that the Carina and Sagittarius arms form a single spiral arm approx. 40 kpc long wrapping two-thirds of the way around the Galaxy.
Identifying the microbial taxa that consistently respond to soil warming across time and space.
Oliverio, Angela M; Bradford, Mark A; Fierer, Noah
2017-05-01
Soil microbial communities are the key drivers of many terrestrial biogeochemical processes. However, we currently lack a generalizable understanding of how these soil communities will change in response to predicted increases in global temperatures and which microbial lineages will be most impacted. Here, using high-throughput marker gene sequencing of soils collected from 18 sites throughout North America included in a 100-day laboratory incubation experiment, we identified a core group of abundant and nearly ubiquitous soil microbes that shift in relative abundance with elevated soil temperatures. We then validated and narrowed our list of temperature-sensitive microbes by comparing the results from this laboratory experiment with data compiled from 210 soils representing multiple, independent global field studies sampled across spatial gradients with a wide range in mean annual temperatures. Our results reveal predictable and consistent responses to temperature for a core group of 189 ubiquitous soil bacterial and archaeal taxa, with these taxa exhibiting similar temperature responses across a broad range of soil types. These microbial 'bioindicators' are useful for understanding how soil microbial communities respond to warming and to discriminate between the direct and indirect effects of soil warming on microbial communities. Those taxa that were found to be sensitive to temperature represented a wide range of lineages and the direction of the temperature responses were not predictable from phylogeny alone, indicating that temperature responses are difficult to predict from simply describing soil microbial communities at broad taxonomic or phylogenetic levels of resolution. Together, these results lay the foundation for a more predictive understanding of how soil microbial communities respond to soil warming and how warming may ultimately lead to changes in soil biogeochemical processes. © 2016 John Wiley & Sons Ltd.
Qu, Cheng-Kai; Qi, Shi-Hua; Zhang, Li; Huang, Huan-Fang; Zhang, Jia-Quan; Zhang, Yuan; Yang, Dan; Liu, Hong-Xia; Chen, Wei
2013-11-01
Totally 101 typical surface soil samples were collected from Daiyun Mountain Range, and 20 compounds of OCPs were analyzed by a Ni electron capture detector (GC-ECD) to investigate the horizontal distribution and composition of organochlorine pesticides (OCPs) in the surface soil of Daiyun Mountain Range. The results showed that all OCPs were detected in the soil samples. The detection ratios of OCPs were all over 90%, except for Endrin and beta-HCH. The sum concentration of HCHs, DDTs, Endosulfan and Endosulfan sulfate, accounted for 79.51% of the total OCPs, which were considered to be the dominant OCPs in the Daiyun Mountain Range. The OCPs concentrations in the surface soils ranged from 2.56 to 465.99 ng x g(-1) with a mean value of 38.00 ng x g)(-1). Compared with other regions, the concentrations of HCHs and DDTs in this study stayed in a low pollution level. Endosulfan and Endosulfan sulfate showed a certain degree of risk in the surface soil of the study area. Source analysis showed that new input of lindane and dicofol might occur in the survey region. The historical application was the prime source of Endosulfan. The residue level of OCPs in different lands was in the following order: paddy land > vegetable land > orchard. The OCPs pollution of orchard soil was primarily due to the new input of lindane and dicofol, while the pollution of paddy land was mainly from the usage of Endosulfan.
Influence of soil properties and soil leaching on the toxicity of ionic silver to plants.
Langdon, Kate A; McLaughlin, Mike J; Kirby, Jason K; Merrington, Graham
2015-11-01
Silver (Ag) has been shown to exhibit antimicrobial properties; as a result, it is being used increasingly in a wide range of consumer products. With these uses, the likelihood that Ag may enter the environment has increased, predominately via land application of biosolids or irrigation with treated wastewater effluent. The aim of the present study was to investigate the toxicity of Ag to 2 plant species: barley (Hordeum vulgare L. CV Triumph) and tomato (Lycopersicum esculentum) in a range of soils under both leached and unleached conditions. The concentrations that resulted in a 50% reduction of plant growth (EC50) were found to vary up to 20-fold across the soils, indicating a large influence of soil type on Ag toxicity. Overall, barley root elongation was found to be the least sensitive to added Ag, with EC50 values ranging from 51 mg/kg to 1030 mg/kg, whereas the tomato plant height showed higher sensitivity with EC50 values ranging from 46 mg/kg to 486 mg/kg. The effect of leaching was more evident in the barley toxicity results, where higher concentrations of Ag were required to induce toxicity. Variations in soil organic carbon and pH were found to be primarily responsible for mitigating Ag toxicity; therefore, these properties may be used in future risk assessments for Ag to predict toxicity in a wide range of soil types. © 2015 SETAC.
NASA Astrophysics Data System (ADS)
Ellison, S.; Sullivan, P. F.
2014-12-01
The position of the Arctic treeline is of critical importance for global carbon cycling and surface energy budgets. However, controls on tree growth at treeline remain uncertain. In the Alaskan Brooks Range, 20th century warming has caused varying growth responses among treeline trees, with trees in the west responding positively, while trees in the east have responded negatively. The prevailing explanation of this trend ascribes the negative growth response to warming-induced drought stress in the eastern Brooks Range. However, recent measurements of carbon isotope discrimination in tree rings, xylem sap flow and needle gas exchange suggest that drought stress cannot explain these regional growth declines. Additionally, evidence from the western Brooks Range suggests that nutrient availability, rather than drought stress, may be the proximate control on tree growth. In this study, we investigated the hypothesis that low and declining growth of eastern Brooks Range trees is due to low and declining soil nutrient availability, which may continue to decrease with climate change as soils become drier and microbial activity declines. We compared microclimate, tree performance, and a wide range of proxies for soil nutrient availability in four watersheds along a west-east transect in the Brooks Range during the growing seasons of 2013 and 2014. We hypothesized that soil nutrient availability would track closely with the strong west-east precipitation gradient, with higher rainfall and greater soil nutrient availability in the western Brooks Range. We expected to find that soil water contents in the west are near optimum for nitrogen mineralization, while those in the east are below optimum. Needle nitrogen concentration, net photosynthesis, branch extension growth, and growth in the main stem are expected to decline with the hypothesized decrease in soil nutrient availability. The results of our study will elucidate the current controls on growth of trees near the Arctic treeline, enabling improved predictions of future treeline position and more accurate reconstructions of past climate.
Deployment of Shaped Charges by a Semi-Autonomous Ground Vehicle
2007-06-01
lives on a daily basis. BigFoot seeks to replace the local human component by deploying and remotely detonating shaped charges to destroy IEDs...robotic arm to deploy and remotely detonate shaped charges. BigFoot incorporates improved communication range over previous Autonomous Ground Vehicles...and an updated user interface that includes controls for the arm and camera by interfacing multiple microprocessors. BigFoot is capable of avoiding
NICOLETTI, Corinne; LÄUBLI, Thomas
2017-01-01
The aim of this study was to analyze the activity of the trapezius muscle and the arm acceleration during the course of a workday in office employees. It was examined if there are significant changes in trapezius muscle activity in the afternoon compared to the morning work period and relationships to the level of arm acceleration during lunchtime. Nineteen female office employees were recruited. A one hour period of the work in the morning, afternoon, and lunchtime were compared. The measures of the trapezius muscle activity and muscle rest time (TR) did not significantly differ between working in the morning (TR: median 10%; range 1%–49) or working in the afternoon (TR: median 18%; range 2%–34%). The 90th percentile of arm acceleration during lunch time significantly correlated with less trapezius muscle activity in the afternoon compared to the morning values (RT: Spearman R=0.80; p<0.01). Differences in the duration and level of trapezius muscle activity were bigger between the subjects than between different work periods or between lunchtime and work. Furthermore it seems that higher arm accelerations during lunch may be beneficial in reducing trapezius activity in the afternoon compared to the morning values. PMID:28090066
Nicoletti, Corinne; Läubli, Thomas
2017-04-07
The aim of this study was to analyze the activity of the trapezius muscle and the arm acceleration during the course of a workday in office employees. It was examined if there are significant changes in trapezius muscle activity in the afternoon compared to the morning work period and relationships to the level of arm acceleration during lunchtime. Nineteen female office employees were recruited. A one hour period of the work in the morning, afternoon, and lunchtime were compared. The measures of the trapezius muscle activity and muscle rest time (TR) did not significantly differ between working in the morning (TR: median 10%; range 1%-49) or working in the afternoon (TR: median 18%; range 2%-34%). The 90 th percentile of arm acceleration during lunch time significantly correlated with less trapezius muscle activity in the afternoon compared to the morning values (RT: Spearman R=0.80; p<0.01). Differences in the duration and level of trapezius muscle activity were bigger between the subjects than between different work periods or between lunchtime and work. Furthermore it seems that higher arm accelerations during lunch may be beneficial in reducing trapezius activity in the afternoon compared to the morning values.
A Simplified Land Model (SLM) for use in cloud-resolving models: Formulation and evaluation
NASA Astrophysics Data System (ADS)
Lee, Jungmin M.; Khairoutdinov, Marat
2015-09-01
A Simplified Land Model (SLM) that uses a minimalist set of parameters with a single-layer vegetation and multilevel soil structure has been developed distinguishing canopy and undercanopy energy budgets. The primary motivation has been to design a land model for use in the System for Atmospheric Modeling (SAM) cloud-resolving model to study land-atmosphere interactions with a sufficient level of realism. SLM uses simplified expressions for the transport of heat, moisture, momentum, and radiation in soil-vegetation system. The SLM performance has been evaluated over several land surface types using summertime tower observations of micrometeorological and biophysical data from three AmeriFlux sites, which include grassland, cropland, and deciduous-broadleaf forest. In general, the SLM captures the observed diurnal cycle of surface energy budget and soil temperature reasonably well, although reproducing the evolution of soil moisture, especially after rain events, has been challenging. The SLM coupled to SAM has been applied to the case of summertime shallow cumulus convection over land based on the Atmospheric Radiation Measurements (ARM) Southern Great Plain (SGP) observations. The simulated surface latent and sensible heat fluxes as well as the evolution of thermodynamic profiles in convective boundary layer agree well with the estimates based on the observations. Sensitivity of atmospheric boundary layer development to the soil moisture and different land cover types has been also examined.
Zhou, Jie; Feng, Ke; Li, Yinju; Zhou, Yang
2016-08-01
The objectives of this study are to analyse the pollution status and spatial correlation of soil heavy metals and identify natural and anthropogenic sources of these heavy metals at different spatial scales. Two hundred and twenty-four soil samples (0-20 cm) were collected and analysed for eight heavy metals (Cd, Hg, As, Cu, Pb, Cr, Zn and Ni) in soils of different land-use types in the Yangtze River Delta of Eastern China. The multivariate methods and factorial Kriging analysis were used to achieve the research objectives. The results indicated that the human and natural effects of different land-use types on the contents of soil heavy metals were different. The Cd, Hg, Cu, Pb and Zn in soils of industrial area were affected by human activities, and the pollution level of these heavy metals in this area was moderate. The Pb in soils of traffic area was affected by human activities, and eight heavy metals in soils of residential area and farmland area were affected by natural factor. The ecological risk status of eight heavy metals in soils of the whole study area was light. The heavy metals in soils showed three spatial scales (nugget effect, short range and long range). At the nugget effect and short range scales, the Cd, Hg, Cu, Pb and Zn in soils were affected by human and natural factors. At three spatial scales, the As, Cr and Ni in soils were affected by soil parent materials.
Graham, P H; Bucci, J; Browne, L
2010-07-01
The present study compared the intracranial control rate and quality of life for two radiation fractionation schemes for cerebral metastases. A total of 113 patients with a Eastern Cooperative Oncology Group performance status <3; and stable (>2 months), absent, or concurrent presentation of extracranial disease were randomized to 40 Gy in 20 twice-daily fractions (Arm A) or 20 Gy in four daily fractions (Arm B), stratified by resection status. The European Organization for Research and Treatment of Cancer Quality of Life 30-item questionnaire was administered monthly during Year 1, bimonthly during Year 2, and then every 6 months to Year 5. The patient age range was 28-83 years (mean 62). Of the 113 patients, 41 had undergone surgical resection, and 74 patients had extracranial disease (31 concurrent and 43 stable). The median survival time was 6.1 months in Arm A and 6.6 months in Arm B, and the overall 5-year survival rate was 3.5%. Intracranial progression occurred in 44% of Arm A and 64% of Arm B patients (p = .03). Salvage surgery or radiotherapy was used in 4% of Arm A patients and 21% of Arm B patients (p = .004). Death was attributed to central nervous system progression in 32% of patients in Arm A and 52% of patients in Arm B (p = .03). The toxicity was minimal, with a minor increase in short-term cutaneous reactions in Arm A. The patients' quality of life was not impaired by the more intense treatment in Arm A. Intracranial disease control was improved and the quality of life was maintained with 40 Gy in 20 twice-daily fractions. This schema should be considered for better prognosis subgroups of patients with cerebral metastases. (c) 2010 Elsevier Inc. All rights reserved.
Effects of Aging on Arm Swing during Gait: The Role of Gait Speed and Dual Tasking.
Mirelman, Anat; Bernad-Elazari, Hagar; Nobel, Tomer; Thaler, Avner; Peruzzi, Agnese; Plotnik, Meir; Giladi, Nir; Hausdorff, Jeffrey M
2015-01-01
Healthy walking is characterized by pronounced arm swing and axial rotation. Aging effects on gait speed, stride length and stride time variability have been previously reported, however, less is known about aging effects on arm swing and axial rotation and their relationship to age-associated gait changes during usual walking and during more challenging conditions like dual tasking. Sixty healthy adults between the ages of 30-77 were included in this study designed to address this gap. Lightweight body fixed sensors were placed on each wrist and lower back. Participants walked under 3 walking conditions each of 1 minute: 1) comfortable speed, 2) walking while serially subtracting 3's (Dual Task), 3) walking at fast speed. Aging effects on arm swing amplitude, range, symmetry, jerk and axial rotation amplitude and jerk were compared between decades of age (30-40; 41-50; 51-60; 61-77 years). As expected, older adults walked slower (p = 0.03) and with increased stride variability (p = 0.02). Arm swing amplitude decreased with age under all conditions (p = 0.04). In the oldest group, arm swing decreased during dual task and increased during the fast walking condition (p<0.0001). Similarly, arm swing asymmetry increased during the dual task in the older groups (p<0.004), but not in the younger groups (p = 0.67). Significant differences between groups and within conditions were observed in arm swing jerk (p<0.02), axial rotation amplitude (p<0.02) and axial jerk (p<0.001). Gait speed, arm swing amplitude of the dominant arm, arm swing asymmetry and axial rotation jerk were all independent predictors of age in a multivariate model. These findings suggest that the effects of gait speed and dual tasking on arm swing and axial rotation during walking are altered among healthy older adults. Follow-up work is needed to examine if these effects contribute to reduced stability in aging.
