Science.gov

Sample records for aromatic hydrocarbons interacting

  1. COMPUTATIONAL METHODS FOR STUDYING THE INTERACTION BETWEEN POLYCYCLIC AROMATIC HYDROCARBONS AND BIOLOGICAL MACROMOLECULES

    EPA Science Inventory

    Computational Methods for Studying the Interaction between Polycyclic Aromatic Hydrocarbons and Biological Macromolecules .

    The mechanisms for the processes that result in significant biological activity of PAHs depend on the interaction of these molecules or their metabol...

  2. COMPUTATIONAL METHODS FOR STUDYING THE INTERACTION BETWEEN POLYCYCLIC AROMATIC HYDROCARBONS AND BIOLOGICAL MACROMOLECULES

    EPA Science Inventory

    Computational Methods for Studying the Interaction between Polycyclic Aromatic Hydrocarbons and Biological Macromolecules .

    The mechanisms for the processes that result in significant biological activity of PAHs depend on the interaction of these molecules or their metabol...

  3. Removal of crude oil polycyclic aromatic hydrocarbons via organoclay-microbe-oil interactions.

    PubMed

    Ugochukwu, Uzochukwu C; Fialips, Claire I

    2017-05-01

    Clay minerals are quite vital in biogeochemical processes but the effect of organo-clays in the microbial degradation of crude oil polycyclic aromatic hydrocarbons is not well understood. The role of organo-saponite and organo-montmorillonite in comparison with the unmodified clays in crude oil polycyclic aromatic hydrocarbons (PAHs) removal via adsorption and biodegradation was studied by carrying out microcosm experiments in aqueous clay/oil systems with a hydrocarbon degrading microbial community that is predominantly alcanivorax spp. Montmorillonite and saponite samples were treated with didecyldimethylammonium bromide to produce organo-montmorillonite and organo-saponite used in this study. Obtained results indicate that clays with high cation exchange capacity (CEC) such as montmorillonite produced organo-clay (organomontmorillonite) that was not stimulatory to biodegradation of crude oil polycyclic aromatic compounds, especially the low molecular weight (LMW) ones, such as dimethylnaphthalenes. It is suggested that interaction between the organic phase of the organo-clay and the crude oil PAHs which is hydrophobic in nature must have reduced the availability of the polycyclic aromatic hydrocarbons for biodegradation. Organo-saponite did not enhance the microbial degradation of dimethylnaphthalenes but enhanced the biodegradation of some other PAHs such as phenanthrene. The unmodified montmorillonite enhanced the microbial degradation of the PAHs and is most likely to have done so as a result of its high surface area that allows the accumulation of microbes and nutrients enhancing their contact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Superconductivity in aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kubozono, Yoshihiro; Goto, Hidenori; Jabuchi, Taihei; Yokoya, Takayoshi; Kambe, Takashi; Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L. T.; Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya

    2015-07-01

    'Aromatic hydrocarbon' implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (Kxpicene, five benzene rings). Its superconducting transition temperatures (Tc's) were 7 and 18 K. Recently, we found a new superconducting Kxpicene phase with a Tc as high as 14 K, so we now know that Kxpicene possesses multiple superconducting phases. Besides Kxpicene, we discovered new superconductors such as Rbxpicene and Caxpicene. A most serious problem is that the shielding fraction is ⩽15% for Kxpicene and Rbxpicene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of Tc that is clearly observed in some phases of aromatic hydrocarbon superconductors, suggesting behavior not explained by the standard BCS picture of superconductivity. In this article, we describe the present status of this research field, and discuss its future prospects.

  5. A molecular dynamics study on slow ion interactions with the polycyclic aromatic hydrocarbon molecule anthracene

    SciTech Connect

    Postma, J.; Hoekstra, R.; Schlathölter, T.; Tielens, A. G. G. M.

    2014-03-01

    Atomic collisions with polycyclic aromatic hydrocarbon (PAH) molecules are astrophysically particularly relevant for collision energies of less than 1 keV. In this regime, the interaction dynamics are dominated by elastic interactions. We have employed a molecular dynamics simulation based on analytical interaction potentials to model the interaction of low energy hydrogen and helium projectiles with isolated anthracene (C{sub 14}H{sub 10}) molecules. This approach allows for a very detailed investigation of the elastic interaction dynamics on an event by event basis. From the simulation data the threshold projectile kinetic energies above which direct C atom knock out sets in were determined. Anthracene differential energy transfer cross sections and total (dissociation) cross sections were computed for a wide range of projectile kinetic energies. The obtained results are interpreted in the context of PAH destruction in astrophysical environments.

  6. Characterizing the interactions between polycyclic aromatic hydrocarbons and fulvic acids in water.

    PubMed

    Lu, Rui; Sheng, Guo-Ping; Liang, Yi; Li, Wei-Hua; Tong, Zhong-Hua; Chen, Wei; Yu, Han-Qing

    2013-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are persistent, bioaccumulative, and toxic chemicals and are listed as priority pollutants by the US EPA. Although they are sparsely soluble in water, their solubility can be increased by binding to dissolved organic matter in natural waters, which will further increase their environmental risk as toxic pollutants. In this study, the interaction between PAHs, exemplified by fluorene and anthracene, and fulvic acid (FA) was studied using fluorescence quenching titration method with fluorescence emission spectra, respectively. The association of FA with the mixture of fluorene and anthracene was also evaluated by excitation-emission matrix (EEM) fluorescence spectrometry combined with parallel factor (PARAFAC) analysis. Results demonstrate that EEM fluorescence spectrometry with PARAFAC analysis was sensitive and reliable to determine the binding properties of PAHs with FA in a mixed aqueous solution. The conditional stability constants and binding capacities show that both PAHs bind to FA tightly.

  7. Calorimetric approach of the interaction and absorption of polycyclic aromatic hydrocarbons with model membranes.

    PubMed

    Castelli, Francesco; Librando, Vito; Sarpietro, Maria Grazia

    2002-06-15

    The ability of polycyclic aromatic hydrocarbons (PAHs) to interact with cell membranes outer lipid layer and subsequently to penetrate inside cells can be a prerequisite for exhibiting a mutagenic and carcinogenic activity. The effect exerted by pyrene, benzo[a]pyrene, and anthracene, three structurally similar polycyclic aromatic hydrocarbons possessing mutagenic and carcinogenic activity on the thermotropic behavior of model membranes represented by dimyristoylphosphatidylcholine (DMPC) vesicles, was investigated by differential scanning calorimetry (DSC). The examined compounds, when dispersed in liposomes during their preparation, exerted a different action on the gel-to-liquid crystal phase transition of DMPC multilamellar vesicles. Pyrene and benzo[a]pyrene affected the transition temperature (Tm), shifting it toward lower values with a concomitant decrease of the associated enthalpy changes (AM). Anthracene does not significantly affect the thermotropic behavior of lipid vesicles for all tested concentrations. The interaction between PAHs and model membranes was also studied by considering the ability of such compounds as a finely powdered solid or adsorbed on soil surrogate (constituted by silica gel) to migrate through an aqueous medium. This transfer process was compared with the PAHs intermembrane transfer from PAH loaded liposomes to empty membranes. These processes can mimic absorption kinetics mediated by hydrophilic or lipophilic media. No interaction occurred between model membranes and solid PAHs. A very small effect was also observed for PAHs released by silica gel, suggesting that the migration and absorption are hindered by the aqueous layer and that their low hydrophilic character inhibits migration through the aqueous layer surrounding the multilamellar vesicles (MLV). Different behavior was observed by considering the time-dependent studies carried out by contacting, for increasing times, equivalent amounts of empty DMPC vesicles with PAH

  8. Interaction of polycyclic aromatic hydrocarbons with a soil humic acid in aqueous solution

    SciTech Connect

    Jones, K.D.; Tiller, C.L.

    1996-10-01

    The effects of pH, ionic strength, and cation type on the interactions of several polycyclic aromatic hydrocarbons (PAHs) with a well-characterized soil humic acid were investigated. Binding coefficients (K{sub oc}) for anthracene, phenanthrene, pyrene, and triphenylene were determined by fluorescence quenching. At low ionic strength (as NaNO{sub 3}), K{sub oc}, for each of the PAHs increased with pH in the range 4 to 10; at high ionic strength this trend was less apparent. At a given pH, the effect of ionic strength was small, but K{sub oc} was highest at the lowest ionic strength. When pH and ionic strength were held constant but different electrolytes were used, binding of phenanthrene by the humic acid was greatest in the presence of (monovalent) sodium, followed by (bivalent) calcium, and lowest in the presence of (trivalent) aluminum. The results of this investigation are consistent with the view that interactions of hydrophobic organic compounds with natural organic matter (NOM) can be dependent on the conformational behavior of the NOM.

  9. Bioassay of polycyclic aromatic hydrocarbons

    SciTech Connect

    Van Kirk, E.A.

    1980-08-01

    A positive relationship was found between the photodynamic activity of 24 polycyclic aromatic hydrocarbons versus published results on the mutagenicity, carcinogenicity, and initiation of unscheduled DNA synthesis. Metabolic activation of benzo(a)pyrene resulted in detection of increased mutagenesis in Paramecium tetraurelia as found also in the Ames Salmonella assay. The utility of P. tetraurelia as a biological detector of hazardous polycyclic aromatic hydrocarbons is discussed.

  10. Interactive effects of polycyclic aromatic hydrocarbons and iron oxides particles. Epidemiological and fundamental aspects.

    PubMed

    Haguenoer, J M; Shirali, P; Hannothiaux, M H; Nisse-Ramond, C

    1996-01-01

    Iron oxides are present in many occupational atmospheres mainly in iron ore mines and in steel industry. Among these workers, epidemiological studies indicated an excess of lung cancer deaths. In mines, it was difficult to involve iron oxides exposure because there are other possible causes as radon, polycyclic aromatic hydrocarbon (PAH) present in diesel exhausts, silicosis or siderosis. The contradictory results of these studies are due to the differences of exposure levels or to the presence or not of these cofactors or of a sufficient prevention. But generally the results agree with an interaction of iron oxide dusts and smoking habits. It is unclear if this interaction supports an additive or multiplicative risk of lung cancer. Experimental studies with Fe2O3 showed that these particles are able to induce lung cancers only in the presence of PAH when administered to animals. In vitro studies permitted to observe an interaction in the metabolism of benzo(a)pyrene (BaP) leading to a higher level of precursors of the ultimate carcinogen. As this metabolism of BaP is known to be enhanced during lipoperoxidation, it is possible to involve this mechanism with Fe2O3. After phagocytosis and dissolution with production of ferric ions, Fe2O3 can enhance the production of reactive oxygen species responsible of damaging both lipidic constituents and DNA. Fe3O4 and mainly FeO may be more toxic, introducing directly ferrous ions in the cells after dissolution, but the cancerogenicity of the these compounds is unknown, making necessary to develop research.

  11. A Study of π-π Stacking Interactions and Aromaticity in Polycyclic Aromatic Hydrocarbon/Nucleobase Complexes.

    PubMed

    Trujillo, Cristina; Sánchez-Sanz, Goar

    2016-02-03

    We analysed the interactions and aromaticity electron-density delocalisation observed in π-π complexes between the phenalenyl radical and acenaphthylene, and the DNA and RNA nucleobases (adenine, guanine, cytosine, thymine and uracil). Interaction energies are obtained at the M06-2X/6-311++G(2df,p) computational level for gas phase and PCM-water conditions. For both the phenalenyl radical and acenaphthylene, the complexes formed with guanine are the most stable ones. Atoms in molecules and natural bond orbital results reveal weak π-π interactions between both interacting moieties, characterized by bond critical points between C⋅⋅⋅C and C⋅⋅⋅N atoms. Nucleus independent chemical shifts (NICS) indicate the retention of the aromatic character of the monomers in the outer region of the complex. The fluctuation indexes reveal a loss of electron delocalisation upon complexation for all cases except guanine complexes. Nevertheless, the interface region shows large negative NICS values, which is not associated with an increase of the aromaticity or electron-density delocalisation, but with magnetic couplings of both molecules, leading to an unrealistic description of the aromatic behaviour in that region.

  12. Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2010-01-01

    Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.

  13. Lung tumorigenic interactions in strain A/J mice of five environmental polycyclic aromatic hydrocarbons.

    PubMed

    Nesnow, S; Mass, M J; Ross, J A; Galati, A J; Lambert, G R; Gennings, C; Carter, W H; Stoner, G D

    1998-12-01

    The binary, ternary, quaternary, and quintary interactions of a five-component mixture of carcinogenic environmental polycyclic aromatic hydrocarbons (PAHs) using response surface analyses are described. Initially, lung tumor dose-response curves in strain A/J mice for each of the individual PAHs benzo[a]pyrene (B[a]P), benzo[b]fluoranthene (B[b]F), dibenz[a,h]anthracene (DBA), 5-methylchrysene (5MC), and cyclopenta[cd]pyrene (CPP) were obtained. From these data, doses were selected for the quintary mixture study based on toxicity, survival, range of response, and predicted tumor yields. The ratios of doses among PAHs were designed to simulate PAH ratios found in environmental air and combustion samples. Quintary mixtures of B[a]P, B[b]F, DBA, 5MC, and CPP were administered to male strain A/J mice in a 2(5) factorial 32-dose group dosing scheme (combinations of five PAHs each at either high or low doses) and lung adenomas were scored. Comparison of observed lung adenoma formation with that expected from additivity identified both greater than additive and less than additive interactions that were dose related i.e., greater than additive at lower doses and less than additive at higher doses. To identify specific interactions, a response surface analysis using response addition was applied to the tumor data. This response surface model contained five dose, ten binary, ten ternary, five quaternary, and one quintary parameter. This analysis produced statistically significant values of 16 parameters. The model and model parameters were evaluated by estimating the dose-response relationships for each of the five PAHs. The predicted dose-response curves for all five PAHs indicated a good estimation. The binary interaction functions were dominated for the most part by DBA and were inhibitory. The response surface model predicted, to a significant degree, the observed lung tumorigenic responses of the quintary mixtures. These data suggest that although interactions between

  14. Lung tumorigenic interactions in strain A/J mice of five environmental polycyclic aromatic hydrocarbons.

    PubMed Central

    Nesnow, S; Mass, M J; Ross, J A; Galati, A J; Lambert, G R; Gennings, C; Carter, W H; Stoner, G D

    1998-01-01

    The binary, ternary, quaternary, and quintary interactions of a five-component mixture of carcinogenic environmental polycyclic aromatic hydrocarbons (PAHs) using response surface analyses are described. Initially, lung tumor dose-response curves in strain A/J mice for each of the individual PAHs benzo[a]pyrene (B[a]P), benzo[b]fluoranthene (B[b]F), dibenz[a,h]anthracene (DBA), 5-methylchrysene (5MC), and cyclopenta[cd]pyrene (CPP) were obtained. From these data, doses were selected for the quintary mixture study based on toxicity, survival, range of response, and predicted tumor yields. The ratios of doses among PAHs were designed to simulate PAH ratios found in environmental air and combustion samples. Quintary mixtures of B[a]P, B[b]F, DBA, 5MC, and CPP were administered to male strain A/J mice in a 2(5) factorial 32-dose group dosing scheme (combinations of five PAHs each at either high or low doses) and lung adenomas were scored. Comparison of observed lung adenoma formation with that expected from additivity identified both greater than additive and less than additive interactions that were dose related i.e., greater than additive at lower doses and less than additive at higher doses. To identify specific interactions, a response surface analysis using response addition was applied to the tumor data. This response surface model contained five dose, ten binary, ten ternary, five quaternary, and one quintary parameter. This analysis produced statistically significant values of 16 parameters. The model and model parameters were evaluated by estimating the dose-response relationships for each of the five PAHs. The predicted dose-response curves for all five PAHs indicated a good estimation. The binary interaction functions were dominated for the most part by DBA and were inhibitory. The response surface model predicted, to a significant degree, the observed lung tumorigenic responses of the quintary mixtures. These data suggest that although interactions between

  15. Interactions between Zooplankton and Crude Oil: Toxic Effects and Bioaccumulation of Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Almeda, Rodrigo; Wambaugh, Zoe; Wang, Zucheng; Hyatt, Cammie; Liu, Zhanfei; Buskey, Edward J.

    2013-01-01

    We conducted ship-, shore- and laboratory-based crude oil exposure experiments to investigate (1) the effects of crude oil (Louisiana light sweet oil) on survival and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in mesozooplankton communities, (2) the lethal effects of dispersant (Corexit 9500A) and dispersant-treated oil on mesozooplankton, (3) the influence of UVB radiation/sunlight exposure on the toxicity of dispersed crude oil to mesozooplankton, and (4) the role of marine protozoans on the sublethal effects of crude oil and in the bioaccumulation of PAHs in the copepod Acartia tonsa. Mortality of mesozooplankton increased with increasing oil concentration following a sigmoid model with a median lethal concentration of 32.4 µl L−1 in 16 h. At the ratio of dispersant to oil commonly used in the treatment of oil spills (i.e. 1∶20), dispersant (0.25 µl L−1) and dispersant- treated oil were 2.3 and 3.4 times more toxic, respectively, than crude oil alone (5 µl L−1) to mesozooplankton. UVB radiation increased the lethal effects of dispersed crude oil in mesozooplankton communities by 35%. We observed selective bioaccumulation of five PAHs, fluoranthene, phenanthrene, pyrene, chrysene and benzo[b]fluoranthene in both mesozooplankton communities and in the copepod A. tonsa. The presence of the protozoan Oxyrrhis marina reduced sublethal effects of oil on A. tonsa and was related to lower accumulations of PAHs in tissues and fecal pellets, suggesting that protozoa may be important in mitigating the harmful effects of crude oil exposure in copepods and the transfer of PAHs to higher trophic levels. Overall, our results indicate that the negative impact of oil spills on mesozooplankton may be increased by the use of chemical dispersant and UV radiation, but attenuated by crude oil-microbial food webs interactions, and that both mesozooplankton and protozoans may play an important role in fate of PAHs in marine environments. PMID:23840628

  16. Interactions between zooplankton and crude oil: toxic effects and bioaccumulation of polycyclic aromatic hydrocarbons.

    PubMed

    Almeda, Rodrigo; Wambaugh, Zoe; Wang, Zucheng; Hyatt, Cammie; Liu, Zhanfei; Buskey, Edward J

    2013-01-01

    We conducted ship-, shore- and laboratory-based crude oil exposure experiments to investigate (1) the effects of crude oil (Louisiana light sweet oil) on survival and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in mesozooplankton communities, (2) the lethal effects of dispersant (Corexit 9500A) and dispersant-treated oil on mesozooplankton, (3) the influence of UVB radiation/sunlight exposure on the toxicity of dispersed crude oil to mesozooplankton, and (4) the role of marine protozoans on the sublethal effects of crude oil and in the bioaccumulation of PAHs in the copepod Acartia tonsa. Mortality of mesozooplankton increased with increasing oil concentration following a sigmoid model with a median lethal concentration of 32.4 µl L(-1) in 16 h. At the ratio of dispersant to oil commonly used in the treatment of oil spills (i.e. 1∶20), dispersant (0.25 µl L(-1)) and dispersant-treated oil were 2.3 and 3.4 times more toxic, respectively, than crude oil alone (5 µl L(-1)) to mesozooplankton. UVB radiation increased the lethal effects of dispersed crude oil in mesozooplankton communities by 35%. We observed selective bioaccumulation of five PAHs, fluoranthene, phenanthrene, pyrene, chrysene and benzo[b]fluoranthene in both mesozooplankton communities and in the copepod A. tonsa. The presence of the protozoan Oxyrrhis marina reduced sublethal effects of oil on A. tonsa and was related to lower accumulations of PAHs in tissues and fecal pellets, suggesting that protozoa may be important in mitigating the harmful effects of crude oil exposure in copepods and the transfer of PAHs to higher trophic levels. Overall, our results indicate that the negative impact of oil spills on mesozooplankton may be increased by the use of chemical dispersant and UV radiation, but attenuated by crude oil-microbial food webs interactions, and that both mesozooplankton and protozoans may play an important role in fate of PAHs in marine environments.

  17. Spectral studies of polycyclic aromatic hydrocarbon interaction with human blood plasma

    NASA Astrophysics Data System (ADS)

    Melnikov, A. G.; Pravdin, A. B.; Kochubey, V. I.; Melnikov, G. V.

    2006-08-01

    Analysis of fluorescence spectra of polycyclic aromatic hydrocarbons in human blood plasma and human serum albumin solution allowed one to conclude that pyrene and also anthracene are predominantly distributed in the hydrophobic micro-phase of blood plasma proteins. In the solution of human blood plasma containing pyrene the nonmonotonic dependence of both the intensity of pyrene fluorescence and the index of polarity on the concentration of sodium dodecylsulfate added was observed. This should be connected with the reconstruction of the structure of protein globule under the surfactant action and cannot be explained only by the solubilization of pyrene in sodium dodecylsulfate micelles.

  18. THE PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) continues to be interested in developing methods for the detection of polycyclic aromatic hydrocarbons (PAHS) in the environment. Polycyclic aromatic hydrocarbons (PAHS) are common contaminants in our environment. Being major product...

  19. THE PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) continues to be interested in developing methods for the detection of polycyclic aromatic hydrocarbons (PAHS) in the environment. Polycyclic aromatic hydrocarbons (PAHS) are common contaminants in our environment. Being major product...

  20. Polycyclic aromatic hydrocarbons in deep sea sediments: Microbe-pollutant interactions in a remote environment.

    PubMed

    Louvado, A; Gomes, N C M; Simões, M M Q; Almeida, A; Cleary, D F R; Cunha, A

    2015-09-01

    Recalcitrant polycyclic aromatic hydrocarbons (PAHs) released into seawater end up in the deep sea sediments (DSSs). However, their fate here is often oversimplified by theoretical models. Biodegradation of PAHs in DSSs, is assumed to be similar to biodegradation in surface habitats, despite high hydrostatic pressures and low temperatures that should significantly limit PAH biodegradation. Bacteria residing in the DSSs (related mainly to α- and γ-Proteobacteria) have been shown to or predicted to possess distinct genes, enzymes and metabolic pathways, indicating an adaptation of these bacterial communities to the psychro-peizophilic conditions of the DSSs. This work summarizes some of the most recent research on DSS hydrocarbonoclastic populations and mechanisms of PAH degradation and discusses the challenges posed by future high CO2 and UV climate scenarios on biodegradation of PAHs in DSSs.

  1. Polycyclic aromatic hydrocarbon: protein interactions. Progress report, March 1, 1980-February 28, 1981

    SciTech Connect

    Fujimori, E.

    1980-11-01

    Interacting with bovine serum albumin (BSA), both the very weak carcinogenic hydrocarbon benzo(e)pyrene (Bep) and the powerful carcinogen benzo(a)pyrene (BaP) form pyrene-type compounds, indicating chemical modification at the bay region of the molecules. In constrast to the BaP-BSA reaction apparently similar to the metabolic activation to the bay region oxidation product, the BeP-BSA reaction differs from the known metabolic change of BeP which occurs at the K-region. While the BaP-BSA reaction also produces a BaP radical as well as other uv-fluorescent species, no BeP radical is formed in interaction with BSA and two sharp uv fluorescences at about 330 and 350 nm probably come from the higher excited states of BeP. Furthermore, from fluorescence and excitation spectral studies particularly at low temperature, it is suggested that the uv fluorescences at 320 to 380 nm of the BaP-BSA complex originate from a few distinct species. A new uv fluorescence at 330 nm (preferentially excited at 295 nm), as well as a new excitation peak at 325 nm for the longer wavelength uv fluorescences at 357 and 378 nm, has been found. The extract from the aqueous BaP-BSA solution also emits phosphorescence at 400-440 nm (excited at 310 nm) in EPA solution.

  2. THE PENALIZED OPTIMAL EXPERIMENTAL DESIGN: THE PRECISE ESTIMATION OF AN INTERACTION THRESHOLD IN A MIXTURE OF EIGHTEEN POLYHALOGENATED AROMATIC HYDROCARBONS.

    EPA Science Inventory

    Crofton et al. (EHP, 2005) conducted a study of 18 polyhalogenated aromatic hydrocarbons (PHAHs) on serum total thyroxine (T4). Young female Long-Evans rats were dosed with the 18 single agents or a fixed-ratio mixture, and serum total T4 was measured via radioimmunoassay. The i...

  3. Development of solid-phase microextraction to study dissolved organic matter--polycyclic aromatic hydrocarbon interactions in aquatic environment.

    PubMed

    de Perre, Chloé; Le Ménach, Karyn; Ibalot, Fabienne; Parlanti, Edith; Budzinski, Hélène

    2014-01-07

    Solid-phase microextraction coupled with gas chromatography and mass spectrometry (SPME-GC-MS) was developed for the study of interactions between polycyclic aromatic hydrocarbons (PAHs) and dissolved organic matter (DOM). After the determination of the best conditions of extraction, the tool was applied to spiked water to calculate the dissolved organic carbon water distribution coefficient (K(DOC)) in presence of different mixtures of PAHs and Aldrich humic acid. The use of deuterated naphthalene as internal standard for freely dissolved PAH quantification was shown to provide more accuracy than regular external calibration. For the first time, K(DOC) values of 18 PAHs were calculated using data from SPME-GC-MS and fluorescence quenching; they were in agreement with the results of previous studies. Competition between PAHs, deuterated PAHs and DOM was demonstrated, pointing out the non-linearity of PAH-DOM interactions and the stronger interactions of light molecular weight PAHs (higher K(DOC) values) in absence of high molecular weight PAHs.

  4. Binary Mixtures of Polycyclic Aromatic Hydrocarbons Display Nonadditive Mixture Interactions in an In Vitro Liver Cell Model.

    PubMed

    Gaskill, Stacey J; Bruce, Erica D

    2016-05-01

    Polycyclic aromatic hydrocarbons (PAHs) have been labeled contaminants of concern due to their carcinogenic potential, insufficient toxicological data, environmental ubiquity, and inconsistencies in the composition of environmental mixtures. The Environmental Protection Agency is reevaluating current methods for assessing the toxicity of PAHs, including the assumption of toxic additivity in mixtures. This study was aimed at testing mixture interactions through in vitro cell culture experimentation, and modeling the toxicity using quantitative structure-activity relationships (QSAR). Clone-9 rat liver cells were used to analyze cellular proliferation, viability, and genotoxicity of 15 PAHs in single doses and binary mixtures. Tests revealed that many mixtures have nonadditive toxicity, but display varying mixture effects depending on the mixture composition. Many mixtures displayed antagonism, similar to other published studies. QSARs were then developed using the genetic function approximation algorithm to predict toxic activity both in single PAH congeners and in binary mixtures. Effective concentrations inhibiting 50% of the cell populations were modeled, with R(2) = 0.90, 0.99, and 0.84, respectively. The QSAR mixture algorithms were then adjusted to account for the observed mixture interactions as well as the mixture composition (ratios) to assess the feasibility of QSARs for mixtures. Based on these results, toxic addition is improbable and therefore environmental PAH mixtures are likely to see nonadditive responses when complex interactions occur between components. Furthermore, QSAR may be a useful tool to help bridge these data gaps surrounding the assessment of human health risks that are associated with PAH exposures.

  5. Interaction effects of polycyclic aromatic hydrocarbons and heavy metals on a soil microalga, Chlorococcum sp. MM11.

    PubMed

    Subashchandrabose, Suresh R; Megharaj, Mallavarapu; Venkateswarlu, Kadiyala; Naidu, Ravi

    2015-06-01

    Environmental risk assessment of sites contaminated with chemicals needs to also consider mixtures of chemicals as these toxicants act more differently in a mixture than when they occur alone. In this study, we describe, for the first time, the use of a full factorial design experiment to evaluate the toxicity of a quaternary mixture comprising two polycyclic aromatic hydrocarbons (PAHs; benzo[a]pyrene (BaP) and phenanthrene (Phe)) and two heavy metals (cadmium (Cd) and lead (Pb)) toward a soil microalga, Chlorococcum sp. MM11. Biomass, in terms of cell number, and proline accumulation were used to evaluate toxicity responses. Factorial analysis of the data revealed statistically significant interaction effects between the mixtures of toxicants on 96-h biomass endpoint, while no significant interaction effects were observed on proline accumulation in the microalga. A comparison of the data on the toxicity of individual chemicals and those of the factorial main effect analysis clearly showed that Cd is more toxic to the alga, followed by BaP, Pb, and Phe. There was a substantial heavy metal accumulation and PAH degradation by the strain MM11 at EC10 and EC50 of the chemical mixtures.

  6. Polycyclic aromatic hydrocarbons in carcinogenesis.

    PubMed Central

    Warshawsky, D

    1999-01-01

    A symposium on "Polycyclic Aromatic Hydrocarbons (PAHs) in Carcinogenesis" was presented at the third International Congress of Pathophysiology held in Lathi, Finland, 28 June-3 July 1998. The congress was also sponsored by the International Union of Biological Sciences and the International Society of Free Radical Research. Institutional support for the symposium included the Electric Power Research Institute, National Center for Toxicological Research, and EPA/National Health and Environmental Effects Research Laboratory and the Office of Solid Waste and Emergency Response. The symposium focused on the sources, carcinogenicity, genotoxicity, and risk assessment of individual and mixtures of PAHs that are found in solid wastes, Superfund sites, and other hazardous waste sites. Based on the occurrence of PAHs at numerous Superfund sites and the significant data gaps on the toxic potential of certain PAHs, the information developed during this symposium would be of value in assessing health risks of these chemicals at Superfund and other hazardous waste sites. PMID:10090712

  7. Birds and polycyclic aromatic hydrocarbons

    USGS Publications Warehouse

    Albers, P.H.

    2006-01-01

    Polycyclic aromatic hydrocarbons (PAH) are present throughout the global environment and are produced naturally and by activities of humans. Effects of PAH on birds have been determined by studies employing egg injection, egg immersion, egg shell application, single and multiple oral doses, subcutaneous injection, and chemical analysis of field-collected eggs and tissue. The four-to six-ring aromatic compounds are the most toxic to embryos, young birds, and adult birds. For embryos, effects include death, developmental abnormalities, and a variety of cellular and biochemical responses. For adult and young birds, effects include reduced egg production and hatching, increased clutch or brood abandonment, reduced growth, increased organweights, and a variety of biochemical responses. Trophic level accumulation is unlikely. Environmental exposure to PAH in areas of high human population or habitats affected by recent petroleum spills might be sufficient to adversely affect reproduction. Evidence of long-term effects of elevated concentrations of environmental PAH on bird populations is very limited and the mechanisms of effect are unclear.

  8. Polynuclear aromatic hydrocarbons for fullerene synthesis in flames

    DOEpatents

    Alford, J. Michael; Diener, Michael D.

