Zhang, Shan; Xu, Lu; Liu, Yang-Xi; Fu, Hai-Yan; Xiao, Zuo-Bing; She, Yuan-Bin
2018-04-01
E-jiao (Colla Corii Asini, CCA) has been widely used as a healthy food and Chinese medicine. Although authentic CCA is characterized by its typical sweet and neutral fragrance, its aroma components have been rarely investigated. This work investigated the aroma-active components and antioxidant activity of 19 CCAs from different geographical origins. CCA extracts obtained by simultaneous distillation and extraction were analyzed by gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O) and sensory analysis. The antioxidant activity of CCAs was determined by ABTS and DPPH assays. A total of 65 volatile compounds were identified and quantified by GC-MS and 23 aroma-active compounds were identified by GC-O and aroma extract dilution analysis. The most powerful aroma-active compounds were identified based on the flavor dilution factor and their contents were compared among the 19 CCAs. Principal component analysis of the 23 aroma-active components showed 3 significant clusters. Canonical correlation analysis between antioxidant assays and the 23 aroma-active compounds indicates strong correlation (r = 0.9776, p = 0.0281). Analysis of aroma-active components shows potential for quality evaluation and discrimination of CCAs from different geographical origins.
Usami, Atsushi; Nakaya, Satoshi; Nakahashi, Hiroshi; Miyazawa, Mitsuo
2014-01-01
This study is focused on the volatile oils from the fruiting bodies of Pleurotus salmoneostramineus (PS) and P. sajor-caju (PSC), which was extracted by hydrodistillation (HD) and solvent-assisted flavor evaporation (SAFE) methods. The oils are analyzed by gas chromatography-mass spectrometry (GC-MS), GC-olfactometry (GC-O), and aroma extract dilution analysis (AEDA). A total of 31, 31, 45, and 15 components were identified in PS (HD and SAFE) and PSC (HD and SAFE), representing about 80.3%, 92.2%, 88.9%, and 83.0% of the oils, respectively. Regarding the aroma-active components, 13, 12, 13, and 5 components were identified in PS (HD and SAFE) and PSC (HD and SAFE), respectively, by the GC-O analyses. The results of the sniffing test, odor activity value (OAV) and flavor dilution (FD) factor indicate that 1-octen-3-ol and 3-octanone are the main aroma-active components of PS oils. On the other hands, methional and 1-octen-3-ol were estimated as the main aroma-active components of PSC oils.
Differentiation between Flavors of Sweet Orange (Citrus sinensis) and Mandarin (Citrus reticulata).
Feng, Shi; Suh, Joon Hyuk; Gmitter, Frederick G; Wang, Yu
2018-01-10
Pioneering investigations referring to citrus flavor have been intensively conducted. However, the characteristic flavor difference between sweet orange and mandarin has not been defined. In this study, sensory analysis illustrated the crucial role of aroma in the differentiation between orange flavor and mandarin flavor. To study aroma, Valencia orange and LB8-9 mandarin were used. Their most aroma-active compounds were preliminarily identified by aroma extract dilution analysis (AEDA). Quantitation of key volatiles followed by calculation of odor activity values (OAVs) further detected potent components (OAV ≥ 1) impacting the overall aromatic profile of orange/mandarin. Follow-up aroma profile analysis revealed that ethyl butanoate, ethyl 2-methylbutanoate, octanal, decanal, and acetaldehyde were essential for orange-like aroma, whereas linalool, octanal, α-pinene, limonene, and (E,E)-2,4-decadienal were considered key components for mandarin-like aroma. Furthermore, an unreleased mandarin hybrid producing fruit with orange-like flavor was used to validate the identification of characteristic volatiles in orange-like aroma.
Ono, Toshirou; Yonejima, Yasunori; Ikeda, Atsushi; Kashima, Yusei; Nakaya, Satoshi; Miyazawa, Mitsuo
2014-01-01
Volatile oils obtained from both the liquid medium after incubation (MAI) and liquid medium before incubation (MBI) in the cultivation process of Lactobacillus acidophilus were isolated by hydrodistillation (HD) and analyzed to investigate the utility of the liquid waste. The composition of the volatile oils was analyzed by capillary gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). In total, 46 and 19 compounds were detected in the volatile oils from MAI (MAI oil) and MBI (MBI oil), respectively. The principle components of MAI oil were fatty acids, including pentanoic acid (12.75%), heptanoic acid (14.05%), and nonanoic acid (14.04%). The important aroma-active compounds in the oils were detected by GC-MS/Olfactometry (GC-O), and their intensity of aroma were measured by aroma extraction dilution analysis (AEDA). Pyrazines were determined as key aroma components; in particular, 2-ethyl-5-methylpyrazine was the most primary aroma-active compound in MAI oil. In addition, as the characteristic aroma-active compounds, 3-(methylthio)-propanal, trimethylpyrazine, and pentanoic acid were also detected in MAI oil. These results imply that the waste medium after incubation of L. acidophilus may be utilized as a source of volatile oils.
Ono, Toshirou; Usami, Atsushi; Nakaya, Satoshi; Shinpuku, Hideto; Yonejima, Yasunori; Ikeda, Atsushi; Miyazawa, Mitsuo
2015-01-01
Volatile oils obtained from both the liquid medium after incubation (MAI) and liquid medium before incubation (MBI) during the cultivation process of Lactobacillus brevis were isolated by hydrodistillation (HD) and analyzed to determine the utility of the liquid waste. The composition of the volatile oils was analyzed by capillary gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). In total, 55 and 36 compounds were detected in the volatile oils from MAI (MAI oil) and MBI (MBI oil), respectively. The principle components of MAI oil were N-containing compounds, including 2,3-dimethylpyrazine (16, 37.1 %), methylpyrazine (4, 17.1 %). The important aroma-active compounds in the oils were detected by GC-Olfactometry (GC-O), and their intensity of aroma were measured by aroma extract dilution analysis (AEDA). Expressly, pyrazine compounds were determined as key aroma components; in particular, 2,5-dimethylpyrazine and 2,3-dimethylpyrazine were the most primary aroma-active compound in MAI oil. These results imply that the waste medium after incubation of L. brevis may be utilized as a source of volatile oils.
A Butter Aroma Recombinate Activates Human Class-I Odorant Receptors.
Geithe, Christiane; Andersen, Gaby; Malki, Agne; Krautwurst, Dietmar
2015-11-04
With ∼400 olfactory G protein-coupled receptors (GPCR), humans sensitively perceive ∼230 key aroma compounds as best natural agonists of ∼10000 food volatiles. An understanding of odorant coding, thus, critically depends on the knowledge about interactions of key food aroma chemicals and their mixtures with their cognate receptors. Genetically designed test cell systems enable the screening, deorphaning, and characterization of single odorant receptors (OR). This study shows for the food aroma-specific and quantitative butter aroma recombinate, and its single components, specific in vitro class-I OR activity patterns, as well as the activation of selected OR in a concentration-dependent manner. Recently, chemosensory receptors, especially class-I OR, were demonstrated to be expressed on blood leukocytes, which may encounter foodborne aroma compounds postprandially. This study shows that butter aroma recombinate induced chemotaxis of isolated human neutrophils in a defined gradient, and in a concentration-dependent and pertussis toxin-sensitive manner, suggesting at least a GPCR-mediated activation of blood leukocytes by key food odorants.
Lorjaroenphon, Yaowapa; Cadwallader, Keith R
2015-01-28
Thirty aroma-active components of a cola-flavored carbonated beverage were quantitated by stable isotope dilution assays, and their odor activity values (OAVs) were calculated. The OAV results revealed that 1,8-cineole, (R)-(-)-linalool, and octanal made the greatest contribution to the overall aroma of the cola. A cola aroma reconstitution model was constructed by adding 20 high-purity standards to an aqueous sucrose-phosphoric acid solution. The results of headspace solid-phase microextraction and sensory analyses were used to adjust the model to better match authentic cola. The rebalanced model was used as a complete model for the omission study. Sensory results indicated that omission of a group consisting of methyleugenol, (E)-cinnamaldehyde, eugenol, and (Z)- and (E)-isoeugenols differed from the complete model, while omission of the individual components of this group did not differ from the complete model. These results indicate that a balance of numerous odorants is responsible for the characteristic aroma of cola-flavored carbonated beverages.
Identification of predominant aroma components of raw, dry roasted and oil roasted almonds.
Erten, Edibe S; Cadwallader, Keith R
2017-02-15
Volatile components of raw, dry roasted and oil roasted almonds were isolated by solvent extraction/solvent-assisted flavor evaporation and predominant aroma compounds identified by gas chromatography-olfactometry (GCO) and aroma extract dilutions analysis (AEDA). Selected odorants were quantitated by GC-mass spectrometry and odor-activity values (OAVs) determined. Results of AEDA indicated that 1-octen-3-one and acetic acid were important aroma compounds in raw almonds. Those predominant in dry roasted almonds were methional, 2- and 3-methylbutanal, 2-acetyl-1-pyrroline and 2,3-pentanedione; whereas, in oil roasted almonds 4-hydroxy-2,5-dimethyl-3(2H)-furanone, 2,3-pentanedione, methional and 2-acetyl-1-pyrroline were the predominant aroma compounds. Overall, oil roasted almonds contained a greater number and higher abundance of aroma compounds than either raw or dry roasted almonds. The results of this study demonstrate the importance of lipid-derived volatile compounds in raw almond aroma. Meanwhile, in dry and oil roasted almonds, the predominant aroma compounds were derived via the Maillard reaction, lipid degradation/oxidation and sugar degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Impact of processing on odour-active compounds of a mixed tomato-onion puree.
Koutidou, Maria; Grauwet, Tara; Van Loey, Ann; Acharya, Parag
2017-08-01
Gas chromatography-olfactometry revealed thirty-two odour-active compounds in a heat-processed tomato-onion puree, among which twenty-seven were identified by gas chromatography-olfactometry-mass spectrometry (GC-O-MS) and comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOF MS). Based on the results of two olfactometric methods, i.e. detection frequency and aroma extract dilution analysis, the most potent aroma components include: dipropyl disulfide, S-propyl thioacetate, dimethyl trisulfide, 1-octen-3-one, methional, dipropyl trisulfide, 4,5-dimethylthiazole, 2-phenylacetaldehyde and sotolone. Processing of mixed vegetable systems can add complexity in their aroma profiles due to (bio)chemical interactions between the components. Therefore, the impact of different processing steps (i.e. thermal blanching, all-in-one and split-stream processes) on the volatile profile and aroma of a mixed tomato-onion puree has been investigated using a GC-MS fingerprinting approach. Results showed the potential to control the aroma in a mixed tomato-onion system through process-induced enzymatic modulations for producing tomato-onion food products with distinct aroma characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chemical Composition and Character Impact Odorants in Volatile Oils from Edible Mushrooms.
Usami, Atsushi; Motooka, Ryota; Nakahashi, Hiroshi; Marumoto, Shinsuke; Miyazawa, Mitsuo
2015-11-01
The aim of this study was to investigate the chemical composition and the odor-active components of volatile oils from three edible mushrooms, Pleurotus ostreatus, Pleurotus eryngii, and Pleurotus abalonus, which are well-known edible mushrooms. The volatile components in these oils were extracted by hydrodistillation and identified by GC/MS, GC-olfactometry (GC-O), and aroma extract dilution analysis (AEDA). The oils contained 40, 20, and 53 components, representing 83.4, 86.0, and 90.8% of the total oils in P. ostreatus, P. eryngii, and P. abalonus, respectively. Odor evaluation of the volatile oils from the three edible mushrooms was also carried out using GC-O, AEDA, and odor activity values, by which 13, eight, and ten aroma-active components were identified in P. ostreatus, P. eryngii, and P. abalonus, respectively. The most aroma-active compounds were C8 -aliphatic compounds (oct-1-en-3-ol, octan-3-one, and octanal) and/or C9 -aliphatic aldehydes (nonanal and (2E)-non-2-enal). Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
Preparation of reminiscent aroma mixture of Japanese soy sauce.
Bonkohara, Kaori; Fuji, Maiko; Nakao, Akito; Igura, Noriyuki; Shimoda, Mitsuya
2016-01-01
To prepare an aroma mixture of Japanese soy sauce by fewest components, the aroma concentrate of good sensory attributes was prepared by polyethylene membrane extraction, which could extract only the volatiles with diethyl ether. GC-MS-Olfactometry was done with the aroma concentrate, and 28 odor-active compounds were detected. Application of aroma extract dilution analysis to the separated fraction revealed high flavor dilution factors with respect to acetic acid, 4-hydroxy-2(or5)-ethyl-5(or2)-methyl-3(2H)-furanone (HEMF), 3-methyl-1-butanol (isoamyl alcohol), and 3-(methylsulfanyl)propanal (methional). A model aroma mixture containing above four odorants showed a good similarity with the aroma of the soy sauce itself. Consequently, the reminiscent aroma mixture of soy sauce was prepared in water. The ratio of acetic acid, HEMF, isoamyl alcohol, and methional was 2500:300:100:1.
Matsumoto, Tomona; Saito, Kana; Nakamura, Akio; Saito, Tsukasa; Nammoku, Takashi; Ishikawa, Masashi; Mori, Kensaku
2012-01-25
To elucidate the effects of aroma from dried bonito (katsuo-bushi) on broth tastes caused by the central integration of flavor, optical imaging of salivary hemodynamic responses was conducted using near-infrared spectroscopy (NIRS). A reconstituted dried bonito flavored broth produced a significantly larger hemodynamic response than the odorless broth taste solutions for 5 of the 10 panelists, who felt that the combination of the aroma with the tastes was congruent. In the remaining 5 panelists who felt the combination incongruent, the flavored broth did not cause the enhancement of response. Moreover, when the odor-active smoky parts were removed from the flavoring, the reconstituted flavoring did not enhance the response in the former five panelists. These results indicate that NIRS offers a sensitive method to detect the effect of specific congruent aroma components from dried-bonito broth on the taste-related salivary hemodynamic responses, dependent on the perceptual experience of the combination of aromas and tastes.
Pang, Xueli; Cao, Jianmin; Wang, Dabin; Qiu, Jun; Kong, Fanyu
2017-05-24
For the characterization of chemical components contributing to the aroma of ginger, which could benefit the development of deep-processed ginger products, volatile extracts were isolated by a combination of direct solvent extraction-solvent-assisted flavor evaporation and static headspace analysis. Aroma-impact components were identified by gas chromatography-olfactometry-mass spectrometry, and the most potent odorants were further screened by aroma extract dilution analysis (AEDA) and static headspace dilution analysis (SHDA). The AEDA results revealed that geranial, eucalyptol, β-linalool, and bornyl acetate were the most potent odorants, exhibiting the highest flavor dilution factor (FD factor) of 2187. SHDA indicated that the predominant headspace odorants were α-pinene and eucalyptol. In addition, odorants exhibiting a high FD factor in SHDA were estimated to be potent aroma contributors in AEDA. The predominant odorants were found to be monoterpenes and sesquiterpenes, as along with their oxygenated derivatives, providing minty, lemon-like, herbal, and woody aromas. On the other hand, three highly volatile compounds detected by SHDA were not detected by AEDA, whereas 34 high-polarity, low-volatility compounds were identified only by AEDA, demonstrating the complementary natures of SHDA and AEDA and the necessity of utilizing both techniques to accurately characterize the aroma of ginger.
Feng, Yunzi; Cai, Yu; Sun-Waterhouse, Dongxiao; Cui, Chun; Su, Guowan; Lin, Lianzhu; Zhao, Mouming
2015-11-15
Aroma extract dilution analysis (AEDA) is widely used for the screening of aroma-active compounds in gas chromatography-olfactometry (GC-O). In this study, three aroma dilution methods, (I) using different test sample volumes, (II) diluting samples, and (III) adjusting the GC injector split ratio, were compared for the analysis of volatiles by using HS-SPME-AEDA. Results showed that adjusting the GC injector split ratio (III) was the most desirable approach, based on the linearity relationships between Ln (normalised peak area) and Ln (normalised flavour dilution factors). Thereafter this dilution method was applied in the analysis of aroma-active compounds in Japanese soy sauce and 36 key odorants were found in this study. The most intense aroma-active components in Japanese soy sauce were: ethyl 2-methylpropanoate, ethyl 2-methylbutanoate, ethyl 3-methylbutanoate, ethyl 4-methylpentanoate, 3-(methylthio)propanal, 1-octen-3-ol, 2-methoxyphenol, 4-ethyl-2-methoxyphenol, 2-methoxy-4-vinylphenol, 2-phenylethanol, and 4-hydroxy-5-ethyl-2-methyl-3(2H)-furanone. Copyright © 2015. Published by Elsevier Ltd.
Jetti, R R; Yang, E; Kurnianta, A; Finn, C; Qian, M C
2007-09-01
Selected aroma-active compounds in strawberries were quantified using headspace solid-phase microextraction and gas chromatography. Ten strawberry cultivars grown in California and Oregon were studied. The standard curves were built in a synthetic matrix and quantification was achieved using multiple internal standards. Odor activity values (OAVs) of the aroma compounds were calculated to understand their contribution to the overall aroma. Although the concentrations of the aroma compounds varied depending on the cultivars, in general, ethyl butanoate, mesifurane, ethyl hexanoate, ethyl 3-methylbutanoate, hexyl acetate, and gamma-dodecalactone had the highest OAVs. Descriptive sensory analysis was performed by a trained panel of 10 members. A PCA plot was built to understand the aroma contribution of principal components. The chemical results were compared with sensory data. The OAV of esters correlated well with the floral, pineapple, and banana notes. The green notes did not correlate with the concentration or OAVs of aldehydes or C6 alcohols. It is assumed that the higher amounts of green, sulfur, musty, and waxy notes in some cultivars were due to the lack of fruity notes.
Aroma characterization based on aromatic series analysis in table grapes
Wu, Yusen; Duan, Shuyan; Zhao, Liping; Gao, Zhen; Luo, Meng; Song, Shiren; Xu, Wenping; Zhang, Caixi; Ma, Chao; Wang, Shiping
2016-01-01
Aroma is an important part of quality in table grape, but the key aroma compounds and the aroma series of table grapes remains unknown. In this paper, we identified 67 aroma compounds in 20 table grape cultivars; 20 in pulp and 23 in skin were active compounds. C6 compounds were the basic background volatiles, but the aroma contents of pulp juice and skin depended mainly on the levels of esters and terpenes, respectively. Most obviously, ‘Kyoho’ grapevine series showed high contents of esters in pulp, while Muscat/floral cultivars showed abundant monoterpenes in skin. For the aroma series, table grapes were characterized mainly by herbaceous, floral, balsamic, sweet and fruity series. The simple and visualizable aroma profiles were established using aroma fingerprints based on the aromatic series. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) showed that the aroma profiles of pulp juice, skin and whole berries could be classified into 5, 3, and 5 groups, respectively. Combined with sensory evaluation, we could conclude that fatty and balsamic series were the preferred aromatic series, and the contents of their contributors (β-ionone and octanal) may be useful as indicators for the improvement of breeding and cultivation measures for table grapes. PMID:27487935
Aroma profile and volatiles odor activity along gold cultivar pineapple flesh.
Montero-Calderón, Marta; Rojas-Graü, María Alejandra; Martín-Belloso, Olga
2010-01-01
Physicochemical attributes, aroma profile, and odor contribution of pineapple flesh were studied for the top, middle, and bottom cross-sections cut along the central axis of Gold cultivar pineapple. Relationships between volatile and nonvolatile compounds were also studied. Aroma profile constituents were determined by headspace solid-phase microextraction at 30 °C, followed by gas chromatography/mass spectrometry analysis. A total of 20 volatile compounds were identified and quantified. Among them, esters were the major components which accounted for 90% of total extracted aroma. Methyl butanoate, methyl 2-methyl butanoate, and methyl hexanoate were the 3 most abundant components representing 74% of total volatiles in pineapple samples. Most odor active contributors were methyl and ethyl 2-methyl butanoate and 2,5-dimethyl 4-methoxy 3(2H)-furanone (mesifuran). Aroma profile components did not vary along the fruit, but volatile compounds content significantly varied (P < 0.05) along the fruit, from 7560 to 10910 μg/kg, from the top to the bottom cross-sections of the fruit, respectively. In addition, most odor-active volatiles concentration increased from the top to the bottom 3rd of the fruit, concurrently with soluble solids content (SSC) and titratable acidity (TA) differences attributed to fruitlets distinct degree of ripening. Large changes in SSC/TA ratio and volatiles content throughout the fruit found through this study are likely to provoke important differences among individual fresh-cut pineapple trays, compromising consumer perception and acceptance of the product. Such finding highlighted the need to include volatiles content and SSC/TA ratio and their variability along the fruit as selection criteria for pineapples to be processed and quality assessment of the fresh-cut fruit. © 2010 Institute of Food Technologists®
USDA-ARS?s Scientific Manuscript database
MS with GC-RI evidence was found for the presence of Linden ether in cooked carrot. Evaluation of the GC effluent from cooked carrot volatiles using Aroma Extract Dilution Analysis (AEDA) found Linden ether with the highest Flavor Dilution (FD) factor. Others with 10 fold lower FD factors were B-i...
Feng, Yunzi; Su, Guowan; Zhao, Haifeng; Cai, Yu; Cui, Chun; Sun-Waterhouse, Dongxiao; Zhao, Mouming
2015-01-15
Twenty-seven commercial soy sauces produced through three different fermentation processes (high-salt liquid-state fermentation soy sauce, HLFSS; low-salt solid-state fermentation soy sauce, LSFSS; Koikuchi soy sauce, KSS) were examined to identify the aroma compounds and the effect of fermentation process on the flavour of the soy sauce was investigated. Results showed that 129 volatiles were identified, of which 41 aroma-active components were quantified. The types of odorants occurring in the three soy sauce groups were similar, although their intensities significantly differed. Many esters and phenols were found at relatively high intensities in KSS, whereas some volatile acids only occurred in LSFSS. Furthermore, 23 aroma compounds had average OAVs>1, among which 3-methylbutanal, ethyl acetate, 4-hydroxy-2-ethyl-5-methyl-3(2H)-furanone, 2-methylbutanal and 3-(methylthio)propanal exhibited the highest average OAVs (>100). In addition, omission tests verified the important contribution of the products resulting from amino acid catabolism to the characteristic aroma of soy sauce. Copyright © 2014. Published by Elsevier Ltd.
Wang, Xing-Jie; Tao, Yong-Sheng; Wu, Yun; An, Rong-Yan; Yue, Zhuo-Ya
2017-07-01
Aroma characteristics and their impact volatile components of noble-rot wines elaborated from artificial botrytized Chardonnay grapes, obtained by spraying Botrytis cinerea suspension in Yuquan vineyard, Ningxia, China, were explored in this work. Dry white wine made from normal-harvested grapes and sweet wine produced from delay-harvested grapes were compared. Wine aromas were analysed by trained sensory panelists, and aroma compounds were determined by SPME-GC-MS. Results indicated that esters, fatty acids, thiols, lactones, volatile phenols and 2-nonanone increased markedly in noble-rot wines. In addition to typical aromas of noble-rot wines, artificial noble-rot wines were found to contain significant cream and dry apricot attributes. Partial Least-Squares Regression models of aroma characteristics against aroma components revealed that non-fermentative odorants were the primary contributor to dry apricot attribute, especially, thiols, C13-norisoprenoids, lactones, terpenols and phenolic acid derivatives, while cream attribute was dependent on both fermentative and non-fermentative volatile components. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of mixed antimicrobial agents and flavors in active packaging films.
Gutiérrez, Laura; Escudero, Ana; Batlle, Ramón; Nerín, Cristina
2009-09-23
Active packaging is an emerging food technology to improve the quality and safety of food products. Many works have been developed to study the antimicrobial activity of essential oils. Essential oils have been traditionally used as flavorings in food, so they have an important odor impact but they have as well antimicrobial properties that could be used to protect the food. Recent developments in antimicrobial active packaging showed the efficiency of essential oils versus bread and bakery products among other applications. However, one of the main problems to face is the odor and taste they could provide to the packaged food. Using some aromas to mask the odor could be a good approach. That is why the main objective of this paper is to develop an antimicrobial packaging material based on the combination of the most active compounds of essential oils (hydrocinnamaldehyde, oregano essential oil, cinnamaldehyde, thymol, and carvacrol) together with some aromas commonly used in the food industry. A study of the concentration required to get the antimicrobial properties, the organoleptic compatibility with typical aroma present in many food systems (vanilla, banana, and strawberry), and the right combination of both systems has been carried out. Antimicrobial tests of both the mentioned aromas, the main components of some essential oils, and the combination of both groups were carried out against bacteria (Enterococcus faecalis, Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Salmonella choleraesuis, Yersinia enterocolitica, Escherichia coli), yeasts (Candida albicans, Debaryomyces hansenii, Zygosaccharomyces rouxii), and molds (Botrytis cinerae, Aspergillus flavus, Penicillium roqueforti, Eurotium repens, Penicillium islandicum, Penicillium commune, Penicillium nalgiovensis). The sensory properties of the combinations were evaluated with a triangular test and classification was by an order test; the odor threshold of the aroma compounds was also studied. The results reveal that none of the aromas had antimicrobial properties. The most antimicrobial compounds are thymol, carvacrol, and cinnamaldehyde, but none of them could be combined with banana aroma, whereas only thymol with strawberry aroma gave the right combined organoleptic profile. All of the antimicrobials under study could be combined with vanilla aroma, providing both antimicrobial property and the odor expected.
García, Juliana María; Narváez, Paulo César; Heredia, Francisco José; Orjuela, Álvaro; Osorio, Coralia
2017-08-01
Non-centrifugal cane sugar (NCS), also called "panela", is a high carbohydrate-content food obtained by boil evaporation of the sugar cane juice. This study was undertaken to assess physicochemical properties and sensory characteristics of panela beverage at two different concentrations. Evaluation of pH, °Brix, and colour (tristimulus colorimetry) was carried out in all panela drink samples. In order to characterise the odour-active volatiles of the beverage, a simultaneous steam distillation-solvent extraction method was applied using a mixture of diethyl ether-pentane (1:1,w/w) as solvent. The Aroma Extract Dilution Analysis revealed the presence of six odour-active compounds, being 2-methyl pyrazine the key aroma compound of this beverage. PCA (Principal Component Analysis) showed that there were no differences in the aroma and physicochemical properties (pH and °Brix) with respect to the geographical origin of analysed samples; however colour depends on heating during processing of NCS. Copyright © 2017 Elsevier Ltd. All rights reserved.
Generation of volatile compounds in litchi wine during winemaking and short-term bottle storage.
Wu, Yuwen; Zhu, Baoqing; Tu, Cui; Duan, Changqing; Pan, Qiuhong
2011-05-11
Evolution of volatile components during litchi (Litchi chinensis Sonn.) winemaking was monitored, and aroma profiles of litchi wines bottle aged for 5 months at ambient temperature (25-28 °C) and low temperature (8-10 °C) were compared via headspace solid phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS). The majority of terpenoids deriving from litchi juice decreased, even disappeared along with alcoholic fermentation, while terpenol oxides, ethers, and acetates came into being and increased. Ethyl octanote, isoamyl acetate, ethyl hexanoate, ethyl butanoate, cis-rose oxide, and trans-rose oxide had the highest odor activity values (OAVs) in young litchi wines. Six aromatic series were obtained by grouping OAVs of odor-active compounds with similar odor descriptions to establish the aroma profile for young litchi wines, and floral and fruity attributes were two major aroma series. Compared to ambient temperature when bottle aging, lower temperature benefited key aroma retention and expectantly extended the shelf life of young litchi wines.
Aroma changes of black tea prepared from methyl jasmonate treated tea plants*
Shi, Jiang; Wang, Li; Ma, Cheng-ying; Lv, Hai-peng; Chen, Zong-mao; Lin, Zhi
2014-01-01
Methyl jasmonate (MeJA) was widely applied in promoting food quality. Aroma is one of the key indicators in judging the quality of tea. This study examined the effect of exogenous MeJA treatment on tea aroma. The aroma components in black tea prepared from MeJA-treated fresh tea leaves were extracted using headspace solid-phase microextraction (HS-SPME) and were analyzed using gas chromatography-mass spectrometry (GC-MS) and GC-olfactometry (GC-O). Forty-five volatile compounds were identified. The results revealed that the MeJA-treated black tea had higher levels of terpene alcohols and hexenyl esters than the untreated tea. Moreover, several newly components, including copaene, cubenol, and indole, were induced by the MeJA treatment. The activities of polyphenol oxidase and β-glucosidase in fresh tea leaves changed after the MeJA treatment. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the gene expression levels of polyphenol oxidase and β-primeverosidase were upregulated by two and three folds, respectively, by the MeJA treatment (P<0.01); however, the gene expression of β-glucosidase was downregulated to a half level. In general, the aroma quality of the MeJA-treated black tea was clearly improved. PMID:24711352
Deng, Xiao-Hua; Xie, Peng-Fei; Peng, Xin-Hui; Yi, Jian-Hua; Zhou, Ji-Heng; Zhou, Qing-Ming; Pu, Wen-Xuan; Dai, Yuan-Gang
2010-08-01
A pot experiment with the soils from Yongzhou, Liuyang, and Sangzhi, the high-quality tobacco planting regions of Hunan Province, was conducted to study the effects of climate, soil, and their interaction on some neutral volatile aroma components in flue-cured tobacco leaves. The contents of test neutral volatile aroma components in the flue-cured tobacco leaves were of medium variation, and the variation intensity was decreased in the order of dihydroactinolide, damascenone, furfural, total megastigmatrienone, and beta-ionone. Climate, soil, and their interaction affected the neutral volatile aroma components in different degrees. The furfural content was most affected by climate, the damascenone content was most affected by climate and by soil, the total megastigmatrienone and beta-ionone contents were most affected by the interaction of soil and climate, while the dihydroactinolide content was less affected by soil, climate, and their interaction. The contribution of climate, soil, and their interaction to the contents of the five aroma components was 40.82%, 20.67%, and 38.51%, respectively. During different growth periods of tobacco, different climate factors had different effects on the neutral volatile aroma components. The rainfall, cloudiness, and mean air temperature at rooting stage, the diurnal temperature amplitude, sunshine time, and evaporation at vigorous growth stage, and the rainfall, evaporation, and mean air temperature at maturing stage were the top three climate factors affecting the contents of the neutral volatile aroma components in flue-tobacco leaves. For the soil factors, the available potassium, available phosphorus, and pH were the top three factors affecting the contents of the five components.
Black tea aroma inhibited increase of salivary chromogranin-A after arithmetic tasks.
Yoto, Ai; Fukui, Natsuki; Kaneda, Chisa; Torita, Shoko; Goto, Keiichi; Nanjo, Fumio; Yokogoshi, Hidehiko
2018-01-24
Growing attention has been paid to the effects of food flavor components on alleviating negative brain functions caused by stressful lifestyles. In this study, we investigated the alleviating effect of two kinds of black tea aromas on physical and psychological stress induced by the Uchida-Kraepelin test, based on salivary chromogranin-A (CgA) levels as a stress marker and subjective evaluations (Profile of Mood States). Compared with the water exposure control, inhaling black tea aroma (Darjeeling and Assam in this study) induced lower salivary CgA concentration levels after 30 min of mental stress load tasks. This anti-stress effect of black tea aroma did not differ between the two tea types even though the concentration of the anti-stress components in the Darjeeling tea aroma was higher than that in the Assam aroma. However, Darjeeling tea aroma tended to decrease the tension and/or anxiety score immediately after the first exposure. Inhaling black tea aroma may diminish stress levels caused by arithmetic mental stress tasks, and Darjeeling tea aroma tended to improve mood before mental stress load.
NASA Astrophysics Data System (ADS)
Xu, M. L.; Yu, Y.; Ramaswamy, H. S.; Zhu, S. M.
2017-01-01
Chinese liquor aroma components were characterized during the aging process using gas chromatography (GC). Principal component and cluster analysis (PCA, CA) were used to discriminate the Chinese liquor age which has a great economic value. Of a total of 21 major aroma components identified and quantified, 13 components which included several acids, alcohols, esters, aldehydes and furans decreased significantly in the first year of aging, maintained the same levels (p > 0.05) for next three years and decreased again (p < 0.05) in the fifth year. On the contrary, a significant increase was observed in propionic acid, furfural and phenylethanol. Ethyl lactate was found to be the most stable aroma component during aging process. Results of PCA and CA demonstrated that young liquor (fresh) and aged liquors were well separated from each other, which is in consistent with the evolution of aroma components along with the aging process. These findings provide a quantitative basis for discriminating the Chinese liquor age and a scientific basis for further research on elucidating the liquor aging process, and a possible tool to guard against counterfeit and defective products.
Zhou, Chun-Li; Mi, Li; Hu, Xue-Yan; Zhu, Bi-Hua
2017-09-01
To ascertain the most discriminant variables for three pumpkin species principal component analysis (PCA) was performed. Twenty-four parameters (pH, conductivity, sucrose, glucose, total soluble solids, L* , a* , b* , individual weight, edible rate, firmness, citric acid, fumaric acid, l-ascorbic acid, malic acid, PPO activity, POD activity, total flavonoids, vitamin E, total phenolics, DPPH, FRAP, β-carotene, and aroma) were considered. The studied pumpkin species were Cucurbita maxima , Cucurbita moschata , and Cucurbita pepo . Three pumpkin species were classified by PCA based on aroma, physicochemical and antioxidant properties because the sum of PC1 and PC2 were both greater than 85% (85.06 and 93.64% respectively). Results were validated by the PCA and showed that PPO activity, total flavonoid, sucrose, glucose, TSS, a* , pH, malic acid, vitamin E, DPPH, FRAP and β-carotene, and aroma are highly useful parameters to classify pumpkin species.
Asikin, Yonathan; Taira, Ikuko; Inafuku, Sayuri; Sumi, Hidekazu; Sawamura, Masayoshi; Takara, Kensaku; Wada, Koji
2012-04-01
The flavedo peel extracts of unripe Shiikuwasha (Citrus depressa Hayata) fruits were extracted using steam distillation (SD) or a cold-press (CP) system. Volatile aroma content and composition were determined using gas chromatography (GC) and each compound was identified using gas chromatography-mass spectrophotometry (GC-MS). The major constituents of the extracts were monoterpene hydrocarbons (91.75-93.75%[709.32-809.05 mg/100 g of fresh flavedo peel]) including limonene (43.08-45.13%[341.46-379.81 mg/100 g of fresh flavedo peel]), γ-terpinene (27.88-29.06%[219.90-245.86 mg/100 g of fresh flavedo peel]), and p-cymene (8.13-11.02%[61.47-97.22 mg/100 g of fresh flavedo peel]). The extraction process used was determined to be a decisive factor that affects the composition of key citrus aroma components, as well as the antioxidant activities of the Shiikuwasha fruit. Antioxidant capabilities of the extracts were examined by assay of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and β-carotene bleaching inhibition. The cold-press extraction system may better retain the total phenolic content of the flavedo peel and display superior antioxidant activities, compared to the steam distillation extraction method. Shiikuwasha (Citrus depressa Hayata) is a type of small citrus fruit, and has been used as raw material for beverage and food additive productions in Japan. It had a unique aroma composition in which the limonene content of its peels is lower than that of other commonly known citrus peels. The present study detailed the volatile aroma composition, as well as antioxidant capabilities of Shiikuwasha peel extracts of different extraction methods, that are cold-press and steam distillation methods. The results of this study may provide a basis for selection of Shiikuwasha peel extracts in food industry for citrus flavor production. © 2012 Institute of Food Technologists®
Li, Xingchen; Cao, Lin; Li, Shaohua; Wang, Ranran; Jiang, Zijing; Che, Zhenming; Lin, Hongbin
2017-01-01
“Hayward” kiwifruit (Actinidia deliciosa cv.), widely planted all around the world, were fermented with six different commercial Saccharomyces cerevisiae strains (BM4×4, RA17, RC212, WLP77, JH-2, and CR476) to reveal their influence on the phenolic profiles, antioxidant activity, and aromatic components. Significant differences in the levels of caffeic acid, protocatechuate, and soluble solid content were found among wines with the six fermented strains. Wines fermented with RC212 strain exhibited the highest total phenolic acids as well as DPPH radical scavenging ability and also had the strongest ability to produce volatile esters. Wines made with S. cerevisiae BM 4×4 had the highest content of volatile acids, while the highest alcohol content was presented in CR476 wines. Scoring spots of wines with these strains were separated in different quadrants on the components of phenolics and aromas by principal component analyses. Kiwifruit wines made with S. cerevisiae RC212 were characterized by a rich fruity flavor, while CR476 strain and WLP77 strain produced floral flavors and green aromas, respectively. Altogether, the results indicated that the use of S. cerevisiae RC212 was the most suitable for the fermentation of kiwifruit wine with desirable characteristics. PMID:28251154
Tahir, Haroon Elrasheid; Xiaobo, Zou; Xiaowei, Huang; Jiyong, Shi; Mariod, Abdalbasit Adam
2016-09-01
Aroma profiles of six honey varieties of different botanical origins were investigated using colorimetric sensor array, gas chromatography-mass spectrometry (GC-MS) and descriptive sensory analysis. Fifty-eight aroma compounds were identified, including 2 norisoprenoids, 5 hydrocarbons, 4 terpenes, 6 phenols, 7 ketones, 9 acids, 12 aldehydes and 13 alcohols. Twenty abundant or active compounds were chosen as key compounds to characterize honey aroma. Discrimination of the honeys was subsequently implemented using multivariate analysis, including hierarchical clustering analysis (HCA) and principal component analysis (PCA). Honeys of the same botanical origin were grouped together in the PCA score plot and HCA dendrogram. SPME-GC/MS and colorimetric sensor array were able to discriminate the honeys effectively with the advantages of being rapid, simple and low-cost. Moreover, partial least squares regression (PLSR) was applied to indicate the relationship between sensory descriptors and aroma compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.
Takakura, Yukiko; Osanai, Hiroki; Masuzawa, Takuya; Wakabayashi, Hidehiko; Nishimura, Toshihide
2014-01-01
The aroma extract dilution analysis of an extract prepared from pork stock and subsequent experiments led to the identification of 15 aroma-active compounds in the flavor dilution factor range of 64-2048. Omission experiments to select the most aroma-active compounds from the 15 odor compounds suggested acetol, octanoic acid, δ-decalactone, and decanoic acid as the main active compounds contributing to the aroma of pork stock. Aroma recombination, addition, and omission experiments of these four aroma compounds in taste-reconstituted pork stock showed that each compound had an individual aroma profile. A comparison of the overall aroma between this recombined mixture and pork stock showed strong similarity, suggesting that the key aroma compounds had been successfully identified.
Ono, Toshirou; Usami, Atsushi; Nakaya, Satoshi; Maeba, Keisuke; Yonejima, Yasunori; Toyoda, Masanori; Ikeda, Atsushi; Miyazawa, Mitsuo
2015-01-01
Enterococcus faecalis is one of the major lactic acid bacterium (LAB) species colonizing the intestines of animals and humans. The characteristic odor of the volatile oils obtained from both the liquid medium after incubation (MAI) and liquid medium before incubation (MBI) in the cultivation process of E. faecalis was investigated to determine the utility of the liquid medium. In total, fifty-six and thirty-two compounds were detected in the volatile oils from the MAI (MAI oil) and MBI (MBI oil), respectively. The principle components of MAI oil were 2,5-dimethylpyrazine (19.3%), phenylacetaldehyde (19.3%), and phenylethyl alcohol (9.3%). The aroma extract dilution analysis (AEDA) method was performed using gas chromatography-olfactometry (GC-O). The total number of aroma-active compounds identified in the volatile oil from MBI and MAI was thirteen compounds; in particular, 5-methyl-2-furanmethanol, phenylacetaldehyde, and phenylethyl alcohol were the most primary aroma-active compounds in MAI oil. These results imply that the industrial cultivation medium after incubation of E. faecalis may be utilized as a source of volatile oils.
Characterization of the key aroma compounds in beef extract using aroma extract dilution analysis.
Takakura, Yukiko; Sakamoto, Tomohiro; Hirai, Sachi; Masuzawa, Takuya; Wakabayashi, Hidehiko; Nishimura, Toshihide
2014-05-01
Aroma extract dilution analysis (AEDA) of an ether extract prepared from beef extract (BE) and subsequent identification experiments led to the determination of seven aroma-active compounds in the flavor dilution (FD) factor range of 32-128. Omission experiments to select the most aroma-active compounds from the seven aroma compounds suggested that 2,3,5-trimethyl pyrazine, 1-octen-3-ol, 3-methylbutanoic acid, and 4-hydroxy-2,5-dimethyl-3(2H)-furanone were the main active compounds contributing to the aroma of BE. Aroma recombination, addition, and omission experiments of the four aroma compounds in taste-reconstituted BE showed that each compound had an individual aroma profile. A comparison of the overall aroma between this recombination mixture and BE showed a high similarity, suggesting that the key aroma compounds had been identified successfully. Copyright © 2014 Elsevier Ltd. All rights reserved.
Liu, Yulian; Chen, Nianlai; Ma, Zonghuan; Che, Fei; Mao, Juan; Chen, Baihong
2016-06-22
"Starkrimson" is a traditional apple cultivar that was developed a long time ago and was widely cultivated in the arid region of the northern Wei River of China. However, little information regarding the quality characteristics of "Starkrimson" fruit has been reported in this area. To elucidate these characteristics, the color, soluble sugars, organic acids, anthocyanins and aroma components were measured during the ripening period through the use of high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). The results indicated that the changes in anthocyanin contents took place later than the changes in the Commission International Eclairage (CIE) parameters. Meanwhile, cyanidin 3-galactoside (cy3-gal), fructose, sucrose, glucose and malic acid were the primary organic compounds, and 1-butanol-2-methyl-acetate, 2-hexenal and 1-hexanol were the most abundant aroma components in the skin. Furthermore, rapidly changing soluble sugars and organic acid synchronization took place in the early ripening period, while rapidly changing aroma components occurred later, on the basis of fresh weight. This result suggested that the production of aroma components might be a useful index of apple maturity.
Effect of supercritical carbon dioxide decaffeination on volatile components of green teas.
Lee, S; Park, M K; Kim, K H; Kim, Y-S
2007-09-01
Volatile components in regular and decaffeinated green teas were isolated by simultaneous steam distillation and solvent extraction (SDE), and then analyzed by GC-MS. A total of 41 compounds, including 8 alcohols, 15 terpene-type compounds, 10 carbonyls, 4 N-containing compounds, and 4 miscellaneous compounds, were found in regular and decaffeinated green teas. Among them, linalool and phenylacetaldehyde were quantitatively dominant in both regular and decaffeinated green teas. By a decaffeination process using supercritical carbon dioxide, most volatile components decreased. The more caffeine was removed, the more volatile components were reduced in green teas. In particular, relatively nonpolar components such as terpene-type compounds gradually decreased according to the decaffeination process. Aroma-active compounds in regular and decaffeinated green teas were also determined and compared by aroma extract dilution analysis (AEDA). Most greenish and floral flavor compounds such as hexanal, (E)-2-hexenal, and some unknown compounds disappeared or decreased after the decaffeination process.
Asikin, Yonathan; Fukunaga, Hibiki; Yamano, Yoshimasa; Hou, De-Xing; Maeda, Goki; Wada, Koji
2014-09-01
Shiikuwasha (Citrus depressa Hayata) juice from four main cultivation lines subjected to two peeling practices (with or without peeling) were discriminated in terms of quality attributes, represented by sugar and organic acid composition, taste characteristic, aroma profile, and antioxidant activity. Shiikuwasha juice from these lines had diverse food compositions; 'Izumi kugani' juice had lower acidity but contained more ascorbic acid than that of other cultivation lines. The composition of volatile aroma components was influenced by fruit cultivation line, whereas its content was affected by peeling process (20.26-53.73 mg L(-1) in whole juice versus 0.82-1.58 mg L(-1) in flesh juice). Peeling also caused Shiikuwasha juice to be less astringent and acidic bitter and to lose its antioxidant activity. Moreover, the total phenolic and ascorbic acid content of Shiikuwasha juice positively influenced its antioxidant activity. Each fruit cultivation line had a distinct food composition, taste characteristic, and aroma profile. Peeling in Shiikuwasha juice production might reduce aftertaste, and thus might improve its palatability. Comprehensive information on the effect of cultivation line and peeling on quality attributes will be useful for Shiikuwasha juice production, and can be applied to juice production of similar small citrus fruits. © 2014 Society of Chemical Industry.
Liu, Rui-Sang; Jin, Guang-Huai; Xiao, Deng-Rong; Li, Hong-Mei; Bai, Feng-Wu; Tang, Ya-Jie
2015-01-01
Aroma results from the interplay of volatile organic compounds (VOCs) and the attributes of microbial-producing aromas are significantly affected by fermentation conditions. Among the VOCs, only a few of them contribute to aroma. Thus, screening and identification of the key VOCs is critical for microbial-producing aroma. The traditional method is based on gas chromatography-olfactometry (GC-O), which is time-consuming and laborious. Considering the Tuber melanosporum fermentation system as an example, a new method to screen and identify the key VOCs by combining the aroma evaluation method with principle component analysis (PCA) was developed in this work. First, an aroma sensory evaluation method was developed to screen 34 potential favorite aroma samples from 504 fermentation samples. Second, PCA was employed to screen nine common key VOCs from these 34 samples. Third, seven key VOCs were identified by the traditional method. Finally, all of the seven key VOCs identified by the traditional method were also identified, along with four others, by the new strategy. These results indicate the reliability of the new method and demonstrate it to be a viable alternative to the traditional method. PMID:26655663
Schreier, P; Drawert, F; Steiger, G
1978-08-18
The influence of HTST-heating of the mash aroma composition during production of apply brandy has been investigated by means of gas chromatography and coupled gas chromatography--mass spectrometry. Starting from the apple aroma the changes in aroma components were studied quantitatively during the conventional production (without enzyme inhibition) as well as after HTST-heating (enzyme inactivation) of the mash. For this purpose 98 aroma compounds were determined in the course of mash production, fermentation and distillation. When employing HTST-heating the original aroma components of the apple particularly the fruit esters were present in appreciably higher concentrations in the mash as well as in the distillate than with the conventional production method. Simultaneously HTST-heating reduced the secondary aroma substances in mash and distillate which are formed with the conventional method by enzymatic-oxidative processes. In the unaged apple brandy obtained from HTST-treated mash lower amounts of lactates and higher concentrations of acetals were found compared with the conventionally produced distillate.
Chamine, Irina; Oken, Barry S.
2015-01-01
Objective. Stress-reducing therapies help maintain cognitive performance during stress. Aromatherapy is popular for stress reduction, but its effectiveness and mechanism are unclear. This study examined stress-reducing effects of aromatherapy on cognitive function using the go/no-go (GNG) task performance and event related potentials (ERP) components sensitive to stress. The study also assessed the importance of expectancy in aromatherapy actions. Methods. 81 adults were randomized to 3 aroma groups (active experimental, detectable, and undetectable placebo) and 2 prime subgroups (prime suggesting stress-reducing aroma effects or no-prime). GNG performance, ERPs, subjective expected aroma effects, and stress ratings were assessed at baseline and poststress. Results. No specific aroma effects on stress or cognition were observed. However, regardless of experienced aroma, people receiving a prime displayed faster poststress median reaction times than those receiving no prime. A significant interaction for N200 amplitude indicated divergent ERP patterns between baseline and poststress for go and no-go stimuli depending on the prime subgroup. Furthermore, trends for beneficial prime effects were shown on poststress no-go N200/P300 latencies and N200 amplitude. Conclusion. While there were no aroma-specific effects on stress or cognition, these results highlight the role of expectancy for poststress response inhibition and attention. PMID:25802539
A further tool to monitor the coffee roasting process: aroma composition and chemical indices.
Ruosi, Manuela R; Cordero, Chiara; Cagliero, Cecilia; Rubiolo, Patrizia; Bicchi, Carlo; Sgorbini, Barbara; Liberto, Erica
2012-11-14
Coffee quality is strictly related to its flavor and aroma developed during the roasting process, that, in their turn, depend on variety and origin, harvest and postharvest practices, and the time, temperature, and degree of roasting. This study investigates the possibility of combining chemical (aroma components) and physical (color) parameters through chemometric approaches to monitor the roasting process, degree of roasting, and aroma formation by analyzing a suitable number of coffee samples from different varieties and blends. In particular, a correlation between the aroma composition of roasted coffee obtained by HS-SPME-GC-MS and degree of roasting, defined by the color, has been researched. The results showed that aroma components are linearly correlated to coffee color with a correlation factor of 0.9387. The study continued looking for chemical indices: 11 indices were found to be linearly correlated to the color resulting from the roasting process, the most effective of them being the 5-methylfurfural/2-acetylfuran ratio (index).
Characterization of volatile aroma compounds in different brewing barley cultivars.
Dong, Liang; Hou, Yingmin; Li, Feng; Piao, Yongzhe; Zhang, Xiao; Zhang, Xiaoyu; Li, Cheng; Zhao, Changxin
2015-03-30
Beer is a popular alcoholic malt beverage resulting from fermentation of the aqueous extract of malted barley with hops. The aroma of brewing barley impacts the flavor of beer indirectly, because some flavor compounds or their precursors in beer come from the barley. The objectives of this research were to study volatile profiles and to characterize odor-active compounds of brewing barley in order to determine the variability of the aroma composition among different brewing barley cultivars. Forty-one volatiles comprising aldehydes, ketones, alcohols, organic acids, aromatic compounds and furans were identified using solid phase microextraction combined with gas chromatography/mass spectrometry, among which aldehydes, alcohols and ketones were quantitatively in greatest abundance. Quantitative measurements performed by means of solvent extraction and calculation of odor activity values revealed that acetaldehyde, 2-methylpropanal, 3-methylbutanal, 2-methylbutanal, hexanal, heptanal, octanal, nonanal, 3-methyl-1-butanol, cyclopentanol, 2,3-butanedione, 2,3-pentanedione, 2-heptanone, acetic acid, ethyl acetate, 2-pentylfuran and benzeneacetaldehyde, whose concentrations exceeded their odor thresholds, could be considered as odor-active compounds of brewing barley. Principal component analysis was employed to evaluate the differences among cultivars. The results demonstrated that the volatile profile based on the concentrations of aroma compounds enabled good differentiation of most barley cultivars. © 2014 Society of Chemical Industry.
Iwasa, Megumi; Nakaya, Satoshi; Maki, Yusuke; Marumoto, Shinsuke; Usami, Atsushi; Miyazawa, Mitsuo
2015-01-01
The chemical composition of essential oil extracted from Uncaria Hook ("Chotoko" in Japanese), the branch with curved hook of the herbal medicine Uncaria rhynchophylla has been investigated by GC and GC-MS analyses. Eighty-four compounds, representing 90.8% of the total content was identified in oil obtained from Uncaria Hook. The main components i were (E)-cinnamaldehyde (13.4%), α-copaene (8.0%), methyl eugenol (6.8%), δ-cadinene (5.3%), and curcumene (3.6%). The important key aroma-active compounds in the oil were detected by gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA), using the flavor dilution (FD) factor to express the odor potency of each compounds. Furthermore, the odor activity value (OAV) has been used as a measure of the relative contribution of each compound to the aroma of the Uncaria Hook oil. The GC-O and AEDA results showed that α-copaene (FD = 4, OAV = 4376), (E)-linalool oxide (FD = 64, OAV = 9.1), and methyl eugenol (FD = 64, OAV = 29) contributed to the woody and spicy odor of Uncaria Hook oil, whereas furfural (FD = 8, OAV = 4808) contributed to its sweet odor. These results warrant further investigations of the application of essential oil from Uncaria Hook in the phytochemical and medicinal fields.
Analysis of aroma compounds of pitaya fruit wine
NASA Astrophysics Data System (ADS)
Gong, Xiao; Ma, Lina; Li, Liuji; Yuan, Yuan; Peng, Shaodan; Lin, Mao
2017-12-01
In order to analyze the volatile components in red pitaya fruit wine, the study using headspace solid phase microextractionand gas chromatography-mass spectrometry technology of pitaya fruit juice and wine aroma composition analysis comparison. Results showed that 55 volatile components were detected in red pitaya fruit wine, including 12 kinds of alcohol (18.16%), 18 kinds of esters (66.17%), 7 kinds of acids (5.94%), 11 kinds of alkanes (4.32%), one kind of aldehyde (0.09%), 2 kinds of olefins (0.09%) and 3 kinds of other volatile substances (0.23%). Relative contents among them bigger have 11 species, such as decanoic acid, ethyl ester (22.92%), respectively, diisoamylene (20.75%), octanoic acid, ethyl ester (17.73%), etc. The red pitaya fruit wine contained a lot of aroma components, which offer the products special aroma like brandy, rose and fruit.
Profiling Taste and Aroma Compound Metabolism during Apricot Fruit Development and Ripening
Xi, Wanpeng; Zheng, Huiwen; Zhang, Qiuyun; Li, Wenhui
2016-01-01
Sugars, organic acids and volatiles of apricot were determined by HPLC and GC-MS during fruit development and ripening, and the key taste and aroma components were identified by integrating flavor compound contents with consumers’ evaluation. Sucrose and glucose were the major sugars in apricot fruit. The contents of all sugars increased rapidly, and the accumulation pattern of sugars converted from glucose-predominated to sucrose-predominated during fruit development and ripening. Sucrose synthase (SS), sorbitol oxidase (SO) and sorbitol dehydrogenase (SDH) are under tight developmental control and they might play important roles in sugar accumulation. Almost all organic acids identified increased during early development and then decrease rapidly. During early development, fruit mainly accumulated quinate and malate, with the increase of citrate after maturation, and quinate, malate and citrate were the predominant organic acids at the ripening stage. The odor activity values (OAV) of aroma volatiles showed that 18 aroma compounds were the characteristic components of apricot fruit. Aldehydes and terpenes decreased significantly during the whole development period, whereas lactones and apocarotenoids significantly increased with fruit ripening. The partial least squares regression (PLSR) results revealed that β-ionone, γ-decalactone, sucrose and citrate are the key characteristic flavor factors contributing to consumer acceptance. Carotenoid cleavage dioxygenases (CCD) may be involved in β-ionone formation in apricot fruit. PMID:27347931
Fresh squeezed orange juice odor: a review.
Perez-Cacho, Pilar Ruiz; Rouseff, Russell L
2008-08-01
Fresh orange juice is a highly desirable but unstable product. This review examines analytical findings, odor activity, and variations due to cultivar, sampling methods, manner of juicing, plus possible enzymatic and microbial artifacts. Initial attempts to characterize orange juice odor were based on volatile quantitation and overemphasized the importance of high concentration volatiles. Although over 300 volatiles have been reported from GC-MS analytical studies, this review presents 36 consensus aroma active components from GC-olfactometry studies consisting of 14 aldehydes, 7 esters, 5 terpenes, 6 alcohols, and 4 ketones. Most are trace (microg/L) components. (+)-Limonene is an essential component in orange juice odor although its exact function is still uncertain. Total amounts of volatiles in mechanically squeezed juices are three to 10 times greater than hand-squeezed juices because of elevated peel oil levels. Elevated peel oil changes the relative proportion of several key odorants. Odor active components from solvent extraction studies differ from those collected using headspace techniques as they include volatiles with low vapor pressure such as vanillin. Some reported odorants such as 2,3-butanedione are microbial contamination artifacts. Orange juice odor models confirm that fresh orange aroma is complex as the most successful models contain 23 odorants.
Wang, Chen; Lv, Shidong; Wu, Yuanshuang; Lian, Ming; Gao, Xuemei; Meng, Qingxiong
2016-10-01
Biluochun is a typical non-fermented tea and is also famous for its unique aroma in China. Few studies have been performed to evaluate the effect of the manufacturing process on the formation and content of its aroma. The volatile components were extracted at different manufacturing process steps of Biluochun green tea using fully automated headspace solid-phase microextraction (HS-SPME) and further characterised by gas chromatography-mass spectrometry (GC-MS). Among 67 volatile components collected, the fractions of linalool oxides, β-ionone, phenylacetaldehyde, aldehydes, ketones, and nitrogen compounds were increased while alcohols and hydrocarbons declined during the manufacturing process. The aroma compounds decreased the most during the drying steps. We identified a number of significantly changed components that can be used as markers and quality control during the producing process of Biluochun. The drying step played a major role in the aroma formation of green tea products and should be the most important step for quality control. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Production and Quality Evaluation of Pineapple Fruit Wine
NASA Astrophysics Data System (ADS)
Qi, Ningli; Ma, Lina; Li, Liuji; Gong, Xiao; Ye, Jianzhi
2017-12-01
The fermentation process of pineapple fruit wine was studied. The juice was inoculated with 5% (v/v) active yeast and held at 20 °C for 7 days. Total sugar and pH decreased while the alcoholic strength increased with increasing length of fermentation. The fermented fruit wine contains 2.29 g/L total acid, 10.2 % (v/v) alcohol, 5.4 °Brix soluble solids, pH 3.52. Pineapple wine detected 68 kinds of aroma components, including 34 esters, 13 alcohols. The ester material accounted for 52.25% of the main aroma components. The quality and sensory evaluation results indicated that pineapple fruit wine belongs to a kind of low alcohol wine, so it is easy to be accepted by the public.
Zhu, Hong; Zhu, Jie; Wang, Lili; Li, Zaigui
2016-01-01
A solid-phase microextraction followed by gas chromatography-mass spectrometry method was developed to determine the volatile compounds in Shanxi aged vinegar. The optimal extraction conditions were: 50 °C for 20 min with a PDMS/DVB fiber. This analytical method was validated and showed satisfactory repeatability (0.5 %
Mahattanatawee, Kanjana; Luanphaisarnnont, Torsak; Rouseff, Russell
2018-03-14
Thummong ( Litsea petiolata Hook. f.) is a tree native to southern Thailand. The leaves of this tree are highly aromatic and used to flavor Thai dishes in place of the traditional water beetle Mangdana ( Lethocerus indicus) for religious and cultural reasons. Total and aroma-active volatiles from both flavoring materials were compared using gas chromatography-olfactory (GC-O) and gas chromatography-mass spectrometry (GC-MS). The volatiles from Thummong leaves and the Mangdana water beetle were collected and concentrated using headspace solid-phase microextraction. A total of 23 and 25 aroma-active volatiles were identified in Thummong leaves and Mangdana, respectively. The major aroma-active volatiles in Thummong leaves consisted of 7 aldehydes, 5 ketones, and 3 esters. In contrast, the aroma-active volatiles in the water beetle consisted of 11 aldehydes, 3 esters, and 2 ketones. Both had ( E)-2-nonenal as the most intense aroma-active volatile. The water beetle character impact volatile ( E)-2-hexenyl acetate was absent in the leaves, but its aroma character was mimicked by 11-dodecen-2-one in the leaves, which was absent in the beetle. In addition, a commercial Mangdana flavoring was examined using GC-O and GC-MS and found to contain only a single aroma-active volatile, hexyl acetate. All three flavoring sources exhibited similar aroma characteristics but were produced from profoundly different aroma-active volatiles.
Edris, Amr E; Farrag, Eman S
2003-04-01
The vapors of peppermint oil and two of its major constituents (menthol and menthone), and sweet basil oil and two of its major constituents (linalool and eugenol), were tested against Sclerotinia sclerotiorum (Lib.), Rhizopus stolonifer (Ehrenb. exFr.) Vuill and Mucor sp. (Fisher) in a closed system. These fungi cause deterioration and heavy decay of peach fruit during marketing, shipping and storage. The essential oils, their major individual aroma constituents and blends of the major individual constituents at different ratios inhibited the growth of the fungi in a dose-dependent manner. Menthol was found to be the individual aroma constituent responsible for the antifungal properties of peppermint essential oil, while menthone alone did not show any effect at all doses. In the case of basil oil, linalool alone showed a moderate antifungal activity while eugenol showed no activity at all. Mixing the two components in a ratio similar to their concentrations in the original oil was found to enhance the antifungal properties of basil oil indicating a synergistic effect.
Weerawatanakorn, Monthana; Asikin, Yonathan; Takahashi, Makoto; Tamaki, Hajime; Wada, Koji; Ho, Chi-Tang; Chuekittisak, Raweewan
2016-11-01
Non-centrifugal cane sugar (NCS) is globally consumed and has various health benefits. It is mostly produced in hardened block form, which is less convenient than in granulated form for food applications. In terms of the traditional processing of NCS, preparation of granulated products is difficult due to the impurities found in the cane juice extracted from the whole stalk. Therefore, the aim of this study was to characterize and determine the physico-chemical properties, wax composition (policosanols and long-chain aldehydes), volatile aroma profiles, and antioxidant activity of traditional NCS in granular form made from four different cane cultivars of Thailand. The total soluble solid, pH, color, and mineral content varied among the sugarcane cultivars, whereas there was no significant difference in the total sugar, phenolic and flavonoid content. The total policosanol, a cholesterol-lowering nutraceutical wax component, and long-chain aldehyde contents were similar in the NCS products amongst three cultivars, and ranged from 2.63 to 3.69 mg/100 g. The granulated NCS products, in which acetaldehyde and dimethyl sulfide were the main volatile compounds, gave less aroma components than traditional NCS. The use of different sugarcane cultivars thus influenced the quality attributes of granulated non-centrifugal sugar products.
Aroma Glycosides in Grapes and Wine.
Liu, Jibin; Zhu, Xiao-Lin; Ullah, Niamat; Tao, Yong-Sheng
2017-02-01
The major aroma components in grapes and wine include free volatile compounds and glycosidic nonvolatile compounds. The latter group of compounds is more than 10 times abundant of the former, and constitutes a big aroma reserve in grapes and wine. This review summarizes the research results obtained recently for the identification of aroma glycosides in grapes and wine, including grape glycoside structures, differences in aroma glycosides among grape varieties, hydrolysis mechanisms, and the factors that influence them. It also presents the analytical techniques used to identify the glycosidic aroma precursors. The operational strategies, challenges, and improvements of each step encountered in the analysis of glycosidic aroma precursors are described. This review intends to provide a convenient reference for researchers interested in the methods used for the determination of the aroma glucosides composition and the recognition of their chemical structures. © 2017 Institute of Food Technologists®.
Advances in fruit aroma volatile research.
El Hadi, Muna Ahmed Mohamed; Zhang, Feng-Jie; Wu, Fei-Fei; Zhou, Chun-Hua; Tao, Jun
2013-07-11
Fruits produce a range of volatile compounds that make up their characteristic aromas and contribute to their flavor. Fruit volatile compounds are mainly comprised of esters, alcohols, aldehydes, ketones, lactones, terpenoids and apocarotenoids. Many factors affect volatile composition, including the genetic makeup, degree of maturity, environmental conditions, postharvest handling and storage. There are several pathways involved in volatile biosynthesis starting from lipids, amino acids, terpenoids and carotenoids. Once the basic skeletons are produced via these pathways, the diversity of volatiles is achieved via additional modification reactions such as acylation, methylation, oxidation/reduction and cyclic ring closure. In this paper, we review the composition of fruit aroma, the characteristic aroma compounds of several representative fruits, the factors affecting aroma volatile, and the biosynthetic pathways of volatile aroma compounds. We anticipate that this review would provide some critical information for profound research on fruit aroma components and their manipulation during development and storage.
Meta-Analysis of the Core Aroma Components of Grape and Wine Aroma
Ilc, Tina; Werck-Reichhart, Danièle; Navrot, Nicolas
2016-01-01
Wine aroma strongly influences wine quality, yet its composition and its evolution during the winemaking process are poorly understood. Volatile compounds that constitute wine aroma are traditionally divided into three classes according to their origin: grape, fermentation, and maturation aroma. We challenge this view with meta-analysis and review of grape and wine volatiles and their precursors from 82 profiling experiments. We compiled a list of 141 common grape and wine volatiles and quantitatively compared 43 of them. Our work offers insight into complex relationships between biosynthesis of aroma in grapes and the changes during the winemaking process. Monoterpenes are one of the largest and most researched wine aroma compounds. We show that their diversity in wines is mainly due to the oxidative metabolism of linalool in grapes. Furthermore, we demonstrate that most of the linalool produced in grapes is converted to these oxidized derivatives. PMID:27746799
Chen, Shuang; Xu, Yan; Qian, Michael C
2013-11-27
The aroma profile of Chinese rice wine was investigated in this study. The volatile compounds in a traditional Chinese rice wine were extracted using Lichrolut EN and further separated by silica gel normal phase chromatography. Seventy-three aroma-active compounds were identified by gas chromatography-olfactometry (GC-O) and gas chromatography-mass spectrometry (GC-MS). In addition to acids, esters, and alcohols, benzaldehyde, vanillin, geosmin, and γ-nonalactone were identified to be potentially important to Chinse rice wine. The concentration of these aroma-active compounds in the Chinese rice wine was further quantitated by combination of four different methods, including headsapce-gas chromatography, solid phase microextraction-gas chromatography (SPME)-GC-MS, solid-phase extraction-GC-MS, and SPME-GC-pulsed flame photometric detection (PFPD). Quantitative results showed that 34 aroma compounds were at concentrations higher than their corresponding odor thresholds. On the basis of the odor activity values (OAVs), vanillin, dimethyl trisulfide, β-phenylethyl alcohol, guaiacol, geosmin, and benzaldehyde could be responsible for the unique aroma of Chinese rice wine. An aroma reconstitution model prepared by mixing 34 aroma compounds with OAVs > 1 in an odorless Chinese rice wine matrix showed a good similarity to the aroma of the original Chinese rice wine.
NASA Astrophysics Data System (ADS)
Zuidam, Nicolaas Jan; Heinrich, Emmanuel
Flavor is one of the most important characteristics of a food product, since people prefer to eat only food products with an attractive flavor (Voilley and Etiévant 2006). Flavor can be defined as a combination of taste, smell and/or trigeminal stimuli. Taste is divided into five basic ones, i.e. sour, salty, sweet, bitter and umami. Components that trigger the so-called gustatory receptors for these tastes are in general not volatile, in contrast to aroma. Aroma molecules are those that interact with the olfactory receptors in the nose cavity (Firestein 2001). Confusingly, aroma is often referred to as flavor. Trigeminal stimuli cause sensations like cold, touch, and prickling. The current chapter only focuses on the encapsulation of the aroma molecules.
Buttery, Ron G; Takeoka, Gary R
2013-09-25
MS with GC-RI evidence was found for the presence of linden ether in cooked carrot (Daucus carota). Evaluation of the GC effluent from cooked carrot volatiles using aroma extract dilution analysis (AEDA) found linden ether with the highest flavor dilution (FD) factor. Others with 10-fold lower FD factors were β-ionone, eugenol, the previously unidentified β-damascenone, (E)-2-nonenal, octanal (+ myrcene), and heptanal. All other previously identified volatiles showed lower FD factors. Odor thresholds, concentrations, and odor activity values of previously identified compounds are reviewed. This indicated that at least 20 compounds occur in cooked carrots above their odor thresholds (in water). Compounds showing the highest odor activity values included β-damascenone, (E)-2-nonenal, (E,E)-2,4-decadienal, β-ionone, octanal, (E)-2-decenal, eugenol, and p-vinylguaiacol.
Muñoz-González, Carolina; Rodríguez-Bencomo, Juan José; Moreno-Arribas, Maria Victoria; Pozo-Bayón, Maria Ángeles
2014-01-01
New types of wine-derived beverages are now in the market. However, little is known about the impact of ingredient formulation on aroma release during consumption, which is directly linked to consumer preferences and liking. In this study, the optimization and validation of a retronasal aroma-trapping device (RATD) for the in vivo monitoring of aroma release was carried out. This device was applied to assess the impact of two main ingredients (sugar and ethanol) in these types of beverages on in vivo aroma release. Two aroma-trapping materials (Lichrolut and Tenax) were firstly assayed. Tenax provided higher recovery and lower intra- and inter-trap variability. In in vivo conditions, RATD provided an adequate linear range (R2 > 0.91) between 0 and 50 mg L−1 of aroma compounds. Differences in the total aroma release were observed in equally trained panelists. It was proven that the addition of sugar (up to 150 mg kg−1) did not have effect on aroma release, while ethanol (up to 40 mg L−1) enhanced the aroma release during drinking. The RATD is a useful tool to collect real in vivo data to extract reliable conclusions about the effect of beverage components on aroma release during consumption. The concentration of ethanol should be taken into consideration for the formulation of wine-derived beverages. PMID:25473493
Leclercq, Ségolène; Blancher, Guillaume
2012-10-01
The respective effects of chewing activity, aroma release from a gelled candy, and aroma perception were investigated. Specifically, the study aimed at 1) comparing an imposed chewing and swallowing pattern (IP) and free protocol (FP) on panelists for in vivo measurements, 2) investigating carryover effects in sequential eating, and 3) studying the link between instrumental data and their perception counterpart. Chewing activity, in-nose aroma concentration, and aroma perception over time were measured by electromyography, proton transfer reaction-mass spectrometry, and time intensity, respectively. Model gel candies were flavored at 2 intensity levels (low-L and high-H). The panelists evaluated 3 sequences (H then H, H then L, and L then H) in duplicates with both IP and FP. They scored aroma intensity over time while their in-nose aroma concentrations and their chewing activity were measured. Overall, only limited advantages were found in imposing a chewing and swallowing pattern for instrumental and sensory data. In addition, the study highlighted the role of brain integration on perceived intensity and dynamics of perception, in the framework of sequential eating without rinsing. Because of the presence of adaptation phenomena, contrast effect, and potential taste and texture cross-modal interaction with aroma perception, it was concluded that dynamic in-nose concentration data provide only one part of the perception picture and therefore cannot be used alone in prediction models.
Corral, Sara; Salvador, Ana; Flores, Mónica
2015-04-01
The use of different extraction techniques - solid phase microextraction (SPME) and solvent assisted flavour evaporation (SAFE) - can deliver different aroma profiles and it is essential to determine which is most suitable to extract the aroma compounds from dry fermented sausages. Forty-five aroma-active compounds were detected by SPME and SAFE, with 11 of them reported for the first time as aroma compounds in dry fermented sausages: ethyl 3-hydroxy butanoate, trimethyl pyrazine, D-pantolactone, isobutyl hexanoate, ethyl benzoate, α-terpineol, ethyl 3-pyridinecarboxylate, benzothiazole, 2,3-dihydrothiophene, methyl eugenol, γ-nonalactone. The aroma concentration and odour activity values (OAVs) were calculated. Flavour reconstitution analyses were performed using 20 odorants with OAVs above 1 obtained from the SAFE and SPME extracts to prepare the aroma model. SPME and SAFE techniques were complementary and necessary to reproduce the overall dry fermented sausage aroma. The final aroma model included the odorants from both extraction techniques (SPME and SAFE) but it was necessary to incorporate the compounds 2,4-decadienal (E,E), benzothiazole, methyl eugenol, α-terpineol, and eugenol to the final aroma model to evoked the fresh sausage aroma although a lowest cured meat aroma note was perceived. © 2014 Society of Chemical Industry.
Munafo, John P; Didzbalis, John; Schnell, Raymond J; Schieberle, Peter; Steinhaus, Martin
2014-05-21
The aroma-active compounds present in tree-ripened fruits of the five mango (Mangifera indica L.) cultivars Haden, White Alfonso, Praya Sowoy, Royal Special, and Malindi were isolated by solvent extraction followed by solvent-assisted flavor evaporation (SAFE) and analyzed by gas chromatography-olfactometery (GC-O). Application of a comparative aroma extract dilution analysis (cAEDA) afforded 54 aroma-active compounds in the flavor dilution (FD) factor range from 4 to ≥2048, 16 of which are reported for the first time in mango. The results of the identification experiments in combination with the FD factors revealed 4-hydroxy-2,5-dimethyl-3(2H)-furanone as an important aroma compound in all cultivars analyzed. Twenty-seven aroma-active compounds were present in at least one mango cultivar at an FD factor ≥128. Clear differences in the FD factors of these odorants between each of the mango cultivars suggested that they contributed to the unique sensory profiles of the individual cultivars.
Classification of white wine aromas with an electronic nose.
Lozano, J; Santos, J P; Horrillo, M C
2005-09-15
This paper reports the use of a tin dioxide multisensor array based electronic nose for recognition of 29 typical aromas in white wine. Headspace technique has been used to extract aroma of the wine. Multivariate analysis, including principal component analysis (PCA) as well as probabilistic neural networks (PNNs), has been used to identify the main aroma added to the wine. The results showed that in spite of the strong influence of ethanol and other majority compounds of wine, the system could discriminate correctly the aromatic compounds added to the wine with a minimum accuracy of 97.2%.
Celluclast 1.5L pretreatment enhanced aroma of palm kernels and oil after kernel roasting.
Zhang, Wencan; Zhao, Fangju; Yang, Tiankui; Zhao, Feifei; Liu, Shaoquan
2017-12-01
The aroma of palm kernel oil (PKO) affects its applications. Little information is available on how enzymatic modification of palm kernels (PK) affects PK and PKO aroma after kernel roasting. Celluclast (cellulase) pretreatment of PK resulted in a 2.4-fold increment in the concentration of soluble sugars, with glucose being increased by 6.0-fold. Higher levels of 1.7-, 1.8- and 1.9-fold of O-heterocyclic volatile compounds were found in the treated PK after roasting at 180 °C for 8, 14 and 20 min respectively relative to the corresponding control, with furfural, 5-methyl-2-furancarboxaldehyde, 2-furanmethanol and maltol in particularly higher amounts. Volatile differences between PKOs from control and treated PK were also found, though less obvious owing to the aqueous extraction process. Principal component analysis based on aroma-active compounds revealed that upon the proceeding of roasting, the differentiation between control and treated PK was enlarged while that of corresponding PKOs was less clear-cut. Celluclast pretreatment enabled the medium roasted PK to impart more nutty, roasty and caramelic odor and the corresponding PKO to impart more caramelic but less roasty and burnt notes. Celluclast pretreatment of PK followed by roasting may be a promising new way of improving PKO aroma. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Selli, Serkan; Kelebek, Hasim; Kesen, Songul; Sonmezdag, Ahmet Salih
2018-02-01
Olives are processed in different ways depending on consumption habits, which vary between countries. Different de-bittering methods affect the aroma and aroma-active compounds of table olives. This study focused on analyzing the aroma and aroma-active compounds of black dry-salted olives using gas chromatography-mass spectrometry-olfactometry (GC-MS-O) techniques. Thirty-nine volatile compounds which they have a total concentration of 29 459 µg kg -1 , were determined. Aroma extract dilution analysis (AEDA) was used to determine key aroma compounds of table olives. Based on the flavor dilution (FD) factor, the most powerful aroma-active compounds in the sample were methyl-2-methyl butyrate (tropical, sweet; FD: 512) and (Z)-3-hexenol (green, flowery; FD: 256). Phenolic compounds in table olives were also analyzed by LC-DAD-ESI-MS/MS. A total of 20 main phenolic compounds were identified and the highest content of phenolic compound was luteolin-7-glucoside (306 mg kg -1 ), followed by verbascoside (271 mg kg -1 ), oleuropein (231 mg kg -1 ), and hydroxytyrosol (3,4-DHPEA) (221 mg kg -1 ). Alcohols, carboxylic acids, and lactones were qualitatively and quantitatively the dominant volatiles in black dry-salted olives. Results indicated that esters and alcohols were the major aroma-active compounds. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Cho, In Hee; Kim, Se Young; Choi, Hyung-Kyoon; Kim, Young-Suk
2006-08-23
The characteristic aroma-active compounds in raw and cooked pine-mushrooms (Tricholoma matsutake Sing.) were investigated by gas chromatography-olfactometry using aroma extract dilution analysis. 1-Octen-3-one (mushroom-like) was the major aroma-active compound in raw pine-mushrooms; this compound had the highest flavor dilution factor, followed by ethyl 2-methylbutyrate (floral and sweet), linalool (citrus-like), methional (boiled potato-like), 3-octanol (mushroom-like and buttery), 1-octen-3-ol (mushroom-like), (E)-2-octen-1-ol (mushroom-like), and 3-octanone (mushroom-like and buttery). By contrast, methional, 2-acetylthiazole (roasted), an unknown compound (chocolate-like), 3-hydroxy-2-butanone (buttery), and phenylacetaldehyde (floral and sweet), which could be formed by diverse thermal reactions during the cooking process, together with C8 compounds, were identified as the major aroma-active compounds in cooked pine-mushrooms.
Johnson, Arielle J.; Hirson, Gregory D.; Ebeler, Susan E.
2012-01-01
This paper describes the design of a new instrumental technique, Gas Chromatography Recomposition-Olfactometry (GC-R), that adapts the reconstitution technique used in flavor chemistry studies by extracting volatiles from a sample by headspace solid-phase microextraction (SPME), separating the extract on a capillary GC column, and recombining individual compounds selectively as they elute off of the column into a mixture for sensory analysis (Figure 1). Using the chromatogram of a mixture as a map, the GC-R instrument allows the operator to “cut apart" and recombine the components of the mixture at will, selecting compounds, peaks, or sections based on retention time to include or exclude in a reconstitution for sensory analysis. Selective recombination is accomplished with the installation of a Deans Switch directly in-line with the column, which directs compounds either to waste or to a cryotrap at the operator's discretion. This enables the creation of, for example, aroma reconstitutions incorporating all of the volatiles in a sample, including instrumentally undetectable compounds as well those present at concentrations below sensory thresholds, thus correcting for the “reconstitution discrepancy" sometimes noted in flavor chemistry studies. Using only flowering lavender (Lavandula angustifola ‘Hidcote Blue’) as a source for volatiles, we used the instrument to build mixtures of subsets of lavender volatiles in-instrument and characterized their aroma qualities with a sensory panel. We showed evidence of additive, masking, and synergistic effects in these mixtures and of “lavender' aroma character as an emergent property of specific mixtures. This was accomplished without the need for chemical standards, reductive aroma models, or calculation of Odor Activity Values, and is broadly applicable to any aroma or flavor. PMID:22912722
Johnson, Arielle J; Hirson, Gregory D; Ebeler, Susan E
2012-01-01
This paper describes the design of a new instrumental technique, Gas Chromatography Recomposition-Olfactometry (GC-R), that adapts the reconstitution technique used in flavor chemistry studies by extracting volatiles from a sample by headspace solid-phase microextraction (SPME), separating the extract on a capillary GC column, and recombining individual compounds selectively as they elute off of the column into a mixture for sensory analysis (Figure 1). Using the chromatogram of a mixture as a map, the GC-R instrument allows the operator to "cut apart" and recombine the components of the mixture at will, selecting compounds, peaks, or sections based on retention time to include or exclude in a reconstitution for sensory analysis. Selective recombination is accomplished with the installation of a Deans Switch directly in-line with the column, which directs compounds either to waste or to a cryotrap at the operator's discretion. This enables the creation of, for example, aroma reconstitutions incorporating all of the volatiles in a sample, including instrumentally undetectable compounds as well those present at concentrations below sensory thresholds, thus correcting for the "reconstitution discrepancy" sometimes noted in flavor chemistry studies. Using only flowering lavender (Lavandula angustifola 'Hidcote Blue') as a source for volatiles, we used the instrument to build mixtures of subsets of lavender volatiles in-instrument and characterized their aroma qualities with a sensory panel. We showed evidence of additive, masking, and synergistic effects in these mixtures and of "lavender' aroma character as an emergent property of specific mixtures. This was accomplished without the need for chemical standards, reductive aroma models, or calculation of Odor Activity Values, and is broadly applicable to any aroma or flavor.