Effects of Aging on Arm Swing during Gait: The Role of Gait Speed and Dual Tasking
Mirelman, Anat; Bernad-Elazari, Hagar; Nobel, Tomer; Thaler, Avner; Peruzzi, Agnese; Plotnik, Meir; Giladi, Nir; Hausdorff, Jeffrey M.
2015-01-01
Healthy walking is characterized by pronounced arm swing and axial rotation. Aging effects on gait speed, stride length and stride time variability have been previously reported, however, less is known about aging effects on arm swing and axial rotation and their relationship to age-associated gait changes during usual walking and during more challenging conditions like dual tasking. Sixty healthy adults between the ages of 30–77 were included in this study designed to address this gap. Lightweight body fixed sensors were placed on each wrist and lower back. Participants walked under 3 walking conditions each of 1 minute: 1) comfortable speed, 2) walking while serially subtracting 3’s (Dual Task), 3) walking at fast speed. Aging effects on arm swing amplitude, range, symmetry, jerk and axial rotation amplitude and jerk were compared between decades of age (30–40; 41–50; 51–60; 61–77 years). As expected, older adults walked slower (p = 0.03) and with increased stride variability (p = 0.02). Arm swing amplitude decreased with age under all conditions (p = 0.04). In the oldest group, arm swing decreased during dual task and increased during the fast walking condition (p<0.0001). Similarly, arm swing asymmetry increased during the dual task in the older groups (p<0.004), but not in the younger groups (p = 0.67). Significant differences between groups and within conditions were observed in arm swing jerk (p<0.02), axial rotation amplitude (p<0.02) and axial jerk (p<0.001). Gait speed, arm swing amplitude of the dominant arm, arm swing asymmetry and axial rotation jerk were all independent predictors of age in a multivariate model. These findings suggest that the effects of gait speed and dual tasking on arm swing and axial rotation during walking are altered among healthy older adults. Follow-up work is needed to examine if these effects contribute to reduced stability in aging. PMID:26305896
Effects of Biochar amendments on soil chemistry
NASA Astrophysics Data System (ADS)
Mukherjee, A.; Zimmerman, A. R.
2009-12-01
Humans have been transforming soil composition, both accidentally and purposefully, for centuries. For example, terra preta soils found in Amazonia that are greatly enriched in organic carbon and phosphorus and have enhanced fertility relative to the surrounding depleted oxisols, seem to have been deliberately created by native pre-Colombian Indians through the addition of combusted biomass, or biochar. Biochar amendment has gained attention recently as a way to enhance soil carbon sequestration while increasing soil fertility. It may also have adsorptive properties that are useful for pollution control. Our research examines the chemical and morphological properties of biochar with the goals of understanding the origin of terra preta, as well as how biochar can best be put to use as a soil amendment. Biochar was produced from a range of parent biomass types (hardwoods, softwoods and grasses) and under a range of combustion conditions (250 to 650 oC, under air and N2). Surface areas, determined by gas sorptometry, ranged from 3 to 394 m2g-1 (for N2) and from 129 to 345 m2g-1 (for CO2) and were found to generally increase with increasing pyrolysis temperature. The pH of the biochars ranged from 1.8 to 4.5, from 6.2 to 8.7, and from 6.2 to 9.2 for the 250, 400, and 650 oC biochars, respectively, and did not vary consistently with parent biomass types. Cation exchange capacity (CEC), determined using K+ exchange, ranged between 5 to 60 cmolc kg-1, higher than most soils, and generally increased with charring temperature. Anion exchange capacity (AEC) was low or undetectable. Lastly, the isoelectric point of the chars, determined using a zeta potential analyzer, ranged from a pH of 1.3 to 1.5, indicating that the biochar surfaces will be predominantly negatively charged in soil solutions. These data are complimentary and show that, when added to soil, biochar, particularly those produced at higher temperatures, would function as a cation exchanger system. The acid functional groups present on biochar surfaces would attract and adsorb cationic nutrients such as calcium, magnesium, iron, and ammonium, which would likely increase soil fertility. However, absorption of organic matter and water into the pore system of the chars may also play a role in enhancing the fertility of biochar-amended soils. Functional group chemistry determined by mid-range IR spectroscopy and scanning electron microscope images of biochars will also be presented.
Chitapanarux, Imjai; Tharavichitkul, Ekkasit; Kamnerdsupaphon, Pimkhuan; Pukanhapan, Nantaka; Vongtama, Roy
2013-01-01
The aim of this study was to compare the efficacy and safety of concurrent chemoradiotherapy (CCRT) vs accelerated hyperfractionation with concomitant boost (CCB) as a primary treatment for patients with Stage III–IV squamous cell carcinoma of head and neck (SCCHN). A total of 85 non-metastatic advanced SCCHN patients were accrued from January 2003 to December 2007. Of these, 48 and 37 patients received CCRT and CCB, respectively. The patients were randomized to receive either three cycles of carboplatin and 5-fluorouracil plus conventional radiotherapy (CCRT, 66 Gy in 6.5 weeks) or hybrid accelerated radiotherapy (CCB, 70 Gy in 6 weeks). The primary endpoint was determined by locoregional control rate. The secondary endpoints were overall survival and toxicity. With a median follow-up of 43 months (range, 3–102), the 5-year locoregional control rate was 69.6% in the CCRT arm vs 55.0% in the CCB arm (P = 0.184). The 5-year overall survival rate was marginally significantly different (P = 0.05): 76.1% in the CCRT arm vs 63.5% in the CCB arm. Radiotherapy treatment interruptions of more than three days were 60.4% and 40.5% in the CCRT arm and CCB arm, respectively. The median total treatment time was 55.5 days in the CCRT arm and 49 days in the CCB arm. The rate of Grade 3–4 acute mucositis was significantly higher in the CCB arm (67.6% vs 41.7%, P = 0.01), but no high grade hematologic toxicities were found in the CCB arm (27.2% vs 0%). CCRT has shown a trend of improving outcome over CCB irradiation in locoregionally advanced head and neck cancer. PMID:23740894
Clinical and MRI activity as determinants of sample size for pediatric multiple sclerosis trials
Verhey, Leonard H.; Signori, Alessio; Arnold, Douglas L.; Bar-Or, Amit; Sadovnick, A. Dessa; Marrie, Ruth Ann; Banwell, Brenda
2013-01-01
Objective: To estimate sample sizes for pediatric multiple sclerosis (MS) trials using new T2 lesion count, annualized relapse rate (ARR), and time to first relapse (TTFR) endpoints. Methods: Poisson and negative binomial models were fit to new T2 lesion and relapse count data, and negative binomial time-to-event and exponential models were fit to TTFR data of 42 children with MS enrolled in a national prospective cohort study. Simulations were performed by resampling from the best-fitting model of new T2 lesion count, number of relapses, or TTFR, under various assumptions of the effect size, trial duration, and model parameters. Results: Assuming a 50% reduction in new T2 lesions over 6 months, 90 patients/arm are required, whereas 165 patients/arm are required for a 40% treatment effect. Sample sizes for 2-year trials using relapse-related endpoints are lower than that for 1-year trials. For 2-year trials and a conservative assumption of overdispersion (ϑ), sample sizes range from 70 patients/arm (using ARR) to 105 patients/arm (TTFR) for a 50% reduction in relapses, and 230 patients/arm (ARR) to 365 patients/arm (TTFR) for a 30% relapse reduction. Assuming a less conservative ϑ, 2-year trials using ARR require 45 patients/arm (60 patients/arm for TTFR) for a 50% reduction in relapses and 145 patients/arm (200 patients/arm for TTFR) for a 30% reduction. Conclusion: Six-month phase II trials using new T2 lesion count as an endpoint are feasible in the pediatric MS population; however, trials powered on ARR or TTFR will need to be 2 years in duration and will require multicentered collaboration. PMID:23966255
Uptake of 40K and 137Cs in native plants of the Marshall Islands.
Simon, S L; Graham, J C; Terp, S D
2002-01-01
Uptake of 137Cs and 40K was studied in seven native plant species of the Marshall Islands. Plant and soil samples were obtained across a broad range of soil 137Cs concentrations (0.08-3900 Bq/kg) and a narrower range of 40K soil concentrations (2.3-55 Bq/kg), but with no systematic variation of 40K relative to 137Cs. Potassium-40 concentrations in plants varied little within the range of 40K soil concentrations observed. Unlike the case for 40K, 137Cs concentrations increased in plants with increasing 137Cs soil concentrations though not precisely in a proportionate manner. The best-fit relationship between soil and plant concentrations was P = aSb where a and b are regression coefficients and P and S are plant and soil concentrations, respectively. The exponent b for 40K was zero, implying plant concentrations were a single value, while b for 137Cs varied between 0.51 and 0.82, depending on the species. For both 40K and 137Cs, we observed a decreasing concentration ratio (where concentration ratio=plant concentration/soil concentration) with increasing soil concentrations. For the CR values, the best-fit relationship was of the form CR = aSb/S = aSb(-1). For the 40K CR functions, the exponent b - 1 was close to - 1 for all species. For the 137Cs CR functions, the exponent b - 1 varied from -0.19 to -0.48. The findings presented here, aswell as those by other investigators, collectively argue against the usefulness of simplistic ratio models to accurately predict uptake of either 40K or 137Cs in plants over wide ranges of soil concentration.
Andeer, Peter; Stahl, David A; Lillis, Lorraine; Strand, Stuart E
2013-09-17
The leaching of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) from particulates deposited in live-fire military training range soils contributes to significant pollution of groundwater. In situ microbial degradation has been proposed as a viable method for onsite containment of RDX. However, there is only a single report of RDX degradation in training range soils and the soil microbial communities involved in RDX degradation were not identified. Here we demonstrate aerobic RDX degradation in soils taken from a target area of an Eglin Air Force Base bombing range, C52N Cat's Eye, (Eglin, Florida U.S.A.). RDX-degradation activity was spatially heterogeneous (found in less than 30% of initial target area field samples) and dependent upon the addition of exogenous carbon sources to the soils. Therefore, biostimulation (with exogenous carbon sources) and bioaugmentation may be necessary to sustain timely and effective in situ microbial biodegradation of RDX. High sensitivity stable isotope probing analysis of extracted soils incubated with fully labeled (15)N-RDX revealed several organisms with (15)N-labeled DNA during RDX-degradation, including xplA-bearing organisms. Rhodococcus was the most prominent genus in the RDX-degrading soil slurries and was completely labeled with (15)N-nitrogen from the RDX. Rhodococcus and Williamsia species isolated from these soils were capable of using RDX as a sole nitrogen source and possessed the genes xplB and xplA associated with RDX-degradation, indicating these genes may be suitable genetic biomarkers for assessing RDX degradation potential in soils. Other highly labeled species were primarily Proteobacteria, including: Mesorhizobium sp., Variovorax sp., and Rhizobium sp.
Estimation of Human Arm Joints Using Two Wireless Sensors in Robotic Rehabilitation Tasks.
Bertomeu-Motos, Arturo; Lledó, Luis D; Díez, Jorge A; Catalan, Jose M; Ezquerro, Santiago; Badesa, Francisco J; Garcia-Aracil, Nicolas
2015-12-04
This paper presents a novel kinematic reconstruction of the human arm chain with five degrees of freedom and the estimation of the shoulder location during rehabilitation therapy assisted by end-effector robotic devices. This algorithm is based on the pseudoinverse of the Jacobian through the acceleration of the upper arm, measured using an accelerometer, and the orientation of the shoulder, estimated with a magnetic angular rate and gravity (MARG) device. The results show a high accuracy in terms of arm joints and shoulder movement with respect to the real arm measured through an optoelectronic system. Furthermore, the range of motion (ROM) of 50 healthy subjects is studied from two different trials, one trying to avoid shoulder movements and the second one forcing them. Moreover, the shoulder movement in the second trial is also estimated accurately. Besides the fact that the posture of the patient can be corrected during the exercise, the therapist could use the presented algorithm as an objective assessment tool. In conclusion, the joints' estimation enables a better adjustment of the therapy, taking into account the needs of the patient, and consequently, the arm motion improves faster.
Integrated Assessment of Vegetation and Soil Conditions Following Herbicide Application
2017-07-25
41. The white suspension formed when mixing Remedy Ultra (RU) with water...or shallow soil to a petrocalcic horizon. Soils are well drained and form in loamy calcareous gravelly alluvium. Typical locations for Cho soil are...drained soils. Nuff soil is formed in interbedded marl, limestone, and shale with slopes ranging between 1 and 6%. This soil is formed on erosional
Geochemical and Isotopic Estimates of Eolian Dust in Soils of the San Juan Mountains, USA.
NASA Astrophysics Data System (ADS)
Lawrence, C. R.; Neff, J. C.; Farmer, L.; Painter, T. H.; Landry, C.
2007-12-01
Eolian dust deposition in the San Juan Mountain Range in southern Colorado has increased 5-7 fold in the past two centuries. This dust deposition contributes an exogenous supply of biologically relevant elements such as Ca, K, Mg, and P to these alpine ecosystems in the form of fine textured mineral particulates. The deposition of eolian dust may be an underestimated factor of soil formation and soil chemistry in these alpine settings. The importance of eolian dust relative to the weathering of local bedrock likely varies across bedrock types. The San Juan Range is geologically diverse with distinct regions of Meso-proterozic crystalline granites in the Weminuche Wilderness, Mesozoic sedimentary layers near Molas Pass in the San Juan National Forest, and Tertiary volcanic geology found on Red Mountain Pass in the Uncompahgre National Forest. Principle component analysis of element chemistry shows that bedrock and soils from these sites cluster by geology. In addition, these groups are chemically distinct from eolian dust collected from snow in the San Juan Range. Several elements seem to drive the difference of dust from soils and bedrock including Ca, Sr, Cu and Cd. The purpose of this research was to estimate the relative contribution of eolian dust to alpine soil element pools in the San Juan Mountains across a range of local geologic parent material. A calculation of element mass- balance shows that Cu and Cd are enriched in the surface soils of both volcanic and sedimentary soils relative to concentrations in local bedrock. However, Ca is enriched only in volcanic soils. These observations support the notion that eolian dust contributes to soil formation and that the relative contribution of dust across the landscape varies with geology. In addition to element mass-balance estimates we utilize Sr and Nd isotope measurements of soil, bedrock, and dust to further constrain the importance of eolian dust to these alpine soils.
Quantifying Cr(VI) Production and Export from Serpentine Soil of the California Coast Range
McClain, Cynthia N.; Fendorf, Scott; Webb, Samuel M.; ...