    2006-12-19

    This invention provides improved methods for combustion synthesis of carbon nanomaterials, including fullerenes, employing multiple-ring aromatic hydrocarbon fuels selected for high carbon conversion to extractable fullerenes. The multiple-ring aromatic hydrocarbon fuels include those that contain polynuclear aromatic hydrocarbons. More specifically, multiple-ring aromatic hydrocarbon fuels contain a substantial amount of indene, methylnapthalenes or mixtures thereof. Coal tar and petroleum distillate fractions provide low cost hydrocarbon fuels containing polynuclear aromatic hydrocarbons, including without limitation, indene, methylnapthalenes or mixtures thereof.

  9. Infrared Spectra of Polycyclic Aromatic Hydrocarbons (PAHs)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Bakes, E. L. O.

    2000-01-01

    We have computed the synthetic infrared spectra of some polycyclic aromatic hydrocarbons containing up to 54 carbon atoms. The species studied include ovalene, circumcoronene, dicoronylene, and hexabenzocoronene. We report spectra for anions, neutrals, cations, and multiply charged cations.

  10. PROTONATED POLYCYCLIC AROMATIC HYDROCARBONS REVISITED

    SciTech Connect

    Ricca, Alessandra; Bauschlicher, Charles W. Jr; Allamandola, Louis J. E-mail: Charles.W.Bauschlicher@nasa.gov

    2011-02-01

    We reconsider the contribution that singly protonated polycyclic aromatic hydrocarbons (PAHs; HPAH{sup +}s) might make to the Class A component of the 6.2 {mu}m interstellar emission feature in light of the recent experimental measurements of protonated naphthalene and coronene. Our calculations on the small HPAH{sup +}s have a band near 6.2 {mu}m, as found in experiment. While the larger HPAH{sup +}s still have emission near 6.2 {mu}m, the much larger intensity of the band near 6.3 {mu}m overwhelms the weaker band at 6.2 {mu}m, so that the 6.2 {mu}m band is barely visible. Since the large PAHs are more representative of those in the interstellar medium, our work suggests that large HPAH{sup +}s cannot be major contributors to the observed emission at 6.2 {mu}m (i.e., Class A species). Saturating large PAH cations with hydrogen atoms retains the 6.2 {mu}m Class A band position, but the rest of the spectrum is inconsistent with observed spectra.

  11. Polycyclic Aromatic Hydrocarbons with SPICA

    NASA Astrophysics Data System (ADS)

    Berné, O.; Joblin, C.; Mulas, G.; Tielens, A. G. G. M.; Goicoechea, J. R.

    2009-12-01

    Thanks to high sensitivity, high angular resolution and broad spectral coverage, SPICA will offer a unique opportunity to better characterize the nature of polycyclic aromatic hydrocarbons (PAHs) and very small grains (VSGs), to better use them as probes of astrophysical environments. The angular resolution will enable to probe the chemical frontiers in the evolution process from VSGs to neutral PAHs, to ionized PAHs and to "Grand-PAHs" in photodissotiation regions and HII regions, as a function of G0 /n (UV radiation field / density). High sensitivity will favor the detection of the far-IR skeletal emission bands of PAHs, which provide specific fingerprints and could lead to the identification of individual PAHs. This overall characterization will allow to use PAH and VSG populations as tracers of physical conditions in spatially resolved protoplanetary disks and nearby galaxies (using mid-IR instruments), and in high redshift galaxies (using the far-IR instrument), thanks to the broad spectral coverage SPICA provides. Based on our previous experience with ISO and Spitzer we discuss how these goals can be reached.

  12. Interactions between polycyclic aromatic hydrocarbons in complex mixtures and implications for cancer risk assessment.

    PubMed

    Jarvis, Ian W H; Dreij, Kristian; Mattsson, Åse; Jernström, Bengt; Stenius, Ulla

    2014-07-03

    In this review we discuss the effects of exposure to complex PAH mixtures in vitro and in vivo on mechanisms related to carcinogenesis. Of particular concern regarding exposure to complex PAH mixtures is how interactions between different constituents can affect the carcinogenic response and how these might be included in risk assessment. Overall the findings suggest that the responses resulting from exposure to complex PAH mixtures is varied and complicated. More- and less-than additive effects on bioactivation and DNA damage formation have been observed depending on the various mixtures studied, and equally dependent on the different test systems that are used. Furthermore, the findings show that the commonly used biological end-point of DNA damage formation is insufficient for studying mixture effects. At present the assessment of the risk of exposure to complex PAH mixtures involves comparison to individual compounds using either a surrogate or a component-based potency approach. We discuss how future risk assessment strategies for complex PAH mixtures should be based around whole mixture assessment in order to account for interaction effects. Inherent to this is the need to incorporate different experimental approaches using robust and sensitive biological endpoints. Furthermore, the emphasis on future research should be placed on studying real life mixtures that better represent the complex PAH mixtures that humans are exposed to.

  13. Interaction between Carbon Nanotubes and Aromatic Hydrocarbon-degrading Microbes and its Effect on Carbon Nanotubes Transformation

    NASA Astrophysics Data System (ADS)

    You, Y.; Wang, L.; Poulson, S.; Wang, X.; Xing, B.; Yang, Y.

    2015-12-01

    Due to their unique electrical, optical and mechanical properties, carbon nanotubes (CNTs) have been substantially produced and widely applied during the past decades, leading to their increased probability of entering the environment. Some estimation suggests that CNTs are accumulated in agricultural systems with their soil concentration increasing by 0.4-157 ng/kg/year. This has raised concerns about environmental impacts of these emerging contaminants including their ecotoxicity. Meanwhile, transformation of CNTs in the environment can significantly affect their transport, bioavailability and thereby ecotoxicity. So far, environmental biodegradation of CNTs remains obscure. Given the high diversity of soil microorganisms and their metabolic potentials, it is important to investigate microbial biodegradation of CNTs under various environmental conditions. This study focuses on an aromatic hydrocarbon-degrading bacterium, Mycobacterium vanbaalenii PYR-1, as a model microorganism capable of ring cleavage. We hypothesize that bacterial activities could transform CNTs to more hydrophilic forms, increasing their aqueous stability and environmental reactivity. We incubated M. vanbaalenii PYR-1 with 13C-labeded multiwall carbon nanotubes (MWCNTs) for 30 days, monitored δ13C in the system, characterized MWCNTs before and after the reaction, and compared the results with culture-negative controls. To investigate effects of various environmental conditions, including the presence of extracellular oxidative enzymes from white-rot fungi, additional experiments will be conducted and results compared will be compared among different setups. Moreover, we will measure adverse impacts of CNTs on the metabolic activities of M. vanbaalenii PYR-1, particularly its biodegradation of polycyclic aromatic hydrocarbons.

  14. Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: Effect of acid activated clay minerals.

    PubMed

    Ugochukwu, Uzochukwu C; Fialips, Claire I

    2017-03-09

    Acid treatment of clay minerals is known to modify their properties such as increase their surface area and surface acidity, making them suitable as catalysts in many chemical processes. However, the role of these surface properties during biodegradation processes of polycyclic aromatic hydrocarbons (PAHs) is only known for mild acid (0.5 M Hydrochloric acid) treated clays. Four different clay minerals were used for this study: a montmorillonite, a saponite, a palygorskite and a kaolinite. They were treated with 3 M hydrochloric acid to produce acid activated clay minerals. The role of the acid activated montmorillonite, saponite, palygorskite and kaolinite in comparison with the unmodified clay minerals in the removal of PAHs during biodegradation was investigated in microcosm experiments. The microcosm experiments contained micro-organisms, oil, and clays in aqueous medium with a hydrocarbon degrading microorganism community predominantly composed of Alcanivorax spp. Obtained results indicated that acid activated clays and unmodified kaolinite did not enhance the biodegradation of the PAHs whereas unmodified montmorillonite, palygorskite and saponite enhanced their biodegradation. In addition, unmodified palygorskite adsorbed the PAHs significantly due to its unique channel structure.

  15. 40 CFR 721.10258 - Aromatic hydrocarbon (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aromatic hydrocarbon (generic). 721... Substances § 721.10258 Aromatic hydrocarbon (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aromatic hydrocarbon (PMN P-09...

  16. 40 CFR 721.10259 - Halogenated aromatic hydrocarbon (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halogenated aromatic hydrocarbon... Specific Chemical Substances § 721.10259 Halogenated aromatic hydrocarbon (generic). (a) Chemical substance... halogenated aromatic hydrocarbon (PMN P-09-540) is subject to reporting under this section for the significant...

  17. 40 CFR 721.10259 - Halogenated aromatic hydrocarbon (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halogenated aromatic hydrocarbon... Specific Chemical Substances § 721.10259 Halogenated aromatic hydrocarbon (generic). (a) Chemical substance... halogenated aromatic hydrocarbon (PMN P-09-540) is subject to reporting under this section for the significant...

  18. 40 CFR 721.10258 - Aromatic hydrocarbon (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aromatic hydrocarbon (generic). 721... Substances § 721.10258 Aromatic hydrocarbon (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aromatic hydrocarbon (PMN P-09...

  19. 40 CFR 721.10259 - Halogenated aromatic hydrocarbon (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halogenated aromatic hydrocarbon... Specific Chemical Substances § 721.10259 Halogenated aromatic hydrocarbon (generic). (a) Chemical substance... halogenated aromatic hydrocarbon (PMN P-09-540) is subject to reporting under this section for the significant...

  20. 40 CFR 721.10258 - Aromatic hydrocarbon (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aromatic hydrocarbon (generic). 721... Substances § 721.10258 Aromatic hydrocarbon (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aromatic hydrocarbon (PMN P-09...

  1. Polynuclear aromatic hydrocarbons in forest fire smoke

    Treesearch

    Charles K. McMahon; Skevos N. Tsoukalas

    1978-01-01

    The occurrence of polynuclear aromatic hydrocarbons (PAH) in the combustion products of carbonaceous fuels is a well known phenomenon. Several PAW are known to be carcinogenic in animals. Benzo[a]pyrene (BaP) is the most well-known and studied compound of those classified by the National Academy of Science (NAS) as strongly carcinogenic. Ambient BaP concentrations...

  2. Dihydrodiol dehydrogenase and polycyclic aromatic hydrocarbon metabolism

    SciTech Connect

    Smithgall, T.E.

    1986-01-01

    Carcinogenic activation of polycyclic aromatic hydrocarbons by microsomal monoxygenases proceeds through trans-dihydrodiol metabolites to diol-epoxide ultimate carcinogens. This thesis directly investigated the role of dihydrodiol dehydrogenase, a cytosolic NAD(P)-linked oxidoreductase, in the detoxification of polycyclic aromatic trans-dihydrodiols. A wide variety of non-K-region trans-dihydrodiols were synthesized and shown to be substrates for the homogeneous rat liver dehydrogenase, including several potent proximate carcinogens derived from 7,12-dimethylbenz(a)anthracene, 5-methylchrysene, and benzo(a)pyrene. Since microsomal activation of polycyclic aromatic hydrocarbons is highly stereospecific, the stereochemical course of enzymatic trans-dihydrodiol oxidation was monitored using circular dichroism spectropolarimetry. The major product formed from the dehydrogenase-catalyzed oxidation of the trans-1,2-dihydrodiol of naphthalene was characterized using UV, IR, NMR, and mass spectroscopy, and appears to be 4-hydroxy-1,2-naphthoquinone. Mass spectral analysis suggests that an analogous hydroxylated o-quinone is formed as the major product of benzo(a)pyrene-7,8-dihydrodiol oxidation. Enzymatic oxidation of trans-dihydrodiols was shown to be potently inhibited by all of the major classes of the nonsteroidal antiinflammatory drugs. Enhancement of trans-dihydrodiol proximate carcinogen oxidation may protect against possible adverse effects of the aspirin-like drugs, and help maintain the balance between activation and detoxification of polycyclic aromatic hydrocarbons.

  3. Ozone interaction with polycyclic aromatic hydrocarbons and soot in atmospheric processes: theoretical density functional study by molecular and periodic methodologies.

    PubMed

    Maranzana, Andrea; Serra, Giovanni; Giordana, Anna; Tonachini, Glauco; Barco, Gianluca; Causà, Mauro

    2005-12-08

    The ozonization mechanism for polycyclic aromatic hydrocarbons (PAHs) and soot is investigated by quantum mechanical calculations carried out on molecular and periodic systems. PAHs, interesting per se, serve also to model the local features of the graphenic soot platelets, for which another model is provided by a periodic representation of one graphenic layer. A concerted addition leads to a primary ozonide, while a nonconcerted attack produces a trioxyl diradical (in which one of the two unpaired electrons is pi-delocalized). Easy loss of (i) (1)O(2) or (ii) (3)O(2) from either intermediate, with spin conservation, would yield stable (i) singlet or (ii) triplet pi-delocalized species which carry an epoxide group. The trioxyl diradical pathway is estimated to be preferred, in these systems. An intersystem crossing, taking place in the trioxyl diradicals, can be invoked to allow the even easier loss of a ground-state oxygen molecule with the formation of a ground-state epoxide in a more exoergic and less demanding step. We propose that soot ozonization can take place by such a process, with ultimate functionalization of the graphenic platelets by epoxide groups.

  4. Monitoring of vapor phase polycyclic aromatic hydrocarbons

    DOEpatents

    Vo-Dinh, Tuan; Hajaligol, Mohammad R.

    2004-06-01

    An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.

  5. Carbon fibers from aromatic hydrocarbons

    SciTech Connect

    Mochida, Isao; Yoon, S.H.; Korai, Yozo; Kanno, Koichi; Sakai, Yukio; Komatsu, Makoto

    1995-02-01

    Carbon filter is widely used as a lightweight and high-strength material for composite structures. Its uses are expected to expand in the next century. Currently the best precursor for making these fibers is polyacrylonitrile (PAN). This is a relatively expensive feedstock. Carbon fibers also have been made starting with so-called mesophase pitch fractions derived from low-cost hydrocarbons such as petroleum residuum. But these fibers suffer from low mechanical strength. In the past few years, significant advances have been made in understanding the mechanism of formation of mesophase pitch, which may lead to improved performance for carbon fibers and other specialty carbons. This article introduces such advances, based principally on the authors` recent results.

  6. Rotation-vibration interactions in the spectra of polycyclic aromatic hydrocarbons: Quinoline as a test-case species

    SciTech Connect

    Pirali, O.; Gruet, S.; Kisiel, Z.; Martin-Drumel, M. A.; Cuisset, A.; Hindle, F.; Mouret, G.

    2015-03-14

    Polycyclic aromatic hydrocarbons (PAHs) are highly relevant for astrophysics as possible, though controversial, carriers of the unidentified infrared emission bands that are observed in a number of different astronomical objects. In support of radio-astronomical observations, high resolution laboratory spectroscopy has already provided the rotational spectra in the vibrational ground state of several molecules of this type, although the rotational study of their dense infrared (IR) bands has only recently become possible using a limited number of experimental set-ups. To date, all of the rotationally resolved data have concerned unperturbed spectra. We presently report the results of a high resolution study of the three lowest vibrational states of quinoline C{sub 9}H{sub 7}N, an N-bearing naphthalene derivative. While the pure rotational ground state spectrum of quinoline is unperturbed, severe complications appear in the spectra of the ν{sub 45} and ν{sub 44} vibrational modes (located at about 168 cm{sup −1} and 178 cm{sup −1}, respectively). In order to study these effects in detail, we employed three different and complementary experimental techniques: Fourier-transform microwave spectroscopy, millimeter-wave spectroscopy, and Fourier-transform far-infrared spectroscopy with a synchrotron radiation source. Due to the high density of states in the IR spectra of molecules as large as PAHs, perturbations in the rotational spectra of excited states should be ubiquitous. Our study identifies for the first time this effect and provides some insights into an appropriate treatment of such perturbations.

  7. 40 CFR 721.10676 - Aromatic hydrocarbon mixture (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aromatic hydrocarbon mixture (generic... Specific Chemical Substances § 721.10676 Aromatic hydrocarbon mixture (generic). (a) Chemical substance and... hydrocarbon mixture (PMN P-12-551) is subject to reporting under this section for the significant new uses...

  8. Polycyclic aromatic hydrocarbon processing by cosmic rays

    NASA Astrophysics Data System (ADS)

    Micelotta, E. R.; Jones, A. P.; Tielens, A. G. G. M.

    2011-02-01

    Context. Cosmic rays are present in almost all phases of the ISM. Polycyclic aromatic hydrocarbons (PAHs) and cosmic rays represent an abundant and ubiquitous component of the interstellar medium. However, the interaction between them has never before been fully investigated. Aims: To study the effects of cosmic ray ion (H, He, CNO and Fe-Co-Ni) and electron bombardment of PAHs in galactic and extragalactic environments. Methods: We calculate the nuclear and electronic interactions for collisions between PAHs and cosmic ray ions and electrons with energies between 5 MeV/nucleon and 10 GeV, above the threshold for carbon atom loss, in normal galaxies, starburst galaxies and cooling flow galaxy clusters. Results: The timescale for PAH destruction by cosmic ray ions depends on the electronic excitation energy E0 and on the amount of energy available for dissociation. Small PAHs are destroyed faster, with He and the CNO group being the more effective projectiles. For electron collisions, the lifetime is independent of the PAH size and varies with the threshold energy T0. Conclusions: Cosmic rays process the PAHs in diffuse clouds, where the destruction due to interstellar shocks is less efficient. In the hot gas filling galactic halos, outflows of starburst galaxies and intra-cluster medium, PAH destruction is dominated by collisions with thermal ions and electrons, but this mechanism is ineffective if the molecules are in denser cloudlets and isolated from the hot gas. Cosmic rays can access the denser clouds and together with X-rays will set the lifetime of those protected PAHs. This limits the use of PAHs as a "dye" for tracing the presence of cold entrained material.

  9. Biological Degradation of Heterocyclic Aromatic Hydrocarbons with Naphthalene-Enriched Consortium: Substrate Interaction Studies and Fate of Metabolites.

    PubMed

    Oberoi, Akashdeep Singh; Philip, Ligy

    2016-10-01

    The current work has attempted to understand the substrate interaction between aromatic compounds of similar and divergent nature and the significance of their interactions on the biodegradation kinetics of compounds in a mixture. The chosen representative compounds for the present study are pyridine, quinoline, benzothiophene, benzofuran and naphthalene. Biodegradation studies were performed on binary, ternary, and multipollutant systems. Benzothiophene and benzofuran were the most persistent contaminants and they exhibit a significant inhibitory effect on the biodegradation of other co-contaminants, especially pyridine. The effects of different NSO compounds on naphthalene biodegradation and vice versa were also investigated. The presence of naphthalene (50 mg/L) enhanced the rate of biodegradation of both benzothiophene (50 mg/L) and benzofuran (50 mg/L) by 40.4 and 23.91 %, respectively. Distinct variation in composition and biodegradability of transition metabolites were observed during multisubstrate degradation. The presence of benzothiophene and benzofuran also significantly inhibited the degradation of prominent metabolic intermediates resulting in their accumulation in the system for a very longer period of time. An attempt was also made to simulate the biodegradation kinetics in a multipollutant system using a mathematical model. The multisubstrate model predicted the behavior of these systems satisfactorily.

  10. Interaction of smoking, uptake of polycyclic aromatic hydrocarbons, and cytochrome P450IA2 activity among foundry workers.

    PubMed Central

    Sherson, D; Sigsgaard, T; Overgaard, E; Loft, S; Poulsen, H E; Jongeneelen, F J

    1992-01-01

    An increased lung cancer risk has been described among foundry workers. Polycyclic aromatic hydrocarbons (PAHs) and silica are possible aetiological factors. This study describes a urinary PAH metabolite, 1-hydroxypyrene (hpU), as well as the degree of cytochrome P450IA2 activity/induction as reflected by the urinary caffeine ratio (IA2) in 45 foundry workers and 52 controls; IA2 was defined as the ratio of paraxanthine 7-demethylation products to a paraxanthine 8-hydroxylation product (1,7-dimethyluric acid). Mean exposure concentrations for foundry workers were defined by breathing zone hygienic samples (respirable dust 1.2 to 3.52 mg/m3 (93 samples)) and as total PAH (0.46 micrograms/m3) and pyrene concentrations (0.28 micrograms/m3) (six samples). Non-smoking controls and foundry workers had similar IA2 ratios (5.63, 95% confidence interval (95% CI) 4.56-6.70 and 4.40, 95% CI 3.56-5.24). The same was true for smoking controls and foundry workers (9.10, 95% CI 8.00-10.20 and 8.69, 95% CI 7.37-10.01). Both smoking groups had raised IA2 ratios compared with non-smokers (p less than 0.01). Non-smoking controls and foundry workers had similar hpU concentrations (0.16, 95% CI 0.10-0.22 and 0.11, 95% CI 0.09-0.13 mumol/mol creatinine). Smoking foundry workers had raised hpU concentrations (0.42, 95% CI 0.25-0.59) compared with smoking controls (0.26, 95% CI 0.18-0.34) (p less than 0.01). A small subgroup of smoking foundry workers with the highest exposures to both silica and PAH also had the highest hpU concentrations (0.70, 95% CI - 0.07-1.47 mumol/mol creatinine) (p less than 0.04). Increased hpU concentrations in smoking foundry workers suggest a more than additive effect from smoking and foundry exposures resulting in increased PAH uptake. Increased P450IA2 enzyme activity was only found in smokers and no additional effect of foundry exposures was seen. These data suggest that smoking as well as work related PAH exposure may be casually related to increased risk

  11. Characterization and analysis of polycyclic aromatic hydrocarbons

    SciTech Connect

    Breuer, G.M.; Smith, J.P.

    1984-01-01

    Sampling and analytical procedures were developed for determining the concentrations of polycyclic aromatic hydrocarbons in animal-exposure chambers during studies on exposure to diesel exhaust, coal dust, or mixtures of these two pollutants. Fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(e)pyrene, benzo(k)fluoranthene, and benzo(a)pyrene were used as representative polycyclic aromatic hydrocarbons. High-pressure liquid chromatography with fluorescence detection was used for analysis. Coal-dust only samples revealed a broad, rising background in the chromatogram with small peaks superimposed corresponding to fluoranthene, pyrene, and benzo(a)anthracene, diesel exhaust only samples showed many peaks on a flat baseline including those corresponding to fluoranthene, pyrene, benzo(a)anthracene, benzo(k)fluoranthene, and benzo(a)pyrene. In general, no polynuclear aromatics were noted in the clean air samples. The authors note that relatively minor changes in air/fuel ratio, lubricant, fuel, and load may have substantial effects on very minor components of the exhaust emission.

  12. Petroleum and individual polycyclic aromatic hydrocarbons

    USGS Publications Warehouse

    Albers, Peter H.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John

    1995-01-01

    Crude petroleum, refined-petroleum products, and individual polycyclic aromatic hydrocarbons (PAHs) contained within petroleum are found throughout the world. their presence has been detected in living and nonliving components of ecosystems. Petroleum can be an environmental hazard for wild animals and plants. Individual PAHs are also hazardous to wildlife, but they are most commonly associated with human illnesses. Because petroleum is a major environmental source of these PAHs, petroleum and PAHs are jointly presented in this chapter. Composition, sources, environmental fate, and toxic effects on all living components of aquatic and terrestrial environments are addessed.

  13. Double photoionization of hydrocarbons and aromatic molecules

    NASA Astrophysics Data System (ADS)

    Wehlitz, R.

    2016-11-01

    This article reviews the recent progress in the field of double photoionization of hydrocarbons and aromatic molecules using synchrotron radiation. First I will describe the importance of carbon-based molecules, which are all around us and are literally part of our life. They exhibit intriguing properties some of which can be probed via double photoionization, i.e., the simultaneous emission of two electrons. Furthermore, I will discuss the different mechanisms that can lead to a doubly charged organic molecule and will highlight those findings by comparing them with the results for atoms and other (simple) molecules. Finally, I will give an outlook on future directions on this subject.

  14. High temperature chemistry of aromatic hydrocarbons

    SciTech Connect

    Scott, L.T.

    1991-12-31

    We have not only gained new insight into the mechanism and generality of Polycyclic Aromatic Hydrocarbon (PAH) thermal automerization reactions, we have also uncovered several new high temperature reactions and added a third dimension to our program by applying high temperature chemistry to problems in organic synthesis. Our synthesis of corannulene has attracted much recent attention; however, we believe that the uncatalyzed ``cyclodehydrogenation reactions`` which form 5-membered rings and 6-membered rings at high temperatures may prove to be of greater general importance in the long term. This bias is reflected in the accompanying proposal.

  15. High temperature chemistry of aromatic hydrocarbons

    SciTech Connect

    Scott, L.T.

    1991-01-01

    We have not only gained new insight into the mechanism and generality of Polycyclic Aromatic Hydrocarbon (PAH) thermal automerization reactions, we have also uncovered several new high temperature reactions and added a third dimension to our program by applying high temperature chemistry to problems in organic synthesis. Our synthesis of corannulene has attracted much recent attention; however, we believe that the uncatalyzed cyclodehydrogenation reactions'' which form 5-membered rings and 6-membered rings at high temperatures may prove to be of greater general importance in the long term. This bias is reflected in the accompanying proposal.

  16. Bioremediation technologies for polycyclic aromatic hydrocarbon compounds

    SciTech Connect

    Alleman, B.C.; Leeson, A.

    1999-11-01

    Polycyclic aromatic hydrocarbon compounds (PAHs) are common and challenging contaminants that affect soil and sediments. Methods for treating PAHs have undergone change and refinement in the recent past, and this volume presents the latest trends in PAH remediation theory and practice. The papers in this volume cover topics ranging from the remediation of manufactured gas plant (MGP) sites to the remediation of sediments. The papers present lab and field studies, characterization studies, comparison studies, and descriptions of technologies ranging from composting to thermally enhanced bioremediation to fungal technologies and other innovative approaches.

  17. WHY DOES 5-METHYL CHRYSENE INTERACT WITH DNA LIKE BOTH A PLANAR AND A NON-PLANAR POLYCYCLIC AROMATIC HYDROCARBON? QUANTUM MECHANICAL STUDIES

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons are a large class of anthropogenic chemicals found in the environment. Some class members are potent animal carcinogens while other similar class members show little carcinogenic activity. When considering a series of in vitro studies of the int...

  18. WHY DOES 5-METHYL CHRYSENE INTERACT WITH DNA LIKE BOTH A PLANAR AND A NON-PLANAR POLYCYCLIC AROMATIC HYDROCARBON? QUANTUM MECHANICAL STUDIES

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons are a large class of anthropogenic chemicals found in the environment. Some class members are potent animal carcinogens while other similar class members show little carcinogenic activity. When considering a series of in vitro studies of the int...

  19. Polycyclic aromatic hydrocarbons-associated microRNAs and their interactions with the environment: influences on oxidative DNA damage and lipid peroxidation in coke oven workers.

    PubMed

    Deng, Qifei; Dai, Xiayun; Guo, Huan; Huang, Suli; Kuang, Dan; Feng, Jing; Wang, Tian; Zhang, Wangzhen; Huang, Kun; Hu, Die; Deng, Huaxin; Zhang, Xiaomin; Wu, Tangchun

    2014-04-01

    We previously identified five polycyclic aromatic hydrocarbons (PAHs)-associated microRNAs (miRNAs) and found they were associated with chromosome damage. As oxidative damage is the common contributory cause of various PAHs-related diseases, we further investigated the influences of these miRNAs and their interactions with environmental factors on oxidative DNA damage and lipid peroxidation. We measured PAHs internal exposure biomarkers [urinary monohydroxy-PAHs (OH-PAHs) and plasma benzo[a]pyrene-r-7,t-8,t-9,c-10-tetrahydotetrol-albumin (BPDE-Alb) adducts], the expression levels of PAHs-associated plasma miRNAs (miR-24-3p, miR-27a-3p, miR-142-5p, miR-28-5p, and miR-150-5p), and urinary biomarkers of oxidative DNA damage [8-hydroxydeoxyguanosine (8-OH-dG)] and lipid peroxidation [8-iso-prostaglandin-F2α (8-iso-PGF2α)] in 365 healthy male coke oven workers. These miRNAs were associated with a dose-response increase in 8-OH-dG (β > 0), and with a dose-response decrease in 8-iso-PGF2α (β < 0), especially in workers with lower PAHs exposure levels, in nonsmokers, and in nondrinkers. These miRNAs interacted antagonistically with ΣOH-PAHs and BPDE-Alb adducts (βinteraction < 0) and synergistically with drinking status (βinteraction > 0) to influence 8-OH-dG, while they interacted synergistically with BPDE-Alb adducts (βinteraction > 0) and antagonistically with smoking status (βinteraction < 0) to influence 8-iso-PGF2α. Our results suggested that miRNAs and their interactions with environmental factors might be novel mechanisms mediating the effects of PAHs exposure on oxidative DNA damage and lipid peroxidation.

  20. Process for the hydrogenation of aromatic hydrocarbons

    SciTech Connect

    Balinsky, G.J.; Biceroglu, O.; Lin, J.S.

    1986-08-12

    A process is described for the hydrogenation of aromatic hydrocarbons, which comprises contacting a hydrocarbonaceous feed comprising aromatic hydrocarbons and less than about 5 wppm organic nitrogen at hydrogenation conditions with added hydrogen and a hydrogen sulfide partial pressure of less than about 0.5 psia with a catalyst which has been pretreated by a method which comprises the steps of: (a) contacting a catalyst having cracking activity and hydrogenation activity with a nitrogen-containing compound at conditions and for a time sufficient to decrease the cracking activity of the catalyst, whereby the hydrogenation activity of the catalyst is also decreased. The catalyst consists of at least one noble metal component of Group VIII of the Periodic Table of Elements composited with a Y-type crystalline aluminosilicate zeolite and a non-zeolitic inorganic oxide, and (b) contacting the nitrogen-contacted catalyst resulting from step (a) with a hydrogen-containing gas at conditions and for a time sufficient to increase the hydrogenation activity of the nitrogen-contacted catalyst.

  1. The role of CYP1A inhibition in the embryotoxic interactions between hypoxia and polycyclic aromatic hydrocarbons (PAHs) and PAH mixtures in zebrafish (Danio rerio)

    PubMed Central

    Fleming, Carrie R.; Di Giulio, Richard T.