López-Carballo, Gracia; Cava, David; Lagarón, Jose M; Catalá, Ramón; Gavara, Rafael
2005-09-07
The ethylene-vinyl alcohol copolymers (EVOHs) are well-known high oxygen barrier materials that are being used successfully in the design of packaging structures for oxygen-sensitive food or pharmaceutical products. Recently, there has been increasing interest in using EVOH materials to provide a high barrier to organic compounds as a means to reduce food aroma scalping. However, the barrier function of this family of materials diminishes significantly in humid environments, and it is supposed that so does the organic vapor barrier. In this work, a new sorption-based method to characterize the interaction between food aroma and polymer films for packaging as a function of relative humidity is presented and is used to determine the barrier to ethyl butyrate and alpha-pinene of EVOH at 23 degrees C. The results show that although EVOH is an excellent barrier to food aroma when dry, a property that even improves at low relative humidity (RH), the solubility and diffusivity of the compounds tested increase dramatically with humidity at medium to high water activities. However, even in the worst case (100% RH), EVOH outperforms low-density polyethylene (LDPE) as a barrier to organic vapors at least 500,000-fold.
USDA-ARS?s Scientific Manuscript database
Flavor is an important attribute of mandarin (Citrus reticulata Blanco) and flavor improvement via conventional breeding is very challenging largely due to the complexity of the flavor components and traits. Many aroma associated volatiles of citrus fruit have been identified, which are directly rel...
Xiao, Zuobing; Li, Jing; Niu, Yunwei; Liu, Qiang; Liu, Junhua
2017-10-01
Rose oil is much too expensive but very popular. It's well known that the flower oil's aroma profile hasn't been intensively investigated. In order to verify the aroma profile of rose oil, the synthetic blend of odorants was prepared and then compared with the original rose oil using electronic nose analysis (ENA) combined with quantitative descriptive analysis (QDA). The odorants from rose oils were screened out by Gas Chromatography-Olfactometry/aroma extract dilution analysis (GC-O/AEDA) combined with odour activity value (OAV). Both ENA and QDA indicated the recombination model derived from OAV and GC-O/AEDA closely resembled the original rose oil. The experiment results show that rose oxide, linalool, α-pinene, β-pinene, nonanal, heptanal citronellal, phenyl ethyl alcohol, benzyl alcohol, eugenol, methyl eugenol, β-citronellol, hexyl acetate, β-ionone, nerol, etc. are very important constituent to rose oil aroma profile.
Identification of Aroma Compounds of Lamiaceae Species in Turkey Using the Purge and Trap Technique
Sonmezdag, Ahmet Salih; Kelebek, Hasim; Selli, Serkan
2017-01-01
The present research was planned to characterize the aroma composition of important members of the Lamiaceae family such as Salvia officinalis, Lavandula angustifolia and Mentha asiatica. Aroma components of the S. officinalis, L. angustifolia and M. asiatica were extracted with the purge and trap technique with dichloromethane and analyzed with the gas chromatography–mass spectrometry (GC–MS) technique. A total of 23, 33 and 33 aroma compounds were detected in Salvia officinalis, Lavandula angustifolia and Mentha asiatica, respectively including, acids, alcohols, aldehydes, esters, hydrocarbons and terpenes. Terpene compounds were both qualitatively and quantitatively the major chemical group among the identified aroma compounds, followed by esters. The main terpene compounds were 1,8-cineole, sabinene and linalool in Salvia officinalis, Lavandula angustifolia and Mentha asiatica, respectively. Among esters, linalyl acetate was the only and most important ester compound which was detected in all samples. PMID:28231089
Identification of Aroma Compounds of Lamiaceae Species in Turkey Using the Purge and Trap Technique.
Sonmezdag, Ahmet Salih; Kelebek, Hasim; Selli, Serkan
2017-02-08
The present research was planned to characterize the aroma composition of important members of the Lamiaceae family such as Salvia officinalis , Lavandula angustifolia and Mentha asiatica . Aroma components of the S. officinalis , L. angustifolia and M. asiatica were extracted with the purge and trap technique with dichloromethane and analyzed with the gas chromatography-mass spectrometry (GC-MS) technique. A total of 23, 33 and 33 aroma compounds were detected in Salvia officinalis , Lavandula angustifolia and Mentha asiatica , respectively including, acids, alcohols, aldehydes, esters, hydrocarbons and terpenes. Terpene compounds were both qualitatively and quantitatively the major chemical group among the identified aroma compounds, followed by esters. The main terpene compounds were 1,8-cineole, sabinene and linalool in Salvia officinalis , Lavandula angustifolia and Mentha asiatica , respectively. Among esters, linalyl acetate was the only and most important ester compound which was detected in all samples.
Yang, Ying; Zhao, Chengying; Tian, Guifang; Lu, Chang; Zhao, Shaojie; Bao, Yuming; McClements, David Julian; Xiao, Hang; Zheng, Jinkai
2017-09-06
Citrus oils are used as good carrier oil for emulsion fabrication due to their special flavor and various health-promoting functions. In this study, the effects of preheating temperature (30, 40, 50, 60, and 70 °C) and storage temperature (4, 25, and 37 °C) on aroma profiles and physical properties of three citrus-oil (i.e., mandarin, sweet orange, and bergamot oils) emulsions were systematically investigated for the first time. The results demonstrated the significant impact of temperature on aroma profile and physical properties. The abundance of d-limonene was found to be the main factor determining the aroma of the three citrus-oil emulsions at different preheating and storage temperatures, while β-linalool and linalyl acetate were important for the aroma of bergamot oil emulsion. Preheating temperature showed a profound impact on the aroma of citrus-oil emulsions, and the aroma of different citrus oil emulsions showed different sensitivity to preheating temperature. Storage temperature was also able to alter the properties of citrus oil emulsions. The higher was the storage temperature, the more alteration of aroma and more instability of the emulsions there was, which could be attributed to the alteration of the oil components and the properties of emulsions. Among all three emulsions, bergamot-oil emulsion was the most stable and exhibited the most potent ability to preserve the aroma against high temperature. Our results would facilitate the application of citrus-oil emulsions in functional foods and beverages.
Retort beef aroma that gives preferable properties to canned beef products and its aroma components.
Migita, Koshiro; Iiduka, Takao; Tsukamoto, Kie; Sugiura, Sayuri; Tanaka, Genichiro; Sakamaki, Gousuke; Yamamoto, Yasufumi; Takeshige, Yusuke; Miyazawa, Toshio; Kojima, Ayako; Nakatake, Tomoko; Okitani, Akihiro; Matsuishi, Masanori
2017-12-01
The objective of this study is to identify the properties and responsible compounds for the aromatic roast odor (retort beef aroma) that commonly occurs in canned beef products and could contribute to their palatability. The optimal temperature for generating retort beef aroma was 121°C. An untrained panel evaluated both uncured corned beef and canned yamato-ni beef and found that they had an aroma that was significantly (P < 0.01) similar to the odor of 121°C-heated beef than 100°C-heated beef. The panel also noted that the aroma of 121°C-heated beef tended to be (P < 0.1) preferable than that of 100°C-heated beef. These results suggest that retort beef aroma is one constituent of palatability in canned beef. GC-MS (gas chromatography-mass spectrometry) analysis of the volatile fraction obtained from 100°C- and 121°C-heated beef showed that the amounts of pyrazine, 2-methylpyrazine and diacetyl were higher in the 121°C-heated beef than in the 100°C-heated beef. GC-sniffing revealed that the odor quality of pyrazines was similar to that of retort beef aroma. Therefore, pyrazines were suggested to be a candidate responsible for the retort beef aroma. Analysis of commercial uncured corned beef and cured corned beef confirmed the presence of pyrazine, 2-methylpyrazine and 2,6-dimethylpyrazine. © 2017 Japanese Society of Animal Science.
Jiang, Bao; Zhang, Zhenwen
2010-12-10
In order to elucidate the aroma components of wine produced in the Loess Plateau region of China, volatile compounds of young wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay varieties grown in the new ecological region were investigated for the first time in this research. Among the volatile compounds analyzed by HS-SPME with GC-MS, a total of 45, 44 and 42 volatile compounds were identified and quantified in Cabernet Sauvignon, Cabernet Gernischet and Chardonnay wines, respectively. In the volatiles detected, alcohols formed the most abundant group in the aroma compounds of the three wines, followed by esters and fatty acids. According to their odor active values (OAVs), 18 volatile compounds were always present in the three wines at concentrations higher than their threshold values, but ethyl octanoate, ethyl hexanoate, and isoamyl acetate were found to jointly contribute to 92.9%, 93.3%, and 98.7%, of the global aroma of Cabernet Sauvignon, Cabernet Gernischet and Chardonnay wines, respectively. These odorants are associated with "fruity'' and ''ripe fruit'' odor descriptors.
Liu, Jianbin; Liu, Mengya; He, Congcong; Song, Huanlu; Guo, Jia; Wang, Ye; Yang, Haiying; Su, Xiaoxia
2015-04-01
The most important aroma-active compounds of two types of chocolate and cocoa liquor used for their production were analysed by gas chromatography-olfactometry-mass spectrometry (GC-O-MS) and aroma extract dilution analysis (AEDA). Furthermore, the relationship between odorants and sensory perception of chocolate was measured by quantitative analysis, sensory evaluation and correlation analysis. In addition, some chemicals were added to the original dark or milk chocolate to validate their roles in the aroma property of chocolate. A total of 32 major aroma-active compounds were identified in the chocolate with the flavour dilution factors of 27-729 by AEDA, including seven aldehydes, six pyrazines, three pyrroles, four carboxylic acids, four lactones, two alcohols, two ketones, one ester, one pyrone, one furan and one sulfur-containing compound. Further quantitative analysis showed that dark chocolate had higher contents of pyrazine, pyrrole, carboxylic acids, alcohols and Strecker aldehydes, whereas the concentration of lactones, esters, long chain aldehydes and ketones were higher in the milk type. Differences in volatile composition and descriptive flavour attributes between the dark and milk chocolate were observed. The relationship between aroma-active compounds and sensory perception in the chocolate was verified. © 2014 Society of Chemical Industry.
Misharina, T A; Mukhutdinova, S M; Zharikova, G G; Terenina, M B; Krikunova, N I
2009-01-01
The composition of aroma compounds in cooked and canned cepe (Boletus edulis) and in cooked oyster mushrooms (Pleurotus ostreatus) is studied using capillary gas chromatography and chromatography-mass spectrometry. It is found that unsaturated alcohols and ketones containing eight atoms of carbon determine the aroma of raw mushrooms and take part in the formation of the aroma of cooked mushrooms as well. The content of these compounds was the highest in canned cepes. In oyster mushrooms, the concentration of these alcohols and ketones was lower in comparison with cepes. The content of aliphatic and aromatic aldehydes was much higher in oyster mushrooms. Volatile aliphatic and heterocyclic Maillard reaction products and isomeric octenols and octenones formed the aroma of cooked and canned mushrooms.
Leelaphiwat, Pattarin; Harte, Janice B; Auras, Rafael A; Ong, Peter Kc; Chonhenchob, Vanee
2017-04-01
Changes in the aroma characteristics of Thai 'tom yam' seasoning powder, containing lemongrass, galangal and kaffir lime leaf, as affected by different packaging materials were assessed using quantitative descriptive analysis (QDA) and gas chromatography-mass spectrometry (GC-MS). The descriptive aroma attributes for lemongrass, galangal and kaffir lime leaf powders were developed by the QDA panel. The mixed herb and spice seasoning powder was kept in glass jars closed with different packaging materials (Nylon 6, polyethylene terephthalate (PET) and polylactic acid (PLA)) stored at 38 °C (accelerated storage condition), and evaluated by the trained QDA panel during storage for 49 days. The descriptive words for Thai 'tom yam' seasoning powder developed by the trained panelists were lemongrass, vinegary and leafy for lemongrass, galangal and kaffir lime leaf dried powder, respectively. The aroma intensities significantly (P ≤ 0.05) decreased with increased storage time. However, the intensity scores for aroma attributes were not significantly (P > 0.05) different among the packaging materials studied. The major components in Thai 'tom yam' seasoning powder, quantified by GC-MS, were estragole, bicyclo[3.1.1]heptane, β-bisabolene, benzoic acid and 2-ethylhexyl salicylate. The concentrations of major aroma compounds significantly (P ≤ 0.05) decreased with storage time. Aroma stability of Thai 'tom yam' powder can be determined by descriptive sensory evaluation and GC-MS analysis. Nylon, PET and PLA exhibited similar aroma barrier properties against key aroma compounds in Thai 'tom yam'. This information can be used for prediction of aroma loss through packaging materials during storage of Thai 'tom yam'. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Rodríguez-Bencomo, Juan José; Kelebek, Hasim; Sonmezdag, Ahmet Salih; Rodríguez-Alcalá, Luis Miguel; Fontecha, Javier; Selli, Serkan
2015-09-09
The pistachio (Pistacia vera L.) nut is one of the most widely consumed edible nuts in the world. However, it is the roasting process that makes the pistachio commercially viable and valuable as it serves as the key step to improving the nut's hallmark sensory characteristics including flavor, color, and texture. Consequently, the present study explores the effects of the single-roasting and double-roasting process on the pistachio's chemical composition, specifically aroma-active compounds, polyphenols, and lipids. Results showed the total polyphenol content of increased with the roasting treatment; however, not all phenolic compounds demonstrated this behavior. With regard to the aroma and aroma-active compounds, the results indicated that roasting process results in the development of characteristics and pleasant aroma of pistachio samples due to the Maillard reaction. With regard to lipids, the pistachio roasting treatment reduced the concentration of CN38 diacylglycerides while increasing the amount of elaidic acid.
Ben Brahim, Samia; Amanpour, Asghar; Chtourou, Fatma; Kelebek, Hasim; Selli, Serkan; Bouaziz, Mohamed
2018-03-21
Gas chromatography-mass spectrometry-olfactometry was used for the analysis of volatile compounds and key odorants of three less studied Tunisian olive oil cultivars for the first time. A total of 42 aroma compounds were identified and quantified in extra virgin olive oils. The present study revealed that the most dominant volatiles in olive oil samples qualitatively and quantitatively were aldehydes and alcohols, followed by terpenes and esters. Indeed, chemometric analysis has shown a correlation between chemical compounds and sensory properties. The determination of aroma-active compounds of olive oil samples was carried out using aroma extract dilution analysis. A total of 15 aroma-active compounds were detected in the aromatic extract of extra virgin olive oil, of which 14 were identified. On the basis of the flavor dilution (FD) factor, the most potent aromatic active compound was hexanal (FD = 512) in Fakhari olive oil, (FD = 256) in Touffehi oils, and (FD = 128) in Jemri olive oil.
Biochemical characterization of sap (latex) of a few Indian mango varieties.
John, K Saby; Bhat, S G; Prasada Rao, U J S
2003-01-01
Mango sap (latex) from four Indian varieties was studied for its composition. Sap was separated into non-aqueous and aqueous phases. Earlier, we reported that the non-aqueous phase contained mainly mono-terpenes having raw mango aroma (Phytochemistry 52 (1999) 891). In the present study biochemical composition of the aqueous phase was studied. Aqueous phase contained little amount of protein (2.0-3.5 mg/ml) but showed high polyphenol oxidase (147-214 U/mg protein) and peroxidase (401-561 U/mg protein) activities. It contained low amounts of polyphenols and protease activities. On native PAGE, all the major protein bands exhibited both polyphenol oxidase and peroxidase activities. Both polyphenol oxidase and peroxidase activities were found to be stable in the aqueous phase of sap at 4 degrees C. Sap contained large amount of non-dialyzable and non-starchy carbohydrate (260-343 mg/ml sap) which may be responsible for maintaining a considerable pressure of fluid in the ducts. Thus, the mango sap could be a valuable by-product in the mango industry as it contains some of the valuable enzymes and aroma components.
Yeast strains as potential aroma enhancers in dry fermented sausages.
Flores, Mónica; Corral, Sara; Cano-García, Liliana; Salvador, Ana; Belloch, Carmela
2015-11-06
Actual healthy trends produce changes in the sensory characteristics of dry fermented sausages therefore, new strategies are needed to enhance their aroma. In particular, a reduction in the aroma characteristics was observed in reduced fat and salt dry sausages. In terms of aroma enhancing, generally coagulase-negative cocci were selected as the most important group from the endogenous microbiota in the production of flavour compounds. Among the volatile compounds analysed in dry sausages, ester compounds contribute to fruity aroma notes associated with high acceptance of traditional dry sausages. However, the origin of ester compounds in traditional dry sausages can be due to other microorganisms as lactic acid bacteria, yeast and moulds. Yeast contribution in dry fermented sausages was investigated with opposite results attributed to low yeast survival or low activity during processing. Generally, they affect sausage colour and flavour by their oxygen-scavenging and lipolytic activities in addition to, their ability to catabolize fermentation products such as lactate increasing the pH and contributing to less tangy and more aromatic sausages. Recently, the isolation and characterization of yeast from traditional dry fermented sausages made possible the selection of those with ability to produce aroma active compounds. Molecular methods were used for genetic typing of the isolated yeasts whereas their ability to produce aroma compounds was tested in different systems such as in culture media, in model systems and finally on dry fermented sausages. The results revealed that the appropriate selection of yeast strains with aroma potential may be used to improve the sensory characteristics of reformulated fermented sausages. Copyright © 2015 Elsevier B.V. All rights reserved.
Amitsuka, Takahiko; Okamura, Maya; Mukuta, Kei; Shiibashi, Hiroko; Haraguchi, Kenji; Saito, Tsukasa; Inoue, Kazuo; Fushiki, Tohru
2017-08-01
Katsuodashi, a dried bonito broth, is very basic and indispensable in Japanese cuisine and contains taste-exhibiting components and unique aroma. We previously reported that its unique aroma contributes to the preference and reinforcement effect associated with dried bonito. This study aims to elucidate the contribution of aromatic components in Katsuobushi to preference formation and reinforcement effect. Volatile components obtained from dried bonito were fractionated and the fractions were subjected to two-bottle choice test. The fractionation test suggested that the component responsible for the preference is not one but comprises multiple components. In the GC-MS analysis/reconstruction test, solution with aromatic flavor narrowed down to 125 compounds had preference, and also had reinforcement effect. Moreover, GC-MS-olfactometry analysis narrowed down the candidate components to 28 out of 125. Mice showed preference for the test solution with aromatic flavor reconstructed with 28 components but did not show reinforcement behavior.
An Efficient Extraction Method for Fragrant Volatiles from Jasminum sambac (L.) Ait.
Ye, Qiuping; Jin, Xinyi; Zhu, Xinliang; Lin, Tongxiang; Hao, Zhilong; Yang, Qian
2015-01-01
The sweet smell of aroma of Jasminum sambac (L.) Ait. is releasing while the flowers are blooming. Although components of volatile oil have been extensively studied, there are problematic issues, such as low efficiency of yield, flavour distortion. Here, the subcritical fluid extraction (SFE) was performed to extract fragrant volatiles from activated carbon that had absorbed the aroma of jasmine flowers. This novel method could effectively obtain main aromatic compounds with quality significantly better than solvent extraction (SE). Based on the analysis data with response surface methodology (RSM), we optimized the extraction conditions which consisted of a temperature of 44°C, a solvent-to-material ratio of 3.5:1, and an extraction time of 53 min. Under these conditions, the extraction yield was 4.91%. Furthermore, the key jasmine essence oil components, benzyl acetate and linalool, increase 7 fold and 2 fold respectively which lead to strong typical smell of the jasmine oil. The new method can reduce spicy components which lead to the essential oils smelling sweeter. Thus, the quality of the jasmine essence oil was dramatically improved and yields based on the key component increased dramatically. Our results provide a new effective technique for extracting fragrant volatiles from jasmine flowers.
Oxidative stability of fermented meat products.
Wójciak, Karolina M; Dolatowski, Zbigniew J
2012-04-02
Meat and meat products, which form a major part of our diet, are very susceptible to quality changes resulting from oxidative processes. Quality of fermented food products depends on the course of various physicochemical and biochemical processes. Oxidation of meat components in raw ripening products may be the result of enzymatic changes occurring as a result of activity of enzymes originating in tissues and microorganisms, as well as lipid peroxidation by free radicals. Primary and secondary products of lipid oxidation are extremely reactive and react with other components of meat, changing their physical and chemical properties. Oxidised proteins take on a yellowish, red through brown hue. Products of lipid and protein degradation create a specific flavour and aroma ; furthermore, toxic substances (such as biogenic amines or new substances) are formed as a result of interactions between meat components, e.g. protein-lipid or protein-protein combinations, as well as transverse bonds in protein structures. Oxidation of meat components in raw ripening products is a particularly difficult process. On the one hand it is essential, since the enzymatic and non-enzymatic lipid oxidation creates flavour and aroma compounds characteristic for ripening products; on the other hand excessive amounts or transformations of those compounds may cause the fermented meat product to become a risk to health.
Kelebek, Hasim; Selli, Serkan
2011-08-15
Orange flavour is the results of a natural combination of volatile compounds in a well-balanced system including sugars, acids and phenolic compounds. This paper reports the results of the first determination of aroma, organic acids, sugars, and phenolic components in Dortyol yerli orange juices. A total of 58 volatile components, including esters (nine), terpenes (19), terpenols (13), aldehydes (two), ketones (three), alcohols (four) and acids (eight) were identified and quantified in Dortyol yerli orange juice by GC-FID and GC-MS. Organic acids, sugars and phenolic compositions were also determined by HPLC methods. The major organic acid and sugar found were citric acid and sucrose, respectively. With regard to phenolics, 14 compounds were identified and quantified in the orange juice. Terpenes and terpenols were found as the main types of volatile components in Dortyol yerli orange juice. In terms of aroma contribution to orange juice, 12 compounds were prominent based on the odour activity values (OAVs). The highest OAV values were recorded for ethyl butanoate, nootkatone, linalool and DL-limonene. When we compare the obtained results of cv. Dortyol orange juice with the other orange juice varieties, the composition of Dortyol orange juice was similar to Valencia and Navel orange juices. Copyright © 2011 Society of Chemical Industry.
Ma, Yue; Tang, Ke; Xu, Yan; Li, Ji-Ming
2017-01-18
The key aroma compounds of Chinese Vidal icewine were characterized by means of gas chromatography-olfactometry (GC-O) coupled with mass spectrometry (MS) on polar and nonpolar columns, and their flavor dilution (FD) factors were determined by aroma extract dilution analysis (AEDA). A total of 59 odor-active aroma compounds in three ranks of Vidal icewines were identified, and 28 odorants (FD ≥ 9) were further quantitated for aroma reconstitution and omission tests. β-Damascenone showed the highest FD value of 2187 in all icewines. Methional and furaneol were first observed as important odorants in Vidal icewine. Aroma recombination experiments revealed a good similarity containing the 28 important aromas. Omission tests corroborated the significant contribution of β-damascenone and the entire group of esters. Besides, 4-hydroxy-2,5-dimethyl-3(2H)-furanone (furaneol) and 3-(methylthio)-1-propanal (methional) also had significant effects on icewine character, especially on apricot, caramel, and tropical fruit characteristics.
Aroma profile of malbec red wines from La Mancha region: Chemical and sensory characterization.
Sánchez-Palomo, E; Trujillo, M; García Ruiz, A; González Viñas, M A
2017-10-01
The aroma of La Mancha Malbec red wines over four consecutive vintages was characterized by chemical and sensory analysis. Solid phase extraction (SPE) and gas chromatography-mass spectrometry (GC-MS) were used to isolate and analyze free volatile compounds. Quantitative Descriptive Sensory Analysis (QDA) was carried out to characterize the sensory aroma profile. A total of 79 free volatile compounds were identified and quantified in the wines over these four vintages. Volatile aroma compounds were classified into seven aromatic series and their odour activity values were calculated in order to determine the aroma impact compounds in these wines. The aroma sensory profile of these wines was characterized by red fruit, fresh, prune, liquorice, clove, caramel, leather, tobacco and coffee aromas. This study provides a complete aroma characterization of La Mancha Malbec red wines and it is proposed that these wines can be considered as an alternative to wines from traditional grape varieties of this region. Copyright © 2017 Elsevier Ltd. All rights reserved.
Donfrancesco, Brizio Di; Koppel, Kadri
2017-06-17
Descriptive sensory analysis and gas chromatography-mass spectrometry (GC-MS) with a modified headspace solid-phase microextraction (SPME) method was performed on three extruded dry dog food diets manufactured with different fractions of red sorghum and a control diet containing corn, brewer's rice, and wheat as a grain source in order to determine the effect of sorghum fractions on dry dog food sensory properties. The aroma compounds and flavor profiles of samples were similar with small differences, such as higher toasted aroma notes, and musty and dusty flavor in the mill-feed sample. A total of 37 compounds were tentatively identified and semi-quantified. Aldehydes were the major group present in the samples. The total volatile concentration was low, reflecting the mild aroma of the samples. Partial least squares regression was performed to identify correlations between sensory characteristics and detected aroma compounds. Possible relationships, such as hexanal and oxidized oil, and broth aromatics were identified. Volatile compounds were also associated with earthy, musty, and meaty aromas and flavor notes. This study showed that extruded dry dog foods manufactured with different red sorghum fractions had similar aroma, flavor, and volatile profiles.
Arrieta-Garay, Y; Blanco, P; López-Vázquez, C; Rodríguez-Bencomo, J J; Pérez-Correa, J R; López, F; Orriols, I
2014-10-29
Orujo is a traditional alcoholic beverage produced in Galicia (northwest Spain) from distillation of grape pomace, a byproduct of the winemaking industry. In this study, the effect of the distillation system (copper charentais alembic versus packed column) and the yeast strain (native yeast L1 versus commercial yeast L2) on the chemical and sensory characteristics of orujo obtained from Albariño (Vitis vinifera L.) grape pomace has been analyzed. Principal component analysis, with two components explaining 74% of the variance, is able to clearly differentiate the distillates according to distillation system and yeast strain. Principal component 1, mainly defined by C6-C12 esters, isoamyl octanoate, and methanol, differentiates L1 from L2 distillates. In turn, principal component 2, mainly defined by linear alcohols, linalool, and 1-hexenol, differentiates alembic from packed column distillates. In addition, an aroma descriptive test reveals that the distillate obtained with a packed column from a pomace fermented with L1 presented the highest positive general impression, which is associated with the highest fruity and smallest solvent aroma scores. Moreover, chemical analysis shows that use of a packed column increases average ethanol recovery by 12%, increases the concentration of C6-C12 esters by 25%, and reduces the concentration of higher alcohols by 21%. In turn, L2 yeast obtained lower scores in the alembic distillates aroma profile. In addition, with L1, 9% higher ethanol yields were achieved, and L2 distillates contained 34%-40% more methanol than L1 distillates.
Zhao, Pengtao; Gao, Jinxin; Qian, Michael; Li, Hua
2017-06-24
The key aroma compounds and the organoleptic quality of two Chinese Syrah wines from the Yunnan Shangri-La region and Ningxia Helan mountain region were characterized. The most important eighty aroma-active compounds were identified by Gas Chromatography-Olfactometry. In both Syrah samples, ethyl 2-methylpropanoate, ethyl 3-methylbutanoate, 3-methylbutyl acetate, 2- and 3-methyl-1-butanol, ethyl hexanoate, ethyl octanoate, 2-phenethyl acetate, methional, 3-methylbutanoic acid, hexanoic acid, octanoic acid, β -damascenone, guaiacol, 2-phenylethanol, trans -whiskylactone, 4-ethylguaiacol, eugenol, 4-ethylphenol, and sotolon were detected to have the highest odor intensities. In the chemical analysis, 72 compounds were quantitated by Stir Bar Sorptive Extraction combined with Gas Chromatography Mass Spectrometry. Based on the Odor Activity Value (OAV), the aromas were reconstituted by combining aroma compounds in the synthetic wine, and sensory descriptive analysis was used to verify the chemical data. Fatty acid ethyl esters, acetate esters, and β -damascenone were found with higher OAVs in the more fruity-smelling sample of Helan Mountain rather than Shangri-La.
Cho, In Hee; Lee, Soh Min; Kim, Se Young; Choi, Hyung-Kyoon; Kim, Kwang-Ok; Kim, Young-Suk
2007-03-21
Two independent approaches, gas chromatography-olfactometry and sensory analysis, were used to evaluate and compare the aroma characteristics of pine-mushrooms (Tricholoma matsutake Sing.) of four different grades. The aroma-active compounds responsible for the sensory attributes of pine- mushrooms were investigated based on the correlation between instrumental and sensory analyses through partial least-square regression. Piny, meaty, and floral attributes were strongly correlated with each other and were the most important descriptors for defining the pine-mushrooms of the highest grade, and they decreased as the grade decreased. Among 23 aroma-active compounds, (E)-2-decenal, alpha-terpineol, phenylethyl alcohol, and 2-methylbutanoic acid ethyl ester contributed most to these attributes. On the other hand, the major aroma characteristics of the pine-mushrooms of the lowest grade were wet soil-like, alcohol, metallic, moldy, and fermented, and they decreased as the grade increased. These aroma characteristics were strongly associated with 1-octen-3-one, 1-octen-3-ol, 3-octanol, 3-octanone, (E)-2-octen-1-ol, and methional.
Detecting aroma changes of local flavored green tea (Camellia sinensis) using electronic nose
NASA Astrophysics Data System (ADS)
Ralisnawati, D.; Sukartiko, A. C.; Suryandono, A.; Triyana, K.
2018-03-01
Indonesia is currently the sixth largest tea producer in the world. However, consumption of the product in the country was considered low. Besides tea, the country also has various local flavor ingredients that are potential to be developed. The addition of local flavored ingredients such as ginger, lemon grass, and lime leaves on green tea products is gaining acceptance from consumers and producers. The aroma of local flavored green tea was suspected to changes during storage, while its sensory testing has some limitations. Therefore, the study aimed to detect aroma changes of local flavors added in green tea using electronic nose (e-nose), an instrument developed to mimic the function of the human nose. The test was performed on a four-gram sample. The data was collected with 120 seconds of sensing time and 60 seconds of blowing time. Principal Component Analysis (PCA) was used to find out the aroma changes of local flavored green tea during storage. We observed that electronic nose could detect aroma changes of ginger flavored green tea from day 0 to day 6 with variance percentage 99.6%. Variance proportion of aroma changes of lemon grass flavored green tea from day 0 to day 6 was 99.3%. Variance proportion of aroma changes of lime leaves flavored green tea from day 0 to day 6 was 99.4%.
Chemosensory characteristics of regional Vidal icewines from China and Canada.
Huang, Ling; Ma, Yue; Tian, Xin; Li, Ji-Ming; Li, Lan-Xiao; Tang, Ke; Xu, Yan
2018-09-30
This work aimed to compare the flavor characteristics of Vidal icewines from China and Canada and to establish relationships between sensory descriptors and chemical composition. Descriptive analysis was performed with a trained panel to obtain the sensory profiles. Thirty important aroma-active compounds were quantified by four different methodologies. Partial least squares discriminant analysis was used to identify candidate compounds, which were unique to certain sensory descriptors. The sensory profiles of icewines from China were characterized by nut and honey aromas, while icewines from Canada expressed caramel and rose aromas. Nut and honey aromas had a close correlation with 1-hexanol, isoamyl acetate, phenethyl acetate and phenylethyl alcohol. Caramel aroma was correlated with ethyl esters and lactones and rose aroma was correlated with terpenes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Apichartsrangkoon, Arunee; Wongfhun, Pronprapa; Gordon, Michael H
2009-01-01
The flavor characteristics of pennywort juices with added sugar treated by ultra-high pressure, pasteurization, and sterilization were investigated using solid phase microextraction combined with gas chromatography-mass spectrometry. It was found that sesquiterpene hydrocarbons comprised the major class of volatile components present and the juices had a characteristic aroma due to the presence of volatiles including beta-caryophyllene and humulene and alpha-copaene. In comparison with heated juices, HPP-treated samples could retain more volatile compounds such as linalool and geraniol similar to those present in fresh juice, whereas some volatiles such as alpha-terpinene and ketone class were apparently formed by thermal treatment. All processing operations produced juice that was not significantly different in the concentration of total volatiles. Practical Application: Pennywort juice is considered a nutraceutical drink for health benefits. Therefore, to preserve all aroma and active components in this juice, a nonthermal process such as ultra-high pressure should be a more appropriate technique for retention of its nutritive values than pasteurization and sterilization.
Feng, Yiming; Liu, Min; Ouyang, Yanan; Zhao, Xianfang; Ju, Yanlun; Fang, Yulin
2015-01-01
Background Although grape wines have firmly dominated the production and consumption markets of fruit wines, raspberry, strawberry, and mulberry have been utilized to make wines because of their joyful aroma and high contents of polyphenolic phytochemicals and essential fatty acids. However, little is known about aromatic compounds of the wines produced from these three fruits. Methods The aromatic composition of fruit wines produced from raspberry, strawberry, mulberry, and red grape was analyzed by GC-MS. Odor activity values (OAVs) and relative odor contributions (ROCs) were used to estimate the sensory contribution of the aromatic compounds to the overall flavor of the wines. Results In strawberry, raspberry, and mulberry wines, 27, 30, and 31 odorants were detected, respectively. Alcohols formed the most abundant group, followed by esters and acids. The grape wine contained a wider variety (16 types) of alcohols, and 4-methyl-2-pentanol and 2,3-butanediol were not present in the three fruit wines. The quantity of esters in raspberry (1.54%) and mulberry wines (2.08%) were higher than those of strawberry wine (0.78%), and mulberry wine contained more types of esters. There were no significant differences of acids between the three fruit wines and the control wine. In addition, 2-heptanone, 2-octanone, 2-nonanone, and 2-undecanone were unique to raspberry wine, and nonanal was present only in mulberry wine. The indistinguishable aroma of the three fruit wines was attributed to the dominance of fruity and floral odor components derived from ethyl esters of fatty acids and their contributions to the global aroma of the three fruit wines. Conclusion The present study demonstrated that there were significant differences in the volatile components of fruit wines made from raspberry, strawberry, and mulberry. The aroma compounds were more abundant in the raspberry and mulberry wines than in the strawberry wine, but the quality of strawberry wine was superior to raspberry and mulberry wines. PMID:26617387
Aroma Leakage from Orange Juice Packed in Gable-Top Paper Containers for Chilled Distribution.
Aoki, Risa; Tokuda, Aika; Shigemura, Yasutaka; Mineki, Machiko; Sato, Yoshio
2017-01-01
We conducted a study to examine aroma leakage from orange juice packed in gable-top paper containers for chilled distribution. Limonene, an aromatic component of orange juice, was considered as an index compound of aroma leakage, and its seepage on the surface of the container and concentration in the orange juice were measured by GC-MS for 12 commercial samples. After 3 days of storage, limonene was detected on the surface of 8 orange juice containers, and the concentration of limonene in the orange juice was found to have decreased. Thus, limonene leaked through the container within a few days, and the extent of leakage differed between containers, presumably depending upon their barrier properties. In addition, limonene was detected in green tea and milk that was stored together with the unopened orange juice containers at 4℃. The transference of orange aroma into milk was significant, because the contamination of the milk was confirmed by subjective sensory evaluation. This study suggests the possibility of transfer of aroma compounds through paper containers to other beverages.
Aroma composition of shalgam: a traditional Turkish lactic acid fermented beverage.
Tanguler, Hasan; Selli, Serkan; Sen, Kemal; Cabaroglu, Turgut; Erten, Huseyin
2017-06-01
Shalgam, a traditional red, cloudy and sour soft beverage, is produced by lactic acid fermentation of black carrot, sourdough, salt, bulgur flour, turnip and adequate water. The present study was designed to characterize the volatile compounds of shalgam obtained from different methods. The aroma compounds of shalgams produced by traditional and direct methods, and addition of Lactic acid bateria (LAB) cultures were examined. Volatile components of shalgam samples were extracted by liquid-liquid extraction technique with pentane/dichloromethane and analyzed by gas chromatography-mass spectrometry (GC-MS). Sixty aroma compounds were identified in shalgam samples including 20 terpenes, 9 esters, 9 alcohols, 5 volatile acids, 6 volatile phenols, 5 lactones, 3 naphthalenes, 2 carbonyl compounds and 1 C13-norisoprenoids. It was found that the aroma profiles of shalgams were quite similar. However, the total volatile content of the shalgam samples increased with addition of Lb. plantarum .
Characteristic aroma components of rennet casein.
Karagül-Yüceer, Yonca; Vlahovich, Katrina N; Drake, MaryAnne; Cadwallader, Keith R
2003-11-05
Rennet casein, produced by enzymatic (rennet) precipitation of casein from pasteurized skim milk, is used in both industrial (technical) and food applications. The flavor of rennet casein powder is an important quality parameter; however, the product often contains an odor described as like that of animal/wet dog. Two commercial rennet casein powders were evaluated to determine the compounds responsible for the typical odor. Aroma extracts were prepared by high-vacuum distillation of direct solvent (ether) extracts and analyzed by gas chromatography-olfactometry (GCO), aroma extract dilution analysis (AEDA), and GC-mass spectrometry (MS). Odorants detected by GCO were typical of those previously reported in skim milk powders and consisted mainly of short-chain volatile acids, phenolic compounds, lactones, and furanones. Results of AEDA indicated o-aminoacetophenone to be a potent odorant; however, sensory descriptive sensory analysis of model aroma systems revealed that the typical odor of rennet casein was principally caused by hexanoic acid, indole, guaiacol, and p-cresol.
Ramírez, Jorge; Gilardoni, Gianluca; Jácome, Miriam; Montesinos, José; Rodolfi, Marinella; Guglielminetti, Maria Lidia; Cagliero, Cecila; Bicchi, Carlo; Vidari, Giovanni
2017-12-01
This study describes the GC-FID, GC/MS, GC-O, and enantioselective GC analysis of the essential oil hydrodistilled from leaves of Lepechinica mutica (Lamiaceae), collected in Ecuador. GC-FID and GC/MS analyses allowed the characterization and quantification of 79 components, representing 97.3% of the total sample. Sesquiterpene hydrocarbons (38.50%) and monoterpene hydrocarbons (30.59%) were found to be the most abundant volatiles, while oxygenated sesquiterpenes (16.20%) and oxygenated monoterpenes (2.10%) were the minor components. In order to better characterize the oil aroma, the most important odorants, from the sensorial point of view, were identified by Aroma Extract Dilution Analysis (AEDA) GC-O. They were α-Pinene, β-Phellandrene, and Dauca-5,8-diene, exhibiting the characteristic woody, herbaceus, and earthy odors, respectively. Enantioselective GC analysis of L. mutica essential oil revealed the presence of twelve couples and two enantiomerically pure chiral monoterpenoids. Their enantiomeric excesses were from a few percent units to 100%. Moreover, the essential oil exhibited moderate in vitro activity against five fungal strains, being especially effective against M. canis, which is a severe zoophilic dermatophyte causal agent of pet and human infections. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Large-Scale Selection and Breeding To Generate Industrial Yeasts with Superior Aroma Production
Steensels, Jan; Meersman, Esther; Snoek, Tim; Saels, Veerle
2014-01-01
The concentrations and relative ratios of various aroma compounds produced by fermenting yeast cells are essential for the sensory quality of many fermented foods, including beer, bread, wine, and sake. Since the production of these aroma-active compounds varies highly among different yeast strains, careful selection of variants with optimal aromatic profiles is of crucial importance for a high-quality end product. This study evaluates the production of different aroma-active compounds in 301 different Saccharomyces cerevisiae, Saccharomyces paradoxus, and Saccharomyces pastorianus yeast strains. Our results show that the production of key aroma compounds like isoamyl acetate and ethyl acetate varies by an order of magnitude between natural yeasts, with the concentrations of some compounds showing significant positive correlation, whereas others vary independently. Targeted hybridization of some of the best aroma-producing strains yielded 46 intraspecific hybrids, of which some show a distinct heterosis (hybrid vigor) effect and produce up to 45% more isoamyl acetate than the best parental strains while retaining their overall fermentation performance. Together, our results demonstrate the potential of large-scale outbreeding to obtain superior industrial yeasts that are directly applicable for commercial use. PMID:25192996
Muñoz-González, Carolina; Cueva, Carolina; Ángeles Pozo-Bayón, M; Victoria Moreno-Arribas, M
2015-11-15
Grape aroma precursors are odourless glycosides that represent a natural reservoir of potential active odorant molecules in wines. Since the first step of wine consumption starts in the oral cavity, the processing of these compounds in the mouth could be an important factor in influencing aroma perception. Therefore, the objective of this work has been to evaluate the ability of human oral microbiota to produce wine odorant aglycones from odourless grape glycosidic aroma precursors previously isolated from white grapes. To do so, two methodological approaches involving the use of typical oral bacteria or the whole oral microbiota isolated from human saliva were followed. Odorant aglycones released in the culture mediums were isolated and analysed by HS-SPME-GC/MS. Results showed the ability of oral bacteria to hydrolyse grape aroma precursors, releasing different types of odorant molecules (terpenes, benzenic compounds and lipid derivatives). The hydrolytic activity seemed to be bacteria-dependent and was subject to large inter-individual variability. Copyright © 2015 Elsevier Ltd. All rights reserved.
Poehlmann, Susan; Schieberle, Peter
2013-03-27
Application of the aroma extract dilution analysis on a distillate prepared from an authentic Styrian pumpkin seed oil followed by identification experiments led to the characterization of 47 odor-active compounds in the flavor dilution (FD) factor range of 8-8192 among which 2-acetyl-1-pyrroline (roasty, popcorn-like), 2-propionyl-1-pyrroline (roasty, popcorn-like), 2-methoxy-4-vinylphenol (clove-like), and phenylacetaldehyde (honey-like) showed the highest FD factors. Among the set of key odorants, 2-propionyl-1-pyrroline and another 20 odorants were identified for the first time as constituents of pumpkin seed oil. To evaluate the aroma contribution in more detail, 31 aroma compounds showing the highest FD factors were quantitated by means of stable isotope dilution assays. On the basis of the quantitative data and odor thresholds determined in sunflower oil, odor activity values (OAV; ratio of concentration to odor threshold) were calculated, and 26 aroma compounds were found to have an OAV above 1. Among them, methanethiol (sulfury), 2-methylbutanal (malty), 3-methylbutanal (malty), and 2,3-diethyl-5-methylpyrazine (roasted potato) reached the highest OAVs. Sensory evaluation of an aroma recombinate prepared by mixing the 31 key odorants in the concentrations as determined in the oil revealed that the aroma of Styrian pumpkin seed oil could be closely mimicked. Quantitation of 11 key odorants in three commercial pumpkin seed oil revealed clear differences in the concentrations of distinct odorants, which were correlated with the overall aroma profile of the oils.
Miyazaki, Takayuki; Plotto, Anne; Baldwin, Elizabeth A; Reyes-De-Corcuera, José I; Gmitter, Fred G
2012-03-15
Tangerines have a distinct flavor among citrus fruit. However, information on tangerine volatiles remains limited. Volatile compounds from a breeding population of tangerines were earlier identified by gas chromatography-mass spectrometry. In this study, five hybrids with a distinct volatile profile were analyzed by gas-chromatography-olfactometry (GC-O) and descriptive sensory analysis. Forty-nine aroma active compounds were found in a consensus by GC-O. Aldehydes were the most important group with odor activity, as well as monoterpenes, esters, alcohols and ketones. 1,8-Cineole, β-myrcene, (E,E)-2,4-nonadienal, hexanal, ethyl-2-methylbutanoate, and linalool were perceived with high intensity in most samples. Two 'Clementine' × 'Minneola' and one 'Fortune' × 'Murcott' hybrids with tangerine, sulfury and woody/spicy flavors had aroma active compounds with terpeney, fatty/vegetable and metallic/rubber descriptors. A tangerine with 'Valencia' orange in its parentage had a characteristic orange flavor, which could be explained by esters and ketones, high in fruity and floral odor intensities. A hybrid of unknown origin had a distinct fruity-non-citrus and pumpkin/fatty flavor; that sample had the lowest amount of aroma-active volatiles, with the least compounds with terpeney odors. There was no one compound characteristic of tangerine flavor. Nevertheless, each sample sensory characteristic could be explained by a set of aroma-active volatile compounds.
Aroma volatility from aqueous sucrose solutions at low and subzero temperatures.
Covarrubias-Cervantes, Marco; Champion, Dominique; Debeaufort, Frédéric; Voilley, Andrée
2004-11-17
The gas-liquid partition coefficients of ethyl acetate and ethyl hexanoate have been measured in water and aqueous sucrose solutions from 25 to -10 degrees C by dynamic headspace. Experiments were carried out on sucrose solutions at temperatures where no ice formation was possible. Results showed that when sucrose concentration increased, aroma volatility increased except for ethyl hexanoate and in the highest sucrose concentration solution (57.5%). A quasi-linear temperature decrease on aroma volatility was observed in sucrose solutions from 25 to around 4 and 0 degrees C. Then, from 0 to -10 degrees C, aroma volatility did not decrease: ethyl acetate volatility remained constant but that of ethyl hexanoate increased. Enthalpy of vaporization and activity coefficients of the aroma compounds were calculated.
Stribny, Jiri; Romagnoli, Gabriele; Pérez-Torrado, Roberto; Daran, Jean-Marc; Querol, Amparo
2016-03-12
The yeast amino acid catabolism plays an important role in flavour generation since higher alcohols and acetate esters, amino acid catabolism end products, are key components of overall flavour and aroma in fermented products. Comparative studies have shown that other Saccharomyces species, such as S. kudriavzevii, differ during the production of aroma-active higher alcohols and their esters compared to S. cerevisiae. In this study, we performed a comparative analysis of the enzymes involved in the amino acid catabolism of S. kudriavzevii with their potential to improve the flavour production capacity of S. cerevisiae. In silico screening, based on the severity of amino acid substitutions evaluated by Grantham matrix, revealed four candidates, of which S. kudriavzevii Aro10p (SkAro10p) had the highest score. The analysis of higher alcohols and esters produced by S. cerevisiae then revealed enhanced formation of isobutanol, isoamyl alcohol and their esters when endogenous ARO10 was replaced with ARO10 from S. kudriavzevii. Also, significant differences in the aroma profile were found in fermentations of synthetic wine must. Substrate specificities of SkAro10p were compared with those of S. cerevisiae Aro10p (ScAro10p) by their expression in a 2-keto acid decarboxylase-null S. cerevisiae strain. Unlike the cell extracts with expressed ScAro10p which showed greater activity for phenylpyruvate, which suggests this phenylalanine-derivative to be the preferred substrate, the decarboxylation activities measured in the cell extracts with SkAro10p ranged with all the tested substrates at the same level. The activities of SkAro10p towards substrates (except phenylpyruvate) were higher than of those for ScAro10p. The results indicate that the amino acid variations observed between the orthologues decarboxylases encoded by SkARO10 and ScARO10 could be the reason for the distinct enzyme properties, which possibly lead to the enhanced production of several flavour compounds. The knowledge on the important enzyme involved in higher alcohols biosynthesis by S. kudriavzevii could be of scientific as well as of applied interest.
Zhu, JianCai; Chen, Feng; Wang, LingYing; Niu, YunWei; Chen, HeXing; Wang, HongLin; Xiao, ZuoBing
2016-06-22
The volatile compounds of cranberries obtained from four cultivars (Early Black, Y1; Howes, Y2; Searles, Y3; and McFarlin, Y4) were analyzed by gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC-MS), and GC-flame photometric detection (FPD). The result presented that a total of thirty-three, thirty-four, thirty-four, and thirty-six odor-active compounds were identified by GC-O in the Y1, Y2, Y3, and Y4, respectively. In addition, twenty-two, twenty-two, thirty, and twenty-seven quantified compounds were demonstrated as important odorants according to odor activity values (OAVs > 1). Among these compounds, hexanal (OAV: 27-60), pentanal (OAV: 31-51), (E)-2-heptenal (OAV: 17-66), (E)-2-hexenal (OAV: 18-63), (E)-2-octenal (OAV: 10-28), (E)-2-nonenal (OAV: 8-77), ethyl 2-methylbutyrate (OAV: 10-33), β-ionone (OAV: 8-73), 2-methylbutyric acid (OAV: 18-37), and octanal (OAV: 4-24) contributed greatly to the aroma of cranberry. Partial least-squares regression (PLSR) was used to process the mean data accumulated from sensory evaluation by the panelists, odor-active aroma compounds (OAVs > 1), and samples. Sample Y3 was highly correlated with the sensory descriptors "floral" and "fruity". Sample Y4 was greatly related to the sensory descriptors "mellow" and "green and grass". Finally, an aroma reconstitution (Model A) was prepared by mixing the odor-active aroma compounds (OAVs > 1) based on their measured concentrations in the Y1 sample, indicating that the aroma profile of the reconstitution was pretty similar to that of the original sample.
Zhang, Huiying; Pu, Dandan; Sun, Baoguo; Ren, Fazheng; Zhang, Yuyu; Chen, Haitao
2018-08-30
A study was carried out to determine and compare the key aroma compounds in raw and dry porcini mushroom (Boletus edulis). The volatile fractions were prepared by solvent-assisted flavor evaporation (SAFE), and aroma extract dilution analysis (AEDA) combined with gas chromatography-mass spectrometry (GC-MS) was employed to identify the odorants. Selected aroma compounds were quantitated and odor activity values (OAVs) were calculated revealing OAVs ≥ 1 for 12 compounds in raw porcini, among which 1-octen-3-one showed the highest OAV. In addition to compounds with eight carbon atoms, 3-methylbutanal, (E,E)-2,4-decadienal and (E,E)-2,4-nonadienal were also responsible for the unique aroma profile. In dry mushroom OAVs ≥ 1 were obtained for 20 odorants. Among them, 3-(methylthio)propanal, 1-octen-3-one and pyrazines were determined as predominant odorants. Overall, drying increased complexity of volatile compounds, thus significantly changing the aroma profile of porcini, providing more desirable roasted and seasoning-like flavor and less grass-like and earthy notes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Microbial Contribution to Wine Aroma and Its Intended Use for Wine Quality Improvement.
Belda, Ignacio; Ruiz, Javier; Esteban-Fernández, Adelaida; Navascués, Eva; Marquina, Domingo; Santos, Antonio; Moreno-Arribas, M Victoria
2017-01-24
Wine is a complex matrix that includes components with different chemical natures, the volatile compounds being responsible for wine aroma quality. The microbial ecosystem of grapes and wine, including Saccharomyces and non- Saccharomyces yeasts, as well as lactic acid bacteria, is considered by winemakers and oenologists as a decisive factor influencing wine aroma and consumer's preferences. The challenges and opportunities emanating from the contribution of wine microbiome to the production of high quality wines are astounding. This review focuses on the current knowledge about the impact of microorganisms in wine aroma and flavour, and the biochemical reactions and pathways in which they participate, therefore contributing to both the quality and acceptability of wine. In this context, an overview of genetic and transcriptional studies to explain and interpret these effects is included, and new directions are proposed. It also considers the contribution of human oral microbiota to wine aroma conversion and perception during wine consumption. The potential use of wine yeasts and lactic acid bacteria as biological tools to enhance wine quality and the advent of promising advice allowed by pioneering -omics technologies on wine research are also discussed.
Contribution of 2-methyl-3-furanthiol to the cooked meat-like aroma of fermented soy sauce.
Meng, Qi; Kitagawa, Riho; Imamura, Miho; Katayama, Hiroshi; Obata, Akio; Sugawara, Etsuko
2017-01-01
The cooked meat-like aroma compound, 2-methyl-3-furanthiol (2M3F), was detected in fermented soy sauce (FSS) by GC-olfactometry and GC-MS. 2M3F was present in FSS at a concentration considerably greater than the perception threshold, and the 2M3F concentration increased with heating temperature. Sensory analysis indicated that with the addition of only 0.2 μg/L of 2M3F to the soy sauce sample, the cooked meat-like aroma is significantly stronger than that of sample without the addition of 2M3F. Hence, 2M3F contributes to the cooked meat-like aroma of FSS, which constitutes the key aroma component of FSS. In addition, 2M3F was generated from the addition of ribose and cysteine in FSS by heating at 120 °C, but it was not detected in a phosphate buffer under the same condition. Furthermore, 2M3F was not detected in acid-hydrolyzed vegetable-protein-mixed soy sauce (ASS) and heated ASS. These results indicated that fermentation by micro-organisms facilitates the generation of 2M3F in FSS.
Amitsuka, Takahiko; Okamura, Maya; Shiibashi, Hiroko; Yamamoto, Naoto; Saito, Tsukasa; Nammoku, Takashi; Tsuzuki, Satoshi; Inoue, Kazuo; Fushiki, Tohru
2014-01-01
Japanese cuisine has provided satisfying meals by fully utilizing the characteristic aroma and taste of katsuodashi (dried bonito broth), though it is not rich in sugars or fats. Katsuodashi is a very basic and indispensable element in Japanese cuisine, and is a hot water extract of katsuobushi (dried bonito). It has been reported that a dextrin solution containing natural dried bonito broth has a significant reinforcement effect, and has been suggested that the olfactory stimulation is important for the reinforcement effect. We examined various source materials for broth and identified an optimal method of aroma extraction by two-bottle choice and conditioned place preference tests in mice. By two-bottle choice tests, a solution containing arabushi (a type of katsuobushi) aroma extract obtained by a supercritical CO2 extraction method showed a significantly high preference. The conditioned place preference test showed the dashi-taste solution with arabushi supercritical CO2 extract had a reinforcement effect. Our results suggest that the arabushi extract obtained by supercritical CO2 extraction contains components responsible for preference and reinforcement effects in mice; it could become conducive to making Japanese cuisine more satisfying and palatable.
High-quality Italian rice cultivars: chemical indices of ageing and aroma quality.
Griglione, Alessandra; Liberto, Erica; Cordero, Chiara; Bressanello, Davide; Cagliero, Cecilia; Rubiolo, Patrizia; Bicchi, Carlo; Sgorbini, Barbara
2015-04-01
The volatile fractions of six Italian high-quality rice cultivars were investigated by HS-SPME-GC-MS to define fingerprinting and identify chemical markers and/or indices of ageing and aroma quality. In particular, four non-aromatic (Carnaroli, Carnise, Cerere and Antares) and two aromatic (Apollo and Venere) rices, harvested in 2010 and 2011, were monitored over 12months. Twenty-five aroma components were considered and, despite considerable inter-annual variability, some of them showed similar trends over time, including 2-(E)-octenal as a marker of ageing for all cultivars, and heptanal, octanal and 2-ethyl hexanol as cultivar-specific indicators. The area ratios 2-acetyl-1-pyrroline/1-octen-3-ol, for Venere, and 3-methyl-1-butanol/2-methyl-1-butanol, for Apollo, were also found to act as ageing indices. Additional information on release of key-aroma compounds was also obtained from quantitation and its dependence on grain shape and chemical composition. Heptanal/1-octen-3-ol and heptanal/octanal ratios were also defined as characterising the aroma quality indices of the six Italian rice cultivars investigated. Copyright © 2014 Elsevier Ltd. All rights reserved.
Winter, Gal; Henschke, Paul A; Higgins, Vincent J; Ugliano, Maurizio; Curtin, Chris D
2011-11-02
In winemaking, nutrient supplementation is a common practice for optimising fermentation and producing quality wine. Nutritionally suboptimal grape juices are often enriched with nutrients in order to manipulate the production of yeast aroma compounds. Nutrients are also added to active dry yeast (ADY) rehydration media to enhance subsequent fermentation performance. In this study we demonstrate that nutrient supplementation at rehydration also has a significant effect on the formation of volatile sulfur compounds during wine fermentations. The concentration of the 'fruity' aroma compounds, the polyfunctional thiols 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA), was increased while the concentration of the 'rotten egg' aroma compound, hydrogen sulfide (H2S), was decreased. Nutrient supplementation of the rehydration media also changed the kinetics of H2S production during fermentation by advancing onset of H2S production. Microarray analysis revealed that this was not due to expression changes within the sulfate assimilation pathway, which is known to be a major contributor to H2S production. To gain insight into possible mechanisms responsible for this effect, a component of the rehydration nutrient mix, the tri-peptide glutathione (GSH) was added at rehydration and studied for its subsequent effects on H2S formation. GSH was found to be taken up during rehydration and to act as a source for H2S during the following fermentation. These findings represent a potential approach for managing sulfur aroma production through the use of rehydration nutrients.
Frank, Stephanie; Wollmann, Nadine; Schieberle, Peter; Hofmann, Thomas
2011-08-24
By application of aroma extract dilution analysis (AEDA) on the volatile fraction isolated from a Dornfelder red wine, 31 odor-active compounds were identified by means of HRGC-MS and comparison with reference compounds. A total of 27 odorants, judged with high FD factors by means of AEDA, was quantitated by means of stable isotope dilution assays, and acetaldehyde was determined enzymatically. In addition, 36 taste-active compounds were analyzed by means of HPLC-UV, HPLC-MS/MS, and ion chromatography. The quantitative data obtained for the identified aroma and taste compounds enabled for the first time the reconstruction of the overall flavor of the red wine. Sensory evaluation of both the aroma and taste profiles of the authentic red wine and the recombinate revealed that Dornfelder red wine was closely mimicked. Moreover, it was demonstrated that the high molecular weight fraction of red wine is essential for its astringent taste impression. By comparison of the overall odor of the aroma recombinate in ethanol with that of the total flavor recombinate containing all tastants, it was shown for the first time that the nonvolatile tastants had a strong influence on the intensity of certain aroma qualities.
Munafo, John P; Didzbalis, John; Schnell, Raymond J; Steinhaus, Martin
2016-06-01
Thirty-four aroma-active compounds, previously identified with high flavor dilution factors by application of an aroma extract dilution analysis, were quantified in tree-ripened fruits of mango (Mangifera indica L. 'Haden'). From the results, the odor activity value (OAV) was calculated for each compound as the ratio of its concentration in the mangoes to its odor threshold in water. OAVs > 1 were obtained for 24 compounds, among which ethyl 2-methylbutanoate (fruity; OAV 2100), (3E,5Z)-undeca-1,3,5-triene (pineapple-like; OAV 1900), ethyl 3-methylbutanoate (fruity; OAV 1600), and ethyl butanoate (fruity; OAV 980) were the most potent, followed by (2E,6Z)-nona-2,6-dienal (cucumber-like), ethyl 2-methylpropanoate (fruity), (E)-β-damascenone (cooked apple-like), ethyl hexanoate (fruity), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel-like), 3-methylbut-2-ene-1-thiol (sulfurous), γ-decalactone (peach-like), β-myrcene (terpeny), (3Z)-hex-3-enal (green), 4-methyl-4-sulfanylpentan-2-one (tropical fruit-like), and ethyl octanoate (fruity). Aroma simulation and omission experiments revealed that these 15 compounds, when combined in a model mixture in their natural concentrations, were able to mimic the aroma of the fruits.
Effect of cofermentation of grape varieties on aroma profiles of la mancha red wines.
García-Carpintero, Eva Gómez; Sánchez-Palomo, Eva; Gómez Gallego, Manuel A; González-Viñas, Miguel A
2011-10-01
The effect of winemaking using blends of red grape varieties cultivated in La Mancha region (Spain) on the aroma profile of wines was researched by chemical characterization. Free and glycosidically bound aroma compounds were isolated by solid phase extraction using dichloromethane and ethyl acetate, respectively, as solvents in elution and then analyzed by gas chromatography-mass spectrometry. Free and bound volatile compounds were analyzed in Cencibel, Bobal, and Moravia Agria monovarietal wines, and in 3 wines obtained with the blending of grapes: Cencibel (50%) + Bobal (50%); Cencibel (50%) + Moravía Agria (50%); Cencibel (33%) + Bobal (33%) + Moravía Agria (33%). Aroma compounds were studied in terms of odor activity values (OAVs). Ninety free aroma compounds and sixty-five bound aroma compounds were identified and quantified. The odor activity values for the different compounds were classified into 7 odorant series. The fruity and sweet series contributed most strongly to the aroma profile of all wines, independently of the winemaking technique used. In general, co-winemaking wines present a more complex chemical profile than monovarietal wines. Practical Application: Some grape varieties could benefit from this process with the presence of other varieties that might have an excess of aroma compounds. In this study, the wines were elaborated by blending different grape varieties together; this process implies co-maceration and co-fermentation steps. The co-winemaking technique could benefit from additional molecules provided by the other varieties, which results in a more complex formation than in the case of monovarietal wines. This technique provides a viable alternative to traditional winemaking methods for improving and enhancing the sensory profile of elaborated wines. © 2011 Institute of Food Technologists®
Effect of fat content on aroma generation during processing of dry fermented sausages.
Olivares, Alicia; Navarro, José Luis; Flores, Mónica
2011-03-01
Dry fermented sausages with different fat contents were produced (10%, 20% and 30%). The effect of fat content and ripening time on sensory characteristics, lipolysis, lipid oxidation and volatile compounds generation was studied. Also, the key aroma components were identified using gas chromatography (GC) and olfactometry. High fat sausages showed the highest lipolysis and lipid oxidation, determined by free fatty acid content and thiobarbituric acid reactive substances (TBARS), respectively. A total of 95 volatile compounds were identified using SPME, GC and mass spectrometry (MS). Fat reduction decreased the generation of lipid derived volatile compounds during processing while those generated from bacterial metabolism increased, although only at the first stages of processing. The consumers preference in aroma and overall quality of high and medium fat sausages was related to the aroma compounds hexanal, 2-nonenal, 2,4-nonadienal, ethyl butanoate and 1-octen-3-ol which contributed green, medicinal, tallowy, fruity and mushroom notes. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.
Zhang, Rong; Wu, Qun; Xu, Yan
2014-08-20
Nonvolatile compounds play important roles in the quality of alcoholic beverages. In our previous work, a type of cyclooctapeptide lichenysin was newly identified in Chinese strong-aroma type liquor. In this work, it was found that lichenysin could selectively affect aroma volatility in strong-aroma type (Jiannanchun) liquor. Interaction of lichenysin and volatile phenolic compounds (off-odors in strong-aroma type liquor) was characterized using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). HS-SPME results indicated that lichenysin very efficiently suppressed the volatility of phenolic compounds by 36-48% (P < 0.05). Thermodynamic analysis showed that the binding process was mainly mediated by hydrogen bonding. Furthermore, the mixture of lichenysin and 4-ethylguaiacol revealed intermolecular cross peaks between the aH (Val) of lichenysin and the 1H of 4-ethylguaiacol, by using nuclear Overhauser effect spectroscopy. This study will help to further understand the interaction mechanisms between flavor and nonvolatile matrix components in Chinese liquors.
Potential of Glycosidase from Non-Saccharomyces Isolates for Enhancement of Wine Aroma.
Hu, Kai; Qin, Yi; Tao, Yong-Sheng; Zhu, Xiao-Lin; Peng, Chuan-Tao; Ullah, Niamat
2016-04-01
The aim of this work was to rapidly screen indigenous yeasts with high levels of β-glucosidase activity and assess the potential of glycosidase extracts for aroma enhancement in winemaking. A semiquantitative colorimetric assay was applied using 96-well plates to screen yeasts from 3 different regions of China. Isolates with high β-glucosidase activity were confirmed by the commonly used pNP assay. Among 493 non-Saccharomyces isolates belonging to 8 generas, 3 isolates were selected for their high levels of β-glucosidase activity and were identified as Hanseniaspora uvarum, Pichia membranifaciens, and Rhodotorula mucilaginosa by sequence analysis of the 26S rDNA D1/D2 domain. β-Glucosidase in the glycosidase extract from H. uvarum strain showed the highest activity in winemaking conditions among the selected isolates. For aroma enhancement in winemaking, the glycosidase extract from H. uvarum strain exhibited catalytic specificity for aromatic glycosides of C13 -norisoprenoids and some terpenes, enhancing fresh floral, sweet, berry, and nutty aroma characteristics in wine. © 2016 Institute of Food Technologists®
Effect of cold storage and packaging material on the major aroma components of sweet cream butter.
Lozano, Patricio R; Miracle, Evan R; Krause, Andrea J; Drake, Maryanne; Cadwallader, Keith R
2007-09-19
The major aroma compounds of commercial sweet cream AA butter quarters were analyzed by GC-olfactometry and GC-MS combined with dynamic headspace analysis (DHA) and solvent-assisted flavor evaporation (SAFE). In addition, the effect of long-term storage (0, 6, and 12 months) and type of wrapping material (wax parchment paper vs foil) on the aroma components and sensory properties of these butters kept under refrigerated (4 degrees C) and frozen (-20 degrees C) storage was evaluated. The most intense compounds in the aroma of pasteurized AA butter were butanoic acid, delta-octalactone, delta-decalactone, 1-octen-3-one, 2-acetyl-1-pyrroline, dimethyl trisulfide, and diacetyl. The intensities of lipid oxidation volatiles and methyl ketones increased as a function of storage time. Refrigerated storage caused greater flavor deterioration compared with frozen storage. The intensity and relative abundance of styrene increased as a function of time of storage at refrigeration temperature. Butter kept frozen for 12 months exhibited lower styrene levels and a flavor profile more similar to that of fresh butter compared to butter refrigerated for 12 months. Foil wrapping material performed better than wax parchment paper in preventing styrene migration into butter and in minimizing the formation of lipid oxidation and hydroxyl acid products that contribute to the loss of fresh butter flavor.
Capobiango, Michely; Mastello, Raíssa Bittar; Chin, Sung-Tong; Oliveira, Evelyn de Souza; Cardeal, Zenilda de Lourdes; Marriott, Philip John
2015-04-03
Fruit spirits have been produced and consumed throughout the world for centuries. However, the aroma composition of banana spirits is still poorly characterised. We have investigated the aroma-impact compounds of the banana Terra spirit for the first time, using multidimensional gas chromatography (MDGC and GC × GC) in a multi-hyphenated system - i.e., coupled to flame ionisation detection (FID), mass spectrometry (MS), and olfactometry (O). Solid-phase microextraction (SPME) was used to isolate the headspace aroma compounds of the banana spirit. The detection frequency (DF) technique was applied and aroma regions, detected in the first column separation at >60% Nasal Impact Frequency (NIF), were screened as target potent odour regions in the sample. Using a polar/non-polar phase column set, the potent odour regions were further subjected to MDGC separation with simultaneous O and MS detection for correlation of the aroma perception with MS data for individual resolved aroma-impact compounds. GC-O analysis enabled 18 aroma-impact regions to be located as providing volatiles of interest for further study; for example, those comprising perceptions of flower, whisky, green, amongst others. Compounds were tentatively identified through MS data matching and retention indices in both first and second dimensions. The principal volatile compounds identified in this work, which are responsible for the characteristic aroma of the banana spirit, are 3-methylbutan-1-ol, 3-methylbutan-1-ol acetate, 2-phenylethyl acetate and phenylethyl alcohol. This is the first such study to reveal the major aroma compounds that contribute to banana spirit aroma. Copyright © 2015 Elsevier B.V. All rights reserved.
Lasekan, Ola; Muniady, Megala; Lin, Mee; Dabaj, Fatma
2018-04-24
Food flavor appreciation is one of the first signals along with food appearance and texture encountered by consumers during eating of food. Also, it is well known that flavor can strongly influence consumer's acceptability judgment. The increase in the consumption of snail meat across the world calls for the need to research into the aroma compounds responsible for the distinctive aroma notes of processed snail meat. The odorants responsible for the unique aroma notes in thermally processed giant African snail meats were evaluated by means of aroma extract dilution analysis (AEDA), gas chromatography-olfactometry (GC-O) and odor activity values (OAVs) respectively. Results revealed significant differences in the aroma profiles of the raw and thermally processed snail meats. Whilst the aroma profile of the raw snail meat was dominated with the floral-like β-ionone and β-iso-methyl ionone, sweaty/cheesy-like butanoic acid, and the mushroom-like 1-octen-3-one, the boiled and fried samples were dominated with the thermally generated odorants like 2-methylpyrazine, 2,5-dimethylpyrazine, 2-acetylthiazole and 2-acetylpyridine. Finally, results have shown that sotolon, 2-acetyl-1-pyrroline, 2-furanmethanethiol, 2-methylbutanal, 1-octen-3-one, octanal, furanone, 2-methoxyphenol, 2-acetylpyridine, 2-acetylthiazole, and 2-methylpyrazine contributed to the overall aroma of the thermally processed snail meat.
Christlbauer, Monika; Schieberle, Peter
2011-12-28
Although the aroma compounds of meat processed as such have been studied previously, data on complete homemade dishes containing beef and pork meat were scarcely studied. Recently, 38 odor-active compounds were characterized in beef and pork vegetable gravies using GC-olfactometry. In the present investigation, the most odor-active compounds were quantitated in a freshly prepared stewed beef vegetable gravy (BVG) as well as a stewed pork vegetable gravy (PVG) by means of stable isotope dilution assays. Calculation of odor activity values (OAVs; ratio of concentration to odor threshold) revealed 3-mercapto-2-methylpentan-1-ol, (E,E)-2,4-decadienal, (E,Z)-2,6-nonadienal, (E)-2-decenal, (E)-2-undecanal, and 3-hydroxy-4,5-dimethyl-2(5H)-furanone as the most potent odorants in both gravies. However, significantly different OAVs were found for 12-methyltridecanal, which was much higher in the BVG, whereas (E,Z)-2,4-decadienal showed a clearly higher OAV in the PVG. Aroma recombination experiments performed on the basis of the actual concentrations of the odorants in both gravies revealed a good similarity of the aromas of both model mixtures containing all odorants with OAVs > 1 with those of the original gravies.
HS-GC-MS-O analysis and sensory acceptance of passion fruit during maturation.
Janzantti, Natália S; Monteiro, Magali
2017-07-01
The odor-active compounds of the conventional yellow passion fruit influence the aroma during ripeness and the acceptance of the juice. HS-GC-MS and GC-OSME analysis and sensory acceptance of the conventional passion fruit from different stages of ripeness were studied to characterize the aroma of the fruit and, aroma and flavor of the juice. Ethyl butanoate, ethyl hexanoate and propyl acetate showed high odoriferous importance in the passion fruit from the 1/3 yellow skin color. C is -3-hexen-1-ol and diethyl carbonate plus the odor-active compounds from the 1/3 yellow skin color showed high odoriferous importance in the 2/3 yellow skin color, and butyl acetate and alpha-terpineol plus the same odor-active compounds from 2/3 were the most important for the 3/3 yellow skin color. There was difference in the aroma and flavor of the juices, with higher acceptance means for the passion fruit from the 3/3 yellow skin color. The passion fruit volatile compounds peak area, odoriferous intensity and sensory acceptance of the juices increased during ripeness, indicating that the conventional passion fruit characteristic aroma is completely expressed when the fruit reaches the whole maturation, at the 3/3 yellow skin color.
Identification of novel aroma-active thiols in pan-roasted white sesame seeds.
Tamura, Hitoshi; Fujita, Akira; Steinhaus, Martin; Takahisa, Eisuke; Watanabe, Hiroyuki; Schieberle, Peter
2010-06-23
Screening for aroma-active compounds in an aroma distillate obtained from freshly pan-roasted sesame seeds by aroma extract dilution analysis revealed 32 odorants in the FD factor range of 2-2048, 29 of which could be identified. The highest FD factors were found for the coffee-like smelling 2-furfurylthiol, the caramel-like smelling 4-hydroxy-2,5-dimethyl-3(2H)-furanone, the coffee-like smelling 2-thenylthiol (thiophen-2-yl-methylthiol), and the clove-like smelling 2-methoxy-4-vinylphenol. In addition, 9 odor-active thiols with sulfurous, meaty, and/or catty, black-currant-like odors were identified for the first time in roasted sesame seeds. Among them, 2-methyl-1-propene-1-thiol, (Z)-3-methyl-1-butene-1-thiol, (E)-3-methyl-1-butene-1-thiol, (Z)-2-methyl-1-butene-1-thiol, (E)-2-methyl-1-butene-1-thiol, and 4-mercapto-3-hexanone were previously unknown as food constituents. Their structures were confirmed by comparing their mass spectra and retention indices as well as their sensory properties with those of synthesized reference compounds. The relatively unstable 1-alkene-1-thiols represent a new class of food odorants and are suggested as the key contributors to the characteristic, but quickly vanishing, aroma of freshly ground roasted sesame seeds.
NASA Astrophysics Data System (ADS)
Zuidam, Nicolaas Jan; Nedović, Viktor A.
Consumers prefer food products that are tasty, healthy and convenient. Encapsulation, a process to entrap active agents into particles, is an important way to meet these demands by delivering food ingredients at the right time and place. For example, this technology may allow taste and aroma differentiation, mask bad tasting or bad smelling components, stabilize food ingredients and/or increase their bioavailability. Encapsulation may also be used to immobilize cells or enzymes in the production of food materials or products, as in fermentation or metabolite production.
Release of wine monoterpenes from natural precursors by glycosidases from Oenococcus oeni
Michlmayr, Herbert; Nauer, Stefan; Brandes, Walter; Schümann, Christina; Kulbe, Klaus D.; del Hierro, Andrés M.; Eder, Reinhard
2012-01-01
It is now well established that wine-related lactic acid bacteria (LAB), especially Oenococcus oeni, possess glycosidase activities that positively contribute to wine aroma through the hydrolysis of grape-derived aroma precursors. In our recent studies, we have identified and characterised several LAB glycosidases with potential in these terms. Here, we report that both a glucosidase and an arabinosidase from O. oeni can release high amounts of monoterpenes from natural substrates under optimal conditions, indicating that these intracellular enzymes might play a significant role in the hydrolysis of aroma precursors during malolactic fermentation. The enzymes from O. oeni exhibited broad substrate specificities (release of both primary/tertiary terpene alcohols) and were even active in grape juice. Further, a sensory panel clearly preferred enzyme-treated Riesling wines over the controls and affirmed that the glycosidases from O. oeni could improve the typical Riesling aroma.
USDA-ARS?s Scientific Manuscript database
Although a total of 150 volatiles were detected by GC-MS, only 49 aroma active peaks were found in a consensus by the three panelists. Aldehydes were the most important group with odor activity, as well as monoterpenes, esters, alcohols and ketones. 1,8-Cineole, ·-myrcene, (E,E)-2,4-nonadienal, hexa...
Key Aroma Compounds in Lippia dulcis (Dushi Button).
Schmitt, Rainer; Cappi, Michael; Pollner, Gwendola; Greger, Veronika
2018-03-14
An aroma extract dilution analysis (AEDA) applied on aroma extracts prepared from the edible flower Dushi Button ( Lippia dulcis) resulted in the detection of 34 odor-active compounds. The highest flavor dilution (FD) factors were determined for methyl 2-methylbutanoate, ethyl 2-methylbutanoate, 4-mercapto-4-methyl-2-pentanone, an unknown caramel-like compound, and vanillin. Quantitative measurements performed by application of stable isotope dilution assays (SIDA), followed by a calculation of odor activity values (OAVs), resulted in the revelation of 4-mercapto-4-methyl-2-pentanone, linalool, myrcene, ethyl 2-methylbutanoate, methyl 2-methylbutanoate, and ( Z)-3-hexenal as important contributors to the flavor of Dushi Buttons.
Steinhaus, Martin; Sinuco, Diana; Polster, Johannes; Osorio, Coralia; Schieberle, Peter
2009-04-08
Seventeen aroma-active volatiles, previously identified with high flavor dilution factors in fresh, pink Colombian guavas (Psidium guajava L.), were quantified by stable isotope dilution assays. On the basis of the quantitative data and odor thresholds in water, odor activity values (OAV; ratio of concentration to odor threshold) were calculated. High OAVs were determined for the green, grassy smelling (Z)-3-hexenal and the grapefruit-like smelling 3-sulfanyl-1-hexanol followed by 3-sulfanylhexyl acetate (black currant-like), hexanal (green, grassy), ethyl butanoate (fruity), acetaldehyde (fresh, pungent), trans-4,5-epoxy-(E)-2-decenal (metallic), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel, sweet), cinnamyl alcohol (floral), methyl (2S,3S)-2-hydroxy-3-methylpentanoate (fruity), cinnamyl acetate (floral), methional (cooked potato-like), and 3-hydroxy-4,5-dimethyl-2(5H)-furanone (seasoning-like). Studies on the time course of odorant formation in guava puree or cubes, respectively, showed that (Z)-3-hexenal was hardly present in the intact fruits, but was formed very quickly during crushing. The aroma of fresh guava fruit cubes, which showed a very balanced aroma profile, was successfully mimicked in a reconstitute consisting of 13 odorants in their naturally occurring concentrations. Omission tests, in which single odorants were omitted from the entire aroma reconstitute, revealed (Z)-3-hexenal, 3-sulfanyl-1-hexanol, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, 3-sulfanylhexyl acetate, hexanal, ethyl butanoate, cinnamyl acetate, and methional as the key aroma compounds of pink guavas.
Effect of sweet orange aroma on experimental anxiety in humans.