2016-11-22
Here, hexavalent chromium (Cr(VI)) is generated in serpentine soils and exported to surface and groundwaters at levels above health-based drinking water standards. Although Cr(VI) concentrations are elevated in serpentine soil pore water, few studies have reported field evidence documenting Cr(VI) production rates and fluxes that govern Cr(VI) transport from soil to water sources. We report Cr speciation (i) in four serpentine soil depth profiles derived from the California Coast Range serpentinite belt and (ii) in local surface waters. Within soils, we detected Cr(VI) in the same horizons where Cr(III)-minerals are colocated with biogenic Mn(III/IV)-oxides, suggesting Cr(VI) generation through oxidation bymore » Mn-oxides. Water-extractable Cr(VI) concentrations increase with depth constituting a 7.8 to 12 kg/km 2 reservoir of Cr(VI) in soil. Here, Cr(VI) is produced at a rate of 0.3 to 4.8 kg Cr(VI)/km 2/yr and subsequently flushed from soil during water infiltration, exporting 0.01 to 3.9 kg Cr(VI)/km 2/yr at concentrations ranging from 25 to 172 μg/L. Although soil-derived Cr(VI) is leached from soil at concentrations exceeding 10 μg/L, due to reduction and dilution during transport to streams, Cr(VI) levels measured in local surface waters largely remain below California’s drinking water limit.« less
Quantifying Cr(VI) Production and Export from Serpentine Soil of the California Coast Range.
McClain, Cynthia N; Fendorf, Scott; Webb, Samuel M; Maher, Kate
2017-01-03
Hexavalent chromium (Cr(VI)) is generated in serpentine soils and exported to surface and groundwaters at levels above health-based drinking water standards. Although Cr(VI) concentrations are elevated in serpentine soil pore water, few studies have reported field evidence documenting Cr(VI) production rates and fluxes that govern Cr(VI) transport from soil to water sources. We report Cr speciation (i) in four serpentine soil depth profiles derived from the California Coast Range serpentinite belt and (ii) in local surface waters. Within soils, we detected Cr(VI) in the same horizons where Cr(III)-minerals are colocated with biogenic Mn(III/IV)-oxides, suggesting Cr(VI) generation through oxidation by Mn-oxides. Water-extractable Cr(VI) concentrations increase with depth constituting a 7.8 to 12 kg/km 2 reservoir of Cr(VI) in soil. Here, Cr(VI) is produced at a rate of 0.3 to 4.8 kg Cr(VI)/km 2 /yr and subsequently flushed from soil during water infiltration, exporting 0.01 to 3.9 kg Cr(VI)/km 2 /yr at concentrations ranging from 25 to 172 μg/L. Although soil-derived Cr(VI) is leached from soil at concentrations exceeding 10 μg/L, due to reduction and dilution during transport to streams, Cr(VI) levels measured in local surface waters largely remain below California's drinking water limit.
pH dominates variation in tropical soil archaeal diversity and community structure.
Tripathi, Binu M; Kim, Mincheol; Lai-Hoe, Ang; Shukor, Nor A A; Rahim, Raha A; Go, Rusea; Adams, Jonathan M
2013-11-01
Little is known of the factors influencing soil archaeal community diversity and composition in the tropics. We sampled soils across a range of forest and nonforest environments in the equatorial tropics of Malaysia, covering a wide range of pH values. DNA was PCR-amplified for the V1-V3 region of the 16S rRNA gene, and 454-pyrosequenced. Soil pH was the best predictor of diversity and community composition of Archaea, being a stronger predictor than land use. Archaeal OTU richness was highest in the most acidic soils. Overall archaeal abundance in tropical soils (determined by qPCR) also decreased at higher pH. This contrasts with the opposite trend previously found in temperate soils. Thaumarcheota group 1.1b was more abundant in alkaline soils, whereas group 1.1c was only detected in acidic soils. These results parallel those found in previous studies in cooler climates, emphasizing niche conservatism among broad archaeal groups. Among the most abundant operational taxonomic units (OTUs), there was clear evidence of niche partitioning by pH. No individual OTU occurred across the entire range of pH values. Overall, the results of this study show that pH plays a major role in structuring tropical soil archaeal communities. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Bradham, Karen D; Nelson, Clay M; Kelly, Jack; Pomales, Ana; Scruton, Karen; Dignam, Tim; Misenheimer, John C; Li, Kevin; Obenour, Daniel R; Thomas, David J
2017-09-05
Relationships between total soil or bioaccessible lead (Pb), measured using an in vitro bioaccessibility assay, and children's blood lead levels (BLL) were investigated in an urban neighborhood in Philadelphia, PA, with a history of soil Pb contamination. Soil samples from 38 homes were analyzed to determine whether accounting for the bioaccessible Pb fraction improves statistical relationships with children's BLLs. Total soil Pb concentration ranged from 58 to 2821 mg/kg; the bioaccessible Pb concentration ranged from 47 to 2567 mg/kg. Children's BLLs ranged from 0.3 to 9.8 μg/dL. Hierarchical models were used to compare relationships between total or bioaccessible Pb in soil and children's BLLs. Total soil Pb concentration as the predictor accounted for 23% of the variability in child BLL; bioaccessible soil Pb concentration as the predictor accounted for 26% of BLL variability. A bootstrapping analysis confirmed a significant increase in R 2 for the model using bioaccessible soil Pb concentration as the predictor with 99.0% of bootstraps showing a positive increase. Estimated increases of 1.3 μg/dL and 1.5 μg/dL in BLL per 1000 mg/kg Pb in soil were observed for this study area using total and bioaccessible Pb concentrations, respectively. Children's age did not contribute significantly to the prediction of BLLs.
R. R. Blank; J. Chambers; B. Roundy; A. Whittaker
2007-01-01
Soil nutrient availability influences plant invasions. Resin capsules were used to examine soil nutrient bioavailability along 2 sagebrush-grassland elevation transects in the east Tintic Range (Utah) and Shoshone Range (Nevada). In the fall of 2001, treatments were applied to 3 replicate plots at each site, which included prescribed burning, herbaceous vegetation...
Endogenous pro-thrombotic biomarkers from the arm and leg may not have the same value.
Lattimer, Christopher R; Kalodiki, Evi; Geroulakos, George; Hoppensteadt, Debra; Fareed, Jawed
2016-05-01
Assessments of endogenous pro-thrombotic biomarkers are performed invariably on arm blood. However, the commonest site for thrombosis is in the leg. A leg blood sample may reflect local pro-thrombotic processes more accurately than systemic arm blood. The aim was to determine whether pro-thrombotic biomarkers from standard venous arm samples differed significantly from leg samples. Concurrent blood samples were taken from an ankle/lower calf varicose vein and an ante-cubital vein in 24 patients awaiting laser treatment as well as age approximated and sex matched healthy controls without venous disease. The following assays were performed: thrombin-antithrombin (ng/ml), antithrombin (%) activity, microparticles (nM), fibrinogen (mg/dl), prothrombin fragment 1.2 (F1.2) (pM) and P-selectin (ng/ml). Expressed as median (inter-quartile range). Significant arm/leg differences were observed in thrombin-antithrombin, antithrombin, prothrombin fragment 1.2 and P-selectin. The legs of patients had significantly reduced antithrombin activity and P-selectin concentrations compared to their arms (leg: 101 (90-108) versus arm: 112 (99-126), P = 0.001 and leg: 42 (26-52) versus 45 (27-52), P = 0.044, respectively). Control leg samples had significantly increased thrombin-antithrombin and P-selectin compared to control arm samples (leg: 2.1 (0.9-3.2) versus arm: 0.8 (0.5-1.7), P = 0.015 and leg: 36 (24-50) versus arm: 30 (23-41), P = 0.007, respectively). However, the control legs had significantly reduced F1.2 (leg: 265 (230-333) versus arm: 299 (236-361), P = 0.028). No significant arm/leg differences were detected in the microparticle or fibrinogen levels. These findings indicate that venous arm blood is significantly different from venous leg blood in four out of six biomarkers studied. Recognition of local venous leg sampling as a site for investigation may unravel why the leg has a greater predisposition to thrombosis and lead the way towards an arm/leg differential test. © The Author(s) 2015.
Soil strength and macropore volume limit root elongation rates in many UK agricultural soils.
Valentine, Tracy A; Hallett, Paul D; Binnie, Kirsty; Young, Mark W; Squire, Geoffrey R; Hawes, Cathy; Bengough, A Glyn
2012-07-01
Simple indicators of crop and cultivar performance across a range of soil types and management are needed for designing and testing sustainable cropping practices. This paper determined the extent to which soil chemical and physical properties, particularly soil strength and pore-size distribution influences root elongation in a wide range of agricultural top soils, using a seedling-based indicator. Intact soil cores were sampled from the topsoil of 59 agricultural fields in Scotland, representing a wide geographic spread, range of textures and management practices. Water release characteristics, dry bulk density and needle penetrometer resistance were measured on three cores from each field. Soil samples from the same locations were sieved, analysed for chemical characteristics, and packed to dry bulk density of 1.0 g cm(-3) to minimize physical constraints. Root elongation rates were determined for barley seedlings planted in both intact field and packed soil cores at a water content close to field capacity (-20 kPa matric potential). Root elongation in field soil was typically less than half of that in packed soils. Penetrometer resistance was typically between 1 and 3 MPa for field soils, indicating the soils were relatively hard, despite their moderately wet condition (compared with <0.2 MPa for packed soil). Root elongation was strongly linked to differences in physical rather than chemical properties. In field soil root elongation was related most closely to the volume of soil pores between 60 µm and 300 µm equivalent diameter, as estimated from water-release characteristics, accounting for 65.7 % of the variation in the elongation rates. Root elongation rate in the majority of field soils was slower than half of the unimpeded (packed) rate. Such major reductions in root elongation rates will decrease rooting volumes and limit crop growth in soils where nutrients and water are scarce.
Sorption of thiabendazole in sub-tropical Brazilian soils.
de Oliveira Neto, Odilon França; Arenas, Alejandro Yopasa; Fostier, Anne Hélène
2017-07-01
Thiabendazole (TBZ) is an ionizable anthelmintic agent that belongs to the class of benzimidazoles. It is widely used in veterinary medicine and as a fungicide in agriculture. Sorption and desorption are important processes influencing transport, transformation, and bioavailability of xenobiotic compounds in soils; data related to sorption capacity are therefore needed for environmental risk assessments. The aim of this work was to assess the sorption potential of TBZ in four Brazilians soils (sandy, sandy-clay, and clay soils), using batch equilibrium experiments at three pH ranges (2.3-3.0, 3.8-4.2, and 5.5-5.7). The Freundlich sorption coefficient (K F ) ranged from 9.0 to 58 μg 1-1/n (mL) 1/n g -1 , with higher values generally observed at the lower pH ranges (2.3-3.0 and 3.8-4.2) and for clay soils. The highest organic carbon-normalized sorption coefficients (K OC ) obtained at pH 3.8-5.7 (around the natural pH range of 4.1-5.0) for both clay soils and sandy-clay soil were 3255 and 2015 mL g -1 , respectively. The highest correlations K F vs SOM (r = 0.70) and K F vs clay content (r = 0.91) were observed at pH 3.8-4.2. Our results suggest that TBZ sorption/desorption is strongly pH dependent and that its mobility could be higher in the studied soils than previously reported in soils from temperate regions.
Dermatas, Dimitris; Chrysochoou, Maria
2007-08-01
Six firing range soils were analyzed, representing different environments, firing conditions, and maintenance practices. The particle size distribution and lead (Pb) concentration in each soil fraction were determined for samples obtained from the backstop berms. The main factors that were found to influence Pb fragment size were the type of soil used to construct the berms and the type of weapon fired. The firing of high velocity weapons, i.e., rifles, onto highly angular soils induced significant fragmentation of the bullets and/or pulverization of the soil itself. This resulted in the accumulation of Pb in the finer soil fractions and the spread of Pb contamination beyond the vicinity of the backstop berm. Conversely, the use of clay as backstop and the use of low velocity pistols proved to be favorable for soil clean-up and range maintenance, since Pb was mainly present as large metallic fragments that can be recovered by a simple screening process. Other factors that played important roles in Pb particle size distribution were soil chemistry, firing distance, and maintenance practices, such as the use of water spray for dust suppression and deflectors prior to impact. Overall, coarse Pb particles provide much easier and more cost-effective maintenance, soil clean-up, and remediation via physical separation. Fine Pb particles release Pb more easily, pose an airborne Pb hazard, and require the application of stabilization/solidification treatment methods. Thus, to ensure sustainable firing range operations by means of cost-effective design, maintenance, and clean-up, especially when high velocity weapons are used, the above mentioned factors should be carefully considered.
Sokal, Brad; Uswatte, Gitendra; Barman, Joydip; Brewer, Michael; Byrom, Ezekiel; Latten, Jessica; Joseph, Jeethu; Serafim, Camila; Ghaffari, Touraj; Sarkar, Nilanjan
2014-03-01
To test the convergent validity of an objective method, Sensor-Enabled Radio-frequency Identification System for Monitoring Arm Activity (SERSMAA), that distinguishes between functional and nonfunctional activity. Cross-sectional study. Laboratory. Participants (N=25) were ≥0.2 years poststroke (median, 9) with a wide range of severity of upper-extremity hemiparesis. Not applicable. After stroke, laboratory tests of the motor capacity of the more-affected arm poorly predict spontaneous use of that arm in daily life. However, available subjective methods for measuring everyday arm use are vulnerable to self-report biases, whereas available objective methods only provide information on the amount of activity without regard to its relation with function. The SERSMAA consists of a proximity-sensor receiver on the more-affected arm and multiple units placed on objects. Functional activity is signaled when the more-affected arm is close to an object that is moved. Participants were videotaped during a laboratory simulation of an everyday activity, that is, setting a table with cups, bowls, and plates instrumented with transmitters. Observers independently coded the videos in 2-second blocks with a validated system for classifying more-affected arm activity. There was a strong correlation (r=.87, P<.001) between time that the more-affected arm was used for handling objects according to the SERSMAA and functional activity according to the observers. The convergent validity of SERSMAA for measuring more-affected arm functional activity after stroke was supported in a simulation of everyday activity. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akahane, Akio, E-mail: a.akahane@gmail.com; Sone, Miyuki; Ehara, Shigeru
2011-12-15
Purpose: This study was designed to compare central venous ports (CVP) from two different routes of venous access-the subclavian vein and arm vein-in terms of safety for patients with head and neck cancer (HNC). Methods: Patients with HNC who underwent image-guided implantations of CVPs were retrospectively evaluated. All CVPs were implanted under local anesthesia. Primary outcome measurements were rates and types of adverse events (AEs). Secondary outcomes included technical success and rate and reason of CVP removal. Results: A total of 162 patients (subclavian port group, 47; arm port group, 115) were included in this study. Technical success was achievedmore » in all patients. The median follow-up period was 94 (range, 1-891) days. Two patients in the subclavian port group experienced periprocedural complications. Postprocedural AEs were observed in 8.5 and 22.6% of the subclavian port and arm port group patients, respectively (P = 0.044). Phlebitis and system occlusions were observed only in the arm port group. The rate of infection was not significantly different between the two groups. The CVP was removed in 34 and 39.1% of the subclavian port and arm port patients, respectively. Conclusions: Both subclavian and arm CVPs are feasible in patients with HNC. AEs were more frequent in the arm port group; thus, the arm port is not recommended as the first choice for patients with HNC. However, further experience is needed to improve the placement technique and the maintenance of CVPs and a prospective analysis is warranted.« less
Schell, Kathleen; Bradley, Elisabeth; Bucher, Linda; Seckel, Maureen; Lyons, Denise; Wakai, Sandra; Bartell, Deborah; Carson, Elizabeth; Chichester, Melanie; Foraker, Teresa; Simpson, Kathleen
2005-05-01
When the upper arm (area from shoulder to elbow) is inaccessible and/or a standard-sized blood pressure cuff does not fit, some healthcare workers use the forearm to measure blood pressure. To compare automatic noninvasive measurements of blood pressure in the upper arm and forearm. A descriptive, correlational comparison study was conducted in the emergency department of a 1071-bed teaching hospital. Subjects were 204 English-speaking patients 6 to 91 years old in medically stable condition who had entered the department on foot or by wheelchair and who had no exclusions to using their left upper extremity. A Welch Allyn Vital Signs 420 series monitor was used to measure blood pressure in the left upper arm and forearm with the subject seated and the upper arm or forearm at heart level. Pearson r correlation coefficients between measurements in the upper arm and forearm were 0.88 for systolic blood pressure and 0.76 for diastolic blood pressure (P < .001 for both). Mean systolic pressures, but not mean diastolic pressures, in the upper arm and forearm differed significantly (t = 2.07, P = .04). A Bland-Altman analysis indicated that the distances between the mean values and the limits of agreement for the 2 sites ranged from 15 mm Hg (mean arterial pressure) to 18.4 mm Hg (systolic pressure). Despite strict attention to correct cuff size and placement of the upper arm or forearm at heart level, measurements of blood pressure obtained noninvasively in the arm and forearm of seated patients in stable condition are not interchangeable.