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants with elevated concentrations in waters that may also experience hypoxia. Previous research has shown interactions between hypoxia and some PAHs (fluoranthene, α-naphthoflavone) but no interaction with others (benzo[a]pyrene (BaP), β-naphthoflavone). Here we examine how hypoxia (7.4% oxygen, ~35% of normoxia) affects the embryotoxicity of PAHs that act through different mechanisms and the role that CYP1A inhibition may play in these interactions. 500 μg/L BaP and 1-200 μg/L benzo[k]fluoranthene (BkF) interacted synergistically with hypoxia to induce pericardial edema in developing zebrafish (Danio rerio). Hypoxia protected from the embryotoxicity of pyrene (PY) and had no effect on the toxicity of polychlorinated biphenyl-126. Despite previous reports of other CYP1A inhibitors interacting with hypoxia, up to 2000 μg/L dibenzothiophene, 2-aminoanthracene (AA), and carbazole (CB) all failed to induce embryotoxicity under normoxic or hypoxic conditions. The toxicity of PAH mixtures—including binary mixtures of BaP/AA and BaP/CB and two environmentally relevant, complex mixtures—were exacerbated severely by hypoxia to induce or worsen pericardial edema and cause mortality. The interactions between hypoxia and BkF and PY were closely mimicked by morpholino knockdown of CYP1A, indicating a potential role for metabolism of these compounds in their toxicity. Our results indicate that various PAHs may exhibit synergistic, antagonistic or additive toxicity with hypoxia. The enhanced toxicity of environmental mixtures of PAHs under hypoxia suggests that risk assessments that do not take into account potential interactions with hypoxia may underestimate the threat of PAHs to fish in contaminated sites. PMID:21706407

  2. Laboratory Investigation of Organic Aerosol Formation from Aromatic Hydrocarbons

    DOE R&D Accomplishments Database

    Molina, Luisa T.; Molina, Mario J.; Zhang, Renyi

    2006-08-23

    Our work for this DOE funded project includes: (1) measurements of the kinetics and mechanism of the gas-phase oxidation reactions of the aromatic hydrocarbons initiated by OH; (2) measurements of aerosol formation from the aromatic hydrocarbons; and (3) theoretical studies to elucidate the OH-toluene reaction mechanism using quantum-chemical and rate theories.

  3. Analogs of solid nanoparticles as precursors of aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Gadallah, K. A. K.; Mutschke, H.; Jäger, C.

    2013-06-01

    Context. Aromatic =CH and C=C vibrational bands have been observed within shocked interstellar regions, indicating the presence of aromatic emission carriers such as PAHs, which may have been created from adjacent molecular cloud material by interaction with a shock front. Aims: We investigate the evolution of the aromatic =CH and C=C vibrational modes at 3.3 and 6.2 μm wavelength in heated HAC materials, PAHs and mixed PAHs and HACs, respectively, aiming at an explanation of the evolution of carbonaceous dust grains in the shocked regions. Methods: Materials used in these analogs (HAC and PAH materials) were prepared by the laser ablation and the laser pyrolysis methods, respectively. The transmission electron microscopy (TEM) in high-resolution mode was used as an analytical technique to characterize the aromatic layers in HACs. Spectroscopic analysis was prformed in the mid-IR range. Results: A remarkable destruction of aliphatic structures in HACs has been observed with the thermal processing, while aromatic structures become dominating by increasing the diameters of the graphene layers. The aromatic bands at 3.3 and 6.2 μm, observed in the laboratory spectra of PAHs and of the combination of the PAHs and HAC materials, are also clearly observed in the spectrum of the heated HACs. These bands agree with those of aromatic bands observed in astronomical observations. Conclusions: Aromatization of HACs could be a pre-stage in the decomposition process of hydrocarbons that form PAH-clusters in such hot interstellar medium.

  4. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Laser deposition of amorphous diamond-like films from liquid aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Lyalin, A. A.; Simakin, Aleksandr V.; Bobyrev, V. A.; Lubnin, Evgenii N.; Shafeev, Georgii A.

    1999-04-01

    An experimental investigation was made of the deposition of amorphous diamond-like films on transparent substrates by laser irradiation of the interfaces between such substrates and liquid hydrocarbons [toluene C6H5CH3, benzene C6H6, cumene C6H5CH(CH3)2]. A copper vapour laser (wavelength 510.6 nm, pulse duration 20 ns) was used. The films were studied with x-ray Auger spectroscopy, high-energy electron diffraction, scanning electron microscopy, and Raman scattering spectroscopy. The sp3 fraction in the deposited films reached 50% — 70%, depending on the choice of hydrocarbon. The average film thickness was 100 — 200 nm and the microhardness reached 50 — 70 GPa.

  5. Polycyclic aromatic hydrocarbons (PAHs) in yogurt samples.

    PubMed

    Battisti, Chiara; Girelli, Anna Maria; Tarola, Anna Maria

    2015-01-01

    The concentrations and distributions of major polycyclic aromatic hydrocarbons (PAHs) were determined in 20 kinds of yogurt specimens collected from Italian supermarkets using reversed phase high-performance liquid chromatography equipped with fluorescence detection. The method was validated by determination of recovery percentages, precision (repeatability) and sensitivity (limits of detection) with yogurt samples fortified at 0.25, 0.5 and 1 µg/kg concentration levels. The recovery of 13 PAHs, with the exception of naphthalene and acenaphthene, ranged from 61% to 130% and from 60% to 97% at all the levels for yogurts with low (0.1%) and high (3.9%) fat content, respectively. The method is repeatable with relative standard deviation values <20% for all analytes. The results obtained demonstrate that acenaphthene, fluorantene, phenanthrene, anthracene, fluoranthene and pyrene were found in all samples with a similar distribution, but different content when yogurts with low and high fats were compared.

  6. Polycyclic aromatic hydrocarbons and cancer in man

    SciTech Connect

    Mastrangelo, G.; Marzia, V.; Fadda, E.

    1996-11-01

    Various substances and industrial processes, surrogates of exposure to polycyclic aromatic hydrocarbons (PAHs), are currently classified as human carcinogens. This paper reviews recent epidemiological studies reporting direct evidence of the carcinogenic effects of PAHs in occupationally exposed subjects. Risks of lung and bladder cancer were dose dependent when PAHs were measured quantitatively and truly nonexposed groups were chosen for comparison. These new findings suggest that the current threshold limit value of 0.2 mg/m{sup 3} of benzene soluble matter (which indicates PAH exposure) is unacceptable because, after 40 years of exposure, it involves a relative risk of 1.2-1.4 for lung cancer and 2.2 for bladder cancer. 33 refs., 2 tabs.

  7. Polycyclic Aromatic Hydrocarbons (by Ronald G. Harvey)

    NASA Astrophysics Data System (ADS)

    Murray, C. F.

    1998-11-01

    Ronald G. Harvey. Wiley, VCH: New York, 1997. 667 pp. ISBN 0-471-18608-2. $125. This text is a timely and welcome addition to the ever-growing literature on polycyclic aromatic hydrocarbon (PAH) chemistry and an essential addition to the chemist's library. It is the most comprehensive and complete account of the synthesis and chemical properties of polyarenes to date. The author has brought together, in one volume, detailed information on the physical and spectral properties, synthetic methods, chemical reactions, and molecular structures of a broad range of polyarenes, both alternant and nonalternant, and their substituted derivatives. (A total of 358 ring structures are covered, 233 of which are nonalternant PAH compounds.) The author does not deal with the environmental, medical, and biological aspects of polyarenes; thus, it may prove a disappointment to the environmental chemist.

  8. The effects of heavy metals and their interactions with polycyclic aromatic hydrocarbons on the oxidative stress among coke-oven workers.

    PubMed

    Wang, Tian; Feng, Wei; Kuang, Dan; Deng, Qifei; Zhang, Wangzhen; Wang, Suhan; He, Meian; Zhang, Xiaomin; Wu, Tangchun; Guo, Huan

    2015-07-01

    Heavy metals and polycyclic aromatic hydrocarbons (PAHs) are predominate toxic constituents of particulate air pollution that may be related to the increased risk of cardiopulmonary events. We aim to investigate the effects of the toxic heavy metals (arsenic, As; cadmium, Cd; chromium, Cr; nickel, Ni; and lead, Pb), and their interactions with PAHs on oxidative stress among coke-oven workers. A total of 1333 male workers were recruited in this study. We determined their urinary levels of As, Cd, Cr, Ni, Pb, twelve PAH metabolites, 8-hydroxydeoxyguanosine (8-OHdG), and 8-iso-prostaglandin-F2α (8-iso-PGF2α). Multivariate linear regression models were used to analyze the effects of these metals and their interactions with PAHs on 8-OHdG and 8-iso-PGF2α levels. It was found that only urinary As and Ni showed marginal or significant positive linear dose-dependent effects on 8-OHdG in this study population, especially among smokers (β=0.103, P=0.073 and β=0.110, P=0.002, respectively). After stratifying all participants by the quartiles of ΣOH-PAH, all five metals showed linear association with 8-OHdG in the highest quartile subgroup (Q4) of ΣOH-PAHs. However, these five urinary metals showed significantly consistent linear associations with 8-iso-PGF2α in all subjects and each stratum. Urinary ΣOH-PAHs can significant modify the effects of heavy metals on oxidative stress, while co-exposure to both high levels of ΣOH-PAHs and heavy metals render the workers with highest 8-OHdG and 8-iso-PGF2α (all P(interaction)≤0.005). This study showed evidence on the interaction effects of heavy metals and PAHs on increasing the oxidative stress, and these results warrant further investigation in more longitudinal studies.

  9. Doped polycyclic aromatic hydrocarbons as building blocks for nanoelectronics: a theoretical study.

    PubMed

    Dral, Pavlo O; Kivala, Milan; Clark, Timothy

    2013-03-01

    Density functional theory (DFT) and semiempirical UHF natural orbital configuration interaction (UNO-CI) calculations are used to investigate the effect of heteroatom substitution at the central position of a model polycyclic aromatic hydrocarbon. The effects of the substitution on structure, strain, electronic and spectral properties, and aromaticity of the compounds are discussed.

  10. [Interaction of biosurfactant-microorganism to enhance phytoremediation of aged polycyclic aromatic hydrocarbons (PAHS) contaminated soils with alfalfa (Medicago sativa L.)].

    PubMed

    Liu, Wei-wei; Yin, Rui; Lin, Xian-gui; Zhang, Jing; Chen, Xiao-min; Li, Xuan-zhen; Yang, Ting

    2010-04-01

    A pot experiment in greenhouse was carried out to investigate the interactive effect of rhamnolipids (RH) addition and PAHs-specific degrading bacteria (DB) inoculation on the phytoremediation efficiency for removal polycyclic aromatic hydrocarbons (PAHs) from agricultural soils. Results indicated that RH addition and DB inoculation promoted alfalfa (Medicago sativa L. ) growth and PAHs degradation in the soil. After 90 days, residual PAHs concentration in soil reduced 30.0% and 49.6% for the treatment of RH and DB, respectively, but only 21.7% for control. For the treatment of RH + DB, residual PAHs concentration in soil reduced 53.9%, showing synergy effect of RH addition and DB inoculation. In addition, the average PAHs degradation gradually reduced with the increase of the PAHs rings, but DB inoculation promoted the degradation of four-ring PAHs and five-ring PAHs. The number of PAHs degrading bacteria and dehydrogenase activity increased with the removal ratio of PAHs. Therefore RH addition and PAHs-specific degrading bacteria inoculation were effective in enhancing the phytoremediation efficiency of the long-term PAHs contaminated soils.

  11. Metal-Polycyclic Aromatic Hydrocarbon Mixture Toxicity in Hyalella azteca. 2. Metal Accumulation and Oxidative Stress as Interactive Co-toxic Mechanisms.

    PubMed

    Gauthier, Patrick T; Norwood, Warren P; Prepas, Ellie E; Pyle, Greg G

    2015-10-06

    Mixtures of metals and polycyclic aromatic hydrocarbons (PAHs) are commonly found in aquatic environments. Emerging reports have identified that more-than-additive mortality is common in metal-PAH mixtures. Individual aspects of PAH toxicity suggest they may alter the accumulation of metals and enhance metal-derived reactive oxygen species (ROS). Redox-active metals (e.g., Cu and Ni) are also capable of enhancing the redox cycling of PAHs. Accordingly, we explored the mutual effects redox-active metals and PAHs have on oxidative stress, and the potential for PAHs to alter the accumulation and/or homeostasis of metals in juvenile Hyalella azteca. Amphipods were exposed to binary mixtures of Cu, Cd, Ni, or V, with either phenanthrene (PHE) or phenanthrenequinone (PHQ). Mixture of Cu with either PAH produced striking more-than-additive mortality, whereas all other mixtures amounted to strictly additive mortality following 18-h exposures. We found no evidence to suggest that interactive effects on ROS production were involved in the more-than-additive mortality of Cu-PHE and Cu-PHQ mixtures. However, PHQ increased the tissue concentration of Cu in juvenile H. azteca, providing a potential mechanism for the observed more-than-additive mortality.

  12. Computational study of the effect of dispersion interactions on the thermochemistry of aggregation of fused polycyclic aromatic hydrocarbons as model asphaltene compounds in solution.

    PubMed

    Moreira da Costa, Leonardo; Stoyanov, Stanislav R; Gusarov, Sergey; Seidl, Peter R; Walkimar de M Carneiro, José; Kovalenko, Andriy

    2014-02-06

    Density functional theory (DFT), Møller-Plesset second-order perturbation theory (MP2), and semiempirical methods are employed for the geometry optimization and thermochemistry analysis of π-π stacked di-, tri-, tetra-, and pentamer aggregates of the fused polycyclic aromatic hydrocarbons (PAHs) naphthalene, anthracene, phenanthrene, tetracene, pyrene, and coronene as well as benzene. These aggregates (stabilized by dispersion interactions) are highly relevant to the intermolecular aggregation of asphaltenes, major components of heavy petroleum. The strength of π-π stacking interaction is evaluated with respect to the π-stacking distance and thermochemistry results, such as aggregation enthalpies, entropies, and Gibbs free energies (ΔG(298)). For both π-stacking interplanar distances and thermochemistry, the ωB97X-D functional with an augmented damped R(-6) dispersion correction term and MP2 are in the closest agreement with the highly accurate spin-component scaled MP2 (SCS-MP2) method that we selected as a reference. The ΔG(298) values indicate that the aggregation of coronene is spontaneous at 298 K and the formation of pyrene dimers occurs spontaneously at temperature lower than 250 K. Aggregates of smaller PAHs would be stable at even lower temperature. These findings are supported by X-ray crystallographic determination results showing that among the PAHs studied only coronene forms continuous stacked aggregates in single crystals, pyrene forms dimers, and smaller PAHs do not form π-π stacked aggregates. Thermochemistry analysis results show that PAHs containing more than four fused benzene rings would spontaneously form aggregates at 298 K. Also, round-shaped PAHs, such as phenanthrene and pyrene, form more stable aggregates than linear PAHs, such as anthracene and tetracene, due to decreased entropic penalty. These results are intended to help guide the synthesis of model asphaltene compounds for spectroscopic studies so as to help understand

  13. CYP1A1 genetic polymorphism and polycyclic aromatic hydrocarbons on pulmonary function in the elderly: haplotype-based approach for gene-environment interaction.

    PubMed

    Choi, Yoon-Hyeong; Kim, Jin Hee; Hong, Yun-Chul

    2013-08-29

    Lung function may be impaired by environmental pollutants not only acting alone, but working with genetic factors as well. Few epidemiologic studies have been conducted to explore the interplay of polycyclic aromatic hydrocarbons (PAHs) exposure and genetic polymorphism on lung function in the elderly. For genetic polymorphism, haplotype is considered a more informative unit than single nucleotide polymorphism markers. Therefore, we examined the role of haplotype based-CYP1A1 polymorphism in the effect of PAHs exposure on lung function in 422 participants from a community-based panel of elderly adults in Seoul, Korea. Linear mixed effect models were fit to evaluate the association of PAH exposure markers (urinary 1-hydroxypyrene and 2-naphthol) with FVC, FEV₁, FEV₁/FVC, and FEF₂₅₋₇₅, and then the interaction with CYP1A1 haplotype constructed from three single nucleotide polymorphisms of the gene (rs4646421/rs4646422/rs1048943). Urinary 1-hydroxypyrene levels were inversely associated with FEV₁/FVC (p<0.05), whereas urinary 2-naphthol levels failed to show associations with lung function. Urinary 1-hydroxypyrene was significantly associated with decrease in FEV₁/FVC among participants with rs4646421 variants (CT+TT), rs4646422 wild-type (GG), and rs1048943 wild-type (AA). At least one TGA haplotype predicted a 0.88% (95% confidence interval, 0.31-1.45%) reduction in FEV₁/FVC with an interquartile range increase in 1-hydroxypyrene, whereas no relationship was observed in participants without TGA haplotype (p for interaction=0.045). Similar patterns were also observed in FEF₂₅₋₇₅. We did not find any main effects of CYP1A1 genetic polymorphisms on lung functions. Our findings suggest that PAH exposure producing 1-hydroxypyrene as a metabolite compromises lung function in the elderly, and that haplotype-based CYP1A1 polymorphism modifies the risk.

  14. High atmosphere-ocean exchange of semivolatile aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    González-Gaya, Belén; Fernández-Pinos, María-Carmen; Morales, Laura; Méjanelle, Laurence; Abad, Esteban; Piña, Benjamin; Duarte, Carlos M.; Jiménez, Begoña; Dachs, Jordi

    2016-06-01

    Polycyclic aromatic hydrocarbons, and other semivolatile aromatic-like compounds, are an important and ubiquitous fraction of organic matter in the environment. The occurrence of semivolatile aromatic hydrocarbons is due to anthropogenic sources such as incomplete combustion of fossil fuels or oil spills, and other biogenic sources. However, their global transport, fate and relevance for the carbon cycle have been poorly assessed, especially in terms of fluxes. Here we report a global assessment of the occurrence and atmosphere-ocean fluxes of 64 polycyclic aromatic hydrocarbons analysed in paired atmospheric and seawater samples from the tropical and subtropical Atlantic, Pacific and Indian oceans. The global atmospheric input of polycyclic aromatic hydrocarbons to the global ocean is estimated at 0.09 Tg per month, four times greater than the input from the Deepwater Horizon spill. Moreover, the environmental concentrations of total semivolatile aromatic-like compounds were 102-103 times higher than those of the targeted polycyclic aromatic hydrocarbons, with a relevant contribution of an aromatic unresolved complex mixture. These concentrations drive a large global deposition of carbon, estimated at 400 Tg C yr-1, around 15% of the oceanic CO2 uptake.

  15. The effects of heavy metals and their interactions with polycyclic aromatic hydrocarbons on the oxidative stress among coke-oven workers

    SciTech Connect

    Wang, Tian; Feng, Wei; Kuang, Dan; Deng, Qifei; Zhang, Wangzhen; Wang, Suhan; He, Meian; Zhang, Xiaomin; Wu, Tangchun; Guo, Huan

    2015-07-15

    Heavy metals and polycyclic aromatic hydrocarbons (PAHs) are predominate toxic constituents of particulate air pollution that may be related to the increased risk of cardiopulmonary events. We aim to investigate the effects of the toxic heavy metals (arsenic, As; cadmium, Cd; chromium, Cr; nickel, Ni; and lead, Pb), and their interactions with PAHs on oxidative stress among coke-oven workers. A total of 1333 male workers were recruited in this study. We determined their urinary levels of As, Cd, Cr, Ni, Pb, twelve PAH metabolites, 8-hydroxydeoxyguanosine (8-OHdG), and 8-iso-prostaglandin-F2α (8-iso-PGF2α). Multivariate linear regression models were used to analyze the effects of these metals and their interactions with PAHs on 8-OHdG and 8-iso-PGF2α levels. It was found that only urinary As and Ni showed marginal or significant positive linear dose-dependent effects on 8-OHdG in this study population, especially among smokers (β=0.103, P=0.073 and β=0.110, P=0.002, respectively). After stratifying all participants by the quartiles of ΣOH-PAH, all five metals showed linear association with 8-OHdG in the highest quartile subgroup (Q4) of ΣOH-PAHs. However, these five urinary metals showed significantly consistent linear associations with 8-iso-PGF2α in all subjects and each stratum. Urinary ΣOH-PAHs can significant modify the effects of heavy metals on oxidative stress, while co-exposure to both high levels of ΣOH-PAHs and heavy metals render the workers with highest 8-OHdG and 8-iso-PGF2α (all P{sub interaction}≤0.005). This study showed evidence on the interaction effects of heavy metals and PAHs on increasing the oxidative stress, and these results warrant further investigation in more longitudinal studies. - Highlights: • Heavy metals and PAHs are predominate toxic constituents of particulate matters. • Urinary As and Ni showed linear dose-dependent effects on 8-OHdG and 8-iso-PGF2α. • PAHs significant interact with toxic metal in increasing 8

  16. PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS IN COASTAL GREAT LAKES WATERS

    EPA Science Inventory

    Photoinduced toxicity is the exacerbated toxicity of environmental contaminants by UV radiation. Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) has been well established in the laboratory for numerous aquatic species including larval fish. The contaminants sub-p...

  17. POLYCYCLIC AROMATIC HYDROCARBON (PAH) EXPOSURE OF 257 PRESCHOOL CHILDREN

    EPA Science Inventory

    We investigated the polycyclic aromatic hydrocarbon (PAH) exposure of 257 preschool children and their adult caregivers in their everyday environments. Participants were recruited randomly from eligible homes and daycare centers within six North Carolina (NC) and six Ohio (OH) c...

  18. ADSORPTION OF POLYCYCLIC AROMATIC HYDROCARBONS IN AGED HARBOR SEDIMENTS

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) are a group of hydrophobic organic contaminants which have low aqueous solubilities and are common pollutants in harbor sediments. Adsorption and desorption isotherms for PAHs are conducted to study the abiotic sorption of PAHs in uncontami...

  19. PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS IN COASTAL GREAT LAKES WATERS

    EPA Science Inventory

    Photoinduced toxicity is the exacerbated toxicity of environmental contaminants by UV radiation. Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) has been well established in the laboratory for numerous aquatic species including larval fish. The contaminants sub-p...

  20. NATURAL BIOLOGICAL ATTENUATION OF AROMATIC HYDROCARBONS UNDER ANAEROBIC CONDITIONS

    EPA Science Inventory

    There is little consistent difference in the calculated half-lives of aromatic hydrocarbons in different anaerobic environments, but methanogenic environments might be generally the least supportive of rapid biotransformation. Toluene was usually the most rapidly biotransformed...

  1. ADSORPTION OF POLYCYCLIC AROMATIC HYDROCARBONS IN AGED HARBOR SEDIMENTS

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) are a group of hydrophobic organic contaminants which have low aqueous solubilities and are common pollutants in harbor sediments. Adsorption and desorption isotherms for PAHs are conducted to study the abiotic sorption of PAHs in uncontami...

  2. Capillary electrochromatography. Analysis of polycyclic aromatic hydrocarbons

    SciTech Connect

    Yan, C.; Dadoo, R.; Zhao, H.; Zare, R.N.; Rakestraw, D.J.

    1995-07-01

    Electrochromatography is utilized to separate a mixture of 16 different polycyclic aromatic hydrocarbons (PAHs). Fused-silica capillary columns ranging in size from 50 to 150 {mu}m i.d. were packed (20-40-cm sections) with 3-{mu}m octadecylsilica particles. A potential of 15-30 kV is applied across the 30-50-cm total length capillary column to generate electroosmotic flow that carries the PAHs through the stationary phase. An intracavity-doubled argon ion laser operating at 257 nm is used to detect the PAHs by laser-induced fluorescence. Efficiencies up to 400 000 theoretical plates/m are obtained when detection is performed within the column packing and up to 150 000 theoretical plates/m when detection is performed following a frit (used to hold the packing). The reproducibility of the peak retention times is better than 2% (RSD). The limits of detection for individual PAHs range between 10{sup -17} and 10{sup -20} mol (10{sup -9}-10{sup -11} M), with a linear response spanning 4 orders of magnitude in concentration. 12 refs., 4 figs., 2 tabs.

  3. Polycyclic aromatic hydrocarbon molecules in astrophysics

    NASA Astrophysics Data System (ADS)

    Rastogi, Shantanu; Pathak, Amit; Maurya, Anju

    2013-06-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are responsible for the mid-infrared emission features. Their ubiquitous presence in almost all types of astrophysical environments and related variations in their spectral profilesmake them an important tool to understand the physics and chemistry of the interstellar medium. The observed spectrum is generally a composite superposition of all different types of PAHs possible in the region. In the era of space telescopes the spectral richness of the emission features has enhanced their importance as probe and also the need to understand the variations with respect to PAH size, type and ionic state. Quantum computational studies of PAHs have proved useful in elucidating the profile variations and put constraints on the possible types of PAHs in different environments. The study of PAHs has also significantly contributed to the problems of diffuse interstellar bands (DIBs), UV extinction and understanding the chemistry of the formation of complex organics in space. The review highlights the results of various computational models for the understanding of infrared emission features, the PAH-DIB relation, formation of prebiotics and possible impact in the understanding of far-infrared features.

  4. Polynuclear aromatic hydrocarbons in the water environment*

    PubMed Central

    Andelman, Julian B.; Suess, Michael J.

    1970-01-01

    Many polynuclear aromatic hydrocarbons (PAH) are known to be carcinogenic to animals and probably to man. This review is concerned with carcinogenic and non-carcinogenic PAH in the water environment, with emphasis on 3,4-benzpyrene (BP) because it is ubiquitous, is one of the most potent of the carcinogenic PAH and has been widely studied. Although PAH are formed in combustion and other high-temperature processes, there is also evidence for their endogenous formation in plants, which may explain their ubiquity therein. Although the solubility of these compounds in pure water is very low, they may be solubilized by such materials as detergents, or they may otherwise occur in aqueous solution associated with or adsorbed on to a variety of colloidal materials or biota, and thereby be transported through the water environment. A notable characteristic of PAH is their sensitivity to light. PAH have been found in industrial and municipal waste effluents, and occur in soils, ground waters and surface waters, and their sediments and biota. With the exception of filtration or sorption by activated carbon, conventional water treatment processes do not efficiently remove them, and they have been found in domestic water supplies. Because of the ubiquity of PAH in the environment, it is impossible to prevent completely man's exposure to them; nevertheless their surveillance should be continued and their concentrations in the environment should be reduced where practicable. PMID:4100719

  5. Polynuclear Aromatic Hydrocarbons with Curved Surfaces: Buckyballs

    SciTech Connect

    Sygula, Andrzej

    2016-08-15

    The discovery of a new allotropic form of elemental carbon – the fullerenes – and subsequently other novel forms of elemental carbon with pyramidalized surfaces, most notably single-walled and multi-walled carbon nanotubes, introduced a novel structural motif to the polycyclic aromatic hydrocarbons (PAHs) with nonplanar surfaces. Our research program supported by BES DOE grant DE-FG02-04ER15514 has dealt with the synthesis, structural studies, and chemistry of the novel curved-surface PAHs with carbon frameworks structurally related to fullerenes. They are referred to as “buckybowls”. We prepared several new buckybowls and, even more importantly, developed the efficient, gram-scale synthetic methodologies for the preparation of small buckybowls, most notably corannulene (C20H10) and its derivatives. In addition, the employment of the corannulene-based synthons previously developed in our laboratory led to a number of highly nonplanar molecular architectures with two or more corannulene subunits with a potential for the applications as novel materials in separation sciences, nanoelectronics, photovoltaics and catalysis. In collaboration with Professor Angelici (Iowa State) we prepared and characterized several transition metal complexes of corannulene, providing the first structural characterization of η6 metal complexes of buckybowls by a single crystal X-ray diffraction. In addition to the definitive structural characterization of the complexes we demonstrated that the (η6-C6Me6)Ru2+ unit in some relatively stable complexes activate the corannulene ligand to react with proper nucleophiles suggesting that such complexex may be used in catalysis. (Section C). We have explored the efficiency of the dispersion-based interactions of curved-surface conjugated carbon networks by high-level computational models. We showed that the curvature of such networks does not reduce the van der Waals attractions as compared to the planar systems of similar size. We than

  6. Inversion and rotation processes involving non-planar aromatic compounds catalyzed by extended polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Karton, Amir

    2014-10-01

    Using accurate quantum chemical calculations, we show that extended planar polycyclic aromatic hydrocarbons (PAHs) can efficiently catalyze a range of chemical processes involving non-planar aromatic systems. These include (i) bowl-to-bowl inversion of curved PAHs (e.g. corannulene and sumanene), (ii) 'flip-flop' inversion of helicenes (e.g. benzo[c]phenanthrene), and (iii) rotation about the Phsbnd Ph bond in biphenyls. Non-covalent π-π interactions between the planar catalyst and the substrate stabilize the planar transition structures to a greater extent than they stabilize the non-planar reactants. These result in surprisingly large catalytic enhancements (namely, the reaction barrier heights are reduced by 21-63% of the uncatalyzed reaction barriers).

  7. Hydrocarbon analogues of boron clusters - planarity, aromaticity and antiaromaticity

    NASA Astrophysics Data System (ADS)

    Zhai, Hua-Jin; Kiran, Boggavarapu; Li, Jun; Wang, Lai-Sheng

    2003-12-01

    An interesting feature of elemental boron and boron compounds is the occurrence of highly symmetric icosahedral clusters. The rich chemistry of boron is also dominated by three-dimensional cage structures. Despite its proximity to carbon in the periodic table, elemental boron clusters have been scarcely studied experimentally and their structures and chemical bonding have not been fully elucidated. Here we report experimental and theoretical evidence that small boron clusters prefer planar structures and exhibit aromaticity and antiaromaticity according to the Hückel rules, akin to planar hydrocarbons. Aromatic boron clusters possess more circular shapes whereas antiaromatic boron clusters are elongated, analogous to structural distortions of antiaromatic hydrocarbons. The planar boron clusters are thus the only series of molecules other than the hydrocarbons to exhibit size-dependent aromatic and antiaromatic behaviour and represent a new dimension of boron chemistry. The stable aromatic boron clusters may exhibit similar chemistries to that of benzene, such as forming sandwich-type metal compounds.

  8. Transport of Polycyclic Aromatic Hydrocarbons in Unsaturated Porous Media

    NASA Astrophysics Data System (ADS)

    Chahal, Maninder; Flury, Markus

    2016-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are complex organic molecules containing 2 or more fused benzene rings. Being hydrophobic and non-polar, PAHs tend to partition to the organic matter in the soil from bulk aqueous phase. Though transport of these contaminants has been well studied in saturated environment, interactive mechanisms of these fluorescent compounds in unsaturated (identified by presence of air-water interface) porous media is still not well understood. We studied is the transport of fluoranthene in unsaturated porous media as facilitated by moving air-water interfaces. Confocal microscopy was used to visualize the interactions of fluoranthene particles in a glass channel packed with quartz glass beads. The packed glass channel was used to mimic a porous media and effects of an advancing and receding capillary fringe on the detachment of fluoranthene.

  9. Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter ...