Goes, Tiago Costa; Antunes, Fabrício Dias; Alves, Péricles Barreto; Teixeira-Silva, Flavia
2012-08-01
The objective of this study was to evaluate the potential anxiolytic effect of sweet orange (Citrus sinensis) aroma in healthy volunteers submitted to an anxiogenic situation. Forty (40) male volunteers were allocated to five different groups for the inhalation of sweet orange essential oil (test aroma: 2.5, 5, or 10 drops), tea tree essential oil (control aroma: 2.5 drops), or water (nonaromatic control: 2.5 drops). Immediately after inhalation, each volunteer was submitted to a model of anxiety, the video-monitored version of the Stroop Color-Word Test (SCWT). Psychologic parameters (state-anxiety, subjective tension, tranquilization, and sedation) and physiologic parameters (heart rate and gastrocnemius electromyogram) were evaluated before the inhalation period and before, during, and after the SCWT. Unlike the control groups, the individuals exposed to the test aroma (2.5 and 10 drops) presented a lack of significant alterations (p>0.05) in state-anxiety, subjective tension and tranquillity levels throughout the anxiogenic situation, revealing an anxiolytic activity of sweet orange essential oil. Physiologic alterations along the test were not prevented in any treatment group, as has previously been observed for diazepam. Although more studies are needed to find out the clinical relevance of aromatherapy for anxiety disorders, the present results indicate an acute anxiolytic activity of sweet orange aroma, giving some scientific support to its use as a tranquilizer by aromatherapists.
Identification of muscadine wine sulfur volatiles: pectinase versus skin-contact maceration.
Gürbüz, Ozan; Rouseff, June; Talcott, Stephen T; Rouseff, Russell
2013-01-23
Muscadine grapes ( Vitis rotundifolia ) are widely grown in the southern United States, as the more common Vitis vinifera cannot be cultivated due to Pierce's disease. There is interest to determine if certain cultivars can be used for good-quality wine production. This study compared the effect of pectolytic enzyme pretreatment with conventional skin-contact fermentation on Muscadine (Noble, Vitis rotundifolia ) wine major volatiles, aroma active volatiles, and volatile sulfur compounds (VSCs). Volatile composition, aroma activity, and VSCs in the initial juice and wine samples after 3 years were determined by gas chromatography in combination with mass spectrometry (GC-MS), olfactory detection (GC-O), and pulsed flame photometric detection (GC-PFPD). Forty-three nonethanol MS volatiles were common to all samples. Total ion chromatogram (TIC) MS peak area increased 91% in the skin-contact wines from the initial juice but only 24% in the enzyme-treated wine. Thirty-one VSCs were detected. Twenty-four sulfur volatiles were identified by matching their retention characteristics on polar and nonpolar columns with those of standards or MS spectrum matches. Six of these (sulfur dioxide, 1-propanethiol, 3-mercapto-2-pentanone, 3-mercapto-2-butanone, 2,8-epithio-cis-p-menthane, and 1-p-menthene-8-thiol) were reported for the first time in muscadine wine. Five additional VSCs were tentatively identified by matching standardized retention values with literature values, and two remain unidentified. Total sulfur peak areas increased 400% in the skin-contact wine and 560% in the enzyme-treated wine compared to the initial juice. There were 42 aroma-active volatiles in the initial juice, 48 in the skin-contact wine, and 66 in the enzyme-treated wine. Eleven aroma-active volatiles in the skin-contact wine and 16 aroma volatiles in the enzyme-treated wine appear to be due to sulfur volatiles. Pectolytic enzyme-treated wines contained less total volatiles but more sulfur and aroma-active volatiles than the traditional skin-contact wine.
Toxicological and analytical assessment of e-cigarette refill components on airway epithelia.
Singh, Jasjot; Luquet, Emilie; Smith, David P T; Potgieter, Herman J; Ragazzon, Patricia
2016-12-01
There are over 2.6 million users of e-cigarettes in the United Kingdom alone as they have been promoted as a safer alternative to traditional cigarettes. The addition of flavours and aromas has also proven to be popular with younger generations. In this review, we survey the range of studies in the short timeframe since e-cigarettes reached the market to draw attention to the health associated risks and benefits of their introduction. We complement this review with a case study reporting on the composition of selected e-cigarette refills with particular emphasis on the toxicological activity of its components on lung cells.
Diversity among mandarin varieties and natural sub-groups in aroma volatiles compositions.
Goldenberg, Livnat; Yaniv, Yossi; Doron-Faigenboim, Adi; Carmi, Nir; Porat, Ron
2016-01-15
Mandarins constitute a large, diverse and important group within the Citrus family. Here, we analysed the aroma volatiles compositions of 13 mandarin varieties belonging to seven genetically different natural sub-groups that included common mandarin (C. reticulata Blanco), clementine (C. clementina Hort. ex. Tan), satsuma (C. unshiu Marcovitch), Mediterranean mandarin (C. deliciosa Tenore), King mandarin (C. nobilis Loureiro), and mandarin hybrids, such as tangor (C. reticulata × C. sinensis) and tangelo (C. reticulata × C. paradisi). We found that mandarin varieties among tangors ('Temple', 'Ortanique'), tangelos ('Orlando', 'Minneola') and King ('King') had more volatiles, at higher levels, and were richer in sesquiterpene and ester volatiles, than other varieties belonging to the sub-groups common mandarin ('Ora', 'Ponkan'), clementine ('Oroval', 'Caffin'), satsuma ('Okitsu', 'Owari') and Mediterranean mandarin ('Avana', 'Yusuf Efendi'). Hierarchical clustering and principal component analysis accurately differentiated between mandarin varieties and natural sub-groups according to their aroma-volatile profiles. Although we found wide differences in aroma-volatiles compositions among varieties belonging to different natural sub-groups, we detected only minor differences among varieties within any natural sub-group. These findings suggest that selecting appropriate parents would enable manipulation of aroma-volatile compositions in future mandarin breeding programmes. © 2015 Society of Chemical Industry.
Xu, Yan; Fan, Wenlai; Qian, Michael C
2007-04-18
The aroma-active compounds in two apple ciders were identified using gas chromatography-olfactometry (GC-O) and GC-mass spectrometry (MS) techniques. The volatile compounds were extracted using solvent-assisted flavor evaporation (SAFE) and headspace solid-phase microextraction (HS-SPME). On the basis of odor intensity, the most important aroma compounds in the two apple cider samples were 2-phenylethanol, butanoic acid, octanoic acid, 2-methylbutanoic acid, 2-phenylethyl acetate, ethyl 2-methylbutanoate, ethyl butanoate, ethyl hexanoate, 4-ethylguaiacol, eugenol, and 4-vinylphenol. Sulfur-containing compounds, terpene derivatives, and lactones were also detected in ciders. Although most of the aroma compounds were common in both ciders, the aroma intensities were different. Comparison of extraction techniques showed that the SAFE technique had a higher recovery for acids and hydroxy-containing compounds, whereas the HS-SPME technique had a higher recovery for esters and highly volatile compounds.
Usami, Atsushi; Motooka, Ryota; Takagi, Ayumi; Nakahashi, Hiroshi; Okuno, Yoshiharu; Miyazawa, Mitsuo
2014-01-01
The chemical composition of the volatile oil extracted from the aerial parts of Brassica rapa cv. "yukina" was analyzed using GC-MS, GC-PFPD, and GC-O. A total of 50 compounds were identified. The most prominent constituents were (E)-1,5-heptadiene (40.27%), 3-methyl-3-butenenitrile (25.97%) and 3-phenylpropanenitrile (12.41%). With regard to aroma compounds, 12 compounds were identified by GC-O analysis. The main aroma-active compounds were dimethyl tetrasulfide (sulphury-cabbage, FD = 64), 3-phenylpropanenitrile (nutty, FD = 64), 3-methylindole (pungent, FD = 64), and methional (potato, FD = 32). The antioxidant activity of the aroma-active compounds of the oil was determined using an oxygen radical absorbance capacity (ORAC) assay using fluorescein as the fluorescent probe. The ORAC values were found to be 785 ± 67 trolox equivalents (μmol TE/g) for B. rapa cv. "yukina" oil. The results obtained showed that the volatile oil extracted from the aerial parts is a good dietary source of antioxidants.
Bueno, Mónica; Campo, M Mar; Cacho, Juan; Ferreira, Vicente; Escudero, Ana
2014-12-01
The objective of the work is to understand the role of the different aroma compounds in the perception of the local "lamb flavour" concept. For this, a set of 70 loins (Longissimus dorsi) from approximately seventy day-old Rasa Aragonesa male lambs were grilled and the aroma-active chemicals released during the grilling process were trapped and analyzed. Carbonyl compounds were derivatizated and determined by GC-NCI-MS, whereas other aromatic compounds were directly analyzed by GC-GC-MS. Odour activity values (OAVs) were calculated using their odour threshold values in air. Lamb flavour could be satisfactory explained by a partial least-squares model (74% explained variance in cross-validation) built by the OAVs of 32 aroma-active chemical compounds. The model demonstrates that the lamb flavour concept is the result of a complex balance. Its intensity critically and positively depends to the levels of volatile fatty acids and several dimethylpyrazines while is negatively influenced by the different alkenals and alkadienals. (E,E)-2,4-decadienal and (E)-2-nonenal showed top OAVs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Steinhaus, Martin; Sinuco, Diana; Polster, Johannes; Osorio, Coralia; Schieberle, Peter
2008-06-11
The volatiles present in fresh, pink-fleshed Colombian guavas ( Psidium guajava, L.), variety regional rojo, were carefully isolated by solvent extraction followed by solvent-assisted flavor evaporation, and the aroma-active areas in the gas chromatogram were screened by application of the aroma extract dilution analysis. The results of the identification experiments in combination with the FD factors revealed 4-methoxy-2,5-dimethyl-3(2 H)-furanone, 4-hydroxy-2,5-dimethyl-3(2 H)-furanone, 3-sulfanylhexyl acetate, and 3-sulfanyl-1-hexanol followed by 3-hydroxy-4,5-dimethyl-2(5 H)-furanone, ( Z)-3-hexenal, trans-4,5-epoxy-( E)-2-decenal, cinnamyl alcohol, ethyl butanoate, hexanal, methional, and cinnamyl acetate as important aroma contributors. Enantioselective gas chromatography revealed an enantiomeric distribution close to the racemate in 3-sulfanylhexyl acetate as well as in 3-sulfanyl-1-hexanol. In addition, two fruity smelling diastereomeric methyl 2-hydroxy-3-methylpentanoates were identified as the ( R,S)- and the ( S,S)-isomers, whereas the ( S,R)- and ( R,R)-isomers were absent. Seven odorants were identified for the first time in guavas, among them 3-sulfanylhexyl acetate, 3-sulfanyl-1-hexanol, 3-hydroxy-4,5-dimethyl-2(5 H)-furanone, trans-4,5-epoxy-( E)-2-decenal, and methional were the most odor-active.
Lee, Changgook; Lee, Younghoon; Lee, Jae-Gon; Buglass, Alan J
2013-06-21
A simultaneous multiple solid-phase microextraction-single shot-gas chromatography mass spectrometry (smSPME-ss-GC/MS) method has been developed for headspace analysis. Up to four fibers (50/30 μm DVB/CAR/PDMS) were used simultaneously for the extraction of aroma components from the headspace of a single sample chamber in order to increase sensitivity of aroma extraction. To avoid peak broadening and to maximize resolution, a simple cryofocusing technique was adopted during sequential thermal desorption of multiple SPME fibers prior to a 'single shot' chromatographic run. The method was developed and validated on a model flavor mixture, containing 81 known pure components. With the conditions of 10 min of incubation and 30 min of extraction at 50 °C, single, dual, triple and quadruple SPME extractions were compared. The increase in total peak area with increase in the number of fibers showed good linearity (R(2)=0.9917) and the mean precision was 12.0% (RSD) for the total peak sum, with quadruple simultaneous SPME extraction. Using a real sample such as commercial coffee granules, aroma profile analysis was conducted using single, dual, triple and quadruple SPME fibers. The increase in total peak intensity again showed good linearity with increase in the number of SPME fibers used (R(2)=0.9992) and the precision of quadruple SPME extraction was 9.9% (RSD) for the total peak sum. Copyright © 2013 Elsevier B.V. All rights reserved.
Zeng, Lanting; Zhou, Ying; Fu, Xiumin; Mei, Xin; Cheng, Sihua; Gui, Jiadong; Dong, Fang; Tang, Jinchi; Ma, Shengzhou; Yang, Ziyin
2017-12-15
The raw materials used to make oolong tea (Camellia sinensis) are a combination of leaf and stem. Oolong tea made from leaf and stem is thought to have a more aromatic smell than leaf-only tea. However, there is no available evidence to support the viewpoint. In this study, sensory evaluation and detailed characterization of emitted and internal volatiles (not readily emitted, but stored in samples) of dry oolong teas and infusions indicated that the presence of stem did not significantly improve the total aroma characteristics. During the enzyme-active processes, volatile monoterpenes and theanine were accumulated more abundantly in stem than in leaf, while jasmine lactone, indole, and trans-nerolidol were lower in stem than in leaf. Tissue-specific aroma-related gene expression and availability of precursors of aroma compounds resulted in different aroma distributions in leaf and stem. This study presents the first determination of the contribution of stem to oolong tea aroma. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Man-Hua; Lin, Li-Chan; Wu, Shiao-Chi; Chiu, Jen-Hwey; Wang, Pei-Ning; Lin, Jaung-Geng
2015-03-29
One of the most common symptoms observed in patients with dementia is agitation, and several non-pharmacological treatments have been used to control this symptom. However, because of limitations in research design, the benefit of non-pharmacological treatments has only been demonstrated in certain cases. The purpose of this study was to compare aroma-acupressure and aromatherapy with respect to their effects on agitation in patients with dementia. In this experimental study, the participants were randomly assigned to three groups: 56 patients were included in the aroma-acupressure group, 73 patients in the aromatherapy group, and 57 patients in the control group who received daily routine as usual without intervention. The Cohen-Mansfield Agitation Inventory (CMAI) scale and the heart rate variability (HRV) index were used to assess differences in agitation. The CMAI was used in the pre-test, post-test and post-three-week test, and the HRV was used in the pre-test, the post-test and the post-three-week test as well as every week during the four-week interventions. The CMAI scores were significantly lower in the aroma-acupressure and aromatherapy groups compared with the control group in the post-test and post-three-week assessments. Sympathetic nervous activity was significantly lower in the fourth week in the aroma-acupressure group and in the second week in the aromatherapy group, whereas parasympathetic nervous activity increased from the second week to the fourth week in the aroma-acupressure group and in the fourth week in the aromatherapy group. Aroma-acupressure had a greater effect than aromatherapy on agitation in patients with dementia. However, agitation was improved in both of the groups, which allowed the patients with dementia to become more relaxed. Future studies should continue to assess the benefits of aroma-acupressure and aromatherapy for the treatment of agitation in dementia patients. ChiCTR-TRC-14004810; Date of registration: 2014/6/12.
Khalil, Mohammed N A; Fekry, Mostafa I; Farag, Mohamed A
2017-02-15
Dates (Phoenix dactylifera L.) are distributed worldwide as major food complement providing a source of sugars and dietary fiber as well as macro- and micronutrients. Although phytochemical analyses of date fruit non-volatile metabolites have been reported, much less is known about the aroma given off by the fruit, which is critical for dissecting sensory properties and quality traits. Volatile constituents from 13 date varieties grown in Egypt were profiled using SPME-GCMS coupled to multivariate data analysis to explore date fruit aroma composition and investigate potential future uses by food industry. A total of 89 volatiles were identified where lipid-derived volatiles and phenylpropanoid derivatives were the major components of date fruit aroma. Multivariate data analyses revealed that 2,3-butanediol, hexanal, hexanol and cinnamaldehyde contributed the most to classification of different varieties. This study provides the most complete map of volatiles in Egyptian date fruit, with Siwi and Sheshi varieties exhibiting the most distinct aroma among studied date varieties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Braga, Cíntia Maia; Zielinski, Acácio Antonio Ferreira; Silva, Karolline Marques da; de Souza, Frederico Koch Fernandes; Pietrowski, Giovana de Arruda Moura; Couto, Marcelo; Granato, Daniel; Wosiacki, Gilvan; Nogueira, Alessandro
2013-11-15
The aim of this study was to assess differences between apple juices and fermented apple beverages elaborated with fruits from different varieties and at different ripening stages in the aroma profile by using chemometrics. Ripening influenced the aroma composition of the apple juice and fermented apple. For all varieties, senescent fruits provided more aromatic fermented apple beverages. However, no significant difference was noticed in samples made of senescent or ripe fruits of the Lisgala variety. Regarding the juices, ripe Gala apple had the highest total aroma concentration. Ethanal was the major compound identified in all the samples, with values between 11.83mg/L (unripe Lisgala juice) and 81.05mg/L (ripe Gala juice). 3-Methyl-1-butanol was the major compound identified in the fermented juices. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were applied and classified the juices and fermented juices based on physicochemical and aroma profile, demonstrating their applicability as tools to monitor the quality of apple-based products. Copyright © 2013 Elsevier Ltd. All rights reserved.
Franitza, Laura; Granvogl, Michael; Schieberle, Peter
2016-01-27
Two rums differing in their overall aroma profile and price level (rum A, high price; rum B, low price) were analyzed by means of the Sensomics approach. Application of aroma extract dilution analysis (AEDA) on a distillate of volatiles prepared from rum A revealed 40 aroma-active compounds in the flavor dilution (FD) factor range from 8 to 2048. The identification experiments indicated cis-whiskey lactone, vanillin, decanoic acid, and 2- and 3-methylbutanol with the highest FD factors. The AEDA of a distillate prepared from rum B showed only 26 aroma-active compounds in the same FD factor range. Among them, in particular, ethyl butanoate, 1,1-diethoxyethane, ethyl (S)-2-methylbutanoate, and decanoic acid appeared with the highest FD factors. Thirty-seven compounds having at least an FD factor ≥32 in one of the two rums were quantitated using stable isotope dilution assays or enzyme kits (2 compounds). The calculation of odor activity values (OAVs; ratio of concentration to respective odor threshold) indicated ethanol, vanillin, ethyl (S)-2-methylbutanoate, and (E)-β-damascenone with the highest OAVs in rum A, whereas ethanol, 2,3-butanedione, 3-methylbutanal, and ethyl butanoate revealed the highest OAVs in rum B. Most compounds were present in similar concentrations in both rums, but significant differences were determined for vanillin, cis-whiskey lactone, and 4-allyl-2-methoxyphenol (all higher in rum A) and 3-methylbutanal, 2,3-butanedione, and ethyl butanoate (all higher in rum B). Finally, the aromas of both rums were successfully simulated by a recombinate using reference odorants in the same concentrations as they naturally occurred in the spirits.
From wine to pepper: rotundone, an obscure sesquiterpene, is a potent spicy aroma compound.
Wood, Claudia; Siebert, Tracey E; Parker, Mango; Capone, Dimitra L; Elsey, Gordon M; Pollnitz, Alan P; Eggers, Marcus; Meier, Manfred; Vössing, Tobias; Widder, Sabine; Krammer, Gerhard; Sefton, Mark A; Herderich, Markus J
2008-05-28
An obscure sesquiterpene, rotundone, has been identified as a hitherto unrecognized important aroma impact compound with a strong spicy, peppercorn aroma. Excellent correlations were observed between the concentration of rotundone and the mean 'black pepper' aroma intensity rated by sensory panels for both grape and wine samples, indicating that rotundone is a major contributor to peppery characters in Shiraz grapes and wine (and to a lesser extent in wine of other varieties). Approximately 80% of a sensory panel were very sensitive to the aroma of rotundone (aroma detection threshold levels of 16 ng/L in red wine and 8 ng/L in water). Above these concentrations, these panelists described the spiked samples as more 'peppery' and 'spicy'. However, approximately 20% of panelists could not detect this compound at the highest concentration tested (4000 ng/L), even in water. Thus, the sensory experiences of two consumers enjoying the same glass of Shiraz wine might be very different. Rotundone was found in much higher amounts in other common herbs and spices, especially black and white peppercorns, where it was present at approximately 10000 times the level found in very 'peppery' wine. Rotundone is the first compound found in black or white peppercorns that has a distinctive peppery aroma. Rotundone has an odor activity value in pepper on the order of 50000-250000 and is, on this criterion, by far the most powerful aroma compound yet found in that most important spice.
Taste and aroma of fresh and stored mandarins.
Tietel, Zipora; Plotto, Anne; Fallik, Elazar; Lewinsohn, Efraim; Porat, Ron
2011-01-15
During the last decade there has been a continuous rise in consumption of fresh easy-to-peel mandarins. However, mandarins are much more perishable than other citrus fruit, mainly due to rapid deterioration in sensory acceptability after harvest. In the current review we discuss the biochemical components involved in forming the unique flavor of mandarins, and how postharvest storage operations influence taste and aroma and consequently consumer sensory acceptability. What we perceive as mandarin flavor is actually the combination of basic taste, aroma and mouth-feel. The taste of mandarins is principally governed by the levels of sugars and acids in the juice sacs and the relative ratios among them, whereas the aroma of mandarins is derived from a mixture of different aroma volatiles, including alcohols, aldehydes, ketones, terpenes/hydrocarbons and esters. During postharvest storage and marketing there is a gradual decrease in mandarin sensory acceptability, which has been attributed to decreases in acidity and typical mandarin flavor, paralleling an accumulation of off-flavor. Biochemical analysis of volatile and non-volatile constituents in mandarin juice demonstrated that these changes in sensory acceptability were concomitant with decreases in acidity and content of terpenes and aldehydes, which provide green, piney and citrus aroma on the one hand, and increases in ethanol fermentation metabolism products and esters on the other, which are likely to cause 'overripe' and off-flavors. Overall, we demonstrate the vast importance of the genetic background, maturity stage at harvest, commercial postharvest operation treatments, including curing, degreening and waxing, and storage duration on mandarin sensory quality. Copyright © 2010 Society of Chemical Industry.
Ma, Chengying; Li, Junxing; Chen, Wei; Wang, Wenwen; Qi, Dandan; Pang, Shi; Miao, Aiqing
2018-06-01
Oolong tea is a typical semi-fermented tea and is famous for its unique aroma. The aim of this study was to compare the volatile compounds during manufacturing process to reveal the formation of aroma. In this paper, a method was developed based on head-space solid phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) combined with chemometrics to assess volatile profiles during manufacturing process (fresh leaves, sun-withered leaves, rocked leaves and leaves after de-enzyming). A total of 24 aroma compounds showing significant differences during manufacturing process were identified. Subsequently, according to these aroma compounds, principal component analysis and hierarchical cluster analysis showed that the four samples were clearly distinguished from each other, which suggested that the 24 identified volatile compounds can represent the changes of volatile compounds during the four steps. Additionally, sun-withering, rocking and de-enzyming can influence the variations of volatile compounds in different degree, and we found the changes of volatile compounds in withering step were less than other two manufacturing process, indicating that the characteristic volatile compounds of oolong tea might be mainly formed in rocking stage by biological reactions and de-enzyming stage through thermal chemical transformations rather than withering stage. This study suggested that HS-SPME/GC-MS combined with chemometrics methods is accurate, sensitive, fast and ideal for rapid routine analysis of the aroma compounds changes in oolong teas during manufacturing processing. Copyright © 2018 Elsevier Ltd. All rights reserved.
Stribny, Jiri; Gamero, Amparo; Pérez-Torrado, Roberto; Querol, Amparo
2015-07-16
Higher alcohols and acetate esters are important flavour and aroma components in the food industry. In alcoholic beverages these compounds are produced by yeast during fermentation. Although Saccharomyces cerevisiae is one of the most extensively used species, other species of the Saccharomyces genus have become common in fermentation processes. This study analyses and compares the production of higher alcohols and acetate esters from their amino acidic precursors in three Saccharomyces species: Saccharomyces kudriavzevii, Saccharomyces uvarum and S. cerevisiae. The global volatile compound analysis revealed that S. kudriavzevii produced large amounts of higher alcohols, whereas S. uvarum excelled in the production of acetate esters. Particularly from phenylalanine, S. uvarum produced the largest amounts of 2-phenylethyl acetate, while S. kudriavzevii obtained the greatest 2-phenylethanol formation from this precursor. The present data indicate differences in the amino acid metabolism and subsequent production of flavour-active higher alcohols and acetate esters among the closely related Saccharomyces species. This knowledge will prove useful for developing new enhanced processes in fragrance, flavour, and food industries. Copyright © 2015. Published by Elsevier B.V.
Brattoli, Magda; Cisternino, Ezia; Dambruoso, Paolo Rosario; de Gennaro, Gianluigi; Giungato, Pasquale; Mazzone, Antonio; Palmisani, Jolanda; Tutino, Maria
2013-01-01
The gas chromatography-olfactometry (GC-O) technique couples traditional gas chromatographic analysis with sensory detection in order to study complex mixtures of odorous substances and to identify odor active compounds. The GC-O technique is already widely used for the evaluation of food aromas and its application in environmental fields is increasing, thus moving the odor emission assessment from the solely olfactometric evaluations to the characterization of the volatile components responsible for odor nuisance. The aim of this paper is to describe the state of the art of gas chromatography-olfactometry methodology, considering the different approaches regarding the operational conditions and the different methods for evaluating the olfactometric detection of odor compounds. The potentials of GC-O are described highlighting the improvements in this methodology relative to other conventional approaches used for odor detection, such as sensoristic, sensorial and the traditional gas chromatographic methods. The paper also provides an examination of the different fields of application of the GC-O, principally related to fragrances and food aromas, odor nuisance produced by anthropic activities and odorous compounds emitted by materials and medical applications. PMID:24316571
Kumazawa, Kenji; Kaneko, Shu; Nishimura, Osamu
2013-12-11
The aroma concentrates of two types of raw miso (traditional Japanese fermented soybean paste) were prepared by combining solid phase extraction (SPE) and solvent-assisted flavor evaporation (SAFE) techniques. The aroma extract dilution analysis (AEDA) applied to the volatile fraction revealed 39 odor-active peaks with FD factors between 4(1) and 4(8). Among the perceived odorants, 32 odorants were identified or tentatively identified from the 39 odor-active peaks, and the newly identified odorants for the miso were half of them. Furthermore, by comparison of the FD factors between the raw miso and heat-processed miso, it was found that one increasing odorant (methional) and three decreasing odorants (1-octen-3-one, (Z)-1,5-octadien-3-one, and trans-4,5-epoxy-(E)-2-decenal) contributed to the flavor change during the heat processing. This finding suggested that the flavor change in the raw miso during heat processing is attributed to relatively few odorant changes. In addition, it was assumed that the amino acids included in the miso have a significant influence on the remarkable disappearance of the three decreasing odorants.
Christlbauer, Monika; Schieberle, Peter
2009-10-14
By application of the aroma extract dilution analysis (AEDA) on an aroma distillate isolated from a freshly prepared, stewed beef/vegetable gravy, 52 odor-active compounds were detected in the flavor dilution (FD) factor range of 4-4096. On the basis of high FD factors in combination with the results of the identification experiments, 3-(methylthio)propanal (cooked potato), 3-mercapto-2-methylpentan-1-ol (gravy-like), (E,E)-2,4-decadienal (deep-fried, fatty), 3-hydroxy-4,5-dimethyl-2(5H)-furanone (lovage-like), vanillin (vanilla-like), (E,E)-2,4-nonadienal (deep-fried), and (E)-2-undecenal (metallic) are suggested as key contributors to the aroma of the gravy. To get an insight into the role of the vegetables as sources of gravy odorants, a beef gravy was prepared without vegetables. The AEDA results revealed that, in particular, onions and leek are important sources of gravy aroma compounds, adding particularly the very potent, gravy-like smelling 3-mercapto-2-methylpentan-1-ol to the overall aroma profile. Further compounds that were clearly derived from the vegetables and, thus, are important modifiers of the overall aroma were 4-vinyl-2-methoxyphenol, (E)-beta-damascenone, beta-ionone, 2-isopropyl-3-methoxypyrazine, and 2-(sec-butyl)-3-methoxypyrazine. Interestingly, none of the key odorants detected in the gravy can be assumed to be formed from a reaction between beef and vegetable constituents. A comparison of the odorants in the beef/vegetable gravy with a gravy prepared according to the same procedure, but substituting beef by pork meat, indicated that most of the aroma compounds were identical-although different in FD factors-but the tallowy smelling 12-methyltridecanal was detected as key odorant only in the beef/vegetable gravy.
Hot and cold water infusion aroma profiles of Hibiscus sabdariffa: fresh compared with dried.
Ramírez-Rodrigues, M M; Balaban, M O; Marshall, M R; Rouseff, R L
2011-03-01
Calyxes from the Roselle plant (Hibiscus sabdariffa L.) were used to prepare cold (22 °C for 4 h) and hot (98 °C for 16 min) infusions/teas from both fresh and dried forms. Aroma volatiles were extracted using static headspace SPME and analyzed using GC-MS and GC-O with 2 different columns (DB-5 and DB-Wax). Totals of 28, 25, 17, and 16 volatiles were identified using GC-MS in the dried hot extract (DHE), dried cold extract (DCE), fresh hot extract (FHE), and fresh cold extract (FCE) samples, respectively. In terms of total GC-MS peak areas DHE ≫ DCE > FHE ≫ FCE. Nonanal, decanal, octanal, and 1-octen-3-ol were among the major volatiles in all 4 beverage types. Thirteen volatiles were common to all 4 teas. Furfural and 5-methyl furfural were detected only in dried hibiscus beverages whereas linalool and 2-ethyl-1-hexanol were detected only in beverages from fresh hibiscus. In terms of aroma active volatiles, 17, 16, 13, and 10 aroma active volatiles were detected for DHE, DCE, FHE, and FCE samples, respectively. The most intense aroma volatiles were 1-octen-3-one and nonanal with a group of 4 aldehydes and 3 ketones common to all samples. Dried samples contained dramatically higher levels of lipid oxidation products such as hexanal, nonanal, and decanal. In fresh hibiscus extracts, linalool (floral, citrus) and octanal (lemon, citrus) were among the highest intensity aroma compounds but linalool was not detected in any of the dried hibiscus extracts. Hibiscus teas/infusions are one of the highest volume specialty botanical products in international commerce. The beverage is consumed for both sensory pleasure and health attributes and is prepared a number of ways throughout the world. Although color and taste attributes have been examined, little information is known about its aroma volatiles and no other study has compared extractions from both fresh and dried as well as extraction temperature differences. This is also, apparently, the first study to identify the aroma active volatiles in hibiscus beverages using GC-olfactometry. Manufacturers and consumers will now have a better understanding of why hibiscus teas prepared in different ways from either fresh or dried forms have a different flavor quality and intensity.
Sensory-Analytical Comparison of the Aroma of Different Horseradish Varieties (Armoracia rusticana)
Kroener, Eva-Maria; Buettner, Andrea
2018-01-01
Horseradish (Armoracia rusticana) is consumed and valued for the characteristic spicy aroma of its roots in many countries all over the world. In our present study we compare six different horseradish varieties that were grown under comparable conditions, with regard to their aroma profiles, using combined sensory-analytical methods. Horseradish extracts were analyzed through gas chromatography-olfactometry (GC-O) and their aroma-active compounds ranked according to their smell potency using the concept of aroma extract dilution analysis (AEDA). Identification was carried out through comparison of retention indices, odor qualities and mass spectra with those of reference substances. Besides some differences in relative ratios, we observed some main odorants that were common to all varieties such as 3-isopropyl-2-methoxypyrazine and allyl isothiocyanate, but also characteristics for specific varieties such as higher contents for 3-isopropyl-2-methoxypyrazine in variety Nyehemes. Moreover, three odorous compounds were detected that have not been described in horseradish roots before. PMID:29868555
Hu, K; Zhu, X L; Mu, H; Ma, Y; Ullah, N; Tao, Y S
2016-02-01
The aim of the work was to evaluate the application potential of a glycosidase extract of one indigenous non-Saccharomyces strain in wine aroma enhancement. The isolate was selected from a local winemaking region in China for its high β-glucosidase level and was identified as Rhodotorula mucilaginosa. The tolerance of the glycosidase extract to the typical winemaking conditions was assessed using the activity of its β-glucosidase. After that, the hydrolysis capacity of R. mucilaginosa glycosidase for liberation of grape aroma glycosides was characterized in comparison to commercial enzyme preparations. Results of this work revealed that glycosidase extract from R. mucilaginosa proved to be active in the presence of 0-20% (w/v) glucose, 0-20% (v/v) ethanol and at pH 3·0-5·0. In the hydrolysis of aroma precursors, enzymes obtained from different origins possessed various levels of specificity and activity, showing high origin dependence (α = 0·05). Compared to commercial enzymes, the indigenous R. mucilaginosa glycosidase extract presented better catalytic preference for the 'fruity and floral' glycosides of benzenic compounds and C13 -norisoprenoids, but less sensitivity to the glycosides of C6 compounds and volatile phenols. This work presents a novel extracellular glycosidase preparation from an indigenous Rhodotorula mucilaginosa strain selected from a local winemaking region in China. This enzyme extract exhibits strong tolerance towards winemaking conditions. It shows hydrolysis specificity for glycosides of benzenic compounds and C13 -norisoprenoids, proving a potential candidate for improving floral and fruity aroma characteristics of wine. © 2015 The Society for Applied Microbiology.
Identification of aroma active compounds of cereal coffee brew and its roasted ingredients.
Majcher, Małgorzata A; Klensporf-Pawlik, Dorota; Dziadas, Mariusz; Jeleń, Henryk H
2013-03-20
Cereal coffee is a coffee substitute made mainly from roasted cereals such as barley and rye (60-70%), chicory (15-20%), and sugar beets (6-10%). It is perceived by consumers as a healthy, caffeine free, non-irritating beverage suitable for those who cannot drink regular coffee made from coffee beans. In presented studies, typical Polish cereal coffee brew has been subjected to the key odorants analysis with the application of gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA). In the analyzed cereal coffee extract, 30 aroma-active volatiles have been identified with FD factors ranging from 16 to 4096. This approach was also used for characterization of key odorants in ingredients used for the cereal coffee production. Comparing the main odors detected in GC-O analysis of roasted cereals brew to the odor notes of cereal coffee brew, it was evident that the aroma of cereal coffee brew is mainly influenced by roasted barley. Flavor compound identification and quantitation has been performed with application of comprehensive multidimentional gas chromatography and time-of-flight mass spectrometry (GCxGC-ToFMS). The results of the quantitative measurements followed by calculation of the odor activity values (OAV) revealed 17 aroma active compounds of the cereal coffee brew with OAV ranging from 12.5 and 2000. The most potent odorant was 2-furfurylthiol followed by the 3-mercapto-3-methylbutyl formate, 3-isobutyl-2-methoxypyrazine and 2-ethyl-3,5-dimethylpyrazine, 2-thenylthiol, 2,3-butanedione, 2-methoxy phenol and 2-methoxy-4-vinyl phenol, 3(sec-butyl)-2-methoxypyrazine, 2-acetyl-1-pyrroline, 3-(methylthio)-propanal, 2,3-pentanedione, 4-hydroxy-2,5-dimethyl-3-(2H)-furanone, (E,E)-2,4-decadienal, (Z)-4-heptenal, phenylacetaldehyde, and 1-octen-3-one.
Electronic aroma detection technology for forensic and law enforcement applications
NASA Astrophysics Data System (ADS)
Barshick, Stacy-Ann; Griest, Wayne H.; Vass, Arpad A.
1997-02-01
A major problem hindering criminal investigations is the lack of appropriate tools for proper crime scene investigations. Often locating important pieces of evidence means relying on the ability of trained detection canines. Development of analytical technology to uncover and analyze evidence, potentially at the scene, could serve to expedite criminal investigations, searches, and court proceedings. To address this problem, a new technology based on gas sensor arrays was investigated for its applicability to forensic and law enforcement problems. The technology employs an array of sensors that respond to volatile chemical components yielding a characteristic 'fingerprint' pattern representative of the vapor-phase composition of a sample. Sample aromas can be analyzed and identified using artificial neural networks that are trained on known aroma patterns. Several candidate applications based on known technological needs of the forensic and law enforcement communities have been investigated. These applications have included the detection of aromas emanating from cadavers to aid in determining time since death, drug detection for deterring the manufacture, sale, and use of drugs of abuse, and the analysis of fire debris for accelerant identification. The result to date for these applications have been extremely promising and demonstrate the potential applicability of this technology for forensic use.
Sensory analysis and aroma compounds of buckwheat containing products-a review.
Starowicz, Małgorzata; Koutsidis, Georgios; Zieliński, Henryk
2017-07-07
Buckwheat is a rich source of starch, proteins, minerals and antioxidants, and as such has become a popular functional ingredient incorporated in diverse recipes/products with particular use in the gluten free market. Due to the absence of gluten, application of buckwheat or buckwheat derived ingredients in this particular food sector has increased significantly over recent years with many buckwheat-based products appearing globally. Sensory analysis is an integral part of the development of products that fulfill consumer expectations. Therefore, investigations on the incorporation of health promoting functional ingredients such as buckwheat into traditional recipes are often complemented by the evaluation of appearance, aroma, taste and texture as well as overall quality through standardized procedures involving trained judges or consumer panels. Aroma is of particular importance in driving consumer preference and its sensory assessment is often complemented with analytical workflows aiming to isolate and determine the concentration of volatile compounds in food and understand the effect of food components on the overall aroma intensity and/or perception of the final product. The present manuscript provides a review of recent advances and knowledge on the sensory characteristics, consumer preference and volatile compound analysis of buckwheat and buckwheat based products.
Volatile constituents of roasted tigernut oil (Cyperus esculentus L.).
Lasekan, Ola
2013-03-30
Volatile compounds play a key role in determining the sensory appreciation of vegetable oils. In this study a systematic evaluation of odorants responsible for the characteristic flavour of roasted tigernut oil was carried out. A total of 75 odour-active volatiles were identified. From these, 13 aroma compounds showing high flavour dilution factors in the range of 16 to 128 were quantified by their odour activity values (OAVs). On the basis of high OAVs in oil, the following aroma compounds [vanillin (chocolate, sweet vanilla), 5-ethylfurfural (caramel, spicy), 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (caramel), phenyl acetaldehyde (honey-like), ethanone, 1-(4-hydroxy-3-methoxyphenyl) (faint vanilla)] were elucidated as important contributors to the overall chocolate, sweet vanilla, butterscotch aroma of the oil. Odorants with high concentrations in the roasted tigernut oil such as 5-hydroxymethylfurfural, ethyl hexadecanoate, n-propyl-9,12-octadecadienoate gave relatively low OAVs, so their contributions to the overall orthonasal aroma impression of roasted tigernut oil can be assumed to be low. © 2012 Society of Chemical Industry.
Sonmezdag, Ahmet Salih; Kelebek, Hasim; Selli, Serkan
2018-02-01
Volatile, aroma-active, and phenolic compounds of pistachio oil obtained from cv. Uzun were investigated in the current study. To obtain a representative aromatic extract, three of the most widely used extraction methods were compared using a representative test; the solvent-assisted flavour extraction (SAFE) aromatic extract from pistachio oil was found to be the most representative. A total of 50 aroma compounds were determined in pistachio oil and it was found that terpenes, aldehydes, and alcohols were the most abundant volatile compounds. Applying GC-MS-olfactometry and aroma extract dilution analysis (AEDA) resulted in a total of 14 aroma-active areas being detected in the extract of pistachio oil. In the phenolic fraction obtained by the LC-ESI-MS/MS method, a total of 12 phenolic compounds was found in the pistachio oil, of which seven compounds were reported for the first time. Eriodictyol-7-O-glucoside and protocatechuic acid were the most dominant phenolic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Xiang-Yi; Wen, Ya-Qin; Meng, Nan; Qian, Xu; Pan, Qiu-Hong
2017-01-01
HIGHLIGHTS A similar trend on accumulation of glycosidically bound monoterpenes was observed in both varietiesTwo VvGT7 alleles mutations occurred at key sites in Muscat blanc à PetitVvGT14 exerted a major role in production of monoterpenyl glycosides in both varieties Terpenoids are the major aroma components and generally exist as both free and glycosidically-bound forms, of which nonvolatile glycosides account for a large fraction in grape berries. Our previous study has indicated that differential accumulation of monoterpenyl glycosides in Vitis vinifera “Muscat blanc à Petit” between two regions is closely correlated to monoterpenyl glucosyltransferase (VvGT14, XM_002285734.2) transcript abundance. However, it has not been determined yet whether this correlation also exists in other Vitis vinifera varieties. This study investigated the evolution of free and glycosidically bound monoterpenes in two Vitis vinifera variety “Muscat blanc à Petit” and “Gewurztraminer” under two vintages, and further assessed the relation between the accumulation of bound monoterpenes and two monoterpenyl glycosyltransferase transcript levels. Results showed that free monoterpenes exhibited three evolution patterns in both varieties during berry development of two vintages, whereas glycosidically bound monoterpenes showed a concentration elevation with berry maturation. The Cis-rose oxide and geraniol were major components contributing to the aroma odors of “Gewürztraminer” grapes while linalool was major aroma contributor to the “Muscat blanc à Petit grain” grapes. The accumulation of glycosidically bound monoterpenes in both varieties was accompanied with the high expression of VvGT7 (XM_002276510.2) and VvGT14. Only one allele of VvGT7 was found in the variety “Gewürztraminer” and no mutation was observed in its enzyme active sites. XB-VvGT7-4 and XB-VvGT7-5 were two alleles of VvGT7 detected in “Muscat blanc à Petit grain.” The mutation on its enzyme active site inhibited the activity of XB-VvGT7-4, whereas VvGT7-5 exhibited an alteration on enzyme activity due to the insertion mutation at the position 443. Only one VvGT14 allele was found in both varieties, and the VvGT14 allele in both varieties showed the similarity on amino acid sequence. No mutation occurred in active sites of VvGT14 allele. These indicated that VvGT7 and VvGT14 differentially contributed to the production of monoterpenyl glycosides in these Vitis Vinifera varieties. PMID:28751905
Li, Xiang-Yi; Wen, Ya-Qin; Meng, Nan; Qian, Xu; Pan, Qiu-Hong
2017-01-01
HIGHLIGHTS A similar trend on accumulation of glycosidically bound monoterpenes was observed in both varietiesTwo VvGT7 alleles mutations occurred at key sites in Muscat blanc à Petit VvGT14 exerted a major role in production of monoterpenyl glycosides in both varieties Terpenoids are the major aroma components and generally exist as both free and glycosidically-bound forms, of which nonvolatile glycosides account for a large fraction in grape berries. Our previous study has indicated that differential accumulation of monoterpenyl glycosides in Vitis vinifera "Muscat blanc à Petit" between two regions is closely correlated to monoterpenyl glucosyltransferase ( VvGT14 , XM_002285734.2) transcript abundance. However, it has not been determined yet whether this correlation also exists in other Vitis vinifera varieties. This study investigated the evolution of free and glycosidically bound monoterpenes in two Vitis vinifera variety "Muscat blanc à Petit" and "Gewurztraminer" under two vintages, and further assessed the relation between the accumulation of bound monoterpenes and two monoterpenyl glycosyltransferase transcript levels. Results showed that free monoterpenes exhibited three evolution patterns in both varieties during berry development of two vintages, whereas glycosidically bound monoterpenes showed a concentration elevation with berry maturation. The Cis -rose oxide and geraniol were major components contributing to the aroma odors of "Gewürztraminer" grapes while linalool was major aroma contributor to the "Muscat blanc à Petit grain" grapes. The accumulation of glycosidically bound monoterpenes in both varieties was accompanied with the high expression of VvGT7 (XM_002276510.2) and VvGT14 . Only one allele of VvGT7 was found in the variety "Gewürztraminer" and no mutation was observed in its enzyme active sites. XB-VvGT7-4 and XB-VvGT7-5 were two alleles of VvGT7 detected in "Muscat blanc à Petit grain." The mutation on its enzyme active site inhibited the activity of XB-VvGT7-4 , whereas VvGT7-5 exhibited an alteration on enzyme activity due to the insertion mutation at the position 443. Only one VvGT14 allele was found in both varieties, and the VvGT14 allele in both varieties showed the similarity on amino acid sequence. No mutation occurred in active sites of VvGT14 allele. These indicated that VvGT7 and VvGT14 differentially contributed to the production of monoterpenyl glycosides in these Vitis Vinifera varieties.
Does patchouli oil change blood platelet monoamine oxidase-A activity of adult mammals?
Karim, Md Fazlul; Banerjee, Soumyabrata; Poddar, Mrinal K
2018-05-01
Patchouli oil, an essential aroma oil extracted from patchouli leaf during short-term exposure with five and ten drops either inhibited (at 1 or 2 h) or stimulated (at 4 h) the platelet MAO-A activity depending on the dosages of the aroma oil mainly due to inhibition or stimulation of its K m . The long-term 15 consecutive days exposure (with two or five drops) of patchouli oil, on the other hand, maximally stimulated the platelet MAO-A activity with five drops patchouli oil for 1 h exposure, but further continuation of its exposure with same doses (two or five drops) for 30 consecutive days significantly stimulated (with two drops) and inhibited (with five drops) the platelet MAO-A activity due to stimulation and inhibition respectively of its corresponding both K m and V max . These results thus suggest that this aroma oil exposure may modulate the blood platelet serotonergic regulation depending on the dose, duration, and conditions of exposure.
Physiology, ecology and industrial applications of aroma formation in yeast
Dzialo, Maria C; Park, Rahel; Steensels, Jan; Lievens, Bart; Verstrepen, Kevin J
2017-01-01
Abstract Yeast cells are often employed in industrial fermentation processes for their ability to efficiently convert relatively high concentrations of sugars into ethanol and carbon dioxide. Additionally, fermenting yeast cells produce a wide range of other compounds, including various higher alcohols, carbonyl compounds, phenolic compounds, fatty acid derivatives and sulfur compounds. Interestingly, many of these secondary metabolites are volatile and have pungent aromas that are often vital for product quality. In this review, we summarize the different biochemical pathways underlying aroma production in yeast as well as the relevance of these compounds for industrial applications and the factors that influence their production during fermentation. Additionally, we discuss the different physiological and ecological roles of aroma-active metabolites, including recent findings that point at their role as signaling molecules and attractants for insect vectors. PMID:28830094
Añón, Ana; López, Jorge F; Hernando, Diego; Orriols, Ignacio; Revilla, Eugenio; Losada, Manuel M
2014-04-01
The effects of five technological procedures and of the contents of total anthocyanins and condensed tannins on 19 fermentation-related aroma compounds of young red Mencia wines were studied. Multifactor ANOVA revealed that levels of those volatiles changed significantly over the length of storage in bottles and, to a lesser extent, due to other technological factors considered; total anthocyanins and condensed tannins also changed significantly as a result of the five practices assayed. Five aroma compounds possessed an odour activity value >1 in all wines, and another four in some wines. Linear correlation among volatile compounds and general phenolic composition revealed that total anthocyanins were highly related to 14 different aroma compounds. Multifactor ANOVA, considering the content of total anthocyanins as a sixth random factor, revealed that this parameter affected significantly the contents of ethyl lactate, ethyl isovalerate, 1-pentanol and ethyl octanoate. Thus, the aroma of young red Mencia wines may be affected by levels of total anthocyanins. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ghosh, Puja; Roychoudhury, Aryadeep
2018-01-01
Accounting for aroma production in different aromatic indica rice varieties based on variations in the levels of concerned metabolites and enzymes is poorly explored. The present investigation was, therefore, focused on unraveling the differential levels of metabolites and activities of enzymes related to aroma formation in eleven indigenous aromatic rice varieties, as compared with four non-aromatic varieties. The levels of metabolites such as proline (Pro) and Δ 1 -pyrroline-5-carboxylate (P5C), and the activity of related enzymes such as proline dehydrogenase (PDH), Δ 1 -pyrroline-5-carboxylate synthetase (P5CS), and ornithine aminotransferase (OAT) were comparatively higher in the aromatic varieties, with Kalonunia and Tulaipanji registering the highest Pro, Kalonunia the highest P5C content, Gobindobhog with the highest PDH activity, Gobindobhog and Tulaipanji with the highest P5CS, and Pusa Basmati-1 with the highest OAT activity. The levels of putrescine (Put) and γ-aminobutyric acid (GABA) were comparatively lower in aromatic varieties, with concomitant higher diamine oxidase (DAO) activity, especially in the varieties Gobindobhog and Tulaipanji. The betaine-aldehyde dehydrogenase 2 (BADH2) enzyme activity was remarkably lesser in aromatic varieties, especially Radhunipagal and Gobindobhog. Though the metabolites such as glycine-betaine and higher polyamines such as spermidine and spermine showed no specific trend with respect to their quantitative level in either aromatic or non-aromatic varieties, they were notably lower in the aromatic varieties such as Gobindobhog, Kalonunia, and Tulaipanji, indicating a possibility of their involvement in aroma formation. Therefore, the levels of metabolites such as Pro, P5C and methylglyoxal (MG), and the activity of enzymes such as PDH, P5CS, OAT, and DAO were comparatively higher in the aromatic rice varieties than the non-aromatic ones, whereas the levels of Put, GABA, and BADH2 were lower. Overall, the present study showed that there exist variations in the accumulations of such metabolites as well as differential activity of enzymes controlling their production, which altogether regulate generation of aroma in aromatic varieties.
Volatile and key odourant compounds of Turkish Berberis crataegina fruit using GC-MS-Olfactometry.
Sonmezdag, Ahmet Salih; Kelebek, Hasim; Selli, Serkan
2018-04-01
This research was conducted to identify the aroma and aroma-active compounds of Berberis crataegina for the first time. Volatile profile of B. crataegina was obtained using the purge and trap extraction method with dichloromethane. Gas chromatography was coupled to mass spectrometry (GC-MS) allowed the quantitative and qualitative detection of 22 compounds in the sample. Aldehydes were the main chemical group in the sample and followed by aromatic alcohols and lactone. Aroma extract dilution analysis was implemented for the specification of key odourants of B. crataegina. In total, eight key odourants were detected in the extract of the sample, using GC-MS-Olfactometry and aldehydes were the leading chemical group. The key odourants, found to be contributing to the overall aroma in B. crataegina, were nonanal (FD = 1024; green, flowery), hexanal (FD = 512; green) and linalool (FD = 256; flowery, rose) because of high FD factors.
Aroma Characterization and Safety Assessment of a Beverage Fermented by Trametes versicolor.
Zhang, Yanyan; Fraatz, Marco Alexander; Müller, Julia; Schmitz, Hans-Joachim; Birk, Florian; Schrenk, Dieter; Zorn, Holger
2015-08-12
A cereal-based beverage was developed by fermentation of wort with the basidiomycete Trametes versicolor. The beverage possessed a fruity, fresh, and slightly floral aroma. The volatiles of the beverage were isolated by liquid-liquid extraction (LLE) and additionally by headspace solid phase microextraction (HS-SPME). The aroma compounds were analyzed by a gas chromatography system equipped with a tandem mass spectrometer and an olfactory detection port (GC-MS/MS-O) followed by aroma (extract) dilution analysis. Thirty-four different odor impressions were perceived, and 27 corresponding compounds were identified. Fifteen key odorants with flavor dilution (FD) factors ranging from 8 to 128 were quantitated, and their respective odor activity values (OAVs) were calculated. Six key odorants were synthesized de novo by T. versicolor. Furthermore, quantitative changes during the fermentation process were analyzed. To prepare for the market introduction of the beverage, a comprehensive safety assessment was performed.
2007-01-01
found in this commodity. This conclusion is further supported by a study of sucrose pyrolysis products that listed furfural and 2-hydroxy-3-methyl-2...study that investigated the aroma compounds from citrus honey, and only furfural was found to be a major component in both sample matrices [40]. Analysis
Liu, Chuanhe; Liu, Yan
2014-12-01
In this work, 2 separate experiments were performed to describe the influence of elevated temperature treatments postharvest on the color, physiochemical characteristics and aroma components of pineapple fruits during low-temperature seasons. The L* (lightness) values of the skin and pulp of pineapple fruits were decreased. The a* (greenness-redness) and b* (blueness-yellowness) values of the skin and pulp were all markedly increased. The elevated temperature significantly increased the contents of total soluble solids (TSS) and slightly affected contents of vitamin C (nonsignificant). Titratable acidity (TA) of pineapple fruits were notably decreased, whereas the values of TSS/TA of pineapple fruits were significantly increased. The firmness of the pineapple fruits decreased and more esters and alkenes were identified. The total relative contents of esters were increased, and the total relative contents of alkenes were decreased. © 2014 Institute of Food Technologists®
Steinhaus, Petra; Schieberle, Peter
2007-07-25
Application of aroma extract dilution analysis (AEDA) to the volatiles isolated from a commercial Japanese soy sauce revealed 30 odor-active compounds in the flavor dilution (FD) factor range of 8-4096, among which 2-phenylethanol showed the highest FD factor of 4096, followed by 3-(methylsulfanyl)propanal (methional), the tautomers 4-hydroxy-5-ethyl-2-methyl- and 4-hydroxy-2-ethyl-5-methyl-3(2H)-furanone (4-HEMF), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (4-HDF), and 3-hydroxy-4,5-dimethyl-2(5H)-furanone (sotolone), all showing FD factors of 1024. Thirteen odorants were quantified by stable isotope dilution assays, and their odor activity values (OAVs) were calculated as ratio of their concentrations and odor thresholds in water. Among them, 3-methylbutanal (malty), sotolone (seasoning-like), 4-HEMF (caramel-like), 2-methylbutanal (malty), methional (cooked potato), ethanol (alcoholic), and ethyl 2-methylpropanoate (fruity) showed the highest OAVs (>200). An aqueous model aroma mixture containing 13 odorants, which had been identified with the highest OAVs, in concentrations that occur in the soy sauce showed a good similarity with the overall aroma of the soy sauce itself. Heat treatment of the soy sauce resulted in a clear change of the overall aroma. Quantitation of selected odorants revealed a significant decrease in sotolone and, in particular, increases in 2-acetyl-1-pyrroline, 4-HDMF, and 4-HEMF induced by heating.
Chen, Shuang; Sha, Sha; Qian, Michael; Xu, Yan
2017-12-01
This study investigated the aroma contribution of volatile sulfur compounds (VSCs) in Moutai liquors. The VSCs were analyzed using headspace solid-phase microextraction-gas chromatography-pulsed flame photometric detection (HS-SPME-GC-PFPD). The influences of SPME fibers, ethanol content in the sample, pre-incubation time, and extraction temperature and time on the extraction of VSCs were optimized. The VSCs were optimally extracted using a divinylbenzene/carboxen/polydimethylsiloxane fiber, by incubating 10 mL diluted Chinese liquor (5% vol.) with 3 g NaCl at 30 °C for 15 min, followed by a subsequent extraction for 40 min at 30 °C. The optimized method was further validated. A total of 13 VSCs were identified and quantified in Moutai liquors. The aroma contribution of these VSCs were evaluated by their odor activity values (OAVs), with the result that 7 of 13 VSCs had OAVs > 1. In particular, 2-furfurylthiol, methanethiol, dimethyl trisulfide, ethanethiol, and methional had relatively high OAVs and could be the key aroma contributors to Moutai liquors. In this study, a method for analyzing volatile sulfur compounds in Chinese liquors has been developed. This method will allow an in-depth study the aroma contribution of volatile sulfur compounds in Chinese liquors. Seven volatile sulfur compounds were identified as potential key aroma contributors for Moutai liquors, which can help to the quality control of Moutai liquors. © 2017 Institute of Food Technologists®.
García-Vico, Lourdes; Belaj, Angjelina; Sánchez-Ortiz, Araceli; Martínez-Rivas, José M; Pérez, Ana G; Sanz, Carlos
2017-01-14
Virgin olive oil (VOO) is the only food product requiring official sensory analysis to be classified in commercial categories, in which the evaluation of the aroma plays a very important role. The selection of parents, with the aim of obtaining new cultivars with improved oil aroma, is of paramount importance in olive breeding programs. We have assessed the volatile fraction by headspace-solid-phase microextraction/gas chromatography-mass spectrometry-flame ionization detection (HS-SPME/GC-MS-FID) and the deduced aroma properties of VOO from a core set of olive cultivars (Core-36) which possesses most of the genetic diversity found in the World Olive Germplasm Collection (IFAPA Alameda del Obispo) located in Cordoba, Spain. The VOO volatile fractions of Core-36 cultivars display a high level of variability. It is mostly made of compounds produced from polyunsaturated fatty acids through the lipoxygenase pathway, which confirms to be a general characteristic of the olive species ( Olea europaea L.). The main group of volatile compounds in the oils was six straight-chain carbon compounds derived from linolenic acid, some of them being the main contributors to the aroma of the olive oils according to their odor activity values (OAV). The high level of variability found for the volatile fraction of the oils from Core-36 and, therefore, for the aroma odor notes, suggest that this core set may be a very useful tool for the choice of optimal parents in olive breeding programs in order to raise new cultivars with improved VOO aroma.
Ayala-Zavala, J Fernando; González-Aguilar, Gustavo A; del-Toro-Sánchez, L
2009-09-01
Microbial and aroma attributes are within the most decisive factors limiting safety and sensory appealing of fresh-cut fruits and vegetables. Alternatively, several plant essential oils (EOs) are constituted of several volatile active compounds and most of them present antimicrobial potential and had different aroma profile. Considering these premises, this hypothesis article states that safety and aroma appealing of fresh-cut produce could be improved with EO treatment. EOs could prevent fresh-cut fruit decay; however, their volatile constituents could be sorbed by the produce, and according to the aroma notes of the antimicrobial oil, sensorial appealing of odor, and flavor of the treated produce might be affected positively or negatively. Specifically, garlic oil is a natural antimicrobial constituted by sulfur compounds, which are responsible for its odor and antimicrobial properties. Besides, fresh-cut tomato is a highly perishable product that needs antimicrobial agents to preserve its quality and safety for a longer period of time. From the sensorial point of view, aroma combination of garlic and tomato is a common seasoning practice in Europe and America and well accepted by consumers. Once the right combination of flavors between the EOs and the fresh-cut produce has been selected, safety and quality of the treated fruit could be improved by adding antimicrobial protection and extra aroma. Therefore, other combinations between EOs and fresh-cut produce are discussed. This approximation could reinforce the trends of natural food preservation, accomplishing the demands of the increasing sector of consumers demanding tasty and convenient fresh-cut produce, containing only natural ingredients.
Chen, Kai; Escott, Carlos; Loira, Iris; Del Fresno, Juan Manuel; Morata, Antonio; Tesfaye, Wendu; Calderon, Fernando; Suárez-Lepe, Jose Antonio; Han, Shunyu; Benito, Santiago
2018-02-01
Today, many non-Saccharomyces strains have been verified can be positive for the development of wine anthocyanin and aroma in different fermentation scenarios. Moreover, oenological tannins are widely used in wine industry to improve the colour profile and aroma complexity. The aim of this work is to analyze the fermentation characters of non-Saccharomyces strains and investigate the effects of pre-fermentative addition of oenological tannins on the wine components as well as sensory properties. For this purpose, five selected non-Saccharomyces strains and grape seed tannin were used to carry out the different fermentation trials. As a result, the grape seed tannin were less likely to influence growth kinetics of non-Saccharomyces strains. Schizosaccharomyces pombe has been proved can be effective to reduce the malic acid content while increase the level of vinylphenolic pyranoanthocyanin, which is positive for wine colour stability. Pre-fermentative use of oenological tannin was verified could be beneficial for the wines fermented with non-Saccharomyces regarding the improvement of wine colour, anthocyanin composition and the complexity of volatile compounds. Nevertheless, sensory analysis showed that oenological tannin could be less effective to modify the aroma impression of non-Saccharomyces wines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rambla-Alegre, Maria; Tienpont, Bart; Mitsui, Kazuhisa; Masugi, Eri; Yoshimura, Yuta; Nagata, Hisanori; David, Frank; Sandra, Pat
2014-10-24
Aroma characterization of whole cigarette smoke samples using sensory panels or electronic nose (E-nose) devices is difficult due to the masking effect of major constituents and solvent used for the extraction step. On the other hand, GC in combination with olfactometry detection does not allow to study the delicate balance and synergetic effect of aroma solutes. To overcome these limitations a new instrumental set-up consisting of heart-cutting gas chromatography using a capillary flow technology based Deans switch and low thermal mass GC in combination with an electronic nose device is presented as an alternative to GC-olfactometry. This new hyphenated GC-E-nose configuration is used for the characterization of cigarette smoke aroma. The system allows the transfer, combination or omission of selected GC fractions before injection in the E-nose. Principal component analysis (PCA) and discriminant factor analysis (DFA) allowed clear visualizing of the differences among cigarette brands and classifying them independently of their nicotine content. Omission and perceptual interaction tests could also be carried out using this configuration. The results are promising and suggest that the GC-E-nose hyphenation is a good approach to measure the contribution level of individual compounds to the whole cigarette smoke. Copyright © 2014 Elsevier B.V. All rights reserved.
Ackarabanpojoue, Yuwadee; Chindapan, Nathamol; Yoovidhya, Tipaporn; Devahastin, Sakamon
2015-05-01
This study aimed at investigating the effect of nitrate removal from pineapple juice by electrodialysis (ED) on selected properties of the ED-treated juice. Single-strength pineapple juice with reduced pulp content was treated by ED to reduce the nitrate concentration to 15, 10, or 5 ppm. After ED, the removed pulp was added to the ED-treated juice and its properties, including electrical conductivity, acidity, pH, total soluble solids (TSS), color, amino acids, and selected aroma compounds, were determined and compared with those of the untreated juice. ED could reduce the nitrate content of 1 L of pineapple juice from an initial value of 50 ppm to less than 5 ppm within 30 min. A significant decrease in the electrical conductivity, acidity, pH, TSS, and yellowness, but a significant increase in the lightness, of the juice was observed upon ED. Concentrations of almost all amino acids of the ED-treated juice significantly decreased. The concentrations of 8 major compound contributors to the pineapple aroma also significantly decreased. Adding the pulp back to the ED-treated juice increased the amino acids concentrations; however, it led to a significant decrease in the concentrations of the aroma compounds. © 2015 Institute of Food Technologists®
Takahashi, Makoto; Ishmael, Mutanda; Asikin, Yonathan; Hirose, Naoto; Mizu, Masami; Shikanai, Takesi; Tamaki, Hajime; Wada, Koji
2016-10-25
In this study, 2 types of solidified noncentrifugal brown sugars (W-NCS and P-NCS) were prepared from the whole stalk and separated pith, respectively, of raw sugarcane (Saccharum officinarum L.). These products were discriminated in terms of their quality attributes, including color, sugars and minerals composition, taste, aroma, and antioxidant activity. The brown color of P-NCS was clearly different compared with that of W-NCS with a color difference value (ΔE * ) of 9.36. There was no difference in the sugars and minerals composition between the 2 types of sugar, which led to very similar taste profiles. However, P-NCS had a weaker aroma intensity than W-NCS did. Moreover, P-NCS retained more than 60% of the antioxidant activity of W-NCS. The information gleaned from this study might be used to select appropriate end-uses for these 2 types of sugars. © 2016 Institute of Food Technologists®.
Olivares, Alicia; Navarro, José Luis; Flores, Mónica
2015-03-01
The objective of this study was to characterize naturally fermented dry sausages produced without the use of microbial starters and to determine which odour-active compounds are responsible for their aroma. The traditional manufacture was responsible for different chemical characteristics and consumer's acceptance. The volatile compounds detected in the headspace comprised a complex mixture of volatile compounds derived from bacterial metabolism (mainly esterase activity of Staphyloccoci), spices and lipid auto-oxidation. The odour-active volatile compounds were identified using gas chromatography coupled to olfactometry (GC-O) using the detection frequency method. The aroma profile was characterized by the presence of several compounds such as acetic acid, ethyl butanoate, hexanal, methional, 1-octen-3-ol, benzeneacetaldehyde and 4-methyl-phenol. However, naturally fermented sausages were also characterized by numerous esters, both ethyl and methyl esters, which impart a wide variety of fruity notes. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Alessandrini, Massimiliano; Battista, Fabrizio; Panighel, Annarita; Flamini, Riccardo; Tomasi, Diego
2018-03-01
Early leaf removal at pre-bloom is an innovative viticultural practice for regulating yield components and improving grape quality. The effects of this technique on vine performance, grape composition and wine sensory profile of Semillon variety were assessed. Pre-bloom leaf removal enhanced canopy porosity, total soluble solids in musts and reduced cluster compactness. This practice had a strong effect on glycoside aroma precursors, in particular by increasing glycoside terpenols and norisoprenoids. Metabolites of linalool were the most responsive to leaf removal. Wine produced from defoliated vines was preferred in tasting trials for its more intense fruity notes and mouthfeel attributes. Pre-bloom leaf removal is a powerful technique for modifying canopy microclimate, vine yield, grape composition and wine quality. The increase of glycoside aroma compounds in treated grapes has potential positive effect in improving the sensory profile of the resulting wines. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Changes in sparkling wine aroma during the second fermentation under CO2 pressure in sealed bottle.
Martínez-García, Rafael; García-Martínez, Teresa; Puig-Pujol, Anna; Mauricio, Juan Carlos; Moreno, Juan
2017-12-15
High quality sparkling wine made by the traditional method requires a second alcoholic fermentation of a base wine in sealed bottles, followed by an aging time in contact with yeast lees. The CO 2 overpressure released during this second fermentation has an important effect on the yeast metabolism and therefore on the wine aroma composition. This study focuses on the changes in chemical composition and 43 aroma compounds released by yeast during this fermentation carried out under two pressure conditions. The data were subjected to statistical analysis allowing differentiating between the base wine and the wine samples taken in the middle and at the end of fermentation. The differentiation among wines obtained to the end of fermentation with or without CO 2 pressure is only achieved by a principal component analysis of 15 selected minor compounds (mainly ethyl dodecanoate, ethyl tetradecanoate, hexyl acetate, ethyl butanoate and ethyl isobutanoate). Copyright © 2017 Elsevier Ltd. All rights reserved.
Wijaya, C H; Ulrich, D; Lestari, R; Schippel, K; Ebert, G
2005-03-09
Three cultivars of snake fruits, Pondoh Hitam, Pondoh Super, and Gading, were freshly extracted using liquid-liquid extraction. The aroma compounds of the three samples were analyzed by GC-MS and GC-olfactometry using the nasal impact frequency (NIF) method. A total of 24 odor-active compounds were associated with the aroma of snake fruit. Methyl 3-methylpentanoate was regarded as the character impact odorant of typical snake fruit aroma. 2-Methylbutanoic acid, 3-methylpentanoic acid, and an unknown odorant with very high intensity were found to be responsible for the snake fruit's sweaty odor. Other odorants including methyl 3-methyl-2-butenoate (overripe fruity, ethereal), methyl 3-methyl-2-pentenoate (ethereal, strong green, woody), and 2,5-dimethyl-4-hydroxy-3[2]-furanone (caramel, sweet, cotton candy-like) contribute to the overall aroma of snake fruit. Methyl dihydrojasmonate and isoeugenol, which also have odor impact, were identified for the first time as snake fruit volatiles. The main differences between the aroma of Pondoh and Gading cultivars could be attributed to the olfactory attributes (metallic, chemical, rubbery, strong green, and woody), which were perceived by most of the panelists in the Pondoh samples but were not detected in the Gading samples. This work is a prerequisite for effective selection of salak genotypes with optimal aroma profiles for high consumer acceptance.
Flavor characteristics of seven grades of black tea produced in Turkey.
Alasalvar, Cesarettin; Topal, Bahar; Serpen, Arda; Bahar, Banu; Pelvan, Ebru; Gökmen, Vural
2012-06-27
Seven grades of black tea [high-quality black tea (grades 1-3) and low-quality black tea (grades 4-7)], processed by ÇAYKUR Tea Processing Plant (Rize, Turkey), were compared for their differences in descriptive sensory analysis (DSA), aroma-active compounds (volatile compounds), and taste-active compounds (sugar, organic acid, and free amino acid compositions). Ten flavor attributes such as 'after taste', 'astringency', 'bitter', 'caramel-like', 'floral/sweet', 'green/grassy', 'hay-like', 'malty', 'roasty', and 'seaweed' were identified. Intensities for a number of flavor attributes ('after taste', 'caramel-like', 'malty', and 'seaweed') were not significantly different (p > 0.05) among seven grades of black tea. A total of 57 compounds in seven grades of black tea (14 aldehydes, eight alcohols, eight ketones, two esters, four aromatic hydrocarbons, five aliphatic hydrocarbons, nine terpenes, two pyrazines, one furan, two acids, and two miscellaneous compounds) were tentatively identified. Of these, aldeyhdes comprised more than 50% to the total volatile compounds identified. In general, high-grade quality tea had more volatiles than low-grade quality tea. With respect to taste-active compounds, five sugars, six organic acids, and 18 free amino acids were positively identified in seven grades of black tea, of which fructose, tannic acid, and theanine predominated, respectively. Some variations (p < 0.05), albeit to different extents, were observed among volatile compounds, sugars, organic acids, and free amino acids in seven grades of black tea. The present study suggests that a certain flavor attributes correlate well with taste- and aroma-active compounds. High- and low-quality black teas should not be distinguished solely on the basis of their DSA and taste- and aroma-active compounds. The combination of taste-active compounds together with aroma-active compounds renders combination effects that provide the characteristic flavor of each grade of black tea.
Stanley, Todd H; Van Buiten, Charlene B; Baker, Scott A; Elias, Ryan J; Anantheswaran, Ramaswamy C; Lambert, Joshua D
2018-07-30
Roasting is an important cocoa processing step, but has been reported to reduce the polyphenol content in the beans. We investigated the impact of whole-bean roasting on the polyphenol content, aroma-related chemistry, and in vitro pancreatic lipase (PL) inhibitory activity of cocoa under a range of roasting conditions. Total phenolics, (-)-epicatechin, and proanthocyanidin (PAC) dimer - pentamer content was reduced by roasting. By contrast, roasting at 150 °C or greater increased the levels of catechin and PAC hexamers and heptamers. These compounds have greater PL inhibitory potency. Consistent with these changes in PAC composition and this previous data, we found that roasting at 170 °C time-dependently increased PL inhibitory activity. Cocoa aroma-related compounds increased with roasting above 100 °C, whereas deleterious sensory-related compounds formed at more severe temperatures. Our results indicate that cocoa roasting can be optimized to increase the content of larger PACs and anti-PL activity, while maintaining a favorable aroma profile. Copyright © 2018 Elsevier Ltd. All rights reserved.
Touyama, Akiko; Nakada, Shina; Higa, Osamu; Itoh, Shigeru
2017-01-01
Citrus junos Tanaka (yuzu) has a strong characteristic aroma and thus its juice is used in various Japanese foods. Herein, we evaluate the volatile compounds in yuzu juice to investigate whether underwater shockwave pretreatment affects its scent. A shockwave pretreatment at increased discharge and energy of 3.5 kV and 4.9 kJ, respectively, increased the content of aroma-active compounds. Moreover, the underwater shockwave pretreatment afforded an approximate tenfold increase in the scent intensity of yuzu juice cultivated in Rikuzentakata. The proposed treatment method exhibited reliable and good performance for the extraction of volatile and aroma-active compounds from the yuzu fruit. The broad applicability and high reliability of this technique for improving the scent of yuzu fruit juice were demonstrated, confirming its potential for application to a wide range of food extraction processes. PMID:28761874
Vervoort, Y; Herrera-Malaver, B; Mertens, S; Guadalupe Medina, V; Duitama, J; Michiels, L; Derdelinckx, G; Voordeckers, K; Verstrepen, K J
2016-09-01
Plant materials used in the food industry contain up to five times more aromas bound to glucose (glucosides) than free, unbound aromas, making these bound aromas an unused flavouring potential. The aim of this study was to identify and purify a novel β-glucosidase from Brettanomyces yeasts that are capable of releasing bound aromas present in various food products. We screened 428 different yeast strains for β-glucosidase activity and are the first to sequence the whole genome of two Brettanomyces yeasts (Brettanomyces anomalus and Brettanomyces bruxellensis) with exceptionally high β-glucosidase activity. Heterologous expression and purification of the identified B. anomalus β-glucosidase showed that it has an optimal activity at a higher pH (5·75) and lower temperature (37°C) than commercial β-glucosidases. Adding this B. anomalus β-glucosidase to cherry beers and forest fruit milks resulted in increased amounts of benzyl alcohol, eugenol, linalool and methyl salicylate compared to Aspergillus niger and Almond glucosidase. The newly identified B. anomalus β-glucosidase offers new possibilities for food bioflavouring. This study is the first to sequence the B. anomalus genome and to identify the β-glucosidase-encoding genes of two Brettanomyces species, and reports a new bioflavouring enzyme. © 2016 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.
Manyi-Loh, Christy E.; Ndip, Roland N.; Clarke, Anna M.
2011-01-01
Volatile organic compounds (VOCs) in honey are obtained from diverse biosynthetic pathways and extracted by using various methods associated with varying degrees of selectivity and effectiveness. These compounds are grouped into chemical categories such as aldehyde, ketone, acid, alcohol, hydrocarbon, norisoprenoids, terpenes and benzene compounds and their derivatives, furan and pyran derivatives. They represent a fingerprint of a specific honey and therefore could be used to differentiate between monofloral honeys from different floral sources, thus providing valuable information concerning the honey’s botanical and geographical origin. However, only plant derived compounds and their metabolites (terpenes, norisoprenoids and benzene compounds and their derivatives) must be employed to discriminate among floral origins of honey. Notwithstanding, many authors have reported different floral markers for honey of the same floral origin, consequently sensory analysis, in conjunction with analysis of VOCs could help to clear this ambiguity. Furthermore, VOCs influence honey’s aroma described as sweet, citrus, floral, almond, rancid, etc. Clearly, the contribution of a volatile compound to honey aroma is determined by its odor activity value. Elucidation of the aroma compounds along with floral origins of a particular honey can help to standardize its quality and avoid fraudulent labeling of the product. Although only present in low concentrations, VOCS could contribute to biomedical activities of honey, especially the antioxidant effect due to their natural radical scavenging potential. PMID:22272147
Farneti, Brian; Khomenko, Iuliia; Grisenti, Marcella; Ajelli, Matteo; Betta, Emanuela; Algarra, Alberto Alarcon; Cappellin, Luca; Aprea, Eugenio; Gasperi, Flavia; Biasioli, Franco; Giongo, Lara
2017-01-01
Blueberry (Vaccinium spp.) fruit consumption has increased over the last 5 years, becoming the second most important soft fruit species after strawberry. Despite the possible economic and sensory impact, the blueberry volatile organic compound (VOC) composition has been poorly investigated. Thus, the great impact of the aroma on fruit marketability stimulates the need to step forward in the understanding of this quality trait. Beside the strong effect of ripening, blueberry aroma profile also varies due to the broad genetic differences among Vaccinium species that have been differently introgressed in modern commercial cultivars through breeding activity. In the present study, divided into two different activities, the complexity of blueberry aroma was explored by an exhaustive untargeted VOC analysis, performed by two complementary methods: SPME-GC-MS (solid phase microextraction- gas chromatography-mass spectrometry) and PTR-ToF-MS (proton transfer reaction-time of flight-mass spectrometry). The first experiment was aimed at determining the VOC modifications during blueberry ripening for five commercially representative cultivars (“Biloxi,” “Brigitta Blue,” “Centurion,” “Chandler,” and “Ozark Blue”) harvested at four ripening stages (green, pink, ripe, and over-ripe) to outline VOCs dynamic during fruit development. The objective of the second experiment was to confirm the analytical capability of PTR-ToF-MS to profile blueberry genotypes and to identify the most characterizing VOCs. In this case, 11 accessions belonging to different Vaccinium species were employed: V. corymbosum L. (“Brigitta,” “Chandler,” “Liberty,” and “Ozark Blue”), V. virgatum Aiton (“Centurion,” “Powder Blue,” and “Sky Blue”), V. myrtillus L. (three wild genotypes of different mountain locations), and one accession of V. cylindraceum Smith. This comprehensive characterization of blueberry aroma allowed the identification of a wide pull of VOCs, for the most aldehydes, alcohols, terpenoids, and esters that can be used as putative biomarkers to rapidly evaluate the blueberry aroma variations related to ripening and/or senescence as well as to genetic background differences. Moreover, the obtained results demonstrated the complementarity between chromatographic and direct-injection mass spectrometric techniques to study the blueberry aroma. PMID:28491071
Farneti, Brian; Khomenko, Iuliia; Grisenti, Marcella; Ajelli, Matteo; Betta, Emanuela; Algarra, Alberto Alarcon; Cappellin, Luca; Aprea, Eugenio; Gasperi, Flavia; Biasioli, Franco; Giongo, Lara
2017-01-01
Blueberry ( Vaccinium spp.) fruit consumption has increased over the last 5 years, becoming the second most important soft fruit species after strawberry. Despite the possible economic and sensory impact, the blueberry volatile organic compound (VOC) composition has been poorly investigated. Thus, the great impact of the aroma on fruit marketability stimulates the need to step forward in the understanding of this quality trait. Beside the strong effect of ripening, blueberry aroma profile also varies due to the broad genetic differences among Vaccinium species that have been differently introgressed in modern commercial cultivars through breeding activity. In the present study, divided into two different activities, the complexity of blueberry aroma was explored by an exhaustive untargeted VOC analysis, performed by two complementary methods: SPME-GC-MS (solid phase microextraction- gas chromatography-mass spectrometry) and PTR-ToF-MS (proton transfer reaction-time of flight-mass spectrometry). The first experiment was aimed at determining the VOC modifications during blueberry ripening for five commercially representative cultivars ("Biloxi," "Brigitta Blue," "Centurion," "Chandler," and "Ozark Blue") harvested at four ripening stages (green, pink, ripe, and over-ripe) to outline VOCs dynamic during fruit development. The objective of the second experiment was to confirm the analytical capability of PTR-ToF-MS to profile blueberry genotypes and to identify the most characterizing VOCs. In this case, 11 accessions belonging to different Vaccinium species were employed: V . corymbosum L. ("Brigitta," "Chandler," "Liberty," and "Ozark Blue"), V. virgatum Aiton ("Centurion," "Powder Blue," and "Sky Blue"), V. myrtillus L. (three wild genotypes of different mountain locations), and one accession of V. cylindraceum Smith. This comprehensive characterization of blueberry aroma allowed the identification of a wide pull of VOCs, for the most aldehydes, alcohols, terpenoids, and esters that can be used as putative biomarkers to rapidly evaluate the blueberry aroma variations related to ripening and/or senescence as well as to genetic background differences. Moreover, the obtained results demonstrated the complementarity between chromatographic and direct-injection mass spectrometric techniques to study the blueberry aroma.
