Sample records for aromatic blending compounds

  1. Emission comparison of urban bus engine fueled with diesel oil and 'biodiesel' blend.

    PubMed

    Turrio-Baldassarri, Luigi; Battistelli, Chiara L; Conti, Luigi; Crebelli, Riccardo; De Berardis, Barbara; Iamiceli, Anna Laura; Gambino, Michele; Iannaccone, Sabato

    2004-07-05

    The chemical and toxicological characteristics of emissions from an urban bus engine fueled with diesel and biodiesel blend were studied. Exhaust gases were produced by a turbocharged EURO 2 heavy-duty diesel engine, operating in steady-state conditions on the European test 13 mode cycle (ECE R49). Regulated and unregulated pollutants, such as carcinogenic polycyclic aromatic hydrocarbons (PAHs) and nitrated derivatives (nitro-PAHs), carbonyl compounds and light aromatic hydrocarbons were quantified. Mutagenicity of the emissions was evaluated by the Salmonella typhimurium/mammalian microsome assay. The effect of the fuels under study on the size distribution of particulate matter (PM) was also evaluated. The use of biodiesel blend seems to result in small reductions of emissions of most of the aromatic and polyaromatic compounds; these differences, however, have no statistical significance at 95% confidence level. Formaldehyde, on the other hand, has a statistically significant increase of 18% with biodiesel blend. In vitro toxicological assays show an overall similar mutagenic potency and genotoxic profile for diesel and biodiesel blend emissions. The electron microscopy analysis indicates that PM for both fuels has the same chemical composition, morphology, shape and granulometric spectrum, with most of the particles in the range 0.06-0.3 microm.

  2. Radiation processing of thermoplastic starch by blending aromatic additives: Effect of blend composition and radiation parameters

    NASA Astrophysics Data System (ADS)

    Khandal, Dhriti; Mikus, Pierre-Yves; Dole, Patrice; Coqueret, Xavier

    2013-03-01

    This paper reports on the effects of electron beam (EB) irradiation on poly α-1,4-glucose oligomers (maltodextrins) in the presence of water and of various aromatic additives, as model blends for gaining a better understanding at a molecular level the modifications occurring in amorphous starch-lignin blends submitted to ionizing irradiation for improving the properties of this type of bio-based thermoplastic material. A series of aromatic compounds, namely p-methoxy benzyl alcohol, benzene dimethanol, cinnamyl alcohol and some related carboxylic acids namely cinnamic acid, coumaric acid, and ferulic acid, was thus studied for assessing the ability of each additive to counteract chain scission of the polysaccharide and induce interchain covalent linkages. Gel formation in EB-irradiated blends comprising of maltodextrin was shown to be dependent on three main factors: the type of aromatic additive, presence of glycerol, and irradiation dose. The chain scission versus grafting phenomenon as a function of blend composition and dose were studied using Size Exclusion Chromatography by determining the changes in molecular weight distribution (MWD) from Refractive Index (RI) chromatograms and the presence of aromatic grafts onto the maltodextrin chains from UV chromatograms. The occurrence of crosslinking was quantified by gel fraction measurements allowing for ranking the cross-linking efficiency of the additives. When applying the method to destructurized starch blends, gel formation was also shown to be strongly affected by the moisture content of the sample submitted to irradiation. The results demonstrate the possibility to tune the reactivity of tailored blend for minimizing chain degradation and control the degree of cross-linking.

  3. Hydrocarbon emissions speciation in diesel and biodiesel exhausts

    NASA Astrophysics Data System (ADS)

    Payri, Francisco; Bermúdez, Vicente R.; Tormos, Bernardo; Linares, Waldemar G.

    Diesel engine emissions are composed of a long list of organic compounds, ranging from C 2 to C 12+, and coming from the hydrocarbons partially oxidized in combustion or produced by pyrolisis. Many of these are considered as ozone precursors in the atmosphere, since they can interact with nitrogen oxides to produce ozone under atmospheric conditions in the presence of sunlight. In addition to problematic ozone production, Brookes, P., and Duncan, M. [1971. Carcinogenic hydrocarbons and human cells in culture. Nature.] and Heywood, J. [1988. Internal Combustion Engine Fundamentals.Mc Graw-Hill, ISBN 0-07-1000499-8.] determined that the polycyclic aromatic hydrocarbons present in exhaust gases are dangerous to human health, being highly carcinogenic. The aim of this study was to identify by means of gas chromatography the amount of each hydrocarbon species present in the exhaust gases of diesel engines operating with different biodiesel blends. The levels of reactive and non-reactive hydrocarbons present in diesel engine exhaust gases powered by different biodiesel fuel blends were also analyzed. Detailed speciation revealed a drastic change in the nature and quantity of semi-volatile compounds when biodiesel fuels are employed, the most affected being the aromatic compounds. Both aromatic and oxygenated aromatic compounds were found in biodiesel exhaust. Finally, the conservation of species for off-side analysis and the possible influence of engine operating conditions on the chemical characterization of the semi-volatile compound phase are discussed. The use of oxygenated fuel blends shows a reduction in the Engine-Out emissions of total hydrocarbons. But the potential of the hydrocarbon emissions is more dependent on the compositions of these hydrocarbons in the Engine-Out, to the quantity; a large percent of hydrocarbons existing in the exhaust, when biodiesel blends are used, are partially burned hydrocarbons, and are interesting as they have the maximum reactivity, but with the use of pure biodiesel and diesel, the most hydrocarbons are from unburned fuel and they have a less reactivity. The best composition in the fuel, for the control of the hydrocarbon emissions reactivity, needs to be a fuel with high-saturated fatty acid content.

  4. Polycyclic aromatic hydrocarbon emissions from the combustion of alternative fuels in a gas turbine engine.

    PubMed

    Christie, Simon; Raper, David; Lee, David S; Williams, Paul I; Rye, Lucas; Blakey, Simon; Wilson, Chris W; Lobo, Prem; Hagen, Donald; Whitefield, Philip D

    2012-06-05

    We report on the particulate-bound polycyclic aromatic hydrocarbons (PAH) in the exhaust of a test-bed gas turbine engine when powered by Jet A-1 aviation fuel and a number of alternative fuels: Sasol fully synthetic jet fuel (FSJF), Shell gas-to-liquid (GTL) kerosene, and Jet A-1/GTL 50:50 blended kerosene. The concentration of PAH compounds in the exhaust emissions vary greatly between fuels. Combustion of FSJF produces the greatest total concentration of PAH compounds while combustion of GTL produces the least. However, when PAHs in the exhaust sample are measured in terms of the regulatory marker compound benzo[a]pyrene, then all of the alternative fuels emit a lower concentration of PAH in comparison to Jet A-1. Emissions from the combustion of Jet A-1/GTL blended kerosene were found to have a disproportionately low concentration of PAHs and appear to inherit a greater proportion of the GTL emission characteristics than would be expected from volume fraction alone. The data imply the presence of a nonlinear relation between fuel blend composition and the emission of PAH compounds. For each of the fuels, the speciation of PAH compounds present in the exhaust emissions were found to be remarkably similar (R(2) = 0.94-0.62), and the results do provide evidence to support the premise that PAH speciation is to some extent indicative of the emission source. In contrast, no correlation was found between the PAH species present in the fuel with those subsequently emitted in the exhaust. The results strongly suggests that local air quality measured in terms of the particulate-bound PAH burden could be significantly improved by the use of GTL kerosene either blended with or in place of Jet A-1 kerosene.

  5. Measured and Predicted Vapor Liquid Equilibrium of Ethanol-Gasoline Fuels with Insight on the Influence of Azeotrope Interactions on Aromatic Species Enrichment and Particulate Matter Formation in Spark Ignition Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratcliff, Matthew A; McCormick, Robert L; Burke, Stephen

    A relationship has been observed between increasing ethanol content in gasoline and increased particulate matter (PM) emissions from direct injection spark ignition (DISI) vehicles. The fundamental cause of this observation is not well understood. One potential explanation is that increased evaporative cooling as a result of ethanol's high HOV may slow evaporation and prevent sufficient reactant mixing resulting in the combustion of localized fuel rich regions within the cylinder. In addition, it is well known that ethanol when blended in gasoline forms positive azeotropes which can alter the liquid/vapor composition during the vaporization process. In fact, it was shown recentlymore » through a numerical study that these interactions can retain the aromatic species within the liquid phase impeding the in-cylinder mixing of these compounds, which would accentuate PM formation upon combustion. To better understand the role of the azeotrope interactions on the vapor/liquid composition evolution of the fuel, distillations were performed using the Advanced Distillation Curve apparatus on carefully selected samples consisting of gasoline blended with ethanol and heavy aromatic and oxygenated compounds with varying vapor pressures, including cumene, p-cymene, 4-tertbutyl toluene, anisole, and 4-methyl anisole. Samples collected during the distillation indicate an enrichment of the heavy aromatic or oxygenated additive with an increase in initial ethanol concentration from E0 to E30. A recently developed distillation and droplet evaporation model is used to explore the influence of dilution effects versus azeotrope interactions on the aromatic species enrichment. The results suggest that HOV-cooling effects as well as aromatic species enrichment behaviors should be considered in future development of predictive indices to forecast the PM potential of fuels containing oxygenated compounds with comparatively high HOV.« less

  6. Regulated, carbonyl and polycyclic aromatic hydrocarbon emissions from a light-duty vehicle fueled with diesel and biodiesel blends.

    PubMed

    Bakeas, Evangelos B; Karavalakis, Georgios

    2013-02-01

    This study investigates the impact of low concentration biodiesel blends on the regulated, carbonyl and PAH emissions from a modern passenger vehicle. The vehicle was a Euro 4 compliant SUV type fitted with a common-rail diesel engine and a diesel oxidation catalyst. Emission and fuel consumption measurements were performed on a chassis dynamometer using a constant volume sampling (CVS) technique, following the European regulations. All measurements were conducted over the NEDC and Artemis driving cycles. Aiming to evaluate the fuel impact on emissions, a soy-based biodiesel was blended with an ultra low sulphur diesel at proportions of 10 and 30% by volume. The experimental results revealed that emissions of PM, HC and CO decreased with biodiesel over most driving conditions. Some increases were observed over the NEDC which may be attributed to the cold-start effect and to certain fuel characteristics. NO x emissions were found to be higher with biodiesel especially during Artemis operation. CO 2 emissions and fuel consumption followed similar patterns and increased with biodiesel. Most carbonyl compound emissions increased with biodiesel, with the exception of aromatic aldehydes. It was found that carbonyl emissions decreased as the mean speed and load of the driving cycle was increased. Most PAH emissions were found to be lower with biodiesel, however, some increases were observed for certain toxic compounds.

  7. Reducing emissions of persistent organic pollutants from a diesel engine by fueling with water-containing butanol diesel blends.

    PubMed

    Chang, Yu-Cheng; Lee, Wen-Jhy; Yang, Hsi-Hsien; Wang, Lin-Chi; Lu, Jau-Huai; Tsai, Ying I; Cheng, Man-Ting; Young, Li-Hao; Chiang, Chia-Jui

    2014-05-20

    The manufacture of water-containing butanol diesel blends requires no excess dehydration and surfactant addition. Therefore, compared with the manufacture of conventional bio-alcohols, the energy consumption for the manufacture of water-containing butanol diesel blends is reduced, and the costs are lowered. In this study, we verified that using water-containing butanol diesel blends not only solves the tradeoff problem between nitrogen oxides (NOx) and particulate matter emissions from diesel engines, but it also reduces the emissions of persistent organic pollutants (POPs), including polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, polychlorinated diphenyl ethers, polybrominated dibenzo-p-dioxins and dibenzofurans, polybrominated biphenyls and polybrominated diphenyl ethers. After using blends of B2 with 10% and 20% water-containing butanol, the POP emission factors were decreased by amounts in the range of 22.6%-42.3% and 38.0%-65.5% on a mass basis, as well as 18.7%-78.1% and 51.0%-84.9% on a toxicity basis. The addition of water-containing butanol introduced a lower content of aromatic compounds and most importantly, lead to more complete combustion, thus resulting in a great reduction in the POP emissions. Not only did the self-provided oxygen of butanol promote complete oxidation but also the water content in butanol diesel blends could cause a microexplosion mechanism, which provided a better turbulence and well-mixed environment for complete combustion.

  8. Investigation of phase separated polyimide blend films containing boron nitride using FTIR imaging

    NASA Astrophysics Data System (ADS)

    Chae, Boknam; Hong, Deok Gi; Jung, Young Mee; Won, Jong Chan; Lee, Seung Woo

    2018-04-01

    Immiscible aromatic polyimide (PI) blend films and a PI blend film incorporated with thermally conductive boron nitride (BN) were prepared, and their phase separation behaviors were examined by optical microscopy and FTIR imaging. The 2,2‧-bis(trifluoromethyl)benzidine (TFMB)-containing and 4,4‧-thiodianiline (TDA)-containing aromatic PI blend films and a PI blend/BN composite film show two clearly separated regions; one region is the TFMB-rich phase, and the other region is the TDA-rich phase. The introduction of BN induces morphological changes in the immiscible aromatic PI blend film without altering the composition of either domain. In particular, the BN is selectively incorporated into the TDA-rich phase in this study.

  9. Electroantennographic and behavioral responses of the sphinx moth Manduca sexta to host plant headspace volatiles.

    PubMed

    Fraser, Ann M; Mechaber, Wendy L; Hildebrand, John G

    2003-08-01

    Coupled gas chromatography with electroantennographic detection (GC-EAD) using antennae of adult female Manduca sexta was employed to screen for olfactory stimulants present in headspace collections from four species of larval host plants belonging to two families: Solanaceae--Lycopersicon esculentum (tomato), Capiscum annuum (bell pepper), and Datura wrightii; and Martyniaceae--Pronboscideaparviflora. Headspace volatiles were collected from undamaged foliage of potted, living plants. GC-EAD revealed 23 EAD-active compounds, of which 15 were identified by GC-mass spectrometry. Identified compounds included aliphatic, aromatic, and terpenoid compounds bearing a range of functional groups. Nine EAD-active compounds were common to all four host plant species: (Z)-3-hexenyl acetate, nonanal, decanal, phenylacetaldehyde, methyl salicylate, benzyl alcohol, geranyl acetone, (E)-nerolidol, and one unidentified compound. Behavioral responses of female moths to an eight-component synthetic blend of selected tomato headspace volatiles were tested in a laboratory wind tunnel. Females were attracted to the blend. A comparison of responses from antennae of males and females to bell pepper headspace volatiles revealed that males responded to the same suite of volatiles as females, except for (Z)-3-hexenyl benzoate. EAD responses of males also were lower for (Z)-and (E)-nerolidol and one unidentified compound. Electroantennogram EAG dose-response curves for the 15 identified EAD-active volatiles were recorded. At the higher test doses (10-100 microg), female antennae yielded larger EAG responses to terpenoids and to aliphatic and aromatic esters. Male antennae did respond to the higher doses of (Z)-3-hexenyl benzoate, indicating that they can detect this compound. On the basis of ubiquity of the EAD-active volatiles identified to date in host plant headspace collections, we suggest that M. sexta uses a suite of volatiles to locate and identify appropriate host plants.

  10. Estimation of F-3 and F-4 knock-limited performance ratings for ternary and quaternary blends containing triptane or other high-antiknock aviation-fuel blending agents

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C

    1948-01-01

    Charts are presented that permit the estimation of F-3 and F-4 knock-limited performance ratings for certain ternary and quaternary fuel blends. Ratings for various ternary and quaternary blends estimated from these charts compare favorably with experimental F-3 and F-4 ratings. Because of the unusual behavior of some of the aromatic blends in the F-3 engine, the charts for aromatic-paraffinic blends are probably less accurate than the charts for purely paraffinic blends.

  11. Physicochemical and toxicological characteristics of particulate matter emitted from a non-road diesel engine: comparative evaluation of biodiesel-diesel and butanol-diesel blends.

    PubMed

    Zhang, Zhi-Hui; Balasubramanian, Rajasekhar

    2014-01-15

    Combustion experiments were conducted to evaluate the effects of using blends of ultralow sulfur diesel (ULSD) with biodiesel or n-butanol on physicochemical and toxicological characteristics of particulate emissions from a non-road diesel engine. The results indicated that compared to ULSD, both the blended fuels could effectively reduce the particulate mass and elemental carbon emissions, with butanol being more effective than biodiesel. The proportion of organic carbon and volatile organic compounds in particles increased for both blended fuels. However, biodiesel blended fuels showed lower total particle-phase polycyclic aromatic hydrocarbons (PAHs) emissions. The total number emissions of particles ≤560nm in diameter decreased gradually for the butanol blended fuels, but increased significantly for the biodiesel blended fuels. Both the blended fuels indicated lower soot ignition temperature and activation energy. All the particle extracts showed a decline in cell viability with the increased dose. However, the change in cell viability among test fuels is not statistically significant different with the exception of DB-4 (biodiesel-diesel blend containing 4% oxygen) used at 75% engine load. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    NASA Astrophysics Data System (ADS)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  13. Antiknock evaluation of hydrocarbons and ethers as aviation fuel components

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C

    1950-01-01

    The results of a NACA investigation conducted over a period of several years to evaluate the anti-knock characteristics of organic compounds are summarized. Included are data for 18 branched paraffins and olefins, 27 aromatics, and 22 ethers. The factors of performance investigated were blending characteristics, temperature sensitivity, lead response, and relation between molecular structure and antiknock ratings. Four engines were used.

  14. Effects of Alternative Fuels and Aromatics on Gas-Turbine Particle Emissions

    NASA Astrophysics Data System (ADS)

    Thornhill, K. L., II; Moore, R.; Winstead, E.; Anderson, B. E.; Klettlinger, J. L.; Ross, R. C.; Surgenor, A.

    2015-12-01

    This presentation describes experiments conducted with a Honeywell GTCP36-150 Auxiliary Power Unit (APU) to evaluate the effects of varying fuel composition on particle emissions. The APU uses a single-stage compressor stage, gas turbine engine with a can-type combustor to generate bypass flow and electrical power for supporting small aircraft and helicopters. It is installed in a "hush-house" at NASA Glenn Research Center and is configured as a stand-alone unit that can be fueled from an onboard tank or external supply. It operates at constant RPM, but its fuel flow can be varied by changing the electrical load or volume of bypass flow. For these tests, an external bank of resistors were attached to the APU's DC and AC electrical outlets and emissions measurements were made at low, medium and maximum electrical current loads. Exhaust samples were drawn from several points downstream in the exhaust duct and fed to an extensive suite of gas and aerosol sensors installed within a mobile laboratory parked nearby. Aromatic- and sulfur-free synthetic kerosenes from Rentech, Gevo, UOP, Amyris and Sasol were tested and their potential to reduce PM emissions evaluated against a single Jet A1 base fuel. The role of aromatic compounds in regulating soot emissions was also evaluated by adding metered amounts of aromatic blends (Aro-100, AF-Blend, SAK) and pure compounds (tetracontane and 1-methylnaphthalene) to a base alternative fuel (Sasol). Results show that, relative to Jet A1, alternative fuels reduce nonvolatile particle number emissions by 50-80% and--by virtue of producing much smaller particles—mass emissions by 65-90%; fuels with the highest hydrogen content produced the greatest reductions. Nonvolatile particle emissions varied in proportion to fuel aromatic content, with additives containing the most complex ring structures producing the greatest emission enhancements.

  15. Characterization of mutagenic activity in grain-based coffee-substitute blends and instant coffees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johansson, M.A.E.; Knize, M.G.; Felton, J.S.

    1994-06-01

    Several grain-based coffee-substitute blends and instant coffees showed a mutagenic response in the Ames/Salmonella test using TA98, YG1024 and YG1O29 with metabolic activation. The beverage powders contained 150 to 500 TA98 and 1150 to 4050 YG1024 revertant colonies/gram, respectively. The mutagenic activity in the beverage powders was shown to be stable to heat and the products varied in resistance to acid nitrite treatment. Characterization of the mutagenic activity, using HPLC-and the Ames test of the collected fractions, showed the coffee-substitutes and instant coffees contain several mutagenic compounds, which are most likely aromatic amines.

  16. Frog volatile compounds: application of in vivo SPME for the characterization of the odorous secretions from two species of Hypsiboas treefrogs.

    PubMed

    Brunetti, Andrés E; Merib, Josias; Carasek, Eduardo; Caramão, Elina B; Barbará, Janaina; Zini, Claudia A; Faivovich, Julián

    2015-04-01

    A novel in vivo design was used in combination with solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) to characterize the volatile compounds from the skin secretion of two species of tree frogs. Conventional SPME-GC/MS also was used for the analysis of volatiles present in skin samples and for the analysis of volatiles present in the diet and terraria. In total, 40 and 37 compounds were identified in the secretion of Hypsiboas pulchellus and H. riojanus, respectively, of which, 35 were common to both species. Aliphatic aldehydes, a low molecular weight alkadiene, an aromatic alcohol, and other aromatics, ketones, a methoxy pyrazine, sulfur containing compounds, and hemiterpenes are reported here for the first time in anurans. Most of the aliphatic compounds seem to be biosynthesized by the frogs following different metabolic pathways, whereas aromatics and monoterpenes are most likely sequestered from environmental sources. The characteristic smell of the secretion of H. pulchellus described by herpetologists as skunk-like or herbaceous is explained by a complex blend of different odoriferous components. The possible role of the volatiles found in H. pulchellus and H. riojanus is discussed in the context of previous hypotheses about the biological function of volatile secretions in frogs (e.g., sex pheromones, defense secretions against predators, mosquito repellents).

  17. N,S,O-Heterocycles in Aged Champagne Reserve Wines and Correlation with Free Amino Acid Concentrations.

    PubMed

    Le Menn, Nicolas; Marchand, Stephanie; de Revel, Gilles; Demarville, Dominique; Laborde, Delphine; Marchal, Richard

    2017-03-22

    Champagne regulations allow winegrowers to stock still wines to compensate for quality shifts in vintages, mainly due to climate variations. According to their technical requirements and house style, Champagne producers use these stored wines in their blends to enhance complexity. The presence of lees and aging at low pH (2.95-3.15), as in Champagne wines, lead to several modifications in wine composition. These conditions, combined with extended aging, result in the required environment for the Maillard chemical reaction, involving aromatic molecules, including sulfur, oxygen, and nitrogen heterocycles (such as thiazole, furan, and pyrazine derivatives), which may have a sensory impact on wine. Some aromatic heterocycles in 50 monovarietal wines aged from 1 to 27 years provided by Veuve Clicquot Ponsardin Champagne house were determined by the SPME-GC-MS method. The most interesting result highlighted a strong correlation between certain heterocycle concentrations and wine age. The second revealed a correlation between heterocyclic compound and free amino acid concentrations measured in the wines, suggesting that these compounds are potential aromatic precursors when wine is aged on lees and, thus, potential key compounds in the bouquet of aged Champagnes. The principal outcome of these assays was to reveal, for the first time, that aromatic heterocycle concentrations in Champagne base wines are correlated with wine age.

  18. Thermal Stability Results of a Fischer-Tropsch Fuel With Various Blends of Aromatic Solution

    NASA Technical Reports Server (NTRS)

    Lindsey, Jennifer; Klettlinger, Suder

    2013-01-01

    Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. F-T fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal paraffins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline commercial grade F-T jet fuel, and various blends of this F-T fuel with an aromatic solution. The goal of this research is to determine the effect of aromatic content on the thermal stability of F-T fuel. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonic Fixed Wing Project. Two different aromatic content fuels from Rentech, as well as these fuels with added aromatic blend were analyzed for thermal stability using the JFTOT method. Preliminary results indicate a reduction in thermal stability occurs upon increasing the aromatic content to 10% by adding an aromatic blend to the neat fuel. These results do not specify a failure based on pressure drop, but only on tube color. It is unclear whether tube color correlates to more deposition on the tube surface or not. Further research is necessary in order to determine if these failures are true failures based on tube color. Research using ellipsometry to determine tube deposit thickness rather than color will be continued in follow-up of this study.

  19. Preparing composite materials from matrices of processable aromatic polyimide thermoplastic blends

    NASA Technical Reports Server (NTRS)

    Johnston, Norman J. (Inventor); St.clair, Terry L. (Inventor); Baucom, Robert M. (Inventor); Gleason, John R. (Inventor)

    1991-01-01

    Composite materials with matrices of tough, thermoplastic aromatic polyimides are obtained by blending semi-crystalline polyimide powders with polyamic acid solutions to form slurries, which are used in turn to prepare prepregs, the consolidation of which into finished composites is characterized by excellent melt flow during processing.

  20. Influence of oxidized biodiesel blends on regulated and unregulated emissions from a diesel passenger car.

    PubMed

    Karavalakis, Georgios; Bakeas, Evangelos; Stournas, Stamos

    2010-07-01

    This paper investigates the effects of biodiesel blends on regulated and unregulated emissions from a Euro 4 diesel passenger car, fitted with a diesel oxidation catalyst and a diesel particle filter (DPF). Emission and fuel consumption measurements were conducted for the New European Driving Cycle (NEDC) and the Artemis driving cycles. Criteria pollutants, along with carbonyl, polycyclic aromatic hydrocarbon (PAH) and nitrate PAH and oxygenate PAH emissions, were measured and recorded. A soy-based biodiesel and an oxidized biodiesel, obtained from used frying oils, were blended with an ultra low sulfur diesel at proportions of 20, 30, and 50% by volume. The results showed that the DPF had the ability to significantly reduce particulate matter (PM) emissions over all driving conditions. Carbon monoxide (CO) and hydrocarbon (HC) emissions were also reduced with biodiesel; however, a notable increase in nitrogen oxide (NO(x)) emissions was observed with biodiesel blends. Carbon dioxide (CO(2)) emissions and fuel consumption followed similar patterns and increased with biodiesel. The influence of fuel type and properties was particularly noticeable on the unregulated pollutants. The use of the oxidized biodiesel blends led to significant increases in carbonyl emissions, especially in compounds which are associated with potential health risks such as formaldehyde, acetaldehyde, and acrolein. Sharp increases in most PAH compounds and especially those which are known for their toxic and carcinogenic potency were observed with the oxidized blends. The presence of polymerization products and cyclic acids were the main factors that influenced the PAH emissions profile.

  1. The Knock-Limited Performance of Fuel Blends Containing Aromatics V : N-Propylbenzene, N-Butylbenzene, Isobutylbenzene, M-Xylene, and 1-Isopropyl-4-Methylbenzene

    NASA Technical Reports Server (NTRS)

    Meyer, Carl L.; Branstetter, J. Robert

    1946-01-01

    Results are reported of knock-limited tests of five aromatics, each individually blended with selected base fuels and tested with and without TEL, using 17.6, F-4, and F-3 small-scale engines. The five aromatics rated in the following order of decreasing antiknock effectiveness at fuel/air ratio 0.10: m-xylene, 1-isopropyl-4-methylbenzene, n-propylbenzene, isobutylbenzene, and n-butylbenzene.

  2. Fuel property effects on Navy aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Moses, C. A.

    1984-01-01

    Problems of ensuring compatibility of Navy aircraft with fuels that may be different than the fuels for which the equipment was designed and qualified are discussed. To avoid expensive requalification of all the engines and airframe fuel systems, methodologies to qualify future fuels by using bench-scale and component testing are being sought. Fuel blends with increasing JP5-type aromatic concentration were seen to produce less volume swell than an equivalent aromatic concentration in the reference fuel. Futhermore, blends with naphthenes, decalin, tetralin, and naphthalenes do not deviate significantly from the correlation line of aromatic blends, Similar results are found with tensile strenth and elongation. Other elastomers, sealants, and adhesives are also being tested.

  3. Biodiesel presence in the source zone hinders aromatic hydrocarbons attenuation in a B20-contaminated groundwater

    NASA Astrophysics Data System (ADS)

    Ramos, Débora Toledo; Lazzarin, Helen Simone Chiaranda; Alvarez, Pedro J. J.; Vogel, Timothy M.; Fernandes, Marilda; do Rosário, Mário; Corseuil, Henry Xavier

    2016-10-01

    The behavior of biodiesel blend spills have received limited attention in spite of the increasing and widespread introduction of biodiesel to the transportation fuel matrix. In this work, a controlled field release of biodiesel B20 (100 L of 20:80 v/v soybean biodiesel and diesel) was monitored over 6.2 years to assess the behavior and natural attenuation of constituents of major concern (e.g., BTEX (benzene, toluene, ethyl-benzene and xylenes) and PAHs (polycyclic aromatic hydrocarbons)) in a sandy aquifer material. Biodiesel was preferentially biodegraded compared to diesel aromatic compounds with a concomitant increase in acetate, methane (near saturation limit (≈ 22 mg L- 1)) and dissolved BTEX and PAH concentrations in the source zone during the first 1.5 to 2.0 years after the release. Benzene and benzo(a)pyrene concentrations remained above regulatory limits in the source zone until the end of the experiment (6.2 years after the release). Compared to a previous adjacent 100-L release of ethanol-amended gasoline, biodiesel/diesel blend release resulted in a shorter BTEX plume, but with higher residual dissolved hydrocarbon concentrations near the source zone. This was attributed to greater persistence of viscous (and less mobile) biodiesel than the highly-soluble and mobile ethanol in the source zone. This persistence of biodiesel/diesel NAPL at the source zone slowed BTEX and PAH biodegradation (by the establishment of an anaerobic zone) but reduced the plume length by reducing mobility. This is the first field study to assess biodiesel/diesel blend (B20) behavior in groundwater and its effects on the biodegradation and plume length of priority groundwater pollutants.

  4. Biodiesel presence in the source zone hinders aromatic hydrocarbons attenuation in a B20-contaminated groundwater.

    PubMed

    Ramos, Débora Toledo; Lazzarin, Helen Simone Chiaranda; Alvarez, Pedro J J; Vogel, Timothy M; Fernandes, Marilda; do Rosário, Mário; Corseuil, Henry Xavier

    2016-10-01

    The behavior of biodiesel blend spills have received limited attention in spite of the increasing and widespread introduction of biodiesel to the transportation fuel matrix. In this work, a controlled field release of biodiesel B20 (100L of 20:80 v/v soybean biodiesel and diesel) was monitored over 6.2years to assess the behavior and natural attenuation of constituents of major concern (e.g., BTEX (benzene, toluene, ethyl-benzene and xylenes) and PAHs (polycyclic aromatic hydrocarbons)) in a sandy aquifer material. Biodiesel was preferentially biodegraded compared to diesel aromatic compounds with a concomitant increase in acetate, methane (near saturation limit (≈22mgL -1 )) and dissolved BTEX and PAH concentrations in the source zone during the first 1.5 to 2.0years after the release. Benzene and benzo(a)pyrene concentrations remained above regulatory limits in the source zone until the end of the experiment (6.2years after the release). Compared to a previous adjacent 100-L release of ethanol-amended gasoline, biodiesel/diesel blend release resulted in a shorter BTEX plume, but with higher residual dissolved hydrocarbon concentrations near the source zone. This was attributed to greater persistence of viscous (and less mobile) biodiesel than the highly-soluble and mobile ethanol in the source zone. This persistence of biodiesel/diesel NAPL at the source zone slowed BTEX and PAH biodegradation (by the establishment of an anaerobic zone) but reduced the plume length by reducing mobility. This is the first field study to assess biodiesel/diesel blend (B20) behavior in groundwater and its effects on the biodegradation and plume length of priority groundwater pollutants. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, J.M.

    The physical properties: mechanical, electrical, and thermal of a general purpose epoxy potting compound, filled with either glass microspheres, aluminum oxide or beta-eucryptite and catalyzed with either an aliphatic amine, a liquid aromatic amine eutectic blend, or a liquid anhydride are discussed. The properties of a CTBN modified epoxy are also included. Twelve formulation-cure cycle combinations were chosen for evaluation. The temperature dependent properties from -65/sup 0/ to 400/sup 0/F (-54/sup 0/ to 204/sup 0/C) for the 12 combinations are given.

  6. Low temperature oxidation of benzene and toluene in mixture with n-decane

    PubMed Central

    Herbinet, Olivier; Husson, Benoit; Ferrari, Maude; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique

    2013-01-01

    The oxidation of two blends, benzene/n-decane and toluene/n-decane, was studied in a jet-stirred reactor with gas chromatography analysis (temperatures from 500 to 1100 K, atmospheric pressure, stoichiometric mixtures). The studied hydrocarbon mixtures contained 75% of aromatics in order to highlight the chemistry of the low-temperature oxidation of these two aromatic compounds which have a very low reactivity compared to large alkanes. The difference of behavior between the two aromatic reactants is highly pronounced concerning the formation of derived aromatic products below 800 K. In the case of benzene, only phenol could be quantified. In the case of toluene, significant amounts of benzaldehyde, benzene, and cresols were also formed, as well as several heavy aromatic products such as bibenzyl, phenylbenzylether, methylphenylbenzylether, and ethylphenylphenol. A comparison with results obtained with neat n-decane showed that the reactivity of the alkane is inhibited by the presence of benzene and, to a larger extent, toluene. An improved model for the oxidation of toluene was developed based on recent theoretical studies of the elementary steps involved in the low-temperature chemistry of this molecule. Simulations using this model were successfully compared with the obtained experimental results. PMID:23762017

  7. Lignin model compounds as bio-based reactive diluents for liquid molding resins.

    PubMed

    Stanzione, Joseph F; Sadler, Joshua M; La Scala, John J; Wool, Richard P

    2012-07-01

    Lignin is a copious paper and pulping waste product that has the potential to yield valuable, low molecular weight, single aromatic chemicals when strategically depolymerized. The single aromatic lignin model compounds, vanillin, guaiacol, and eugenol, were methacrylated by esterification with methacrylic anhydride and a catalytic amount of 4-dimethylaminopyridine. Methacrylated guaiacol (MG) and methacrylated eugenol (ME) exhibited low viscosities at room temperature (MG: 17 cP and ME: 28 cP). When used as reactive diluents in vinyl ester resins, they produced resin viscosities higher than that of vinyl ester-styrene blends. The relative volatilities of MG (1.05 wt% loss in 18 h) and ME (0.96 wt% loss in 18 h) measured by means of thermogravimetric analysis (TGA) were considerably lower than that of styrene (93.7 wt% loss in 3 h) indicating the potential of these chemicals to be environmentally friendly reactive diluents. Bulk polymerization of MG and ME generated homopolymers with glass transition temperatures (T(g)s) of 92 and 103 °C, respectively. Blends of a standard vinyl ester resin with MG and ME (50 wt % reactive diluent) produced thermosets with T(g)s of 127 and 153 °C, respectively, which are comparable to vinyl ester-styrene resins, thus demonstrating the ability of MG and ME to completely replace styrene as reactive diluents in liquid molding resins without sacrificing cured-resin thermal performance. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Elastomer Impact When Switch-Loading Synthetic Fuel Blends and Petroleum Fuels

    DTIC Science & Technology

    2006-07-01

    aromatics by ASTM D 5186 ( supercrital Fluid Chromatography method used for aromatics) in reference 4, was assumed to be equivalent to volume percent...Included in Appendix C is the internet link to the datasheets for the aromatic surrogate, Aromatic 150 Fluid . Characterizations of this aromatic...www.exxonmobilchemical.com/Public_Products/ Fluids /Aromatics_HeavyAromatics/Worldwi de/Grades_and_DataSheets/Aro_HeavyAromatics_Solvesso_Grades_WW.asp 21

  9. Carbon-Type Analysis and Comparison of Original and Reblended FACE Diesel Fuels (FACE 2, FACE 4, and FACE 7)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bays, J. Timothy; King, David L.; O'Hagan, Molly J.

    This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of Fuels for Advanced Combustion Engines (FACE) diesel blends, FD-2B, FD 4B, and FD-7B, and makes comparison of the new blends with the original FACE diesel blends, FD 2A, FD 4A, and FD-7A, respectively. Generally, FD-2A and FD-2B are more similar than the A and B blends of FD-4 and FD-7. The aromatic carbon content is roughly equivalent, although the new FACE blends have decreased monoaromatic content and increased di- and tri-cycloaromatic content, as well as a higher overall aromatic content, than the original FACEmore » blends. The aromatic components of the new FACE blends generally have a higher alkyl substitution with longer alkyl substituents. The naphthenic and paraffinic contents remained relatively consistent. Based on aliphatic methyl and methylene carbon ratios, cetane numbers for FD-2A and -2B, and FD-7A and -7B are predicted to be consistent, while the cetane number for FD-4B is predicted to be higher than FD-4A. Overall, the new FACE fuel blends are fairly consistent with the original FACE fuel blends, but there are observable differences. In addition to providing important comparative compositional information on reformulated FACE diesel blends, this report also provides important information about the capabilities of the team at Pacific Northwest National Laboratory in the use of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.« less

  10. Property Analysis of Ethanol--Natural Gasoline--BOB Blends to Make Flex Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alleman, Teresa L.; Yanowitz, Janet

    Ten natural gasolines were analyzed for a wide range of properties, including Reid vapor pressure (RVP), benzene, sulfur, distillation, stability, metals, and aromatic content, to determine their quality. Benzene and sulfur content were sufficiently low in all but one of the samples that they could be blended without further upgrading. Four of these samples were selected to blend with blendstock for oxygenate blending (BOB) and ethanol to produce E51, E70, and E83 blends, targeting 7.8 and 9.0-psi finished fuels. The volume of each component in the blend was estimated using the Reddy model, with the assumption that the BOB andmore » natural gasoline blend linearly and behave as a single component in the model calculations. Results show that the Reddy model adequately predicts the RVP of the finished blend for E51 and E70, but significantly underpredicts the RVP of E83 blends by nearly 2 psi. It is hypothesized that the underprediction is a function of the very low aromatic content of the E83 blends, even compared to the E51 and E70 blends.« less

  11. Measuring and predicting sooting tendencies of oxygenates, alkanes, alkenes, cycloalkanes, and aromatics on a unified scale

    DOE PAGES

    Das, Dhrubajyoti D.; St. John, Peter C.; McEnally, Charles S.; ...

    2017-12-27

    Databases of sooting indices, based on measuring some aspect of sooting behavior in a standardized combustion environment, are useful in providing information on the comparative sooting tendencies of different fuels or pure compounds. However, newer biofuels have varied chemical structures including both aromatic and oxygenated functional groups, which expands the chemical space of relevant compounds. In this work, we propose a unified sooting tendency database for pure compounds, including both regular and oxygenated hydrocarbons, which is based on combining two disparate databases of yield-based sooting tendency measurements in the literature. Unification of the different databases was made possible by leveragingmore » the greater dynamic range of the color ratio pyrometry soot diagnostic. This unified database contains a substantial number of pure compounds (≥ 400 total) from multiple categories of hydrocarbons important in modern fuels and establishes the sooting tendencies of aromatic and oxygenated hydrocarbons on the same numeric scale for the first time. Then, using this unified sooting tendency database, we have developed a predictive model for sooting behavior applicable to a broad range of hydrocarbons and oxygenated hydrocarbons. The model decomposes each compound into single-carbon fragments and assigns a sooting tendency contribution to each fragment based on regression against the unified database. The model’s predictive accuracy (as demonstrated by leave-one-out cross-validation) is comparable to a previously developed, more detailed predictive model. The fitted model provides insight into the effects of chemical structure on soot formation, and cases where its predictions fail reveal the presence of more complicated kinetic sooting mechanisms. Our work will therefore enable the rational design of low-sooting fuel blends from a wide range of feedstocks and chemical functionalities.« less

  12. Measuring and predicting sooting tendencies of oxygenates, alkanes, alkenes, cycloalkanes, and aromatics on a unified scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Dhrubajyoti D.; St. John, Peter C.; McEnally, Charles S.

    Databases of sooting indices, based on measuring some aspect of sooting behavior in a standardized combustion environment, are useful in providing information on the comparative sooting tendencies of different fuels or pure compounds. However, newer biofuels have varied chemical structures including both aromatic and oxygenated functional groups, which expands the chemical space of relevant compounds. In this work, we propose a unified sooting tendency database for pure compounds, including both regular and oxygenated hydrocarbons, which is based on combining two disparate databases of yield-based sooting tendency measurements in the literature. Unification of the different databases was made possible by leveragingmore » the greater dynamic range of the color ratio pyrometry soot diagnostic. This unified database contains a substantial number of pure compounds (≥ 400 total) from multiple categories of hydrocarbons important in modern fuels and establishes the sooting tendencies of aromatic and oxygenated hydrocarbons on the same numeric scale for the first time. Then, using this unified sooting tendency database, we have developed a predictive model for sooting behavior applicable to a broad range of hydrocarbons and oxygenated hydrocarbons. The model decomposes each compound into single-carbon fragments and assigns a sooting tendency contribution to each fragment based on regression against the unified database. The model’s predictive accuracy (as demonstrated by leave-one-out cross-validation) is comparable to a previously developed, more detailed predictive model. The fitted model provides insight into the effects of chemical structure on soot formation, and cases where its predictions fail reveal the presence of more complicated kinetic sooting mechanisms. Our work will therefore enable the rational design of low-sooting fuel blends from a wide range of feedstocks and chemical functionalities.« less

  13. Catalytic conversion of biomass-derived ethanol to liquid hydrocarbon blend-stock: Effect of light gas recirculation

    DOE PAGES

    Li, Zhenglong; Lepore, Andrew W.; Davison, Brian H.; ...

    2016-01-01

    Here, we describe a light gas recirculation (LGR) method to increase the liquid hydrocarbon yield with reduced aromatic content from catalytic conversion of ethanol to hydrocarbons. The previous liquid hydrocarbon yield is ~40% from one-pass ethanol conversion over V-ZSM-5 at 350 C and atmospheric pressure where the remaining ~60% yield is light gas hydrocarbons. In comparison, the liquid hydrocarbon yield increases to 80% when a simulated light gas hydrocarbon stream is co-fed at a rate of 0.053 mol g-1 h-1 with ethanol due to the conversion of most of the light olefins. The LGR also significantly improves the quality ofmore » the liquid hydrocarbon blend-stock by reducing aromatic content and overall benzene concentration. For 0.027 mol g-1 h-1 light gas mixture co-feeding, the average aromatic content in liquid hydrocarbons is 51.5% compared with 62.5% aromatic content in ethanol only experiment. Average benzene concentration decreases from 3.75% to 1.5% which is highly desirable since EPA limits benzene concentration in gasoline to 0.62%. As a result of low benzene concentration, the blend-wall for ethanol derived liquid hydrocarbons changes from ~18% to 43%. The remaining light paraffins and olefins can be further converted to valuable BTX products (94% BTX in the liquid) over Ga-ZSM-5 at 500 C. Thus, the LGR is an effective approach to convert ethanol to liquid hydrocarbons with higher liquid yield and low aromatic content, especially low benzene concentration, which could be blended with gasoline in a much higher ratio than ethanol or ethanol derived hydrocarbon blend-stock.« less

  14. Catalytic conversion of biomass-derived ethanol to liquid hydrocarbon blend-stock: Effect of light gas recirculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhenglong; Lepore, Andrew W.; Davison, Brian H.

    Here, we describe a light gas recirculation (LGR) method to increase the liquid hydrocarbon yield with reduced aromatic content from catalytic conversion of ethanol to hydrocarbons. The previous liquid hydrocarbon yield is ~40% from one-pass ethanol conversion over V-ZSM-5 at 350 C and atmospheric pressure where the remaining ~60% yield is light gas hydrocarbons. In comparison, the liquid hydrocarbon yield increases to 80% when a simulated light gas hydrocarbon stream is co-fed at a rate of 0.053 mol g-1 h-1 with ethanol due to the conversion of most of the light olefins. The LGR also significantly improves the quality ofmore » the liquid hydrocarbon blend-stock by reducing aromatic content and overall benzene concentration. For 0.027 mol g-1 h-1 light gas mixture co-feeding, the average aromatic content in liquid hydrocarbons is 51.5% compared with 62.5% aromatic content in ethanol only experiment. Average benzene concentration decreases from 3.75% to 1.5% which is highly desirable since EPA limits benzene concentration in gasoline to 0.62%. As a result of low benzene concentration, the blend-wall for ethanol derived liquid hydrocarbons changes from ~18% to 43%. The remaining light paraffins and olefins can be further converted to valuable BTX products (94% BTX in the liquid) over Ga-ZSM-5 at 500 C. Thus, the LGR is an effective approach to convert ethanol to liquid hydrocarbons with higher liquid yield and low aromatic content, especially low benzene concentration, which could be blended with gasoline in a much higher ratio than ethanol or ethanol derived hydrocarbon blend-stock.« less

  15. Sensitivity of hazardous air pollutant emissions to the combustion of blends of petroleum diesel and biodiesel fuel

    NASA Astrophysics Data System (ADS)

    Magara-Gomez, Kento T.; Olson, Michael R.; Okuda, Tomoaki; Walz, Kenneth A.; Schauer, James J.

    2012-04-01

    Emission rates and composition of known hazardous air pollutants in the exhaust gas from a commercial agriculture tractor, burning a range of biodiesel blends operating at two different load conditions were investigated to better understand the emission characteristics of biodiesel fuel. Ultra-Low Sulfur Petroleum Diesel (ULSD) fuel was blended with soybean oil and beef tallow based biodiesel to examine fuels containing 0% (B0), 50% (B50) and 100% (B100) soybean oil based biodiesel, and 50% (B50T) and 100% (B100T) beef tallow biodiesel. Samples were collected using a dilution source sampler to simulate atmospheric dilution. Particulate matter and exhaust gases were analyzed for carbonyls, Volatile Organic Compounds (VOCs), and Polycyclic Aromatic Hydrocarbons (PAHs) to determine their respective emission rates. This analysis is focused on the emissions of organic compounds classified by the US EPA as air toxics and include 2,2,4 trimethylpentane, benzene, toluene, ethylbenzene, m-, p- and o-xylene, formaldehyde, acetaldehyde and methylethyl ketone. Emission rates of 2,2,4 trimethylpentane, toluene, ethylbenzene, m-, p- and o-xylene decreased more than 90% for B50, B100 and B100T blends; decreases in emission rates of benzene, formaldehyde and acetaldehyde were more modest, producing values between 23 and 67%, and methyl ethyl ketone showed decreases not exceeding 7% for the studied biodiesel blends. PAHs emission rates were reduced by 66% for B50, 84% for B100, and by 89% for B100T. The overall emissions of toxic organic compounds were calculated and expressed as benzene equivalents. The largest contributors of toxic risk were found to be formaldehyde and acetaldehyde. Reductions in formaldehyde emissions were 23% for B50 and 42% for B100 soybean, and 40% for B100T beef tallow compared to B0. Similarly, acetaldehyde reductions were 34% for B50 and 53% for B100 soybean biodiesel and 42% for B100T beef tallow biodiesel.

  16. The impact of using biodiesel/marine gas oil blends on exhaust emissions from a stationary diesel engine.

    PubMed

    Karavalakis, G; Tzirakis, E; Mattheou, L; Stournas, S; Zannikos, F; Karonis, D

    2008-12-01

    The purpose of this work was to investigate the impact of marine gas oil (MGO)/biodiesel blends on the exhaust emissions and fuel consumption in a single cylinder, stationary, diesel engine. Three different origins of biodiesel were used as the blending feedstock with the reference MGO, at proportions of 5 and 10% by volume. Methyl esters were examined according to the automotive FAME standard EN 14214. The baseline MGO and biodiesel blends were examined according to ISO 8217:2005 specifications for the DMA category. Independently of the biodiesel used, a decrease of PM, HC, CO and CO(2) emissions was observed. Emissions of NO(x) were also lower with respect to MGO. This reduction in NO(x) may be attributed to some physicochemical properties of the fuels applied, such as the higher cetane number and the lower volatility of methyl esters. Reductions in PM for biodiesel blends were lower in the exhaust than those of the reference fuel which was attributed to the oxygen content and the near absence of sulphur and aromatics compounds in biodiesel. However, a slight increase in fuel consumption was observed for the biodiesel blends that may be tolerated due to the exhaust emissions benefits. Brake thermal efficiency was also determined. Unregulated emissions were characterized by determining the soluble organic fraction content of the particulate matter.

  17. Technology advances & new applications for biodiesel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmberg, B.

    1994-12-31

    Biodiesel, as the term is used in the United States, is a blend of methyl and/or ethyl esters with petrodiesel. The esters are biodegradable, non-toxic and essentially free of sulfur or aromatic compounds. The blend level is a function of economics, the desired emissions profile, material compatibility, and combustion characteristics. The focus at the moment is on a 20 vol% blend of a methyl ester (methyl soyate) in petrodiesel (known as B20). The name {open_quotes}biodiesel{close_quotes} was introduced by the National SoyDiesel Development Board (now the National Biodiesel Board), which has pioneered the commercialization of biodiesel in the United States. Themore » American Biofuels Association (ABA) and Information Resources Inc. (IRI) have, in the past, been part of their support team. Methyl or ethyl esters are made from vegetable and tree oils, animal fats, and used oils and fats. These oils are blended with an alcohol (usually methanol, although ethanol can be used as well) and a catalyst such as sodium hydroxide. The resulting chemical reaction (which occurs at moderate temperatures and pressures) produces a methyl or ethyl ester and glycerine, a valuable material used extensively in the manufacture of soaps and other consumer products.« less

  18. Organic Molecules On the Surfaces of Iapetus and Phoebe

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne J.; Dalle Ore, Cristina M.; Clark, Roger N.; Cruikshank, Dale P.

    2017-01-01

    Absorption bands of both aliphatic and aromatic organic molecules are found in the reflectance spectra of Saturn satellites Iapetus, Phoebe, and Hyperion obtained with the Cassini Visible-Infrared Mapping Spectrometer (VIMS). The VIMS data do not fully resolve the individual bands of C-H functional groups specific to particular molecules, but instead show absorption envelopes representing blended clusters of the bands of aromatic (approximately 3.28 microns) and aliphatic (approximately 3.4 microns) hydrocarbons known in spectra of interstellar dust. In Cruikshank et al. (2014), we matched components of the unresolved hydrocarbon band envelopes with clusters of bands of a range of functional groups in specific types of organic compounds (e.g., normal and N-substituted polycyclic aromatic hydrocarbons, olefins, cycloalkanes, and molecules with lone-pair interactions of N and O with CH3+). In the work reported here, we revisit the spectra of Iapetus and Phoebe using VIMS data processed with improved radiometric and wavelength calibration (denoted RC19). The band envelopes of both aromatic and aliphatic hydrocarbons are now more clearly defined, corroborating the provisional assignment of specific classes of molecules in Cruikshank et al. 2014, but permitting a more reliable quantitative assessment of the relative contributions of those classes, and a revision to the earlier estimate of the ratio of the abundances of aromatic to aliphatic molecules.

  19. Investigation of sources, properties and preparation of distillate test fuels

    NASA Technical Reports Server (NTRS)

    Bowden, J. N.; Erwin, J.

    1983-01-01

    Distillate test fuel blends were generated for prescribed variations in composition and physical properties. Fuels covering a wide range in properties and composition which would provide a matrix of fuels for possible use in future combustion research programs were identified. Except for tetralin the blending components were all from typical refinery streams. Property variation blends span a boiling range within 150 C to 335 C, freezing point -23 C to -43 C, aromatic content 20 to 50 volume percent, hydrogen content 11.8 to 14.2 mass percent, viscosity 4 and 11 cSt (-20 C), and naphthalenes 8 and 16 volume percent. Composition variation blends were made with two base stocks, one paraffinic and the other napthenic. To each base stock was added each of three aromatic type fuels (alkyl benzenes, tetralin, and naphthalenes) for assigned initial boiling point, final boiling point, and hydrogen content. The hydrogen content was 13.5 mass percent for the paraffinic base stock blends and 12.5 mass percent and 11.5 mass percent for the naphthenic base stock blends. Sample 5-gallon quantities of all blends were prepared and analyzed.

  20. Boron-rich benzene and pyrene derivatives for the detection of thermal neutrons

    PubMed Central

    Yemam, Henok A.; Mahl, Adam; Koldemir, Unsal; Remedes, Tyler; Parkin, Sean; Greife, Uwe; Sellinger, Alan

    2015-01-01

    A synthetic methodology is developed to generate boron rich aromatic small molecules based on benzene and pyrene moieties for the detection of thermal neutrons. The prepared aromatic compounds have a relatively high boron content up to 7.4 wt%, which is important for application in neutron detection as 10B (20% of natural abundance boron) has a large neutron induced reaction cross-section. This is demonstrated by preparing blends of the synthesized molecules with fluorescent dopants in poly(vinyltoluene) matrices resulting in comparable scintillation light output and neutron capture as state-of-the art commercial scintillators, but with the advantage of much lower cost. The boron-rich benzene and pyrene derivatives are prepared by Suzuki conditions using both microwave and traditional heating, affording yields of 40–93%. This new procedure is simple and straightforward, and has the potential to be scaled up. PMID:26334111

  1. Thermal Stability Testing of Fischer-Tropsch Fuel and Various Blends with Jet A, as Well as Aromatic Blend Additives

    NASA Technical Reports Server (NTRS)

    Klettlinger, J.; Rich, R.; Yen, C.; Surgenor, A.

    2011-01-01

    Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. Fischer-Tropsch fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal parafins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline conventional Jet A, a commercial grade F-T jet fuel, and various blends of this F-T fuel in Jet A. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.

  2. [The effect of sensory stimuli of varying modality on the human body functioning and indices of tense muscular activity].

    PubMed

    Kaĭdalin, V S; Kamchatnikov, A G; Sentiabrev, N N; Katuntsev, V P

    2007-01-01

    The work had a purpose to study benefits of aromatic blends of tonic and relaxing essences and functional music on some of the psychophysiological properties of the human functional state and motor activeity. Participants were 30 sprinters (18-22 y.o. males) having the first-class and master ranks. The psychophysiological indices of the athletes' functional state were evaluated with the use of the "CAH" and Spilberger situational anxiety tests, calculated Cardeu vegetative index, time for simple motor reaction and reaction to a moving object. Motor activity was evaluated by top running speed determined with a photo-electronic time-keeper and by duration of pedaling on bicycle ergometer at maximal power. The running step parameters were recorded with electropodography. It was shown that the positive effect of the aromatic essence blends and functional music on motor activity developed fairly rapidly but did not last long. The article discusses features and possible ways the aromatic blends and music effect human organism.

  3. Primary emissions and secondary organic aerosol formation from the exhaust of a flex-fuel (ethanol) vehicle

    NASA Astrophysics Data System (ADS)

    Suarez-Bertoa, R.; Zardini, A. A.; Platt, S. M.; Hellebust, S.; Pieber, S. M.; El Haddad, I.; Temime-Roussel, B.; Baltensperger, U.; Marchand, N.; Prévôt, A. S. H.; Astorga, C.

    2015-09-01

    Incentives to use biofuels may result in increasing vehicular emissions of compounds detrimental to air quality. Therefore, regulated and unregulated emissions from a Euro 5a flex-fuel vehicle, tested using E85 and E75 blends (gasoline containing 85% and 75% of ethanol (vol/vol), respectively), were investigated at 22 and -7 °C over the New European Driving Cycle, at the Vehicle Emission Laboratory at the European Commission Joint Research Centre Ispra, Italy. Vehicle exhaust was comprehensively analyzed at the tailpipe and in a dilution tunnel. A fraction of the exhaust was injected into a mobile smog chamber to study the photochemical aging of the mixture. We found that emissions from a flex-fuel vehicle, fueled by E85 and E75, led to secondary organic aerosol (SOA) formation, despite the low aromatic content of these fuel blends. Emissions of regulated and unregulated compounds, as well as emissions of black carbon (BC) and primary organic aerosol (POA) and SOA formation were higher at -7 °C. The flex-fuel unregulated emissions, mainly composed of ethanol and acetaldehyde, resulted in very high ozone formation potential and SOA, especially at low temperature (860 mg O3 km-1 and up to 38 mg C kg-1). After an OH exposure of 10 × 106 cm-3 h, SOA mass was, on average, 3 times larger than total primary particle mass emissions (BC + POA) with a high O:C ratio (up to 0.7 and 0.5 at 22 and -7 °C, respectively) typical of highly oxidized mixtures. Furthermore, high resolution organic mass spectra showed high 44/43 ratios (ratio of the ions m/z 44 and m/z 43) characteristic of low-volatility oxygenated organic aerosol. We also hypothesize that SOA formation from vehicular emissions could be due to oxidation products of ethanol and acetaldehyde, both short-chain oxygenated VOCs, e.g. methylglyoxal and acetic acid, and not only from aromatic compounds.

  4. Copolyimides prepared from ODPA, BTDA and 3,4'-ODA

    NASA Technical Reports Server (NTRS)

    Chang, Alice C. (Inventor); St. Clair, Terry L. (Inventor)

    1996-01-01

    A copolyimide was prepared by reacting 3,4'-oxydianiline (3,4'-ODA) with a dianhydride blend comprising, based on the total amount of the dianhydride blend, about 67 to 80 mole percent of 4,4'-oxydiphthalic anhydride (ODPA) and about 20 to 33 mole percent of 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA). The copolyimide may be endcapped with up to about 10 mole percent of a monofunctional aromatic anhydride and has unbalanced stoichiometry such that a molar deficit in the dianhydride blend is compensated with twice the molar amount of the monofunctional aromatic anhydride. The copolyimide was used to prepare composites, films and adhesives. The film and adhesive properties were significantly better than those of LaRC.TM.-IA.

  5. Comprehensive two-dimensional gas chromatography for the analysis of synthetic and crude-derived jet fuels.

    PubMed

    van der Westhuizen, Rina; Ajam, Mariam; De Coning, Piet; Beens, Jan; de Villiers, André; Sandra, Pat

    2011-07-15

    Fully synthetic jet fuel (FSJF) produced via Fischer-Tropsch (FT) technology was recently approved by the international aviation fuel authorities. To receive approval, comparison of FSJF and crude-derived fuel and blends on their qualitative and quantitative hydrocarbon composition was of utmost importance. This was performed by comprehensive two-dimensional gas chromatography (GC×GC) in the reversed phase mode. The hydrocarbon composition of synthetic and crude-derived jet fuels is very similar and all compounds detected in the synthetic product are also present in crude-derived fuels. Quantitatively, the synthetic fuel consists of a higher degree of aliphatic branching with less than half the aromatic content of the crude-derived fuel. GC×GC analyses also indicated the presence of trace levels of hetero-atomic impurities in the crude-derived product that were absent in the synthetic product. While clay-treatment removed some of the impurities and improved the fuel stability, the crude-derived product still contained traces of cyclic and aromatic S-containing compounds afterwards. Lower level of aromatics and the absence of sulphur are some of the factors that contribute to the better fuel stability and environmental properties of the synthetic fuel. GC×GC was further applied for the analysis of products during Jet Fuel Thermal Oxidation Testing (JFTOT), which measures deposit formation of a fuel under simulated engine conditions. JFTOT showed the synthetic fuel to be much more stable than the crude-derived fuel. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Assessing soil and groundwater contamination from biofuel spills.

    PubMed

    Chen, Colin S; Shu, Youn-Yuen; Wu, Suh-Huey; Tien, Chien-Jung

    2015-03-01

    Future modifications of fuels should include evaluation of the proposed constituents for their potential to damage environmental resources such as the subsurface environment. Batch and column experiments were designed to simulate biofuel spills in the subsurface environment and to evaluate the sorption and desorption behavior of target fuel constituents (i.e., monoaromatic and polyaromatic hydrocarbons) in soil. The extent and reversibility of the sorption of aromatic biofuel constituents onto soil were determined. When the ethanol content in ethanol-blended gasoline exceeded 25%, enhanced desorption of the aromatic constituents to water was observed. However, when biodiesel was added to diesel fuel, the sorption of target compounds was not affected. In addition, when the organic carbon content of the soil was higher, the desorption of target compounds into water was lower. The empirical relationships between the organic-carbon normalized sorption coefficient (Koc) and water solubility and between Koc and the octanol-water partition coefficient (Kow) were established. Column experiments were carried out for the comparison of column effluent concentration/mass from biofuel-contaminated soil. The dissolution of target components depended on chemical properties such as the hydrophobicity and total mass of biofuel. This study provides a basis for predicting the fate and transport of hydrophobic organic compounds in the event of a biofuel spill. The spill scenarios generated can assist in the assessment of biofuel-contaminated sites.

  7. Bio-Oil Hydrotreatment for Enhancing Solubility in Biodiesel and the Oxydation Stability of Resulting Blends.

    PubMed

    Botella, Lucía; Stankovikj, Filip; Sánchez, José L; Gonzalo, Alberto; Arauzo, Jesús; Garcia-Pérez, Manuel

    2018-01-01

    The major challenge for the pyrolytic conversion of lignocellulosic materials into crude bio-oil is the poor quality of the final product. Several strategies (addition of solvents, production of emulsions, and extraction with biodiesel) have been studied to improve its fuel properties. The extraction with biodiesel is an interesting solution because it allows direct utilization of some bio-oil fractions as fuels. However, fraction extracted with biodiesel is typically between 10 and 18 wt. %. In this paper we studied mild hydrotreatment of pyrolysis oil to enhance its solubility in biodiesel. The study was conducted with BTG and Amaron oils hydrotreated at temperatures between 200 and 325°C in the presence of Ru/C catalyst. Hydrotreated oils generated three phases: top oil (light hydrocarbons), middle aqueous phase and bottom heavy oil phase. Each of the phases was characterized and the content of acetic acid, phenols, aromatic compounds, and linear alkane hydrocarbons quantified. The upgraded bio-oils were more soluble in biodiesel than the crude bio-oils, obtaining blends with up to 48 and 38 wt. % for the BTG and Amaron bio-oil, respectively. Some of the fuel properties of the resulting blends are also reported here.

  8. Bio-oil Hydrotreatment for Enhancing Solubility in Biodiesel and the Oxydation Stability of Resulting Blends

    NASA Astrophysics Data System (ADS)

    Botella, Lucía; Stankovikj, Filip; Sánchez, José L.; Gonzalo, Alberto; Arauzo, Jesús; Garcia-Pérez, Manuel

    2018-04-01

    The major challenge for the pyrolytic conversion of lignocellulosic materials into crude bio-oil is the poor quality of the final product. Several strategies (addition of solvents, production of emulsions, and extraction with biodiesel) have been studied to improve its fuel properties. The extraction with biodiesel is an interesting solution because it allows direct utilization of some bio-oil fractions as fuels. However, fraction extracted with biodiesel is typically between 10 and 18 wt. %. In this paper we studied mild hydrotreatment of pyrolysis oil to enhance its solubility in biodiesel. The study was conducted with BTG and Amaron oils hydrotreated at temperatures between 200 and 325 °C in the presence of Ru/C catalyst. Hydrotreated oils generated three phases: top oil (light hydrocarbons), middle aqueous phase and bottom heavy oil phase. Each of the phases was characterized and the content of acetic acid, phenols, aromatic compounds and linear alkane hydrocarbons quantified. The upgraded bio-oils were more soluble in biodiesel than the crude bio-oils, obtaining blends with up to 48 and 38 wt. % for the BTG and Amaron bio-oil, respectively. Some of the fuel properties of the resulting blends are also reported here.

  9. Bio-Oil Hydrotreatment for Enhancing Solubility in Biodiesel and the Oxydation Stability of Resulting Blends

    PubMed Central

    Botella, Lucía; Stankovikj, Filip; Sánchez, José L.; Gonzalo, Alberto; Arauzo, Jesús; Garcia-Pérez, Manuel

    2018-01-01

    The major challenge for the pyrolytic conversion of lignocellulosic materials into crude bio-oil is the poor quality of the final product. Several strategies (addition of solvents, production of emulsions, and extraction with biodiesel) have been studied to improve its fuel properties. The extraction with biodiesel is an interesting solution because it allows direct utilization of some bio-oil fractions as fuels. However, fraction extracted with biodiesel is typically between 10 and 18 wt. %. In this paper we studied mild hydrotreatment of pyrolysis oil to enhance its solubility in biodiesel. The study was conducted with BTG and Amaron oils hydrotreated at temperatures between 200 and 325°C in the presence of Ru/C catalyst. Hydrotreated oils generated three phases: top oil (light hydrocarbons), middle aqueous phase and bottom heavy oil phase. Each of the phases was characterized and the content of acetic acid, phenols, aromatic compounds, and linear alkane hydrocarbons quantified. The upgraded bio-oils were more soluble in biodiesel than the crude bio-oils, obtaining blends with up to 48 and 38 wt. % for the BTG and Amaron bio-oil, respectively. Some of the fuel properties of the resulting blends are also reported here. PMID:29675406

  10. Influence of Polyphosphoric Acid on the Consistency and Composition of Formulated Bitumen: Standard Characterization and NMR Insights

    PubMed Central

    Varanda, Catarina; Ribeiro, Jorge

    2016-01-01

    Over the recent years, bitumen modification with polymers, acids, or mineral fillers has gained relevance to adjust its performance properties. This work reports the use of polyphosphoric acid (PPA) for the modification of formulated bitumen. With this objective, an in-depth literature review on PPA modification was firstly performed. Subsequently, five individual refinery components were selected for the preparation of bitumen blends, namely, asphaltic residue, vacuum residue, and three lube oils extracts. Seven binary/ternary bitumen blends were prepared and then treated with PPA. Afterwards, the five components and the unmodified and PPA-modified bitumen were characterized by standard methods (penetration, softening point, and penetration index), SARA analysis, elemental analysis, and 31P and 1H nuclear magnetic resonance (NMR) spectroscopy. The results evidenced higher asphaltenes and lower saturates/resins contents in PPA-modified bitumen. The NMR data suggest that the paraffinic chains became longer, the content of condensed aromatics increased, more substituted aromatic structures appeared, and α-hydrogen in aromatic structures diminished. These findings disclosed the improved consistency and oxidation stability of PPA-modified bitumen blends. PMID:27579214

  11. Experimental and kinetic modeling investigation of rich premixed toluene flames doped with n-butanol.

    PubMed

    Li, Yuyang; Yuan, Wenhao; Li, Tianyu; Li, Wei; Yang, Jiuzhong; Qi, Fei

    2018-04-25

    n-Butanol is a promising renewable biofuel and has a lot of advantages as a gasoline additive compared with ethanol. Though the combustion of pure n-butanol has been extensively investigated, the chemical structures of large hydrocarbons doped with n-butanol, especially for aromatic fuels, are still insufficiently understood. In this work, rich premixed toluene/n-butanol/oxygen/argon flames were investigated at 30 Torr with synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS). The blending ratio of n-butanol was varied from 0 to 50%, while the equivalence ratio was maintained at a quite rich value (1.75) for the purpose of studying the influence of n-butanol on the aromatic growth process. Flame species including radicals, reactive molecules, isomers and polycyclic aromatic hydrocarbons (PAHs) were identified and their mole fraction profiles were measured. A kinetic model of toluene/n-butanol combustion was developed from our recently reported toluene and n-butanol models. It is observed that the production of most toluene decomposition products and larger aromatics was suppressed as the blending ratio of n-butanol increases. Meanwhile, the addition of n-butanol generally enhanced the formation of most observed C2-C4 hydrocarbons and C1-C4 oxygenated species. The rate of production (ROP) analysis and experimental observations both indicate that the interaction between toluene and n-butanol in their decomposition processes mainly occurs at the formation of small intermediates, e.g. acetylene and methyl. In particular, the interaction between toluene and n-butanol in methyl formation influences the formation of large monocyclic aromatics such as ethylbenzene, styrene and phenylacetylene, making their maximum mole fractions decay slowly upon increasing the blending ratio of n-butanol compared with toluene and benzyl. The increase of the blending ratio of n-butanol reduces the formation of key PAH precursors such as benzyl, fulvenallenyl, benzene, phenyl and propargyl, which leads to a remarkable reduction in the formation of PAHs.

  12. 40 CFR 721.775 - Brominated aromatic com-pound (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a) Chemical... as a brominated aromatic compound (PMN P-84-824) is subject to reporting under this section for the...

  13. 40 CFR Table 5 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the following table for solvent blends for which you do not have test data or manufacturer's... spirits 64742-89-6 0.15 Toluene. 14. Low aromatic white spirit 64742-82-1 0 None. 15. Mineral spirits...

  14. 40 CFR Table 3 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the following table for solvent blends for which you do not have test data or manufacturer's... spirits 64742-89-6 0.15 Toluene. 14. Low aromatic white spirit 64742-82-1 0 None. 15. Mineral spirits...