    EPA Pesticide Factsheets

    This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10% and 30% moisture content on a wet basis) in a forced-draft fan stove, and (iv) wood in a natural-draft rocket cookstove. LPG combustion had the highest thermal efficiency (~57%) and the lowest PAH emissions per unit fuel energy, resulting in the lowest PAH emissions per useful energy delivered (MJd). The average benzo[a]pyrene (B[a]P) emission factor for LPG was 0.842 µg/MJd; the emission rate was 0.043 µg/min. The highest PAH emissions were from wood burning in the natural-draft stove (209-700 µg B[a]P/MJd). PAH emissions from kerosene were significantly lower than those from the wood burning in the natural-draft cookstove, but higher than those from LPG. It is expected that in rural regions where LPG and kerosene are unavailable or unaffordable, the forced-draft fan stove may be an alternative because its emission factor (5.17-8.07 µg B[a]P/MJd) and emission rate (0.52-0.57 µg/min) are similar to kerosene (5.36 µg B[a]P/MJd and 0.45 µg/min). Compared with wood combustion emissions, LPG stoves emit less total PAH emissions and less fractions of high molecular weight PAHs. Relatively large variations in PAH emissions from LPG call for additional future tests to identify the major

  10. Constitutive Activation of the Aromatic Hydrocarbon Receptor

    PubMed Central

    Chang, Ching-Yi; Puga, Alvaro

    1998-01-01

    The ligand-activated aromatic hydrocarbon receptor (AHR) dimerizes with the AHR nuclear translocator (ARNT) to form a functional complex that transactivates expression of the cytochrome P-450 CYP1A1 gene and other genes in the dioxin-inducible [Ah] gene battery. Previous work from this laboratory has shown that the activity of the CYP1A1 enzyme negatively regulates this process. To study the relationship between CYP1A1 activity and Ah receptor activation we used CYP1A1-deficient mouse hepatoma c37 cells and CYP1A1- and AHR-deficient African green monkey kidney CV-1 cells. Using gel mobility shift and luciferase reporter gene expression assays, we found that c37 cells that had not been exposed to exogenous Ah receptor ligands already contained transcriptionally active AHR-ARNT complexes, a finding that we also observed in wild-type Hepa-1 cells treated with Ellipticine, a CYP1A1 inhibitor. In CV-1 cells, transient expression of AHR and ARNT leads to high levels of AHR–ARNT-dependent luciferase gene expression even in the absence of an agonist. Using a green fluorescent protein-tagged AHR, we showed that elevated reporter gene expression correlates with constitutive nuclear localization of the AHR. Transcriptional activation of the luciferase reporter gene observed in CV-1 cells is significantly decreased by (i) expression of a functional CYP1A1 enzyme, (ii) competition with chimeric or truncated AHR proteins containing the AHR ligand-binding domain, and (iii) treatment with the AHR antagonist α-naphthoflavone. These results suggest that a CYP1A1 substrate, which accumulates in cells lacking CYP1A1 enzymatic activity, is an AHR ligand responsible for endogenous activation of the Ah receptor. PMID:9418899

  11. From Interstellar Polycyclic Aromatic Hydrocarbons to Astrobiology

    NASA Astrophysics Data System (ADS)

    Hudgins, D.

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Before this time, the composition of interstellar dust was largely guessed-at, and the existence of large, gas phase, carbon rich molecules in the interstellar medium (ISM) considered impossible. Today, the telltale infrared spectral signature of polycyclic aromatic hydrocarbons (PAHs) and related materials is recognized at all stages of the lifecycle of interstellar matter and it is widely accepted that these species are both abundant and widespread throughout our galaxy and the universe. In the first part of this talk, we will review the spectroscopic evidence that forms the basis for the interstellar PAH model. We will then use this as a basis to explore how this model can be applied to track the chemical evolution of the PAH population as it is produced in the circumstellar outflows of dying stars, cycled through the various phases of the ISM, and finally incorporated into forming pla n e t a r y systems. Nevertheless, despite the fact that PAHs likely represent the single largest molecular reservoir of organic carbon in evolving planetary systems, they are not what would be considered "biogenic" molecules.Consequently, we will conclude by considering the likely chemical modifications that PAHs undergo under conditions that simulate those found in cold, dark interstellar clouds and evolving planetary systems. Special attention will be paid to the potential for transforming this rich repository of pre-biotic organic "ore" into materials of greater Astrobiological significance. For further information on the research activities of the Astrochemistry Laboratory at NASA Ames Research Center, visit our website at http://www.astrochemistry.org.

  12. Polycyclic aromatic hydrocarbon emissions from motorcycles

    NASA Astrophysics Data System (ADS)

    Yang, Hsi-Hsien; Hsieh, Lien-Te; Liu, Hsu-Chung; Mi, Hsiao-Hsuan

    Emissions of polycyclic aromatic hydrocarbons (PAHs, 2-7 ring) and regulated air pollutants (CO, HC, NO x, PM) from 2-stroke carburetor (2-Stk/Cb), 4-stroke carburetor (4-Stk/Cb) and 4-stroke fuel injection (4-Stk/FI) motorcycles were investigated by testing these vehicles on a chassis dynamometer. Exhaust samplings were carried out on diluted exhausts in a dilution tunnel connected to a constant volume sampling system. Measurements were performed on a standard driving cycle. The results reveal that low molecular weight PAHs (especially naphthalene) dominated in the exhaust gas. The averages of soluble organic fractions were 86.4%, 46.3% and 48.9% for the 2-Stk/Cb, 4-Stk/Cb and 4-Stk/FI motorcycles, respectively. PAH emissions are greater from cold-start driving than those from hot-start driving cycle for all these three kinds of motorcycles. Total PAH emission factors were 8320, 5990 and 3390 μg km -1 for the in-used 2-Stk/Cb, 4-Stk/Cb and 4-Stk/FI motorcycles, respectively. PAH emission factors were the largest for the 2-Stk/Cb motorcycles. Besides, the 2-Stk/Cb motorcycle had the largest total BaP equivalent emission factor of 10.8 μg km -1, indicating that the emission exhaust from the 2-Stk/Cb motorcycle was most carcinogenic. HC, PM and PAH emissions were the lowest for the 4-Stk/FI motorcycles. The correlation coefficient between CO and total PAH emissions for all the test motorcycles was 0.51, indicating that CO and PAH emissions are not highly correlated.

  13. In vitro toxicity of polycyclic aromatic hydrocarbons and halogenated aromatic hydrocarbons to cetacean cells and tissues

    SciTech Connect

    Carvan, M.J. III.

    1993-01-01

    Cetaceans bioaccumulate high aromatic hydrocarbon tissue residues, and elevated levels of PCB residues in tissues are proposed to have occurred concurrently with recent epizootic deaths of dolphins. The objectives of this study were: (1) to develop and characterize an epithelial cell line derived from dolphin tissues, (2) to investigate the effects of hydrocarbon pollutants on those cells, and (3) to analyze the toxicity of hydrocarbon pollutants on cetacean tissues in vitro. An epithelial cell line, Carvan dolphin kidney (CDK), isolated from a spontaneously aborted female bottlenose dolphin, Tursiops truncatus, grew rapidly. These cells were neither transformed nor immortal. Velocity sedimentation analysis showed CDK cells contained nuclear aryl hydrocarbon receptor, suggestive of cytochrome P450 inducibility. BaP inhibited mitosis in CDK cells in a dose-dependent manner. Data indicate that CDK cells metabolize BaP, that BaP metabolites bind to cellular DNA initiating unscheduled DNA synthesis, and that the inhibition of cytochrome P450 metabolism decrease the BaP-associated inhibition of mitosis in dolphin cells. The data also suggest that TCDD acts synergistically to increase the levels of DNA damage by the procarcinogen BaP. Cetacean liver microsomes was isolated and evaluated for the presence of cytochrome P450 proteins by SDS-PAGE, apparent minimum molecular weight determination, and immunoblot analysis. P450 activity was induced in cetacean tissue samples and CDK cells by exposure in vitro to one of several cytochrome P450-inducing chemicals. The data suggest that cetacean tissues and cells can be utilized to study the in vitro induction of cytochrome P450, resultant metabolism of xenobiotic contaminants, and the subsequent cellular and molecular responses. However, the identity of specific P450 isozymes involved in this process will remain undetermined until monoclonal antibodies that recognize cetacean P450s can be generated.

  14. AROMATIC AND POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN A LAMINAR PREMIXED N-BUTANE FLAME. (R825412)

    EPA Science Inventory

    Abstract

    Experimental and detailed chemical kinetic modeling work has been performed to investigate aromatic and polycyclic aromatic hydrocarbon (PAH) formation pathways in a premixed, rich, sooting, n-butane¯oxygen¯argon burner s...

  15. AROMATIC AND POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN A LAMINAR PREMIXED N-BUTANE FLAME. (R825412)

    EPA Science Inventory

    Abstract

    Experimental and detailed chemical kinetic modeling work has been performed to investigate aromatic and polycyclic aromatic hydrocarbon (PAH) formation pathways in a premixed, rich, sooting, n-butane¯oxygen¯argon burner s...

  16. CROSS-INDUCTION OF PYRENE AND PHENANTHRENE IN MYCOBACTERIUM SP. ISOLATED FROM POLYCYCLIC AROMATIC HYDROCARBON CONTAMINATED RIVER SEDIMENTS

    EPA Science Inventory

    A polycyclic aromatic hydrocarbon (PAH)-degrading culture enriched from contaminated river sediments and a Mycobacterium sp. isolated from the enrichment were tested to investigate the possible synergistic and antagonistic interactions affecting the degradation of pyrene in the p...

  17. CROSS-INDUCTION OF PYRENE AND PHENANTHRENE IN MYCOBACTERIUM SP. ISOLATED FROM POLYCYCLIC AROMATIC HYDROCARBON CONTAMINATED RIVER SEDIMENTS

    EPA Science Inventory

    A polycyclic aromatic hydrocarbon (PAH)-degrading culture enriched from contaminated river sediments and a Mycobacterium sp. isolated from the enrichment were tested to investigate the possible synergistic and antagonistic interactions affecting the degradation of pyrene in the p...

  18. Distributions of polycyclic aromatic hydrocarbons and alkylated polycyclic aromatic hydrocarbons in Osaka Bay, Japan.

    PubMed

    Miki, Shizuho; Uno, Seiichi; Ito, Kazuki; Koyama, Jiro; Tanaka, Hiroyuki

    2014-08-30

    Contaminations in sediments by polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs were investigated at 44 sites in Osaka Bay, Japan. Concentrations of total PAHs and alkylated PAHs were in the range 6.40-7800 ng/g dry weights and 13.7-1700 ng/g dry weights, respectively. The PAH concentrations tended to be higher along the shoreline in the vicinities of big ports, industrialized areas, and densely populated regions such as the cities of Osaka and Kobe. The major sources appeared to be pyrogenic or both pyrogenic and petrogenic at most of the sites. PAH concentrations were remarkably high at a site near Kobe, where the concentrations of dibenzo(a,h)anthracene and benzo(g,h,i)perylene exceeded the effects-range-medium concentration and eight PAHs were above the corresponding effects-range-low concentrations. Those PAHs may have been derived from the great fire associated with the large earthquake in 1995.

  19. Environmental Behaviors and Toxicities of Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons.

    PubMed

    Hayakawa, Kazuichi

    2016-01-01

    Airborne particulate matter (PM) has been collected at four cities in Japan starting in the late 1990s, at five or more major cities in China, Korea and Russia starting in 2001 and at the Noto Peninsula starting in 2004. Nine polycyclic aromatic hydrocarbons (PAHs) and eleven nitropolycyclic aromatic hydrocarbons (NPAHs) were determined by HPLC with fluorescence and chemiluminescence detections, respectively. Annual concentrations of PAHs and NPAHs were in the order, China>Russia≫Korea=Japan, with seasonal change (winter>summer). During the observation period, concentrations of PAHs and NPAHs in Japanese cities significantly decreased but the increases in the PAH concentration were observed in Chinese and Russian cities. Concentrations of PAHs and NPAHs were higher in the Northern China than those in the Southern China. At the Noto peninsula, which is in the main path of winter northwest winds and a year-round jet stream that blow from the Asian continent to Japan, the concentrations were high in winter and low in summer every year. A cluster analysis and back trajectory analysis indicated that PAHs and NPAHs were long-range transported from Northeastern China, where coal burning systems such as coal-heating boilers are considered to be the major contributors of PAHs and NPAHs. A dramatic change in atmospheric concentrations of PAHs and NPAHs in East Asia suggests the rapid and large change of PM2.5 pollution in East Asia. Considering the adverse health effects of PM2.5, continuous monitoring of atmospheric PAHs and NPAHs is necessary in this area.

  20. Closed-Shell Polycyclic Aromatic Hydrocarbon Cations: A New Category of Interstellar Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of polycyclic aromatic hydrocarbon (PAH) cations that explore both size and electronic structure effects of the infrared spectroscopic properties of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms (C(sub odd) PAHs); and (2) protonated PAH cations (HPAH+). Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a closed-shell electronic configuration. The calculated spectra of circumcoronene, C54H18 in both neutral and (radical) cationic form are also reported and compared with those of the other species. Overall, the C(sub odd) PAHs spectra are dominated by strong CC stretching modes near 1600 cm(exp -1) and display spectra that are remarkably insensitive to molecular size. The HPAH+ species evince a more complex spectrum consistent with the added contributions of aliphatic modes and their generally lower symmetry. Finally, for both classes of closed-shell cations, the intensity of the aromatic CH stretching modes is found to increase with molecular size far out of proportion with the number of CH groups, approaching a value more typical of neutral PAHs for the largest species studied.

  1. Closed-Shell Polycyclic Aromatic Hydrocarbon Cations: A New Category of Interstellar Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of polycyclic aromatic hydrocarbon (PAH) cations that explore both size and electronic structure effects of the infrared spectroscopic properties of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms (C(sub odd) PAHs); and (2) protonated PAH cations (HPAH+). Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a closed-shell electronic configuration. The calculated spectra of circumcoronene, C54H18 in both neutral and (radical) cationic form are also reported and compared with those of the other species. Overall, the C(sub odd) PAHs spectra are dominated by strong CC stretching modes near 1600 cm(exp -1) and display spectra that are remarkably insensitive to molecular size. The HPAH+ species evince a more complex spectrum consistent with the added contributions of aliphatic modes and their generally lower symmetry. Finally, for both classes of closed-shell cations, the intensity of the aromatic CH stretching modes is found to increase with molecular size far out of proportion with the number of CH groups, approaching a value more typical of neutral PAHs for the largest species studied.

  2. Occupational exposure to aromatic hydrocarbons and polycyclic aromatic hydrocarbons at a coke plant.

    PubMed

    Bieniek, Grażyna; Łusiak, Agnieszka

    2012-08-01

    The objective of this study was to assess the external exposure to aromatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs) of coke-oven workers and by-product workers at a coke plant in Poland. The content of benzene, toluene, xylene, and naphthalene in a gaseous phase and the content of dibenzo[a,h]anthracene, benz[a]anthracene, anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benz[ghi]perylene, chrysene, and indeno[1,2,3-c,d]pyrene in a particulate phase of coke plant workers were measured in the workers mentioned above. A toxic equivalency factor BaP(eq) was used to estimate human health risk associated with respiratory exposure to PAHs. Time-weighted values of the exposure to AHs in the coke plant were as follows: benzene (range 0.01-2.71 mg m(-3)), toluene (0.01-1.73 mg m(-3)), xylene (0.01-0.78 mg m(-3)), naphthalene (6.0-6079 μg m(-3)), and the concentrations of hydrocarbons did not exceed the exposure limits. The results for particle-bound PAHs were equal to 1.96 μg m(-3) for B(a)P, 0.73 μg m(-3) for DBA, 3.23 μg m(-3) for BaA, 4.35 μg m(-3) for BbF, 3.02 μg m(-3) for BkF, 4.54 μg m(-3) for IND, 4.32 μg m(-3) for CHR, and 0.73 μg m(-3) for Ant. The results of personal air measurements (median values of the sum of nine carcinogenic PAHs) were 2.115 μg m(-3) (coke-oven workers, n = 207), 0.326 μg m(-3) (coke by-product workers, n = 33), and 0.653 μg m(-3) (total area workers, n = 38). The benzo[a]pyrene equivalent concentrations (BaP(eq)) of 10 PAHs were 1.33, 0.183, and 0.284 μg m(-3), respectively. We found out that coke plant workers are simultaneously exposed to a mixture of aromatic and polycyclic hydrocarbons present in the breathing zone air. Exposure levels are significantly influenced by job categories. Coke by-product workers are significantly more exposed to benzene, toluene, and xylene and less to PAHs. Coke-oven workers are mainly exposed to PAHs. Coke-oven workplaces (top side, coke side, and

  3. [Some toxicological aspects of polycyclic aromatic hydrocarbons (PAHs) effects].

    PubMed

    Zasadowski, Arkadiusz; Wysocki, Adam

    2002-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants. They are found through environment in the air, in the soil, in water, in plants, and also in food. PAHs are formed during pyrolisis and the incomplete combustion of organic materials. PAHs can be man-made or occur naturally. They undergo metabolic activation after entering the mammalian cells to highly toxic reactive metabolite intermediates and can irreversibly damage cellular macromolecules (DNA, proteins, lipids). Polycyclic aromatic hydrocarbons represent a class of toxicological compounds which can create a variety of hazardous effects in vivo, including cytotoxicity, genotoxicity, immunotoxicity, teratogenicity and carcinogenesis described in present paper.

  4. Manufacture of aromatic hydrocarbons from coal hydrogenation products

    SciTech Connect

    A.S. Maloletnev; M.A. Gyul'malieva

    2007-08-15

    The manufacture of aromatic hydrocarbons from coal distillates was experimentally studied. A flow chart for the production of benzene, ethylbenzene, toluene, and xylenes was designed, which comprised the hydrogen treatment of the total wide-cut (or preliminarily dephenolized) fraction with FBP 425{sup o}C; fractional distillation of the hydrotreated products into IBP-60, 60-180, 180-300, and 300-425{sup o}C fractions; the hydro-cracking of middle fractions for increasing the yield of gasoline fractions whenever necessary; the catalytic reform of the fractions with bp up to 180{sup o}C; and the extraction of aromatic hydrocarbons.

  5. Determination of the aromatic hydrocarbon to total hydrocarbon ratio of mineral oil in commercial lubricants.

    PubMed

    Uematsu, Yoko; Suzuki, Kumi; Ogimoto, Mami

    2016-01-01

    A method was developed to determine the aromatic hydrocarbon to total hydrocarbon ratio of mineral oil in commercial lubricants; a survey was also conducted of commercial lubricants. Hydrocarbons in lubricants were separated from the matrix components of lubricants using a silica gel solid phase extraction (SPE) column. Normal-phase liquid chromatography (NPLC) coupled with an evaporative light-scattering detector (ELSD) was used to determine the aromatic hydrocarbon to total hydrocarbon ratio. Size exclusion chromatography (SEC) coupled with a diode array detector (DAD) and a refractive index detector (RID) was used to estimate carbon numbers and the presence of aromatic hydrocarbons, which supplemented the results obtained by NPLC/ELSD. Aromatic hydrocarbons were not detected in 12 lubricants specified for use for incidental food contact, but were detected in 13 out of 22 lubricants non-specified for incidental food contact at a ratio up to 18%. They were also detected in 10 out of 12 lubricants collected at food factories at a ratio up to 13%. The centre carbon numbers of hydrocarbons in commercial lubricants were estimated to be between C16 and C50.

  6. Sorption of polycyclic aromatic hydrocarbons to polystyrene nanoplastic.

    PubMed

    Liu, Lijing; Fokkink, Remco; Koelmans, Albert A

    2016-07-01

    Microplastic has become an emerging contaminant of global concern. Bulk plastic can degrade to form smaller particles down to the nanoscale (<100 nm), which are referred to as nanoplastics. Because of their high surface area, nanoplastic may bind hydrophobic chemicals very effectively, increasing their hazard when such nanoplastics are taken up by biota. The present study reports distribution coefficients for sorption of polycyclic aromatic hydrocarbons (PAHs) to 70 nm polystyrene in freshwater, and PAH adsorption isotherms spanning environmentally realistic aqueous concentrations of 10(-5)  μg/L to 1 μg/L. Nanopolystyrene aggregate state was assessed using dynamic light scattering. The adsorption isotherms were nonlinear, and the distribution coefficients at the lower ends of the isotherms were very high, with values up to 10(9) L/kg. The high and nonlinear sorption was explained from π-π interactions between the planar PAHs and the surface of the aromatic polymer polystyrene and was higher than for micrometer-sized polystyrene. Reduction of nanopolystyrene aggregate sizes had no significant effect on sorption, which suggests that the PAHs could reach the sorption sites on the pristine nanoparticles regardless of the aggregation state. Pre-extraction of the nanopolystyrene with C18 polydimethylsiloxane decreased sorption of PAHs, which could be explained by removal of the most hydrophobic fraction of the nanopolystyrene. Environ Toxicol Chem 2016;35:1650-1655. © 2015 SETAC.

  7. COMPARATIVE STUDIES OF THE EFFECT OF POLYCYCLIC AROMATIC HYDROCARBON GEOMETRY ON THE HYDROLYSIS OF DIOL EPOXIDES

    EPA Science Inventory

    Comparative studies of the effect of polycyclic aromatic hydrocarbon geometry on the hydrolysis of diol epoxides

    The interaction of the diol epoxides (DEs) of both planar and non-planar PAHs with water have been examined using quantum mechanical and molecular dynamics. Th...

  8. COMPARATIVE STUDIES OF THE EFFECT OF POLYCYCLIC AROMATIC HYDROCARBON GEOMETRY ON THE HYDROLYSIS OF DIOL EPOXIDES

    EPA Science Inventory

    Comparative studies of the effect of polycyclic aromatic hydrocarbon geometry on the hydrolysis of diol epoxides

    The interaction of the diol epoxides (DEs) of both planar and non-planar PAHs with water have been examined using quantum mechanical and molecular dynamics. Th...

  9. Diversity of metabolic capacities among strains degrading polycyclic aromatic hydrocarbons

    SciTech Connect

    Bouchez, M.; Besnaienou, B.; Blanchet, D.; Vandecasteele, J.P.

    1995-12-31

    Strains of Pseudomonas and Rhodococcus genera were isolated for their capacity to use, as a sole carbon and energy source, one of the following polycyclic aromatic hydrocarbons (PAHs): naphthalene (NAP), fluorene (FLU), phenanthrene (PHE), anthracene (ANT), fluoranthene (FLT), and pyrene (PYR). The range of PAHs supporting growth of these pure strains was usually restricted, but several other hydrocarbons were used by Rhodococcus sp. All strains could grow on simple organic acids. Maximal specific growth rates ({mu}{sub max}) of all strains on their PAH growth substrates were determined by respirometry. No clear relationships between {mu}{sub max} values and the molecular weight or water solubility of PAHs were apparent, but Pseudomonas sp. exhibited the highest {mu}{sub max} values. Carbon balances for PAH biodegradation were established. Differences between strains were observed, but high mineralization rates and low production of soluble metabolites were obtained for all PAHs. Bacterial biomass represented 16% to 35% of the carbon consumed. Strain diversity was also apparent in the interactions observed in the degradation of a mixture of two PAHs by individual strains, which often involved inhibition of PAH substrate degradation, with or without cometabolization of the second PAH.

  10. Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame

    SciTech Connect

    Castaldi, M.J.; Marinov, N.M.; Melius, C.F.

    1996-02-01

    Experimental and detailed chemical kinetic modeling has been performed to investigate aromatic and polyaromatic hydrocarbon formation pathways in a rich, sooting, ethylene-oxygen-argon premixed flame. An atmospheric pressure, laminar flat flame operated at an equivalence ratio of 2.5 was used to acquire experimental data for model validation. Gas composition analysis was conducted by an on-line gas chromatograph/mass spectrometer (GC/MS) technique. Measurements were made in the flame and post-flame zone for a number of low molecular weight species, aliphatics, aromatics and polycyclic aromatic hydrocarbons (PAHs) ranging from two to five-aromatic fused rings. The modeling results show the key reaction sequences leading to aromatic and polycyclic aromatic hydrocarbon growth involve the combination of resonantly stabilized radicals. In particular, propargyl and 1-methylallenyl combination reactions lead to benzene and methyl substituted benzene formation, while polycyclic aromatics are formed from cyclopentadienyl radicals and fused rings that have a shared C{sub 5} side structure. Naphthalene production through the reaction step of cyclopentadienyl self-combination and phenanthrene formation from indenyl and cyclopentadienyl combination were shown to be important in the flame modeling study. The removal of phenyl by O{sub 2} leading to cyclopentadienyl formation is expected to play a pivotal role in the PAH or soot precursor growth process under fuel-rich oxidation conditions.

  11. Study of the origin of polycyclic aromatic hydrocarbons in water of Lake Baikal

    NASA Astrophysics Data System (ADS)

    Semenova, M. Yu.; Snytko, V. A.; Marinaite, I. I.

    2017-06-01

    The concentration of polycyclic aromatic hydrocarbons in the water of Lake Baikal is estimated. The published data on the composition of polycyclic aromatic hydrocarbons in industrial and communal emissions and in crude oils are analyzed. Anthropogenic sources of lake water contamination are revealed. It is concluded that polycyclic aromatic hydrocarbons enter the lake as a result of natural oil release.

  12. Microbial Degradation of Polycyclic Aromatic Hydrocarbons and Characterization of Bacteria

    NASA Astrophysics Data System (ADS)

    Tikilili, P. V.; Chirwa, E. M. N.

    2010-01-01

    Biodegradation of polycyclic aromatic hydrocarbons was studied. Naphthalene was used as a model compound to represent these compounds. Low initial concentrations of naphthalene in a range of 30-60 mg/L were completely degraded after incubation for 15 hrs by consortia from a landfill soil while consortia from minewater took more that 29 hrs to reach complete degradation.

  13. THE RATES OF POLYCYCLIC AROMATIC HYDROCARBON EMISSIONS FROM INCENSE BURNING

    EPA Science Inventory

    The paper presents the results of experiments performed to determine the amounts of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHS) in incense smoke. Ten brands of incense, 3 of stick, 2 of joss stick, and one each of cone, smudge bundle, rope, powder, and rock, w...

  14. THE RATES OF POLYCYCLIC AROMATIC HYDROCARBON EMISSIONS FROM INCENSE BURNING

    EPA Science Inventory

    The paper presents the results of experiments performed to determine the amounts of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHS) in incense smoke. Ten brands of incense, 3 of stick, 2 of joss stick, and one each of cone, smudge bundle, rope, powder, and rock, w...

  15. Degradation of polynuclear aromatic hydrocarbons by two strains of Pseudomonas.

    PubMed

    Nwinyi, Obinna C; Ajayi, Oluseyi O; Amund, Olukayode O

    2016-01-01

    The goal of this investigation was to isolate competent polynuclear aromatic hydrocarbons degraders that can utilize polynuclear aromatic hydrocarbons of former industrial sites at McDoel Switchyard in Bloomington, Indiana. Using conventional enrichment method based on soil slurry, we isolated, screened and purified two bacterial species strains PB1 and PB2. Applying the ribotyping technique using the 16S rRNA gene analysis, the strains were assigned to the genus Pseudomonas (Pseudomonas plecoglossicida strain PB1 and Pseudomonas sp. PB2). Both isolates showed promising metabolic capacity on pyrene sprayed MS agar plates during the preliminary investigations. Using time course studies in the liquid cultures at calculated concentrations 123, 64, 97 and 94ppm for naphthalene, chrysene, fluroanthene and pyrene, P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 showed partial utilization of the polynuclear aromatic hydrocarbons. Naphthalene was degraded between 26% and 40%, chrysene 14% and 16%, fluroanthene 5% and 7%; pyrene 8% and 13% by P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 respectively. Based on their growth profile, we developed a model R(2)=1 to predict the degradation rate of slow polynuclear aromatic hydrocarbon-degraders where all the necessary parameters are constant. From this investigation, we confirm that the former industrial site soil microbial communities may be explored for the biorestoration of the industrial site.

  16. METHODOLOGY OF AMBIENT AIR MONITORING FOR POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    In the last decade, several studies of polycyclic aromatic hydrocarbons (PAH) in ambient air in the U.S. specifically investigated (1) the sampling efficiency of two sorbents for PAH in air: XAD-2 and polyurethane foam (PUP); (2) the storage stability of PAH on quartz fiber fil...

  17. METHODOLOGY OF AMBIENT AIR MONITORING FOR POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    In the last decade, several studies of polycyclic aromatic hydrocarbons (PAH) in ambient air in the U.S. specifically investigated (1) the sampling efficiency of two sorbents for PAH in air: XAD-2 and polyurethane foam (PUP); (2) the storage stability of PAH on quartz fiber fil...

  18. In situ biodegradation potential of aromatic hydrocarbons in anaerobic groundwaters

    NASA Astrophysics Data System (ADS)

    Acton, D. W.; Barker, J. F.

    1992-04-01

    Three types of experiments were conducted to assess the potential for enhancing the in situ biodegradation of nine aromatic hydrocarbons in anaerobic, leachate-impacted aquifers at North Bay, Ontario, and at Canada Forces Base Borden. Laboratory micrososms containing authentic aquifer material and groundwater from the North Bay site were amended with nitrate and glucose. No significant losses of aromatic hydrocarbons were observed compared to unamended controls, over a period of 187 days. A total of eight in situ biodegradation columns were installed in the North Bay and Borden aquifers. Remedial additions included electron acceptors (nitrate and sulphate) and primary substrates (acetate, lactate and yeast extract). Six aromatic hydrocarbons [toluene, ethylbenzene, m-xylene, o-xylene, cumene and 1,2,4-trimethylbenzene ( 1,2,4-TMB)] were completely degraded in at least one in situ column at the North Bay site. Only toluene was degraded in the Borden aquifer. In all cases, aromatic hydrocarbon attenuation was attributed to biodegradation by methanogenic and fermentative bacteria. No evidence of aromatic hydrocarbon degradation was observed in columns remediated with nitrate or primary substrates. A continuous forced gradient injection experiment with sulphate addition was conducted at the North Bay site over a period of 51 days. The concentration of six aromatic hydrocarbons was monitored over time in the injection wells and at piezometer fences located 2, 5 and 10 m downgradient. All compounds except toluene reached injection concentration between 14 and 26 days after pumping began, and showed some evidence of selective retardation. Toluene broke through at a subdued concentration (˜ 50% of injection levels), and eventually declined to undetectable levels on day 43. This attenuation was attributed to adaptation and biodegradation by anaerobic bacteria. The results from these experiments indicate that considerable anaerobic biodegradation of aromatic hydrocarbons in

  19. Ambient aromatic hydrocarbon measurements at Welgegund, South Africa

    NASA Astrophysics Data System (ADS)

    Jaars, K.; Beukes, J. P.; van Zyl, P. G.; Venter, A. D.; Josipovic, M.; Pienaar, J. J.; Vakkari, V.; Aaltonen, H.; Laakso, H.; Kulmala, M.; Tiitta, P.; Guenther, A.; Hellén, H.; Laakso, L.; Hakola, H.