Mishra, Prashant K; Tripathi, Jyoti; Gupta, Sumit; Variyar, Prasad S
2017-01-15
Volatile aroma compounds of three varieties of red kidney beans (Phaseolus vulgaris) namely Kashmiri red, Sharmili and Chitra were extracted in raw state using solid-phase microextraction (SPME) and cooked state using simultaneous distillation extraction (SDE). During cooking a significant (p<0.05) reduction in the content of several aldehydes, alcohols and terpene hydrocarbons while an increase in content of various sulfurous compounds, terpene alcohols, ketones and pyrazines was noted. Descriptive sensory analysis showed that the maximum intensity of 'kidney bean', 'earthy' and 'smoky' odour was observed in Kashmiri red while Sharmili variety was characterised by 'sulfurous' odour. Correlation of volatile profile data with descriptive sensory analysis and odour activity values clearly established the role of compounds, such as methanethiol, diethyl sulfide, dimethyl disulfide, methional and dimethyl trisulfide, in contributing to 'cooked kidney bean' aroma, while dimethyl sulfoxide, dimethyl sulfone and ethyl methyl sulfone were responsible for 'sulfurous' aroma. Copyright © 2016 Elsevier Ltd. All rights reserved.
Takahashi, Makoto; Inai, Yoko; Miyazawa, Norio; Kurobayashi, Yoshiko; Fujita, Akira
2013-01-01
The key odorants of Tahitian vanilla beans (Vanilla tahitensis) were characterized by a sensory evaluation, aroma extract dilution analysis (AEDA), quantification, and aroma reconstitution. Vanillin and anisaldehyde were identified in the same highest flavor dilution (FD) factor as the most characteristic odor-active compounds in Tahitian vanilla beans, followed by anisyl alcohol and anisyl acetate. Vanillin and anisyl alcohol were by far the most abundant odorants present with the highest concentration in the beans, followed by acetic acid, anisaldehyde, and anisyl acetate. A sensory evaluation of Tahitian vanilla beans and its reconstitute aroma concentrate characterized both samples as similar. These results indicated vanillin, anisaldehyde, anisyl alcohol, and anisyl acetate to be the key odorants in Tahitian vanilla beans. 3-Methylnonane-2,4-dione were identified for the first time in vanilla beans. β-Damascenone and phenylacetic acid were identified for the first time in Tahitian vanilla beans.
Tetik, Mehmet Ali; Sevindik, Onur; Kelebek, Hasim; Selli, Serkan
2018-05-01
The principal purpose of the present work is to characterize the aroma, aroma-active, and anthocyanin profiles of Okuzgozu wines and to observe the effect of the pomace pressing technique on these parameters. A total of 58 and 59 volatile compounds were identified and quantified in free-run juice wine (FRW) and pressed pomace wine (PW). Alcohols were found as the most dominant group among aroma compounds followed by esters and acids. However, among all these compounds, only 11 and 13 of them could be considered as key odorants in aromatic extracts of FRW and PW, respectively. According to GC-MS-O analysis, ethyl octanoate (fruity), phenyl ethyl acetate (fruity), and 2-phenyl ethanol (flowery) were found as the main contributors to the overall scent of both wines. Beyond the aroma profiles, anthocyanin contents of both types of wines were also investigated, and total 14 and 15 anthocyanins were identified and quantified in FRW and PW. Malvidin-3-glycoside and its acetyl and coumaroyl forms were identified as the dominant anthocyanins in both wines. It is worth noting the pressing application (2.0 atm) led to an increase of some unpleasant notes in the aroma providing chemical, pharmacy, and fermented aromas in wine. On the other hand, the wines produced with pressed pomace presented higher amounts of anthocyanins. Copyright © 2018 John Wiley & Sons, Ltd.
Lilly, M.; Lambrechts, M. G.; Pretorius, I. S.
2000-01-01
The distinctive flavor of wine, brandy, and other grape-derived alcoholic beverages is affected by many compounds, including esters produced during alcoholic fermentation. The characteristic fruity odors of the fermentation bouquet are primarily due to a mixture of hexyl acetate, ethyl caproate (apple-like aroma), iso-amyl acetate (banana-like aroma), ethyl caprylate (apple-like aroma), and 2-phenylethyl acetate (fruity, flowery flavor with a honey note). The objective of this study was to investigate the feasibility of improving the aroma of wine and distillates by overexpressing one of the endogenous yeast genes that controls acetate ester production during fermentation. The synthesis of acetate esters by the wine yeast Saccharomyces cerevisiae during fermentation is ascribed to at least three acetyltransferase activities, namely, alcohol acetyltransferase (AAT), ethanol acetyltransferase, and iso-amyl AAT. To investigate the effect of increased AAT activity on the sensory quality of Chenin blanc wines and distillates from Colombar base wines, we have overexpressed the alcohol acetyltransferase gene (ATF1) of S. cerevisiae. The ATF1 gene, located on chromosome XV, was cloned from a widely used commercial wine yeast strain of S. cerevisiae, VIN13, and placed under the control of the constitutive yeast phosphoglycerate kinase gene (PGK1) promoter and terminator. Chromoblot analysis confirmed the integration of the modified copy of ATF1 into the genome of three commercial wine yeast strains (VIN7, VIN13, and WE228). Northern blot analysis indicated constitutive expression of ATF1 at high levels in these yeast transformants. The levels of ethyl acetate, iso-amyl acetate, and 2-phenylethyl acetate increased 3- to 10-fold, 3.8- to 12-fold, and 2- to 10-fold, respectively, depending on the fermentation temperature, cultivar, and yeast strain used. The concentrations of ethyl caprate, ethyl caprylate, and hexyl acetate only showed minor changes, whereas the acetic acid concentration decreased by more than half. These changes in the wine and distillate composition had a pronounced effect on the solvent or chemical aroma (associated with ethyl acetate and iso-amyl acetate) and the herbaceous and heads-associated aromas of the final distillate and the solvent or chemical and fruity or flowery characters of the Chenin blanc wines. This study establishes the concept that the overexpression of acetyltransferase genes such as ATF1 could profoundly affect the flavor profiles of wines and distillates deficient in aroma, thereby paving the way for the production of products maintaining a fruitier character for longer periods after bottling. PMID:10653746
Differentiation of Streptococcus lactis var. maltigenes from Other Lactic Streptococci1
Gordon, D. F.; Morgan, M. E.; Tucker, J. S.
1963-01-01
Strains of lactic streptococci isolated from samples of raw milk which had developed a malty aroma were subjected to the cultural, physiological, and serological tests commonly employed in the classification of streptococci. None of the strains could be differentiated from Streptococcus lactis by these tests. Resting cells of strains which produced an organoleptically detectable malty aroma when cultured in milk were usually found to possess an active α-ketoacid decarboxylase, indicating the presence of the mechanism responsible for the characteristic aroma production. This decarboxylase activity was either weak or nonexistent in the nonmalty strains, and no activity was detected in known strains of S. lactis, S. cremoris, or S. diacetilactis. The malty strains usually produced higher acidities in milk than did the nonmalty strains, and, in most instances, they developed a granular type of growth sediment in broth, as opposed to a viscid sediment. Many of them gave weakly positive Voges-Proskauer tests in glucose broth with or without added citrate and appeared to be somewhat more resistant to nisin than the nonmalty strains. PMID:13949187
Prat, Loreto; Espinoza, María Inés; Agosin, Eduardo; Silva, Herman
2014-03-15
Fragaria chiloensis (L.) Mill spp. chiloensis form chiloensis, is a strawberry that produces white fruits with unique aromas. This species, endemic to Chile, is one of the progenitors of Fragaria x ananassa Duch. In order to identify the volatile compounds that might be responsible for aroma, these were extracted, and analyzed by gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O) and compared with sensory analyses. Three methods of extraction were used: solvent-assisted evaporation (SAFE), headspace solid phase micro-extraction (HS-SPME) and liquid-liquid extraction (LLE). Ninety-nine volatile compounds were identified by GC-MS, of which 75 showed odor activity using GC-O. Based on the highest dilution factor (FD = 1000) and GC-O intensity ≥2, we determined 20 major compounds in white strawberry fruit that contribute to its aroma. We chose 51 compounds to be tested against their commercial standards. The identities were confirmed by comparison of their linear retention indices against the commercial standards. The aroma of white strawberry fruits was reconstituted with a synthetic mixture of most of these compounds. The volatile profile of white strawberry fruit described as fruity, green-fresh, floral, caramel, sweet, nutty and woody will be a useful reference for future strawberry breeding programs. © 2013 Society of Chemical Industry.
Sun, Shi-Hao; Chai, Guo-Bi; Li, Peng; Xie, Jian-Ping; Su, Yue
2017-10-13
Jujube extract is commonly used as a food additive and flavoring. The unique jujube aroma and the mild sweet aroma of the extract are critical factors that determine product quality and affect consumer acceptability. The aroma changes with changes in the extraction condition, which is typically dependent on the characteristics of volatile oils in the extract. Despite their importance, the volatile oils of jujube extract have received less attention compared with the soluble components. So, an appropriate qualitative and quantitative method for determination of the volatile oils is vitally important for quality control of the product. A method coupling steam distillation/drop-by-drop extraction with gas chromatography-mass spectrometry (S3DE/GC-MS) was developed to determine the volatile components of jujube extract. Steam distillation was coupled with solvent extraction; the resulting condensate containing volatile components from jujube extract was drop-by-drop extracted using 2 mL of methyl tertiary butyl ether. The solvent served two purposes. First, the solvent extracted the volatile components from the condensate. Second, the volatile components were pre-concentrated by drop-by-drop accumulation in the solvent. As a result, the extraction, separation, and concentration of analytes in the sample were simultaneously completed in one step. The main parameters affecting the S3DE procedure, such as the water steam bubbling rate, extraction solvent volume, sample weight and S3DE time, were optimized. The standard addition approach was essential to obtain accurate measurements by minimizing matrix effects. Good linearity (R 2 ≥ 0.9887) and good repeatability (RSDs ≤ 10.35%, n = 5) for 16 analytes in spiked standard analyte samples were achieved. With the S3DE/GC-MS method, seventy-six volatile compounds from jujube extract were identified and the content of 16 compounds was measured. The results were similar to those from simultaneous distillation extraction. The developed method was simple, fast, effective, sensitive, and provided an overall profile of the volatile components in jujube extract. Thus, this method can be used to determine the volatile components of extracts. Graphical abstract The diagram of steam distillation/drop-by-drop extraction device.
Yee, Alyson L; Maillard, Marie-Bernadette; Roland, Nathalie; Chuat, Victoria; Leclerc, Aurélie; Pogačić, Tomislav; Valence, Florence; Thierry, Anne
2014-11-17
Flavor is an important sensory property of fermented food products, including cheese, and largely results from the production of aroma compounds by microorganisms. Propionibacterium freudenreichii is the most widely used species of dairy propionibacteria; it has been implicated in the production of a wide variety of aroma compounds through multiple metabolic pathways and is associated with the flavor of Swiss cheese. However, the ability of other dairy propionibacteria to produce aroma compounds has not been characterized. This study sought to elucidate the effect of interspecies and intraspecies diversity of dairy propionibacteria on the production of aroma compounds in a cheese context. A total of 76 strains of Propionibacterium freudenreichii, Propionibacterium jensenii, Propionibacterium thoenii, and Propionibacterium acidipropionici were grown for 15 days in pure culture in a rich medium derived from cheese curd. In addition, one strain each of two phylogenetically related non-dairy propionibacteria, Propionibacterium cyclohexanicum and Propionibacterium microaerophilum were included. Aroma compounds were analyzed using headspace trap-gas chromatography-mass spectrometry (GC-MS). An analysis of variance performed on GC-MS data showed that the abundance of 36 out of the 45 aroma compounds detected showed significant differences between the cultures. A principal component analysis (PCA) was performed for these 36 compounds. The first two axes of the PCA, accounting for 60% of the variability between cultures, separated P. freudenreichii strains from P. acidipropionici strains and also differentiated P. freudenreichii strains from each other. P. freudenreichii strains were associated with greater concentrations of a variety of compounds, including free fatty acids from lipolysis, ethyl esters derived from these acids, and branched-chain acids and alcohols from amino acid catabolism. P. acidipropionici strains produced less of these compounds but more sulfur-containing compounds from methionine catabolism. Meanwhile, branched-chain aldehydes and benzaldehyde were positively associated with certain strains of P. jensenii and P. thoenii. Moreover, the production of compounds with a common origin was correlated. Compound abundance varied significantly by strain, with fold changes between strains of the same species as high as in the order of 500 for a single compound. This suggests that the diversity of dairy propionibacteria can be exploited to modulate the flavor of mild cheeses. Copyright © 2014 Elsevier B.V. All rights reserved.
Tchabo, William; Ma, Yongkun; Kwaw, Emmanuel; Zhang, Haining; Xiao, Lulu; Tahir, Haroon Elrasheid
2017-10-01
The present study was undertaken to assess accelerating aging effects of high pressure, ultrasound and manosonication on the aromatic profile and sensorial attributes of aged mulberry wines (AMW). A total of 166 volatile compounds were found amongst the AMW. The outcomes of the investigation were presented by means of geometric mean (GM), cluster analysis (CA), principal component analysis (PCA), partial least squares regressions (PLSR) and principal component regression (PCR). GM highlighted 24 organoleptic attributes responsible for the sensorial profile of the AMW. Moreover, CA revealed that the volatile composition of the non-thermal accelerated aged wines differs from that of the conventional aged wines. Besides, PCA discriminated the AMW on the basis of their main sensorial characteristics. Furthermore, PLSR identified 75 aroma compounds which were mainly responsible for the olfactory notes of the AMW. Finally, the overall quality of the AMW was noted to be better predicted by PLSR than PCR. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kishimoto, Toru; Wanikawa, Akira; Kagami, Noboru; Kawatsura, Katsuyuki
2005-06-15
Hop aroma components, which mainly comprise terpenoids, contribute to the character of beers. However, pretreatments are necessary before analyzing these components because of their trace levels and complicated matrixes. Here, the stir bar-sorptive extraction (SBSE) method was used to detect and quantify many terpenoids simultaneously from small samples. This simple technique showed low coefficients of variation, high accuracy, and low detection limits. An investigation of the behavior of terpenoids identified two distinct patterns of decreasing concentration during wort boiling. The first, which was seen in myrcene and linalool, involved a rapid decrease that was best fitted by a quadratic curve. The second, which was observed in beta-eudesmol, humulene, humulene epoxide I, beta-farnesene, caryophyllene, and geraniol, involved a gentle linear decrease. Conversely, the concentration of beta-damascenone increased after boiling. As the aroma composition depended on the hop variety, we also examined the relationship between terpenoid content and sensory analysis in beer.
Ventral frontal satiation-mediated responses to food aromas in obese and normal-weight women123
Eiler, William JA; Dzemidzic, Mario; Case, K Rose; Armstrong, Cheryl LH; Mattes, Richard D; Cyders, Melissa A; Considine, Robert V; Kareken, David A
2014-01-01
Background: Sensory properties of foods promote and guide consumption in hunger states, whereas satiation should dampen the sensory activation of ingestive behaviors. Such activation may be disordered in obese individuals. Objective: Using functional magnetic resonance imaging (fMRI), we studied regional brain responses to food odor stimulation in the sated state in obese and normal-weight individuals targeting ventral frontal regions known to be involved in coding for stimulus reward value. Design: Forty-eight women (25 normal weight; 23 obese) participated in a 2-day (fed compared with fasting) fMRI study while smelling odors of 2 foods and an inedible, nonfood object. Analyses were conducted to permit an examination of both general and sensory-specific satiation (satiation effects specific to a given food). Results: Normal-weight subjects showed significant blood oxygen level–dependent responses in the ventromedial prefrontal cortex (vmPFC) to food aromas compared with responses induced by the odor of an inedible object. Normal-weight subjects also showed general (but not sensory-specific) satiation effects in both the vmPFC and orbitofrontal cortex. Obese subjects showed no differential response to the aromas of food and the inedible object when fasting. Within- and between-group differences in satiation were driven largely by changes in the response to the odor of the inedible stimulus. Responses to food aromas in the obese correlated with trait negative urgency, the tendency toward negative affect-provoked impulsivity. Conclusions: Ventral frontal signaling of reward value may be disordered in obesity, with negative urgency heightening responses to food aromas. The observed nature of responses to food and nonfood stimuli suggests that future research should independently quantify each to fully understand brain reward signaling in obesity. This trial was registered at clinicaltrials.gov as NCT02041039. PMID:24695888
Ventral frontal satiation-mediated responses to food aromas in obese and normal-weight women.
Eiler, William J A; Dzemidzic, Mario; Case, K Rose; Armstrong, Cheryl L H; Mattes, Richard D; Cyders, Melissa A; Considine, Robert V; Kareken, David A
2014-06-01
Sensory properties of foods promote and guide consumption in hunger states, whereas satiation should dampen the sensory activation of ingestive behaviors. Such activation may be disordered in obese individuals. Using functional magnetic resonance imaging (fMRI), we studied regional brain responses to food odor stimulation in the sated state in obese and normal-weight individuals targeting ventral frontal regions known to be involved in coding for stimulus reward value. Forty-eight women (25 normal weight; 23 obese) participated in a 2-day (fed compared with fasting) fMRI study while smelling odors of 2 foods and an inedible, nonfood object. Analyses were conducted to permit an examination of both general and sensory-specific satiation (satiation effects specific to a given food). Normal-weight subjects showed significant blood oxygen level-dependent responses in the ventromedial prefrontal cortex (vmPFC) to food aromas compared with responses induced by the odor of an inedible object. Normal-weight subjects also showed general (but not sensory-specific) satiation effects in both the vmPFC and orbitofrontal cortex. Obese subjects showed no differential response to the aromas of food and the inedible object when fasting. Within- and between-group differences in satiation were driven largely by changes in the response to the odor of the inedible stimulus. Responses to food aromas in the obese correlated with trait negative urgency, the tendency toward negative affect-provoked impulsivity. Ventral frontal signaling of reward value may be disordered in obesity, with negative urgency heightening responses to food aromas. The observed nature of responses to food and nonfood stimuli suggests that future research should independently quantify each to fully understand brain reward signaling in obesity. © 2014 American Society for Nutrition.
Acetic Acid Detection Threshold in Synthetic Wine Samples of a Portable Electronic Nose
Macías, Miguel Macías; Manso, Antonio García; Orellana, Carlos Javier García; Velasco, Horacio Manuel González; Caballero, Ramón Gallardo; Chamizo, Juan Carlos Peguero
2013-01-01
Wine quality is related to its intrinsic visual, taste, or aroma characteristics and is reflected in the price paid for that wine. One of the most important wine faults is the excessive concentration of acetic acid which can cause a wine to take on vinegar aromas and reduce its varietal character. Thereby it is very important for the wine industry to have methods, like electronic noses, for real-time monitoring the excessive concentration of acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor array electronic noses is a difficult challenge due to the masking effect of ethanol. In this work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous ethanol solution at 10% v/v) we use a detection unit which consists of a commercial electronic nose and a HSS32 auto sampler, in combination with a neural network classifier (MLP). To find the characteristic vector representative of the sample that we want to classify, first we select the sensors, and the section of the sensors response curves, where the probability of detecting the presence of acetic acid will be higher, and then we apply Principal Component Analysis (PCA) such that each sensor response curve is represented by the coefficients of its first principal components. Results show that the PEN3 electronic nose is able to detect and discriminate wine samples doped with acetic acid in concentrations equal or greater than 2 g/L. PMID:23262483
Inhibitory effect of aroma on the bitterness of branched-chain amino acid solutions.
Mukai, Junji; Tokuyama, Emi; Ishizaka, Toshihiko; Okada, Sachie; Uchida, Takahiro
2007-11-01
Nutritional products for patients with liver failure available on the Japanese market contain many branched-chain amino acids (BCAAs) such as L-leucine, L-isoleucine, and L-valine, which not only have a bitter taste but also strong, unpleasant odours, leading to low palatability. The palatability of these nutritional products can be significantly improved by the addition of flavoured powders containing various kinds of tastants (sucrose, citric acid, etc.) and odourants (fruit, coffee aromas, etc.). The specific effects of the aroma of flavoured powders have not yet been clearly evaluated. In the present article, the inhibitory effect of aroma on the bitterness of BCAA solutions was examined. The bitterness intensity of a BCAA solution at the same concentration as Aminoleban EN was defined as 3.5 (measured by a previously described gustatory sensation method). The bitterness threshold of a BCAA standard solution without added aroma was estimated to be 1.87, while those of BCAA solutions containing green-tea, coffee, apple, vanilla, or strawberry aromas were 2.02, 1.98, 2.35, 2.40 and 2.87, respectively, when evaluated by the probit method. This shows that the addition of an aroma can elevate the bitterness threshold in human volunteers. The green-tea and coffee aromas predominantly evoked bitterness, while the vanilla aroma predominantly evoked sweetness. Apple and strawberry aromas evoked both sweetness and sourness, with the apple aroma having stronger sourness and the strawberry aroma stronger sweetness. Thus, a 'sweet' aroma suppresses the bitterness of BCAA, with coexisting sourness also participating in the bitterness inhibition.
Mimura, Natsuki; Isogai, Atsuko; Iwashita, Kazuhiro; Bamba, Takeshi; Fukusaki, Eiichiro
2014-10-01
Sake is a Japanese traditional alcoholic beverage, which is produced by simultaneous saccharification and alcohol fermentation of polished and steamed rice by Aspergillus oryzae and Saccharomyces cerevisiae. About 300 compounds have been identified in sake, and the contribution of individual components to the sake flavor has been examined at the same time. However, only a few compounds could explain the characteristics alone and most of the attributes still remain unclear. The purpose of this study was to examine the relationship between the component profile and the attributes of sake. Gas chromatography coupled with mass spectrometry (GC/MS)-based non-targeted analysis was employed to obtain the low molecular weight component profile of Japanese sake including both nonvolatile and volatile compounds. Sake attributes and overall quality were assessed by analytical descriptive sensory test and the prediction model of the sensory score from the component profile was constructed by means of orthogonal projections to latent structures (OPLS) regression analysis. Our results showed that 12 sake attributes [ginjo-ka (aroma of premium ginjo sake), grassy/aldehydic odor, sweet aroma/caramel/burnt odor, sulfury odor, sour taste, umami, bitter taste, body, amakara (dryness), aftertaste, pungent/smoothness and appearance] and overall quality were accurately explained by component profiles. In addition, we were able to select statistically significant components according to variable importance on projection (VIP). Our methodology clarified the correlation between sake attribute and 200 low molecular components and presented the importance of each component thus, providing new insights to the flavor study of sake. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Fluorescence fingerprint as an instrumental assessment of the sensory quality of tomato juices.
Trivittayasil, Vipavee; Tsuta, Mizuki; Imamura, Yoshinori; Sato, Tsuneo; Otagiri, Yuji; Obata, Akio; Otomo, Hiroe; Kokawa, Mito; Sugiyama, Junichi; Fujita, Kaori; Yoshimura, Masatoshi
2016-03-15
Sensory analysis is an important standard for evaluating food products. However, as trained panelists and time are required for the process, the potential of using fluorescence fingerprint as a rapid instrumental method to approximate sensory characteristics was explored in this study. Thirty-five out of 44 descriptive sensory attributes were found to show a significant difference between samples (analysis of variance test). Principal component analysis revealed that principal component 1 could capture 73.84 and 75.28% variance for aroma category and combined flavor and taste category respectively. Fluorescence fingerprints of tomato juices consisted of two visible peaks at excitation/emission wavelengths of 290/350 and 315/425 nm and a long narrow emission peak at 680 nm. The 680 nm peak was only clearly observed in juices obtained from tomatoes cultivated to be eaten raw. The ability to predict overall sensory profiles was investigated by using principal component 1 as a regression target. Fluorescence fingerprint could predict principal component 1 of both aroma and combined flavor and taste with a coefficient of determination above 0.8. The results obtained in this study indicate the potential of using fluorescence fingerprint as an instrumental method for assessing sensory characteristics of tomato juices. © 2015 Society of Chemical Industry.
Langos, Daniel; Granvogl, Michael
2016-03-23
During the brewing process of wheat beer, the desired aroma-active vinyl aromatics 2-methoxy-4-vinylphenol and 4-vinylphenol as well as the undesired and toxicologically relevant styrene are formed from their respective precursors, free ferulic acid, p-coumaric acid, and cinnamic acid, deriving from the malts. Analysis of eight commercial wheat beers revealed high concentrations of 2-methoxy-4-vinylphenol and 4-vinylphenol always in parallel with high concentrations of styrene or low concentrations of the odorants in parallel with low styrene concentrations, suggesting a similar pathway. To better understand the formation of these vinyl aromatics, each process step of wheat beer brewing and the use of different strains of Saccharomyces cerevisiae were evaluated. During wort boiling, only a moderate decarboxylation of free phenolic acids and formation of desired and undesired vinyl aromatics were monitored due to the thermal treatment. In contrast, this reaction mainly occurred enzymatically catalyzed during fermentation with S. cerevisiae strain W68 with normal Pof(+) activity (phenolic off-flavor) resulting in a wheat beer eliciting the typical aroma requested by consumers due to high concentrations of 2-methoxy-4-vinylphenol (1790 μg/L) and 4-vinylphenol (937 μg/L). Unfortunately, also a high concentration of undesired styrene (28.3 μg/L) was observed. Using a special S. cerevisiae strain without Pof(+) activity resulted in a significant styrene reduction (
Flavor perception and aroma release from model dairy desserts.
Lethuaut, Laurent; Weel, Koen G C; Boelrijk, Alexandra E M; Brossard, Chantal D
2004-06-02
Six model dairy desserts, with three different textures and two sucrose levels, were equally flavored with a blend of four aroma compounds [ethyl pentanoate, amyl acetate, hexanal, and (E)-2-hexenal] and evaluated by a seven person panel in order to study whether the sensory perception of the flavor and the aroma release during eating varied with the textural characteristics or the sweetness intensity of the desserts. The sensory perception was recorded by the time intensity (TI) method, while the in vivo aroma release was simultaneously measured by the MS-nose. Considering the panel as a whole, averaged flavor intensity increased with sucrose level and varied with the texture of the desserts. Depending on the aroma compound, the averaged profile of in vivo aroma release varied, but for each aroma compound, averaged aroma release showed no difference with the sucrose level and little difference with the texture of the desserts. Perceptual sweetness-aroma interactions were the main factors influencing perception whatever the texture of the desserts.
Tairu, A O; Hofmann, T; Schieberle, P
1999-08-01
Application of aroma extract dilution analysis on an extract of the dried fruits of the West African peppertree Xylopia aethiopica obtained by extraction with diethyl ether followed by sublimation in vacuo revealed 28 odor-active compounds in the flavor dilution (FD) factor range of 4-8192, all of which could be identified. The highest FD factor was found for linalol (floral), followed by (E)-beta-ocimene (flowery), alpha-farnesene (sweet, flowery), beta-pinene (terpeny), alpha-pinene (pine needle-like), myrtenol (flowery), and beta-phellandrene (terpeny). Vanillin (vanilla-like) and 3-ethylphenol (smoky, phenolic) showing somewhat lower FD factors (FD = 128) were detected for the first time as constituents of the dried fruit.
Formation of complex natural flavours by biotransformation of apple pomace with basidiomycetes.
Bosse, Andrea K; Fraatz, Marco A; Zorn, Holger
2013-12-01
Altogether 30 different basidiomycetes were grown submerged in liquid culture media using seven different by-products of the food industry as the only carbon source. Seven fungus/substrate combinations revealed interesting flavour profiles. Culture supernatants of Tyromyces chioneus grown on apple pomace were extracted, and the aroma compounds were analysed by gas chromatography-olfactometry (GC-O). Potent odorants were identified by aroma extract dilution analysis (AEDA), calculation of the odour activity values (OAV), and proven by confection of an aroma model. 3-Phenylpropanal, 3-phenyl-1-propanol, and benzyl alcohol were identified as potent aroma biotransformation products. Headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) experiments showed that 3-phenylpropanal, 3-phenyl-1-propanol, benzyl alcohol, methyl 3-phenylpropionate, methyl 2-phenylacetate, cinnamaldehyde and methyl cinnamate were produced during the cultivation period of eight days. By means of labelling experiments, (E)-cinnamic acid was identified as the precursor of 3-phenylpropanal and 3-phenyl-1-propanol. Basidiomycetes were able to biotransform food by-products to pleasant complex flavour mixtures. Copyright © 2013 Elsevier Ltd. All rights reserved.
Volatile flavor constituents in the pork broth of black-pig.
Zhao, Jian; Wang, Meng; Xie, Jianchun; Zhao, Mengyao; Hou, Li; Liang, Jingjing; Wang, Shi; Cheng, Jie
2017-07-01
Pork of black-pig in China is well known for its quality and preferred by consumers. However, there is a lack of research on its flavors. By solvent assisted flavor evaporation combined with GC-MS, 104 volatile compounds in the stewed pork broth of black-pig were identified with the dominant amounts of fatty acids, alcohols, and esters. By aroma extract dilution analysis-GC-O method, 27 odor-active compounds were characterized, including 2-methyl-3-furanthiol, 3-(methylthio)propanal, 2-furfurylthiol, γ-decalactone, nonanal, (E)-2-nonenal, and (E,E)-2,4-decadienal that had high FD factors. Compared to the common white-pig, the aroma compounds in both pork broths were almost the same, but the aroma profile of potent odorants for the black-pig pork broth showed less fatty and more roasted notes, which were partially attributed to the higher monounsaturated fatty acids and lower polyunsaturated fatty acids in meat. With aid of authentic chemicals and selected reaction monitoring mode of GC-MS/MS, 19 aroma compounds were quantitated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chetschik, Irene; Kneubühl, Markus; Chatelain, Karin; Schlüter, Ansgar; Bernath, Konrad; Hühn, Tilo
2018-03-14
The odor-active constituents of cocoa pulp have been analyzed by aroma extract dilution analysis (AEDA) for the first time. Pulps of three different cocoa varieties have been investigated. The variety CCN51 showed low flavor intensities, in terms of flavor dilution (FD) factors, in comparison to varieties FSV41 and UF564, for which floral and fruity notes were detected in higher intensities. To gain first insights on a molecular level of how the cocoa pulp odorants affected the odor quality of cocoa beans during fermentation, quantitative measurements of selected aroma compounds were conducted in pulp and bean at different time points of the fermentation. The results showed significantly higher concentrations of 2-phenylethanol and 3-methylbutyl acetate in pulp than in the bean during the different time steps of the fermentation, whereas the reverse could be observed for the odorants linalool and 2-methoxyphenol. The findings of this study constitute a basis for further investigations on the aroma formation of cocoa during fermentation.
Li, Qing-Rong; Wu, Min; Huang, Rui-Jie; Chen, Ya-Fei; Chen, Chan-Jian; Li, Hui; Ni, He; Li, Hai-Hang
2017-06-01
The lack of aroma and natural taste is a critical problem in production and consumption of instant green teas. A method to prepare instant green teas high in-natural-aroma and low-caffeine by the novel column chromatographic extraction with gradient elution is reported. This method simultaneously extracted aroma (or volatile) and non-aroma compounds from green tea. Green tea was loaded into columns with 2.0-fold of petroleum ether (PE): ethanol (8:2). After standing for 3 h until the aroma compounds dissolved, the column was sequentially eluted with 3.0-fold 40% ethanol and 3.5-fold water. The eluant was collected together and automatically separated into PE and ethanol aqueous phases. The aroma extracts was obtained by vacuum-evaporation of PE phase at 45 °C. The ethanol aqueous phase was vacuum-concentrated to aqueous and partially or fully decaffeinated with 4% or 9% charcoal at 70 °C. A regular instant green tea with epigallocatechin-3-gallate: caffeine of 3.5:1 and a low-caffeine instant green tea (less than 1% caffeine) with excellent aroma and taste were prepared, by combining the aroma and non-aroma extracts at a 1:10 ratio. This work provides a practical approach to solve the low-aroma and low-taste problems in the production of high quality instant green teas.
Baffi, Milla Alves; Martin, Natália; Tobal, Thaise Mariá; Ferrarezi, Ana Lúcia; Lago, João Henrique Ghilardi; Boscolo, Maurício; Gomes, Eleni; Da-Silva, Roberto
2013-12-01
An extracellular ethanol-tolerant β-glucosidase from Sporidiobolus pararoseus was purified to homogeneity and characterized, and its potential use for the enhancement of wine aroma was investigated. The crude enzymatic extract was purified in four steps (concentration, dialysis, ultrafiltration, and chromatography) with a yield of around 40 % for total activity. The purified enzyme (designated Sp-βgl-P) showed a specific activity of approximately 20.0 U/mg, an estimated molecular mass of 63 kDa after sodium dodecyl sulfate polyacrylamide gel electrophoresis, and isoelectric point of 5.0 by isoelectric focusing. Sp-βgl-P has optimal activity at pH 4.0 and at 55 °C. It was stable in a broad pH range at low temperatures and it was tolerant to ethanol and glucose, indicating suitable properties for winemaking. The hydrolysis of glycosidic terpenes was analyzed by adding Sp-βgl-P directly to the wines. The released terpene compounds were evaluated by gas chromatography/mass spectrometry. The enzymatic treatment significantly increased the amount of free terpenes, suggesting that this enzyme could potentially be applicable in wine aroma improvement.
Oken, Barry S.
2016-01-01
Abstract Objective: Aromas may improve physiologic and cognitive function after stress, but associated mechanisms remain unknown. This study evaluated the effects of lavender aroma, which is commonly used for stress reduction, on physiologic and cognitive functions. The contribution of pharmacologic, hedonic, and expectancy-related mechanisms of the aromatherapy effects was evaluated. Methods: Ninety-two healthy adults (mean age, 58.0 years; 79.3% women) were randomly assigned to three aroma groups (lavender, perceptible placebo [coconut], and nonperceptible placebo [water] and to two prime subgroups (primed, with a suggestion of inhaling a powerful stress-reducing aroma, or no prime). Participants' performance on a battery of cognitive tests, physiologic responses, and subjective stress were evaluated at baseline and after exposure to a stress battery during which aromatherapy was present. Participants also rated the intensity and pleasantness of their assigned aroma. Results: Pharmacologic effects of lavender but not placebo aromas significantly benefited post-stress performance on the working memory task (F(2, 86) = 5.41; p = 0.006). Increased expectancy due to positive prime, regardless of aroma type, facilitated post-stress performance on the processing speed task (F(1, 87) = 8.31; p = 0.005). Aroma hedonics (pleasantness and intensity) played a role in the beneficial lavender effect on working memory and physiologic function. Conclusions: The observable aroma effects were produced by a combination of mechanisms involving aroma-specific pharmacologic properties, aroma hedonic properties, and participant expectations. In the future, each of these mechanisms could be manipulated to produce optimal functioning. PMID:27355279
Fruit characters and volatile organic components in peach-to-nectarine mutants
USDA-ARS?s Scientific Manuscript database
Peach-to-nectarine mutants showed broad pleiotropic effects on fruit size, taste, and aroma, in addition to hairlessness. In this study, we compared nine fruit attributes and 27 detected volatiles in the peach progenitor, ‘Flameprince’ (FPP), its two independently discovered peach-to-nectarine mutan...
A study revealing the key aroma compounds of steamed bread made by Chinese traditional sourdough*
Zhang, Guo-hua; Wu, Tao; Sadiq, Faizan A.; Yang, Huan-yi; Liu, Tong-jie; Ruan, Hui; He, Guo-qing
2016-01-01
Aroma of Chinese steamed bread (CSB) is one of the important parameters that determines the overall quality attributes and consumer acceptance. However, the aroma profile of CSB still remains poorly understood, mainly because of relying on only a single method for aroma extraction in previous studies. Therefore, the objective of this study was to determine the volatile aroma compounds of five different samples of CSB using three different aroma extraction methods, namely solid-phase microextraction (SPME), simultaneous distillation–extraction (SDE), and purge and trap (P&T). All samples showed a unique aroma profile, which could be attributed to their unique microbial consortia. (E)-2-Nonenal and (E,E)-2,4-decadienal were the most prevalent aromatic compounds revealed by SDE, which have not been reported previously, while ethanol and acetic acid proved to be the most dominant compounds by both SPME and P&T. Our approach of combining three different aroma extraction methods provided better insights into the aroma profile of CSB, which had remained largely unknown in previous studies. PMID:27704748
NASA Astrophysics Data System (ADS)
Wang, J.; Christopher, S. A.; Nair, U. S.; Reid, J.; Prins, E. M.; Szykman, J.
2004-12-01
Observation shows that smoke aerosols from biomass burning activities in Central America can be transported to the Southeastern United States (SEUS). In this study, the Regional Atmospheric Modeling System - Assimilation and Radiation Online Modeling of Aerosols (RAMS-AROMA) is used to investigate the effect of transported smoke aerosols on climate and air quality over the SEUS. AROMA is an aerosol transport model with capabilities of online integration of aerosol radiation effects and online assimilation of satellite-derived aerosol and emission products. It is assembled within the RAMS, so two-way interactions between aerosol fields and other meteorology fields are achieved simultaneously during each model time step. RAMS-AROMA is a unique tool that can be used to examine the aerosol radiative impacts on the surface energy budget and atmospheric heating rate and to investigate how atmospheric thermal and dynamical processes respond to such impacts and consequently affect the aerosol distribution (so called feedbacks). First results regarding air quality effects and radiative forcing of transported smoke aerosols will be presented from RAMS-AROMA based on assimilation of smoke emission products from the Fire Locating and Modeling of Burning Emissions (FLAMBE) project and aerosol optical thickness data derived from the MODIS instrument on the Terra and Aqua satellites. Comparisons with PM2.5 data collected from the EPA observation network and the aerosol optical thickness data from the DOE Atmosphere Radiation Measurements in the Southern Great Plains (ARM SGP) showed that RAMS-AROMA can predict the timing and spatial distribution of smoke events very well, with an accuracy useful for air quality forecasts. The smoke radiative effects on the surface temperature and atmospheric heating rate as well as their feedbacks will also be discussed.
Yang, Yijin; Xia, Yongjun; Lin, Xiangna; Wang, Guangqiang; Zhang, Hui; Xiong, Zhiqiang; Yu, Haiyan; Yu, Jianshen; Ai, Lianzhong
2018-06-01
Producing alcoholic beverages with novel flavor are desirable for winemakers. We created fermenting yeast with superior ethanol tolerance and fermentation activity to improve the flavor profiles of Chinese rice wine. Strategies of ethanol domestication, ultraviolet mutagenesis (UV) and protoplast fusion were conducted to create yeast hybrids with excellent oenological characteristic. The obtained diploid hybrid F23 showed a cell viability of 6.2% under 25% ethanol, whereas its diploid parental strains could not survive under 20% ethanol. During Chinese rice wine-making, compared to diploid parents, F23 produced 7.07%-12.44% higher yield of ethanol. Flavor analysis indicated that the total content of flavor compounds in F23 wine was 19.99-26.55% higher than that of parent wines. Specifically, F23 exhibited higher capacity in producing 2-phenylethanol, short-chain and long-chain fatty-acid ethyl-ester than diploid parents. Compared to diploid parents, F23 introduced more flavor contributors with odor activity values (OAVs) above one to Chinese rice wine, and those contributors were found with higher OAVs. Based on principal component analysis (PCA), the flavor characteristic of F23 wine was similar to each of parent wine. Additionally, sensory evaluation showed that F23 wine was highly assessed for its intensive levels in fruit-aroma, alcohol-aroma and mouthfeel. Hybrid F23 not only displayed superior flavor production and oenological performance in making Chinese rice wine, but also could act as potential "mixed-like" starter to enrich wine style and differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Filipe-Ribeiro, Luís; Milheiro, Juliana; Matos, Carlos C; Cosme, Fernanda; Nunes, Fernando M
2017-06-01
Data in this article presents the changes on phenolic compounds, headspace aroma composition and sensory profile of a red wine spiked with 4-ethylphenol and 4-ethylguaiacol and treated with seven activated carbons with different physicochemical characteristics, namely surface area, micropore volume and mesopore volume ("Reduction of 4-ethylphenol and 4-ethylguaiacol in red wine by activated carbons with different physicochemical characteristics: impact on wine quality" Filipe-Ribeiro et al. (2017) [1]). Data on the physicochemical characteristics of the activated carbons are shown. Statistical data on the sensory expert panel consistency by General Procrustes Analysis is shown. Statistical data is also shown, which correlates the changes in chemical composition of red wines with the physicochemical characteristics of activated carbons used.
NASA Astrophysics Data System (ADS)
Yang, Chao; Wu, Wei; Wu, Shu-Cheng; Liu, Hong-Bin; Peng, Qing
2014-02-01
Aroma types of flue-cured tobacco (FCT) are classified into light, medium, and heavy in China. However, the spatial distribution of FCT aroma types and the relationships among aroma types, chemical parameters, and climatic variables were still unknown at national scale. In the current study, multi-year averaged chemical parameters (total sugars, reducing sugars, nicotine, total nitrogen, chloride, and K2O) of FCT samples with grade of C3F and climatic variables (mean, minimum and maximum temperatures, rainfall, relative humidity, and sunshine hours) during the growth periods were collected from main planting areas across China. Significant relationships were found between chemical parameters and climatic variables ( p < 0.05). A spatial distribution map of FCT aroma types were produced using support vector machine algorithms and chemical parameters. Significant differences in chemical parameters and climatic variables were observed among the three aroma types based on one-way analysis of variance ( p < 0.05). Areas with light aroma type had significantly lower values of mean, maximum, and minimum temperatures than regions with medium and heavy aroma types ( p < 0.05). Areas with heavy aroma type had significantly lower values of rainfall and relative humidity and higher values of sunshine hours than regions with light and medium aroma types ( p < 0.05). The output produced by classification and regression trees showed that sunshine hours, rainfall, and maximum temperature were the most important factors affecting FCT aroma types at national scale.
Wang, Xing-Chen; Li, Ai-Hua; Dizy, Marta; Ullah, Niamat; Sun, Wei-Xuan; Tao, Yong-Sheng
2017-08-01
To improve the aroma profile of Ecolly dry white wine, the simultaneous and sequential inoculations of selected Rhodotorula mucilaginosa and Saccharomyces cerevisiae were performed in wine making of this work. The two yeasts were mixed in various ratios for making the mixed inoculum. The amount of volatiles and aroma characteristics were determined the following year. Mixed fermentation improved both the varietal and fermentative aroma compound composition, especially that of (Z)-3-hexene-1-ol, nerol oxide, certain acetates and ethyls group compounds. Citrus, sweet fruit, acid fruit, berry, and floral aroma traits were enhanced by mixed fermentation; however, an animal note was introduced upon using higher amounts of R. mucilaginosa. Aroma traits were regressed with volatiles as observed by the partial least-square regression method. Analysis of correlation coefficients revealed that the aroma traits were the multiple interactions of volatile compounds, with the fermentative volatiles having more impact on aroma than varietal compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Watcharananun, Wanwarang; Cadwallader, Keith R; Huangrak, Kittiphong; Kim, Hun; Lorjaroenphon, Yaowapa
2009-02-11
"Tian Op", a traditional Thai scented candle, is used for the smoking and flavoring of sweets, cakes, and other desserts for the purpose of adding a unique aroma to the final product. Gas chromatography-olfactometry, aroma extract dilution analysis, and GC-MS were applied to identify the potent odorants in two types of traditional Thai desserts ("num dok mai" and "gleep lum duan") prepared using a Tian Op smoking process. On the basis of the results of AEDA and calculated odor-activity values, the predominant odorants in the Tian Op flavored desserts were vinyl ketones (C(5)-C(9)), n-aldehydes (C(5)-C(11)), (E)-2-unsaturated aldehydes (C(8)-C(11)), and omega-1-unsaturated aldehydes (C(8) and C(9)). Sensory studies of model mixtures confirmed the importance of n-aldehydes, omega-1-unsaturated aldehydes, and guaiacol as predominant odorants; however, the results showed that vinyl ketones and (E)-2-unsaturated aldehydes, despite having high odor-activity values, may be of only minor importance in the typical aroma profiles of traditional Tian Op smoked desserts.
The effect of vitamin concentrates on the flavor of pasteurized fluid milk.
Yeh, E B; Schiano, A N; Jo, Y; Barbano, D M; Drake, M A
2017-06-01
Fluid milk consumption in the United States continues to decline. As a result, the level of dietary vitamin D provided by fluid milk in the United States diet has also declined. Undesirable flavor(s)/off flavor(s) in fluid milk can negatively affect milk consumption and consumer product acceptability. The objectives of this study were to identify aroma-active compounds in vitamin concentrates used to fortify fluid milk, and to determine the influence of vitamin A and D fortification on the flavor of milk. The aroma profiles of 14 commercial vitamin concentrates (vitamins A and D), in both oil-soluble and water-dispersible forms, were evaluated by sensory and instrumental volatile compound analyses. Orthonasal thresholds were determined for 8 key aroma-active compounds in skim and whole milk. Six representative vitamin concentrates were selected to fortify skim and 2% fat pasteurized milks (vitamin A at 1,500-3,000 IU/qt, vitamin D at 200-1,200 IU/qt, vitamin A and D at 1,000/200-6,000/1,200 IU/qt). Pasteurized milks were evaluated by sensory and instrumental volatile compound analyses and by consumers. Fat content, vitamin content, and fat globule particle size were also determined. The entire experiment was done in duplicate. Water-dispersible vitamin concentrates had overall higher aroma intensities and more detected aroma-active compounds than oil-soluble vitamin concentrates. Trained panelists and consumers were able to detect flavor differences between skim milks fortified with water-dispersible vitamin A or vitamin A and D, and unfortified skim milks. Consumers were unable to detect flavor differences in oil-soluble fortified milks, but trained panelists documented a faint carrot flavor in oil-soluble fortified skim milks at higher vitamin A concentrations (3,000-6,000 IU). No differences were detected in skim milks fortified with vitamin D, and no differences were detected in any 2% milk. These results demonstrate that vitamin concentrates may contribute to off flavor(s) in fluid milk, especially in skim milk fortified with water-dispersible vitamin concentrates. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Bassolé, Imaël Henri Nestor; Lamien-Meda, Aline; Bayala, Balé; Tirogo, Souleymane; Franz, Chlodwig; Novak, Johannes; Nebié, Roger Charles; Dicko, Mamoudou Hama
2010-11-03
Essential oils from leaves of Lippia multiflora, Mentha x piperita and Ocimum basilicum from Burkina Faso were analysed by GC-FID and GC-MS. Major components were p-cymene, thymol, b-caryophyllene, carvacrol and carvone for L. multiflora, menthol and iso-menthone for M. x piperita and, linalool and eugenol for O. basilicum. The essential oils and their major monoterpene alcohols were tested against nine bacterial strains using the disc diffusion and broth microdilution methods. The essential oils with high phenolic contents were the most effective antimicrobials. The checkerboard method was used to quantify the efficacy of paired combinations of essential oils and their major components. The best synergetic effects among essential oils and major components were obtained with combinations involving O. basilicum essential oil and eugenol, respectively. As phenolic components are characterized by a strong spicy aroma, this study suggests that the selection of certain combinations of EOs could help to reduce the amount of essential oils and consequently reduce any adverse sensory impact in food.
Cannon, Robert J; Kazimierski, Arkadiusz; Curto, Nicole L; Li, Jing; Trinnaman, Laurence; Jańczuk, Adam J; Agyemang, David; Da Costa, Neil C; Chen, Michael Z
2015-02-25
Lemons (Citrus limon) are a desirable citrus fruit grown and used globally in a wide range of applications. The main constituents of this sour-tasting fruit have been well quantitated and characterized. However, additional research is still necessary to better understand the trace volatile compounds that may contribute to the overall aroma of the fruit. In this study, Lisbon lemons (C. limon L. Burm. f. cv. Lisbon) were purchased from a grove in California, USA, and extracted by liquid-liquid extraction. Fractionation and multidimensional gas chromatography-mass spectrometry were utilized to separate, focus, and enhance unidentified compounds. In addition, these methods were employed to more accurately assign flavor dilution factors by aroma extract dilution analysis. Numerous compounds were identified for the first time in lemons, including a series of branched aliphatic aldehydes and several novel sulfur-containing structures. Rarely reported in citrus peels, sulfur compounds are known to contribute significantly to the aroma profile of the fruit and were found to be aroma-active in this particular study on lemons. This paper discusses the identification, synthesis, and organoleptic properties of these novel volatile sulfur compounds.
Characterization of odor-active volatiles in apples: influence of cultivars and maturity stage.
Mehinagic, Emira; Royer, Gaëlle; Symoneaux, Ronan; Jourjon, Frédérique; Prost, Carole
2006-04-05
The aroma and texture of three different apple cultivars, harvested at three maturity stages, were analyzed by sensory and instrumental analysis. The emphasis was on the identification of the most potent odorant volatiles, and the challenge was to separate the few most important flavor compounds, which may be trace chemicals, from the vast number of nonodorant compounds present in apple aroma extracts. Thirty-six odorant compounds were detected, 24 of which were common to all extracts. A significant correlation coefficient was found between the aroma intensity scores and overall quantity of the odorant volatiles, which shows that the development of sensory aroma is similar to that of odorant volatiles. This study also showed that the parameters measured by penetrometry and compression were highly correlated with sensory textural attributes. The determination of the optimal maturity stage for different apple cultivars by the usual parameters, such as color, diameter, total soluble solids, and titrable acidity, may not be sufficient to determine the optimal sensory quality for consumers. Moreover, the sensory quality of fruits changes during maturation in a different way from one cultivar to another, and this should be taken into account.
Linking wine lactic acid bacteria diversity with wine aroma and flavour.
Cappello, Maria Stella; Zapparoli, Giacomo; Logrieco, Antonio; Bartowsky, Eveline J
2017-02-21
In the last two decades knowledge on lactic acid bacteria (LAB) associated with wine has increased considerably. Investigations on genetic and biochemistry of species involved in malolactic fermentation, such as Oenococcus oeni and of Lactobacillus have enabled a better understand of their role in aroma modification and microbial stability of wine. In particular, the use of molecular techniques has provided evidence on the high diversity at species and strain level, thus improving the knowledge on wine LAB taxonomy and ecology. These tools demonstrated to also be useful to detect strains with potential desirable or undesirable traits for winemaking purposes. At the same time, advances on the enzymatic properties of wine LAB responsible for the development of wine aroma molecules have been undertaken. Interestingly, it has highlighted the high intraspecific variability of enzymatic activities such as glucosidase, esterase, proteases and those related to citrate metabolism within the wine LAB species. This genetic and biochemistry diversity that characterizes wine LAB populations can generate a wide spectrum of wine sensory outcomes. This review examines some of these interesting aspects as a way to elucidate the link between LAB diversity with wine aroma and flavour. In particular, the correlation between inter- and intra-species diversity and bacterial metabolic traits that affect the organoleptic properties of wines is highlighted with emphasis on the importance of enzymatic potential of bacteria for the selection of starter cultures to control MLF and to enhance wine aroma. Copyright © 2016 Elsevier B.V. All rights reserved.
Changes in key aroma compounds of Criollo cocoa beans during roasting.
Frauendorfer, Felix; Schieberle, Peter
2008-11-12
Application of a comparative aroma extraction dilution analysis on unroasted and roasted Criollo cocoa beans revealed 42 aroma compounds in the flavor dilution (FD) factor range of 1-4096 for the unroasted and 4-8192 for the roasted cocoa beans. While the same compounds were present in the unroasted and roasted cocoa beans, respectively, these clearly differed in their intensity. For example, 2- and 3-methylbutanoic acid (rancid) and acetic acid (sour) showed the highest FD factors in the unroasted beans, while 3-methylbutanal (malty), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel-like), and 2- and 3-methylbutanoic acid (sweaty) were detected with the highest FD factors in the roasted seeds. Quantitation of 30 odorants by means of stable isotope dilution assays followed by a calculation of odor activity values (ratio of the concentration/odor threshold) revealed concentrations above the odor threshold for 22 compounds in the unroasted and 27 compounds in the roasted cocoa beans, respectively. In particular, a strong increase in the concentrations of the Strecker aldehydes 3-methylbutanal and phenylacetaldehyde as well as 4-hydroxy-2,5-dimethyl-3(2H)-furanone was measured, suggesting that these odorants should contribute most to the changes in the overall aroma after roasting. Various compounds contributing to the aroma of roasted cocoa beans, such as 3-methylbutanoic acid, ethyl 2-methylbutanoate, and 2-phenylethanol, were already present in unroasted, fermented cocoa beans and were not increased during roasting.
Chen, Qinqin; Song, Jianxin; Bi, Jinfeng; Meng, Xianjun; Wu, Xinye
2018-03-01
Volatile profile of ten different varieties of fresh jujubes was characterized by HS-SPME/GC-MS (headspace solid phase micro-extraction combined with gas chromatography-mass spectrometry) and E-nose (electronic nose). GC-MS results showed that a total of 51 aroma compounds were identified in jujubes, hexanoic acid, hexanal, (E)-2-hexenal, (Z)-2-heptenal, benzaldehyde and (E)-2-nonenal were the main aroma components with contributions that over 70%. Differentiation of jujube varieties was conducted by cluster analysis of GC-MS data and principal component analysis & linear discriminant analysis of E-nose data. Both results showed that jujubes could be mainly divided into two groups: group A (JZ, PDDZ, JSXZ and LWZZ) and group B (BZ, YZ, MZ, XZ and DZ). There were significant differences in contents of alcohols, acids and aromatic compounds between group A and B. GC-MS coupled with E-nose could be a fast and accurate method to identify the general flavor difference in different varieties of jujubes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Van Heel, Martijn; Van Gucht, Dinska; Vanbrabant, Koen; Baeyens, Frank
2017-02-15
This study examined the impact of four variables pertaining to the use of e-cigarettes (e-cigs) on cravings for tobacco cigarettes and for e-cigs after an overnight abstinence period. The four variables were the nicotine level, the sensorimotor component, the visual aspect, and the aroma of the e-cig. In an experimental study, 81 participants without prior vaping experience first got acquainted with using e-cigs in a one-week tryout period, after which they participated in a lab session assessing the effect of five minutes of vaping following an abstinence period of 12 h. A mixed-effects model clearly showed the importance of nicotine in craving reduction. However, also non-nicotine factors, in particular the sensorimotor component, were shown to contribute to craving reduction. Handling cues interacted with the level (presence/absence) of nicotine: it was only when the standard hand-to-mouth action cues were omitted that the craving reducing effects of nicotine were observed. Effects of aroma or visual cues were not observed, or weak and difficult to interpret, respectively.
The Importance of Conditioned Stimuli in Cigarette and E-Cigarette Craving Reduction by E-Cigarettes
Van Heel, Martijn; Van Gucht, Dinska; Vanbrabant, Koen; Baeyens, Frank
2017-01-01
This study examined the impact of four variables pertaining to the use of e-cigarettes (e-cigs) on cravings for tobacco cigarettes and for e-cigs after an overnight abstinence period. The four variables were the nicotine level, the sensorimotor component, the visual aspect, and the aroma of the e-cig. In an experimental study, 81 participants without prior vaping experience first got acquainted with using e-cigs in a one-week tryout period, after which they participated in a lab session assessing the effect of five minutes of vaping following an abstinence period of 12 h. A mixed-effects model clearly showed the importance of nicotine in craving reduction. However, also non-nicotine factors, in particular the sensorimotor component, were shown to contribute to craving reduction. Handling cues interacted with the level (presence/absence) of nicotine: it was only when the standard hand-to-mouth action cues were omitted that the craving reducing effects of nicotine were observed. Effects of aroma or visual cues were not observed, or weak and difficult to interpret, respectively. PMID:28212302
Aroma barrier properties of sodium caseinate-based films.
Fabra, Maria José; Hambleton, Alicia; Talens, Pau; Debeaufort, Fréderic; Chiralt, Amparo; Voilley, Andrée
2008-05-01
The mass transport of six different aroma compounds (ethyl acetate, ethyl butyrate, ethyl hexanoate, 2-hexanone, 1-hexanol, and cis-3-hexenol) through sodium caseinate-based films with different oleic acid (OA)/beeswax (BW) ratio has been studied. OA is less efficient than BW in reducing aroma permeability, which can be attributed to its greater polarity. Control film (without lipid) and films prepared with 0:100 OA/BW ratio show the lowest permeability. OA involves a decrease in aroma barrier properties of the sodium caseinate-based films due to its plasticization ability. Preferential sorption and diffusion occurs through OA instead of caseinate matrix and/or BW. The efficiency of sodium caseinate-based films to retain or limit aroma compound transfers depend on the affinity of the volatile compound to the films, which relates physicochemical interaction between volatile compound and film. Specific interactions (aroma compound-hydrocolloid and aroma compound-lipid) induce structural changes during mass transfer.
Recent advances in research on volatile aroma compounds in tomatoes and their impacting factors
USDA-ARS?s Scientific Manuscript database
Aroma is an important sensory attribute of tomatoes. Tomato aroma is formed by a complex mixture of more than 400 volatile compounds, and it plays an important role in the classification and consumer acceptability of tomato products. This article provides a brief overview of the volatile aroma compo...
Aroma improvement by repeated freeze-thaw treatment during Tuber melanosporum fermentation
Xiao, Deng-Rong; Liu, Rui-Sang; He, Long; Li, Hong-Mei; Tang, Ya-Ling; Liang, Xin-Hua; Chen, Tao; Tang, Ya-Jie
2015-01-01
The aroma attributes of sulfurous, mushroom and earthy are the most important characteristics of the aroma of Tuber melanosporum. However, these three aroma attributes are absent in the T. melanosporum fermentation system. To improve the quality of the aroma, repeated freeze-thaw treatment (RFTT) was adopted to affect the interplay of volatile organic compounds (VOCs). Using RFTT, not only was the score on the hedonic scale of the aroma increased from the “liked slightly” to the “liked moderately” grade, but the aroma attributes of sulfurous, mushroom and earthy could also be smelled in the T. melanosporum fermentation system for the first time. A total of 29 VOCs were identified, and 9 compounds were identified as the key discriminative volatiles affected by RFTT. Amino acid analysis revealed that methionine, valine, serine, phenylalanine, isoleucine and threonine were the key substrates associated with the biosynthesis of the 9 key discriminative VOCs. This study noted that amino acid metabolism played an important role in the regulation of the aroma of the T. melanosporum fermentation system. PMID:26607288
Kraujalytė, Vilma; Leitner, Erich; Venskutonis, Petras Rimantas
2013-05-22
The profiles of volatile constituents of berry fruit of two Aronia melanocarpa genotypes were evaluated by headspace-solid-phase microextraction (HS-SPME), simultaneous distillation and extraction (SDE), and gas chromatography-olfactometry (GC-O). In total, 74 volatile compounds were identified in chokeberry juice, 3-penten-2-one, 3,9-epoxy-p-menth-1-ene, and benzaldehyde being the most abundant constituents; however, their percentage concentrations were remarkably different in the HS-SPME and SDE profiles. Twenty two aroma-active compounds were detected and characterized by the trained panelists in HS-SPME using GC-O detection frequency analysis. Olfactometry revealed that ethyl-2-methyl butanoate, ethyl-3-methyl butanoate, ethyl decanoate ("fruity" aroma notes), nonanal ("green" notes), unidentified compound possessing "moldy" odor, and some other volatiles may be very important constituents in formation of chokeberry aroma of both analyzed plant cultivars.
Chemicals involved in honeybee-sunflower relationship.
Pham-Delegue, M H; Etievant, P; Guichard, E; Marilleau, R; Douault, P; Chauffaille, J; Masson, C
1990-11-01
We present a review of work on the plant chemicals involved in the honeybee-sunflower model system. Combined behavioral and chemical analyses were conducted under natural and controlled conditions. First the distribution of forager bees' visits on two pairs of sunflower genotypes producing a different level of hybrid seed yield was recorded under pollen-proof tunnels. Mirasol parental lines producing high seed yields were visited at random, whereas forager bees visited preferentially the female parental line of Marianne, resulting in low seed yield. Nectar samples collected on the genotypes were analyzed by gas chromatography. Fructose, glucose, and sucrose were identified. Parental lines of Mirasol showed similar sugar profiles, whereas the female line of Marianne contained higher amounts of sucrose than the male line. We assume that the bees' preferences between genotypes might rely on differences in the sugar composition of floral nectars, especially in the amount of sucrose. Aromas from headspace collection were compared between pairs and periodically during the flowering period. Of the 144 components indexed for Marianne lines and 136 components for Mirasol lines, 17 of the components for Marianne lines and 18 for Mirasol lines differed significantly according to flowering stage. Significant differences appeared in eight of the 134 components of Marianne lines and in 20 of the 250 components for Mirasol lines. Such differences, even restricted to a few components, might account for honeybees' discrimination between genotypes or flowering stage. Experiments then were conducted in a flight room using an artificial flower device. A total volatile extract was used as a conditioning scent previous to the test where the total extract was successively compared to several of its subfractions. Fractions significantly less visited than the total extract were discarded, whereas fractions confused with the total extract were kept. From step to step, a restricted fraction of 28 polar components, among which 15 were identified, was shown to be as active as the initial conditioning extract. These data emphasized honeybees' abilities to generalize from simplified to more complex chemical information. Finally, this work considers the possible use of such plant chemicals, from nectars or aromas, either as targets for genetic modification of crop plants or as direct attractants when sprayed on the crop, for the improvement of entomophilous cross pollination.
Yin, Wenting; Hewson, Louise; Linforth, Robert; Taylor, Moira; Fisk, Ian D
2017-07-01
Food flavour is important in appetite control. The effects of aroma and taste, independently or in combination, on appetite sensation and subsequent food intake, were studied. Twenty-six females (24 ± 4 years, 20.9 ± 1.9 kg⋅m -2 ) consumed, over 15 min period, one of four sample drinks as a preload, followed by an ad libitum consumption of a pasta meal (after 65 min). Sample drinks were: water (S1, 0 kcal), water with strawberry aroma (S2, 0 kcal), water with sucrose and citric acid (S3, 48 kcal) and water with strawberry aroma, sucrose and citric acid (S4, 48 kcal). Appetite sensation did not differ between the S1 (water), S2 (aroma) and S3 (taste) conditions. Compared with S1 (water), S2 (aroma) and S3 (taste), S4 (aroma + taste) suppressed hunger sensation over the 15 min sample drink consumption period (satiation) (p < 0.05). S4 (aroma + taste) further reduced hunger sensation (satiety) more than S1 at 5, 20 and 30 min after the drink was consumed (p < 0.05), more than S2 (aroma) at 5 and 20 min after the drink was consumed (p < 0.05), and more than S3 (taste) at 5 min after the drink was consumed (p < 0.05). Subsequent pasta energy intake did not vary between the sample drink conditions. S4 (aroma + taste) had the strongest perceived flavour. This study suggests that the combination of aroma and taste induced greater satiation and short-term satiety than the independent aroma or taste and water, potentially via increasing the perceived flavour intensity or by enhancing the perceived flavour quality and complexity as a result of aroma-taste cross-modal perception. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Jo, Y; Benoist, D M; Barbano, D M; Drake, M A
2018-05-01
Typical high-temperature, short-time (HTST) pasteurization encompasses a lower heat treatment and shorter refrigerated shelf life compared with ultra-pasteurization (UP) achieved by direct steam injection (DSI-UP) or indirect heat (IND-UP). A greater understanding of the effect of different heat treatments on flavor and flavor chemistry of milk is required to characterize, understand, and identify the sources of flavors. The objective of this study was to determine the differences in the flavor and volatile compound profiles of milk subjected to HTST, DSI-UP, or IND-UP using sensory and instrumental techniques. Raw skim and raw standardized 2% fat milks (50 L each) were processed in triplicate and pasteurized at 78°C for 15 s (HTST) or 140°C for 2.3 s by DSI-UP or IND-UP. Milks were cooled and stored at 4°C, then analyzed at d 0, 3, 7, and 14. Sensory attributes were determined using a trained panel, and aroma active compounds were evaluated by solid-phase micro-extraction or stir bar sorptive extraction followed by gas chromatography-mass spectrometry, gas chromatography-olfactometry, and gas chromatography-triple quad mass spectrometry. The UP milks had distinct cooked and sulfur flavors compared with HTST milks. The HTST milks had less diversity in aroma active compounds compared with UP milks. Flavor intensity of all milks decreased by d 14 of storage. Aroma active compound profiles were affected by heat treatment and storage time in both skim and 2% milk. High-impact aroma active compounds were hydrogen sulfide, dimethyl trisulfide, and methional in DSI-UP and 2 and 3-methylbutanal, furfural, 2-heptanone, 2-acetyl-1-pyrroline, 2-aminoacetophenone, benzaldehyde, and dimethyl sulfide in IND-UP. These results provide a foundation knowledge of the effect of heat treatments on flavor development and differences in sensory quality of UP milks. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Pozo-Bayón, Maria Angeles; Ruíz-Rodríguez, Alejandro; Pernin, Karine; Cayot, Nathalie
2007-02-21
The use of solvent-assisted flavor evaporation extraction (SAFE) and purge and trap in Tenax allowed the identification of more than 100 volatile compounds in a sponge cake (SC-e). Gas chromatography-olfactometry (GC-O) of the SAFE extracts of crumb and crust were achieved in order to determine the most potent odorants of SC-e. The change in the traditional dough formulation of SC-e in which eggs were substituted by baking powder (SC-b) as the leavening agent produced important changes in some key aroma compounds. The release curves of some aroma compounds-some of them generated during baking and others added in the dough-were followed by cumulative headspace analysis. In the flavored SC-b, the aroma release curves showed a plateau after 15 min of purge, while the release increased proportionally with the purge time in the flavored SC-e. In general, except for some of the aroma compounds with the highest log P values, the rate of release of most of the added and generated aroma compounds was significantly influenced by the changes in the cake formulation. The higher rates of release found for the aroma compounds in SC-b could contribute to explain its rapid exhaustion of aroma compounds in the purge and trap experiments and might lead to poorer sensorial characteristics of this cake during storage.
USDA-ARS?s Scientific Manuscript database
Although many of the volatile constituents of flavor and aroma in citrus have been identified, the molecular mechanism and regulation of volatile production is not well understood. Our aim was to understand mechanisms of flavor volatile production and regulation in mandarin fruit. To this end fruits...
Guclu, Gamze; Sevindik, Onur; Kelebek, Hasim; Selli, Serkan
2016-01-01
Ayvalik is an important olive cultivar producing high quality oils in Turkey. In the present study, volatile and phenolic compositions of early-harvest extra virgin olive oil (cv. Ayvalik) were determined. The solvent-assisted flavor evaporation (SAFE) technique was used for the extraction of volatile components. The aromatic extract obtained by SAFE was representative of the olive oil odor. A total of 32 aroma compounds, including alcohols, aldehydes, terpenes, esters, and an acid, were identified in the olive oil. Aldehydes and alcohols were qualitatively and quantitatively the most dominant volatiles in the oil sample. Of these, six volatile components presented odor activity values (OAVs) greater than one, with (Z)-3-hexenal (green), hexanal (green-sweet) and nonanal (fatty-pungent) being those with the highest OAVs in olive oil. A total of 14 phenolic compounds were identified and quantified by liquid chromatography combined with a diode array detector and ion spray mass spectrometry. The major phenolic compounds were found as 3,4-DHPEA-EDA, 3,4-DHPEA-EA and p-HPEA-EDA. PMID:28231141
Quantitative analysis of fragrance and odorants released from fresh and decaying strawberries.
Kim, Yong-Hyun; Kim, Ki-Hyun; Szulejko, Jan E; Parker, David
2013-06-20
The classes and concentrations of volatile organic compounds (VOC) released from fresh and decaying strawberries were investigated and compared. In this study, a total of 147 strawberry volatiles were quantified before and after nine days of storage to explore differences in the aroma profile between fresh strawberries (storage days (SRD) of 0, 1, and 3) and those that had started to decay (SRD = 6 and 9). In terms of concentration, seven compounds dominated the aroma profile of fresh strawberries (relative composition (RC) up to 97.4% by mass, sum concentration): (1) ethyl acetate = 518 mg∙m⁻³, (2) methyl acetate = 239 mg∙m⁻³, (3) ethyl butyrate = 13.5 mg∙m⁻³, (4) methyl butyrate = 11.1 mg∙m⁻³, (5) acetaldehyde = 24.9 mg∙m⁻³, (6) acetic acid = 15.2 mg∙m⁻³, and (7) acetone = 13.9 mg∙m⁻³. In contrast, two alcohols dominated the aroma profile of decayed samples (RC up to 98.6%): (1) ethyl alcohol = 94.2 mg∙m⁻³ and (2) isobutyl alcohol = 289 mg∙m⁻³. Alternatively; if the aroma profiles are re-evaluated by summing odor activity values (ΣOAV); four ester compounds ((1) ethyl butyrate (6,160); (2) ethyl hexanoate (3,608); (3) ethyl isovalerate (1,592); and (4) ethyl 2-methylbutyrate (942)) were identified as the key constituents of fresh strawberry aroma (SRD-0). As the strawberries began to decay; isobutyl alcohol recorded the maximum OAV of 114 (relative proportion (RP) (SRD = 6) = 58.3%). However, as the decay process continued, the total OAV dropped further by 3 to 4 orders of magnitude--decreasing to 196 on SRD = 6 to 7.37 on SRD = 9. The overall results of this study confirm dramatic changes in the aroma profile of strawberries over time, especially with the onset of decay.
Mishellany-Dutour, Anne; Woda, Alain; Labouré, Hélène; Bourdiol, Pierre; Lachaze, Pauline; Guichard, Elisabeth; Feron, Gilles
2012-01-01
We hypothesized that interindividual differences in motor activities during chewing and/or swallowing were determining factors for the transfer of volatile aroma from the in-mouth air cavity (IMAC) toward the olfactory mucosa. In our first experiment, we looked for changes in IMAC volume after saliva deglutition in 12 healthy subjects. The mean IMAC volume was measured after empty deglutition using an acoustic pharyngometer device. Based on the time course of the IMAC volume after swallowing, we discerned two groups of subjects. The first group displayed a small, constant IMAC volume (2.26 mL ±0.62) that corresponded to a high tongue position. The second group displayed a progressive increase in IMAC (from 6.82 mL ±2.37 to 22.82 mL ±3.04) that corresponded to a progressive lowering of the tongue to its resting position. In our second experiment, we investigated the relationship between IMAC volume changes after deglutition and the level of aroma release at the nostril. For this purpose, the release of menthone was measured at the nostril level in 25 subjects who consumed similar amounts of a mint tablet. The subjects were separated into two groups corresponding to two levels of menthone release: high (H) and low (L). The mean volume of IMAC was measured during and after empty deglutition. Group H displayed a small, constant amplitude of IMAC volume change after deglutition, while Group L displayed a progressive increase in IMAC. It is likely that Group H continuously released the aroma through the veloglossal isthmus as the mint was consumed, while Group L trapped the aroma in the oral cavity and then released it into the nasal cavity upon swallowing. These results show that the in vivo aroma release profile in humans depends closely on the different motor patterns at work during empty deglutition. PMID:22815986
Steinhaus, Martin
2015-04-29
Curry leaves are a popular seasoning herb with a pronounced sulfury and burnt odor, the molecular background of which was yet unclear. Application of an aroma extract dilution analysis to the volatile fraction of curry leaves isolated by solvent extraction and solvent-assisted flavor evaporation afforded 23 odor-active compounds with flavor dilution (FD) factors ranging from 1 to 8192. On the basis of the comparison of their retention indices, mass spectra, and odor properties with data of reference compounds, the structures of 22 odorants could be assigned, 15 of which had not been reported in curry leaves before. Odorants with high FD factors included 1-phenylethanethiol (FD factor 8192), linalool (4096), α-pinene (2048), 1,8-cineole (1024), (3Z)-hex-3-enal (256), 3-(methylsulfanyl)propanal (128), myrcene (64), (3Z)-hex-3-en-1-ol (32), and (2E,6Z)-nona-2,6-dienal (32). The unique sulfury and burnt odor exhibited by 1-phenylethanethiol in combination with its high FD factor suggested that it constitutes the character impact compound of fresh curry leaf aroma.
Steinhaus, Martin
2017-03-15
The most odor-active compounds previously identified by application of an aroma extract dilution analysis were quantitated in freshly picked curry leaves, either by stable isotope dilution assays in combination with GC-GC-MS or by GC-FID after simultaneous extraction/fractionation. Odor activity values (OAVs) were calculated as ratios of concentrations to odor threshold values. The topmost OAVs were obtained for (3Z)-hex-3-enal (grassy; OAV 180 000), (1S)-1-phenylethane-1-thiol (sulfury, burnt; OAV 150 000), (1R)-1-phenylethane-1-thiol (sulfury, burnt; OAV 120 000), (3R)-linalool (citrusy; OAV 58 000), and myrcene (geranium leaf-like; OAV 23 000). The high OAVs calculated for its enantiomers confirmed 1-phenylethane-1-thiol as character impact compound of the typical sulfury and burnt aroma of curry leaves. The 1-phenylethane-1-thiol concentration in curry leaves decreased upon tissue disruption and drying, as well as upon frying of fresh leaves. By contrast, frying of dried leaves led to an increase of 1-phenylethane-1-thiol, indicating a yet unknown thermolabile precursor.
Key volatile aroma compounds of three black velvet tamarind (Dialium) fruit species.
Lasekan, Ola; See, Ng Siew
2015-02-01
Nineteen odour-active compounds were quantified in three black velvet tamarind fruit species. Calculation of the odour activity values (OAVs) of the odorants showed that differences in odour profiles of the tamarinds were mainly caused by linalool, limonene, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, nonanal, and (Z)-3-hexenal. On the basis of their high OAVs, cis-linalool oxide (furanoid), geranyl acetone, and cinnamyl acetate were identified as other potent odorants in the three tamarinds. Sensory studies revealed very distinct aroma profiles, which are characteristic of these types of fruits. While the Dialiumguineense elicited floral, flowery, caramel-like notes, the other two species were dominated by leaf-like, caramel, and green notes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Exploring the Saccharomyces cerevisiae Volatile Metabolome: Indigenous versus Commercial Strains
Alves, Zélia; Melo, André; Figueiredo, Ana Raquel; Coimbra, Manuel A.; Gomes, Ana C.; Rocha, Sílvia M.
2015-01-01
Winemaking is a highly industrialized process and a number of commercial Saccharomyces cerevisiae strains are used around the world, neglecting the diversity of native yeast strains that are responsible for the production of wines peculiar flavours. The aim of this study was to in-depth establish the S. cerevisiae volatile metabolome and to assess inter-strains variability. To fulfill this objective, two indigenous strains (BT2652 and BT2453 isolated from spontaneous fermentation of grapes collected in Bairrada Appellation, Portugal) and two commercial strains (CSc1 and CSc2) S. cerevisiae were analysed using a methodology based on advanced multidimensional gas chromatography (HS-SPME/GC×GC-ToFMS) tandem with multivariate analysis. A total of 257 volatile metabolites were identified, distributed over the chemical families of acetals, acids, alcohols, aldehydes, ketones, terpenic compounds, esters, ethers, furan-type compounds, hydrocarbons, pyrans, pyrazines and S-compounds. Some of these families are related with metabolic pathways of amino acid, carbohydrate and fatty acid metabolism as well as mono and sesquiterpenic biosynthesis. Principal Component Analysis (PCA) was used with a dataset comprising all variables (257 volatile components), and a distinction was observed between commercial and indigenous strains, which suggests inter-strains variability. In a second step, a subset containing esters and terpenic compounds (C10 and C15), metabolites of particular relevance to wine aroma, was also analysed using PCA. The terpenic and ester profiles express the strains variability and their potential contribution to the wine aromas, specially the BT2453, which produced the higher terpenic content. This research contributes to understand the metabolic diversity of indigenous wine microflora versus commercial strains and achieved knowledge that may be further exploited to produce wines with peculiar aroma properties. PMID:26600152
Jiang, Bao; Zhang, Zhen-Wen
2018-05-05
Due to its appropriate climate characteristics, the Loess Plateau region is considered to be one of the biggest optimal regions for producing high-quality mountain wine in China. However, the complex landform conditions of vineyards are conducive to the formation of mountainous microclimates, which ultimately influence the wine quality. This study aimed to elucidate the influences of three terrain conditions of the Loess Plateau region on the aroma compounds of Cabernet Franc wines by using solid phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS). A total of 40, 36 and 35 volatiles were identified and quantified from the flat, lower slope and higher slope vineyards, respectively. Esters were the largest group of volatiles, accounting for 54.6⁻56.6% of total volatiles, followed by alcohols. Wines from the slope lands had the higher levels of aroma compounds than that from flat land. According to their aroma-active values (OAVs), ethyl hexanoate, ethyl octanoate and isoamyl acetate were the most powerful compounds among the eight impact odorants, showing only quantitative but not qualitative differences between the three terrain wines. The shapes of the OAVs for three terrain wines were very similar.
Wang, Jiaming; Gambetta, Joanna M; Jeffery, David W
2016-05-18
Two rosé wines, representing a tropical and a fruity/floral style, were chosen from a previous study for further exploration by aroma extract dilution analysis (AEDA) and quantitative analysis. Volatiles were extracted using either liquid-liquid extraction (LLE) followed by solvent-assisted flavor evaporation (SAFE) or a recently developed dynamic headspace (HS) sampling method utilizing solid-phase extraction (SPE) cartridges. AEDA was conducted using gas chromatography-mass spectrometry/olfactometry (GC-MS/O) and a total of 51 aroma compounds with a flavor dilution (FD) factor ≥3 were detected. Quantitative analysis of 92 volatiles was undertaken in both wines for calculation of odor activity values. The fruity and floral wine style was mostly driven by 2-phenylethanol, β-damascenone, and a range of esters, whereas 3-SHA and several volatile acids were seen as essential for the tropical style. When extraction methods were compared, HS-SPE was as efficient as SAFE for extracting most esters and higher alcohols, which were associated with fruity and floral characters, but it was difficult to capture volatiles with greater polarity or higher boiling point that may still be important to perceived wine aroma.