  15. 40 CFR Table 5 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the following table for solvent blends for which you do not have test data or manufacturer's... spirits 64742-89-6 0.15 Toluene. 14. Low aromatic white spirit 64742-82-1 0 None. 15. Mineral spirits...

  16. 40 CFR Table 3 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the following table for solvent blends for which you do not have test data or manufacturer's... spirits 64742-89-6 0.15 Toluene. 14. Low aromatic white spirit 64742-82-1 0 None. 15. Mineral spirits...

  17. 40 CFR Table 4 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fraction values in the following table for solvent blends for which you do not have test data or... spirits 64742-89-6 0.15 Toluene. 14. Low aromatic white spirit 64742-82-1 0 None. 15. Mineral spirits...

  18. 40 CFR Table 3 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fraction values in the following table for solvent blends for which you do not have test data or... spirits 64742-89-6 0.15 Toluene. 14. Low aromatic white spirit 64742-82-1 0 None. 15. Mineral spirits...

  19. 40 CFR Table 4 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fraction values in the following table for solvent blends for which you do not have test data or... spirits 64742-89-6 0.15 Toluene. 14. Low aromatic white spirit 64742-82-1 0 None. 15. Mineral spirits...

  20. 40 CFR Table 3 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fraction values in the following table for solvent blends for which you do not have test data or... spirits 64742-89-6 0.15 Toluene. 14. Low aromatic white spirit 64742-82-1 0 None. 15. Mineral spirits...

  1. Microtox Aquatic Toxcity of Petrodiesel and Biodiesel Blends: The Role of Biodiesel's Autoxidation Products

    EPA Science Inventory

    The acute Microtox toxicity of the water accommodated fraction (WAF) of six commercial soybean biodiesel/petrodiesel blends was investigated at different oil loads. We analyzed five fatty acid methyl esters (FAMEs), C10 - C24 n-alkanes, four aromatics, methanol, and tota...

  2. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOEpatents

    Baker, E.G.; Elliott, D.C.

    1993-01-19

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compounds as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  3. Fig volatile compounds--a first comparative study.

    PubMed

    Grison-Pigé, Laure; Hossaert-McKey, Martine; Greeff, Jaco M; Bessière, Jean-Marie

    2002-09-01

    We analysed the compounds of volatile blends released by receptive figs of twenty Ficus species to attract their specific pollinating wasps. In all, 99 different compounds were identified. The compounds are mainly terpenoids, aliphatic compounds and products from the shikimic acid pathway. In each species blend, there are few major compounds, which are generally common among floral fragrances. Most species blends also include rare compounds, but generally their proportion in the blend is low. A possible basis for species-specificity of Ficus-wasp interactions is discussed in relation to the patterns of volatiles found in this interspecies comparison. Copyright 2002 Elsevier Science Ltd.

  4. (Methylthio)phenol semiochemicals are exploited by deceptive orchids as sexual attractants for Campylothynnus thynnine wasps.

    PubMed

    Bohman, Björn; Phillips, Ryan D; Flematti, Gavin R; Peakall, Rod

    2018-04-01

    Until recently, (methylthio)phenols as natural products had only been reported from bacteria. Now, four representatives of this class of sulfurous aromatic compounds have been discovered as semiochemicals in the orchid Caladenia crebra, which secures pollination by sexual deception. In this case, field bioassays confirmed that a 10:1 blend of 2-(methylthio)benzene-1,4-diol (1) and 4-hydroxy-3-(methylthio)benzaldehyde (2) sexually attracts the male thynnine wasp Campylothynnus flavopictus (Tiphiidae:Thynnineae), the exclusive pollinator of C. crebra. Here we show with field bioassays that another undescribed species of Campylothynnus (sp. A) is strongly sexually attracted to a 1:1 blend of compounds 1 and 2, which elicits very high attempted copulation rates (88%). We also confirm that this Campylothynnus species is a pollinator of Caladenia attingens subsp. attingens. Chemical analysis of the flowers of this orchid revealed two (methylthio)phenols, compound 2 and 2-(methylthio)phenol (3), as candidate semiochemicals involved in pollinator attraction. Thus, (methylthio)phenols are likely to be more widely used than presently known. The confirmation of this Campylothynnus as a pollinator of C. attingens subsp. attingens at our study sites was unexpected, since elsewhere this orchid is pollinated by a different thynnine wasp (Thynnoides sp). In general, sexually deceptive Caladenia only use a single species of pollinator, and as such, this unusual case may offer a tractable study system for understanding the chemical basis of pollinator switching in sexually deceptive orchids. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Compatibility Assessment of Fuel System Thermoplastics with Bio-Blendstock Fuel Candidates Using Hansen Solubility Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kass, Michael D.; West, Brian H.

    The compatibility of key fuel system infrastructure plastics with 39 bio-blendstock fuel candidates was examined using Hansen solubility analysis. Fuel types included multiple alcohols, esters, ethers, ketones, alkenes and one alkane. These compounds were evaluated as neat molecules and as blends with the gasoline surrogate, dodecane, and a mix of dodecane and 10% ethanol (E10D). The plastics included polyphenylene sulfide (PPS), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyoxymethylene (POM), polybutylene terephthalate (PBT), polypropylene (PP), high density polyethylene (HDPE), along with several nylon grades. These materials have been rigorously studied with other fuel types, and their volume change resultsmore » were found to correspond well with their predicted solubility levels.The compatibility was assessed using Hansen solubility parameters and in many instances peak solubility occurred for blends rather than the neat fuel components. The results showed that good compatibilities can be expected for PPS, PVDF, PET, nylons, acetal, PEI, PVC, HDPE and PBT. PTFE showed potential incompatibilities at low blend concentrations, especially when E10D was used as the base fuel blend. Although, the nylons show good overall compatibility, the results do indicate that mid-range and high alcohol contents may not be suitable for Nylon 6 and Nylon 11 in applications requiring low volume swell. Poor potential compatibility was limited to two plastic types; PETG exposed to mid and high blend levels of the ethers and PP exposed to sabinene and the aromatics. In general, the data showed good compatibility for the majority of the candidate fuels and plastics.« less

  6. Compatibility Assessment of Fuel System Thermoplastics with Bio-Blendstock Fuel Candidates Using Hansen Solubility Analysis

    DOE PAGES

    Kass, Michael D.; West, Brian H.

    2018-01-03

    The compatibility of key fuel system infrastructure plastics with 39 bio-blendstock fuel candidates was examined using Hansen solubility analysis. Fuel types included multiple alcohols, esters, ethers, ketones, alkenes and one alkane. These compounds were evaluated as neat molecules and as blends with the gasoline surrogate, dodecane, and a mix of dodecane and 10% ethanol (E10D). The plastics included polyphenylene sulfide (PPS), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyoxymethylene (POM), polybutylene terephthalate (PBT), polypropylene (PP), high density polyethylene (HDPE), along with several nylon grades. These materials have been rigorously studied with other fuel types, and their volume change resultsmore » were found to correspond well with their predicted solubility levels.The compatibility was assessed using Hansen solubility parameters and in many instances peak solubility occurred for blends rather than the neat fuel components. The results showed that good compatibilities can be expected for PPS, PVDF, PET, nylons, acetal, PEI, PVC, HDPE and PBT. PTFE showed potential incompatibilities at low blend concentrations, especially when E10D was used as the base fuel blend. Although, the nylons show good overall compatibility, the results do indicate that mid-range and high alcohol contents may not be suitable for Nylon 6 and Nylon 11 in applications requiring low volume swell. Poor potential compatibility was limited to two plastic types; PETG exposed to mid and high blend levels of the ethers and PP exposed to sabinene and the aromatics. In general, the data showed good compatibility for the majority of the candidate fuels and plastics.« less

  7. Emissions from diesel engines using fatty acid methyl esters from different vegetable oils as blends and pure fuel

    NASA Astrophysics Data System (ADS)

    Schröder, O.; Munack, A.; Schaak, J.; Pabst, C.; Schmidt, L.; Bünger, J.; Krahl, J.

    2012-05-01

    Biodiesel is used as a neat fuel as well as in blends with mineral diesel fuel. Because of the limited availability of fossil resources, an increase of biogenic compounds in fuels is desired. To achieve this goal, next to rapeseed oil, other sustainably produced vegetable oils can be used as raw materials. These raw materials influence the fuel properties as well as the emissions. To investigate the environmental impact of the exhaust gas, it is necessary to determine regulated and non-regulated exhaust gas components. In detail, emissions of aldehydes and polycyclic aromatic hydrocarbons (PAH), as well as mutagenicity in the Ames test are of special interest. In this paper emission measurements on a Euro III engine OM 906 of Mercedes-Benz are presented. As fuel vegetable oil methyl esters from various sources and reference diesel fuel were used as well as blends of the vegetable oil methyl esters with diesel fuel. PAH were sampled according to VDI Guideline 3872. The sampling procedure of carbonyls was accomplished using DNPH cartridges coupled with potassium iodide cartridges. The carbon monoxide and hydrocarbon emissions of the tested methyl esters show advantages over DF. The particle mass emissions of methyl esters were likewise lower than those of DF, only linseed oil methyl ester showed higher particle mass emissions. A disadvantage is the use of biodiesel with respect to emissions of nitrogen oxides. They increased depending on the type of methyl ester by 10% to 30%. Emissions of polycyclic aromatic hydrocarbons (PAHs) and the results of mutagenicity tests correlate with those of the PM measurements, at which for palm oil methyl ester next to coconut oil methyl ester the lowest emissions were detected. From these results one can formulate a clear link between the iodine number of the ester and the emission behaviour. For blends of biodiesel and diesel fuel, emissions changed linearly with the proportion of biodiesel. However, especially in the non-regulated exhaust gas components, some deviations from this linear trend were detected.

  8. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    PubMed

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.

  9. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOEpatents

    Baker, Eddie G.; Elliott, Douglas C.

    1993-01-01

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compouns as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  10. Anaerobic Catabolism of Aromatic Compounds: a Genetic and Genomic View

    PubMed Central

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F.; Valderrama, J. Andrés; Barragán, María J. L.; García, José Luis; Díaz, Eduardo

    2009-01-01

    Summary: Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach. PMID:19258534

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storey, John Morse; Lewis Sr, Samuel Arthur; Szybist, James P

    Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda ofmore » 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel. E30 was chosen to maximize octane enhancement while minimizing ethanol-blend level and iBu48 was chosen to match the same fuel oxygen level as E30. Particle size and number, organic carbon and elemental carbon (OC/EC), soot HC speciation, and aldehydes and ketones were all analyzed during the experiment. A new method for soot HC speciation is introduced using a direct, thermal desorption/pyrolysis inlet for the gas chromatograph (GC). Results showed high levels of aromatic compounds were present in the PM, including downstream of the catalyst, and the aldehydes were dominated by the alcohol blending.« less

  12. Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass.

    PubMed

    Lee, Jin-Ho; Wendisch, Volker F

    2017-09-10

    Aromatic chemicals that contain an unsaturated ring with alternating double and single bonds find numerous applications in a wide range of industries, e.g. paper and dye manufacture, as fuel additives, electrical insulation, resins, pharmaceuticals, agrochemicals, in food, feed and cosmetics. Their chemical production is based on petroleum (BTX; benzene, toluene, and xylene), but they can also be obtained from plants by extraction. Due to petroleum depletion, health compliance, or environmental issues such as global warming, the biotechnological production of aromatics from renewable biomass came more and more into focus. Lignin, a complex polymeric aromatic molecule itself, is a natural source of aromatic compounds. Many microorganisms are able to catabolize a plethora of aromatic compounds and interception of these pathways may lead to the biotechnological production of value-added aromatic compounds which will be discussed for Corynebacterium glutamicum. Biosynthesis of aromatic amino acids not only gives rise to l-tryptophan, L-tyrosine and l-phenylalanine, but also to aromatic intermediates such as dehydroshikimate or chorismate from which value-added aromatic compounds can be derived. In this review, we will summarize recent strategies for the biotechnological production of aromatic and related compounds from renewable biomass by Escherichia coli, Pseudomonas putida, C. glutamicum and Saccharomyces cerevisiae. In particular, we will focus on metabolic engineering of the extended shikimate pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. PERFLUORINATED AROMATIC COMPOUND

    DTIC Science & Technology

    octafluorobiphenyl, and perfluoroaliphatic aldehydes. Synthetic routes to perfluoro cyclohexyls via reactions of phenyl and pentafluorphenyl lithium with...other perfluorinated aromatic compounds were employed in the synthesis of perfluorinated aromatic model compounds and polymers. The hydrogenic analogues...hydrazides, and imides. Synthetic routes to perfluoro aralkyl compounds are being investigated. Starting materials are tetrafluorobenzene

  14. NASA Alternative Aviation Fuel Research

    NASA Astrophysics Data System (ADS)

    Anderson, B. E.; Beyersdorf, A. J.; Thornhill, K. L., II; Moore, R.; Shook, M.; Winstead, E.; Ziemba, L. D.; Crumeyrolle, S.

    2015-12-01

    We present an overview of research conducted by NASA Aeronautics Research Mission Directorate to evaluate the performance and emissions of "drop-in" alternative jet fuels, highlighting experiment design and results from the Alternative Aviation Fuel Experiments (AAFEX-I & -II) and Alternative Fuel-Effects on Contrails and Cruise Emissions flight series (ACCESS-I & II). These projects included almost 100 hours of sampling exhaust emissions from the NASA DC-8 aircraft in both ground and airborne operation and at idle to takeoff thrust settings. Tested fuels included Fischer-Tropsch (FT) synthetic kerosenes manufactured from coal and natural-gas feedstocks; Hydro-treated Esters and Fatty-Acids (HEFA) fuels made from beef-tallow and camelina-plant oil; and 50:50 blends of these alternative fuels with Jet A. Experiments were also conducted with FT and Jet A fuels doped with tetrahydrothiophene to examine the effects of fuel sulfur on volatile aerosol and contrail formation and microphysical properties. Results indicate that although the absence of aromatic compounds in the alternative fuels caused DC-8 fuel-system leaks, the fuels did not compromise engine performance or combustion efficiency. And whereas the alternative fuels produced only slightly different gas-phase emissions, dramatic reductions in non-volatile particulate matter (nvPM) emissions were observed when burning the pure alternative fuels, particularly at low thrust settings where particle number and mass emissions were an order of magnitude lower than measured from standard jet fuel combustion; 50:50 blends of Jet A and alternative fuels typically reduced nvPM emissions by ~50% across all thrust settings. Alternative fuels with the highest hydrogen content produced the greatest nvPM reductions. For Jet A and fuel blends, nvPM emissions were positively correlated with fuel aromatic and naphthalene content. Fuel sulfur content regulated nucleation mode aerosol number and mass concentrations within aging exhaust plumes, but did not clearly impact contrail formation or microphysics.

  15. Development of genetically engineered bacteria for production of selected aromatic compounds

    DOEpatents

    Ward, Thomas E.; Watkins, Carolyn S.; Bulmer, Deborah K.; Johnson, Bruce F.; Amaratunga, Mohan

    2001-01-01

    The cloning and expression of genes in the common aromatic pathway of E. coli are described. A compound for which chorismate, the final product of the common aromatic pathway, is an anabolic intermediate can be produced by cloning and expressing selected genes of the common aromatic pathway and the genes coding for enzymes necessary to convert chorismate to the selected compound. Plasmids carrying selected genes of the common aromatic pathway are also described.

  16. Acetylene terminated aspartimides and resins therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor); Havens, Stephen J. (Inventor)

    1989-01-01

    Acetylene terminated aspartimides are prepared using two methods. In the first, an amino-substituted aromatic acetylene is reacted with an aromatic bismaleimide in a solvent of glacial acetic acid and/or m-cresol. In the second method, an aromatic diamine is reacted with an ethynyl containing maleimide, such an N-(3-ethynyl phenyl) maleimide, in a solvent of glacial acetic acid and/or m-cresol. In addition, acetylene terminated aspartimides are blended with various acetylene terminated oligomers and polymers to yield composite materials exhibiting improved mechanical properties.

  17. N-(3-ethynylphenyl)maleimide

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor); Havens, Stephen J. (Inventor)

    1990-01-01

    Acetylene terminated aspartimides are prepared using two methods. In the first, an amino-substituted aromatic acetylene is reacted with an aromatic bismaleimide in a solvent of glacial acetic acid and/or m-cresol. In the second method, an aromatic diamine is reacted with an ethynyl containing maleimide, such as N-(3-ethynylphenyl) maleimide, in a solvent of glacial acetic acid and/or m-cresol. In addition, acetylene terminated aspartimides are blended with various acetylene terminated oligomers and polymers to yield composite materials exhibiting improved mechanical properties.

  18. Effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds using a modified QSAR model.

    PubMed

    Lim, Seung Joo; Fox, Peter

    2014-02-01

    The effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds were investigated using a modified half life equation. The potential future pharmaceutical compounds investigated were approximately 2000 pharmaceutical drugs currently undergoing the United States Food and Drug Administration (US FDA) testing. EPI Suite (BIOWIN) model estimates the fates of compounds based on the biodegradability under aerobic conditions. While BIOWIN considered the biodegradability of a compound only, the half life equation used in this study was modified by biodegradability, sorption and cometabolic oxidation. It was possible that the potential future pharmaceutical compounds were more accurately estimated using the modified half life equation. The modified half life equation considered sorption and cometabolic oxidation of halogenated aromatic/aliphatics and nitrogen(N)-heterocyclic aromatics in the sub-surface, while EPI Suite (BIOWIN) did not. Halogenated aliphatics in chemicals were more persistent than halogenated aromatics in the sub-surface. In addition, in the sub-surface environment, the fates of organic chemicals were much more affected by halogenation in chemicals than by nitrogen(N)-heterocyclic aromatics. © 2013.

  19. Insight into unresolved complex mixtures of aromatic hydrocarbons in heavy oil via two-dimensional gas chromatography coupled with time-of-flight mass spectrometry analysis.

    PubMed

    Weng, Na; Wan, Shan; Wang, Huitong; Zhang, Shuichang; Zhu, Guangyou; Liu, Jingfu; Cai, Di; Yang, Yunxu

    2015-06-12

    The aromatic hydrocarbon fractions of five crude oils representing a natural sequence of increasing degree of biodegradation from the Liaohe Basin, NE, China, were analyzed using conventional gas chromatography-mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography (GC×GC). Because of the limited peak capability and low resolution, compounds in the aromatic fraction of a heavily biodegraded crude oil that were analyzed by GC-MS appeared as unresolved complex mixtures (UCMs) or GC "humps". They could be separated based on their polarity by GC×GC. UCMs are composed mainly of aromatic biomarkers and aromatic hydrocarbons with branched alkanes or cycloalkanes substituents. The quantitative results achieved by GC×GC-FID were shown that monoaromatic hydrocarbons account for the largest number and mass of UCMs in the aromatic hydrocarbon fraction of heavily biodegraded crude oil, at 45% by mass. The number and mass of diaromatic hydrocarbons ranks second at 33% by mass, followed by the aromatic biomarker compounds, triaromatic, tetraaromatic, and pentaaromatic hydrocarbons, that account for 10%, 6%, 1.5%, and 0.01% of all aromatic compounds by mass, respectively. In the heavily biodegraded oil, compounds with monocyclic cycloalkane substituents account for the largest proportion of mono- and diaromatic hydrocarbons, respectively. The C4-substituted compounds account for the largest proportion of naphthalenes and the C3-substituted compounds account for the largest proportion of phenanthrenes, which is very different from non-biodegraded, slightly biodegraded, and moderately biodegraded crude oil. It is inferred that compounds of monoaromatic, diaromatic and triaromatic hydrocarbons are affected by biodegradation, that compounds with C1-, C2-substituents are affected by the increase in degree of biodegradation, and that their relative content decreased, whereas compounds with C3-substituents or more were affected slightly or unaffected, and their relative content also increased. The varying regularity of relative content of substituted compounds may be used to reflect the degree of degradation of heavy oil. Moreover, biomarkers for the aromatic hydrocarbons of heavily biodegraded crude oil are mainly aromatic steranes, aromatic secohopanes, aromatic pentacyclotriterpanes, and benzohopanes. According to resultant data, aromatic secohopanes could be used as a specific marker because of their relatively high concentration. This aromatic compound analysis of a series of biodegraded crude oil is useful for future research on the quantitative characterization of the degree of biodegradation of heavy oil, unconventional oil maturity evaluation, oil source correlation, depositional environment, and any other geochemical problems. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Biodegradation of Aromatic Compounds by Escherichia coli

    PubMed Central

    Díaz, Eduardo; Ferrández, Abel; Prieto, María A.; García, José L.

    2001-01-01

    Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications. PMID:11729263

  1. Attraction of female grapevine moth to common and specific olfactory cues from 2 host plants.

    PubMed

    Tasin, Marco; Bäckman, Anna-Carin; Anfora, Gianfranco; Carlin, Silvia; Ioriatti, Claudio; Witzgall, Peter

    2010-01-01

    In herbivorous insects with more than 1 host plant, attraction to host odor could conceptually be mediated by common compounds, by specific compounds released by each plant or by combinations of common and specific compounds. We have compared the attraction of female grapevine moth, Lobesia botrana, with specific and common (shared) odors from 2 different plants: a wild host (Daphne gnidium) and a recently colonized host (Vitis vinifera). Odor blends eliciting female attraction to V. vinifera have previously been identified. In this study, olfactory cues from D. gnidium were identified by electroantennographic detection and chemical analysis. The attraction of mated females to synthetic odor blends was then tested in a wind tunnel bioassay. Female attraction was elicited by a blend of compounds released by both from D. gnidium and V. vinifera and by 2 blends with the compounds released specifically from each host. However, more complete odor blends of the 2 plants elicited stronger attraction. The common compounds in combination with the specific compounds of D. gnidium were the most attractive blend. This blend was tested with the common compounds presented both in the ratio emitted by D. gnidium and by V. vinifera, but there was no difference in female attraction. Our findings suggest that specific as well as common plant odor cues play a role in L. botrana host recognition and that there is plasticity in attraction to partial blends. The results are discussed in relation to mechanisms behind host odor recognition and the evolution of insect-plant associations.

  2. Olfactory Impact of Higher Alcohols on Red Wine Fruity Ester Aroma Expression in Model Solution.

    PubMed

    Cameleyre, Margaux; Lytra, Georgia; Tempere, Sophie; Barbe, Jean-Christophe

    2015-11-11

    This study focused on the impact of five higher alcohols on the perception of fruity aroma in red wines. Various aromatic reconstitutions were prepared, consisting of 13 ethyl esters and acetates and 5 higher alcohols, all at the average concentrations found in red wine. These aromatic reconstitutions were prepared in several matrices. Sensory analysis revealed the interesting behavior of certain compounds among the five higher alcohols following their individual addition or omission. The "olfactory threshold" of the fruity pool was evaluated in several matrices: dilute alcohol solution, dilute alcohol solution containing 3-methylbutan-1-ol or butan-1-ol individually, and dilute alcohol solution containing the mixture of five higher alcohols, blended together at various concentrations. The presence of 3-methylbutan-1-ol or butan-1-ol alone led to a significant decrease in the "olfactory threshold" of the fruity reconstitution, whereas the mixture of alcohols raised the olfactory threshold. Sensory profiles highlighted changes in the perception of fruity nuances in the presence of the mixture of higher alcohols, with specific perceptive interactions, including a relevant masking effect on fresh- and jammy-fruit notes of the fruity mixture in both dilute alcohol solution and dearomatized red wine matrices. When either 3-methylbutan-1-ol or butan-1-ol was added to the fruity reconstitution in dilute alcohol solution, an enhancement of butyric notes was reported with 3-methylbutan-1-ol and fresh- and jammy-fruit with butan-1-ol. This study, the first to focus on the impact of higher alcohols on fruity aromatic expression, revealed that these compounds participate, both quantitatively and qualitatively, in masking fruity aroma perception in a model fruity wine mixture.

  3. Processable Aromatic Polyimide Thermoplastic Blends

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M; Johnston, Norman J.; St. Clair, Terry L.; Nelson, James B.; Gleason, John R.; Proctor, K. Mason

    1988-01-01

    Method developed for preparing readily-processable thermoplastic polyimides by blending linear, high-molecular-weight, polyimic acid solutions in ether solvents with ultrafine, semicrystalline, thermoplastic polyimide powders. Slurries formed used to make prepregs. Consolidation of prepregs into finsihed composites characterized by excellent melt flow during processing. Applied to film, fiber, fabric, metal, polymer, or composite surfaces. Used to make various stable slurries from which prepregs prepared.

  4. The study on the application of low polymerization degree PODE2

    NASA Astrophysics Data System (ADS)

    Xue, Zhenzhen; Shang, Hongyan; Zhang, Zailong; Cui, Chuntao; Zhao, Shidong

    2017-05-01

    Polyoxymethylene dimethyl ethers (PODEn) are a kind of excellent diesel blending components. Due to the low flash point of PODE2, it is not appropriate to be used as diesel blending component, so in this paper, the application of PODE2 have been studied. It seems that PODE2 is a kind of excellent green rubber solvent oil without sulfur and aromatic. Moreover, the application of PODE2 as gasoline blending component is investigated and it is found that the Research Octane Number(RON) of gasoline product and the RON of four different gasoline components(including hydrofining gasoline, hydrocracking light naphtha, catalytic reforming gasoline and mixed gasoline with 80vol% hydrofining gasoline and 20vol% catalytic reforming gasoline) is all slightly decreased to some extent respectively, which indicates that there is no apparently synergistic effect between PODE2 and the gasoline components, but PODE2 can effectively reduce the sulfur content, olefin content, aromatic content and can suppress the vapor pressure of gasoline.

  5. Essential oil composition of stems and fruits of Caralluma europaea N.E.Br. (Apocynaceae).

    PubMed

    Zito, Pietro; Sajeva, Maurizio; Bruno, Maurizio; Maggio, Antonella; Rosselli, Sergio; Formisano, Carmen; Senatore, Felice

    2010-01-27

    The essential oil of the stems and fruits of Caralluma europaea (Guss.) N.E.Br. (Apocynaceae) from Lampedusa Island has been obtained by hydrodistillation and its composition analyzed. The analyses allowed the identification and quantification of 74 volatile compounds, of which 16 were aromatic and 58 non-aromatic. Stems and fruits contained 1.4% and 2.7% of aromatic compounds respectively, while non-aromatic were 88.3% and 88.8%. Non-aromatic hydrocarbons were the most abundant compounds in both organs, followed by fatty acids. Data showed differences in the profiles between stems and fruits which shared only eighteen compounds; stems accounted for 38 compounds while fruits for 53. Fruits showed a higher diversity especially in aromatic compounds with twelve versus four in stems. Among the volatiles identified in stems and fruits of C. europaea 26 are present in other taxa of Apocynaceae, 52 are semiochemicals for many insects, and 21 have antimicrobial activity. The possible ecological role of the volatiles found is briefly discussed.

  6. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1983-09-20

    A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.

  7. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, John M.; Napier, John M.; Travaglini, Michael A.

    1983-01-01

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced.

  8. Effects of diesel/biodiesel blends on regulated and unregulated pollutants from a passenger vehicle operated over the European and the Athens driving cycles

    NASA Astrophysics Data System (ADS)

    Karavalakis, George; Stournas, Stamoulis; Bakeas, Evangelos

    This paper presents the regulated and unregulated exhaust emissions of a diesel passenger vehicle, operated with low sulphur automotive diesel and soy methyl ester blends. Emission and fuel consumption measurements were conducted under real driving conditions (Athens Driving Cycle, ADC) and compared with those of a modified New European Driving Cycle (NEDC) using a chassis dynamometer. A Euro II compliant diesel vehicle was used in this study, equipped with an indirect injection diesel engine, fuelled with diesel fuel and biodiesel blends at proportions of 5, 10, and 20% respectively. Unregulated emissions of 11 polycyclic aromatic hydrocarbons (PAHs), 5 nitro-PAHs, 13 carbonyl compounds (CBCs) and the soluble organic fraction (SOF) of the particulate matter were measured. Qualitative hydrocarbon analysis was also performed on the SOF. Regulated emissions of NO x, CO, HC, CO 2, and PM were also measured over the two test cycles. It was established that some of the emissions measured over the (hot-start) NEDC differed from the real-world cycle. Significant differences were also observed in the vehicle's fuel consumption between the two test cycles. The addition of biodiesel reduced the regulated emissions of CO, HC and PM, while an increase in NO x was observed over the ADC. Carbonyl emissions, PAHs and nitro-PAHs were reduced with the addition of biodiesel over both driving cycles.

  9. Oxidation of aromatic contaminants coupled to microbial iron reduction

    USGS Publications Warehouse

    Lovley, D.R.; Baedecker, M.J.; Lonergan, D.J.; Cozzarelli, I.M.; Phillips, E.J.P.; Siegel, D.I.

    1989-01-01

    THE contamination of sub-surface water supplies with aromatic compounds is a significant environmental concern1,2. As these contaminated sub-surface environments are generally anaerobic, the microbial oxidation of aromatic compounds coupled to nitrate reduction, sulphate reduction and methane production has been studied intensively1-7. In addition, geochemical evidence suggests that Fe(III) can be an important electron acceptor for the oxidation of aromatic compounds in anaerobic groundwater. Until now, only abiological mechanisms for the oxidation of aromatic compounds with Fe(III) have been reported8-12. Here we show that in aquatic sediments, microbial activity is necessary for the oxidation of model aromatic compounds coupled to Fe(III) reduction. Furthermore, a pure culture of the Fe(III)-reducing bacterium GS-15 can obtain energy for growth by oxidizing benzoate, toluene, phenol or p-cresol with Fe(III) as the sole electron acceptor. These results extend the known physiological capabilities of Fe(III)-reducing organisms and provide the first example of an organism of any type which can oxidize an aromatic hydrocarbon anaerobically. ?? 1989 Nature Publishing Group.

  10. RESEARCH FOR THE AEROSPACE SYSTEMS DIRECTORATE (R4RQ) Delivery Order 0006: Airbreathing Propulsion Fuels and Energy Exploratory Research and Development (APFEERD) Sub Task: Review of Materials Compatibility Tests of Synthesized Hydrocarbon Kerosenes and Blends

    DTIC Science & Technology

    2017-07-31

    processing. Also, the presence of cyclo-paraffins and tetralins plus indans do not affect the fundamental correlation with aromatic content at the...processing. • The presence of cyclo-paraffins and tetralins plus indans do not affect the fundamental correlation with aromatic content at the...random, and shows no correlation with aromatic content. However, all of the test results were well above the minimum technical requirements of 200 psi

  11. Process for removing halogenated aliphatic and aromatic compounds from petroleum products. [Polychlorinated biphenyls; methylene chloride; perchloroethylene; trichlorofluoroethane; trichloroethylene; chlorobenzene

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1982-03-31

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contracting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible polyhydroxy compound, such as, water, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds in the low polar or nonpolar solvent by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered for recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 2 tables.

  12. Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammert, M. P.; McCormick, R. L.; Sindler, P.

    2012-10-01

    Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level hadmore » the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.« less

  13. 40 CFR 721.775 - Brominated aromatic com-pound (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Requirements as specified in § 721.80 (j) (use as an additive flame retardant for plastics) and (q). (iv... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a) Chemical...

  14. 40 CFR 721.775 - Brominated aromatic com-pound (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Requirements as specified in § 721.80 (j) (use as an additive flame retardant for plastics) and (q). (iv... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a) Chemical...

  15. 40 CFR 721.775 - Brominated aromatic com-pound (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Requirements as specified in § 721.80 (j) (use as an additive flame retardant for plastics) and (q). (iv... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a) Chemical...

  16. Device for aqueous detection of nitro-aromatic compounds

    DOEpatents

    Reagen, W.K.; Schulz, A.L.; Ingram, J.C.; Lancaster, G.D.; Grey, A.E.

    1994-04-26

    This invention relates to a compact and portable detection apparatus for nitro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound. 4 figures.

  17. Device for aqueous detection of nitro-aromatic compounds

    DOEpatents

    Reagen, William K.; Schulz, Amber L.; Ingram, Jani C.; Lancaster, Gregory D.; Grey, Alan E.

    1994-01-01

    This invention relates to a compact and portable detection apparatus for ro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound.

  18. Compounds having aromatic rings and side-chain amide-functionality and a method for transporting monovalent anions across biological membranes using the same

    DOEpatents

    Davis, Jeffery T [College Park, MD; Sidorov, Vladimir [Richmond, VA; Kotch, Frank W [New Phila., PA

    2008-04-08

    A compound containing at least two aromatic rings covalently bonded together, with each aromatic ring containing at least one oxyacetamide-based side chain, the compound being capable of forming a chloride ion channel across a lipid bilayer, and transporting chloride ion across the lipid bilayer.

  19. Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass.

    PubMed

    Mäkelä, Miia R; Marinović, Mila; Nousiainen, Paula; Liwanag, April J M; Benoit, Isabelle; Sipilä, Jussi; Hatakka, Annele; de Vries, Ronald P; Hildén, Kristiina S

    2015-01-01

    The biological conversion of plant lignocellulose plays an essential role not only in carbon cycling in terrestrial ecosystems but also is an important part of the production of second generation biofuels and biochemicals. The presence of the recalcitrant aromatic polymer lignin is one of the major obstacles in the biofuel/biochemical production process and therefore microbial degradation of lignin is receiving a great deal of attention. Fungi are the main degraders of plant biomass, and in particular the basidiomycete white rot fungi are of major importance in converting plant aromatics due to their ability to degrade lignin. However, the aromatic monomers that are released from lignin and other aromatic compounds of plant biomass are toxic for most fungi already at low levels, and therefore conversion of these compounds to less toxic metabolites is essential for fungi. Although the release of aromatic compounds from plant biomass by fungi has been studied extensively, relatively little attention has been given to the metabolic pathways that convert the resulting aromatic monomers. In this review we provide an overview of the aromatic components of plant biomass, and their release and conversion by fungi. Finally, we will summarize the applications of fungal systems related to plant aromatics. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Laboratory Evaluation of Synthetic Blends of l-(+)-Lactic Acid, Ammonia, and Ketones As Potential Attractants For Aedes aegypti.

    PubMed

    Venkatesh, P M; Sen, A

    2017-12-01

    Attraction of Aedes aegypti to various binary, trinary, and quaternary blends of lactic acid and ketones with or without ammonia was studied using a dual choice olfactometer. A dose dependent attraction was observed in cases of single compounds where cyclopentanone attracted the highest percentage (36.9 ± 1.8%) of Ae. aegypti when tested alone. No significant difference was observed between the attraction levels of trinary and binary blends of lactic acid and acetone or butanone when tested against clear air. However, in competitive bioassays, the trinary blend of lactic acid, acetone, and butanone was significantly preferred over binary blends of individual compounds ( P < 0.05). Acetylacetone was weakly attractive when tested alone but showed additive attraction when blended with lactic acid. However, acetylacetone acted as an attraction inhibitor when blended with other compounds. Cyclopentanone was attractive, but enhancement of attraction was not observed when blended with other components. Addition of ammonia to binary or trinary blends of lactic acid, acetone, and/or butanone did not increase the attraction significantly. In competitive bioassays, the blends containing ammonia were significantly preferred over the blends lacking ammonia ( P < 0.05). This highlights ammonia as an essential component of synthetic blends. A quaternary blend of lactic acid, ammonia, acetone, and butanone was most attractive (65 ± 1.5%) and preferred blend of all other combinations.

  1. Retardation effect of nitrogen compounds and condensed aromatics on shale oil catalytic cracking processing and their characterization.

    PubMed

    Li, Nan; Chen, Chen; Wang, Bin; Li, Shaojie; Yang, Chaohe; Chen, Xiaobo

    Untreated shale oil, shale oil treated with HCl aqueous solution and shale oil treated with HCl and furfural were used to do comparative experiments in fixed bed reactors. Nitrogen compounds and condensed aromatics extracted by HCl and furfural were characterized by electrospray ionization Fourier transform cyclotron resonance mass spectrometry and gas chromatography and mass spectrometry, respectively. Compared with untreated shale oil, the conversion and yield of liquid products increased considerably after removing basic nitrogen compounds by HCl extraction. Furthermore, after removing nitrogen compounds and condensed aromatics by both HCl and furfural, the conversion and yield of liquid products further increased. In addition, N 1 class species are predominant in both basic and non-basic nitrogen compounds, and they are probably indole, carbazole, cycloalkyl-carbazole, pyridine and cycloalkyl-pyridine. As for the condensed aromatics, most of them possess aromatic rings with two to three rings and zero to four carbon atom.

  2. PERFLUORINATED AROMATIC COMPOUNDS

    DTIC Science & Technology

    decafluorodiphenylamine, 3,3’,4,4’-tetra substituted- hexafluorobiphenyls, tetrafluororesorcinol, perfluoroaromatic thioethers, and dithiols. These...and other perfluorinated aromatic compounds are the intermediates employed in the synthesis of perfluorinated model compounds and polymers.

  3. Bacterial Degradation of Aromatic Compounds

    PubMed Central

    Seo, Jong-Su; Keum, Young-Soo; Li, Qing X.

    2009-01-01

    Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms. PMID:19440284

  4. Bond cleavage of lignin model compounds into aromatic monomers using supported metal catalysts in supercritical water

    PubMed Central

    Yamaguchi, Aritomo; Mimura, Naoki; Shirai, Masayuki; Sato, Osamu

    2017-01-01

    More efficient use of lignin carbon is necessary for carbon-efficient utilization of lignocellulosic biomass. Conversion of lignin into valuable aromatic compounds requires the cleavage of C–O ether bonds and C–C bonds between lignin monomer units. The catalytic cleavage of C–O bonds is still challenging, and cleavage of C–C bonds is even more difficult. Here, we report cleavage of the aromatic C–O bonds in lignin model compounds using supported metal catalysts in supercritical water without adding hydrogen gas and without causing hydrogenation of the aromatic rings. The cleavage of the C–C bond in bibenzyl was also achieved with Rh/C as a catalyst. Use of this technique may greatly facilitate the conversion of lignin into valuable aromatic compounds. PMID:28387304

  5. Three-dimensional aromatic networks.

    PubMed

    Toyota, Shinji; Iwanaga, Tetsuo

    2014-01-01

    Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.

  6. Aviation-fuel property effects on combustion

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1984-01-01

    The fuel chemical property influence on a gas turbine combustor was studied using 25 test fuels. Fuel physical properties were de-emphasized by using fuel injectors which produce highly-atomized, and hence rapidly vaporizing sprays. A substantial fuel spray characterization effort was conducted to allow selection of nozzles which assured that such sprays were achieved for all fuels. The fuels were specified to cover the following wide ranges of chemical properties: hydrogen, 9.1 to 15 (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. standard fuels (e.g., Jet A, JP4), speciality products (e.g., decalin, xylene tower bottoms) and special fuel blends were included. The latter group included six, 4-component blends prepared to achieve parametric variations in fuel hydrogen, total aromatics and naphthalene contents. The principle influences of fuel chemical properties on the combustor behavior were reflected by the radiation, liner temperature, and exhaust smoke number (or equivalently, soot number density) data. Test results indicated that naphthalene content strongly influenced the radiative heat load while parametric variations in total aromatics did not.

  7. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasolinemore » fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses. Methods to reduce metal content are being evaluated.« less

  8. Effect of gasoline formulation on the formation of photosmog: a box model study.

    PubMed

    Geiger, Herald; Becker, Karl H; Wiesen, Peter

    2003-04-01

    Based on exhaust gas analyses from the combustion of five different types of gasoline in a passenger car operated on a chassis dynamometer, box model simulations of the irradiation of exhaust/NOx/air mixtures using an established chemical mechanism for a standardized photosmog scenario were performed. The fuel matrix used covered wide fractional ranges for paraffinic, olefinic, and aromatic hydrocarbons. Two fuels also contained methyl tertiary butyl ether (MTBE). The different O3 profiles calculated for each run were compared and interpreted. The O3 levels obtained were strongly influenced by the exhaust gas concentrations of aromatic and olefinic hydrocarbons. The higher exhaust content of these compounds caused higher O3 production in the smog system investigated. The conclusion of the present study is that the composition of gasoline cannot be taken directly for the estimation of the emissions' O3 creation potential from its combustion. Variation of the dilution in the different calculations showed evidence for an additional influence of transport effects. Accordingly, further detailed exhaust gas analyses followed by more complex modeling studies are necessary for a proper characterization of the relationship between fuel blend and gasoline combustion products.

  9. Global simulation of aromatic volatile organic compounds in the atmosphere

    NASA Astrophysics Data System (ADS)

    Cabrera Perez, David; Taraborrelli, Domenico; Pozzer, Andrea

    2015-04-01

    Among the large number of chemical compounds in the atmosphere, the organic group plays a key role in the tropospheric chemistry. Specifically the subgroup called aromatics is of great interest. Aromatics are the predominant trace gases in urban areas due to high emissions, primarily by vehicle exhausts and fuel evaporation. They are also present in areas where biofuel is used (i.e residential wood burning). Emissions of aromatic compounds are a substantial fraction of the total emissions of the volatile organic compounds (VOC). Impact of aromatics on human health is very important, as they do not only contribute to the ozone formation in the urban environment, but they are also highly toxic themselves, especially in the case of benzene which is able to trigger a range of illness under long exposure, and of nitro-phenols which cause detrimental for humans and vegetation even at very low concentrations. The aim of this work is to assess the atmospheric impacts of aromatic compounds on the global scale. The main goals are: lifetime and budget estimation, mixing ratios distribution, net effect on ozone production and OH loss for the most emitted aromatic compounds (benzene, toluene, xylenes, ethylbenzene, styrene and trimethylbenzenes). For this purpose, we use the numerical chemistry and climate simulation ECHAM/MESSy Atmospheric Chemistry (EMAC) model to build the global atmospheric budget for the most emitted and predominant aromatic compounds in the atmosphere. A set of emissions was prepared in order to include biomass burning, vegetation and anthropogenic sources of aromatics into the model. A chemical mechanism based on the Master Chemical Mechanism (MCM) was developed to describe the chemical oxidation in the gas phase of these aromatic compounds. MCM have been reduced in terms of number of chemical equation and species in order to make it affordable in a 3D model. Additionally other features have been added, for instance the production of HONO via ortho-nitrophenols photolysis. The model results are compared with observations from different surface and aircraft campaigns in order to estimate the accuracy of the model.

  10. Mass spectral analysis of long chain alkyl aromatic compounds synthesized from alpha-olefin alkylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, M.T.; Hudson, J.D.

    1994-12-31

    Long chain alkyl aromatic compounds are important petrochemicals with many applications. They are generally synthesized by alkylating the corresponding aromatic nucleus. In this report, the authors will describe the mass spectral fragmentation of alkylphenols and alkylsalicylates.

  11. Analytical characterization of products obtained from slow pyrolysis of Calophyllum inophyllum seed cake: study on performance and emission characteristics of direct injection diesel engine fuelled with bio-oil blends.

    PubMed

    Rajamohan, Sakthivel; Kasimani, Ramesh

    2018-04-01

    This paper aims to analyse the characteristics and properties of the fractions obtained from slow pyrolysis of non-edible seed cake of Calophyllum inophyllum (CI). The gas, bio-oil and biochar obtained from the pyrolysis carried out at 500 °C in a fixed bed batch type reactor at a heating rate of 30 °C/min were characterized by various analytical techniques. Owing to the high volatile content of CI biomass (72.61%), it was selected as the raw material in this present investigation. GC-MS and FT-IR analysis of bio-oil showed the presence of higher amount of oxygenated compounds, phenol derivatives, esters, acid and furans. The physicochemical properties of the bio-oil were tested as per ASTM norms which imply that bio-oil is a highly viscous liquid with lower heating value as compared to that of diesel fuel. The chemical composition of evolved gas was analysed by using GC testing which revealed the presence of combustible components. The FT-IR characterization of biochar showed the presence of aliphatic and aromatic hydrocarbons whereas the elevated amount of carbon in biochar indicates its potential to be used as solid fuel. The performance and emission characteristics of CI engine were assessed with different CI bio-oil blends and compared with baseline diesel fuel. The results showed that addition of bio-oil leads to decreased brake thermal efficiency and increased brake specific energy consumption. Meanwhile, increase in blend ratio reduces harmful pollutants such as oxides of nitrogen and smoke in the exhaust. From the engine testing, it is suggested to employ 20% of CI bio-oil blends in CI engine to obtain better operation.

  12. Oxidative decomposition of aromatic hydrocarbons by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Han, Do-Hung; Stuchinskaya, Tatiana; Won, Yang-Soo; Park, Wan-Sik; Lim, Jae-Kyong

    2003-05-01

    Decomposition of aromatic volatile organic compounds (VOCs) under electron beam irradiation was studied in order to examine the kinetics of the process, to characterize the reaction product distribution and to develop a process of waste gas control technology. Toluene, ethylbenzene, o-, m-, p-xylenes and chlorobenzene were used as target materials. The experiments were carried out at doses ranging from 0.5 to 10 kGy, using a flow reactor utilized under electron beam irradiation. Maximum degrees of decomposition carried out at 10 kGy in air environment were 55-65% for “non-chlorinated” aromatic VOC and 85% for chlorobenzene. It was found that a combination of aromatic pollutants with chlorobenzene would considerably increase the degradation value up to nearly 50% compared to the same compounds in the absence of chlorine groups. Based on our experimental observation, the degradation mechanism of the aromatic compounds combined with chloro-compound suggests that a chlorine radical, formed from EB irradiation, induces a chain reaction, resulting in an accelerating oxidative destruction of aromatic VOCs.

  13. Aromatic Amino Acid-Derived Compounds Induce Morphological Changes and Modulate the Cell Growth of Wine Yeast Species

    PubMed Central

    González, Beatriz; Vázquez, Jennifer; Cullen, Paul J.; Mas, Albert; Beltran, Gemma; Torija, María-Jesús

    2018-01-01

    Yeasts secrete a large diversity of compounds during alcoholic fermentation, which affect growth rates and developmental processes, like filamentous growth. Several compounds are produced during aromatic amino acid metabolism, including aromatic alcohols, serotonin, melatonin, and tryptamine. We evaluated the effects of these compounds on growth parameters in 16 different wine yeasts, including non-Saccharomyces wine strains, for which the effects of these compounds have not been well-defined. Serotonin, tryptamine, and tryptophol negatively influenced yeast growth, whereas phenylethanol and tyrosol specifically affected non-Saccharomyces strains. The effects of the aromatic alcohols were observed at concentrations commonly found in wines, suggesting a possible role in microbial interaction during wine fermentation. Additionally, we demonstrated that aromatic alcohols and ethanol are able to affect invasive and pseudohyphal growth in a manner dependent on nutrient availability. Some of these compounds showed strain-specific effects. These findings add to the understanding of the fermentation process and illustrate the diversity of metabolic communication that may occur among related species during metabolic processes. PMID:29696002

  14. GLOBAL INVENTORY OF VOLATILE COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The report describes a global inventory anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds....

  15. New Findings on Aromatic Compounds' Degradation and Their Metabolic Pathways, the Biosurfactant Production and Motility of the Halophilic Bacterium Halomonas sp. KHS3.

    PubMed

    Corti Monzón, Georgina; Nisenbaum, Melina; Herrera Seitz, M Karina; Murialdo, Silvia E

    2018-04-24

    The study of the aromatic compounds' degrading ability by halophilic bacteria became an interesting research topic, because of the increasing use of halophiles in bioremediation of saline habitats and effluents. In this work, we focused on the study of aromatic compounds' degradation potential of Halomonas sp. KHS3, a moderately halophilic bacterium isolated from hydrocarbon-contaminated seawater of the Mar del Plata harbour. We demonstrated that H. sp. KHS3 is able to grow using different monoaromatic (salicylic acid, benzoic acid, 4-hydroxybenzoic acid, phthalate) and polyaromatic (naphthalene, fluorene, and phenanthrene) substrates. The ability to degrade benzoic acid and 4-hydroxybenzoic acid was analytically corroborated, and Monod kinetic parameters and yield coefficients for degradation were estimated. Strategies that may enhance substrate bioavailability such as surfactant production and chemotactic responses toward aromatic compounds were confirmed. Genomic sequence analysis of this strain allowed us to identify several genes putatively related to the metabolism of aromatic compounds, being the catechol and protocatechuate branches of β-ketoadipate pathway completely represented. These features suggest that the broad-spectrum xenobiotic degrader H. sp. KHS3 could be employed as a useful biotechnological tool for the cleanup of aromatic compounds-polluted saline habitats or effluents.

  16. Experimental and modeling study of fuel interactions with an alkyl nitrate cetane enhancer, 2-ethyl-hexyl nitrate

    DOE PAGES

    Goldsborough, S. S.; Johnson, M. V.; Banyon, C.; ...

    2014-07-15

    Our study investigates the autoignition behavior of two gasoline surrogates doped with an alkyl nitrate cetane enhancer, 2-ethyl-hexyl nitrate (2EHN) to better understand dopant interactions with the fuels, including influences of accelerating kinetic pathways and enhanced exothermicity. A primary reference fuel (PRF) blend of n-heptane/iso-octane, and a toluene reference fuel (TRF) blend of n-heptane/iso-octane/toluene are used where the aromatic fraction of the latter is set to 20% (liquid volume), while the content of n-heptane is adjusted so that the overall reactivity of the undoped fuels is similar, e.g., Anti-Knock Index (AKI) of similar to 91, Cetane Number (CN) similar tomore » 25. Doping levels of 0.1, 1.0 and 3.0% (liquid volume basis) are used where tests are conducted within a rapid compression machine (RCM) at a compressed pressure of 21 bar, covering temperatures from 675 to 1025 K with stoichiometric fuel-oxygen ratios at O-2 = 11.4%. At the experimental conditions, it is found that the doping effectiveness of 2EHN is fairly similar between the two fuels, though 2EHN is more effective in the aromatic blend at the lowest temperatures, while it is slightly more effective in the non-aromatic blend at intermediate temperatures. Furthermore, kinetic modeling of the experiments indicates that although some of the reactivity trends can be captured using a detailed model, the extents of predicted Cetane Number enhancement by 2EHN are too large, while differences in fuel interactions for the two fuels result in excessive stimulation of the non-aromatic blend. Sensitivity analysis using the kinetic model indicates that the CH 2O and CH 3O 2 chemistry are very sensitive to the dopant at all conditions. The rate of 2EHN decomposition is only important at low temperatures where its decomposition rate is slow due to the high activation energy of the reaction. At higher temperatures, dopant-derived 3-heptyl radicals are predicted to play an important role stimulating ignition. Finally, nitrogen chemistry is important through the 'NO - NO 2 loop' where this can generate substantial amounts of OH. But, at the highest doping levels the formation of methyl and ethyl nitrite, and nitric acid significantly competes with this so that less OH is generated and this constrains the reactivity enhancement of 2EHN.« less

  17. A Rapid Survey of the Compatibility of Selected Seal Materials with Conventional and Semi-Synthetic JP-8

    NASA Technical Reports Server (NTRS)

    Graham, John L.; Striebich, Richard C.; Minus, Donald K.; Harrison, William E., III

    2007-01-01

    Since the synthesis of a liquid hydrocarbon fuel from coal by Franz Fischer and Hans Tropsch in 1923, there has been cyclic interest in developing this fuel for military and commercial applications. In recent years the U.S. Department of Defense has taken interest in producing a unified battlespace fuel using the Fischer Tropsch (FT) process for a variety of reasons including cost, quality, and logistics. In the past year there has been a particular emphasis on moving quickly to demonstrate that an FT fuel can be used in the form of a blend with conventional petroleum-derived jet fuel. The initial objective is to employ this semi-synthetic fuel with blend ratios as high as 50 percent FT with longer range goals to use even high blend ratios and ultimately a fully synthetic jet fuel. A significant concern associated with the use of a semi-synthetic jet fuel with high FT blend ratios is the effect these low aromatic fuels will have on fuel-wetted polymeric materials, most notably seals and sealants. These materials typically swell and soften to some degree when exposed to jet fuel and the aromatic content of these fuels contribute to this effect. Semi-synthetic jet fuels with very low aromatic contents may cause seals and sealants to shrink and harden leading to acute or chronic failure. Unfortunately, most of the material qualification tests are more concerned with excessive swelling than shrinkage and there is little guidance offered as to an acceptable level of shrinkage or other changes in physical properties related to low aromatic content. Given the pressing need for guidance data, a program was developed to rapidly survey the volume swell of selected fuel-wetted materials in a range of conventional and semi-synthetic jet fuels and through a statistical analysis to make a determination as to whether there was a basis to be concerned about using fuels with FT blend ratios as high as 50 percent. Concurrent with this analysis data was obtained as to the composition of the fuel absorbed in fuel-wetted materials through the use of GC-MS analysis of swollen samples as well as other supporting data. In this presentation the authors will present a summary of the results of the volume swell and fuel absorbed by selected O-rings and sealants as well as a description of the measurement protocols developed for this program.

  18. Airborne Exposures to Polycyclic Aromatic Compounds Among Workers in Asphalt Roofing Manufacturing Facilities.

    PubMed

    Trumbore, David C; Osborn, Linda V; Johnson, Kathleen A; Fayerweather, William E

    2015-01-01

    We studied exposure of 151 workers to polycyclic aromatic compounds and asphalt emissions during the manufacturing of asphalt roofing products-including 64 workers from 10 asphalt plants producing oxidized, straight-run, cutback, and wax- or polymer-modified asphalts, and 87 workers from 11 roofing plants producing asphalt shingles and granulated roll roofing. The facilities were located throughout the United States and used asphalt from many refiners and crude oils. This article helps fill a gap in exposure data for asphalt roofing manufacturing workers by using a fluorescence technique that targets biologically active 4-6 ring polycyclic aromatic compounds and is strongly correlated with carcinogenic activity in animal studies. Worker exposures to polycyclic aromatic compounds were compared between manufacturing plants, at different temperatures and using different raw materials, and to important external benchmarks. High levels of fine limestone particulate in the plant air during roofing manufacturing increased polycyclic aromatic compound exposure, resulting in the hypothesis that the particulate brought adsorbed polycyclic aromatic compounds to the worker breathing zone. Elevated asphalt temperatures increased exposures during the pouring of asphalt. Co-exposures in these workplaces which act as confounders for both the measurement of total organic matter and fluorescence were detected and their influence discussed. Exposures to polycyclic aromatic compounds in asphalt roofing manufacturing facilities were lower than or similar to those reported in hot-mix paving application studies, and much below those reported in studies of hot application of built-up roofing asphalt. These relatively low exposures in manufacturing are primarily attributed to air emission controls in the facilities, and the relatively moderate temperatures, compared to built-up roofing, used in these facilities for oxidized asphalt. The exposure to polycyclic aromatic compounds was a very small part of the overall worker exposure to asphalt fume, on average less than 0.07% of the benzene-soluble fraction. Measurements of benzene-soluble fraction were uniformly below the American Conference of Governmental Industrial Hygienists' Threshold Limit Value for asphalt fume.

  19. The processing of blend words in naming and sentence reading.

    PubMed

    Johnson, Rebecca L; Slate, Sarah Rose; Teevan, Allison R; Juhasz, Barbara J

    2018-04-01

    Research exploring the processing of morphologically complex words, such as compound words, has found that they are decomposed into their constituent parts during processing. Although much is known about the processing of compound words, very little is known about the processing of lexicalised blend words, which are created from parts of two words, often with phoneme overlap (e.g., brunch). In the current study, blends were matched with non-blend words on a variety of lexical characteristics, and blend processing was examined using two tasks: a naming task and an eye-tracking task that recorded eye movements during reading. Results showed that blend words were processed more slowly than non-blend control words in both tasks. Blend words led to longer reaction times in naming and longer processing times on several eye movement measures compared to non-blend words. This was especially true for blends that were long, rated low in word familiarity, but were easily recognisable as blends.

  20. Mosquito repellent activity of volatile oils from selected aromatic plants.

    PubMed

    Lalthazuali; Mathew, Nisha

    2017-02-01

    Essential oils from fresh leaves of four aromatic plants viz., Ocimum sanctum, Mentha piperita, Eucalyptus globulus and Plectranthus amboinicus were extracted by hydrodistillation. The test solutions were prepared as 20% essential oil in ethanol and positive control as 20% DEET in ethanol. Essential oil blend was prepared as 5% concentration. Nulliparous, 3-5-day-old female adult Aedes aegypti mosquitoes were used for repellency screening as per ICMR protocol. The study showed that the repellency of 20% essential oil of O. sanctum, M. piperita and P. amboinicus were comparable with that of the standard DEET (20%) as no mosquito landing on the test was observed up to 6 h. The E. globulus oil exhibited mosquito repellency only upto 1½ h. Considerable mosquito landing and feeding was displayed in negative control. In the case of the oil blend, no landing of mosquitoes was seen up to 6 h as that of positive control. The results showed that the essential oil blend from O. sanctum, M. piperita, E. globulus and P. amboinicus could repel Ae. aegypti mosquitoes or prevent from feeding as in the case of DEET even at a lower concentration of 5%. This study demonstrates the potential of essential oils from O. sanctum, M. piperita, E. globulus and P. amboinicus and their blend as mosquito repellents against Ae. aegypti, the vector of dengue, chikungunya and yellow fever.

  1. Characterisation of blends of polyisoprene and polystyrene by on-line hyphenation of HPLC and (1) H-NMR: LC-CC-NMR at critical conditions of both homopolymers.

    PubMed

    Sinha, Pritish; Hiller, Wolf; Pasch, Harald

    2010-11-01

    Blends of polystyrene (PS) and polyisoprene (PI) were analysed by on-line hyphenation of LC at critical conditions and (1) H-NMR. Chromatography at critical conditions was established for both PS and PI. At both critical conditions, a perfect separation into the blend components was achieved. By operating at critical conditions of one blend component and size exclusion mode for the other it is possible to determine the molar mass using a suitable calibration. By using NMR as a detector, the microstructure of PI can be identified, quantified and the chemical composition of the blends can be calculated by monitoring the signal intensities of the olefinic protons of isoprene and the aromatic protons of PS. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Amino Acids, Aromatic Compounds, and Carboxylic Acids: How Did They Get Their Common Names?

    ERIC Educational Resources Information Center

    Leung, Sam H.

    2000-01-01

    Surveys the roots of the common names of organic compounds most likely to be encountered by undergraduate organic chemistry students. Includes information for 19 amino acids, 17 aromatic compounds, and 21 carboxylic acids. (WRM)

  3. Multi-Phase Equilibrium and Solubilities of Aromatic Compounds and Inorganic Compounds in Sub- and Supercritical Water: A Review.

    PubMed

    Liu, Qinli; Ding, Xin; Du, Bowen; Fang, Tao

    2017-11-02

    Supercritical water oxidation (SCWO), as a novel and efficient technology, has been applied to wastewater treatment processes. The use of phase equilibrium data to optimize process parameters can offer a theoretical guidance for designing SCWO processes and reducing the equipment and operating costs. In this work, high-pressure phase equilibrium data for aromatic compounds+water systems and inorganic compounds+water systems are given. Moreover, thermodynamic models, equations of state (EOS) and empirical and semi-empirical approaches are summarized and evaluated. This paper also lists the existing problems of multi-phase equilibria and solubility studies on aromatic compounds and inorganic compounds in sub- and supercritical water.

  4. Tests of blending and correlation of distillate fuel properties

    NASA Technical Reports Server (NTRS)

    Erwin, J.; Bowden, J. N.

    1982-01-01

    The development of a fuel test matrix, results from tests of several blends of distillate aircraft fuels, and the use of correlations in formulation determination during a NASA-sponsored program to identify new aircraft fuels are described. The program was initiated in order to characterize fuel blends which are appropriate for different types of combustors in use and under development. The fuels were required to feature a specified range of properties. Attention is given to fuel volatility, hydrogen content, aromatic content, freezing point, kinematic viscosity, and naphthalene content. Paraffinic and naphtenic base stocks were employed, using alkyl benzene, naphthene benzenes, and naphthalenes to adjust the blend properties. Categories for the test fuels comprised source-controlled and composition controlled fuels. Test results and compositions of various fuels are provided.

  5. Product evaluation : bituminous pavement rejuvenator

    DOT National Transportation Integrated Search

    1986-07-03

    This report contains a product evaluation of K.A.E. Paving Consultant's Bituminous Pavement Rejuvenator (BPR). BPR is a coal tar product consisting of a low viscosity blend of aromatic oils designed to penetrate the asphalt, and rejuvenate and plasti...

  6. Automated High-Performance Liquid Chromatography Saturate, Aromatic, Resin, and Asphaltene Separation

    DOT National Transportation Integrated Search

    2016-10-01

    Dividing a material into its constituent parts is necessary to define its composition. These compositional analyses are useful in binder formulation through blending, rejuvenation, and modification, as well as prediction of physical performance. Norm...

  7. Solvent-Polarity-Induced Active Layer Morphology Control in Crystalline Diketopyrrolopyrrole-Based Low Band Gap Polymer Photovoltaics

    NASA Astrophysics Data System (ADS)

    Ferdous, Sunzida; Liu, Feng; Wang, Dong; Russell, Thomas

    2014-03-01

    The effects of various processing solvents on the morphology of diketopyrrolopyrrole (DPP)-based low band gap polymer (PDPPBT) and phenyl-C71-butyric acid methyl ester (PC71BM) blends are studied. The quality of the processing solvents was varied systematically using a mixture of a non-aromatic polar primary solvent with high boiling point secondary solvents of increasing polarities. An unfavorable solvent-PC71BM interaction affects the growth process of polymer crystallites inside the blend. When non-aromatic polar solvent was used, large PC71BM aggregates were formed that increase in size with the addition of non-polar secondary solvents. When polar solvents were instead used as the secondary solvents, the size scales of the aggregates decrease markedly, creating a percolated fibrillar network. Power conversion efficiencies of 0.03% to 5% are obtained, depending on the solvent system used.

  8. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarkson, Sonya M.; Giannone, Richard J.; Kridelbaugh, Donna M.

    The production of biofuels from lignocellulose yields a substantial lignin by-product stream that currently has few applications. Biological conversion of lignin-derived compounds into chemicals and fuels has the potential to improve the economics of lignocellulose-derived biofuels, but few microbes are able both to catabolize lignin-derived aromatic compounds and to generate valuable products. WhileEscherichia colihas been engineered to produce a variety of fuels and chemicals, it is incapable of catabolizing most aromatic compounds. Therefore, we engineeredE. colito catabolize protocatechuate, a common intermediate in lignin degradation, as the sole source of carbon and energy via heterologous expression of a nine-gene pathway fromPseudomonasmore » putidaKT2440. Then, we used experimental evolution to select for mutations that increased growth with protocatechuate more than 2-fold. Increasing the strength of a single ribosome binding site in the heterologous pathway was sufficient to recapitulate the increased growth. After optimization of the core pathway, we extended the pathway to enable catabolism of a second model compound, 4-hydroxybenzoate. These engineered strains will be useful platforms to discover, characterize, and optimize pathways for conversions of lignin-derived aromatics. IMPORTANCELignin is a challenging substrate for microbial catabolism due to its polymeric and heterogeneous chemical structure. Therefore, engineering microbes for improved catabolism of lignin-derived aromatic compounds will require the assembly of an entire network of catabolic reactions, including pathways from genetically intractable strains. By constructing defined pathways for aromatic compound degradation in a model host would allow rapid identification, characterization, and optimization of novel pathways. Finally, we constructed and optimized one such pathway inE. colito enable catabolism of a model aromatic compound, protocatechuate, and then extended the pathway to a related compound, 4-hydroxybenzoate. This optimized strain can now be used as the basis for the characterization of novel pathways.« less

  9. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds.

    PubMed

    Clarkson, Sonya M; Giannone, Richard J; Kridelbaugh, Donna M; Elkins, James G; Guss, Adam M; Michener, Joshua K

    2017-09-15

    The production of biofuels from lignocellulose yields a substantial lignin by-product stream that currently has few applications. Biological conversion of lignin-derived compounds into chemicals and fuels has the potential to improve the economics of lignocellulose-derived biofuels, but few microbes are able both to catabolize lignin-derived aromatic compounds and to generate valuable products. While Escherichia coli has been engineered to produce a variety of fuels and chemicals, it is incapable of catabolizing most aromatic compounds. Therefore, we engineered E. coli to catabolize protocatechuate, a common intermediate in lignin degradation, as the sole source of carbon and energy via heterologous expression of a nine-gene pathway from Pseudomonas putida KT2440. We next used experimental evolution to select for mutations that increased growth with protocatechuate more than 2-fold. Increasing the strength of a single ribosome binding site in the heterologous pathway was sufficient to recapitulate the increased growth. After optimization of the core pathway, we extended the pathway to enable catabolism of a second model compound, 4-hydroxybenzoate. These engineered strains will be useful platforms to discover, characterize, and optimize pathways for conversions of lignin-derived aromatics. IMPORTANCE Lignin is a challenging substrate for microbial catabolism due to its polymeric and heterogeneous chemical structure. Therefore, engineering microbes for improved catabolism of lignin-derived aromatic compounds will require the assembly of an entire network of catabolic reactions, including pathways from genetically intractable strains. Constructing defined pathways for aromatic compound degradation in a model host would allow rapid identification, characterization, and optimization of novel pathways. We constructed and optimized one such pathway in E. coli to enable catabolism of a model aromatic compound, protocatechuate, and then extended the pathway to a related compound, 4-hydroxybenzoate. This optimized strain can now be used as the basis for the characterization of novel pathways. Copyright © 2017 American Society for Microbiology.

  10. Controlled release properties of zein-fatty acid blend films for multiple bioactive compounds.

    PubMed

    Arcan, Iskender; Yemenicioğlu, Ahmet

    2014-08-13

    To develop edible films having controlled release properties for multiple bioactive compounds, hydrophobicity and morphology of zein films were modified by blending zein with oleic (C18:1)Δ⁹, linoleic (C18:2)Δ(9,12), or lauric (C₁₂) acids in the presence of lecithin. The blend zein films showed 2-8.5- and 1.6-2.9-fold lower initial release rates for the model active compounds, lysozyme (LYS) and (+)-catechin (CAT), than the zein control films, respectively. The change of fatty acid chain length affected both CAT and LYS release rates while the change of fatty acid double bond number affected only the CAT release rate. The film morphologies suggested that the blend films owe their controlled release properties mainly to the microspheres formed within their matrix and encapsulation of active compounds. The blend films showed antilisterial activity and antioxidant activity up to 81 μmol Trolox/cm². The controlled release of multiple bioactive compounds from a single film showed the possibility of combining application of active and bioactive packaging technologies and improving not only safety and quality but also health benefits of packed food.

  11. Detection of chlorinated aromatic compounds

    DOEpatents

    Ekechukwu, A.A.

    1996-02-06

    A method for making a composition for measuring the concentration of chlorinated aromatic compounds in aqueous fluids, and an optical probe for use with the method are disclosed. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis. 5 figs.

  12. Detection of chlorinated aromatic compounds

    DOEpatents

    Ekechukwu, Amy A.

    1996-01-01

    A method for making a composition for measuring the concentration of chloated aromatic compounds in aqueous fluids, and an optical probe for use with the method. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis.

  13. Effect of Aromatic Concentration of a Fischer-Tropsch Fuel on Thermal Stability

    NASA Technical Reports Server (NTRS)

    Klettlinger, Jennifer Lindsey Suder

    2012-01-01

    Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. Fischer­ Tropsch fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal parafins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline commercial grade F-T jet fuel, and various blends of this F-T fuel with an aromatic solution. The goal of this research is to determine the effect of aromatic content on the thermal stability of Fischer-Tropsch fuel. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.

  14. Compilation of Energy Efficient Concepts in Advanced Aircraft Design and Operations. Volume 2. Abstract Data Base

    DTIC Science & Technology

    1980-11-05

    content were studied using a T56 single can combustor rig. Test fuels included single and double ring aromatic types as well as paraffins blended with each...simulated by blending of petroleum based fuels and will be used to conduct research tests required to evolve the technology that may be needed to use...small vertical ° wInglet ° located just inboard of each wingtip; the implementation of supercritlcal aerodynamic wing designs; increase in frequency and

  15. Emissions of particulate matter and associated polycyclic aromatic hydrocarbons from agricultural diesel engine fueled with degummed, deacidified mixed crude palm oil blends.