Design of a multi-arm randomized clinical trial with no control arm.
Magaret, Amalia; Angus, Derek C; Adhikari, Neill K J; Banura, Patrick; Kissoon, Niranjan; Lawler, James V; Jacob, Shevin T
2016-01-01
Clinical trial designs that include multiple treatments are currently limited to those that perform pairwise comparisons of each investigational treatment to a single control. However, there are settings, such as the recent Ebola outbreak, in which no treatment has been demonstrated to be effective; and therefore, no standard of care exists which would serve as an appropriate control. For illustrative purposes, we focused on the care of patients presenting in austere settings with critically ill 'sepsis-like' syndromes. Our approach involves a novel algorithm for comparing mortality among arms without requiring a single fixed control. The algorithm allows poorly-performing arms to be dropped during interim analyses. Consequently, the study may be completed earlier than planned. We used simulation to determine operating characteristics for the trial and to estimate the required sample size. We present a potential study design targeting a minimal effect size of a 23% relative reduction in mortality between any pair of arms. Using estimated power and spurious significance rates from the simulated scenarios, we show that such a trial would require 2550 participants. Over a range of scenarios, our study has 80 to 99% power to select the optimal treatment. Using a fixed control design, if the control arm is least efficacious, 640 subjects would be enrolled into the least efficacious arm, while our algorithm would enroll between 170 and 430. This simulation method can be easily extended to other settings or other binary outcomes. Early dropping of arms is efficient and ethical when conducting clinical trials with multiple arms. Copyright © 2015 Elsevier Inc. All rights reserved.
The onset of spiral structure in the universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmegreen, Debra Meloy; Elmegreen, Bruce G.
2014-01-20
The onset of spiral structure in galaxies appears to occur between redshifts 1.4 and 1.8 when disks have developed a cool stellar component, rotation dominates over turbulent motions in the gas, and massive clumps become less frequent. During the transition from clumpy to spiral disks, two unusual types of spirals are found in the Hubble Ultra Deep Field that are massive, clumpy, and irregular like their predecessor clumpy disks, yet spiral-like or sheared like their descendants. One type is 'woolly' with massive clumpy arms all over the disk and is brighter than other disk galaxies at the same redshift, whilemore » another type has irregular multiple arms with high pitch angles, star formation knots, and no inner symmetry like today's multiple-arm galaxies. The common types of spirals seen locally are also present in a redshift range around z ∼ 1, namely grand design with two symmetric arms, multiple arm with symmetry in the inner parts and several long, thin arms in the outer parts, and flocculent, with short, irregular, and patchy arms that are mostly from star formation. Normal multiple-arm galaxies are found only closer than z ∼ 0.6 in the Ultra Deep Field. Grand design galaxies extend furthest to z ∼ 1.8, presumably because interactions can drive a two-arm spiral in a disk that would otherwise have a more irregular structure. The difference between these types is understandable in terms of the usual stability parameters for gas and stars, and the ratio of the velocity dispersion to rotation speed.« less
Siemion, Jason; McHale, Michael; Lawrence, Gregory B.; Burns, Douglas A.; Antidormi, Michael
2018-01-01
Declines in acidic deposition across Europe and North America have led to decreases in surface water acidity and signs of chemical recovery of soils from acidification. To better understand the link between recovery of soils and surface waters, chemical trends in precipitation, soils, and streamwater were investigated in three watersheds representing a depositional gradient from high to low across the northeastern United States. Significant declines in concentrations of H+ (ranging from −1.2 to −2.74 microequivalents [μeq] L−1 yr−1), NO3− (ranging from −0.6 to −0.84 μeq L−1 yr−1), and SO42− (ranging from −0.95 to −2.13 μeq L−1 yr−1) were detected in precipitation in the three watersheds during the period 1999 to 2013. Soil chemistry in the A horizon of the watershed with the greatest decrease in deposition showed significant decreases in exchangeable Al and increases in exchangeable bases. Soil chemistry did not significantly improve during the study in the other watersheds, and base saturation in the Oa and upper B horizons significantly declined in the watershed with the smallest decrease in deposition. Streamwater SO42−concentrations significantly declined in all three streams (ranging from −2.01 to −2.87 μeq L−1 yr−1) and acid neutralizing capacity increased (ranging from 1.38 to 1.60 μeq L−1 yr−1) in the two streams with the greatest decreases in deposition. Recovery of soils has likely been limited by decades of acid deposition that have leached base cations from soils with base-poor parent material.
Orta-García, Sandra Teresa; Ochoa-Martinez, Angeles Catalina; Carrizalez-Yáñez, Leticia; Varela-Silva, José Antonio; Pérez-Vázquez, Francisco Javier; Pruneda-Álvarez, Lucia Guadalupe; Torres-Dosal, Arturo; Guzmán-Mar, Jorge Luis; Pérez-Maldonado, Iván N
2016-04-01
The purpose of this study was to assess the levels of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethane (DDE), and four heavy metals (arsenic, cadmium, and lead) in outdoor surface soils (50 samples) collected from the metropolitan area of Monterrey in Mexico. Total PBDEs levels ranged from 1.80 to 127 µg/kg, with mean total PBDEs level of 14.2 ± 21.5 µg/kg (geometric mean ± standard deviation). For PCBs, the mean total level in the studied soils was 23.5 ± 20.2 µg/kg (range 4.0-65.5 µg/kg). An important finding in our study was that all soil samples (100%) had detectable levels of the metabolite p,p'-DDE. Moreover, the mean total DDT level (∑p'p-DDT and p'p-DDE) was approximately 132 ± 175 µg/kg. The mean levels for arsenic, cadmium, and lead in soil were 5.30 ± 1.35 (range 1.55-7.85) mg/kg, 2.20 ± 1.20 (range 0.65-6.40) mg/kg, and 455 ± 204 (range 224-1230) mg/kg, respectively. Our study has several limitations, the most notable of which is the small sample of soils evaluated. However, this screening study provided concentration data for the occurrence of POPs and four heavy metals in soil from the metropolitan area of Monterrey, Nuevo Leon, Mexico, and taking into consideration that soil is an important pathway of exposure for people, a biomonitoring program for the surveillance of the general population in the metropolitan area of Monterrey, Nuevo Leon is deemed necessary.
NASA Astrophysics Data System (ADS)
Mendez, Mariano; Aimar, Silvia; Aparicio, Virginia; Buschiazzo, Daniel; De Geronimo, Eduardo; Costa, Jose Luis
2017-04-01
Particle matter with aerodynamic diameter lesser than 10 um (PM10) has shown adverse effects on health even at low concentrations. Entic Haplustoll dominates central semiarid region of Argentine (CSRA) and PM10 are emitted from the soil by tillage and wind erosion. The aim of study was measure glyphosate concentration in the PM10 emitted by a soil fine-sandy loam Entic Haplustoll. The study was carried in Santa Rosa La Pampa (S36° 46´; W64° 16´; 210 m a.s.l.) in a plot where 3.7 kg ha-1 active ingredient of glyphosate was used in the last two year and glyphosate was not used in the last 12 months. Soil samples were air dried and sieved with a rotary sieve to separate the following aggregate fractions: <0.42 mm, 0.42 to 0.84 mm, 0.84 to 2 mm, 2 to 6.4 mm, 6.4 to 19.2 mm, and > 19.2 mm. The Easy Dust Generator (EDG) was used to generate dust from the soil and its aggregate fractions. The PM10 emitted by EDG was collected using an electrostatic precipitator (C&L model number GH-939). The following determinations were carried out in the soil, aggregates and PM10 emitted by them: organic matter contents (OM) (Walkley & Black, 1934), particle size composition (Malvern martersizer2000) and the Glyphosate and AMPA content. Results showed that mean geometric diameter (MGD) of the material collected in the electrostatic precipitator and emitted by the aggregate fraction and the soil was between 4.6 and 5.3 µm. OM content in the aggregates fraction and soil ranged between 1.4% and 2.9% while than in the PM10 emitted by them ranged between 3.5% and 3.7 %. Clay content in aggregates and soil ranged between 6.5% and 8.5% while than in PM10 emitted by them ranged between 17.5% and 19.0%. Glyphosate content in aggregates fraction and soil ranged between 1 and 3 ppb. Glyphosate in PM10 emitted by aggregates and soil did not show differences in despite of it ranged between 11.0 ppb and 19.5 ppb. OM and clay in aggregate fractions and PM10 do not explained glyphosate content in PM10. AMPA concentration in aggregates and soil ranged between 80 ppb and 150 ppb, while than in PM10 emitted by them ranged between 520 ppb and 750 ppb. The enrichment ratio (ER, quotient between concentration or content in PM10 and aggregates) of glyphosate and AMPA (between 4 and 17) were higher than ER of clay and OM (between 1 and 3). ERglyphosate and ERAMPA were different among aggregate fractions (p< 0.05) and the highest ER was found in the fraction >19.2 (ERglyphosate = 17 and ERAMPA = 10). Our results showed contents variable of glyphosate and AMPA in the soil and its aggregate fractions after 12 month from the last glyphosate application in a haplustoll soil of the CSRA. High glyphosate content were also found in PM10 emitted by the soil and its aggregate fractions. More studies are necessary to evaluate the glyphosate content in PM10 and its potential impact in the heath.
Wildfires caused by self-heating ignition of carbon-rich soil
NASA Astrophysics Data System (ADS)
Restuccia, Francesco; Huang, Xinyan; Rein, Guillermo
2017-04-01
Carbon-rich soils, like peat, cover more than 3% of the earth's land surface, and store roughly three times more carbon than the earth's plants. Carbon-rich soils are reactive porous materials, prone to smouldering combustion if the inert and moisture content are low enough. An example of carbon-rich soil combustion happens in peatlands, which are prone to wildfires both in boreal and tropical regions and where combustion is a commonly seen phenomena. The experimental work presented here focuses on understanding one of the ways carbon-rich soil can ignite. The ignition phenomenon is known as self-heating, which is due to soil undergoing spontaneous exothermic reactions in the presence of oxygen. In this work we investigate the effect of soil inorganic content by creating under controlled conditions soil samples with inorganic contents ranging from 3% to 86% of dry weight. Combining oven experiments with the Frank-Kamenetskii theory of ignition, the lumped kinetic and thermal parameters are determined. We then use these parameters to upscale the laboratory experiments to soil layers of different depths for a range of ambient temperatures ranging from 0 °C to 40 °C. Experimental results show that self-heating ignition in the different soil layers is possible. The kinetic analysis predicts the critical soil layer thicknesses required for self-ignition. For example, at 40 °C a soil layer of 3% inorganic content can be ignited through self-heating if it is thicker than 8.8 m. This is also the first experimental quantification of soil self-heating showing that indeed it is possible that wildfires are initiated by self-heating of the soil.
Soil change induced by prairie dogs across three ecological sites
USDA-ARS?s Scientific Manuscript database
Prairie dogs (Cynomys spp.) can influence vegetation dynamics and landscape hydrology by altering soil properties, yet few studies have evaluated soil responses to prairie dog activities across a range of soil types. This study was conducted to quantify prairie dog effects on soil properties within...
EFFECT OF SOIL PROPERTIES ON LEAD BIOAVAILABILITY AND TOXCITY TO EARTHWORMS
Soil properties are important factors modifying metal bioavailability to ecological receptors. Twenty-one soils with a wide range of soil properties were amended with a single concentration of Pb (2000 mg/kg) to determine the effects of soil properties on Pb bioavailability and ...
[Soil basal respiration and enzyme activities in the root-layer soil of tea bushes in a red soil].
Yu, Shen; He, Zhenli; Zhang, Rongguang; Chen, Guochao; Huang, Changyong
2003-02-01
Soil basal respiration potential, metabolic quotient (qCO2), and activities of urease, invertase and acid phosphomonoesterase were investigated in the root-layer of 10-, 40-, and 90-yr-old tea bushes grown on the same type of red soil. The soil daily basal respiration potential ranged from 36.23 to 58.52 mg.kg-1.d-1, and the potentials in the root-layer of 40- or 90-yr-old were greater than that of 10-yr old tea bushes. The daily qCO2, ranging from 0.30 to 0.68, was in the reverse trend. The activities of test three enzymes changed differently with tea bushes' age. Urease activity in the root-layer of all age tea bushes ranged from 41.48 to 47.72 mg.kg-1.h-1 and slightly decreased with tea bushes' age. Invertase activity was 189.29-363.40 mg.kg-1.h-1 and decreased with tea bushes' age, but its activity in the root-layer of 10-year old tea bushes was significantly greater than that in the root-layer soil of 40- or 90-year old tea bushes. Acid phosphomonoesterase activity (444.22-828.32 mg.kg-1.h-1) increased significantly with tea bushes' age. Soil basal respiration potential, qCO2 and activities of 3 soil enzymes were closely related to soil pH, soil organic carbon, total nitrogen and C/N ratio, total soluble phenol, and microbial biomass carbon, respectively.