Sáenz-Navajas, María-Pilar; Campo, Eva; Avizcuri, José Miguel; Valentin, Dominique; Fernández-Zurbano, Purificación; Ferreira, Vicente
2012-06-30
This work explores to what extent the aroma or the non-volatile fractions of red wines are responsible for the overall flavor differences perceived in-mouth. For this purpose, 14 samples (4 commercial and 10 reconstituted wines), were sorted by a panel of 30 trained assessors according to their sensory in-mouth similarities. Reconstituted wines were prepared by adding the same volatile fraction (coming from a red wine) to the non-volatile fraction of 10 different red wines showing large differences in perceived astringency. Sorting was performed under three different conditions: (a) no aroma perception: nose-close condition (NA), (b) retronasal aroma perception only (RA), and (c) allowing retro- and involuntary orthonasal aroma perception (ROA). Similarity estimates were derived from the sorting and submitted to multidimensional scaling (MDS) followed by hierarchical cluster analysis (HCA). Results have clearly shown that, globally, aroma perception is not the major driver of the in-mouth sensory perception of red wine, which is undoubtedly primarily driven by the perception of astringency and by the chemical compounds causing it, particularly protein precipitable proanthocyanidins (PAs). However, aroma perception plays a significant role on the perception of sweetness and bitterness. The impact of aroma seems to be more important whenever astringency, total polyphenols and protein precipitable PAs levels are smaller. Results also indicate that when a red-black fruit odor nuance is clearly perceived in conditions in which orthonasal odor perception is allowed, a strong reduction in astringency takes place. Such red-black fruit odor nuance seems to be the result of a specific aroma release pattern as a consequence of the interaction between aroma compounds and the non-volatile matrix. Copyright © 2011 Elsevier B.V. All rights reserved.
Stabilization of aroma compounds through sorption-release by packaging polymers.
Reynier, Alain; Dole, Patrice; Fricoteaux, Florence; Saillard, Philippe; Feigenbaum, Alexandre E
2004-09-08
Plastic packaging materials are often associated to aroma losses and to a decrease of the organoleptic quality of foods. This work defines situations where, on the contrary, plastics play a regulating role on the concentration of reactive aroma compounds in foods. These systems can be described by a two step mechanism; first, aroma is sorbed in the polymer, while the fraction in solution degrades quickly; in a second step, as the concentration is close to zero in the solution, the polymer liberates progressively the sorbed aroma back to the food. A simple numerical model is proposed, describing competitive processes of aroma degradation in solution and sorption by a polymer in contact with a homogeneous aqueous food. The classical limonene/low density polyethylene (LDPE) system is studied experimentally for the validation of the model: in an acidic medium, limonene both degrades quickly and is sorbed quickly, with a large solubility in LDPE. To define which aroma packaging systems could also display this interesting behavior, all types of possible interactions, using thermodynamic and kinetic parameters describing most practical situations, are simulated. For that purpose, 35 values of reference diffusion coefficients and 35 partition coefficients of usual aroma compounds between polymers and water have been measured and combined with the few available data from literature. The situations where polymers regulate the aroma concentration in food correspond to large partition coefficients (above 10), large diffusion coefficients (>10(-9) cm2 x s(-1)), and large degradation constants.
Sciarrone, Danilo; Schepis, Antonino; Zoccali, Mariosimone; Donato, Paola; Vita, Federico; Creti, Donato; Alpi, Amedeo; Mondello, Luigi
2018-06-05
Truffles are among the most expensive foods available in the market, usually used as flavoring additives for their distinctive aroma. The most valuable species is Tuber magnatum Pico, better known as "Alba white truffle", in which bis(methylthio)methane is the key aroma compound. Given the high economical value of genuine white truffles, analytical approaches are required to be able to discriminate between natural or synthetic truffle aroma. Gas chromatography coupled to combustion-isotope ratio mass spectrometry (GC-C-IRMS), exploiting the 13 C/ 12 C ratio abundance of the key flavorings compounds in foods, has been a recognized technique for authenticity and traceability purposes; however, a number of issues have greatly limited its widespread use so far. In the present research, a high-efficiency HS-SPME MDGC-C-IRMS with simultaneous quadrupole MS detection has been applied for the evaluation of bis(methylthio)methane, resolving the coelution occurring with other components. With the aim to minimize the effect of column bleeding on δ 13 C measurement, a medium polarity ionic liquid-based stationary phase was preferred to a polyethylene glycol one, as the secondary column. In total, 24 genuine white truffles harvested in Italy were analyzed, attaining a δ 13 C values between -42.6‰ and -33.9‰, with a maximum standard deviation lower than 0.7‰. Two commercial intact truffles and 14 commercial samples of pasta, sauce, olive oil, cream, honey, and fresh cheese flavored with truffle aroma were analyzed, and the results from δ 13 C measurement were evaluated in comparison with those of genuine "white truffle" range and commercial synthetic bis(methylthio)methane standard.
Liu, Cuihua; Yan, Fuhua; Gao, Huijun; He, Min; Wang, Zhuang; Cheng, Yunjiang; Deng, Xiuxin; Xu, Juan
2015-01-01
Terpenoids are major components of carotenoids, limonoids and aromas in citrus fruits, resulting in fruit coloration, bitterness and aroma. In this study the carotenoid, limonoid and volatile profiles of red-flesh Chuhong pummelo (CH) and pale green-flesh Feicui pummelo (FC) were investigated by HPLC and GC/MS. Large differences were found in constituents of carotenoids and limonoids in juice sacs and flavedo and of aromas in flavedo of the two pummelos. For carotenoids in juice sacs, CH contained 57 times the amount in FC, mainly all-trans-lycopene and phytoene, whereas in flavedo it contained only 25% of that in FC, the latter showing a high proportion of β-carotene and other chloroplastic carotenoids. In comparison with FC, limonin and nomilin aglycone production was boosted in juice sacs of CH while being almost absent in flavedo. For volatiles in flavedo, the total amount was significantly higher in CH. PCA suggested that germacrene-type sesquiterpenoids, etc. were principal in distinguishing volatile profiles of the two pummelos. The data showed a different tissue-biased pattern of carotenoid and limonoid aglycone synthesis in pummelos with different flesh color, and the possible independently regulated synthesis of those metabolites in different fruit tissues. Furthermore, decreased carotenoid and limonoid aglycone production accompanied by increased accumulation of volatile terpenoids in flavedo of red-flesh CH was identified, indicating that a total capacity or a balance of production of various terpenoids might exist in pummelo fruit tissues. It was also suggested that substrate concentration is not the key factor affecting product concentrations during the synthesis of monoterpene derivatives. © 2014 Society of Chemical Industry.
Chung, Miyoung; Choi, Euysoon
2011-02-01
This study was done to compare the effects of abdominal aroma massage and meridian massage on constipation and stress in college women with functional constipation. The participants were 38 college women, 18 were in the aroma group and 20 in the meridian group. The aroma massage was given using aroma oil which was a mixture of lemon, lavender, rosemary, and cyprus. The meridian massage was given at 9 accupoints which influence intestinal functions. The treatment was given 5 days a week for 4 weeks. A constipation severity score, weekly defecation frequency, and a stress response score were measured before and every week of 4 weeks of the experiment. While there was no significant difference between two groups, there was a significant difference within the groups in the constipation severity (aroma group: 1st week, meridian group: except 4th week), defecation frequency (aroma group: 3rd week, meridian group: 2nd and 3rd week), and stress (aroma group: all weeks, meridian group: except 4th week) after different duration of experiment. Based on these results, both abdominal massages relieved constipation and stress. Resorting to either types of massage will contribute to the reduction of use of stool softeners, suppositories, or enemas.
Intra-oral adsorption and release of aroma compounds following in-mouth wine exposure.
Esteban-Fernández, Adelaida; Rocha-Alcubilla, Nuria; Muñoz-González, Carolina; Moreno-Arribas, María Victoria; Pozo-Bayón, María Ángeles
2016-08-15
Wine "after-odour" defined as the long lasting aroma perception that remains after wine swallowing is an outstanding characteristic in terms of wine quality but a relatively unstudied phenomenon. Among the different parameters that might affect wine after-odour, the adsorption of odorants by the oral mucosa could be important but has been little explored. In this work, the impact of the chemical characteristics of aroma compounds on intra-oral adsorption was assessed by an in vivo approach that determined the amounts of odorants remaining in expectorated wine samples. In addition, the subsequent aroma release after in-mouth wine exposure was studied by means of intra-oral SPME/GC-MS using three different panellists. Oral adsorption of the aroma compounds added to the wines ranged from 6% to 43%, depending on their physicochemical characteristics. A progressive intra-oral aroma decrease at different decay rates depending on compound type and panellist was also found. The strength of the aroma-oral mucosa interactions seems to explain these results more than the amount of compound adsorbed by the oral mucosa. Copyright © 2016 Elsevier Ltd. All rights reserved.
Potent Odorants of Characteristic Floral/Sweet Odor in Chinese Chrysanthemum Flower Tea Infusion.
Kaneko, Shu; Chen, Jingxiu; Wu, Jieming; Suzuki, Yuto; Ma, Lin; Kumazawa, Kenji
2017-11-22
An investigation using the aroma extract dilution analysis (AEDA) technique applied to the aroma concentrates prepared from the tea infusions of two different types of Chinese chrysanthemum flowers (flower buds, blooming flowers) revealed that 29 aroma peaks were detected in the aroma concentrates, and 17 compounds were newly identified or tentatively identified in the chrysanthemum flower tea. AEDA also revealed that the aroma peaks having high flavor dilution factors mainly consisted of a floral/sweet note in addition to metallic and phenol-like/spicy notes. Among them, four aroma peaks having a floral/sweet were identified as verbenone, ethyl 3-phenylpropanoate, propyl 3-phenylpropanoate, and ethyl cinnamate, and a semiquantitative analysis revealed that the flower buds were rich in these compounds. Furthermore, a chiral analysis revealed that (-)-verbenone existed in both flowers at a 3 times higher concentration than (+)-verbenone. Additionally, because the detection threshold of (-)-verbenone was lower than that of the (+)-verbenone, it is concluded that the (-)-isomer was a main contributor of the aroma peak of verbenone in the chrysanthemum flower tea.
Umami compounds enhance the intensity of retronasal sensation of aromas from model chicken soups.
Nishimura, Toshihide; Goto, Shingo; Miura, Kyo; Takakura, Yukiko; Egusa, Ai S; Wakabayashi, Hidehiko
2016-04-01
We examined the influence of taste compounds on retronasal aroma sensation using a model chicken soup. The aroma intensity of a reconstituted flavour solution from which glutamic acid (Glu), inosine 5'-monophosphate (IMP), or phosphate was omitted was significantly lower (p<0.05) than that of the model soup. The aroma intensity of 0.4% NaCl solution containing the aroma chicken model (ACM) with added Glu and IMP was significantly higher (p<0.05) than that of 0.4% NaCl solution containing only ACM. The quantitative analyses showed that adding monosodium glutamate (MSG) to aqueous aroma solution containing only ACM enhanced the intensity of retronasal aroma sensation by 2.5-folds with increasing MSG concentration from 0% to 0.3%. Sensation intensity using an umami solution with added MSG and IMP was significantly higher than that with only MSG when the MSG concentration was 0.05%, 0.075%, or 0.1%. However, it plateaued when MSG concentration was beyond 0.3%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kim, Yang; Kim, Young-Suk; Yoo, Sang-Ho; Kim, Kwang-Ok
2014-02-15
Six low-methoxy pectins with different degrees of methylesterification and amidation, and molecular weights were used to prepare gels with similar moduli of elasticity by varying the concentrations of pectin and calcium phosphate. Five aroma compounds were added to the gels and their sensory textural properties, release and perception of aromas were investigated. Sensory firmness, springiness, adhesiveness, chewiness and cohesiveness differed according to the gel type, even though the moduli of elasticity were not significantly different (p<0.05). Release and perception of aromas also displayed significant difference according to the gel type (p<0.05). Low-methoxy amidated pectin exhibited the lowest release and perception for all the aroma compounds, while pectin-methylesterase-treated pectin gels exhibited relatively higher aroma release and perception. These results showed that the structural properties of pectins and gelling factors that increase the non-polar character of the gel matrices could decrease the release and perception of aromas in pectin gel systems. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bianchi, Tiago; Weesepoel, Yannick; Koot, Alex; Iglesias, Ignasi; Eduardo, Iban; Gratacós-Cubarsí, Marta; Guerrero, Luis; Hortós, Maria; van Ruth, Saskia
2017-09-01
The aim of this study was to investigate the aroma and sensory profiles of various types of peaches (Prunus persica L. Batsch.). Forty-three commercial cultivars comprising peaches, flat peaches, nectarines, and canning peaches (pavías) were grown over two consecutive harvest years. Fruits were assessed for chemical aroma and sensory profiles. Chemical aroma profile was obtained by proton transfer reaction-mass spectrometry (PTR-MS) and spectral masses were tentatively identified with PTR-Time of Flight-MS (PTR-Tof-MS). Sensory analysis was performed at commercial maturity considering seven aroma/flavor attributes. The four types of peaches showed both distinct chemical aroma and sensory profiles. Flat peaches and canning peaches showed most distinct patterns according to discriminant analysis. The sensory data were related to the volatile compounds by partial least square regression. γ-Hexalactone, γ-octalactone, hotrienol, acetic acid and ethyl acetate correlated positively, and benzeneacetaldehyde, trimethylbenzene and acetaldehyde negatively to the intensities of aroma and ripe fruit sensory scores. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Chao; Zhang, Chenxia; Kong, Yawen; Peng, Xiaopei; Li, Changwen; Liu, Shunhang; Du, Liping; Xiao, Dongguang; Xu, Yongquan
2017-10-01
Dianhong teas produced from fresh leaves of different tea cultivars (YK is Yunkang No. 10, XY is Xueya 100, CY is Changyebaihao, SS is Shishengmiao), were compared in terms of volatile compounds and descriptive sensory analysis. A total of 73 volatile compounds in 16 tea samples were tentatively identified. YK, XY, CY, and SS contained 55, 53, 49, and 51 volatile compounds, respectively. Partial least squares-discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA) were used to classify the samples, and 40 key components were selected based on variable importance in the projection. Moreover, 11 flavor attributes, namely, floral, fruity, grass/green, woody, sweet, roasty, caramel, mellow and thick, bitter, astringent, and sweet aftertaste were identified through descriptive sensory analysis (DSA). In generally, innate differences among the tea varieties significantly affected the intensities of most of the key sensory attributes of Dianhong teas possibly because of the different amounts of aroma-active and taste components in Dianhong teas. Copyright © 2017 Elsevier Ltd. All rights reserved.
The apéritif effect: alcohol's effects on the brain's response to food aromas in women
Eiler, William J.A.; Džemidžić, Mario; Case, K. Rose; Soeurt, Christina M.; Armstrong, Cheryl L.H.; Mattes, Richard D.; O'Connor, Sean J.; Harezlak, Jaroslaw; Acton, Anthony J.; Considine, Robert V.; Kareken, David A.
2015-01-01
Objective Consuming alcohol prior to a meal (an apéritif) increases food consumption. This greater food consumption may result from increased activity in brain regions that mediate reward and regulate feeding behavior. Using functional magnetic resonance imaging, we evaluated the blood oxygenation level dependent (BOLD) response to the food aromas of either roast beef or Italian meat sauce following pharmacokinetically controlled intravenous infusion of alcohol. Methods BOLD activation to food aromas in non-obese women (n=35) was evaluated once during intravenous infusion of 6% v/v EtOH, clamped at a steady-state breath alcohol concentration of 50 mg/dL, and once during infusion of saline using matching pump rates. Ad libitum intake of roast beef with noodles or Italian meat sauce with pasta following imaging was recorded. Results BOLD activation to food relative to non-food odors in the hypothalamic area was increased during alcohol pre-load when compared to saline. Food consumption was significantly greater, and levels of ghrelin were reduced, following alcohol. Conclusions An alcohol pre-load increased food consumption and potentiated differences between food and non-food BOLD responses in the region of the hypothalamus. The hypothalamus may mediate the interplay of alcohol and responses to food cues, thus playing a role in the apéritif phenomenon. PMID:26110891
Wagner, Claudia; Bonte, Anja; Brühl, Ludger; Niehaus, Karsten; Bednarz, Hanna; Matthäus, Bertrand
2018-04-01
Micro-organisms populate on rapeseed after harvest during storage depending on the growing conditions. The composition of the bacterial colonization is unknown, although its contribution to the profile of volatile aroma-active compounds determines the sensory quality of virgin cold-pressed rapeseed oil. From four rapeseed samples, 46 bacterial strains were isolated. By DNA-sequencing, the identification of four bacteria species and 17 bacteria genera was possible. In total, 22 strains were selected, based on their typical off-flavors resembling those of virgin sensory bad cold-pressed rapeseed oils. The cultivation of these strains on rapeseed meal agar and examination of volatile compounds by solid phase microextraction-gas chromatography-mass spectrometry allowed the identification of 29 different compounds, mainly degradation products of fatty acids such as alkanes, alkenes, aldehydes, ketones and alcohols and, in addition, sulfur-containing compounds, including one terpene and three pyrazines. From these compounds, 19 are described as aroma-active in the literature. Micro-organisms populating on rapeseed during storage may strongly influence the sensory quality of virgin rapeseed oil as a result of the development of volatile aroma-active metabolic products. It can be assumed that occurrence of off-flavor of virgin rapeseed oils on the market are the result of metabolic degradation products produced by micro-organisms populating on rapeseed during storage. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Detection of Iberian ham aroma by a semiconductor multisensorial system.
Otero, Laura; Horrillo, M A Carmen; García, María; Sayago, Isabel; Aleixandre, Manuel; Fernández, M A Jesús; Arés, Luis; Gutiérrez, Javier
2003-11-01
A semiconductor multisensorial system, based on tin oxide, to control the quality of dry-cured Iberian hams is described. Two types of ham (submitted to different drying temperatures) were selected. Good responses were obtained from the 12 elements forming the multisensor for different operating temperatures. Discrimination between the two types of ham was successfully realised through principal component analysis (PCA).
HPLC Analysis of [Alpha]- and [Beta]-Acids in Hops
ERIC Educational Resources Information Center
Danenhower, Travis M.; Force, Leyna J.; Petersen, Kenneth J.; Betts, Thomas A.; Baker, Gary A.
2008-01-01
Hops have been used for centuries to impart aroma and bitterness to beer. The cones of the female hop plant contain both essential oils, which include many of the fragrant components of hops, and a collection of compounds known as [alpha]- and [beta]-acids that are the precursors to bittering agents. In order for brewers to predict the ultimate…
Capsicum--production, technology, chemistry, and quality. Part IV. Evaluation of quality.
Govindarajan, V S; Rajalakshmi, D; Chand, N
1987-01-01
Capsicum fruits are popular worldwide and are used in the cuisines of both the developing and the developed countries. With its different varieties, forms, and uses, the spice capsicum contributes to the entire gamut of sensory experience--color as finely ground paprika powder or extract in sausages, goulash, cheese, and snacks; both pungency and color as the many varieties of chillies used in Mexican, African, Indian, and southeast Asian cuisines; color, aroma, and mild pungency as the fresh green chillies used in many of the growing countries; and appearance, color, aroma, and texture as fresh fruit in salads and as a pickled and canned product. In three earlier parts in this series, the varieties, cultivation, and primary processing; the processed products, world production, and trade; and the chemistry of the color, aroma, and pungency stimuli have been reviewed. In this part, the evaluation of quality through instrumental determination of the causal components and the sensory evaluation of color, aroma, and pungency are discussed. Several methods for quantitative determination of the stimuli and the sensory evaluation of the responses to the stimuli are reviewed. The problems of sensory evaluation of color, aroma, and pungency, the dominant attributes for validation of the instrumentally determined values for carotenoids, volatiles, or particular fractions, and total and individual capsaicinoids are specifically discussed. Summarized details of selected instrumental methods for evaluating the stimuli, which are either validated by correlation to sensorily perceived responses or to adopted standards, are given along with representative data obtained for discussing the adequacy and reliability of the methods. Pungency as a specific gustatory perception and the many methods proposed to evaluate this quality are discussed. A recommended objective procedure for obtaining reproducible values is discussed, and a method for relating different panel results is shown. With such a method, highly significant correlations have been shown between estimated total capsaicinoids and the determined pungency. The estimation of total capsaicinoids by any simple, reliable method is shown to be adequate for quality control of pungency of Capsicum fruits.
A neural approach for improving the measurement capability of an electronic nose
NASA Astrophysics Data System (ADS)
Chimenti, M.; DeRossi, D.; Di Francesco, F.; Domenici, C.; Pieri, G.; Pioggia, G.; Salvetti, O.
2003-06-01
Electronic noses, instruments for automatic recognition of odours, are typically composed of an array of partially selective sensors, a sampling system, a data acquisition device and a data processing system. For the purpose of evaluating the quality of olive oil, an electronic nose based on an array of conducting polymer sensors capable of discriminating olive oil aromas was developed. The selection of suitable pattern recognition techniques for a particular application can enhance the performance of electronic noses. Therefore, an advanced neural recognition algorithm for improving the measurement capability of the device was designed and implemented. This method combines multivariate statistical analysis and a hierarchical neural-network architecture based on self-organizing maps and error back-propagation. The complete system was tested using samples composed of characteristic olive oil aromatic components in refined olive oil. The results obtained have shown that this approach is effective in grouping aromas into different categories representative of their chemical structure.
Jedrejčić, Nikolina; Ganić, Karin Kovačević; Staver, Mario; Peršurić, Đordano
2015-01-01
Summary To investigate the phenolic and aroma composition of Malvazija istarska (Vitis vinifera L.) white wines produced by an unconventional technology comprising prolonged maceration followed by maturation in wooden barrels, representative samples were subjected to analysis by UV/Vis spectrometry, high-performance liquid chromatography, and gas chromatography-mass spectrometry. When compared to standard wines, the investigated samples contained higher levels of dry extract, volatile acidity, lactic acid, phenols, colour intensity, antioxidant activity, majority of monoterpenes, C13-norisoprenoids, methanol, higher alcohols, ethyl acetate, branched-chain esters and esters of hydroxy and dicarboxylic acids, ethylphenols, furans, and acetals, as well as lower levels of malic acid, β-damascenone, straight-chain fatty acids, ethyl and acetate esters. It was estimated that maceration had a stronger influence on phenols, and maturation on volatile aromas. Despite different vintages and technological details, the investigated wines showed a relative homogeneity in the composition, representing a clear and distinctive type. PMID:27904375
Key odorants in cured Madagascar vanilla beans (Vanilla planiforia) of differing bean quality.
Takahashi, Makoto; Inai, Yoko; Miyazawa, Norio; Kurobayashi, Yoshiko; Fujita, Akira
2013-01-01
The odor-active volatiles in Madagascar vanilla beans (Vanilla planiforia) of two grades, red whole beans as standard quality and cuts beans as substandard quality, were characterized by instrumental and sensory analyses. The higher contents of vanillin and β-damascenone in red whole beans than in cuts beans respectively contributed to significant differences in the sweet and dried fruit-like notes, while the higher contents of guaiacol and 3-phenylpropanoic acid in cuts beans than in red whole beans respectively contributed to significant differences in the phenolic and metallic notes. A sensory evaluation to compare red whole beans and their reconstituted aroma characterized both samples as being similar, while in respect of the phenolic note, the reconstituted aroma significantly differed from the reconstituted aroma with guaiacol added at the concentration ratio of vanillin and guaiacol in cuts beans. It is suggested from these results that the concentration ratio of vanillin and guaiacol could be used as an index for the quality of Madagascar vanilla beans.
Leelaphiwat, Pattarin; Auras, Rafael A; Burgess, Gary J; Harte, Janice B; Chonhenchob, Vanee
2018-03-01
Aroma permeation through packaging material is an important factor when designing a package for food products. The masses of aroma compounds permeating through films over time were measured at 25 °C using a quasi-isostatic system. A model was proposed for estimating the permeability coefficients (P) of key aroma compounds present in fresh herbs (i.e. eucalyptol, estragole, linalool and citral) through major plastic films used by the food industry [i.e. low-density polyethylene (LDPE), polypropylene (PP), nylon (Nylon), polyethylene terephthalate (PET), metalised-polyethylene terephthalate (MPET) and poly(lactic acid) (PLA)]. Solubility coefficients (S) were estimated from the amount of aroma compound sorbed in the films. Diffusion coefficients (D) were estimated following from the relation P = D*S. P and D for all four aroma compounds were highest in LDPE, except for eucalyptol, which P was slightly higher in PLA. The solubility coefficients and contact angles were highest in PLA suggesting the highest affinity of PLA to these aroma compounds. The theoretical solubility parameters were correlated with the solubility coefficients for estragole and citral, but not for eucalyptol and linalool. The preliminary P, D and S of eucalyptol, estragole, linalool and citral through LDPE, PP, Nylon, PET, MPET and PLA can be useful in selecting the proper packaging material for preserving these specific aroma compounds in food products and can potentially be used for estimating the shelf life of food products based on aroma loss. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Buettner, A; Schieberle, P
1999-12-01
By application of the aroma extract dilution analysis on an extract prepared from fresh grapefruit juice, 37 odor-active compounds were detected in the flavor dilution (FD) factor range of 4-256 and subsequently identified. Among them the highest odor activities (FD factors) were determined for ethyl butanoate, p-1-menthene-8-thiol, (Z)-3-hexenal, 4,5-epoxy-(E)-2-decenal, 4-mercapto-4-methylpentane-2-one, 1-heptene-3-one, and wine lactone. Besides the 5 last mentioned compounds, a total of 13 further odorants were identified for the first time as flavor constituents of grapefruit. The data confirmed results of the literature on the significant contribution of 1-p-menthene-8-thiol in grapefruit aroma but clearly showed that a certain number of further odorants are necessary to elicit the typical grapefruit flavor.
Torri, Luisa; Piochi, Maria
2016-07-01
Despite the key role of the sensory quality for food acceptance, the aroma transfer properties of food packaging materials have not yet been studied using sensory approaches. This research investigated the suitability of sensory and electronic nose methods to evaluate the aroma transfer properties of plastic materials that come in contact with food. Four (W, X, Y, and Z) commercial freezer bags (polyethylene) for domestic uses were compared. The degree of the aroma transfer through the materials was estimated as the sensory contamination of an odor absorber food (bread) by an odor releaser food (onion), separated by the bags and stored under frozen conditions. Bread samples were analyzed by means of an electronic nose, and 42 assessors used three different sensory methods (triangle, scoring, and partial sorted Napping tests). From the triangle test, none of the plastic bags acted as a complete aroma barrier, showing a sensory contamination of bread stored in all four materials. Partial sorting Napping results clearly described the sensory contamination of bread as "onion flavor", due to the aroma transfer from the odor releaser food to the odor absorber food through the plastic bag. Scoring tests showed significant (p<0.0001) differences of aroma transfer properties among the plastic bags, revealing the highest aroma permeation for W (3.1±0.1), the lowest aroma transfer for X and Y (2.0±0.1), and intermediate aroma transfer properties for Z (2.6±0.1). Electronic nose data were in good agreement with the sensory responses, and a high correlation with the scoring data was observed (R 2 =0.988). The presented approaches had suitable results to provide meaningful information on the aroma transfer properties of freezer plastic bags, and could advantageously be applied in the future for analyzing other finished food containers (e.g. plastic trays, boxes, etc.) or packaging materials of a different nature (multilayer plastic films, biodegradable materials, composites, etc.). Copyright © 2016 Elsevier Ltd. All rights reserved.
Kaneko, Shu; Kumazawa, Kenji; Nishimura, Osamu
2012-04-18
An investigation by the aroma extract dilution analysis (AEDA) technique of the aroma concentrate from five different types of Japanese soy sauces, categorized according to Japan Agricultural Standards as Koikuchi Shoyu (KS), Usukuchi Shoyu (US), Tamari Shoyu (TS), Sai-Shikomi Shoyu (SSS), and Shiro Shoyu (SS), revealed 25 key aroma compounds. Among them, 3-ethyl-1,2-cyclopentanedione and 2'-aminoacetophenone were identified in the soy sauces for the first time. Whereas 3-(methylthio)propanal (methional) and 3-hydroxy-4,5-dimethyl-2(5H)-furanone (sotolon) were detected in all of the soy sauce aroma concentrates as having high flavor dilution (FD) factors, 4-ethyl-2-methoxyphenol was detected as having a high FD factor in only four of the soy sauces (KS, US, TS, and SSS). Furthermore, 5(or 2)-ethyl-4-hydroxy-2(or 5)-methyl-3(2H)-furanone (4-HEMF) and 4-hydroxy-2,5-dimethyl-3(2H)-furanone (4-HDMF), which were thought to be the key odorants in KS, were detected in KS, US, TS, and SSS, but the FD factors widely varied among them. The sensory evaluations demonstrated that the aroma descriptions of a cooked potato-like note and a caramel-like/seasoning-like note were evaluated as high scores with no significant differences among the five soy sauces. On the other hand, a burnt/spicy note was evaluated as having high scores in KS, TS, and SSS, but it was evaluated as having a low score in SS. The comparative AEDA experiments and the auxiliary sensory experiments demonstrated that the five different types of Japanese soy sauces varied in their key aroma compounds and aroma characteristics, and the key aroma compounds in KS might not always be highly contributing in the other types of Japanese soy sauces.
Aroma recovery from roasted coffee by wet grinding.
Baggenstoss, J; Thomann, D; Perren, R; Escher, F
2010-01-01
Aroma recovery as determined by solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) was compared in coffees resulting from conventional grinding processes, and from wet grinding with cold and hot water. Freshly roasted coffee as well as old, completely degassed coffee was ground in order to estimate the relationship of internal carbon dioxide pressure in freshly roasted coffee with the aroma loss during grinding. The release of volatile aroma substances during grinding was found to be related to the internal carbon dioxide pressure, and wet grinding with cold water was shown to minimize losses of aroma compounds by trapping them in water. Due to the high solubility of roasted coffee in water, the use of wet-grinding equipment is limited to processes where grinding is followed by an extraction step. Combining grinding and extraction by the use of hot water for wet grinding resulted in considerable losses of aroma compounds because of the prolonged heat impact. Therefore, a more promising two-step process involving cold wet grinding and subsequent hot extraction in a closed system was introduced. The yield of aroma compounds in the resulting coffee was substantially higher compared to conventionally ground coffee. © 2010 Institute of Food Technologists®
Selective adsorption of flavor-active components on hydrophobic resins.
Saffarionpour, Shima; Sevillano, David Mendez; Van der Wielen, Luuk A M; Noordman, T Reinoud; Brouwer, Eric; Ottens, Marcel
2016-12-09
This work aims to propose an optimum resin that can be used in industrial adsorption process for tuning flavor-active components or removal of ethanol for producing an alcohol-free beer. A procedure is reported for selective adsorption of volatile aroma components from water/ethanol mixtures on synthetic hydrophobic resins. High throughput 96-well microtiter-plates batch uptake experimentation is applied for screening resins for adsorption of esters (i.e. isoamyl acetate, and ethyl acetate), higher alcohols (i.e. isoamyl alcohol and isobutyl alcohol), a diketone (diacetyl) and ethanol. The miniaturized batch uptake method is adapted for adsorption of volatile components, and validated with column breakthrough analysis. The results of single-component adsorption tests on Sepabeads SP20-SS are expressed in single-component Langmuir, Freundlich, and Sips isotherm models and multi-component versions of Langmuir and Sips models are applied for expressing multi-component adsorption results obtained on several tested resins. The adsorption parameters are regressed and the selectivity over ethanol is calculated for each tested component and tested resin. Resin scores for four different scenarios of selective adsorption of esters, higher alcohols, diacetyl, and ethanol are obtained. The optimal resin for adsorption of esters is Sepabeads SP20-SS with resin score of 87% and for selective removal of higher alcohols, XAD16N, and XAD4 from Amberlite resin series are proposed with scores of 80 and 74% respectively. For adsorption of diacetyl, XAD16N and XAD4 resins with score of 86% are the optimum choice and Sepabeads SP2MGS and XAD761 resins showed the highest affinity towards ethanol. Copyright © 2016 Elsevier B.V. All rights reserved.
Baba, Ryoko; Amano, Yohei; Wada, Yoshiyuki; Kumazawa, Kenji
2017-03-31
The odorants contributing to the characteristic aroma of matcha were investigated by analysis of the headspace samples and the volatile fractions prepared by a combination of solvent extraction and the SAFE techniques using three matcha powders of different grades (high, medium, and low). Gas chromatography-olfactometry of the headspace samples (GCO-H) and aroma extract dilution analysis (AEDA) applied to the volatile fractions revealed 16 (FD factor ≥1) and 39 (FD factor ≥4 3 ) odor-active peaks, respectively. Among them, 14 and 37 of the odorants, most of which were newly detected in matcha, were identified or tentatively identified by GC-MS and GC-O, respectively. By comparing the perceived odorants of three matcha powders, it was revealed that eight compounds with sweet, green, metallic, and floral notes showed high flavor dilution (FD) factors irrespective of the grades. In addition, some odorants were suggested to influence the characteristic aroma of each grade. Furthermore, trans-4,5-epoxy-(E)-2-decenal, one of the potent odorants of matcha, was revealed to exist as a racemic mixture in matcha. This result suggested that trans-4,5-epoxy-(E)-2-decenal is formed by a nonenzymatic reaction in matcha, different from that in black tea, and that the unique manufacturing process of matcha has a close connection with its formation.
Ghaste, Manoj; Narduzzi, Luca; Carlin, Silvia; Vrhovsek, Urska; Shulaev, Vladimir; Mattivi, Fulvio
2015-12-01
Every grape cultivar has its own unique genetic characteristics, leading to the production of a different secondary metabolite profile. Aroma is one of the most important aspects in terms of the quality of grapes and previous studies have assigned specific aromas to particular grape cultivars. In this study we present the molecular profiling of volatile aroma metabolites and their precursors in ten selected genotypes, including six Vitis vinifera cultivars, two American species (Arizonica Texas, Vitis cinerea) and two interspecific crosses. Chemical profiling was achieved through combined use of two orthogonal techniques, GC-MS and LC-HRMS, before and after enzymatic hydrolysis. The results show that both free and glycosidically bound aroma precursors behave differently in each different grape cultivar and species. As many as 66 free aroma volatile molecules (originally existing and released after hydrolysis) were profiled through GC-MS analysis, while 15 glycosylated precursors of volatiles were identified through LC-HRMS and correlation with GC-MS data. Copyright © 2015 Elsevier Ltd. All rights reserved.
Studies on Application of Aroma Finish on Silk Fabric
NASA Astrophysics Data System (ADS)
Hipparagi, Sanganna Aminappa; Srinivasa, Thirumalappa; Das, Brojeswari; Naik, Subhas Venkatappa; Purushotham, Serampur Parappa
2016-10-01
Aromatic treatments on textiles have gained importance in the recent years. In the present article work has been done on fragrance finish application on silk material. Silk is an expensive natural fibre used for apparel purpose and known for its feel and appeal. Incorporation of fragrance material in silk product, will add more value to it. Present work focuses to impart durable aroma finish for silk products to be home washed or subjected to dry cleaning. Microencapsulated aroma chemical has been used for the treatment. Impregnation method, Exhaust method, Dip-Pad-Dry method and Spray method have been used to see the influence of application method on the uptake and performance. Evaluation of the aroma treated material has been done through subjective evaluation as per Odor Intensity Reference Scaling (OIRS). Effect of the aroma finishing on the physical properties of the fabric has also been studied. No adverse effect has been observed on the stiffness of the fabric after the aroma treatment.
Modulation of cognitive performance and mood by aromas of peppermint and ylang-ylang.
Moss, Mark; Hewitt, Steven; Moss, Lucy; Wesnes, Keith
2008-01-01
This study provides further evidence for the impact of the aromas of plant essential oils on aspects of cognition and mood in healthy participants. One hundred and forty-four volunteers were randomly assigned to conditions of ylang-ylang aroma, peppermint aroma, or no aroma control. Cognitive performance was assessed using the Cognitive Drug Research computerized assessment battery, with mood scales completed before and after cognitive testing. The analysis of the data revealed significant differences between conditions on a number of the factors underpinning the tests that constitute the battery. Peppermint was found to enhance memory whereas ylang-ylang impaired it, and lengthened processing speed. In terms of subjective mood peppermint increased alertness and ylang-ylang decreased it, but significantly increased calmness. These results provide support for the contention that the aromas of essential oils can produce significant and idiosyncratic effects on both subjective and objective assessments of aspects of human behavior. They are discussed with reference to possible pharmacological and psychological modes of influence.
Application of PLE for the determination of essential oil components from Thymus vulgaris L.
Dawidowicz, Andrzej L; Rado, Ewelina; Wianowska, Dorota; Mardarowicz, Marek; Gawdzik, Jan
2008-08-15
Essential plants, due to their long presence in human history, their status in culinary arts, their use in medicine and perfume manufacture, belong to frequently examined stock materials in scientific and industrial laboratories. Because of a large number of freshly cut, dried or frozen plant samples requiring the determination of essential oil amount and composition, a fast, safe, simple, efficient and highly automatic sample preparation method is needed. Five sample preparation methods (steam distillation, extraction in the Soxhlet apparatus, supercritical fluid extraction, solid phase microextraction and pressurized liquid extraction) used for the isolation of aroma-active components from Thymus vulgaris L. are compared in the paper. The methods are mainly discussed with regard to the recovery of components which typically exist in essential oil isolated by steam distillation. According to the obtained data, PLE is the most efficient sample preparation method in determining the essential oil from the thyme herb. Although co-extraction of non-volatile ingredients is the main drawback of this method, it is characterized by the highest yield of essential oil components and the shortest extraction time required. Moreover, the relative peak amounts of essential components revealed by PLE are comparable with those obtained by steam distillation, which is recognized as standard sample preparation method for the analysis of essential oils in aromatic plants.
Zhang, Zongying; Jiang, Shenghui; Wang, Nan; Li, Min; Ji, Xiaohao; Sun, Shasha; Liu, Jingxuan; Wang, Deyun; Xu, Haifeng; Qi, Sumin; Wu, Shujing; Fei, Zhangjun; Feng, Shouqian; Chen, Xuesen
2015-01-01
Apple is one of the most economically important horticultural fruit crops worldwide. It is critical to gain insights into fruit ripening and softening to improve apple fruit quality and extend shelf life. In this study, forward and reverse suppression subtractive hybridization libraries were generated from ‘Taishanzaoxia’ apple fruits sampled around the ethylene climacteric to isolate ripening- and softening-related genes. A set of 648 unigenes were derived from sequence alignment and cluster assembly of 918 expressed sequence tags. According to gene ontology functional classification, 390 out of 443 unigenes (88%) were assigned to the biological process category, 356 unigenes (80%) were classified in the molecular function category, and 381 unigenes (86%) were allocated to the cellular component category. A total of 26 unigenes differentially expressed during fruit development period were analyzed by quantitative RT-PCR. These genes were involved in cell wall modification, anthocyanin biosynthesis, aroma production, stress response, metabolism, transcription, or were non-annotated. Some genes associated with cell wall modification, anthocyanin biosynthesis and aroma production were up-regulated and significantly correlated with ethylene production, suggesting that fruit texture, coloration and aroma may be regulated by ethylene in ‘Taishanzaoxia’. Some of the identified unigenes associated with fruit ripening and softening have not been characterized in public databases. The results contribute to an improved characterization of changes in gene expression during apple fruit ripening and softening. PMID:26719904
Fung, Jo Kamen Ka-Man; Tsang, Hector Wing-Hong
2018-05-01
This study evaluates the clinical effectiveness of a multicomponent aroma-massage with an acupressure treatment protocol and compared it to cognitive training for the management of behavioural and psychological symptoms of dementia. Pharmacological interventions have been unsatisfactory in managing behavioural and psychological symptoms of dementia; thus, complementary and alternative medicine has been extensively researched to identify an adjunct safe and cost-effective intervention. This randomised clinical trial utilised a three-arm parallel group design. Cognitive training was used as a conventional intervention to manage behavioural and psychological symptoms of dementia, whereas exercise was considered "treatment as usual" in this study; both were used as comparisons with the experimental protocol. There were three treatment groups: Group 1: aroma-massage with acupressure + exercise, Group 2: cognitive training + exercise and Group 3: aroma-massage with acupressure + cognitive training. Sixty older adults were recruited and randomly assigned to the three groups (20 each). Using the 29-item Chinese Version of the Cohen-Mansfield Agitation Inventory, Neuropsychiatric Inventory, Mini-mental State Examination and Barthel Index-20, the outcome measures were assessed at preintervention, postintervention and the 3-month follow-up to assess behaviour, Activities of Daily Living, cognition, and behavioural and psychological symptoms of dementia severity and distress. Multiple comparisons performed through repeated measures were analysed to detect between-group differences and within-subject differences, as well as the interaction effects between groups and times. The Group 1 and 3 participants showed a significant reduction in the severity and distress caused by behavioural and psychological symptoms of dementia, whereas Group 2 did not demonstrate similar effects. This clinical study suggests that aroma-massage with acupressure is as effective as cognitive training and can enhance cognitive training in reducing the severity and distress of behavioural and psychological symptoms of dementia. Aroma-massage with acupressure may serve as an adjunct therapy to reduce behavioural and psychological symptoms of dementia. This therapy is safe, cost-effective and can be implemented by caregivers and family members who are not professionally trained. © 2017 John Wiley & Sons Ltd.
Li, Meijuan; Ashraf, Umair; Tian, Hua; Mo, Zhaowen; Pan, Shenggang; Anjum, Shakeel Ahmad; Duan, Meiyang; Tang, Xiangru
2016-06-01
Micro-nutrient application is essential for normal plant growth while a little is known about manganese (Mn)-induced regulations in morpho-physiological attributes, aroma formation and enzyme involved in 2-acetyl-1-pyrroline (2-AP) biosynthesis in aromatic rice. Present study aimed to examine the influence of four levels of Mn i.e., Mn1 (100 mg MnSO4 pot(-1)), Mn2 (150 mg MnSO4 pot(-1)), Mn3 (200 mg MnSO4 pot(-1)), and Mn4 (250 mg MnSO4 pot(-1)) on the growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in two fragrant rice cultivars i.e., Meixiangzhan and Nongxiang 18. Pots without Mn application were served as control (Ck). Each pot contained 15 kg of soil. Effects on agronomic characters, quality attributes, 2-AP contents and enzymes involved in 2-AP biosynthesis have been studied in early and late season rice. Results depicted that Mn improved rice growth, yield and related characters, and some quality attributes significantly. It further up-regulated proline, pyrroline-5-carboxylic acid (P5C) (precursors of 2-AP), soluble proteins and activities of proline dehydrogenase (ProDH), Δ(1) pyrroline-5-carboxylic acid synthetase (P5CS) ornithine aminotransferase (OAT) that led to enhanced 2-AP production in rice grains. Moreover, higher Mn levels resulted in increased grain Mn contents in both rice cultivars. Along with growth and yield improvement, Mn application significantly improved rice aromatic contents. Overall, Nongxiang 18 accumulated more 2-AP contents than Meixiangzhan in both seasons under Mn application. This study further explored the importance of Mn in rice aroma formation and signifies that micro-nutrients can play significant roles in rice aroma synthesis; however, intensive studies at molecular levels are still needed to understand the exact mechanisms of Mn to improve rice aroma formation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Flavor profiles of two Florida strawberry cultivars were determined using GC-olfactometry,GC-MS, odor activity values (OAVs) and sensory analysis. Thirty-six aroma active compounds were detected using GC-O. Thirty-four were identified. The major odor-active compounds in decreasing intensity were: me...
Intraspecific genotypic variability determines concentrations of key truffle volatiles
Splivallo, Richard; Valdez, Nayuf; Kirchhoff, Nina; Ona, Marta Castiella; Schmidt, Jean-Pierre; Feussner, Ivo; Karlovsky, Petr
2012-01-01
Aroma variability in truffles has been attributed to maturation (Tuber borchii), linked to environmental factors (Tuber magnatum), but the involvement of genetic factors has been ignored. We investigated aroma variability in Tuber uncinatum, a species with wide distribution. Our aim was to assess aroma variability at different spatial scales (i.e. trees, countries) and to quantify how aroma was affected by genotype, fruiting body maturity, and geographical origin. A volatile fingerprinting method was used to analyze the aroma of 223 T. uncinatum fruiting bodies from seven European countries. Maturity was estimated from spore melanization. Genotypic fingerprinting was performed by amplified fragment length polymorphism (AFLP). Discriminant analysis revealed that, regardless of the geographical origin of the truffles, most of the aroma variability was caused by eight-carbon-containing volatiles (C8-VOCs). In an orchard of T. uncinatum, truffles producing different concentrations of C8-VOCs clustered around distinct host trees. This clustering was not associated with maturity, but was associated with fungal genotype. These results indicate that the variation in C8-VOCs in truffles is most likely under genetic control. They exemplify that understanding the factors behind aroma variability requires a holistic approach. Furthermore, they also raise new questions regarding the ecological role of 1-octen-3-ol in truffles. PMID:22394027
Kopjar, Mirela; Andriot, Isabelle; Saint-Eve, Anne; Souchon, Isabelle; Guichard, Elisabeth
2010-06-01
Partition coefficients give an indication of the retention of aroma compounds by the food matrix. Data in the literature are obtained by various methods, under various conditions and expressed in various units, and it is thus difficult to compare the results. The aim of the present study was first to obtain gas/water and gas/matrix partition coefficients of selected aroma compounds, at different temperatures, in order to calculate thermodynamic parameters and second to compare the retention of these aroma compounds in different food matrices. Yogurts containing lipids and proteins induced a higher retention of aroma compounds than model gel matrices. The observed effects strongly depend on hydrophobicity of aroma compounds showing a retention for ethyl hexanoate and a salting out effect for ethyl acetate. A small but noticeable decrease in enthalpy of affinity is observed for ethyl butyrate and ethyl hexanoate between water and food matrices, suggesting that the energy needed for the volatilization is lower in matrices than in water. The composition and complexity of a food matrix influence gas/matrix partition coefficients or aroma compounds in function of their hydrophobicity and to a lower extent enthalpy of vaporization. Copyright (c) 2010 Society of Chemical Industry.
Microbe participation in aroma production during soy sauce fermentation.
Harada, Risa; Yuzuki, Masanobu; Ito, Kotaro; Shiga, Kazuki; Bamba, Takeshi; Fukusaki, Eiichiro
2018-06-01
Soy sauce is a traditional Japanese fermented seasoning that contains various constituents such as amino acids, organic acids, and volatiles that are produced during the long fermentation process. Although studies regarding the correlation between microbes and aroma constituents have been performed, there are no reports about the influences of the microbial products, such as lactic acid, acetic acid, and ethanol, during fermentation. Because it is known that these compounds contribute to microbial growth and to changes in the constituent profile by altering the moromi environment, understanding the influence of these compounds is important. Metabolomics, the comprehensive study of low molecular weight metabolites, is a promising strategy for the deep understanding of constituent contributions to food characteristics. Therefore, the influences of microbes and their products such as lactic acid, acetic acid, and ethanol on aroma profiles were investigated using gas chromatography/mass spectrometry (GC/MS)-based metabolic profiling. The presence of aroma constituents influenced by microbes and chemically influenced by lactic acid, acetic acid, and ethanol were proposed. Most of the aroma constituents were not produced by adding ethanol alone, confirming the participation of yeast in aroma production. It was suggested that lactic acid bacterium relates to a key aromatic compound, 2,5-dimethyl-4-hydroxy-3(2H)-furanone. However, most of the measured aroma constituents changed similarly in both samples with lactic acid bacterium and acids. Thus, it was clear that the effect of lactic acid and acetic acid on the aroma profile was significant. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Kim, Sangsoo; Choo, JongHoo; Ju, Sungbum
2018-01-01
[Purpose] The purpose of this study is to examine the effect of aroma stimulation during isotonic exercise on the rating of perceived exertion (RPE) and the blood fatigue factors of athletes who have patellofemoral pain syndrome (PFPS). [Subjects and Methods] The research subjects were seven athletes in their twenties who suffer from PFPS. They were divided into a control group and an aroma stimulation group and performed isotonic exercises repeatedly. After exercising, the RPE and blood fatigue factors, including creatine phosphokinase (CPK), lactate dehydrogenase (LDH), and ammonia, were measured through blood sampling. [Results] The aroma stimulus group showed significantly lower RPE than the control group immediately after exercising, which included leg presses, leg curls, bicep curls, and leg extensions. Among the blood fatigue factors, the change in LDH indicated the effect of aroma stimulation. [Conclusion] We confirmed that aroma stimulation during isotonic exercise has the positive effect of reducing the RPE and blood fatigue factors, such as blood LDH, of the athletes with PFPS. PMID:29545683
Electronic-Nose Applications for Fruit Identification, Ripeness and Quality Grading
Baietto, Manuela; Wilson, Alphus D.
2015-01-01
Fruits produce a wide range of volatile organic compounds that impart their characteristically distinct aromas and contribute to unique flavor characteristics. Fruit aroma and flavor characteristics are of key importance in determining consumer acceptance in commercial fruit markets based on individual preference. Fruit producers, suppliers and retailers traditionally utilize and rely on human testers or panels to evaluate fruit quality and aroma characters for assessing fruit salability in fresh markets. We explore the current and potential utilization of electronic-nose devices (with specialized sensor arrays), instruments that are very effective in discriminating complex mixtures of fruit volatiles, as new effective tools for more efficient fruit aroma analyses to replace conventional expensive methods used in fruit aroma assessments. We review the chemical nature of fruit volatiles during all stages of the agro-fruit production process, describe some of the more important applications that electronic nose (e-nose) technologies have provided for fruit aroma characterizations, and summarize recent research providing e-nose data on the effectiveness of these specialized gas-sensing instruments for fruit identifications, cultivar discriminations, ripeness assessments and fruit grading for assuring fruit quality in commercial markets. PMID:25569761
Li, Jia-Xiao; Schieberle, Peter; Steinhaus, Martin
2017-01-25
Sixteen compounds, previously identified as potent odorants by application of an aroma extract dilution analysis and the gas chromatography-olfactometry analysis of static headspace samples, were quantitated in the pulp of durians, variety Monthong, and odor activity values (OAVs) were calculated by dividing the concentrations obtained by the odor thresholds of the compounds in water. In combination with data recently reported for hydrogen sulfide and short-chain alkanethiols, OAVs > 1 were obtained for 19 compounds, among which ethyl (2S)-2-methylbutanoate (fruity; OAV 1700000), ethanethiol (rotten onion; OAV 480000), and 1-(ethylsulfanyl)ethane-1-thiol (roasted onion; OAV 250000) were the most potent, followed by methanethiol (rotten, cabbage; OAV 45000), ethane-1,1-dithiol (sulfury, durian; OAV 23000), and ethyl 2-methylpropanoate (fruity; OAV 22000). Aroma simulation and omission experiments revealed that the overall odor of durian pulp could be mimicked by only two compounds, namely, ethyl (2S)-2-methylbutanoate and 1-(ethylsulfanyl)ethane-1-thiol, when combined in their natural concentrations.
Aroma Volatile Compounds from Two Fresh Pineapple Varieties in China
Zheng, Liang-Yong; Sun, Guang-Ming; Liu, Yu-Ge; Lv, Ling-Ling; Yang, Wen-Xiu; Zhao, Wei-Feng; Wei, Chang-Bin
2012-01-01
Volatile compounds from two pineapples varieties (Tainong No.4 and No.6) were isolated by headspace solid phase microextraction (HS-SPME) and identified and quantified by gas chromatography-mass spectrometry (GC/MS). In the Tainong No. 4 and No. 6 pineapples, a total of 11 and 28 volatile compounds were identified according to their retention time on capillary columns and their mass spectra, and quantified with total concentrations of 1080.44 μg·kg−1 and 380.66 μg·kg−1 in the Tainong No.4 and No. 6 pineapples, respectively. The odor active values (OAVs) of volatile compounds from pineapples were also calculated. According to the OAVs, four compounds were defined as the characteristic aroma compounds for the Tainong No. 4 pineapple, including furaneol, 3-(methylthio)propanoic acid methyl ester, 3-(methylthio)propanoic acid ethyl ester and δ-octalactone. The OAVs of five compounds including ethyl-2-methylbutyrate, methyl-2-methylbutyrate, 3-(methylthio)propanoic acid ethyl ester, ethyl hexanoate and decanal were considered to be the characteristic aroma compounds for the Tainong No. 6 pineapple. PMID:22837701
Unravelling important odorants in horseradish (Armoracia rusticana).
Kroener, Eva-Maria; Buettner, Andrea
2017-10-01
Horseradish (Armoracia rusticana) is a plant well known for its roots' spicy aroma. The present study investigates the main aroma constituents of horseradish roots in general by analysing the aroma profiles of six different horseradish varieties, with one variety grown in two different soils. Odorants were characterised by means of gas chromatography-olfactometry and identified via their mass spectra, retention indices on two columns with different polarity, and their characteristic odour. A series of new aroma compounds from different substance groups were identified that have hitherto not been described in horseradish. Moreover, several of these constituents were successfully shown to exhibit high odour potency, alongside a high potential to influence the overall aroma of horseradish roots, like (3S,3aS,7aR)-wine lactone and 3-isopropyl-2-methoxypyrazine. Copyright © 2017 Elsevier Ltd. All rights reserved.
Accelerator mass spectrometry analysis of aroma compound absorption in plastic packaging materials
NASA Astrophysics Data System (ADS)
Stenström, Kristina; Erlandsson, Bengt; Hellborg, Ragnar; Wiebert, Anders; Skog, Göran; Nielsen, Tim
1994-05-01
Absorption of aroma compounds in plastic packaging materials may affect the taste of the packaged food and it may also change the quality of the packaging material. A method to determine the aroma compound absorption in polymers by accelerator mass spectrometry (AMS) is being developed at the Lund Pelletron AMS facility. The high sensitivity of the AMS method makes it possible to study these phenomena under realistic conditions. As a first test low density polyethylene exposed to 14C-doped ethyl acetate is examined. After converting the polymer samples with the absorbed aroma compounds to graphite, the {14C }/{13C } ratio of the samples is measured by the AMS system and the degree of aroma compound absorption is established. The results are compared with those obtained by supercritical fluid extraction coupled to gas chromatography (SFE-GC).
Biochemistry of Apple Aroma: A Review.
Espino-Díaz, Miguel; Sepúlveda, David Roberto; González-Aguilar, Gustavo; Olivas, Guadalupe I
2016-12-01
Flavour is a key quality attribute of apples defined by volatile aroma compounds. Biosynthesis of aroma compounds involves metabolic pathways in which the main precursors are fatty and amino acids, and the main products are aldehydes, alcohols and esters. Some enzymes are crucial in the production of volatile compounds, such as lipoxygenase, alcohol dehydrogenase, and alcohol acyltransferase. Composition and concentration of volatiles in apples may be altered by pre- and postharvest factors that cause a decline in apple flavour. Addition of biosynthetic precursors of volatile compounds may be a strategy to promote aroma production in apples. The present manuscript compiles information regarding the biosynthesis of volatile aroma compounds, including metabolic pathways, enzymes and substrates involved, factors that may affect their production and also includes a wide number of studies focused on the addition of biosynthetic precursors in their production.
Biochemistry of Apple Aroma: A Review
Espino-Díaz, Miguel; Sepúlveda, David Roberto; González-Aguilar, Gustavo
2016-01-01
Summary Flavour is a key quality attribute of apples defined by volatile aroma compounds. Biosynthesis of aroma compounds involves metabolic pathways in which the main precursors are fatty and amino acids, and the main products are aldehydes, alcohols and esters. Some enzymes are crucial in the production of volatile compounds, such as lipoxygenase, alcohol dehydrogenase, and alcohol acyltransferase. Composition and concentration of volatiles in apples may be altered by pre- and postharvest factors that cause a decline in apple flavour. Addition of biosynthetic precursors of volatile compounds may be a strategy to promote aroma production in apples. The present manuscript compiles information regarding the biosynthesis of volatile aroma compounds, including metabolic pathways, enzymes and substrates involved, factors that may affect their production and also includes a wide number of studies focused on the addition of biosynthetic precursors in their production. PMID:28115895
Devi, Apramita; Archana, Kodira Muthanna; Bhavya, Panikuttria Kuttappa; Anu-Appaiah, Konerira Aiyappaa
2018-02-01
Co-inoculation has been adapted by many wine-producing countries because it enhances the success of malolactic fermentation and reduces the fermentation cost, as well as time. However, wine phenolics have been sparsely highlighted during co-inoculation, even though polyphenols are an important parameter affecting wine colour, astringency and aroma. In the present study, we investigated the impact of co-inoculation on non-anthocyanin polyphenol profile for two different grape varieties. Co-inoculation of native yeast strain (AAV2) along with Oenococcus oeni was adapted for Cabernet Sauvignon and Shiraz wine. It was observed that the co-inoculation had minimal yet significant impact on the phenolic composition of wines for both the grape varieties. Color loss, as well as fruity aroma development, was observed in co-inoculated wines. The wines were on a par with the commercial wine, as well as wines without malolactic fermentation, in terms of phenolic compounds and overall organoleptic acceptance. Principal component analysis and hierarchical cluster analysis further suggested that the varietal influence on phenolic composition was dominating compared to inoculation strategies. Among the varieties, the inoculation strategies have significantly influenced the Cabernet wines compared to Shiraz wines. The results of the present study demonstrate that the phenolic compounds are not drastically affected by metabolic activities of malolactic bacteria during co-inoculation and, hence, are equally suitable for wine fermentation. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Juice components and antioxidant capacity of four Tunisian Citrus varieties.
Tounsi, Moufida Saidani; Wannes, Wissem Aidi; Ouerghemmi, Ines; Jegham, Sabrine; Ben Njima, Yosra; Hamdaoui, Ghaith; Zemni, Hassene; Marzouk, Brahim
2011-01-15
Juices from four Citrus species of Tunisia were investigated mainly for quality parameters and antioxidant capacity. Citrus reticulata (mandarin) juice had the highest content of total flavonoids (85.33 mg CE L(-1)). The latter also occurred in high quantity (82.01 mg CE L(-1)) in Citrus lemon (lemon) juice which was also marked by its richness in total aroma (70.16 µg mL(-1)) and in total fatty acids (48.10 µg mL(-1)). Mandarin and lemon juices had the highest antioxidant activity, as determined b the β-carotene bleaching assay (26.67% and 22.67%, respectively). Citrus aurantium (bitter orange) juice was characterised by the highest content of total polyphenols (784.67 mg GAE L(-1)) and by the greatest inhibition of DPPH (96.10%). Citrus sinensis (blood orange) juice was only marked by the high quantity of ascorbic acid (36.90 mg mL(-1)). GC/MS analysis of juice aroma showed the predominance of limonene (48.85-69.59%) in mandarin and in bitter and blood oranges, but of camphene (89.05%) in lemon. GC analysis of juice fatty acids revealed their richness in oleic acid (23.13-39.52%). HPLC analysis of juice phenolics indicated the predominance of phenolic acids (73.13-86.40%). The Citrus species used in this study were considered valuable varieties from the point of view of antioxidant capacity and nutrition. Copyright © 2010 Society of Chemical Industry.
Evaluation of Cytotoxicity and Genotoxicity of Acacia aroma Leaf Extracts
Mattana, C. M.; Cangiano, M. A.; Alcaráz, L. E.; Sosa, A.; Escobar, F.; Sabini, C.; Sabini, L.; Laciar, A. L.
2014-01-01
Acacia aroma, native plant from San Luis, Argentina, is commonly used as antiseptic and for healing of wounds. The present study was conducted to investigate the in vitro cytotoxicity and genotoxicity of hot aqueous extract (HAE) and ethanolic extract (EE) of A. aroma. The cytotoxic activity was assayed by neutral red uptake assay on Vero cell. Cell treatment with a range from 100 to 5000 μg/mL of HAE and EE showed that 500 μg/mL and 100 μg/mL were the maximum noncytotoxic concentrations, respectively. The CC50 was 658 μg/mL for EE and 1020 μg/mL for HAE. The genotoxicity was tested by the single-cell gel electrophoresis comet assay. The results obtained in the evaluation of DNA cellular damage exposed to varied concentrations of the HAE showed no significant genotoxic effect at range of 1–20 mg/mL. The EE at 20 mg/mL showed moderate genotoxic effect related to the increase of the DNA percentage contained in tail of the comet; DNA was classified in category 2. At concentrations below 5 mg/mL, the results of cytotoxicity and genotoxicity of aqueous and ethanolic extracts of Acacia aroma guarantee the safety at cell and genomic level. However further studies are needed for longer periods including animal models to confirm the findings. PMID:25530999
Alessandrini, Massimiliano; Gaiotti, Federica; Belfiore, Nicola; Matarese, Fabiola; D'Onofrio, Claudio; Tomasi, Diego
2017-07-01
Environmental factors have been acknowledged to greatly influence grape and wine aromas. Among them, the effect of altitude on grape aroma compounds has scarcely been debated in literature available to date. In the present study, we investigated the influence of altitude on grape composition and aroma evolution during ripening of Vitis vinifera L. cultivar Glera grown in Conegliano-Valdobbiadene DOCG area (Italy). The site at highest altitude (380 m above sea level) was warmer than the lowest site (200 m above sea level) and, even with differences in temperature in the range 1.5-2 °C, the impact of the cultivation site on grape ripening and aroma accumulation and preservation was significant. The lowest site demonstrated slower grape ripening, and grapes at harvest accumulated lower amounts of all of the main classes of aroma compounds typical of the Glera variety. Wines produced from the highest site were preferred in tasting trials for their more patent floral notes and elegance. Altitude strongly influences grape ripening evolution and flavour accumulation in the Glera grape, and this result accounts for the different styles in the sparkling wines subsequently produced. Moreover, the present study shows that aroma compound biosynthesis, particularly that of benzenoides, starts before véraison in Glera. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Preparation and structural characterization of corn starch-aroma compound inclusion complexes.
Zhang, Shu; Zhou, Yibin; Jin, Shanshan; Meng, Xin; Yang, Liping; Wang, Haisong
2017-01-01
Six corn starch inclusion complexes were synthesized using small nonpolar or weak polar aroma compounds (heptanolide, carvone and menthone) and small polar aroma compounds (linalool, heptanol and menthol). The objectives of this study were to (a) investigate the ability of corn starch to form inclusion complexes with these aroma compounds and (b) characterize the structure of the corn starch inclusion complexes. The resulting inclusion ratios were 75.6, 36.9, 43.8, 91.9, 67.2 and 54.7% for heptanolide, carvone, menthone, linalool, heptanol and menthol respectively. The inclusion complexes had laminated structures with a certain amount of holes or blocky constructions. Compared with gelatinized corn starch, the transition temperatures, peak temperatures and enthalpies of the inclusion complexes were significantly different. The major peak of CO at 1771 cm -1 and significant peak shifts revealed the formation of inclusion complexes. X-ray diffractometry (XRD) analyses revealed that the crystallinity of corn starch-polar aroma compound inclusion complexes increased. Based on cross-polarization magic angle spinning 13 C nuclear magnetic resonance (CP-MAS 13 C NMR) results, novel peaks and chemical shifts were attributed to the presence of small aroma compounds, thereby confirming the formation of corn starch inclusion complexes. Small nonpolar and polar aroma compounds can be complexed to corn starch. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Identification of Key Odorants in Withering-Flavored Green Tea by Aroma Extract Dilution Analysis
NASA Astrophysics Data System (ADS)
Mizukami, Yuzo; Yamaguchi, Yuichi
This research aims to identify key odorants in withering-flavored green tea. Application of the aroma extract dilution analysis using the volatile fraction of green tea and withering-flavored green tea revealed 25 and 35 odor-active peaks with the flavor dilution factors of≥4, respectively. 4-mercapto-4-methylpentan-2-one, (E)-2-nonenal, linalool, (E,Z)-2,6-nonadienal and 3-methylnonane-2,4-dione were key odorants in green tea with the flavor dilution factor of≥16. As well as these 5 odorants, 1-octen-3-one, β-damascenone, geraniol, β-ionone, (Z)-methyljasmonate, indole and coumarine contributed to the withering flavor of green tea.
Postharvest responses of red and yellow sweet peppers grown under photo-selective nets.
Selahle, Kamogelo M; Sivakumar, Dharini; Jifon, John; Soundy, Puffy
2015-04-15
Postharvest responses of red ('HTSP-3') and yellow ('Celaya') sweet pepper fruit yield, quality parameters and bioactive compounds (to three types of photo-selective nets and a standard black net) were investigated in this study. Red and yellow peppers produced under the black net retained higher β-carotene, lower total phenolic contents and showed deep red and orange colour after storage. Both peppers produced under the pearl net retained a higher ascorbic content, antioxidant scavenging activity, fruit firmness and also reduced weight loss after storage. Red and yellow peppers grown under pearl and yellow nets resulted in a higher percentage of marketable fruit, after storage. Red pepper grown under the yellow net showed a higher number of odour active aroma compounds in the fruit, while black nets significantly affected the synthesis of odour active aroma compounds during storage. Sensory analysis indicated a preference for red pepper fruits after storage from plants grown under pearl nets. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tokitomo, Yukiko; Steinhaus, Martin; Büttner, Andrea; Schieberle, Peter
2005-07-01
By application of aroma extract dilution analysis (AEDA) to an aroma distillate prepared from fresh pineapple using solvent-assisted flavor evaporation (SAFE), 29 odor-active compounds were detected in the flavor dilution (FD) factor range of 2 to 4,096. Quantitative measurements performed by stable isotope dilution assays (SIDA) and a calculation of odor activity values (OAVs) of 12 selected odorants revealed the following compounds as key odorants in fresh pineapple flavor: 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDF; sweet, pineapple-like, caramel-like), ethyl 2-methylpropanoate (fruity), ethyl 2-methylbutanoate (fruity) followed by methyl 2-methylbutanoate (fruity, apple-like) and 1-(E,Z)-3,5-undecatriene (fresh, pineapple-like). A mixture of these 12 odorants in concentrations equal to those in the fresh pineapple resulted in an odor profile similar to that of the fresh juice. Furthermore, the results of omission tests using the model mixture showed that HDF and ethyl 2-methylbutanoate are character impact odorants in fresh pineapple.
Odor-Active Compounds in the Special Flavor Hops Huell Melon and Polaris.
Neiens, Silva D; Steinhaus, Martin
2018-02-14
The volatiles isolated from samples of the special flavor hop varieties, Huell Melon and Polaris, and from the aroma hop variety, Hallertau Tradition, by solvent extraction and solvent-assisted flavor evaporation (SAFE) were subjected to a comparative aroma extract dilution analysis (cAEDA), which resulted in 46 odor-active compounds in the flavor dilution (FD) factor range of 16 to 2048. On the basis of high FD factors, myrcene, (3R)-linalool, and 2- and 3-methylbutanoic acid were confirmed as important variety-independent hop odorants. (1R,4S)-Calamenene was identified for the first time as an odor-active compound in hops. Clear differences in the FD factors and their subsequent objectification by stable isotope dilution quantitation suggested that high concentrations of the esters ethyl 2-methylbutanoate, ethyl 2-methylpropanoate, and propyl 2-methylbutanoate cause the characteristic fruity, cantaloupe-like odor note in Huell Melon hops, whereas the fruity and minty odor notes in Polaris are associated with high amounts of 3-methylbutyl acetate and 1,8-cineole.
Moreno, Juan; Moreno-García, Jaime; López-Muñoz, Beatriz; Mauricio, Juan Carlos; García-Martínez, Teresa
2016-12-15
The most important and negative effect of the global warming for winemakers in warm and sunny regions is the observed lag between industrial and phenolic grape ripeness, so only it is possible to obtain an acceptable colour when the ethanol content of wine is high. By contrast, the actual market trends are to low ethanol content wines. Flor yeast growing a short time under velum conditions, decreases the ethanol and volatile acidity contents, has a favorable effect on the colour and astringency and significantly changes the wine content in 1-propanol, isobutanol, acetaldehyde, 1,1-diethoxiethane and ethyl lactate. The Principal Component Analysis of six enological parameters or five aroma compounds allows to classify the wines subjected to different velum formation conditions. The obtained results in two tasting sessions suggest that the flor yeast helps to modulate the ethanol, astringency and colour and supports a new biotechnological perspective for red winemakers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modifications of 'Gold Finger' Grape Berry Quality as Affected by the Different Rootstocks.
Jin, Zhongxin; Sun, Hong; Sun, Tianyu; Wang, Qingjie; Yao, Yuxin
2016-06-01
Berry qualities of the grafted 'Gold Finger' grapevines were determined to evaluate the impacts of the resistant rootstocks on fruit quality. Compared to the own-rooted vines, berry and cluster weights and skin color were altered by the rootstocks to varying extents. The rootstock of 101-14M maintained TSS/TA and the contents of fructose, glucose, and sucrose, and SO4 decreased these parameters. 101-14M and 3309C increased and reduced the resveratrol content, respectively. SO4, 5BB, and 3309C decreased the total free amino acid content, along with the changes in amino acid composition. The amounts of aroma components were widely altered by the rootstocks. Additionally, a digital gene expression tag profiling revealed that the biological processes were largely altered by 3309C and 101-14M, including sugar, amino acid, and aroma metabolisms. In summary, the rootstock of 101-14M generally maintained berry quality, and SO4, 5BB, and 3309C imparted varying influences on different quality parameters.
Studies on volatile organic compounds of some truffles and false truffles.
D'Auria, Maurizio; Racioppi, Rocco; Rana, Gian Luigi; Laurita, Alessandro
2014-01-01
Results of solid phase micro-extraction coupled to gas chromatography and mass spectrometry analyses, accomplished on sporophores of 11 species of truffles and false truffles, are reported. Volatile organic compounds (VOCs) found in Gautieria morchelliformis were dimethyl sulphide, 1,3-octadiene, 3,7-dimethyl-1,6-octadien-3-ol, amorphadiene, isoledene and cis-muurola-3,5-diene. In Hymenogaster luteus var. luteus, presence of 1,3-octadiene, 1-octen-3-ol, 3-octanone, 3-octanol and 4-acetylanisole was revealed. Two VOCs, 4-acetylanisole and β-farnesene, constituted aroma of Hymenogaster olivaceus.Melanogaster broomeanus exhibited as components of its aroma 2-methyl-1,3-butadiene, 2-methylpropanal, 2-methylpropanol, isobutyl acetate, 3,7-dimethyl-1,6-octadien-3-ol, 3-octanone and β-curcumene. VOC profile of Octavianina asterosperma was characterised by the presence of dimethyl sulphide, ethyl 2-methylpropanoate, methyl 2-methylbutanoate and 3-octanone. Tuber rufum var. rufum and Pachyphloeus conglomeratus showed the presence of dimethyl sulphide only.
The aroma volatile repertoire in strawberry fruit: a review.
Yan, Jia-Wei; Ban, Zhao-Jun; Lu, Hong-Yan; Li, Dong; Poverenov, Elena; Li, Li; Luo, Zi-Sheng
2018-03-30
Aroma significantly contributes to flavor, which directly affects commercial quality of strawberry. Strawberry aroma is complex as many kinds of volatile compounds are found in strawberries. In this review, we describe the current knowledge of constituents and biosynthesis of strawberry volatile compounds, and the effect of postharvest treatments on aroma profiles. The characteristic strawberry volatile compounds consist of furanones, such as 2,5-dimethyl-4-hydroxy-3(2H)-furanone and 4-methoxy-2,5-dimethyl-3(2H)-furanone; esters including ethyl butanoate, ethyl hexanoate, methyl butanoate, and methyl hexanoate; sulfur compounds such as methanethiol, and terpenoids including linalool and nerolidol. As for postharvest treatment, the present review discusses the overview of aroma volatiles in response to temperature, atmosphere, and exogenous hormone as well as other treatments including ozone, edible coating and ultraviolet radiation. In addition, the future prospects for strawberry volatile biosynthesis and metabolism are presented. This article is protected by copyright. All rights reserved.
Key Aroma Compounds in Smoked Cooked Loin.
Kosowska, Monika; Majcher, Małgorzata A; Jeleń, Henryk H; Fortuna, Teresa
2018-04-11
Smoked cooked loin is one of the most popular meat products in Poland. In this study, key volatile compounds in this traditional Polish meat product were determined using gas chromatography-olfactometry and aroma extract dilution analysis (AEDA). In total, 27 odor-active volatile compounds were identified, with flavor dilution (FD) factors ranging from 4 to 1024, with the highest FD factors noted for 2-methoxyphenol, 2-methoxy-4-(prop-2-enyl)phenol, and 2-methoxy-4-( E)-(prop-1-en-1-yl)phenol. Results of the quantitative analyses based on determinations with stable isotope dilution assays (SIDAs) and standard addition (SA), followed by calculations of the odor activity value (OAV), enabled identifying 24 of the volatile compounds responsible for flavor development in the analyzed smoked cooked loin. The highest OAVs were obtained for 2-methoxyphenol, 2-methyl-3-furanthiol, 1-octen-3-one, and 2-methyl-3-(methyldithio)furan.
Identification of Rotundone as a Potent Odor-Active Compound of Several Kinds of Fruits.
Nakanishi, Akira; Fukushima, Yusuke; Miyazawa, Norio; Yoshikawa, Keisuke; Maeda, Tomoko; Kurobayashi, Yoshiko
2017-06-07
An investigation of the aromas of grapefruit, orange, apple, and mango revealed the presence of an odor-active compound that gave off a strong woody odor when assessed by gas chromatography-olfactometry. We isolated the compound from a high-boiling fraction of an orange essential oil, and subsequent nuclear magnetic resonance analyses of the isolated compound identified it as rotundone. Mass spectra and retention indices obtained from aroma concentrates of grapefruit, apple, and mango were identical to those of rotundone, which was therefore determined to be the common woody compound in these fruits. Sensory analyses were performed to assess the effects of rotundone on model beverages of the various fruits. It was revealed that rotundone added at even subthreshold levels to model beverages did not confer directly the woody odor, but had significant effects on the overall flavors of the beverages, helping them to better approximate the natural flavors of the fruits.
Ortner, Eva; Granvogl, Michael; Schieberle, Peter
2016-11-02
Heat-processing of Brassica seeds led to the formation of a characteristic pleasant popcorn-like and coffee-like aroma impression compared to the mainly pea-like aroma of the corresponding raw seeds. To analyze this phenomenon on a molecular basis, raw and roasted white mustard seeds and rapeseeds were analyzed using the sensomics approach. Application of comparative aroma extract dilution analysis (cAEDA) and identification experiments to raw and roasted (140 °C, 30 min) mustard seeds revealed 36 odorants (all identified for the first time) and 47 odorants (41 newly identified), respectively. Twenty-seven odorants in raw and 43 odorants in roasted (140 °C, 60 min) rapeseeds were found, which were all described for the first time. Among the set of volatiles, 2-isopropyl-3-methoxypyrazine (earthy, pea-like) and 4-ethenyl-2-methoxyphenol (clove-like, smoky) showed high FD factors in both raw seeds. 4-Hydroxy-2,5-dimethylfuran-3(2H)-one (caramel-like), 2,3-diethyl-5-methylpyrazine (earthy), dimethyl trisulfide (cabbage-like), and 2-acetyl-1-pyrroline (popcorn-like) were present at high flavor dilution (FD) factors in both roasted Brassica seeds. Odorants, differing in cAEDA or showing high FD factors in at least one of the seeds, were quantitated by stable isotope dilution analysis (SIDA), followed by the calculation of odor activity values (OAVs) using odor thresholds determined in refined sunflower oil. Eighteen aroma compounds in raw and 28 in roasted mustard seeds as well as 14 in raw and 25 in roasted rapeseeds revealed OAVs ≥1. All four aroma recombinates, prepared by mixing the odorants showing OAVs ≥1 in their naturally occurring concentrations, showed a very good similarity with the original seeds and, thus, proved the successful characterization of the respective key odorants.
Does olfactory specific satiety take place in a natural setting?
Fernandez, P; Bensafi, M; Rouby, C; Giboreau, A
2013-01-01
Olfactory-specific satiety (OSS) is characterized by a specific decrease in the odor pleasantness of a food eaten to satiety or smelled without ingestion. The usual protocol for studying OSS takes place in laboratory, a setting rather removed from the real world. Here, we set out to examine OSS in a natural setting: during a meal in a restaurant. We hypothesized that an aroma contained in a food that is eaten at the beginning of a meal decreases the pleasantness of the flavor of a food with the same aroma eaten at the end of the meal. In the first experiment (Experiment 1), a test group received an appetizer flavored with a test aroma (anise) at the beginning of the meal. After the main dish, they received a dessert flavored with the same aroma. A control group received the same aromatized dessert, but after a non-aromatized appetizer. This experiment was replicated (Experiment 2) using verbena as the test aroma. For both experiments, results revealed that aroma pleasantness, but not intensity or familiarity, significantly decreased in the test groups vs. the control groups. These findings extend the concept of OSS to a realistic eating context. Copyright © 2012 Elsevier Ltd. All rights reserved.
Martin, Valentina; Giorello, Facundo; Fariña, Laura; Minteguiaga, Manuel; Salzman, Valentina; Boido, Eduardo; Aguilar, Pablo S; Gaggero, Carina; Dellacassa, Eduardo; Mas, Albert; Carrau, Francisco
2016-06-08
Benzyl alcohol and other benzenoid-derived metabolites of particular importance in plants confer floral and fruity flavors to wines. Among the volatile aroma components in Vitis vinifera grape varieties, benzyl alcohol is present in its free and glycosylated forms. These compounds are considered to originate from grapes only and not from fermentative processes. We have found increased levels of benzyl alcohol in red Tannat wine compared to that in grape juice, suggesting de novo formation of this metabolite during vinification. In this work, we show that benzyl alcohol, benzaldehyde, p-hydroxybenzaldehyde, and p-hydroxybenzyl alcohol are synthesized de novo in the absence of grape-derived precursors by Hanseniaspora vineae. Levels of benzyl alcohol produced by 11 different H. vineae strains were 20-200 times higher than those measured in fermentations with Saccharomyces cerevisiae strains. These results show that H. vineae contributes to flavor diversity by increasing grape variety aroma concentration in a chemically defined medium. Feeding experiments with phenylalanine, tryptophan, tyrosine, p-aminobenzoic acid, and ammonium in an artificial medium were tested to evaluate the effect of these compounds either as precursors or as potential pathway regulators for the formation of benzenoid-derived aromas. Genomic analysis shows that the phenylalanine ammonia-lyase (PAL) and tyrosine ammonia lyase (TAL) pathways, used by plants to generate benzyl alcohols from aromatic amino acids, are absent in the H. vineae genome. Consequently, alternative pathways derived from chorismate with mandelate as an intermediate are discussed.
Sensory evaluation and electronic tongue for sensing flavored mineral water taste attributes.