    PubMed

    Phoungthong, Khamphe; Tekasakul, Surajit; Tekasakul, Perapong; Prateepchaikul, Gumpon; Jindapetch, Naret; Furuuchi, Masami; Hata, Mitsuhiko

    2013-04-01

    Mixed crude palm oil (MCPO), the mixture of palm fiber oil and palm kernel oil, has become of great interest as a renewable energy source. It can be easily extracted from whole dried palm fruits. In the present work, the degummed, deacidified MCPO was blended in petroleum diesel at portions of 30% and 40% by volume and then tested in agricultural diesel engines for long-term usage. The particulates from the exhaust of the engines were collected every 500 hr using a four-stage cascade air sampler. The 50% cut-off aerodynamic diameters for the first three stages were 10, 2.5 and 1 microm, while the last stage collected all particles smaller than 1 microm. Sixteen particle bounded polycyclic aromatic hydrocarbons (PAHs) were analyzed using a high performance liquid chromatography. The results indicated that the size distribution of particulate matter was in the accumulation mode and the pattern of total PAHs associated with fine-particles (< 1 microm) showed a dominance of larger molecular weight PAHs (4-6 aromatic rings), especially pyrene. The mass median diameter, PM and total PAH concentrations decreased when increasing the palm oil content, but increased when the running hours of the engine were increased. In addition, Commercial petroleum diesel (PB0) gave the highest value of carcinogenic potency equivalent (BaP(eq)) for all particle size ranges. As the palm oil was increased, the BaP(eq) decreased gradually. Therefore the degummed-deacidified MCPO blends are recommended for diesel substitute.

  16. Evaluation of Microlon and Technol-G : final report.

    DOT National Transportation Integrated Search

    1982-01-01

    An evaluation was made of the cost-effectiveness of the automotive products Microlon, an engine treatment consisting of Teflon suspended in a solvent, and Technol-G, a gasoline treating additive consisting of a blend of aliphatic and aromatic distill...

  17. Property Analysis of Ethanol− Natural Gasoline−BOB Blends to Make Flex Fuel

    EPA Pesticide Factsheets

    Ten natural gasolines were analyzed for a wide range of properties, including Reid vapor pressure (RVP), benzene, sulfur, distillation, stability, metals, and aromatic content, to determine their quality. Benzene and sulfur content were sufficiently low

  18. Partitioning studies of coal-tar constituents in a two-phase contaminated ground-water system

    USGS Publications Warehouse

    Rostad, C.E.; Pereira, W.E.; Hult, M.F.

    1985-01-01

    Organic compounds derived from coal-tar wastes in a contaminated aquifer in St. Louis Park, Minnesota, were identified, and their partition coefficients between the tar phase and aqueous phase were determined and compared with the corresponding n-octanol/water partition coefficients. Coal tar contains numerous polycyclic aromatic compounds, many of which are suspected carcinogens or mutagens. Groundwater contamination by these toxic compounds may pose an environmental health hazard in nearby public water-supply wells. Fluid samples from this aquifer developed two phases upon settling: an upper aqueous phase, and a lower oily-tar phase. After separating the phases, polycyclic aromatic compounds in each phase were isolated using complexation with N-methyl-2-pyrrolidone and identified by fused-silica capillary gas chromatography/mass spectrometry. Thirty-one of the polycyclic aromatic compounds were chosen for further study from four different classes: 12 polycyclic aromatic hydrocarbons, 10 nitrogen heterocycles, 5 sulfur heterocycles, and 4 oxygen heterocycles. Within each compound class, the tar/water partition coefficients of these compounds were reasonably comparable with the respective n-octanol/water partition coefficient.

  19. Aromatic ring generation as a dust precursor in acetylene discharges

    NASA Astrophysics Data System (ADS)

    De Bleecker, Kathleen; Bogaerts, Annemie; Goedheer, Wim

    2006-04-01

    Production of aromatic hydrocarbon compounds as an intermediate step for particle formation in low-pressure acetylene discharges is investigated via a kinetic approach. The detailed chemical reaction mechanism contains 140 reactions among 55 species. The cyclic hydrocarbon chemistry is mainly based on studies of polycyclic aromatic hydrocarbon formation in cosmic environments. The model explicitly includes organic chain, cyclic molecules, radicals, and ions up to a size of 12 carbon atoms. The calculated density profiles show that the aromatic formation yields are quite significant, suggesting that aromatic compounds play a role in the underlying mechanisms of particle formation in hydrocarbon plasmas.

  20. Low severity coal conversion by ionic hydrogenation: Quarterly report, October--December 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maioriello, J.; Larsen, J.W.

    1988-12-31

    A newly developed reaction system consisting of H/sub 2/O:BF/sub 3//H/sub 2//(CH/sub 3/CN)/sub 2/PtCl/sub 2/ was applied to the ionic hydrogenation of aromatic and functionalized aromatic compounds. Hydrogenations were carried out in this aqueous system at 50/degree/C and 500 psi H/sub 2/. Aryl ethers were hydrogenated and cleaved, yielding deoxygenated, fully saturated compounds as the major products. Reactions of nitrogen-containing aromatic compounds resulted in partial saturation of aromatic rings without cleavage of the C-N bonds. Aromatic and PNA compounds can be fully or partially hydrogenated depending on their structures. Aromatic thiols, sulfides and thiophenes poison the catalyst; the oxidized sulfur formsmore » (sulfonic acids, sulfones) were not reduced and did not poison the catalyst. It was found that certain aromatic compounds were easier to hydrogenate than others. Ionic hydrogenation of Wyodak cola using a H/sub 2/O:BF/sub 3//H/sub 2//(MeCN)/sub 2/PtCl/sub 2/ resulted in no significant increase in THF extractability (5.8--9.6% THF-extractables, wt) over that of the parent coal (4.6--6.7% THF-extractables, wt). Ionic hydrogenation of a demineralized Wyodak coal (1 M aq. citric acid, reflux 1 day) resulted in a slight increase in THF extractability (10.4%) over the untreated parent coal (5.6--5.8%). 4 refs., 1 fig., 1 tab.« less

  1. Toxicity of N-substituted aromatics to acetoclastic methanogenic activity in granular sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donlon, B.A.; Razo-Flores, E.; Field, J.A.

    1995-11-01

    N-substituted aromatics are important priority pollutants entering the environment primarily through anthropogenic activities associated associated with the industrial production of dyes, explosives, pestides, and pharmaceuticals. Anaerobic treatment of wastewaters discharged by these industries could potentially be problematical as a result of the high toxicity of N-substituted aromatics. The objective of this study was to examine the structure-toxicity relationship of N-substituted aromatic compounds to acetoclastic methanogenic bacteria. The toxicity was assayed to serum flasks by measuring methane production in granular sludge. Unacclimated cultures were used to minimize the biotransformation of the toxic organic chemicals during the test. The nature and themore » degree of the aromatic substitution were observed to have a profound effect on the toxicity of the test compound. Nitroaromatic compounds were, on the average, over 500-fold more toxic than their corresponding aromatic amines. Considering the facile reduction of nitro groups by anerobic microorganisms, a dramatic detoxification of nitroaromatics towards methanogens can be expected to occur during anaerobic wastewater treatment. While the toxicity exerted by the N-substituted aromatic compounds was closely correlated with compound apolarity (log P), it was observed that at any given log P, N-substituted phenols had a toxicity that was 2 orders of magnitude higher than that of chlorophenols and alkylphenols. This indicates that toxicity due to the chemical reactivity of nitroaromatics is much more important than partitioning effects in bacterial membranes. 41 refs., 3 figs., 1 tab.« less

  2. Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids.

    PubMed

    Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R

    2013-10-01

    Lignin comprises 15-25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP-binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute-binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins. Copyright © 2013 Wiley Periodicals, Inc.

  3. Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids

    PubMed Central

    Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C.; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R.

    2013-01-01

    Lignin comprises 15.25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP.binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute.binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins. PMID:23606130

  4. SOLVENT-FREE REDUCTION OF AROMATIC NITRO COMPOUNDS WITH ALUMINA-SUPPORTED HYDRAZINE UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    In a solvent-free microwave-expedited process, aromatic nitro compounds are readily reduced to the corresponding amino compounds in good yield with hydrazine hydrate supported on alumina in presence of FeCl3, 6H2), Fe(III) oxide hydroxide or Fe(III) oxides.

  5. Chemical and physical aspects of refining coal liquids

    NASA Astrophysics Data System (ADS)

    Shah, Y. T.; Stiegel, G. J.; Krishnamurthy, S.

    1981-02-01

    Increasing costs and declining reserves of petroleum are forcing oil importing countries to develop alternate energy sources. The direct liquefaction of coal is currently being investigated as a viable means of producing substitute liquid fuels. The coal liquids derived from such processes are typically high in nitrogen, oxygen and sulfur besides having a high aromatic and metals content. It is therefore envisaged that modifications to existing petroleum refining technology will be necessary in order to economically upgrade coal liquids. In this review, compositional data for various coal liquids are presented and compared with those for petroleum fuels. Studies reported on the stability of coal liquids are discussed. The feasibility of processing blends of coal liquids with petroleum feedstocks in existing refineries is evaluated. The chemistry of hydroprocessing is discussed through kinetic and mechanistic studies using compounds which are commonly detected in coal liquids. The pros and cons of using conventional petroleum refining catalysts for upgrading coal liquids are discussed.

  6. Biodegradation of aromatic compounds by white rot and ectomycorrhizal fungal species and the accumulation of chlorinated benzoic acid in ectomycorrhizal pine seedlings.

    PubMed

    Dittmann, Jens; Heyser, Wolfgang; Bücking, Heike

    2002-10-01

    The capability of different white rot (WR, Heterobasidion annosum, Phanerochaete chrysosporium, Trametes versicolor) and ectomycorrhizal (ECM, Paxillus involutus, Suillus bovinus) fungal species to degrade different aromatic compounds and the absorption of 3-chlorobenzoic acid (3-CBA) by ECM pine seedlings was examined. The effect of aromatic compounds on the fungal biomass development varied considerably and depended on (a) the compound, (b) the external concentration, and (c) the fungal species. The highest effect on the fungal biomass development was observed for 3-CBA. Generally the tolerance of WR fungi against aromatic compounds was higher than that of the biotrophic fungal species. The capability of different fungi to degrade aromatic substances varied between the species but not generally between biotrophic and saprotrophic fungi. The highest degradation capability for aromatic compounds was detected for T. versicolor and H. annosum, whereas for Phanerochaete chrysosporium and the ECM fungi lower degradation rates were found. However, Paxillus involutus and S. bovinus showed comparable degradation rates at low concentrations of benzoic acid and 4-hydroxybenzoic acid. In contrast to liquid cultures, where no biodegradation of 3-CBA by S. bovinus was observed, mycorrhizal pines inoculated with S. bovinus showed a low capability to remove 3-CBA from soil substrates. Additional X-ray microanalytical investigations showed, that 3-CBA supplied to mycorrhizal plants was accumulated in the root cell cytoplasm and is translocated across the endodermis to the shoot of mycorrhizal pine seedlings.

  7. [Recent advances in Sphingobium sp. SYK-6 for lignin aromatic compounds degradation--a review].

    PubMed

    Zhang, Xiaoyan; Peng, Xue; Masai, Eiji

    2014-08-04

    Lignin is complex heteropolymer produced from hydroxycinnamyl alcohols through radical coupling. In nature, white-rot fungi are assumed initially to attack native lignin and release lignin-derived-low-molecular-weight compounds, and soil bacteria play an importent role for completely degradation of these compounds. Study on the soil bacteria degrading lignin-derived-low-molecular-weight compounds will give way to understand how aromatic compounds recycle in nature, and to utilize lignin compounds as the renewable materials for valuable materials production. Sphingobium sp. SYK-6 that grows on lignin biphenyl (5,5'-dehydrodivanillate) had been isolated from pulp effluent in 1987. We have researched this bacterium more than 25 years, a serious aromatic metabolic pathway has been determined, and related genes have been isolated. As the complete genome sequence of SYK-6 has been opened to the public in 2012, the entire aromatic compounds degradation mechanisms become more clear. Main contents in our review cover: (1) genome information; (2) aryl metabolism; (3) biphenyl metabolism; (4) ferulate metabolism; (5) tetrahydrofolate-dependent O-demethylation system for lignin compound degrdation; (6) protocatechuate 4,5-cleavage pathway; (7) multiple pathways for 3-O-methylgallate metabolism.

  8. Habituation in Frankliniella occidentalis to deterrent plant compounds and their blends.

    PubMed

    Egger, Barbara; Spangl, Bernhard; Koschier, Elisabeth Helene

    2014-06-01

    Feeding and oviposition deterrence of three secondary plant compounds and their 1:1 blends to adult female Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) and the potential for habituation of the thrips to the pure compounds and the 1:1 blends at various concentrations were investigated. In choice assays, we tested dose-dependent feeding and oviposition deterrence of the two fatty acid derivatives methyl jasmonate and cis -jasmone, the phenylpropanoid allylanisole, and their blends when directly applied to bean leaf discs. The concentration required to reduce the feeding damage by 50% relative to the control treatment (FDC 50 ) was lowest for cis -jasmone and highest for allylanisole. The feeding deterrent effect of both jasmonates was increased when blended with allylanisole. Feeding deterrence and oviposition deterrence were strongly correlated. In no-choice assays conducted over four consecutive days, we discovered that dilutions at low concentrations (FDC 15 ) applied to bean leaves resulted in habituation to the deterrents, whereas no habituation occurred at higher concentrations (FDC 50 ). We observed a tendency that the 1:1 blends reduce the probability that thrips habituate to the deterrent compounds. Our results may be useful in the development of integrated crop protection strategies with the implementation of allelochemicals as pest behaviour-modifying agents.

  9. Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G (Inventor)

    2013-01-01

    A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties.

  10. Effect of interlayer cations of montmorillonite on the biodegradation and adsorption of crude oil polycyclic aromatic compounds.

    PubMed

    Ugochukwu, Uzochukwu C; Manning, David A C; Fialips, Claire I

    2014-09-01

    Cation exchange capacity, surface acidity and specific surface area are surface properties of clay minerals that make them act as catalysts or supports in most biogeochemical processes hence making them play important roles in environmental control. However, the role of homoionic clay minerals during the biodegradation of polycyclic aromatic compounds is not well reported. In this study, the effect of interlayer cations of montmorillonites in the removal of some crude oil polycyclic aromatic compounds during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The homoionic montmorillonites were prepared via cation exchange reactions by treating the unmodified montmorillonite with the relevant metallic chloride. The study indicated that potassium-montmorillonite and zinc-montmorillonite did not enhance the biodegradation of the polycyclic aromatic hydrocarbons whereas calcium-montmorillonite, and ferric-montmorillonite enhanced their biodegradation significantly. Adsorption of polycyclic aromatic hydrocarbons was significant during biodegradation with potassium- and zinc-montmorillonite where there was about 45% removal of the polycyclic aromatic compounds by adsorption in the experimental microcosm containing 5:1 ratio (w/w) of clay to oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Pt- and Pd-decorated MWCNTs for vapour and gas detection at room temperature

    PubMed Central

    Baccar, Hamdi; Clément, Pierrick; Abdelghani, Adnane

    2015-01-01

    Summary Here we report on the gas sensing properties of multiwalled carbon nanotubes decorated with sputtered Pt or Pd nanoparticles. Sputtering allows for an oxygen plasma treatment that removes amorphous carbon from the surface of the carbon nanotubes and creates oxygenated surface defects in which metal nanoparticles nucleate within a few minutes. The decoration with the 2 nm Pt or the 3 nm Pd nanoparticles is very homogeneous. This procedure is performed at the device level (i.e., for carbon nanotubes deposited onto sensor substrates) for many devices in one batch, which illustrates the scalability for the mass production of affordable nanosensors. The response to selected aromatic and non-aromatic volatile organic compounds, as well as pollutant gases has been studied. Pt- and Pd-decorated multiwalled carbon nanotubes show a fully reversible response to the non-aromatic volatile organic compounds tested when operated at room temperature. In contrast, these nanomaterials were not responsive to the aromatic compounds studied (measured at concentrations up to 50 ppm). Therefore, these sensors could be useful in a small, battery-operated alarm detector, for example, which is able to discriminate aromatic from non-aromatic volatile organic compounds in ambient. PMID:25977863

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ijam, M.J.; Al-Qatami, S.Y.; Arif, S.F.

    For several decades removal of aromatics from crude oil fractions has been practiced in oil refining to produce fuels and lubricants of lower aromatic content and hence of improved quality. These aromatics are suitable raw materials for the manufacture of aromatic solvents, aromatic process oils, high octane gasoline, and as basic materials for making detergents, perfumes and dyes. A study for the UV and IR spectra of the aromatic hydrocarbons showed them to consist mainly of bi-, tri-, tetra-, and penta-substituted benzene, bicyclic and tricyclic compounds. Detailed studies have been reported of molecular structure and substituent effects have been reportedmore » on the retention characteristics of aromatic hydrocarbons on alumina, silica and various chemically bonded silicas containing {minus}C{sub 18}, {minus}NH{sub 2}, {minus}R(NH){sub 2}, {minus}CN, RCN, and phenyl-mercuric acetate for compound class (ring-numbered) high performance liquid chromatography separation. With the aid of a Finnegan type 9612-4000 GC/MS apparatus, the mixture of neutral + basic aromatic hydrocarbons was qualitatively identified and revealed the presence of more than 112 peaks. The neutral + basic aromatic hydrocarbons consist mainly of: 3.68% monoaromatics (C{sub 3} - C{sub 6} alkyl benzenes), 52.81% bicycloaromatics (C{sub 0} - C{sub 4} alkylnaphthalenes), 6.20% tricycloaromatics (C{sub 0} - C{sub 4} alkyl phenanthrenes), and 37.32% nonhydrocarbons aromatic compounds. The components in major HPLC peaks corresponding to bicycloaromatics were further separated into small groups (3-4 components in each) by HPLC using an ODS-reverse phase-C{sub 18} column. To separate a single component from the mixture is a difficult problem. The individual compounds in the separated fractions were identified by GC/MS (Hewlett Packard 5993 system).« less

  13. Effectiveness of Liquid-Liquid Extraction, Solid Phase Extraction, and Headspace Technique for Determination of Some Volatile Water-Soluble Compounds of Rose Aromatic Water

    PubMed Central

    2017-01-01

    Steam distillation is used to isolate scent of rose flowers. Rose aromatic water is commonly used in European cuisine and aromatherapy besides its use in cosmetic industry for its lovely scent. In this study, three different sampling techniques, liquid-liquid extraction (LLE), headspace technique (HS), and solid phase extraction (SPE), were compared for the analysis of volatile water-soluble compounds in commercial rose aromatic water. Some volatile water-soluble compounds of rose aromatic water were also analyzed by gas chromatography mass spectrometry (GCMS). In any case, it was concluded that one of the solid phase extraction methods led to higher recoveries for 2-phenylethyl alcohol (PEA) in the rose aromatic water than the liquid-liquid extraction and headspace technique. Liquid-liquid extraction method provided higher recovery ratios for citronellol, nerol, and geraniol than others. Ideal linear correlation coefficient values were observed by GCMS for quantitative analysis of volatile compounds (r2 ≥ 0.999). Optimized methods showed acceptable repeatability (RSDs < 5%) and excellent recovery (>95%). For compounds such as α-pinene, linalool, β-caryophyllene, α-humulene, methyl eugenol, and eugenol, the best recovery values were obtained with LLE and SPE. PMID:28791049

  14. Co-combustion of bituminous coal and biomass fuel blends: Thermochemical characterization, potential utilization and environmental advantage.

    PubMed

    Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui

    2016-10-01

    The thermochemical characteristics and gaseous trace pollutant behaviors during co-combustion medium-to-low ash bituminous coal with typical biomass residues (corn stalk and sawdust) were investigated. Lowering of ignition index, burnout temperature and activation energy in the major combustion stage are observed in the coal/biomass blends. The blending proportion of 20% and 30% are regarded as the optimum blends for corn stalk and sawdust, respectively, in according the limitations of heating value, activation energy, flame stability and base/acid ratio. The reductions of gaseous As, Cd, Cu, Pb, Zn and polycyclic aromatic hydrocarbon (PAHs) were 4.5%, 7.8%, 6.3%, 9.8%, 9.4% and 17.4%, respectively, when co-combustion coal with 20% corn stalk. The elevated capture of trace elements were found in coal/corn stalk blend, while the coal/sawdust blend has the better PAHs control potential. The reduction mechanisms of gaseous trace pollutants were attributed to the fuel property, ash composition and relative residence time during combustion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Morphology and vulcanizate properties of ethylene-propylene-diene rubber/ styrene-butadiene rubber blends.

    PubMed

    Park, Gayoung; Kim, Yun Hee; Kim, Dong Soo; Ko, Young Chun

    2010-05-01

    Morphology and vulcanizate properties of EPDM/SBR blends were investigated. AAHR (a mixture of aliphatic and aromatic hydrocarbon resins) was used as a compatibilizer and bis(3-triethoxysilylpropyl)tetrasulfide (TESPT) was used as a coupling agent. The vulcanizate properties and the morphological studies revealed that EPDM and SBR were incompatible, and the addition of AAHR was very effective to enhance the compatibility between EPDM and SBR. The weight percent of bound rubbers was increased with increasing SBR contents. The addition of an AAHR increased the amounts of bound rubbers, and hence the vulcanizate properties such as tear strength and fatigue resistance of the EPDM/SBR blends were improved. The dynamic mechanical analysis and the morphological studies revealed that the addition of TESPT increased the weight of bound rubbers and provided better dispersion of carbon black, resulting in good mechanical properties such as tear strength and fatigue resistance of the vulcanized EPDM/SBR blends. The smaller particle of zinc oxide (i.e., 50 nm > 100 nm > 1000 nm) yielded to the better blending properties of the polymer blend.

  16. Assessing the impacts of ethanol and isobutanol on gaseous and particulate emissions from flexible fuel vehicles.

    PubMed

    Karavalakis, Georgios; Short, Daniel; Russell, Robert L; Jung, Heejung; Johnson, Kent C; Asa-Awuku, Akua; Durbin, Thomas D

    2014-12-02

    This study investigated the effects of higher ethanol blends and an isobutanol blend on the criteria emissions, fuel economy, gaseous toxic pollutants, and particulate emissions from two flexible-fuel vehicles equipped with spark ignition engines, with one wall-guided direct injection and one port fuel injection configuration. Both vehicles were tested over triplicate Federal Test Procedure (FTP) and Unified Cycles (UC) using a chassis dynamometer. Emissions of nonmethane hydrocarbons (NMHC) and carbon monoxide (CO) showed some statistically significant reductions with higher alcohol fuels, while total hydrocarbons (THC) and nitrogen oxides (NOx) did not show strong fuel effects. Acetaldehyde emissions exhibited sharp increases with higher ethanol blends for both vehicles, whereas butyraldehyde emissions showed higher emissions for the butanol blend relative to the ethanol blends at a statistically significant level. Particulate matter (PM) mass, number, and soot mass emissions showed strong reductions with increasing alcohol content in gasoline. Particulate emissions were found to be clearly influenced by certain fuel parameters including oxygen content, hydrogen content, and aromatics content.

  17. Can Baird's and Clar's Rules Combined Explain Triplet State Energies of Polycyclic Conjugated Hydrocarbons with Fused 4nπ- and (4n + 2)π-Rings?

    PubMed

    Ayub, Rabia; Bakouri, Ouissam El; Jorner, Kjell; Solà, Miquel; Ottosson, Henrik

    2017-06-16

    Compounds that can be labeled as "aromatic chameleons" are π-conjugated compounds that are able to adjust their π-electron distributions so as to comply with the different rules of aromaticity in different electronic states. We used quantum chemical calculations to explore how the fusion of benzene rings onto aromatic chameleonic units represented by biphenylene, dibenzocyclooctatetraene, and dibenzo[a,e]pentalene modifies the first triplet excited states (T 1 ) of the compounds. Decreases in T 1 energies are observed when going from isomers with linear connectivity of the fused benzene rings to those with cis- or trans-bent connectivities. The T 1 energies decreased down to those of the parent (isolated) 4nπ-electron units. Simultaneously, we observe an increased influence of triplet state aromaticity of the central 4n ring as given by Baird's rule and evidenced by geometric, magnetic, and electron density based aromaticity indices (HOMA, NICS-XY, ACID, and FLU). Because of an influence of triplet state aromaticity in the central 4nπ-electron units, the most stabilized compounds retain the triplet excitation in Baird π-quartets or octets, enabling the outer benzene rings to adapt closed-shell singlet Clar π-sextet character. Interestingly, the T 1 energies go down as the total number of aromatic cycles within a molecule in the T 1 state increases.

  18. MOLECULAR BASIS OF BIODEGRADATION OF CHLOROAROMATIC COMPOUNDS

    EPA Science Inventory

    Chlorinated aromatic hydrocarbons are widely used in industry and agriculture, and comprise the bulk of environmental pollutants. Although simple aromatic compounds are biodegradable by a variety of degradative pathways, their halogenated counterparts are more resistant to bacter...

  19. Saccharomyces cerevisiae Mixed Culture of Blackberry (Rubus ulmifolius L.) Juice: Synergism in the Aroma Compounds Production

    PubMed Central

    Ragazzo-Sánchez, Juan Arturo; Ortiz-Basurto, Rosa Isela; Luna-Solano, Guadalupe; Calderón-Santoyo, Montserrat

    2014-01-01

    Blackberry (Rubus sp.) juice was fermented using four different strains of Saccharomyces cerevisiae (Vitilevure-CM4457, Enoferm-T306, ICV-K1, and Greroche Rhona-L3574) recognized because of their use in the wine industry. A medium alcoholic graduation spirit (<6°GL) with potential to be produced at an industrial scale was obtained. Alcoholic fermentations were performed at 28°C, 200 rpm, and noncontrolled pH. The synergistic effect on the aromatic compounds production during fermentation in mixed culture was compared with those obtained by monoculture and physic mixture of spirits produced in monoculture. The aromatic composition was determined by HS-SPME-GC. The differences in aromatic profile principally rely on the proportions in aromatic compounds and not on the number of those compounds. The multivariance analysis, principal component analysis (PCA), and factorial discriminant analysis (DFA) permit to demonstrate the synergism between the strains. PMID:25506606

  20. The aromatic amino acids biosynthetic pathway: A core platform for products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lievense, J.C.; Frost, J.W.

    The aromatic amino acids biosynthetic pathway is viewed conventionally and primarily as the source of the amino acids L-tyrosine, L-phenylalanine. The authors have recognized the expanded role of the pathway as the major source of aromatic raw materials on earth. With the development of metabolic engineering approaches, it is now possible to biosynthesize a wide variety of aromatic compounds from inexpensive, clean, abundant, renewable sugars using fermentation methods. Examples of already and soon-to-be commercialized biosynthesis of such compounds are described. The long-term prospects are also assessed.

  1. Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review.

    PubMed

    Castillo-Carvajal, Laura C; Sanz-Martín, José Luis; Barragán-Huerta, Blanca E

    2014-01-01

    Agro-food, petroleum, textile, and leather industries generate saline wastewater with a high content of organic pollutants such as aromatic hydrocarbons, phenols, nitroaromatics, and azo dyes. Halophilic microorganisms are of increasing interest in industrial waste treatment, due to their ability to degrade hazardous substances efficiently under high salt conditions. However, their full potential remains unexplored. The isolation and identification of halophilic and halotolerant microorganisms from geographically unrelated and geologically diverse hypersaline sites supports their application in bioremediation processes. Past investigations in this field have mainly focused on the elimination of polycyclic aromatic hydrocarbons and phenols, whereas few studies have investigated N-aromatic compounds, such as nitro-substituted compounds, amines, and azo dyes, in saline wastewater. Information regarding the growth conditions and degradation mechanisms of halophilic microorganisms is also limited. In this review, we discuss recent research on the removal of organic pollutants such as organic matter, in terms of chemical oxygen demand (COD), dyes, hydrocarbons, N-aliphatic and N-aromatic compounds, and phenols, in conditions of high salinity. In addition, some proposal pathways for the degradation of aromatic compounds are presented.

  2. Ignition-delay Characteristics in Modified Open-cup Apparatus of Several Fuels with Nitric Acid Oxidants Within Temperature Range 70 to 105 Degrees F

    NASA Technical Reports Server (NTRS)

    Miller, Riley O

    1951-01-01

    Fluid properties and low-temperature ignition delays were obtained for approximately 90 fuel-oxidant combinations. A red fuming nitric acid containing approximately 3 percent water and 19 percent nitrogen tetroxide froze at approximately -87 degrees F and ignited several low-viscosity fuel blends of aromatic amines in triethylamine at -76 degrees F and lower. With this acid, the following average ignition delays were obtained with a blend of 30 percent o-toluidine in triethylamine: ...

  3. The role of methyl salicylate in prey searching behavior of the predatory mite phytoseiulus persimilis.

    PubMed

    De Boer, Jetske G; Dicke, Marcel

    2004-02-01

    Many carnivorous arthropods use herbivore-induced plant volatiles to locate their prey. These plant volatiles are blends of up to hundreds of compounds. It is often unknown which compounds in such a complex volatile blend represent the signal to the foraging carnivore. We studied the role of methyl salicylate (MeSA) as part of the volatile blend in the foraging behavior of the predatory mite Phytoseiulus persimilis by using a Y-tube olfactometer. MeSA is one of the compounds released by lima bean, infested with Tetranychus urticae--a prey species of the predatory mite. MeSA attracted satiated predatory mites in a dose-dependent way with optimum attraction at a dose of 0.2 microg. Predatory mites did not discriminate between a prey-induced lima bean volatile blend (that contains MeSA) and a prey-induced volatile blend to which an extra amount of synthetic MeSA had been added. However, they preferred a MeSA-containing volatile blend (induced by T. urticae) to an otherwise similar but MeSA-free blend (induced by jasmonic acid). Adding synthetic MeSA to the MeSA-free blend significantly increased the mites' choice for this odor, suggesting an important role for MeSA. This study is a new step toward unraveling the role of herbivore-induced plant volatiles in the foraging behavior of predatory arthropods.

  4. Natural Mediators in the Oxidation of Polycyclic Aromatic Hydrocarbons by Laccase Mediator Systems

    PubMed Central

    Johannes, Christian; Majcherczyk, Andrzej

    2000-01-01

    The oxidation of polycyclic aromatic compounds was studied in systems consisting of laccase from Trametes versicolor and so-called mediator compounds. The enzymatic oxidation of acenaphthene, acenaphthylene, anthracene, and fluorene was mediated by various laccase substrates (phenols and aromatic amines) or compounds produced and secreted by white rot fungi. The best natural mediators, such as phenol, aniline, 4-hydroxybenzoic acid, and 4-hydroxybenzyl alcohol were as efficient as the previously described synthetic compounds ABTS [2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] and 1-hydroxybenzotriazole. The oxidation efficiency increased proportionally with the redox potentials of the phenolic mediators up to a maximum value of 0.9 V and decreased thereafter with redox potentials exceeding this value. Natural compounds such as methionine, cysteine, and reduced glutathione, containing sulfhydryl groups, were also active as mediator compounds. PMID:10653713

  5. Bromination of aromatic compounds by residual bromide in sodium chloride matrix modifier salt during heated headspace GC/MS analysis.

    PubMed

    Fine, Dennis D; Ko, Saebom; Huling, Scott

    2013-12-15

    Analytical artifacts attributed to the bromination of toluene, xylenes, and trimethylbenzenes were found during the heated headspace gas chromatography/mass spectrometry (GC/MS) analysis of aqueous samples. The aqueous samples were produced from Fenton-like chemical oxidation reactions and contained aromatic compounds, hydrogen peroxide (H2O2), and ferric sulfate. Prior to GC/MS headspace analysis, the samples were acidified (pH<2), and sodium chloride was amended to the headspace vial as a matrix modifier. The brominated artifacts were generated during heated headspace analysis. Further, when samples were spiked with a mixture of volatile chlorinated and aromatic compounds (50 µg/L), poor spike recoveries of toluene and xylenes occurred, and in some cases complete loss of trimethylbenzenes and naphthalene resulted. Where poor recovery of aromatic spike compounds occurred, brominated aromatic compounds were found. The only significant source of bromine in the reaction scheme is the bromide typically present (<0.01% w/w) in the sodium chloride amended to the samples. Conversely, brominated artifacts were absent when a buffered salt mixture composed of sodium chloride and potassium phosphate dibasic/monobasic was used as a matrix modifier and raised the sample pH (pH~6). This indicated that the brominated artifacts resulted from the reaction of the aromatic compounds with BrCl, which was formed by the reaction of H2O2, chloride, and bromide under acidic conditions. An alternative matrix modifier salt is recommended that prevents the bromination reaction and avoids these deleterious effects on sample integrity during headspace analysis. Published by Elsevier B.V.

  6. Assessing Uncertainty of Interspecies Correlation Estimation Models for Aromatic Compounds

    EPA Science Inventory

    We developed Interspecies Correlation Estimation (ICE) models for aromatic compounds containing 1 to 4 benzene rings to assess uncertainty in toxicity extrapolation in two data compilation approaches. ICE models are mathematical relationships between surrogate and predicted test ...

  7. Controlled release of tocopherols from polymer blend films

    NASA Astrophysics Data System (ADS)

    Obinata, Noe

    Controlled release packaging has great potential to increase storage stability of foods by releasing active compounds into foods continuously over time. However, a major limitation in development of this technology is the inability to control the release and provide rates useful for long term storage of foods. Better understanding of the factors affecting active compound release is needed to overcome this limitation. The objective of this research was to investigate the relationship between polymer composition, polymer processing method, polymer morphology, and release properties of active compounds, and to provide proof of principle that compound release is controlled by film morphology. A natural antioxidant, tocopherol was used as a model active compound because it is natural, effective, heat stable, and soluble in most packaging polymers. Polymer blend films were produced from combination of linear low density polyethylene (LLDPE) and high density polyethylene (HDPE), polypropylene (PP), or polystyrene (PS) with 3000 ppm mixed tocopherols using conventional blending method and innovative blending method, smart blending with a novel mixer using chaotic advection. Film morphologies were visualized with scanning electron microscopy (SEM). Release of tocopherols into 95% ethanol as a food simulant was measured by UV/Visible spectrophotometry or HPLC, and diffusivity of tocopherols in the polymers was estimated from this data. Polymer composition (blend proportions) and processing methods have major effects on film morphology. Four different types of morphologies, dispersed, co-continuous, fiber, and multilayer structures were developed by either conventional extrusion or smart blending. With smart blending of fixed polymer compositions, different morphologies were progressively developed with fixed polymer composition as the number of rod rotations increased, providing a way to separate effects of polymer composition and morphology. The different morphologies obtained using conventional and smart blending greatly affected tocopherol release. Strong correlation was observed between morphology and release rate: multilayer, slow release; co-continuous and fiber, moderate; disperse: fast release. Results indicate that morphology can be manipulated by polymer composition and processing method, and release rates of tocopherols are varied with polymer morphology. Manipulating polymer compositions and film morphologies may provide a means to control the release of tocopherols from food contact films.

  8. Anaerobic Microbial Transformation of Aromatic Hydrocarbons and Mixtures of Aromatic Hydrocarbons and Halogenated Solvents

    DTIC Science & Technology

    1992-08-25

    concentrations of these compounds may be toxic or Inhibitory to the microflora, especially if the microorganisms have not been exposed to these compounds before...Slow acclimation of the microflora to lower concentrations of these compounds , that occur at the outskirts of contamination plumes, gradually...sulfate may impair the capability of the microorganisms to degrade these compounds , although anaerobic respiration -- in theory -- is more favorable

  9. The Effects of Molecular Properties on Ready Biodegradation of Aromatic Compounds in the OECD 301B CO2 Evolution Test.

    PubMed

    He, Mei; Mei, Cheng-Fang; Sun, Guo-Ping; Li, Hai-Bei; Liu, Lei; Xu, Mei-Ying

    2016-07-01

    Ready biodegradation is the primary biodegradability of a compound, which is used for discriminating whether a compound could be rapidly and readily biodegraded in the natural ecosystems in a short period and has been applied extensively in the environmental risk assessment of many chemicals. In this study, the effects of 24 molecular properties (including 2 physicochemical parameters, 10 geometrical parameters, 6 topological parameters, and 6 electronic parameters) on the ready biodegradation of 24 kinds of synthetic aromatic compounds were investigated using the OECD 301B CO2 Evolution test. The relationship between molecular properties and ready biodegradation of these aromatic compounds varied with molecular properties. A significant inverse correlation was found for the topological parameter TD, five geometrical parameters (Rad, CAA, CMA, CSEV, and N c), and the physicochemical parameter K ow, and a positive correlation for two topological parameters TC and TVC, whereas no significant correlation was observed for any of the electronic parameters. Based on the correlations between molecular properties and ready biodegradation of these aromatic compounds, the importance of molecular properties was demonstrated as follows: geometrical properties > topological properties > physicochemical properties > electronic properties. Our study first demonstrated the effects of molecular properties on ready biodegradation by a number of experiment data under the same experimental conditions, which should be taken into account to better guide the ready biodegradation tests and understand the mechanisms of the ready biodegradation of aromatic compounds.

  10. Evidence for behavioral attractiveness of methoxylated aromatics in a dynastid scarab beetle-pollinated araceae.

    PubMed

    Dötterl, Stefan; David, Anja; Boland, Wilhelm; Silberbauer-Gottsberger, Ilse; Gottsberger, Gerhard

    2012-12-01

    Many plants attract their pollinators with floral scents, and these olfactory signals are especially important at night, when visual signals become inefficient. Dynastid scarab beetles are a speciose group of night-active pollinators, and several plants pollinated by these insects have methoxylated aromatic compounds in their scents. However, there is a large gap in our knowledge regarding the compounds responsible for beetle attraction. We used chemical analytical analyses to determine temporal patterns of scent emission and the composition of scent released from inflorescences of Philodendron selloum. The attractiveness of the main components in the scent to the dynastid scarab beetle Erioscelis emarginata, the exclusive pollinator of this plant, was assessed in field biotests. The amount of scent increased rapidly in the evening, and large amounts of scent were released during the activity time of the beetle pollinators. Inflorescences emitted a high number of compounds of different biosynthetic origin, among them both uncommon and also widespread flower scents. Methoxylated aromatic compounds dominated the scent, and 4-methoxystyrene, the most abundant compound, attracted E. emarginata beetles. Other compounds, such as (Z)-jasmone and possibly also the methoxylated aromatic compound 3,4-dimethoxystyrene increased the attractiveness of 4-methoxystyrene. Methoxylated aromatics, which are known from other dynastid pollinated plants as well, are important signals in many scarab beetles in a different context (e.g., pheromones), thus suggesting that these plants exploit pre-existing preferences of the beetles for attracting this group of insects as pollinators.

  11. Enhancing and standardizing interaction of rubber particles with asphalt : final report.

    DOT National Transportation Integrated Search

    1995-11-01

    Addition of ground rubber particles to asphalt can enhance several fold the stiffness of the blend as reflected by G*/sin of the rubber-asphalt cements (RACs). Pretreatment of rubber particles with as little as 5% aromatic oil (AO) enhances the ap...

  12. Redox shuttles having an aromatic ring fused to a 1,1,4,4-tetrasubstituted cyclohexane ring

    DOEpatents

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2015-12-01

    An electrolyte includes an alkali metal salt; an aprotic solvent; and a redox shuttle additive including an aromatic compound having at least one aromatic ring fused with at least one non-aromatic ring, the aromatic ring having two or more oxygen or phosphorus-containing substituents.

  13. Incombustible resin composition

    NASA Technical Reports Server (NTRS)

    Akima, T.

    1982-01-01

    Incombustible resin compositions composed of aromatic compounds were obtained through (1) combustion polymer material and (2) bisphenol A or halogenated bisphenol A and bisphenol A diglycidl ether or halogenated bisphenol A diglycidyl ether. The aromatic compound is an adduct of bifunctional phenols and bifunctional epoxy resins.

  14. Reactions of aromatic diazonium salts with unsaturated compounds in the presence of nucleophiles

    NASA Astrophysics Data System (ADS)

    Grishchuk, B. D.; Gorbovoi, P. M.; Ganushchak, N. I.; Dombrovskii, A. V.

    1994-03-01

    The review surveys the reactions of aromatic diazonium salts with diene and monounsaturated compounds in the presence of nucleophiles. Certain further reactions of the reaction products and their application are considered. The bibliography includes 63 references.

  15. Dendrimer encapsulated Silver nanoparticles as novel catalysts for reduction of aromatic nitro compounds

    NASA Astrophysics Data System (ADS)

    Asharani, I. V.; Thirumalai, D.; Sivakumar, A.

    2017-11-01

    Polyethylene glycol (PEG) core dendrimer encapsulated silver nanoparticles (AgNPs) were synthesized through normal chemical reduction method, where dendrimer acts as reducing and stabilizing agent. The encapsulated AgNPs were well characterized using TEM, DLS and XPS techniques. The synthesized AgNPs showed excellent catalytic activity towards the reduction of aromatic nitro compounds with sodium borohydride as reducing agent and the results substantiate that dendrimer encapsulated AgNPs can be an effective catalyst for the substituted nitro aromatic reduction reactions. Also the kinetics of different nitro compounds reductions was studied and presented.

  16. Impact of aromatic concentration in marine fuels on particle emissions

    NASA Astrophysics Data System (ADS)

    Zetterdahl, Maria; Salo, Kent; Fridell, Erik; Sjöblom, Jonas

    2017-09-01

    The fuel sulfur content in marine fuels has been regulated in Sulfur Emission Control Areas (SECAs) since January 2015. However, other fuel characteristics are also believed to have an impact on particle emissions, particularly on the number of particles emitted. This study investigates the impact of the content of aromatics in fuel. To achieve fuel blends with concentrations of aromatics similar to those found in marine fuel oils, i.e. 20%-30% by volume (%vol.), normal diesel oil (4%-5% vol. aromatics) is doped with a mixture of aromatics. Emission measurements are conducted in test-bed engine facilities and particle emissions over a wide size range are analyzed. Results show a decreased number of particles emitted (or not change) with an increase in the aromatic concentration in fuel. This is because there is a reduction in the cetane number of the fuel with an increased aromatic content, which effects the combustion process and results in decreased particle formation. However, when ignition improver is used to increase the cetane number, particle emissions remain at a lower level than for normal diesel oil; thereby emphasizing the presence of other factors in the formation of particles.

  17. Superficial distribution of aromatic compounds and geomicrobiology of sediments from Suruí Mangrove, Guanabara Bay, RJ, Brazil.

    PubMed

    Fontana, Luiz F; da Silva, Frederico S; de Figueiredo, Natália G; Brum, Daniel M; Netto, Annibal D Pereira; de Gigueiredo Junior, Alberto G; Crapez, Mirian A C

    2010-12-01

    The distribution of selected aromatic compounds and microbiology were assessed in superficial sediments from Suruí Mangrove, Guanabara Bay. Samples were collected at 23 stations, and particle size, organic matter, aromatic compounds, microbiology activity, biopolymers, and topography were determined. The concentration of aromatic compounds was distributed in patches over the entire mangrove, and their highest total concentration was determinated in the mangrove's central area. Particle size differed from most mangroves in that Suruí Mangrove has chernies on the edges and in front of the mangrove, and sand across the whole surface, which hampers the relationship between particle size and hydrocarbons. An average @ 10% p/p of organic matter was obtained, and biopolymers presented high concentrations, especially in the central and back areas of the mangrove. The biopolymers were distributed in high concentrations. The presence of fine sediments is an important factor in hydrocarbon accumulation. With high concentration of organic matter and biopolymers, and the topography with chernies and roots protecting the mangrove, calmer areas are created with the deposition of material transported by wave action. Compared to global distributions, concentrations of aromatic compounds in Suruí Mangrove may be classified from moderate to high, showing that the studied area is highly impacted.

  18. Dynamic amplification of light signals in photorefractive ferroelectric liquid crystal blends containing photoconductive chiral dopant

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Hafuri, M.; Suda, T.; Nakano, M.; Funada, K.; Ohta, M.; Terazono, T.; Le, K. V.; Naka, Y.

    2017-08-01

    Effect of ferroelectricity on the photorefractive effect of ferroelectric liquid crystal blends was investigated. The photorefractive effect of ferroelectric liquid crystal blends strongly depend on the ferroelectricity of the blend. We have prepared a series of ferroelectric liquid crystal blends that contains several concentrations of a chiral compound while keeping a constant concentration of a photoconductive moiety. The photorefractive properties of the ferroelectric liquid crystal blends were discussed with relations to the ferroelectric properties of the blends.

  19. Polyimidazoles via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor)

    1992-01-01

    Polyimidazoles (PI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl) imidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The reactions are carried out in polar aprotic solvents such as N,N-dimethyl acetamide, sulfolane, N-methylpyrrolidinone, dimethylsulfoxide, or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl) imidazole monomers are prepared by reacting an aromatic aldehyde with a dimethoxybenzil or by reacting an aromatic dialdehyde with a methoxybenzil in the presence of ammonium acetate. The di(methoxyphenyl) imidazole is subsequently treated with aqueous hydrobromic acid to give the di(hydroxphenyl) imidazole monomer. This synthetic route has provided high molecular weight PI of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the availability of a large variety of activated aromatic dihalides and dinitro compounds.

  20. Polyimidazoles via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor)

    1991-01-01

    Polyimidazoles (Pl) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl)imidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The reactions are carried out in polar aprotic solvents such as N,N-dimethylacetamide, sulfolane, N-methylpyrroldinone, dimethylsulfoxide, or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperature under nitrogen. The di(hydroxyphenyl)imidazole monomers are prepared by reacting an aromatic aldehyde with a dimethoxybenzil or by reacting an aromatic dialdehyde with a methoxybenzil in the presence of ammonium acetate. The di(methoxyphenyl)imidazole is subsequently treated with aqueous hydrobromic acid to give the di(hydroxyphenyl)imidazole monomer. This synthetic route has provided high molecular weight Pl of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the availability of a large variety of activated aromatic dihalides and dinitro compounds.

  1. Anaerobic Microbial Transformation of Aromatic Hydrocarbons and Mixtures of Aromatic Hydrocarbons and Halogenated Solvents.

    DTIC Science & Technology

    1992-08-25

    High initial concentrations of these compounds may be toxic or inhibitory to the microflora, especially if the microorganisms have not been exposed to...these compounds before. Slow acclimation of the microflora to lower concentrations of these compounds , that occur at the outskirts of contamination...acceptors such as nitrate or sulfate may impair the capability of the microorganisms to degrade these compounds , although anaerobic respiration -- in theory

  2. Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johannes, C.; Majcherczyk, A.

    2000-02-01

    The oxidation of polycyclic aromatic compounds was studied in systems consisting of laccase from Trametes versicolor and so-called mediator compounds. The enzymatic oxidation of acenaphthene, acenaphthylene, anthracene, and fluorene was mediated by various laccase substrates (phenols and aromatic amines) or compounds produced and secreted by white rot fungi. The best natural mediators, such as phenol, aniline, 4-hydroxybenzoic acid, and 4-hydroxybenzyl alcohol were as efficient as the previously described synthetic compounds ABTS [2,2{prime}-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] and 1-hydroxybenzotriazole. The oxidation efficiency increased proportionally with the redox potentials of the phenolic mediators up to a maximum value of 0.9 V and decreased thereafter withmore » redox potentials exceeding this value. Natural compounds such as methionine, cysteine, and reduced glutathione, containing sulfhydryl groups, were also active as mediator compounds.« less

  3. Leaching of styrene and other aromatic compounds in drinking water from PS bottles.

    PubMed

    Ahmad, Maqbool; Bajahlan, Ahmad S

    2007-01-01

    Bottled water may not be safer, or healthier, than tap water. The present studies have proved that styrene and some other aromatic compounds leach continuously from polystyrene (PS) bottles used locally for packaging. Water sapmles in contact with PS were extracted by a preconcentration technique called as "purge and trap" and analysed by gas chromatograph-mass spectrometer (GC/MS). Eleven aromatic compounds were identified in these studies. Maximum concentration of styrene in PS bottles was 29.5 microg/L. Apart from styrene, ethyl benzene, toluene and benzene were also quantified but their concentrations were much less than WHO guide line values. All other compounds were in traces. Quality of plastic and storage time were the major factor in leaching of styrene. Concentration of styrene was increased to 69.53 microg/L after one-year storage. In Styrofoam and PS cups studies, hot water was found to be contaminated with styrene and other aromatic compounds. It was observed that temperature played a major role in the leaching of styrene monomer from Styrofoam cups. Paper cups were found to be safe for hot drinks.

  4. Investigation on modes of toxic action to rats based on aliphatic and aromatic compounds and comparison with fish toxicity based on exposure routes.

    PubMed

    He, Jia; Li, Jin J; Wen, Yang; Tai, Hong W; Yu, Yang; Qin, Wei C; Su, Li M; Zhao, Yuan H

    2015-06-01

    The modes of toxic action (MOAs) play an important role in the assessment of the ecotoxicity of organic pollutants. However, few studies have been reported on the MOAs in rat toxicity. In this paper, the toxic contributions of functional groups in 1255 aromatic compounds were calculated from regression and were then compared with the toxic contributions in aliphatic compounds. The results show that some functional groups have same toxic contributions both in aromatic and aliphatic compounds, but some have not. To investigate the MOAs in rat toxicity, the distribution of toxic ratio (TR) was examined for well-known baseline and less inert compounds and thresholds of log TR=0.3 and 0.5 were used to classify baseline, less inert and reactive compounds. The results showed that some compounds identified as baseline compounds in fish toxicity were also classified as baseline compounds in rat toxicity. Except for phenols and anilines which were identified as less inert compounds in fish toxicity, aromatic compounds with functional groups such as ether, nitrile, nitrophenol, isocyanatoe and chloro were identified as less inert chemicals in rat toxicity. Reactive compounds identified in fish toxicity exhibit greater toxicity to rats. These compounds can undergo nucleophilic substitution, acylation and Schiff base formation with biological macromolecules. The critical body residues (CBRs) calculated from absorption and bioconcentration show that log 1/CBRs in rat toxicity are not equal to that in fish for some compounds. It suggests that the exposure route can affect the identification of MOAs between these two species for these compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. On the Extraction of Aromatic Compounds from Hydrocarbons by Imidazolium Ionic Liquids

    PubMed Central

    Cassol, Cláudia C.; Umpierre, Alexandre P.; Ebeling, Günter; Ferrera, Bauer; Chiaro, Sandra S. X.; Dupont, Jairton

    2007-01-01

    The liquid-liquid equilibrium for the ternary system formed by n-octane and aromatic (alkylbenzenes) and heteroaromatic compounds (nitrogen and sulfur containing heterocyles) and 1-alkyl-3-methylimidazolium ionic liquids (ILs) associated with various anions has been investigated. The selectivity on the extraction of a specific aromatic compound is influenced by anion volume, hydrogen bond strength between the anion and the imidazolium cation and the length of the 1-methyl-3-alkylimidazolium alkyl side chain. The interaction of alkylbenzenes and sulfur heterocyles with the IL is preferentially through CH-π hydrogen bonds and the quantity of these aromatics in the IL phase decreases with the increase of the steric hindrance imposed by the substituents on the aromatic nucleus. In the case of nitrogen heterocycles the interaction occurs preferentially through N(heteroaromatic)-H(imidazolium) hydrogen bonds and the extraction process is largely controlled by the nitrogen heterocycle pKa. Competitive extraction experiments suggest that benzene, pyridine and dibenzothiophene do not compete for the same hydrogen bond sites of the IL.

  6. Pseudomonads biodegradation of aromatic compounds in oil sands process-affected water.

    PubMed

    Zhang, Yanyan; McPhedran, Kerry N; Gamal El-Din, Mohamed

    2015-07-15

    Aromatic naphthenic acids (NAs) have been shown to be more toxic than the classical NAs found in oil sands process-affected water (OSPW). To reduce this toxicity, Pseudomonas fluorescens and Pseudomonas putida were used to determine their ability to biodegrade aromatic compounds including treatments considering the impacts of external carbon and iron addition. Results showed that with added carbon P. fluorescens and P. putida have the capability of biodegrading these aromatics. In the presence of external carbon, gene expression of a functional PAH-ring hydroxylating dioxygenase (PAH-RHDα) was determined through reverse transcription real-time PCR, suggesting active degradation of OSPW aromatic compounds. Although no significant classical NAs removal was observed during this process, toxicity was reduced by 49.3% under optimal conditions. OSPW toxicity was eliminated with the combination of ozonation at a dose of 80 mg/L followed by biodegradation, indicating that it is a promising combined OSPW treatment approach for the safe discharge to the aquatic environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Irradiated Benzene Ice Provides Clues to Meteoritic Organic Chemistry

    NASA Technical Reports Server (NTRS)

    Callahan, Michael Patrick; Gerakines, Perry Alexander; Martin, Mildred G.; Hudson, Reggie L.; Peeters, Zan

    2013-01-01

    Aromatic hydrocarbons account for a significant portion of the organic matter in carbonaceous chondrite meteorites, as a component of both the low molecular weight, solvent-extractable compounds and the insoluble organic macromolecular material. Previous work has suggested that the aromatic compounds in carbonaceous chondrites may have originated in the radiation-processed icy mantles of interstellar dust grains. Here we report new studies of the organic residue made from benzene irradiated at 19 K by 0.8 MeV protons. Polyphenyls with up to four rings were unambiguously identified in the residue by gas chromatography-mass spectrometry. Atmospheric pressure photoionization Fourier transform mass spectrometry was used to determine molecular composition, and accurate mass measurements suggested the presence of polyphenyls, partially hydrogenated polyphenyls, and other complex aromatic compounds. The profile of low molecular weight compounds in the residue compared well with extracts from the Murchison and Orgueil meteorites. These results are consistent with the possibility that solid phase radiation chemistry of benzene produced some of the complex aromatics found in meteorites.

  8. Biopolymer-prebiotic carbohydrate blends and their effects on the retention of bioactive compounds and maintenance of antioxidant activity.

    PubMed

    Silva, Eric Keven; Zabot, Giovani L; Cazarin, Cinthia B B; Maróstica, Mário R; Meireles, M Angela A

    2016-06-25

    The objective of this study was to evaluate the use of inulin (IN), a prebiotic carbohydrate without superficial activity, as an encapsulating matrix of lipophilic bioactive compounds. For achieving the encapsulation, IN was associated with biopolymers that present superficial activity: modified starch (HiCap), whey protein isolate (WPI) and gum acacia (GA). Encapsulation was performed through emulsification assisted by ultrasound followed by freeze-drying (FD) process to dry the emulsions. All blends retained geranylgeraniol. GA-IN blend yielded the highest geranylgeraniol retention (96±2wt.%) and entrapment efficiency (94±3wt.%), whilst WPI-IN blend yielded the highest encapsulation efficiency (88±2wt.%). After encapsulation, composition of geranylgeraniol in the annatto seed oil was maintained (23.0±0.5g/100g of oil). Such findings indicate that the method of encapsulation preserved the active compound. All blends were also effective for maintaining the antioxidant activity of the oil through ORAC and DPPH analyses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Exposure to runoff from coal-tar-sealed pavement induces genotoxicity and impairment of DNA repair capacity in the RTL-W1 fish liver cell line

    USGS Publications Warehouse

    Kienzler, Aude; Mahler, Barbara J.; Van Metre, Peter C.; Schweigert, Nathalie; Devaux, Alain; Bony, Sylvie

    2015-01-01

    Coal-tar-based (CTB) sealcoat, frequently applied to parking lots and driveways in North America, contains elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and related compounds. The RTL-W1 fish liver cell line was used to investigate two endpoints (genotoxicity and DNA-repair-capacity impairment) associated with exposure to runoff from asphalt pavement with CTB sealcoat or with an asphalt-based sealcoat hypothesized to contain about 7% CTB sealcoat (AS-blend). Genotoxic potential was assessed by the Formamido pyrimidine glycosylase (Fpg)-modified comet assay for 1:10 and 1:100 dilutions of runoff samples collected from 5 h to 36 d following sealcoat application. DNA-repair capacity was assessed by the base excision repair comet assay for 1:10 dilution of samples collected 26 h and 36 d following application. Both assays were run with and without co-exposure to ultraviolet-A radiation (UVA). With co-exposure to UVA, genotoxic effects were significant for both dilutions of CTB runoff for three of four sample times, and for some samples of AS-blend runoff. Base excision repair was significantly impaired for CTB runoff both with and without UVA exposure, and for AS-blend runoff only in the absence of UVA. This study is the first to investigate the effects of exposure to the complex mixture of chemicals in coal tar on DNA repair capacity. The results indicate that co-exposure to runoff from CT-sealcoated pavement and UVA as much as a month after sealcoat application has the potential to cause genotoxicity and impair DNA repair capacity.

  10. Exposure to runoff from coal-tar-sealed pavement induces genotoxicity and impairment of DNA repair capacity in the RTL-W1 fish liver cell line.

    PubMed

    Kienzler, Aude; Mahler, Barbara J; Van Metre, Peter C; Schweigert, Nathalie; Devaux, Alain; Bony, Sylvie

    2015-07-01

    Coal-tar-based (CTB) sealcoat, frequently applied to parking lots and driveways in North America, contains elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and related compounds. The RTL-W1 fish liver cell line was used to investigate two endpoints (genotoxicity and DNA-repair-capacity impairment) associated with exposure to runoff from asphalt pavement with CTB sealcoat or with an asphalt-based sealcoat hypothesized to contain about 7% CTB sealcoat (AS-blend). Genotoxic potential was assessed by the Formamido pyrimidine glycosylase (Fpg)-modified comet assay for 1:10 and 1:100 dilutions of runoff samples collected from 5 h to 36 d following sealcoat application. DNA-repair capacity was assessed by the base excision repair comet assay for 1:10 dilution of samples collected 26 h and 36 d following application. Both assays were run with and without co-exposure to ultraviolet-A radiation (UVA). With co-exposure to UVA, genotoxic effects were significant for both dilutions of CTB runoff for three of four sample times, and for some samples of AS-blend runoff. Base excision repair was significantly impaired for CTB runoff both with and without UVA exposure, and for AS-blend runoff only in the absence of UVA. This study is the first to investigate the effects of exposure to the complex mixture of chemicals in coal tar on DNA repair capacity. The results indicate that co-exposure to runoff from CT-sealcoated pavement and UVA as much as a month after sealcoat application has the potential to cause genotoxicity and impair DNA repair capacity. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Biodegradation studies of selected hydrocarbons from diesel oil.

    PubMed

    Sepic, E; Trier, C; Leskovsek, H

    1996-10-01

    In-vitro biodegradation of aliphatic and aromatic hydrocarbons present in diesel oil by Pseudomonas fluorescens, Texaco was studied in an aqueous medium. Small aliquots of diesel oil and its aromatic fraction were incubated aerobically for periods of up to seven months and analysed by GC-MS. Biotic losses proved to be greater for aliphatic than aromatic compounds. Most biodegradation occurred within the first 20 d of incubation. The most rapid biodegradation, up to 65% in 8 d, was observed for n-alkanes (C14-C18). The same compounds were also shown to be less affected by abiotic losses. Biodegradation of n-alkanes from diesel oil and diesel oil itself showed first order kinetics for the initial incubation period. Aromatic compounds proved to be resistant to biodegradation and only phenanthrene had been degraded (30%) within 6 months.

  12. In Vitro Enzymatic Depolymerization of Lignin with Release of Syringyl, Guaiacyl, and Tricin Units

    PubMed Central

    Gall, Daniel L.; Kontur, Wayne S.; Lan, Wu; Kim, Hoon; Li, Yanding; Ralph, John

    2017-01-01

    ABSTRACT New environmentally sound technologies are needed to derive valuable compounds from renewable resources. Lignin, an abundant polymer in terrestrial plants comprised predominantly of guaiacyl and syringyl monoaromatic phenylpropanoid units, is a potential natural source of aromatic compounds. In addition, the plant secondary metabolite tricin is a recently discovered and moderately abundant flavonoid in grasses. The most prevalent interunit linkage between guaiacyl, syringyl, and tricin units is the β-ether linkage. Previous studies have shown that bacterial β-etherase pathway enzymes catalyze glutathione-dependent cleavage of β-ether bonds in dimeric β-ether lignin model compounds. To date, however, it remains unclear whether the known β-etherase enzymes are active on lignin polymers. Here we report on enzymes that catalyze β-ether cleavage from bona fide lignin, under conditions that recycle the cosubstrates NAD+ and glutathione. Guaiacyl, syringyl, and tricin derivatives were identified as reaction products when different model compounds or lignin fractions were used as substrates. These results demonstrate an in vitro enzymatic system that can recycle cosubstrates while releasing aromatic monomers from model compounds as well as natural and engineered lignin oligomers. These findings can improve the ability to produce valuable aromatic compounds from a renewable resource like lignin. IMPORTANCE Many bacteria are predicted to contain enzymes that could convert renewable carbon sources into substitutes for compounds that are derived from petroleum. The β-etherase pathway present in sphingomonad bacteria could cleave the abundant β–O–4-aryl ether bonds in plant lignin, releasing a biobased source of aromatic compounds for the chemical industry. However, the activity of these enzymes on the complex aromatic oligomers found in plant lignin is unknown. Here we demonstrate biodegradation of lignin polymers using a minimal set of β-etherase pathway enzymes, the ability to recycle needed cofactors (glutathione and NAD+) in vitro, and the release of guaiacyl, syringyl, and tricin as depolymerized products from lignin. These observations provide critical evidence for the use and future optimization of these bacterial β-etherase pathway enzymes for industrial-level biotechnological applications designed to derive high-value monomeric aromatic compounds from lignin. PMID:29180366

  13. Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter

    USGS Publications Warehouse

    Lindsey, M.E.; Tarr, M.A.

    2000-01-01

    Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater than that expected based on a simple model in which aromatic compound molecules bound to NOM are considered to be unreactive. In this study, hydroxyl radical was produced at steady-state concentrations using Fenton chemistry (H2O2 + Fe2+ ??? Fe3+ + HO- + HO??). Suwannee River fulvic acid and humic acid were used as NOM. The most likely mechanism for the observed inhibition is that hydroxyl radical formation occurs in microenvironmental sites remote from the aromatic compounds. In addition to changes in kinetics, pyrene hydroxyl radical reaction also exhibited a mechanistic change in the presence of fulvic acid. The mechanism changed from a reaction that was apparently firstorder in pyrene to one that was apparently secondorder in pyrene, indicating that pyrene self-reaction may have become the dominant mechanism in the presence of fulvic acid. Dissolved NOM causes significant changes in the rate and mechanism of hydroxyl radical degradation of aromatic compounds. Consequently, literature rate constants measured in pure water will not be useful for predicting the degradation of pollutants in environmental systems. The kinetic and mechanistic information in this study will be useful for developing improved degradation methods involving Fenton chemistry.Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater than that expected based on a simple model in which aromatic compounds molecules bounds to NOM are considered to be unreactive. In this study, hydroxyl radical was produced at steady-state concentrations using Fenton chemistry (H2O2 + Fe2+ ??? Fe3+ + HO- + HO??). Suwannee River fulvic acid and humic acid were used as NOM. The most likely mechanisms for the observed inhibition is that hydroxyl radical formation occurs in microenvironmental sites remote from the aromatic compounds. In addition to changes in kinetics, pyrene hydroxyl radical reaction also exhibited a mechanistic change in the presence of fulvic acid. The mechanism changed from a reaction that was apparently first-order in pyrene to one that was apparently second-order in pyrene, indicating that pyrene self-reaction may have become the dominant mechanism in the presence of fulvic acid. Dissolved NOM causes significant changes in the rate and mechanism of hydroxyl radical degradation of aromatic compounds. Consequently, literature rate constants measured in pure water will not be useful for predicting the degradation of pollutants in environmental systems. The kinetic and mechanistic information in this study will be useful for developing improved degradation methods involving Fenton chemistry.

  14. EFFECT OF IRRADIANCE SPECTRA ON THE PHOTOINDUCED TOXICITY OF THREE POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light received. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events un...

  15. THE EFFECT OF IRRADIANCE SPECTRA ON THE PHOTOACTIVATED TOXICITY OF THREE POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light recieved. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events un...

  16. Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: A review

    USDA-ARS?s Scientific Manuscript database

    Residual pollutants including polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and carbon(aceous) nanoparticles are inevitably generated during the pyrolysis of waste biomass, and remain on the solid co-product called biochar. Such pollutants could have adverse effects on ...

  17. Antimisting kerosene: Base fuel effects, blending and quality control techniques

    NASA Technical Reports Server (NTRS)

    Yavrouian, A. H.; Ernest, J.; Sarohia, V.

    1984-01-01

    The problems associated with blending of the AMK additive with Jet A, and the base fuel effects on AMK properties are addressed. The results from the evaluation of some of the quality control techniques for AMK are presented. The principal conclusions of this investigation are: significant compositional differences for base fuel (Jet A) within the ASTM specification DI655; higher aromatic content of the base fuel was found to be beneficial for the polymer dissolution at ambient (20 C) temperature; using static mixer technology, the antimisting additive (FM-9) is in-line blended with Jet A, producing AMK which has adequate fire-protection properties 15 to 20 minutes after blending; degradability of freshly blended and equilibrated AMK indicated that maximum degradability is reached after adequate fire protection is obtained; the results of AMK degradability as measured by filter ratio, confirmed previous RAE data that power requirements to decade freshly blended AMK are significantly higher than equilibrated AMK; blending of the additive by using FM-9 concentrate in Jet A produces equilibrated AMK almost instantly; nephelometry offers a simple continuous monitoring capability and is used as a real time quality control device for AMK; and trajectory (jet thurst) and pressure drop tests are useful laboratory techniques for evaluating AMK quality.

  18. Ionization of EPA Contaminants in Direct and Dopant-Assisted Atmospheric Pressure Photoionization and Atmospheric Pressure Laser Ionization

    NASA Astrophysics Data System (ADS)

    Kauppila, Tiina J.; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  19. Polycyclic aromatic hydrocarbons (PAHs) content of edible vegetable oils in Iran: A risk assessment study.

    PubMed

    Yousefi, Mojtaba; Shemshadi, Ghazal; Khorshidian, Nasim; Ghasemzadeh-Mohammadi, Vahid; Fakhri, Yadolah; Hosseini, Hedayat; Mousavi Khaneghah, Amin

    2018-05-29

    Totally forty samples (23 brands) of different types of edible oils including frying oil (n = 14), blended oil (n = 13), sunflower oil (n = 6), corn oil (n = 5) and canola oil (n = 2) from Iran's market were analyzed for PAHs content by a High-performance liquid chromatography coupled with fluorescence detector. Also, the Health risk assessment in the adults and children consumers were estimated by the calculating margin of exposure (MOE) and the incremental lifetime cancer risk (ILCR) in the Monte Carlo Simulation (MCS) method. Approximately all of the samples contained different amounts of PAHs, while concentrations of BaP, PAH 4, PAH 8 and PAH 13 were reported as 0.90-11.33, 3.51-84.03, 7.41-117.12 and 129.28-19.54 μg/kg, respectively. Light polycyclic aromatic hydrocarbons corresponded to 65% of total PAHs while the remaining 35% belonged to heavy polycyclic aromatic hydrocarbons. Based on BaP content, 12 samples were above the standard limits (2 μg/kg) which set by the Standard Organization of Iran and the European Union, whereas 15 samples exceeded maximum limit 10 μg/kg set for PAH 4 established by EU. Percentile 95% of MOE in the adults due to ingestion of sunflower, corn, frying and blended oils were determined as 4.10E+5; 4.05E+5; , 2.17E+5, 2.33E+5, respectively and in the children due to ingestion of sunflower oil, corn oil, frying oil and blended oil were calculated as 5.38E+4, 4.49E+4, 2.86E+4, 3.37E+4. Regarding the percentile of 95% ILCR in the adults due to ingestion of sunflower oil, corn oil, frying oil and blended oil were reported as 4.5E-6, 4.17E-6l, 5.20E-6, 4.93E-6 and also this value in the children in the same rank order of products can be summarized as 3.43E-5, 3.94 E-5, 3.17E-5, 3.76E-5. The rank order of edible oils investigated based on MOE was sunflower oil > corn oil > blended oil > frying oil; and based on ILCR, frying oil > blended oil > sunflower oil > corn oil. The health risk assessment according to MCS method indicated that adults and children are not at considerable health risk; MOE ≥ 1E+4 and ILCR < 1E-4). Copyright © 2018. Published by Elsevier Ltd.

  20. Selective Sorbents For Purification Of Hydrocarbons

    DOEpatents

    Yang, Ralph T.; Yang, Frances H.; Takahashi, Akira; Hernandez-Maldonado, Arturo J.