Ahmad, Mahtab; Hashimoto, Yohey; Moon, Deok Hyun; Lee, Sang Soo; Ok, Yong Sik
2012-03-30
This study evaluated the effectiveness of eggshell and calcined eggshell on lead (Pb) immobilization in a shooting range soil. Destructive and non-destructive analytical techniques were employed to determine the mechanism of Pb immobilization. The 5% additions of eggshell and calcined eggshell significantly decreased the TCLP-Pb concentration by 68.8% due mainly to increasing soil pH. Eggshell and calcined-eggshell amendments decreased the exchangeable Pb fraction to ≈ 1% of the total Pb in the soil, while the carbonate-associated Pb fraction was increased to 40.0-47.1% at >15% application rates. The thermodynamic modeling on Pb speciation in the soil solution predicted the precipitation of Pb-hydroxide [Pb(OH)(2)] in soils amended with eggshell and calcined eggshell. The SEM-EDS, XAFS and elemental dot mapping revealed that Pb in soil amended with calcined eggshell was associated with Si and Ca, and may be immobilized by entrapping into calcium-silicate-hydrate. Comparatively, in the soil amended with eggshell, Pb was immobilized via formation of Pb-hydroxide or lanarkite [Pb(2)O(SO(4))]. Applications of amendments increased activities of alkaline phosphatase up to 3.7 times greater than in the control soil. The use of eggshell amendments may have potential as an integrated remediation strategy that enables Pb immobilization and soil biological restoration in shooting range soils. Copyright © 2012 Elsevier B.V. All rights reserved.
Major and trace element geochemistry and background concentrations for soils in Connecticut
Brown, Craig; Thomas, Margaret A.
2014-01-01
Soil samples were collected throughout Connecticut (CT) to determine the relationship of soil chemistry with the underlying geology and to better understand background concentrations of major and trace elements in soils. Soil samples were collected (1) from the upper 5 cm of surficial soil at 100 sites, (2) from the A horizon at 86 of these sites, and (3) from the deeper horizon, typically the C horizon, at 79 of these sites. The <2-millimeter fraction of each sample was analyzed for 44 elements by methods that yield the total or near-total elemental content. Sample sites were characterized by glacial setting, underlying bedrock geology, and soil type. These spatial data were used with element concentrations in the C-horizon to relate geologic factors to soil chemistry. Concentrations of elements in C-horizon soils varied with grain size in surficial glacial materials and with underlying rock types, as determined using nonparametric statistical procedures. Concentrations of most elements in C-horizon soils showed a positive correlation with silt and (or) clay content and were higher in surficial materials mapped as till, thick till, and (or) fines. Element concentrations in C-horizon soils showed significant differences among the underlying geologic provinces and were highest overlying the Grenville Belt and (or) the Grenville Shelf Sequence Provinces in western CT. These rocks consist mainly of carbonates and the relatively high element concentrations in overlying soils likely result from less influence of dilution by quartz compared to other provinces. Element concentrations in C-horizon soils in CT were compared with those in samples from other New England states overlying similar lithologic bedrock types. The upper range of As concentrations in C-horizon soils overlying the New Hampshire-Maine (NH-ME) Sequence in CT was 15 mg/kg, lower than the upper range of 24 mg/kg in C-horizon soils overlying the same sequence in ME. In CT, U concentration means were significantly higher in C-horizon soils overlying Avalonian granites, and U concentrations ranged as high as 14 mg/kg, compared to those in C-horizon soil samples collected from other New England states, which ranged as high as 6.1 mg/kg in a sample in NH overlying the NH-ME Sequence. Element concentrations in C-horizon soils in CT were compared with those in samples collected from shallower depths. Concentrations of most major elements were highest in C-horizon soil samples, including Al, Ca, Fe, K, Na, and Ti, but element concentrations showed a relatively similar pattern in A-horizon and surficial soil samples among the underlying geologic provinces. Trace element concentrations, including Ba, W, Ga, Ni, Cs, Rb, Sr, Th, Sc, and U, also were higher in C-horizon soil samples than in overlying soil samples. Concentrations of Mg, and several trace elements, including Mn, P, As, Nb, Sn, Be, Bi, Hg, Se, Sb, La, Co, Cr, Pb, V, Y, Cu, Pb, and Zn were highest in some A-horizon or surficial soils, and indicate possible contributions from anthropogenic sources. Because element concentrations in soils above the C horizon are more likely to be affected by anthropogenic factors, concentration ranges in C-horizon soils and their spatially varying geologic associations should be considered when estimating background concentrations of elements in CT soils.
Demir, Aydeniz; Köleli, Nurcan
2013-01-01
A two-step method for the remediation of three different types of lead (Pb)-contaminated soil was evaluated. The first step included soil washing with ethylenediaminetetraacetic acid (EDTA) to remove Pb from soils. The washing experiments were performed with 0.05 M Na2EDTA at 1:10 soil to liquid ratio. Following the washing, Pb removal efficiency from soils ranged within 50-70%. After the soil washing process, Pb2+ ions in the washing solution were reduced electrochemically in a fixed-bed reactor. Lead removal efficiency with the electrochemical reduction at -2.0 V potential ranged within 57-76%. The overall results indicate that this two-step method is an environmentally-friendly and effective technology to remediate Pb-contaminated soils, as well as Pb-contaminated wastewater treatment due to the transformation of toxic Pb2+ ions into a non-hazardous metallic form (Pb(0)).
Islam, Mohammad Nazrul; Nguyen, Xuan Phuc; Jung, Ho-Young; Park, Jeong-Hun
2016-02-01
The chemical speciation and ecological risk assessment of heavy metals in two shooting range backstop soils in Korea were studied. Both soils were highly contaminated with Cd, Cu, Pb, and Sb. The chemical speciation of heavy metals reflected the present status of contamination, which could help in promoting management practices. We-rye soil had a higher proportion of exchangeable and carbonate bound metals and water-extractable Cd and Sb than the Cho-do soil. Bioavailable Pb represented 42 % of the total Pb content in both soils. A significant amount of Sb was found in the two most bioavailable fractions, amounting to ~32 % in the soil samples, in good agreement with the batch leaching test using water. Based on the values of ecological risk indices, both soils showed extremely high potential risk and may represent serious environmental problems.
Cartwright, Jennifer M.; Advised by Dzantor, E. Kudjo
2015-01-01
Stress factors quantified by this research include shallow soil (depth to bedrock ranging from 2.4 to 22.6 cm), volumetric soil water content levels seasonally ranging from xeric (below 5%) to saturated (above 50%), and seasonally extreme ground-surface temperatures (above 48°C). Findings from this research indicate that spatial and temporal heterogeneity exists in limestone cedar glades in terms of abiotic stress factors and soil physical and chemical properties. Several such soil properties (e.g. soil depth, organic matter levels, pH, and particle size distribution) are spatially correlated. These soil properties were statistically related to ecological structures and functions such as vegetation patterns, soil respiration, the density of culturable heterotrophic microbes in soil and metabolic diversity of soil microbial community profiles. In general, zones within limestone cedar glades that had relatively shallow soil, alkaline pH, low levels of organic matter and high levels of silt also tended to have depressed rates of soil respiration and reduced densities and metabolic diversity of culturable heterotrophic soil microbes. Additionally, seasonally-relevant stress factors including soil water content and temperatures at or near the soil surface were related to the same set of ecological structures and functions.
Broadbent, Arthur A D; Stevens, Carly J; Ostle, Nicholas J; Orwin, Kate H
2018-03-01
Multiple plant species invasions and increases in nutrient availability are pervasive drivers of global environmental change that often co-occur. Many plant invasion studies, however, focus on single-species or single-mechanism invasions, risking an oversimplification of a multifaceted process. Here, we test how biogeographic differences in soil biota, such as belowground enemy release, interact with increases in nutrient availability to influence invasive plant growth. We conducted a greenhouse experiment using three co-occurring invasive grasses and one native grass. We grew species in live and sterilized soil from the invader's native (United Kingdom) and introduced (New Zealand) ranges with a nutrient addition treatment. We found no evidence for belowground enemy release. However, species' responses to nutrients varied, and this depended on soil origin and sterilization. In live soil from the introduced range, the invasive species Lolium perenne L. responded more positively to nutrient addition than co-occurring invasive and native species. In contrast, in live soil from the native range and in sterilized soils, there were no differences in species' responses to nutrients. This suggests that the presence of soil biota from the introduced range allowed L. perenne to capture additional nutrients better than co-occurring species. Considering the globally widespread nature of anthropogenic nutrient additions to ecosystems, this effect could be contributing to a global homogenization of flora and the associated losses in native species diversity.
Schroeder, Jeremiah S; Perry, Joel C
2017-07-01
An estimated 17 million individuals suffer a stroke each year with over 5 million resulting in permanent disability. For many of these, the provision of gravity support to the impaired upper limb can provide significant and immediate improvement in arm mobility. This added mobility has the potential to improve arm function and user independence overall, but, so far, wearable arm supports have found only limited uptake by end-users. The reasons are unclear, but it is hypothesized that device uptake is strongly affected by aspects of arm support implementation such as added weight and volume and the effectiveness of the support provided. In the interest of reducing the size and visibility of wearable arm supports, cable driven actuation was investigated, and a device called the series wrapping cam was developed. This device uses two wrapping cams to stretch a spring as the user's arm elevation decreases. It optimally uses the range of motion of a custom latex spring in a compact mechanism. A one degree-of-freedom proof-of-concept prototype of the series wrapping cam was manufactured and tested. The torque supplied by the prototype correctly responds to shoulder elevation to balance the weight of the extended arm at any level of elevation. However, the support is unaffected by the degree of elbow flexion-extension. Shoulder joint torque is a function of both shoulder elevation and elbow flexion, suggesting further benefits could be achieved through a bi-articular design.
Stern, Michelle A.; Anderson, Frank A.; Flint, Lorraine E.; Flint, Alan L.
2018-05-03
In situ soil moisture datasets are important inputs used to calibrate and validate watershed, regional, or statewide modeled and satellite-based soil moisture estimates. The soil moisture dataset presented in this report includes hourly time series of the following: soil temperature, volumetric water content, water potential, and total soil water content. Data were collected by the U.S. Geological Survey at five locations in California: three sites in the central Sierra Nevada and two sites in the northern Coast Ranges. This report provides a description of each of the study areas, procedures and equipment used, processing steps, and time series data from each site in the form of comma-separated values (.csv) tables.
USDA-ARS?s Scientific Manuscript database
Surveys of soil properties related to soil functioning for many regions of Kyrgyzstan are limited. This study established ranges of selected chemical [soil organic matter (SOM), pH and total N (TN)], physical (soil texture), and biochemical (six enzyme activities of C, N, P and S cycling) character...
Working with soils: soil science continuing professional development
NASA Astrophysics Data System (ADS)
Hannam, Jacqueline; Thompson, Dick
2017-04-01
The British Society of Soil Science launched the Working with Soils professional competency programme in 2011. This was in response to concerns from practitioners and professionals of a significant skills gap in various sectors that require soil science skills. The programme includes one and two day courses that cover the qualifications, knowledge and skills required of a professional scientist or engineer conducting a range of contract work. All courses qualify for continuing professional development points with various professional practice schemes. Three courses cover the foundations of soil science namely; describing a soil profile, soil classification and understanding soil variability in the field and landscape. Other tailored courses relate to specific skills required from consultants particularly in the planning process where land is assessed for agricultural quality (agricultural land classification). New courses this year include soil handling and restoration that provides practitioners with knowledge of the appropriate management of large volumes of soil that are disturbed during development projects. The courses have so far successfully trained over 100 delegates ranging from PhD students, environmental consultants and government policy advisors.
NASA Technical Reports Server (NTRS)
Choudhury, B. J.
1983-01-01
A soil plant atmosphere model for corn (Zea mays L.) together with the scaling theory for soil hydraulic heterogeneity are used to study the sensitivity of spatial variation of canopy temperature to field averaged soil texture and crop rooting characteristics. The soil plant atmosphere model explicitly solves a continuity equation for water flux resulting from root water uptake, changes in plant water storage and transpirational flux. Dynamical equations for root zone soil water potential and the plant water storage models the progressive drying of soil, and day time dehydration and night time hydration of the crop. The statistic of scaling parameter which describes the spatial variation of soil hydraulic conductivity and matric potential is assumed to be independent of soil texture class. The field averaged soil hydraulic characteristics are chosen to be representative of loamy sand and clay loam soils. Two rooting characteristics are chosen, one shallow and the other deep rooted. The simulation shows that the range of canopy temperatures in the clayey soil is less than 1K, but for the sandy soil the range is about 2.5 and 5.0 K, respectively, for the shallow and deep rooted crops.
Influence of crop residues on trifluralin mineralization in a silty clay loam soil.
Farenhorst, Annemieke
2007-01-01
Trifluralin is typically applied onto crop residues (trash, stubble) at the soil surface, or onto the bare soil surface after the incorporation of crop residues into the soil. The objective of this study was to quantify the effect of the type and amount of crop residues in soil on trifluralin mineralization in a Wellwood silty clay loam soil. Leaves and stubble of Potato (Solanum tuberosum) (P); Canola (Brassica napus) (C), Wheat (Triticum aestivum) (W), Oats (Avena sativa), (O), and Alfalfa (Medicago sativa) (A) were added to soil microcosms at rates of 2%, 4%, 8% and 16% of the total soil weight (25 g). The type and amount of crop residues in soil had little influence on the trifluralin first-order mineralization rate constant, which ranged from 3.57E-03 day(-1) in soil with 16% A to 2.89E-02 day(-1) in soil with 8% W. The cumulative trifluralin mineralization at 113 days ranged from 1.15% in soil with 16% P to 3.21% in soil with 4% C, again demonstrating that the observed differences across the treatments are not of agronomic or environmental importance.
Phoenix Conductivity Probe with Shadow and Toothmark
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's Phoenix Mars Lander inserted the four needles of its thermal and conductivity probe into Martian soil during the 98th Martian day, or sol, of the mission and left it in place until Sol 99 (Sept. 4, 2008). The Robotic Arm Camera on Phoenix took this image on the morning of Sol 99 after the probe was lifted away from the soil. The imprint left by the insertion is visible below the probe, and a shadow showing the probe's four needles is cast on a rock to the left. The thermal and conductivity probe measures how fast heat and electricity move from one needle to an adjacent one through the soil or air between the needles. Conductivity readings can be indicators about water vapor, water ice and liquid water. The probe is part of Phoenix's Microscopy, Electrochemistry and Conductivity suite of instruments. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.NASA Technical Reports Server (NTRS)
2004-01-01
This animation shows the Mars Exploration Rover Opportunity digging a hole in the ground at Meridiani Planum, Mars. The rover scraped its front right wheel back and forth across the surface six times by rotating its whole body in place. At the end of each sweep, the wheel changed the direction it was spinning to shove excess dirt out of the way. The resulting trench is about 50 centimeters (19.7 inches) long by 20 centimeters (7.9 inches) wide by 9 centimeters (3.5 inches) deep.