    2014-07-01

    Aromatic hydrocarbons are associated with direct adverse human health effects and can have negative impacts on ecosystems due to their toxicity, as well as indirect negative effects through the formation of tropospheric ozone and secondary organic aerosol, which affect human health, crop production and regional climate. Measurements of aromatic hydrocarbons were conducted at the Welgegund measurement station (South Africa), which is considered to be a regionally representative background site. However, the site is occasionally impacted by plumes from major anthropogenic source regions in the interior of South Africa, which include the western Bushveld Igneous Complex (e.g. platinum, base metal and ferrochrome smelters), the eastern Bushveld Igneous Complex (platinum and ferrochrome smelters), the Johannesburg-Pretoria metropolitan conurbation (> 10 million people), the Vaal Triangle (e.g. petrochemical and pyrometallurgical industries), the Mpumalanga Highveld (e.g. coal-fired power plants and petrochemical industry) and also a region of anticyclonic recirculation of air mass over the interior of South Africa. The aromatic hydrocarbon measurements were conducted with an automated sampler on Tenax-TA and Carbopack-B adsorbent tubes with heated inlet for 1 year. Samples were collected twice a week for 2 h during daytime and 2 h during night-time. A thermal desorption unit, connected to a gas chromatograph and a mass selective detector was used for sample preparation and analysis. Results indicated that the monthly median (mean) total aromatic hydrocarbon concentrations ranged between 0.01 (0.011) and 3.1 (3.2) ppb. Benzene levels did not exceed the local air quality standard limit, i.e. annual mean of 1.6 ppb. Toluene was the most abundant compound, with an annual median (mean) concentration of 0.63 (0.89) ppb. No statistically significant differences in the concentrations measured during daytime and night-time were found, and no distinct seasonal patterns were

  20. Biodegradation of aliphatic vs. aromatic hydrocarbons in fertilized arctic soils

    USGS Publications Warehouse

    Braddock, J.F.

    1999-01-01

    A study was carried out to test a simple bioremediation treatment strategy in the Arctic and analyze the influence of fertilization the degradation of aliphatic and aromatic hydrocarbons, e.g., pristine, n-tetradecane, n-pentadecane, 2-methylnaphthalene, naphthalene, and acenaphthalene. The site was a coarse sand pad that once supported fuel storage tanks. Diesel-range organics concentrations were 250-860 mg/kg soil at the beginning of the study. Replicate field plots treated with fertilizer yielded final concentrations of 0, 50, 100, or 200 mg N/kg soil. Soil pH and soil-water potentials decreased due to fertilizer application. The addition of fertilizer considerably increased soil respiration potentials, but not the populations of microorganisms measured. Fertilizer addition also led to ??? 50% loss of measured aliphatic and aromatic hydrocarbons in surface and subsurface soils. For fertilized plots, hydrocarbon loss was not associated with the quantity of fertilizer added. Losses of aliphatic hydrocarbons were ascribed to biotic processes, while losses of aromatic hydrocarbons were due to biotic and abiotic processes.

  1. Genotoxicity of model and complex mixtures of polycyclic aromatic hydrocarbons

    SciTech Connect

    Donnelly, K.C.; Phillips, T.D.; Onufrock, A.M.; Collie, S.L.; Huebner, H.J.; Washburn, K.S.

    1996-12-31

    Polycyclic aromatic hydrocarbons (PAHs) are one of the most ubiquitous classes of environmental carcinogens; however, limited information is available to describe their potential genotoxic interactions. This manuscript reports on the interactions of PAHs in complex mixtures as determined in microbial mutagenicity assays. Samples analyzed included separate 2-, 3-, and 4-ring PAH individual model fractions (IMFs) constructed to simulate the composition of a model coal tar. These were tested individually and in various combinations, including a reconstituted model fraction (RMF) composed of all three IMFs. A solvent extract of coal tar and a benzo(a)pyrene-amended extract of coal tar were also tested. The maximum mutagenic response of 1,089 revertants was induced by the RMF at a dose of 90 {micro}g/plate with metabolic activation. At the four lowest dose levels, the response observed in the RMF sample was increased when compared to the 4-ring-IMF sample alone. However, the response observed with the RMF sample at the highest dose tested was less than was observed in the 4-ring-IMF sample tested independently. When IMF samples were combined or mixed with individual chemicals, some inhibition was observed. These data indicate that mixtures of PAHs can exhibit a variety of mutagenic interactions controlled by both the metabolism of the PAHs and by their concentration in the mixture.

  2. Aromaticity of closed-shell charged polybenzenoid hydrocarbons.

    PubMed

    Ramos-Berdullas, Nicolás; Radenković, Slavko; Bultinck, Patrick; Mandado, Marcos

    2013-06-06

    The aromatic stabilization of closed-shell charged polybenzenoid hydrocarbons (PBHs) has been scrutinized by means of energetic and magnetic aromaticity criteria and by direct measures of electron delocalization. Thus, topological resonance energies and their circuit contributions, ring current maps, and multicenter delocalization indices have been calculated for a series of 18 polybenzenoid cations containing from 3 to 10 benzene rings. All calculations indicate that the closed-shell cations have a similar degree of aromaticity compared to that of the corresponding closed-shell neutral PBHs. All cations investigated display a large degree of electronic delocalization in the ring, accompanied by significant aromatic stabilization and a strong diatropic peripheral electron current. Graph theoretical models describe perfectly the aromatic features of these hydrocarbon fragments, showing how they can be understood as a superposition of specific neutral PBHs. The large aromatic character of these systems suggests they may be relatively stable upon formation at combustion conditions, like those given in the interstellar medium. It has been postulated that closed-shell fragments of PBHs may play an important role in the photoluminescent phenomenon known as extended red emission.

  3. Effect of fluorine substitution on the aromaticity of polycyclic hydrocarbons.

    PubMed

    Kaipio, Mikko; Patzschke, Michael; Fliegl, Heike; Pichierri, Fabio; Sundholm, Dage

    2012-10-18

    The effect of fluorine substitution on the aromaticity of polycyclic hydrocarbons (PAH) is investigated. Magnetically induced current densities, current pathways, and current strengths, which can be used to assess molecular aromaticity, are calculated using the gauge-including magnetically induced current method (GIMIC). The degree of aromaticity of the individual rings is compared to those obtained using calculated nucleus-independent chemical shifts at the ring centers (NICS(0) and NICS(0)(zz)). Calculations of explicitly integrated current strengths for selected bonds show that the aromatic character of the investigated polycyclic hydrocarbons is weakened upon fluorination. In contrast, the NICS(0) values for the fluorinated benzenes increase noteworthy upon fluorination, predicting a strong strengthening of the aromatic character of the arene rings. The integrated current strengths also yield explicit current pathways for the studied molecules. The current pathways of the investigated linear polyacenes, pyrene, anthanthrene, coronene, ovalene, and phenanthro-ovalene are not significantly affected by fluorination. NISC(0) and NICS(0)(zz) calculations provide contradictory degrees of aromaticity of the fused individual ring. Obtained NICS values do not correlate with the current strengths circling around the individual rings.

  4. A comprehensive study of the impact of polycyclic aromatic hydrocarbons (PAHs) contamination on salt marsh plants Spartina alterniflora: implication for plant-microbe interactions in phytoremediation.

    PubMed

    Hong, Youwei; Liao, Dan; Chen, Jinsheng; Khan, Sardar; Su, Jianqiang; Li, Hu

    2015-05-01

    These pot experiments aimed to investigate the effects of polycyclic aromatic hydrocarbons (PAHs) on plant uptake, rhizophere, endophytic bacteria, and phytoremediation potentials of contaminated sediments. Salt marsh plant Spartina alterniflora was selected and cultivated in phenanthrene (PHE)- and pyrene (PYR)-contaminated sediments (for 70 days). The results indicated that the amount of PHE removed from the sediments ranged from 13 to 36 %, while PYR ranged from 11 to 30 %. In rhizophere sediment, dehydrogenase activities were significantly (P < 0.05) enhanced by higher concentration of PHE treatments, while polyphenol oxidase activities were prohibited more than 10 % in non-rhizophere sediment. Compared with the control, PHE treatments had also significantly (P < 0.05) lower total microbial biomass; especially for gram-negative bacteria, this decrease was more than 24 %. However, the PYR treatments had little effect on the dehydrogenase, polyphenol oxidase, and total phospholipid fatty acid analysis (PLFA) biomass. The greatest abundance of PAH-ring hydroxylating dioxygenases isolated from gram-negative bacteria (PAH-RHDα-GN) of rhizoplane and endophyte in roots were found at high concentration of PHE treatments and increased by more than 100- and 3-fold, respectively. These results suggested that PAH pollution would result in the comprehensive effect on S. alterniflora, whose endophytic bacteria might play important roles in the phytoremediation potential of PAH-contaminated sediments.

  5. Cyclophanes containing large polycyclic aromatic hydrocarbons.

    PubMed

    Ghasemabadi, Parisa Ghods; Yao, Tieguang; Bodwell, Graham J

    2015-09-21

    Cyclophanes have been firmly entrenched as a distinct class of compounds for well over half a century. The two main factors that have kept this field of chemistry going so strongly for such a long time are tremendous structural diversity and the interesting behaviour that is often observed. Although a very large number cyclophanes has been reported, only a very small proportion of them contain polycyclic aromatic systems that can be thought of as "large", i.e. with ≥4 rings. This Review puts the spotlight on such cyclophanes, illuminating both the chemistry that was used to synthesize them and what was learned from studying them. Context for the main body is provided by the careful consideration of the anatomy of a cyclophane and the classification of general synthetic approaches. The subsequent sections cover eleven different PAHs and are organized primarily according to increasing size of the aromatic system, starting with pyrene (C16, the only large polycyclic aromatic system to have been incorporated into numerous cyclophanes) and ending with hexabenzo[bc,ef,hi,kl,no,qr]coronene (C42).

  6. Exciton properties of selected aromatic hydrocarbon systems

    NASA Astrophysics Data System (ADS)

    Roth, Friedrich; Mahns, Benjamin; Hampel, Silke; Nohr, Markus; Berger, Helmuth; Büchner, Bernd; Knupfer, Martin

    2013-02-01

    We have examined the singlet excitons in two representatives of acene-type (tetracene and pentacene) and phenacene-type (chrysene and picene) molecular crystals, respectively, using electron energy-loss spectroscopy at low temperatures. We show that the excitation spectra of the two hydrocarbon families significantly differ. Moreover, close inspection of the data indicates that there is an increasing importance of charge-transfer excitons at lowest excitation energy with increasing length of the molecules.

  7. Biodegradation of Aromatic Hydrocarbons in an Extremely Acidic Environment

    PubMed Central

    Stapleton, Raymond D.; Savage, Dwayne C.; Sayler, Gary S.; Stacey, Gary

    1998-01-01

    The potential for biodegradation of aromatic hydrocarbons was evaluated in soil samples recovered along gradients of both contaminant levels and pH values existing downstream of a long-term coal pile storage basin. pH values for areas greatly impacted by runoff from the storage basin were 2.0. Even at such a reduced pH, the indigenous microbial community was metabolically active, showing the ability to oxidize more than 40% of the parent hydrocarbons, naphthalene and toluene, to carbon dioxide and water. Treatment of the soil samples with cycloheximide inhibited mineralization of the aromatic substrates. DNA hybridization analysis indicated that whole-community nucleic acids recovered from these samples did not hybridize with genes, such as nahA, nahG, nahH, todC1C2, and tomA, that encode common enzymes from neutrophilic bacteria. Since these data suggested that the degradation of aromatic compounds may involve a microbial consortium instead of individual acidophilic bacteria, experiments using microorganisms isolated from these samples were initiated. While no defined mixed cultures were able to evolve 14CO2 from labeled substrates in these mineralization experiments, an undefined mixed culture including a fungus, a yeast, and several bacteria successfully metabolized approximately 27% of supplied naphthalene after 1 week. This study shows that biodegradation of aromatic hydrocarbons can occur in environments with extremely low pH values. PMID:9797263

  8. Biodegradation of aromatic hydrocarbons in an extremely acidic environment

    SciTech Connect

    Stapleton, R.D.; Savage, D.C.; Sayler, G.S.; Stacey, G.

    1998-11-01

    The potential for biodegradation of aromatic hydrocarbons was evaluated in soil samples recovered along gradients of both contaminant levels and pH values existing downstream of a long-term coal pile storage basin. pH values for areas greatly impacted by runoff from the storage basin were 2.0. Even at such a reduced pH, the indigenous microbial community was metabolically active, showing the ability to oxidize more than 40% of the parent hydrocarbons, naphthalene and toluene, to carbon dioxide and water. Treatment of the soil samples with cycloheximide inhibited mineralization of the aromatic substrates. DNA hybridization analysis indicated that whole-community nucleic acids recovered from these samples did not hybridize with genes, such as nahA, nahG, nahH, todC1C2, and tomA, that encode common enzymes from neutrophilic bacteria. Since these data suggested that the degradation of aromatic compounds may involve a microbial consortium instead of individual acidophilic bacteria, experiments using microorganisms isolated from these samples were initiated. While no defined mixed cultures were able to evolve {sup 14}CO{sub 2} from labeled substrates in these mineralization experiments, an undefined mixed culture including a fungus, a yeast, and several bacteria successfully metabolized approximately 27% of supplied naphthalene after 1 week. This study shows that biodegradation of aromatic hydrocarbons can occur in environments with extremely low pH values.

  9. Biodegradation of aromatic hydrocarbons in an extremely acidic environment

    PubMed

    Stapleton; Savage; Sayler; Stacey

    1998-11-01

    The potential for biodegradation of aromatic hydrocarbons was evaluated in soil samples recovered along gradients of both contaminant levels and pH values existing downstream of a long-term coal pile storage basin. pH values for areas greatly impacted by runoff from the storage basin were 2.0. Even at such a reduced pH, the indigenous microbial community was metabolically active, showing the ability to oxidize more than 40% of the parent hydrocarbons, naphthalene and toluene, to carbon dioxide and water. Treatment of the soil samples with cycloheximide inhibited mineralization of the aromatic substrates. DNA hybridization analysis indicated that whole-community nucleic acids recovered from these samples did not hybridize with genes, such as nahA, nahG, nahH, todC1C2, and tomA, that encode common enzymes from neutrophilic bacteria. Since these data suggested that the degradation of aromatic compounds may involve a microbial consortium instead of individual acidophilic bacteria, experiments using microorganisms isolated from these samples were initiated. While no defined mixed cultures were able to evolve 14CO2 from labeled substrates in these mineralization experiments, an undefined mixed culture including a fungus, a yeast, and several bacteria successfully metabolized approximately 27% of supplied naphthalene after 1 week. This study shows that biodegradation of aromatic hydrocarbons can occur in environments with extremely low pH values.

  10. Risk assessment of complex mixtures: Polynuclear aromatic hydrocarbons

    SciTech Connect

    Chaloupka, K.; Harper, N.; Steinberg, M.; Safe, S.; Rodriguez, L.V.; Goldstein, L.S.

    1994-12-31

    Complex mixtures of polynuclear aromatic hydrocarbons (PAHs) are organic combustion products and are components of creosote and oily wastes which have been identified in a large number of hazardous chemical waste sites. Risk assessment of PAH mixtures must take into account the toxicity or carcinogenicity of the individual compounds and their possible additive or nonadditive interactive effects. A reconstituted PAH mixture which resembled manufactured gas plant PAH residues was prepared using 16 different compounds and the immunotoxicity and monooxygenase induction activity of the 2-ring, 3-ring and {ge} 4-ring PAHs were compared to that observed for the reconstituted mixtures in B6C3F1 mice. The results showed that the reconstituted mixture inhibited the splenic plaque-forming cell response to T-cell dependent and independent antigens and induced hepatic microsomal ethoxyresorufin O-deethylase activity and Cyp1a-1 mRNA levels. The relative potencies of the reconstituted mixture and its components indicated that most of the activity was associated with {ge} 4-ring PAHs and the interactive effects of the individual PAHs in the reconstituted PAH mixture were essentially additive.

  11. Metabolic Pathways for Degradation of Aromatic Hydrocarbons by Bacteria.

    PubMed

    Ladino-Orjuela, Guillermo; Gomes, Eleni; da Silva, Roberto; Salt, Christopher; Parsons, John R

    2016-01-01

    The aim of this review was to build an updated collection of information focused on the mechanisms and elements involved in metabolic pathways of aromatic hydrocarbons by bacteria. Enzymes as an expression of the genetic load and the type of electron acceptor available, as an environmental factor, were highlighted. In general, the review showed that both aerobic routes and anaerobic routes for the degradation of aromatic hydrocarbons are divided into two pathways. The first, named the upper pathways, entails the route from the original compound to central intermediate compounds still containing the aromatic ring but with the benzene nucleus chemically destabilized. The second, named the lower pathway, begins with ring de-aromatization and subsequent cleavage, resulting in metabolites that can be used by bacteria in the production of biomass. Under anaerobic conditions the five mechanisms of activation of the benzene ring described show the diversity of chemical reactions that can take place. Obtaining carbon and energy from an aromatic hydrocarbon molecule is a process that exhibits the high complexity level of the metabolic apparatus of anaerobic microorganisms. The ability of these bacteria to express enzymes that catalyze reactions, known only in non-biological conditions, using final electron acceptors with a low redox potential, is a most interesting topic. The discovery of phylogenetic and functional characteristics of cultivable and noncultivable hydrocarbon degrading bacteria has been made possible by improvements in molecular research techniques such as SIP (stable isotope probing) tracing the incorporation of (13)C, (15)N and (18)O into nucleic acids and proteins. Since many metabolic pathways in which enzyme and metabolite participants are still unknown, much new research is required. Therefore, it will surely allow enhancing the known and future applications in practice.

  12. Ambient aromatic hydrocarbon measurements at Welgegund, South Africa

    SciTech Connect

    Jaars, K.; Beukes, J. P.; van Zyl, P. G.; Venter, A. D.; Josipovic, M.; Pienaar, J. J.; Vakkari, Ville; Aaltonen, H.; Laakso, H.; Kulmala, M.; Tiitta, P.; Guenther, Alex B.; Hellen, H.; Laakso, L.; Hakola, H.

    2014-07-11

    Aromatic hydrocarbons are associated with direct adverse human health effects and can have negative impacts on ecosystems due to their toxicity, as well as indirect negative effects through the formation of tropospheric ozone and secondary organic aerosol that affect human health, crop production and regional climate. Measurements were conducted at the Welgegund measurement station (South Africa) that is considered to be a regionally representative background site. However, the site is occasionally impacted by plumes from major anthropogenic source regions in the interior of South Africa, which include the western Bushveld Igneous Complex (e.g. platinum, base metal and ferrochrome smelters), the eastern Bushveld Igneous Complex (platinum and ferrochrome smelters), the Johannesburg-Pretoria metropolitan conurbation (>10 million people), the Vaal Triangle (e.g. petrochemical and industries), the Mpumalanga Highveld (e.g. coal-fired power plants and petrochemical industry) and also a region of anti-cyclonic recirculation of air mass over the interior of South Africa. The aromatic hydrocarbon measurements were conducted with an automated sampler on Tenax-TA and Carbopack-B adsorbent tubes with heated inlet for one year. Samples were collected twice a week for two hours during daytime and two hours 1 during night-time. A thermal desorption unit, connected to a gas chromatograph and a mass 2 selective detector was used for sample preparation and analysis. Results indicated that the 3 monthly median total aromatic hydrocarbon concentrations ranged between 0.01 to 3.1 ppb. 4 Benzene levels did not exceed local air quality standards. Toluene was the most abundant 5 species, with an annual median concentration of 0.63 ppb. No statistically significant 6 differences in the concentrations measured during daytime and night-time were found and no distinct seasonal patterns were observed. Air mass back trajectory analysis proved that the lack of seasonal cycles could be

  13. Ambient aromatic hydrocarbon measurements at Welgegund, South Africa

    NASA Astrophysics Data System (ADS)

    Jaars, K.; Beukes, J. P.; van Zyl, P. G.; Venter, A. D.; Josipovic, M.; Pienaar, J. J.; Vakkari, V.; Aaltonen, H.; Laakso, H.; Kulmala, M.; Tiitta, P.; Guenther, A.; Hellén, H.; Laakso, L.; Hakola, H.

    2014-02-01

    Aromatic hydrocarbons are associated with direct adverse human health effects and can have negative impacts on ecosystems due to their toxicity, as well as indirect negative effects through the formation of tropospheric ozone and secondary organic aerosol that affect human health, crop production and regional climate. Measurements were conducted at the Welgegund measurement station (South Africa) that is considered to be a regionally representative background site. However, the site is occasionally impacted by plumes from major anthropogenic source regions in the interior of South Africa, which include the western Bushveld Igneous Complex (e.g. platinum, base metal and ferrochrome smelters), the eastern Bushveld Igneous Complex (platinum and ferrochrome smelters), the Johannesburg-Pretoria metropolitan conurbation (>10 million people), the Vaal Triangle (e.g. petrochemical and pyrometallurgical industries), the Mpumalanga Highveld (e.g. coal-fired power plants and petrochemical industry) and also a region of anti-cyclonic recirculation of air mass over the interior of South Africa. The aromatic hydrocarbon measurements were conducted with an automated sampler on Tenax-TA and Carbopack-B adsorbent tubes with heated inlet for one year. Samples were collected twice a week for two hours during daytime and two hours during night-time. A thermal desorption unit, connected to a gas chromatograph and a mass selective detector was used for sample preparation and analysis. Results indicated that the monthly median total aromatic hydrocarbon concentrations ranged between 0.01 to 3.1 ppb. Benzene levels did not exceed local air quality standards. Toluene was the most abundant species, with an annual median concentration of 0.63 ppb. No statistically significant differences in the concentrations measured during daytime and night-time were found and no distinct seasonal patterns were observed. Air mass back trajectory analysis proved that the lack of seasonal cycles could be

  14. Dimerization of polycyclic aromatic hydrocarbons in soot nucleation.

    PubMed

    Zhang, Hong-Bo; You, Xiaoqing; Wang, Hongmiao; Law, Chung K

    2014-02-27

    A possible pathway of soot nucleation, in which localized π electrons play an important role in binding the polycyclic aromatic hydrocarbon (PAH) molecules having multiradical characteristics to form stable polymer molecules through covalent bonds, is studied using density functional and semiempirical methods. Results show that the number of covalent bonds formed in the dimerization of two identical PAHs is determined by the radical character, and the sites to form bonds are related to the aromaticity of individual six-membered ring structure. It is further shown that the binding energy of dimerization increases linearly with the diradical character in the range relevant to soot nucleation.

  15. Polycyclic aromatic hydrocarbons in Saccoglossus kowalewskyi (Agassiz)

    NASA Astrophysics Data System (ADS)

    Carey, D. A.; Farrington, J. W.

    1989-08-01

    Hydrocarbon extracts were analyzed from Saccoglossus kowalewskyi, a deposit-feeding enteropneust worm, and from surface sediments from Cape Cod, MA. Worms were held in experimental aquaria in sieved sediments and flowing seawater for four months and then fed sediments mixed with creosote, lampblack or clean sediment for two weeks as analogues of sediments containing degraded oil and pyrogenic compounds. Worms from all treatments contained polyaromatic hydrocarbons (PAHs) in amounts and composition that indicate that the worms were contaminated with weathered No. 2 fuel oil before our experimental treatment and that the contamination persisted for four months in clean conditions. The contamination was not detected in the clean sediments used in the experiment. The worms accumulated steroid transformation products in greater abundance than the odd chain n-alkanes that dominated the sediment extractions. This may indicate selective assimilation of algal detritus and microbial products over salt marsh detritus. Worms, actively feeding during the experiment, contained 1-3 × 10 -6 g g -1 dry weight of unknown brominated compounds which were not detected in the sediments. These compounds are similar to bromopyrroles found elsewhere in enteropneusts, polychaetes and bacteria and may cause substantial interference in analyses for some industrial pollutants.

  16. New selective solvents of aromatic hydrocarbons based on petroleum sulfides

    SciTech Connect

    Nikitin, Yu.E.; Baikova, A.Ya.; Vakhitova, N.G.; Khorosheva, S.I.; Murinov, Yu.I.

    1985-01-01

    The present work examines the extractive properties of petroleum sulfoxides (PSO) and their mixtures with other industrial extraction agents. Substitutes are tested to find inexpensive, high-boiling selective solvents and as extractive rectification agents for aromatic hydrocarbons. Effective extraction agents were proposed for the recovery of benzene and toluene from hydrocarbon mixtures during extractive rectification. Petroleum sulfoxides and their synergistic mixtures with diethylene glycol and dimethylformamide, enabled benzene and toluene to be recovered to the extent of 91-99% with a purity of 92-98%; when recovery is from a mixture enriched with benzene, purity increases to 99.5%.

  17. Diesel particulate matter and polycyclic aromatic hydrocarbons in fire stations.

    PubMed

    Bott, Raymond C; Kirk, Katherine M; Logan, Michael B; Reid, Damien A

    2017-09-01

    Firefighters are known to be exposed to a wide variety of combustion products during operational and training firefighting activities. However, the potential for exposure to diesel exhaust emissions, recently classified as carcinogenic to humans by the International Agency for Research on Cancer, also exists within the fire station environment. In this study, concentrations of diesel particulate matter and polycyclic aromatic hydrocarbons have been measured in the engine bays, duty offices and dormitory areas of eight fire stations in Queensland, Australia. Operation of fire appliances and mechanical equipment during start of shift checks were found to contribute more strongly to overall engine bay diesel particulate matter concentrations than the number of fire appliance departures and returns. Polycyclic aromatic hydrocarbons were found to be transported further into fire station living environments than diesel particulate matter. This study highlights a number of potential strategies for reducing firefighter exposures to components of diesel engine exhaust in the fire station environment.

  18. Biogenic Contributions to Aromatic Hydrocarbon Production over Continental North America

    NASA Astrophysics Data System (ADS)

    Sive, B. C.; Russo, R.; Zhou, Y.; Swarthout, R.; Hart, A.

    2011-12-01

    A comprehensive suite of temporally and vertically resolved volatile organic compound (VOC) measurements were conducted at the Boulder Atmospheric Observatory (BAO) in Erie, Colorado from 18 February to 13 March 2011 as part of the Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT) campaign. Specifically, this work investigates and quantifies the contribution of monoterpene oxidation to the secondary production of aromatic hydrocarbons and secondary organic aerosol (SOA) precursor gases. To date, this area of research has been largely unexplored; however, recent results from laboratory experiments have suggested that biogenic VOC (BVOC) oxidation should be considered as an important source of aromatic hydrocarbons, especially in rural and remote environments. The VOC measurements conducted during the NACHTT campaign provide diurnally and vertically resolved speciated monoterpene data over mid-latitude North America. New insight on biogenic emissions, their subsequent chemical transformations and influences on oxidant cycling will be explored.

  19. Phylogenetic comparison of two polycyclic aromatic hydrocarbon-degrading mycobacteria.

    PubMed Central

    Govindaswami, M; Feldhake, D J; Kinkle, B K; Mindell, D P; Loper, J C

    1995-01-01

    Two mycobacterial strains previously isolated from fossil-fuel-contaminated environments and shown to degrade four- and/or five-ring polycyclic aromatic hydrocarbons were further characterized. The two strains, PYR-I and RJGII-135, had similar growth characteristics, colony morphologies, and scotochromogenic pigmentations. DNA amplification fingerprints obtained with total genomic DNA indicated some strain similarities but with several distinctly different bands. Moreover, phylogenetic analysis based upon essentially full-length 16S rRNA gene sequences separates the two strains as distinct species within the fast-growing group of mycobacteria. Although both strains are thermosensitive, strain PYR-I has the bulged U between positions 184 and 193 characteristic of thermotolerant mycobacteria. Both strains are of potential use for reintroduction into and bioremediation of polycyclic aromatic hydrocarbon-contaminated soils. PMID:7574631

  20. Direct photolysis of polycyclic aromatic hydrocarbons in drinking water sources.

    PubMed

    Sanches, S; Leitão, C; Penetra, A; Cardoso, V V; Ferreira, E; Benoliel, M J; Crespo, M T Barreto; Pereira, V J

    2011-09-15

    The widely used low pressure lamps were tested in terms of their efficiency to degrade polycyclic aromatic hydrocarbons listed as priority pollutants by the European Water Framework Directive and the U.S. Environmental Protection Agency, in water matrices with very different compositions (laboratory grade water, groundwater, and surface water). Using a UV fluence of 1500 mJ/cm(2), anthracene and benzo(a)pyrene were efficiently degraded, with much higher percent removals obtained when present in groundwater (83-93%) compared to surface water (36-48%). The removal percentages obtained for fluoranthene were lower and ranged from 13 to 54% in the different water matrices tested. Several parameters that influence the direct photolysis of polycyclic aromatic hydrocarbons were determined and their photolysis by-products were identified by mass spectrometry. The formation of photolysis by-products was found to be highly dependent on the source waters tested.

  1. Association of polycyclic aromatic hydrocarbons in housewives' hair with hypertension.

    PubMed

    Wang, Bin; Li, Zhiwen; Ma, Yiqiu; Qiu, Xinghua; Ren, Aiguo

    2016-06-01

    The relationship between polycyclic aromatic hydrocarbons (PAHs) and hypertension remains a subject of debate. The aims of this study were to determine an association of concentrations of PAHs in housewives' hair with hypertension risk and the modification effect of single nucleotide polymorphisms (SNPs) related to Phase I metabolism of PAHs. We recruited 405 women for a cross-sectional study in Shanxi Province, China, including 170 with hypertension (the case group) and 235 without hypertension (the control group). We analyzed 26 individual PAHs in hair samples and the SNPs of the genes including cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1), CYP1A2, CYP1B1 and CYP2E1. Our results showed that seven PAHs in hair samples were measured with detection rate >70%. Only acenaphthylene was found to be associated with an increased risk of hypertension with adjustment for the potential confounders following Bonferroni correction, whereas others not. No SNPs of the concerned genes were found to be associated with the risk of hypertension. A multiple interaction effect of PAHs in housewives' hair and SNPs on hypertension risk was not observed. It was concluded that PAHs tended to contribute to the formation of hypertension.

  2. THE INFRARED SPECTROSCOPY OF NEUTRAL POLYCYCLIC AROMATIC HYDROCARBON CLUSTERS

    SciTech Connect

    Ricca, Alessandra; Bauschlicher, Charles W. Jr.; Allamandola, Louis J. E-mail: Charles.W.Bauschlicher@nasa.gov

    2013-10-10

    The mid-infrared spectra of neutral homogeneous polycyclic aromatic hydrocarbon (PAH) clusters have been computed using density functional theory including an empirical correction for dispersion. The C-H out-of-plane bending modes are redshifted for all the clusters considered in this work. The magnitude of the redshift and the peak broadening are dependent on PAH size, shape, and on the PAH arrangement in the cluster.

  3. Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions

    USGS Publications Warehouse

    Coates, J.D.; Anderson, R.T.; Lovley, D.R.

    1996-01-01

    [14C]naphthalene and phenanthrene were oxidized to 14CO2 without a detectable lag under strict anaerobic conditions in sediments from San Diego Bay, San Diego, Calif., that were heavily contaminated with polycyclic aromatic hydrocarbons (PAHs) but not in less contaminated sediments. Sulfate reduction was necessary for PAH oxidation. These results suggest that the self-purification capacity of PAH-contaminated sulfate-reducing environments may be greater than previously recognized.