    2006-04-18

    A method for removing thiophene and thiophene compounds from liquid fuel includes contacting the liquid fuel with an adsorbent which preferentially adsorbs the thiophene and thiophene compounds. The adsorption takes place at a selected temperature and pressure, thereby producing a non-adsorbed component and a thiophene/thiophene compound-rich adsorbed component. The adsorbent includes either a metal or a metal ion that is adapted to form p-complexation bonds with the thiophene and/or thiophene compounds, and the preferential adsorption occurs by p-complexation. A further method includes selective removal of aromatic compounds from a mixture of aromatic and aliphatic compounds.

  1. Selective sorbents for purification of hydrocarbons

    DOEpatents

    Yang, Ralph T.; Hernandez-Maldonado, Arturo J.; Yang, Frances H.; Takahashi, Akira

    2006-08-22

    A method for removing thiophene and thiophene compounds from liquid fuel includes contacting the liquid fuel with an adsorbent which preferentially adsorbs the thiophene and thiophene compounds. The adsorption takes place at a selected temperature and pressure, thereby producing a non-adsorbed component and a thiophene/thiophene compound-rich adsorbed component. The adsorbent includes either a metal or a metal cation that is adapted to form .pi.-complexation bonds with the thiophene and/or thiophene compounds, and the preferential adsorption occurs by .pi.-complexation. A further method includes selective removal of aromatic compounds from a mixture of aromatic and aliphatic compounds.

  2. Selective sorbents for purification of hydrocarbons

    DOEpatents

    Yang, Ralph T.; Yang, Frances H.; Takahashi, Akira; Hernandez-Maldonado, Arturo J.

    2006-05-30

    A method for removing thiophene and thiophene compounds from liquid fuel includes contacting the liquid fuel with an adsorbent which preferentially adsorbs the thiophene and thiophene compounds. The adsorption takes place at a selected temperature and pressure, thereby producing a non-adsorbed component and a thiophene/thiophene compound-rich adsorbed component. The adsorbent includes either a metal or a metal cation that is adapted to form .pi.-complexation bonds with the thiophene and/or thiophene compounds, and the preferential adsorption occurs by .pi.-complexation. A further method includes selective removal of aromatic compounds from a mixture of aromatic and aliphatic compounds.

  3. Selective sorbents for purification of hydrocartons

    DOEpatents

    Yang, Ralph T.; Yang, Frances H.; Takahashi, Akira; Hermandez-Maldonado, Arturo J.

    2006-12-12

    A method for removing thiophene and thiophene compounds from liquid fuel includes contacting the liquid fuel with an adsorbent which preferentially adsorbs the thiophene and thiophene compounds. The adsorption takes place at a selected temperature and pressure, thereby producing a non-adsorbed component and a thiophene/thiophene compound-rich adsorbed component. The adsorbent includes either a metal or a metal ion that is adapted to form .pi.-complexation bonds with the thiophene and/or thiophene compounds, and the preferential adsorption occurs by .pi.-complexation. A further method includes selective removal of aromatic compounds from a mixture of aromatic and aliphatic compounds.

  4. Fuel quality combustion analysis

    NASA Technical Reports Server (NTRS)

    Naegeli, D. W.; Moses, C. A.

    1979-01-01

    A high pressure research combustor operating over a wide range of burner inlet conditions was used to determine the effects of fuel molecular structure on soot formation. Six test fuels with equal hydrogen content (12.8%) were blended to stress different molecular components and final boiling points. The fuels containing high concentrations (20%) of polycyclic aromatics and partially saturated polycyclic structures such as tetralin, produced more soot than would be expected from a hydrogen content correlation for typical petroleum based fuels. Fuels containing naphthenes such as decalin agreed with the hydrogen content correlation. The contribution of polycyclic aromatics to soot formation was equivalent to a reduction in fuel hydrogen content of about one percent. The fuel sensitivity to soot formation due to the polycyclic aromatic contribution decreased as burner inlet pressure and fuel/air ratio increased.

  5. Investigation of Source of Irritant Gas Produced by PATRIOT Missile System Air Conditioners

    DTIC Science & Technology

    1986-03-31

    is the mass fragment CF3 . It is a common fragment of perfluorinated hydrocarbons, and is found to be present in most of the compounds detected by...used would allow detection of the target par3meters acrolein, aromatics, a broad range of organic compounds ,. formaldehyde, and hydrogen cyanide...organic compounds were observed. Thus, aromatic organic compounds were not produced by or from any of the four new units tested. 4 1CZ 3) With the

  6. DNA tests for strawberry: mesifurane "sherry" aroma - FaOMT-SI/NO

    USDA-ARS?s Scientific Manuscript database

    The amazing flavor and texture in strawberries is caused by a complex balance of numerous sugars and aromatic compounds. One of the most important aromatic compounds contributing to the flavor we have come to love in strawberries is mesifurane. Mesifurane produces a sweet sherry-like aroma and incre...

  7. Aqueous and Tissue Residue-Based Interspecies Correlation Estimation Models Provide Conservative Hazard Estimates for Aromatic Compounds

    EPA Science Inventory

    Interspecies correlation estimation (ICE) models were developed for 30 nonpolar aromatic compounds to allow comparison of prediction accuracy between 2 data compilation approaches. Type 1 models used data combined across studies, and type 2 models used data combined only within s...

  8. Responses of Glossina morsitans morsitans to blends of electroantennographically active compounds in the odors of its preferred (buffalo and ox) and nonpreferred (waterbuck) hosts.

    PubMed

    Gikonyo, Nicholas K; Hassanali, Ahmed; Njagi, Peter G N; Saini, Rajinder K

    2003-10-01

    In a previous study, comparison of the behavior of teneral Glossina morsitans morsitans on waterbuck, Kobus defassa (a refractory host), and on two preferred hosts, buffalo, Syncerus caffer, and ox, Bos indicus, suggested the presence of allomones in the waterbuck odor. Examination of the volatile odors by coupled gas chromatography-electroantennographic detection showed that the antennal receptors of the flies detected constituents common to the three bovids (phenols and aldehydes), as well as a series of compounds specific to waterbuck, including C8-C13 methyl ketones, delta-octalactone, and phenols. In this study, behavioral respones of teneral G. m. morsitans to different blends of these compounds were evaluated in a choice wind tunnel. The flies' responses to known or putative attractant blends (the latter comprising EAG-active constituents common to all three animals and those common to buffalo and ox, excluding the known tseste attractants, 4-methylphenol and 3-n-propylphenol), and to putative repellent (the blend of EAG-active compounds specific to the waterbuck volatiles), were different. A major difference related to their initial and final behaviors. When a choice of attractant blends (known or putative) and clean air was presented, flies initially responded by flying upwind toward the odor source, but later moved downwind and rested on either side of the tunnel, with some preference for the side with the odor treatments. However, when presented with a choice of waterbuck-specific blend (putative repellent) and clean air, the flies' initial reaction appeared random; flies flew upwind on either side, but eventually settled down on the odorless side of the tunnel. Flies that flew up the odor plume showed an aversion behavior to the blend. The results lend further support to previous indications for the existence of a tsetse repellent blend in waterbuck body odor and additional attractive constituents in buffalo and ox body odors.

  9. Photochemical reactions of aromatic compounds and the concept of the photon as a traceless reagent.

    PubMed

    Hoffmann, Norbert

    2012-11-01

    Electronic excitation significantly changes the reactivity of chemical compounds. Compared to ground state reactions, photochemical reactions considerably enlarge the application spectrum of a particular functional group in organic synthesis. Multistep syntheses may be simplified and perspectives for target oriented synthesis (TOS) and diversity oriented synthesis (DOS) are developed. New compound families become available or may be obtained more easily. In contrast to common chemical reagents, photons don't generate side products resulting from the transformation of a chemical reagent. Therefore, they are considered as a traceless reagent. Consequently, photochemical reactions play a central role in the methodology of sustainable chemistry. This aspect has been recognized since the beginning of the 20th century. As with many other photochemical transformations, photochemical reactions of aromatic, benzene-like compounds illustrate well the advantages in this context. Photochemical cycloadditions of aromatic compounds have been investigated for a long time. Currently, they are applied in various fields of organic synthesis. They are also studied in supramolecular structures. The phenomena of reactivity and stereoselectivity are investigated. During recent years, photochemical electron transfer mediated reactions are particularly focused. Such transformations have likewise been performed with aromatic compounds. Reactivity and selectivity as well as application to organic synthesis are studied.

  10. Photooxidation products of polycyclic aromatic compounds containing sulfur.

    PubMed

    Bobinger, Stefan; Andersson, Jan T

    2009-11-01

    Photooxidation of crude oil components is an important process that removes pollutants from the environment. Polycyclic aromatic compounds (PACs) are known to be toxic to many life forms, but little is known about their photooxidation products in the aqueous phase. We here identify a large number of photoproducts from 11 benzothiophenes, a polycyclic aromatic sulfur heterocycle that is a major representative of PACs in crude oil. The investigated compounds contain two to four methyl groups and an ethyl or an n-octyl group. In water, the products arise through oxidation of alkyl side chains to aldehydes and carboxylic acids or through an opening in one of the aromatic rings. The product analysis was performed using gas chromatography with mass spectrometric or atomic emission detection. The main product is always a sulfobenzoic acid, which strongly lowers the pH of the solution. With long alkyl substituents, surfactants are formed, which may possess solubilizing properties in water. The larger the number of alkyl groups, the faster is the photooxidation. Several of the identified acidic compounds were also found when whole crude oil was photooxidized, showing that simulation with individual compounds reflects the situation in whole crude.

  11. Selective Oxidation of Lignin Model Compounds.

    PubMed

    Gao, Ruili; Li, Yanding; Kim, Hoon; Mobley, Justin K; Ralph, John

    2018-05-02

    Lignin, the planet's most abundant renewable source of aromatic compounds, is difficult to degrade efficiently to welldefined aromatics. We developed a microwave-assisted catalytic Swern oxidation system using an easily prepared catalyst, MoO 2 Cl 2 (DMSO) 2 , and DMSO as the solvent and oxidant. It demonstrated high efficiency in transforming lignin model compounds containing the units and functional groups found in native lignins. The aromatic ring substituents strongly influenced the selectivity of β-ether phenolic dimer cleavage to generate sinapaldehyde and coniferaldehyde, monomers not usually produced by oxidative methods. Time-course studies on two key intermediates provided insight into the reaction pathway. Owing to the broad scope of this oxidation system and the insight gleaned with regard to its mechanism, this strategy could be adapted and applied in a general sense to the production of useful aromatic chemicals from phenolics and lignin. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Activity of selected aromatic amino acids in biological systems.

    PubMed

    Krzyściak, Wirginia

    2011-01-01

    Besides the structural function in proteins, aromatic amino acids are precursors of many important biological compounds essential for normal functioning of the human organism. Many of these compounds may be used as markers for identification of specific pathological states. Comprehensive knowledge about the metabolism of aromatic amino acids and mechanisms of action of their metabolites made it possible to develop effective treatments for many disorders. However, it should not be forgotten that in some pathological conditions, these compounds could not only be involved in the pathogenesis of many disease entities but could also be used as an important tool in prediction of many diseases. This paper contains a review of published literature on aromatic amino acids in the context of physiological processes of the human body and chosen social disorders, such as cancers; psychiatric disorders: depression, anxiety states, schizophrenia, bipolar affective disorders; neurodegenerative, and cardiovascular diseases; chronic kidney insufficiency or diabetes.

  13. The effects of neat biodiesel and biodiesel and HVO blends in diesel fuel on exhaust emissions from a light duty vehicle with a diesel engine.

    PubMed

    Prokopowicz, Adam; Zaciera, Marzena; Sobczak, Andrzej; Bielaczyc, Piotr; Woodburn, Joseph

    2015-06-16

    The influence of fatty acid methyl esters (FAME) and hydrotreated vegetable oil (HVO) diesel blends on the exhaust emissions from a passenger car was examined. The impact of FAME for the cold urban phase (UDC) was increased CO and HC emissions, probably due to blend physical properties promoting incomplete combustion. The HVO blend caused the lowest CO and HC emissions for the UDC. NOx emissions did not change significantly with the fuel used, however the UDC was characterized by lower NOx emission for FAME blends. Particle emissions were highest with standard diesel. Emissions of carbonyl compounds increased as fuel biodiesel content increased, especially during the UDC. HVO in diesel fuel decreased carbonyl emissions. Formaldehyde and acetaldehyde were the most abundant carbonyl compounds in the exhaust gas. Total particle-bound PAH emissions were variable, the emission of heavier PAHs increased with blend biodiesel content. The HVO blend increased emission of lighter PAHs. Nitro-PAHs were identified only during the UDC and not for all blends; the highest emissions were measured for pure diesel. The results showed that emission of nitro-PAHs may be decreased to a greater extent by using biodiesel than using a HVO blend.

  14. Experimental and computational study of methane counterflow diffusion flames perturbed by trace amounts of either jet fuel or a 6-component surrogate under non-sooting conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bufferand, H.; Tosatto, L.; La Mantia, B.

    2009-08-15

    The chemical structure of a methane counterflow diffusion flame and of the same flame doped with 1000 ppm (molar) of either jet fuel or a 6-component jet fuel surrogate was analyzed experimentally, by gas sampling via quartz microprobes and subsequent GC/MS analysis, and computationally using a semi-detailed kinetic mechanism for the surrogate blend. Conditions were chosen to ensure that all three flames were non-sooting, with identical temperature profiles and stoichiometric mixture fraction, through a judicious selection of feed stream composition and strain rate. The experimental dataset provides a glimpse of the pyrolysis and oxidation behavior of jet fuel in amore » diffusion flame. The jet fuel initial oxidation is consistent with anticipated chemical kinetic behavior, based on thermal decomposition of large alkanes to smaller and smaller fragments and the survival of ring-stabilized aromatics at higher temperatures. The 6-component surrogate captures the same trend correctly, but the agreement is not quantitative with respect to some of the aromatics such as benzene and toluene. Various alkanes, alkenes and aromatics among the jet fuel components are either only qualitatively characterized or could not be identified, because of the presence of many isomers and overlapping spectra in the chromatogram, leaving 80% of the carbon from the jet fuel unaccounted for in the early pyrolysis history of the parent fuel. Computationally, the one-dimensional code adopted a semi-detailed kinetic mechanism for the surrogate blend that is based on an existing hierarchically constructed kinetic model for alkanes and simple aromatics, extended to account for the presence of tetralin and methylcyclohexane as reference fuels. The computational results are in reasonably good agreement with the experimental ones for the surrogate behavior, with the greatest discrepancy in the concentrations of aromatics and ethylene. (author)« less

  15. Analysis of Volatile Organic Compounds Emitted by Plant Growth-Promoting Fungus Phoma sp. GS8-3 for Growth Promotion Effects on Tobacco

    PubMed Central

    Naznin, Hushna Ara; Kimura, Minako; Miyazawa, Mitsuo; Hyakumachi, Mitsuro

    2013-01-01

    We extracted volatile organic compounds (VOCs) emitted by a plant growth-promoting fungus (PGPF) Phoma sp. GS8-3 by gas chromatography and identified them by mass spectrometry. All of the identified compounds belonged to C4-C8 hydrocarbons. Volatiles varied in number and quantity by the culture period of the fungus (in days). 2-Methyl-propanol and 3-methyl-butanol formed the main components of the volatile blends for all the culture periods of fungus. Growth-promoting effects of the identified synthetic compounds were analyzed individually and in blends using tobacco plants. We found that the mixture of volatiles extracted from 3-day-old culture showed significant growth promotion in tobacco in vitro. The volatile blend showed better growth promotion at lower than higher concentrations. Our results confirm the potential role of volatile organic compounds in the mechanism of growth enhancement by GS8-3. PMID:23080408

  16. Pain relief assessment by aromatic essential oil massage on outpatients with primary dysmenorrhea: a randomized, double-blind clinical trial.

    PubMed

    Ou, Ming-Chiu; Hsu, Tsung-Fu; Lai, Andrew C; Lin, Yu-Ting; Lin, Chia-Ching

    2012-05-01

    This study assessed the effectiveness of blended essential oils on menstrual cramps for outpatients with primary dysmenorrhea and explored the analgesic ingredients in the essential oils. A randomized, double-blind clinical trial was conducted. Forty-eight outpatients were diagnosed with primary dysmenorrhea by a gynecologist and had 10-point numeric rating scales that were more than 5. The patients were randomly assigned to an essential oil group (n = 24) and a synthetic fragrance group (n = 24). Essential oils blended with lavender (Lavandula officinalis), clary sage (Salvia sclarea) and marjoram (Origanum majorana) in a 2:1:1 ratio was diluted in unscented cream at 3% concentration for the essential oil group. All outpatients used the cream daily to massage their lower abdomen from the end of the last menstruation continuing to the beginning of the next menstruation. Both the numeric rating scale and the verbal rating scale significantly decreased (P < 0.001) after one menstrual cycle intervention in the two groups. The duration of pain was significantly reduced from 2.4 to 1.8 days after aromatherapy intervention in the essential oil group. Aromatic oil massage provided relief for outpatients with primary dysmenorrhea and reduced the duration of menstrual pain in the essential oil group. The blended essential oils contain four key analgesic components that amount to as much as 79.29%; these analgesic constitutes are linalyl acetate, linalool, eucalyptol, and β-caryophyllene. This study suggests that this blended formula can serve as a reference for alternative and complementary medicine on primary dysmenorrhea. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.

  17. Amination of electrophilic aromatic compounds by vicarious nucleophilic substitution

    DOEpatents

    Mitchell, Alexander R.; Pagoria, Philip F.; Schmidt, Robert D.

    2000-01-01

    The present invention relates to a process to aminate electrophilic aromatic compounds by vicarious nucleophilic substitution of hydrogen using quaternary hydrazinium salts. The use of trialkylhydrazinium halide, e.g., trimethylhydrazinium iodide, as well as hydroxylamine, alkoxylamines, and 4-amino-1,2,4-triazole to produce aminated aromatic structures, such as 1,3-diamino-2,4,6-trinitrobenzene (DATB), 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and 3,5-diamino-2,4,6-trinitrotoluene (DATNT), is described. DATB and TATB are useful insensitive high explosives. TATB is also used for the preparation of benzenehexamine, a starting material for the synthesis of novel materials (optical imaging devices, liquid crystals, ferromagnetic compounds).

  18. Influence of polychlorinated aromatic compounds on the biotransformation and toxicity of organophosphorus pesticides (OP) to the Daphnia magna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonkopii, V.; Zagrebin, A.; Sherstneva, L.

    1995-12-31

    The effect of different polychlorinated aromatics (DDT, Aroclor 1254, certain polychlorinated biphenyls and dibenzofurans) on the toxicity of OP (DDVP paraoxon, malaoxon) to Daphnia magna was studied. Pretreatment of daphnids with chlorinated compounds during 72 hours in nontoxic concentrations (1/5--1/20 CL{sub 50}) has been shown to reduce the toxicity of OP for hydrobionts. For study of influence of chlorinated compounds on biotransformation of OP the activity of enzymes which are hydrolyzing the OP was investigated in Daphnia`s homogenates or microsomes. The activity of carboxylesterase (tributyrinase, aliesterase) and arylesterase (phosphorylphosphatase) with usage as substrates accordingly {alpha}-naphthylacetate and paraoxon was measured. Besidesmore » that the activity of cholinesterase with application of propionylthiocholine as substrate was determined. After polychlorinated aromatic compounds treatment of daphnids activities of both aryl-and carboxylesterase increased markedly. It decreased the inhibition of Daphnia`s cholinesterase caused by incubation with OP in concentrations 0.5--1.0 CL{sub 50}. Thus the induction by chlorinate aromatics of OP metabolizing enzymes seems to play the important role in reduction of OP toxicity to Daphnia magna. Perhaps the aryl- and carboxylesterase of Daphnia can be used as biomarkers of pollution by polychlorinated aromatics in water.« less

  19. Embryotoxic and teratogenic effects of petroleum hydrocarbons in mallards (Anas platyrhynchos)

    USGS Publications Warehouse

    Hoffman, D.J.

    1979-01-01

    Egg surface applications of microliter quantities of crude and refined oils of high aromatic content are embryotoxic to mallards (Anas platyrhynchos) and other avian species; applications of aliphatic hydrocarbons have virtually no effect. Mallard eggs at 72 h of development were exposed to a mixture of aromatic hydrocarbons or to aromatic compounds representative to those present in crude oil to assess their toxicity. The class composition of the mixture was similar to that of South Louisiana crude oil, an American Petroleum Institute reference oil. Application of 20 microliter of the mixture reduced embryonic survival by nearly 70%. The temporal pattern of embryonic death was similar to that after exposure to South Louisiana crude oil. Embryonic growth was stunted, as reflected by weight, crown-rump length, and bill length, and there was a significant increase in the incidence of abnormal survivors. When individual classes of aromatic hydrocarbons were tested, tetracyclics caused some embryonic death at the concentrations in the mixture. When classes were tested in all possible combinations of two, no combination appeared to be as toxic as the entire mixture. Addition of the tetracyclic compound chrysene to the aromatic mixture considerably enhanced embryotoxicity, but could not completely account for the toxicity of the crude oil. The presence of additional unidentified polycyclic aromatic hydrocarbons as well as methylated derivatives of polycyclic aromatic compounds such as chrysene may further account for the embryotoxicity of the crude oil.

  20. Studies on in vitro biostability and blood compatibility of polyurethane potting compound based on aromatic polymeric MDI for extracorporeal devices.

    PubMed

    Hridya, V K; Jayabalan, M

    2009-12-01

    Polyurethane potting compound based on aromatic isocyanurate of polymeric MDI, poly propylene glycol (PPG400) and trimethylol propane (TMP) has significant favourable properties, good pot life and setting characteristics. The cured potting compound of this formulation has appreciable thermal stability and mechanical properties. In vitro biostability of cured potting compound has been found to be excellent without any significant degradation in simulated physiological media and chemical environment. Studies on blood-material interaction and cytotoxicity reveal in vitro blood compatibility and compatibility with cells of this potting compound.

  1. Structure-activity relationship and docking studies of thiazolidinedione-type compounds with monoamine oxidase B.

    PubMed

    Carroll, Richard T; Dluzen, Dean E; Stinnett, Hilary; Awale, Prabha S; Funk, Max O; Geldenhuys, Werner J

    2011-08-15

    The neuroprotective activity of pioglitazone and rosiglitazone in the MPTP parkinsonian mouse prompted us to evaluate a set of thiazolidinedione (TZD) type compounds for monoamine oxidase A and B inhibition activity. These compounds were able to inhibit MAO-B over several log units of magnitude (82 nM to 600 μM). Initial structure-activity relationship studies identified key areas to modify the aromatic substituted TZD compounds. Primarily, substitutions on the aromatic group and the TZD nitrogen were key areas where activity was enhanced within this group of compounds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Toluene. 2. Xylene(s) 1330-20-7 1.0 Xylenes, ethylbenzene. 3. Hexane 110-54-3 0.5 n-hexane. 4. n-Hexane 110-54-3 1.0 n-hexane. 5. Ethylbenzene 100-41-4 1.0 Ethylbenzene. 6. Aliphatic 140 0 None. 7. Aromatic...

  3. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Toluene. 2. Xylene(s) 1330-20-7 1.0 Xylenes, ethylbenzene. 3. Hexane 110-54-3 0.5 n-hexane. 4. n-Hexane 110-54-3 1.0 n-hexane. 5. Ethylbenzene 100-41-4 1.0 Ethylbenzene. 6. Aliphatic 140 0 None. 7. Aromatic...

  4. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Toluene. 2. Xylene(s) 1330-20-7 1.0 Xylenes, ethylbenzene. 3. Hexane 110-54-3 0.5 n-hexane. 4. n-Hexane 110-54-3 1.0 n-hexane. 5. Ethylbenzene 100-41-4 1.0 Ethylbenzene. 6. Aliphatic 140 0 None. 7. Aromatic...

  5. Online study on the co-pyrolysis of coal and corn with vacuum ultraviolet photoionization mass spectrometry.

    PubMed

    Weng, Jun-Jie; Liu, Yue-Xi; Zhu, Ya-Nan; Pan, Yang; Tian, Zhen-Yu

    2017-11-01

    With the aim to support the experimental tests in a circulating fluidized bed pilot plant, the pyrolysis processes of coal, corn, and coal-corn blend have been studied with an online pyrolysis photoionization time-of-flight mass spectrometry (Py-PI-TOFMS). The mass spectra at different temperatures (300-800°C) as well as time-evolved profiles of selected species were measured. The pyrolysis products such as alkanes, alkenes, phenols, aromatics, as well as nitrogen- and sulfur-containing species were detected. As temperature rises, the relative ion intensities of high molecular weight products tend to decrease, while those of aromatics increase significantly. During the co-pyrolysis, coal can promote the reaction temperature of cellulose in corn. Time-evolved profiles demonstrate that coal can affect pyrolysis rate of cellulose, hemicellulose, and lignin of corn in blend. This work shows that Py-PI-TOFMS is a powerful approach to permit a better understanding of the mechanisms underlying the co-pyrolysis of coal and biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Assessment of microbial communities associated with fermentative-methanogenic biodegradation of aromatic hydrocarbons in groundwater contaminated with a biodiesel blend (B20).

    PubMed

    Ramos, Débora Toledo; da Silva, Márcio Luís Busi; Nossa, Carlos Wolfgang; Alvarez, Pedro J J; Corseuil, Henry Xavier

    2014-09-01

    A controlled field experiment was conducted to assess the potential for fermentative-methanogenic biostimulation (by ammonium-acetate injection) to enhance biodegradation of benzene, toluene, ethylbenzene and xylenes (BTEX) as well as polycyclic aromatic hydrocarbons (PAHs) in groundwater contaminated with biodiesel B20 (20:80 v/v soybean biodiesel and diesel). Changes in microbial community structure were assessed by pyrosequencing 16S rRNA analyses. BTEX and PAH removal began 0.7 year following the release, concomitantly with the increase in the relative abundance of Desulfitobacterium and Geobacter spp. (from 5 to 52.7 % and 15.8 to 37.3 % of total Bacteria 16S rRNA, respectively), which are known to anaerobically degrade hydrocarbons. The accumulation of anaerobic metabolites acetate and hydrogen that could hinder the thermodynamic feasibility of BTEX and PAH biotransformations under fermentative/methanogenic conditions was apparently alleviated by the growing predominance of Methanosarcina. This suggests the importance of microbial population shifts that enrich microorganisms capable of interacting syntrophically to enhance the feasibility of fermentative-methanogenic bioremediation of biodiesel blend releases.

  7. Novel chemoselective hydrogenation of aromatic nitro compounds over ferric hydroxide supported nanocluster gold in the presence of CO and H2O.

    PubMed

    Liu, Lequan; Qiao, Botao; Chen, Zhengjian; Zhang, Juan; Deng, Youquan

    2009-02-14

    Chemoselective hydrogenation of aromatic nitro compounds were first efficiently achieved over Au/Fe(OH)(x) at 100-120 degrees C for 1.5-6 h (depending on different substrates) in the presence of CO and H(2)O.

  8. BINDING OF CARCINOGENS TO DNA AND COVALENT ADDUCTS DNA DAMAGE - PAH, AROMATIC AMINES, NITRO-AROMATIC COMPOUNDS, AND HALOGENATED COMPOUNDS

    EPA Science Inventory

    DNA adducts are the covalent addition products resulting from binding of reactive chemical species to DNA bases. The cancer initiating role of DNA adducts is well-established, and is clearly reflected in the high cancer incidence observed in individuals with deficiencies in any o...

  9. Theoretical investigation of the interaction between aromatic sulfur compounds and [BMIM](+)[FeCl4](-) ionic liquid in desulfurization: A novel charge transfer mechanism.

    PubMed

    Li, Hongping; Zhu, Wenshuai; Chang, Yonghui; Jiang, Wei; Zhang, Ming; Yin, Sheng; Xia, Jiexiang; Li, Huaming

    2015-06-01

    In this work, interaction nature between a group of aromatic sulfur compounds and [BMIM](+)[FeCl4](-) have been investigated by density functional theory (DFT). A coordination structure is found to be critical to the mechanism of extractive desulfurization. Interaction energy and extractive selectivity follow the order: thiophene (TH)

  10. Influence of silicon defects on the adsorption of thiophene-like compounds on polycyclic aromatic hydrocarbons: a theoretical study using thiophene + coronene as the simplest model.

    PubMed

    Galano, Annia

    2007-03-08

    Physisorption and chemisorption processes of thiophene on coronene and 2Si-coronene have been studied using density functional theory and MP2 methods. These systems have been chosen as the simplest models to describe the adsorption of thiophene-like compounds on polycyclic aromatic hydrocarbons (PAHs). The calculated data suggest that the presence of silicon atoms in PAHs could favor their interaction with thiophene and similar compounds. Small stabilization energies have been found for several physisorbed complexes. The thiophene chemisorption on coronene seems very unlikely to occur, while that on 2Si-coronene leads to addition products which are very stable, with respect to the isolated reactants. These chemisorption processes were found to be exoergic (DeltaG < 0) in the gas phase and in the nonpolar liquid phase. The results reported in this work suggest that silicon defects on extended polycyclic aromatic hydrocarbons, such as graphite, soot, and large-diameter carbon nanotubes, could make them useful in the removal processes of aromatic sulfur compounds from oil hydrocarbons.

  11. Substituent effect on the oxidation of phenols and aromatic amines by horseradish peroxidase compound I.

    PubMed

    Job, D; Dunford, H B

    1976-07-15

    A stopped-flow kinetic study shows that the reduction rate of horseradish peroxidase compound I by phenols and aromatic amines is greatly dependent upon the substituent effect on the benzene ring. Morever it has been possible to relate the reduction rate constants of monosubstituted substrates by a linear free-energy relationship (Hammett equation). The correlation of log (rate constants) with sigma values (Hammett equation) and the absence of correlation with sigma+ values (Okamoto-Brown equation) can be explained by a mechanism of aromatic substrate oxidations, in which the substrate gives an electron to the enzyme compound I and simultaneously loses a proton. The analogy which has been made with oxidation potentials of phenols or anilines strengthens the view that the reaction is only dependent on the relative ease of oxidation of the substrate. The rate constant obtained for p-aminophenol indicates that a value of 2.3 X 10(8) M-1 S-1 probably approaches the diffusion-controlled limit for a bimolecular reaction involving compound I and an aromatic substrate.

  12. Wind tunnel behavioural response and field trapping of the blowfly Calliphora vicina.

    PubMed

    Aak, A; Knudsen, G K; Soleng, A

    2010-09-01

    The attraction of the blowfly Calliphora vicina Robineau-Desvoidy, 1830 (Diptera: Calliphoridae) to single synthetic compounds, blends and authentic odours was investigated in a wind tunnel. A total of 1850 C. vicina (1750 females and 100 males) were tested. A comparison of male and female responses showed significant differences in attraction between the sexes. Females were more attracted than males to liver odour. The attraction of females lay in the ranges of 0-22% for single compounds, 26-64% for synthetic blends and 58-88% for authentic odours. Dimethyl trisulphide was the most attractive single compound. Significant improvement in attraction was achieved with blends and a three-component lure, consisting of dimethyl trisulphide, mercaptoethanol and o-cresol, was found to be the best solution for field trapping of C. vicina. Authentic odours from dead fish and mice were significantly more attractive than liver and the three-component blend, and the blend and liver were similarly effective as attractants. Field tests support the results of the wind tunnel study and a high number of C. vicina were caught in funnel traps. Overall, 99.1% of the specimens caught were females.

  13. Reductions in aircraft particulate emissions due to the use of Fischer-Tropsch fuels

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Timko, M. T.; Ziemba, L. D.; Bulzan, D.; Corporan, E.; Herndon, S. C.; Howard, R.; Miake-Lye, R.; Thornhill, K. L.; Winstead, E.; Wey, C.; Yu, Z.; Anderson, B. E.

    2013-06-01

    The use of alternative fuels for aviation is likely to increase due to concerns over fuel security, price stability and the sustainability of fuel sources. Concurrent reductions in particulate emissions from these alternative fuels are expected because of changes in fuel composition including reduced sulfur and aromatic content. The NASA Alternative Aviation Fuel Experiment (AAFEX) was conducted in January-February 2009 to investigate the effects of synthetic fuels on gas-phase and particulate emissions. Standard petroleum JP-8 fuel, pure synthetic fuels produced from natural gas and coal feedstocks using the Fischer-Tropsch (FT) process, and 50% blends of both fuels were tested in the CFM-56 engines on a DC-8 aircraft. To examine plume chemistry and particle evolution with time, samples were drawn from inlet probes positioned 1, 30, and 145 m downstream of the aircraft engines. No significant alteration to engine performance was measured when burning the alternative fuels. However, leaks in the aircraft fuel system were detected when operated with the pure FT fuels as a result of the absence of aromatic compounds in the fuel. Dramatic reductions in soot emissions were measured for both the pure FT fuels (reductions of 84% averaged over all powers) and blended fuels (64%) relative to the JP-8 baseline with the largest reductions at idle conditions. The alternative fuels also produced smaller soot (e.g. at 85% power, volume mean diameters were reduced from 78 nm for JP-8 to 51 nm for the FT fuel), which may reduce their ability to act as cloud condensation nuclei (CCN). The reductions in particulate emissions are expected for all alternative fuels with similar reductions in fuel sulfur and aromatic content regardless of the feedstock. As the plume cools downwind of the engine, nucleation-mode aerosols form. For the pure FT fuels, reductions (94% averaged over all powers) in downwind particle number emissions were similar to those measured at the exhaust plane (84%). However, the blended fuels had less of a reduction (reductions of 30-44%) than initially measured (64%). The likely explanation is that the reduced soot emissions in the blended fuel exhaust plume results in promotion of new particle formation microphysics, rather than coating on pre-existing soot particles, which is dominant in the JP-8 exhaust plume. Downwind particle volume emissions were reduced for both the pure (79 and 86% reductions) and blended FT fuels (36 and 46%) due to the large reductions in soot emissions. In addition, the alternative fuels had reduced particulate sulfate production (near-zero for FT fuels) due to decreased fuel sulfur content. To study the formation of volatile aerosols (defined as any aerosol formed as the plume ages) in more detail, tests were performed at varying ambient temperatures (-4 to 20 °C). At idle, particle number and volume emissions were reduced linearly with increasing ambient temperature, with best fit slopes corresponding to -1.2 × 106 # (kg fuel)-1 °C-1 for particle number emissions and -9.7 mm3 (kg fuel)-1 °C-1 for particle volume emissions. The temperature dependence of aerosol formation can have large effects on local air quality surrounding airports in cold regions. Aircraft produced aerosols in these regions will be much larger than levels expected based solely on measurements made directly at the engine exit plane. The majority (90% at idle) of the volatile aerosol mass formed as nucleation-mode aerosols with a smaller fraction as a soot coating. Conversion efficiencies of up to 3.8% were measured for the partitioning of gas-phase precursors (unburned hydrocarbons and SO2) to form volatile aerosols. Highest conversion efficiencies were measured at 45% power.

  14. Selective Clay Placement within a Silicate Clay-Epoxy Blend Nanocomposite and the Effect on Physical Properties

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Scheiman, Daniel A; Kohlmman, Lee W.

    2009-01-01

    Many epoxy systems under consideration for composite pressure vessels are composed of toughened epoxy resins. In this work, epoxy blends containing both rigid aromatic and flexible aliphatic components were prepared, to model toughened systems, and determine the optimum route of silicate addition. Compositions were chosen such that both glassy and rubbery resins were obtained at room temperature. The physical properties of the nanocomposites varied with T(g) and silicate placement, however, nanocomposite T(g)s were observed which exceeded that of the base resin by greater than 10 C. The tensile strength of the glassy resin remained constant or decreased on the dispersion of clay while that of the rubbery material doubled. Selectively placing the clay in the aliphatic component of the rubbery blend resulted in a greater than 100% increase in material toughness.

  15. Shape-selective adsorption of aromatic molecules from water by tetramethylammonium-smectite

    USGS Publications Warehouse

    Lee, J.; Mortland, M.M.; Boyd, S.A.; Chiou, C.T.

    1989-01-01

    The adsorption of aromatic compounds by smectite exchanged with tetramethylammonium (TMA) has been studied. Aromatic compounds adsorbed by TMA-smectite are assumed to adopt a tilted orientation in a face-to-face arrangment with the TMA tetrahedra. The sorptive characteristics of TMA-smectite were influenced strongly by the presence of water. The dry TMA-smectite showed little selectivity in the uptake of benzen, toluene and xylene. In the presence of water, TMA-smectite showed a high degree of selectivity based on molecular size/shape, resulting in high uptake of benzene and progressively lower uptake of larger aromatic molecules. This selectivity appeared to result from the shrinkage of interlamellar cavities by water.

  16. Polybenzimidazole via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Joseph G. (Inventor)

    1994-01-01

    Di(hydroxyphenyl)benzimidazole monomers were prepared from phenyl-4-hydroxybenzoate and aromatic bis(o-diamine)s. These monomers were used in the synthesis of soluble polybenzimidazoles. The reaction involved the aromatic nucleophilic displacement of various di(hydroxyphenyl)benzimidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds in the presence of an alkali metal base. These polymers exhibited lower glass transition temperatures, improved solubility, and better compression moldability over their commercial counterparts.

  17. Female-biased attraction of Oriental fruit fly, bactrocera dorsalis (Hendel), to a blend of host fruit volatiles from Terminalia catappa L.

    PubMed

    Siderhurst, Matthew S; Jang, Eric B

    2006-11-01

    Coupled gas chromatography-electroantennogram detection (GC-EAD) analysis of volatiles from tropical almond fruit, Terminalia catappa L., revealed 22 compounds that were detected by antennae of oriental fruit fly females, Bactrocera dorsalis (Hendel). Both solid-phase microextraction (SPME) and Porapak Q were used for sampling odors in fruit headspace, with SPME collections producing larger EAD responses from a greater number of compounds. Geranyl acetate and methyl eugenol elicited the largest EAD responses. A synthetic blend containing SPME collected, EAD stimulatory compounds showed female-biased attraction in laboratory wind tunnel bioassays, but heavily male-biased trap captures in a larger olfactometer arena. A nine-component subset of compounds eliciting relatively small EAD responses (EAD minor) and consisting of equal parts ethanol, ethyl acetate, ethyl hexanoate, hexyl acetate, linalyl acetate, ethyl nonanate, nonyl acetate, ethyl cinnamate, and (E)-beta-farnesene, attracted mainly females. This EAD minor blend was as attractive to females and much less attractive to males when compared to torula yeast in field cage experiments using glass McPhail traps. Similar results were obtained with outdoor rotating olfactometer tests in which the EAD minor blend was almost completely inactive for males.

  18. Effects of Processing Conditions During Manufacture on Retronasal-Aroma Compounds from a Milk Coffee Drink.

    PubMed

    Ikeda, Michio; Akiyama, Masayuki; Hirano, Yuta; Miyazi, Kazuhiro; Kono, Masaya; Imayoshi, Yuriko; Iwabuchi, Hisakatsu; Onodera, Takeshi; Toko, Kiyoshi

    2018-03-01

    To develop a ready-to-drink (RTD) milk coffee retaining the original coffee flavor, the effects of processing conditions during manufacture on retronasal-arma (RA) compounds from the milk coffee were investigated by gas chromatography-mass spectrometry using an RA simulator (RAS). Thirteen of 46 detected compounds in the RAS effluent (RAS compounds) decreased significantly following pH adjustment of coffee (from pH 5.1 to 6.8) and 5 compounds increased. RAS compounds from coffee tended to decrease through the pH adjustment and subsequent sterilization. Significantly higher amounts of 13 RAS compounds were released from the milk coffee produced using a blending-after-sterilization (BAS) process without the pH adjustment than from that using a blending-before-sterilization (BBS) process with the pH adjustment. In BAS-processed milk coffee, significantly lower amounts of 8 high-volatility compounds and 1H-pyrrole were released from coffee containing infusion-sterilized (INF) milk than from coffee containing plate-sterilized (PLT) milk, whereas 3 low-volatility compounds were released significantly more from coffee using PLT milk. Principal component analysis revealed that the effect of the manufacturing process (BAS, BBS, or homemade (blending unsterilized coffee without pH adjustment with sterilized milk)) on milk coffee volatiles was larger than that of the sterilization method (INF or PLT) for milk, and that the sterilization method could result in different RAS volatile characteristics in BAS and homemade processes. In conclusion, a BAS process was found to be superior to a BBS process for the manufacture of an RTD milk coffee that retains volatile characteristics similar to that of a homemade milk coffee. Ready-to-drink (RTD) milk coffee manufactured using the conventional blending-before-sterilization process does not retain its original coffee flavor due to pH adjustment of the coffee during the process. The new blending-after-sterilization (BAS) process enabled the production of RTD milk coffee whose volatiles are closer to that of homemade milk coffee, as demonstrated by the results of RAS-GC-MS analysis. The BAS process has already been applied to the manufacture of RTD milk coffees in Japan. © 2018 Institute of Food Technologists®.

  19. Remarkably selective iridium catalysts for the elaboration of aromatic C-H bonds.

    PubMed

    Cho, Jian-Yang; Tse, Man Kin; Holmes, Daniel; Maleczka, Robert E; Smith, Milton R

    2002-01-11

    Arylboron compounds have intriguing properties and are important building blocks for chemical synthesis. A family of Ir catalysts now enables the direct synthesis of arylboron compounds from aromatic hydrocarbons and boranes under "solventless" conditions. The Ir catalysts are highly selective for C-H activation and do not interfere with subsequent in situ transformations, including Pd-mediated cross-couplings with aryl halides. By virtue of their favorable activities and exceptional selectivities, these Ir catalysts impart the synthetic versatility of arylboron reagents to C-H bonds in aromatic and heteroaromatic hydrocarbons.

  20. BIODEGRADATION OF AROMATIC COMPOUNDS UNDER MIXED OXYGEN/DENITRIFYING CONDITIONS: A REVIEW

    EPA Science Inventory

    Bioremediation of aromatic hydrocarbons in groundwater and sediments is often limited by dissolved oxygen. Many aromatic hydrocarbons degrade very slowly or not at all under anaerobic conditions. Nitrate is a good alternative electron acceptor to oxygen, and denitrifying bacteria...

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wear, Jr., John Edmund

    The objective of this study was to examine the hypothesis that select functional groups of bacteria from pristine sites have an innate ability to degrade synthetic aromatics that often contaminate groundwater environments,due to exposure to naturally occurring recalcitrant aromatics in their environment. This study demonstrates that subsurface microbial communities are capable of utilizing lignin and humic acid breakdown products. Utilizers of these compounds were found to be present in most all the wells tested. Even the deepest aquifer tested had utilizers present for all six of the aromatics tested. Highest counts for the aromatics tested were observed with the naturallymore » occurring breakdown products of either lignin or humic acid. Carboxylic acids were found to be an important sole carbon source for groundwater bacteria possibly explained by the fact that they are produced by the oxidative cleavage of aromatic ring structures. The carbohydrate sole carbon sources that demonstrated the greatest densities were ones commonly associated with humics. This study indicates that utilization of naturally occurring aromatic compounds in the subsurface is an important nutritional source for groundwater bacteria. In addition, it suggests that adaptation to naturally occurring recalcitrant substrates is the origin of degradative pathways for xenobiotic compounds with analogous structure. This work has important implications for in situ bioremediation as a method of environmental cleanup.« less

  2. Thermal Stability Testing of a Fischer-Tropsch Fuel and Various Blends with Jet A

    NASA Technical Reports Server (NTRS)

    Klettlinger, Jennifer Suder; Surgenor, Angela; Yen, Chia

    2010-01-01

    Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. Fischer-Tropsch fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal parafins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline conventional Jet A, a commercial grade F-T jet fuel, and various blends of this F-T fuel in Jet A. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.

  3. High-field FT-ICR-MS and aromaticity equivalent approach for structural identification of water soluble organic compounds (WSOC)

    NASA Astrophysics Data System (ADS)

    Harir, Mourad; Yassine, Mahmoud M.; Dabek-Zlotorzynska, Ewa; Hertkorn, Norbert; Schmitt-Kopplin, Philippe

    2015-04-01

    Organic aerosol (OA) makes up a large and often dominant fraction, (20 to 90%) of the submicron atmospheric particulate mass, and its effects are becoming increasingly important in determining climatic and health effects of atmospheric aerosols. Despite the abundance of OA, our understanding of the sources, formation processes and atmospheric properties of OA is limited. Atmospheric OA has both primary (directly emitted) and secondary (formed in the atmosphere from precursor gases) sources, which can be natural (e.g. vegetation) and/or anthropogenic (e.g. fossil-based vehicle exhaust or biomass burning). A significant fraction of OA contains as much as 20-70% of water soluble organic compounds (WSOC). The WSOC fraction is a very complex mixture of low volatility, polyfunctional aliphatic and aromatic compounds containing carboxyl, alcohol, carbonyl, sulfo, nitro, and other functionalities. This high degree of chemical complexity of atmospheric organics has inspired a number of sophisticated approaches that are capable of identifying and detecting a variety of different analytes in OA. Accordingly, one of the most challenging areas of atmospheric particulate matter (PM) analysis is to comprehend the molecular complexity of the OA, especially WSOC fraction, a significant component of atmospheric fine PM (PM2.5). The sources of WSOC are not well understood, especially the relative contributions of primary vs. secondary organic aerosol. Therefore, the molecular characterization of WSOC is important because it allows gaining insight into aerosol sources and underlying mechanisms of secondary organic aerosols (SOA) formation and transformation. In this abstract, molecular characterization of WSOC was achieved using high-field mass spectrometry FT-ICR-MS and aromaticity equivalent approach. Aromaticity equivalent (Xc), defined recently as a new parameter calculated from the assigned molecular formulas (complementary to the aromaticity index [1]), is introduced to improve identification and characterization of aromatic and condensed aromatic compounds in WSOC [2]. We proposed threshold values of Xc≥ 2.5000 and Xc≥ 2.7143 as ambiguous minimum criteria for the presence of aromatic structure and condensed aromatic compounds, respectively. The advantage of employing this parameter is that Xc would have a constant value for each proposed core structure regardless the degree of alkylation, and thus visual representation and structural interpretations of the spectra become advantageous for characterizing and comparing complex samples. Diesel particulate matter (DPM) and two atmospheric aerosols collected in the industrial area affected by biomass burning events were used to study the applicability of the proposed criteria for the improved identification of aromatic and condensed aromatic structures in complex mixtures in the FT-ICR mass spectra. References [1] Koch.BP, Dittmar.T. From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun. Mass Spectrom. 2006, 20, 926-932 [2] Yassine.MM, Harir.M, Dabek-Zlotorzynska.E, Schmitt-Kopplin.Ph. Structural characterization of organic aerosol using Fourier transform ion cyclotron resonance mass spectrometry: Aromaticity equivalent approach. Rapid Commun. Mass Spectrom. 2014. 28. 2445-2454

  4. Cyclic terpenoids of contemporary resinous plant detritus and of fossil woods, ambers and coals

    USGS Publications Warehouse

    Simoneit, B.R.T.; Grimalt, J.O.; Wang, T.-G.; Cox, R.E.; Hatcher, P.G.; Nissenbaum, A.

    1986-01-01

    Cyclic terpenoids present in the solvent extractable material of fossil woods, ambers and brown coals have been analyzed. The sample series chosen consisted of wood remains preserved in Holocene to Jurassic sediments and a set of of ambers from the Philippines (copalite), Israel, Canada and Dominican Republic. The brown coals selected were from the Fortuna Garsdorf Mine and Miocene formations on Fiji. The fossil wood extracts contained dominant diterpenoid or sesquiterpenoid skeletons, and aromatized species were present at high concentrations, with a major amount of two-ring aromatic compounds. Tricyclic diterpenoids were the predominant compounds in the ambers. Aromatized derivatives were the major components, consisting of one or two aromatic ring species with the abietane and occasionally pimarane skeletons. The saturated structures were comprised primarily of the abietane and pimarane skeletons having from three to five carbon (C1, C2, etc.) substituents. Kaurane and phyllocladane isomers were present in only minor amounts. Bicyclic sesquiterpenoids as saturated and partial or fully aromatized forms were also common in these samples, but only traces of sesterterpenoids and triterpenoid derivatives were found. The brown coal extracts were composed of major amounts of one- and two-ring aromatized terpenoids, with a greater proportion of triterpenoid derivatives than in the case of the woods and ambers. This was especially noticeable for the German coal, where the triterpenoids were predominant. Open C-ring aromatized structures were also present in this coal. Steroid compounds were not detectable, but some hopanes were found as minor components in the German brown coal. An overview of the skeletal structure classes identified in each sample, as well as the general mass spectrometric characteristics of the unknown compounds are included in the present paper. It can be concluded from these structural distributions that aromatization is the main process for the transformation of terrestrial cyclic terpenoids during diagenesis, constituting a general pathway for all terpenoids. ?? 1986 Pergamon Journals Ltd.

  5. Composition of the black crusts from the Saint Denis Basilica, France, as revealed by gas chromatography-mass spectrometry.

    PubMed

    Gaviño, Maria; Hermosin, Bernardo; Vergès-Belmin, Véronique; Nowik, Witold; Saiz-Jimenez, Cesareo

    2004-05-01

    The organic fraction of black crusts from Saint Denis Basilica, France, is composed of a complex mixture of aliphatic and aromatic compounds. These compounds were studied by two different analytical approaches: tetramethyl ammonium hydroxide (TMAH) thermochemolysis in combination with gas chromatography-mass spectrometry (GC-MS), and solvent extraction, fractionation by silica column, and identification of the fraction components by GC-MS. The first approach, feasible at the microscale level, is able to supply fairly general information on a wide range of compounds. Using the second approach, we were able to separate the complex mixture of compounds into four fractions, enabling a better identification of the extractable compounds. These compounds belong to different classes: aliphatic hydrocarbons (nalkanes, n-alkenes), aliphatic and aromatic carboxylic acids (n-fatty acids, alpha,omega-dicarboxylic acids, and benzenecarboxylic acids), polycyclic aromatic hydrocarbons (PAH), and molecular biomarkers (isoprenoid hydrocarbons, diterpenoids, and triterpenoids). With each approach, similar classes of compounds were identified, although TMAH thermochemolysis failed to identify compounds present at low concentrations in black crusts. The two proposed methodological approaches are complementary, particularly in the study of polar fractions.

  6. Remedial Investigation/Feasibility Study/Interim Response Actions

    DTIC Science & Technology

    1988-03-25

    organosulfur compounds (CC/FP), organophosphorus compounds (CC/FPD), hydrocarbons (CC/FID), volatile aromatic compounds (GC/ PID ), volatile halogenated...ICP metals, mercury and arsenic (AA). Water samples are being analyzed for volatile halogenated organics (GC/CON), volatile aromatic organics (GC/ PID ...Feb Mar Apr May Jun Jul Aug SepSI - I I I I I • .. I I I ----+----- 685 27-90 so ONSITE DISPOSAL FACILITY .i * 686 27-01 Prep FLUE Plan Fz=m8u> 6e7

  7. Microbial reductive dehalogenation.

    PubMed Central

    Mohn, W W; Tiedje, J M

    1992-01-01

    A wide variety of compounds can be biodegraded via reductive removal of halogen substituents. This process can degrade toxic pollutants, some of which are not known to be biodegraded by any other means. Reductive dehalogenation of aromatic compounds has been found primarily in undefined, syntrophic anaerobic communities. We discuss ecological and physiological principles which appear to be important in these communities and evaluate how widely applicable these principles are. Anaerobic communities that catalyze reductive dehalogenation appear to differ in many respects. A large number of pure cultures which catalyze reductive dehalogenation of aliphatic compounds are known, in contrast to only a few organisms which catalyze reductive dehalogenation of aromatic compounds. Desulfomonile tiedjei DCB-1 is an anaerobe which dehalogenates aromatic compounds and is physiologically and morphologically unusual in a number of respects, including the ability to exploit reductive dehalogenation for energy metabolism. When possible, we use D. tiedjei as a model to understand dehalogenating organisms in the above-mentioned undefined systems. Aerobes use reductive dehalogenation for substrates which are resistant to known mechanisms of oxidative attack. Reductive dehalogenation, especially of aliphatic compounds, has recently been found in cell-free systems. These systems give us an insight into how and why microorganisms catalyze this activity. In some cases transition metal complexes serve as catalysts, whereas in other cases, particularly with aromatic substrates, the catalysts appear to be enzymes. Images PMID:1406492

  8. Gondola-shaped tetra-rhenium metallacycles modified evanescent wave infrared chemical sensors for selective determination of volatile organic compounds.

    PubMed

    Huang, Genin Gary; Lee, Chung-Jay; Tsai, Bo-Chan; Yang, Jyisy; Sathiyendiran, Malaichamy; Lu, Kuang-Lieh

    2011-07-15

    Water-stable and cavity-contained rhenium metallacycles were synthesized, and their ability to selectively interact with volatile organic compounds (VOCs) systematically studied using attenuated total reflection infrared (ATR-IR) spectroscopy. Integrating the unique properties of rhenium metallacycles into optical sensing technologies significantly improves selectivity in detecting aromatic compounds. To explore the interaction of rhenium metallacycles with VOCs, the surface of ATR sensing elements was modified with the synthesized rhenium metallacycles and used to detect VOCs. The results indicate that rhenium metallacycles have crown ether-like recognition sites, which can selectively interact with aromatic compounds, especially those bearing polar functional groups. The IR absorption bands of rhenium metallacycles shift significantly upon adsorption of aromatic VOCs, revealing a strong interaction between the tetra-rhenium metallacycles and guest aromatic compounds. Optimizing the thickness of the metallacycles coated on the surface of the sensing element led to rapid response in detection. The dynamic range of response was generally up to 30 mg/L with detection limits ca. 30 μg/L. Further studies of the effect of interferences indicate that recovery can be higher than 95% for most of the compounds tested. The results on the flow-cell device indicated that the performances were similar to a static detection system but the detection of VOCs can be largely simplified. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Lee, S. C.; Chiu, Gloria M. Y.

    Volatile organic compounds (VOCs), PAHs and carbonyl compounds are the major toxic components in Hong Kong. Emissions from motor vehicles have been one of the primary pollution sources in the metropolitan areas throughout Hong Kong for a long time. A 1-yr monitoring program for VOCs, PAHs and carbonyl compounds had been performed at a roadside urban station at Hong Kong Polytechnic University in order to determine the variations and correlations of each selected species (VOCs, PAHs and carbonyl compounds). This study is aimed to analyze toxic volatile organic compounds (benzene, toluene, ethylbenzene and xylene), two carbonyl compounds (formaldehyde, acetaldehyde), and selective polycyclic aromatic hydrocarbons. The monitoring program started from 16 April 1999 to 30 March 2000. Ambient VOC concentrations, many of which originate from the same sources as particulate PAHs and carbonyls compounds, show significant quantities of benzene, toluene and xylenes. Correlations and multivariate analysis of selected gaseous and particulate phase organic pollutants were performed. Source identification by principle component analysis and hierarchical cluster analysis allowed the identification of four sources (factors) for the roadside monitoring station. Factor 1 represents the effect of diesel vehicle exhaust. Factor 2 shows the contribution of aromatic compounds. Factor 3 explains photochemical products—formaldehyde and acetaldehyde. Factor 4 explains the effect of gasoline vehicle exhaust.

  10. The chemistry and beneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices

    USDA-ARS?s Scientific Manuscript database

    Aromatic plants produce organic compounds that may be involved in the defense of plants against phytopathogenic insects, bacteria, fungi, and viruses. One of these compounds called carvacrol that is found in high concentrations in essential oils such as oregano has been reported to exhibit numerous...

  11. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.

    1989-07-18

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  12. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1994-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  13. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.

    1989-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  14. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1994-06-14

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  15. Aromatic hydrocarbons from the Middle Jurassic fossil wood of the Polish Jura

    NASA Astrophysics Data System (ADS)

    Smolarek, Justyna; Marynowski, Leszek

    2013-09-01

    Aromatic hydrocarbons are present in the fossil wood samples in relatively small amounts. In almost all of the tested samples the dominating aromatic hydrocarbon is perylene and its methyl and dimethyl derivatives. The most important biomarkers present in the aromatic fraction are dehydroabietane, siomonellite and retene, compounds characteristic for conifers. The distribution of discussed compounds is highly variable due to such early diagenetic processes affecting the wood as oxidation and the activity of microorganisms. MPI1 parameter values (methylphenanthrene index) for the majority of the samples are in the range of 0.1 to 0.5, which results in the highly variable values of Rc (converted value of vitrinite reflectance) ranging from 0.45 to 0.70%. Such values suggest that MPI1 parameter is not useful as maturity parameter in case of Middle Jurassic ore-bearing clays, even if measured strictly on terrestrial organic matter (OM). As a result of weathering processes (oxidation) the distribution of aromatic hydrocarbons changes. In the oxidized samples the amount of aromatic hydrocarbons, both polycyclic as well as aromatic biomarkers decreases.

  16. MICROBIAL METABOLISM OF AROMATIC COMPOUNDS I.

    PubMed Central

    Tabak, Henry H.; Chambers, Cecil W.; Kabler, Paul W.

    1964-01-01

    Tabak, Henry H. (Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio), Cecil W. Chambers, and Paul W. Kabler. Microbial metabolism of aromatic carbon compounds. I. Decomposition of phenolic compounds and aromatic hydrocarbons by phenol-adapted bacteria. J. Bacteriol. 87:910–919. 1964.—Bacteria from soil and related environments were selected or adapted to metabolize phenol, hydroxy phenols, nitrophenols, chlorophenols, methylphenols, alkylphenols, and arylphenols when cultured in mineral salts media with the specific substrate as the sole source of carbon. A phenol-adapted culture (substrate-induced enzyme synthesis proven) was challenged in respirometric tests with 104 related compounds; probable significant oxidative activity occurred with 65. Dihydric phenols were generally oxidized; trihydric phenols were not. Cresols and dimethylphenols were oxidized; adding a chloro group increased resistance. Benzoic and hydroxybenzoic acids were oxidized; sulfonated, methoxylated, nitro, and chlorobenzoic acids were not; m-toluic acid was utilized but not the o- and p-isomers. Benzaldehyde and p-hydroxybenzaldehyde were oxidized. In general, nitro- and chloro-substituted compounds and the benzenes were difficult to oxidize. PMID:14137630

  17. Identification of a New Blend of Host Fruit Volatiles from Red Downy Hawthorn, Crataegus mollis, Attractive to Rhagoletis pomonella Flies from the Northeastern United States.

    PubMed

    Cha, Dong H; Powell, Thomas H Q; Feder, Jeffrey L; Linn, Charles E

    2018-06-20

    A new blend of volatiles was identified for the fruit of downy red hawthorn, Crataegus mollis, that is attractive to Rhagoletis pomonella flies infesting this host in the northeastern USA. The new blend was as attractive as the previously identified mixture but is more complex in the number of odorants (six in the old versus ten in the new) and differs significantly in the ratio of three volatiles, 3-methylbutan-1-ol, butyl hexanoate, and dihydro-β-ionone, that are common to both blends and exerted agonist or antagonist effects on behavior in a flight tunnel assay. However, behavioral results with the old and new northern hawthorn blends, as well as modified blends with substituted ratios of 3-methylbutan-1-ol, butyl hexanoate, dihydro-β-ionone, indicated that the 'agonist' or 'antagonist' effects of these volatiles depended on the ratio, or balance of compounds within the blend. In addition, the new blend contains a number of esters identified from the headspace of domesticated apple, Malus domestica, that are attractive to apple-origin R. pomonella, and present in the five other blends from southern hawthorns, including the southern C. mollis var. texana blend, but are not part of the previously identified blend from northern C. mollis fruit. This finding supports the hypothesis that in addition to providing specificity to the odor blends of the northern and southern hawthorn populations, the presence of the significant amounts of ester compounds in the new northern hawthorn blend might have provided a source of standing variation that could help explain the shift in host preference by C. mollis-infesting flies to introduced apple in the mid-1800's.

  18. Graphene and graphene nanocomposites for the removal of aromatic organic compounds from the water: systematic review

    NASA Astrophysics Data System (ADS)

    Monsores Paixão, Monique; Tadeu Gomes Vianna, Marco; Marques, Marcia

    2018-01-01

    Aromatic organic pollutants are highly toxic to the human and environmental health and are considered as priority pollutants by regulatory agencies. Managing contaminated sites with organic pollutants is one of the major environmental challenges today. Of all technologies that have been proposed to remove contaminants, adsorption is recognized worldwide as an attractive option due to its versatility, wide applicability and economic viability. Recent studies report the use of graphene (GN), a recently carbon nanomaterial, and its derivatives in sorption processes for the removal of aromatic organic compounds. The present review has shown that GN structures are a promising alternative to traditional adsorbent materials, with excellent results in the removal of organic compounds from water, due to their unique structural characteristics and great adsorption capacity for organic compounds. Although, there is still a long way to go until that practical applications can be implemented.

  19. Detecting aromatic compounds on planetary surfaces using ultraviolet time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Eshelman, E.; Daly, M. G.; Slater, G.; Cloutis, E.

    2018-02-01

    Many aromatic organic molecules exhibit strong and characteristic fluorescence when excited with ultraviolet radiation. As laser excitation in the ultraviolet generates both fluorescence and resonantly enhanced Raman scattering of aromatic vibrational modes, combined Raman and fluorescence instruments have been proposed to search for organic compounds on Mars. In this work the time-resolved fluorescence of a suite of 24 compounds composed of 2-5 ringed alternant, non-alternant, and heterocyclic PAHs was measured. Fluorescence instrumentation with similar specifications to a putative flight instrument was capable of observing the fluorescence decay of these compounds with a sub-ns resolution. Incorporating time-resolved capabilities was also found to increase the ability to discriminate between individual PAHs. Incorporating time-resolved fluorescence capabilities into an ultraviolet gated Raman system intended for a rover or lander can increase the ability to detect and characterize PAHs on planetary surfaces.

  20. A method of estimating the knock rating of hydrocarbon fuel blend

    NASA Technical Reports Server (NTRS)

    Sanders, Newell D

    1943-01-01

    The usefulness of the knock ratings of pure hydrocarbon compounds would be increased if some reliable method of calculating the knock ratings of fuel blends was known. The purpose of this study was to investigate the possibility of developing a method of predicting the knock ratings of fuel blends.

  1. A Method of Estimating the Knock Rating of Hydrocarbon Fuel Blends

    NASA Technical Reports Server (NTRS)

    Sanders, Newell D.

    1943-01-01

    The usefulness of the knock ratings of pure hydrocarbon compounds would be increased if some reliable method of calculating the knock ratings of fuel blends was known. The purpose of this study was to investigate the possibility of developing a method of predicting the knock ratings of fuel blends.

  2. The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends.

    PubMed

    Ferri, J M; Garcia-Garcia, D; Sánchez-Nacher, L; Fenollar, O; Balart, R

    2016-08-20

    In this work, poly(lactic acid), PLA and thermoplastic starch, TPS blends (with a fixed content of 30wt.% TPS) were prepared by melt extrusion process to increase the low ductile properties of PLA. The TPS used contains an aliphatic/aromatic biodegradable polyester (AAPE) that provides good resistance to aging and moisture. This blend provides slightly improved ductile properties with an increase in elongation at break of 21.5% but phase separation is observed due to the lack of strong interactions between the two polymers. Small amounts of maleinized linseed oil (MLO) can positively contribute to improve the ductile properties of these blends by a combined plasticizing-compatibilizing effect. The elongation at break increases over 160% with the only addition of 6phr MLO. One of the evidence of the plasticizing-compatibilizing effect provided by MLO is the change in the glass transition temperature (Tg) with a decrease of about 10°C. Field emission scanning electron microscopy (FESEM) of PLA-TPS blends with varying amounts of maleinized linseed oil also suggests an increase in compatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen.

    PubMed

    Zakzeski, Joseph; Weckhuysen, Bert M

    2011-03-21

    The solubilization and aqueous phase reforming of lignin, including kraft, soda, and alcell lignin along with sugarcane bagasse, at low temperatures (T≤498 K) and pressures (P≤29 bar) is reported for the first time for the production of aromatic chemicals and hydrogen. Analysis of lignin model compounds and the distribution of products obtained during the lignin aqueous phase reforming revealed that lignin was depolymerized through disruption of the abundant β-O-4 linkages and, to a lesser extent, the 5-5' carbon-carbon linkages to form monomeric aromatic compounds. The alkyl chains contained on these monomeric compounds were readily reformed to produce hydrogen and simple aromatic platform chemicals, particularly guaiacol and syringol, with the distribution of each depending on the lignin source. The methoxy groups present on the aromatic rings were subject to hydrolysis to form methanol, which was also readily reformed to produce hydrogen and carbon dioxide. The composition of the isolated yields of monomeric aromatic compounds and overall lignin conversion based on these isolated yields varied from 10-15% depending on the lignin sample, with the balance consisting of gaseous products and residual solid material. Furthermore, we introduce the use of a high-pressure autoclave with optical windows and an autoclave with ATR-IR sentinel for on-line in situ spectroscopic monitoring of biomass conversion processes, which provides direct insight into, for example, the solubilization process and aqueous phase reforming reaction of lignin. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effects of gasoline aromatic content on emissions of volatile organic compounds and aldehydes from a four-stroke motorcycle.

    PubMed

    Yao, Yung-Chen; Tsai, Jiun-Horng

    2013-01-01

    A new four-stroke carburettor motorcycle engine without any engine adjustments was used to study the impact of fuel aromatic content on the exhaust emissions of organic air pollutants (volatile organic compounds and carbonyls). Three levels of aromatic content, i.e. 15, 25, and 50% (vol.) aromatics mixed with gasoline were tested. The emissions of aromatic fuel were compared with those of commercial unleaded gasoline. The results indicated that the A 15 (15 vol% aromatics in gasoline) fuel exhibited the greatest total organic emission improvement among these three aromatic fuels as compared with commercial gasoline, reaching 59%. The highest emission factors of alkanes, alkenes, and carbonyl groups appeared in the reference fuel (RF) among all of the test fuels. A 15 showed the highest emission reduction in alkanes (73%), aromatics (36%), and carbonyls (28%), as compared to those of the RF. The highest emission reduction ofalkenes was observed when using A25 as fuel. A reduction in fuel aromatic content from 50 to 25 and 15 vol% in gasoline decreased benzene and toluene emissions, but increased the aldehyde emissions. In general, the results showed that the highest emission reductions for the most of measured organic pollutants appeared when using A 15 as the fuel.

  5. Aromatic-degrading Sphingomonas isolates from the deep subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredrickson, J.K.; Romine, M.F.; Balkwill, D.L.

    An obligately aerobic chemoheterotrophic bacterium (strain F199) previously isolated from Southeast Coastal Plain subsurface sediments and shown to degrade toluene, naphthalene, and other aromatic compounds was characterized by analysis of its 16S rRNA nucleotide base sequence and cellular lipid composition. Strain F199 contained 2-OH14:0 and 18:1{omega}7c as the predominant cellular fatty acids and sphingolipids that are characteristic of the genus Sphingomonas. Phylogenetic analysis of its 16SrRNA sequence indicated that F199 was most closely related to Sphingomonas capsulata among the bacteria currently in the Ribosomal Database. Five additional isolates from deep Southeast Coastal Plain sediments were determined by 16S rRNA sequencemore » analysis to be closely related to F199. These strains also contained characteristic sphingolipids. Four of these five strains could also grow on a broad range of aromatic compounds and could mineralize [{sup 14C}]toluene and [{sup 14C}]naphthalene. S. capsulata (ATCC 14666), Sphingomonas paucimobiolis (ATCC 29837), and one of the subsurface isolates were unable to grow on any of the aromatic compounds or mineralize toluene or naphthalene. These results indicate that bacteria within the genus Sphingomonas are present in Southeast Coastal Plain subsurface sediments and that the capacity for degrading a broad range of substituted aromatic compounds appears to be common among Sphingomonas species from this environment. 41 refs., 2 figs., 5 tabs.« less

  6. Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds.