The rover's instrument deployment device, or arm, will begin studying the fresh soil at the bottom of the hole later today for clues to its mineral composition and history. Scientists chose this particular site for trenching because previous data taken by the rover's miniature thermal emission spectrometer indicated that it contains crystalline hematite, a mineral that sometimes forms in the presence of water. The brightness of the newly-exposed soil is thought to be either intrinsic to the soil itself, or a reflection of the Sun.This movie is composed of images taken by the rover's hazard-avoidance camera.Dow, William H.; Njau, Prosper F.
2018-01-01
Background Cash and in-kind incentives can improve health outcomes in various settings; however, there is concern that incentives may ‘crowd out’ intrinsic motivation to engage in beneficial behaviors. We examined this hypothesis in a randomized trial of food and cash incentives for people living with HIV infection in Tanzania. Methods We analyzed data from 469 individuals randomized to one of three study arms: standard of care, short-term cash transfers, or short-term food assistance. Eligible participants were: 1) ≥18 years old; 2) HIV-infected; 3) food insecure; and 4) initiated antiretroviral therapy (ART) ≤90 days before the study. Food or cash transfers, valued at ~$11 per month and conditional on attending clinic visits, were provided for ≤6 months. Intrinsic motivation was measured at baseline, 6, and 12 months using the autonomous motivation section of the Treatment Self-Regulation Questionnaire (TSRQ). We compared the change in TSRQ score from baseline to 6 and 12 months and the change within study arms. Results The mean intrinsic motivation score was 2.79 at baseline (range: 1–3), 2.91 at 6 months (range: 1–3), and 2.95 at 12 months (range: 2–3), which was 6 months after the incentives had ended. Among all patients, the intrinsic motivation score increased by 0.13 points at 6 months (95% CI (0.09, 0.17), Cohen’s d = 0.29) and 0.19 points at 12 months (95% CI (0.14, 0.24), Cohen’s d = 0.49). Intrinsic motivation also increased within each study group at 6 months: 0.15 points in the food arm (95% CI (0.09, 0.21), Cohen’s d = 0.37), 0.11 points in the cash arm (95% CI (0.05, 0.18), Cohen’s d = 0.25), and 0.08 points in the comparison arm (95% CI (-0.03, 0.19), Cohen’s d = 0.21); findings were similar at 12 months. Increases in motivation were statistically similar between arms at 6 and 12 months. Conclusion Intrinsic motivation for ART adherence increased significantly both overall and within the food and cash incentive arms, even after the incentive period was over. Increases in motivation did not differ by study group. These results suggest that incentive interventions for treatment adherence should not be withheld due to concerns of crowding out intrinsic motivation. PMID:29902177
The MECA Payload as a Dust Analysis Laboratory on the MSP 2001 Lander
NASA Astrophysics Data System (ADS)
Marshall, J.; Anderson, M.; Buehler, M.; Frant, M.; Fuerstenau, S.; Hecht, M.; Keller, U.; Markiewicz, W.; Meloy, T.; Pike, T.
1999-09-01
In a companion abstract, the "Mars Environmental Compatibility Assessment" (MECA) payload for Mars Surveyor Program 2001 (MSP 2001) is described in terms of its capabilities for addressing exobiology on Mars. Here we describe how the same payload elements perform in terms of gathering data about surface dust on the planet. An understanding of the origin and properties of dust is important to both human exploration and planetary geology. The MECA instrument is specifically designed for soil/dust investigations: it is a multifunctional laboratory equipped to assess particulate properties with wet chemistry, camera imagery, optical microscopy (potentially with LTV fluorescence capability), atomic force microscopy (AFM; potentially with mineral-discrimination capabilities), electrometry, active & passive external materials-test panels, mineral hardness testing, and electrostatic & magnetic materials testing. Additionally, evaluation of soil chemical and physical properties as a function of depth down to about 50 cm will be facilitated by the Lander/MECA robot arm on which the camera (RAC) and electrometer are mounted. Types of data being sought for the dust include: (1) general textural and grain-size characterization of the soil as a whole --for example, is the soil essentially dust with other components or is it a clast-supported material in which dust resides only in the clast interstices, (2) size frequency distribution for dust particles in the range 0.01 to 10.00 microns, (3) particle-shape distribution of the soil components and of the fine dust fraction in particular, (4) soil fabric such as grain clustering into clods, aggregates, and cemented/indurated grain amalgamations, as well as related porosity, cohesiveness, and other mechanical soil properties, (5) cohesive relationship that dust has to certain types of rocks and minerals as a clue to which soil materials may be prime hosts for dust "piggybacking", (6) particle, aggregate, and bulk soil electrostatic properties, (7) particle hardness, (8) particle magnetic properties, (9) bulk dust geochemistry (solubility, reactivity, ionic and mineral species). All of these quantities are needed in order for the human exploration program to make assessments of hazards on Mars, and to better enable the production on earth, of soil/dust simulants that can act as realistic test materials in terms of those properties that render dust a contaminant.Such properties include the small grain size that enables penetration of space-suit joints, mechanical interfaces and bearings, seals, etc., and presents difficulty for filtration systems. Size also plays a critical role in the potential for lung disease in long-term habitats. The properties of grain shape and hardness are important parameters in determining the abrasiveness of dust as it enters mechanical systems, or bombards helmet visors and habitat windows in dust-laden winds. Adhesive electrostatic and magnetic properties of dust will be prime causes of contamination of space suits and equipment. Contamination causes mechanical malfunction, tracking of dirt into habitats, "piggybacking" of toxins on dust into habitats, changes in albedo and efficiency of solar arrays and heat exchangers, and changes in electrical conductivity of suit surfaces and other materials that may have specific safety requirements regarding electrical conductivity. Other potentially hazardous properties of dust include the possibility of high solubility of some component grains (rendering them reactive), and toxicity of some materials --grains of superoxidants and heavy metals (there is always the slim, but not inconceivable possibility of biogenic components such as spores). Because Mars has no active surface aqueous regime, volcanic emissions, meteoritic debris, weathering products, and photochemical products of Mars have nowhere to go except reside in the surface; there are few mechanical or chemical (buffering) processes to remove the accumulation of eons. From a planetology perspective, there are many enigmatic issues relating to dust and the aeolian regime in general. MECA will be able to address many questions in this area. For example, if MECA determines a particular particle size distribution (size and sorting values), it will be possible to make inferences about the origin of the dust - - is it all aeolian, or a more primitive residue of weathering, volcanic emissions, and meteoritic gardening? Trenching with the Lander/MECA robot arm will enable local stratigraphy to be determined in terms of depositional rates, amounts and cyclicity in dust storms and/or local aeolian transport. Grain shape will betray the origin of the dust fragments as being the product of recent or ancient weathering, or the comminution products of aeolian transport --the dust-silt ratio might be a measure of aeolian comminution energy. Additional information is contained in the original.
The MECA Payload as a Dust Analysis Laboratory on the MSP 2001 Lander
NASA Technical Reports Server (NTRS)
Marshall, J.; Anderson, M.; Buehler, M.; Frant, M.; Fuerstenau, S.; Hecht, M.; Keller, U.; Markiewicz, W.; Meloy, T.; Pike, T.
1999-01-01
In a companion abstract, the "Mars Environmental Compatibility Assessment" (MECA) payload for Mars Surveyor Program 2001 (MSP 2001) is described in terms of its capabilities for addressing exobiology on Mars. Here we describe how the same payload elements perform in terms of gathering data about surface dust on the planet. An understanding of the origin and properties of dust is important to both human exploration and planetary geology. The MECA instrument is specifically designed for soil/dust investigations: it is a multifunctional laboratory equipped to assess particulate properties with wet chemistry, camera imagery, optical microscopy (potentially with LTV fluorescence capability), atomic force microscopy (AFM; potentially with mineral-discrimination capabilities), electrometry, active & passive external materials-test panels, mineral hardness testing, and electrostatic & magnetic materials testing. Additionally, evaluation of soil chemical and physical properties as a function of depth down to about 50 cm will be facilitated by the Lander/MECA robot arm on which the camera (RAC) and electrometer are mounted. Types of data being sought for the dust include: (1) general textural and grain-size characterization of the soil as a whole --for example, is the soil essentially dust with other components or is it a clast-supported material in which dust resides only in the clast interstices, (2) size frequency distribution for dust particles in the range 0.01 to 10.00 microns, (3) particle-shape distribution of the soil components and of the fine dust fraction in particular, (4) soil fabric such as grain clustering into clods, aggregates, and cemented/indurated grain amalgamations, as well as related porosity, cohesiveness, and other mechanical soil properties, (5) cohesive relationship that dust has to certain types of rocks and minerals as a clue to which soil materials may be prime hosts for dust "piggybacking", (6) particle, aggregate, and bulk soil electrostatic properties, (7) particle hardness, (8) particle magnetic properties, (9) bulk dust geochemistry (solubility, reactivity, ionic and mineral species). All of these quantities are needed in order for the human exploration program to make assessments of hazards on Mars, and to better enable the production on earth, of soil/dust simulants that can act as realistic test materials in terms of those properties that render dust a contaminant.Such properties include the small grain size that enables penetration of space-suit joints, mechanical interfaces and bearings, seals, etc., and presents difficulty for filtration systems. Size also plays a critical role in the potential for lung disease in long-term habitats. The properties of grain shape and hardness are important parameters in determining the abrasiveness of dust as it enters mechanical systems, or bombards helmet visors and habitat windows in dust-laden winds. Adhesive electrostatic and magnetic properties of dust will be prime causes of contamination of space suits and equipment. Contamination causes mechanical malfunction, tracking of dirt into habitats, "piggybacking" of toxins on dust into habitats, changes in albedo and efficiency of solar arrays and heat exchangers, and changes in electrical conductivity of suit surfaces and other materials that may have specific safety requirements regarding electrical conductivity. Other potentially hazardous properties of dust include the possibility of high solubility of some component grains (rendering them reactive), and toxicity of some materials --grains of superoxidants and heavy metals (there is always the slim, but not inconceivable possibility of biogenic components such as spores). Because Mars has no active surface aqueous regime, volcanic emissions, meteoritic debris, weathering products, and photochemical products of Mars have nowhere to go except reside in the surface; there are few mechanical or chemical (buffering) processes to remove the accumulation of eons. From a planetology perspective, there are many enigmatic issues relating to dust and the aeolian regime in general. MECA will be able to address many questions in this area. For example, if MECA determines a particular particle size distribution (size and sorting values), it will be possible to make inferences about the origin of the dust - - is it all aeolian, or a more primitive residue of weathering, volcanic emissions, and meteoritic gardening? Trenching with the Lander/MECA robot arm will enable local stratigraphy to be determined in terms of depositional rates, amounts and cyclicity in dust storms and/or local aeolian transport. Grain shape will betray the origin of the dust fragments as being the product of recent or ancient weathering, or the comminution products of aeolian transport --the dust-silt ratio might be a measure of aeolian comminution energy. Additional information is contained in the original.
Knaut, Luiz A; Subramanian, Sandeep K; McFadyen, Bradford J; Bourbonnais, Daniel; Levin, Mindy F
2009-05-01
To compare kinematics of 3-dimensional pointing movements performed in a virtual environment (VE) displayed through a head-mounted display with those made in a physical environment. Observational study of movement in poststroke and healthy subjects. Motion analysis laboratory. Adults (n=15; 4 women; 59+/-15.4y) with chronic poststroke hemiparesis were recruited. Participants had moderate upper-limb impairment with Chedoke-McMaster Arm Scores ranging from 3 to 6 out of 7. Twelve healthy subjects (6 women; 53.3+/-17.1y) were recruited from the community. Not applicable. Arm and trunk kinematics were recorded in similar virtual and physical environments with an Optotrak System (6 markers; 100Hz; 5s). Subjects pointed as quickly and as accurately as possible to 6 targets (12 trials/target in a randomized sequence) placed in arm workspace areas requiring different arm movement patterns and levels of difficulty. Movements were analyzed in terms of performance outcome measures (endpoint precision, trajectory, peak velocity) and arm and trunk movement patterns (elbow and shoulder ranges of motion, elbow/shoulder coordination, trunk displacement, rotation). For healthy subjects, precision and trajectory straightness were higher in VE when pointing to contralateral targets, and movements were slower for all targets in VE. Stroke participants made less accurate and more curved movements in VE and used less trunk displacement. Elbow/shoulder coordination differed when pointing to the lower ipsilateral target. There were no group-by-environment interactions. Movements in both environments were sufficiently similar to consider VE a valid environment for clinical interventions and motor control studies.
Gordon, Brian J; Dapena, Jesús
2013-01-04
Inaccuracy in determining the orientation of the upper arm about its longitudinal axis (twist orientation) has been a pervasive problem in sport biomechanics research. The purpose of this study was to develop a method to improve the calculation of the upper arm twist orientation in dynamic sports activities. The twist orientation of the upper arm is defined by the orientation of its mediolateral axis. The basis for the new method is that at any angle in the flexion/extension range of an individual's elbow, it is possible to define a true mediolateral axis and also a surrogate mediolateral axis perpendicular to the plane containing the shoulder, elbow and wrist joints. The difference between the twist orientations indicated by these two versions of the mediolateral axis will vary from one elbow angle to another, but if the elbow joint deforms equally in different activities, for any given subject the difference should be constant at any given value of the elbow angle. Application of the new method required individuals to execute sedate elbow extension trials prior to the dynamic trials. Three-dimensional motion analysis of the sedate extension trials allowed quantification of the difference between the true and surrogate mediolateral axes for all angles in the entire flexion/extension range of an individual's elbow. This made it possible to calculate in any dynamic trial the twist orientation defined by the true mediolateral axis from the twist orientation defined by the surrogate mediolateral axis. The method was tested on a wooden model of the arm. Copyright © 2012 Elsevier Ltd. All rights reserved.