  4. Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Roux, María Victoria; Temprado, Manuel; Chickos, James S.; Nagano, Yatsuhisa

    2008-12-01

    Experimental thermochemical properties of benzene, toluene, and 63 polycyclic aromatic hydrocarbons, published within the period 1878-2008 (over 350 references), are reported. Available experimental data for the enthalpies of combustion used to calculate enthalpies of formation in the condensed state, combined with sublimation, vaporization, and fusion enthalpies, are critically evaluated. Whenever possible, recommended values for these thermochemical properties and for the enthalpies of formation in the gas state at T =298.15K are provided.

  5. Polycyclic aromatic hydrocarbons in cryogenic peat plateaus of northeastern Europe

    NASA Astrophysics Data System (ADS)

    Pastukhov, A. V.; Kaverin, D. A.; Gabov, D. N.

    2017-07-01

    The qualitative and quantitative composition of 14 polycyclic aromatic hydrocarbons (PAHs) in peat plateaus at the southern boundary of the permafrost zone in northeastern Europe, where degradation of permafrost occurs because of climate warming, has been studied by high-performance liquid chromatography in gradient mode. PAH concentrations vary from 150 to 3700 ng/g with their average content of about 1500 ± 1000 ng/g. The variation of data is primarily due to the large contribution of heavy PAHs.

  6. Microbial degradation of petrochemical waste-polycyclic aromatic hydrocarbons.

    PubMed

    Fulekar, M H

    2017-01-01

    Petrochemical industry is one of the fastest growing industries. This industry has immense importance in the growth of economy and manufacture of large varieties of chemicals. The petrochemical industry is a hazardous group of industry generating hazardous waste containing organic and inorganic compounds. In spite of the present treatment process, the hazardous waste compounds are found untreated to the acceptable level and found discharged at soil-water environment resulting into the persistent organic-inorganic pollutant into the environment. The bioremediation will be the innovative techniques to remove the persistent pollutants in the environment. Petrochemical contaminated site was found to be a rich source of microbial consortium degrading polycyclic aromatic hydrocarbons. Indigenous microbial consortiums were identified and used for bioremediation of polycyclic aromatic hydrocarbons (naphthalene and anthracene) at the concentrations of 250, 500, and 750 ppm. The potential microorganism was also identified for naphthalene and anthracene, and their bioremediation was studied at varying concentrations. The bioremediation with consortium was found to be comparatively more effective than the potential microorganism used for bioremediation of each compound. Pseudomonas aeruginosa a potential organism was identified by 16S rRNA and further studied for the gene responsible for the PAH compounds. Indigenous microorganism as a consortium has been found effective and efficient source for remediation of organic compound-Polycyclic aromatic hydrocarbon and this will also be applicable to remediate the toxic compounds to clean up the environment.

  7. QSARs for aromatic hydrocarbons at several trophic levels.

    PubMed

    Di Marzio, Walter; Saenz, Maria Elena

    2006-04-01

    Quantitative structure-activity relationships (QSARs) with aromatic hydrocarbons were obtained. Biological response was measured by acute toxicity of several aquatic trophic levels. The chemicals assayed were benzene, toluene, ethylbenzene, o-xylene, m-xylene, p-xylene, isopropylbenzene, n-propylbenzene, and butylbenzene. Acute toxicity tests were carried out with Scenedesmus quadricauda, as representative of primary producers; Daphnia spinulata, a zooplanctonic cladoceran; Hyalella curvispina, a benthic macroinvertebrate; and Bryconamericus iheringii, an omnivorous native fish. The EC50 or LC50 was calculated from analytical determinations of aromatic hydrocarbons. Nonlinear regression analysis between the logarithm of the octanol-water partition coefficient (log Kow) of each compounds and the toxicity end points was performed. QSARs were positively related to increases in log Kow at all trophic levels. Intertaxonomic differences were found in comparisons of algae with animals and of invertebrates with vertebrates. We observed that these differences were not significant with a log Kow higher than 3 for all organisms. Aromatic hydrocarbons with log Kow values of less than 3 showed different toxicity responses, with algae more resistant than fish and invertebrates. We concluded that this was a result of the narcotic mode of action related to liposolubility and the ability of the compound to reach its target site in the cell. The bioconcentration factor (BCF) achieved to start nonpolar narcosis fell almost 1 order of magnitude below the BCF expected from the log Kow. Predicted critical body residues for nonpolar narcosis ranged between 2 and 1 mM. Copyright 2006 Wiley Periodicals, Inc.

  8. MODELING GALACTIC EXTINCTION WITH DUST AND 'REAL' POLYCYCLIC AROMATIC HYDROCARBONS

    SciTech Connect

    Mulas, Giacomo; Casu, Silvia; Cecchi-Pestellini, Cesare; Zonca, Alberto E-mail: silvia@oa-cagliari.inaf.it E-mail: azonca@oa-cagliari.inaf.it

    2013-07-01

    We investigate the remarkable apparent variety of galactic extinction curves by modeling extinction profiles with core-mantle grains and a collection of single polycyclic aromatic hydrocarbons. Our aim is to translate a synthetic description of dust into physically well-grounded building blocks through the analysis of a statistically relevant sample of different extinction curves. All different flavors of observed extinction curves, ranging from the average galactic extinction curve to virtually 'bumpless' profiles, can be described by the present model. We prove that a mixture of a relatively small number (54 species in 4 charge states each) of polycyclic aromatic hydrocarbons can reproduce the features of the extinction curve in the ultraviolet, dismissing an old objection to the contribution of polycyclic aromatic hydrocarbons to the interstellar extinction curve. Despite the large number of free parameters (at most the 54 Multiplication-Sign 4 column densities of each species in each ionization state included in the molecular ensemble plus the 9 parameters defining the physical properties of classical particles), we can strongly constrain some physically relevant properties such as the total number of C atoms in all species and the mean charge of the mixture. Such properties are found to be largely independent of the adopted dust model whose variation provides effects that are orthogonal to those brought about by the molecular component. Finally, the fitting procedure, together with some physical sense, suggests (but does not require) the presence of an additional component of chemically different very small carbonaceous grains.

  9. The distribution of aromatic hydrocarbons in western Lake Erie

    SciTech Connect

    Metcalfe, C.D.; Metcalfe, T.L.; Koenig, B.G.; Haffner, G.D.

    1995-12-31

    In order to determine whether biota in western Lake Erie are exposed to elevated concentrations of aromatic hydrocarbons, the authors collected biota along a corridor extending from Peche Island in the Detroit River to Pelee Island in western Lake Erie and determined concentrations of polynuclear aromatic hydrocarbons (PAHs) in zebra mussels, and levels of fluorescent aromatic compounds (FACs) in the bile of freshwater drum and gizzard shad. In addition, they deployed semi-permeable membrane devices (SPMDs) at various locations along this corridor to monitor for PAHs in water. PAHs were elevated in SPMDs and zebra mussels from the Detroit River, and PAH concentrations declined from west to east in Lake Erie. There were elevated levels of bile FACs in drum and gizzard shad from highly contaminated regions of the Detroit River. These data are consistent with the Detroit River being a significant source of PAH contamination in western Lake Erie. Since the ratios of concentrations of PAHs and PCBs in zebra mussels did not vary throughout the study area, it appears that both classes of aromatic contaminants are distributed by similar mechanisms throughout western Lake Erie.

  10. Biodegradation for polynuclear aromatic hydrocarbons in the environment

    SciTech Connect

    Prince, R.C.; Brake, E.N.; Rothenburger, S.J.

    1996-10-01

    Bioremediation promises to be a cost-effective remediation option for hydrocarbon contaminated soils and sediments, but much remains to be determined about the molecular fate of specific molecules in spilled oil and refined products. We have examined the biodegradation of polynuclear aromatic hydrocarbons with two to five rings, in aqueous flask systems, and in soils where the hydrocarbons have been present for many years. We have used consortia of indigenous organisms, and have attempted to use optimal nutrient strategies to stimulate microbial growth. We find that all the alkylated forms of naphthalene with 0-4 methyl groups, and of phenanthrene and dibenzothiophene with 0-3 methyl groups are biodegradable, and that parent compounds such as naphthalene, phenanthrene, anthracene, dibenzothiophene, benz[a]anthracene, pyrene, chrysene and benz[a]anthracene are all degradable under conditions that mimic field application of nutrient-assisted bioremediation.

  11. Synergism in the desorption of polycyclic aromatic hydrocarbons from soil models by mixed surfactant solutions.

    PubMed

    Sales, Pablo S; Fernández, Mariana A

    2016-05-01

    This study investigates the effect of a mixed surfactant system on the desorption of polycyclic aromatic hydrocarbons (PAHs) from soil model systems. The interaction of a non-ionic surfactant, Tween 80, and an anionic one, sodium laurate, forming mixed micelles, produces several beneficial effects, including reduction of adsorption onto solid of the non-ionic surfactant, decrease in the precipitation of the fatty acid salt, and synergism to solubilize PAHs from solids compared with individual surfactants.

  12. Air-water interface equilibrium partitioning coefficients of aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Cheng, Wen-Hsi; Chu, Fu-Sui; Liou, Jia-Jiunn

    The single equilibration technique was used to determine the equilibrium partitioning coefficients ( pc) of an air-water interface for target aromatic volatile organic compounds (VOCs), including benzene, toluene and ethylbenzene. The tested liquid concentrations ( CL) of VOC ranged from 0.5 to 20 mg/l, and the temperatures ( Tw) of the solutions were 300, 305, 310 and 315 K, respectively. The pc values were calculated using the gaseous concentrations ( Cg*) of aromatic hydrocarbons in equilibrium with the aqueous phase and the formula pc=( Cg*/ CL). The heats of VOC of liquid and gaseous phase transfer (Δ Htr) in pure water, and the highly linear regression relationship (with squared correlation coefficients, R2, from 0.900 to 0.999) between ( ln C g*) and (1/ Tw) are also evaluated. Experimental results indicated that the pc values of the target VOC components increase with Tw but, in contrast, are not significantly affected by CL in pure water. However, pc of more soluble compounds, like iso-propanol and methyl ethyl ketone, have been evaluated to be significant with CL in the earlier investigation. Finally, the co-solute effect on pc is also evaluated in this work, as determining pc of the aromatic hydrocarbons by using aqueous ethanol (in a volume ration of 1-15%) as solutes.

  13. Thermodiffusion of polycyclic aromatic hydrocarbons in binary mixtures

    NASA Astrophysics Data System (ADS)

    Hashmi, Sara M.; Senthilnathan, Sid; Firoozabadi, Abbas

    2016-11-01

    Thermodiffusion in liquid mixtures may explain some counter-intuitive but naturally occurring phenomena such as hydrocarbon reservoirs with heavier component(s) stratified on top of lighter ones. However, beyond benchmark systems, systematic measurements of thermodiffusion in binary organic mixtures are lacking. We use an optical beam deflection apparatus to simultaneously probe Fickian and thermal diffusion in binary solution mixtures of polycyclic aromatic hydrocarbons dissolved in alkanes, and measure both Fickian diffusion D and the Soret coefficient ST, and then obtain the thermodiffusion coefficient DT. In a series of nine binary mixtures, we vary both the size of the aromatic compound from two to four rings, as well as the length of the alkane chain from 6 to 16 carbons. To probe the effect of increasing ring size, we include a 6-ringed aromatic compound, coronene, and toluene as a solvent, due to the insolubility of coronene in alkanes. Our results suggest that Fickian diffusion increases with the inverse of solvent viscosity and also with decreasing molecular weight of the solute. While both of these trends match our intuition, the behavior of ST and DT is more complicated. We find that ST and DT increase with the solute molecular weight when the solvent is held fixed and that the impact of solute ring size is higher in shorter chain alkane solvents.

  14. Lymphocyte aromatic hydrocarbon responsiveness in acute leukemia of childhood

    SciTech Connect

    Blumer, J.L.; Dunn, R.; Esterhay, M.D.; Yamashita, T.S.; Gross, S.

    1981-12-01

    Aryl hydrocarbon hydroxylase (AHH) activity and inducibility were examined in mitogen-stimulated cultured lymphocytes from children with acute leukemia in remission, with nonleukemic malignancies, and with no family or personal history of malignant disease. Neither morphological differences nor differences in mitogen responsivelness were observed among the three sources of cells studied. Levels of constitutive and dibenzanthracene-induced AHH activity were found to be similar among the three groups by analysis of variance. However, when results were analyzed in terms of inducibility ratios, it was found that cells from leukemic children were significantly less inducible (p < 0.005) than cells from unaffected children or children with nonleukemic malignancies. The reason for this difference became apparent when statistical criteria were employed for the phenotypic separation of individuals who were highly aromatic hydrocarbon responsive and minimally responsive. A significantly larger proportion (p < 0.001) of leukemic children than unaffected children or children with nonleukemic malignancy were found to be minimally aromatic hydrocarbon responsive. Moreover, in patients with acute lymphoblastic leukemia relapsing while on therapy, longer durations of the first remission were correlated (r = 0.63, p < 0.05) with the highly inducible AHH phenotype.

  15. Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia.

    PubMed

    Kakimoto, Kensaku; Nagayoshi, Haruna; Konishi, Yoshimasa; Kajimura, Keiji; Ohura, Takeshi; Hayakawa, Kazuichi; Toriba, Akira

    2014-09-01

    This study estimates atmospheric concentrations of chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and polycyclic aromatic hydrocarbons (PAHs) in East Asia using a Gas Chromatograph with High Resolution Mass Spectrometer (GC-HRMS). ClPAHs are ubiquitously generated from PAHs through substitution, and some ClPAHs show higher aryl hydrocarbon receptor (AhR)-mediated activities than their parent PAHs. Atmospheric particles were collected using a high-volume air sampler equipped with a quartz-fiber filter. We determined the ClPAH concentrations of atmospheric particles collected in Japan (Sapporo, Sagamihara, Kanazawa, and Kitakyushu), Korea (Busan), and China (Beijing). The concentrations of ClPAHs were highest in the winter Beijing sample, where the total mean concentration was approximately 15-70 times higher than in the winter samples from Japan and Korea. The concentrations of Σ19ClPAHs and Σ9PAHs were significantly correlated in the Kanazawa and the Busan samples. This indicates that within those cities ClPAHs and PAHs share the same origin, implying direct chlorination of parent PAHs. Toxic equivalent concentrations (TEQs) of the total ClPAHs and PAHs were lowest in Kanazawa in the summer, reaching 1.18 and 2610fg-TEQm(-3) respectively, and highest in Beijing in the winter, reaching 627 and 4240000fg-TEQm(-3) respectively.

  16. Composition, distribution, and characterization of polycyclic aromatic hydrocarbons in soil in Linfen, China

    SciTech Connect

    Fu, S.; Cheng, H.X.; Liu, Y.H.; Xia, X.J.; Xu, X.B.

    2009-02-15

    A total of 10 surface soil samples representing the entire area of Linfen City were collected and analyzed for the presence of 16 polycyclic aromatic hydrocarbons. The total polycyclic aromatic hydrocarbon concentration ranged from 1.1 to 63.7 {mu} g g{sup -1}. Analysis of the sources of contamination revealed that polycyclic aromatic hydrocarbons in the soil were derived from combustion sources. Specifically, the primary source of polycyclic aromatic hydrocarbons was coal combustion, but the samples were also effected to varying degrees by traffic emissions. Furthermore, increased levels of contamination were observed in northeast Linfen due to the distribution of industrial plants.

  17. A DFT-based toxicity QSAR study of aromatic hydrocarbons to Vibrio fischeri: Consideration of aqueous freely dissolved concentration.

    PubMed

    Wang, Ying; Yang, Xianhai; Wang, Juying; Cong, Yi; Mu, Jingli; Jin, Fei

    2016-05-05

    In the present study, quantitative structure-activity relationship (QSAR) techniques based on toxicity mechanism and density functional theory (DFT) descriptors were adopted to develop predictive models for the toxicity of alkylated and parent aromatic hydrocarbons to Vibrio fischeri. The acute toxicity data of 17 aromatic hydrocarbons from both literature and our experimental results were used to construct QSAR models by partial least squares (PLS) analysis. With consideration of the toxicity process, the partition of aromatic hydrocarbons between water phase and lipid phase and their interaction with the target biomolecule, the optimal QSAR model was obtained by introducing aqueous freely dissolved concentration. The high statistical values of R(2) (0.956) and Q(CUM)(2) (0.942) indicated that the model has good goodness-of-fit, robustness and internal predictive power. The average molecular polarizability (α) and several selected thermodynamic parameters reflecting the intermolecular interactions played important roles in the partition of aromatic hydrocarbons between the water phase and biomembrane. Energy of the highest occupied molecular orbital (E(HOMO)) was the most influential descriptor which dominated the toxicity of aromatic hydrocarbons through the electron-transfer reaction with biomolecules. The results demonstrated that the adoption of freely dissolved concentration instead of nominal concentration was a beneficial attempt for toxicity QSAR modeling of hydrophobic organic chemicals.

  18. The formation of Polycyclic Aromatic Hydrocarbons in evolved circumstellar environments

    NASA Astrophysics Data System (ADS)

    Cherchneff, I.

    2011-03-01

    The formation of Polycyclic Aromatic Hydrocarbons in the circumstellar outflows of evolved stars is reviewed, with an emphasis on carbon stars on the Asymptotic Giant Branch. Evidence for PAHs present in their winds is provided by meteoritic studies and recent observations of the Unidentified Infrared bands. We detail the chemical processes leading to the closure of the first aromatic ring as well as the growth mechanisms leading to amorphous carbon grains. Existing studies on PAH formation in evolved stellar envelopes are reviewed and new results for the modelling of the inner wind of the archetype carbon star IRC+10216 are presented. Benzene, C6H6, forms close to the star, as well as water, H2O, as a result of non-equilibrium chemistry induced by the periodic passage of shocks. The growth process of aromatic rings may thus resemble that active in sooting flames due to the presence of radicals like hydroxyl, OH. Finally, we discuss possible formation processes for PAHs and aromatic compounds in the hydrogen-rich R CrB star, V854 Cen, and their implication for the carriers of the Red Emission and the Diffuse Interstellar Bands.

  19. The high-temperature oxidation of aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Brezinsky, K.

    1986-01-01

    Chemical mechanisms of the atmospheric pressure, high-temperature (875-1500 K) gas-phase oxidation of benzene, toluene, ethylbenzene, and propylbenzene are described and discussed. Oxidation trends evident from turbulent flow reactor experiments serve as the basis for the mechanisms of the oxidation of benzene and alkylated aromatics. The potential effects of very high temperatures and pressures on the chemistry of oxidation of aromatics are described. The oxidation of benzene and phenyl radical has been found to proceed in a stepwise C6-C5-C4 sequence. Species profiles obtained from flow-reactor experiments suggest that the oxidation of benzene and phenyl radical follows the generalized route via phenoxy, cyclopentadienyl and butadienyl radical. The oxidation of the C4 species branches into multiple pathways that yield copious amounts of ethylene and acetylene. Certain major trends are evident: the alkylated aromatics on initial attack either form styrene, benzyl radical or benzene. The styrene reacts further to produce a benzyl radical or benzene. The oxidation of an alkylated aromatic hydrocarbon appears eventually to reduce to the oxidation of either phenyl radical or benzene.

  20. Prenatal Exposure to Polycyclic Aromatic Hydrocarbons /Aromatics, BDNF and Child Development

    PubMed Central

    Perera, Frederica; Phillips, David H.; Wang, Ya; Roen, Emily; Herbstman, Julie; Rauh, Virginia; Wang, Shuang; Tang, Deliang

    2015-01-01

    Objectives Within a New York City (NYC) birth cohort, we assessed the associations between polycyclic aromatic hydrocarbon (PAH) and other aromatic DNA adducts and brain derived neurotrophic factor (BDNF) concentrations in umbilical cord blood, and neurodevelopment at age 2 years and whether BDNF is a mediator of the associations between PAH/aromatic-DNA adducts and neurodevelopment. Methods PAH/aromatic-DNA adduct concentrations in cord blood were measured in 505 children born to nonsmoking African-American and Dominican women residing in NYC, and a subset was assessed for neurodevelopment at 2 years using the Bayley Scales of Infant Development Mental Development Index (MDI). A spectrum of PAH/aromatic-DNA adducts was measured using the 32P-postlabeling assay; DNA adducts formed by benzo[a]pyrene (B[a]P), a representative PAH, were measured by High Performance Liquid Chromatography (HPLC)/fluorescence. BDNF mature protein in cord blood plasma was quantified by an ELISA. Multivariate regression analysis, adjusting for potential confounders, was conducted. Results PAH/aromatic-DNA adduct concentration measured by postlabeling was inversely associated with BDNF concentration (p=0.02) and with MDI scores at 2 years (p=0.04). BDNF level was positively associated with MDI scores (p=0.003). Restricting to subjects having all three measures (PAH/aromatic-DNA adducts by postlabeling, MDI, and BDNF), results were similar but attenuated (p=0.13, p=0.05, p=0.01, respectively). Associations between B[a]P-DNA adducts and BDNF and B[a]P-DNA adducts and MDI at age 2 years were not significant. At age 3 years, the positive association of BDNF with MDI was not observed. Conclusions The results at age 2 suggest that prenatal exposure to a spectrum of PAH/aromatic pollutants may adversely affect early neurodevelopment, in part by reducing BDNF levels during the fetal period. However, the same relationship was not seen at age 3. PMID:26301740

  1. CHEMISTRY OF OXIDATION OF POLYCYCLIC AROMATIC HYDROCARBONS BY SOIL PSEUDOMONADS

    PubMed Central

    Rogoff, Martin H.

    1962-01-01

    Rogoff, Martin H. (U.S. Bureau of Mines, Pittsburgh, Pa.). Oxidation of polycyclic aromatic hydrocarbons by soil pseudomonads. J. Bacteriol. 83:998–1004. 1962.—Substitution of phenanthrene by a methyl group at the 9-carbon blocks oxidation of the compound by a resting-cell suspension of a phenanthrene-grown soil pseudomonad. When 2-methylphenanthrene is provided, the oxidation rate is considerably higher; 3-methylphenanthrene is oxidized at a rate intermediate between the other two, even though the methyl group is attached to a carbon directly involved in ring splitting. Cells grown on naphthalene or anthracene oxidize phenanthrene at a much lower rate than cells grown with phenanthrene or 2-methylnaphthalene as the source of carbon. Naphthalene-grown cells also absorb less phenanthrene from aqueous solution than do their phenanthrene-grown counterparts. The data are in keeping with the hypothesis that polynuclear aromatic hydrocarbons attach to the relevant bacterial enzymes at carbon-carbon bonds of high electron density (K regions; localized double bonds), and that the ring-splitting reactions then occur at other bonds on the substrate molecule. The actual bond that undergoes fission is determined by the electronic and steric configurations of the enzyme-substrate complex. When linearly arranged aromatic compounds such as naphthalene or anthracene are attacked, attachment to an enzyme and ring splitting may take place on the same ring; angular aromatic compounds such as phenanthrene afford attachment to an enzyme at a bond in a ring other than the one containing the ring-splitting site. PMID:14493381

  2. Polycyclic aromatic hydrocarbons - Primitive pigment systems in the prebiotic environment

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.

    1992-01-01

    The chemical evolution of meteoritic organics in the primitive earth is examined experimentally with attention given to the photochemical effects of hydrocarbon/water mixtures. Also addressed are the generation of amphiphilic products by photochemical reactions and the transduction of light energy into potentially useful forms. Polycyclic aromatic hydrocarbons (PAHs) absorb light and exist in carbonaceous chondrites; PAHs are therefore examined as primitive pigments by means of salt solutions with pyrene, fluoranthene, and pyrene derivatives with hexadecane. The hexadecane undergoes photochemical oxidation and yields long-chain amphiphiles with oxygen supplied by water, and acid pH shifts also occur. PAHs are also tested in lipid bilayer membranes to examine light-energy transduction. Protons are found to accumulate within the membrane-bounded volume to form proton gradients, and this reaction is theorized to be a good model of primitive photochemical reactions that related to the transduction of light energy into useable forms.

  3. Polycyclic aromatic hydrocarbons - Primitive pigment systems in the prebiotic environment

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.

    1992-01-01

    The chemical evolution of meteoritic organics in the primitive earth is examined experimentally with attention given to the photochemical effects of hydrocarbon/water mixtures. Also addressed are the generation of amphiphilic products by photochemical reactions and the transduction of light energy into potentially useful forms. Polycyclic aromatic hydrocarbons (PAHs) absorb light and exist in carbonaceous chondrites; PAHs are therefore examined as primitive pigments by means of salt solutions with pyrene, fluoranthene, and pyrene derivatives with hexadecane. The hexadecane undergoes photochemical oxidation and yields long-chain amphiphiles with oxygen supplied by water, and acid pH shifts also occur. PAHs are also tested in lipid bilayer membranes to examine light-energy transduction. Protons are found to accumulate within the membrane-bounded volume to form proton gradients, and this reaction is theorized to be a good model of primitive photochemical reactions that related to the transduction of light energy into useable forms.

  4. Polycyclic aromatic hydrocarbons in dust emitted from stoker - fired boilers.

    PubMed

    Kozielska, B; Konieczynski, J

    2007-08-01

    In the present paper, results of investigations of Polycyclic Aromatic Hydrocarbons (PAHs) in granulometric fractions of dust, emitted from 9 hard coal fired mechanic stoker boilers, are presented. Exhaust gases were sampled with a Mark III dust sampler. Extracts derived from the dust fractions were analysed by using Gas Chromatography (GC). The 16 PAHs, total PAHs and equivalent benzo(a)pyrene (B(a)P) were determined. Results of measurements averaged over all examined boilers are presented as concentrations, contents and contributions of investigated hydrocarbons to particular standardised fractions of dust classified according to particle sizes. Distributions of PAHs and their profiles in the dust fractions were determined. The emission factors for B(a)P and Toxic Equivalent B(a)P (TE B(a)P) were determined and proved to be several times higher than for pulverised fuel fired boilers. In the emitted dust, 73% of the total PAHs most hazardous to human health are comprised in PM1.

  5. Polycyclic aromatic hydrocarbons residues in sandstorm depositions in Beijing, China

    SciTech Connect

    Fu, S.; Li, K.; Xia, X.J.; Xu, X.B.

    2009-02-15

    This study was conducted to determine the concentration of 16 polycyclic aromatic hydrocarbons (PAHs) in sandstorm depositions in Beijing, China. The PAH concentrations in 13 samples collected in Beijing ranged from 0.18 to 3.52 {mu} g g{sup -1}. Analysis of the sources of contamination revealed that the PAHs were derived from a coal combustion source, although various effects of traffic emissions were also observed. Furthermore, the PAH levels in Beijing tended to be higher in the southeast. Finally, the Nemerow composite index revealed that the degree of pollution in the sandstorm depositions varied widely among sampling sites.

  6. Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils

    PubMed Central

    Lau, E. V.; Gan, S.; Ng, H. K.

    2010-01-01

    This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs) in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction. PMID:20396670

  7. Polycyclic aromatic hydrocarbons, tobacco smoke, and epigenetic remodeling in asthma

    PubMed Central

    Klingbeil, E. C.; Hew, K. M.; Nygaard, U. C.; Nadeau, K. C.

    2014-01-01

    Environmental determinants including aerosolized pollutants such as polycyclic aromatic hydrocarbons (PAHs) and tobacco smoke have been associated with exacerbation and increased incidence of asthma. The influence of aerosolized pollutants on the development of immune dysfunction in asthmatics has been suggested to be mediated through epigenetic remodeling. Genome accessibility and transcription are regulated primarily through DNA methylation, histone modification, and microRNA transcript silencing. Epigenetic remodeling has been shown in studies to be associated with Th2 polarization and associated cytokine and chemokine regulation in the development of asthma. This review will present evidence for the contribution of the aerosolized pollutants PAH and environmental tobacco smoke to epigenetic remodeling in asthma. PMID:24760221

  8. Monitoring of nitropolycyclic aromatic hydrocarbons in food using gas chromatography.

    PubMed

    Schlemitz, S; Pfannhauser, W

    1996-07-01

    Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) were determined in different kinds of food. The investigation of food matrices necessitates the development of appropriate analytical procedures for sensitive monitoring and determination of these compounds. The analysis of the nitro-PAHs was carried out by GC/MSD, GC plus mass spectrometry, and GC/NPD (nitrogen-phosphorus detection) GC plus nitrogen-phosphorus detection. Seven nitro-PAHs were positively identified and quantified in vegetables, smoked and grilled foods, oil, tea, coffee and spices.

  9. Occurrence of chlorinated polynuclear aromatic hydrocarbons in tap water

    SciTech Connect

    Shiraishi, H.; Pilkington, N.H.; Otsuki, A.; Fuwa, K.

    1985-07-01

    Organic compounds in tap waters were extracted by a modified continuous liquid-liquid extractor and analyzed by computerized gas chromatography/mass spectrometry using a fused silica capillary column. The results indicate the presence of monochlorinated derivatives of naphthalene, dibenzofuran, fluorene, fluorenone, phenanthrene, and fluoranthene and dichlorinated derivatives of naphthalene, phenanthrene, and fluoranthene. The parent polynuclear aromatic hydrocarbons (PAHs) and their oxygenated derivatives such as fluorenone and anthraquinone were also found. It was demonstrated that chlorinated PAHs (Cl-PAHs) were really present in tap waters at 10/sup -1/-10/sup -2/ ng/L levels.

  10. Temperature dependence of infrared bands produced by polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Colangeli, L.; Mennella, V.; Bussoletti, E.

    1992-02-01

    The behavior of IR absorption bands with temperature has been examined systematically in the laboratory for three representative polycyclic aromatic hydrocarbon molecules: coronene, chrysene, and 1-methylcoronene. A careful description of both intensity and profile measured for most of the bands is reported. A tentative interpretation of the observed variations is given in terms of extra-molecular effects produced by the anharmonicity of the vibrational energy levels as a function of temperature. These new laboratory data provide an accurate description of the optical properties for representative molecules often used to account for the so-called unidentified infrared bands emitted by astronomical sources.

  11. Surfactant-mediated Biodegradation of Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Li, Jing-Liang; Chen, Bing-Hung

    2009-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are toxic environmental pollutants that are known or suspected carcinogens or mutagens. Bioremediation has been used as a general way to eliminate them from the contaminated sites or aquifers, but their biodegradation is rather limited due to their low bioavailability because of their sparingly soluble nature. Surfactant-mediated biodegradation is a promising alternative. The presence of surfactants can increase the solubility of PAHs and hence potentially increase their bioavailability. However, inconclusive results have been reported on the effects of surfactant on the biodegradation of PAHs. In this work, surfactant-mediated biodegradation of PAHs is reviewed.

  12. Effects of co-occurring aromatic hydrocarbons on degradation of individual polycyclic aromatic hydrocarbons in marine sediment slurries

    SciTech Connect

    Bauer, J.E.; Capone, D.G.