    PubMed Central

    Grifoll, M; Selifonov, S A; Gatlin, C V; Chapman, P J

    1995-01-01

    Pseudomonas cepacia F297 grew with fluorene as a sole source of carbon and energy; its growth yield corresponded to an assimilation of about 40% of fluorene carbon. The accumulation of a ring meta-cleavage product during growth and the identification of 1-indanone in growth media and washed-cell suspensions suggest that strain F297 metabolizes fluorene by mechanisms analogous to those of naphthalene degradation. In addition to fluorene, strain F297 utilized for growth a wide variety of polycyclic aromatic compounds (PACs), including naphthalene, 2,3-dimethylnaphthalene, phenanthrene, anthracene, and dibenzothiophene. Fluorene-induced cells of the strain also transformed 2,6-dimethylnaphthalene, biphenyl, dibenzofuran, acenaphthene, and acenaphthylene. The identification of products formed from those substrates (by gas chromatography-mass spectrometry) in washed-cell suspensions indicates that P. cepacia F297 carries out the following reactions: (i) aromatic ring oxidation and cleavage, apparently using the pyruvate released for growth, (ii) methyl group oxidations, (iii) methylenic oxidations, and (iv) S oxidations of aromatic sulfur heterocycles. Strain F297 grew with a creosote-PAC mixture, producing an almost complete removal of all aromatic compounds containing 2 to 3 rings in 14 days, as demonstrated by gas chromatography analysis of the remaining PACs recovered from cultures. The identification of key chemicals confirmed that not only are certain compounds depleted but also the anticipated reaction products are found. PMID:7487007

  7. Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds.

    PubMed

    Grifoll, M; Selifonov, S A; Gatlin, C V; Chapman, P J

    1995-10-01

    Pseudomonas cepacia F297 grew with fluorene as a sole source of carbon and energy; its growth yield corresponded to an assimilation of about 40% of fluorene carbon. The accumulation of a ring meta-cleavage product during growth and the identification of 1-indanone in growth media and washed-cell suspensions suggest that strain F297 metabolizes fluorene by mechanisms analogous to those of naphthalene degradation. In addition to fluorene, strain F297 utilized for growth a wide variety of polycyclic aromatic compounds (PACs), including naphthalene, 2,3-dimethylnaphthalene, phenanthrene, anthracene, and dibenzothiophene. Fluorene-induced cells of the strain also transformed 2,6-dimethylnaphthalene, biphenyl, dibenzofuran, acenaphthene, and acenaphthylene. The identification of products formed from those substrates (by gas chromatography-mass spectrometry) in washed-cell suspensions indicates that P. cepacia F297 carries out the following reactions: (i) aromatic ring oxidation and cleavage, apparently using the pyruvate released for growth, (ii) methyl group oxidations, (iii) methylenic oxidations, and (iv) S oxidations of aromatic sulfur heterocycles. Strain F297 grew with a creosote-PAC mixture, producing an almost complete removal of all aromatic compounds containing 2 to 3 rings in 14 days, as demonstrated by gas chromatography analysis of the remaining PACs recovered from cultures. The identification of key chemicals confirmed that not only are certain compounds depleted but also the anticipated reaction products are found.

  8. Pistachio oil (Pistacia vera L. cv. Uzun): Characterization of key odorants in a representative aromatic extract by GC-MS-olfactometry and phenolic profile by LC-ESI-MS/MS.

    PubMed

    Sonmezdag, Ahmet Salih; Kelebek, Hasim; Selli, Serkan

    2018-02-01

    Volatile, aroma-active, and phenolic compounds of pistachio oil obtained from cv. Uzun were investigated in the current study. To obtain a representative aromatic extract, three of the most widely used extraction methods were compared using a representative test; the solvent-assisted flavour extraction (SAFE) aromatic extract from pistachio oil was found to be the most representative. A total of 50 aroma compounds were determined in pistachio oil and it was found that terpenes, aldehydes, and alcohols were the most abundant volatile compounds. Applying GC-MS-olfactometry and aroma extract dilution analysis (AEDA) resulted in a total of 14 aroma-active areas being detected in the extract of pistachio oil. In the phenolic fraction obtained by the LC-ESI-MS/MS method, a total of 12 phenolic compounds was found in the pistachio oil, of which seven compounds were reported for the first time. Eriodictyol-7-O-glucoside and protocatechuic acid were the most dominant phenolic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Fusing porphyrins with polycyclic aromatic hydrocarbons and heterocycles for optoelectronic applications

    DOEpatents

    Thompson, Mark E.; Diev, Viacheslav; Hanson, Kenneth; Forrest, Stephen R.

    2015-08-18

    A compound that can be used as a donor material in organic photovoltaic devices comprising a non-activated porphyrin fused with one or more non-activated polycyclic aromatic rings or one or more non-activated heterocyclic rings can be obtained by a thermal fusion process. The compounds can include structures of Formula I: ##STR00001## By heating the reaction mixture of non-activated porphyrins with non-activated polycyclic aromatic rings or heterocyclic rings to a fusion temperature and holding for a predetermined time, fusion of one or more polycyclic rings or heterocyclic rings to the non-activated porphyrin core in meso,.beta. fashion is achieved resulting in hybrid structures containing a distorted porphyrin ring with annulated aromatic rings. The porphyrin core can be olygoporphyrins.

  10. Formation of highly oxygenated organic molecules from aromatic compounds

    NASA Astrophysics Data System (ADS)

    Molteni, Ugo; Bianchi, Federico; Klein, Felix; El Haddad, Imad; Frege, Carla; Rossi, Michel J.; Dommen, Josef; Baltensperger, Urs

    2018-02-01

    Anthropogenic volatile organic compounds (AVOCs) often dominate the urban atmosphere and consist to a large degree of aromatic hydrocarbons (ArHCs), such as benzene, toluene, xylenes, and trimethylbenzenes, e.g., from the handling and combustion of fuels. These compounds are important precursors for the formation of secondary organic aerosol. Here we show that the oxidation of aromatics with OH leads to a subsequent autoxidation chain reaction forming highly oxygenated molecules (HOMs) with an O : C ratio of up to 1.09. This is exemplified for five single-ring ArHCs (benzene, toluene, o-/m-/p-xylene, mesitylene (1,3,5-trimethylbenzene) and ethylbenzene), as well as two conjugated polycyclic ArHCs (naphthalene and biphenyl). We report the elemental composition of the HOMs and show the differences in the oxidation patterns of these ArHCs. A potential pathway for the formation of these HOMs from aromatics is presented and discussed. We hypothesize that AVOCs may contribute substantially to new particle formation events that have been detected in urban areas.

  11. Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway.

    PubMed Central

    Nelson, M J; Montgomery, S O; Mahaffey, W R; Pritchard, P H

    1987-01-01

    Biodegradation of trichloroethylene (TCE) by bacterial strain G4 resulted in complete dechlorination of the compound, as indicated by the production of inorganic chloride. A component of the water from which strain G4 was isolated that was required for TCE degradation was identified as phenol. Strain G4 degraded TCE in the presence of chloramphenicol only when preinduced with phenol. Toluene, o-cresol. and m-cresol could replace the phenol requirement. Two of the inducers of TCE metabolism, phenol and toluene, apparently induced the same aromatic degradative pathway that cleaved the aromatic ring by meta fission. Cells induced with either phenol or toluene had similar oxidation rates for several aromatic compounds and had similar levels of catechol-2,3-dioxygenase. The results indicate that one or more enzymes of an inducible pathway for aromatic degradation in strain G4 are responsible for the degradation of TCE. PMID:3606099

  12. Evaluating the Effects of Aromatics Content in Gasoline on Gaseous and Particulate Matter Emissions from SI-PFI and SIDI Vehicles.

    PubMed

    Karavalakis, Georgios; Short, Daniel; Vu, Diep; Russell, Robert; Hajbabaei, Maryam; Asa-Awuku, Akua; Durbin, Thomas D

    2015-06-02

    We assessed the emissions response of a fleet of seven light-duty gasoline vehicles for gasoline fuel aromatic content while operating over the LA92 driving cycle. The test fleet consisted of model year 2012 vehicles equipped with spark-ignition (SI) and either port fuel injection (PFI) or direct injection (DI) technology. Three gasoline fuels were blended to meet a range of total aromatics targets (15%, 25%, and 35% by volume) while holding other fuel properties relatively constant within specified ranges, and a fourth fuel was formulated to meet a 35% by volume total aromatics target but with a higher octane number. Our results showed statistically significant increases in carbon monoxide, nonmethane hydrocarbon, particulate matter (PM) mass, particle number, and black carbon emissions with increasing aromatics content for all seven vehicles tested. Only one vehicle showed a statistically significant increase in total hydrocarbon emissions. The monoaromatic hydrocarbon species that were evaluated showed increases with increasing aromatic content in the fuel. Changes in fuel composition had no statistically significant effect on the emissions of nitrogen oxides (NOx), formaldehyde, or acetaldehyde. A good correlation was also found between the PM index and PM mass and number emissions for all vehicle/fuel combinations with the total aromatics group being a significant contributor to the total PM index followed by naphthalenes and indenes.

  13. Portable spotter for fluorescent contaminants on surfaces

    DOEpatents

    Schuresko, Daniel D.

    1980-01-01

    A portable fluorescence-based spotter for polynuclear aromatic hydrocarbon contamination on personnel and work area surfaces under ambient lighting conditions is provided. This instrument employs beam modulation and phase sensitive detection for discriminating between fluorescence from organic materials from reflected background light and inorganic fluorescent material. The device uses excitation and emission filters to provide differentiation between classes of aromatic organic compounds. Certain inorganic fluorescent materials, including heavy metal compounds, may also be distinguished from the organic compounds, despite both having similar optical properties.

  14. Electrochemical methods for monitoring of environmental carcinogens.

    PubMed

    Barek, J; Cvacka, J; Muck, A; Quaiserová, V; Zima, J

    2001-04-01

    The use of modern electroanalytical techniques, namely differential pulse polarography, differential pulse voltammetry on hanging mercury drop electrode or carbon paste electrode, adsorptive stripping voltammetry and high performance liquid chromatography with electrochemical detection for the determination of trace amounts of carcinogenic N-nitroso compounds, azo compounds, heterocyclic compounds, nitrated polycyclic aromatic hydrocarbons and aromatic and heterocyclic amines is discussed. Scope and limitations of these methods are described and some practical applications based on their combination with liquid-liquid or solid phase extraction are given.

  15. Applying Thienyl Side Chains and Different π-Bridge to Aromatic Side-Chain Substituted Indacenodithiophene-Based Small Molecule Donors for High-Performance Organic Solar Cells.

    PubMed

    Wang, Jin-Liang; Liu, Kai-Kai; Liu, Sha; Liu, Feng; Wu, Hong-Bin; Cao, Yong; Russell, Thomas P

    2017-06-14

    A pair of linear tetrafluorinated small molecular donors, named as ThIDTTh4F and ThIDTSe4F, which are with tetrathienyl-substituted IDT as electron-rich central core, electron-deficient difluorobenzothiadiazole as acceptor units, and donor end-capping groups, but having differences in the π-bridge (thiophene and selenophene), were successfully synthesized and evaluated as donor materials in organic solar cells. Such π-bridge and core units in these small molecules play a decisive role in the formation of the nanoscale separation of the blend films, which were systematically investigated through absorption spectra, grazing incidence X-ray diffraction pattern, transmission electron microscopy images, resonant soft X-ray scattering profiles, and charge mobility measurement. The ThIDTSe4F (with selenophene π-bridge)-based device exhibited superior performance than devices based on ThIDTh4F (with thiophene π-bridge) after post annealing treatment owing to optimized film morphology and improved charge transport. Power conversion efficiency of 7.31% and fill factor of ∼0.70 were obtained by using a blend of ThIDTSe4F and PC 71 BM with thermal annealing and solvent vapor annealing treatments, which is the highest PCE from aromatic side-chain substituted IDT-based small molecular solar cells. The scope of this study is to reveal the structure-property relationship of the aromatic side-chain substituted IDT-based donor materials as a function of π-bridge and the post annealing conditions.

  16. Identification of Genes and Pathways Related to Phenol Degradation in Metagenomic Libraries from Petroleum Refinery Wastewater

    PubMed Central

    Silva, Cynthia C.; Hayden, Helen; Sawbridge, Tim; Mele, Pauline; De Paula, Sérgio O.; Silva, Lívia C. F.; Vidigal, Pedro M. P.; Vicentini, Renato; Sousa, Maíra P.; Torres, Ana Paula R.; Santiago, Vânia M. J.; Oliveira, Valéria M.

    2013-01-01

    Two fosmid libraries, totaling 13,200 clones, were obtained from bioreactor sludge of petroleum refinery wastewater treatment system. The library screening based on PCR and biological activity assays revealed more than 400 positive clones for phenol degradation. From these, 100 clones were randomly selected for pyrosequencing in order to evaluate the genetic potential of the microorganisms present in wastewater treatment plant for biodegradation, focusing mainly on novel genes and pathways of phenol and aromatic compound degradation. The sequence analysis of selected clones yielded 129,635 reads at an estimated 17-fold coverage. The phylogenetic analysis showed Burkholderiales and Rhodocyclales as the most abundant orders among the selected fosmid clones. The MG-RAST analysis revealed a broad metabolic profile with important functions for wastewater treatment, including metabolism of aromatic compounds, nitrogen, sulphur and phosphorus. The predicted 2,276 proteins included phenol hydroxylases and cathecol 2,3- dioxygenases, involved in the catabolism of aromatic compounds, such as phenol, byphenol, benzoate and phenylpropanoid. The sequencing of one fosmid insert of 33 kb unraveled the gene that permitted the host, Escherichia coli EPI300, to grow in the presence of aromatic compounds. Additionally, the comparison of the whole fosmid sequence against bacterial genomes deposited in GenBank showed that about 90% of sequence showed no identity to known sequences of Proteobacteria deposited in the NCBI database. This study surveyed the functional potential of fosmid clones for aromatic compound degradation and contributed to our knowledge of the biodegradative capacity and pathways of microbial assemblages present in refinery wastewater treatment system. PMID:23637911

  17. Self-Assembly and Drug Release Capacities of Organogels via Some Amide Compounds with Aromatic Substituent Headgroups

    PubMed Central

    Zhang, Lexin; Jiao, Tifeng; Ma, Kai; Xing, Ruirui; Liu, Yamei; Xiao, Yong; Zhou, Jingxin; Zhang, Qingrui; Peng, Qiuming

    2016-01-01

    In this work, some amide compounds with different aromatic substituent headgroups were synthesized and their gelation self-assembly behaviors in 22 solvents were characterized as new gelators. The obtained results indicated that the size of aromatic substituent headgroups in molecular skeletons in gelators showed crucial effect in the gel formation and self-assembly behavior of all compounds in the solvents used. Larger aromatic headgroups in molecular structures in the synthesized gelator molecules are helpful to form various gel nanostructures. Morphological investigations showed that the gelator molecules can self-assembly and stack into various organized aggregates with solvent change, such as wrinkle, belt, rod, and lamella-like structures. Spectral characterizations suggested that there existed various weak interactions including π-π stacking, hydrogen bonding, and hydrophobic forces due to aromatic substituent headgroups and alkyl substituent chains in molecular structures. In addition, the drug release capacities experiments demonstrated that the drug release rate in present obtained gels can be tuned by adjusting the concentrations of dye. The present work would open up enormous insight to design and investigate new kind of soft materials with designed molecular structures and tunable drug release performance. PMID:28773663

  18. Single kernel method for detection of 2-acetyl-1-pyrroline in aromatic rice germplasm using SPME-GC/MS

    USDA-ARS?s Scientific Manuscript database

    INTRODUCTION Aromatic rice or fragrant rice, (Oryza sativa L.), has a strong popcorn-like aroma due to the presence of a five-membered N-heterocyclic ring compound known as 2-acetyl-1-pyrroline (2-AP). To date, existing methods for detecting this compound in rice require the use of several kernels. ...

  19. 2,4,5-trihydroxy-3-methylacetophenone: A cellulosic chromophore as a case study of aromaticity

    Treesearch

    Nele Sophie Zwirchmayr; Thomas Elder; Markus Bacher; Andreas Hofinger-Horvath; Paul Kosma; Thomas Rosenau

    2017-01-01

    The title compound (2,4,5-trihydroxy-3-methylacetophenone, 1) was isolated as chromophore from aged cellulosic pulps. The peculiar feature of the compound is its weak aromatic system that can be converted into nonaromatic (quinoid or cyclic aliphatic) tautomers, depending on the conditions and reaction partners. In alkaline media, the participation of quinoid canonic...

  20. Influence of extraction methodologies on the analysis of five major volatile aromatic compounds of citronella grass (Cymbopogon nardus) and lemongrass (Cymbopogon citratus) grown in Thailand

    USDA-ARS?s Scientific Manuscript database

    Infusions of citronella grass (Cymbopogon nardus) and lemongrass (Cymbopogon citratus) have been commonly used in folk medicine in Thailand and other Asian countries. This study focuses on a systematic comparison of two extraction methods for major volatile aromatic compounds (VACs) of citronella g...

  1. Aerobic Biodegradation of Trichloroethylene.

    DTIC Science & Technology

    1987-07-01

    into C02 and unidentified nonvolatile products. Phenol, 41 toiin- andq- cresol were found to replace the site water requirement for TCE metabolism...identified as phenol. Other aromatic compounds that could support TCE degradation were toluene, o- cresol , and m- cresol . The degradation could be...Production...... .. .. .. . 17 4. Test for the Catechol Ortho °Ring-Fission Pathway . 18 5. Oxidation of Aromatic Compounds ............. .18 6

  2. Behavioral and electroantennographic responses of the tea mosquito, Helopeltis theivora, to female sex pheromones.

    PubMed

    Sachin, James P; Selvasundaram, R; Babu, A; Muraleedharan, N

    2008-12-01

    Responses of the tea mosquito, Helopeltis theivora (Waterhouse) (Hemiptera: Miridae), a major pest of tea, to female sex pheromone compounds were measured using wind tunnel and electroantennogram (EAG) bioassays. In the wind tunnel, male tea mosquitoes were found to be most attracted to a dichloromethane extract of the female thorax. Gas chromatography-mass spectrometry (GC-MS) analysis of female thoracic extracts and dynamic head space samples of virgin females showed the presence of five compounds: (Z)-3 hexenyl acetate, (Z)-3 hexenyl butanoate, (E)-2 hexenyl pentanoate, 2,4 dimethyl pentanal, and (E)-2-hexenol. Male tea mosquitoes were attracted to blends of (Z)-3 hexenyl acetate and (E)-2-hexenol in the wind tunnel with a 1:5 ratio eliciting the greatest response. EAG recordings of male antenna confirmed the ability of this blend to evoke antennal responses in male insects. Similarly active EAG responses were recorded toward female thoracic extract and a blend of (Z)-3 hexenyl acetate and (E)-2-hexenol. Behavioral responses of adult males are mediated by a blend of volatile female sex pheromone compounds, (Z)-3 hexenyl acetate and (E)-2-hexenol, at a ratio of 1:5. This female sex pheromone blend may be useful for tea mosquito control and management programs.

  3. The shikimate pathway: review of amino acid sequence, function and three-dimensional structures of the enzymes.

    PubMed

    Mir, Rafia; Jallu, Shais; Singh, T P

    2015-06-01

    The aromatic compounds such as aromatic amino acids, vitamin K and ubiquinone are important prerequisites for the metabolism of an organism. All organisms can synthesize these aromatic metabolites through shikimate pathway, except for mammals which are dependent on their diet for these compounds. The pathway converts phosphoenolpyruvate and erythrose 4-phosphate to chorismate through seven enzymatically catalyzed steps and chorismate serves as a precursor for the synthesis of variety of aromatic compounds. These enzymes have shown to play a vital role for the viability of microorganisms and thus are suggested to present attractive molecular targets for the design of novel antimicrobial drugs. This review focuses on the seven enzymes of the shikimate pathway, highlighting their primary sequences, functions and three-dimensional structures. The understanding of their active site amino acid maps, functions and three-dimensional structures will provide a framework on which the rational design of antimicrobial drugs would be based. Comparing the full length amino acid sequences and the X-ray crystal structures of these enzymes from bacteria, fungi and plant sources would contribute in designing a specific drug and/or in developing broad-spectrum compounds with efficacy against a variety of pathogens.

  4. The influence of the Tbeta level upon fluorescence and laser properties of aromatic compounds.

    PubMed

    Nijegorodov, N; Winkoun, D P; Nkoma, J S

    2004-07-01

    The fluorescence and laser properties of seven specially chosen aromatic compounds are studied at 293 degrees C. The quantum yield of fluorescence, gamma, decay times, tauf, of the deaerated and non-deaerated solutions are measured. The oscillator strength, fe, fluorescence rate constants, kf, natural lifetimes, tauT0, and intersystem crossing rate constants, kST, are calculated. Some laser parameters are calculated or measured experimentally. It is found that the position of the Tbeta level plays an important role in the fluorescence and laser properties of aromatic compounds. If the Tbeta level is situated below the Sp level, it decreases the quantum yield of fluorescence and the decay time and increases the threshold of laser action. If, due to some structural changes of a molecule, the Tbeta level is situated higher than the Sp level, then the quantum yield of fluorescence and the decay times are increasing and the threshold of laser action is decreasing. Such influence of the position of the Tbeta level upon fluorescence and laser properties of aromatic compound is explained by the fact that the Sp level mixes with the Tbeta level more readily than with other taupipi* levels.

  5. Development of electrospun nanofibers containing chitosan/PEO blend and phenolic compounds with antibacterial activity.

    PubMed

    Kuntzler, Suelen Goettems; Costa, Jorge Alberto Vieira; Morais, Michele Greque de

    2018-05-31

    Electrospun nanofibers can be formed with chitosan as the polymers found in biological sources have antibacterial ability. The objective of this work was to evaluate whether chitosan/polyethylene oxide (PEO) blend nanofibers containing microalgal phenolic compounds exhibit antibacterial activity. Nanofibers produced with a 3% chitosan/2% PEO blend containing 1% phenolic compounds had an average diameter of 214 ± 37 nm, which resulted in a high temperature of maximum degradation, an important parameter for food packaging. The potential antibacterial activity of this nanofibers was confirmed by their inhibition of Staphylococcus aureus ATCC 25923 (6.4 ± 1.1 mm) and Escherichia coli ATCC 25972 (5.5 ± 0.4 mm). The polymeric nanofibers produced from chitosan and containing phenolic compounds have properties that therefore allow their application as active packaging. In addition, chitosan is an excellent polymer for packaging as it presents biodegradability, biocompatibility and, non-toxicity. Copyright © 2018. Published by Elsevier B.V.

  6. Laccase-Catalyzed Synthesis of Low-Molecular-Weight Lignin-Like Oligomers and their Application as UV-Blocking Materials.

    PubMed

    Lim, Jieyan; Sana, Barindra; Krishnan, Ranganathan; Seayad, Jayasree; Ghadessy, Farid J; Jana, Satyasankar; Ramalingam, Balamurugan

    2018-02-02

    The laccase-catalyzed oxidative polymerization of monomeric and dimeric lignin model compounds was carried out with oxygen as the oxidant in aqueous medium. The oligomers were characterized by using gel permeation chromatography (GPC) and matrix-assisted laser desorption ionization time-of-flight mass spectroscopy (MALDI-TOF MS) analysis. Oxidative polymerization led to the formation of oligomeric species with a number-average molecular weight (M n ) that ranged from 700 to 2300 Da with a low polydispersity index. Spectroscopic analysis provided insight into the possible modes of linkages present in the oligomers, and the oligomerization is likely to proceed through the formation of C-C linkages between phenolic aromatic rings. The oligomers were found to show good UV light absorption characteristics with high molar extinction coefficient (5000-38 000 m -1  cm -1 ) in the UV spectral region. The oligomers were blended independently with polyvinyl chloride (PVC) by using solution blending to evaluate the compatibility and UV protection ability of the oligomers. The UV/Vis transmittance spectra of the oligomer-embedded PVC films indicated that these lignin-like oligomers possessed a notable ability to block UV light. In particular, oligomers obtained from vanillyl alcohol and the dimeric lignin model were found to show good photostability in accelerated UV weathering experiments. The UV-blocking characteristics and photostability were finally compared with the commercial low-molecular-weight UV stabilizer 2,4-dihydroxybenzophenone. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Differences in dissolved organic matter between reclaimed water source and drinking water source.

    PubMed

    Hu, Hong-Ying; Du, Ye; Wu, Qian-Yuan; Zhao, Xin; Tang, Xin; Chen, Zhuo

    2016-05-01

    Dissolved organic matter (DOM) significantly affects the quality of reclaimed water and drinking water. Reclaimed water potable reuse is an effective way to augment drinking water source and de facto reuse exists worldwide. Hence, when reclaimed water source (namely secondary effluent) is blended with drinking water source, understanding the difference in DOM between drinking water source (dDOM) and reclaimed water source (rDOM) is essential. In this study, composition, transformation, and potential risk of dDOM from drinking water source and rDOM from secondary effluent were compared. Generally, the DOC concentration of rDOM and dissolved organic nitrogen (DON) content in reclaimed water source were higher but rDOM exhibited a lower aromaticity. Besides, rDOM comprises a higher proportion of hydrophilic fractions and more low-molecular weight compounds, which are difficult to be removed during coagulation. Although dDOM exhibited higher specific disinfection byproducts formation potential (SDBPFP), rDOM formed more total disinfection byproducts (DBPs) during chlorination including halomethanes (THMs) and haloacetic acids (HAAs) due to high DOC concentration. Likewise, in consideration of DOC basis, rDOM contained more absolute assimilable organic carbon (AOC) despite showing a lower specific AOC (normalized AOC per unit of DOC). Besides, rDOM exhibited higher biotoxicity including genotoxicity and endocrine disruption. Therefore, rDOM presents a greater potential risk than dDOM does. Reclaimed water source needs to be treated carefully when it is blended with drinking water source. Copyright © 2015. Published by Elsevier B.V.

  8. Dramatic Influence of Ionic Liquid and Ultrasound Irradiation on the Electrophilic Sulfinylation of Aromatic Compounds by Sulfinic Esters.

    PubMed

    Nguyen, Ngoc-Lan Thi; Vo, Hong-Thom; Duus, Fritz; Luu, Thi Xuan Thi

    2017-09-04

    The sulfinylation reaction of aromatic and hetero-aromatic compounds with sulfinic esters as electrophiles has been investigated in different ionic liquids and by means of different Lewis acid salts in order to get moderate to good yields of asymmetrical sulfoxides. Mixtures of 1-butyl-3-methylimidazolium chloride and aluminum chloride were found to be the most efficient and recyclable reaction framework. Ultrasound sonication appeared to be the most useful and green activation method to afford the sulfoxides in yields better than or equivalent to those obtained under the longer-lasting conventional stirring conditions.

  9. [Simultaneous analysis of aromatic aldehydes and coumarins with high pressure liquid chromatography. Application to wines and brandies stored in oak barrels].

    PubMed

    Salagoity-Auguste, M H; Tricard, C; Sudraud, P

    1987-04-17

    Aromatic aldehydes (vanillin, syringaldehyde, coniferaldehyde and sinapaldehyde) and coumarins (esculetin, umbelliferone, scopoletin and methylumbelliferone) are natural wood compounds. Storage of wines and brandies in oak barrels increases notably aldehydes and coumarins (particularly scopoletin) concentrations. These compounds were separated by high-performance liquid chromatography, on hydrocarbon bonded reversed-phase packings, with a water-acetonitrile elution gradient. They were first extracted from wines and brandies by diethyl ether and then injected on chromatographic column. A double detection was used to determine simultaneously aromatic aldehydes and coumarins by UV absorption and fluorescence respectively.

  10. Characterization of organic aromatic compounds in soils affected by an uncontrolled tire landfill fire through the use of comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry.

    PubMed

    Escobar-Arnanz, J; Mekni, S; Blanco, G; Eljarrat, E; Barceló, D; Ramos, L

    2018-02-09

    Discarded vehicle tires have become an increasing concern worldwide due to the enormous amount of wastes generated and the increasing evidence of health problems associated to their disposal and accidental combustion. Previous studies conducted involving either simulated or open uncontrolled tire fires have identified aromatics belonging to two main classes, volatile organic compounds and polycyclic aromatic compounds (PAHs), as the most relevant chemicals generated in these burning processes. As a consequence, and due to their recognized toxicity, most studies reported up to now have mainly focused on these two categories of compounds being information concerning the possible occurrence of other aromatic classes rather limited. In this study, the enhanced separation power and structural confirmation capabilities provided by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-ToF MS) has been used, for the first time, for the non-targeted analysis of soils impacted by a tire fire and an ash collected at the scene of the fire. In total, 118 volatile and semi-volatile aromatic compounds have been differentiated. Among them, 104 compounds have been either positively or tentatively identified. PAHs with 3-5 rings and their alkyl-derivatives were the most numerous and relevant classes in the investigated samples. A significant number of sulfur, oxygen- and nitrogen-containing PAHs were also detected in the samples. The application of a script function to the raw GC×GC-ToF MS data allowed the fast filtering and automatic recognition of compounds containing halogens in their structure. This part of the study evidenced that only a limited number of regulated persistent organic pollutants were present in the investigated samples. However, it also revealed the presence of emerging organophosphorous flame retardants, whose levels in tire fire impacted soils are reported for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Volatile profiles of aromatic and non-aromatic rice

    USDA-ARS?s Scientific Manuscript database

    Rice is enjoyed by many people as a staple food because of its flavor and texture. Some scented varieties command a premium in the marketplace because of their distinctive aroma and flavor. The compound most commonly associated with the popcorn or nutty scent of aromatic rice is 2-acetyl-1-pyrroline...

  12. Photocatalytic oxidation of aromatic amines using MnO2@g ...

    EPA Pesticide Factsheets

    An efficient and direct oxidation of aromatic amines to aromatic azo-compounds has been achieved using a MnO2@g-C3N4 catalyst under visible light as a source of energy at room temperature Prepared for submission to the journal, Advanced Materials Letters.

  13. SIMULTANEOUS DTERMINATION OF CHROMATE AND AROMATIC HYDROCARBONS IN ENVIRONMENTAL SAMPLES BY CAPILLARY ELECTROPHORESIS

    EPA Science Inventory

    An analytical method was developed to determine simultaneously, the inorganic anion CrO2-4, and organic aromatic compounds including benzoate, 2-Cl-benzoate, phenol, m-cresol and o-/p-cresol by capillary electrophoresis (CE). Chromate and the aromatics were separated in a relativ...

  14. High temperature normal phase liquid chromatography of aromatic hydrocarbons on bare zirconia.

    PubMed

    Paproski, Richard E; Liang, Chen; Lucy, Charles A

    2011-11-04

    The normal phase HPLC behavior of a bare zirconia column was studied at temperatures up to 200 °C using a hexane mobile phase. The use of elevated column temperatures significantly decreased the retention of twenty five aromatic model compounds according to the van't Hoff equation (>30-fold decrease for some compounds). Large improvements in peak shape, efficiency (>2.2-fold), aromatic group-type selectivity, and column re-equilibration times (>5-fold) were obtained at elevated temperatures. The thermal decomposition of two polar nitrogen compounds (indole and carbazole) was observed in a hexane/dichloromethane mobile phase at temperatures greater than 100 °C. The first order decomposition of carbazole was studied in further detail. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-09-07

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 figures.

  16. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  17. Determination of total and polycyclic aromatic hydrocarbons in aviation jet fuel.

    PubMed

    Bernabei, M; Reda, R; Galiero, R; Bocchinfuso, G

    2003-01-24

    The aviation jet fuel widely used in turbine engine aircraft is manufactured from straight-run kerosene. The combustion quality of jet fuel is largely related to the hydrocarbon composition of the fuel itself; paraffins have better burning properties than aromatic compounds, especially naphthalenes and light polycyclic aromatic hydrocarbons (PAHs), which are characterised as soot and smoke producers. For this reason the burning quality of fuel is generally measured as smoke fermation. This evaluation is carried out with UV spectrophotometric determination of total naphthalene hydrocarbons and a chromatographic analysis to determine the total aromatic compounds. These methods can be considered insufficient to evaluate the human health impact of these compounds due to their inability to measure trace (ppm) amounts of each aromatic hyrcarbon and each PAH in accordance with limitations imposed because of their toxicological properties. In this paper two analytical methods are presented. Both are based on a gas chromatographic technique with a mass detector operating in be selected ion monitoring mode. The first method was able to determine more than 60 aromatic hydrocarbons in a fuel sample in a 35-min chromatographic run, while the second was able to carry out the analysis of more than 30 PAHs in a 40-min chromatographic run. The linearity and sensitivity of the methods in measuring these analytes at trace levels are described.

  18. Weighing the evidence of ecological risk from PAHs contamination in the estuarine environment of Salina Cruz Bay, México.

    PubMed

    Salazar-Coria, L; Schifter, I; González-Macías, C

    2010-03-01

    Results of bulk-phase chemical measurements, toxicological tests combined with bioaccumulation measures in fishes, were used to evaluate the toxicity of the 16 USEPA priority polycyclic aromatic hydrocarbons from the sediment collected from eight stations of the Ventosa Estuarine System, located close to the main center of processing oil in the Mexican Pacific coast. Levels of the sum of polycyclic aromatic hydrocarbons varied from 22 to 6,850 microg kg(-1) dry weight. Based on sediment quality guidelines, the compounds with high environmental priority were acenaphtylene, acenaphtene, and phenanthrene. Acute toxicity tests with Vibrio fischeri and Daphnia magna as well as chronic toxicity with Panagrellus redivivus were performed. The quantification of hepatic ethoxyresorufin O-deethylase activity was used to assess the induction of the mixed function oxygenase system of brown trout. However, because it is often difficult to blend the results from such very different assays into a unified decision about the potential for impacts, a weight-of-evidence (WOE) approach to sediment quality investigations was followed. These assays provided measurement endpoints that could be used to develop an overall evaluation of the potential for environmental impacts from the oil processing operations. WOE provides a valuable tool for assessing the results of environmental investigations because it provides a framework for considering the strengths and weaknesses of environmental measurements, an approach for addressing uncertainty in the measurements, and documentation of the evaluation and its assumptions.

  19. Monitoring the tobacco use epidemic II. The Agent: Current and Emerging Tobacco Products

    PubMed Central

    Stellman, Steven D.; Djordjevic, Mirjana V.

    2009-01-01

    Objective This Agent paper summarizes the findings and recommendations of the Agent (product) Working Group of the November, 2002, National Tobacco Monitoring, Research and Evaluation Workshop. Methods The Agent Working Group evaluated the need to develop new surveillance systems for quantifying ingredients and emissions of tobacco and tobacco smoke and to improve methods to assess uptake and metabolism of these constituents taking into account variability in human smoking behavior. Results The toxic properties of numerous tobacco and tobacco smoke constituents are well known, yet systematic monitoring of tobacco products has historically been limited to tar, nicotine, and CO in mainstream cigarette smoke using a machine-smoking protocol that does not reflect human smoking behavior. Toxicity of smokeless tobacco products has not been regularly monitored. Tobacco products are constantly changing and untested products are introduced into the marketplace with great frequency, including potential reduced-exposure products (PREPs). The public health impact of new or modified tobacco products is unknown. Conclusions Systematic surveillance is recommended for mainstream smoke constituents such as polycyclic aromatic hydrocarbons (PAH), tobacco-specific nitrosamines (TSNA), total and free-base nicotine, volatile organic compounds, aromatic amines, and metals; and design attributes including tobacco blend, additives, and filter ventilation. Research on smoking topography is recommended to help define machine-smoking protocols for monitoring emissions reflective of human smoking behavior. Recommendations are made for marketplace product sampling and for population monitoring of smoking topography, emissions of toxic constituents, biomarkers of exposure and, eventually, risk of tobacco-related diseases. PMID:18848577

  20. Sulfur Transformation during Microwave and Conventional Pyrolysis of Sewage Sludge.

    PubMed

    Zhang, Jun; Zuo, Wei; Tian, Yu; Chen, Lin; Yin, Linlin; Zhang, Jie

    2017-01-03

    The sulfur distributions and evolution of sulfur-containing compounds in the char, tar and gas fractions were investigated during the microwave and conventional pyrolysis of sewage sludge. Increased accumulation of sulfur in the char and less production of H 2 S were obtained from microwave pyrolysis at higher temperatures (500-800 °C). Three similar conversion pathways were identified for the formation of H 2 S during microwave and conventional pyrolysis. The cracking of unstable mercaptan structure in the sludge contributed to the release of H 2 S below 300 °C. The decomposition of aliphatic-S compounds in the tars led to the formation of H 2 S (300-500 °C). The thermal decomposition of aromatic-S compounds in the tars generated H 2 S from 500 to 800 °C. However, the secondary decomposition of thiophene-S compounds took place only in conventional pyrolysis above 700 °C. Comparing the H 2 S contributions from microwave and conventional pyrolysis, the significant increase of H 2 S yields in conventional pyrolysis was mainly attributed to the decomposition of aromatic-S (increasing by 10.4%) and thiophene-S compounds (11.3%). Further investigation on the inhibition mechanism of H 2 S formation during microwave pyrolysis confirmed that, with the special heating characteristics and relative shorter residence time, microwave pyrolysis promoted the retention of H 2 S on CaO and inhibited the secondary cracking of thiophene-S compounds at higher temperatures.

  1. Functional Group Analysis.

    ERIC Educational Resources Information Center

    Smith, Walter T., Jr.; Patterson, John M.

    1984-01-01

    Literature on analytical methods related to the functional groups of 17 chemical compounds is reviewed. These compounds include acids, acid azides, alcohols, aldehydes, ketones, amino acids, aromatic hydrocarbons, carbodiimides, carbohydrates, ethers, nitro compounds, nitrosamines, organometallic compounds, peroxides, phenols, silicon compounds,…

  2. Selective cleavage of the C(α)-C(β) linkage in lignin model compounds via Baeyer-Villiger oxidation.

    PubMed

    Patil, Nikhil D; Yao, Soledad G; Meier, Mark S; Mobley, Justin K; Crocker, Mark

    2015-03-21

    Lignin is an amorphous aromatic polymer derived from plants and is a potential source of fuels and bulk chemicals. Herein, we present a survey of reagents for selective stepwise oxidation of lignin model compounds. Specifically, we have targeted the oxidative cleavage of Cα-Cβ bonds as a means to depolymerize lignin and obtain useful aromatic compounds. In this work, we prepared several lignin model compounds that possess structures, characteristic reactivity, and linkages closely related to the parent lignin polymer. We observed that selective oxidation of benzylic hydroxyl groups, followed by Baeyer-Villiger oxidation of the resulting ketones, successfully cleaves the Cα-Cβ linkage in these model compounds.

  3. Chemoenzymatic syntheses of prenylated aromatic small molecules using Streptomyces prenyltransferases with relaxed substrate specificities

    PubMed Central

    Kumano, Takuto; Richard, Stéphane B.; Noel, Joseph P.; Nishiyama, Makoto; Kuzuyama, Tomohisa

    2010-01-01

    NphB is a soluble prenyltransferase from Streptomyces sp. strain CL190 that attaches a geranyl group to a 1,3,6,8-tetrahydroxynaphthalene-derived polyketide during the biosynthesis of anti-oxidant naphterpin. Here we report multiple chemoenzymatic syntheses of various prenylated compounds from aromatic substrates including flavonoids using two prenyltransferases NphB and SCO7190, a NphB homolog from Streptomyces coelicolor A3(2), as biocatalysts. NphB catalyzes carbon–carbon-based and carbon–oxygen-based geranylation of a diverse collection of hydroxyl-containing aromatic acceptors. Thus, this simple method using the prenyltransferases can be used to explore novel prenylated aromatic compounds with biological activities. Kinetic studies with NphB reveal that the prenylation reaction follows a sequential ordered mechanism. PMID:18682327

  4. Di(hydroxyphenyl)- benzimidazole monomers

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Joseph G. (Inventor)

    1993-01-01

    Di(hydroxyphenyl)benzimidazole monomers were prepared from phenyl-hydroxybenzoate and aromatic bis(o-diamine)s. These monomers were used in the synthesis of soluble polybenzimidazoles. The reaction involved the aromatic nucleophilic displacement of various di(hydroxyphenyl)benzimidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds in the presence of an alkali metal base. These polymers exhibited lower glass transition temperatures, improved solubility, and better compression moldability over their commercial counterparts.

  5. Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds

    DOE PAGES

    Settle, Amy E.; Berstis, Laura; Rorrer, Nicholas A.; ...

    2017-05-17

    In this tutorial review, we provide an overview of heterogeneous Diels–Alder catalysis for the production of lignocellulosic biomass-derived aromatic compounds. Diels–Alder reactions afford an extremely selective and efficient route for carbon–carbon cycloadditions to produce intermediates that can readily undergo subsequent dehydration or dehydrogenation reactions for aromatization. As a result, catalysis of Diels–Alder reactions with biomass-derived dienes and dienophiles has seen a growth of interest in recent years; however, significant opportunities remain to (i) tailor heterogeneous catalyst materials for tandem Diels–Alder and aromatization reactions, and (ii) utilize biomass-derived dienes and dienophiles to access both conventional and novel aromatic monomers. As such,more » this review discusses the mechanistic aspects of Diels–Alder reactions from both an experimental and computational perspective, as well as the synergy of Brønsted–Lewis acid catalysts to facilitate tandem Diels–Alder and aromatization reactions. Heterogeneous catalyst design strategies for Diels–Alder reactions are reviewed for two exemplary solid acid catalysts, zeolites and polyoxometalates, and recent efforts for targeting direct replacement aromatic monomers from biomass are summarized. In conclusion, we point out important research directions for progressing Diels–Alder catalysis to target novel, aromatic monomers with chemical functionality that enables new properties compared to monomers that are readily accessible from petroleum.« less

  6. Pomegranate juice and prostate cancer: importance of the characterisation of the active principle.

    PubMed

    Chrubasik-Hausmann, Sigrun; Vlachojannis, Christian; Zimmermann, Benno

    2014-11-01

    Two exploratory clinical studies investigating proprietary pomegranate products showed a trend of effectiveness in increasing prostate-specific antigen doubling time in patients with prostate cancer. A recent clinical study did not support these results. We therefore analysed a lot of the marketed pomegranate blend for co-active pomegranate compounds. The high-performance liquid chromatography method was used to detect punicalagin, ellagic acid and anthocyanins. Total polyphenoles were determined by the Folin-Ciocalteu method using gallic acid as reference. The results show that the co-active compounds in the daily dose of the pomegranate blend were far below those previously tested and that the photometric assessment is not reliable for the standardisation of study medications. Not pomegranate but the low amount of co-active compounds in the proprietary pomegranate blend was responsible for its clinical ineffectiveness. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Enhancement in fluorescence quantum yield of MEH-PPV:BT blends for polymer light emitting diode applications

    NASA Astrophysics Data System (ADS)

    Nimith, K. M.; Satyanarayan, M. N.; Umesh, G.

    2018-06-01

    We have investigated the effect of blending electron deficient heterocycle Benzothiadiazole (BT) on the photo-physical properties of conjugated polymer Poly [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV). Quantum yield (QY) value has been found to increase from 37% for pure MEH-PPV to 45% for an optimum MEH-PPV:BT blend ratio of 1:3. This can be attributed to the efficient energy transfer from the wide bandgap BT (host) to the small bandgap MEH-PPV (guest). The FTIR spectrum of MEH-PPV:BT blended thin film indicates suppression of aromatic C-H out-of-plane and in-plane bending, suggesting planarization of the conjugated polymer chains and, hence, leading to increase in the conjugation length. The increase in conjugation length is also evident from the red-shifted PL spectra of MEH-PPV:BT blended films. Single layer MEH-PPV:BT device shows lower turn-on voltage than single layer MEH-PPV alone device. Further, the effect of electrical conductivity of PEDOT:PSS on the current-voltage characteristics is investigated in the PLED devices with MEH-PPV:BT blend as the active layer. PEDOT:PSS with higher conductivity as HIL reduces the turn on voltage from 4.5 V to 3.9 V and enhances the current density and optical output in the device.

  8. The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds.

    PubMed

    de Vries, Ronald P; vanKuyk, Patricia A; Kester, Harry C M; Visser, Jaap

    2002-04-15

    The faeB gene encoding a second feruloyl esterase from Aspergillus niger has been cloned and characterized. It consists of an open reading frame of 1644 bp containing one intron. The gene encodes a protein of 521 amino acids that has sequence similarity to that of an Aspergillus oryzae tannase. However, the encoded enzyme, feruloyl esterase B (FAEB), does not have tannase activity. Comparison of the physical characteristics and substrate specificity of FAEB with those of a cinnamoyl esterase from A. niger [Kroon, Faulds and Williamson (1996) Biotechnol. Appl. Biochem. 23, 255-262] suggests that they are in fact the same enzyme. The expression of faeB is specifically induced in the presence of certain aromatic compounds, but not in the presence of other constituents present in plant-cell-wall polysaccharides such as arabinoxylan or pectin. The expression profile of faeB in the presence of aromatic compounds was compared with the expression of A. niger faeA, encoding feruloyl esterase A (FAEA), and A. niger bphA, the gene encoding a benzoate-p-hydroxylase. All three genes have different subsets of aromatic compounds that induce their expression, indicating the presence of different transcription activating systems in A. niger that respond to aromatic compounds. Comparison of the activity of FAEA and FAEB on sugar-beet pectin and wheat arabinoxylan demonstrated that they are both involved in the degradation of both polysaccharides, but have opposite preferences for these substrates. FAEA is more active than FAEB towards wheat arabinoxylan, whereas FAEB is more active than FAEA towards sugar-beet pectin.

  9. Contaminated sediments from tributaries of the Great Lakes: Chemical characterization and carcinogenic effects in medaka (Oryzias latipes)

    USGS Publications Warehouse

    Besser, John M.; Schmitt, Christopher J.; Harshbarger, John C.; Peterman, Paul H.; Lebo, Jon A.

    1991-01-01

    Sediments from four inshore industrial sites and a reference site in the Great Lakes were extracted with organic solvents to produce a crude extract, which was separated on alumina into two fractions: predominantly polycyclic aromatic hydrocarbons; and predominantly nitrogencontaining polycyclic aromatic compounds. Crude extracts were redissolved in acetone and analyzed by gas chromatography and gas chromatography-mass spectrometry. The acetone-redissolved crude extracts from the four industrialized sites contained 5.6–313.3 μg total polycyclic aromatic compounds/g sediment and 3.0–36.4 μg other compounds/g sediment. In addition to the typical EPA priority pollutants, a substantial amount (228.7 μg/g sediment) of alkyl-polycyclic-aromatic compounds was detected in sediments from one of the industrialized sites. Extracts from the reference site contained 1.55 μg total polycyclic aromatic compounds/ g sediment. Medaka (Oryzias latipes) were exposed to multiple pulse doses of acetone-redissolved extracts and fractions. Medaka were also exposed to a known carcinogen, methylazoxymethanol acetate, to verify that chemicals produced tumors in the test fish. Acetone-redissolved extracts and fractions from contaminated sediments were toxic to medaka. Fin erosion and non-neoplastic liver abnormalities were more prevalent in medaka after exposure to acetoneredissolved extracts and fractions from contaminated sediments. Neoplasms previously associated with chemical exposure in wild fishes were induced in medaka exposed to acetone-redissolved extracts and fractions from two of the contaminated sites, but not from the reference site or controls. These findings further support the hypothesis that chemical contaminants in sediments are involved in epizootics of neoplasms in wild fishes at contaminated sites.

  10. The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds.

    PubMed Central

    de Vries, Ronald P; vanKuyk, Patricia A; Kester, Harry C M; Visser, Jaap

    2002-01-01

    The faeB gene encoding a second feruloyl esterase from Aspergillus niger has been cloned and characterized. It consists of an open reading frame of 1644 bp containing one intron. The gene encodes a protein of 521 amino acids that has sequence similarity to that of an Aspergillus oryzae tannase. However, the encoded enzyme, feruloyl esterase B (FAEB), does not have tannase activity. Comparison of the physical characteristics and substrate specificity of FAEB with those of a cinnamoyl esterase from A. niger [Kroon, Faulds and Williamson (1996) Biotechnol. Appl. Biochem. 23, 255-262] suggests that they are in fact the same enzyme. The expression of faeB is specifically induced in the presence of certain aromatic compounds, but not in the presence of other constituents present in plant-cell-wall polysaccharides such as arabinoxylan or pectin. The expression profile of faeB in the presence of aromatic compounds was compared with the expression of A. niger faeA, encoding feruloyl esterase A (FAEA), and A. niger bphA, the gene encoding a benzoate-p-hydroxylase. All three genes have different subsets of aromatic compounds that induce their expression, indicating the presence of different transcription activating systems in A. niger that respond to aromatic compounds. Comparison of the activity of FAEA and FAEB on sugar-beet pectin and wheat arabinoxylan demonstrated that they are both involved in the degradation of both polysaccharides, but have opposite preferences for these substrates. FAEA is more active than FAEB towards wheat arabinoxylan, whereas FAEB is more active than FAEA towards sugar-beet pectin. PMID:11931668

  11. Use of pilot plant scale continuous fryer to simulate industrial production of potato chips: thermal properties of palm olein blends under continuous frying conditions

    PubMed Central

    Tarmizi, Azmil Haizam Ahmad; Ismail, Razali

    2014-01-01

    Binary blends of palm olein (PO) with sunflower oil (SFO), canola oil (CNO), and cottonseed oil (CSO) were formulated to assess their stability under continuous frying conditions. The results were then compared with those obtained in PO. The oil blends studied were: (1) 60:40 for PO + SFO; (2) 70:30 for PO + CNO; and (3) 50:50 for PO + CSO. The PO and its blends were used to fry potato chips at 180°C for a total of 56 h of operation. The evolution of analytical parameters such as tocols, induction period, color, p-anisidine value, free fatty acid, smoke point, polar compounds, and polymer compounds were evaluated over the frying time. Blending PO with unsaturated oils was generally proved to keep most qualitative parameters comparable to those demonstrated in PO. Indeed, none of the oils surpassed the legislative limits for used frying. Overall, it was noted that oil containing PO and SFO showed higher resistance toward oxidative and hydrolytic behaviors as compared to the other oil blends. PMID:24804062

  12. Microwave-assisted extraction of polycyclic aromatic compounds from coal.

    PubMed

    Kerst, M; Andersson, J T

    2001-08-01

    Microwave-assisted extraction (MAE) of polycyclic aromatic compounds (PACs) from coal is shown to give the same pattern of compounds as Soxhlet extraction. MAE requires only 10 mL solvent and 10 min extraction time whereas Soxhlet uses 200 mL and takes 24 h. Although the yields were lower, dichloromethane (DCM) was preferred to pyridine, N-methyl-2-pyrrolidone (NMP), and NMP with CS2 because the pattern of the PACs is shown to be independent of solvent and DCM is a much more convenient solvent to work with.

  13. Organic composition of fogwater in the Texas-Louisiana gulf coast corridor

    NASA Astrophysics Data System (ADS)

    Raja, Suresh; Raghunathan, Ravikrishna; Kommalapati, Raghava R.; Shen, Xinhua; Collett, Jeffrey L.; Valsaraj, Kalliat T.

    Fogwater and air samples were collected in Baton Rouge between November 2004-February 2005 and during February 2006 at Houston. Organic compounds present in the fog samples were detected, quantified and then grouped into different compound classes based on molecular size, solubility and polarity using gas chromatography/mass spectrometry, high performance liquid chromatography with diode array detection and ion chromatography. Organic compounds were grouped as n-alkanes, aromatics and polycyclic aromatics, carbonyls, alcohols, amides and esters. Organic compounds in fog and air samples in Houston indicated clear urban/industrial anthropogenic origin, while compounds detected in Baton Rouge fog and air samples showed a mix of both agricultural and urban/industrial anthropogenic inputs. Among the various polycyclic aromatic compounds detected, the total concentration of naphthalene and its derivatives was 2.8 μg m -3 in Houston and 0.08 μg m -3 in Baton Rouge air. Analysis of concentrations of organic compounds pre- and post- fog revealed that compounds with low vapor pressure had higher scavenging efficiency in fog sampled at the two locations. Concentrations of organic compounds in fog samples were higher than those predicted by conventional air-water Henry's law equilibrium. Observed higher concentrations in the aqueous phase were modeled accounting for surface adsorption and accumulation of gas phase species and the presence of humic-like substances in fogwater.

  14. Comparative study of the affinity and metabolism of type I and type II binding quinoline carboxamide analogs by cytochrome P450 3A4

    PubMed Central

    Dahal, Upendra P.; Joswig-Jones, Carolyn; Jones, Jeffrey P.

    2011-01-01

    Compounds that coordinate to the heme-iron of cytochrome P450 (CYP) enzymes are assumed to increase metabolic stability. However, recently we observed that the type II binding quinoline carboxamide (QCA) compounds were metabolically less stable. To test if the higher intrinsic clearance of type II binding compounds relative to type I binding compounds is general for other metabolic transformations, we synthesized a library of QCA compounds that could undergo N-dealkylation, O-dealkylation, benzylic hydroxylation and aromatic hydroxylation. The results demonstrated that type II binding QCA analogs were metabolically less stable (2 to 12 fold) at sub-saturating concentration compared to type I binding counterparts for all the transformations. When the rates of different metabolic transformations between type I and type II binding compounds were compared, they were found to be in the order of N-demethylation>benzylic hydroxylation> O-demethylation> aromatic hydroxylation. Finally, for the QCA analogs with aza-heteroaromatic rings, we did not detect metabolism in aza-aromatic rings (pyridine, pyrazine, pyrimidine) indicating electronegativity of the nitrogen can change regioselectivity in CYP metabolism. PMID:22087535

  15. Optical amplification and stability of spiroquaterphenyl compounds and blends

    NASA Astrophysics Data System (ADS)

    Fuhrmann-Lieker, T.; Lambrecht, J.; Hoinka, N.; Kiurski, M.; Wiske, A.; Hagelstein, G.; Yurttagül, Y.; Abdel-Awwad, M.; Wilke, H.; Messow, F.; Hillmer, H.; Salbeck, J.

    2015-02-01

    In this contribution, we present a systematic investigation on a series of spiroquaterphenyl compounds optimised for solid state lasing in the near ultraviolet (UV). Amplified spontaneous emission (ASE) thresholds in the order of 1 μJ/cm^2 are obtained in neat (undiluted) films and blends, with emission peaks at 390±1 nm for unsubstituted and meta-substituted quaterphenyls and 400±4 nm for para-ether substituted quaterphenyls. Mixing with a transparent matrix retains a low threshold, shifts the emission to lower wavelengths and allows a better access to modes having their intensity maximum deeper in the film. Chemical design and blending allow an independent tuning of optical and processing properties such as the glass transition.

  16. INORGANIC COORDINATION POLYMERS. IV. THE ATTEMPTED REPLACEMENT OF ACETYLACETONATE LIGANDS WITH PICOLINATE LIGANDS,

    DTIC Science & Technology

    HETEROCYCLIC COMPOUNDS, PHOSPHENE OXIDES, BENZENE, CHROMIUM COMPOUNDS, CHEMICAL REAC, SYNTHESIS (CHEMISTRY), CHEMICAL ANALY, SPECTRA (INFRARED), ABSORPTION, DISPLACE, POLYMERIZATION, ORGANIC NITROGEN, AROMATIC COMPOUNDS.

  17. Synthetic approaches to aromatic belts: building up strain in macrocyclic polyarenes.

    PubMed

    Eisenberg, David; Shenhar, Roy; Rabinovitz, Mordecai

    2010-08-01

    This tutorial review discusses synthetic strategies towards aromatic belts, defined here as double-stranded conjugated macrocycles, such as [n]cyclacenes, [n]cyclophenacenes, Schlüter belt, and Vögtle belt. Their appeal stems, firstly, from the unique nature of their conjugation, having p orbitals oriented radially rather than perpendicular to the plane of the macrocycle. Secondly, as aromatic belts are model compounds of carbon nanotubes of different chiralities, a synthetic strategy towards the buildup of structural strain in these compounds could finally open a route towards rational chemical synthesis of carbon nanotubes. The elusiveness of these compounds has stimulated fascinating and ingenious synthetic strategies over the last decades. The various strategies are classified here by their approach to the buildup of structural strain, which is the main obstacle in the preparation of these curved polyarenes.

  18. Biotransformation of petroleum hydrocarbons and microbial communities in seawater with oil dispersions and copepod feces.

    PubMed

    Størdal, Ingvild Fladvad; Olsen, Anders Johny; Jenssen, Bjørn Munro; Netzer, Roman; Altin, Dag; Brakstad, Odd Gunnar

    2015-12-30

    To determine biotransformation of components in crude oil dispersions in the presence of feces from marine copepods, dispersed oil was incubated alone, with the addition of clean or oil-containing feces. We hypothesized that the feces would contribute with nutrients to bacteria, and higher concentrations of oil-degrading bacteria, respectively. Presence of clean feces resulted in higher degradation of aromatic oil compounds, but lower degradation of n-alkanes. Presence of oil-containing feces resulted in higher degradation of n-alkanes. The effect of clean feces on aromatic compounds are suggested to be due to higher concentrations of nutrients in the seawater where aromatic degradation takes place, while the lower degradation of n-alkanes are suggested to be due to a preference by bacteria for feces over these compounds. Large aggregates were observed in oil dispersions with clean feces, which may cause sedimentation of un-weathered lipophilic oil compounds towards the seafloor if formed during oil spills. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Spectroscopic study of proflavine adsorption on the carbon nanotube surface.

    PubMed

    Buchelnikov, Anatoly S; Dovbeshko, Galina I; Voronin, Dmitry P; Trachevsky, Vladimir V; Kostjukov, Viktor V; Evstigneev, Maxim P

    2014-01-01

    Despite the fact that non-covalent interactions between various aromatic compounds and carbon nanotubes are being extensively investigated now, there is still a lack of understanding about the nature of such interactions. The present paper sheds light on one of the possible mechanisms of interaction between the typical aromatic dye proflavine and the carbon nanotube surface, namely, π-stacking between aromatic rings of these compounds. To investigate such a complexation, a qualitative analysis was performed by means of ultraviolet visible, infrared, and nuclear magnetic resonance spectroscopy. The data obtained suggest that π-stacking brings the major contribution to the stabilization of the complex between proflavine and the carbon nanotube.

  20. Polyimidazoles Via Aromatic Nucleophilic Displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul M.

    1990-01-01

    Experiments show variety of polyimidazoles prepared by aromatic nucleophilic displacement, from reactions of bisphenol imidazoles with activated difluoro compounds. Polyimidazoles have good mechanical properties making them suitable for use as films, moldings, and adhesives.

  1. [Preliminary determination of organic pollutants in agricultural fertilizers].

    PubMed

    Mo, Ce-hui; Li, Yun-hui; Cai, Quan-ying; Zeng, Qiao-yun; Wang, Bo-guang; Li, Hai-qin

    2005-05-01

    Organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) in agricultural fertilizers are new problem deserved more study. Eight kinds of organic pollutants including 43 compounds classified as US EPA priority pollutants in twenty one agricultural fertilizers which were universally used in China were determined by Gas chromatography-mass spectrum (GC-MS). Three kinds of organic pollutants including more than 5 compounds were detected in most fertilizers, composing mainly of phthalic acid esters (PAEs), nitrobenzenes (NBs) and polycyclic aromatic hydrocarbons (PAHs). There were 26 compounds detected in at least one fertilizer, five of them especially PAEs detected in most fertilizer and even in all fertilizers. Benzo(a)pyrene, a strongly carcinogenic compound was detected in two fertilizers. Higher concentrations of compounds were determined in those fertilizers such as multifunction compound fertilizers and coated fertilizers.

  2. Protonation at the aromatic ring of samarium benzophenone dianion species. Isolation and structural characterization of a samarium(III) enolate complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Z.; Yoshimura, Takashi; Wakatsuki, Yasuo

    1994-11-30

    The reduction of aromatic compounds into their dihydro derivatives by dissolving metal/alcohol systems (the Birch reduction) is a useful methodology in organic synthesis. Of particular importance is the reduction of aromatic carbonyl compounds such as aromatic acids, esters, amides, and monoaryl ketones, which usually generates in situ useful metal enolate intermediates that upon further reaction with electrophiles yield a variety of cyclohexadiene derivatives. One of the possible processes to generate these metal enolate intermediates is thought to be the monoprotonation of dianionic species at the para position of the aromatic rings. On the other hand, the reduction of diaryl ketonesmore » by alkali metals in liquid ammonia or by lanthanide metals in THF/HMPA or DME has been well known to afford the corresponding ketone dianions. The first X-ray structure of metal ketone dianion complexes, [Yb([mu]-[eta][sup 1],[eta][sup 2]-OCPh[sub 2]) (HMPA)[sub 2

  3. Metal Triflates for the Production of Aromatics from Lignin.

    PubMed

    Deuss, Peter J; Lahive, Ciaran W; Lancefield, Christopher S; Westwood, Nicholas J; Kamer, Paul C J; Barta, Katalin; de Vries, Johannes G

    2016-10-20

    The depolymerization of lignin into valuable aromatic chemicals is one of the key goals towards establishing economically viable biorefineries. In this contribution we present a simple approach for converting lignin to aromatic monomers in high yields under mild reaction conditions. The methodology relies on the use of catalytic amounts of easy-to-handle metal triflates (M(OTf) x ). Initially, we evaluated the reactivity of a broad range of metal triflates using simple lignin model compounds. More advanced lignin model compounds were also used to study the reactivity of different lignin linkages. The product aromatic monomers were either phenolic C2-acetals obtained by stabilization of the aldehyde cleavage products by reaction with ethylene glycol or methyl aromatics obtained by catalytic decarbonylation. Notably, when the method was ultimately tested on lignin, especially Fe(OTf) 3 proved very effective and the phenolic C2-acetal products were obtained in an excellent, 19.3±3.2 wt % yield. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Aromatic derivatives of 1H-2,3-dihydropyrazolo(4,5-b)-1,5-diazepine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orlov, V.D.; Kiroga, Kh.; Kolos, N.N.

    1987-09-01

    Aromatic derivatives of 1H-2,3-dihydropyrazole(4,5-b)-1,5-diazepine were obtained by the reaction of 1-phenyl-3-methyl-4,5-diaminopyrazole with chalcones and acetylarenes, catalyzed by acetic or sulfuric acid. The seven-membered ring in these compounds has a conformation of the boat type. The IR, UV, PMR, and mass spectra of the compounds are discussed.

  5. Sorption of the Aircraft Deicing Fluid Component Methyl-Benzotriazole in Soil

    DTIC Science & Technology

    1999-03-01

    Atlas , Ronald M., Bartha , Richard, Microbial Ecology : Fundamentals and Applications. Benjamin Cummings: Redwood City, 1993. Ball, William P., Roberts...cell; transfer of substances from one medium to another [ Atlas and Bartha , 533; Fetter, 117]. (2) The process by which a compound in solution or...oxygen, low redox potential. [ Atlas and Bartha , 534; Schwarzenbach et al, 410] Aromatic compound - Carbon skeletons containing aromatic benzene ring and

  6. Puget Sound Dredged Disposal Analysis: Management Plan Assessment Report. Dredged Material Management Year 1990.

    DTIC Science & Technology

    1991-03-01

    Sulfides BT Bioaccumulation Trigger L LP Ccn tract Laboratory Methods COC Chemical of Concern Corps U.S. Army Corps of Engineers cm centimeter cy cubic... Hydrocarbon (Compound) LOD Limit of Detection LPAH Low Molecular Weight Polynuclear Aromatic Hydrocarbon (Compound) MCLP Modified Contract Laboratory Method...Aromatic Hydrocarbons (HPAHs) (8 samples); * Benzofluoranthenes (7 samples); * Anthracene (6 samples); * Benzo(a)anthracene (6 samples); * Dibenzo(a,h

  7. Al-based metal-organic gels for selective fluorescence recognition of hydroxyl nitro aromatic compounds

    NASA Astrophysics Data System (ADS)

    Guo, Mao Xia; Yang, Liu; Jiang, Zhong Wei; Peng, Zhe Wei; Li, Yuan Fang

    2017-12-01

    The novel class of luminescent Al3 +-based metal-organic gels (Al-MOGs) have been developed by mix 4-[2,2‧:6‧,2″-terpyridine]-4‧-ylbenzoic acid (Hcptpy) with Al3 + under mild condition. The as-prepared Al-MOGs have not only multiple stimuli-responsive properties, but selective recognition of hydroxyl nitro aromatic compounds, which can quench the fluorescence of the Al-MOGs, while other nitro aromatic analogues without hydroxyl substitutes cannot. The fluorescence of Al-MOGs at 467 nm was seriously quenched by picric acid (PA) whose lowest unoccupied molecular orbital (LUMO) energy levels are lower than those of three other hydroxyl nitro aromatic compounds including 4-nitrophenol (4-NP), 3,5-dinitrosalicylic acid (3,5-DNTSA) and 2,4-dinitrophenol (2,4-DNP). Thus, PA was chosen as a model compound under optimal conditions and the relative fluorescence intensity of Al-MOGs was proportional to the concentration of PA in the range of 5.0-320.0 μM with a detection limit of 4.64 μM. Furthermore, the fluorescence quenching mechanism has also been investigated and revealed that the quenching was attributed to inner filter effects (IFEs), as well as electron transfer (ET) between Al-MOGs and PA.

  8. Al-based metal-organic gels for selective fluorescence recognition of hydroxyl nitro aromatic compounds.

    PubMed

    Guo, Mao Xia; Yang, Liu; Jiang, Zhong Wei; Peng, Zhe Wei; Li, Yuan Fang

    2017-12-05

    The novel class of luminescent Al 3+ -based metal-organic gels (Al-MOGs) have been developed by mix 4-[2,2':6',2″-terpyridine]-4'-ylbenzoic acid (Hcptpy) with Al 3+ under mild condition. The as-prepared Al-MOGs have not only multiple stimuli-responsive properties, but selective recognition of hydroxyl nitro aromatic compounds, which can quench the fluorescence of the Al-MOGs, while other nitro aromatic analogues without hydroxyl substitutes cannot. The fluorescence of Al-MOGs at 467nm was seriously quenched by picric acid (PA) whose lowest unoccupied molecular orbital (LUMO) energy levels are lower than those of three other hydroxyl nitro aromatic compounds including 4-nitrophenol (4-NP), 3,5-dinitrosalicylic acid (3,5-DNTSA) and 2,4-dinitrophenol (2,4-DNP). Thus, PA was chosen as a model compound under optimal conditions and the relative fluorescence intensity of Al-MOGs was proportional to the concentration of PA in the range of 5.0-320.0μM with a detection limit of 4.64μM. Furthermore, the fluorescence quenching mechanism has also been investigated and revealed that the quenching was attributed to inner filter effects (IFEs), as well as electron transfer (ET) between Al-MOGs and PA. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Organic compounds in produced waters from coalbed natural gas wells in the Powder River Basin, Wyoming, USA

    USGS Publications Warehouse

    Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D.

    2007-01-01

    The organic composition of produced water samples from coalbed natural gas (CBNG) wells in the Powder River Basin, WY, sampled in 2001 and 2002 are reported as part of a larger study of the potential health and environmental effects of organic compounds derived from coal. The quality of CBNG produced waters is a potential environmental concern and disposal problem for CBNG producers, and no previous studies of organic compounds in CBNG produced water have been published. Organic compounds identified in the produced water samples included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, various non-aromatic compounds, and phthalates. Many of the identified organic compounds (phenols, heterocyclic compounds, PAHs) are probably coal-derived. PAHs represented the group of organic compounds most commonly observed. Concentrations of total PAHs ranged up to 23 ??g/L. Concentrations of individual compounds ranged from about 18 to <0.01 ??g/L. Temporal variability of organic compound concentrations was documented, as two wells with relatively high organic compound contents in produced water in 2001 had much lower concentrations in 2002. In many areas, including the PRB, coal strata provide aquifers for drinking water wells. Organic compounds observed in produced water are also likely present in drinking water supplied from wells in the coal. Some of the organic compounds identified in the produced water samples are potentially toxic, but at the levels measured in these samples are unlikely to have acute health effects. The human health effects of low-level, chronic exposure to coal-derived organic compounds in drinking water are currently unknown. Continuing studies will evaluate possible toxic effects from low level, chronic exposure to coal-derived organic compounds in drinking water supplies.

  10. University and Secondary School Students' Misconceptions about the Concept of "Aromaticity" in Organic Chemistry

    ERIC Educational Resources Information Center

    Topal, Giray; Oral, Behcet; Ozden. Mustafa

    2007-01-01

    Aromaticity concept is given incorrect or incomplete to the student in secondary education and knowledge based on this basic concept has been caused to another misconception in future. How are the achievement levels relating to the comprehension of various characteristics of aromatic compounds for the first and third grade students attending…

  11. Two novel aromatic glucosides, marylaurencinosides D and E, from the fresh flowers of Cymbidium Great Flower 'Marylaurencin'.