Sipos, László; Gere, Attila; Szöllősi, Dániel; Kovács, Zoltán; Kókai, Zoltán; Fekete, András
2013-10-01
In this article a trained sensory panel evaluated 6 flavored mineral water samples. The samples consisted of 3 different brands, each with 2 flavors (pear-lemon grass and josta berry). The applied sensory method was profile analysis. Our aim was to analyze the sensory profiles and to investigate the similarities between the sensitivity of the trained human panel and an electronic tongue device. Another objective was to demonstrate the possibilities for the prediction of sensory attributes from electronic tongue measurements using a multivariate statistical method (Partial Least Squares regression [PLS]). The results showed that the products manufactured under different brand name but with the same aromas had very similar sensory profiles. The panel performance evaluation showed that it is appropriate (discrimination ability, repeatability, and panel consensus) to compare the panel's results with the results of the electronic tongue. The samples can be discriminated by the electronic tongue and an accurate classification model can be built. Principal Component Analysis BiPlot diagrams showed that Brand A and B were similar because the manufacturers use the same aroma brands for their products. It can be concluded that Brand C was quite different compared to the other samples independently of the aroma content. Based on the electronic tongue results good prediction models can be obtained with high correlation coefficient (r(2) > 0.81) and low prediction error (RMSEP < 13.71 on the scale of the sensory evaluation from 0 to 100). © 2013 Institute of Food Technologists®
Phytochemistry and biological activities of Phlomis species.
Limem-Ben Amor, Ilef; Boubaker, Jihed; Ben Sgaier, Mohamed; Skandrani, Ines; Bhouri, Wissem; Neffati, Aicha; Kilani, Soumaya; Bouhlel, Ines; Ghedira, Kamel; Chekir-Ghedira, Leila
2009-09-07
The genus Phlomis L. belongs to the Lamiaceae family and encompasses 100 species native to Turkey, North Africa, Europe and Asia. It is a popular herbal tea enjoyed for its taste and aroma. Phlomis species are used to treat various conditions such as diabetes, gastric ulcer, hemorrhoids, inflammation, and wounds. This review aims to summarize recent research on the phytochemistry and pharmacological properties of the genus Phlomis, with particular emphasis on its ethnobotanical uses. The essential oil of Phomis is composed of four chemotypes dominated by monoterpenes (alpha-pinene, limonene and linalool), sesquiterpenes (germacrene D and beta-caryophyllene), aliphalic compounds (9,12,15-octadecatrienoic acid methyl ester), fatty acids (hexadecanoic acid) and other components (trans-phytol, 9,12,15-octadecatrien-1-ol). Flavonoids, iridoids and phenylethyl alcohol constitute the main compounds isolated from Phlomis extracts. The pharmacological activities of some Phlomis species have been investigated. They are described according to antidiabetic, antinociceptive, antiulcerogenic, protection of the vascular system, anti-inflammatory, antiallergic, anticancer, antimicrobial and antioxidant properties.
Wang, Yuxia; Xu, Yan; Li, Jiming
2012-08-01
The production and application of novel β-glucosidase from Trichosporon asahii were studied. The β-glucosidase yield was improved by response surface methodology, and the optimal media constituents were determined to be dextrin 4.67% (w/v), yeast extract 2.99% (w/v), MgSO(4) 0.01% (w/v), and K(2) HPO(4) 0.02% (w/v). As a result, β-glucosidase production was enhanced from 123.72 to 215.66 U/L. The effects of different enological factors on the activity of β-glucosidases from T. asahii were investigated in comparison to commercial enzymes. β-Glucosidase from T. asahii was activated in the presence of sugars in the range from 10% to 40% (w/v), with the exception of glucose (slight inhibition), and retained higher relative activities than commercial enzymes under the same conditions. In addition, ethanol, in concentrations between 5% and 20% (v/v), also increased the β-glucosidase activity. Although the β-glucosidase activity decreased with decreasing pH, the residual activity of T. asahii was still above 50% at the average wine pH (pH 3.5). Due to these properties, extracellular β-glucosidase from T. asahii exhibited a better ability than commercial enzymes in hydrolyzing aromatic precursors that remained in young finished wine. The excellent performs of this β-glucosidase in wine aroma enhancement and sensory evaluation indicated that the β-glucosidase has a potential application to individuate suitable preparations that can complement and optimize grape or wine quality during the winemaking process or in the final wine. The present study demonstrated the usefulness of response surface methodology based on the central composite design for yield enhancement of β-glucosidase from T. asahii. The investigation of the primary characteristics of the enzyme and its application in young red wine suggested that the β-glucosidase from T. asahii can provide more impetus for aroma improvement in the future. © 2012 Institute of Food Technologists®
Preliminary results from comparisons of redundant tiltmeters at three sites in central california
Mortensen, C.E.; Johnston, M.J.S.
1979-01-01
The U.S. Geological Survey has been operating a network of shallow-borehole tiltmeters in central California since June 1973. At six sites redundant instruments have been installed as a check on data coherency. These include the Sage Ranch, Tres Pinos, New Idria, Aromas, Bear Valley and San Juan Bautista tiltmeter sites. Preliminary results from the comparison of redundant data from the Aromas, Bear Valley and San Juan Bautista sites for periods of eight, three and seven months respectively, suggest that short period tilt signals in the range 5 min < T < 3-5 h and ranging in amplitude from 5 ?? 10-8 to 10-6 rad, but not including step offsets, show excellent agreement on closely spaced instruments. Agreement is not as good in this period range for instruments at San Juan Bautista with a separation of 200 m. Signals of interest observed in this period range include coseismic tilts, teleseisms and tilts associated with creep events. Tilt signals in the period range 3-5 h < T < 2- 5 weeks are not always coherent at all three of the redundant tilt sites studied. Tilt signals in this period range have amplitudes up to 5 ?? 10-6 rad and wavelengths down to at least the instrument separation at the closely spaced sites (~several meters). Regarding longerterm coherency, the instruments at San Juan Bautista with 200-m spacing, agree within 0.5 ??rad for the N-S component and 0.7 jurad for the E-W component for a period of two months. The closely spaced redundant instruments at Aromas agree within 2 ??rad for the N-S component and 1 ??rad for the E-W component for the eight-month period of operation. Data from the three sites have been checked for effects of temperature, atmospheric pressure and rainfall. The latter appears to be critically site dependent. The worst case tilts for 1 inch of rainfall can be more than 1 jurad with a duration of a few days to a week. Typical rain-induced tilts are less than 0.3 ??rad for 1 inch of rain. The two instruments at the Sage Ranch site have been in operation for the longest period. However, they have shown local site or ground instability, high drift and lack of coherency since installation. Data are not yet available from the Tres Pinos or New Idria instruments. Deeper installation appears necessary for these instruments and two alternative methods of tiltmeter emplacement are currently being tested in an attempt to evaluate the depth, spatial and temporal dependency of surface tilt sources. ?? 1979.
The impact of wood ice cream sticks' origin on the aroma of exposed ice cream mixes.
Jiamyangyuen, S; Delwiche, J F; Harper, W J
2002-02-01
The effect of volatile compounds in white birch sticks obtained from four different geographical locations on the aroma of ice cream mix was investigated. Sensory evaluation, (specifically, a series of warmed-up paired comparisons) was conducted on stick-exposed ice cream mixes to determine whether aroma differences in those mixes could be detected. Batches of ice cream mix were exposed to the sticks and aged for 6 d at 4 degrees C and then assessed by the panelists by pairwise comparison. Findings suggest that differences in aroma of mixes that have been exposed to white birch sticks from four different geographical origins can be distinguished perceptually.
Asikin, Yonathan; Kamiya, Asahiro; Mizu, Masami; Takara, Kensaku; Tamaki, Hajime; Wada, Koji
2014-04-15
Changes in the quality attributes of non-centrifugal cane brown sugar represented by physicochemical characteristics as well as flavour components and Maillard reaction products (MRPs) were monitored every 3 months over 1 year of storage. Stored cane brown sugar became darker, and its moisture content and water activity (a(w)) increased during storage. Fructose and glucose levels decreased as non-enzymatic browning via the Maillard reaction occurred in the stored sample, and a similar trend was also discovered in aconitic and acetic acids. Stored cane brown sugar lost its acidic and sulfuric odours (58.70-39.35% and 1.85-0.08%, respectively); subsequently, the nutty and roasted aroma increased from 26.52% to 38.59% due to the volatile MRPs. The browning rate of stored cane brown sugar was positively associated with the development of volatile MRPs (Pearson's coefficient = 0.860), whereas the amount of 3-deoxyglucosone, an intermediate product of the Maillard reaction, had a lower association with the brown colour due to its relatively slow degradation rate. Copyright © 2013 Elsevier Ltd. All rights reserved.
Characterization of volatile aroma compounds from red and black rice bran.
Sukhonthara, Sukhontha; Theerakulkait, Chockchai; Miyazawa, Mitsuo
2009-01-01
The volatile oils from red and black rice bran were obtained by hydrodistillation using diethyl ester and the components of that oil were analyzed by capillary GC-MS. The volatile components of essential oil from red and black rice bran were analyzed by GC and GC-MS. One hundred twenty-nine (129) of volatile compounds were identified in red and black rice bran. Myristic acid, nonanal, (E)-beta-ocimene and 6, 10, 14-trimethyl-2-pentadecanone were main compounds in red rice bran, whereas myristic acid, nonanal, caproic acid, pentadecanal and pelargonic acid were main compounds in black rice bran. Guaiacol, presented at 0.81 mg/100 g in black rice bran, is responsible for the characteristic component in black rice.
Sun, Qun; Gates, Matthew J; Lavin, Edward H; Acree, Terry E; Sacks, Gavin L
2011-10-12
Native American grape (Vitis) species have many desirable properties for winegrape breeding, but hybrids of these non-vinifera wild grapes with Vitis vinifera often have undesirable aromas. Other than the foxy-smelling compounds in Vitis labrusca and Vitis rotundifolia , the aromas inherent to American Vitis species are not well characterized. In this paper, the key odorants in wine produced from the American grape species Vitis riparia and Vitis cinerea were characterized in comparison to wine produced from European winegrapes (V. vinifera). Volatile compounds were extracted by solid-phase microextraction (SPME) and identified by gas chromatography-olfactometry/mass spectrometry (GC-O/MS). On the basis of flavor dilution values, most grape-derived compounds with fruity and floral aromas were at similar potency, but non-vinifera wines had higher concentrations of odorants with vegetative and earthy aromas: eugenol, cis-3-hexenol, 1,8-cineole, 3-isobutyl-2-methoxypyrazine (IBMP), and 3-isopropyl-2-methoxypyrazine (IPMP). Elevated concentrations of these compounds in non-vinifera wines were confirmed by quantitative GC-MS. Concentrations of IBMP and IPMP were well above sensory threshold in both non-vinifera wines. In a follow-up study, IBMP and IPMP were surveyed in 31 accessions of V. riparia, V. rupestris, and V. cinerea. Some accessions had concentrations of >350 pg/g IBMP or >30 pg/g IPMP, well above concentrations reported in previous studies of harvest-ripe vinifera grapes. Methyl anthranilate and 2-aminoacetophenone, key odorants responsible for the foxiness of V. labrusca grapes, were undetectable in both the V. riparia and V. cinerea wines (<10 μg/L).
Interactions of flavoured oil in-water emulsions with polylactide.
Salazar, Rómulo; Domenek, Sandra; Ducruet, Violette
2014-04-01
Polylactide (PLA), a biobased polymer, might prove suitable as eco-friendly packaging, if it proves efficient at maintaining food quality. To assess interactions between PLA and food, an oïl in-water model emulsion was formulated containing aroma compounds representing different chemical structure classes (ethyl esters, 2-nonanone, benzaldehyde) at a concentration typically found in foodstuff (100 ppm). To study non-equilibrium effects during food shelf life, the emulsions were stored in a PLA pack (tray and lid). To assess equilibrium effects, PLA was conditioned in vapour contact with the aroma compounds at concentrations comparable to headspace conditions of real foods. PLA/emulsion interactions showed minor oil and aroma compound sorption in the packaging. Among tested aroma compounds, benzaldehyde and ethyl acetate were most sorbed and preferentially into the lid through the emulsion headspace. Equilibrium effects showed synergy of ethyl acetate and benzaldehyde, favouring sorption of additional aroma compounds in PLA. This should be anticipated during the formulation of food products. Copyright © 2013 Elsevier Ltd. All rights reserved.
Perceived bitterness character of beer in relation to hop variety and the impact of hop aroma.
Oladokun, Olayide; James, Sue; Cowley, Trevor; Dehrmann, Frieda; Smart, Katherine; Hort, Joanne; Cook, David
2017-09-01
The impact of hop variety and hop aroma on perceived beer bitterness intensity and character was investigated using analytical and sensory methods. Beers made from malt extract were hopped with 3 distinctive hop varieties (Hersbrucker, East Kent Goldings, Zeus) to achieve equi-bitter levels. A trained sensory panel determined the bitterness character profile of each singly-hopped beer using a novel lexicon. Results showed different bitterness character profiles for each beer, with hop aroma also found to change the hop variety-derived bitterness character profiles of the beer. Rank-rating evaluations further showed the significant effect of hop aroma on selected key bitterness character attributes, by increasing perceived harsh and lingering bitterness, astringency, and bitterness intensity via cross-modal flavour interactions. This study advances understanding of the complexity of beer bitterness perception by demonstrating that hop variety selection and hop aroma both impact significantly on the perceived intensity and character of this key sensory attribute. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, Liang Wei; Cheong, Mun Wai; Curran, Philip; Yu, Bin; Liu, Shao Quan
2016-11-15
Modulation of coffee aroma via the biotransformation/fermentation of different coffee matrices during post-harvest remains sparingly explored despite some studies showing their positive impacts on coffee aroma. Therefore, this is an unprecedented study aimed at modulating coffee aroma via the fermentation of green coffee beans with a food-grade fungus Rhizopus oligosporus. The objective of part I of this two-part study was to characterize the volatile and non-volatile profiles of green coffee beans after fermentation. Proteolysis during fermentation resulted in 1.5-fold increase in the concentrations of proline and aspartic acid which exhibited high Maillard reactivity. Extensive degradation of ferulic and caffeic acids led to 2-fold increase in the total concentrations of volatile phenolic derivatives. 36% of the total volatiles detected in fermented green coffee beans were generated during fermentation. Hence, the work presented demonstrated that R. oligosporus fermentation of green coffee beans could induce modification of the aroma precursors of green coffees. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of oxidoreduction potential on aroma biosynthesis by lactic acid bacteria in nonfat yogurt.
Martin, F; Cachon, R; Pernin, K; De Coninck, J; Gervais, P; Guichard, E; Cayot, N
2011-02-01
The aim of this study was to investigate the effect of oxidoreduction potential (Eh) on the biosynthesis of aroma compounds by lactic acid bacteria in non-fat yogurt. The study was done with yogurts fermented by Lactobacillus bulgaricus and Streptococcus thermophilus. The Eh was modified by the application of different gaseous conditions (air, nitrogen, and nitrogen/hydrogen). Acetaldehyde, dimethyl sulfide, diacetyl, and pentane-2,3-dione, as the major endogenous odorant compounds of yogurt, were chosen as tracers for the biosynthesis of aroma compounds by lactic acid bacteria. Oxidative conditions favored the production of acetaldehyde, dimethyl sulfide, and diketones (diacetyl and pentane-2,3-dione). The Eh of the medium influences aroma production in yogurt by modifying the metabolic pathways of Lb. bulgaricus and Strep. thermophilus. The use of Eh as a control parameter during yogurt production could permit the control of aroma formation. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Oh, Se Yeon; Shin, Hyun Du; Kim, Sung Jean; Hong, Jongki
2008-03-07
A novel analytical method using fast gas chromatography combined with surface acoustic wave sensor (GC/SAW) has been developed for the detection of volatile aroma compounds emanated from lilac blossom (Syringa species: Syringa vulgaris variginata and Syringa dilatata). GC/SAW could detect and quantify various fragrance emitted from lilac blossom, enabling to provide fragrance pattern analysis results. The fragrance pattern analysis could easily characterize the delicate differences in aromas caused by the substantial difference of chemical composition according to different color and shape of petals. Moreover, the method validation of GC/SAW was performed for the purpose of volatile floral actual aroma analysis, achieving a high reproducibility and excellent sensitivity. From the validation results, GC/SAW could serve as an alternative analytical technique for the analysis of volatile floral actual aroma of lilac. In addition, headspace solid-phase microextraction (HS-SPME) GC-MS was employed to further confirm the identification of fragrances emitted from lilac blossom and compared to GC/SAW.
Optimization of Postharvest Conditions To Produce Chocolate Aroma from Jackfruit Seeds.
Spada, Fernanda Papa; Zerbeto, Lais Masson; Ragazi, Gabriel Bernardes Cabreira; Gutierrez, Érika Maria Roel; Souza, Miriam Coelho; Parker, Jane K; Canniatti-Brazaca, Solange Guidolin
2017-02-15
Jackfruit seeds are an underutilized waste in many tropical countries. This work demonstrates the potential of roasted jackfruit seeds to develop chocolate aroma. Twenty-seven different roasted jackfruit seed flours were produced from local jackfruit by acidifying or fermenting the seeds prior to drying and then roasting under different time/temperature combinations. The chocolate aroma of groups of four flours were ranked by a sensory panel (n = 162), and response surface methodology was used to identify optimum conditions. The results indicated a significant and positive influence of fermentation and acidification on the production of chocolate aroma. SPME/GC-MS of the flours showed that important aroma compounds such as 2,3-diethyl-5-methylpyrazine and 2-phenylethyl acetate were substantially higher in the fermented product and that the more severe roasting conditions produced 2-3 times more 2,3-diethyl-5-methylpyrazine, but less 3-methylbutanal. Moisture, a w , pH, luminosity, and color were also monitored to ensure that these properties were similar to those of cocoa powder or cocoa substitutes.
Newly generated interspecific wine yeast hybrids introduce flavour and aroma diversity to wines.
Bellon, Jennifer R; Eglinton, Jeffery M; Siebert, Tracey E; Pollnitz, Alan P; Rose, Louisa; de Barros Lopes, Miguel; Chambers, Paul J
2011-08-01
Increasingly, winemakers are looking for ways to introduce aroma and flavour diversity to their wines as a means of improving style and increasing product differentiation. While currently available commercial yeast strains produce consistently sound fermentations, there are indications that sensory complexity and improved palate structure are obtained when other species of yeast are active during fermentation. In this study, we explore a strategy to increase the impact of non-Saccharomyces cerevisiae inputs without the risks associated with spontaneous fermentations, through generating interspecific hybrids between a S. cerevisiae wine strain and a second species. For our experiments, we used rare mating to produce hybrids between S. cerevisiae and other closely related yeast of the Saccharomyces sensu stricto complex. These hybrid yeast strains display desirable properties of both parents and produce wines with concentrations of aromatic fermentation products that are different to what is found in wine made using the commercial wine yeast parent. Our results demonstrate, for the first time, that the introduction of genetic material from a non-S. cerevisiae parent into a wine yeast background can impact favourably on the wine flavour and aroma profile of a commercial S. cerevisiae wine yeast.
Zhan, Ru-Lin; Wu, Hong-Xia; Yao, Quan-Sheng; Xu, Wen-Tian; Luo, Chun; Zhou, Yi-Gang; Liang, Qing-Zhi; Wang, Song-Biao
2017-01-01
Aroma is important in assessing the quality of fresh fruit and their processed products, and could provide good indicators for the development of local cultivars in the mango industry. In this study, the volatile diversity of 25 mango cultivars from China, America, Thailand, India, Cuba, Indonesia, and the Philippines was investigated. The volatile compositions, their relative contents, and the intervarietal differences were detected with headspace solid phase microextraction tandem gas chromatography-mass spectrometer methods. The similarities were also evaluated with a cluster analysis and correlation analysis of the volatiles. The differences in mango volatiles in different districts are also discussed. Our results show significant differences in the volatile compositions and their relative contents among the individual cultivars and regions. In total, 127 volatiles were found in all the cultivars, belonging to various chemical classes. The highest and lowest qualitative abundances of volatiles were detected in ‘Zihua’ and ‘Mallika’ cultivars, respectively. Based on the cumulative occurrence of members of the classes of volatiles, the cultivars were grouped into monoterpenes (16 cultivars), proportion and balanced (eight cultivars), and nonterpene groups (one cultivars). Terpene hydrocarbons were the major volatiles in these cultivars, with terpinolene, 3-carene, caryophyllene and α-Pinene the dominant components depending on the cultivars. Monoterpenes, some of the primary volatile components, were the most abundant aroma compounds, whereas aldehydes were the least abundant in the mango pulp. β-Myrcene, a major terpene, accounted for 58.93% of the total flavor volatile compounds in ‘Xiaofei’ (Philippens). γ-Octanoic lactone was the only ester in the total flavor volatile compounds, with its highest concentration in ‘Guiya’ (China). Hexamethyl cyclotrisiloxane was the most abundant volatile compound in ‘Magovar’ (India), accounting for 46.66% of the total flavor volatiles. A typical aldehydic aroma 2,6-di-tert-butyl-4-sec-butylphenol, was detected in ‘Gleck’. A highly significant positive correlation was detected between Alc and K, Alk and Nt, O and L. Cultivars originating from America, Thailand, Cuba, India, Indonesia and the Philippines were more similar to each other than to those from China. This study provides a high-value dataset for use in development of health care products, diversified mango breeding, and local extension of mango cultivars. PMID:29211747
Chang, So Young
2008-08-01
The purpose of this study was to examine the effects of aroma hand massage on pain, state anxiety and depression in hospice patients with terminal cancer. This study was a nonequivalent control group pretest-posttest design. The subjects were 58 hospice patients with terminal cancer who were hospitalized. Twenty eight hospice patients with terminal cancer were assigned to the experimental group (aroma hand massage), and 30 hospice patients with terminal cancer were assigned to the control group (general oil hand massage). As for the experimental treatment, the experimental group went through aroma hand massage on each hand for 5 min for 7 days with blended oil-a mixture of Bergamot, Lavender, and Frankincense in the ratio of 1:1:1, which was diluted 1.5% with sweet almond carrier oil 50 ml. The control group went through general oil hand massage by only sweet almond carrier oil-on each hand for 5 min for 7 days. The aroma hand massage experimental group showed more significant differences in the changes of pain score (t=-3.52, p=.001) and depression (t=-8.99, p=.000) than the control group. Aroma hand massage had a positive effect on pain and depression in hospice patients with terminal cancer.
Muñoz-González, Carolina; Feron, Gilles; Guichard, Elisabeth; Rodríguez-Bencomo, J José; Martín-Álvarez, Pedro J; Moreno-Arribas, M Victoria; Pozo-Bayón, M Ángeles
2014-08-20
The aim of this work was to determine the role of saliva in wine aroma release by using static and dynamic headspace conditions. In the latter conditions, two different sampling points (t = 0 and t = 10 min) corresponding with oral (25.5 °C) and postoral phases (36 °C) were monitored. Both methodologies were applied to reconstituted dearomatized white and red wines with different nonvolatile wine matrix compositions and a synthetic wine (without matrix effect). All of the wines had the same ethanol concentration and were spiked with a mixture of 45 aroma compounds covering a wide range of physicochemical characteristics at typical wine concentrations. Two types of saliva (human and artificial) or control samples (water) were added to the wines. The adequacy of the two headspace methodologies for the purposes of the study (repeatability, linear ranges, determination coefficients, etc.) was previously determined. After application of different chemometric analysis (ANOVA, LSD, PCA), results showed a significant effect of saliva on aroma release dependent on saliva type (differences between artificial and human) and on wine matrix using static headspace conditions. Red wines were more affected than white and synthetic wines by saliva, specifically human saliva, which provoked a reduction in aroma release for most of the assayed aroma compounds independent of their chemical structure. The application of dynamic headspace conditions using a saliva bioreactor at the two different sampling points (t = 0 and t = 10 min) showed a lesser but significant effect of saliva than matrix composition and a high influence of temperature (oral and postoral phases) on aroma release.
Bett-Garber, Karen L; Lea, Jeanne M; Watson, Michael A; Grimm, Casey C; Lloyd, Steven W; Beaulieu, John C; Stein-Chisholm, Rebecca E; Andrzejewski, Brett P; Marshall, Donna A
2015-04-01
Six cultivars of southern highbush (SHB) and rabbiteye (RE) blueberry samples were harvested on 2 different dates. Each treatment combination was pressed 2 times for repeated measures. Fresh juice was characterized for 18 flavor/taste/feeling factor attributes by a descriptive flavor panel. Each sample was measured for sugars, acids, anthocyanidins, Folin-Ciocalteu, soluble solids (BRIX), titratable acidity (TA), and antioxidant capacity (ORACFL ). Flavors were correlated with the composition and physicochemical data. Blueberry flavor correlated with 3 parameters, and negatively correlated with 2. Strawberry correlated with oxalic acid and negatively correlated with sucrose and quinic acid. Sweet aroma correlated with oxalic and citric acid, but negatively correlated with sucrose, quinic, and total acids. Sweet taste correlated with 11 parameters, including the anthocyanidins; and negatively correlated with 3 parameters. Neither bitter nor astringent correlated with any of the antioxidant parameters, but both correlated with total acids. Sour correlated with total acids and TA, while negatively correlating with pH and BRIX:TA. Throat burn correlated with total acids and TA. Principal component analysis negatively related blueberry, sweet aroma, and sweet to sour, bitter, astringent, tongue tingle, and tongue numbness. The information in this component was related to pH, TA, and BRIX:TA ratio. Another principal component related the nonblueberry fruit flavors to BRIX. This PC, also divided the SHB berries from the RE. This work shows that the impact of juice composition on flavor is very complicated and that estimating flavor with physicochemical parameters is complicated by the composition of the juice. © 2015 Institute of Food Technologists®
Tomooka, Kiyohide; Ohira, Tetsuya; Ogino, Keiki; Tanigawa, Takeshi
2016-01-01
Objectives The aim of this study was to investigate the effects of aroma foot massage on blood pressure, anxiety, and health-related quality of life (QOL) in Japanese community-dwelling men and women using a crossover randomized controlled trial. Methods Fifty-seven eligible participants (5 men and 52 women) aged 27 to 72 were randomly divided into 2 intervention groups (group A: n = 29; group B: n = 28) to participate in aroma foot massages 12 times during the 4-week intervention period. Systolic and diastolic blood pressure (SBP and DBP, respectively), heart rate, state anxiety, and health-related QOL were measured at the baseline, 4-week follow-up, and 8-week follow-up. The effects of the aroma foot massage intervention on these factors and the proportion of participants with anxiety were analyzed using a linear mixed-effect model for a crossover design adjusted for participant and period effects. Furthermore, the relationship between the changes in SBP and state anxiety among participants with relieved anxiety was assessed using a linear regression model. Results Aroma foot massage significantly decreased the mean SBP (p = 0.02), DBP (p = 0.006), and state anxiety (p = 0.003) as well as the proportion of participants with anxiety (p = 0.003). Although it was not statistically significant (p = 0.088), aroma foot massage also increased the score of mental health-related QOL. The change in SBP had a significant and positive correlation with the change in state anxiety (p = 0.01) among participants with relieved anxiety. Conclusion The self-administered aroma foot massage intervention significantly decreased the mean SBP and DBP as well as the state anxiety score, and tended to increase the mental health-related QOL scores. The results suggest that aroma foot massage may be an easy and effective way to improve mental health and blood pressure. Trial Registration University Hospital Medical Information Network 000014260 PMID:27010201
Eguchi, Eri; Funakubo, Narumi; Tomooka, Kiyohide; Ohira, Tetsuya; Ogino, Keiki; Tanigawa, Takeshi
2016-01-01
The aim of this study was to investigate the effects of aroma foot massage on blood pressure, anxiety, and health-related quality of life (QOL) in Japanese community-dwelling men and women using a crossover randomized controlled trial. Fifty-seven eligible participants (5 men and 52 women) aged 27 to 72 were randomly divided into 2 intervention groups (group A: n = 29; group B: n = 28) to participate in aroma foot massages 12 times during the 4-week intervention period. Systolic and diastolic blood pressure (SBP and DBP, respectively), heart rate, state anxiety, and health-related QOL were measured at the baseline, 4-week follow-up, and 8-week follow-up. The effects of the aroma foot massage intervention on these factors and the proportion of participants with anxiety were analyzed using a linear mixed-effect model for a crossover design adjusted for participant and period effects. Furthermore, the relationship between the changes in SBP and state anxiety among participants with relieved anxiety was assessed using a linear regression model. Aroma foot massage significantly decreased the mean SBP (p = 0.02), DBP (p = 0.006), and state anxiety (p = 0.003) as well as the proportion of participants with anxiety (p = 0.003). Although it was not statistically significant (p = 0.088), aroma foot massage also increased the score of mental health-related QOL. The change in SBP had a significant and positive correlation with the change in state anxiety (p = 0.01) among participants with relieved anxiety. The self-administered aroma foot massage intervention significantly decreased the mean SBP and DBP as well as the state anxiety score, and tended to increase the mental health-related QOL scores. The results suggest that aroma foot massage may be an easy and effective way to improve mental health and blood pressure. University Hospital Medical Information Network 000014260.
Chen, Kai; Escott, Carlos; Loira, Iris; Del Fresno, Juan Manuel; Morata, Antonio; Tesfaye, Wendu; Calderon, Fernando; Benito, Santiago; Suárez-Lepe, Jose Antonio
2016-10-31
Today in the wine industry, oenological tannins are widely used to improve wine quality and prevent oxidation in wine aging. With the development of tannin products, new oenological tannins are developed with many specific functions, such as modifying antioxidant effect, colour stabilization and aroma modifications. The aim of this work is to investigate effects of pre-fermentative addition of oenological tannins on wine colour, anthocyanins, volatile compounds and sensorial properties. In this case, Syrah juice was extracted with classic flash thermovinification from fresh must in order to release more colour and tannins. Three types of oenological tannins, which are, respectively, derived from grape skin, seed ( Vitis vinifera ) and French oak ( Quercus robur and Querrus petraea ), were selected to carry out the experiments with seven treatments. Results indicated that tannin treatments significantly improved wine aroma complexity and sensorial properties. However, the concentration of some stable pigments such as Vitisin A, Vitisin A-Ac and Vitisin B was negatively affected by tannin additions. Nevertheless, by means of cluster analysis and principal component analysis, it was observed that higher alcohols were significantly promoted by grape seed tannin while most anthocyanins can be improved by addition of grape tannins. In conclusion, low amount of oenological tannin derived from grape seed is a promising method to be applied especially for young red wine making.
Characterization of volatiles and identification of odor-active compounds of rocket leaves.
Raffo, Antonio; Masci, Maurizio; Moneta, Elisabetta; Nicoli, Stefano; Sánchez Del Pulgar, José; Paoletti, Flavio
2018-02-01
The volatile profile of crushed rocket leaves (Eruca sativa and Diplotaxis tenuifolia) was investigated by applying Headspace Solid-Phase MicroExtraction (HS-SPME), combined with GC-MS, to an aqueous extract obtained by homogenization of rocket leaves, and stabilized by addition of CaCl 2 . A detailed picture of volatile products of the lipoxygenase pathway (mainly C6-aldehydes) and of glucosinolate hydrolysis (mainly isothiocyanates), and their dynamics of formation after tissue disruption was given. Odor-active compounds of leaves were characterized by GC-Olfactometry (GC-O) and Aroma Extract Dilution Analysis (AEDA): volatile isolates obtained by HS-SPME from an aqueous extract and by Stir-Bar Sorptive Extraction (SBSE) from an ethanolic extract were analyzed. The most potent odor-active compounds fully or tentatively identified were (Z)- and (E)-3-hexenal, (Z)-1,5-octadien-3-one, responsible for green olfactory notes, along with 4-mercaptobutyl and 4-(methylthio)butyl isothiocyanate, associated with typical rocket and radish aroma. Relatively high odor potency was observed for 1-octen-3-one, (E)-2-octenal and 1-penten-3-one. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Slaghenaufi, Davide; Ugliano, Maurizio
2018-03-01
During wine ageing, tobacco and balsamic aroma notes appear. In this paper, volatile compounds directly or potentially related to those aromas have been investigated in Corvina and Corvinone wines during aging. Corvina and Corvinone are two northern-Italy autochthonous red grape varieties, used to produce Valpolicella Classico and Amarone wines, both characterized by tobacco and balsamic aroma notes. Wines were analysed shortly after bottling or following model ageing at 60 °C for 48, 72, and 168 hours. Volatile compounds were analysed by HS-SPME-GC-MS. Results showed that compounds related to tobacco aroma (β-damascenone, 3-oxo-α-ionol, (E)-1-(2,3,6-Trimethylphenyl)-buta-1,3-diene (TPB) and megastigmatrienones) increased in relationship to storage time with different patterns. β-Damascenone and 3-oxo-α-ionol rapidly increased to reach a plateau in the first 48-72 hours of model ageing. Instead, TPB and megastigmatrienones concentration showed a linear correlation with ageing time. During model ageing, several cyclic terpenes tended to increase. Among them 1,8-cineole and 1,4-cineole, previously reported to contribute to red wine eucalyptus notes increased proportionally to storage time, and this behavior was clearly associated with reactions involving α-terpineol, limonene and terpinolene, as confirmed by studies with model wine solutions. Among other relevant volatile compounds, sesquiterpenes appear to contribute potentially balsamic and spicy aroma notes. In this study, linear sesquiterpenes (nerolidol, farnesol) underwent acid hydrolysis during long wine ageing, while cyclic sesquiterpenes seemed to increase with time. The chemical pathways associated with evolution of some of the compounds investigated have been studied in model wine.
Ruijschop, Rianne M A J; Zijlstra, Nicolien; Boelrijk, Alexandra E M; Dijkstra, Annereinou; Burgering, Maurits J M; Graaf, Cees de; Westerterp-Plantenga, Margriet S
2011-01-01
The brain response to a retro-nasally sensed food odour signals the perception of food and it is suggested to be related to satiation. It is hypothesised that consuming food either in multiple small bite sizes or with a longer durations of oral processing may evoke substantial oral processing per gram consumed and an increase in transit time in the oral cavity. This is expected to result in a higher cumulative retro-nasal aroma stimulation, which in turn may lead to increased feelings of satiation and decreased food intake. Using real-time atmospheric pressure chemical ionisation-MS, in vivo retro-nasal aroma release was assessed for twenty-one young, healthy and normal-weight subjects consuming dark chocolate-flavoured custard. Subjects were exposed to both free or fixed bite size (5 and 15 g) and durations of oral processing before swallowing (3 and 9 s) in a cross-over design. For a fixed amount of dark chocolate-flavoured custard, consumption in multiple small bite sizes resulted in a significantly higher cumulative extent of retro-nasal aroma release per gram consumed compared with a smaller amount of large bite sizes. In addition, a longer duration of oral processing tended to result in a higher cumulative extent of retro-nasal aroma release per gram consumed compared with a short duration of oral processing. An interaction effect of bite size and duration of oral processing was not observed. In conclusion, decreasing bite size or increasing duration of oral processing led to a higher cumulative retro-nasal aroma stimulation per gram consumed. Hence, adapting bite size or duration of oral processing indicates that meal termination can be accelerated by increasing the extent of retro-nasal aroma release and, subsequently, the satiation.
Lopez Pinar, Angela; Rauhut, Doris; Ruehl, Ernst; Buettner, Andrea
2017-01-01
This study aimed to characterize the effects of bunch rot and powdery mildew on the primary quality parameter of wine, the aroma. The influence of these fungal diseases was studied by comparative Aroma Extract Dilution Analyses (AEDA) and sensory tests. The effect of bunch rot was investigated on three grape varieties, namely White Riesling, Red Riesling and Gewürztraminer and that of powdery mildew on the hybrid Gm 8622-3; thereby, samples were selected that showed pronounced cases of infection to elaborate potential currently unknown effects. Both infections revealed aromatic differences induced by these fungi. The sensory changes were not associated with one specific compound only, but were due to quantitative variations of diverse substances. Bunch rot predominantly induced an increase in the intensities of peach-like/fruity, floral and liquor-like/toasty aroma notes. These effects were found to be related to variations in aroma substance composition as monitored via AEDA, mainly an increase in the FD factors of lactones and a general moderate increase of esters and alcohols. On the other hand, powdery mildew decreased the vanilla-like character of the wine while the remaining sensory attributes were rather unaffected. Correspondingly, FD factors of the main aroma constituents were either the same or only slightly modified by this disease. Moreover, bunch rot influenced the aroma profiles of the three varieties studied to a different degree. In hedonic evaluation, bunch rot-affected samples were rated as being more pleasant in comparison to their healthy controls in all three varieties while the powdery mildew-affected sample was rated as being less pleasant than its healthy control.
Gamero, Amparo; Belloch, Carmela; Querol, Amparo
2015-09-04
Aroma is one of the most important attributes defining wine quality in which yeasts play a crucial role, synthesizing aromatic compounds or releasing odourless conjugates. A present-day trend in winemaking consists of lowering fermentation temperature to achieve higher aroma production and retention. S. cerevisiae × S. kudriavzevii hybrids seem to have inherited beneficial traits from their parental species, like fermenting efficiently at low temperature or producing higher amounts of certain aromatic compounds. In this study, allelic composition and gene expression of the genes related to aroma synthesis in two genetically and phenotypically different S. cerevisiae × S. kudriavzevii hybrids, Lalvin W27 and VIN7, were compared and related to aroma production in microvinifications at 12 and 28 °C. In addition, the contribution of the allele coming from each parental to the overall expression was explored by RT-PCR. The results indicated large differences in allele composition, gene expression and the contribution of each parental to the overall expression at the fermentation temperatures tested. Results obtained by RT-PCR showed that in ARO1 and ATF2 genes the S. kudriavzevii allele was more expressed than that of S. cerevisiae particularly at 12 °C. This study revealed high differences regarding allele composition and gene expression in two S. cerevisiae × S. kudriavzevii hybrids, which may have led to different aroma profiles in winemaking conditions. The contribution of the alleles coming from each parental to the overall expression has proved to differently influence aroma synthesis. Besides, the quantitative contribution to the overall gene expression of the alleles coming from one parental strain or the other was clearly determined by the fermentation temperature for some genes.
NASA Astrophysics Data System (ADS)
Lopez Pinar, Angela; Rauhut, Doris; Ruehl, Ernst; Buettner, Andrea
2017-03-01
This study aimed to characterize the effects of bunch rot and powdery mildew on the primary quality parameter of wine, the aroma. The influence of these fungal diseases was studied by comparative Aroma Extract Dilution Analyses (AEDA) and sensory tests. The effect of bunch rot was investigated on three grape varieties, namely White Riesling, Red Riesling and Gewürztraminer and that of powdery mildew on the hybrid Gm 8622-3; thereby, samples were selected that showed pronounced cases of infection to elaborate potential currently unknown effects. Both infections revealed aromatic differences induced by these fungi. The sensory changes were not associated with one specific compound only, but were due to quantitative variations of diverse substances. Bunch rot predominantly induced an increase in the intensities of peach-like/fruity, floral and liquor-like/toasty aroma notes. These effects were found to be related to variations in aroma substance composition as monitored via AEDA, mainly an increase in the FD factors of lactones and a general moderate increase of esters and alcohols. On the other hand, powdery mildew decreased the vanilla-like character of the wine while the remaining sensory attributes were rather unaffected. Correspondingly, FD factors of the main aroma constituents were either the same or only slightly modified by this disease. Moreover, bunch rot influenced the aroma profiles of the three varieties studied to a different degree. In hedonic evaluation, bunch rot-affected samples were rated as being more pleasant in comparison to their healthy controls in all three varieties while the powdery mildew-affected sample was rated as being less pleasant than its healthy control.
Causse, M; Saliba-Colombani, V; Lecomte, L; Duffé, P; Rousselle, P; Buret, M
2002-10-01
The organoleptic quality of tomato fruit involves a set of attributes (flavour, aroma, texture) that can be evaluated either by sensory analyses or by instrumental measures. In order to study the genetic control of this characteristic, a recombinant inbred line (RIL) population was developed from an intraspecific cross between a cherry tomato line with a good overall aroma intensity and an inbred line with medium flavour but bigger fruits. A total of 38 traits involved in organoleptic quality were evaluated. Physical traits included fruit weight, diameter, colour, firmness, and elasticity. Chemical traits were dry matter weight, titratable acidity, pH, and the contents of soluble solids, sugars, lycopene, carotene, and 12 aroma volatiles. A panel of trained assessors quantified sensory attributes: flavour (sweetness and sourness), aroma (overall aroma intensity, together with candy, lemon, citrus fruit, and pharmaceutical aromas) and texture (firmness, meltiness, mealiness, juiciness, and skin difficult to swallow). RILs showed a large range of variation. Molecular markers were used to map a total of 130 quantitative trait loci (QTL) for the 38 traits. They were mainly distributed in a few chromosome regions. Major QTLs (R(2) >30%) were detected for fruit weight, diameter, colour, firmness, meltiness, and for six aroma volatiles. The relationships between instrumental measures and sensory traits were analysed with regard to the QTL map. A special insight was provided about the few regions where QTLs are related to multiple traits. A few examples are shown to illustrate how the simultaneous analysis of QTL segregation for related traits may aid in understanding the genetic control of quality traits and pave the way towards QTL characterization.
Genetic Determinants of Volatile-Thiol Release by Saccharomyces cerevisiae during Wine Fermentation
Howell, Kate S.; Klein, Mathias; Swiegers, Jan H.; Hayasaka, Yoji; Elsey, Gordon M.; Fleet, Graham H.; Høj, Peter B.; Pretorius, Isak S.; de Barros Lopes, Miguel A.
2005-01-01
Volatile thiols, particularly 4-mercapto-4-methylpentan-2-one (4MMP), make an important contribution to the aroma of wine. During wine fermentation, Saccharomyces cerevisiae mediates the cleavage of a nonvolatile cysteinylated precursor in grape juice (Cys-4MMP) to release the volatile thiol 4MMP. Carbon-sulfur lyases are anticipated to be involved in this reaction. To establish the mechanism of 4MMP release and to develop strains that modulate its release, the effect of deleting genes encoding putative yeast carbon-sulfur lyases on the cleavage of Cys-4MMP was tested. The results led to the identification of four genes that influence the release of the volatile thiol 4MMP in a laboratory strain, indicating that the mechanism of release involves multiple genes. Deletion of the same genes from a homozygous derivative of the commercial wine yeast VL3 confirmed the importance of these genes in affecting 4MMP release. A strain deleted in a putative carbon-sulfur lyase gene, YAL012W, produced a second sulfur compound at significantly higher concentrations than those produced by the wild-type strain. Using mass spectrometry, this compound was identified as 2-methyltetrathiophen-3-one (MTHT), which was previously shown to contribute to wine aroma but was of unknown biosynthetic origin. The formation of MTHT in YAL012W deletion strains indicates a yeast biosynthetic origin of MTHT. The results demonstrate that the mechanism of synthesis of yeast-derived wine aroma components, even those present in small concentrations, can be investigated using genetic screens. PMID:16151133
Pasini, Federica; Verardo, Vito; Cerretani, Lorenzo; Caboni, Maria Fiorenza; D'Antuono, Luigi Filippo
2011-12-01
Salad crops of the Brassicaceae family, such as Diplotaxis tenuifolia and Eruca vesicaria, commonly referred to as 'rocket salads', have attracted considerable interest as culinary vegetables because of their strong flavour and their content of putative health-promoting compounds. Among such compounds, glucosinolates and phenolics are well-known phytochemicals with an important role also in determining the characteristic flavour of these species. In this study, to identify potentially high-value rocket salads, 37 cultivated types were examined for sensory characters and their relations with glucosinolate and phenolic contents, which ranged from 0.76 to 3.03 g kg(-1) dry weight (DW) and from 4.68 to 31.39 g kg(-1) DW, respectively. The perception of bitter taste was significantly affected by specific glucosinolates, namely progoitrin/epiprogoitrin and dimeric glucosativin. Aroma intensity was negatively related to glucoalyssin content, whereas pungency was significantly related to total glucosinolate content. Kaempferol-3-(2-sinapoyl-glucoside)-4'-glucoside was positively and significantly related to all flavour trait perceptions. Aroma intensity, pungency, crunchiness and juiciness were positively related to typical rocket salad flavour perception through a prominent direct effect. Aroma intensity, pungency, crunchiness and juiciness were strong determinants of overall rocket salad flavour perception. Visual traits also characterised sensory components. Bitterness, usually considered a negative flavour trait, was moderately perceived in the examined material, without negatively affecting typical flavour perception. In the range of the examined material, glucosinolate content did not contrast with typical flavour, demonstrating that good taste and putative health-promoting properties may coexist. Copyright © 2011 Society of Chemical Industry.
Pozo-Bayón, Maria Angeles; Andujar-Ortiz, Inmaculada; Alcaide-Hidalgo, Juan María; Martín-Alvarez, Pedro J; Moreno-Arribas, M Victoria
2009-11-25
The characterization of commercial enological inactive dry yeast (IDY) with different applications in wine production has been carried out. This study was based on the yeast's ability to release soluble compounds (high molecular weight nitrogen, free amino nitrogen, peptidic nitrogen, free amino acids, and polysaccharides) into model wines and on its behavior toward the volatility of seven wine aroma compounds. Important differences in soluble compounds released into the model wines supplemented with commercial IDY were found, with the free amino acids being among the most released. The volatility of most of the aroma compounds was affected by the addition of IDY preparations at a concentration usually employed during winemaking. The extent of this effect was dependent on the physicochemical characteristics of the aroma compound and on the length of time the IDY preparations remained in contact with the model wines. Whereas shorter contact times (2, 4, and 6 days) mainly promoted a "salting-out" effect, longer exposure (9 and 13 days) provoked a retention effect, with the consequent reduction of aroma compounds in the headspace. The use of different commercial preparations also promoted different effects toward the aroma compounds that may be at least in part due to differences in their ability to release soluble compounds of yeast origin into the wines.
Volatile aroma compounds in various brewed green teas.
Lee, Jeehyun; Chambers, Delores H; Chambers, Edgar; Adhikari, Koushik; Yoon, Youngmo
2013-08-20
This study identifies and semi-quantifies aroma volatiles in brewed green tea samples. The objectives of this study were to identify using a gas chromatograph-mass spectrometer (GC-MS) paired with a headspace solid-phase micro-extraction (HS-SPME) the common volatile compounds that may be responsible for aroma/flavor of the brewed liquor of a range of green tea samples from various countries as consumed and to determine if green teas from the same region have similarities in volatile composition when green tea samples are prepared for consumption. Twenty-four green tea samples from eight different countries were brewed as recommended for consumer brewing. The aroma volatiles were extracted by HS-SPME, separated on a gas chromatograph and identified using a mass spectrometer. Thirty-eight compounds were identified and the concentrations were semi-quantified. The concentrations were lower than those reported by other researchers, probably because this research examined headspace volatiles from brewed tea rather than solvent extraction of leaves. No relationship to country of origin was found, which indicates that other factors have a greater influence than country of origin on aroma.
Edible coatings influence fruit ripening, quality, and aroma biosynthesis in mango fruit.
Dang, Khuyen T H; Singh, Zora; Swinny, Ewald E
2008-02-27
The effects of different edible coatings on mango fruit ripening and ripe fruit quality parameters including color, firmness, soluble solids concentrations, total acidity, ascorbic acid, total carotenoids, fatty acids, and aroma volatiles were investigated. Hard mature green mango (Mangifera indica L. cv. Kensigton Pride) fruits were coated with aqueous mango carnauba (1:1 v/v), Semperfresh (0.6%), Aloe vera gel (1:1, v/v), or A. vera gel (100%). Untreated fruit served as the control. Following the coating, fruits were allowed to dry at room temperature and packed in soft-board trays to ripen at 21+/-1 degrees C and 55.2+/-11.1% relative humidity until the eating soft stage. Mango carnauba was effective in retarding fruit ripening, retaining fruit firmness, and improving fruit quality attributes including levels of fatty acids and aroma volatiles. Semperfresh and A. vera gel (1:1 or 100%) slightly delayed fruit ripening but reduced fruit aroma volatile development. A. vera gel coating did not exceed the commercial mango carnauba and Semperfresh in retarding fruit ripening and improving aroma volatile biosynthesis.
Günther, Catrin S; Marsh, Ken B; Winz, Robert A; Harker, Roger F; Wohlers, Mark W; White, Anne; Goddard, Matthew R
2015-02-15
Fruit esters are regarded as key volatiles for fruit aroma. In this study, the effects of cold storage on volatile ester levels of 'Hort16A' (Actinidia chinensis Planch. var chinensis) kiwifruit were examined and the changes in aroma perception investigated. Cold storage (1.5°C) for two or four months of fruit matched for firmness and soluble solids concentration resulted in a significant reduction in aroma-related esters such as methyl/ethyl propanoate, methyl/ethyl butanoate and methyl/ethyl hexanoate. Levels of these esters, however, were restored by ethylene treatment (100ppm, 24h) before ripening. A sensory panel found that "tropical" and "fruit candy" aroma was stronger and "green" odour notes less intensively perceived in kiwifruit which were ethylene-treated after cold storage compared to untreated fruit. The key findings presented in this study may lead to further work on the ethylene pathway, and innovative storage and marketing solutions for current and novel fruit cultivars. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bonneau, Adeline; Boulanger, Renaud; Lebrun, Marc; Maraval, Isabelle; Valette, Jérémy; Guichard, Élisabeth; Gunata, Ziya
2018-01-15
Two fresh (fresh cubic pieces, fresh puree) and two dried (dried cubic pieces, dried powder) products were prepared from a homogenous mango fruit batch to obtain four samples differing in texture. The aromatic profiles were determined by SAFE extraction technique and GC-MS analysis. VOCs released during consumption were trapped by a retronasal aroma-trapping device (RATD) and analysed by GC-MS. Twenty-one terpenes and one ester were identified from the exhaled nose-space. They were amongst the major mango volatile compounds, 10 of which were already reported as being potential key flavour compounds in mango. The in vivo release of aroma compounds was affected by the matrix texture. The intact samples (fresh and dried cubic pieces) released significantly more aroma compounds than disintegrated samples (fresh puree, dried powder). The sensory descriptive analysis findings were in close agreement with the in vivo aroma release data regarding fresh products, in contrast to the dried products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ju, Yan-Lun; Liu, Min; Zhao, Hui; Meng, Jiang-Fei; Fang, Yu-Lin
2016-10-12
The anthocyanin composition, fatty acids, and volatile aromas are important for Cabernet Sauvignon grape quality. This study evaluated the effect of exogenous abscisic acid (ABA) and methyl jasmonate (MeJA) on the anthocyanin composition, fatty acids, lipoxygenase activity, and the volatile compounds of Cabernet Sauvignon grape berries. Exogenous ABA and MeJA improved the content of total anthocyanins (TAC) and individual anthocyanins. Lipoxygenase (LOX) activity also increased after treatment. Furthermore, 16 fatty acids were detected. The linoleic acid concentration gradually increased with ABA concentration. The fatty acid content decreased with increasing MeJA concentration and then increased again, with the exception of linoleic acid. After exogenous ABA and MeJA treatment, the C6 aroma content increased significantly. Interestingly, the exogenous ABA and MeJA treatments improved mainly the content of 1-hexanol, hexanal, and 2-heptanol. These results provide insight into the effect of plant hormones on wine grapes, which is useful for grape quality improvement.
Inhibition of β-Secretase Activity by Monoterpenes, Sesquiterpenes, and C13 Norisoprenoids.
Marumoto, Shinsuke; Okuno, Yoshiharu; Miyazawa, Mitsuo
2017-08-01
Inhibition of β-secretase (BACE1) is currently regarded as the leading treatment strategy for Alzheimer's disease. In the present study, we aimed to screen the in vitro inhibitory activity of 80 types of aroma compounds (monoterpenes, sesquiterpenes, and C 13 norisoprenoids), including plant-based types, at a 200-μM concentration against a recombinant human BACE1. The results showed that the most potent inhibitor of BACE1 was geranyl acetone followed by (+)-camphor, (-)-fenchone, (+)-fenchone, and (-)-camphor with the half-maximal inhibitory concentration (IC 50 ) values of 51.9 ± 3.9, 95.9 ± 11.0, 106.3 ± 14.9, 117.0 ± 18.6, and 134.1 ± 16.4 μM, respectively. Furthermore, the mechanism of inhibition of BACE1 by geranyl acetone was analyzed using Dixon kinetics plus Cornish-Bowden plots, which revealed mixed-type mode. Therefore aroma compounds may be used as potential lead molecules for designing anti-BACE1 agents.
SDE and SPME Analysis of Flavor Compounds in Jin Xuan Oolong Tea.
Sheibani, Ershad; Duncan, Susan E; Kuhn, David D; Dietrich, Andrea M; O'Keefe, Sean F
2016-02-01
Simultaneous distillation-extraction (SDE) and solid phase micro extraction (SPME) are procedures used for the isolation of flavor compounds in foods. The purpose of this study was to optimize SDE conditions (solvent and time) and to compare SDE with SPME for the isolation of flavor compounds in Jin Xuan oolong tea using GC-MS and GC-O. The concentration of volatile compounds isolated with diethyl ether was higher (P < 0.05) than for dichloromethane and concentration was higher at 40 min (P < 0.05) than 20 or 60 min extractions. For SDE, 128 volatiles were identified using GC-MS and 45 aroma active compounds using GC-O. Trans-nerolidol was the most abundant compound in oolong tea. The number of volatiles identified using GC-MS was lower in SPME than SDE. For SPME, 59 volatiles and 41 aroma active compounds were identified. The composition of the volatiles isolated by the 2 methods differed considerably but provided complementary information. © 2016 Institute of Food Technologists®
Ifie, Idolo; Marshall, Lisa J; Ho, Peter; Williamson, Gary
2016-06-22
Three varieties of Hibiscus sabdariffa were analyzed for their phytochemical content and inhibitory potential on carbohydrate-digesting enzymes as a basis for selecting a variety for wine production. The dark red variety was chosen as it was highest in phenolic content and an aqueous extract partially inhibited α-glucosidase (maltase), with delphinidin 3-O-sambubioside, cyanidin 3-O-sambubioside, and 3-O-caffeoylquinic acid accounting for 65% of this activity. None of the varieties significantly inhibited α-amylase. Regarding Hibiscus sabdariffa wine, the effect of fermentation temperature (20 and 30 °C) on the physicochemical, phytochemical, and aroma composition was monitored over 40 days. The main change in phytochemical composition observed was the hydrolysis of 3-O-caffeolquinic acid and the concomitant increase of caffeic acid irrespective of fermentation temperature. Wine fermented at 20 °C was slightly more active for α-glucosidase inhibition with more fruity aromas (ethyl octanoate), but there were more flowery notes (2-phenylethanol) at 30 °C.
Does lavender aromatherapy alleviate premenstrual emotional symptoms?: a randomized crossover trial
2013-01-01
Background A majority of reproductive-age women experience a constellation of various symptoms in the premenstrual phase, commonly known as premenstrual syndrome (PMS). Despite its prevalence, however, no single treatment is universally recognized as effective, and many women turn to alternative approaches, including aromatherapy, a holistic mind and body treatment. The present study investigated the soothing effects of aromatherapy on premenstrual symptoms using lavender (Lavandula angustifolia), a relaxing essential oil, from the perspective of autonomic nervous system function. Methods Seventeen women (20.6 ± 0.2 years) with mild to moderate subjective premenstrual symptoms participated in a randomized crossover study. Subjects were examined on two separate occasions (aroma and control trials) in the late-luteal phases. Two kinds of aromatic stimulation (lavender and water as a control) were used. This experiment measured heart rate variability (HRV) reflecting autonomic nerve activity and the Profile of Mood States (POMS) as a psychological index before and after the aromatic stimulation. Results Only a 10-min inhalation of the lavender scent significantly increased the high frequency (HF) power reflecting parasympathetic nervous system activity in comparison with water (aroma effect: F = 4.50, p = 0.050; time effect: F = 5.59, p = 0.017; aroma x time effect: F = 3.17, p = 0.047). The rate of increase in HF power was greater at 10–15 min (p = 0.051) and 20–25 min (p = 0.023) in the lavender trial than in the control trial with water. In addition, POMS tests revealed that inhalation of the aromatic lavender oil significantly decreased two POMS subscales—depression–dejection (p = 0.045) and confusion (p = 0.049)—common premenstrual symptoms, in the late-luteal phase, as long as 35 min after the aroma stimulation. Conclusions The present study indicated that lavender aromatherapy as a potential therapeutic modality could alleviate premenstrual emotional symptoms, which, at least in part, is attributable to the improvement of parasympathetic nervous system activity. This study further implies that HRV could evaluate the efficacy of aromatherapy using various fragrances to relieve premenstrual symptoms, and ultimately, support the mind and body health of women. PMID:23724853
Aroma chemistry of African Oryza glaberrima and Oryza sativa rice and their interspecific hybrids.
Cho, Sungeun; Nuijten, Edwin; Shewfelt, Robert L; Kays, Stanley J
2014-03-15
To increase rice production in Africa, considerable research has focused on creating interspecific hybrids between African (Oryza glaberrima Steud.) and Asian (O. sativa L.) rice in an attempt to obtain the positive attributes of each in new cultivars. Since flavor is a key criterion in consumer acceptance of rice, as an initial inquiry we characterized and compared the aroma chemistry of selected cultivars of African O. sativa ssp. japonica, O. sativa ssp. indica, O. glaberrima, and their interspecific hybrids grown in West Africa, using gas chromatography-mass spectrometry, gas chromatography-olfactometry and descriptive sensory analysis. Of 41 volatiles identified across seven representative rice cultivars grown in West Africa, 3,5,5-trimethyl-2-cyclopenten-1-one, styrene, eucalyptol, linalool, myrtenal and L-α-terpineol had not been previously reported in rice. Thirty-three odor-active compounds were characterized. 4-Ethylphenol and (E,E)-2,4-heptadienal were unique to O. glaberrima, and pyridine, eucalyptol and myrtenal were described only in an interspecific hybrid. Descriptive sensory analysis indicated 'cooked grain', 'barny' and 'earthy' attributes were statistically different among the cultivars. The aroma chemistry data suggest that it should be possible to separate African cultivars into distinct flavor types thereby facilitating selection of new cultivars with superior flavor in African rice breeding programs. © 2013 Society of Chemical Industry.
Miyazawa, Mitsuo; Nakashima, Yoshimi; Nakahashi, Hiroshi; Hara, Nobuyuki; Nakagawa, Hiroki; Usami, Atsushi; Chavasiri, Warinthorn
2015-01-01
The present study focuses on the volatile compounds with characteristic odor of essential oil from the leaves of Magnolia obovata by hydrodistillation (HD) and solvent-assisted flavor evaporation (SAFE) method. Eighty-seven compounds, representing 98.0% of the total oil, were identified using HD. The major compounds of HD oil were (E)-β-caryophyllene (23.7%), α-humulene (11.6%), geraniol (9.1%), and borneol (7.0%). In SAFE oil, fifty-eight compounds, representing 99.7% of the total oil, were identified. The main compounds of SAFE oil were (E)-β-caryophyllene (48.9%), α-humulene (15.7%), and bicyclogermacrene (4.2%). In this study, we newly identified eighty-five compounds of the oils from M. obovata leaves. These oils were also subjected to aroma evaluation by gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA). As a result, twenty-four (HD) and twenty-five (SAFE) aroma-active compounds were detected. (E)-β-Caryophyllene, α-humulene, linalool, geraniol, 1,8-cineole, and bicyclogermacrene were found to impart the characteristic odor of M. obovata leaves. These results imply that the oils of M. obovata leaves must be investigated further to clarify their potential application in the food and pharmaceutical industries.
Caprioli, Giovanni; Cortese, Manuela; Sagratini, Gianni; Vittori, Sauro
2015-01-01
Coffee is one of the most popular hot drinks in the world; it may be prepared by several methods, but the most common forms are boiled (brew) and pressurized (espresso). Analytical studies on the substances responsible for the pleasant aroma of roasted coffee have been carried out for more than 100 years. Brew coffee and espresso coffee (EC) have a different and peculiar aroma profile, demonstrating the importance of the brewing process on the final product sensorial quality. Concerning bioactive compounds, the extraction mechanism plays a crucial role. The differences in the composition of coffee brew in chlorogenic acids and caffeine content is the result of the different procedures of coffee preparation. The aim of the present review is to detail how the brewing process affects coffee aroma and composition.
Enzymatic mitigation of 5-O-chlorogenic acid for an improved digestibility of coffee.
Siebert, Mareike; Berger, Ralf G; Nieter, Annabel
2018-08-30
A p-coumaroyl esterase from Rhizoctonia solani was used to decrease 5-O-chlorogenic acid (5-CQA) content in coffee powder. HPLC-UV showed a decline of up to 98% of 5-CQA after the enzyme treatment. Effects on aroma were determined by means of aroma extract dilution analysis. Flavour dilution factors of treated and control extract differed in four volatile compounds only. Effect on aroma and taste was evaluated by sensory tests. No significant differences were perceived, and no off-flavour nor off-taste was noted. As chlorogenic acids are suspected to cause stomach irritating effects in sensitive people, the enzyme treatment offers a technically feasible approach to improve the quality of coffee beverages by reducing 5-CQA concentration without significantly affecting the aroma and taste profile. Copyright © 2018 Elsevier Ltd. All rights reserved.
Investigation of sunlight-induced deterioration of aroma of pummelo (Citrus maxima) essential oil.
Sun, Hao; Ni, Hui; Yang, Yuanfan; Wu, Ling; Cai, Hui-nong; Xiao, An-feng; Chen, Feng
2014-12-10
Deterioration of aromas of pummelo essential oil (EO) induced by sunlight was compared to those induced by heat and oxygen exposure using the techniques of sensory evaluation and GC-MS analysis. The sunlight-exposed EO was found to possess an oily off-flavor odor, which was significantly different from its counterparts induced by oxygen and heat. The strong oily note of the sunlight-exposed EO was attributed to the existence of linalool oxides and limonene oxides, as well as the lack of neral and geranial, for which UV sunlight was revealed to be the critical contributor causing the chemical reactions for the aroma changes. The results demonstrated that UV sunlight could significantly affect the aroma of the pummelo EO, providing valuable information that will benefit the production and storage of EO-based aromatic products.
Mata, Gerardo; Valdez, Karina; Mendoza, Remedios; Trigos, Ángel
2014-01-01
The chemical composition of the aroma of fresh fruiting bodies of the cultivated mushroom Lentinus boryanus is described here and compared with medicinal shiitake mushroom L. edodes. Volatile compounds were analyzed through headspace sampling coupled with gas chromatography-mass spectrometry. The mushrooms under study were grown on different substrates based on barley straw, sugarcane bagasse, oak wood sawdust, and beech leaf litter. It was determined that L. boryanus as well as L. edodes contain an abundant amount of a volatile compound identified as 3-octanone with a sweet fruity aroma. On the other hand, only L. boryanus produced 3-octanol a characteristic aroma of cod liver oil. In total, 10 aromatic compounds were identified, some of which were obtained exclusively in one species or substrate.
Pham, A J; Schilling, M W; Yoon, Y; Kamadia, V V; Marshall, D L
2008-05-01
The objectives of this study were to characterize volatile compounds and to determine the characteristic aromas associated with impact compounds in 4 fish sauces using solid-phase micro-extraction, gas chromatography-mass spectrometry, Osme, and gas chromatography olfactometry (SPME-Osme-GCO) coupled with Stevens' Power Law. Compounds were separated using GCMS and GCO and were identified with the mass spectral database, aroma perceived at the sniffing port, retention indices, and verification of compounds by authentic standards in the GCMS and GCO. Aromas that were isolated and present in all 4 fish sauce samples at all concentrations included fishy (trimethylamine), pungent and dirty socks (combination of butanoic, pentanoic, hexanoic, and heptanoic acids), cooked rice and buttery popcorn (2,6-dimethyl pyrazine), and sweet and cotton candy (benzaldehyde). All fish sauces contained the same aromas as determined by GCO and GCMS (verified using authentic standard compounds), but the odor intensity associated with each compound or group of compounds was variable for different fish sauce samples. Stevens' Power Law exponents were also determined using this analytical technique, but exponents were not consistent for the same compounds that were found in all fish sauces. Stevens' Power Law exponents ranged from 0.14 to 0.37, 0.24 to 0.34, 0.09 to 0.21, and 0.10 to 0.35 for dirty socks, fishy, buttery popcorn, and sweet aromas, respectively. This demonstrates that there is variability in Stevens' Power Law exponents for odorants within fish sauce samples.
Mall, Veronika; Schieberle, Peter
2016-08-24
Application of aroma extract dilution analysis (AEDA) to an aroma distillate of blanched prawn meat (Litopenaeus vannamei) (BPM) revealed 40 odorants in the flavor dilution (FD) factor range from 4 to 1024. The highest FD factors were assigned to 2-acetyl-1-pyrroline, 3-(methylthio)propanal, (Z)-1,5-octadien-3-one, trans-4,5-epoxy-(E)-2-decenal, (E)-3-heptenoic acid, and 2-aminoacetophenone. To understand the influence of different processing conditions on odorant formation, fried prawn meat was investigated by means of AEDA in the same way, revealing 31 odorants with FD factors between 4 and 2048. Also, the highest FD factors were determined for 2-acetyl-1-pyrroline, 3-(methylthio)propanal, and (Z)-1,5-octadien-3-one, followed by 4-hydroxy-2,5-dimethyl-3(2H)-furanone, (E)-3-heptenoic acid, and 2-aminoacetophenone. As a source of the typical marine, sea breeze-like odor attribute of the seafood, 2,4,6-tribromoanisole was identified in raw prawn meat as one of the contributors. Additionally, the aroma of blanched prawn meat was compared to that of blanched Norway and American lobster meat, respectively (Nephrops norvegicus and Homarus americanus). Identification experiments revealed the same set of odorants, however, with differing FD factors. In particular, 3-hydroxy-4,5-dimethyl-2(5H)-furanone was found as the key aroma compound in blanched Norway lobster, whereas American lobster contained 3-methylindole with a high FD factor.
Fan, Wenlai; Qian, Michael C
2005-10-05
The aroma compounds of young and aged Chinese "Yanghe Daqu" liquor samples were extracted by solid phase microextraction (SPME) and analyzed by gas chromatography (GC)-olfactometry dilution analysis. The original liquor samples were diluted with deionized water to give a final alcohol content of 14% (v/v). The samples were stepwise diluted (1:1) with 14% (by volume) ethanol-water solution and then extracted by headspace SPME. The samples were preequilibrated at 50 degrees C for 15 min and extracted with stirring at the same temperature for 30 min prior to injection into GC. The aroma compounds were identified by both GC-MS and GC-olfactometry using DB-Wax and DB-5 columns. The results suggested that esters were the major contributors to Yanghe Daqu liquor aroma. Ethyl hexanoate, ethyl butanoate, and ethyl pentanoate had very high flavor dilution values in both young and aged liquors (FD > 8192). Methyl hexanoate, ethyl heptanoate, ethyl benzoate, and butyl hexanoate could also be very important because of their high flavor dilution values (FD > or = 256). Moreover, two acetals, 1,1-diethoxyethane and 1,1-diethoxy-3-methylbutane, also were shown high flavor dilution values in Yanghe Daqu liquors (FD > or = 256). Other aroma compounds having moderate flavor dilution values included acetaldehyde, 3-methylbutanol, and 2-pentanol (FD > or = 32). Comparing young and aged liquors, the aroma profiles were similar, but the aroma compounds in the aged sample had higher flavor dilution values than in the young ones.
Ramírez, Manuel; Velázquez, Rocío; Maqueda, Matilde; Zamora, Emiliano; López-Piñeiro, Antonio; Hernández, Luis M
2016-12-05
Torulaspora delbrueckii can improve wine aroma complexity, but its impact on wine quality is still far from being satisfactory at the winery level, mainly because it is easily replaced by S. cerevisiae yeasts during must fermentation. New T. delbrueckii killer strains were selected to overcome this problem. These strains killed S. cerevisiae yeasts and dominated fermentation better than T. delbrueckii non-killer strains when they were single-inoculated into crushed red grape must. All the T. delbrueckii wines, but none of the S. cerevisiae wines, underwent malolactic fermentation. Putative lactic acid bacteria were always found in the T. delbrueckii wines, but none or very few in the S. cerevisiae wines. Malic acid degradation was the greatest in the wines inoculated with the killer strains, and these strains reached the greatest dominance ratios and had the slowest fermentation kinetics. The T. delbrueckii wines had dried-fruit/pastry aromas, but low intensities of fresh-fruit aromas. The aroma differences between the T. delbrueckii and the S. cerevisiae wines can be explained by the differences that were found in the amounts of some fruity aroma compounds such as isoamyl acetate, ethyl hexanoate, ethyl octanoate, and some lactones. This T. delbrueckii effect significantly raised the organoleptic quality scores of full-bodied Cabernet-Sauvignon red wines inoculated with the killer strains. In particular, these wines were judged as having excellent aroma complexity, mouth-feel, and sweetness. Copyright © 2016 Elsevier B.V. All rights reserved.
Characteristic Flavor of Traditional Soup Made by Stewing Chinese Yellow-Feather Chickens.
Qi, Jun; Liu, Deng-Yong; Zhou, Guang-Hong; Xu, Xing-Lian
2017-09-01
The traditional recipe for Chinese chicken soup creates a popular taste of particular umami and aroma. The present study investigated the effects of stewing time (1, 2, and 3 h) on the principal taste-active and volatile compounds and the overall flavor profile of traditional Chinese chicken soup by measuring the contents of free amino acids (FAAs), 5'-nucleotides, minerals and volatile compounds and by evaluating the taste and aroma profiles using an electronic nose, an electronic tongue and a human panel. Results showed that the major umami-related compounds in the chicken soup were inosine 5'-monophosphate (IMP) and chloride, both of which increased significantly (P < 0.05) during stewing. The taste active values (TAVs) of the equivalent umami concentration (EUC) increased from 4.08 to 9.93 (P < 0.05) after stewing for 3 h. Although the FAA and mineral contents increased significantly (P < 0.05), their TAVs were less than 1. The volatile compounds were mainly hexanal, heptanal, octanal, nonanal, (E)-2-nonanal, (E)-2-decenal, (E,E)-2,4-decadienal, 1-hexanol, and 2-pentyl furan. With the prolonged stewing time, the aldehydes first increased and then decreased significantly (P < 0.05), while 1-hexanol and 2-pentyl furan increased steadily (P < 0.05). The aroma scores of the chicken soup reached the maximum after stewing for 3 h. The discrepancy in overall flavor characteristics tended to stabilize after 2 h of stewing. In general, stewing time has a positive effect on improving the flavor profiles of chicken soup, especially within the first 2 h. © 2017 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
Lestari, R. P.; Nissa, C.; Afifah, D. N.; Anjani, G.; Rustanti, N.
2018-02-01
Alternative treatment for metabolic syndrome can be done by providing a diet consist of functional foods or beverages. Synbiotic yoghurt containing binahong leaf extract which high in antioxidant, total LAB and fiber can be selected to reduce the risk of metabolic syndrome. The effect of binahong leaf extract in synbiotic yoghurt against total LAB, antioxidant activity, and acceptance were analyzed. The experiment was done with complete randomized design with addition of binahong leaf extract 0% (control); 0.12%; 0.25%; 0.5% in synbiotic yoghurt. Analysis of total LAB using Total Plate Count test, antioxidant activity using DPPH, and acceptance were analyzed by hedonic test. The addition of binahong leaf extract in various doses in synbiotic yoghurt decreased total LAB without significant effect (p=0,145). There was no effect of addition binahong leaf extract on antioxidant activity (p=0,297). The addition of binahong leaf extract had an effect on color, but not on aroma, texture and taste. The best result was yoghurt synbiotic with addition of 0,12% binahong leaf extract. Conclusion of the research was the addition of binahong leaf extract to synbiotic yogurt did not significantly affect total LAB, antioxidant activity, aroma, texture and taste; but had a significant effect on color.
As in mammals, aromatase plays a basic role in fish reproduction. Unlike most mammals, with only one form of aromatase, fish have two distinct forms. One isoform, P450aromA, predominates in ovaries. Ovarian aromatase activity controls circulating levels of estrogens and is critic...
Kambiranda, Devaiah; Basha, Sheikh M; Singh, Rakesh K; He, Huan; Calvin, Kate; Mercer, Roger
2016-09-02
Ripening in nonclimacteric fruits such as grape involves complex chemical changes that have a profound influence on the accumulation of flavor and aroma compounds distinct to a particular grape genotype. In this study, proteome characterization of wine type bronze muscadine grape (Vitis rotundifolia cv. Carlos), primarily grown in the Southeastern United States was performed during berry ripening. Stage-specific protein expression was obtained among different stages of berries. Differential analysis showed the expression of 522 proteins that regulate diverse biological processes and metabolic pathways. Of these, 30 proteins are associated with the production of key phenolic compounds, whereas 25 are associated with the production of muscadine aroma compounds. These proteins are involved in the phenylpropanoid pathway, terpene synthesis, fatty acid derived volatiles and esters that affect muscadine berry flavor and aroma characteristics. Further, gene expression analysis during ripening validated the expression pattern of 12 proteins. Catechin, epicatechin, and four stilbenes were quantified to correlate observed proteome changes. This study not only revealed biochemical changes during muscadine berry ripening but also offers indicators for marker-assisted breeding to enhance organoleptic properties of muscadine grape to improve its flavor and aroma properties.
NON-SMOKY GLYCOSYLTRANSFERASE1 Prevents the Release of Smoky Aroma from Tomato Fruit[W][OPEN
Tikunov, Yury M.; Molthoff, Jos; de Vos, Ric C.H.; Beekwilder, Jules; van Houwelingen, Adele; van der Hooft, Justin J.J.; Nijenhuis-de Vries, Mariska; Labrie, Caroline W.; Verkerke, Wouter; van de Geest, Henri; Viquez Zamora, Marcela; Presa, Silvia; Rambla, Jose Luis; Granell, Antonio; Hall, Robert D.; Bovy, Arnaud G.
2013-01-01
Phenylpropanoid volatiles are responsible for the key tomato fruit (Solanum lycopersicum) aroma attribute termed “smoky.” Release of these volatiles from their glycosylated precursors, rather than their biosynthesis, is the major determinant of smoky aroma in cultivated tomato. Using a combinatorial omics approach, we identified the NON-SMOKY GLYCOSYLTRANSFERASE1 (NSGT1) gene. Expression of NSGT1 is induced during fruit ripening, and the encoded enzyme converts the cleavable diglycosides of the smoky-related phenylpropanoid volatiles into noncleavable triglycosides, thereby preventing their deglycosylation and release from tomato fruit upon tissue disruption. In an nsgt1/nsgt1 background, further glycosylation of phenylpropanoid volatile diglycosides does not occur, thereby enabling their cleavage and the release of corresponding volatiles. Using reverse genetics approaches, the NSGT1-mediated glycosylation was shown to be the molecular mechanism underlying the major quantitative trait locus for smoky aroma. Sensory trials with transgenic fruits, in which the inactive nsgt1 was complemented with the functional NSGT1, showed a significant and perceivable reduction in smoky aroma. NSGT1 may be used in a precision breeding strategy toward development of tomato fruits with distinct flavor phenotypes. PMID:23956261
Determination of volatile marker compounds of common coffee roast defects.
Yang, Ni; Liu, Chujiao; Liu, Xingkun; Degn, Tina Kreuzfeldt; Munchow, Morten; Fisk, Ian
2016-11-15
Coffee beans from the same origin were roasted using six time-temperature profiles, in order to identify volatile aroma compounds associated with five common roast coffee defects (light, scorched, dark, baked and underdeveloped). Thirty-seven volatile aroma compounds were selected on the basis that they had previously been identified as potent odorants of coffee and were also identified in all coffee brew preparations; the relative abundance of these aroma compounds was then evaluated using gas chromatography mass spectrometry (GC-MS) with headspace solid phase micro extraction. Some of the 37 key aroma compounds were significantly changed in each coffee roast defect and changes in one marker compound was chosen for each defect type, that is, indole for light defect, 4-ethyl-2-methoxyphenol for scorched defect, phenol for dark defect, maltol for baked defect and 2,5-dimethylfuran for underdeveloped defect. The association of specific changes in aroma profiles for different roast defects has not been shown previously and could be incorporated into screening tools to enable the coffee industry quickly identify if roast defects occur during production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Loughrin, J H; Kasperbauer, M J
2001-03-01
Basil (Ocimum basilicum L.) is an herb the leaves of which are used to add a distinct aroma and flavor to food. It was hypothesized that the size and chemical composition of sun-grown basil leaves could be influenced by the color of light reflected from the soil surface and by the action of the reflected light through the natural growth regulatory system within the growing plants. Leaf morphology, aroma compounds, and soluble phenolics were compared in basil that had been grown over six colors of polyethylene row covers. Altering the ratios of blue, red, and far-red light reflected to growing plants influenced both leaf morphology and chemistry. Leaves developing over red surfaces had greater area, moisture percentage (succulence), and fresh weight than those developing over black surfaces. Basil grown over yellow and green surfaces produced significantly higher concentrations of aroma compounds than did basil grown over white and blue covers. Leaves grown over yellow and green mulches also contained significantly higher concentrations of phenolics than those grown over the other colors. Clearly, the wavelengths (color) of light reflected to growing basil plants affected leaf size, aroma, and concentrations of soluble phenolics, some of which are antioxidants.
Lv, Hai-Peng; Zhang, Yue; Shi, Jiang; Lin, Zhi
2017-10-01
Dark teas are rich in secondary metabolites, such as phenolics and flavonoids, which have been suggested to be associated with their health benefits. In this study, the concentrations of tea polyphenols, tea pigments, catechins, flavonoids, alkaloid, and volatile components in 44 dark tea samples, including Pu-erh, Fuzhuan and Liubao teas, were systematically examined. Among the samples tested, Pu-erh tea contained the highest total flavonoid content (5.24±0.05%), followed by Liubao (4.45±0.61%) and Fuzhuan teas (3.33±0.23%). The tea polyphenols levels in the dark teas were approximately 10%, and no statistically significant differences (p>0.05) were found among the different types. Hexadecanoic acid was the most abundant aroma component in the dark teas, accounting for 15-20% of the total volatile oils. Moreover, the antioxidant activities of these dark teas were analyzed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) assay, ferric reducing antioxidant power (FRAP) assay, and cellular antioxidant activity (CAA) assay (HepG2 cells). The fat metabolism modulation activities (FMMA) of the dark teas were tested using a high-throughput screening method (SMMC-7221 cells). The results indicated that the different dark teas had diverse antioxidant activities, and the variation in the activities was significant. Correlation analysis showed that there was a significant positive correlation between the levels of EGCG and antioxidant activities measured using the ABTS (r=0.916) and FRAP (r=0.853) assays, and the levels of total flavonoids and theabrownins correlated well with the values determined using the CAA (r=0.845 and 0.865, respectively) assay. Copyright © 2016 Elsevier Ltd. All rights reserved.