    1988-07-01

    Rates of polycyclic aromatic hydrocarbon (PAH) degradation and mineralization were influenced by preexposure to alternate PAHs and a monoaromatic hydrocarbon at relatively high (100 ppm) concentrations in organic-rich aerobic marine sediments. Prior exposure to three PAHs and benzene resulted in enhanced (/sup 14/C)naphthalene mineralization, while (/sup 14/C)anthracene mineralization was stimulated only by benzene and anthracene preexposure. Preexposure of sediment slurries to phenanthrene stimulated the initial degradation of anthracene. Prior exposure to naphthalene stimulated the initial degradation of phenanthrene but had no effect on either the initial degradation of mineralization of anthracene. For those compounds which stimulated (/sup 14/C)anthracene of (/sup 14/C)naphthalene mineralization, longer preexposures (2 weeks) to alternative aromatic hydrocarbons resulted in an even greater stimulation response. Enrichment with individual PAHs followed by subsequent incubation with one or two PAHs showed no alteration in degradation patterns due to the simultaneous presence of PAHs. The evidence suggests that exposure of marine sediments to a particular PAH or benzene results in the enhanced ability of these sediments to subsequently degrade that PAH as well as certain other PAHs. The enhanced degradation of a particular PAH after sediments have been exposed to it may result from the selection and proliferation of specific microbial populations capable of degrading it.

  13. Effects of co-occurring aromatic hydrocarbons on degradation of individual polycyclic aromatic hydrocarbons in marine sediment slurries.

    PubMed Central

    Bauer, J E; Capone, D G

    1988-01-01

    Rates of polycyclic aromatic hydrocarbon (PAH) degradation and mineralization were influenced by preexposure to alternate PAHs and a monoaromatic hydrocarbon at relatively high (100 ppm) concentrations in organic-rich aerobic marine sediments. Prior exposure to three PAHs and benzene resulted in enhanced [14C]naphthalene mineralization, while [14C]anthracene mineralization was stimulated only by benzene and anthracene preexposure. Preexposure of sediment slurries to phenanthrene stimulated the initial degradation of anthracene. Prior exposure to naphthalene stimulated the initial degradation of phenanthrene but had no effect on either the initial degradation or mineralization of anthracene. For those compounds which stimulated [14C]anthracene or [14C]naphthalene mineralization, longer preexposures (2 weeks) to alternative aromatic hydrocarbons resulted in an even greater stimulation response. Enrichment with individual PAHs followed by subsequent incubation with one or two PAHs showed no alteration in degradation patterns due to the simultaneous presence of PAHs. The evidence suggests that exposure of marine sediments to a particular PAH or benzene results in the enhanced ability of these sediments to subsequently degrade that PAH as well as certain other PAHs. The enhanced degradation of a particular PAH after sediments have been exposed to it may result from the selection and proliferation of specific microbial populations capable of degrading it. The enhanced degradation of other PAHs after exposure to a single PAH suggests that the populations selected have either broad specificity for PAHs, common pathways of PAH degradation, or both. PMID:3415231

  14. Aromatic-Aromatic Interactions in Biological System: Structure Activity Relationships

    SciTech Connect

    Rajagopal, Appavu; Deepa, Mohan; Govindaraju, Munisamy

    2016-02-26

    While, intramolecular hydrogen bonds have attracted the greatest attention in studies of peptide conformations, the recognition that several other weakly polar interactions may be important determinants of folded structure has been growing. Burley and Petsko provided a comprehensive overview of the importance of weakly polar interactions, in shaping protein structures. The interactions between aromatic rings, which are spatially approximate, have attracted special attention. A survey of the proximal aromatic residue pairs in proteins, allowed Burley and Petsko to suggest that, “phenyl ring centroids are separated by a preferential distance of between 4.5 and 7 Å, and dihedral angles approximately 90° are most common”.

  15. Polynuclear aromatic hydrocarbons in oyster tissue around three coastal marinas

    SciTech Connect

    Marcus, J.M.; Stokes, T.P.

    1985-12-01

    Marinas present the potential for introduction of various pollutants into the surrounding waters such as coliform bacteria, primary pathogens, heavy metals, and petroleum hydrocarbons. Little data have been presented specifically addressing the effects of recreational marinas on petroleum hydrocarbon levels or, for that matter, other constituent levels in oysters near those marinas. In order to obtain such data, a comprehensive assessment of water and oyster quality around three coastal marinas was conducted by the South Carolina Department of Health and Environmental control (SCDHEC) during 1983. Polynuclear aromatic hydrocarbons (PAH) were selected as the petroleum hydrocarbon fraction of interest since they are mainly of pyrogenic origin; have been shown to be the most toxic/carcinogenic fraction of oil; have been shown to affect the respiration and heart rates of mussels; and have been shown to be linked to neoplasia in clams and proliferative disorders in mussels. C. virginica was chosen as the mollusc of interest because of its widespread distribution in the estuaries of South Carolina, its importance as an economic and recreational resource, and its suitability as a sentinel organism for monitoring coastal pollution.

  16. Modeling the charge transfer between alkali metals and polycyclic aromatic hydrocarbons using electronic structure methods.

    PubMed

    Baker, Thomas A; Head-Gordon, Martin

    2010-09-23

    The interaction of alkali metals-specifically, lithium-with polycyclic aromatic hydrocarbons (PAHs) was studied using a variety of electronic structure methods. Electron transfer from lithium to a PAH depends on the size and structure of the PAH and the electronic structure method used. In some cases, we observe an artificial transfer when using density functional theory (DFT) due to the self-interaction error, whereas Hartree-Fock underestimates the amount of charge transfer due to overlocalization. Our results have interesting implications for the validity of DFT calculations on the alkali metal-PAH interaction in Li batteries, hydrogen storage devices, and alkali-metal-doped superconductors.

  17. The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs).

    PubMed

    Pinyakong, Onruthai; Habe, Hiroshi; Omori, Toshio

    2003-02-01

    Many members of the sphingomonad genus isolated from different geological areas can degrade a wide variety of polycyclic aromatic hydrocarbons (PAHs) and related compounds. These sphingomonads such as Sphingobium yanoikuyae strain B1, Novosphingobium aromaticivorans strain F199, and Sphingobium sp. strain P2 have been found to possess a unique group of genes for aromatic degradation, which are distantly related with those in pseudomonads and other genera reported so far both in sequence homology and gene organization. Genes for aromatics degradation in these sphingomonads are complexly arranged; the genes necessary for one degradation pathway are scattered through several clusters. These aromatic catabolic gene clusters seem to be conserved among many other sphingomonads such as Sphingobium yanoikuyae strain Q1, Sphingomonas paucimobilis strain TNE12, S. paucimobilis strain EPA505, Sphingobium agrestis strain HV3, and Sphingomonas chungbukensis strain DJ77. Furthermore, some genes for naphthalenesulfonate degradation found in Sphingomonas xenophaga strain BN6 also share a high sequence homology with their homologues found in these sphingomonads. On the other hand, protocatechuic catabolic gene clusters found in fluorene-degrading Sphingomonas sp. strain LB126 appear to be more closely related with those previously found in lignin-degrading S. paucimobilis SYK-6 than the genes in this group of sphingomonads. This review summarizes the information on the distribution of these strains and relationships among their aromatic catabolic genes.

  18. Polycyclic Aromatic Hydrocarbons as Plausible Prebiotic Membrane Components

    NASA Astrophysics Data System (ADS)

    Groen, Joost; Deamer, David W.; Kros, Alexander; Ehrenfreund, Pascale

    2012-08-01

    Aromatic molecules delivered to the young Earth during the heavy bombardment phase in the early history of our solar system were likely to be among the most abundant and stable organic compounds available. The Aromatic World hypothesis suggests that aromatic molecules might function as container elements, energy transduction elements and templating genetic components for early life forms. To investigate the possible role of aromatic molecules as container elements, we incorporated different polycyclic aromatic hydrocarbons (PAH) in the membranes of fatty acid vesicles. The goal was to determine whether PAH could function as a stabilizing agent, similar to the role that cholesterol plays in membranes today. We studied vesicle size distribution, critical vesicle concentration and permeability of the bilayers using C6-C10 fatty acids mixed with amphiphilic PAH derivatives such as 1-hydroxypyrene, 9-anthracene carboxylic acid and 1,4 chrysene quinone. Dynamic Light Scattering (DLS) spectroscopy was used to measure the size distribution of vesicles and incorporation of PAH species was established by phase-contrast and epifluorescence microscopy. We employed conductimetric titration to determine the minimal concentration at which fatty acids could form stable vesicles in the presence of PAHs. We found that oxidized PAH derivatives can be incorporated into decanoic acid (DA) vesicle bilayers in mole ratios up to 1:10 (PAH:DA). Vesicle size distribution and critical vesicle concentration were largely unaffected by PAH incorporation, but 1-hydroxypyrene and 9-anthracene carboxylic acid lowered the permeability of fatty acid bilayers to small solutes up to 4-fold. These data represent the first indication of a cholesterol-like stabilizing effect of oxidized PAH derivatives in a simulated prebiotic membrane.

  19. Polycyclic aromatic hydrocarbons as plausible prebiotic membrane components.

    PubMed

    Groen, Joost; Deamer, David W; Kros, Alexander; Ehrenfreund, Pascale

    2012-08-01

    Aromatic molecules delivered to the young Earth during the heavy bombardment phase in the early history of our solar system were likely to be among the most abundant and stable organic compounds available. The Aromatic World hypothesis suggests that aromatic molecules might function as container elements, energy transduction elements and templating genetic components for early life forms. To investigate the possible role of aromatic molecules as container elements, we incorporated different polycyclic aromatic hydrocarbons (PAH) in the membranes of fatty acid vesicles. The goal was to determine whether PAH could function as a stabilizing agent, similar to the role that cholesterol plays in membranes today. We studied vesicle size distribution, critical vesicle concentration and permeability of the bilayers using C(6)-C(10) fatty acids mixed with amphiphilic PAH derivatives such as 1-hydroxypyrene, 9-anthracene carboxylic acid and 1,4 chrysene quinone. Dynamic Light Scattering (DLS) spectroscopy was used to measure the size distribution of vesicles and incorporation of PAH species was established by phase-contrast and epifluorescence microscopy. We employed conductimetric titration to determine the minimal concentration at which fatty acids could form stable vesicles in the presence of PAHs. We found that oxidized PAH derivatives can be incorporated into decanoic acid (DA) vesicle bilayers in mole ratios up to 1:10 (PAH:DA). Vesicle size distribution and critical vesicle concentration were largely unaffected by PAH incorporation, but 1-hydroxypyrene and 9-anthracene carboxylic acid lowered the permeability of fatty acid bilayers to small solutes up to 4-fold. These data represent the first indication of a cholesterol-like stabilizing effect of oxidized PAH derivatives in a simulated prebiotic membrane.

  20. Specificity of interaction between carcinogenic polynuclear aromatic hydrocarbons and nuclear proteins: widespread occurrence of a restricted pattern of histone-binding in intact cells

    SciTech Connect

    MacLeod, M.C.; Pelling, J.C.; Slaga, T.J.; Nikbakht-Noghrei, P.A.; Mansfield, B.K.; Selkirk, J.K.

    1982-01-01

    Metabolic activation of benzo(a)pyrene (B(a)P) produces a number of potentially reactive metabolites. The endproducts of one metabolic pathway, 7,8-dihydroxy-9,10-oxy-7,8,9,10-tetrahydro-B(a)P (BPDE) are responsible for essentially all DNA adduct formation in animal cells treated with B(a)P, and a particular stereoisomer, designated (+)-anti-BPDE is thought to be the ultimate carcinogenic derivative of B(a)P. In hamster embryo cell nuclei treated with (+)-anti-BPDE, two of the histones of the nucleosomal core, H3 and H2A, are covalently modified, while the remaining core histones, H4 and H2B, are essentially unmodified. All four purified core histones, however, serve as targets. 7,12-dimethylbenz(a)anthracene and 3-methylcholanthrene show the same pattern of histone binding in hamster embryo cells. Treatment of mouse embryo cells with (/sup 3/H)-BPDE results in covalent binding of the hydrocarbon to histones H3 and H2A among the many cellular targets, while histones H2B and H4 are not bound. Similar binding patterns are seen in mouse embryo cells, a permanent murine, fibroblastic cell line, and a human mammary epithelial cell line, T47D, treated with (/sup 3/H)B(a)P. Again, the histones are unevenly labeled, displaying the H3 and H2A pattern. Histone-binding in the human cells may also be mediated by BPDE. Similar BPDE binding patterns were observed in other murine and human cell lines and in primary cultures of murine epidermal epithelial cells. The restriction of histone H2B and H4 binding appears to be general when intact cultured cells are studied. This specificity was not observed in a mixed reconstituted system in which rat liver microsomes were used to activate B(a)P. This finding reinforces reservations concerning the use of microsomal systems to probe the interactions of carcinogens with macromolecules and the relationships of adduct formation with the processes of carcinogenesis. (ERB)

  1. Polycyclic aromatic hydrocarbons (PAHs) in livers of California sea otters.

    PubMed

    Kannan, Kurunthachalam; Perrotta, Emily

    2008-03-01

    Concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were measured in livers of 81 adult female sea otters collected along the California coast in 1992-2002. Concentrations of summation operatorPAHs in livers of sea otters were in the range of 588-17400ng/g lipid wt (mean: 3880ng/g, lipid wt). On a wet weight basis, the concentrations ranged from 17 to 1430ng/g (mean: 146ng/g). Overall, di- and tri-cyclic aromatic hydrocarbons, namely, naphthalene, fluorene, phenanthrene/anthracene, and acenaphthylene, were the predominant compounds found in the livers. Although petroleum-related sources appear to be the major contributors to PAH exposure in sea otters, exposure sources varied by geographical sub-regions. Dibenz[a,h]anthracene was found to comprise a significant proportion of the summation operatorPAH concentrations in sea otters from the northern sub-region of the study area. No significant difference existed in the concentrations of summation operatorPAHs among sea otters that died from infectious diseases, emaciation, and noninfectious causes. Concentrations of summation operatorPAHs in livers of sea otters decreased significantly from 1992 to 2002. Because of the rapid metabolism of PAHs in marine mammals such as sea otters, further studies examining the association of PAHs with health effects should determine hydroxylated metabolites in livers.

  2. Consensus sediment quality guidelines for polycyclic aromatic hydrocarbon mixtures

    SciTech Connect

    Swartz, R.C.

    1999-04-01

    Sediment quality guidelines (SQGs) for polycyclic aromatic hydrocarbons (PAHs) have been derived from a variety of laboratory, field, and theoretical foundations. They include the screening level concentration, effects ranges-low and -median, equilibrium partitioning concentrations, apparent effects threshold, {Sigma}PAH model, and threshold and probable effects levels. The resolution of controversial differences among the PAH SQGs lies in an understanding of the effects of mixtures. Polycyclic aromatic hydrocarbons virtually always occur in field-collected sediment as a complex mixture of covarying compounds. When expressed as a mixture concentration, that is, total PAH (TPAH), the guidelines form three clusters that were intended in their original derivations to represent threshold (TEC = 290 {micro}g/g organic carbon [OC]), median (MEC = 1,800 {micro}g/g OC), and extreme (EEC = 10,000 {micro}g/g OC) effects concentrations. The TEC/MEC/EEC consensus guidelines provide a unifying synthesis of other SQGs, reflect causal rather than correlative effects, account for mixtures, and predict sediment toxicity and benthic community perturbations at sites of PAH contamination. The TEC offers the most useful SQG because PAH mixtures are unlikely to cause adverse effects on benthic ecosystems below the TEC.

  3. Air-Liquid Interfaces: I. Alcohols and Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Allen, Heather; van Loon, Lisa; Hommel, Elizabeth

    2004-03-01

    Alcohols and aromatic hydrocarbons solutions were investigated using broad bandwidth sum frequency generation (BBSFG), a highly surface-selective spectroscopy, and IR and Raman spectroscopies. For aqueous methanol solutions the surface hydrogen bonding environment is quite different relative to the bulk environment. The surface BBSFG studies suggest that methanol is a more efficient hydrogen bonding acceptor when the methanol molecule resides in the interfacial region. Methanol reaction with sulfuric acid was also studied to quantify and understand the formation of mono methyl sulfonate relative to the dimethyl sulfonate. We have also investigated several neat and water-saturated liquid aromatic hydrocarbon surfaces. The data indicate that benzene and similar molecules are tilted at their air-liquid interface. With the introduction of relatively few water molecules into a 1-methyl naphthalene (1-MN) liquid (1 water: 336 1-MN) a rearrangement of the surface molecules is induced, leading to an increased number density of the methyl groups arranged such that more methyl groups are oriented in the same direction into the air phase at the air-liquid 1-MN interface.

  4. Radiation and chemical studies of carcinogens, polycyclic aromatic hydrocarbons

    SciTech Connect

    Chen, Chiachieh.

    1989-01-01

    Radiation and polycyclic aromatic hydrocarbons (PAH's) are environmental pollutants. 3MC effectively neutralized the lethality of C3H mouse 10T1/2 cells resulting from B(a)P or DMBA. PAH binding to macromolecules increased linearly with exposure, but DNA-adducts saturated with exposure. 3MC or {alpha}NF appreciably reduced the formation of DNA adducts due to B(a)P or DMBA. The reductions in DNA-adduct formation did not result from a reduction in the induction of AHH. By using DNA adducts as chemical dose, and plotting the DMBA survival curve as a function of DMBA-DNA adducts, the curve was an exponential curve. A similar application with B(a)P-DNA adduct showed the survival curve as a shoulder followed by an exponential region. When 10T1/2 cells were treated with X-radiation and a PAH, the nontoxic compounds and B(a)P did not show any significant effect on X-ray survival curve. However, the damage due to DMBA was found to be additive to X-ray damage. The latter property of DMBA was lost when cells were cotreated with 3MC and DMBA presumably because damage to DNA due to DMBA alone was suppressed. Thus, the combined action is complex. DMBA produced damage in 10T1/2 cells that added to radiation damage. Although a nontoxic PAH could neutralize the effect of a toxic PAH, the former were not able to mitigate the lethal effects of radiation. Operationally, the latter results suggested that a nontoxic PAH could cancel out the effect of a toxic one because it inhibited the formation of the DNA damage with which radiation damage could interact rather than because the nontoxic PAH removed the radiation damage with which the PAH could interact. It showed that at least 4 hours were required for DMBA to affect the sublethal radiation damage repair, a period long enough for a large fraction of the latter damage to have been lost.

  5. Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments

    USGS Publications Warehouse

    Chiou, C.T.; Mcgroddy, S.E.; Kile, D.E.

    1998-01-01

    The partition behavior was determined for three polycyclic aromatic hydrocarbons (PAHs), i.e., naphthalene, phenanthrene, and pyrene, from water to a range of soil and sediment samples. The measured partition coefficients of the individual PAHs between soil/sediment organic matter (SOM) and water (i.e., K(oc) values) are relatively invariant either for the 'clean' (uncontaminated) soils or for the clean sediments; however, the mean K(oc) values on the sediments are about twice the values on the soils. This disparity is similar to the earlier observation for other nonpolar solutes and reflects the compositional differences between soil and sediment organic matters. No significant differences in K(oc) are observed between a clean coastal marine sediment and freshwater sediments. The coastal sediments that are significantly impacted by organic contaminants exhibit higher K(oc) values. At given K(ow) values (octanol-water), the PAHs exhibit much higher K(oc) values than other relatively nonpolar solutes (e.g., chlorinated hydrocarbons). This effect is shown to result from the enhanced partition of PAHs to SOM rather than from lower K(ow) values of PAHs at given supercooled liquid solute solubilities in water. The enhanced partition of PAHs over other nonpolar solutes in SOM provides an account of the markedly different correlations between log K(oc) and log K(ow) for PAHs and for other nonpolar solutes. The improved partition of PAHs in SOM stems apparently from the enhanced compatibility of their cohesive energy densities with those of the aromatic components in SOM. The approximate aromatic fraction in soil/sediment organic matter has been assessed by solid-state 13C-NMR spectroscopy.The partition behavior was determined for three polycyclic aromatic hydrocarbons (PAHs), i.e., naphthalene, phenanthrene, and pyrene, from water to a range of soil and sediment samples. The measured partition coefficients of the individual PAHs between soil/sediment organic matter (SOM

  6. Xenoestrogenic gene expression: structural features of active polycyclic aromatic hydrocarbons.

    PubMed

    Schultz, T Wayne; Sinks, Glendon D

    2002-04-01

    Estrogenicity was assessed using the Saccharomyces cerevisiae-based Lac-Z reporter assay and was reported as the logarithm of the inverse of the 50% molar beta-galactosidase activity (log[EC50(-1)]). In an effort to quantify the relationship between molecular structure of polycyclic aromatic hydrocarbons (PAHs) and estrogenic gene expression, a series of PAHs were evaluated. With noted exceptions, the results of these studies indicate that the initial two-dimensional structural warning for estrogenicity, the superpositioning of a hydroxylated aromatic system on the phenolic A-ring of 17-beta-estradiol, can be extended to the PAHs. This two-dimensional-alignment criterion correctly identified estrogenicity of 22 of the 29 PAHs evaluated. Moreover, the estrogenic potency of these compounds was directly related to the size of the hydrophobic backbone. The seven compounds classified incorrectly by this structural feature were either dihydroxylated naphthalenes or aromatic nitrogen-heterocyclic compounds; all such compounds were false positives. Results with dihydroxylated naphthalenes reveal derivatives that were nonestrogenic when superimposed on the phenolic A-ring of 17-beta-estradiol had the second hydroxyl group in the position of the C-ring or were catechol-like in structure. Structural alerts for nitrogen-heterocyclic compounds must take into account the position of the hydroxyl group and the in-ring nitrogen atom; compounds with the hydroxyl group and nitrogen atom involved with the same ring were observed to be nonactive.

  7. Secondary organic aerosol from polycyclic aromatic hydrocarbons in Southeast Texas

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Ying, Qi

    2012-08-01

    Recent chamber studies show that low-volatility gas phase precursors such as polycyclic aromatic hydrocarbons (PAHs) can be a significant source of secondary organic aerosol (SOA). In this work, formation of SOA from the photo-oxidation products of PAHs is added to the SOA modeling framework of the Community Multiscale Air Quality (CMAQ) model to determine the regional distribution of SOA products from PAHs (PAH-SOA) and the contributions from sources in Southeast Texas during the Texas Air Quality Study 2006 (TexAQS 2006). Results show that PAHs released from anthropogenic sources can produce SOA mass as much as 10% of that from the traditional light aromatics or approximately 4% of total anthropogenic SOA. In areas under the influence of wildfire emissions, the amount of PAH-SOA can be as much as 50% of the SOA from light aromatics. A source-oriented modeling framework is adopted to determine the major sources of PAH-SOA by tracking the emitted PAHs and their oxidation products in the gas and aerosol phases from different sources separately. Among the eight sources (vehicles, solvent utilization, residential wood, industries, natural gas combustion, coal combustion, wildfire and other sources) that are tracked in the model, wildfire, vehicles, solvent and industries are the major sources of PAH-SOA. Coal and natural gas combustion appear to be less important in terms of their contributions to PAH-SOA.

  8. Synthesis of condensed phases containing polycyclic aromatic hydrocarbons fullerenes and nanotubes

    DOEpatents

    Reilly, Peter T. A.

    2004-10-19

    The invention relates to methods for producing polycyclic aromatic hydrocarbons, fullerenes, and nanotubes, comprising: a. heating at least one carbon-containing material to form a condensed phase comprising at least one polycyclic aromatic hydrocarbon; b. collecting at least some of the condensed phase; c. reacting the condensed phase to form fullerenes and/or nanotubes.

  9. Liquid Chromatographic Determination of Explosives and Polynuclear Aromatic Hydrocarbons (PAHs) in Deactivation Furnace Ash.

    DTIC Science & Technology

    1986-08-01

    High performance liquid chromatography (HPLC) Polynuclear aromatic hydrocarbons (PAHs...chromatography or high performance liquid chromatography (HPLC). Gas chromatography (GC), because of its speed and sensitivity, has received much...Staley. 1976. Determination of polycyclic aromatic hydrocarbons in atmospheric particulate matter by high performance liquid chromatography coupled

  10. Atmospheric behaviors of particulate-bound polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in Beijing, China from 2004 to 2010

    NASA Astrophysics Data System (ADS)

    Tang, Ning; Suzuki, Genki; Morisaki, Hiroshi; Tokuda, Takahiro; Yang, Xiaoyang; Zhao, Lixia; Lin, Jinming; Kameda, Takayuki; Toriba, Akira; Hayakawa, Kazuichi

    2017-03-01

    Airborne particulates were collected at an urban site (site 1) from 2004 to 2010 and at a suburban site (site 2) in 2010 in Beijing. Nine polycyclic aromatic hydrocarbons (PAHs) and five nitropolycyclic aromatic hydrocarbons (NPAHs) in the airborne particulates were determined by HPLC with fluorescence and chemiluminescence detection, respectively. The concentrations of PAHs and NPAHs were higher in heating season than in non-heating season at the two sites. Both the concentrations of PAHs and NPAHs decreased in the non-heating season but only the concentrations of NPAHs decreased in heating season at site 1, from 2004 to 2010. These findings suggest that source control measures implemented by the city of Beijing helped to reduce air pollution in Beijing. The concentrations of PAHs increased at site 1 in 2010, possibly because of the transport of emissions from windward other areas, such as Shanxi province. Several diagnostic ratios of PAHs and NPAHs showed that the different sources contributed to Beijing's air pollution, although coal combustion was the main source in the heating season and vehicle emission was the main source in the non-heating season. An analysis of physical parameters at Beijing showed that high wind speed can remove atmospheric PAHs and NPAHs in the heating season and that high relative humidity can remove them in the non-heating season.

  11. Comparison of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in airborne particulates collected in downtown and suburban Kanazawa, Japan

    NASA Astrophysics Data System (ADS)

    Hayakawa, Kazuichi; Tang, Ning; Akutsu, Kazuhiko; Murahashi, Tsuyoshi; Kakimoto, Hitoshi; Kizu, Ryoichi; Toriba, Akira

    In this study, airborne particulates were collected at three sites, two in a downtown area and the other in a suburban area of Kanazawa, Japan in each season for 7 years. Two polycyclic aromatic hydrocarbons (PAHs), pyrene (Py) and benzo[ a]pyrene (BaP) and four nitropolycyclic aromatic hydrocarbons (NPAHs), 1-nitropyrene (NP) and 1,3-, 1,6-, and 1,8-dinitropyrenes (DNP) were determined by high-performance liquid chromatography with fluorescence and chemiluminescence detection. At the downtown sites, the mean concentration of each DNP was about two orders of magnitude lower than that of 1-NP and more than three orders of magnitude lower than those of Py and BaP. This tendency reflected the composition of PAHs and NPAHs in diesel-engine exhaust particulates. Concentrations of these PAHs and NPAHs were higher at the downtown sites than at the suburban site, suggesting the dilution of these compounds during the transportation from the downtown to the suburban area. The concentration ratios of NPAHs to PAHs were larger at the downtown sites than at the suburban site. Studies using UV light and sunlight showed that degradation of NPAHs was faster than that of PAHs. Thus, the lower concentrations of NPAHs in the suburban sites may be due to their being photodegraded faster than PAHs during the atmospheric transportation from the downtown area to the suburban area.

  12. Combined effects of prenatal polycyclic aromatic hydrocarbons and material hardship on child IQ.

    PubMed

    Vishnevetsky, Julia; Tang, Deliang; Chang, Hsin-Wen; Roen, Emily L; Wang, Ya; Rauh, Virginia; Wang, Shuang; Miller, Rachel L; Herbstman, Julie; Perera, Frederica P

    2015-01-01

    Polycyclic aromatic hydrocarbons are common carcinogenic and neurotoxic urban air pollutants. Toxic exposures, including air pollution, are disproportionately high in communities of color and frequently co-occur with chronic economic deprivation. We examined whether the association between child IQ and prenatal exposure to polycyclic aromatic hydrocarbons differed between groups of children whose mothers reported high vs. low material hardship during their pregnancy and through child age 5. We tested statistical interactions between hardships and polycyclic aromatic hydrocarbons, as measured by DNA adducts in cord blood, to determine whether material hardship exacerbated the association between adducts and IQ scores. Prospective cohort. Participants were recruited from 1998 to 2006 and followed from gestation through age 7 years. Urban community (New York City) A community-based sample of 276 minority urban youth EXPOSURE MEASURE: Polycyclic aromatic hydrocarbon-DNA adducts in cord blood as an individual biomarker of prenatal polycyclic aromatic hydrocarbon exposure. Maternal material hardship self-reported prenatally and at multiple timepoints through early childhood. Child IQ at 7 years assessed using the Wechsler Intelligence Scale for Children. Significant inverse effects of high cord PAH-DNA adducts on full scale IQ, perceptual reasoning and working memory scores were observed in the groups whose mothers reported a high level of material hardship during pregnancy or recurring high hardship into the child's early years, and not in those without reported high hardship. Significant interactions were observed between high cord adducts and prenatal hardship on working memory scores (β = -8.07, 95% CI (-14.48, -1.66)) and between high cord adducts and recurrent material hardship (β = -9.82, 95% CI (-16.22, -3.42)). The findings add to other evidence that socioeconomic disadvantage can increase the adverse effects of toxic physical "stressors" like air pollutants

  13. Bioremediation of Mixtures of High Molecular Weight Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Xu, H.; Wu, J.; Shi, X.; Sun, Y.

    2014-12-01

    Although bioremediation has been considered as one of the most promising means to remove polycyclic aromatic hydrocarbons (PAHs) from polluted environments, the efficacy of PAHs bioremediation still remains challenged, especially for high molecular weight PAHs (HMW PAHs) and their mixtures. This study was focused on (a) isolation and characterization of pure strain and mixed microbial communities able to degrade HMW PAHs and (b) further evaluation of the ability of the isolated microbes to degrade HMW PAHs mixtures in the absence and presence of indigenous flora. Fluoranthene, benzo[b]fluoranthene and pyrene were selected as the representative HMW PAHs in this study. A pure bacterial strain, identified as Herbaspirillum chlorophenolicum FA1, was isolated from activated sludge. A mixed bacterial community designated as consortium-4 was isolated from petroleum contaminated soils, containing Pseudomonas sp. FbP1、Enterobacter sp. FbP2、Hydrogenophaga sp. FbP3 and Luteolibacter pohnpeiensis. FbP4. To our knowledge, this is the first study to demonstrate that bacterial strains of Herbaspirillum chlorophenolicum FA1 and Luteolibacter pohnpeiensis. FbP4 can also degrade fluoranthene, benzo[b]fluoranthene and pyrene. Experiment results showed that both strain FA1 and consortium-4 could degrade fluoranthene, benzo[b]fluoranthene and pyrene within a wide range of temperature, pH and initial PAHs concentration. Degradation of HMW PAHs mixtures (binary and ternary) demonstrated the interactive effects that can alter the rate and extent of biodegradation within a mixture. The presence of indigenous flora was found to either increase or decrease the degradation of HMW PAHs, suggesting possible synergistic or competition effects. Biodegradation kinetics of HMW PAHs for sole substrates, binary and ternary systems was evaluated, with the purpose to better characterize and compare the biodegradation process of individual HMW PAH and mixtures of HMW PAHs. Results of this study

  14. Food heating and the formation of heterocyclic aromatic amine and polycyclic aromatic hydrocarbon mutagens/carcinogens.