Isometric Arm Strength and Subjective Rating of Upper Limb Fatigue in Two-Handed Carrying Tasks
Li, Kai Way; Chiu, Wen-Sheng
2015-01-01
Sustained carrying could result in muscular fatigue of the upper limb. Ten male and ten female subjects were recruited for measurements of isometric arm strength before and during carrying a load for a period of 4 minutes. Two levels of load of carrying were tested for each of the male and female subjects. Exponential function based predictive equations for the isometric arm strength were established. The mean absolute deviations of these models in predicting the isometric arm strength were in the range of 3.24 to 17.34 N. Regression analyses between the subjective ratings of upper limb fatigue and force change index (FCI) for the carrying were also performed. The results indicated that the subjective rating of muscular fatigue may be estimated by multiplying the FCI with a constant. The FCI may, therefore, be adopted as an index to assess muscular fatigue for two-handed carrying tasks. PMID:25794159
Isometric arm strength and subjective rating of upper limb fatigue in two-handed carrying tasks.
Li, Kai Way; Chiu, Wen-Sheng
2015-01-01
Sustained carrying could result in muscular fatigue of the upper limb. Ten male and ten female subjects were recruited for measurements of isometric arm strength before and during carrying a load for a period of 4 minutes. Two levels of load of carrying were tested for each of the male and female subjects. Exponential function based predictive equations for the isometric arm strength were established. The mean absolute deviations of these models in predicting the isometric arm strength were in the range of 3.24 to 17.34 N. Regression analyses between the subjective ratings of upper limb fatigue and force change index (FCI) for the carrying were also performed. The results indicated that the subjective rating of muscular fatigue may be estimated by multiplying the FCI with a constant. The FCI may, therefore, be adopted as an index to assess muscular fatigue for two-handed carrying tasks.
CAD of 0.1- to 10-GHz GaAs MMIC SPST switch
NASA Astrophysics Data System (ADS)
Yadav, Ramchandra; Kirty, V. S. R.
1998-04-01
The design of the SPST switch provides an insertion loss less than 2 dB, isolation more than 40 dB and return loss better than 17.5 dB in the frequency range of 0.1 GHz to 10 GHz. The insertion loss is improved by treating SPST switch as a 50 (Omega) artificial transmission line with incorporation of inductor in series arm and the capacitance of MESFET in the shunt arm. High isolation is ensured by the lower value of `ON' resistance of MESFET in shunt arm. Also good return loss is achieved by paralleling a 50 (Omega) resistor with capacitance of MESFET in series arm. The absence of DC blocking capacitors and replacement of large value bias chokes with 5 K(Omega) resistors effectively improved the performance of SPST switch at low frequency and also reduced the chip size. The overall chip dimension is 2.2 mm X 1.7 mm.
Improving robot arm control for safe and robust haptic cooperation in orthopaedic procedures.
Cruces, R A Castillo; Wahrburg, J
2007-12-01
This paper presents the ongoing results of an effort to achieve the integration of a navigated cooperative robotic arm into computer-assisted orthopaedic surgery. A seamless integration requires the system acting in direct cooperation with the surgeon instead of replacing him. Two technical issues are discussed to improve the haptic operating modes for interactive robot guidance. The concept of virtual fixtures is used to restrict the range of motion of the robot according to pre-operatively defined constraints, and methodologies to assure a robust and accurate motion through singular arm configurations are investigated. A new method for handling singularities is proposed, which is superior to the commonly used damped-least-squares method. It produces no deviations of the end-effector in relation to the virtually constrained path. A solution to assure a good performance of a hands-on robotic arm at singularity configurations is proposed. (c) 2007 John Wiley & Sons, Ltd.
High dimensional reflectance analysis of soil organic matter
NASA Technical Reports Server (NTRS)
Henderson, T. L.; Baumgardner, M. F.; Franzmeier, D. P.; Stott, D. E.; Coster, D. C.
1992-01-01
Recent breakthroughs in remote-sensing technology have led to the development of high spectral resolution imaging sensors for observation of earth surface features. This research was conducted to evaluate the effects of organic matter content and composition on narrowband soil reflectance across the visible and reflective infrared spectral ranges. Organic matter from four Indiana agricultural soils, ranging in organic C content from 0.99 to 1.72 percent, was extracted, fractionated, and purified. Six components of each soil were isolated and prepared for spectral analysis. Reflectance was measured in 210 narrow bands in the 400- to 2500-nm wavelength range. Statistical analysis of reflectance values indicated the potential of high dimensional reflectance data in specific visible, near-infrared, and middle-infrared bands to provide information about soil organic C content, but not organic matter composition. These bands also responded significantly to Fe- and Mn-oxide content.
Fixation of virgin lunar surface soil
NASA Technical Reports Server (NTRS)
Conley, J. M.; Frazer, R.; Cannon, W. A.
1972-01-01
Two systems are shown to be suitable for fixing loose particulate soils with a polymer film, without visually detectable disturbance of the soil particle spatial relationships. A two-component system is described, which uses a gas monomer condensible at the soil temperature and a gas phase catalyst acting to polymerize the monomer. A one-component system using a monomer which polymerizes spontaneously on and within the top few millimeters of the soil is also considered. The two-component system employs a simpler apparatus, but it operates over a narrower temperature range (approximately -40 to -10 C). Other two-component systems were identified which may operate at soil temperatures as high as +100 C, at relatively narrow temperature ranges of approximately 30 C. The one-component system was demonstrated to operate successfully with initial soil temperatures from -70 C or lower to +150 C.
Liu, Yang; Lv, Jianshu; Zhang, Bing; Bi, Jun
2013-04-15
Identifying the sources of spatial variability and deficiency risk of soil nutrients is a crucial issue for soil and agriculture management. A total of 1247 topsoil samples (0-20 cm) were collected at the nodes of a 2×2 km grid in Rizhao City and the contents of soil organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) were determined. Factorial kriging analysis (FKA), stepwise multiple regression, and indicator kriging (IK) were appled to investigate the scale dependent correlations among soil nutrients, identify the sources of spatial variability at each spatial scale, and delineate the potential risk of soil nutrient deficiency. Linear model of co-regionalization (LMC) fitting indicated that the presence of multi-scale variation was comprised of nugget effect, an exponential structure with a range of 12 km (local scale), and a spherical structure with a range of 84 km (regional scale). The short-range variation of OC and TN was mainly dominated by land use types, and TP was controlled by terrain. At long-range scale, spatial variation of OC, TN, and TP was dominated by parent material. Indicator kriging maps depicted the probability of soil nutrient deficiency compared with the background values in eastern Shandong province. The high deficiency risk area of all nutrient integration was mainly located in eastern and northwestern parts. Copyright © 2013 Elsevier B.V. All rights reserved.
Deborah A. Abrahamson; Phillip M. Dougherty; Stanley J. Zarnoch
1998-01-01
Fertilizer and irrigation treatments were applied in a 7- to l0-year-old loblolly pine (Pinus taeda L.) plantation on a sandy soil near Laurinburg, North Carolina. Rainfall, throughfall, stemflow, and soil water content were measured throughout the study period. Monthly interception losses ranged from 4 to 15% of rainfall. Stemflow ranged from 0.2...
A Mars Sample Return Sample Handling System
NASA Technical Reports Server (NTRS)
Wilson, David; Stroker, Carol
2013-01-01
We present a sample handling system, a subsystem of the proposed Dragon landed Mars Sample Return (MSR) mission [1], that can return to Earth orbit a significant mass of frozen Mars samples potentially consisting of: rock cores, subsurface drilled rock and ice cuttings, pebble sized rocks, and soil scoops. The sample collection, storage, retrieval and packaging assumptions and concepts in this study are applicable for the NASA's MPPG MSR mission architecture options [2]. Our study assumes a predecessor rover mission collects samples for return to Earth to address questions on: past life, climate change, water history, age dating, understanding Mars interior evolution [3], and, human safety and in-situ resource utilization. Hence the rover will have "integrated priorities for rock sampling" [3] that cover collection of subaqueous or hydrothermal sediments, low-temperature fluidaltered rocks, unaltered igneous rocks, regolith and atmosphere samples. Samples could include: drilled rock cores, alluvial and fluvial deposits, subsurface ice and soils, clays, sulfates, salts including perchlorates, aeolian deposits, and concretions. Thus samples will have a broad range of bulk densities, and require for Earth based analysis where practical: in-situ characterization, management of degradation such as perchlorate deliquescence and volatile release, and contamination management. We propose to adopt a sample container with a set of cups each with a sample from a specific location. We considered two sample cups sizes: (1) a small cup sized for samples matching those submitted to in-situ characterization instruments, and, (2) a larger cup for 100 mm rock cores [4] and pebble sized rocks, thus providing diverse samples and optimizing the MSR sample mass payload fraction for a given payload volume. We minimize sample degradation by keeping them frozen in the MSR payload sample canister using Peltier chip cooling. The cups are sealed by interference fitted heat activated memory alloy caps [5] if the heating does not affect the sample, or by crimping caps similar to bottle capping. We prefer cap sealing surfaces be external to the cup rim to prevent sample dust inside the cups interfering with sealing, or, contamination of the sample by Teflon seal elements (if adopted). Finally the sample collection rover, or a Fetch rover, selects cups with best choice samples and loads them into a sample tray, before delivering it to the Earth Return Vehicle (ERV) in the MSR Dragon capsule as described in [1] (Fig 1). This ensures best use of the MSR payload mass allowance. A 3 meter long jointed robot arm is extended from the Dragon capsule's crew hatch, retrieves the sample tray and inserts it into the sample canister payload located on the ERV stage. The robot arm has capacity to obtain grab samples in the event of a rover failure. The sample canister has a robot arm capture casting to enable capture by crewed or robot spacecraft when it returns to Earth orbit
Study of oil palm root architecture with variation of crop stage and soil type vulnerable to drought
NASA Astrophysics Data System (ADS)
Safitri, Lisma; Suryanti, Sri; Kautsar, Valensi; Kurniawan, Agung; Santiabudi, Fajar
2018-03-01
Root arhitecture is affected by watertable level, characteristic of soil, organic matter and also the crop stages. Root architecture spread horizontally and vertically which each consist of primary, secondary, tertiary and quaternary downward root. The oil palm root observation with variation of crop stage and soil type showed that the root of oil palm plant year 2008 on spodosols soil spread along 650 cm horizontally from the trunk and penetrate downward in range of 9-28 cm vertically. Planted in the same type of soil, the root of oil palm plant year 2004 spread along 650 cm horizontally and reached to downward in a larger range from 3 to 57 cm vertically. As a comparison, the root architecture of oil palm on inceptisols soil established the range much greater vertically than the previous. The root of oil palm plant year 2008 spread along 640 cm horizontally and penetrate downward in range of 52-90 cm vertically. With the variation of crop age, the root of oil palm plant year 2003 spread along 650 cm horizontally and reached to downward in a larger range from 150 to 200 cm vertically. Based on this study, root architecture of oil palm was varied and need to be detailed. The precise root architecture of oil palm allows a better understanding on hydrological properties of oil palm root particularly which is cultivated on soil type vulnerable to drought. Referring to this root architecture, it was enable to develop the study on early drought detection of oil palm to optimise production and towards oil palm sustainability.
Structure of IgG and IgY molecules in ribosome-antibody complexes as studied by electron microscopy.
Noll, F; Lutsch, G; Bielka, H
1982-03-01
The overall shape and dimensions of IgG (rabbit) and IgY (chicken) antibodies against ribosomal proteins have been studied in electron micrographs of ribosome-antibody complexes. The antibodies appear as Y-shaped molecules with an angle of about 90 degrees between their Fab arms. The length of one Fab arm amounts to about 10 nm. No differences between the IgG and IgY molecules could be detected electron microscopically. The data obtained on the shape of IgG and IgY correlate with those of earlier electron microscopic studies while the determined size of the Fab arms is in the range found by scattering methods.
Testing a full‐range soil‐water retention function in modeling water potential and temperature
Andraski, Brian J.; Jacobson, Elizabeth A.
2000-01-01
Recent work has emphasized development of full‐range water‐retention functions that are applicable under both wet and dry soil conditions, but evaluation of such functions in numerical modeling has been limited. Here we show that simulations using the Rossi‐Nimmo (RN) full‐range function compared favorably with those using the common Brooks‐Corey function and that the RN function can improve prediction of water potentials in near‐surface soil, particularly under dry conditions. Simulations using the RN function also improved prediction of temperatures throughout the soil profile. Such improvements could be important for calculations of liquid and vapor flow in near‐surface soils and in deep unsaturated zones of arid and semiarid regions.
Natural radioactivity in soil in the Baluchistan province of Pakistan.
Mujahid, S A; Hussain, S
2010-08-01
The measurements of natural radioactivity and the assessment of radiological hazards in the soil samples of Baluchistan province of Pakistan have been carried out using HPGe detector. The soil gas radon activities in these areas have also been measured using lucas cell technique. The measured activities of (226)Ra, (232)Th and (40)K were found in the range of 15-27, 20-37 and 328-648 Bq kg(-1), respectively. The calculated absorbed dose rate in air and the annual effective dose were in the range of 35-59 nGy h(-1) and 0.17-0.29 mSv, respectively. Radon activity in the soil gas was found in the range of 357-2476 Bq m(-3).
Clues to the Formation of Spiral Structure in M51 from the Ages and Locations of Star Clusters
NASA Astrophysics Data System (ADS)
Chandar, Rupali; Chien, L.-H.; Meidt, Sharon; Querejeta, Miguel; Dobbs, Clare; Schinnerer, Eva; Whitmore, Bradley C.; Calzetti, Daniela; Dinino, Daiana; Kennicutt, Robert C.; Regan, Michael
2017-08-01
We determine the spatial distributions of star clusters at different ages in the grand-design spiral galaxy M51 using a new catalog based on multi-band images taken with the Hubble Space Telescope (HST). These distributions, when compared with the spiral structure defined by molecular gas, dust, young and old stars, show the following sequence in the inner arms: dense molecular gas (and dust) defines the inner edge of the spiral structure, followed by an overdensity of old stars and then young stellar clusters. The offset between gas and young clusters in the inner arms is consistent with the expectations for a density wave. Clusters as old as a few hundred Myr remain concentrated close to the spiral arms, although the distributions are broader than those for the youngest clusters, which is also consistent with predictions from density wave simulations. The outermost portion of the west arm is different from the rest of the spiral structure in that it contains primarily intermediate-age (≈ 100{--}400 {Myr}) clusters; we believe that this is a “material” arm. We have identified four “feathers,” stellar structures beyond the inner arms that have a larger pitch angle than the arms. We do not find age gradients along any of the feathers, but the least coherent feathers appear to have the largest range of cluster ages.
Effect of Tendon Vibration on Hemiparetic Arm Stability in Unstable Workspaces.