Moio, Luigi; Ugliano, Maurizio; Genovese, Alessandro; Gambuti, Angelita; Pessina, Rita; Piombino, Paola
2004-02-25
Two vinification methods involving different degrees of antioxidant protection of Falanghina must during prefermentative steps, and referred as HAMP (high antioxidant must protection) and LAMP (low antioxidant must protection), were compared in terms of fermentation performances of four different yeast strains, composition of the volatile fraction of wines at the end of alcoholic fermentation, and shelf life of wines during storage. The use of HAMP technology resulted in wines with lower volatile acidity and higher concentrations of medium-chain fatty acid ethyl esters, acetates, and volatile fatty acids. For two of the four strains a lower concentration of isoamyl alcohol was also observed. HAMP wines also revealed increased shelf life because of the higher concentration of odor active esters at the end of storage and better preservation of varietal aromas.
Highly Selective and Considerable Subcritical Butane Extraction to Separate Abamectin in Green Tea.
Zhang, Yating; Gu, Lingbiao; Wang, Fei; Kong, Lingjun; Pang, Huili; Qin, Guangyong
2017-06-01
We specially carried out the subcritical butane extraction to separate abamectin from tea leaves. Four parameters, such as extraction temperature, extraction time, number of extraction cycles, and solid-liquid ratio were studied and optimized through the response surface methodology with design matrix developed by Box-Behnken. Seventeen experiments with three various factors and three variable levels were employed to investigate the effect of these parameters on the extraction of abamectin. Besides, catechins, theanine, caffeine, and aroma components were determined by both high-performance liquid chromatography and gas chromatography-mass spectrometry to evaluate the tea quality before and after the extraction. The results showed that the extraction temperature was the uppermost parameter compared with others. The optimal extraction conditions selected as follows: extraction temperature, 42°C; number of extraction cycles and extraction time, 1 and 30 min, respectively; and solid-liquid ratio, 1:10. Based on the above study, the separation efficiency of abamectin was up to 93.95%. It is notable that there has a quite low loss rate, including the negligible damage of aroma components, the bits reduce of catechins within the range of 0.7%-13.1%, and a handful lessen of caffeine and theanine of 1.81% and 2.6%, respectively. The proposed method suggested subcritical butane possesses solubility for lipid-soluble pesticides, and since most of the pesticides are attached to the surfaces of tea, thus the as-applied method was successfully effective to separate abamectin because of the so practical and promising method.
Rossouw, Debra; Næs, Tormod; Bauer, Florian F
2008-01-01
Background 'Omics' tools provide novel opportunities for system-wide analysis of complex cellular functions. Secondary metabolism is an example of a complex network of biochemical pathways, which, although well mapped from a biochemical point of view, is not well understood with regards to its physiological roles and genetic and biochemical regulation. Many of the metabolites produced by this network such as higher alcohols and esters are significant aroma impact compounds in fermentation products, and different yeast strains are known to produce highly divergent aroma profiles. Here, we investigated whether we can predict the impact of specific genes of known or unknown function on this metabolic network by combining whole transcriptome and partial exo-metabolome analysis. Results For this purpose, the gene expression levels of five different industrial wine yeast strains that produce divergent aroma profiles were established at three different time points of alcoholic fermentation in synthetic wine must. A matrix of gene expression data was generated and integrated with the concentrations of volatile aroma compounds measured at the same time points. This relatively unbiased approach to the study of volatile aroma compounds enabled us to identify candidate genes for aroma profile modification. Five of these genes, namely YMR210W, BAT1, AAD10, AAD14 and ACS1 were selected for overexpression in commercial wine yeast, VIN13. Analysis of the data show a statistically significant correlation between the changes in the exo-metabome of the overexpressing strains and the changes that were predicted based on the unbiased alignment of transcriptomic and exo-metabolomic data. Conclusion The data suggest that a comparative transcriptomics and metabolomics approach can be used to identify the metabolic impacts of the expression of individual genes in complex systems, and the amenability of transcriptomic data to direct applications of biotechnological relevance. PMID:18990252
Aroma Precursors in Grapes and Wine: Flavor Release during Wine Production and Consumption.
Parker, Mango; Capone, Dimitra L; Francis, I Leigh; Herderich, Markus J
2018-03-14
Pioneering investigations into precursors of fruity and floral flavors established the importance of terpenoid and C 13 -norisoprenoid glycosides to the flavor of aromatic wines. Nowadays flavor precursors in grapes and wine are known to be structurally diverse, encompassing glycosides, amino acid conjugates, odorless volatiles, hydroxycinnamic acids, and many others. Flavor precursors mainly originate in the grape berry but also from oak or other materials involved in winemaking. Flavors are released from precursors during crushing and subsequent production steps by enzymatic and nonenzymatic transformations, via microbial glycosidases, esterases, C-S lyases, and decarboxylases, and through acid-catalyzed hydrolysis and chemical rearrangements. Flavors can also be liberated from glycosides and amino acid conjugates by oral microbiota. Hence, it is increasingly likely that flavor precursors contribute to retronasal aroma formation through in-mouth release during consumption, prompting a shift in focus from identifying aroma precursors in grapes to understanding aroma precursors present in bottled wine.
The effect of phenol composition on the sensory profile of smoke affected wines.
Kelly, David; Zerihun, Ayalsew
2015-05-26
Vineyards exposed to wildfire generated smoke can produce wines with elevated levels of lignin derived phenols that have acrid, metallic and smoky aromas and flavour attributes. While a large number of phenols are present in smoke affected wines, the effect of smoke vegetation source on the sensory descriptors has not been reported. Here we report on a descriptive sensory analysis of wines made from grapes exposed to different vegetation sources of smoke to examine: (1) the effect vegetation source has on wine sensory attribute ratings and; (2) associations between volatile and glycoconjugated phenol composition and sensory attributes. Sensory attribute ratings were determined by a trained sensory panel and phenol concentrations determined by gas chromatography-mass spectroscopy. Analysis of variance, principal component analysis and partial least squares regressions were used to evaluate the interrelationships between the phenol composition and sensory attributes. The results showed that vegetation source of smoke significantly affected sensory attribute intensity, especially the taste descriptors. Differences in aroma and taste from smoke exposure were not limited to an elevation in a range of detractive descriptors but also a masking of positive fruit descriptors. Sensory differences due to vegetation type were driven by phenol composition and concentration. In particular, the glycoconjugates of 4-hydroxy-3-methoxybenzaldehyde (vanillin), 1-(4-hydroxy-3-methoxyphenyl)ethanone (acetovanillone), 4-hydroxy-3,5-dimethoxybenzaldehyde (syringaldehyde) and 1-(4-hydroxy-3,5-dimethoxyphenyl)ethanone (acetosyringone) concentrations were influential in separating the vegetation sources of smoke. It is concluded that the detractive aroma attributes of smoke affected wine, especially of smoke and ash, were associated with volatile phenols while the detractive flavour descriptors were correlated with glycoconjugated phenols.
Bampali, Evangelia; Graikou, Konstantia; Aligiannis, Nektarios
2018-01-01
The chemical composition, as well as the total phenolic content (TPC) and the potential antioxidant and antimicrobial activity, of three Kainari-herbal tea samples from different areas of Lesvos Island (Greece) was evaluated. The rich aroma of the mixtures was studied through GC-MS, as well as through Headspace Solid-Phase Microextraction (HS-SPME)/GC-MS analyses. Cinnamon, clove, nutmeg, pepper, and ginger were identified as main ingredients, while, throughout the chemical analysis of the volatiles of one selected sample, several secondary metabolites have been isolated and identified on the basis of GC-MS as well as spectral evidence as eugenol, cinnamic aldehyde and myristicin, cinnamyl alcohol, alpha-terpinyl acetate, and β-caryophyllene. Furthermore, two food dyes, azorubine and amaranth, were also isolated and identified from the infusions. The total phenolic content was estimated and the free radical scavenging activity was determined by DPPH and ABTS assays and the antimicrobial activity of the extracts was tested showing a very interesting profile against all the assayed microorganisms. Due to its very pleasant aroma and taste properties as well as to its bioactivities, Kainari-herbal tea could be further proposed as functional beverage. PMID:29681979
Studies on the key aroma compounds in raw (unheated) and heated Japanese soy sauce.
Kaneko, Shu; Kumazawa, Kenji; Nishimura, Osamu
2013-04-10
An investigation using the aroma extract dilution analysis (AEDA) technique of the aroma concentrate from a raw Japanese soy sauce and the heated soy sauce revealed 40 key aroma compounds including 7 newly identified compounds. Among them, 5(or 2)-ethyl-4-hydroxy-2(or 5)-methyl-3(2H)-furanone and 3-hydroxy-4,5-dimethyl-2(5H)-furanone exhibited the highest flavor dilution (FD) factor of 2048, followed by 3-(methylthio)propanal, 4-ethyl-2-methoxyphenol, and 4-hydroxy-2,5-dimethyl-3(2H)-furanone having FD factors from 128 to 512 in the raw soy sauce. Furthermore, comparative AEDAs, a quantitative analysis, and a sensory analysis demonstrated that whereas most of the key aroma compounds in the raw soy sauce were common in the heated soy sauce, some of the Strecker aldehydes and 4-vinylphenols contributed less to the raw soy sauce aroma. The model decarboxylation reactions of the phenolic acids during heating of the raw soy sauce revealed that although all reactions resulted in low yields, the hydroxycinnamic acid derivatives were much more reactive than the hydroxybenzoic acid derivatives due to the stable reaction intermediates. Besides the quantitative analyses of the soy sauces, the estimation of the reaction yields of the phenolic compounds in the heated soy sauce revealed that although only the 4-vinylphenols increased during heating of the raw soy sauce, they might not mainly be formed as decarboxylation products from the corresponding hydroxycinnamic acids but from the other proposed precursors, such as lignin, shakuchirin, and esters with arabinoxylan.
López-Nicolás, José M; Andreu-Sevilla, Antonio J; Carbonell-Barrachina, Angel A; García-Carmona, Francisco
2009-10-28
Cyclodextrins (CDs) are widely used as browning inhibitors in different fruit juices. However, pear juice quality is affected by many properties, such as odor and aroma, and to date, no paper has reported the effect of the addition of CDs on the flavor profile of a fruit juice. In this study, the aroma profile of pear juice was mainly formed by volatile compounds from four chemical families: esters, aldehydes, alcohols, and hydrocarbons. Even though the addition of alpha-CD had a significant effect on both the concentration of individual volatile compounds and their grouping, only the highest concentration, 90 mM, prevented the oxidation of the volatile precursors present in freshly squeezed juice. Moreover, correlation of these results, concerning the color and aroma of pear juice in the presence of CDs, with the consumer preferences has not been reported. A descriptive sensory analysis of pear juices in both the presence and the absence of CDs was carried out, and odor/aroma attributes (fresh, fruity, pear-like, unnatural, etc.), plus global color, odor, aroma, and quality, were quantified using a trained panel of judges. The addition of alpha-CD at 90 mM resulted in pear juices with the best color but with low aromatic intensity and low sensory quality. On the other hand, the addition of alpha-CD at 15 mM led to a pear juice also with an acceptable color but at the same time with a high intensity of fruity and pear-like odors/aromas, making it the best appreciated juice by the panel.
Characterization of Volatiles in Rambutan Fruit (Nephelium lappaceum L.).
Ong; Acree; Lavin
1998-02-16
The volatile compounds from the red-skinned cultivar of rambutan, Jitlee (Nephelium lappaceumL.), a tropical fruit native to Southeast Asia, were extracted using both Freon 113 and ethyl acetate solvents. Isolation and characterization of odor-active compounds present in the fruit were mediated by gas chromatography/olfactory (GC/O), chromatography, and spectrometry. Authentic standards were used to determine mass spectral, retention index, and odor match. Of over 100 volatiles detected by GC/MS, twice as many polar volatiles were detected in the ethyl acetate extract as in the nonpolar Freon extract. GC/O analysis also detected more odor-active compounds in the polar extracts. Over 60 compounds in the extracts had some odor activity. The 20 most potent odorants included beta-damascenone, (E)-4,5-epoxy-(E)-2-decenal, vanillin, (E)-2-nonenal, phenylacetic acid, cinnamic acid, unknown 1 (sweaty), ethyl 2-methylbutyrate, and delta-decalactone. On the basis of calculated odor activity values, beta-damascenone, ethyl 2-methylbutyrate, 2,6-nonadienal, (E)-2-nonenal, and nonanal were determined to be the main contributors to the fruit aroma. Taken together, these results indicate that the exotic aroma character of rambutan is the interaction of fruity-sweet and fatty-green odors, with the possible contribution of "civet-like"-sweaty, spicy, and woody notes.
Genovese, Alessandro; Rispoli, Tiziana; Sacchi, Raffaele
2018-07-01
The interindividual variability observed in saliva characteristics raises the question of its relationship with variability in fat sensory perception, particularly in aroma compounds. In the present study, which aimed to measure aroma release from different individuals, eleven key aroma compounds of extra virgin olive oil (EVOO) were monitored and quantified in dynamic headspace after an in vitro interaction between EVOO and human saliva. Therefore, 60 individuals were studied from those who were normal weight (NW), overweight (OW) and obese (O). OW and O demonstrate a higher release of C 6 compounds compared to NW. By contrast, NW have a higher release of C 5 compounds. Pentanal and hexanal also increased after saliva interaction in a refined olive oil that is free from volatiles. Among the saliva samples with a higher release in NW individuals, only pentanal was different. However, the low levels of these lipid oxidation end-products do not appear to be very important with respect to increasing odorous fat sensitivity. The results obtained in the present study demonstrate the important role of saliva in the aroma release of EVOO, indicating that humans can perceive it differently in relation to their body mass index. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Effects of Fermentation Temperature on Key Aroma Compounds and Sensory Properties of Apple Wine.
Peng, Bangzhu; Li, Fuling; Cui, Lu; Guo, Yaodong
2015-12-01
Fermentation temperature strongly affects yeast metabolism during apple wine making and thus aromatic and quality profiles. In this study, the temperature effect during apple wine making on both the key aroma compounds and sensory properties of apple wine were investigated. The concentration of nine key aroma compounds (ethyl acetate, isobutyl acetate, isopentylacetate, ethyl caprylate, ethyl 4-hydroxybutanoate, isobutylalcohol, isopentylalcohol, 3-methylthio-1-propanol, and benzeneethanol) in apple wine significantly increased with the increase of fermentation temperature from 17 to 20 °C, and then eight out of the nine key aroma compounds with an exception of ethyl 4-hydroxybutanoate, decreased when the temperature goes up 20 to 26 °C. Sensory analysis showed that the apple wine fermented at 20 °C had the highest acceptance for consumers. Fermentation at the temperature of 20 °C was therefore considered to be the most suitable condition using the selected yeast strain (Saccharomyces cerevisiae AP05) for apple wine making. Changes in the fermentation temperature can considerably affect the production of key aroma compounds and sensory profiles of apple wine. These results could help apple wine producers make better quality production for consumers at the optimal fermentation temperature. © 2015 Institute of Food Technologists®
Quantification and sensory studies of character impact odorants of different soybean lecithins.
Stephan, A; Steinhart, H
1999-10-01
Fifty-four potent odorants in standardized, hydrolyzed, and deoiled and hydrolyzed soybean lecithins were quantified by high-resolution gas chromatography/mass spectrometry (HRGC/MS). The characterization of their aroma impact was performed by calculation of nasal (n) and retronasal (r) odor activity values (OAVs). For this, the nasal and retronasal recognition thresholds of 18 odor-active compounds were determined in vegetable oil. The following compounds showed the highest nOAVs: 2,3-diethyl-5-methylpyrazine, methylpropanal, acetic acid, pentanoic acid, 2-ethyl-3,5-dimethylpyrazine, pentylpyridine, (Z)-1,5-octadien-3-one, 2-methylbutanal, and beta-damascenone. In addition to the compounds above, 1-octen-3-one, 1-nonen-3-one, and 3-methyl-2,4-nonandione showed potent rOAVs. The results of quantification and OAV calculation were confirmed by a model mixture of 25 impact odorants, which yielded a highly similar sensory profile to that of the original soybean lecithin. The sensory importance of pyrazines and free acids increased through enzymatic hydrolysis and decreased by the process of deoiling. The impact of unsaturated ketones on the lecithin aroma was not changed by either process.
A consumer trial to assess the acceptability of an irradiated chilled ready meal
NASA Astrophysics Data System (ADS)
Stevenson, M. H.; Stewart, E. M.; McAteer, N. J.
1995-02-01
One hundred and seven consumers assessed the sensory quality of a chilled irradiated (2 kGy) and non-irradiated ready meal, consisting of beef and gravy, Yorkshire pudding, carrot, broccoli and roast potato 4 days after treatment. The irradiated meal was moderately to very acceptable and was not significantly different to the non-irradiated meal. The beef and gravy component of the meal was most liked by consumers. Appearance and aroma appeared to be more important than flavour or texture in the overall assessment of the meals.
Meersman, Esther; Steensels, Jan; Struyf, Nore; Paulus, Tinneke; Saels, Veerle; Mathawan, Melissa; Allegaert, Leen; Vrancken, Gino
2015-01-01
Microbial starter cultures have extensively been used to enhance the consistency and efficiency of industrial fermentations. Despite the advantages of such controlled fermentations, the fermentation involved in the production of chocolate is still a spontaneous process that relies on the natural microbiota at cocoa farms. However, recent studies indicate that certain thermotolerant Saccharomyces cerevisiae cultures can be used as starter cultures for cocoa pulp fermentation. In this study, we investigate the potential of specifically developed starter cultures to modulate chocolate aroma. Specifically, we developed several new S. cerevisiae hybrids that combine thermotolerance and efficient cocoa pulp fermentation with a high production of volatile flavor-active esters. In addition, we investigated the potential of two strains of two non-Saccharomyces species that produce very large amounts of fruity esters (Pichia kluyveri and Cyberlindnera fabianii) to modulate chocolate aroma. Gas chromatography-mass spectrometry (GC-MS) analysis of the cocoa liquor revealed an increased concentration of various flavor-active esters and a decrease in spoilage-related off-flavors in batches inoculated with S. cerevisiae starter cultures and, to a lesser extent, in batches inoculated with P. kluyveri and Cyb. fabianii. Additionally, GC-MS analysis of chocolate samples revealed that while most short-chain esters evaporated during conching, longer and more-fat-soluble ethyl and acetate esters, such as ethyl octanoate, phenylethyl acetate, ethyl phenylacetate, ethyl decanoate, and ethyl dodecanoate, remained almost unaffected. Sensory analysis by an expert panel confirmed significant differences in the aromas of chocolates produced with different starter cultures. Together, these results show that the selection of different yeast cultures opens novel avenues for modulating chocolate flavor. PMID:26590272
Meersman, Esther; Steensels, Jan; Struyf, Nore; Paulus, Tinneke; Saels, Veerle; Mathawan, Melissa; Allegaert, Leen; Vrancken, Gino; Verstrepen, Kevin J
2016-01-15
Microbial starter cultures have extensively been used to enhance the consistency and efficiency of industrial fermentations. Despite the advantages of such controlled fermentations, the fermentation involved in the production of chocolate is still a spontaneous process that relies on the natural microbiota at cocoa farms. However, recent studies indicate that certain thermotolerant Saccharomyces cerevisiae cultures can be used as starter cultures for cocoa pulp fermentation. In this study, we investigate the potential of specifically developed starter cultures to modulate chocolate aroma. Specifically, we developed several new S. cerevisiae hybrids that combine thermotolerance and efficient cocoa pulp fermentation with a high production of volatile flavor-active esters. In addition, we investigated the potential of two strains of two non-Saccharomyces species that produce very large amounts of fruity esters (Pichia kluyveri and Cyberlindnera fabianii) to modulate chocolate aroma. Gas chromatography-mass spectrometry (GC-MS) analysis of the cocoa liquor revealed an increased concentration of various flavor-active esters and a decrease in spoilage-related off-flavors in batches inoculated with S. cerevisiae starter cultures and, to a lesser extent, in batches inoculated with P. kluyveri and Cyb. fabianii. Additionally, GC-MS analysis of chocolate samples revealed that while most short-chain esters evaporated during conching, longer and more-fat-soluble ethyl and acetate esters, such as ethyl octanoate, phenylethyl acetate, ethyl phenylacetate, ethyl decanoate, and ethyl dodecanoate, remained almost unaffected. Sensory analysis by an expert panel confirmed significant differences in the aromas of chocolates produced with different starter cultures. Together, these results show that the selection of different yeast cultures opens novel avenues for modulating chocolate flavor. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Omarini, Alejandra; Dambolena, José Sebastián; Lucini, Enrique; Jaramillo Mejía, Santiago; Albertó, Edgardo; Zygadlo, Julio A
2016-03-01
Biotechnological conversion of low-cost agro-industrial by-products, such as industrial waste or terpenes from the distillation of essential oils from plants into more valuable oxygenated derivatives, can be achieved by using microbial cells or enzymes. In Argentina, the essential oil industry produces several tons of waste each year that could be used as raw materials in the production of industrially relevant and value-added compounds. In this study, 1,8-cineole, one of the components remaining in the spent leaves of the Eucalyptus cinerea waste, was transformed by solid-state fermentation (SSF) using the two edible mushrooms Pleurotus ostreatus and Favolus tenuiculus. As a result, two new oxygenated derivatives of 1,8-cineole were identified: 1,3,3-trimethyl-2-oxabicyclo [2.2.2]octan-6-ol and 1,3,3-trimethyl-2-oxabicyclo [2.2.2]octan-6-one. Additionally, changes in the relative percentages of other aroma compounds present in the substrate were observed during SSF. Both fungal strains have the ability to produce aroma compounds with potential applications in the food and pharmaceutical industries.
Discrimination of complex mixtures by a colorimetric sensor array: coffee aromas.
Suslick, Benjamin A; Feng, Liang; Suslick, Kenneth S
2010-03-01
The analysis of complex mixtures presents a difficult challenge even for modern analytical techniques, and the ability to discriminate among closely similar such mixtures often remains problematic. Coffee provides a readily available archetype of such highly multicomponent systems. The use of a low-cost, sensitive colorimetric sensor array for the detection and identification of coffee aromas is reported. The color changes of the sensor array were used as a digital representation of the array response and analyzed with standard statistical methods, including principal component analysis (PCA) and hierarchical clustering analysis (HCA). PCA revealed that the sensor array has exceptionally high dimensionality with 18 dimensions required to define 90% of the total variance. In quintuplicate runs of 10 commercial coffees and controls, no confusions or errors in classification by HCA were observed in 55 trials. In addition, the effects of temperature and time in the roasting of green coffee beans were readily observed and distinguishable with a resolution better than 10 degrees C and 5 min, respectively. Colorimetric sensor arrays demonstrate excellent potential for complex systems analysis in real-world applications and provide a novel method for discrimination among closely similar complex mixtures.
Preference mapping of dulce de leche commercialized in Brazilian markets.
Gaze, L V; Oliveira, B R; Ferrao, L L; Granato, D; Cavalcanti, R N; Conte Júnior, C A; Cruz, A G; Freitas, M Q
2015-03-01
Dulce de leche samples available in the Brazilian market were submitted to sensory profiling by quantitative descriptive analysis and acceptance test, as well sensory evaluation using the just-about-right scale and purchase intent. External preference mapping and the ideal sensory characteristics of dulce de leche were determined. The results were also evaluated by principal component analysis, hierarchical cluster analysis, partial least squares regression, artificial neural networks, and logistic regression. Overall, significant product acceptance was related to intermediate scores of the sensory attributes in the descriptive test, and this trend was observed even after consumer segmentation. The results obtained by sensometric techniques showed that optimizing an ideal dulce de leche from the sensory standpoint is a multidimensional process, with necessary adjustments on the appearance, aroma, taste, and texture attributes of the product for better consumer acceptance and purchase. The optimum dulce de leche was characterized by high scores for the attributes sweet taste, caramel taste, brightness, color, and caramel aroma in accordance with the preference mapping findings. In industrial terms, this means changing the parameters used in the thermal treatment and quantitative changes in the ingredients used in formulations. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Lin, Shunshun; Zhang, Xiaoming; Song, Shiqing; Hayat, Khizar; Eric, Karangwa; Majeed, Hamid
2016-03-01
Based on encouraged development of potential reduced-exposure products (PREPs) by the US Institute of Medicine, casings (glucose and peptides) added treatments (CAT) and enzymatic (protease and xylanase) hydrolysis treatments (EHT) were developed to study their effect on alkaloids reduction in tobacco and cigarette mainstream smoke (MS) and further investigate the correlation between sensory attributes and alkaloids. Results showed that the developed treatments reduced nicotine by 14.5% and 24.4% in tobacco and cigarette MS, respectively, indicating that both CAT and EHT are potentially effective for developing lower-risk cigarettes. Sensory and electronic nose analysis confirmed the significant influence of treatments on sensory and cigarette MS components. PLSR analysis demonstrated that tobacco alkaloids were positively correlated to the off-taste, irritation and impact attributes, and negatively correlated to the aroma and softness attributes. Additionally, nicotine and anabasine from tobacco leaves positively contributed to the impact attribute, while they negatively contributed to the aroma attribute (P<0.05). Meanwhile, most alkaloids in cigarette MS positively contributed to the impact and irritation attributes (P<0.05). Hence, this study paved a way to better understand the correlation between tobacco alkaloids and sensory attributes. Copyright © 2015 Elsevier Inc. All rights reserved.
Discrimination of Complex Mixtures by a Colorimetric Sensor Array: Coffee Aromas
Suslick, Benjamin A.; Feng, Liang; Suslick, Kenneth S.
2010-01-01
The analysis of complex mixtures presents a difficult challenge even for modern analytical techniques, and the ability to discriminate among closely similar such mixtures often remains problematic. Coffee provides a readily available archetype of such highly multicomponent systems. The use of a low-cost, sensitive colorimetric sensor array for the detection and identification of coffee aromas is reported. The color changes of the sensor array were used as a digital representation of the array response and analyzed with standard statistical methods, including principal component analysis (PCA) and hierarchical clustering analysis (HCA). PCA revealed that the sensor array has exceptionally high dimensionality with 18 dimensions required to define 90% of the total variance. In quintuplicate runs of 10 commercial coffees and controls, no confusions or errors in classification by HCA were observed in 55 trials. In addition, the effects of temperature and time in the roasting of green coffee beans were readily observed and distinguishable with a resolution better than 10 °C and 5 min, respectively. Colorimetric sensor arrays demonstrate excellent potential for complex systems analysis in real-world applications and provide a novel method for discrimination among closely similar complex mixtures. PMID:20143838
Phenylpropenes: Occurrence, Distribution, and Biosynthesis in Fruit.
Atkinson, Ross G
2018-03-14
Phenylpropenes such as eugenol, chavicol, estragole, and anethole contribute to the flavor and aroma of a number of important herbs and spices. They have been shown to function as floral attractants for pollinators and to have antifungal and antimicrobial activities. Phenylpropenes are also detected as free volatiles and sequestered glycosides in a range of economically important fresh fruit species including apple, strawberry, tomato, and grape. Although they contribute a relatively small percentage of total volatiles compared with esters, aldehydes, and alcohols, phenylpropenes have been shown to contribute spicy anise- and clove-like notes to fruit. Phenylpropenes are typically found in fruit throughout development and to reach maximum concentrations in ripe fruit. Genes involved in the biosynthesis of phenylpropenes have been characterized and manipulated in strawberry and apple, which has validated the importance of these compounds to fruit aroma and may help elucidate other functions for phenylpropenes in fruit.
Unraveling different chemical fingerprints between a champagne wine and its aerosols.
Liger-Belair, Gérard; Cilindre, Clara; Gougeon, Régis D; Lucio, Marianna; Gebefügi, Istvan; Jeandet, Philippe; Schmitt-Kopplin, Philippe
2009-09-29
As champagne or sparkling wine is poured into a glass, the myriad of ascending bubbles collapse and radiate a multitude of tiny droplets above the free surface into the form of very characteristic and refreshing aerosols. Ultrahigh-resolution MS was used as a nontargeted approach to discriminate hundreds of surface active compounds that are preferentially partitioning in champagne aerosols; thus, unraveling different chemical fingerprints between the champagne bulk and its aerosols. Based on accurate exact mass analysis and database search, tens of these compounds overconcentrating in champagne aerosols were unambiguously discriminated and assigned to compounds showing organoleptic interest or being aromas precursors. By drawing a parallel between the fizz of the ocean and the fizz in Champagne wines, our results closely link bursting bubbles and flavor release; thus, supporting the idea that rising and collapsing bubbles act as a continuous paternoster lift for aromas in every glass of champagne.
Unraveling different chemical fingerprints between a champagne wine and its aerosols
Liger-Belair, Gérard; Cilindre, Clara; Gougeon, Régis D.; Lucio, Marianna; Gebefügi, Istvan; Jeandet, Philippe; Schmitt-Kopplin, Philippe
2009-01-01
As champagne or sparkling wine is poured into a glass, the myriad of ascending bubbles collapse and radiate a multitude of tiny droplets above the free surface into the form of very characteristic and refreshing aerosols. Ultrahigh-resolution MS was used as a nontargeted approach to discriminate hundreds of surface active compounds that are preferentially partitioning in champagne aerosols; thus, unraveling different chemical fingerprints between the champagne bulk and its aerosols. Based on accurate exact mass analysis and database search, tens of these compounds overconcentrating in champagne aerosols were unambiguously discriminated and assigned to compounds showing organoleptic interest or being aromas precursors. By drawing a parallel between the fizz of the ocean and the fizz in Champagne wines, our results closely link bursting bubbles and flavor release; thus, supporting the idea that rising and collapsing bubbles act as a continuous paternoster lift for aromas in every glass of champagne. PMID:19805335
Liu, Jingke; Zhao, Wei; Li, Shaohui; Zhang, Aixia; Zhang, Yuzong; Liu, Songyan
2018-02-20
The volatile compounds in proso millet wine were extracted by headspace solid-phase microextraction (85 μm polyacrylate (PA), 100 μm polydimethylsiloxane (PDMS), 75 μm Carboxen (CAR)/PDMS, and 50/30 μm divinylbenzene (DVB)/CAR/PDMS fibers), and analyzed using gas chromatography-mass spectrometry; the odor characteristics and intensities were analyzed by the odor activity value (OAV). Different sample preparation factors were used to optimize this method: sample amount, extraction time, extraction temperature, and content of NaCl. A total of 64 volatile compounds were identified from the wine sample, including 14 esters, seven alcohols, five aldehydes, five ketones, 12 benzene derivatives, 12 hydrocarbons, two terpenes, three phenols, two acids, and two heterocycles. Ethyl benzeneacetate, phenylethyl alcohol, and benzaldehyde were the main volatile compounds found in the samples. According to their OAVs, 14 volatile compounds were determined to be odor-active compounds (OAV > 1), and benzaldehyde, benzeneacetaldehyde, 1-methyl-naphthalene, 2-methyl-naphthalene, and biphenyl were the prominent odor-active compounds (OAV > 50), having a high OAV. Principal component analysis (PCA) showed the difference of distribution of the 64 volatile compounds and 14 odor-active compounds with four solid-phase microextraction (SPME) fibers.
Effect of boiling and roasting on the fermentation of soybeans into dawadawa (soy-dawadawa).
Dakwa, Sarah; Sakyi-Dawson, Esther; Diako, Charles; Annan, Nana Takyiwa; Amoa-Awua, Wisdom Kofi
2005-09-25
Soybeans which had initially been dehulled by either boiling (boiled/dehulled) or roasting (roasted/dehulled) before peeling, were cooked and fermented into dawadawa, a traditional food condiment. The micropopulation, enzymatic activities, proximate composition, amino acid, and aroma profiles of the two types of soybean dawadawa were evaluated during fermentation. Only minor differences were found in the microbial profiles of the two types of soy-dawadawa. Although boiled/dehulled soy-dawadawa initially had lower microbial counts, it recorded higher counts at the advanced stages of fermentation. Proteolytic and amylolytic Bacillus species including Bacillus subtilis, Bacillus pumilus, Bacillus licheniformis, Bacillus cereus, and Bacillus firmus dominated the micropopulation of the two types of soy-dawadawa with Bacillus subtilis accounting for about 50% of the Bacillus species in all samples. Lactic acid bacteria and yeasts occurred in low numbers in the two types of soy-dawadawa. The proximate composition of the two types of soy-dawadawa were similar, and their contents of moisture and protein increased whilst fat and ash decreased during fermentation. Both types of fermenting soy-dawadawa recorded similar levels of alpha-amylase activity, but boiled/dehulled soy-dawadawa showed slightly higher protease activity. The levels of isoleucine, leucine, lysine, phenylalanine, arginine and proline increased significantly with fermentation time in both types of soy-dawadawa. With respect to differences in their aroma profiles, hexanodecanol, octadecyl acetate, 1,2-dimethyl benzene, tetradecene, (E)-5-eicosene, cyclohexadecane, and hexacosane were found only in the roasted/dehulled samples, whilst 1,2-ethanediol, ethyl acetate, dimethyl disulfide, cyclotetradecane, decene, indole , 2 butyl-octenal, acetophenone, and toluene were found only in the boiled/dehulled samples. A market focus group showed preference for roasted/dehulled soy-dawadawa over boiled/dehulled soy-dawadawa. Apart from the volatile aroma compounds, the biochemical and microbiological profiles of the two types of soy-dawadawa showed only minor differences and were also similar to the profiles reported for African locust bean dawadawa.
Hiralal, Lettisha; Olaniran, Ademola O; Pillay, Balakrishna
2014-01-01
A broad range of aroma-active esters produced during fermentation are vital for the complex flavour of beer. This study assessed the influence of fermentation temperature, pH, and wort nutritional supplements on the production of yeast-derived ester compounds and the overall fermentation performance. The best fermentation performance was achieved when wort was supplemented with 0.75 g/l l-leucine resulting in highest reducing sugar and FAN (free amino nitrogen) utilization and ethanol production. At optimum fermentation pH of 5, 38.27% reducing sugars and 35.28% FAN was utilized resulting in 4.07% (v/v) ethanol. Wort supplemented with zinc sulphate (0.12 g/l) resulted in 5.01% ethanol (v/v) production and 54.32% reducing sugar utilization. Increase in fermentation temperature from 18°C to room temperature (± 22.5°C) resulted in 17.03% increased ethanol production and 14.42% and 62.82% increase in total acetate ester concentration and total ethyl ester concentration, respectively. Supplementation of worth with 0.12 g/l ZnSO4 resulted in 2.46-fold increase in both isoamyl acetate and ethyl decanoate concentration, while a 7.05-fold and 1.96-fold increase in the concentration of isoamyl acetate and ethyl decanoate, respectively was obtained upon 0.75 g/l l-leucine supplementation. Wort supplemented with l-leucine (0.75 g/l) yielded the highest beer foam head stability with a rating of 2.67, while highest yeast viability was achieved when wort was supplemented with 0.12 g/l zinc sulphate. Results from this study suggest that supplementing wort with essential nutrients required for yeast growth and optimizing the fermentation conditions could be an effective way of improving fermentation performance and controlling aroma-active esters in beer. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Analysis of Volatile Compounds by Advanced Analytical Techniques and Multivariate Chemometrics.
Lubes, Giuseppe; Goodarzi, Mohammad
2017-05-10
Smelling is one of the five senses, which plays an important role in our everyday lives. Volatile compounds are, for example, characteristics of food where some of them can be perceivable by humans because of their aroma. They have a great influence on the decision making of consumers when they choose to use a product or not. In the case where a product has an offensive and strong aroma, many consumers might not appreciate it. On the contrary, soft and fresh natural aromas definitely increase the acceptance of a given product. These properties can drastically influence the economy; thus, it has been of great importance to manufacturers that the aroma of their food product is characterized by analytical means to provide a basis for further optimization processes. A lot of research has been devoted to this domain in order to link the quality of, e.g., a food to its aroma. By knowing the aromatic profile of a food, one can understand the nature of a given product leading to developing new products, which are more acceptable by consumers. There are two ways to analyze volatiles: one is to use human senses and/or sensory instruments, and the other is based on advanced analytical techniques. This work focuses on the latter. Although requirements are simple, low-cost technology is an attractive research target in this domain; most of the data are generated with very high-resolution analytical instruments. Such data gathered based on different analytical instruments normally have broad, overlapping sensitivity profiles and require substantial data analysis. In this review, we have addressed not only the question of the application of chemometrics for aroma analysis but also of the use of different analytical instruments in this field, highlighting the research needed for future focus.
Aznar, Margarita; López, Ricardo; Cacho, Juan; Ferreira, Vicente
2003-04-23
Partial least squares regression (PLSR) models able to predict some of the wine aroma nuances from its chemical composition have been developed. The aromatic sensory characteristics of 57 Spanish aged red wines were determined by 51 experts from the wine industry. The individual descriptions given by the experts were recorded, and the frequency with which a sensory term was used to define a given wine was taken as a measurement of its intensity. The aromatic chemical composition of the wines was determined by already published gas chromatography (GC)-flame ionization detector and GC-mass spectrometry methods. In the whole, 69 odorants were analyzed. Both matrixes, the sensory and chemical data, were simplified by grouping and rearranging correlated sensory terms or chemical compounds and by the exclusion of secondary aroma terms or of weak aroma chemicals. Finally, models were developed for 18 sensory terms and 27 chemicals or groups of chemicals. Satisfactory models, explaining more than 45% of the original variance, could be found for nine of the most important sensory terms (wood-vanillin-cinnamon, animal-leather-phenolic, toasted-coffee, old wood-reduction, vegetal-pepper, raisin-flowery, sweet-candy-cacao, fruity, and berry fruit). For this set of terms, the correlation coefficients between the measured and predicted Y (determined by cross-validation) ranged from 0.62 to 0.81. Models confirmed the existence of complex multivariate relationships between chemicals and odors. In general, pleasant descriptors were positively correlated to chemicals with pleasant aroma, such as vanillin, beta damascenone, or (E)-beta-methyl-gamma-octalactone, and negatively correlated to compounds showing less favorable odor properties, such as 4-ethyl and vinyl phenols, 3-(methylthio)-1-propanol, or phenylacetaldehyde.
Gotow, Naomi; Moritani, Ami; Hayakawa, Yoshinobu; Akutagawa, Akihito; Hashimoto, Hiroshi; Kobayakawa, Tatsu
2015-06-01
In order to develop products that are acceptable to consumers, it is necessary to incorporate consumers' intentions into products' characteristics. Therefore, investigation of consumers' perceptions of the taste or smell of common beverages provides information that should be useful in predicting market responses. In this study, we sought to develop a time-intensity evaluation system for consumer panels. Using our system, we performed time-intensity evaluation of flavor attributes (bitterness and retronasal aroma) that consumers perceived after swallowing a coffee beverage. Additionally, we developed quantitative evaluation methods for determining whether consumer panelists can properly perform time-intensity evaluation. In every trial, we fitted an exponential function to measured intensity data for bitterness and retronasal aroma. The correlation coefficients between measured time-intensity data and the fitted exponential curves were greater than 0.8 in about 90% of trials, indicating that we had successfully developed a time-intensity system for use with consumer panelists, even after just a single training trial using a nontrained consumer. We classified participants into two groups based on their consumption of canned coffee beverages. Significant difference was observed in only AUC of sensory modality (bitterness compared with retronasal aroma) among conventional TI parameters using two-way ANOVA. However, three-way ANOVA including a time course revealed significant difference between bitterness and retronasal aroma in the high-consumption group. Moreover, the high-consumption group more easily discriminated between bitterness and retronasal aroma than the low-consumption group. This finding implied that manufacturers should select consumer panelists who are suitable for their concepts of new products. © 2015 Institute of Food Technologists®
Rapid volatile metabolomics and genomics in large strawberry populations segregating for aroma
USDA-ARS?s Scientific Manuscript database
Volatile organic compounds (VOCs) in strawberry (Fragaria spp.) represent a large portion of the fruit secondary metabolome, and contribute significantly to aroma, flavor, disease resistance, pest resistance and overall fruit quality. Understanding the basis for volatile compound biosynthesis and it...
Rice aroma and flavor: a literature review.
USDA-ARS?s Scientific Manuscript database
Descriptive sensory analysis has identified over a dozen different aromas and flavors in rice. Instrumental analyses have found over 200 volatile compounds present in rice. However, after over 30 years of research, little is known about the relationships between the numerous volatile compounds and a...
Spectroscopy reveals that ethyl esters interact with proteins in wine.
Di Gaspero, Mattia; Ruzza, Paolo; Hussain, Rohanah; Vincenzi, Simone; Biondi, Barbara; Gazzola, Diana; Siligardi, Giuliano; Curioni, Andrea
2017-02-15
Impairment of wine aroma after vinification is frequently associated to bentonite treatments and this can be the result of protein removal, as recently demonstrated for ethyl esters. To evaluate the existence of an interaction between wine proteins and ethyl esters, the effects induced by these fermentative aroma compounds on the secondary structure and stability of VVTL1, a Thaumatin-like protein purified from wine, was analyzed by Synchrotron Radiation Circular Dichroism (SRCD) spectroscopy. The secondary structure of wine VVTL1 was not strongly affected by the presence of selected ethyl esters. In contrast, VVTL1 stability was slightly increased by the addition of ethyl-octanoate, -decanoate and -dodecanoate, but decreased by ethyl-hexanoate. This indicates the existence of an interaction between VVTL1 and at least some aroma compounds produced during fermentation. The data suggest that proteins removal from wine by bentonite can result in indirect removal of at least some aroma compounds associated with them. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sainsbury, Jeanine; Grypa, Roman; Ellingworth, John; Duodu, Kwaku G; De Kock, Henriëtta L
2016-12-15
The effects of levels of antioxidant [gallic acid or ethylene diamine tetraacetate (EDTA)] in a sunflower oil salad dressing emulsion (SOSDE) and shelf life affecting conditions on aroma, anisidine values (AV) and peroxide values (PV) were determined. Aroma differences between products with different concentrations of antioxidants were more apparent for ambient than accelerated stored SOSDEs. Aroma differences were more noted between SOSDEs with different antioxidants than antioxidant concentrations per se. PV differences between accelerated stored SOSDEs with high and low EDTA concentrations were found. AV differences existed between SOSDEs with different gallic acid concentrations for both storage conditions, and for accelerated stored SOSDEs with different EDTA concentrations. The accelerated storage model is more suitable for SOSDEs with metal chelator antioxidants e.g. EDTA, than free radical scavenging antioxidants e.g. gallic acid. PV, AV and aroma of accelerated stored SOSDEs do not clearly predict ambient shelf life. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nakanishi, Akira; Fukushima, Yusuke; Miyazawa, Norio; Yoshikawa, Keisuke; Maeda, Tomoko; Kurobayashi, Yoshiko
2017-06-21
Aroma extract dilution analyses of the aromas of peels and juices of white and pink grapefruits revealed that rotundone, responsible for peppery, spicy, and woody odors, was detected for the first time at high flavor dilution factors of 256-1024. In both juices, rotundone was detected at the highest flavor dilution factor of 1024. Rotundone in grapefruits was quantitated by a stable isotope dilution assay with a newly synthesized deuterium-labeled internal standard, rotundone-d 2,3 : its levels were 2180 and 1920 ng/kg in white and pink grapefruit peels and 29.6 and 49.8 ng/kg in white and pink grapefruit juices, respectively. On the basis of these results, sensory analysis was performed to assess the effects of rotundone on a white grapefruit juice aroma reconstitute. This sensory analysis revealed that rotundone does not impart a woody odor or affect any of the existing attributes, but increases various attributes, thus confirming that rotundone is indispensable for the aroma of grapefruit juice.
Matias-Guiu, Pau; Rodríguez-Bencomo, Juan José; Orriols, Ignacio; Pérez-Correa, José Ricardo; López, Francisco
2016-12-15
The organoleptic quality of wine distillates depends on raw materials and the distillation process. Previous work has shown that rectification columns in batch distillation with fixed reflux rate are useful to obtain distillates or distillate fractions with enhanced organoleptic characteristics. This study explores variable reflux rate operating strategies to increase the levels of terpenic compounds in specific distillate fractions to emphasize its floral aroma. Based on chemical and sensory analyses, two distillate heart sub-fractions obtained with the best operating strategy found, were compared with a distillate obtained in a traditional alembic. Results have shown that a drastic reduction of the reflux rate at an early stage of the heart cut produced a distillate heart sub-fraction with a higher concentration of terpenic compounds and lower levels of negative aroma compounds. Therefore, this sub-fraction presented a much more noticeable floral aroma than the distillate obtained with a traditional alembic. Copyright © 2016 Elsevier Ltd. All rights reserved.
On the effects of higher alcohols on red wine aroma.
de-la-Fuente-Blanco, Arancha; Sáenz-Navajas, María-Pilar; Ferreira, Vicente
2016-11-01
This work aims to assess the aromatic sensory contribution of the four most relevant wine higher alcohols (isobutanol, isoamyl alcohol, methionol and β-phenylethanol) on red wine aroma. The four alcohols were added at two levels of concentration, within the natural range of occurrence, to eight different wine models (WM), close reconstitutions of red wines differing in levels of fruity (F), woody (W), animal (A) or humidity (H) notes. Samples were submitted to discriminant and descriptive sensory analysis. Results showed that the contribution of methionol and β-phenylethanol to wine aroma was negligible and confirmed the sensory importance of the pair isobutanol-isoamyl alcohol. Sensory effects were only evident in WM containing intense aromas, demonstrating a strong dependence on the aromatic context. Higher alcohols significantly suppress strawberry/lactic/red fruity, coconut/wood/vanilla and humidity/TCA notes, but not the leather/animal/ink note. The spirit/alcoholic/solvent character generated by higher alcohols has been shown to be wine dependent. Copyright © 2016 Elsevier Ltd. All rights reserved.
Van Durme, Jim; Ingels, Isabel; De Winne, Ann
2016-08-15
Today, the cocoa industry is in great need of faster and robust analytical techniques to objectively assess incoming cocoa quality. In this work, inline roasting hyphenated with a cooled injection system coupled to a gas chromatograph-mass spectrometer (ILR-CIS-GC-MS) has been explored for the first time to assess fermentation quality and/or overall aroma formation potential of cocoa. This innovative approach resulted in the in-situ formation of relevant cocoa aroma compounds. After comparison with data obtained by headspace solid phase micro extraction (HS-SPME-GC-MS) on conventional roasted cocoa beans, ILR-CIS-GC-MS data on unroasted cocoa beans showed similar formation trends of important cocoa aroma markers as a function of fermentation quality. The latter approach only requires small aliquots of unroasted cocoa beans, can be automatated, requires no sample preparation, needs relatively short analytical times (<1h) and is highly reproducible. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ochiai, Nobuo; Tsunokawa, Jun; Sasamoto, Kikuo; Hoffmann, Andreas
2014-12-05
A novel multi-volatile method (MVM) using sequential dynamic headspace (DHS) sampling for analysis of aroma compounds in aqueous sample was developed. The MVM consists of three different DHS method parameters sets including choice of the replaceable adsorbent trap. The first DHS sampling at 25 °C using a carbon-based adsorbent trap targets very volatile solutes with high vapor pressure (>20 kPa). The second DHS sampling at 25 °C using the same type of carbon-based adsorbent trap targets volatile solutes with moderate vapor pressure (1-20 kPa). The third DHS sampling using a Tenax TA trap at 80 °C targets solutes with low vapor pressure (<1 kPa) and/or hydrophilic characteristics. After the 3 sequential DHS samplings using the same HS vial, the three traps are sequentially desorbed with thermal desorption in reverse order of the DHS sampling and the desorbed compounds are trapped and concentrated in a programmed temperature vaporizing (PTV) inlet and subsequently analyzed in a single GC-MS run. Recoveries of the 21 test aroma compounds for each DHS sampling and the combined MVM procedure were evaluated as a function of vapor pressure in the range of 0.000088-120 kPa. The MVM provided very good recoveries in the range of 91-111%. The method showed good linearity (r2>0.9910) and high sensitivity (limit of detection: 1.0-7.5 ng mL(-1)) even with MS scan mode. The feasibility and benefit of the method was demonstrated with analysis of a wide variety of aroma compounds in brewed coffee. Ten potent aroma compounds from top-note to base-note (acetaldehyde, 2,3-butanedione, 4-ethyl guaiacol, furaneol, guaiacol, 3-methyl butanal, 2,3-pentanedione, 2,3,5-trimethyl pyrazine, vanillin, and 4-vinyl guaiacol) could be identified together with an additional 72 aroma compounds. Thirty compounds including 9 potent aroma compounds were quantified in the range of 74-4300 ng mL(-1) (RSD<10%, n=5). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, J.; Christopher, S. A.; Nair, U. S.; Reid, J. S.; Prins, E. M.
2005-12-01
Considerable efforts including various field experiments have been carried out in the last decade for studying the regional climatic impact of smoke aerosols produced by biomass burning activities in Africa and South America. In contrast, only few investigations have been conducted for Central American Biomass Burning (CABB) region. Using a coupled aerosol-radiation-meteorology model called RAMS-AROMA together with various ground-based observations, we present a comprehensive analysis of the smoke direct radiative impacts on the surface energy budget, boundary layer evolution, and e precipitation process during the CABB events in Spring 2003. Quantitative estimates are also made regarding the transboundary carbon mass to the U.S. in the form of smoke particles. Buult upon the Regional Atmospheric Modeling System (RAMS) mesoscale model, the RAMS AROMA has several features including Assimilation and Radiation Online Modeling of Aerosols (AROMA) algorithms. The model simulates smoke transport by using hourly smoke emission inventory from the Fire Locating and Modeling of Burning Emissions (FLAMBE) geostationary satellite database. It explicitly considers the smoke effects on the radiative transfer at each model time step and model grid, thereby coupling the dynamical processes and aerosol transport. Comparison with ground-based observation show that the simulation realistically captured the smoke transport timeline and distribution from daily to hourly scales. The effects of smoke radiative extinction on the decrease of 2m air temperature (2mT), diurnal temperature range (DTR), and boundary layer height over the land surface are also quantified. Warming due to smoke absorption of solar radiation can be found in the lower troposphere over the ocean, but not near the underlying land surface. The increase of boundary layer stability produces a positive feedback where more smoke particles are trapped in the lower boundary layer. These changes in temperature, surface energy budget and the atmospheric lapse rate have important ramification for the simulation of precipitations.
Zhang, Bo-Qin; Luan, Yu; Duan, Chang-Qing; Yan, Guo-Liang
2018-01-01
The use of selected Saccharomyces and non-Saccharomyces strains as mixed starters has advantages over pure fermentation due to achieving wine products with distinctive and diversified aroma expected by consumers. To obtain a way to improve the aroma diversity and increase the differentiation of wine product, in this study, the aromatic effect of multi-culture of indigenous Torulaspora delbrueckii (TD12), simultaneous and sequential inoculation with two Saccharomyces strains (indigenous icewine yeast SC45 and commercial yeast BDX) with different enological characteristics were investigated in laboratory-scale 20 L fermenter, respectively. The results showed that T. delbrueckii co-fermented with different S. cerevisiae strain could generate diversified physicochemical and aromatic quality of wine as evidenced by PCA. Mixed fermentation of SC45/TD12 produced higher contents of higher alcohol (3-methyl-1-pentanol and phenylethyl alcohol), ethyl esters (ethyl decanoate and ethyl butanoate), terpenes and phenylacetaldehyde with less fatty acids (hexanoic acid, octanoic acid) and acetic acid, while BDX/TD12 generated more C6 alcohol (1-hexanol) and acetate esters (ethyl acetate and isoamyl acetate). Compared to simultaneous inoculation, sequential inoculation could achieve higher aroma diversity, and generate higher intensity of fruity, flowery and sweet attributes of wine as assessed by calculating the odor activity values. The different S. cerevisiae strain and inoculation method in alcoholic fermentation could further influence the formations of aromatic compounds in malolactic fermentation. Our results highlighted the importance of S. cerevisiae strain in shaping the aromatic quality of wine in mixed fermentation, and also suggested that using different S. cerevisiae strains with distinct aromatic characteristics co-fermentation with specific non-Saccharomyces strain is a potential way to increase the aromatic diversity and quality of wine product, which could provide an alternative way to meet the requirement of wine consumers for diversified aromatic quality. PMID:29674999
Jella; Rouseff; Goodner; Widmer
1998-01-19
The relative correlation of 52 aroma and 5 taste components in commercial not-from-concentrate grapefruit juices with flavor panel preference was determined. Methylene chloride extracts of juice were analyzed using GC/MS with a DB-5 column. Nonvolatiles determined included limonin and naringin by HPLC, degrees Brix, total acids, and degrees Brix/acid ratio. Juice samples were classified into low, medium, or high categories, based on average taste panel preference scores (nine-point hedonic scale). Principal component analysis demonstrated that highest quality juices were tightly clustered. Discriminant analysis indicated that 82% of the samples could be identified in the correct preference category using only myrcene, beta-caryophyllene, linalool, nootkatone, and degrees Brix. Nootkatone alone was not strongly associated with preference scores. The most preferred juices were strongly associated with low myrcene, low linalool, and intermediate levels of beta-caryophyllene.
Cuisine: the concept and its health and nutrition implications--a Hangzhou perspective.
AiZhen, Zhang; YuHong, Wu; MacLennan, Robert
2004-01-01
Cuisine is an activity that meets human physical and psychological needs. With the development of civilization, cuisine is an important component of culture and includes the dietary profession. However, each nation or each area has its own characteristic cuisine. There are eight major styles of Chinese cuisine, Hangzhou style is an important part of Zhe style. It was divided into two branches named 'Lake branch' and 'Town branch'. An ideal Chinese dish should satisfy in terms of colour, aroma, taste, shape, texture and sustenance. But nowadays, people pay more attention to other aspects of dishes than sustenance. It is estimated that food and beverages will cost up to 570 billion RMB (about 69 billion US dollars) in China this year. The incidence of chronic diseases also increases year after year. There are 40 million diabetic and 70 million obese persons in China. Hence it is important to make efforts to promote in-depth knowledge of cooking and nutrition.
Limonene: Aroma of innovation in health and disease.
Vieira, A J; Beserra, F P; Souza, M C; Totti, B M; Rozza, A L
2018-03-01
Natural products obtained in dietary components may aid the prevention and treatment of a variety of diseases. Reports in the scientific literature have demonstrated that the consumption of terpenes is a successful alternative in the treatment of several diseases, triggering beneficial biological effects in clinical and preclinical studies. The monoterpene limonene is largely used in alimentary items, cleaning products, and it is one of the most frequent fragrances used in cosmetics formulation. The therapeutic effects of limonene have been extensively studied, proving anti-inflammatory, antioxidant, antinociceptive, anticancer, antidiabetic, antihyperalgesic, antiviral, and gastroprotective effects, among other beneficial effects in health. In this review, we collected, presented, and analyzed evidence from the scientific literature regarding the usage of limonene and its activities and underlying mechanisms involved in combating diseases. The highlighting of limonene applications could develop a useful targeting of innovative research in this field as well as the development of a limonene-based phytomedicine which could be used in a variety of conditions of health and disease. Copyright © 2018 Elsevier B.V. All rights reserved.
Influence of maturity and ripening on aroma volatiles and flavor in avocado
USDA-ARS?s Scientific Manuscript database
Changes in aroma volatiles were determined using solid phase microextraction (SPME) and gas chromatography in ripe avocados (Persea americana Mill.) throughout an eight-month maturation period and related to the sensory properties of the fruit. As maturation progressed sensory panelists found the li...
ERIC Educational Resources Information Center
Elias, Ryan J.; Hopfer, Helene; Hofstaedter, Amanda N.; Hayes, John E.
2017-01-01
The human nose is a very sensitive detector and is able to detect potent aroma compounds down to low ng/L levels. These levels are often below detection limits of analytical instrumentation. The following laboratory exercise is designed to compare instrumental and human methods for the detection of volatile odor active compounds. Reference…
2013-01-01
Background Ever since the recent completion of the peach genome, the focus of genetic research in this area has turned to the identification of genes related to important traits, such as fruit aroma volatiles. Of the over 100 volatile compounds described in peach, lactones most likely have the strongest effect on fruit aroma, while esters, terpenoids, and aldehydes have minor, yet significant effects. The identification of key genes underlying the production of aroma compounds is of interest for any fruit-quality improvement strategy. Results Volatile (52 compounds) and gene expression (4348 genes) levels were profiled in peach fruit from a maturity time-course series belonging to two peach genotypes that showed considerable differences in maturation characteristics and postharvest ripening. This data set was analyzed by complementary correlation-based approaches to discover the genes related to the main aroma-contributing compounds: lactones, esters, and phenolic volatiles, among others. As a case study, one of the candidate genes was cloned and expressed in yeast to show specificity as an ω-6 Oleate desaturase, which may be involved in the production of a precursor of lactones/esters. Conclusions Our approach revealed a set of genes (an alcohol acyl transferase, fatty acid desaturases, transcription factors, protein kinases, cytochromes, etc.) that are highly associated with peach fruit volatiles, and which could prove useful in breeding or for biotechnological purposes. PMID:23701715
Hur, Myung-Haeng; Song, Ji-Ah; Lee, Jeonghee; Lee, Myeong Soo
2014-12-01
The aim of this review was to systematically assess the effectiveness of aromatherapy for stress management. Seven databases were searched from their inception through April 2014. RCTs testing aromatherapy against any type of controls in healthy human person that assessed stress level and cortisol level were considered. Two reviewers independently performed the selection of the studies, data abstraction and validations. The risk of bias was assessed using Cochrane criteria. Five RCTs met our inclusion criteria, and most of them had high risk of bias. Four RCTs tested the effects of aroma inhalation compared with no treatment, no aroma, and no odour oil. The meta-analysis suggested that aroma inhalation has favourable effects on stress management (n=80; standard mean difference (SMD), -0.96; 95% CI, -1.44 to -0.48; P<0.0001; I(2)=0%). Three of included RCTs tested aroma inhalation on saliva or serum cortisol level compared with control and meta-analysis failed to show significant difference between two groups (n=88, SMDs -0.62; 95% CIs -1.26 to 0.02, P=0.06, I(2)=46%). In conclusion, there is limited evidence suggesting that aroma inhalation may be effective in controlling stress. However, the number, size and quality of the RCTs are too low to draw firm conclusions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Dold, Susanne; Lindinger, Christian; Kolodziejczyk, Eric; Pollien, Philippe; Ali, Santo; Germain, Juan Carlos; Perin, Sonia Garcia; Pineau, Nicolas; Folmer, Britta; Engel, Karl-Heinz; Barron, Denis; Hartmann, Christoph
2011-10-26
The relationship between the physical structure of espresso coffee foam, called crema, and the above-the-cup aroma release was studied. Espresso coffee samples were produced using the Nespresso extraction system. The samples were extracted with water with different levels of mineral content, which resulted in liquid phases with similar volatile profiles but foams with different structure properties. The structure parameters foam volume, foam drainage, and lamella film thickness at the foam surface were quantified using computer-assisted microscopic image analysis and a digital caliper. The above-the-cup volatile concentration was measured online by using PTR-MS and headspace sampling. A correlation study was done between crema structure parameters and above-the-cup volatile concentration. In the first 2.5 min after the start of the coffee extraction, the presence of foam induced an increase of concentration of selected volatile markers, independently if the crema was of high or low stability. At times longer than 2.5 min, the aroma marker concentration depends on both the stability of the crema and the volatility of the specific aroma compounds. Mechanisms of above-the-cup volatile release involved gas bubble stability, evaporation, and diffusion. It was concluded that after the initial aroma burst (during the first 2-3 min after the beginning of extraction), for the present sample space a crema of high stability provides a stronger aroma barrier over several minutes.
Gor, Mian Chee; Candappa, Chrishani; de Silva, Thishakya; Mantri, Nitin; Pang, Edwin
2017-12-12
Breeding strawberry (Fragaria x ananassa) with enhanced fruit flavour is one of the top breeding goals of many strawberry-producing countries. Although several genes involved in the biosynthetic pathways of key aroma compounds have been identified, the development and application of molecular markers associated with fruit flavour remain limited. This study aims to identify molecular markers closely linked to genes controlling strawberry aroma. A purpose-built Subtracted Diversity Array (SDA) known as Fragaria Discovery Panel (FDP) was used for marker screening. Polymorphic sequences associated with key aroma compounds were identified from two DNA bulks with extreme phenotypes, established using 50 F 1 progeny plants derived from Juliette X 07-102-41 cross, two strawberry genotypes differing in aroma profile. A total of 49 polymorphic markers for eight key aroma compounds were detected using genotypic data of the extreme DNA bulks and phenotypic data obtained from gas chromatography-mass spectrometry (GC-MS). A similarity search against the physical maps of Fragaria vesca revealed that FaP1D7 is linked to genes potentially involved in the synthesis of methyl butanoate. A C/T SNP was detected within the feature, which could possibly be converted to a molecular tool for rapid screening of the strawberry accessions for their methyl butanoate production capacity.
Ickes, Chelsea M; Cadwallader, Keith R
2017-11-01
This study identified and quantitated perceived sensory differences between 7 premium rums and 2 mixing rums using a hybrid of the Quantitative Descriptive Analysis and Spectrum methods. In addition, the results of this study validated the previously developed rum flavor wheel created from web-based materials. Results showed that the use of the rum flavor wheel aided in sensory term generation, as 17 additional terms were generated after the wheel was provided to panelists. Thirty-eight sensory terms encompassing aroma, aroma-by-mouth, mouthfeel, taste and aftertaste modalities, were generated and evaluated by the panel. Of the finalized terms, only 5 did not exist previously on the rum flavor wheel. Twenty attributes were found to be significantly different among rums. The majority of rums showed similar aroma profiles with the exception of 2 rums, which were characterized by higher perceived intensities of brown sugar, caramel, vanilla, and chocolate aroma, caramel, maple, and vanilla aroma-by-mouth and caramel aftertaste. These results demonstrate the previously developed rum flavor wheel can be used to adequately describe the flavor profile of rum. Additionally, results of this study document the sensory differences among premium rums and may be used to correlate with analytical data to better understand how changes in chemical composition of the product affect sensory perception. © 2017 Institute of Food Technologists®.
DNA tests for strawberry: mesifurane "sherry" aroma - FaOMT-SI/NO
USDA-ARS?s Scientific Manuscript database
The amazing flavor and texture in strawberries is caused by a complex balance of numerous sugars and aromatic compounds. One of the most important aromatic compounds contributing to the flavor we have come to love in strawberries is mesifurane. Mesifurane produces a sweet sherry-like aroma and incre...
Regulated deficit irrigation on Malbec and Syrah grape and wine volatiles
USDA-ARS?s Scientific Manuscript database
Previous studies have shown that water deficit influenced physiological parameters of the vine, changed berry composition and improved sensory attribute of wines by increasing fruity aroma and decreasing vegetal aromas. The objective of this study is to determine the influence of water stress on gra...
Release behavior and stability of encapsulated D-limonene from emulsion-based edible films.
Marcuzzo, Eva; Debeaufort, Frédéric; Sensidoni, Alessandro; Tat, Lara; Beney, Laurent; Hambleton, Alicia; Peressini, Donatella; Voilley, Andrée
2012-12-12
Edible films may act as carriers of active molecules, such as flavors. This possibility confers to them the status of active packaging. Two different film-forming biopolymers, gluten and ι-carrageenans, have been compared. D-Limonene was added to the two film formulations, and its release kinetics from emulsion-based edible films was assessed with HS-SPME. Results obtained for edible films were compared with D-limonene released from the fatty matrix called Grindsted Barrier System 2000 (GBS). Comparing ι-carrageenans with gluten-emulsified film, the latter showed more interesting encapsulating properties: in fact, D-limonene was retained by gluten film during the process needed for film preparation, and it was released gradually during analysis time. D-Limonene did not show great affinity to ι-carrageenans film, maybe due to high aroma compound hydrophobicity. Carvone release from the three different matrices was also measured to verify the effect of oxygen barrier performances of edible films to prevent D-limonene oxidation. Further investigations were carried out by FT-IR and liquid permeability measurements. Gluten film seemed to better protect D-limonene from oxidation. Gluten-based edible films represent an interesting opportunity as active packaging: they could retain and release aroma compounds gradually, showing different mechanical and nutritional properties from those of lipid-based ingredients.
Food-related odor probes of brain reward circuits during hunger: a pilot FMRI study.
Bragulat, Veronique; Dzemidzic, Mario; Bruno, Carolina; Cox, Cari A; Talavage, Thomas; Considine, Robert V; Kareken, David A
2010-08-01
Food aromas can be powerful appetitive cues in the natural environment. Although several studies have examined the cerebral responses to food images, none have used naturalistic food aromas to study obesity. Ten individuals (five normal-weight and five obese) were recruited to undergo 24 h of food deprivation. Subjects were then imaged on a 3T Siemens Trio-Tim scanner (Siemens, Erlangen, Germany) while smelling four food-related odors (FRO; two sweet odors and two fat-related) and four "nonappetitive odors" (NApO; e.g., Douglas fir). Before the imaging session, subjects rated their desire to eat each type of food to determine their most preferred (P-FRO). Across all 10 subjects, P-FRO elicited a greater blood oxygenation level dependent (BOLD) response than the NApO in limbic and reward-related areas, including the bilateral insula and opercular (gustatory) cortex, the anterior and posterior cingulate, and ventral striatum. Obese subjects showed greater activation in the bilateral hippocampus/parahippocampal gyrus, but lean controls showed more activation in the posterior insula. Brain areas activated by food odors are similar to those elicited by cues of addictive substances, such as alcohol. Food odors are highly naturalistic stimuli, and may be effective probes of reward-related networks in the context of hunger and obesity.
A novel cysteine desulfurase influencing organosulfur compounds in Lentinula edodes
Liu, Ying; Lei, Xiao-Yu; Chen, Lian-Fu; Bian, Yin-Bing; Yang, Hong; Ibrahim, Salam A.; Huang, Wen
2015-01-01
Organosulfur compounds are the basis for the unique aroma of Lentinula edodes, and cysteine sulfoxide lyase (C-S lyase) is the key enzyme in this trait. The enzyme from Alliium sativum has been crystallized and well-characterized; however, there have been no reports of the characterization of fungi C-S lyase at the molecular level. We identified a L. edodes C-S lyase (Lecsl), cloned a gene of Csl encoded Lecsl and then combined modeling, simulations, and experiments to understand the molecular basis of the function of Lecsl. Our analysis revealed Lecsl to be a novel cysteine desulfurase and not a type of cysteine sulfoxide lyase. The pyridoxal-5-phosphate (PLP) molecule bonded tightly to Lecsl to form a Lecsl-PLP complex. Moreover, the Lecsl had one active center that served to bind two kinds of substrates, S-methyl-L-cysteine sulfoxide and L-cysteine, and had both cysteine sulfoxide lyase and cysteine desulfurase activity. We found that the amino acid residue Asn393 was essential for the catalytic activity of Lecsl and that the gene Csl encoded a novel cysteine desulfurase to influence organosulfur compounds in L. edodes. Our results provide a new insight into understanding the formation of the unique aroma of L. edodes. PMID:26054293
A novel cysteine desulfurase influencing organosulfur compounds in Lentinula edodes.
Liu, Ying; Lei, Xiao-Yu; Chen, Lian-Fu; Bian, Yin-Bing; Yang, Hong; Ibrahim, Salam A; Huang, Wen
2015-06-09
Organosulfur compounds are the basis for the unique aroma of Lentinula edodes, and cysteine sulfoxide lyase (C-S lyase) is the key enzyme in this trait. The enzyme from Alliium sativum has been crystallized and well-characterized; however, there have been no reports of the characterization of fungi C-S lyase at the molecular level. We identified a L. edodes C-S lyase (Lecsl), cloned a gene of Csl encoded Lecsl and then combined modeling, simulations, and experiments to understand the molecular basis of the function of Lecsl. Our analysis revealed Lecsl to be a novel cysteine desulfurase and not a type of cysteine sulfoxide lyase. The pyridoxal-5-phosphate (PLP) molecule bonded tightly to Lecsl to form a Lecsl-PLP complex. Moreover, the Lecsl had one active center that served to bind two kinds of substrates, S-methyl-L-cysteine sulfoxide and L-cysteine, and had both cysteine sulfoxide lyase and cysteine desulfurase activity. We found that the amino acid residue Asn393 was essential for the catalytic activity of Lecsl and that the gene Csl encoded a novel cysteine desulfurase to influence organosulfur compounds in L. edodes. Our results provide a new insight into understanding the formation of the unique aroma of L. edodes.
Michlmayr, Herbert; Schümann, Christina; Wurbs, Phillip; Barreira Braz da Silva, Nuno M.; Rogl, Veronika; Kulbe, Klaus D.; del Hierro, Andrés M.
2011-01-01
Lactic acid bacteria (LAB) are responsible for olfactory changes in wine during malolactic fermentation (MLF). A side characteristic of MLF is the release of grape derived aroma compounds from their glycosylated precursors by β-glycosidase activities of these bacteria. Apart from Oenococcus oeni, which is regarded as the most promising species for MLF, glycosidic activities have also been observed in wine related members of the genera Lactobacillus and Pediococcus. Nevertheless, information on the involved enzymes including their potential use in winemaking is limited. In this study we report that β-glucosidases with similar protein sequences can be identified in the genomes of Lactobacillus brevis, O. oeni and Leuconostoc mesenteroides. TTG serves as start codon for the glucosidase gene of O. oeni. The β-glucosidase of O. oeni ATCC BAA-1163 was expressed in E. coli and partially characterized. The enzyme displayed characteristics similar to β-glucosidases isolated from L. brevis and L. mesenteroides. A pH optimum between 5.0 and 5.5, and a Km of 0.17 mmol L−1 pNP-β-D-glucopyranoside were determined. A glycosyltransferase activity was observed in the presence of ethanol. The enzyme from O. oeni was capable to hydrolyze glycosides extracted from Muskat wine. This study also contains a report on glycosidase activities of several LAB species including Oenococcus kitaharae. PMID:21243086
Godoy, Liliana; Martínez, Claudio; Carrasco, Nelson; Ganga, María Angélica
2008-09-30
The presence of Brettanomyces bruxellensis has been correlated with an increase of phenolic aromas in wine. The production of these aromas results from the metabolization of cinnamic acids, present in the wine, to their ethyl derivatives. Hence, the participation of two enzymes has been proposed: a p-coumarate decarboxylase (CD) and a vinylphenol reductase (VR). Both enzymes were purified and characterized from B. bruxellensis. In denaturing conditions, the CD enzyme had a molecular mass of 21 kDa, while in native conditions its mass was 41 kDa. The optimal activity was obtained at a temperature of 40 degrees C and a pH of 6.0. For p-coumaric acid, the Km value and Vmax were 1.22+/-0.08 mM and 98+/-0.15 micromol/min mg, respectively. The VR enzyme had a molecular mass of 37 kDa in SDS-PAGE, while in natural conditions its mass was 118 kDa. The Km value was > 3.37+/-2.05 mM and its Vmax was 107.62+/-50.38 micromol/min mg for NADPH used as a cofactor. Both enzymatic activities were stable at pH 3.4, but in the presence of ethanol the CD activity decreased drastically while the VR activity was more stable. This is the first report that shows the presence of a CD and a VR enzyme in B. bruxellensis.
Irradiation and fumigation effects on flavor, aroma and composition of grapefruit products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moshonas, M.G.; Shaw, P.E.
1982-05-01
Effects were evaluated on grapefruit treated to meet quarantine restrictions against Caribbean fruit fly infestation. Differences were found in flavor of fresh sections, fresh juice, and aroma of peel oil when obtained from fruit irradiated with x-rays, as compared with products from nonirradiated fruit. Flavor differences were found in all pasteurized juices from fruit irradiated at 50-60 krad. Vitamin C levels were significantly lower in juice from most irradiated fruit. Flavor differences were found in fresh and pasteurized juice from fruit treated with methyl bromide, and in pasteurized juice from fruit treated with ethylene dibromide. Aroma differences were found inmore » peel oil from fruit treated with phosphine.« less
Application of conductive polymer analysis for wood and woody plant identifications
A. Dan Wilson; D.G. Lester; Charisse S. Oberle
2005-01-01
An electronic aroma detection (EAD) technology known as conductive polymer analysis (CPA) was evaluated as a means of identifying and discriminating woody samples of angiosperms and gymnosperms using an analytical instrument (electronic nose) that characterizes the aroma profiles of volatiles released from excised wood into sampled headspace. The instrument measures...
USDA-ARS?s Scientific Manuscript database
The objectives of this study were to characterize volatile compounds and to determine the characteristic aromas associated with impact compounds in 4 fish sauces using solid-phase micro-extraction, gas chromatography-mass spectrometry, Osme, and gas chromatography olfactometry (SPME-Osme-GCO) couple...
USDA-ARS?s Scientific Manuscript database
Postharvest temperatures recommended as safe to avoid chilling injury (CI) based on lack of visible symptoms suppress tomato aroma development. We investigated how temperatures at or above the putative CI threshold of 12.5°C affected aroma of pink ‘Tasti Lee’ tomatoes and if controlled atmosphere (C...
A Qualitative Organic Analysis that Exploits the Senses of Smell, Touch, and Sound
ERIC Educational Resources Information Center
Bromfield-Lee, Deborah C.; Oliver-Hoyo, Maria T.
2007-01-01
This laboratory experiment utilizes the characteristic aromas of some functional groups to exploit the sense of smell as a discriminating tool in an organic qualitative analysis scheme. Students differentiate a variety of compounds by their aromas and based on their olfactory classification identify an unknown functional group. Students then…
NASA Astrophysics Data System (ADS)
Stan, M.; Soran, M. L.; Varodi, C.; Lung, I.; Copolovici, L.; MǎruÅ£oiu, C.
2013-11-01
Parsley (Petroselinum crispum), dill (Anethum graveolens) and celery (Apium graveolens), three aromatic plants belonging to the Apiaceae (Umbelliferae) botanical family, were selected as sources of essential or volatile oils. Essential oils are composed of a large diversity of volatile aroma compounds. Plant-derived essential oils and extracts have long been used as natural agents in food preservation, pharmaceuticals and medicinal therapies. In the present study, the plant extracts from leaves of parsley, dill and celery, were obtained by maceration, ultrasound-assisted extraction and microwave-assisted extraction. All extractions were performed at 30°C, using different solvents (ethanol, diethyl ether, n-hexane) and solvent mixtures (1:1, v/v). The most effective solvent system for the extraction of volatile aroma compounds was diethyl ether - n-hexane (1:1, v/v). Extraction efficiency and determination of aroma volatiles were performed by GC-FID and GC-MS, respectively. The major volatile compounds present in plant extracts were myristicin, α-phellandrene, β-phellandrene, 1,3,8-p-menthatriene, apiol, dill ether and allyl phenoxyacetate.
Wang, Dong; Duan, Chang-Qing; Shi, Ying; Zhu, Bao-Qing; Javed, Hafiz Umer; Wang, Jun
2017-08-01
The conditions of sample pretreatments and HS-SPME for extracting volatile compounds from raisins were optimized, and the method was validated in the study. Free and glycosidically bound volatile compounds in three different fragrance intensities raisins were analysed using this method. There were 91 compounds identified, and 72, 26 and 8 of these compounds came from fresh grapes, the auto-oxidation of unsaturated fatty acids (UFAO) and the Maillard reaction, respectively. The aroma profiles of Thompson Seedless raisins (TSRs) and Centennial Seedless raisins (CSRs) were similar, while the floral, fruity, green and roasted aromas of CSRs were higher than those of TSRs due to the contributions of benzeneacetaldehyde, 2-pentylfuran, (E)-2-nonenal and 3-ethyl-2,5-dimethyl pyrazine. Decanal, rose oxide, geraniol, linalool and β-damascenone made the floral and fruity aromas of Zixiang Seedless raisins (ZSRs) greater than those in TSRs and CSRs, but the green and roasted aroma intensities of ZSRs were lower. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reduced fat and sugar vanilla ice creams: sensory profiling and external preference mapping.