    PubMed

    Yoshikawa, Kazuko; Okahuji, Mariko; Iseki, Kanako; Ito, Takuya; Asakawa, Yoshinori; Kawano, Sachiko; Hashimoto, Toshihiro

    2014-04-01

    Two novel aromatic glucosides, named marylaurencinosides D (1) and E (2), were isolated from the fresh flowers of Cymbidium Great Flower 'Marylaurencin'. In addition, eight known aromatic compounds (3-10) were isolated. These structures were determined on the basis of NMR experiments as well as chemical evidence.

  12. Doped polycyclic aromatic hydrocarbons as building blocks for nanoelectronics: a theoretical study.

    PubMed

    Dral, Pavlo O; Kivala, Milan; Clark, Timothy

    2013-03-01

    Density functional theory (DFT) and semiempirical UHF natural orbital configuration interaction (UNO-CI) calculations are used to investigate the effect of heteroatom substitution at the central position of a model polycyclic aromatic hydrocarbon. The effects of the substitution on structure, strain, electronic and spectral properties, and aromaticity of the compounds are discussed.

  13. Real-time gaseous, PM and ultrafine particle emissions from a modern marine engine operating on biodiesel.

    PubMed

    Jayaram, Varalakshmi; Agrawal, Harshit; Welch, William A; Miller, J Wayne; Cocker, David R

    2011-03-15

    Emissions from harbor-craft significantly affect air quality in populated regions near ports and inland waterways. This research measured regulated and unregulated emissions from an in-use EPA Tier 2 marine propulsion engine on a ferry operating in a bay following standard methods. A special effort was made to monitor continuously both the total Particulate Mass (PM) mass emissions and the real-time Particle Size Distribution (PSD). The engine was operated following the loads in ISO 8178-4 E3 cycle for comparison with the certification standards and across biodiesel blends. Real-time measurements were also made during a typical cruise in the bay. Results showed the in-use nitrogen oxide (NOx) and PM(2.5) emission factors were within the not to exceed standard for Tier 2 marine engines. Comparing across fuels we observed the following: a) no statistically significant change in NO(x) emissions with biodiesel blends (B20, B50); b) ∼ 16% and ∼ 25% reduction of PM(2.5) mass emissions with B20 and B50 respectively; c) a larger organic carbon (OC) to elemental carbon (EC) ratio and organic mass (OM) to OC ratio with B50 compared to B20 and B0; d) a significant number of ultrafine nuclei and a smaller mass mean diameter with increasing blend-levels of biodiesel. The real-time monitoring of gaseous and particulate emissions during a typical cruise in the San Francisco Bay (in-use cycle) revealed important effects of ocean/bay currents on emissions: NO(x) and CO(2) increased 3-fold; PM(2.5) mass increased 6-fold; and ultrafine particles disappeared due to the effect of bay currents. This finding has implications on the use of certification values instead of actual in-use emission values when developing inventories. Emission factors for some volatile organic compounds (VOCs), carbonyls, and poly aromatic hydrocarbons (PAHs) are reported as supplemental data.

  14. Friction characteristics of 20 x 4.4, type 7, aircraft tires constructed with different tread rubber compounds

    NASA Technical Reports Server (NTRS)

    Dreher, R. C.; Yager, T. J.

    1976-01-01

    A test program was conducted at the Langley aircraft landing loads and traction facility to evaluate the friction characteristics of 20 x 4.4, type, aircraft tires constructed with experimental cut-resistant, tread rubber compounds. These compounds consisted of different blends of natural rubber (NR) and an alfin catalyzed styrene-butadiene copolymer rubber (SBR). One tire having a blend of 30 SBR and 70 NR and another having a blend of 60 SBR and 40 NR in the tread were tested together with a standard production tire with no SBR content in the tread rubber. The results of this investigation indicated that the test tires constructed with the special cut-resistant tread rubber compositions did not suffer any significant degradation in tire friction capability when compared with the standard tire. In general, tire friction capability decreased with increasing speed and surface wetness condition. As yaw angle increased, tire braking capability decreased while tire cornering capability increased. Tread-wear data based on number of brake cycles, however, suggested that the tires with alfin SBR blends experienced significantly greater wear than the standard production tire.

  15. The banana code-natural blend processing in the olfactory circuitry of Drosophila melanogaster.

    PubMed

    Schubert, Marco; Hansson, Bill S; Sachse, Silke

    2014-01-01

    Odor information is predominantly perceived as complex odor blends. For Drosophila melanogaster one of the most attractive blends is emitted by an over-ripe banana. To analyze how the fly's olfactory system processes natural blends we combined the experimental advantages of gas chromatography and functional imaging (GC-I). In this way, natural banana compounds were presented successively to the fly antenna in close to natural occurring concentrations. This technique allowed us to identify the active odor components, use these compounds as stimuli and measure odor-induced Ca(2+) signals in input and output neurons of the Drosophila antennal lobe (AL), the first olfactory neuropil. We demonstrate that mixture interactions of a natural blend are very rare and occur only at the AL output level resulting in a surprisingly linear blend representation. However, the information regarding single components is strongly modulated by the olfactory circuitry within the AL leading to a higher similarity between the representation of individual components and the banana blend. This observed modulation might tune the olfactory system in a way to distinctively categorize odor components and improve the detection of suitable food sources. Functional GC-I thus enables analysis of virtually any unknown natural odorant blend and its components in their relative occurring concentrations and allows characterization of neuronal responses of complete neural assemblies. This technique can be seen as a valuable complementary method to classical GC/electrophysiology techniques, and will be a highly useful tool in future investigations of insect-insect and insect-plant chemical interactions.

  16. Colonic catabolism of dietary phenolic and polyphenolic compounds from Concord grape juice.

    PubMed

    Stalmach, Angelique; Edwards, Christine A; Wightman, Jolynne D; Crozier, Alan

    2013-01-01

    After acute ingestion of 350 ml of Concord grape juice, containing 528 μmol of (poly)phenolic compounds, by healthy volunteers, a wide array of phase I and II metabolites were detected in the circulation and excreted in urine. Ingestion of the juice by ileostomists resulted in 40% of compounds being recovered intact in ileal effluent. The current study investigated the fate of these undigested (poly)phenolic compounds on reaching the colon. This was achieved through incubation of the juice using an in vitro model of colonic fermentation and through quantification of catabolites produced after colonic degradation and their subsequent absorption prior to urinary excretion by healthy subjects and ileostomy volunteers. A total of 16 aromatic and phenolic compounds derived from colonic metabolism of Concord grape juice (poly)phenolic compounds were identified by GC-MS in the faecal incubation samples. Thirteen urinary phenolic acids and aromatic compounds were excreted in significantly increased amounts after intake of the juice by healthy volunteers, whereas only two of these compounds were excreted in elevated amounts by ileostomists. The production of phenolic acids and aromatic compounds by colonic catabolism contributed to the bioavailability of Concord grape (poly)phenolic compounds to a much greater extent than phase I and II metabolites originating from absorption in the upper gastrointestinal tract. Catabolic pathways are proposed, highlighting the impact of colonic microbiota and subsequent phase II metabolism prior to excretion of phenolic compounds derived from (poly)phenolic compounds in Concord grape juice, which pass from the small to the large intestine.

  17. δ 13C of free and macromolecular aromatic structures in the murchison meteorite

    NASA Astrophysics Data System (ADS)

    Sephton, M. A.; Pillinger, C. T.; Gilmour, I.

    1998-05-01

    Analyses of the organic compounds in the Murchison meteorite have led to a greater understanding of the nature of extraterrestrial organic materials. However, the relationship between low and high molecular weight material remains poorly understood. To investigate this relationship, untreated Murchison was subjected to supercritical fluid extraction (SFE) to obtain the free organic components in the meteorite. Toluene and other volatile aromatic hydrocarbons dominated the extract, and the carbon isotopic composition of these molecules was determined by gas chromatography-isotope ratio-mass spectrometry (GCIRMS). δ 13C values of the aromatic hydrocarbons ranged from -28.8 to -5.8‰. These compounds displayed a 13C-enrichment with increasing carbon number suggesting an origin by cracking. The high molecular weight organic material in the meteorite was isolated and subjected to hydrous pyrolysis. This procedure produced a number of aromatic products, the majority of which were volatile aromatic hydrocarbons, particularly toluene. SFE was used to extract and successfully retain them. This enabled the first carbon isotopic analysis of this poorly understood material to be performed at the molecular level by GCIRMS. δ 13C values for aromatic pyrolysis products occupied a range from -24.6 to -5.6‰. The trend of 13C-enrichment with increasing carbon number, observed in the free compounds, was also evident in the macromolecular fragments. Furthermore, the organic fragments of the macromolecular material were consistently 13C-enriched when compared to structurally identical free molecules. This suggested that the free aromatic hydrocarbons in Murchison were produced by the preterrestrial degradation of the organic macromolecular material. This natural degradation event was extended by the hydrous pyrolysis experiment.

  18. 40 CFR 63.4941 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... know whether the blend is aliphatic or aromatic. However, if the results of a Method 311 test indicate... (a)(1) through (5) of this section. (1) Method 311 (appendix A to 40 CFR part 63). You may use Method...)(i) and (ii) of this section when performing a Method 311 test. (i) Count each organic HAP that is...

  19. Eavesdropping on Plant Volatiles by a Specialist Moth: Significance of Ratio and Concentration

    PubMed Central

    Cha, Dong H.; Linn, Charles E.; Teal, Peter E. A.; Zhang, Aijun; Roelofs, Wendell L.; Loeb, Gregory M.

    2011-01-01

    We investigated the role that the ratio and concentration of ubiquitous plant volatiles play in providing host specificity for the diet specialist grape berry moth Paralobesia viteana (Clemens) in the process of locating its primary host plant Vitis sp. In the first flight tunnel experiment, using a previously identified attractive blend with seven common but essential components (“optimized blend”), we found that doubling the amount of six compounds singly [(E)- & (Z)-linalool oxides, nonanal, decanal, β-caryophyllene, or germacrene-D], while keeping the concentration of other compounds constant, significantly reduced female attraction (average 76% full and 59% partial upwind flight reduction) to the synthetic blends. However, doubling (E)-4,8-dimethyl 1,3,7-nonatriene had no effect on female response. In the second experiment, we manipulated the volatile profile more naturally by exposing clonal grapevines to Japanese beetle feeding. In the flight tunnel, foliar damage significantly reduced female landing on grape shoots by 72% and full upwind flight by 24%. The reduction was associated with two changes: (1) more than a two-fold increase in total amount of the seven essential volatile compounds, and (2) changes in their relative ratios. Compared to the optimized blend, synthetic blends mimicking the volatile ratio emitted by damaged grapevines resulted in an average of 87% and 32% reduction in full and partial upwind orientation, respectively, and the level of reduction was similar at both high and low doses. Taken together, these results demonstrate that the specificity of a ubiquitous volatile blend is determined, in part, by the ratio of key volatile compounds for this diet specialist. However, P. viteana was also able to accommodate significant variation in the ratio of some compounds as well as the concentration of the overall mixture. Such plasticity may be critical for phytophagous insects to successfully eavesdrop on variable host plant volatile signals. PMID:21347337

  20. Identification and field evaluation of fermentation volatiles from wine and vinegar that mediate attraction of spotted wing Drosophila, Drosophila suzukii.

    PubMed

    Cha, Dong H; Adams, Todd; Rogg, Helmuth; Landolt, Peter J

    2012-11-01

    Previous studies suggest that olfactory cues from damaged and fermented fruits play important roles in resource recognition of polyphagous spotted wing Drosophila flies (SWD), Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). They are attracted to fermented sweet materials, such as decomposing fruits but also wines and vinegars, and to ubiquitous fermentation volatiles, such as acetic acid and ethanol. Gas chromatography coupled with electroantennographic detection (GC-EAD), gas chromatography-mass spectrometry (GC-MS), two-choice laboratory bioassays, and field trapping experiments were used to identify volatile compounds from wine and vinegar that are involved in SWD attraction. In addition to acetic acid and ethanol, consistent EAD responses were obtained for 13 volatile wine compounds and seven volatile vinegar compounds, with all of the vinegar EAD-active compounds also present in wine. In a field trapping experiment, the 9-component vinegar blend and 15-component wine blend were similarly attractive when compared to an acetic acid plus ethanol mixture, but were not as attractive as the wine plus vinegar mixture. In two-choice laboratory bioassays, 7 EAD-active compounds (ethyl acetate, ethyl butyrate, ethyl lactate, 1-hexanol, isoamyl acetate, 2-methylbutyl acetate, and ethyl sorbate), when added singly to the mixture at the same concentrations tested in the field, decreased the attraction of SWD to the mixture of acetic acid and ethanol. The blends composed of the remaining EAD-active chemicals, an 8-component wine blend [acetic acid + ethanol + acetoin + grape butyrate + methionol + isoamyl lactate + 2-phenylethanol + diethyl succinate] and a 5-component vinegar blend [acetic acid + ethanol + acetoin + grape butyrate + 2-phenylethanol] were more attractive than the acetic acid plus ethanol mixture, and as attractive as the wine plus vinegar mixture in both laboratory assays and the field trapping experiment. These results indicate that these volatiles in wine and vinegar are crucial for SWD attraction to fermented materials on which they feed as adults.

  1. Safety in the Chemical Laboratory: Nitric Acid, Nitrates, and Nitro Compounds.

    ERIC Educational Resources Information Center

    Bretherick, Leslie

    1989-01-01

    Discussed are the potential hazards associated with nitric acid, inorganic and organic nitrate salts, alkyl nitrates, acyl nitrates, aliphatic nitro compounds, aromatic nitro compounds, and nitration reactions. (CW)

  2. Determination of Aromatic Ring Number Using Multi-Channel Deep UV Native Fluorescence

    NASA Technical Reports Server (NTRS)

    Bhartia, R.; McDonald, G. D.; Salas, E.; Conrad, P.

    2004-01-01

    The in situ detection of organic material on an extraterrestrial surface requires both effective means of searching a relatively large surface area or volume for possible organic carbon, and a more specific means of identifying and quantifying compounds in indicated samples. Fluorescence spectroscopy fits the first requirement well, as it can be carried out rapidly, with minimal or no physical contact with the sample, and with sensitivity unmatched by any other organic analytical technique. Aromatic organic compounds with know fluorescence signatures have been identified in several extraterrestrial samples, including carbonaceous chondrites, interplanetary dust particles, and Martian meteorites. The compound distributions vary among these sources, however, with clear differences in relative abundances by number of aromatic rings and by degree of alkylation. This relative abundance information, therefore, can be used to infer the source of organic material detected on a planetary surface.

  3. Synthesis and biological evaluation of novel bis-aromatic amides as novel PTP1B inhibitors.

    PubMed

    Wang, Wen-Long; Huang, Chao; Gao, Li-Xin; Tang, Chun-Lan; Wang, Jun-Qing; Wu, Min-Chen; Sheng, Li; Chen, Hai-Jun; Nan, Fa-Jun; Li, Jing-Ya; Li, Jia; Feng, Bainian

    2014-04-15

    A series of bis-aromatic amides was designed, synthesized, and evaluated as a new class of inhibitors with IC50 values in the micromolar range against protein tyrosine phosphatase 1B (PTP1B). Among them, compound 15 displayed an IC50 value of 2.34±0.08 μM with 5-fold preference over TCPTP. More importantly, the treatment of CHO/HIR cells with compound 15 resulted in increased phosphorylation of insulin receptor (IR), which suggested extensive cellular activity of compound 15. These results provided novel lead compounds for the design of inhibitors of PTP1B as well as other PTPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Application of capillary gas chromatography mass spectrometry/computer techniques to synoptic survey of organic material in bed sediment

    USGS Publications Warehouse

    Steinheimer, T.R.; Pereira, W.E.; Johnson, S.M.

    1981-01-01

    A bed sediment sample taken from an area impacted by heavy industrial activity was analyzed for organic compounds of environmental significance. Extraction was effected on a Soxhlet apparatus using a freeze-dried sample. The Soxhlet extract was fractionated by silica gel micro-column adsorption chromatography. Separation and identification of the organic compounds was accomplished by capillary gas chromatography/mass spectrometry techniques. More than 50 compounds were identified; these include saturated hydrocarbons, olefins, aromatic hydrocarbons, alkylated polycyclic aromatic hydrocarbons, and oxygenated compounds such as aldehydes and ketones. The role of bed sediments as a source or sink for organic pollutants is discussed. ?? 1981.

  5. 40 CFR 439.41 - Special definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... STANDARDS PHARMACEUTICAL MANUFACTURING POINT SOURCE CATEGORY Mixing/Compounding and Formulation § 439.41 Special definitions. For the purpose of this subpart: (a) Mixing, compounding, and formulating operations... product manufactured by blending, mixing, compounding, and formulating pharmaceutical ingredients. The...

  6. 40 CFR 439.41 - Special definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... STANDARDS (CONTINUED) PHARMACEUTICAL MANUFACTURING POINT SOURCE CATEGORY Mixing/Compounding and Formulation § 439.41 Special definitions. For the purpose of this subpart: (a) Mixing, compounding, and formulating... pharmaceutical product manufactured by blending, mixing, compounding, and formulating pharmaceutical ingredients...

  7. 40 CFR 439.41 - Special definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... product manufactured by blending, mixing, compounding, and formulating pharmaceutical ingredients. The... STANDARDS PHARMACEUTICAL MANUFACTURING POINT SOURCE CATEGORY Mixing/Compounding and Formulation § 439.41 Special definitions. For the purpose of this subpart: (a) Mixing, compounding, and formulating operations...

  8. Approach for energy saving and pollution reducing by fueling diesel engines with emulsified biosolution/ biodiesel/diesel blends.

    PubMed

    Lin, Yuan-Chung; Lee, Wen-Jhy; Chao, How-Ran; Wang, Shu-Li; Tsou, Tsui-Chun; Chang-Chien, Guo-Ping; Tsai, Perng-Jy

    2008-05-15

    The developments of both biodiesel and emulsified diesel are being driven by the need for reducing emissions from diesel engines and saving energy. Artificial chemical additives are also being used in diesel engines for increasing their combustion efficiencies. But the effects associated with the use of emulsified additive/biodiesel/diesel blends in diesel engines have never been assessed. In this research, the premium diesel fuel (PDF) was used as the reference fuel. A soy-biodiesel was selected as the test biodiesel. A biosolution made of 96.5 wt % natural organic enzyme-7F (NOE-7F) and 3.5 wt % water (NOE-7F water) was used as the fuel additive. By adding additional 1 vol % of surfactant into the fuel blend, a nanotechnology was used to form emulsified biosolution/soy-biodiesel/PDF blends for fueling the diesel engine. We found that the emulsified biosolution/soy-biodiesel/PDF blends did not separate after being kept motionless for 30 days. The above stability suggests that the above combinations are suitable for diesel engines as alternative fuels. Particularly, we found that the emulsified biosolution/soy-biodiesel/PDF blends did have the advantage in saving energy and reducing the emissions of both particulate matters (PM) and polycyclic aromatic hydrocarbons (PAHs) from diesel engines as compared with PDF, soy-biodiesel/PDF blends, and emulsified soy-biodiesel/ PDF blends. The results obtained from this study will provide useful approaches for reducing the petroleum reliance, pollution, and global warming. However, it should be noted that NO(x) emissions were not measured in the present study which warrants the need for future investigation.

  9. Theoretical and experimental study of polycyclic aromatic compounds as β-tubulin inhibitors.

    PubMed

    Olazarán, Fabian E; García-Pérez, Carlos A; Bandyopadhyay, Debasish; Balderas-Rentería, Isaias; Reyes-Figueroa, Angel D; Henschke, Lars; Rivera, Gildardo

    2017-03-01

    In this work, through a docking analysis of compounds from the ZINC chemical library on human β-tubulin using high performance computer cluster, we report new polycyclic aromatic compounds that bind with high energy on the colchicine binding site of β-tubulin, suggesting three new key amino acids. However, molecular dynamic analysis showed low stability in the interaction between ligand and receptor. Results were confirmed experimentally in in vitro and in vivo models that suggest that molecular dynamics simulation is the best option to find new potential β-tubulin inhibitors. Graphical abstract Bennett's acceptance ratio (BAR) method.

  10. Tough, high performance, addition-type thermoplastic polymers

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1992-01-01

    A tough, high performance polyimide is provided by reacting a triple bond conjugated with an aromatic ring in a bisethynyl compound with the active double bond in a compound containing a double bond activated toward the formation of a Diels-Adler type adduct, especially a bismaleimide, a biscitraconimide, or a benzoquinone, or mixtures thereof. Addition curing of this product produces a high linear polymeric structure and heat treating the highly linear polymeric structure produces a thermally stable aromatic addition-type thermoplastic polyimide, which finds utility in the preparation of molding compounds, adhesive compositions, and polymer matrix composites.

  11. Alkyne Benzannulation Reactions for the Synthesis of Novel Aromatic Architectures.

    PubMed

    Hein, Samuel J; Lehnherr, Dan; Arslan, Hasan; J Uribe-Romo, Fernando; Dichtel, William R

    2017-11-21

    Aromatic compounds and polymers are integrated into organic field effect transistors, light-emitting diodes, photovoltaic devices, and redox-flow batteries. These compounds and materials feature increasingly complex designs, and substituents influence energy levels, bandgaps, solution conformation, and crystal packing, all of which impact performance. However, many polycyclic aromatic hydrocarbons of interest are difficult to prepare because their substitution patterns lie outside the scope of current synthetic methods, as strategies for functionalizing benzene are often unselective when applied to naphthalene or larger systems. For example, cross-coupling and nucleophilic aromatic substitution reactions rely on prefunctionalized arenes, and even directed metalation methods most often modify positions near Lewis basic sites. Similarly, electrophilic aromatic substitutions access single regioisomers under substrate control. Cycloadditions provide a convergent route to densely functionalized aromatic compounds that compliment the above methods. After surveying cycloaddition reactions that might be used to modify the conjugated backbone of poly(phenylene ethynylene)s, we discovered that the Asao-Yamamoto benzannulation reaction is notably efficient. Although this reaction had been reported a decade earlier, its scope and usefulness for synthesizing complex aromatic systems had been under-recognized. This benzannulation reaction combines substituted 2-(phenylethynyl)benzaldehydes and substituted alkynes to form 2,3-substituted naphthalenes. The reaction tolerates a variety of sterically congested alkynes, making it well-suited for accessing poly- and oligo(ortho-arylene)s and contorted hexabenzocoronenes. In many cases in which asymmetric benzaldehyde and alkyne cycloaddition partners are used, the reaction is regiospecific based on the electronic character of the alkyne substrate. Recognizing these desirable features, we broadened the substrate scope to include silyl- and halogen-substituted alkynes. Through a combined experimental and computational approach, we have elucidated mechanistic insight and key principles that govern the regioselectivity outcome of the benzannulation of structurally diverse alkynes. We have applied these methods to prepare sterically hindered, shape-persistent aromatic systems, heterocyclic aromatic compounds, functionalized 2-aryne precursors, polyheterohalogenated naphthalenes, ortho-arylene foldamers, and graphene nanoribbons. As a result of these new synthetic avenues, aromatic structures with interesting properties were uncovered such as ambipolar charge transport in field effect transistors based on our graphene nanoribbons, conformational aspects of ortho-arylene architectures resulting from intramolecular π-stacking, and modulation of frontier molecular orbitals via protonation of heteroatom containing aromatic systems. Given the availability of many substituted 2-(phenylethynyl)benzaldehydes and the regioselectivity of the benzannulation reaction, naphthalenes can be prepared with control of the substitution pattern at seven of the eight substitutable positions. Researchers in a range of fields are likely to benefit directly from newly accessible molecular and polymeric systems derived from polyfunctionalized naphthalenes.

  12. Mechanical properties of HDPE/UHMWPE blends: effect of filler loading and filler treatment.

    PubMed

    Lai, K L K; Roziyanna, A; Ogunniyi, D S; Zainal, Arifin M I; Azlan, Ariffin A

    2004-05-01

    Various blend ratios of high-density polyethylene (HDPE) and ultra high molecular weight polyethylene (UHMWPE) were prepared with the objective of determining their suitability as biomaterials. In the unfilled state, a blend of 50/50 (HDPE/UHMWPE) ratio by weight was found to yield optimum properties in terms of processability and mechanical properties. Hydroxyapatite (HA) was compounded with the optimum blend ratio. The effects of HA loading, varied from 0 to 50wt% for both filled and unfilled blends were tested for mechanical properties. It was found that the inclusion of HA in the blend led to a remarkable improvement of mechanical properties compared to the unfilled blend. In order to improve the bonding between the polymer blend and the filler, the HA used was chemically treated with a coupling agent known as 3-(trimethoxysiyl) propyl methacrylate and the treated HA was mixed into the blend. The effect of mixing the blend with silane-treated HA also led to an overall improvement of mechanical properties.

  13. 40 CFR 442.2 - General definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., organic chemicals including: alcohols, aldehydes, formaldehydes, phenols, peroxides, organic salts, amines, amides, other nitrogen compounds, other aromatic compounds, aliphatic organic chemicals, glycols, glycerines, and organic polymers; refractory organic compounds including: ketones, nitriles, organo-metallic...

  14. Photo-oxidation method using MoS2 nanocluster materials

    DOEpatents

    Wilcoxon, Jess P.

    2001-01-01

    A method of photo-oxidizing a hydrocarbon compound is provided by dispersing MoS.sub.2 nanoclusters in a solvent containing a hydrocarbon compound contaminant to form a stable solution mixture and irradiating the mixture to photo-oxide the hydrocarbon compound. Hydrocarbon compounds of interest include aromatic hydrocarbon and chlorinated hydrocarbons. MoS.sub.2 nanoclusters with an average diameter less than approximately 10 nanometers are shown to be effective in decomposing potentially toxic aromatic and chlorinated hydrocarbons, such as phenol, pentachlorophenol, chlorinated biphenols, and chloroform, into relatively non-toxic compounds. The irradiation can occur by exposing the MoS.sub.2 nanoclusters and hydrocarbon compound mixture with visible light. The MoS.sub.2 nanoclusters can be introduced to the toxic hydrocarbons as either a MoS.sub.2 solution or deposited on a support material.

  15. Controlled release chamber for dispensing aromatic substances.

    PubMed

    Cilek, J E; Hallmon, C F

    2008-12-01

    A novel device for the containment and precise release of aromatic substances is described. The device consists of a threaded-tubular polyvinyl chloride chamber (and screw-top cap) with ports for introduction and release of gaseous compounds. This chamber is inexpensive, easy to assemble, and useful for evaluating the combined release of carbon dioxide and aromatic hygroscopic substances as mosquito attractants in field studies.

  16. Poly(arylene ether)s That Resist Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul; Smith, Joseph G., Jr.

    1994-01-01

    Novel poly(arylene ether)s containing phosphine oxide (PAEPO's) made via aromatic nucleophilic displacement reactions of activated aromatic dihalides (or, in some cases, activated aromatic dinitro compounds) with new bisphenol monomers containing phosphine oxide. Exhibited favorable combination of physical and mechanical properties and resistance to monatomic oxygen in oxygen plasma environment. Useful as adhesives, coatings, films, membranes, moldings, and composite matrices.

  17. Pyrotechnic filled molding powder

    DOEpatents

    Hartzel, Lawrence W.; Kettling, George E.

    1978-01-01

    The disclosure relates to thermosetting molding compounds and more particularly to a pyrotechnic filled thermosetting compound comprising a blend of unfilled diallyl phthalate molding powder and a pyrotechnic mixture.

  18. Mutagenicity of diesel exhaust particle extracts: influence of fuel composition in two diesel engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, C.R.; Henderson, T.R.; Royer, R.E.

    The influence of diesel fuel composition on mutagenicity of exhaust particle associated organic compounds has been investigated using nine fuels varying in aromatic content and distillation properties. The tests were conducted with Oldsmobile Delta-88 and Peugot 504 diesel cars operated according to the EPA Federal Test Procedure. The particulate exhaust from each test was collected on a filter, extracted in dichloromethane and the resulting extract evaluated for mutagenicity in Salmonella strain TA-100. Mutagenicity of extracts of particles collected from the Oldsmobile were highest in the higher aromatic content fuels (greater than 30%) but similar for intermediate (20%) and low (13%)more » aromatic content fuels. No influence of aromaticity on mutagenicity was observed in samples collected from the Peugeot under the same conditions. Thus, fuel aromatic content may enhance the production of mutagenic combustion products at higher concentrations, but may be dependent upon engine type. A good correlation was observed between mutagenicity of the particle extracts and the initial boiling point of the fuel (r . 0.89). Gas chromatography/mass spectrometric analysis of the aromatic fraction of the fuels showed that the fuel producing the most mutagenic combustion products was highest in phenanthrene type compounds.« less

  19. The effect of aromatization on the isotopic compositions of hydrocarbons during early diagenesis

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Boreham, C. J.; Summons, R. E.; Hayes, J. M.

    1994-01-01

    Polycyclic aromatic hydrocarbons with varying degrees of aromatization were isolated from the Eocene Messel Shale (Rheingraben, Germany). The high abundances of these compounds and their structural resemblances to cyclic triterpenoid lipids are consistent with derivation from microbial rather than thermal processes. Compounds structurally related to oleanane contain from five to nine double bonds; those within a series of aromatized hopanoids contain from three to nine. All are products of diagenetic reactions that remove hydrogen or methyl groups, and, in several cases, break carbon-carbon bonds to open rings. Aromatized products are on average depleted in 13C relative to possible precursors by l.2% (range: l.5% enrichment to 4% depletion, n = 9). The dependence of 13C content on the number of double bonds is not, however, statistically significant and it must be concluded that there is no strong evidence for isotopic fractionation accompanying diagenetic aromatization. Isotopic differences between series (structures related to ursane, des-A-ursane, des-A-lupane, des-A-arborane, and possibly, des-A-gammacerane are present) are much greater, indicating that 13C contents are controlled primarily by source effects. Fractionations due to chromatographic isotope effects during HPLC ranged from 0.1 to 2.8%.

  20. Comparison of the Effects of Blending and Juicing on the Phytochemicals Contents and Antioxidant Capacity of Typical Korean Kernel Fruit Juices

    PubMed Central

    Pyo, Young-Hee; Jin, Yoo-Jeong; Hwang, Ji-Young

    2014-01-01

    Four Korean kernel fruit (apple, pear, persimmon, and mandarin orange) juices were obtained by household processing techniques (i.e., blending, juicing). Whole and flesh fractions of each fruit were extracted by a blender or a juicer and then examined for phytochemical content (i.e., organic acids, polyphenol compounds). The antioxidant capacity of each juice was determined by ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. Results revealed that juices that had been prepared by blending whole fruits had stronger antioxidant activities and contained larger amounts of phenolic compounds than juices that had been prepared by juicing the flesh fraction of the fruit. However, the concentration of ascorbic acid in apple, pear, and mandarin orange juices was significantly (P<0.05) higher in juice that had been processed by juicing, rather than blending. The juices with the highest ascorbic acid (233.9 mg/serving), total polyphenols (862.3 mg gallic acid equivalents/serving), and flavonoids (295.1 mg quercetin equivalents/serving) concentrations were blended persimmon juice, blended mandarin orange juice, and juiced apple juice, respectively. These results indicate that juice extraction techniques significantly (P<0.05) influences the phytochemical levels and antioxidant capacity of fruit juices. PMID:25054109

  1. The use of tyre pyrolysis oil in diesel engines.

    PubMed

    Murugan, S; Ramaswamy, M C; Nagarajan, G

    2008-12-01

    Tests have been carried out to evaluate the performance, emission, and combustion characteristics of a single cylinder direct injection diesel engine fueled with 10%, 30%, and 50% of tyre pyrolysis oil (TPO) blended with diesel fuel (DF). The TPO was derived from waste automobile tyres through vacuum pyrolysis. The combustion parameters such as heat release rate, cylinder peak pressure, and maximum rate of pressure rise also analysed. Results showed that the brake thermal efficiency of the engine fueled with TPO-DF blends increased with an increase in blend concentration and reduction of DF concentration. NO(x), HC, CO, and smoke emissions were found to be higher at higher loads due to the high aromatic content and longer ignition delay. The cylinder peak pressure increased from 71 bars to 74 bars. The ignition delays were longer than with DF. It is concluded that it is possible to use tyre pyrolysis oil in diesel engines as an alternate fuel in the future.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, B.D.; Apel, W.A.; Walton, M.R.

    Conceptually, biofilters are vapor phase bioreactors that rely on microorganisms in the bed medium to oxidize contaminants in off-gases flowing through the bed to less hazardous compounds. In the most studied and utilized systems reduced compounds such as fuel hydrocarbons are enzymatically oxidized to compounds such as carbon dioxide and water. In these types of reactions the microorganisms in the bed oxidize the contaminant and transfer the electrons to oxygen which is the terminal electron acceptor in the process. In essence the contaminant is the carbon and energy source for the microorganisms in the bed medium and through this catabolicmore » process oxygen is reduced to water. An example of this oxidation process can be seen during the degradation of benzene and similar aromatic compounds. Aromatics are initially attacked by a dioxygenase enzyme which oxidizes the compounds to a labile dihydrodiole which is spontaneously converted to a catechol. The dihydroxylated aromatic rings is then opened by oxidative {open_quotes}ortho{close_quotes} or {open_quotes}meta{close_quotes} cleavage yielding cis, cis-muconic acid or 2-hydroxy-cis, cis-muconic semialdehyde, respectively. These organic compounds are further oxidized to carbon dioxide or are assimilated for cellular material. This paper describes the conversion of carbon tetrachloride using methanol as the primary carbon and energy source.« less

  3. Pseudomonas putida as a platform for the synthesis of aromatic compounds.

    PubMed

    Molina-Santiago, Carlos; Cordero, Baldo F; Daddaoua, Abdelali; Udaondo, Zulema; Manzano, Javier; Valdivia, Miguel; Segura, Ana; Ramos, Juan-Luis; Duque, Estrella

    2016-09-01

    Aromatic compounds such as l-phenylalanine, 2-phenylethanol and trans-cinnamate are aromatic compounds of industrial interest. Current trends support replacement of chemical synthesis of these compounds by 'green' alternatives produced in microbial cell factories. The solvent-tolerant Pseudomonas putida DOT-T1E strain was genetically modified to produce up to 1 g l-1 of l-phenylalanine. In order to engineer this strain, we carried out the following stepwise process: (1) we selected random mutants that are resistant to toxic phenylalanine analogues; (2) we then deleted up to five genes belonging to phenylalanine metabolism pathways, which greatly diminished the internal metabolism of phenylalanine; and (3) in these mutants, we overexpressed the pheAfbr gene, which encodes a recombinant variant of PheA that is insensitive to feedback inhibition by phenylalanine. Furthermore, by introducing new genes, we were able to further extend the diversity of compounds produced. Introduction of histidinol phosphate transferase (PP_0967), phenylpyruvate decarboxylase (kdc) and an alcohol dehydrogenase (adh) enabled the strain to produce up to 180 mg l-1 2-phenylethanol. When phenylalanine ammonia lyase (pal) was introduced, the resulting strain produced up to 200 mg l-1 of trans-cinnamate. These results demonstrate that P. putida can serve as a promising microbial cell factory for the production of l-phenylalanine and related compounds.

  4. Impact of biodiesel on regulated and unregulated emissions, and redox and proinflammatory properties of PM emitted from heavy-duty vehicles.

    PubMed

    Karavalakis, Georgios; Gysel, Nicholas; Schmitz, Debra A; Cho, Arthur K; Sioutas, Constantinos; Schauer, James J; Cocker, David R; Durbin, Thomas D

    2017-04-15

    The emissions and the potential health effects of particulate matter (PM) were assessed from two heavy-duty trucks with and without emission control aftertreatment systems when operating on CARB ultra-low sulfur diesel (ULSD) and three different biodiesel blends. The CARB ULSD was blended with soy-based biodiesel, animal fat biodiesel, and waste cooking oil biodiesel at 50vol%. Testing was conducted over the EPA Urban Dynamometer Driving Schedule (UDDS) in triplicate for both trucks. The aftertreatment controls effectively decreased PM mass and number emissions, as well as the polycyclic aromatic hydrocarbons (PAHs) compared to the uncontrolled truck. Emissions of nitrogen oxides (NO x ) exhibited increases with the biodiesel blends, showing some feedstock dependency for the controlled truck. The oxidative potential of the emitted PM, measured by means of the dithiothreitol (DTT) assay, showed reductions with the use of biodiesel blends relative to CARB ULSD for the uncontrolled truck. Overall, the cellular responses to the particles from each fuel were reflective of the chemical content, i.e., particles from CARB ULSD were the most reactive and exhibited the highest cellular responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. [FTIR detection of unregulated emissions from a diesel engine with biodiesel fuel].

    PubMed

    Tan, Pi-qiang; Hu, Zhi-yuan; Lou, Di-ming

    2012-02-01

    Biodiesel, as one of the most promising alternative fuels, has received more attention because of limited fossil fuels. A comparison of biodiesel and petroleum diesel fuel is discussed as regards engine unregulated exhaust emissions. A diesel fuel, a pure biodiesel fuel, and fuel with 20% V/V biodiesel blend ratio were tested without engine modification The present study examines six typical unregulated emissions by Fourier transform infrared spectroscopy (FTIR) method: formaldehyde (HCHO), acetaldehyde (C2 H4 O), acetone (C3 H6 O), toluene (C7 H8), sulfur dioxide (SO2), and carbon dioxide (CO2). The results show addition of biodiesel fuel increases the formaldehyde emission, and B20 fuel has little change, but the formaldehyde emission of pure biodiesel shows a clear trend of addition. Compared with the pure diesel fuel, the acetaldehyde of B20 fuel has a distinct decrease, and the acetaldehyde emission of pure biodiesel is lower than that of the pure diesel fuel at low and middle engine loads, but higher at high engine load. The acetone emission is very low, and increases for B20 and pure biodiesel fuels as compared to diesel fuel. Compared with the diesel fuel, the toluene and sulfur dioxide values of the engine show a distinct decrease with biodiesel blend ratio increasing. It is clear that the biodiesel could reduce aromatic compounds and emissions of diesel engines. The carbon dioxide emission of pure biodiesel has a little lower value than diesel, showing that the biodiesel benefits control of greenhouse gas.

  6. Identification of odors from overripe mango that attract vinegar flies, Drosophila melanogaster.

    PubMed

    Zhu, Junwei; Park, Kye-Chung; Baker, Thomas C

    2003-04-01

    Bioassays with a variety of overripe fruits, including mango, plum, pear, and grape, and their extracts showed that odors from overripe mango were most attractive to adult vinegar flies, Drosophila melanogaster. Combined gas chromatography-electroantennographic detection (GC-EAD) analyses of solid-phase microextraction (SPME) and Tenax extracts of overripe mango odors showed that several volatile compounds, including ethanol, acetic acid, amyl acetate, 2-phenylethanol, and phenylethyl acetate elicited significant EAG responses from antennae of female flies. Most of the volatile compounds in the extracts were identified by mass spectral and retention index comparisons with synthetic standards. In cage bioassays, lures with a blend of ethanol, acetic acid, and 2-phenylethanol in a ratio of 1:22:5 attracted six times more flies than any single EAG-active compound. This blend also attracted four times more flies than traps baited with overripe mango or unripe mango. However, in field trials, the blend was not as attractive as suggested by the laboratory bioassay.

  7. Cuticular hydrocarbons as sex pheromone of the bee Colletes cunicularius and the key to its mimicry by the sexually deceptive orchid, Ophrys exaltata.

    PubMed

    Mant, Jim; Brändli, Christoph; Vereecken, Nicolas J; Schulz, Claudia M; Francke, Wittko; Schiestl, Florian P

    2005-08-01

    Male Colletes cunicularius bees pollinate the orchid, Ophrys exaltata, after being sexually deceived by the orchid's odor-mimicry of the female bee's sex pheromone. We detected biologically active volatiles of C. cunicularius by using gas chromatographic-electroantennographic detection (GC-EAD) with simultaneous flame ionization detection. After identification of the target compounds by coupled gas chromatography mass spectrometry (GC-MS), we performed behavioral tests using synthetic blends of the active components. We detected 22 EAD active compounds in cuticular extracts of C. cunicularius females. Blends of straight chain, odd-numbered alkanes and (Z)-7-alkenes with 21-29 carbon atoms constituted the major biologically active compounds. Alkenes were the key compounds releasing mating behavior, especially those with (Z)-7 unsaturation. Comparison of patterns of bee volatiles with those of O. exaltata subsp. archipelagi revealed that all EAD-active compounds were also found in extracts of orchid labella. Previous studies of the mating behavior in C. cunicularius showed linalool to be an important attractant for patrolling males. We confirmed this with synthetic linalool but found that it rarely elicited copulatory behavior, in accordance with previous studies. A blend of active cuticular compounds with linalool elicited both attraction and copulation behavior in patrolling males. Thus, linalool appears to function as a long-range attractant, whereas cuticular hydrocarbons are necessary for inducing short-range mating behavior.

  8. The Impact of Single Amino Acids on Growth and Volatile Aroma Production by Saccharomyces cerevisiae Strains

    PubMed Central

    Fairbairn, Samantha; McKinnon, Alexander; Musarurwa, Hannibal T.; Ferreira, António C.; Bauer, Florian F.

    2017-01-01

    Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth parameters, lag phase, maximum growth rate, total biomass formation and time to complete fermentation were evaluated. In contrast with previous findings, in fermentative conditions, phenylalanine and valine supported growth well and asparagine supported it poorly. The four parameters showed good correlations for most amino acid treatments, with some notable exceptions. Single amino acid treatments resulted in the predictable production of aromatic compounds, with a linear correlation between amino acid concentration and the concentration of aromatic compounds that are directly derived from these amino acids. With the increased complexity of nitrogen sources, linear correlations were lost and aroma production became unpredictable. However, even in complex medium minor changes in amino acid concentration continued to directly impact the formation of aromatic compounds, suggesting that the relative concentration of individual amino acids remains a predictor of aromatic outputs, independently of the complexity of metabolic interactions between carbon and nitrogen metabolism and between amino acid degradation and utilization pathways. PMID:29312237

  9. The Impact of Single Amino Acids on Growth and Volatile Aroma Production by Saccharomyces cerevisiae Strains.

    PubMed

    Fairbairn, Samantha; McKinnon, Alexander; Musarurwa, Hannibal T; Ferreira, António C; Bauer, Florian F

    2017-01-01

    Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth parameters, lag phase, maximum growth rate, total biomass formation and time to complete fermentation were evaluated. In contrast with previous findings, in fermentative conditions, phenylalanine and valine supported growth well and asparagine supported it poorly. The four parameters showed good correlations for most amino acid treatments, with some notable exceptions. Single amino acid treatments resulted in the predictable production of aromatic compounds, with a linear correlation between amino acid concentration and the concentration of aromatic compounds that are directly derived from these amino acids. With the increased complexity of nitrogen sources, linear correlations were lost and aroma production became unpredictable. However, even in complex medium minor changes in amino acid concentration continued to directly impact the formation of aromatic compounds, suggesting that the relative concentration of individual amino acids remains a predictor of aromatic outputs, independently of the complexity of metabolic interactions between carbon and nitrogen metabolism and between amino acid degradation and utilization pathways.

  10. Comprehensive GC²/MS for the monitoring of aromatic tar oil constituents during biodegradation in a historically contaminated soil.

    PubMed

    Vasilieva, Viktoriya; Scherr, Kerstin E; Edelmann, Eva; Hasinger, Marion; Loibner, Andreas P

    2012-02-20

    The constituents of tar oil comprise a wide range of physico-chemically heterogeneous pollutants of environmental concern. Besides the sixteen polycyclic aromatic hydrocarbons defined as priority pollutants by the US-EPA (EPA-PAHs), a wide range of substituted (NSO-PAC) and alkylated (alkyl-PAC) aromatic tar oil compounds are gaining increased attention for their toxic, carcinogenic, mutagenic and/or teratogenic properties. Investigations on tar oil biodegradation in soil are in part hampered by the absence of an efficient analytical tool for the simultaneous analysis of this wide range of compounds with dissimilar analytical properties. Therefore, the present study sets out to explore the applicability of comprehensive two-dimensional gas chromatography (GC²/MS) for the simultaneous measurement of compounds with differing polarity or that are co-eluting in one-dimensional systems. Aerobic tar oil biodegradation in a historically contaminated soil was analyzed over 56 days in lab-scale bioslurry tests. Forty-three aromatic compounds were identified with GC²/MS in one single analysis. The number of alkyl chains on a molecule was found to prime over alkyl chain length in hampering compound biodegradation. In most cases, substitution of carbon with nitrogen and oxygen was related to increased compound degradation in comparison to unalkylated and sulphur- or unsubstituted PAH with a similar ring number.The obtained results indicate that GC²/MS can be employed for the rapid assessment of a large variety of structurally heterogeneous environmental contaminants. Its application can contribute to facilitate site assessment, development and control of microbial cleanup technologies for tar oil contaminated sites. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Effect of chain extension on rheology and tensile properties of PHB and PHB-PLA blends

    NASA Astrophysics Data System (ADS)

    Bousfield, Glenn

    Poly(3-hydroxybutyrate), referred to as PHB, is a bacterially-synthesized and biodegradable polymer which is being considered as a substitute for non-biodegradable bulk polymers like polypropylene. PHB is naturally extremely isotactic and naturally has a very high degree of crystallinity, resulting in a stiff but brittle material. The stability of PHB crystals also means that the melting point of the polymer is approximately 170°C, high with respect to similar polymers. For instance, the melting point of poly(4-hydroxybutyrate) is only 53°C (Saito, Nakamura, Hiramitsu, & Doi, 1996). Above 170°C, PHB is subject to a thermomechanical degradation mechanism, meaning that the polymer cannot be melted without degrading. One possible solution to the problem of degradation is to add a chain extender to the molten polymer to increase average molecular weight to counteract the molecular weight lost to degradation. In this work, a variety of chain extenders (JoncrylRTM ADR 4368-C, pyromellitic dianhydride, hexamethylene diisocyanate, polycarbodiimide) were compounded with a random copolymer of 98 mol% 3-hydroxybutyrate and 2 mol% 3-hydroxyvalerate (referred to as PHB) in concentrations ranging from 0.25% to 4%, to determine which chain extender functionality worked best with PHB. Molecular weight change was inferred from torque monitored during compounding, and from complex viscosity determined from parallel-plate rheology. None of the chain extenders changed the rate of degradation of PHB, although Joncryl increased the complex viscosity of the polymer. PHB was also blended with Poly(L-lactic acid), referred to as PLLA in PHB/PLLA ratios of 100/0, 75/25, 50/50, 25/75 and 0/100, to determine the effect of blending on the thermal stability of PHB. Again, thermal stability was determined by monitoring torque during compounding and by measuring complex viscosity through parallel-plate rheology. Blends in which PHB was the more abundant phase, as well as the 50% PHB/50% PLA blend continued to degrade, and the PLLA did not in these cases significantly increase complex viscosity. By contrast, the 25/75 PHB/PLLA blend had a complex viscosity equal to the neat PLLA blend, and both of the blends remained stable. All five blends were also produced with 1% Joncryl to observe the effect of Joncryl on the blends. In the 50/50 blend and the blends in which PLLA was the major component, complex viscosity increased by at least an order of magnitude, while in the 75/25 PHB/PLLA blend and the neat PHB blend, the effect of Joncryl was to increase complex viscosity only by a factor of 2. The effect of blending and of Joncryl on PHB-PLA blends was further investigated through uniaxial tensile stress testing of compression moulded samples of the blends, neat and with 1% Joncryl. The results showed an increase in tensile stress at yield and tensile strain at break for blends with the addition of Joncryl, although Young's modulus was somewhat diminished for these blends. In conclusion, chain extenders were not effective in reversing the effect of thermomechanical degradation, possibly because they do not change the resistance to bond rotation in PHB chains, or because they are not reactive with acrylates, although the exact cause has not been determined.

  12. Classification of the fragrant styles and evaluation of the aromatic quality of flue-cured tobacco leaves by machine-learning methods.

    PubMed

    Gu, Li; Xue, Lichun; Song, Qi; Wang, Fengji; He, Huaqin; Zhang, Zhongyi

    2016-12-01

    During commercial transactions, the quality of flue-cured tobacco leaves must be characterized efficiently, and the evaluation system should be easily transferable across different traders. However, there are over 3000 chemical compounds in flue-cured tobacco leaves; thus, it is impossible to evaluate the quality of flue-cured tobacco leaves using all the chemical compounds. In this paper, we used Support Vector Machine (SVM) algorithm together with 22 chemical compounds selected by ReliefF-Particle Swarm Optimization (R-PSO) to classify the fragrant style of flue-cured tobacco leaves, where the Accuracy (ACC) and Matthews Correlation Coefficient (MCC) were 90.95% and 0.80, respectively. SVM algorithm combined with 19 chemical compounds selected by R-PSO achieved the best assessment performance of the aromatic quality of tobacco leaves, where the PCC and MSE were 0.594 and 0.263, respectively. Finally, we constructed two online tools to classify the fragrant style and evaluate the aromatic quality of flue-cured tobacco leaf samples. These tools can be accessed at http://bioinformatics.fafu.edu.cn/tobacco .

  13. Sodium Perborate Oxidation of an Aromatic Amine

    ERIC Educational Resources Information Center

    Juestis, Laurence

    1977-01-01

    Describes an experiment involving the oxidation of aromatic primary amines to the corresponding azo compound; suggests procedures for studying factors that influence the yield of such a reaction, including the choice of solvent and the oxidant-amine ratio. (MLH)

  14. Automated analysis of oxidative metabolites

    NASA Technical Reports Server (NTRS)

    Furner, R. L. (Inventor)

    1974-01-01

    An automated system for the study of drug metabolism is described. The system monitors the oxidative metabolites of aromatic amines and of compounds which produce formaldehyde on oxidative dealkylation. It includes color developing compositions suitable for detecting hyroxylated aromatic amines and formaldehyde.

  15. PTR-MS Characterization of VOCs Associated with Commercial Aromatic Bakery Yeasts of Wine and Beer Origin.

    PubMed

    Capozzi, Vittorio; Makhoul, Salim; Aprea, Eugenio; Romano, Andrea; Cappellin, Luca; Sanchez Jimena, Ana; Spano, Giuseppe; Gasperi, Flavia; Scampicchio, Matteo; Biasioli, Franco

    2016-04-12

    In light of the increasing attention towards "green" solutions to improve food quality, the use of aromatic-enhancing microorganisms offers the advantage to be a natural and sustainable solution that did not negatively influence the list of ingredients. In this study, we characterize, for the first time, volatile organic compounds (VOCs) associated with aromatic bakery yeasts. Three commercial bakery starter cultures, respectively formulated with three Saccharomyces cerevisiae strains, isolated from white wine, red wine, and beer, were monitored by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), a direct injection analytical technique for detecting volatile organic compounds with high sensitivity (VOCs). Two ethanol-related peaks (m/z 65.059 and 75.080) described qualitative differences in fermentative performances. The release of compounds associated to the peaks at m/z 89.059, m/z 103.075, and m/z 117.093, tentatively identified as acetoin and esters, are coherent with claimed flavor properties of the investigated strains. We propose these mass peaks and their related fragments as biomarkers to optimize the aromatic performances of commercial preparations and for the rapid massive screening of yeast collections.

  16. Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredrickson, Jim K.; Balkwill, David L.; Romine, Margaret F.

    Several new species of the genus Sphingomonas including S. aromaticivorans, S. stygia, and S. subterranea that have the capacity for degrading a broad range of aromatic compounds including toluene, naphthalene, xylenes, p-cresol, fluorene, biphenyl, and dibenzothiophene, were isolated from deeply-buried (>200 m) sediments of the US Atlantic coastal plain (ACP). In S. aromaticivorans F199, many of the genes involved in the catabolism of these aromatic compounds are encoded on a 184-kb conjugative plasmid; some of the genes involved in aromatic catabolism are plasmid-encoded in the other strains as well. Members of the genus Sphingomonas were common among aerobic heterotrophic bacteriamore » cultured from ACP sediments and have been detected in deep subsurface environments elsewhere. The major source of organic carbon for heterotrophic metabolism in ACP deep aquifers is lignite that originated from plant material buried with the sediments. We speculate that the ability of the subsurface Sphingomonas strains to degrade a wide array of aromatic compounds represents an adaptation for utilization of sedimentary lignite. These and related subsurface Sphingomonas spp may play an important role in the transformation of sedimentary organic carbon in the aerobic and microaerobic regions of the deep aquifers of the ACP.« less

  17. Remediation of aged diesel contaminated soil by alkaline activated persulfate.

    PubMed

    Lominchar, M A; Santos, A; de Miguel, E; Romero, A

    2018-05-01

    The present work studies the efficiency of alkaline activated persulfate (PS) to remediate an aged diesel fuel contaminated soil from a train maintenance facility. The Total Petroleum Hydrocarbon (TPH) concentration in soil was approximately 5000mgkg -1 with a ratio of aliphatic:aromatic compounds of 70:30. Aromatic compounds were mainly naphtalenes and phenanthrenes. The experiments were performed in batch mode where different initial concentrations of persulfate (105mM, 210mM and 420mM) and activator:persulfate ratios (2 and 4) were evaluated, with NaOH used as activator. Runs were carried out during 56days. Complete TPH conversion was obtained with the highest concentration of PS and activator, whereas in the other runs the elimination of fuel ranged between 60 and 77%. Besides, the abatement of napthalenes and phenantrenes was faster than aliphatic reduction (i. e. after 4days of treatment, the conversions of the aromatic compounds were around 0.8 meanwhile the aliphatic abatements were 0.55) and no aromatic oxidation intermediates from naphtalenes or phenantrenes were detected. These results show that this technology is effective for the remediation of aged diesel in soil with alkaline pH. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Biologically important compounds in synfuels processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, B R; Ho, C; Griest, W H

    1980-01-01

    Crude products, by-products and wastes from synfuel processes contain a broad spectrum of chemical compounds - many of which are active in biological systems. Discerning which compound classes are most important is necessary in order to establish effective control over release or exposure. Polycyclic aromatic hydrocarbons (PAH), multialkylated PAH, primary aromatic amines and N-heterocyclic PAH are significant contributors to the overall mutagenic activities of a large number of materials examined. Ames test data show that the basic, primary aromatic amine fraction is the most active. PAHs, multialkylated PAHs and N-heterocyclic PAHs are all components of the neutral fraction. In nearlymore » all cases, the neutral fractions contribute the largest portion of the mutagenic activity, while the basic primary aromatic amine fractions have the highest specific activity. Neutral fractions are usually the largest (wt %) whereas the total basic fractions are small by comparison; thus, the overall greater contribution of the neutral fraction to the mutagenic activity of most samples. Biologically active constituents are isolated in preparative scale amounts from complex mixtures utilizing combinations of liquid-liquid extraction and various liquid chromatographic column-eluant combinations. Fractions are characterized using a combination of spectroscopic techniques and gas chromatography/mass spectrometry.« less

  19. Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp.

    PubMed

    Fredrickson, J K; Balkwill, D L; Romine, M F; Shi, T

    1999-10-01

    Several new species of the genus Sphingomonas including S. aromaticivorans, S. stygia, and S. subterranea that have the capacity for degrading a broad range of aromatic compounds including toluene, naphthalene, xylenes, p-cresol, fluorene, biphenyl, and dibenzothiophene, were isolated from deeply-buried (>200 m) sediments of the US Atlantic coastal plain (ACP). In S. aromaticivorans F199, many of the genes involved in the catabolism of these aromatic compounds are encoded on a 184-kb conjugative plasmid; some of the genes involved in aromatic catabolism are plasmid-encoded in the other strains as well. Members of the genus Sphingomonas were common among aerobic heterotrophic bacteria cultured from ACP sediments and have been detected in deep subsurface environments elsewhere. The major source of organic carbon for heterotrophic metabolism in ACP deep aquifers is lignite that originated from plant material buried with the sediments. We speculate that the ability of the subsurface Sphingomonas strains to degrade a wide array of aromatic compounds represents an adaptation for utilization of sedimentary lignite. These and related subsurface Sphingomonas spp may play an important role in the transformation of sedimentary organic carbon in the aerobic and microaerobic regions of the deep aquifers of the ACP.

  20. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds.

    PubMed

    Rodriguez, Alberto; Martínez, Juan A; Flores, Noemí; Escalante, Adelfo; Gosset, Guillermo; Bolivar, Francisco

    2014-09-09

    The production of aromatic amino acids using fermentation processes with recombinant microorganisms can be an advantageous approach to reach their global demands. In addition, a large array of compounds with alimentary and pharmaceutical applications can potentially be synthesized from intermediates of this metabolic pathway. However, contrary to other amino acids and primary metabolites, the artificial channelling of building blocks from central metabolism towards the aromatic amino acid pathway is complicated to achieve in an efficient manner. The length and complex regulation of this pathway have progressively called for the employment of more integral approaches, promoting the merge of complementary tools and techniques in order to surpass metabolic and regulatory bottlenecks. As a result, relevant insights on the subject have been obtained during the last years, especially with genetically modified strains of Escherichia coli. By combining metabolic engineering strategies with developments in synthetic biology, systems biology and bioprocess engineering, notable advances were achieved regarding the generation, characterization and optimization of E. coli strains for the overproduction of aromatic amino acids, some of their precursors and related compounds. In this paper we review and compare recent successful reports dealing with the modification of metabolic traits to attain these objectives.

  1. The banana code—natural blend processing in the olfactory circuitry of Drosophila melanogaster

    PubMed Central

    Schubert, Marco; Hansson, Bill S.; Sachse, Silke

    2014-01-01

    Odor information is predominantly perceived as complex odor blends. For Drosophila melanogaster one of the most attractive blends is emitted by an over-ripe banana. To analyze how the fly's olfactory system processes natural blends we combined the experimental advantages of gas chromatography and functional imaging (GC-I). In this way, natural banana compounds were presented successively to the fly antenna in close to natural occurring concentrations. This technique allowed us to identify the active odor components, use these compounds as stimuli and measure odor-induced Ca2+ signals in input and output neurons of the Drosophila antennal lobe (AL), the first olfactory neuropil. We demonstrate that mixture interactions of a natural blend are very rare and occur only at the AL output level resulting in a surprisingly linear blend representation. However, the information regarding single components is strongly modulated by the olfactory circuitry within the AL leading to a higher similarity between the representation of individual components and the banana blend. This observed modulation might tune the olfactory system in a way to distinctively categorize odor components and improve the detection of suitable food sources. Functional GC-I thus enables analysis of virtually any unknown natural odorant blend and its components in their relative occurring concentrations and allows characterization of neuronal responses of complete neural assemblies. This technique can be seen as a valuable complementary method to classical GC/electrophysiology techniques, and will be a highly useful tool in future investigations of insect-insect and insect-plant chemical interactions. PMID:24600405

  2. Identification of genotoxic compounds in crude oil using fractionation according to distillation, polarity and Kow.

    PubMed

    Park, Shin Yeong; Lee, Hyo Jin; Khim, Jong Seong; Kim, Gi Beum

    2017-01-30

    We examined the degree of DNA damage caused by fractions of crude oil in accordance with the boiling points, polarity and log K ow . Relatively high DNA damage was observed in the aromatic fraction (290-330°C) and resin and polar fraction (350-400°C). The resin and polar fraction showed relatively high genotoxicity compared with the aliphatic and aromatic fraction at the 1-4 log K ow range. At the 6-7 log K ow range, the aromatic fraction showed relatively high DNA damage compared with the aliphatic and resin and polar fraction. In particular, every detailed fraction in accordance with the log K ow values (aliphatic and aromatic (310-320°C) and resins and polar fractions (370-380°C)) showed one or less than one DNA damage. However, the fractions before separation in accordance with log K ow values (aliphatic and aromatic (310-320°C) and resin and polar (370-380°C) fractions) showed high DNA damage. Thus, we confirm the synergistic action between the detailed compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Aromatic volatile organic compounds and their role in ground-level ozone formation in Russia

    NASA Astrophysics Data System (ADS)

    Berezina, E. V.; Moiseenko, K. B.; Skorokhod, A. I.; Elansky, N. F.; Belikov, I. B.

    2017-05-01

    This paper reports proton mass spectrometry data on aromatic volatile organic compounds (VOCs) (benzene, toluene, phenol, styrene, xylene, and propylbenzene) obtained in different Russian regions along the Trans-Siberian Railway from Moscow to Vladivostok, based on expedition data retrieved using the TRO-ICA-12 mobile laboratory in the summer of 2008. The contribution of aromatic VOCs to ozone formation in the cities and regions along the measurement route has been estimated quantitatively. The greatest contribution of aromatic VOCs to ozone formation is characteristic of large cities along the Trans-Siberian Railway (up to 7.5 ppbv O3) specified by the highest concentrations of aromatic VOCs (1-1.7 ppbv) and nitrogen oxides (>20 ppbv). The results obtained are indicative of a considerable contribution (30-50%) of anthropogenic emissions of VOCs to photochemical ozone generation in the large cities along the Trans-Siberian Railway in hot and dry weather against the background of a powerful natural factor such as isoprene emissions controlling the regional balance of ground-level ozone in warm seasons.

  4. Process for detoxifying coal tars

    DOEpatents

    Longwell, John P.; Peters, William A.

    1983-01-01

    A process for treating liquid hydrocarbons to remove toxic, mutagenic and/or carcinogenic aromatic hydrocarbons comprises feeding the hydrocarbons into a reactor where vapors are thermally treated in contact with a catalyst consisting essentially of calcium oxide or a calcium oxide containing mineral. Thermally treating liquid hydrocarbons in contact with calcium oxide preferentially increases the cracking of aromatics thus producing a product having a reduced amount of aromatic compounds.

  5. Polyphenylquinoxalines via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor)

    1990-01-01

    Polyphenylquinoxalines are prepared by the nucleophilic displacement reaction of di(hydroxyphenyl)quinoxaline monomers with activated aromatic dihalides or dinitro compounds. The reactions are carried out in polar aprotic solvents using alkali metal bases at elevated temperatures under nitrogen. The di(hydroxyphenyl)quinoxaline monomers are prepared either by reacting stoichiometric quantities of aromatic bis(o-diamines) with a hydroxybenzil or by reacting o-phenylenediamine with a dihydroxybenzil or bis(hydroxyphenylglyoxylyl)benzene.

  6. Polyphenylquinoxalines via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor)

    1991-01-01

    Polyphenylquinoxalines are prepared by the nucleophilic displacement reaction of di(hydroxyphenyl)quinoxaline monomers with activated aromatic dihalides or dinitro compounds. The reactions are carried out in polar aprotic solvents during alkali metal bases at elevated temperatures under nitrogen. The di(hydroxyphenyl)quinoxaline monomers are prepared either by reacting stoichiometric quantities of aromatic bis(o-diamines) with a hydroxybenzil or by reacting o-phenylenediamine with a dihydroxybenzil or bis(hydroxyphenylglyoxylyl)benzene.

  7. Reductions in aircraft particulate emissions due to the use of Fischer-Tropsch fuels

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Timko, M. T.; Ziemba, L. D.; Bulzan, D.; Corporan, E.; Herndon, S. C.; Howard, R.; Miake-Lye, R.; Thornhill, K. L.; Winstead, E.; Wey, C.; Yu, Z.; Anderson, B. E.

    2014-01-01

    The use of alternative fuels for aviation is likely to increase due to concerns over fuel security, price stability, and the sustainability of fuel sources. Concurrent reductions in particulate emissions from these alternative fuels are expected because of changes in fuel composition including reduced sulfur and aromatic content. The NASA Alternative Aviation Fuel Experiment (AAFEX) was conducted in January-February 2009 to investigate the effects of synthetic fuels on gas-phase and particulate emissions. Standard petroleum JP-8 fuel, pure synthetic fuels produced from natural gas and coal feedstocks using the Fischer-Tropsch (FT) process, and 50% blends of both fuels were tested in the CFM-56 engines on a DC-8 aircraft. To examine plume chemistry and particle evolution with time, samples were drawn from inlet probes positioned 1, 30, and 145 m downstream of the aircraft engines. No significant alteration to engine performance was measured when burning the alternative fuels. However, leaks in the aircraft fuel system were detected when operated with the pure FT fuels as a result of the absence of aromatic compounds in the fuel. Dramatic reductions in soot emissions were measured for both the pure FT fuels (reductions in mass of 86% averaged over all powers) and blended fuels (66%) relative to the JP-8 baseline with the largest reductions at idle conditions. At 7% power, this corresponds to a reduction from 7.6 mg kg-1 for JP-8 to 1.2 mg kg-1 for the natural gas FT fuel. At full power, soot emissions were reduced from 103 to 24 mg kg-1 (JP-8 and natural gas FT, respectively). The alternative fuels also produced smaller soot (e.g., at 85% power, volume mean diameters were reduced from 78 nm for JP-8 to 51 nm for the natural gas FT fuel), which may reduce their ability to act as cloud condensation nuclei (CCN). The reductions in particulate emissions are expected for all alternative fuels with similar reductions in fuel sulfur and aromatic content regardless of the feedstock. As the plume cools downwind of the engine, nucleation-mode aerosols form. For the pure FT fuels, reductions (94% averaged over all powers) in downwind particle number emissions were similar to those measured at the exhaust plane (84%). However, the blended fuels had less of a reduction (reductions of 30-44%) than initially measured (64%). The likely explanation is that the reduced soot emissions in the blended fuel exhaust plume results in promotion of new particle formation microphysics, rather than coating on pre-existing soot particles, which is dominant in the JP-8 exhaust plume. Downwind particle volume emissions were reduced for both the pure (79 and 86% reductions) and blended FT fuels (36 and 46%) due to the large reductions in soot emissions. In addition, the alternative fuels had reduced particulate sulfate production (near zero for FT fuels) due to decreased fuel sulfur content. To study the formation of volatile aerosols (defined as any aerosol formed as the plume ages) in more detail, tests were performed at varying ambient temperatures (-4 to 20 °C). At idle, particle number and volume emissions were reduced linearly with increasing ambient temperature, with best fit slopes corresponding to -8 × 1014 particles (kg fuel)-1 °C-1 for particle number emissions and -10 mm3 (kg fuel)-1 °C-1 for particle volume emissions. The temperature dependency of aerosol formation can have large effects on local air quality surrounding airports in cold regions. Aircraft-produced aerosols in these regions will be much larger than levels expected based solely on measurements made directly at the engine exit plane. The majority (90% at idle) of the volatile aerosol mass formed as nucleation-mode aerosols, with a smaller fraction as a soot coating. Conversion efficiencies of up to 2.8% were measured for the partitioning of gas-phase precursors (unburned hydrocarbons and SO2) to form volatile aerosols. Highest conversion efficiencies were measured at 45% power.