Conrad, Megan O; Gadhoke, Bani; Scheidt, Robert A; Schmit, Brian D
2015-01-01
Sensory stimulation of wrist musculature can enhance stability in the proximal arm and may be a useful therapy aimed at improving arm control post-stroke. Specifically, our prior research indicates tendon vibration can enhance stability during point-to-point arm movements and in tracking tasks. The goal of the present study was to investigate the influence of forearm tendon vibration on endpoint stability, measured at the hand, immediately following forward arm movements in an unstable environment. Both proximal and distal workspaces were tested. Ten hemiparetic stroke subjects and 5 healthy controls made forward arm movements while grasping the handle of a two-joint robotic arm. At the end of each movement, the robot applied destabilizing forces. During some trials, 70 Hz vibration was applied to the forearm flexor muscle tendons. 70 Hz was used as the stimulus frequency as it lies within the range of optimal frequencies that activate the muscle spindles at the highest response rate. Endpoint position, velocity, muscle activity and grip force data were compared before, during and after vibration. Stability at the endpoint was quantified as the magnitude of oscillation about the target position, calculated from the power of the tangential velocity data. Prior to vibration, subjects produced unstable, oscillating hand movements about the target location due to the applied force field. Stability increased during vibration, as evidenced by decreased oscillation in hand tangential velocity.
Effect of Tendon Vibration on Hemiparetic Arm Stability in Unstable Workspaces
Conrad, Megan O.; Gadhoke, Bani; Scheidt, Robert A.; Schmit, Brian D.
2015-01-01
Sensory stimulation of wrist musculature can enhance stability in the proximal arm and may be a useful therapy aimed at improving arm control post-stroke. Specifically, our prior research indicates tendon vibration can enhance stability during point-to-point arm movements and in tracking tasks. The goal of the present study was to investigate the influence of forearm tendon vibration on endpoint stability, measured at the hand, immediately following forward arm movements in an unstable environment. Both proximal and distal workspaces were tested. Ten hemiparetic stroke subjects and 5 healthy controls made forward arm movements while grasping the handle of a two-joint robotic arm. At the end of each movement, the robot applied destabilizing forces. During some trials, 70 Hz vibration was applied to the forearm flexor muscle tendons. 70 Hz was used as the stimulus frequency as it lies within the range of optimal frequencies that activate the muscle spindles at the highest response rate. Endpoint position, velocity, muscle activity and grip force data were compared before, during and after vibration. Stability at the endpoint was quantified as the magnitude of oscillation about the target position, calculated from the power of the tangential velocity data. Prior to vibration, subjects produced unstable, oscillating hand movements about the target location due to the applied force field. Stability increased during vibration, as evidenced by decreased oscillation in hand tangential velocity. PMID:26633892
Zehbe, Ingeborg; Jackson, Robert; Wood, Brianne; Weaver, Bruce; Escott, Nicholas; Severini, Alberto; Krajden, Mel; Bishop, Lisa; Morrisseau, Kyla; Ogilvie, Gina; Burchell, Ann N; Little, Julian
2016-01-01
Objectives The incidence of cervical cancer is up to 20-fold higher among First Nations women in Canada than the general population, probably due to lower participation in screening. Offering human papillomavirus (HPV) self-sampling in place of Papanicolaou (Pap) testing may eventually increase screening participation and reduce cervical cancer rates in this population. Design A community-randomised controlled screening trial. Setting First Nations communities in Northwest Ontario, Canada. Participants Women aged between 25 and 69, living in Robinson Superior Treaty First Nations. The community was the unit of randomisation. Interventions Women were asked to complete a questionnaire and have screening by HPV self-sampling (arm A) or Pap testing (arm B). Primary outcome measures The number of women who participated in cervical screening. Randomisation Community clusters were randomised to include approximately equivalent numbers of women in each arm. Results 6 communities were randomised to arm A and 5 to arm B. One community withdrew, leaving 5 communities in each group (834 eligible women). Participation was <25%. Using clustered intention-to-treat (ITT) analysis, initial and cumulative averaged uptakes in arm A were 1.4-fold (20% vs 14.3%, p=0.628) and 1.3-fold (20.6% vs 16%, p=0.694) higher compared to arm B, respectively. Corresponding per protocol (PP) analysis indicates 2.2-fold (22.9% vs 10.6%, p=0.305) and 1.6-fold (22.9% vs 14.1%, p=0.448) higher uptakes in arm A compared to arm B. Screening uptake varied between communities (range 0–62.1%). Among women who completed a questionnaire (18.3% in arm A, 21.7% in arm B), the screening uptake was 1.8-fold (ITT; p=0.1132) or 3-fold (PP; p<0.01) higher in arm A versus arm B. Conclusions Pap and HPV self-sampling were compared in a marginalised, Canadian population. Results indicated a preference for self-sampling. More research on how to reach underscreened Indigenous women is necessary. Trial registration number ISRCTN84617261. PMID:27855089
NASA Astrophysics Data System (ADS)
Foster, M.; Whipple, K. X.; Heimsath, A. M.; Jungers, M.
2014-12-01
Soil thickness plays an essential role in hydrology, ecology, biogeochemistry, and erosion and transport processes at the Earth's surface. Controls on soil production rate set this important characteristic, however, relative roles of these controls have not been quantitatively assessed. I take advantage of uniform lithology and climate on anenigmatic perched, low-relief high elevation landscape in the Pinaleno Mountains in southeastern Arizona to examine controls of formation and preservation of the upper, low-relief soil mantled landscape. This landscape is sharply bounded on all sides by steep, rugged terrain where soil cover is patchy but pervasive. Knickpoints appear along channel profiles around the edges of the low-relief landscape, suggesting a transient response to some tectonic disturbance, either due to rock uplift and basin subsidence during Basin and Range tectonic forcing, or more recent base-level drop in adjacent drainage systems. Slow erosion rates recently measured along the flanks of this range support the hypothesis that this upper transient surface has been preserved after a late Miocene-Pliocene basin and range disturbance that has since been followed by slow topographic decay. To shed light on the processes driving weathering, soil production and erosion in this landscape that maintains steep, rocky catchments only below knickpoints on channels draining the upper low-relief landscape, we utilize high-resolution soil thickness measurements coupled with terrestrial cosmogenic nuclide soil production rate measurements. In order to determine soil thicknesses at the high-resolution scale useful to describe hillslope process, we utilize shallow seismic survey data, calibrated by soil pit measurements of soil down through saprolite and fractured bedrock. Broadly applicable, these high-resolution soil thickness measurements coupled with soil production and erosion rate data can be useful disentangle relationships among catchment-mean erosion rate, mean soil thickness, and soil production efficiency.
Cacho, N Ivalú; Kliebenstein, Daniel J; Strauss, Sharon Y
2015-11-01
We explored macroevolutionary patterns of plant chemical defense in Streptanthus (Brassicaceae), tested for evolutionary escalation of defense, as predicted by Ehrlich and Raven's plant-herbivore coevolutionary arms-race hypothesis, and tested whether species inhabiting low-resource or harsh environments invest more in defense, as predicted by the resource availability hypothesis (RAH). We conducted phylogenetically explicit analyses using glucosinolate profiles, soil nutrient analyses, and microhabitat bareness estimates across 30 species of Streptanthus inhabiting varied environments and soils. We found weak to moderate phylogenetic signal in glucosinolate classes and no signal in total glucosinolate production; a trend toward evolutionary de-escalation in the numbers and diversity of glucosinolates, accompanied by an evolutionary increase in the proportion of aliphatic glucosinolates; some support for the RAH relative to soil macronutrients, but not relative to serpentine soil use; and that the number of glucosinolates increases with microhabitat bareness, which is associated with increased herbivory and drought. Weak phylogenetic signal in chemical defense has been observed in other plant systems. A more holistic approach incorporating other forms of defense might be necessary to confidently reject escalation of defense. That defense increases with microhabitat bareness supports the hypothesis that habitat bareness is an underappreciated selective force on plants in harsh environments. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
The weathering and transformation process of lead in China's shooting ranges.
Li, Yeling; Zhu, Yongbing; Zhao, Sanping; Liu, Xiaodong
2015-09-01
Corroding steel-core bullets from three shooting ranges in different climate zones of China were collected. Multiple technical methods (EMPA, SEM, XRD, and ICP-OES) were applied to investigate the structure, morphology, and weathering product of this type of bullet in China to analyze the weathering mechanisms in different types of soils. A scanning electron microscope (SEM) was used to view the morphology and microstructure of corrosion layers. On the corroded lead layer surface, unevenness, micro cracks, and spallation were usually present. Around the micro cracks, many types of euhedral and subhedral crystals of the secondary products of lead were formed, most of which were composed of cerussite (PbCO3), while hydrocerussite (Pb3(CO3)2(OH)2) was predominant in the bullet collected from the humid environment. X-ray power diffraction (XRD) results show that the secondary weathering products in the three shooting range soils are clearly different. In the Fangyan shooting range, which has a neutral and semi-arid soil, the lead weathering product was mainly hydrocerussite (Pb3(CO3)2(OH)2), while no substantial amount of crystal phase of lead compound could be found in acidic, damp soils from the Fenghuang shooting range, possibly due to the enhanced dissolution and mobilization of lead compounds at lower pH and higher content of organic matter in the soil. In hot and arid environment of the Baicheng shooting range, cerussite might have undergone thermal decomposition, thus generating shannonite (Pb2O(CO3)). These results indicate that the formation of secondary Pb minerals is largely affected by the climatic zone or the soil properties, which may have implications for range management practices.
Rinne, Paul; Mace, Michael; Nakornchai, Tagore; Zimmerman, Karl; Fayer, Susannah; Sharma, Pankaj; Liardon, Jean-Luc; Burdet, Etienne; Bentley, Paul
2016-01-01
Motor-training software on tablets or smartphones (Apps) offer a low-cost, widely-available solution to supplement arm physiotherapy after stroke. We assessed the proportions of hemiplegic stroke patients who, with their plegic hand, could meaningfully engage with mobile-gaming devices using a range of standard control-methods, as well as by using a novel wireless grip-controller, adapted for neurodisability. We screened all newly-diagnosed hemiplegic stroke patients presenting to a stroke centre over 6 months. Subjects were compared on their ability to control a tablet or smartphone cursor using: finger-swipe, tap, joystick, screen-tilt, and an adapted handgrip. Cursor control was graded as: no movement (0); less than full-range movement (1); full-range movement (2); directed movement (3). In total, we screened 345 patients, of which 87 satisfied recruitment criteria and completed testing. The commonest reason for exclusion was cognitive impairment. Using conventional controls, the proportion of patients able to direct cursor movement was 38–48%; and to move it full-range was 55–67% (controller comparison: p>0.1). By comparison, handgrip enabled directed control in 75%, and full-range movement in 93% (controller comparison: p<0.001). This difference between controllers was most apparent amongst severely-disabled subjects, with 0% achieving directed or full-range control with conventional controls, compared to 58% and 83% achieving these two levels of movement, respectively, with handgrip. In conclusion, hand, or arm, training Apps played on conventional mobile devices are likely to be accessible only to mildly-disabled stroke patients. Technological adaptations such as grip-control can enable more severely affected subjects to engage with self-training software. PMID:27706248
NASA Technical Reports Server (NTRS)
2007-01-01
NASA's Phoenix Mars Lander monitors the atmosphere overhead and reaches out to the soil below in this artist's depiction of the spacecraft fully deployed on the surface of Mars. Phoenix has been assembled and tested for launch in August 2007 from Cape Canaveral Air Force Station, Fla., and for landing in May or June 2008 on an arctic plain of far-northern Mars. The mission responds to evidence returned from NASA's Mars Odyssey orbiter in 2002 indicating that most high-latitude areas on Mars have frozen water mixed with soil within arm's reach of the surface. Phoenix will use a robotic arm to dig down to the expected icy layer. It will analyze scooped-up samples of the soil and ice for factors that will help scientists evaluate whether the subsurface environment at the site ever was, or may still be, a favorable habitat for microbial life. The instruments on Phoenix will also gather information to advance understanding about the history of the water in the icy layer. A weather station on the lander will conduct the first study Martian arctic weather from ground level. The vertical green line in this illustration shows how the weather station on Phoenix will use a laser beam from a lidar instrument to monitor dust and clouds in the atmosphere. The dark 'wings' to either side of the lander's main body are solar panels for providing electric power. The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems, Denver. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen (Denmark), the Max Planck Institute (Germany) and the Finnish Meteorological institute. JPL is a division of the California Institute of Technology in Pasadena.Phoenix Lander on Mars (Stereo)
NASA Technical Reports Server (NTRS)
2007-01-01
NASA's Phoenix Mars Lander monitors the atmosphere overhead and reaches out to the soil below in this stereo illustration of the spacecraft fully deployed on the surface of Mars. The image appears three-dimensional when viewed through red-green stereo glasses. Phoenix has been assembled and tested for launch in August 2007 from Cape Canaveral Air Force Station, Fla., and for landing in May or June 2008 on an arctic plain of far-northern Mars. The mission responds to evidence returned from NASA's Mars Odyssey orbiter in 2002 indicating that most high-latitude areas on Mars have frozen water mixed with soil within arm's reach of the surface. Phoenix will use a robotic arm to dig down to the expected icy layer. It will analyze scooped-up samples of the soil and ice for factors that will help scientists evaluate whether the subsurface environment at the site ever was, or may still be, a favorable habitat for microbial life. The instruments on Phoenix will also gather information to advance understanding about the history of the water in the icy layer. A weather station on the lander will conduct the first study Martian arctic weather from ground level. The vertical green line in this illustration shows how the weather station on Phoenix will use a laser beam from a lidar instrument to monitor dust and clouds in the atmosphere. The dark 'wings' to either side of the lander's main body are solar panels for providing electric power. The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems, Denver. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen (Denmark), the Max Planck Institute (Germany) and the Finnish Meteorological institute. JPL is a division of the California Institute of Technology in Pasadena.Wang, Xue-Tong; Zhang, Yuan; Miao, Yi; Ma, Ling-Ling; Li, Yuan-Cheng; Chang, Yue-Ya; Wu, Ming-Hong
2013-07-01
Short-chain chlorinated paraffins (SCCPs) are extremely complex technical mixtures of polychlorinated n-alkanes with carbon chain lengths from C10 to C13 and chlorine content between 49 and 70%. SCCPs are under consideration for inclusion in the Stockholm Convention on persistent organic pollutants. SCCPs have been used extensively in industrial production, but little is known about the pollution level in soil environment in China. In this study, levels and distribution of SCCPs in soil samples from Chongming Island were analyzed. Concentrations of total SCCPs in soil samples ranged from 0.42 to 420 ng g(-1), with a median of 9.6 ng g(-1). The ubiquitous occurrence of SCCPs in Chongming Island implied that long-range atmospheric transport and soil-air exchange may be the most important pathways for SCCP contamination in the background area. The localized SCCP contamination could be derived from an unidentified source. Hierarchical cluster analysis indicated that C13- and C11-congeners were predominant in most soils and C10- and C12-congeners dominated in the remaining soils. Cl7- and Cl8-congeners were on the average the most dominant chlorine congeners in nearly all soils. Principal component analysis suggested that the separation of even and odd carbon chain congeners occurred during long-range atmospheric transport and aging in soil in the study area.