Cadena, R S; Cruz, A G; Faria, J A F; Bolini, H M A
2012-09-01
The aims of this study were (1) to map sensory attributes of vanilla ice cream with reduced fat and sugar, and (2) to determine drivers of liking by applying external preference mapping and reveal the relationship between descriptive attributes and hedonic judgments using the partial least squares method. Descriptive sensory profiles (n=11) and consumer test (n=117) of 6 samples of vanilla ice cream (3 traditional and 3 with reduced fat and sugar) were determined. The attributes brightness and sweet aftertaste for sample and creaminess (appearance and texture) and sweet aroma contributed positively to the acceptance of ice cream samples. The attributes aeration, powdered milk aroma and flavor, and white chocolate aroma and flavor contributed positively to the acceptance of the ice creams. The attributes hydrogenated fat aroma and flavor were responsible for the lower acceptance of samples. The reduction in fat and sugar did not necessarily cause a decrease in acceptance. The most important factors were selection of the appropriate sweetener system and the use of good quality raw material. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ramírez-Rodrigues, Milena M; Plaza, Maria L; Azeredo, Alberto; Balaban, Murat O; Marshall, Maurice R
2012-10-01
The effect of dense phase carbon dioxide (DPCD) processing (34.5 MPa, 8% CO₂, 6.5 min, and 40 °C) on phytochemical, sensory and aroma compounds of hibiscus beverage was compared to a conventional thermal process (HTST) (75 °C for 15 s) and a control (untreated beverage) during refrigerated storage (4 °C). The overall likeability of the hibiscus beverage for all treatments was not affected by storage up to week 5. DPCD process retained more aroma volatiles as compared to HTST. Aroma profiles in the beverages were mainly composed of alcohols and aldehydes with 1-octen-3-ol, decanal, octanal, 1-hexanol, and nonanal as the compounds with the highest relative percentage peak areas. A loss of only 9% anthocyanins was observed for the DPCD processed hibiscus beverage. Phytochemical profiles in the hibiscus beverage included caffeoylquinic acids, anthocyanins, and flavonols. No major changes in total phenolics and antioxidant capacity occurred during the 14 weeks of storage. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hu, Kai; Jin, Guo-Jie; Mei, Wen-Chao; Li, Ting; Tao, Yong-Sheng
2018-01-15
Medium-chain fatty acid (MCFA) ethyl esters, as yeast secondary metabolites, significantly contribute to the fruity aroma of foods and beverages. To improve the MCFA ethyl ester content of wine, mixed fermentations with Hanseniaspora uvarum Yun268 and Saccharomyces cerevisiae were performed. Final volatiles were analyzed by gas solid phase microextraction-chromatography-mass spectrometry, and aroma characteristics were quantitated by sensory analysis. Results showed that mixed fermentation increased MCFA ethyl ester content by 37% in Cabernet Gernischt wine compared to that obtained by pure fermentation. Partial least-squares regression analysis further revealed that the improved MCFA ethyl esters specifically enhanced the temperate fruity aroma of wine. The enhancement of MCFA ethyl esters was attributed to the increased contents of MCFAs that could be induced by the presence of H. uvarum Yun268 in mixed fermentation. Meanwhile, the timing of yeast inoculations significantly affected the involving biomass of each strain and the dynamics of ethanol accumulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jood, Illse; Hoff, Justin Wallace; Setati, Mathabatha Evodia
2017-07-01
The current study is the first one to demonstrate the wine fermentation potential of members of several species of the genus Kazachstania including strains derived from grape must. The fermentation characteristics were evaluated in synthetic grape juice medium and in Sauvignon blanc. Our data show that none of the species evaluated could ferment to dryness in monoculture fermentations. However, at least 75% of the sugar was consumed before the fermentations got stuck. In mixed-culture fermentations with Saccharomyces cerevisiae diverse aroma profiles were evident especially in Sauvignon blanc fermentations. Four distinct potential aroma associations were identified: (i) Kazachstania solicola-vinegar and solvent-like, (ii) Kazachstania hellenica-spirituous, cheesy, (iii) Kazachstania aerobia CBS-fruity, floral (iv) K. aerobia IWBT, Kazachstania unispora and Kazachstania servazii-rancid, harsh. Furthermore, strain variation was apparent as the two K. aerobia strains displayed distinct karyotypes and aroma potential. Our data show that although members of the genus Kazachstania are typically encountered at low frequency in grape must, some of the species have positive aroma attributes that should be explored further.
Ng'ong'ola-Manani, Tinna A; Mwangwela, Agnes M; Schüller, Reidar B; Østlie, Hilde M; Wicklund, Trude
2014-01-01
Fermented pastes of soybeans and soybean–maize blends were evaluated to determine sensory properties driving consumer liking. Pastes composed of 100% soybeans, 90% soybeans and 10% maize, and 75% soybeans and 25% maize were naturally fermented (NFP), and lactic acid bacteria fermented (LFP). Lactic acid bacteria fermentation was achieved through backslopping using a fermented cereal gruel, thobwa. Ten trained panelists evaluated intensities of 34 descriptors, of which 27 were significantly different (P < 0.05). The LFP were strong in brown color, sourness, umami, roasted soybean-and maize-associated aromas, and sogginess while NFP had high intensities of yellow color, pH, raw soybean, and rancid odors, fried egg, and fermented aromas and softness. Although there was consumer (n = 150) heterogeneity in preference, external preference mapping showed that most consumers preferred NFP. Drivers of liking of NFP samples were softness, pH, fermented aroma, sweetness, fried egg aroma, fried egg-like appearance, raw soybean, and rancid odors. Optimization of the desirable properties of the pastes would increase utilization and acceptance of fermented soybeans. PMID:24804070
Current knowledge of soft cheeses flavor and related compounds.
Sablé, S; Cottenceau, G
1999-12-01
Cheese aroma is the result of the perception of a large number of molecules belonging to different chemical classes. The volatile compounds involved in the soft cheese flavor have received a great deal of attention. However, there has been less work concerning the volatile compounds in the soft smear-ripened cheeses than in the mold-ripened cheeses. This paper reviews the components that contribute to the characteristic flavor in the soft cheeses such as surface-ripened, Camembert-type, and Blue cheeses. The sensory properties and quantities of the molecules in the different cheeses are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coetzee, C.; Brand, J.; Jacobson, Daniel A.
Background and Aims-Wine aroma is influenced by complex interactions between various wine constituents. This study investigated the sensory interactive effects of Sauvignon Blanc impact compounds, 3-mercaptohexan-1-ol and 3-isobutyl-2-methoxypyrazine, with acetaldehyde that typically forms during the oxidation of wine. Methods and Results-Spiked model wines were subjected to sensory descriptive analysis using a trained sensory panel. Additionally, the concentration of each compound varied from below aroma threshold values to high values as reported for wine. Depending on the concentration, acetaldehyde enhanced fruity attributes at a lower concentration, whereas suppression occurred at a higher concentration. Acetaldehyde effectively suppressed the green pepper aroma attributemore » at certain concentration values, whereas 3-mercaptohexan-1-ol suppressed oxidised green apple associated with acetaldehyde. Changes in attributes used for aroma description also occurred because of change in concentration. Conclusions-Complex sensory interactions may occur between Sauvignon Blanc impact compounds and one of the main oxidation-derived compounds, acetaldehyde. Acetaldehyde can enhance or suppress pleasant fruity characters depending on the concentration. Significance of the Study-This study showed the potential positive effect of acetaldehyde on white wine aroma when present at a low concentration. Formation of this compound during winemaking and ageing should, however, be controlled because of negative sensory interactions occurring at a higher concentration. In conclusion, this study may also contribute to the sensory characterisation of Sauvignon Blanc wine undergoing oxidation.« less
Coetzee, C.; Brand, J.; Jacobson, Daniel A.; ...
2016-01-28
Background and Aims-Wine aroma is influenced by complex interactions between various wine constituents. This study investigated the sensory interactive effects of Sauvignon Blanc impact compounds, 3-mercaptohexan-1-ol and 3-isobutyl-2-methoxypyrazine, with acetaldehyde that typically forms during the oxidation of wine. Methods and Results-Spiked model wines were subjected to sensory descriptive analysis using a trained sensory panel. Additionally, the concentration of each compound varied from below aroma threshold values to high values as reported for wine. Depending on the concentration, acetaldehyde enhanced fruity attributes at a lower concentration, whereas suppression occurred at a higher concentration. Acetaldehyde effectively suppressed the green pepper aroma attributemore » at certain concentration values, whereas 3-mercaptohexan-1-ol suppressed oxidised green apple associated with acetaldehyde. Changes in attributes used for aroma description also occurred because of change in concentration. Conclusions-Complex sensory interactions may occur between Sauvignon Blanc impact compounds and one of the main oxidation-derived compounds, acetaldehyde. Acetaldehyde can enhance or suppress pleasant fruity characters depending on the concentration. Significance of the Study-This study showed the potential positive effect of acetaldehyde on white wine aroma when present at a low concentration. Formation of this compound during winemaking and ageing should, however, be controlled because of negative sensory interactions occurring at a higher concentration. In conclusion, this study may also contribute to the sensory characterisation of Sauvignon Blanc wine undergoing oxidation.« less
Sánchez-Gómez, Rosario; Torregrosa, Laurent; Zalacain, Amaya; Ojeda, Hernán; Bouckenooghe, Virginie; Schneider, Rémi; Alonso, Gonzalo L; Salinas, María Rosario
2018-06-01
The Microvine plant model displays unique reproductive organ behavior and is suitable for grapevine fruit physiological studies, allowing one to undertake studies up to five times more rapidly than the current situation with grapevines. Recently, vine-shoot aqueous extracts, which have an interesting phenolic and aroma composition, have been proposed as viticultural biostimulants, since their post-veraison foliar application to grapevines impacts the wine aroma profile. Using Microvines, the aim of this study was to determine the effect of vine-shoot extract foliar application on 21 stages of grape development. The application was carried out from BBCH 53 (inflorescences clearly visible) to BBCH 85 (softening of berries) to reveal stage-specific responses of the accumulation of glycosylated aroma precursors at BBCH 89 (berries ripe for harvest), the phenological stage selected to study the treatment effect. Microvine use made it possible to carry out 15 sampling time points during 86 days of the experiment, which were established by the cumulative degree days (CDD) parameter. The results confirmed that vine-shoot extract treatment had a positive impact on total glycosylated compounds, especially aglycones such as alcohols, terpenes and C 13 -norisoprenoids, with a higher effect when the treatment was applied during ripening. Extrapolation of the results to grapevines suggests that vine-shoot extract treatment could modulate the synthesis of grape glycosylated aroma precursors. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Zhan, Ping; Tian, Honglei; Zhang, Xiaoming; Wang, Liping
2013-03-15
Changes in the aroma characteristics of mutton process flavors (MPFs) prepared from sheep bone protein hydrolysates (SBPHs) with different degrees of hydrolysis (DH) were evaluated using gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), and descriptive sensory analysis (DSA). Five attributes (muttony, meaty, roasted, mouthful, and simulate) were selected to assess MPFs. The results of DSA showed a distinct difference among the control sample MPF0 and other MPF samples with added SBPHs for different DHs of almost all sensory attributes. MPF5 (DH 25.92%) was the strongest in the muttony, meaty, and roasted attributes, whereas MPF6 (DH 30.89%) was the strongest in the simulate and roasted attributes. Thirty-six compounds were identified as odor-active compounds for the evaluation of the sensory characteristics of MPFs via GC-MS-O analysis. The results of correlation analysis among odor-active compounds, molecular weight, and DSA further confirmed that the SBPH with a DH range of 25.92-30.89% may be a desirable precursor for the sensory characteristics of MPF. Copyright © 2013 Elsevier B.V. All rights reserved.
Yang, Tsung-Shi; Liu, Tai-Ti; Lin, I-Hwa
2017-08-01
The aims of this research were to conjugate chitosan (CT) with stearic acid (SA) and gallic acid (GA), and apply the modified chitosan to stabilize labile aroma compounds such as allyl isothiocyanate (AITC) and limonene in oil-in-water emulsions. Generally, the antioxidant activity of CT-SA-GA increased as the GA content in the conjugate increased. In most assays, GA had a lower IC 50 value than that of CT-SA-GA; however, CT-SA-GA exhibited better performance than GA in the Fe 2+ -chelating activity. In accelerated tests (heating or illumination) for evaluating the chemical stability of AITC and limonene during storage, CT-SA and CT-SA-GA were used to prepare AITC and limonene O/W emulsions, respectively. Tween 80 and Span 80 (T-S-80), an emulsifier mixture, were used as a control in both emulsions for comparison. The results show that CT-SA or CT-SA-GA could protect AITC or limonene from degradation or oxidation more effectively than T-S-80. Copyright © 2017 Elsevier Ltd. All rights reserved.
2018-01-01
Objective This study observed the effects of cooking method and final core temperature on cooking loss, lipid oxidation, aroma volatiles, nucleotide-related compounds and aroma volatiles of Hanwoo brisket (deep pectoralis). Methods Deep pectoralis muscles (8.65% of crude fat) were obtained from three Hanwoo steer carcasses with 1+ quality grade. Samples were either oven-roasted at 180°C (dry heat) or cooked in boiling water (moist heat) to final core temperature of 70°C (medium) or 77°C (well-done). Results Boiling method reduced more fat but retained more moisture than did the oven roasting method (p<0.001), thus no significant differences were found on cooking loss. However, samples lost more weight as final core temperature increased (p<0.01). Further, total saturated fatty acid increased (p = 0.02) while total monounsaturated fatty acid decreased (p = 0.03) as final core temperature increased. Regardless the method used for cooking, malondialdehyde (p<0.01) and free iron contents (p<0.001) were observed higher in samples cooked to 77°C. Oven roasting retained more inosinic acid, inosine and hypoxanthine in samples than did the boiling method (p<0.001), of which the concentration decreased as final core temperature increased except for hypoxanthine. Samples cooked to 77°C using oven roasting method released more intense aroma than did the others and the aroma pattern was discriminated based on the intensity. Most of aldehydes and pyrazines were more abundant in oven-roasted samples than in boiled samples. Among identified volatiles, hexanal had the highest area unit in both boiled and oven-roasted samples, of which the abundance increased as the final core temperature increased. Conclusion The boiling method extracted inosinic acid and rendered fat from beef brisket, whereas oven roasting intensified aroma derived from aldehydes and pyrazines and prevented the extreme loss of inosinic acid. PMID:28728407
Kollmannsberger, Hubert; Rodríguez-Burruezo, Adrián; Nitz, Siegfried; Nuez, Fernando
2011-07-01
Ají (Capsicum baccatum L. var. pendulum) and rocoto (Capsicum pubescens R. & P.) are two species of chile pepper used for millennia in Andean cuisine. The introduction of these relatively unknown Capsicum species to new markets requires an understanding of their flavour-related compounds. Thus both heat level (Scoville method and gas chromatography/mass spectrometry (GC/MS)) and, particularly, aroma (headspace solid phase microextraction and GC/MS/olfactometry) were studied in different accessions of ají and rocoto and a C. chinense control. Ajíes and rocotos are mildly pungent compared with C. chinense (13-352 vs 1605 mg kg(-1) total capsaicinoids). More than 200 volatiles were detected and marked differences in volatile pattern were found between the studied accessions. The powerful fruity/exotic aroma of the C. chinense control is due to esters such as ethyl 4-methylpentanoate, norcarotenoids such as β-ionone and the hydrocarbon ectocarpene. In contrast, the Andean peppers had more earthy/vegetable/bell pepper-like aromas. Rocotos also exhibited a distinct additional cucumber odour, while one of the ajíes had a distinctive sweet/fruity note. The aroma of C. pubescens fruits is mainly due to substituted 2-methoxypyrazines and lipoxygenase cleavage products (e.g. 2-nonenals, 2,6-nonadienal). 2-Heptanethiol, 3-isobutyl-2-methoxypyrazine and several phenols (e.g. guaiacol) and terpenoids (e.g. α-pinene, 1,8-cineol, linalool) are the basis of C. baccatum aroma, with some 3-methyl-2-butyl esters contributing to fruity notes. In this study the compounds responsible for heat and aroma in the Andean peppers C. baccatum and C. pubescens were identified. The results will be of use to inspire future studies aimed at improving the flavour of these species. Copyright © 2011 Society of Chemical Industry.
Gammacurta, Marine; Marchand, Stéphanie; Moine, Virginie; de Revel, Gilles
2017-09-01
The typical fruity aroma of red Bordeaux wines depends on the grape variety but also on microbiological processes, such as alcoholic and malolactic fermentations. These transformations involve respectively the yeast Saccharomyces cerevisiae and the lactic acid bacterium Oenococcus oeni. Both species play a central role in red winemaking but their quantitative and qualitative contribution to the revelation of the organoleptic qualities of wine has not yet been fully described. The aim of this study was to elucidate the influence of sequential inoculation of different yeast and bacteria strains on the aromatic profile of red Bordeaux wine. All microorganisms completed fermentations and no significant difference was observed between tanks regarding the main oenological parameters until 3 months' aging. Regardless of the yeast strain, B28 bacteria required the shortest period to completely degrade the malic acid, compared to the other strain. Quantification of 73 major components highlighted a specific volatile profile corresponding to each microorganism combination. However, the yeast strain appeared to have a predominant effect on aromatic compound levels, as well as on fruity aroma perception. Yeasts had a greater impact on wine quality and have more influence on the aromatic style of red wine than bacteria. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Sánchez-López, José A; Zimmermann, Ralf; Yeretzian, Chahan
2014-12-02
Using proton-transfer-reaction time-of-flight mass-spectrometry (PTR-ToF-MS), we investigated the extraction dynamic of 95 ion traces in real time (time resolution = 1 s) during espresso coffee preparation. Fifty-two of these ions were tentatively identified. This was achieved by online sampling of the volatile organic compounds (VOCs) in close vicinity to the coffee flow, at the exit of the extraction hose of the espresso machine (single serve capsules). Ten replicates of six different single serve coffee types were extracted to a final weight between 20-120 g, according to the recommended cup size of the respective coffee capsule (Ristretto, Espresso, and Lungo), and analyzed. The results revealed considerable differences in the extraction kinetics between compounds, which led to a fast evolution of the volatile profiles in the extract flow and consequently to an evolution of the final aroma balance in the cup. Besides exploring the time-resolved extraction dynamics of VOCs, the dynamic data also allowed the coffees types (capsules) to be distinguished from one another. Both hierarchical cluster analysis (HCA) and principal component analysis (PCA) showed full separation between the coffees types. The methodology developed provides a fast and simple means of studying the extraction dynamics of VOCs and differentiating between different coffee types.
Zhang, Wencan; Leong, Siew Mun; Zhao, Feifei; Zhao, Fangju; Yang, Tiankui; Liu, Shaoquan
2018-05-01
With an interest to enhance the aroma of palm kernel oil (PKO), Viscozyme L, an enzyme complex containing a wide range of carbohydrases, was applied to alter the carbohydrates in palm kernels (PK) to modulate the formation of volatiles upon kernel roasting. After Viscozyme treatment, the content of simple sugars and free amino acids in PK increased by 4.4-fold and 4.5-fold, respectively. After kernel roasting and oil extraction, significantly more 2,5-dimethylfuran, 2-[(methylthio)methyl]-furan, 1-(2-furanyl)-ethanone, 1-(2-furyl)-2-propanone, 5-methyl-2-furancarboxaldehyde and 2-acetyl-5-methylfuran but less 2-furanmethanol and 2-furanmethanol acetate were found in treated PKO; the correlation between their formation and simple sugar profile was estimated by using partial least square regression (PLS1). Obvious differences in pyrroles and Strecker aldehydes were also found between the control and treated PKOs. Principal component analysis (PCA) clearly discriminated the treated PKOs from that of control PKOs on the basis of all volatile compounds. Such changes in volatiles translated into distinct sensory attributes, whereby treated PKO was more caramelic and burnt after aqueous extraction and more nutty, roasty, caramelic and smoky after solvent extraction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sivilotti, Paolo; Falchi, Rachele; Herrera, Jose Carlos; Škvarč, Branka; Butinar, Lorena; Sternad Lemut, Melita; Bubola, Marijan; Sabbatini, Paolo; Lisjak, Klemen; Vanzo, Andreja
2017-09-27
Early leaf removal around the cluster zone is a common technique applied in cool climate viticulture, to regulate yield components and improve fruit quality. Despite the increasing amount of information on early leaf removal and its impact on total soluble solids, anthocyanins, and polyphenols, less is known regarding aroma compounds. In order to verify the hypothesis that defoliation, applied before or after flowering, could impact the biosynthesis of thiol precursors, we performed a two year (2013 and 2014) experiment on Sauvignon blanc. We provided evidence that differential accumulation of thiol precursors in berries is affected by the timing of defoliation, and this impact was related to modifications in the biosynthetic pathway. Furthermore, the possible interaction between leaf removal treatment and seasonal weather conditions, and its effect on the biosynthesis of volatile precursors are discussed. Our results suggested that in Sauvignon blanc the relative proportion of 4-S-glutathionyl-4-methylpentan-2-one (G-4MSP) and 3-S-glutathionylhexan-1-ol (G-3SH) precursors can be affected by defoliation, and this could be related to the induction of two specific genes encoding glutathione-S-transferases (VvGST3 and VvGST5), while no significant effects on basic fruit chemical parameters, polyphenols, and methoxypyrazines were ascertained under our experimental conditions.
Electronic-nose applications for fruit identification, ripeness, and quality grading
Manuela Baietto; Dan Wilson
2015-01-01
Fruits produce a wide range of volatile organic compounds that impart their characteristically distinct aromas and contribute to unique flavor characteristics. Fruit aroma and flavor characteristics are of key importance in determining consumer acceptance in commercial fruit markets based on individual preference. Fruit producers, suppliers and retailers traditionally...
USDA-ARS?s Scientific Manuscript database
Guava (Psidium guajava) is valued for its rich, tropical aroma, but fruit quality data are lacking for many important cultivars. Guava is native to warm-climate parts of the Americas and is grown commercially in southern Florida, USA. Varieties relevant to south Florida show a high level of morpholo...
USDA-ARS?s Scientific Manuscript database
Mangos are an important tropical fruit crop worldwide that are appreciated for their attractive peel and flesh colors, juicy texture, sweetness, and unique aroma. Mangos exported to the U.S. receive quarantine hot water treatment (QHWT) at 46.1 °C for 65 to 110 min (depending on fruit shape and size...
Effect of added thiamine on the key odorant compounds and aroma of cooked ham.
Thomas, Caroline; Mercier, Frédéric; Tournayre, Pascal; Martin, Jean-Luc; Berdagué, Jean-Louis
2015-04-15
This study shows that thiamine plays a major role in the formation of three key odorants of cooked ham: 2-methyl-3-furanthiol, 2-methyl-3-methyldithiofuran, and bis(2-methyl-3-furyl)disulphide. Analyses revealed that under identical cooking conditions, the productions of these three aroma compounds increase in a closely intercorrelated way when the dose of thiamine increases. Using a specific 2-methyl-3-furanthiol extraction-quantification method, it was possible to relate the amounts of thiamine added in model cooked hams to the amounts of 2-methyl-3-furanthiol produced in the cooking process. Sensory analyses highlighted the role of thiamine as a precursor of cooked ham aroma. Copyright © 2014 Elsevier Ltd. All rights reserved.
Consumer perceptions of strain differences in Cannabis aroma
DiVerdi, Joseph A.
2018-01-01
The smell of marijuana (Cannabis sativa L.) is of interest to users, growers, plant breeders, law enforcement and, increasingly, to state-licensed retail businesses. The numerous varieties and strains of Cannabis produce strikingly different scents but to date there have been few, if any, attempts to quantify these olfactory profiles directly. Using standard sensory evaluation techniques with untrained consumers we have validated a preliminary olfactory lexicon for dried cannabis flower, and characterized the aroma profile of eleven strains sold in the legal recreational market in Colorado. We show that consumers perceive differences among strains, that the strains form distinct clusters based on odor similarity, and that strain aroma profiles are linked to perceptions of potency, price, and smoking interest. PMID:29401526
Vilanova, Mar; Genisheva, Zlatina; Tubio, Miguel; Álvarez, Katia; Lissarrague, Jose Ramón; Oliveira, José Maria
2017-09-08
Viticultural practices influence both grape and wine quality. The influence of training systems on volatile composition was investigated for Albariño wine from Rías Baixas AOC in Northwest Spain. The odoriferous contribution of the compounds to the wine aroma was also studied. Volatile compounds belonging to ten groups (alcohols, C₆-compounds, ethyl esters, acetates, terpenols, C 13 -norisoprenoids, volatile phenols, volatile fatty acids, lactones and carbonyl compounds) were determined in Albariño wines from different training systems, Vertical Shoot-Positioned (VSP), Scott-Henry (SH), Geneva Double-Curtain (GDC), Arch-Cane (AC), and Parral (P) during 2010 and 2011 vintages. Wines from GDC showed the highest total volatile composition with the highest concentrations of alcohols, ethyl esters, fatty acids, and lactones families. However, the highest levels of terpenes and C 13 -norisoprenoids were quantified in the SH system. A fruitier aroma was observed in Albariño wines from GDC when odor activity values were calculated.
Flavor profiling of apple ciders from the UK and Scandinavian region.
Qin, Zihan; Petersen, Mikael A; Bredie, Wender L P
2018-03-01
The aim of this study was to characterize the flavor profiles of 14 commercial apple ciders from the United Kingdom and Scandinavian region. The flavor properties were established by sensory profiling and analysis of volatile and non-volatile components, including titratable acidity, pH, residual sugars and organic acids. A total of 72 volatile compounds were identified in the 14 apple ciders using dynamic headspace sampling (DHS) coupled to gas chromatography-mass spectrometry (GC/MS). The main volatile compounds found in apple ciders were esters and higher alcohols, followed by aldehydes and fatty acids. Sensory characterizations of the aroma and taste of apple ciders were carried out by a trained sensory panel using descriptive analysis with 23 sensory attributes. The attributes apple, cooked apple, yeasty, sweet and sour were the most predominant sensory descriptors used to describe the similarities and differences in the samples. Principal component analysis (PCA) showed that floral and fruity (fresh apple, banana and pear) odors were highly associated with sweet taste and opposed to the more complex aroma attributes (yeasty, lactic, chemical, mouldy, black pepper and earthy) and sour taste. Most of the UK apple ciders were characterized by these complex odors and taste notes sour, astringent and bitter, whereas ciders from the Scandinavian region had diverse sensory profiles. Partial least squares regression (PLS) based on the sensory and chemical data was able to cluster the ciders according to differences in production methods (oak-aged or spontaneous fermentation; controlled malolactic fermentation; industrial production with flavor modifications). Moreover, this study also suggested that ciders with marked levels of acetate esters were characterized by cooked/fresh apple, citrus and tropical fruit odors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Song, Zhewei; Du, Hai; Zhang, Yan; Xu, Yan
2017-01-01
Fermentation microbiota is specific microorganisms that generate different types of metabolites in many productions. In traditional solid-state fermentation, the structural composition and functional capacity of the core microbiota determine the quality and quantity of products. As a typical example of food fermentation, Chinese Maotai-flavor liquor production involves a complex of various microorganisms and a wide variety of metabolites. However, the microbial succession and functional shift of the core microbiota in this traditional food fermentation remain unclear. Here, high-throughput amplicons (16S rRNA gene amplicon sequencing and internal transcribed space amplicon sequencing) and metatranscriptomics sequencing technologies were combined to reveal the structure and function of the core microbiota in Chinese soy sauce aroma type liquor production. In addition, ultra-performance liquid chromatography and headspace-solid phase microextraction-gas chromatography-mass spectrometry were employed to provide qualitative and quantitative analysis of the major flavor metabolites. A total of 10 fungal and 11 bacterial genera were identified as the core microbiota. In addition, metatranscriptomic analysis revealed pyruvate metabolism in yeasts (genera Pichia, Schizosaccharomyces, Saccharomyces , and Zygosaccharomyces ) and lactic acid bacteria (genus Lactobacillus ) classified into two stages in the production of flavor components. Stage I involved high-level alcohol (ethanol) production, with the genus Schizosaccharomyces serving as the core functional microorganism. Stage II involved high-level acid (lactic acid and acetic acid) production, with the genus Lactobacillus serving as the core functional microorganism. The functional shift from the genus Schizosaccharomyces to the genus Lactobacillus drives flavor component conversion from alcohol (ethanol) to acid (lactic acid and acetic acid) in Chinese Maotai-flavor liquor production. Our findings provide insight into the effects of the core functional microbiota in soy sauce aroma type liquor production and the characteristics of the fermentation microbiota under different environmental conditions.
NASA Astrophysics Data System (ADS)
Larasati, B. A.; Panunggal, B.; Afifah, D. N.; Anjani, G.; Rustanti, N.
2018-02-01
Antioxidant related to oxidative stress can caused the metabolic disorders. A functional food that high in antioxidant can be use as the alternative prevention. The addition of red ginger extract in yoghurt could form a functional food, that high in antioxidant, synbiotic and fiber. The influence of red ginger extract on yoghurt synbiotic against lactic acid bacteria, antioxidant activity and acceptance were analyzed. This was an experimental research with one factor complete randomized design, specifically the addition of red ginger extract 0%; 0,1%; 0,3% and 0,5% into synbiotic yoghurt. Total plate count method used to analyze the lactic acid bacteria, 1-1-diphenyl-2-picrylhydrazyl (DPPH) method for antioxidant activity, and acceptance analyzed with hedonic test. The higher the dose of extract added to synbiotic yoghurt, the antioxidant activity got significantly increased (ρ=0,0001), while the lactic acid bacteria got insignificantly decreased (ρ=0,085). The addition of 0,5% red ginger extract obtained the antioxidant activity of 71% and 4,86 × 1013 CFU/ml on lactic acid bacteria, which the requirement for probiotic on National Standard of Indonesia is >107 CFU/ml. The addition of extract had a significant effect on acceptance (ρ=0,0001) in flavor, color, and texture, but not aroma (ρ=0,266). The optimal product in this research was the yoghurt synbiotic with addition of 0,1% red ginger extract. To summarize, the addition of red ginger extract in synbiotic yoghurt had significant effect on antioxidant activity, flavor, color, and texture, but no significant effect on lactic acid bacteria and aroma.
Aroma Release in Wine Using Co-Immobilized Enzyme Aggregates.
Ahumada, Katherine; Martínez-Gil, Ana; Moreno-Simunovic, Yerko; Illanes, Andrés; Wilson, Lorena
2016-11-08
Aroma is a remarkable factor of quality and consumer preference in wine, representing a distinctive feature of the product. Most aromatic compounds in varietals are in the form of glycosidic precursors, which are constituted by a volatile aglycone moiety linked to a glucose residue by an O -glycosidic bond; glucose is often linked to another sugar (arabinose, rhamnose or apiose). The use of soluble β-glycosidases for aroma liberation implies the addition of a precipitating agent to remove it from the product and precludes its reuse after one batch. An attractive option from a technological perspective that will aid in removing such constraints is the use of immobilized glycosidases. Immobilization by aggregation and crosslinking is a simple strategy producing enzyme catalysts of very high specific activity, being an attractive option to conventional immobilization to solid inert supports. The purpose of this work was the evaluation of co-immobilized β-glycosidases crosslinked aggregates produced from the commercial preparation AR2000, which contains the enzymes involved in the release of aromatic terpenes in Muscat wine (α-l-arabinofuranosidase and β-d-glucopyranosidase). To do so, experiments were conducted with co-immobilized crosslinked enzyme aggregates (combi-CLEAs), and with the soluble enzymes, using an experiment without enzyme addition as control. Stability of the enzymes at the conditions of winemaking was assessed and the volatiles composition of wine was determined by SPE-GC-MS. Stability of enzymes in combi-CLEAs was much higher than in soluble form, 80% of the initial activity remaining after 60 days in contact with the wine; at the same conditions, the soluble enzymes had lost 80% of their initial activities after 20 days. Such higher stabilities will allow prolonged use of the enzyme catalyst reducing its impact in the cost of winemaking. Wine treated with combi-CLEAs was the one exhibiting the highest concentration of total terpenes (18% higher than the control) and the highest concentrations of linalool (20% higher), nerol (20% higher) and geraniol (100% higher), which are the most important terpenes in determining Muscat typicity. Co-immobilized enzymes were highly stable at winemaking conditions, so their reutilization is possible and technologically attractive by reducing the impact of enzyme cost on winemaking cost.
Changes in volatile compound composition of Antrodia camphorata during solid state fermentation.
Xia, Yongjun; Zhang, Baorong; Li, Weijiang; Xu, Ganrong
2011-10-01
Although the volatiles present in mushrooms and fungi have been investigated by many researchers, including Antrodia camphorata in submerged fermentation, there are few data available regarding changes in volatile compounds during fermentation. Our research has revealed that solid state fermentation of A. camphorata is highly odiferous compared with submerged cultures and the odor changed with increasing culture time. Therefore the aim of this study was to investigate the changes in volatile compound composition of A. camphorata during solid state fermentation. Altogether, 124 major volatile compounds were identified. The volatile compounds produced by A. camphorata during growth in solid state fermentation were quite different. Oct-1-en-3-ol, octan-3-one and methyl 2-phenylacetate were predominant in exponential growth phase production, while the dominant volatiles produced in stationary phase were octan-3-one and methyl 2-phenylacetate. In stationary phase, lactone compounds in A. camphorata, such as 5-butyloxolan-2-one, 5-heptyloxolan-2-one, 6-heptyloxan-2-one, contributed greatly to peach and fruit-like flavor. Terpene and terpene alcohol compounds, such as 1-terpineol, L-linalool, T-cadinol, (E, E)-farnesol, β-elemene, cis-α-bisabolene and α-muurolene, made different contributions to herbal fresh aroma in A. camphorata. Nineteen volatile sesquiterpenes were detected from solid state fermentation of A. camphorata. The compounds 5-n-butyl-5H-furan-2-one, β-ionone, (-)-caryophyllene oxide, aromadendrene oxide, diepi-α-cedrene epoxide, β-elemene, α-selinene, α-muurolene, azulene, germacrene D, γ-cadinene and 2-methylpyrazine have not hitherto been reported in A. camphorata. The preliminary results suggest that the aroma-active compounds produced by A camphorata in solid state fermentation might serve as an important source of natural aroma compounds for the food and cosmetic industries or antibiotic activity compounds. The sesquiterpenes could be identified as possible taxonomic markers for A. camphorata. Copyright © 2011 Society of Chemical Industry.
Zhang, Weimin; Zhang, Yong; Zhang, Lihong; Zhao, Huihong; Li, Xin; Huang, He; Lin, Haoran
2007-06-01
The orange-spotted grouper Epinephelus coioides is a protogynous hermaphroditic fish, but the physiological basis of its sex change remains largely unknown. In the present study, the 2-year-old orange-spotted grouper was induced to change sex precociously by oral administration of 17alpha-methyltestosterone (MT, 50 mg/Kg diet, twice a day at daily ration of 5% bodyweight) for 60 days. The serum testosterone levels were significantly elevated after MT treatment for 20 and 40 days as compared to control, but the levels of serum estradiol (E(2)) remained unchanged. The expression of P450aromA in the gonad significantly decreased after MT treatment for 20, 40, and 60 days. Accordingly, the enzyme activity of gonadal aromatase was also lower. The expression of FSHbeta subunit in the pituitary was significantly decreased after MT treatment for 20 days, but returned to the control levels after 40 and 60 days; however, the expression of LHbeta subunit was not altered significantly by MT treatment. The expression of FTZ-F1 in the gonad also decreased significantly in response to MT treatment for 40 and 60 days, but its expression in the pituitary was not altered significantly. Interestingly, when tested in vitro on ovarian fragments, MT had no direct effect on the expression of P450aromA and FTZ-F1 as well as the activity of gonadal aromatase, suggesting that the inhibition of gonadal P450aromatase and FTZ-F1 by MT may be mediated at upper levels of the brain-pituitary-gonadal axis. Taken together, these results indicated that FSH, P450aromA, FTZ-F1, and serum testosterone are associated with the MT-induced sex change of the orange-spotted grouper, but the cause-effect relationship between these factors and sex change in this species remains to be characterized. (c) 2006 Wiley-Liss, Inc.
Roh, So Young; Kim, Kye Ha
2013-12-01
The purpose of this study was to examine the effects of aroma massage on pruritus, skin pH, skin hydration and sleep in elders in long-term care hospitals. The participants were elders over 65 years old admitted to long-term care. They were assigned to the experimental group (26) or control group (28). Data were collected from May to August, 2012. Visual Analogue Scale and Verran and Snyder-Halpern Sleep scale were used to identify levels of pruritus and sleep. A skin-pH meter and moisture checker were used to measure skin pH and skin hydration. Aroma massage was performed three times a week for 4 weeks for elders in the experimental group. The data were analyzed using the SPSS Win 17.0 program. There were significant differences in pruritus, skin pH and skin hydration between the two groups. However there was no significant difference in sleep. The results indicate that aroma massage is effective in reducing pruritus, skin pH and increasing skin hydration in elders. Therefore, this intervention can be utilized in clinical practice as an effective nursing intervention to reduce pruritus in elders in long-term care hospitals.
Cross-modal interactions for custard desserts differ in obese and normal weight Italian women.
Proserpio, Cristina; Laureati, Monica; Invitti, Cecilia; Pasqualinotto, Lucia; Bergamaschi, Valentina; Pagliarini, Ella
2016-05-01
The effects of variation in odors and thickening agents on sensory properties and acceptability of a model custard dessert were investigated in normal weight and obese women. Subjects rated their liking and the intensity of sensory properties (sweetness, vanilla and butter flavors, and creaminess) of 3 block samples (the first varied in vanilla aroma, the second varied in butter aroma and the third varied in xanthan gum). Significant differences were found in acceptability and intensity ratings in relation to body mass index. The addition of butter aroma in the custard was the most effective way to elicit odor-taste, odor-flavor and odor-texture interactions in obese women. In this group, butter aroma, signaling energy dense products, increased the perception of sweetness, vanilla flavor and creaminess, which are all desirable properties in a custard, while maintaining a high liking degree. Understanding cross-modal interactions in relation to nutritional status is interesting in order to develop new food products with reduced sugar and fat, that are still satisfying for the consumer. This could have important implications to reduce caloric intake and tackle the obesity epidemic. Copyright © 2016 Elsevier Ltd. All rights reserved.
Volatile flavor compounds in yogurt: a review.
Cheng, Hefa
2010-11-01
Considerable knowledge has been accumulated on the volatile compounds contributing to the aroma and flavor of yogurt. This review outlines the production of the major flavor compounds in yogurt fermentation and the analysis techniques, both instrumental and sensory, for quantifying the volatile compounds in yogurt. The volatile compounds that have been identified in plain yogurt are summarized, with the few key aroma compounds described in detail. Most flavor compounds in yogurt are produced from lipolysis of milkfat and microbiological transformations of lactose and citrate. More than 100 volatiles, including carbonyl compounds, alcohols, acids, esters, hydrocarbons, aromatic compounds, sulfur-containing compounds, and heterocyclic compounds, are found in yogurt at low to trace concentrations. Besides lactic acid, acetaldehyde, diacetyl, acetoin, acetone, and 2-butanone contribute most to the typical aroma and flavor of yogurt. Extended storage of yogurt causes off-flavor development, which is mainly attributed to the production of undesired aldehydes and fatty acids during lipid oxidation. Further work on studying the volatile flavor compounds-matrix interactions, flavor release mechanisms, and the synergistic effect of flavor compounds, and on correlating the sensory properties of yogurt with the compositions of volatile flavor compounds are needed to fully elucidate yogurt aroma and flavor.
Effects of Maillard reaction on flavor and safety of Chinese traditional food: roast duck.
Zhou, Yiming; Xie, Fan; Zhou, Xiaoli; Wang, Yuqiang; Tang, Wen; Xiao, Ying
2016-04-01
Roast duck is one kind of representative roast food whose flavor is mainly produced by the Maillard reaction. However, some potentially toxic compounds are generated in the thermal process and are a potential health risk. The aim of this work was to analyze the effects of the Maillard reaction on flavor and safety of a Chinese traditional food: roast duck. Ducks with different roasting times (0, 10, 20, 30, 40, 50 and 60 min) were analyzed. The 40 and 50 min roast ducks exhibited an acceptable degree of sensory attributes, but the 60 min roast duck showed the most abundant aroma compounds. Antioxidant activities were observed to increase with roasting, and the 60 min roast duck showed the highest antioxidant activities (1,1-diphenylpicryhydrazyl, 39.3 µmol Trolox g(-1) sample). The highest content of acrylamide (0.21 µg g(-1)) and 5-hydroxymethylfurfural (0.089 µg g(-1)) were detected in the 50 and 60 min roast duck extract, respectively. Furthermore, water extract from 60 min roast ducks manifested a higher lactose dehydrogenase release ratio (51.9%) and greatly increased cell apoptosis. The drastic Maillard reaction in duck induced by long roasting time could be advantageous for color, aroma and antioxidant activities in roast ducks, but might be not beneficial to health. © 2015 Society of Chemical Industry.
Berries grown in Brazil: anthocyanin profiles and biological properties.
Chaves, Vitor C; Boff, Laurita; Vizzotto, Márcia; Calvete, Eunice; Reginatto, Flávio H; Simões, Cláudia Mo
2018-02-11
Phytochemical profiles of two Brazilian native fruits - pitanga (red and purple) and araçá (yellow and red) - as well as strawberry cultivars Albion, Aromas and Camarosa, blackberry cultivar Tupy and blueberry cultivar Bluegen cultivated in Brazil were characterized for total phenolic content and total anthocyanin content by liquid chromatography coupled to a photodiode array and a quadrupole time-of-flight mass spectrometer. Radical scavenging, antiherpes and cytotoxic activities of these berry extracts were also evaluated. Blueberry presented the highest total anthocyanin content (1202 mg cyanidin-O-glucoside equivalents kg -1 fresh fruit), while strawberry cultivar Aromas presented the highest total phenolic content (13 550 mg gallic acid equivalents kg -1 fresh fruit). Liquid chromatographic-mass spectrometric analysis resulted in the identification of 21 anthocyanins. To the best of our knowledge this is the first report of cyanidin-O-glucoside in yellow and red Araçá fruit and the first time eight anthocyanins have been reported in pitanga fruits. DPPH and ABTS assays showed that blueberry cultivar Bluegen, blackberry cultivar Tupy and pitanga (red and purple) showed the most promising antiradical activities, respectively. No relevant cytotoxicity against three cancer cell lines or antiherpes activity was detected under the experimental conditions tested. Total anthocyanin content of all fruits had a strong positive correlation with their free radical scavenging activity, suggesting anthocyanins contribute to the antioxidant potential of these fruits. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Chemical, chromatic, and sensory attributes of 6 red wines produced with prefermentative cold soak.
Casassa, L Federico; Bolcato, Esteban A; Sari, Santiago E
2015-05-01
Six red grape cultivars, Barbera D'Asti, Cabernet Sauvignon, Malbec, Merlot, Pinot Noir and Syrah, were produced with or without prefermentative cold soak (CS). Cold soak had no effect on the basic chemical composition of the wines. At pressing, CS wines were more saturated and with a higher red component than control wines. After 1 year of bottle aging, CS wines retained 22% more anthocyanins than control wines, but tannins and total phenolics remained unaffected. Both saturation and the red component of colour were slightly higher in CS wines. From a sensory standpoint, CS only enhanced colour intensity in Barbera D'Asti and Cabernet Sauvignon wines, whereas it diminished colour intensity in Pinot Noir. Cold soak had no effect on perceived aroma, bitterness, astringency, and body of the wines. Principal Component Analysis suggested that the outcome of CS is contingent upon the specific cultivar to which the CS technique is applied. Copyright © 2014 Elsevier Ltd. All rights reserved.
Curtin, Chris D; Langhans, Geoffrey; Henschke, Paul A; Grbin, Paul R
2013-12-01
Spoilage of red wine by the yeast species Dekkera bruxellensis is a common problem for the global wine industry. When conditions are conducive for growth of these yeasts in wine, they efficiently convert non-volatile hydroxycinnamic acids into aroma-active ethylphenols, thereby reducing the quality of the wine. It has been demonstrated previously that dissolved oxygen is a key factor which stimulates D. bruxellensis growth in wine. We demonstrate that whereas the presence of oxygen accelerates the growth of this species, oxygen-limited conditions favour 4-ethylphenol production. Consequently, we evaluated wine spoilage potential of three D. bruxellensis strains (AWRI1499, AWRI1608 and AWRI1613) under oxygen-limited conditions. Each strain was cultured in a chemically-defined wine medium and the fermentation products were analysed using HPLC and HS-SPME-GC/MS. The strains displayed different growth characteristics but were equally capable of producing ethylphenols. On the other hand, significant differences were observed for 18 of the remaining 33 metabolites analysed and duo-trio sensory analysis indicated significant aroma differences between wines inoculated with AWRI1499 and AWRI1613. When these wines were spiked with low concentrations of 4-ethylphenol and 4-ethylguaiacol, no sensorial differences could be perceived. Together these data suggest that the three predominant D. bruxellensis strains previously isolated during a large survey of Australian wineries do not differ substantively in their capacity to grow in, and spoil, a model wine medium. Copyright © 2013 Elsevier Ltd. All rights reserved.
Belletti, Nicoletta; Kamdem, Sylvain Sado; Patrignani, Francesca; Lanciotti, Rosalba; Covelli, Alessandro; Gardini, Fausto
2007-01-01
The combined effects of a mild heat treatment (55°C) and the presence of three aroma compounds [citron essential oil, citral, and (E)-2-hexenal] on the spoilage of noncarbonated beverages inoculated with different amounts of a Saccharomyces cerevisiae strain were evaluated. The results, expressed as growth/no growth, were elaborated using a logistic regression in order to assess the probability of beverage spoilage as a function of thermal treatment length, concentration of flavoring agents, and yeast inoculum. The logit models obtained for the three substances were extremely precise. The thermal treatment alone, even if prolonged for 20 min, was not able to prevent yeast growth. However, the presence of increasing concentrations of aroma compounds improved the stability of the products. The inhibiting effect of the compounds was enhanced by a prolonged thermal treatment. In fact, it influenced the vapor pressure of the molecules, which can easily interact within microbial membranes when they are in gaseous form. (E)-2-Hexenal showed a threshold level, related to initial inoculum and thermal treatment length, over which yeast growth was rapidly inhibited. Concentrations over 100 ppm of citral and thermal treatment longer than 16 min allowed a 90% probability of stability for bottles inoculated with 105 CFU/bottle. Citron gave the most interesting responses: beverages with 500 ppm of essential oil needed only 3 min of treatment to prevent yeast growth. In this framework, the logistic regression proved to be an important tool to study alternative hurdle strategies for the stabilization of noncarbonated beverages. PMID:17616627
Rollero, Stéphanie; Bloem, Audrey; Camarasa, Carole; Sanchez, Isabelle; Ortiz-Julien, Anne; Sablayrolles, Jean-Marie; Dequin, Sylvie; Mouret, Jean-Roch
2015-03-01
Volatile compounds produced by yeast during fermentation greatly influence the organoleptic qualities of wine. We developed a model to predict the combined effects of initial nitrogen and phytosterol content and fermentation temperature on the production of volatile compounds. We used a Box-Behnken design and response surface modeling to study the response of Lalvin EC1118® to these environmental conditions. Initial nitrogen content had the greatest influence on most compounds; however, there were differences in the value of fermentation parameters required for the maximal production of the various compounds. Fermentation parameters affected differently the production of isobutanol and isoamyl alcohol, although their synthesis involve the same enzymes and intermediate. We found differences in regulation of the synthesis of acetates of higher alcohols and ethyl esters, suggesting that fatty acid availability is the main factor influencing the synthesis of ethyl esters whereas the production of acetates depends on the activity of alcohol acetyltransferases. We also evaluated the effect of temperature on the total production of three esters by determining gas-liquid balances. Evaporation largely accounted for the effect of temperature on the accumulation of esters in liquid. Nonetheless, the metabolism of isoamyl acetate and ethyl octanoate was significantly affected by this parameter. We extended this study to other strains. Environmental parameters had a similar effect on aroma production in most strains. Nevertheless, the regulation of the synthesis of fermentative aromas was atypical in two strains: Lalvin K1M® and Affinity™ ECA5, which produces a high amount of aromatic compounds and was obtained by experimental evolution.
Tamura, Hitoshi; Fujita, Akira; Steinhaus, Martin; Takahisa, Eisuke; Watanabe, Hiroyuki; Schieberle, Peter
2011-09-28
Eleven odor-active thiols, namely, 2-methyl-1-propene-1-thiol, (Z)-3-methyl-1-butene-1-thiol, (E)-3-methyl-1-butene-1-thiol, (Z)-2-methyl-1-butene-1-thiol, (E)-2-methyl-1-butene-1-thiol, 2-methyl-3-furanthiol, 3-mercapto-2-pentanone, 2-mercapto-3-pentanone, 4-mercapto-3-hexanone, 3-mercapto-3-methylbutyl formate, and 2-methyl-3-thiophenethiol, recently identified in an extract prepared from white sesame seeds, were quantitated in sesame using stable isotope dilution analyses. For that purpose, the following deuterium-labeled compounds were synthesized and used as internal standards in the quantitation assays: [2H6]-2-methyl-1-propene-1-thiol, [2H3]-(E)- and [2H3]-(Z)-2-methyl-1-butene-1-thiol, [2H3]-2-methyl-3-furanthiol, [2H2]-3-mercapto-2-pentanone, [2H3]-4-mercapto-3-hexanone, [2H6]-3-mercapto-3-methylbutyl formate, and [2H3]-2-methyl-3-thiophenethiol. On the basis of the results obtained, odor activity values (OAVs) were calculated as ratio of the concentration and odor threshold of the individual compounds in cooking oil. According to their high OAVs, particularly the 3-methyl-1-butene-1-thiols (OAV: 2400) and the 2-methyl-1-butene-1-thiols (OAV: 960) were identified as the most odor-active compounds in pan-roasted white sesame seeds. These compounds were therefore suggested to be mainly responsible for the characteristic but rather unstable sulfury aroma of freshly pan-roasted white sesame seeds.
Gucwa, Katarzyna; Milewski, Sławomir; Dymerski, Tomasz; Szweda, Piotr
2018-05-08
The antimicrobial activity of plant oils and extracts has been recognized for many years. In this study the activity of Thymus vulgaris , Citrus limonum , Pelargonium graveolens , Cinnamomum cassia , Ocimum basilicum , and Eugenia caryophyllus essential oils (EOs) distributed by Pollena Aroma (Nowy Dwór Mazowiecki, Poland) was investigated against a group of 183 clinical isolates of C. albicans and 76 isolates of C. glabrata . All of the oils exhibited both fungistatic and fungicidal activity toward C. albicans and C. glabrata isolates. The highest activity was observed for cinnamon oil, with MIC (Minimum Inhibitory Concentration) values in the range 0.002⁻0.125% ( v / v ). The MIC values of the rest of the oils were in the range 0.005% (or less) to 2.5% ( v / v ). In most cases MFC (Minimum Fungicidal Concentration) values were equal to MIC or twice as high. Additionally, we examined the mode of action of selected EOs. The effect on cell wall components could not be clearly proved. Three of the tested EOs (thyme, lemon, and clove) affected cell membranes. At the same time, thyme, cinnamon, and clove oil influenced potassium ion efflux, which was not seen in the case of lemon oil. All of the tested oils demonstrated the ability to inhibit the transition of yeast to mycelium form, but the effect was the lowest in the case of cinnamon oil.
Negri, Alfredo S.; Allegra, Domenico; Simoni, Laura; Rusconi, Fabio; Tonelli, Chiara; Espen, Luca; Galbiati, Massimo
2015-01-01
Strawberry is one of the most valued fruit worldwide. Modern cultivated varieties (Fragaria × ananassa) exhibit large fruits, with intense color and prolonged shell life. Yet, these valuable traits were attained at the cost of the intensity and the variety of the aroma of the berry, two characteristics highly appreciated by consumers. Wild species display smaller fruits and reduced yield compared with cultivated varieties but they accumulate broader and augmented blends of volatile compounds. Because of the large diversity and strength of aromas occurring in natural and domesticated populations, plant breeders regard wild strawberries as important donors of novel scented molecules. Here we report a comprehensive metabolic map of the aroma of the wild strawberry Profumata di Tortona (PdT), an ancient clone of F. moschata, considered as one of the most fragrant strawberry types of all. Comparison with the more renowned woodland strawberry Regina delle Valli (RdV), an aromatic cultivar of F. vesca, revealed a significant enrichment in the total level of esters, alcohols and furanones and a reduction in the content of ketones in in the aroma of PdT berries. Among esters, particularly relevant was the enhanced accumulation of methyl anthranilate, responsible for the intensive sweetish impression of wild strawberries. Interestingly, increased ester accumulation in PdT fruits correlated with enhanced expression of the Strawberry Alcohol Acyltransferase (SAAT) gene, a key regulator of flavor biogenesis in ripening berries. We also detected a remarkable 900-fold increase in the level of mesifurane, the furanone conferring the typical caramel notes to most wild species. PMID:25717332
Biology and Fertility Life Table of the Green Aphid Chaetosiphon Fragaefolli on Strawberry Cultivars
Bernardi, Daniel; Garcia, Mauro Silveira; Botton, Marcos; Nava, Dori Edson
2012-01-01
Our objective was to study the biology and develop a fertility life table for the aphid Chaetosiphon fragaefolli (Cockerell) (Hemiptera: Aphididae) on leaves of strawberry, Fragaria × ananassa, Duchesne ex Rozier (Rosales: Rosaceae), of the cultivars Albion, Aromas, Camarosa, Camino Real, Diamante, Earlibrite, and Saborosa. This study was conducted under controlled conditions: 25 ± 1 °C, 70 ± 10% RH, and 12:12 L:D . Arenas were set up consisting of leaves inside Petri dishes containing 3% agar. Female aphids obtained after the last nymphal ecdysis were individually placed in arenas for 24 hours. The following biological parameters were evaluated: duration and survival of the nymph stage and of the life cycle (nymph-nymph), daily and total fecundity, and adult longevity. The aphids completed their biological cycle on all of the cultivars. The shortest durations (in days) of the nymphal stage were on the cultivars Camino Real and Camarosa (8.67 and 8.74 days, respectively), and the longest was on Aromas (11.12 days). The lowest survival was on cultivar Aromas (51%) and the highest on Saborosa (96%). When the time to development to the adult stage was compared, the aphids developed fastest (14.63 days) and survival was highest (96%) on cultivar Saborosa. Aphids reared on cultivar Aromas leaves had the longest pre—reproductive period (8.74 days), the greatest longevity (26.88 days), and the longest duration of the life cycle (19.76 days). Based on the fertility life table, cultivars Camarosa and Saborosa were the most favorable for development of C. fragaefolli, while Albion and Aromas were the most inadequate for aphid development. PMID:22958325
Pragadheesh, Vppalayam Shanmugam; Yadav, Anju; Chanotiya, Chandan Singh; Rout, Prasanta Kumar; Uniyal, Girish Chandra
2011-09-01
Solid-phase micro-extraction (SPME) was studied as a solvent free alternative method for the extraction and characterization of volatile compounds in intact and plucked flowers of Jasminum sambac at different day time intervals using gas chromatography (GC-FID) and gas chromatography-quadrupole mass spectrometry. The analytes identified included alcohols, esters, phenolic compounds, and terpenoids. The main constituents identified in the flower aroma using different fibers were cis-3-hexenyl acetate, (E)-beta-ocimene, linalool, benzyl acetate, and (E,E)-alpha-farnesene. The benzyl acetate proportion decreased from morning to afternoon and then increased in evening collections. PDMS fiber showed a high proportion of (E,E)-alpha-farnesene in jasmine floral aroma. Among other constituents identified, cis-3-hexenyl acetate, linalool, and benzyl acetate were major aroma contributors in plucked and living flowers extracts using PDMS/DVB, Carboxen/PDMS, and DVB/Carboxen/PDMS fibers. PDMS/DVB recorded the highest emission for benzyl acetate while the (E)-beta-ocimene proportion was highest in DVB/Carboxen/PDMS when compared with the rest. The highest linalool content, with increasing proportion from morning to noon, was found using mixed coating fibers. Almost negligible volatile adsorption was recorded for the polyacrylate fiber for intact flower aroma, whereas it was most effective for benzyl acetate, followed by indole under plucked conditions. Moreover, the highest amounts extracted, evaluated from the sum of peak areas, were achieved using Carboxen/PDMS, and DVB/Carboxen/PDMS. Introduction of a rapid, and solvent free SPME method for the analysis of multicomponent volatiles can be successfully employed to monitor the extraction and characterization of flower aroma constituents.
Crucello, Juliana; Miron, Luiz F O; Ferreira, Victor H C; Nan, He; Marques, Marcia O M; Ritschel, Patricia S; Zanus, Mauro C; Anderson, Jared L; Poppi, Ronei J; Hantao, Leandro W
2018-05-28
In this study, a series of polymeric ionic liquid (PIL) sorbent coatings is evaluated for the extraction of polar volatile organic compounds (VOCs) from Brazilian wines using headspace solid-phase microextraction (HS-SPME), including samples from 'Isabella' and 'BRS Magna' cultivars-the latter was recently introduced by the Brazilian Agricultural Research Corporation - National Grape & Wine Research Center. The structurally tuned SPME coatings were compared to the commercial SPME phases, namely poly(acrylate) (PA) and divinylbenzene/carboxen/poly(dimethylsiloxane) (DVB/CAR/PDMS). The separation, detection and identification of the aroma profiles were obtained using comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS). The best performing PIL-based SPME fiber, namely 1-hexadecyl-3-vinylimidazolium bis[(trifluoromethyl)sulfonyl]imide with 1,12-di(3-vinylimidazolium)dodecane dibis[(trifluoromethyl)sulfonyl]imide incorporated cross-linker supported on an elastic nitinol wire, exhibited superior performance to DVB/CAR/PDMS regarding the average number of extracted peaks and extracted more polar analytes providing additional insight into the aroma profile of 'BRS Magna' wines. Four batches of wine were evaluated, namely 'Isabella' and 'BRS Magna' vintages 2015 and 2016, using highly selective PIL-based SPME coatings and enabled the detection of 350+ peaks. Furthermore, this is the first report evaluating the aroma of 'BRS Magna' wines. A hybrid approach that combined pixel-based Fisher ratio and peak table-based data comparison was used for data handling. This proof-of-concept experiment provided reliable and statistically valid distinction of wines that may guide regulation agencies to create high sample throughput protocols to screen wines exported by Brazilian vintners. Graphical abstract Highly selective extraction of wine aroma using polymeric ionic liquid.
Characterization of aromatic properties of old-style cheese starters.
Lacroix, N; St-Gelais, D; Champagne, C P; Fortin, J; Vuillemard, J-C
2010-08-01
Old-style cheese starters were evaluated to determine their ability to produce cheese aroma compounds. Detailed analyses of the aroma-producing potential of 13 old-style starter cultures were undertaken. The proteolytic profile of the starters was established by an accelerated ripening study using a model cheese slurry and compared with those of a commercial aromatic starter and commercial Cheddar cheeses. To evaluate the aromatic potential of the starter cultures, quantification of free amino acids liberated and volatile compounds after 15 d of ripening at 30 degrees C as well as sensory analysis were carried out. Results showed that proteolysis patterns of all 13 starter cultures in the curd model were comparable to those of commercial Cheddar cheeses. All tested cultures demonstrated the ability to produce high amounts of amino acids recognized as precursors of aroma compounds. Several differences were observed between the starters and commercial Cheddar cheeses regarding some amino acids such as glutamate, leucine, phenylalanine, proline, and ornithine, reflecting the various enzymatic systems present in the starters. Starters Bt (control) and ULAAC-E exhibited various significant differences regarding their free amino acid profiles, as confirmed by sensory analysis. In addition, identification of volatile compounds confirmed the presence of several key molecules related to aroma, such as 3-methylbutanal and diacetyl. Besides the aroma-producing aspect, 2 starters (ULAAC-A and ULAAC-H) seem to possess an important ability to generate large amounts of gamma-aminobutyric acid, which contributed up to 15% of the total amino acids present in the model curd after 15 d ripening. gamma-Aminobutyric acid is an amine well-known for its antihypertensive and calming effects. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Cloning of β-Primeverosidase from Tea Leaves, a Key Enzyme in Tea Aroma Formation1
Mizutani, Masaharu; Nakanishi, Hidemitsu; Ema, Jun-ichi; Ma, Seung-Jin; Noguchi, Etsuko; Inohara-Ochiai, Misa; Fukuchi-Mizutani, Masako; Nakao, Masahiro; Sakata, Kanzo
2002-01-01
A β-primeverosidase from tea (Camellia sinensis) plants is a unique disaccharide-specific glycosidase, which hydrolyzes aroma precursors of β-primeverosides (6-O-β-d-xylopyranosyl-β-d-glucopyranosides) to liberate various aroma compounds, and the enzyme is deeply concerned with the floral aroma formation in oolong tea and black tea during the manufacturing process. The β-primeverosidase was purified from fresh leaves of a cultivar for green tea (C. sinensis var sinensis cv Yabukita), and its partial amino acid sequences were determined. The β-primeverosidase cDNA has been isolated from a cDNA library of cv Yabukita using degenerate oligonucleotide primers. The cDNA insert encodes a polypeptide consisting of an N-terminal signal peptide of 28 amino acid residues and a 479-amino acid mature protein. The β-primeverosidase protein sequence was 50% to 60% identical to β-glucosidases from various plants and was classified in a family 1 glycosyl hydrolase. The mature form of the β-primeverosidase expressed in Escherichia coli was able to hydrolyze β-primeverosides to liberate a primeverose unit and aglycons, but did not act on 2-phenylethyl β-d-glucopyranoside. These results indicate that the β-primeverosidase selectively recognizes the β-primeverosides as substrates and specifically hydrolyzes the β-glycosidic bond between the disaccharide and the aglycons. The stereochemistry for enzymatic hydrolysis of 2-phenylethyl β-primeveroside by the β-primeverosidase was followed by 1H-nuclear magnetic resonance spectroscopy, revealing that the enzyme hydrolyzes the β-primeveroside by a retaining mechanism. The roles of the β-primeverosidase in the defense mechanism in tea plants and the floral aroma formation during tea manufacturing process are also discussed. PMID:12481100
Fisk, Ian D.; Linforth, Robert; Trophardy, Gil; Gray, David
2013-01-01
Oil bodies are natural emulsions that can be extracted from oil seeds and have previously been shown to be stable after spray drying. The aim of the study was to evaluate for the first time if spray dried water-washed oil bodies are an effective carrier for volatile lipophilic actives (the flavour compound d-limonene was used as an example aroma compound). Water-washed oil bodies were blended with maltodextrin and d-limonene and spray dried using a Buchi B-191 laboratory spray dryer. Lipid and d-limonene retention was 89–93% and 24–27%. Samples were compared to processed emulsions containing sunflower oil and d-limonene and stabilised by either lecithin or Capsul. Lecithin and Capsul processed emulsions had a lipid and d-limonene retention of 82–89%, 7.7–9.1% and 48–50%, 55–59% respectively indicating that water-washed oil bodies could retain the most lipids and Capsul could retain the most d-limonene. This indicates that whilst additional emulsifiers may be required for future applications of water-washed oil bodies as carriers of lipophilic actives, oil bodies are excellent agents for lipid encapsulation. PMID:24235784
de Rapper, Stephanie; Kamatou, Guy; Viljoen, Alvaro
2013-01-01
The antimicrobial activity of Lavandula angustifolia essential oil was assessed in combination with 45 other oils to establish possible interactive properties. The composition of the selected essential oils was confirmed using GC-MS with a flame ionization detector. The microdilution minimum inhibitory concentration (MIC) assay was undertaken, whereby the fractional inhibitory concentration (ΣFIC) was calculated for the oil combinations. When lavender oil was assayed in 1 : 1 ratios with other oils, synergistic (26.7%), additive (48.9%), non-interactive (23.7%), and antagonistic (0.7%) interactions were observed. When investigating different ratios of the two oils in combination, the most favourable interactions were when L. angustifolia was combined with Cinnamomum zeylanicum or with Citrus sinensis, against C. albicans and S. aureus, respectively. In 1 : 1 ratios, 75.6% of the essential oils investigated showed either synergistic or additive results, lending in vitro credibility to the use of essential oil blends in aroma-therapeutic practices. Within the field of aromatherapy, essential oils are commonly employed in mixtures for the treatment of infectious diseases; however, very little evidence exists to support the use in combination. This study lends some credence to the concomitant use of essential oils blended with lavender. PMID:23737850
Odor-active constituents of Cedrus atlantica wood essential oil.
Uehara, Ayaka; Tommis, Basma; Belhassen, Emilie; Satrani, Badr; Ghanmi, Mohamed; Baldovini, Nicolas
2017-12-01
The main odorant constituents of Cedrus atlantica essential oil were characterized by GC-Olfactometry (GC-O), using the Aroma Extract Dilution Analysis (AEDA) methodology with 12 panelists. The two most potent odor-active constituents were vestitenone and 4-acetyl-1-methylcyclohexene. The identification of the odorants was realized by a detailed fractionation of the essential oil by liquid-liquid basic extraction, distillation and column chromatography, followed by the GC-MS and GC-O analyses of some fractions, and the synthesis of some non-commercial reference constituents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Distinctive exotic flavor and aroma compounds of some exotic tropical fruits and berries: a review.
Lasekan, Ola; Abbas, Kassim A
2012-01-01
The characteristic flavor of exotic tropical fruits is one of their most attractive attributes to consumers. In this article, the enormous diversity of exotic fruit flavors is reviewed. Classifying some of the exotic fruits into two classes on the basis of whether esters or terpenes predominate in the aroma was also attempted. Indeed, as far as exotic tropical fruits are concerned, the majority of fruits have terpenes predominating in their aroma profile. Some of the fruits in this group are the Amazonian fruits such as pitanga, umbu-caja, camu-camu, garcinia, and bacuri. The ester group is made up of rambutan, durians, star fruit, snake fruit, acerola, tamarind, sapodilla, genipap, soursop, cashew, melon, jackfruit, and cupuacu respectively. Also, the role of sulphur-volatiles in some of the exotic fruits is detailed.
USDA-ARS?s Scientific Manuscript database
Both refrigeration and blanching of red stage tomatoes are common practices in Japan home kitchens and in food service operations. However, little is reported on the impact of such practices on aroma profiles in tomato fruits. In this study, ‘FL 47’ tomatoes at red stage were dipped in 50 °C hot wat...
[Aroma and perfume allergy: anathema for some epicurean appeal?].
Goffin, V; Nikkels, A F; Cornil, F; Deleixhe-Mauhin, F; Piérard-Franchimont, C; Piérard, G E
2002-09-01
Aromas and fragrances are present in many cosmetics, some topical drugs, food and various hygiene, household and industrial products. They can be responsible for contact dermatitis. Multiple sensitizations can even involve in various combinations some fragrance compounds, a given degradation product or a contaminant. The diagnosis relies on clinical examination and oriented anamnesis. A histological examination is sometimes necessary. Specific path testing brings insight on the culprit chemical compounds.
Lin, Jie; Dai, Yi; Guo, Ya-nan; Xu, Hai-rong; Wang, Xiao-chang
2012-01-01
This study aimed to analyze the volatile chemical profile of Longjing tea, and further develop a prediction model for aroma quality of Longjing tea based on potent odorants. A total of 21 Longjing samples were analyzed by headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Pearson’s linear correlation analysis and partial least square (PLS) regression were applied to investigate the relationship between sensory aroma scores and the volatile compounds. Results showed that 60 volatile compounds could be commonly detected in this famous green tea. Terpenes and esters were two major groups characterized, representing 33.89% and 15.53% of the total peak area respectively. Ten compounds were determined to contribute significantly to the perceived aroma quality of Longjing tea, especially linalool (0.701), nonanal (0.738), (Z)-3-hexenyl hexanoate (−0.785), and β-ionone (−0.763). On the basis of these 10 compounds, a model (correlation coefficient of 89.4% and cross-validated correlation coefficient of 80.4%) was constructed to predict the aroma quality of Longjing tea. Summarily, this study has provided a novel option for quality prediction of green tea based on HS-SPME/GC-MS technique. PMID:23225852
NASA Astrophysics Data System (ADS)
Farrell, Ross R.; Wellinger, Marco; Gloess, Alexia N.; Nichols, David S.; Breadmore, Michael C.; Shellie, Robert A.; Yeretzian, Chahan
2015-11-01
We introduce a real-time method to monitor the evolution of oak aromas during the oak toasting process. French and American oak wood boards were toasted in an oven at three different temperatures, while the process-gas was continuously transferred to the inlet of a proton-transfer-reaction time-of-flight mass spectrometer for online monitoring. Oak wood aroma compounds important for their sensory contribution to oak-aged wine were tentatively identified based on soft ionization and molecular mass. The time-intensity profiles revealed toasting process dynamics illustrating in real-time how different compounds evolve from the oak wood during toasting. Sufficient sensitivity was achieved to observe spikes in volatile concentrations related to cracking phenomena on the oak wood surface. The polysaccharide-derived compounds exhibited similar profiles; whilst for lignin-derived compounds eugenol formation differed from that of vanillin and guaiacol at lower toasting temperatures. Significant generation of oak lactone from precursors was evident at 225 oC. Statistical processing of the real-time aroma data showed similarities and differences between individual oak boards and oak wood sourced from the different origins. This study enriches our understanding of the oak toasting process and demonstrates a new analytical approach for research on wood volatiles.
Wakte, Kantilal; Zanan, Rahul; Hinge, Vidya; Khandagale, Kiran; Nadaf, Altafhusain; Henry, Robert
2017-01-01
Rice is the staple food of around 3 billion people, most of them in Asia which accounts for 90% of global rice consumption. Aromatic rices have been preferred over non-aromatic rice for hundreds of years. They have a premium value in national as well as international market owing to their unique aroma and quality. Many researchers were involved in identifying the compound responsible for the pleasant aroma in aromatic rice in the 20th century. However, due to its unstable nature, 2-acetyl-1-pyrroline (2AP) was discovered very late, in 1982. Buttery and co-workers found 2AP to be the principal compound imparting the pleasant aroma to basmati and other scented rice varieties. Since then, 2AP has been identified in all fragrant rice (Oryza sativa L.) varieties and a wide range of plants, animals, fungi, bacteria and various food products. The present article reviews in detail biochemical and genetic aspects of 2AP in living systems. The site of synthesis, site of storage and stability in plant systems in vivo is of interest. This compound requires more research on stability to facilitate use as a food additive. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Li, Chien-Chun; Yu, Hsiang-Fu; Chang, Chun-Hua; Liu, Yun-Ta; Yao, Hsien-Tsung
2018-01-01
The essential oil from a lemongrass variety of Cymbopogon flexuosus [lemongrass oil (LO)] is used in various food and aroma industry products and exhibits biological activities, such as anticancer and antimicrobial activities. To investigate the effects of 200 LO (200 mg/kg) and 400 LO (400 mg/kg) and its major component, citral (240 mg/kg), on drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in the liver, male Sprague-Dawley rats were fed a pelleted diet and administered LO or citral by gavage for 2 weeks. After 2 weeks of feeding, the effects of LO and citral on the metabolism and toxicity of acetaminophen were determined. The results showed that rats treated with 400 LO or citral had significantly reduced hepatic testosterone 6β-hydroxylation and ethoxyresorufin O-deethylation activities. In addition, NAD(P)H:quinone oxidoreductase 1 activity was significantly increased by citral, and Uridine 5'-diphospho (UDP) glucurosyltransferase activity was significantly increased by 400 LO in the rat liver. Treatment with 400 LO or citral reduced lipid peroxidation and reactive oxygen species levels in the liver. After acetaminophen treatment, however, LO and citral treatment resulted in little or no change in plasma alanine aminotransferase activity and acetaminophen-protein adducts content in the liver. Our results indicate that LO and citral may change the activities of drug-metabolizing enzymes and reduce oxidative stress in the liver. However, LO and citral may not affect the detoxification of acetaminophen. Copyright © 2017. Published by Elsevier B.V.
Jordán, María J; Quílez, María; Luna, María C; Bekhradi, Farzaneh; Sotomayor, José A; Sánchez-Gómez, Pedro; Gil, María I
2017-04-15
The main goal of the present study was to describe the volatile profile of three different basil genotypes (Genovese and Green and Purple Iranian), and the impact that water stress (75% and 50% field capacity) and storage time (up to 7days) have under mild refrigerated conditions. The chromatographic profile pointed to three different chemotypes: linalool/eugenol, neral/geranial, and estragol, for Genovese, Green, and Purple genotypes, respectively. Water stress depleted the volatile profile of these three landraces, due to a reduction in the absolute concentrations of some of the components related to fresh aroma (linalool, nerol, geraniol and eugenol). The stability of the basil volatile profile during storage varied depending on the water stress that had been applied. Concentration reductions of close to 50% were quantified for most of the components identified in the Purple genotype. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cosmetic components causing contact urticaria: a review and update.
Verhulst, Lien; Goossens, An
2016-12-01
Immediate skin reactions are common in dermatological practice, but may often be overlooked. The main objective of this article is to provide an update of the literature concerning immediate-type reactions or contact urticaria/contact urticaria syndrome caused by cosmetic ingredients in terms of immediate clinical symptoms, positive reactions following open, scratch or, most often, prick testing, and sometimes the detection of specific IgE antibodies. To this end, a selective search in different medical literature databases was performed. This yielded a list of cosmetic ingredients causing immediate reactions, including hair dyes and bleaches, preservatives, fragrance and aroma chemicals, sunscreens, hair glues, plant-derived and animal-derived components, permanent makeup and tattoos, glycolic acid peel, lip plumper, and alcohols. Many of the reported cases, however, lack appropriate controls and detailed investigation. Contact urticaria may occur with or without systemic symptoms, which are sometimes life-threatening. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Diako, Charles; McMahon, Kenneth; Mattinson, Scott; Evans, Marc; Ross, Carolyn
2016-08-01
The objective of this study was to assess the influence of the interaction among alcohol, tannins, and mannoproteins on the aroma, flavor, taste, and mouthfeel characteristics of selected commercial Merlot wines. Merlot wines (n = 61) were characterized for wine chemistry parameters, including pH, titratable acidity, alcohol, glucose, fructose, tannin profile, total proteins, and mannoprotein content. Agglomerative clustering of these physicochemical characteristics revealed 6 groups of wines. Two wines were selected from each group (n = 12) and profiled by a trained sensory evaluation panel. One wine from each group was evaluated using the electronic tongue (e-tongue). Sensory evaluation results showed complex effects among tannins, alcohol, and mannoproteins on the perception of most aromas, flavors, tastes, and mouthfeel attributes (P < 0.05). The e-tongue showed distinct differences among the taste attributes of the 6 groups of wines as indicated by a high discrimination index (DI = 95). Strong correlations (r(2) > 0.930) were reported between the e-tongue and sensory perception of sweet, sour, bitter, burning, astringent, and metallic. This study showed that interactions among wine matrix components influence the resulting sensory perceptions. The strong correlation between the e-tongue and trained panel evaluations indicated the e-tongue can complement sensory evaluations to improve wine quality assessment. © 2016 Institute of Food Technologists®
Lukić, Igor; Budić-Leto, Irena; Bubola, Marijan; Damijanić, Kristijan; Staver, Mario
2017-06-01
The effects of six maceration treatments on volatile aroma and phenol composition of Teran red wine were studied: standard maceration (control C), cold pre-fermentation maceration (CPM), saignée (S), pre-fermentation heating with extended maceration (PHT) or juice fermentation (PHP), and post-fermentation heating (POH). PHP wine contained the highest amounts of esters, fatty acids and anthocyanins, and the lowest content of other phenols. Alternative treatments decreased higher alcohols in relation to control C. CPM treatment lowered the extraction of seed tannins, exhibited the highest acetaldehyde, ethyl acetate and C 6 -compounds levels, and had increased ester levels in relation to control C. POH wine contained the highest concentration of total phenols, flavonoids, monomeric, oligomeric and polymeric flavanols, and color intensity and hue. S and PHT wines contained lower amount of total phenols, but higher than in C and CPM wines. The calculated Odor Activity Values were used to establish significant differences between the treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fusarium species-a promising tool box for industrial biotechnology.
Pessôa, Marina Gabriel; Paulino, Bruno Nicolau; Mano, Mario Cezar Rodrigues; Neri-Numa, Iramaia Angélica; Molina, Gustavo; Pastore, Glaucia Maria
2017-05-01
Global demand for biotechnological products has increased steadily over the years. Thus, need for optimized processes and reduced costs appear as a key factor in the success of this market. A process tool of high importance is the direct or indirect use of enzymes to catalyze the generation of various substances. Also, obtaining aromas and pigments from natural sources has becoming priority in cosmetic and food industries in order to supply the demand from consumers to substitute synthetic compounds, especially when by-products can be used as starting material for this purpose. Species from Fusarium genera are recognized as promising sources of several enzymes for industrial application as well as biocatalysts in the production of aromas, pigments and second generation biofuels, among others. In addition, secondary metabolites from these strains can present important biological activities for medical field. In this approach, this review brings focus on the use of Fusarium sp. strains in biotechnological production of compounds of industrial interest, showing the most recent researches in this area, results obtained and the best process conditions for each case.
Gao, Xianli; Yan, Shuang; Yang, Bao; Lu, Jian; Jin, Zhao
2014-06-01
Beef potentiator (BP) is the most popular savoury flavour and regarded as the soul of the modern food industry. In this work, BP was prepared by a novel method with Aspergillus oryzae and Aspergillus niger (BPSF). Three other BPs prepared using commercial enzymes (Protamex, Flavourzyme and papain; BPCEs) were used as controls to investigate its aroma characteristics and related compounds. Sensory evaluation showed that BPSF possessed more favourable and distinctive sauce-like, meat-like, roast and alcoholic attributes when compared with BPCEs. Significantly higher contents (peak areas) and proportions of pyrazines, pyrroles, sulfurous compounds and alcohols in BPSF were responsible for its sensory characteristics, and most of these aroma compounds were derived from microbial metabolism during beef koji preparation and the Maillard reaction. BP prepared by synergistic fermentation with A. oryzae and A. niger is a potential alternative for BP preparation. © 2013 Society of Chemical Industry.
Effect of nitrite on the odourant volatile fraction of cooked ham.
Thomas, Caroline; Mercier, Frédéric; Tournayre, Pascal; Martin, Jean-Luc; Berdagué, Jean-Louis
2013-08-15
The aim of this work was to reliably identify the key odour compounds in cooked ham and acquire new knowledge on the role of sodium nitrite on the formation of its aroma. Gas chromatography coupled with mass spectrometry and (or) olfactometry was used. In all, 24 odourants were identified in the volatile fraction of cooked ham. Their main origins are discussed. Orthonasal sniffing of the hams was used to study how these substances contributed to the overall aroma of the product. The aroma of cooked ham is a balance between that of certain sulfur compounds produced during cooking and that of oxidation compounds commonly found in cooked meats. In the absence of nitrite, this balance is disturbed by extensive formation of oxidation compounds that mask the meaty notes induced by the sulfur compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.
Microbial Cell Factories for the Production of Terpenoid Flavor and Fragrance Compounds.
Schempp, Florence M; Drummond, Laura; Buchhaupt, Markus; Schrader, Jens
2018-03-14
Terpenoid flavor and fragrance compounds are of high interest to the aroma industry. Microbial production offers an alternative sustainable access to the desired terpenoids independent of natural sources. Genetically engineered microorganisms can be used to synthesize terpenoids from cheap and renewable resources. Due to its modular architecture, terpenoid biosynthesis is especially well suited for the microbial cell factory concept: a platform host engineered for a high flux toward the central C 5 prenyl diphosphate precursors enables the production of a broad range of target terpenoids just by varying the pathway modules converting the C 5 intermediates to the product of interest. In this review typical terpenoid flavor and fragrance compounds marketed or under development by biotech and aroma companies are given, and the specificities of the aroma market are discussed. The main part of this work focuses on key strategies and recent advances to engineer microbes to become efficient terpenoid producers.