  8. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    PubMed Central

    Guillamon, Jose Manuel; Torija, Maria Jesus; Beltran, Gemma; Troncoso, Ana M.; Garcia-Parrilla, M. Carmen

    2014-01-01

    Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements. PMID:24895623

  9. Enzymes involved in a novel anaerobic cyclohexane carboxylic acid degradation pathway.

    PubMed

    Kung, Johannes W; Meier, Anne-Katrin; Mergelsberg, Mario; Boll, Matthias

    2014-10-01

    The anaerobic degradation of cyclohexane carboxylic acid (CHC) has so far been studied only in Rhodopseudomonas palustris, in which CHC is activated to cyclohexanoyl coenzyme A (cyclohexanoyl-CoA [CHCoA]) and then dehydrogenated to cyclohex-1-ene-1-carboxyl-CoA (CHeneCoA). This intermediate is further degraded by reactions of the R. palustris-specific benzoyl-CoA degradation pathway of aromatic compounds. However, CHeneCoA is not an intermediate in the degradation of aromatic compounds in all other known anaerobic bacteria; consequently, degradation of CHC was mostly unknown in anaerobic bacteria. We identified a previously unknown CHC degradation pathway in the Fe(III)-reducing Geobacter metallireducens by determining the following CHC-induced in vitro activities: (i) the activation of CHC to CHCoA by a succinyl-CoA:CHC CoA transferase, (ii) the 1,2-dehydrogenation of CHCoA to CHeneCoA by CHCoA dehydrogenase, and (iii) the unusual 1,4-dehydrogenation of CHeneCoA to cyclohex-1,5-diene-1-carboxyl-CoA. This last represents a previously unknown joint intermediate of the CHC and aromatic compound degradation pathway in bacteria other than R. palustris. The enzymes catalyzing the three reactions were purified and characterized as specific enzymes after heterologous expression of the encoding genes. Quantitative reverse transcription-PCR revealed that expression of these genes was highly induced during growth with CHC but not with benzoate. The newly identified CHC degradation pathway is suggested to be present in nearly all CHC-degrading anaerobic bacteria, including denitrifying, Fe(III)-reducing, sulfate-reducing, and fermenting bacteria. Remarkably, all three CHC degradation pathways always link CHC catabolism to the catabolic pathways of aromatic compounds. We propose that the capacity to use CHC as a carbon source evolved from already-existing aromatic compound degradation pathways. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Enzymes Involved in a Novel Anaerobic Cyclohexane Carboxylic Acid Degradation Pathway

    PubMed Central

    Kung, Johannes W.; Meier, Anne-Katrin; Mergelsberg, Mario

    2014-01-01

    The anaerobic degradation of cyclohexane carboxylic acid (CHC) has so far been studied only in Rhodopseudomonas palustris, in which CHC is activated to cyclohexanoyl coenzyme A (cyclohexanoyl-CoA [CHCoA]) and then dehydrogenated to cyclohex-1-ene-1-carboxyl-CoA (CHeneCoA). This intermediate is further degraded by reactions of the R. palustris-specific benzoyl-CoA degradation pathway of aromatic compounds. However, CHeneCoA is not an intermediate in the degradation of aromatic compounds in all other known anaerobic bacteria; consequently, degradation of CHC was mostly unknown in anaerobic bacteria. We identified a previously unknown CHC degradation pathway in the Fe(III)-reducing Geobacter metallireducens by determining the following CHC-induced in vitro activities: (i) the activation of CHC to CHCoA by a succinyl-CoA:CHC CoA transferase, (ii) the 1,2-dehydrogenation of CHCoA to CHeneCoA by CHCoA dehydrogenase, and (iii) the unusual 1,4-dehydrogenation of CHeneCoA to cyclohex-1,5-diene-1-carboxyl-CoA. This last represents a previously unknown joint intermediate of the CHC and aromatic compound degradation pathway in bacteria other than R. palustris. The enzymes catalyzing the three reactions were purified and characterized as specific enzymes after heterologous expression of the encoding genes. Quantitative reverse transcription-PCR revealed that expression of these genes was highly induced during growth with CHC but not with benzoate. The newly identified CHC degradation pathway is suggested to be present in nearly all CHC-degrading anaerobic bacteria, including denitrifying, Fe(III)-reducing, sulfate-reducing, and fermenting bacteria. Remarkably, all three CHC degradation pathways always link CHC catabolism to the catabolic pathways of aromatic compounds. We propose that the capacity to use CHC as a carbon source evolved from already-existing aromatic compound degradation pathways. PMID:25112478

  11. Polymer blend compositions and methods of preparation

    DOEpatents

    Naskar, Amit K.

    2016-09-27

    A polymer blend material comprising: (i) a first polymer containing hydrogen bond donating groups having at least one hydrogen atom bound to a heteroatom selected from oxygen, nitrogen, and sulfur, or an anionic version of said first polymer wherein at least a portion of hydrogen atoms bound to a heteroatom is absent and replaced with at least one electron pair; (ii) a second polymer containing hydrogen bond accepting groups selected from nitrile, halogen, and ether functional groups; and (iii) at least one modifying agent selected from carbon particles, ether-containing polymers, and Lewis acid compounds; wherein, if said second polymer contains ether functional groups, then said at least one modifying agent is selected from carbon particles and Lewis acid compounds. Methods for producing the polymer blend, molded forms thereof, and articles thereof, are also described.

  12. Structural and thermomechanical properties of the zinc-blende AlX (X = P, As, Sb) compounds

    NASA Astrophysics Data System (ADS)

    Ha, Vu Thi Thanh; Hung, Vu Van; Hanh, Pham Thi Minh; Nguyen, Viet Tuyen; Hieu, Ho Khac

    2017-08-01

    The structural and thermomechanical properties of zinc-blende aluminum class of III-V compounds have been studied based on the statistical moment method (SMM) in quantum statistical mechanics. Within the SMM scheme, we derived the analytical expressions of the nearest-neighbor distance, thermal expansion coefficient, atomic mean-square displacement and elastic moduli (Young’s modulus, bulk modulus and shear modulus). Numerical calculations have been performed for zinc-blende AlX (X = As, P, Sb) at ambient conditions up to the temperature of 1000 K. Our results are in good and reasonable agreements with earlier measurements and can provide useful references for future experimental and theoretical works. This research presents a systematic approach to investigate the thermodynamic and mechanical properties of materials.

  13. PHOTOACTIVATION AND TOXICITY OF MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBON COMPOUNDS IN MARINE SEDIMENT

    EPA Science Inventory

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration se...

  14. Evaluating the Role of Drone-Produced Chemical Signals in Mediating Social Interactions in Honey Bees (Apis mellifera).

    PubMed

    Villar, Gabriel; Wolfson, Megan D; Hefetz, Abraham; Grozinger, Christina M

    2018-01-01

    Pheromones play a critical role in shaping societies of social insects, including honey bees, Apis mellifera. While diverse functions have been ascribed to queen- and worker-produced compounds, few studies have explored the identity and function of male-produced (drone) compounds. However, several lines of evidence suggest that drones engage in a variety of social interactions inside and outside of the colony. Here we elucidate the chemical composition of extracts of the drone mandibular gland, and test the hypothesis that compounds produced in these glands, or a synthetic blend consisting of the six main compounds, mediate drone social interactions in and out of the colony. Drone mandibular glands primarily produce a blend of saturated, unsaturated and methyl branched fatty acids ranging in chain length from nonanoic to docosanoic acids, and both gland extracts and synthetic blends of these chemicals serve to attract drones outside of the hive, but do not attract workers inside the hive. These studies shed light on the role drones and drone-produced chemicals have on mediating social interactions with other drones and highlight their potential importance in communicating with other castes.

  15. Volatile compounds released by disturbed and calm adults of the tarnished plant bug, Lygus lineolaris.

    PubMed

    Wardle, A R; Borden, J H; Pierce, H D; Gries, R

    2003-04-01

    Volatile compounds released by disturbed and calm female and male Lygus lineolaris were collected and analyzed. Six major compounds were present in samples from disturbed bugs and from calm females: (E)-2-hexenal, 1-hexanol, (E)-2-hexenol, hexyl butyrate, (E)-2-hexenyl butyrate, and (E)-2,4-oxohexenal. (E)-2-hexenal was lacking in volatiles collected from calm males. Hexyl butyrate accounted for approximately 68% and 66% of volatiles released by agitated and calm females, and 87% and 88% of volatiles released by agitated and calm males, respectively. Blends released by disturbed insects differed quantitatively from blends released by calm insects, with amounts of compounds increasing 75-350 times in samples from disturbed insects. In static air bioassays, both females and males were repelled by natural volatiles collected from females and by five-component [(E)-2,4-oxohexenal excluded] and six-component synthetic blends at doses of 1 and 10 bug-hours, indicating that these volatiles may serve an alarm or epideictic function, as well as a possible role as defensive allomones. Adults also avoided hexyl butyrate, (E)-2-hexenyl butyrate, (E)-2-hexenol, and (E)-2,4-oxohexenal, but not 1-hexanol and (E)-2-hexenal when compounds were assayed individually in static air bioassays at doses equal to 1 bug-hour. When tested over 1 day in two-choice cage trials, adults did not prefer untreated bean plants over bean plants surrounded by vials releasing up to 8.1 mg/hr (= 234 bug-hours) of the five-component synthetic blend. Therefore, the volatiles produced by disturbed adults would not be useful as a repellent for L. lineolaris.

  16. Characterization of herb residue and high ash-containing paper sludge blends from fixed bed pyrolysis.

    PubMed

    Li, Tiantao; Guo, Feiqiang; Li, Xiaolei; Liu, Yuan; Peng, Kuangye; Jiang, Xiaochen; Guo, Chenglong

    2018-04-10

    High ash-containing paper sludge which is rich in various metal oxides is employed in herb residue pyrolysis to enhance the yield of fuel gas and reduce tar yield in a drop tube fixed bed reactor. Effects of heat treatment temperature and blending ratio of paper sludge on the yields and composition of pyrolysis products (gas, tar and char) were investigated. Results indicate that paper sludge shows a significantly catalytic effect during the pyrolysis processes of herb residue, accelerating the pyrolysis reactions. The catalytic effect resulted in an increase in gas yield but a decrease in tar yield. The catalytic effect degree is affected by the paper sludge proportions, and the strongest catalytic effect of paper sludge is noted at its blending ratio of 50%. At temperature lower than 900 °C, the catalytic effect of paper sludge in the pyrolysis of herb residue promotes the formation of H 2 and CO 2 , inhibits the formation of CH 4 , but shows slight influence on the formations of CO, while the formation of the four gas components was all promoted at 900 °C. SEM results of residue char show that ash particles from paper sludge adhere to the surface of the herb residue char after pyrolysis, which may promote the pyrolysis process of herb residue for more gas releasing. FT-IR results indicate that most functional groups disappear after pyrolysis. The addition of paper sludge promotes deoxidisation and aromatization reactions of hetero atoms tars, forming heavier polycyclic aromatic hydrocarbons and leading to tar yield decrease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Gasification of blended animal manures to produce synthesis gas and activated charcoal

    USDA-ARS?s Scientific Manuscript database

    Blended swine solids, chicken litter, and hardwood are renewable and expensive sources to produce combined heat and power (CHP), fuels and related chemicals. The therrmochemical pathway to gasify manure has the added advantage of destroying harmful pathogens and pharmaceutically active compounds dur...

  18. Organics Captured from Comet Wild 2 by the Stardust Spacecraft

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Aleon, Jerome; Araki, Tohru; Bajt, Sasa; Baratta, Giuseppe A.; Borg, Janet; Brucato, John R.; Burchell, Mark J.; Busemann, Henner; Butterworth, Anna; hide

    2007-01-01

    Organics found in Comet Wild 2 samples show a heterogeneous and unequilibrated distribution in abundance and composition. Some are similar, but not identical, to those in interplanetary dust particles (IDPs) and carbonaceous meteorites. A new class of aromatic-poor organic material is also present. The organics are rich in O and N compared to meteoritic organics. Aromatic compounds are present, but the samples tend to be relatively poorer in aromatics than meteorites and IDPs. D and 15N suggest that some organics have an interstellar/protostellar heritage. While the variable extent of modification of these materials by impact capture is not yet fully constrained, a remarkably diverse suite of organic compounds is present and identifiable within the returned samples.

  19. Comparison and characterization of volatile compounds as markers of oils stability during frying by HS-SPME-GC/MS and Chemometric analysis.

    PubMed

    Ben Hammouda, Ibtissem; Freitas, Flavia; Ammar, Sonda; Da Silva, M D R Gomes; Bouaziz, Mohamed

    2017-11-15

    The formation and emission of volatile compounds, including the aldehydes and some toxic compounds of oil samples, ROPO pure (100%) and the blended ROPO/RCO (80-20%), were carried out during deep frying at 180°C. The volatile profile of both oil samples was evaluated by an optimized HS-SPME-GC/MS method, before and after 20, 40 and 60 successive sessions of deep-frying. Actually, from 100 detected compounds, aldehydes were found to be the main group formed. In addition, the oil degradation under thermal treatment regarding the volatile compounds were evaluated and compared. Consequently, the blended ROPO/RCO revealed fewer formations of unsaturated aldehydes, including toxic ones, such as acrolein, and showed a greater stability against oxidative thermal degradation compared to ROPO pure. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Aromaticity and Antiaromaticity in Zintl Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Zhong -Ming; Liu, Chao; Popov, Ivan Aleksandrovich

    Originally, the concepts of aromaticity and antiaromaticity were introduced to explain the stability and reactivity of unsaturated organic compounds. Since then, they have been extended to other species with delocalized electrons including various saturated systems, organometallic compounds, and even inorganic clusters and molecules. In this study, we focus on the most recent progress of using these concepts to guide experimental synthesis and rationalize geometrical and electronic structures of a particular family of polyanions composed of Group 14 and 15 elements, namely Zintl clusters.

  1. Aromaticity and Antiaromaticity in Zintl Clusters

    DOE PAGES

    Sun, Zhong -Ming; Liu, Chao; Popov, Ivan Aleksandrovich; ...

    2018-05-18

    Originally, the concepts of aromaticity and antiaromaticity were introduced to explain the stability and reactivity of unsaturated organic compounds. Since then, they have been extended to other species with delocalized electrons including various saturated systems, organometallic compounds, and even inorganic clusters and molecules. In this study, we focus on the most recent progress of using these concepts to guide experimental synthesis and rationalize geometrical and electronic structures of a particular family of polyanions composed of Group 14 and 15 elements, namely Zintl clusters.

  2. Radiation-resistant, amorphous, all-aromatic poly(arylene ether sulfones) - Synthesis, physical behavior, and degradation characteristics

    NASA Technical Reports Server (NTRS)

    Lewis, D. A.; O'Donnell, James H.; Hedrick, J. L.; Ward, T. C.; Mcgrath, J. E.

    1989-01-01

    The effects of Co-60 gamma radiation on a series of poly(arylene ether sulfones) prepared by nucleophilic activated aromatic substitution are investigated experimentally. The preparation of the test compounds is described, and the test results are presented in extensive tables and graphs. Radiation-induced degradation, as measured by SO2 production, was found to be lowest in compounds based on biphenol rather than bisphenol A; these findings were also well correlated with ultimate-tensile-strain measurements.

  3. Experimental study on particulate and NOx emissions of a diesel engine fueled with ultra low sulfur diesel, RME-diesel blends and PME-diesel blends.

    PubMed

    Zhu, Lei; Zhang, Wugao; Liu, Wei; Huang, Zhen

    2010-02-01

    Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NO(x) emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NO(x) emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NO(x) emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NO(x) emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Polybenzimidazoles Via Aromatic Nucleophilic Displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergerrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1997-01-01

    Novel molecular weight controlled and endcapped polybenzimidazoles (PBI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenylbenzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The PBI are endcapped with mono(hydroxyphenyl)benzimidazoles. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. Mono(hydroxyphenyl)benzimidazoles are synthesized by reacting phenyl-4-hydroxybenzoate with aromatic (o-diamine)s in diphenylsulfone. Molecular weight controlled and endcapped PBI of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.

  5. Polybenzimidazoles via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1995-01-01

    Novel molecular weight controlled and endcapped polybenzimidazoles (PBI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl benzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The PBI are endcapped with mono(hydroxyphenyl) benzimidazoles. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. Mono(hydroxyphenyl) benzimidazoles are synthesizedby reacting phenyl-4-hydroxybenzoate with aromatic (o-diamine)s in diphenylsulfone. Molecular weight controlled and endcapped PBI of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.

  6. A study of the dynamic flammability of radiation cross-linked flame-retardant HDPE/EPDM/silicon-elastomer compound

    NASA Astrophysics Data System (ADS)

    Jia, Shaojin; Zhang, Zhicheng; Du, Zhiwen; Teng, Renrui; Wang, Zhengzhou

    2003-04-01

    A dynamic flammability study of flame-retardant compound consisting of HDPE, EPDM and silicon elastomer blended with additives, as wire and cable insulation was made before and after irradiation. The data of RHR, EHC, SEC and the concentration of CO and CO 2 from cone colorimeter shown in the burning process were accessed. By blending silicon elastomer, CO release rate was reduced and the thermal endurance was improved. Oxygen index, mechanical property, morphology of the char formed in dynamical flame and thermal stability were also investigated.

  7. Trimerization of aromatic nitriles

    NASA Technical Reports Server (NTRS)

    Hsu, L. C. (Inventor)

    1977-01-01

    Triazine compounds and cross-linked polymer compositions were made by heating aromatic nitriles to a temperature in the range of about 100 C to about 700 C, in the presence of a catalyst or mixture of catalysts. Aromatic nitrile-modified (terminated and/or appended) imide, benzimidazole, imidazopyrrolone, quinoxaline, and other condensation type prepolymers or their precopolymers were made which were trimerized with or without a filler by the aforementioned catalytic trimerization process.

  8. Susceptibility of eastern oyster early life stages to road surface polycyclic aromatic hydrocarbons (PAHs).

    DOT National Transportation Integrated Search

    2012-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are a class of chemical compounds that are mostly : anthropogenic in nature, and they can become persistent organic contaminants in aquatic : ecosystems. Runoff from impervious surfaces is one of the many ways ...

  9. CONTROL OF AROMATIC WASTE AIR STREAMS BY SOIL BIOREACTORS

    EPA Science Inventory

    Three soils were examined for the ability to degrade hydrocarbon vapors of benzene, toluene, ethylbenzene, and o-xylene (BTEX). Each of these compounds are major aromatic constituents of gasolines. The soils examined were Rubicon Sand from Traverse City, Michigan, Durant Loam fro...

  10. Pyrolysis of blended animal manures to produce combustible gas and value-added charcoal adsorbent

    USDA-ARS?s Scientific Manuscript database

    Blended swine solids, chicken litter, and rye grass were pyrolyzed using a skid-mounted sytem. Produced gas composition was analyzed for major hydrocarbons and S-containing compounds. Charcoal was analyzed for its surface functional groups, contact angles, HHV, and total element contents. Some of th...

  11. [Characteristics of organic pollutants in the sediments from a typical electronics industrial zone].

    PubMed

    Liu, Jin; Deng, Dai-Yong; Xu, Mei-Ying; Sun, Guo-Ping

    2013-03-01

    In order to investigate the contamination status of organic pollutants in a river of a typical electrical equipment industrial area, Ronggui, Foshan, the sediments were sampled for the composition, concentration and occurrence analysis of organic pollutants. The polar and non-polar fractionation methods were employed for the fingerprint establishment of organic pollutants. One hundred and seventy-one of organic chemicals including ten categories of alkanes, alkenes, polycyclic aromatic hydrocarbons, benzene, heterocyclic compounds, phthalate esters, aldehydes, ketones, polar compounds, silicon-containing material as well as alkyl esters were examined. The number of different categories of the detected organic pollutants in a descending order was: alkanes > polar compounds > polycyclic aromatic hydrocarbons > aldehydes and ketones > heterocyclic compounds > benzene homologues, phthalate ester > alkyl esters > silicon material > olefins. The abundance of detected organic pollutants in a descending order was: alkanes > polar compounds > alkyl esters > olefins > polycyclic aromatic hydrocarbons > phthalates > silicon material > aldehydes and ketones > heterocyclic compounds > benzene homologues. Among the 51 kinds of alkanes detected, nonadecane accounted for 14.83%, and the persistent organic pollutants accounted for 2.33% of the total organic matter. Compared to similar studies, there were 51 kinds of alkanes and they accounted for 55.5% of the total organic chemicals, showing high diversity and abundance. In addition, some electronics industry-related organic pollutants such as silicone materials were also detected in high frequency.

  12. Photocatalytic degradation of paracetamol: intermediates and total reaction mechanism.

    PubMed

    Moctezuma, Edgar; Leyva, Elisa; Aguilar, Claudia A; Luna, Raúl A; Montalvo, Carlos

    2012-12-01

    The advanced oxidation of paracetamol (PAM) promoted by TiO(2)/UV system in aqueous medium was investigated. Monitoring this reaction by HPLC and TOC, it was demonstrated that while oxidation of paracetamol is quite efficient under these conditions, its mineralization is not complete. HPLC indicated the formation of hydroquinone, benzoquinone, p-aminophenol and p-nitrophenol in the reaction mixtures. Further evidence of p-nitrophenol formation was obtained following the reaction by UV-vis spectroscopy. Continuous monitoring by IR spectroscopy demonstrated the breaking of the aromatic amide present in PAM and subsequent formation of several aromatic intermediate compounds such as p-aminophenol and p-nitrophenol. These aromatic compounds were eventually converted into trans-unsaturated carboxylic acids. Based on these experimental results, an alternative deacylation mechanism for the photocatalytic oxidation of paracetamol is proposed. Our studies also demonstrated IR spectroscopy to be a useful technique to investigate oxidative mechanisms of pharmaceutical compounds. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Stereodynamics and edge-to-face CH-π aromatic interactions in imino compounds containing heterocyclic rings.

    PubMed

    González-Rosende, M Eugenia; Castillo, Encarna; Jennings, W Brian; Malone, John F

    2017-02-07

    By comparison with close contact interactions between benzene rings there is a paucity of experimental data available for attractive interactions involving aromatic heterocyclic rings, especially for small molecules in solution. Herein we describe aromatic heterocyclic and carbocyclic edge-to face interactions and conformational stereodynamics of N-1,2-diphenylethyl imines bearing a phenyl group and either a 2-pyridyl, 3-pyridyl, 2-thiophene or 2-furanyl moiety on the imino carbon. X-ray crystal structures have been determined for two compounds. Slow rotation about the phenyl-imino bond in the E-isomers and around the heterocycle-imino bond in the Z-isomers of the pyridyl compounds was observed at low temperatures by NMR. Abnormally large shielding of one ortho hydrogen indicates that both the imino phenyl and heterocycle rings can engage in an edge-to-face interaction with the N-terminal phenyl moiety in the appropriate isomer. Some rotational barriers around the phenyl-imino and heterocycle-imino bonds were measured.

  14. In situ growth of monodispersed Fe3O4 nanoparticles on graphene for the removal of heavy metals and aromatic compounds.

    PubMed

    Wu, Hai-Xia; Wu, Jia-Wei; Niu, Zhi-Gang; Shang, Xiu-Li; Jin, Jun

    2013-01-01

    We report on the efficient removal of heavy metal ions and aromatic compounds from simulated wastewater with a nanocomposite. The nanocomposite was obtained via thermal decomposition of the precursor Fe(acac)3 onto the surface of graphene, modified by diethylenetriamine pentaacetic anhydride through dopamine. It was found that the maximum adsorption capacity of the nanocomposite toward Cu(2+) and naphthalene was 207.9 and 72.2 mg g(-1) respectively, displaying a high efficiency for the removal of heavy metal ions as well as aromatic compounds at pH 7.0 and 293 K. The Langmuir for naphthalene and the Freundlich for the Cu(2+) adsorption isotherms were applicable for describing the removal processes. Furthermore, the nanocomposite was carefully examined by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectra, and UV-vis spectroscopy. This work provides a very efficient, fast and convenient approach to exploring a promising nanocomposite for water treatment.

  15. In Vitro Antifungal Activity of New and Known Geranylated Phenols against Phytophthora cinnamomi Rands.

    PubMed

    Chavez, María I; Soto, Mauricio; Cimino, Franco A; Olea, Andrés F; Espinoza, Luis; Díaz, Katy; Taborga, Lautaro

    2018-05-29

    A series of new and known geranylated phenol/methoxyphenol derivatives has been tested in vitro as inhibitor agents of mycelial growth of Phytophthora cinnamomi . The activity of tested compounds is correlated with the nature, number, and position of the substituent group on the aromatic ring. Results indicate that the most active geranylated derivatives are those having two hydroxyl groups (or one ⁻OH and one ⁻OCH₃) attached to the aromatic ring. Interestingly, these derivatives are as active as Metalaxil ® , a commonly used commercial fungicide. Thus, our results suggest that some of these compounds might be of agricultural interest due to their potential use as fungicides against P. cinnamomi . The effect of structure on fungicide activity is discussed in terms of electronic distribution on both the aromatic ring and side geranyl chain. All tested compounds have been synthesized by direct coupling of geraniol and the respective phenol. Interestingly, new digeranylated derivatives were obtained by increasing the reaction time.

  16. Synthesis and electronic factors in thermal cyclodimerization of functionalized aromatic trifluorovinyl ethers.

    PubMed

    Spraul, Bryan K; Suresh, S; Jin, Jianyong; Smith, Dennis W

    2006-05-31

    A series of 19 p-substituted aromatic trifluorovinyl ether compounds were prepared from versatile intermediate p-Br-C(6)H(4)-O-CF=CF(2) and underwent thermal radical mediated cyclodimerization to new difunctional compounds containing the 1,2-disubstituted perfluorocyclobutyl (PFCB) linkage. The synthetic scope demonstrates the functional group transformation tolerance of the fluorovinyl ether, and the dimers are useful as monomers for traditional step-growth polymerization methods. (19)F NMR spectra confirmed that p-substitution affects the trifluorovinyl ether group chemical shifts. The first kinetic studies and substituent effects on thermal cyclodimerization were performed, and the results indicated that electron-withdrawing groups slow the rate of cyclodimerization. The data were further analyzed using the Hammett equation, and reaction constants (rho) of -0.46 at 120 degrees C and -0.59 at 130 degrees C were calculated. This study presents the first liner free energy relationship reported for the cyclodimerization of aromatic trifluorovinyl ethers to PFCB compounds.

  17. CHEMISTRY OF OXIDATION OF POLYCYCLIC AROMATIC HYDROCARBONS BY SOIL PSEUDOMONADS

    PubMed Central

    Rogoff, Martin H.

    1962-01-01

    Rogoff, Martin H. (U.S. Bureau of Mines, Pittsburgh, Pa.). Oxidation of polycyclic aromatic hydrocarbons by soil pseudomonads. J. Bacteriol. 83:998–1004. 1962.—Substitution of phenanthrene by a methyl group at the 9-carbon blocks oxidation of the compound by a resting-cell suspension of a phenanthrene-grown soil pseudomonad. When 2-methylphenanthrene is provided, the oxidation rate is considerably higher; 3-methylphenanthrene is oxidized at a rate intermediate between the other two, even though the methyl group is attached to a carbon directly involved in ring splitting. Cells grown on naphthalene or anthracene oxidize phenanthrene at a much lower rate than cells grown with phenanthrene or 2-methylnaphthalene as the source of carbon. Naphthalene-grown cells also absorb less phenanthrene from aqueous solution than do their phenanthrene-grown counterparts. The data are in keeping with the hypothesis that polynuclear aromatic hydrocarbons attach to the relevant bacterial enzymes at carbon-carbon bonds of high electron density (K regions; localized double bonds), and that the ring-splitting reactions then occur at other bonds on the substrate molecule. The actual bond that undergoes fission is determined by the electronic and steric configurations of the enzyme-substrate complex. When linearly arranged aromatic compounds such as naphthalene or anthracene are attacked, attachment to an enzyme and ring splitting may take place on the same ring; angular aromatic compounds such as phenanthrene afford attachment to an enzyme at a bond in a ring other than the one containing the ring-splitting site. PMID:14493381

  18. Characteristic analysis for odor gas emitted from food waste anaerobic fermentation in the pretreatment workshop.

    PubMed

    Di, Yanqiang; Liu, Jiemin; Liu, Jianguo; Liui, Siyuan; Yan, Luchun

    2013-10-01

    Gas chromatography-mass spectrometry, olfactometry, and other related methods were applied for the qualitative and quantitative analysis of the characteristics of odorous gases in the pretreatment workshop. The composition of odorous gases emitted from municipal food waste was also investigated in this study. The results showed that the tested gases are mainly composed of aromatic gases, which account for 49% of the total volatile organic compounds (VOC) concentrations. The nitrogenous compounds comprise 15% of the total concentration and the other gases comprise the remaining 36%. The level of odor concentration ranged from 2523 odor units (OU) m(-3) to 3577 OU m(-3). The variation of the total chemical composition ranged from 19,725 microg m(-3) to 24,184 microg m(-3). Among the selected four sampling points, the discharge outlet was detected to have the highest concentration in terms of odor, total chemical, sulfur compounds, and aromatics. The correlation analysis showed that the odor concentrations were evidently related to the total chemical composition, sulfur compounds, and aromatics (P < 0.05, n = 5). The odor activity value analysis identified the top three compounds, hydrogen sulfide (91.8), ethyl sulfide (35.8), and trimethylamine (70.6), which contribute to air pollution complaint of waste materials.

  19. Dielectric barrier discharge ionization for liquid chromatography/mass spectrometry.

    PubMed

    Hayen, Heiko; Michels, Antje; Franzke, Joachim

    2009-12-15

    An atmospheric pressure microplasma ionization source based on a dielectric barrier discharge with a helium plasma cone outside the electrode region has been developed for liquid chromatography/mass spectrometry (LC/MS). For this purpose, the plasma was realized in a commercial atmospheric pressure ionization source. Dielectric barrier discharge ionization (DBDI) was compared to conventional electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI) in the positive ionization mode. Therefore, a heterogeneous compound library was investigated that covered polar compounds such as amino acids, water-soluble vitamins, and nonpolar compounds like polycyclic aromatic hydrocarbons and functionalized hydrocarbons. It turned out that DBDI can be regarded as a soft ionization technique characterized by only minor fragmentation similar to APCI. Mainly protonated molecules were detected. Additionally, molecular ions were observed for polycyclic aromatic hydrocarbons and derivatives thereof. During DBDI, adduct formation with acetonitrile occurred. For aromatic compounds, addition of one to four oxygen atoms and to a smaller extend one nitrogen and oxygen was observed which delivered insight into the complexity of the ionization processes. In general, compounds covering a wider range of polarities can be ionized by DBDI than by ESI. Furthermore, limits of detection compared to APCI are in most cases equal or even better.

  20. Lipophilic extracts of Cynara cardunculus L. var. altilis (DC): a source of valuable bioactive terpenic compounds.

    PubMed

    Ramos, Patrícia A B; Guerra, Ângela R; Guerreiro, Olinda; Freire, Carmen S R; Silva, Artur M S; Duarte, Maria F; Silvestre, Armando J D

    2013-09-04

    Lipophilic extracts of Cynara cardunculus L. var. altilis (DC) from the south of Portugal (Baixo Alentejo) were studied by gas chromatography-mass spectrometry. One sesquiterpene lactone, four pentacyclic triterpenes, and four sterols were reported for the first time as cultivated cardoon components, namely, deacylcynaropicrin, β- and α-amyrin, lupenyl and ψ-taraxasteryl acetates, stigmasterol, 24-methylenecholesterol, campesterol, and Δ(5)-avenasterol. In addition, other new compounds were identified: ten fatty acids, eight long-chain aliphatic alcohols, and six aromatic compounds. Four triterpenyl fatty acid esters were also detected. Sesquiterpene lactones and pentacyclic triterpenes were the major lipophilic families, representing respectively 2-46% and 10-89% of the detected compounds. Cynaropicrin was the most abundant sesquiterpene lactone, while taraxasteryl acetate was the main pentacyclic triterpene. Fatty acids and sterols, mainly hexadecanoic acid and β-sitosterol, were present at lower amounts (1-20% and 1-11% of the detected compounds). Long-chain aliphatic alcohols and aromatic compounds were detected at reduced abundances (1-6% of the detected compounds).

  1. Acquisition of species-specific perfume blends: influence of habitat-dependent compound availability on odour choices of male orchid bees (Euglossa spp.).

    PubMed

    Pokorny, T; Hannibal, M; Quezada-Euan, J J G; Hedenström, E; Sjöberg, N; Bång, J; Eltz, T

    2013-06-01

    Male orchid bees (Euglossini, Apidae, Hymenoptera) expose species-specific blends of volatile chemicals (perfume bouquets) during their courtship display. The perfumes are acquired by collecting fragrant substances from environmental sources, which are then accumulated in specialised hind leg pouches. To balance the perfume composition, the males need to find and collect the required substances in specific relative amounts while facing seasonal, local or habitat-dependent differences in compound availability. Experience-dependent choice of odours, i.e. 'learned avoidance' of recently collected components, has been proposed as the mechanism that mediates the accumulation of the stereotypical compound ratios. In the present study, we used the presence of certain compounds in male hind leg pouches as proxy for the respective local compound availability, and investigated whether differences in content are correlated with differences in chemical choice assays. Our results suggest that volatile availability differs between localities (n = 16) as well as habitats (n = 2; coastal vs. inland) across the Yucatán peninsula, Mexico, for both studied species. Male Euglossa dilemma showed a pronounced preference for benzyl benzoate and eugenol at locations where those compounds were rare in hind leg extracts, as predicted by the learned avoidance model. No equivalent correlations were found for Euglossa viridissima. This is the first study to combine chemical analyses of perfumes with bioassays of odour choice. It strengthens the view that negative feedback from collected odours modifies future chemical choice and helps males to acquire specific perfume blends.

  2. AROMATIC AMINES IN AND NEAR THE BUFFALO RIVER

    EPA Science Inventory

    Three sediment samples taken from the Buffalo River and two soil samples taken near its bank have been analyzed for 2-propanol-extractable, basic organic compounds by using GC/MS. Eleven aromatic amines related to the commercial production of malachite green and crystal violet we...

  3. QSAR Study for Carcinogenic Potency of Aromatic Amines Based on GEP and MLPs

    PubMed Central

    Song, Fucheng; Zhang, Anling; Liang, Hui; Cui, Lianhua; Li, Wenlian; Si, Hongzong; Duan, Yunbo; Zhai, Honglin

    2016-01-01

    A new analysis strategy was used to classify the carcinogenicity of aromatic amines. The physical-chemical parameters are closely related to the carcinogenicity of compounds. Quantitative structure activity relationship (QSAR) is a method of predicting the carcinogenicity of aromatic amine, which can reveal the relationship between carcinogenicity and physical-chemical parameters. This study accessed gene expression programming by APS software, the multilayer perceptrons by Weka software to predict the carcinogenicity of aromatic amines, respectively. All these methods relied on molecular descriptors calculated by CODESSA software and eight molecular descriptors were selected to build function equations. As a remarkable result, the accuracy of gene expression programming in training and test sets are 0.92 and 0.82, the accuracy of multilayer perceptrons in training and test sets are 0.84 and 0.74 respectively. The precision of the gene expression programming is obviously superior to multilayer perceptrons both in training set and test set. The QSAR application in the identification of carcinogenic compounds is a high efficiency method. PMID:27854309

  4. Aromaticity of benzene derivatives: an exploration of the Cambridge Structural Database.

    PubMed

    Majerz, Irena; Dziembowska, Teresa

    2018-04-01

    The harmonic oscillator model of aromaticity (HOMA) index, one of the most popular aromaticity indices for solid-state benzene rings in the Cambridge Structural Database (CSD), has been analyzed. The histograms of HOMA for benzene, for benzene derivatives with one formyl, nitro, amino or hydroxy group as well as the histograms for the derivatives with two formyl, nitro, amino or hydroxy groups in ortho, meta and para positions were investigated. The majority of the substituted benzene derivatives in the CSD are characterized by a high value of HOMA, indicating fully aromatic character; however, the distribution of the HOMA value from 1 to about 0 indicates decreasing aromaticity down to non-aromatic character. Among the benzene derivatives investigated, a significant decrease in aromaticity can be related to compounds with diamino and dinitro groups in the meta position.

  5. Modeling the Fate of Groundwater Contaminants Resulting from Leakage of Butanol-blended Fuel

    DTIC Science & Technology

    2010-03-01

    aviation turbine and automotive engines is an organic liquid comprised of numerous hydrocarbons that may include paraffins, naphthenes , and aromatics...process, known as either hydroprocessing or hydrotreating, consists of two stages. In the first stage, oxygen is removed from oil. In the second...66. Namocatcat, J.A., J. Fang, M.J. Barcelona, A.T.O. Quibuyen, and T.A. Abrajano. Trimethylbenzoic acids as metabolite signatures in the

  6. Composites of multi-walled carbon nanotubes with polypropylene and thermoplastic olefin blends prepared by melt compounding

    NASA Astrophysics Data System (ADS)

    Petrie, Kyle G.

    Composites of multi-walled carbon nanotubes (MWCNTs) with polypropylene (PP) and thermoplastic olefins (TPOs) were prepared by melt compounding. Two non-covalent functionalization methods were employed to improve nanotube dispersion and the resulting composite properties are reported. The first functionalization approach involved partial coating of the surface of the nanotubes with a hyperbranched polyethylene (HBPE). MWCNT functionalization with HBPE was only moderately successful in breaking up the large aggregates that formed upon melt mixing with PP. In spite of the formation of large aggregates, the samples were conductive above a percolation threshold of 7.3 wt%. MWCNT functionalization did not disrupt the electrical conductivity of the nanotubes. The composite strength was improved with addition of nanotubes, but ductility was severely compromised because of the existence of aggregates. The second method involved PP matrix functionalization with aromatic moieties capable of pi-pi interaction with MWCNT sidewalls. Various microscopy techniques revealed the addition of only 25 wt% of PP-g-pyridine (Py) to the neat PP was capable of drastically reducing nanotube aggregate size and amount. Raman spectroscopy confirmed improved polymer/nanotube interaction with the PP-g-Py matrix. Electrical percolation threshold was obtained at a MWCNT loading of approximately 1.2 wt%. Electrical conductivity on the order of 10 -2 S/m was achieved, suggesting possible use in semi-conducting applications. Composite strength was improved upon addition of MWCNTs. The matrix functionalization with Py resulted in a significant improvement in composite ductility when filled with MWCNTs in comparison to its maleic anhydride (MA) counterpart. Preliminary investigations suggest that the use of alternating current (AC) electric fields may be effective in aligning nanotubes in PP to reduce the filler loading required for electrical percolation. Composites containing MWCNT within PP/ethylene-octene copolymer (EOC) blends were prepared. Microscopy revealed that MWCNTs localized preferentially in the EOC phase. This was explained by the tendency of the system to minimize interfacial energy when the MWCNTs reside in the thermodynamically preferential phase. A kinetic approach, which involved pre-mixing the MWCNTs with PP and adding the EOC phase subsequently was attempted to monitor the migration of MWCNTs. MWCNTs began to migrate after two minutes of melt mixing with the EOC. The PP-g-Py matrix functionalization appears to slightly delay the migration. A reduction in electrical percolation threshold to 0.5 wt% MWCNTs was achieved with a co-continuous blend morphology, consisting of a 50/50 by weight ratio of PP and EOC.

  7. Effect of counter ions of arginine as an additive for the solubilization of protein and aromatic compounds.

    PubMed

    Yoshizawa, Shunsuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2016-10-01

    Arginine is widely used in biotechnological application, but mostly with chloride counter ion. Here, we examined the effects of various anions on solubilization of aromatic compounds and reduced lysozyme and on refolding of the lysozyme. All arginine salts tested increased the solubility of propyl gallate with acetate much more effectively than chloride. The effects of arginine salts were compared with those of sodium or guanidine salts, indicating that the ability of anions to modulate the propyl gallate solubility is independent of the cation. Comparison of transfer free energy of propyl gallate between sodium and arginine salts indicates that the interaction of propyl gallate is more favorable with arginine than sodium. On the contrary, the solubility of aromatic amino acids is only slightly modulated by anions, implying that there is specific interaction between acetic acid and propyl gallate. Unlike their effects on the solubility of small aromatic compounds, the solubility of reduced lysozyme was much higher in arginine chloride than in arginine acetate or sulfate. Consistent with high solubility, refolding of reduced lysozyme was most effective in arginine chloride. These results suggest potential broader applications of arginine modulated by different anions. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Enhancing trichloroethylene degradation using non-aromatic compounds as growth substrates.

    PubMed

    Kim, Seungjin; Hwang, Jeongmin; Chung, Jinwook; Bae, Wookeun

    2014-06-30

    The effect of non-aromatic compounds on the trichloroethylene (TCE) degradation of toluene-oxidizing bacteria were evaluated using Burkholderia cepacia G4 that expresses toluene 2-monooxygenase and Pseudomonas putida that expresses toluene dioxygenase. TCE degradation rates for B. cepacia G4 and P. putida with toluene alone as growth substrate were 0.144 and 0.123 μg-TCE/mg-protein h, respectively. When glucose, acetate and ethanol were fed as additional growth substrates, those values increased up to 0.196, 0.418 and 0.530 μg-TCE/mg-protein h, respectively for B. cepacia G4 and 0.319, 0.219 and 0.373 μg-TCE/mg-protein h, respectively for P. putida. In particular, the addition of ethanol resulted in a high TCE degradation rate regardless of the initial concentration. The use of a non-aromatic compound as an additional substrate probably enhanced the TCE degradation because of the additional supply of NADH that is consumed in co-metabolic degradation of TCE. Also, it is expected that the addition of a non-aromatic substrate can reduce the necessary dose of toluene and, subsequently, minimize the potential competitive inhibition upon TCE co-metabolism by toluene. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Human Immunodeficiency Virus Type 1 cDNA Integration: New Aromatic Hydroxylated Inhibitors and Studies of the Inhibition Mechanism

    PubMed Central

    Farnet, C. M.; Wang, B.; Hansen, M.; Lipford, J. R.; Zalkow, L.; Robinson, W. E.; Siegel, J.; Bushman, F.

    1998-01-01

    Integration of the human immunodeficiency virus type 1 (HIV-1) cDNA is a required step for viral replication. Integrase, the virus-encoded enzyme important for integration, has not yet been exploited as a target for clinically useful inhibitors. Here we report on the identification of new polyhydroxylated aromatic inhibitors of integrase including ellagic acid, purpurogallin, 4,8,12-trioxatricornan, and hypericin, the last of which is known to inhibit viral replication. These compounds and others were characterized in assays with subviral preintegration complexes (PICs) isolated from HIV-1-infected cells. Hypericin was found to inhibit PIC assays, while the other compounds tested were inactive. Counterscreening of these and other integrase inhibitors against additional DNA-modifying enzymes revealed that none of the polyhydroxylated aromatic compounds are active against enzymes that do not require metals (methylases, a pox virus topoisomerase). However, all were cross-reactive with metal-requiring enzymes (restriction enzymes, a reverse transcriptase), implicating metal atoms in the inhibitory mechanism. In mechanistic studies, we localized binding of some inhibitors to the catalytic domain of integrase by assaying competition of binding by labeled nucleotides. These findings help elucidate the mechanism of action of the polyhydroxylated aromatic inhibitors and provide practical guidance for further inhibitor development. PMID:9736543

  10. The Use of Modified Bentonite for Removal of Aromatic Organics from Contaminated Soil.

    PubMed

    Gitipour; Bowers; Bodocsi

    1997-12-15

    This study investigates the clay-aromatic interactions with a view to the use of bentonite clay for binding benzene, toluene, ethylbenzene, and o-xylene (BTEX compounds) in contaminated soils. BTEX compounds are the most toxic aromatic constituents of gasoline present in many underground storage tanks. Modified (organophilic) and ordinary bentonites are used to remove these organics. The organophilic bentonites are prepared by replacing the exchangeable inorganic cations present in bentonite particles with a quaternary ammonium salt. Various clay-to-soil ratios were applied to determine the efficiency of the modified bentonite in enhancing the cement-based solidification/stabilization (S/S) of BTEX contaminated soils. Toxicity characteristics leaching procedure (TCLP) tests were performed on soil samples to evaluate the leaching of the organics. In addition, X-ray diffraction analyses were conducted to assess the changes in the basal spacing of the clays as a result of their interaction with BTEX compounds. The findings of this study reveal that organophilic bentonite can act as a successful adsorbent for removing the aromatic organics from contaminated soil. Thus, this material is viable for enhancing the performance of cement-based S/S processes, as an adsorbent for petroleum spills, and for landfill liners and slurry walls. Copyright 1997 Academic Press.

  11. Transformations of Aromatic Compounds by Nitrosomonas europaea

    PubMed Central

    Keener, William K.; Arp, Daniel J.

    1994-01-01

    Benzene and a variety of substituted benzenes inhibited ammonia oxidation by intact cells of Nitrosomonas europaea. In most cases, the inhibition was accompanied by transformation of the aromatic compound to a more oxidized product or products. All products detected were aromatic, and substituents were often oxidized but were not separated from the benzene ring. Most transformations were enhanced by (NH4)2SO4 (12.5 mM) and were prevented by C2H2, a mechanism-based inactivator of ammonia monooxygenase (AMO). AMO catalyzed alkyl substituent hydroxylations, styrene epoxidation, ethylbenzene desaturation to styrene, and aniline oxidation to nitrobenzene (and unidentified products). Alkyl substituents were preferred oxidation sites, but the ring was also oxidized to produce phenolic compounds from benzene, ethylbenzene, halobenzenes, phenol, and nitrobenzene. No carboxylic acids were identified. Ethylbenzene was oxidized via styrene to two products common also to oxidation of styrene; production of styrene is suggestive of an electron transfer mechanism for AMO. Iodobenzene and 1,2-dichlorobenzene were oxidized slowly to halophenols; 1,4-dichlorobenzene was not transformed. No 2-halophenols were detected as products. Several hydroxymethyl (-CH2OH)-substituted aromatics and p-cresol were oxidized by C2H2-treated cells to the corresponding aldehydes, benzaldehyde was reduced to benzyl alcohol, and o-cresol and 2,5-dimethylphenol were not depleted. PMID:16349282

  12. Type of litter determines the formation and properties of charred material during wildfires

    NASA Astrophysics Data System (ADS)

    Chavez, Bruno; Fonturbel, M. Teresa; Salgado, Josefa; García-Oliva, Felipe; Vega, Jose A.; Merino, Agustin

    2014-05-01

    Wildfire is one of the most important disturbances all over the World, affecting both the amount and composition of forest floor and mineral soils. In comparison with unburnt areas, wildfire-affected forest floor usually shows lower contents of labile C compounds and higher concentrations of recalcitrant aromatic forms. These changes in composition can have important impact on biogeochemical cycles and therefore ecosystem functions. Although burning of different types of litter can lead to different amount and types of pyrogenic compounds, this aspect has not been evaluated yet. The effect of wildfire on SOM composition and stability were evaluated in five major types of non-wood litter in Mediterranean ecosystems: Pinus nigra, E. arborea, P. pinaster, U. europaeus and Eucalyptus globulus. In each of these ecosystems, forest floor samples from different soil burn severities were sampled. Soil burnt severities were based on visual signs of changes in forest floor and deposition of ash. Pyrogenic carbon quality were analysed using elementary analysis, solid-state 13 C nuclear magnetic resonance spectroscopy, Reflectance Infrared Fourier Transform (FTIR) and thermal analysis (simultaneous DSC-TG). The study showed that the different types of litter influenced the formation and characteristics of charred material. They differed in the temperature at which they start to be formed, the amounts of charred compounds and in their chemical composition. The resulting charred materials from the different litter, showed an important variability in the degree of carbonitation/aromatization. Unlike the biochar obtained through pyrolysis of woody sources, which contains exclusively aromatic structures, in the charred material produced in some litter, lignin, cellulose and even cellulose persist even in the high soil burnt severity. Coinciding with increases in aromatic contents, important decreases in atomic H/C and O/C ratios were recorded. However, the values found in some litters, were higher than 0.5, suggesting that low degree of carbonization/aromatization. Although burning also led to compounds of higher thermal recalcitrance (increases in T50 values), values recorded in some litters were lower than those measured in highly polycondensed aromatic compounds. The differences found among the different forest floor cannot be only attributable to the initial SOM composition of the litter. Other aspects, such as the different thermal sensitivity, flammability and different conditions during wildfire (temperatures, combustion duration, oxygen concentrations) could also have contributed.

  13. Aroma characterization based on aromatic series analysis in table grapes

    PubMed Central

    Wu, Yusen; Duan, Shuyan; Zhao, Liping; Gao, Zhen; Luo, Meng; Song, Shiren; Xu, Wenping; Zhang, Caixi; Ma, Chao; Wang, Shiping

    2016-01-01

    Aroma is an important part of quality in table grape, but the key aroma compounds and the aroma series of table grapes remains unknown. In this paper, we identified 67 aroma compounds in 20 table grape cultivars; 20 in pulp and 23 in skin were active compounds. C6 compounds were the basic background volatiles, but the aroma contents of pulp juice and skin depended mainly on the levels of esters and terpenes, respectively. Most obviously, ‘Kyoho’ grapevine series showed high contents of esters in pulp, while Muscat/floral cultivars showed abundant monoterpenes in skin. For the aroma series, table grapes were characterized mainly by herbaceous, floral, balsamic, sweet and fruity series. The simple and visualizable aroma profiles were established using aroma fingerprints based on the aromatic series. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) showed that the aroma profiles of pulp juice, skin and whole berries could be classified into 5, 3, and 5 groups, respectively. Combined with sensory evaluation, we could conclude that fatty and balsamic series were the preferred aromatic series, and the contents of their contributors (β-ionone and octanal) may be useful as indicators for the improvement of breeding and cultivation measures for table grapes. PMID:27487935

  14. Influence of Tunisian aromatic plants on the prevention of oxidation in soybean oil under heating and frying conditions.

    PubMed

    Saoudi, Salma; Chammem, Nadia; Sifaoui, Ines; Bouassida-Beji, Maha; Jiménez, Ignacio A; Bazzocchi, Isabel L; Silva, Sandra Diniz; Hamdi, Moktar; Bronze, Maria Rosário

    2016-12-01

    The aim of this study was to improve the oxidative stability of soybean oil by using aromatic plants. Soybean oil flavored with rosemary (ROS) and soybean oil flavored with thyme (THY) were subjected to heating for 24h at 180°C. The samples were analyzed every 6h for their total polar compounds, anisidine values, oxidative stability and polyphenols content. The tocopherols content was determined and volatile compounds were also analyzed. After 24h of heating, the incorporation of these plants using a maceration process reduced the polar compounds by 69% and 71% respectively, in ROS and THY compared to the control. Until 6h of heating, the ROS kept the greatest oxidative stability. The use of the two extracts preserves approximately 50% of the total tocopherols content until 18h for the rosemary and 24h for the thyme flavored oils. Volatile compounds known for their antioxidant activity were also detected in the formulated oils. Aromatic plants added to the soybean oil improved the overall acceptability of potato crisps (p<0.05) until the fifteenth frying. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Adsorption of aromatic compounds from the biodegradation of azo dyes on activated carbon

    NASA Astrophysics Data System (ADS)

    Faria, P. C. C.; Órfão, J. J. M.; Figueiredo, J. L.; Pereira, M. F. R.

    2008-03-01

    The adsorption of three selected aromatic compounds (aniline, sulfanilic acid and benzenesulfonic acid) on activated carbons with different surface chemical properties was investigated at different solution pH. A fairly basic commercial activated carbon was modified by means of chemical treatment with HNO 3, yielding an acid activated carbon. The textural properties of this sample were not significantly changed after the oxidation treatment. Equilibrium isotherms of the selected compounds on the mentioned samples were obtained and the results were discussed in relation to their surface chemistry. The influence of electrostatic and dispersive interactions involved in the uptake of the compounds studied was evaluated. The Freundlich model was used to fit the experimental data. Higher uptakes are attained when the compounds are present in their molecular form. In general, adsorption was disfavoured by the introduction of oxygen-containing groups on the surface of the activated carbon.

  16. Suspect screening of OH-PAHs and non-target screening of other organic compounds in wood smoke particles using HR-Orbitrap-MS.

    PubMed

    Avagyan, Rozanna; Åberg, Magnus; Westerholm, Roger

    2016-11-01

    Wood combustion has been shown to contribute significantly to emissions of polycyclic aromatic hydrocarbons and hydroxylated polycyclic aromatic hydrocarbons, compounds with toxic and carcinogenic properties. However, only a small number of hydroxylated polycyclic aromatic hydrocarbons have been determined in particles from wood combustion, usually compounds with available reference standards. In this present study, suspect and non-target screening strategies were applied to characterize the wood smoke particles from four different wood types and two combustion conditions with respect to hydroxylated polycyclic aromatic hydrocarbons and other organic compounds. In the suspect screening, 32 peaks corresponding to 12 monohydroxylated masses were tentatively identified by elemental composition assignments and matching of isotopic pattern and fragments. More than one structure was suggested for most of the measured masses. Statistical analysis was performed on the non-target screening data in order to single out significant peaks having intensities that depend on the wood type and/or combustion condition. Significant peaks were found in both negative and positive ionization modes, with unique peaks for each wood type and combustion condition, as well as a combination of both factors. Furthermore, structural elucidation of some peaks was done by comparing the spectra in the samples with spectra found in the spectral databases. Six compounds were tentatively identified in positive ionization mode, and 19 in negative ionization mode. The results in this present study demonstrate that there are significant overall differences in the chemistry of wood smoke particles that depends on both the wood type and the combustion condition used. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. [Chromatographic mass spectrometric determination of low-molecular-weight aromatic compounds of microbial origin in the serum from patients with sepsis].

    PubMed

    Beloborodova, N V; Arkhipova, A S; Beloborodov, D M; Boĭko, N B; Mel'ko, A I; Olenin, A Iu

    2006-02-01

    The investigation quantitatively determined the content of low-molecular-weight aromatic compounds of microbial origin in the sera of 34 individuals by chromatographic mass spectrometry. An "Agilent Technogies 6890N" gas chromatograph with a 5973 mass selective detector was applied; chromatographic separation of components was effected on an Hp-5MS quartz capillary column. Aromatic small molecules originating from microbes (SMOM) were determined in the sera of 7 patients with sepsis. The diagnosis of sepsis was documented by the presence of the systemic inflammation syndrome and by that of bacteriemia and/or artificial ventilation-associated pneumonia along with the level of procalcitonin of higher than 10 ng/ml. The levels of aromatic SMOM were compared in 10 healthy donors, 8 preoperative cardiosurgical patients, and 9 patients with different abnormalities without sepsis treated in an intensive care unit (ICU). Serum phenylacetic and 3-phenylpropionic acids were found to be prevalent in the healthy donors and postoperative cardiosurgical patients. In ICU patients with different complications without sepsis, more than half the compounds under study were undetectable, the others were found in very low concentrations, which may be accounted for by antibiotic therapy. At the same time, almost the whole spectrum of the test compounds (other than 3-phenylpropionic acid) with the highest concentrations of 3-phenyllactic, p-hydroxyphenylacetic, 3-(p-hydroxyphenyl)lactic and 2-hydroxybutanic acids, was detectable in septic patients receiving a more intensive therapy. The differences were statistically significant (by the Mann-Whitney U-test; p < 0.05). By taking into account the potentially high biological activity of the test compounds, studies are to be continued in this area.

  18. Production of Monomeric Aromatic Compounds from Oil Palm Empty Fruit Bunch Fiber Lignin by Chemical and Enzymatic Methods.

    PubMed

    Tang, Pei-Ling; Hassan, Osman; Maskat, Mohamad Yusof; Badri, Khairiah

    2015-01-01

    In this study, oil palm empty fruit bunch (OPEFBF) was pretreated with alkali, and lignin was extracted for further degradation into lower molecular weight phenolic compounds using enzymes and chemical means. Efficiency of monomeric aromatic compounds production from OPEFBF lignin via chemical (nitrobenzene versus oxygen) and enzymatic [cutinase versus manganese peroxidase (MnP)] approaches was investigated. The effects of sodium hydroxide concentration (2, 5, and 10% wt.) and reaction time (30, 90, and 180 minutes) on the yield of aromatic compounds were studied. The results obtained indicated that nitrobenzene oxidation produced the highest yield (333.17 ± 49.44 ppm hydroxybenzoic acid, 5.67 ± 0.25 ppm p-hydroxybenzaldehyde, 25.57 ± 1.64 ppm vanillic acid, 168.68 ± 23.23 ppm vanillin, 75.44 ± 6.71 ppm syringic acid, 815.26 ± 41.77 ppm syringaldehyde, 15.21 ± 2.19 ppm p-coumaric acid, and 44.75 ± 3.40 ppm ferulic acid), among the tested methods. High sodium hydroxide concentration (10% wt.) was needed to promote efficient nitrobenzene oxidation. However, less severe oxidation condition was preferred to preserve the hydroxycinnamic acids (p-coumaric acid and ferulic acid). Cutinase-catalyzed hydrolysis was found to be more efficient than MnP-catalyzed oxidation in the production of aromatic compounds. By hydrolyzed 8% wt. of lignin with 0.625 mL cutinase g(-1) lignin at pH 8 and 55°C for 24 hours, about 642.83 ± 14.45 ppm hydroxybenzoic acid, 70.19 ± 3.31 ppm syringaldehyde, 22.80 ± 1.04 ppm vanillin, 27.06 ± 1.20 ppm p-coumaric acid, and 50.19 ± 2.23 ppm ferulic acid were produced.

  19. Novel Scheme for Biosynthesis of Aryl Metabolites from l-Phenylalanine in the Fungus Bjerkandera adusta

    PubMed Central

    Lapadatescu, Carmen; Giniès, Christian; Le Quéré, Jean-Luc; Bonnarme, Pascal

    2000-01-01

    Aryl metabolite biosynthesis was studied in the white rot fungus Bjerkandera adusta cultivated in a liquid medium supplemented with l-phenylalanine. Aromatic compounds were analyzed by gas chromatography-mass spectrometry following addition of labelled precursors (14C- and 13C-labelled l-phenylalanine), which did not interfere with fungal metabolism. The major aromatic compounds identified were benzyl alcohol, benzaldehyde (bitter almond aroma), and benzoic acid. Hydroxy- and methoxybenzylic compounds (alcohols, aldehydes, and acids) were also found in fungal cultures. Intracellular enzymatic activities (phenylalanine ammonia lyase, aryl-alcohol oxidase, aryl-alcohol dehydrogenase, aryl-aldehyde dehydrogenase, lignin peroxidase) and extracellular enzymatic activities (aryl-alcohol oxidase, lignin peroxidase), as well as aromatic compounds, were detected in B. adusta cultures. Metabolite formation required de novo protein biosynthesis. Our results show that l-phenylalanine was deaminated to trans-cinnamic acid by a phenylalanine ammonia lyase and trans-cinnamic acid was in turn converted to aromatic acids (phenylpyruvic, phenylacetic, mandelic, and benzoylformic acids); benzaldehyde was a metabolic intermediate. These acids were transformed into benzaldehyde, benzyl alcohol, and benzoic acid. Our findings support the hypothesis that all of these compounds are intermediates in the biosynthetic pathway from l-phenylalanine to aryl metabolites. Additionally, trans-cinnamic acid can also be transformed via β-oxidation to benzoic acid. This was confirmed by the presence of acetophenone as a β-oxidation degradation intermediate. To our knowledge, this is the first time that a β-oxidation sequence leading to benzoic acid synthesis has been found in a white rot fungus. A novel metabolic scheme for biosynthesis of aryl metabolites from l-phenylalanine is proposed. PMID:10742235

  20. Mutagenicity of diesel exhaust particle extracts: influence of fuel composition in two diesel engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, C.R.; Henderson, T.R.; Royer, R.E.

    The influence of diesel fuel composition on mutagenicity of exhaust particle associated organic compounds has been investigated using nine fuels varying in aromatic content and distillation properties. The tests were conducted with Oldsmobile Delta-88 and Peugot 504 diesel cars operated according to the EPA Federal Test Procedure. The particulate exhaust from each test was collected on a filter, extracted in dichloromethane and the resulting extract evaluated for mutagenicity in Salmonella strain TA-100. Mutagenicity of extracts of particles collected from the Oldsmobile were highest in the higher aromatic content fuels (> 30%) but similar for intermediate (20%) and low (13%) aromaticmore » content fuels. No influence of aromaticity on mutagenicity was observed in samples collected from the Peugeot under the same conditions. Thus, fuel aromatic content may enhance the production of mutagenic combustion products at higher concentrations, but may be dependent upon engine type. A good correlation was observed between mutagenicity of the particle extracts and the initial boiling point of the fuel (r = 0.89). Gas chromatography/mass spectrometric analysis of the aromatic fraction of the fuels showed that the fuel producing the most mutagenic combustion products was highest in phenanthrene type compounds.« less

  1. The formation of quasi-alicyclic rings in alkyl-aromatic compounds

    NASA Astrophysics Data System (ADS)

    Straka, Pavel; Buryan, Petr; Bičáková, Olga

    2018-02-01

    The alkyl side chains of n-alkyl phenols, n-alkyl benzenes and n-alkyl naphthalenes are cyclised, as demonstrated by GC measurements, FTIR spectroscopy and molecular mechanics calculations. Cyclisation occurs due to the intramolecular interaction between an aromatic ring (-δ) and a hydrogen of the terminal methyl group (+δ) of an alkyl chain. In fact, conventional molecules are not aliphatic-aromatic, but quasi-alicyclic-aromatic. With the aromatic molecules formed with a quasi-alicyclic ring, the effect of van der Waals attractive forces increases not only intramolecularly but also intermolecularly. This effect is strong in molecules with propyl and higher alkyl substituents. The increase of intermolecular van der Waals attractive forces results in bi-linearity in the GC retention time of the compounds in question, observed in the dependence of the logarithm of the relative retention time on the number of carbons in a molecule in both polar and nonpolar stationary phases with both capillary and packed columns. The role of van der Waals forces has been demonstrated using the potential energies of covalent and noncovalent interactions for 2-n-alkyl phenols, n-alkyl benzenes and 1-n-alkyl- and 2-n-alkyl naphthalenes.

  2. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Nitrogen Heterocycles (PANHs)

    NASA Technical Reports Server (NTRS)

    Mattioda, A. L.; Hudgins, D. M.; Bauschlicher, C. W.; Allamandola, L. J.; Biemesderfer, C. D.; Rosi, M.

    2002-01-01

    The mid-infrared spectra of the nitrogen-containing heterocyclic polycyclic aromatic compounds 1-azabenz[a]-anthracene; 2-azabenz[a]anthracene; 1-azachrysene; 2-azachrysene; 4-azachrysene; 2-azapyrene, and 7,8 benzoquinoline in their neutral and cation forms were investigated. The spectra of these species isolated in an argon matrix have been measured. Band frequencies and intensities were tabulated and these data compared with spectra computed using density functional theory at the B3LYP level. The overall agreement between experiment and theory is quite good, in keeping with earlier results on homonuclear polycyclic aromatic hydrocarbons. The differences between the spectral properties of nitrogen bearing aromatics and non-substituted, neutral polycyclic aromatic hydrocarbons will be discussed.

  3. Pyrolysis of humic and fulvic acids

    USGS Publications Warehouse

    Wershaw, R. L.; Bohner, G.E.

    1969-01-01

    Pyrolysis of humic and fulvic acids isolated from a North Carolina soil yields a variety of aromatic, heterocyclic and straight chain organ compounds. The pyrolysis products identified by gas chromatography and mass spectrometry indicate that humic and fulvic acids have aromatic and polysaccharide structures in their molecules. ?? 1969.

  4. Characteristics of particulate emissions from a diesel generator fueled with varying blends of biodiesel and fossil diesel.

    PubMed

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lee, Wen-Jhy; Kuo, Wen-Chien; Lin, Wen-Yinn

    2011-01-01

    This study investigated the particulate matter (PM), particle-bound carbons, and polycyclic aromatic hydrocarbons (PAHs) emitted from a diesel-engine generator fuelled with blends of pure fossil diesel oil (D100) and varying percentages of waste-edible-oil biodiesel (W10, 10 vol %; W20, 20 vol %; W30, 30 vol %; and W50, 50 vol %) under generator loads of 0, 1.5, and 3 kW. On average, the PM emission factors of all blends was 30.5 % (range, 13.7-52.3 %) lower than that of D100 under the tested loads. Substituting pure fossil diesel oil with varying percentages of waste-edible-oil biodiesel reduced emissions of particle-bound total carbon (TC) and elemental carbon (EC). The W20 blend had the lowest particle-bound organic carbon (OC) emissions. Notably, W10, W20, and W30 also had lower Total-PAH emissions and lower total equivalent toxicity (Total-BaP(eq)) compared to D100. Additionally, the brake-specific fuel consumption of the generator correlated positively with the ratio of waste-edible-oil biodiesel to pure fossil diesel. However, generator energy efficiency correlated negatively with the ratio of waste-edible-oil biodiesel to pure fossil diesel.

  5. Cleaner co-combustion of lignite-biomass-waste blends by utilising inhibiting compounds of toxic emissions.

    PubMed

    Skodras, G; Palladas, A; Kaldis, S P; Sakellaropoulos, G P

    2007-04-01

    In this paper, the co-combustion behaviour of coal with wastes and biomass and the related toxic gaseous emissions were investigated. The objective of this work is to add on towards a cleaner co-combustion of lignite-waste-biomass blends by utilizing compounds that could inhibit the formation of toxic pollutants. A series of co-combustion tests was performed in a pilot scale incinerator, and the emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) were measured. The co-combustion behaviour of lignite with olive kernels, MDF and sawdust was studied and the ability of additives such as urea, almond shells and municipal sewage sludge to reduce the PCDD/F emissions was examined. All blends were proven good fuels and reproducible combustion conditions were achieved. The addition of inhibitors prior to combustion showed in some cases, relatively high PCDD/F emissions reduction. Among the inhibitors tested, urea seems to achieve a reduction of PCDD/F emissions for all fuel blends, while an unstable behaviour was observed for the others.

  6. Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts--Electrophilic aromatic substitution and oxidation.

    PubMed

    Criquet, Justine; Rodriguez, Eva M; Allard, Sebastien; Wellauer, Sven; Salhi, Elisabeth; Joll, Cynthia A; von Gunten, Urs

    2015-11-15

    Phenolic compounds are known structural moieties of natural organic matter (NOM), and their reactivity is a key parameter for understanding the reactivity of NOM and the disinfection by-product formation during oxidative water treatment. In this study, species-specific and/or apparent second order rate constants and mechanisms for the reactions of bromine and chlorine have been determined for various phenolic compounds (phenol, resorcinol, catechol, hydroquinone, phloroglucinol, bisphenol A, p-hydroxybenzoic acid, gallic acid, hesperetin and tannic acid) and flavone. The reactivity of bromine with phenolic compounds is very high, with apparent second order rate constants at pH 7 in the range of 10(4) to 10(7) M(-1) s(-1). The highest value was recorded for the reaction between HOBr and the fully deprotonated resorcinol (k = 2.1 × 10(9) M(-1) s(-1)). The reactivity of phenolic compounds is enhanced by the activating character of the phenolic substituents, e.g. further hydroxyl groups. With the data set from this study, the ratio between the species-specific rate constants for the reactions of chlorine versus bromine with phenolic compounds was confirmed to be about 3000. Phenolic compounds react with bromine or chlorine either by oxidation (electron transfer, ET) or electrophilic aromatic substitution (EAS) processes. The dominant process mainly depends on the relative position of the hydroxyl substituents and the possibility of quinone formation. While phenol, p-hydroxybenzoic acid and bisphenol A undergo EAS, hydroquinone, catechol, gallic acid and tannic acid, with hydroxyl substituents in ortho or para positions, react with bromine by ET leading to quantitative formation of the corresponding quinones. Some compounds (e.g. phloroglucinol) show both partial oxidation and partial electrophilic aromatic substitution and the ratio observed for the pathways depends on the pH. For the reaction of six NOM extracts with bromine, electrophilic aromatic substitution accounted for only 20% of the reaction, and for one NOM extract (Pony Lake fulvic acid) it accounted for <10%. This shows that for natural organic matter samples, oxidation (ET) is far more important than bromine incorporation (EAS). Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Base-catalyzed efficient tandem [3 + 3] and [3 + 2 + 1] annulation-aerobic oxidative benzannulations.

    PubMed

    Diallo, Aboubacar; Zhao, Yu-Long; Wang, He; Li, Sha-Sha; Ren, Chuan-Qing; Liu, Qun

    2012-11-16

    An efficient synthesis of substituted benzenes via a base-catalyzed [3 + 3] aerobic oxidative aromatization of α,β-unsaturated carbonyl compounds with dimethyl glutaconate was reported. All the reactions were carried out under mild, metal-free conditions to afford the products in high to excellent yields with molecular oxygen as the sole oxidant and water as the sole byproduct. Furthermore, a more convenient tandem [3 + 2 + 1] aerobic oxidative aromatization reaction was developed through the in situ generation of the α,β-unsaturated carbonyl compounds from aldehydes and ketones.

  8. Organic compounds leached from fast pyrolysis mallee leaf and bark biochars.

    PubMed

    Lievens, Caroline; Mourant, Daniel; Gunawan, Richard; Hu, Xun; Wang, Yi

    2015-11-01

    Characterization of organic compounds leached from biochars is essential in assessing the possible toxicity of the biochar to the soils' biota. In this study the nature of the leached organic compounds from Mallee biochars, produced from pyrolysis of Mallee leaf and bark in a fluidised-bed pyrolyser at 400 and 580°C was investigated. Light bio-oil compounds and aromatic organic compounds were investigated. The 'bio-oil like' light compounds from leaf and bark biochars 'surfaces were obtained after leaching the chars with a solvent, suitable to dissolve the respective bio-oils. GC/MS was implemented to investigate the leachates. Phenolics, which are potentially harmful toxins, were detected and their concentration shown to be dependent on the char's origin and the char production temperature. Further, to simulate biochars amendment to soils, the chars were leached with water. The water-leached aromatic compounds from leaf and bark biochars were characterized using UV-fluorescence spectroscopy. Those results suggested that biochars contain leachable compounds of which the nature and amount is dependent on the biomass feedstock, pyrolysis temperature and leaching time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Aromatic Borozene

    PubMed Central

    2009-01-01

    Based on our comprehensive theoretical investigation and known experimental results for small boron clusters, we predict the existence of a novel aromatic inorganic molecule, B12H6. This molecule, which we refer to as borozene, has remarkably similar properties to the well-known benzene. Borozene is planar, possesses a large first excitation energy, D3hsymmetry, and more importantly is aromatic. Furthermore, the calculated anisotropy of the magnetic susceptibility of borozene is three times larger in absolute value than for benzene. Finally, we show that borozene molecules may be fused together to give larger aromatic compounds with even larger anisotropic susceptibilities. PMID:20596438

  10. Investigation of critical equivalence ratio and chemical speciation in flames of ethylbenzene-ethanol blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Therrien, Richard J.; Ergut, Ali; Levendis, Yiannis A.

    This work investigates five different one-dimensional, laminar, atmospheric pressure, premixed ethanol/ethylbenzene flames (0%, 25%, 50%, 75% and 90% ethanol by weight) at their soot onset threshold ({phi}{sub critical}). Liquid ethanol/ethylbenzene mixtures were pre-vaporized in nitrogen, blended with an oxygen-nitrogen mixture and, upon ignition, burned in premixed one-dimensional flames at atmospheric pressure. The flames were controlled so that each was at its visual soot onset threshold, and all had similar temperature profiles (determined by thermocouples). Fixed gases, light volatile hydrocarbons, polycyclic aromatic hydrocarbons (PAH), and oxygenated aromatic hydrocarbons were directly sampled at three locations in each flame. The experimental results weremore » compared with a detailed kinetic model, and the modeling results were used to perform a reaction flux analysis of key species. The critical equivalence ratio was observed to increase in a parabolic fashion as ethanol concentration increased in the fuel mixture. The experimental results showed increasing trends of methane, ethane, and ethylene with increasing concentrations of ethanol in the flames. Carbon monoxide was also seen to increase significantly with the increase of ethanol in the flame, which removes carbon from the PAH and soot formation pathways. The PAH and oxygenated aromatic hydrocarbon values were very similar in the 0%, 25% and 50% ethanol flames, but significantly lower in the 75% and 90% ethanol flames. These results were in general agreement with the model and were reflected by the model soot predictions. The model predicted similar soot profiles for the 0%, 25% and 50% ethanol flames, however it predicted significantly lower values in the 75% and 90% ethanol flames. The reaction flux analysis revealed benzyl to be a major contributor to single and double ring aromatics (i.e., benzene and naphthalene), which was identified in a similar role in nearly sooting or highly sooting ethylbenzene flames. The presence of this radical was significantly reduced as ethanol concentration was increased in the flames, and this effect in combination with the lower carbon to oxygen ratios and the enhanced formation of carbon monoxide, are likely what allowed higher equivalence ratios to be reached without forming soot. (author)« less

  11. Supplementing Blends of Sugars, Amino Acids, and Secondary Metabolites to the Diet of Termites (Reticulitermes flavipes) Drive Distinct Gut Bacterial Communities.

    PubMed

    Huang, Xing-Feng; Chaparro, Jacqueline M; Reardon, Kenneth F; Judd, Timothy M; Vivanco, Jorge M

    2016-10-01

    Although it is well known that diet is one of the major modulators of the gut microbiome, how the major components of diet shape the gut microbial community is not well understood. Here, we developed a simple system that allows the investigation of the impact of given compounds as supplements of the diet on the termite gut microbiome. The 16S rRNA pyrosequencing analysis revealed that feeding termites different blends of sugars and amino acids did not majorly impact gut community composition; however, ingestion of blends of secondary metabolites caused shifts in gut bacterial community composition. The supplementation of sugars and amino acids reduced the richness significantly, and sugars alone increased the evenness of the gut bacterial community significantly. Secondary metabolites created the most dramatic effects on the microbial community, potentially overriding the effect of other types of compounds. Furthermore, some microbial groups were stimulated specifically by particular groups of compounds. For instance, termites fed with secondary metabolites contained more Firmicutes and Spirochaetes compared to the other treatments. In conclusion, our results suggest that the termite (Reticulitermes flavipes) can be used as a simple and effective system to test the effects of particular chemical compounds in modulating the gut microbiome.

  12. Effect of a blend of essential oil compounds on the colonization of starch-rich substrates by bacteria in the rumen.

    PubMed

    Duval, S M; McEwan, N R; Graham, R C; Wallace, R J; Newbold, C J

    2007-12-01

    To investigate the mode of action of a blend of essential oil compounds on the colonization of starch-rich substrates by rumen bacteria. Starch-rich substrates were incubated, in nylon bags, in the rumen of sheep organized in a 4 x 4 latin square design and receiving a 60:40 silage : concentrate diet. The concentrate was either high or low in crude protein, and the diet was supplemented or not with a commercial blend of essential oil compounds (110 mg per day). The total genomic DNA was extracted from the residues in the bags. The total eubacterial DNA was quantified by real-time PCR and the proportion of Ruminobacter amylophilus, Streptococcus bovis and Prevotella bryantii was determined. Neither the supplementation with essential oil compounds nor the amount of crude protein affected the colonization of the substrates by the bacteria quantified. However, colonization was significantly affected by the substrate colonized. The effect of essential oils on the colonization of starch-rich substrates is not mediated through the selective inhibition of R. amylophilus. This study enhances our understanding of the colonization of starch-rich substrates, as well as of the mode of action of the essential oils as rumen manipulating agents.

  13. Fuel property effects on low-speed pre-ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jatana, Gurneesh S.; Splitter, Derek A.; Kaul, Brian C.

    This work explores the dependence of fuel distillation and flame speed on low-speed pre-ignition (LSPI). Findings are based on cylinder pressure analysis, as well as the number count, clustering, intensity, duration, and onset crank angle of LSPI events. Four fuels were used, with three of the fuels being blends with gasoline, and the fourth being neat gasoline. The blended fuels consisted of single molecules of different molecular types: a ketone (cyclopentanone), an alcohol (2-methyl-1-butanol), and an aromatic (ethylbenzene). All three pure molecules have RON values within ±2 and boiling points within ±5 °C. These fuels were blended with gasoline tomore » a 25% mass fraction and were used to run the engine at identical LSPI prone operating conditions. The findings highlight that fuels with similar boiling properties and octane numbers can exhibit similar LSPI number counts, but with vastly different LSPI magnitudes and intensities. Moreover, the results highlight fundamental fuel properties such as flame speed are critical to characterizing the LSPI propensity and behavior of the fuel.« less

  14. Thermal, structural and electrochemical properties of new aliphatic-aromatic imine with piperazine moieties blended with titanium dioxide

    NASA Astrophysics Data System (ADS)

    Różycka, Anna; Fryń, Patryk; Iwan, Agnieszka; Bogdanowicz, Krzysztof Artur; Filapek, Michal; Górska, Natalia; Dąbczyński, Paweł; Rysz, Jakub; Pociecha, Damian; Hreniak, Agnieszka; Marzec, Monika

    2018-02-01

    A new piperazine imine, (7E)-N-((4-((E)-(4-hexadecylphenylimino)methyl)piperazin-1-yl)methylene)-4-dodecylbenzenamine, has been synthesized by the condensation of 1,4-piperazinedicarboxaldehyde with 4-hexadecylaniline. The imine was characterized by cyclic voltammetry, Fourier transform middle-infrared absorption spectroscopy and X-ray diffraction. Thermal properties of imine was analyzed by differential scanning calorimetry method during first and second heating scan at 10 and 20 °C/min. Texture of imine was investigated by polarized optical microscopy and atomic force microscopy. Furthermore, imine was blended with titanium dioxide in anatase form and fully characterized by the same methods. Piperazine imine and its mixture with titanium dioxide exhibited only a transition from crystal to isotropic state. Imine exhibits two-step reduction wave attributed to one-electron transfer in each step as was found by cyclic voltammetry. Both titanium dioxide and poly(3-hexylthiophene) change the electrochemical properties of piperazine imine, however, in different ways. Studied imine blended with titanium dioxide exhibited higher value of energy band gap than pure piperazine imine and lower Eg than pure poly(3-hexylthiophene).

  15. Fuel property effects on low-speed pre-ignition

    DOE PAGES

    Jatana, Gurneesh S.; Splitter, Derek A.; Kaul, Brian C.; ...

    2018-05-30

    This work explores the dependence of fuel distillation and flame speed on low-speed pre-ignition (LSPI). Findings are based on cylinder pressure analysis, as well as the number count, clustering, intensity, duration, and onset crank angle of LSPI events. Four fuels were used, with three of the fuels being blends with gasoline, and the fourth being neat gasoline. The blended fuels consisted of single molecules of different molecular types: a ketone (cyclopentanone), an alcohol (2-methyl-1-butanol), and an aromatic (ethylbenzene). All three pure molecules have RON values within ±2 and boiling points within ±5 °C. These fuels were blended with gasoline tomore » a 25% mass fraction and were used to run the engine at identical LSPI prone operating conditions. The findings highlight that fuels with similar boiling properties and octane numbers can exhibit similar LSPI number counts, but with vastly different LSPI magnitudes and intensities. Moreover, the results highlight fundamental fuel properties such as flame speed are critical to characterizing the LSPI propensity and behavior of the fuel.« less

  16. Three-component, one-pot synthesis of anthranilamide Schiff bases bearing 4-aminoquinoline moiety as Mycobacterium tuberculosis gyrase inhibitors.

    PubMed

    Salve, Preeti S; Alegaon, Shankar G; Sriram, Dharmarajan

    2017-04-15

    An efficient three-component, one-pot protocol is described for the synthesis of biologically interesting 2-(benzylideneamino)-N-(7-chloroquinolin-4-yl)benzohydrazide derivatives from isatoic anhydride, 7-chloro-4-hydrazinylquinoline and aromatic and/or hetero aromatic aldehydes under catalyst free condensation by using water as reaction media. All synthesized compounds were evaluated for their antimycobacterial activity against Mycobacterium tuberculosis (MTB) and cytotoxicity activity against normal VERO cell lines. The synthesized compounds exhibited minimum inhibitory concentration (MIC) ranging from 0.78 to 25μM. Among the tested compounds 4c, 4o, 4r, and 4u exhibited promising inhibitory activity (MIC=3.12μM). Compounds 4h and 4i stand out, showing MIC values of 0.78 and 1.56μM respectively. Both compounds were further screened for their Mycobacterium tuberculosis DNA gyrase inhibitory assay which suggested that these compounds have a great potential for further optimization and development as antitubercular agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Gas Chromatography-Mass Spectrometry-Olfactometry To Control the Aroma Fingerprint of Extra Virgin Olive Oil from Three Tunisian Cultivars at Three Harvest Times.

    PubMed

    Ben Brahim, Samia; Amanpour, Asghar; Chtourou, Fatma; Kelebek, Hasim; Selli, Serkan; Bouaziz, Mohamed

    2018-03-21

    Gas chromatography-mass spectrometry-olfactometry was used for the analysis of volatile compounds and key odorants of three less studied Tunisian olive oil cultivars for the first time. A total of 42 aroma compounds were identified and quantified in extra virgin olive oils. The present study revealed that the most dominant volatiles in olive oil samples qualitatively and quantitatively were aldehydes and alcohols, followed by terpenes and esters. Indeed, chemometric analysis has shown a correlation between chemical compounds and sensory properties. The determination of aroma-active compounds of olive oil samples was carried out using aroma extract dilution analysis. A total of 15 aroma-active compounds were detected in the aromatic extract of extra virgin olive oil, of which 14 were identified. On the basis of the flavor dilution (FD) factor, the most potent aromatic active compound was hexanal (FD = 512) in Fakhari olive oil, (FD = 256) in Touffehi oils, and (FD = 128) in Jemri olive oil.

  18. APPLICATION OF FATE AND TRANSPORT MODELING TO THE REMEDIAL DECISION MAKING PROCESS – INTRODUCTION TO WORKSHOP

    EPA Science Inventory

    The conventional site conceptual model for Brownfield sites considers that the extent of plumes of aromatic petroleum hydrocarbons (such as the BTEX compounds) in ground water are limited by natural biodegradation of the aromatic hydrocarbons by bacteria that use oxygen, nitrate ...

  19. SOLAR RADIATION DOSE AND PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS: A CASE STUDY

    EPA Science Inventory

    The toxicity of polycyclic aromatic hydrocarbons increases by as much as three orders of magnitude in the presence of solar radiation. The risk of this photoactive toxicity is thus based on both tissue concentrations of potentially photo activated compounds and the levels of subs...

  20. Significantly Increasing the Ductility of High Performance Polymer Semiconductors through Polymer Blending.

    PubMed

    Scott, Joshua I; Xue, Xiao; Wang, Ming; Kline, R Joseph; Hoffman, Benjamin C; Dougherty, Daniel; Zhou, Chuanzhen; Bazan, Guillermo; O'Connor, Brendan T

    2016-06-08

    Polymer semiconductors based on donor-acceptor monomers have recently resulted in significant gains in field effect mobility in organic thin film transistors (OTFTs). These polymers incorporate fused aromatic rings and have been designed to have stiff planar backbones, resulting in strong intermolecular interactions, which subsequently result in stiff and brittle films. The complex synthesis typically required for these materials may also result in increased production costs. Thus, the development of methods to improve mechanical plasticity while lowering material consumption during fabrication will significantly improve opportunities for adoption in flexible and stretchable electronics. To achieve these goals, we consider blending a brittle donor-acceptor polymer, poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiadiazolo[3,4-c]pyridine] (PCDTPT), with ductile poly(3-hexylthiophene). We found that the ductility of the blend films is significantly improved compared to that of neat PCDTPT films, and when the blend film is employed in an OTFT, the performance is largely maintained. The ability to maintain charge transport character is due to vertical segregation within the blend, while the improved ductility is due to intermixing of the polymers throughout the film thickness. Importantly, the application of large strains to the ductile films is shown to orient both polymers, which further increases charge carrier mobility. These results highlight a processing approach to achieve high performance polymer OTFTs that are electrically and mechanically optimized.

  1. Correlations and adsorption mechanisms of aromatic compounds on biochars produced from various biomass at 700 °C.

    PubMed

    Yang, Kun; Jiang, Yuan; Yang, Jingjing; Lin, Daohui

    2018-02-01

    Knowledge of adsorption behavior of organic contaminants on high heat temperature treated biochars is essential for application of biochars as adsorbents in wastewater treatment and soil remediation. In this study, isotherms of 25 aromatic compounds adsorption on biochars pyrolyzed at 700 °C from biomass including wood chips, rice straw, bamboo chips, cellulose, lignin and chitin were investigated to establish correlations between adsorption behavior and physicochemical properties of biochars. Isotherms were well fitted by Polanyi theory-based Dubinin-Ashtakhov (DA) model with three parameters, i.e., adsorption capacity (Q 0 ) and adsorption affinity (E and b). Besides the negative correlation of Q 0 with molecular maximum cross-sectional areas (σ) of organic compounds, positive correlations of Q 0 with total pore volume (V total ) and average diameter of micropore (D) of biochars were observed, indicating that adsorption by biochars is captured by the pore-filling mechanism with molecular sieving effect in biochar pores. Linear solvation energy relationships (LSERs) of adsorption affinity (E) with solvatochromic parameters of organic compounds (i. e., α m and π ∗ ) were established, suggesting that hydrophobic effect, π-π interaction and hydrogen-bonding interaction are the main forces responsible for adsorption. The regression coefficient (π 1 ) and intercept (C) of obtained LSERs are correlated with biochar H/C and R micro , respectively, implying that biochars with higher aromaticity and more micropores have stronger π-π bonding potential and hydrophobic effect potential with aromatic molecule, respectively. However, hydrogen-bonding potential of biochars for organic molecules is not changed significantly with properties of biochars. A negative correlation of b with biochar H/C is also obtained. These correlations could be used to predict the adsorption behavior of organic compounds on high heat temperature treated biochars from various biomass for the application of biochars as sorbents and for the estimating of environmental risks of organic compounds in the present of biochars. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The Fate of Crude Oil during Photooxidation under Natural Sunlight

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Evans, M.; Bacosa, H. P.; Hu, X.; Liu, Z.

    2016-02-01

    Photooxidation plays an important role in removing spilled crude oil, particularly the aromatic fraction, in surface seawater. Even though much research has been done regarding the changes of different oil fractions by photooxidation, including saturate, aromatic, resin and asphaltene (SARA), we know little about how specific aromatic compounds change in the SARA fractions during photooxidation. In this study, we amended 13C-labled phenanthrene in slightly weathered Louisiana light sweet crude, and followed the fates of 13C values of the SARA fractions during a 44-d incubation experiment under the natural sunlight in south Texas. Our results showed that the aromatic fraction of the crude decreased from 25.4% at time zero to 13.5% at the 44th d, while the resin increased from 12.2% to 16.5% and asphaltene from 2.4% to 13.3%, respectively. This result indicates the aromatic was transformed mostly into asphaltene by photooxidation, and most of the changes took place within the first 10 d. In contrast, no significant difference was observed in the SARA fractions in the dark controls. Analyses of 13C values and phenanthrene concentrations in the SARA fractions are currently on going and will be presented. Results from this experiment provide insights into changes of specific aromatic compounds within oil fractions by photochemical oxidation during oil weathering in the ocean.

  3. A Naphtho- p-quinodimethane Exhibiting Baird’s (Anti)Aromaticity, Broken Symmetry, and Attractive Photoluminescence

    DOE PAGES

    Shokri, Siamak; Li, Jingbai; Manna, Manoj K.; ...

    2017-08-24

    In this paper, we report a novel reductive desulfurization reaction involving π-acidic naphthalene diimides 1 (NDI) using thionating agents such as Lawesson’s reagent. Along with the expected thionated NDI derivatives 2-6, new heterocyclic naphtho-p-quinodimethane compounds 7 depicting broken/reduced symmetry were successfully isolated and fully characterized. Empirical studies and theoretical modeling suggest that was formed via a six-membered ring oxathiaphosphenine intermediate rather than the usual four-membered ring oxathiaphosphetane of 2-6. Aside from the reduced symmetry in 7 as confirmed by single-crystal XRD analysis, we established that the ground state UV-vis absorption of 7 is red-shifted in comparison to the parent NDImore » 1. This result was expected in the case of thionated polycyclic diimides. However, unusual low energy transitions originate from Baird 4nπ aromaticity of compounds 7 in lieu of the intrinsic Huckel (4n + 2)π aromaticity as encountered in NDI 1. Moreover, complementary theoretical modeling results also corroborate this change in aromaticity of 7. Consequently, photophysical investigations show that, compared to parent NDI 1, 7 can easily access and emit from its T 1 state with a phosphorescence 3(7a)* lifetime of τ P = 395 μs at 77 K indicative of the formation of the corresponding “aromatic triplet” species according to the Baird’s rule of aromaticity.« less

  4. Oxidation of Naphthenoaromatic and Methyl-Substituted Aromatic Compounds by Naphthalene 1,2-Dioxygenase

    PubMed Central

    Selifonov, S. A.; Grifoll, M.; Eaton, R. W.; Chapman, P. J.

    1996-01-01

    Oxidation of acenaphthene, acenaphthylene, and fluorene was examined with recombinant strain Pseudomonas aeruginosa PAO1(pRE695) expressing naphthalene dioxygenase genes cloned from plasmid NAH7. Acenaphthene underwent monooxygenation to 1-acenaphthenol with subsequent conversion to 1-acenaphthenone and cis- and trans-acenaphthene-1,2-diols, while acenaphthylene was dioxygenated to give cis-acenaphthene-1,2-diol. Nonspecific dehydrogenase activities present in the host strain led to the conversion of both of the acenaphthene-1,2-diols to 1,2-acenaphthoquinone. The latter was oxidized spontaneously to naphthalene-1,8-dicarboxylic acid. No aromatic ring dioxygenation products were detected from acenaphthene and acenaphthylene. Mixed monooxygenase and dioxygenase actions of naphthalene dioxygenase on fluorene yielded products of benzylic 9-monooxygenation, aromatic ring dioxygenation, or both. The action of naphthalene dioxygenase on a variety of methyl-substituted aromatic compounds, including 1,2,4-trimethylbenzene and isomers of dimethylnaphthalene, resulted in the formation of benzylic alcohols, i.e., methyl group monooxygenation products, which were subsequently converted to the corresponding carboxylic acids by dehydrogenase(s) in the host strain. Benzylic monooxygenation of methyl groups was strongly predominant over aromatic ring dioxygenation and essentially nonspecific with respect to the substitution pattern of the aromatic substrates. In addition to monooxygenating benzylic methyl and methylene groups, naphthalene dioxygenase behaved as a sulfoxygenase, catalyzing monooxygenation of the sulfur heteroatom of 3-methylbenzothiophene. PMID:16535238

  5. Profiling of nonvolatiles in whiskeys using ultra high pressure liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS).

    PubMed

    Collins, Thomas S; Zweigenbaum, Jerry; Ebeler, Susan E

    2014-11-15

    Commercial samples of 63 American whiskeys, including bourbon whiskeys, Tennessee whiskeys, rye whiskeys and other blended whiskeys were analysed using ultra high pressure liquid chromatography (UHPLC) coupled with quadrupole time-of-flight (QTOF) mass spectrometry (MS). The non-volatile composition of the whiskeys was used to model differences among the samples using discriminant analysis. The blended American whiskeys were readily distinguished from the remaining types. Additionally, most Tennessee whiskeys could be differentiated from bourbon and rye whiskeys. Similarly, younger (<4 years old) and older (>8 years old) whiskeys could be separated. The compounds important for differentiating among these whiskeys included wood derived phenolic compounds, lignan derived compounds and several C8 and larger lipids. A number of additional compounds differentiated the whiskeys but could not be identified using MS and MS/MS data alone. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Pollination of Campomanesia phaea (Myrtaceae) by night-active bees: a new nocturnal pollination system mediated by floral scent.

    PubMed

    Cordeiro, G D; Pinheiro, M; Dötterl, S; Alves-Dos-Santos, I

    2017-03-01

    Bees are the most important diurnal pollinators of angiosperms. In several groups of bees a nocturnal/crepuscular habit developed, yet little is known about their role in pollination and whether some plants are adapted specifically to these bees. We used a multidisciplinary approach to investigate the reproductive biology and to understand the role of nocturnal/crepuscular bees in pollination of Campomanesia phaea (Myrtaceae), popularly named cambuci. We studied the floral biology and breeding system of C. phaea. We collected the floral visitors and tested the pollinators' effectiveness. We also determined the floral scents released at night and during daytime, and studied behavioural responses of crepuscular/nocturnal bees towards these scents. The flowers of cambuci were self-incompatible and had pollen as the only resource for flower visitors. Anthesis lasted around 14 h, beginning at 04:30 h at night. The flowers released 14 volatile compounds, mainly aliphatic and aromatic compounds. We collected 52 species of floral visitors, mainly bees. Nocturnal and crepuscular bees (four species) were among the most frequent species and the only effective pollinators. In field bioassays performed at night, nocturnal/crepuscular bees were attracted by a synthetic scent blend consisting of the six most abundant compounds. This study describes the first scent-mediated pollination system between a plant and its nocturnal bee pollinators. Further, C. phaea has several floral traits that do not allow classification into other nocturnal pollination syndromes (e.g. pollinator attraction already before sunrise, with pollen as the only reward), instead it is a plant specifically adapted to nocturnal bees. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components.

    PubMed

    Hyldgaard, Morten; Mygind, Tina; Meyer, Rikke Louise

    2012-01-01

    Essential oils are aromatic and volatile liquids extracted from plants. The chemicals in essential oils are secondary metabolites, which play an important role in plant defense as they often possess antimicrobial properties. The interest in essential oils and their application in food preservation has been amplified in recent years by an increasingly negative consumer perception of synthetic preservatives. Furthermore, food-borne diseases are a growing public health problem worldwide, calling for more effective preservation strategies. The antibacterial properties of essential oils and their constituents have been documented extensively. Pioneering work has also elucidated the mode of action of a few essential oil constituents, but detailed knowledge about most of the compounds' mode of action is still lacking. This knowledge is particularly important to predict their effect on different microorganisms, how they interact with food matrix components, and how they work in combination with other antimicrobial compounds. The main obstacle for using essential oil constituents as food preservatives is that they are most often not potent enough as single components, and they cause negative organoleptic effects when added in sufficient amounts to provide an antimicrobial effect. Exploiting synergies between several compounds has been suggested as a solution to this problem. However, little is known about which interactions lead to synergistic, additive, or antagonistic effects. Such knowledge could contribute to design of new and more potent antimicrobial blends, and to understand the interplay between the constituents of crude essential oils. The purpose of this review is to provide an overview of current knowledge about the antibacterial properties and antibacterial mode of action of essential oils and their constituents, and to identify research avenues that can facilitate implementation of essential oils as natural preservatives in foods.

  8. Transcriptional response to organic compounds from diverse gasoline and biogasoline fuel emissions in human lung cells.

    PubMed

    Libalova, Helena; Rossner, Pavel; Vrbova, Kristyna; Brzicova, Tana; Sikorova, Jitka; Vojtisek-Lom, Michal; Beranek, Vit; Klema, Jiri; Ciganek, Miroslav; Neca, Jiri; Machala, Miroslav; Topinka, Jan

    2018-04-01

    Modern vehicles equipped with Gasoline Direct Injection (GDI) engine have emerged as an important source of particulate emissions potentially harmful to human health. We collected and characterized gasoline exhaust particles (GEPs) produced by neat gasoline fuel (E0) and its blends with 15% ethanol (E15), 25% n-butanol (n-But25) and 25% isobutanol (i-But25). To study the toxic effects of organic compounds extracted from GEPs, we analyzed gene expression profiles in human lung BEAS-2B cells. Despite the lowest GEP mass, n-But25 extract contained the highest concentration of polycyclic aromatic hydrocarbons (PAHs), while i-But25 extract the lowest. Gene expression analysis identified activation of the DNA damage response and other subsequent events (cell cycle arrest, modulation of extracellular matrix, cell adhesion, inhibition of cholesterol biosynthesis) following 4 h exposure to all GEP extracts. The i-But25 extract induced the most distinctive gene expression pattern particularly after 24 h exposure. Whereas E0, E15 and n-But25 extract treatments resulted in persistent stress signaling including DNA damage response, MAPK signaling, oxidative stress, metabolism of PAHs or pro-inflammatory response, i-But25 induced changes related to the metabolism of the cellular nutrients required for cell recovery. Our results indicate that i-But25 extract possessed the weakest genotoxic potency possibly due to the low PAH content. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Analysis of oxidised heavy paraffininc products by high temperature comprehensive two-dimensional gas chromatography.

    PubMed

    Potgieter, H; Bekker, R; Beigley, J; Rohwer, E

    2017-08-04

    Heavy petroleum fractions are produced during crude and synthetic crude oil refining processes and they need to be upgraded to useable products to increase their market value. Usually these fractions are upgraded to fuel products by hydrocracking, hydroisomerization and hydrogenation processes. These fractions are also upgraded to other high value commercial products like lubricant oils and waxes by distillation, hydrogenation, and oxidation and/or blending. Oxidation of hydrogenated heavy paraffinic fractions produces high value products that contain a variety of oxygenates and the characterization of these heavy oxygenates is very important for the control of oxidation processes. Traditionally titrimetric procedures are used to monitor oxygenate formation, however, these titrimetric procedures are tedious and lack selectivity toward specific oxygenate classes in complex matrices. Comprehensive two-dimensional gas chromatography (GC×GC) is a way of increasing peak capacity for the comprehensive analysis of complex samples. Other groups have used HT-GC×GC to extend the carbon number range attainable by GC×GC and have optimised HT-GC×GC parameters for the separation of aromatics, nitrogen-containing compounds as well as sulphur-containing compounds in heavy petroleum fractions. HT-GC×GC column combinations for the separation of oxygenates in oxidised heavy paraffinic fractions are optimised in this study. The advantages of the HT-GC×GC method in the monitoring of the oxidation reactions of heavy paraffinic fraction samples are illustrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Method for producing heat-resistant semi-inorganic compounds

    NASA Technical Reports Server (NTRS)

    Yajima, S.; Okamura, K.; Shishido, T.; Hasegawa, Y.

    1983-01-01

    The method for producing a heat resistant, semi-inorganic compound is discussed. Five examples in which various alcohols, phenols, and aromatic carbonic acids are used to test heat resistance and solubility are provided.

  11. Separation and characterization of gall bladder bile metabolites from speckled trout, Salvelinus fontinalis, exposed to individual polycyclic aromatic compounds.

    PubMed

    Leonard, J D; Hellou, J

    2001-03-01

    Speckled trout, Salvelinus fontinalis, were orally exposed to individual polycyclic aromatic compounds (PACs) represented by benzo[a]pyrene, carbazole, chrysene, dibenzofuran, dibenzothiophene, fluorene, phenanthrene, and pyrene. Fish were sacrificed 7 d after exposure and the gall bladder removed for bile analysis. High pressure liquid chromatography (HPLC) with fluorescence (F) and ultraviolet (UV) detection was used to determine the presence of PAC derivatives in the bile without pretreatment. Glucuronide conjugates were predominant in all exposures with variable amounts (0-53%) of phenols and starting material. Identification of compounds was confirmed by selective extraction of less polar nonconjugated PACs and enzymatic hydrolysis of water-soluble material. This was followed by HPLC and/or gas chromatography-mass spectrometry (GCMS) characterization of the produced phenols. Total metabolite levels varied widely among compounds.

  12. Effect of iodide on transformation of phenolic compounds by nonradical activation of peroxydisulfate in the presence of carbon nanotube: Kinetics, impacting factors, and formation of iodinated aromatic products.

    PubMed

    Guan, Chaoting; Jiang, Jin; Pang, Suyan; Luo, Congwei; Yang, Yi; Ma, Jun; Yu, Jing; Zhao, Xi

    2018-06-04

    Our recent study has demonstrated that iodide (I - ) can be easily and almost entirely oxidized to hypoiodous acid (HOI) but not to iodate by nonradical activation of peroxydisulfate (PDS) in the presence of a commercial carbon nanotube (CNT). In this work, the oxidation kinetics of phenolic compounds by the PDS/CNT system in the presence of I - were examined and potential formation of iodinated aromatic products was explored. Experimental results suggested that I - enhanced the transformation of six selected substituted phenols, primarily attributed to the generation of HOI that was considerably reactive toward these phenolic compounds. More significant enhancement was obtained at higher I - concentrations or lower pH values, while the change of PDS or CNT dosages exhibited a slight impact on the enhancing effect of I - . Product analyses with liquid chromatography tandem mass spectrometry clearly revealed the production of iodinated aromatic products when p-hydroxybenzoic acid (p-HBA, a model phenol) was treated by the PDS/CNT/I - system in both synthetic and real waters. Their formation pathways probably involved the substitution of HOI on aromatic ring of p-HBA, as well as the generation of iodinated p-HBA phenoxyl radicals and subsequent coupling of these radicals. Given the considerable toxicity and harmful effects of these iodinated aromatic products, particular attention should be paid when the novel PDS/CNT oxidation technology is applied for treatment of phenolic contaminants in iodide-containing waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Aromatic aldehydes at the active site of aldehyde oxidoreductase from Desulfovibrio gigas: reactivity and molecular details of the enzyme-substrate and enzyme-product interaction.

    PubMed

    Correia, Hugo D; Marangon, Jacopo; Brondino, Carlos D; Moura, Jose J G; Romão, Maria J; González, Pablo J; Santos-Silva, Teresa

    2015-03-01

    Desulfovibrio gigas aldehyde oxidoreductase (DgAOR) is a mononuclear molybdenum-containing enzyme from the xanthine oxidase (XO) family, a group of enzymes capable of catalyzing the oxidative hydroxylation of aldehydes and heterocyclic compounds. The kinetic studies reported in this work showed that DgAOR catalyzes the oxidative hydroxylation of aromatic aldehydes, but not heterocyclic compounds. NMR spectroscopy studies using (13)C-labeled benzaldehyde confirmed that DgAOR catalyzes the conversion of aldehydes to the respective carboxylic acids. Steady-state kinetics in solution showed that high concentrations of the aromatic aldehydes produce substrate inhibition and in the case of 3-phenyl propionaldehyde a suicide substrate behavior. Hydroxyl-substituted aromatic aldehydes present none of these behaviors but the kinetic parameters are largely affected by the position of the OH group. High-resolution crystallographic structures obtained from single crystals of active-DgAOR soaked with benzaldehyde showed that the side chains of Phe425 and Tyr535 are important for the stabilization of the substrate in the active site. On the other hand, the X-ray data of DgAOR soaked with trans-cinnamaldehyde showed a cinnamic acid molecule in the substrate channel. The X-ray data of DgAOR soaked with 3-phenyl propionaldehyde showed clearly how high substrate concentrations inactivate the enzyme by binding covalently at the surface of the enzyme and blocking the substrate channel. The different reactivity of DgAOR versus aldehyde oxidase and XO towards aromatic aldehydes and N-heterocyclic compounds is explained on the basis of the present kinetic and structural data.

  14. Olfactory Response of the Predatory Bug Orius laevigatus (Hemiptera:Anthocoridae) to the Aggregation Pheromone of Its Prey, Frankliniella occidentalis (Thysanoptera: Thripidae).

    PubMed

    Vaello, Teresa; Casas, José L; Pineda, Ana; de Alfonso, Ignacio; Marcos-García, M Ángeles

    2017-10-01

    Herbivore natural enemies base their foraging decision on information cues from different trophic levels but mainly from plant odors. However, the second trophic level (i.e., the herbivorous prey) may also provide reliable infochemical cues for their natural enemies. We have evaluated the role of the aggregation pheromone from Frankliniella occidentalis (Pergande) as a potential kairomone for its natural enemy, the predatory bug Orius laevigatus (Fieber). For this purpose, we have analyzed the response of O. laevigatus to (R)-lavandulyl acetate and neryl (S)-2-methylbutanoate, the two major components of the thrips aggregation pheromone. These compounds have been offered to O. laevigatus adult females and nymphs of the predatory bugs both in separate and as specific (1:1 or 1:2.3) blends, in experiments involving a dual choice Y-tube olfactometer. None of the compounds attracted adults or nymphs when they were individually supplied. Conversely, they were significantly attracted to both adults and nymphs when offered as a blend. A 1:2.3 (R)-lavandulyl acetate:neryl (S)-2-methylbutanoate blend was attractive to both nymphs and adults, while a 1:1 blend elicited response only in nymphs. These results suggest that specific blends of these compounds from the aggregation pheromone may be used as an attractant to O. laevigatus. The results of this work highlight the importance of studying olfactory responses of natural enemies for a better understanding of their foraging behavior. Potential uses of these results in future studies are discussed. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Concentrations and co-occurrence correlations of 88 volatile organic compounds (VOCs) in the ambient air of 13 semi-rural to urban locations in the United States

    USGS Publications Warehouse

    Pankow, J.F.; Luo, W.; Bender, D.A.; Isabelle, L.M.; Hollingsworth, J.S.; Chen, C.; Asher, W.E.; Zogorski, J.S.

    2003-01-01

    The ambient air concentrations of 88 volatile organic compounds were determined in samples taken at 13 semi-rural to urban locations in Maine, Massachusetts, New Jersey, Pennsylvania, Ohio, Illinois, Louisiana, and California. The sampling periods ranged from 7 to 29 months, yielding a large data set with a total of 23,191 individual air concentration values, some of which were designated "ND" (not detected). For each compound at each sampling site, the air concentrations (ca, ppbV) are reported in terms of means, medians, and means of the detected values. The analytical method utilized adsorption/thermal desorption with air-sampling cartridges. The analytes included numerous halogenated alkanes, halogenated alkenes, ethers, alcohols, nitriles, esters, ketones, aromatics, a disulfide, and a furan. At some sites, the air concentrations of the gasoline-related aromatic compounds and the gasoline additive methyl tert-butyl ether were seasonally dependent, with concentrations that maximized in the winter. For each site studied here, the concentrations of some compounds were highly correlated one with another (e.g., the BTEX group (benzene, toluene, ethylbenzene, and the xylenes). Other aromatic compounds were also all generally correlated with one another, while the concentrations of other compound pairs were not correlated (e.g., benzene was not correlated with CFC-12). The concentrations found for the BTEX group were generally lower than the values that have been previously reported for urbanized and industrialized areas of other nations. ?? 2003 Elsevier Ltd. All rights reserved.

  16. Diketopyrrolopyrrole Polymers with Thienyl and Thiazolyl Linkers for Application in Field-Effect Transistors and Polymer Solar Cells.

    PubMed

    Yu, Yaping; Wu, Yang; Zhang, Andong; Li, Cheng; Tang, Zheng; Ma, Wei; Wu, Yonggang; Li, Weiwei

    2016-11-09

    Conjugated polymers consisting of diketopyrrolopyrrole (DPP) units have been successfully applied in field-effect transistors (FETs) and polymer solar cells (PSCs), while most of the DPP polymers were designed as symmetric structures containing identical aromatic linkers. In this manuscript, we design a new asymmetric DPP polymer with varied aromatic linkers in the backbone for application in FETs and PSCs. The designation provides the chance to finely adjust the energy levels of conjugated polymers so as to influence the device performance. The asymmetric polymer exhibits highly crystalline properties, high hole mobilities of 3.05 cm 2 V -1 s -1 in FETs, and a high efficiency of 5.9% in PSCs with spectra response from 300 to 850 nm. Morphology investigation demonstrates that the asymmetric polymer has a large crystal domain in blended thin films, indicating that the solar cell performance can be further enhanced by optimizing the microphase separation. The study reveals that the asymmetric design via adjusting the aromatic linkers in DPP polymers is a useful route toward flexible electronic devices.

  17. Evaluation of emission toxicity of urban bus engines: compressed natural gas and comparison with liquid fuels.

    PubMed

    Turrio-Baldassarri, Luigi; Battistelli, Chiara Laura; Conti, Luigi; Crebelli, Riccardo; De Berardis, Barbara; Iamiceli, Anna Laura; Gambino, Michele; Iannaccone, Sabato

    2006-02-15

    Emissions from a spark-ignition (SI) heavy-duty (HD) urban bus engine with a three-way catalyst (TWC), fuelled with compressed natural gas (CNG), were chemically analyzed and tested for genotoxicity. The results were compared with those obtained in a previous study on an equivalent diesel engine, fuelled with diesel oil (D) and a blend of the same with 20% vegetable oil (B20). Experimental procedures were identical, so that emission levels of the CNG engine were exactly comparable to the ones of the diesel engine. The experimental design was focused on carcinogenic compounds and genotoxic activity of exhausts. The results obtained show that the SI CNG engine emissions, with respect to the diesel engine fuelled with D, were nearly 50 times lower for carcinogenic polycyclic aromatic hydrocarbons (PAHs), 20 times lower for formaldehyde, and more than 30 times lower for particulate matter (PM). A 20-30 fold reduction of genotoxic activity was estimated from tests performed. A very high reduction of nitrogen oxides (NO(X)) was also measured. The impact of diesel powered transport on urban air quality, and the potential benefits deriving from the use of CNG for public transport, are discussed.

  18. Lubricity of well-characterized jet and broad-cut fuels by ball-on-cylinder machine

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Kim, W. S.

    1984-01-01

    A ball-on-cylinder machine (BOCM) was used to measure the lubricity of fuels. The fuels tested were well-characterized fuels available from other programs at the NASA Lewis Research Center plus some in-house mildly hydroprocessed shale fuels from other programs included Jet-A, ERBS fuel, ERBS blends, and blend stock. The BOCM tests were made before and after clay treatment of some of these fuels with both humidified air and dry nitrogen as the preconditioning and cover gas. As expected, clay treatment always reduced fuel lubricity. Using nitrogen preconditioning and cover gas always resulted in a smaller wear scar diameter than when humidified air was used. Also observed was an indication of lower lubricity with lower boiling range fuels and lower aromatic fuels. Gas chromatographic analysis indicted changes in BOCM-stressed fuels.

  19. VOC composition of current motor vehicle fuels and vapors, and collinearity analyses for receptor modeling.

    PubMed

    Chin, Jo-Yu; Batterman, Stuart A

    2012-03-01

    The formulation of motor vehicle fuels can alter the magnitude and composition of evaporative and exhaust emissions occurring throughout the fuel cycle. Information regarding the volatile organic compound (VOC) composition of motor fuels other than gasoline is scarce, especially for bioethanol and biodiesel blends. This study examines the liquid and vapor (headspace) composition of four contemporary and commercially available fuels: gasoline (<10% ethanol), E85 (85% ethanol and 15% gasoline), ultra-low sulfur diesel (ULSD), and B20 (20% soy-biodiesel and 80% ULSD). The composition of gasoline and E85 in both neat fuel and headspace vapor was dominated by aromatics and n-heptane. Despite its low gasoline content, E85 vapor contained higher concentrations of several VOCs than those in gasoline vapor, likely due to adjustments in its formulation. Temperature changes produced greater changes in the partial pressures of 17 VOCs in E85 than in gasoline, and large shifts in the VOC composition. B20 and ULSD were dominated by C(9) to C(16)n-alkanes and low levels of the aromatics, and the two fuels had similar headspace vapor composition and concentrations. While the headspace composition predicted using vapor-liquid equilibrium theory was closely correlated to measurements, E85 vapor concentrations were underpredicted. Based on variance decomposition analyses, gasoline and diesel fuels and their vapors VOC were distinct, but B20 and ULSD fuels and vapors were highly collinear. These results can be used to estimate fuel related emissions and exposures, particularly in receptor models that apportion emission sources, and the collinearity analysis suggests that gasoline- and diesel-related emissions can be distinguished. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Characterization of gas station emissions during the CAREBeijing 2008 field study

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Zhu, T.; Zhang, R.; Wang, M.; Chang, C.-C.; Shao, M.; Hu, M.

    2011-05-01

    A proton transfer-reaction mass spectrometer (PTR-MS) onboard a mobile laboratory was used to conduct emission measurements at eight gas stations in Beijing during the CAREBeijing 2008 campaign. Benzene, toluene, C8-, C9-aromatics, methanol, MTBE, butenes and pentenes were the major volatile organic compounds (VOCs) detected during the measurements. An inter-comparison between the PTR-MS and an on-line GC/MS/FID system was also conducted and the result showed good agreement between the two instruments (Interception < 0.08 ppbv, 0.72 < Slope < 0.95, and R2 > 0.92). A Gaussian point source plume model was applied to evaluate the VOCs emission rates. The results showed that on average about 4.5 mt of gasoline were emitted from gas stations in Beijing per day. The estimated emission factor (EF) for gas stations due to refueling processes was about 0.5 kg t-1, which was significantly lower than a value of 2.49 kg t-1 obtained in 2002, indicating a successful implementation of vapor recovery system in the gas stations of Beijing. On average, about 18 ppbv of benzene has been detected at one gas station, twice as much as the US Environmental Protection Agency (EPA) recommended safe chronic exposure level and implying a potential public health concern. MTBE and aromatics were found to be the major antiknocking additives used in gasoline supplied in Beijing. Our results reveal that emissions from gas stations represent an important source for VOCs in megacity Beijing and need to be properly included in emission inventories to assess their roles in photochemical ozone production and secondary organic aerosol formation. Furthermore, promoting methanol-blended fuel in Beijing can be an effective way to reduce toxic air pollutants emission.

  1. Distillation-based Droplet Modeling of Non-Ideal Oxygenated Gasoline Blends: Investigating the Role of Droplet Evaporation on PM Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Stephen C.; Ratcliff, Matthew; McCormick, Robert

    In some studies, a relationship has been observed between increasing ethanol content in gasoline and increased particulate matter (PM) emissions from vehicles equipped with spark ignition engines. The fundamental cause of the PM increase seen for moderate ethanol concentrations is not well understood. Ethanol features a greater heat of vaporization (HOV) than gasoline and also influences vaporization by altering the liquid and vapor composition throughout the distillation process. A droplet vaporization model was developed to explore ethanol's effect on the evaporation of aromatic compounds known to be PM precursors. The evolving droplet composition is modeled as a distillation process, withmore » non-ideal interactions between oxygenates and hydrocarbons accounted for using UNIFAC group contribution theory. Predicted composition and distillation curves were validated by experiments. Detailed hydrocarbon analysis was applied to fuel samples and to distillate fractions, and used as input for the initial droplet composition. With composition calculated throughout the distillation, the changing HOV and other physical properties can be found using reference data. The droplet can thus be modeled in terms of energy transfer, which in turn provides the transient mass transfer, droplet temperature, and droplet diameter. Model predictions suggest that non-ideal vapor-liquid equilibrium along with an increase in HOV can alter the droplet composition evolution. Results predict that the presence of ethanol causes enrichment of the higher boiling fractions (T90+) in the aromatic components as well as lengthens the droplet lifetime. A simulation of the evaporation process in a transient environment as experienced within an engine cylinder predicts a decrease in mixing time of the heaviest fractions of the fuel prior to spark initiation, possibly explaining observations linking ethanol to PM.« less

  2. Distillation-based Droplet Modeling of Non-Ideal Oxygenated Gasoline Blends: Investigating the Role of Droplet Evaporation on PM Emissions

    DOE PAGES

    Burke, Stephen C.; Ratcliff, Matthew; McCormick, Robert; ...

    2017-03-28

    In some studies, a relationship has been observed between increasing ethanol content in gasoline and increased particulate matter (PM) emissions from vehicles equipped with spark ignition engines. The fundamental cause of the PM increase seen for moderate ethanol concentrations is not well understood. Ethanol features a greater heat of vaporization (HOV) than gasoline and also influences vaporization by altering the liquid and vapor composition throughout the distillation process. A droplet vaporization model was developed to explore ethanol's effect on the evaporation of aromatic compounds known to be PM precursors. The evolving droplet composition is modeled as a distillation process, withmore » non-ideal interactions between oxygenates and hydrocarbons accounted for using UNIFAC group contribution theory. Predicted composition and distillation curves were validated by experiments. Detailed hydrocarbon analysis was applied to fuel samples and to distillate fractions, and used as input for the initial droplet composition. With composition calculated throughout the distillation, the changing HOV and other physical properties can be found using reference data. The droplet can thus be modeled in terms of energy transfer, which in turn provides the transient mass transfer, droplet temperature, and droplet diameter. Model predictions suggest that non-ideal vapor-liquid equilibrium along with an increase in HOV can alter the droplet composition evolution. Results predict that the presence of ethanol causes enrichment of the higher boiling fractions (T90+) in the aromatic components as well as lengthens the droplet lifetime. A simulation of the evaporation process in a transient environment as experienced within an engine cylinder predicts a decrease in mixing time of the heaviest fractions of the fuel prior to spark initiation, possibly explaining observations linking ethanol to PM.« less

  3. VOC composition of current motor vehicle fuels and vapors, and collinearity analyses for receptor modeling

    PubMed Central

    Chin, Jo-Yu; Batterman, Stuart A.

    2015-01-01

    The formulation of motor vehicle fuels can alter the magnitude and composition of evaporative and exhaust emissions occurring throughout the fuel cycle. Information regarding the volatile organic compound (VOC) composition of motor fuels other than gasoline is scarce, especially for bioethanol and bio-diesel blends. This study examines the liquid and vapor (headspace) composition of four contemporary and commercially available fuels: gasoline (<10% ethanol), E85 (85% ethanol and 15% gasoline), ultra-low sulfur diesel (ULSD), and B20 (20% soy-biodiesel and 80% ULSD). The composition of gasoline and E85 in both neat fuel and headspace vapor was dominated by aromatics and n-heptane. Despite its low gasoline content, E85 vapor contained higher concentrations of several VOCs than those in gasoline vapor, likely due to adjustments in its formulation. Temperature changes produced greater changes in the partial pressures of 17 VOCs in E85 than in gasoline, and large shifts in the VOC composition. B20 and ULSD were dominated by C9 to C16 n-alkanes and low levels of the aromatics, and the two fuels had similar headspace vapor composition and concentrations. While the headspace composition predicted using vapor–liquid equilibrium theory was closely correlated to measurements, E85 vapor concentrations were underpredicted. Based on variance decomposition analyses, gasoline and diesel fuels and their vapors VOC were distinct, but B20 and ULSD fuels and vapors were highly collinear. These results can be used to estimate fuel related emissions and exposures, particularly in receptor models that apportion emission sources, and the collinearity analysis suggests that gasoline- and diesel-related emissions can be distinguished. PMID:22154341

  4. The production of aromatic alcohols in non-Saccharomyces wine yeast is modulated by nutrient availability.

    PubMed

    González, Beatriz; Vázquez, Jennifer; Morcillo-Parra, M Ángeles; Mas, Albert; Torija, María Jesús; Beltran, Gemma

    2018-09-01

    Aromatic alcohols (tryptophol, phenylethanol, tyrosol) positively contribute to organoleptic characteristics of wines, and are also described as bioactive compounds and quorum sensing molecules. These alcohols are produced by yeast during alcoholic fermentation via the Erhlich pathway, although in non-Saccharomyces this production has been poorly studied. We studied how different wine yeast species modulate the synthesis patterns of aromatic alcohol production depending on glucose, nitrogen and aromatic amino acid availability. Nitrogen limitation strongly promoted the production of aromatic alcohols in all strains, whereas low glucose generally inhibited it. Increased aromatic amino acid concentrations stimulated the production of aromatic alcohols in all of the strains and conditions tested. Thus, there was a clear association between the nutrient conditions and production of aromatic alcohols in most of the wine yeast species analysed. Additionally, the synthesis pattern of these alcohols has been evaluated for the first time in Torulaspora delbrueckii, Metschnikowia pulcherrima and Starmellera bacillaris. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Decoding the Secrets of Carbon Preservation and GHG Flux in Lower-Latitude Peatlands

    NASA Astrophysics Data System (ADS)

    Richardson, C. J.; Flanagan, N. E.; Wang, H.; Ho, M.; Hodgkins, S. B.; Cooper, W. T.; Chanton, J.; Winton, S.

    2017-12-01

    The mechanisms regulating peat decomposition and C carbon storage in peatlands are poorly understood, particularly with regard to the importance of the biochemical compounds produced by different plant species and in turn peat quality controls on C storage and GHG flux. To examine the role of carbon quality in C accretion in northern compared to tropical peatlands we completed field and lab studies on bog peats collected in Minnesota, North Carolina, Florida and Peru to answer three fundamental questions; 1) is tropical peat more recalcitrant than northern peat 2) does the addition of aromatic and phenolic C compounds increase towards the tropics 3) do differences in the chemical structure of organic matter explain variances in carbon storage and GHG flux in tropical versus northern peatlands? Our main hypothesize is that high concentrations of phenolics and aromatic C compounds produced in shrub and tree plant communities in peatlands coupled with the fire production of biochar aromatics in peatlands may provide a dual biogeochemical latch mechanism controlling microbial decomposition of peat even under higher temperatures and seasonal drought. By comparing the peat bog soil cores collected from the MN peat bogs, NC Pocosins, FL Everglades and Peru palm swamps we find that the soils in the shrub-dominant Pocosin contain the highest phenolics, which microbial studies indicate have the strongest resistance to microbial decomposition. A chemical comparison of plant driven peat carbon quality along a north to south latitudinal gradient indicates that tropical peatlands have higher aromatic compounds, and enhanced phenolics, especially after light fires, which enhances C storage and affect GHG flux across the latitudinal gradient.

  6. SiRNAs conjugated with aromatic compounds induce RISC-mediated antisense strand selection and strong gene-silencing activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubo, Takanori, E-mail: kubo-t@yasuda-u.ac.jp; Yanagihara, Kazuyoshi; Division of Genetics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer SiRNAs conjugated with aromatic compounds (Ar-siRNAs) at 5 Prime -sense strand were synthesized. Black-Right-Pointing-Pointer Ar-siRNAs increased resistance against nuclease degradation. Black-Right-Pointing-Pointer Ar-siRNAs were thermodynamically stable compared with the unmodified siRNA. Black-Right-Pointing-Pointer High levels of cellular uptake and cytoplasmic localization were found. Black-Right-Pointing-Pointer Strong gene-silencing efficacy was exhibited in the Ar-siRNAs. -- Abstract: Short interference RNA (siRNA) is a powerful tool for suppressing gene expression in mammalian cells. In this study, we focused on the development of siRNAs conjugated with aromatic compounds in order to improve the potency of RNAi and thus to overcome several problems with siRNAs, suchmore » as cellular delivery and nuclease stability. The siRNAs conjugated with phenyl, hydroxyphenyl, naphthyl, and pyrenyl derivatives showed strong resistance to nuclease degradation, and were thermodynamically stable compared with unmodified siRNA. A high level of membrane permeability in HeLa cells was also observed. Moreover, these siRNAs exhibited enhanced RNAi efficacy, which exceeded that of locked nucleic acid (LNA)-modified siRNAs, against exogenous Renilla luciferase in HeLa cells. In particular, abundant cytoplasmic localization and strong gene-silencing efficacy were found in the siRNAs conjugated with phenyl and hydroxyphenyl derivatives. The novel siRNAs conjugated with aromatic compounds are promising candidates for a new generation of modified siRNAs that can solve many of the problems associated with RNAi technology.« less

  7. Atmospheric pressure solid analysis probe coupled to quadrupole-time of flight mass spectrometry as a tool for screening and semi-quantitative approach of polycyclic aromatic hydrocarbons, nitro-polycyclic aromatic hydrocarbons and oxo-polycyclic aromatic hydrocarbons in complex matrices.

    PubMed

    Carrizo, Daniel; Domeño, Celia; Nerín, Isabel; Alfaro, Pilar; Nerín, Cristina

    2015-01-01

    A new screening and semi-quantitative approach has been developed for direct analysis of polycyclic aromatic hydrocarbons (PAHs) and their nitro and oxo derivatives in environmental and biological matrices using atmospheric pressure solid analysis probe (ASAP) quadrupole-time of flight mass spectrometry (Q-TOF-MS). The instrumental parameters were optimized for the analysis of all these compounds, without previous sample treatment, in soil, motor oil, atmospheric particles (ashes) and biological samples such as urine and saliva of smokers and non-smokers. Ion source parameters in the MS were found to be the key parameters, with little variation within PAHs families. The optimized corona current was 4 µA, sample cone voltage 80 V for PAHs, nitro-PAHs and oxo-PAHs, while the desolvation temperatures varied from 300°C to 500°C. The analytical method performance was checked using a certified reference material. Two deuterated compounds were used as internal standards for semi-quantitative purposes together with the pure individual standard for each compound and the corresponding calibration plot. The compounds nitro PAH 9-nitroanthracene and oxo-PAH 1,4-naphthalenedione, were found in saliva and urine in a range below 1 µg/g while the range of PAHs in these samples was below 2 µg/g. Environmental samples provided higher concentration of all pollutants than urine and saliva. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Anaerobic/aerobic treatment of a petrochemical wastewater from two aromatic transformation processes by fluidized bed reactors.

    PubMed

    Estrada-Arriaga, Edson B; Ramirez-Camperos, Esperanza; Moeller-Chavez, Gabriela E; García-Sanchez, Liliana

    2012-01-01

    An integrated fluidized bed reactor (FBR) has been employed as the treatment for petrochemical industry wastewaters with high organic matter and aromatic compounds, under anaerobic and aerobic conditions. The system was operated at hydraulic residence time (HRT) of 2.7 and 2.2 h in the anaerobic and aerobic reactor, respectively. The degree of fluidization in the beds was 30%. This system showed a high performance on the removal of organic matter and aromatic compounds. At different organic loading rates (OLR), the chemical oxygen demand (COD) removal in the anaerobic reactor was close to 85% and removals of the COD up to 94% were obtained in the aerobic reactor. High removals of benzene, toluene, ethylbenzene, xylenes, styrene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and naphthalene were achieved in this study.

  9. Interactions between manganese oxides and multiple-ringed aromatic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, G.; Sims, R.C.

    1992-08-01

    Objective is to determine whether Mn reductive dissolution can oxidize multiple-ringed aromatics, such as PAHs, in an oxic environment Research indicated that certain PAHs (eg, dihydrodiols and diones that form free-radical intermediates) are susceptible to oxidation and polymerization. Over 14 days, 83, 76, 54, 70, and 20% of the Mn was reduced by 2,3-, 1,3-, and 1,4-naphthalenediol, quinizarin, and 1,4-naphthoquinone, respectively. 100, 100, and 65% of the first three PAHs were oxidized, respectively. Aromatics with diol functional groups were more easily oxidized than those with only dione groups. Relatively insoluble compounds like quinizarin can be oxidized; insoluble ''humic-like'' material precipitated,more » indicating a polymerization-humification process. Results suggest that electron transfer/organic release from the oxide surface is the rate-limiting step.« less

  10. Interactions between manganese oxides and multiple-ringed aromatic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, G.; Sims, R.C.

    1992-08-01

    Objective is to determine whether Mn reductive dissolution can oxidize multiple-ringed aromatics, such as PAHs, in an oxic environment? Research indicated that certain PAHs (eg, dihydrodiols and diones that form free-radical intermediates) are susceptible to oxidation and polymerization. Over 14 days, 83, 76, 54, 70, and 20% of the Mn was reduced by 2,3-, 1,3-, and 1,4-naphthalenediol, quinizarin, and 1,4-naphthoquinone, respectively. 100, 100, and 65% of the first three PAHs were oxidized, respectively. Aromatics with diol functional groups were more easily oxidized than those with only dione groups. Relatively insoluble compounds like quinizarin can be oxidized; insoluble ``humic-like`` material precipitated,more » indicating a polymerization-humification process. Results suggest that electron transfer/organic release from the oxide surface is the rate-limiting step.« less

  11. Infrared and Raman spectra of N-acetyl- L-amino acid methylamides with aromatic side groups

    NASA Astrophysics Data System (ADS)

    Matsuura, Hiroatsu; Hasegawa, Kodo; Miyazawa, Tatsuo

    Infrared and Raman spectra of N-acetyl- L-phenylalanine methylamide, N-acetyl- L-tyrosine methylamide and N-acetyl- L-tryptophan methylamide, as model compounds of aromatic amino acid residues in proteins, were measured in the solid state and in methanol solutions. Vibrational assignments of the spectra were made by utilizing the deuteration effect and by comparison with the spectra of related compounds which include toluene, p-cresol and 3-methylindole. The amide I, III and IV bands were strong in Raman scattering, but other characteristic amide bands were ill-defined. In the Raman spectra of methanol solutions, only the bands due to the aromatic side group vibrations were markedly observed, but those due to the peptide backbone vibrations were very weak, suggesting the coexistence of various molecular conformations in solution.

  12. Effect of cofermentation of grape varieties on aroma profiles of la mancha red wines.

    PubMed

    García-Carpintero, Eva Gómez; Sánchez-Palomo, Eva; Gómez Gallego, Manuel A; González-Viñas, Miguel A

    2011-10-01

    The effect of winemaking using blends of red grape varieties cultivated in La Mancha region (Spain) on the aroma profile of wines was researched by chemical characterization. Free and glycosidically bound aroma compounds were isolated by solid phase extraction using dichloromethane and ethyl acetate, respectively, as solvents in elution and then analyzed by gas chromatography-mass spectrometry. Free and bound volatile compounds were analyzed in Cencibel, Bobal, and Moravia Agria monovarietal wines, and in 3 wines obtained with the blending of grapes: Cencibel (50%) + Bobal (50%); Cencibel (50%) + Moravía Agria (50%); Cencibel (33%) + Bobal (33%) + Moravía Agria (33%). Aroma compounds were studied in terms of odor activity values (OAVs). Ninety free aroma compounds and sixty-five bound aroma compounds were identified and quantified. The odor activity values for the different compounds were classified into 7 odorant series. The fruity and sweet series contributed most strongly to the aroma profile of all wines, independently of the winemaking technique used. In general, co-winemaking wines present a more complex chemical profile than monovarietal wines. Practical Application: Some grape varieties could benefit from this process with the presence of other varieties that might have an excess of aroma compounds. In this study, the wines were elaborated by blending different grape varieties together; this process implies co-maceration and co-fermentation steps. The co-winemaking technique could benefit from additional molecules provided by the other varieties, which results in a more complex formation than in the case of monovarietal wines. This technique provides a viable alternative to traditional winemaking methods for improving and enhancing the sensory profile of elaborated wines. © 2011 Institute of Food Technologists®

  13. Integration of Endnote Online in Information Literacy Instruction Designed for Small and Large Chemistry Courses

    ERIC Educational Resources Information Center

    Baykoucheva, Svetla; Houck, Joseph D.; White, Natalia

    2016-01-01

    The blended model for information literacy instruction described in this article introduces students not only to efficient techniques for finding scientific literature and properties of chemical compounds, but also to managing this information with a bibliographic management program (EndNote Online). The model blends face-to-face instruction with…

  14. Poly(1,3,4-oxadiazoles) via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Wolf, Peter (Inventor)

    1992-01-01

    Poly(1,3,4-oxadiazoles) (POX) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl) 1,3,4-oxadiazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The polymerizations are carried out in polar aprotic solvents such as sulfolane or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl) 1,3,4-oxadiazole monomers are synthesized by reacting 4-hydroxybenzoic hydrazide with phenyl 4-hydrobenzoate in the melt and also by reacting aromatic dihydrazides with two moles of phenyl 4-hydroxybenzoate in the melt. This synthetic route has provided high molecular weight POX of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the large variety of activated aromatic dihalides which are available.

  15. Monomers for thermosetting and toughening epoxy resins. [glycidyl amine derivatives, propargyl-containing amines, and mutagenic testing of aromatic diamines

    NASA Technical Reports Server (NTRS)

    Pratt, J. R.

    1981-01-01

    Eight glycidyl amines were prepared by alkylating the parent amine with epichlorohydrin to form chlorohydrin, followed by cyclization with aqueous NaOH. Three of these compounds contained propargyl groups with postcuring studies. A procedure for quantitatively estimating the epoxy content of these glycidyl amines was employed for purity determination. Two diamond carbonates and several model propargly compounds were prepared. The synthesis of three new diamines, two which contain propargyloxy groups, and another with a sec-butyl group is in progress. These materials are at the dinitro stage ready for the final hydrogenation step. Four aromatic diamines were synthesized for mutagenic testing purposes. One of these compounds rapidly decomposes on exposure to air.

  16. Antioxidant and Anti-Osteoporotic Activities of Aromatic Compounds and Sterols from Hericium erinaceum.

    PubMed

    Li, Wei; Lee, Sang Hyun; Jang, Hae Dong; Ma, Jin Yeul; Kim, Young Ho

    2017-01-11

    Hericium erinaceum , commonly called lion's mane mushroom, is a traditional edible mushroom widely used in culinary applications and herbal medicines in East Asian countries. In this study, a new sterol, cerevisterol 6-cinnamate ( 6 ), was isolated from the fruiting bodies of H. erinaceum together with five aromatic compounds 1 - 5 and five sterols 7 - 11 . The chemical structures of these compounds were elucidated using chemical and physical methods and comparison of HRESIMS, ¹D-NMR (¹H, 13 C, and DEPT) and 2D-NMR (COSY, HMQC, HMBC, and NOESY) spectra with previously reported data. The antioxidant and anti-osteoporotic activities of extracts and the isolated compounds 1 - 11 were investigated. All compounds exhibited peroxyl radical-scavenging capacity but only compounds 1 , 3 , and 4 showed potent reducing capacity. Moreover, compounds 1 , 2 , 4 , and 5 showed moderate effects on cellular antioxidant activity and inhibited the receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastic differentiation. These results suggested that H. erinaceum could be utilized in the development of natural antioxidant and anti-osteoporotic nutraceuticals and functional foods.

  17. Bioblendstocks that Enable High Efficiency Engine Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Robert L.; Fioroni, Gina M.; Ratcliff, Matthew A.

    2016-11-03

    The past decade has seen a high level of innovation in production of biofuels from sugar, lipid, and lignocellulose feedstocks. As discussed in several talks at this workshop, ethanol blends in the E25 to E50 range could enable more highly efficient spark-ignited (SI) engines. This is because of their knock resistance properties that include not only high research octane number (RON), but also charge cooling from high heat of vaporization, and high flame speed. Emerging alcohol fuels such as isobutanol or mixed alcohols have desirable properties such as reduced gasoline blend vapor pressure, but also have lower RON than ethanol.more » These fuels may be able to achieve the same knock resistance benefits, but likely will require higher blend levels or higher RON hydrocarbon blendstocks. A group of very high RON (>150) oxygenates such as dimethyl furan, methyl anisole, and related compounds are also produced from biomass. While providing no increase in charge cooling, their very high octane numbers may provide adequate knock resistance for future highly efficient SI engines. Given this range of options for highly knock resistant fuels there appears to be a critical need for a fuel knock resistance metric that includes effects of octane number, heat of vaporization, and potentially flame speed. Emerging diesel fuels include highly branched long-chain alkanes from hydroprocessing of fats and oils, as well as sugar-derived terpenoids. These have relatively high cetane number (CN), which may have some benefits in designing more efficient CI engines. Fast pyrolysis of biomass can produce diesel boiling range streams that are high in aromatic, oxygen and acid contents. Hydroprocessing can be applied to remove oxygen and consequently reduce acidity, however there are strong economic incentives to leave up to 2 wt% oxygen in the product. This oxygen will primarily be present as low CN alkyl phenols and aryl ethers. While these have high heating value, their presence in diesel fuel at significant volume percentage will require higher CN blendstocks or the use of cetane improving additives.« less

  18. A new class of bio-heat resisted polymer blend.

    NASA Astrophysics Data System (ADS)

    Pack, Seongchan; Kashiwagi, Takashi; Koga, Tadanori; Rafailovich, Miriam

    2009-03-01

    Increasing in oil prices and environmental concerns is a driving force to seek out alternative materials. A completely biodegradable starch is a candidate for the alternative materials. Since the starch is brittle, it must be mixed with other polymers. In order to make a thermoplastic starch (TPS), we need a bio-compatiblizer to increase a degree of compatibilization. The biocompatibilzer can be a small molecules or nanoparticles with the small molecules, which leads to improved material properties. In order to demonstrate a possible biocompatibilzer, we first developed a corn-based starch impregnated with non-halogenated flame retardant formulations. The starch was blended with Ecoflex, a biodegradable polymer. Using SAXS and USAXS we characterized structures of the compounds with different amount of Ecoflex by weight. Furthermore, the addition of 5% nanoparticles in the compounds increased the Young's Modulus and impact toughness significantly. The compounds also did flame test. It is indicated that the compound with the addition of the nanopaticles would pass with a UL-94V0 rating. Therefore, the procedure for producing these TPS compounds can be applied to any biodegradable polymers, manufacturing a new bio-heat resisted compound.

  19. pi-Selective stationary phases: (II) Adsorption behavior of substituted aromatic compounds on n-alkyl-phenyl stationary phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritti, Fabrice; Guiochon, Georges A; Mayfield, Kirsty

    2010-01-01

    The frontal analysis method was used to measure the adsorption isotherms of phenol, 4-chlorophenol, p-cresol, 4-methoxyphenol and caffeine on a series of columns packed with home-made alkyl-phenyl bonded silica particles. These ligands consist of a phenyl ring tethered to the silica support via a carbon chain of length ranging from 0 to 4 atoms. The adsorption isotherm models that fit best to the data account for solute-solute interactions that are likely caused by p-p interactions occurring between aromatic compounds and the phenyl group of the ligand. These interactions are the dominant factor responsible for the separation of low molecular weightmore » aromatic compounds on these phenyl-type stationary phases. The saturation capacities depend on whether the spacer of the ligands have an even or an odd number of carbon atoms, with the even alkyl chain lengths having a greater saturation capacity than the odd alkyl chain lengths. The trends in the adsorption equilibrium constant are also significantly different for the even and the odd chain length ligands.« less

  20. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Tomofumi; Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu-shi, Fukuoka 818-0135; Ichinose, Hirofumi

    2010-04-09

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conservedmore » domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD{sup +}-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.« less

Top