    PubMed

    Knize, M G; Salmon, C P; Pais, P; Felton, J S

    1999-01-01

    Heterocyclic aromatic amines (HAA) and polycyclic aromatic hydrocarbons (PAH) are mutagens and animal carcinogens sometimes formed when foods are heated or processed. Determining their role in cancer etiology depends on comparing human exposures and determining any significant dose-related effects. Chemical analysis of foods shows that flame-grilling can form both PAH and HAA, and that frying forms predominantly HAA. With detection limits of about 0.1 ng/g, amounts found in commercially processed or restaurant foods range from 0.1 to 14 ng/g for HAA, and levels of PAH up to 1 ng/g in a liquid smoke flavoring. Laboratory fried samples have greater amounts of PAH, up to 38 ng/g in hamburgers, and high levels of HAA, over 300 ng/g, are measured in grilled chicken breast. Understanding the processing conditions that form PAH and HAA can lead to methods to greatly reduce their occurrence in processed foods.

  15. Assessment of polycyclic aromatic hydrocarbons (PAHs) pollution in soil of suburban areas in Tianjin, China.

    PubMed

    Lv, Jungang; Shi, Rongguang; Cai, Yanming; Liu, Yong

    2010-07-01

    Soil contamination with polycyclic aromatic hydrocarbons is an increasing problem and has aroused more and more concern in many countries, including China. In this study, representative soil samples (n = 87) of suburban areas in Tianjin (Xiqing, Dongli, Jinnan, Beichen) were evaluated for 16 polycyclic aromatic hydrocarbons. Surface soil samples were air-dried and sieved. Microwave assisted extraction was used for polycyclic aromatic hydrocarbons preparation prior to analysis with gas chromatography-mass spectrometry. The total concentrations of tested polycyclic aromatic hydrocarbons in Xiqing, Dongli, Jinnan, Beichen ranged in 58.5-2,748.3, 36.1-6,734.7, 58.5-4,502.5, 29.7-852.5 ng/g and the averages of total concentration of polycyclic aromatic hydrocarbons were 600.5, 933.6, 640.8, 257.3 ng/g, respectively. Spatial variation of polycyclic aromatic hydrocarbons in soil was illustrated; Pollution status and comparison to other cities were also investigated. Serious polycyclic aromatic hydrocarbons soil pollution was found in Dongli district, on the contrary, Bap in most sites in Beichen did not exceed relative standards and most sites in Beichen should be classified as non-contaminated soil. Principal component analysis was used to identify the possible sources of different districts. It turned out that coal combustion still was the most important sources in three districts except Beichen. Coking, traffic, cooking, biomass combustion also accounted for polycyclic aromatic hydrocarbons pollution to certain extent in different districts. These data can be further used to assess the health risk associated with soils polluted with polycyclic aromatic hydrocarbons and help local government find proper way to reduce polycyclic aromatic hydrocarbons pollution in soils.

  16. Biocatalytic oxidation of polycyclic aromatic hydrocarbons by hemoglobin and hydrogen peroxide.

    PubMed

    Ortiz-Leon, M; Velasco, L; Vazquez-Duhalt, R

    1995-10-24

    Hemoglobin is able to oxidize polycyclic aromatic hydrocarbons, PAH's, in presence of hydrogen peroxide. Among 12 aromatic compounds tested, six were oxidized; anthracene, carbazole, dibenzothiophene, fluorene, 9-hexylanthracene and pyrene. The products were identified as aromatic ketones and sulfoxides. Effect of organic solvent concentration and hemoglobin stability were determined.

  17. Adsorption of aromatic hydrocarbons and ozone at environmental aqueous surfaces.

    PubMed

    Vácha, Robert; Cwiklik, Lukasz; Rezác, Jan; Hobza, Pavel; Jungwirth, Pavel; Valsaraj, Kalliat; Bahr, Stephan; Kempter, Volker

    2008-06-05

    Adsorption of environmentally important aromatic molecules on a water surface is studied by means of classical and ab initio molecular dynamics simulations and by reflection-absorption infrared spectroscopy. Both techniques show strong activity and orientational preference of these molecules at the surface. Benzene and naphthalene, which bind weakly to water surface with a significant contribution of dispersion interactions, prefer to lie flat on water but retain a large degree of orientational flexibility. Pyridine is more rigid at the surface. It is tilted with the nitrogen end having strong hydrogen bonding interactions with water molecules. The degree of adsorption and orientation of aromatic molecules on aqueous droplets has atmospheric implications for heterogeneous ozonolysis, for which the Langmuir-Hinshelwood kinetics mechanism is discussed. At higher coverages of aromatic molecules the incoming ozone almost does not come into contact with the underlying aqueous phase. This may rationalize the experimental insensitivity of the ozonolysis on the chemical nature of the substrate on which the aromatic molecules adsorb.

  18. Influence on serum asymmetric dimethylarginine (ADMA) concentrations of human paraoxonase 1 polymorphism (Q192R) and exposure to polycyclic aromatic hydrocarbons (PAHs) in Mexican women, a gene-environment interaction.

    PubMed

    Ochoa-Martínez, Ángeles C; Ruíz-Vera, Tania; Almendarez-Reyna, Claudia I; Orta-García, Sandra T; Pérez-Maldonado, Iván N

    2017-11-01

    It has been demonstrated that Cardiovascular Diseases (CVD) are a consequence of the combination of genetic and environmental factors and/or the interaction between them. Therefore, the aim of this study was to evaluate the impact of polycyclic aromatic hydrocarbon (PAHs) exposure and PON1 Q192R polymorphism (genetic susceptibility) on serum asymmetric dimethylarginine (ADMA) levels in Mexican women (n = 206). Urinary 1-hydroxypyrene concentrations (1-OHP; exposure biomarker for PAHs) were quantified using a high-performance liquid chromatography technique, PON1 Q192R polymorphism was genotyped using TaqMan probes and serum ADMA concentrations were evaluated using a commercially available ELISA kit. Urinary 1-OHP levels detected in this study ranged from 0.07 to 9.37 μmol/mol of creatinine (0.13-18.0 μg/g of creatinine). Regarding allele frequency (PON1 Q192R polymorphism), the 192Q-allele frequency was 0.43 and for the 192R-allele it was 0.57. In relation to serum ADMA levels, the levels ranged from 0.06 to 1.46 μmol/L. Moreover, multiple linear regression analysis was performed and associations between urinary 1-OHP levels (β = 0.05, p = 0.002), PON1 Q192R polymorphism (β = 0.04, p = 0.003) and serum ADMA concentrations were found. Besides, an interaction (gene-environment interaction) of both independent variables (1-OHP and PON1 polymorphism) on serum ADMA levels was found (β = 0.04, p = 0.02) in the constructed multiple linear model. Therefore, according to the significance of this research, it is necessary to execute health programs to reduce cardiovascular risk in the assessed population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Polynuclear aromatic hydrocarbon analysis using the synchronous scanning luminoscope

    NASA Astrophysics Data System (ADS)

    Hyfantis, George J., Jr.; Teglas, Matthew S.; Wilbourn, Robert G.

    2001-02-01

    12 The Synchronous Scanning Luminoscope (SSL) is a field- portable, synchronous luminescence spectrofluorometer that was developed for on-site analysis of contaminated soil and ground water. The SSL is capable of quantitative analysis of total polynuclear aromatic hydrocarbons (PAHs) using phosphorescence and fluorescence techniques with a high correlation to laboratory data as illustrated by this study. The SSL is also capable of generating benzo(a)pyrene equivalency results, based on seven carcinogenic PAHs and Navy risk numbers, with a high correlation to laboratory data as illustrated by this study. These techniques allow rapid field assessments of total PAHs and benzo(a)pyrene equivalent concentrations. The Luminoscope is capable of detecting total PAHs to the parts per billion range. This paper describes standard field methods for using the SSL and describes the results of field/laboratory testing of PAHs. SSL results from two different hazardous waste sites are discussed.

  20. Toxicological profile for polycyclic aromatic hydrocarbons. Final report

    SciTech Connect

    Not Available

    1990-12-01

    The ATSDR Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs): Acenaphthene, Acenaphthylene, Anthracene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, Chrysene, Dibenzo(a,h)anthracene, Fluoranthene, Fluorene, Indeno(1,2,3-cd)pyrene, Phenanthrene, Pyrene is intended to characterize succinctly the toxicological and health effects information for the substance. It identifies and reviews the key literature that describes the substance's toxicological properties. Other literature is presented but described in less detail. The profile begins with a public health statement, which describes in nontechnical language the substance's relevant toxicological properties. The adequacy of information to determine the substance's health effects is described. Research gaps in nontoxic and health effects information are described. Research gaps that are of significance to the protection of public health will be identified in a separate effort. The focus of the document is on health and toxicological information.

  1. Determination of polycyclic aromatic hydrocarbons in roasted coffee

    PubMed Central

    JIMENEZ, ANGELICA; ADISA, AFOLABI; WOODHAM, CARA; SALEH, MAHMOUD

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are suspected to be carcinogenic and mutagenic. This study describes the presence of PAHs in light, medium and dark roasted coffee including instant and decaffeinated brands. Total PAHs concentration was related to the degree of roasting with light roasted coffee showing the least and dark roasted coffee showing the highest level. Both instant and decaffeinated coffee brand showed lower levels of PAHs. Naphthalene, acenaphthylene, pyrene and chrysene were the most abundant individual isomers. The concentrations ranged from 0 to 561 ng g−1 for naphthalene, 0 to 512 ng g−1 for acenaphthylene, 60 to 459 ng g−1 for pyrene and 56 to 371 ng g−1 for chrysene. Thus, roasting conditions should be controlled to avoid the formation of PAHs due to their suspected carcinogenic and mutagenic properties. PMID:25190557

  2. Accumulation of polycyclic aromatic hydrocarbons in acid sensitive lakes

    SciTech Connect

    Furlong, E.T.; Cessar, L.R.; Hites, R.A. )

    1987-11-01

    Polycyclic aromatic hydrocarbon concentrations and fluxes were measured in {sup 210}Pb dated sediment cores taken from nine lakes in four regions identified as susceptible to acidification. Calculated PAH accumulations were compared with historic S emissions, accumulation of sedimentary S, and anthropogenic metal accumulations to determine if PAH could be used as an indicator of combustion-derived sulfate deposition. Comparisons between regions indicated that the Adirondacks have a significantly higher burden of PAH than do northern New England, the northern Great Lakes States, and northern Florida. This difference likely results from significant upwind PAH sources to the Adirondack lakes. Detailed investigation of the largest lake in the study set, Big Moose Lake, indicates that PAH may serve as conservative, combustion indicators in large lakes. In this lake, PAH fluxes and concentrations were significantly correlated with historical S emission rates. These data suggest that PAH measured in sediment cores from large lakes can serve as indicators of past combustion production deposition.

  3. Accumulation of polycyclic aromatic hydrocarbons in acid sensitive lakes

    NASA Astrophysics Data System (ADS)

    Furlong, Edward T.; Cessar, Linda Roll; Hites, Ronald A.

    1987-11-01

    Polycyclic aromatic hydrocarbon concentrations and fluxes were measured in 210Pb dated sediment cores taken from nine lakes in four regions identified as susceptible to acidification. Calculated PAH accumulations were compared with historic S emissions, accumulation of sedimentary S and anthropogenic metal accumulations to determine if PAH could be used as an indicator of combustion-derived sulfate deposition. Comparisons between regions indicated that the Adirondacks have a significantly higher burden of PAH than do northern New England, the northern Great Lakes States and northern Florida. This difference likely results from significant upwind PAH sources to the Adirondack lakes. Detailed investigation of the largest lake in the study set, Big Moose Lake, indicates that PAH may serve as conservative, combustion indicators in large lakes. In this lake, PAH fluxes and concentrations were significantly correlated with historical S emission rates. These data suggest that PAH measured in sediment cores from large lakes can serve as indicators of past combustion product deposition.

  4. Polycyclic Aromatic Hydrocarbons and the Diffuse Interstellar Bands: a Survey

    NASA Technical Reports Server (NTRS)

    Salama, F.; Galazutdinov, G. A.; Krelowski, J.; Allamandola, L. J.; Musaev, F. A.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    We discuss the proposal relating the origin of some of the diffuse interstellar bands (DIBs) to neutral and ionized polycyclic aromatic hydrocarbons (PAHs) present in interstellar clouds. Laboratory spectra of several PAHs, isolated at low temperature in inert gas matrices, are compared with an extensive set of astronomical spectra of reddened, early type stars. From this comparison, it is concluded that PAN ions are good candidates to explain some of the DIBs. Unambiguous assignments are difficult, however, due to the shift in wavelengths and the band broadening induced in the laboratory spectra by the solid matrix. Definitive band assignments and, ultimately, the test of the of the proposal that PAH ions carry some of the DIB must await the availability of gas-phase measurements in the laboratory. The present assessment offers a guideline for future laboratory experiments by allowing the preselection of promising PAH molecules to be studied in jet expansions.

  5. Determination of polycyclic aromatic hydrocarbons in roasted coffee.

    PubMed

    Jimenez, Angelica; Adisa, Afolabi; Woodham, Cara; Saleh, Mahmoud

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are suspected to be carcinogenic and mutagenic. This study describes the presence of PAHs in light, medium and dark roasted coffee including instant and decaffeinated brands. Total PAHs concentration was related to the degree of roasting with light roasted coffee showing the least and dark roasted coffee showing the highest level. Both instant and decaffeinated coffee brand showed lower levels of PAHs. Naphthalene, acenaphthylene, pyrene and chrysene were the most abundant individual isomers. The concentrations ranged from 0 to 561 ng g(-1) for naphthalene, 0 to 512 ng g(-1) for acenaphthylene, 60 to 459 ng g(-1) for pyrene and 56 to 371 ng g(-1) for chrysene. Thus, roasting conditions should be controlled to avoid the formation of PAHs due to their suspected carcinogenic and mutagenic properties.

  6. Polynuclear aromatic hydrocarbons (PAHs) in fish from the Arabian Gulf

    SciTech Connect

    DouAbdul, A.A.Z.; Abaychi, J.K.; Al-Edanee, T.E.; Ghani, A.A.; Al-Saad, H.T.

    1987-03-01

    Emphasis has been placed upon the identification and qualification of compounds with potential adverse health effects on humans. Prominent among this group are polynuclear aromatic hydrocarbons (PAHs), several of which are known or suspected carcinogens. PAHs enter the marine environment from a variety of sources including petroleum pollution, industrial and domestic effluents, atmospheric particles, and biosynthesis by plants and microorganisms. Although one-third of the world's oil is produced around the Arabian Gulf, no detailed analysis have been conducted to determine PAHs in this region. Nevertheless, numerous investigations have shown the ability of marine organisms including fish to accumulation PAHs from solution or dispersion in seawater. When fish are harvested, a human health hazard may result. In the present communication, high performance liquid chromatography (HPLC) was used to identify and measure sixteen PAHs priority pollutants issued by US Environmental Protection Agency (EPA) in fourteen species of commercially significant fish from the NW Arabian Gulf.

  7. Phototoxicity of polycyclic aromatic hydrocarbons at varying light intensities

    SciTech Connect

    Ankley, G.T.; Phipps, G.L.; Mattson, V.R.; Erickson, R.J.; Kosian, P.A.; Cox, J.S.; Sheedy, B.R.; Mount, D.R.

    1994-12-31

    Conceptual models suggest that the toxicity of photoactivated polycyclic aromatic hydrocarbons (PAHs) should be a function both of chemical (PAH) dose, and intensity of the ultraviolet (UV) light to which the organism is exposed (photon dose). However, there have been no systematic studies with aquatic organisms to quantify the relationship between PAH dose and UV intensity in producing phototoxicity. In these studies, oligochaetes (Lumbriculus variegatus) were exposed, via the water, to multiple concentrations of individual PAHs known to be photoactivated (fluoranthene, pyrene, anthracene), and then placed under UV light of three different intensities. The resultant phototoxicity clearly was a function both of PAH dose and light intensity. A joint toxicity model relating toxicity to PAH concentrations and light intensity will be presented.

  8. Application of biotechnology for the biodegradation of polycyclic aromatic hydrocarbons

    SciTech Connect

    Cerniglia, C.E. )

    1989-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and their alkyl and nitrated analogs are widely distributed in sediments and aquatic environments. Many PAHs have been shown to exhibit a large variety of biological activities. The goal of this research program are: 1. To isolate microorganisms from PAH-contaminated sediments which have the ability to metabolize and detoxify PAHs. 2. To determine the relationship between PAH structure and mineralization rates. 3. To determine whether differences in the physical, chemical and microbial characteristics of ecosystems predictably affect the disposition and persistence of PAHs in the environment. 4. To use multicomponent microcosms containing sediment and waste collected from chemically contaminated sites to determine the rate and extent of degradation of PAHs. Results of these studies in the biodegradation of PAHs will be presented.

  9. Polycyclic aromatic hydrocarbons in solid residues from waste incineration.

    PubMed

    Wheatley, A D; Sadhra, S

    2004-05-01

    Polycyclic aromatic hydrocarbons (PAH) levels in solid residues from clinical waste incineration were measured using HPLC with fluorescence detection. PAH mass emission rates and emission rates as a function of waste burned are also reported. For bottom ash, PAH levels and physical properties were found to be quite consistent. Levels of high molecular mass PAHs were comparable to levels previously reported in the literature when adjusted for differences in sample preparation techniques. However, levels of low molecular mass PAHs were considerably elevated in this study. Possible reasons for this finding include the composition of the waste, combustion conditions and methods of sample preparation. In contrast, no PAHs were found in fly ash, an unexpected finding which is probably attributable to matrix effects resulting from a surfeit of lime in the fly ash. Factors effecting the partitioning of PAHs and their environmental fate are also discussed.

  10. Polycyclic aromatic hydrocarbons in cereal products on the Turkish market.

    PubMed

    Kacmaz, Sibel

    2016-09-01

    The contamination level of four EU marker polycyclic aromatic hydrocarbons (PAHs) in some cereal-derived products was surveyed in this study. Thirty-eight samples, 20 bread and 18 breakfast cereals, were purchased from retail shops and local markets of East Black sea region in Turkey. The samples were analysed for four EU marker PAHs, using ultrasonic extraction, solid-phase extraction (SPE) clean up and stable-isotope dilution gas chromatography with mass-spectrometric (GC/MS) detection. The method was validated with the parameters linearity, accuracy, precision, limit of detection (LOD), limit of quantitation (LOQ) and uncertainty. Total content of the four PAHs in bread varied from 0.19 to 0.46 µg kg(-1) and in breakfast cereals from 0.10 to 0.87 µg kg(-1).

  11. Simulated transport of polycyclic aromatic hydrocarbons in artificial streams

    SciTech Connect

    Bartell, S.M.; Landrum, P.F.; Giesy, J.P.; Leversee, G.J.

    1981-01-01

    A model was constructed to predict the pattern of flow and accumulation of three polycyclic aromatic hydrocarbons (PAH) (anthracene, naphthalene, and benzo(a)pyrene) in artificial streams located on the Savannah River Plant near Aiken, South Carolina. Predictions were based upon the premise that the fundamental chemistry of individual PAH contains useful information for predictive purposes. Model processes included volatilization, photolysis, sorption to sediments and particulates, and net accumulation by biota. Simulations of anthracene transport were compared to results of an experiment conducted in the streams. The model realistically predicted the concentration of dissolved anthracene through time and space. Photolytic degradation appeared to be a major pathway of anthracene flux from the streams.

  12. Polycyclic aromatic hydrocarbons' formation and occurrence in processed food.

    PubMed

    Singh, Lochan; Varshney, Jay G; Agarwal, Tripti

    2016-05-15

    Polycyclic aromatic hydrocarbons (PAHs) emerged as an important contaminant group in a gamut of processed food groups like dairy, nuts, herbs, beverages, meat products etc. Different cooking processes and processing techniques like roasting, barbecuing, grilling, smoking, heating, drying, baking, ohmic-infrared cooking etc. contribute towards its formation. The level of PAHs depends on factors like distance from heat source, fuel used, level of processing, cooking durations and methods, whereas processes like reuse, conching, concentration, crushing and storage enhance the amount of PAHs in some food items. This review paper provides insight into the impact of dietary intake of PAHs, its levels and formation mechanism in processed food items and possible interventions for prevention and reduction of the PAHs contamination. The gaps and future prospects have also been assessed.

  13. Accumulation of polycyclic aromatic hydrocarbons (PAHs) in an urban snowpack.

    PubMed

    Boom, A; Marsalek, J

    1988-08-01

    Accumulations of polycyclic aromatic hydrocarbons in a snowpack were studied in an industrial urban area with numerous anthropogenic sources of PAHs. Average PAH loadings stored in the snowpack were determined, plotted on a map of the study area, and arenal distribution approximated by isoloading contours. The loading contours exhibited a marked elongation in the direction of prevailing winds. The unit-area deposition rates observed in the study area exceeded the typical rates reported for other urban areas, and were the highest immediately downwind of a steel plant. PAH levels in snowmelt were well below the freshwater aquatic life toxicity criteria, but exceeded both the WHO drinking water standard and the U.S. EPA carcinogenic criteria at the 10(-5) risk level.

  14. Emission factors for polycyclic aromatic hydrocarbons from biomass burning

    SciTech Connect

    Jenkins, B.M.; Jones, A.D.; Turn, S.Q.; Williams, R.B.

    1996-08-01

    Emission factors for 19 polycyclic aromatic hydrocarbons were measured during wind tunnel simulations of open burning for agricultural and forest biomass fuels including cereal grasses, agricultural tree prunings, and fir and pine wood (slash). Yields of total PAH varied from 5 to 683 mg kg{sup -1} depending principally on burning conditions and to a lesser extent on fuel type. Barley straw and wheat straw loaded at 400-500 g m{sup -2} emitted much higher levels of PAH, including benzo[a]pyrene, than other cereal and wood fuel types burning under more robust conditions. As anticipated, total PAH emission rates increased with increasing particulate matter emission rates and with declining combustion efficiency. 20 refs., 2 figs., 6 tabs.

  15. Polycyclic aromatic hydrocarbon removal from water by natural fiber sorption.

    PubMed

    Khan, Eakalak; Khaodhir, Sutha; Rotwiron, Paritta

    2007-08-01

    The use of two natural sorbents, kapok and cattail fibers, were investigated for polycyclic aromatic hydrocarbon (PAH) removal from water. Naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, and fluoranthene were the PAHs studied. For comparative purposes, a commercial polyester fiber sorbent was included in the investigation. The PAH sorption and retention capabilities of the three fibers were determined through batch and continuous-flow experiments under non-competitive and competitive conditions. In the batch experiments, cattail fiber was the most effective sorbent. Kapok fiber provided the lowest PAH retention, while cattail fiber had slightly less PAH retention than polyester fiber. When two PAHs were present in the same system, a competitive effect on the much less hydrophobic PAH was observed. Similar results were obtained in the column experiments, except that polyester fiber performed much poorer on naphthalene. Cattail fiber is a promising sorbent for treating PAH-contaminated water, such as urban runoff.

  16. Sequential extraction of polycyclic aromatic hydrocarbons using subcritical water.

    PubMed

    Latawiec, Agnieszka E; Reid, Brian J

    2010-02-01

    A rapid sequential subcritical (superheated) water extraction method for polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and sediment is presented. Decreasing the polarity of water by successive increase of the extraction temperature from 50 degrees C to 200 degrees C at the moderate pressure (10.3MPa) enabled selective, non-exhaustive extractions to be performed. Concurrent with increasing temperatures to 150 degrees C there was an increase in PAH extraction efficiencies. For the majority of determinations no significant differences between extractions at 150 degrees C and 200 degrees C were observed. Varied extraction efficiencies of PAHs at the same extraction conditions reflected dissimilarities between environmental matrices investigated. Selective subcritical water extraction of PAHs was proportional to their octanol-water partition coefficients. This technique may be applicable in evaluation of risks associated with PAH contaminated sites and in assessments of their bioremediation potential.

  17. Destruction and survival of polycyclic aromatic hydrocarbons in active galaxies

    NASA Technical Reports Server (NTRS)

    Voit, G. M.

    1992-01-01

    Infrared spectra of dusty galactic environments often contain emission features attributed to polycyclic aromatic hydrocarbons or PAHs, which can be considered to be very small grains or very large molecules. Although IR spectra of starburst galaxies almost always show these emission features, similar spectra of active galaxies are usually featureless. Even in those active galaxies that do exhibit PAH emission, the PAHs still appear to be eradicated from the nuclear region. This dichotomy suggests that PAHs are destroyed by the intense hard radiation field from an AGN. Laboratory experiments show that certain PAHs are, in fact, so effectively destroyed by individual EUV and X-ray photons that they cannot survive even at kiloparsec distances from active nuclei. Regions within active galaxies that do show PAH emission must therefore be shielded from the central X-ray source by a substantial column density of X-ray absorbing gas.

  18. Polycyclic aromatic hydrocarbons in sediments of China Sea.

    PubMed

    Li, Yanxia; Duan, Xiaoyong

    2015-10-01

    Increasing pollution pressures were placed in the coastal and estuarine ecosystems in China because of the elevated pollutants discharged from various sources. Polycyclic aromatic hydrocarbons (PAHs) in the environment were closely linked to human activities, which have been intensively studied for their geochemical interest as markers. In this review, the status of PAH contamination in China Sea was assessed by comprehensive reviews of the concentrations, sources, and fates of PAHs in sediments of China Sea. PAH concentrations in China Sea sediments decreased from north to south due to the higher emissions in North China. Atmosphere was probably the main carrier of PAHs in the north due to the higher contents of atmospheric fine particles and higher wind speeds. However, riverine inputs were probably the most important sources of PAHs in the coastal sediments of South China due to higher rainfall.

  19. Engineered Antibodies for Monitoring of Polynuclear Aromatic Hydrocarbons

    SciTech Connect

    Karu, Alexander E.; Roberts, Victoria; Li, Qingxiao

    1999-06-01

    The objective is to develop improved antibody-based methods for detection of multiple polynuclear aromatic hydrocarbons (PAHs), to fill several needs in DOE's remediation, regulatory monitoring, ecotoxicology, and human health effects missions. Present-generation immunochemical detection methods have already proven to be useful and cost-effective in DOE applications. The problem being addressed is that the unique properties of PAHs make it impractical to generate antibodies with the required diversity, specificity and selectivity, by the previous techniques. The scientific goals are to determine the mechanisms by which antibodies bind PAHs, use genetic engineering and computational chemistry techniques to construct improved antibodies, and to devise methods for making immunochemical and instrumental analysis more compatible. The potential relevance is that our results should provide a rational basis by which immunochemical and other molecular recognition systems for PAHs and other large classes of toxic pollutants such as PCBs could be produced and deployed with substantially less cost, labor, and development time.

  20. Promoted wet air oxidation of polynuclear aromatic hydrocarbons.

    PubMed

    Rivas, F Javier; García, Ruth; García-Araya, Juan F; Gimeno, Olga

    2008-05-01

    The treatment of an aqueous solution of four polycyclic aromatic hydrocarbons, namely acenaphthene, phenanthrene, anthracene and fluoranthene, under moderate conditions of temperature and pressure has been conducted in the presence and absence of free radical promoters (hydrogen peroxide or potassium monopersulfate). With no addition of promoters, the process achieves PAH conversion values in the range 80-100% at 190 degrees C and 50 bars of air pressure (80 min of reaction). Similar results are obtained in the presence of hydrogen peroxide, however, in this case, the time required is just 60 min with a sharp decrease in PAH concentration in the first 10-20 min. Additionally, temperature can be lowered to values in the range 100-150 degrees C. If potassium monopersulfate is used instead of hydrogen peroxide, an analogous behaviour is experienced, in the latter case, temperatures above 120 degrees C lead to an inhibition of anthracene oxidation, likely due to ineffective decomposition of the monopersulfate molecule.

  1. Chemistry at the interior atoms of polycyclic aromatic hydrocarbons.

    PubMed

    Scott, Lawrence T

    2015-09-21

    For more than 150 years, chemical reactions that make new covalent bonds to polycyclic aromatic hydrocarbons (PAHs) have been confined almost exclusively to substitution and addition reactions on the perimeters of the compounds ("edge chemistry"). The "interior" atoms of PAHs, those belonging to three rings, almost never engage in new σ-bond-forming reactions. A compound with no edges, C60, was the first polycyclic carbon π-system observed to exhibit such reactivity. More recently, smaller subunits of C60, which we call geodesic polyarenes, have also been found to exhibit "fullerene-type chemistry" at their interior carbon atoms. These reactions are all reviewed together here for the first time. The review ends with speculation that σ-bond-forming reactions may also be observed someday even in certain planar, benzenoid PAHs, although no examples have yet been reported.

  2. Health risks of residential exposure to polycyclic aromatic hydrocarbons.

    PubMed

    Brender, Jean D; Pichette, Janet L; Suarez, Lucina; Hendricks, Katherine A; Holt, Mandy

    2003-02-01

    A disease prevalence study and follow-up health surveillance were conducted among residents of an African-American community situated at the site of a former creosote wood-treatment facility contaminated with polycyclic aromatic hydrocarbons. Household interviews were conducted among 214 residents living around the hazardous waste site (target population) and 212 comparison residents in a neighborhood 2.4 km away from the site. Target area residents reported a higher prevalence of skin rashes than comparison residents (relative risk [RR] = 5.7; 95% confidence interval [CI] = 3.0, 10.9). The prevalence of reported rashes increased with increasing levels of anthracene detected in yards (test for linear trend, p = 0.02). With adjustment for environmental worry, reports of chronic bronchitis and difficulties becoming pregnant did not differ significantly between target and comparison residents (p > 0.05).

  3. Exposure to mutagenic aromatic hydrocarbons of workers creosoting wood.

    PubMed

    Bos, R P; Jongeneelen, F J; Theuws, J L; Henderson, P T

    1984-01-01

    Creosote P1 is mutagenic in the Salmonella microsome assay towards strains TA1537, TA1538, TA98 and TA100 in the presence of S9 mix. The mutagenic polycyclic aromatic hydrocarbons benzo[a]pyrene and benz[a]anthracene in this mixture are detected in concentrations of 0.18 and 1.1%, respectively. Spot samples taken from contaminated surfaces in several areas of a wood-preserving industry were tested for mutagenicity. The positive results suggest that a wipe test can give a first indication of occupational exposure to mutagenic substances, particularly when greater exposure occurs via skin contact than via inhalation. In urine of rats, mutagens appeared after treatment with creosote. However, no increase in mutagenicity could be detected in urine of creosote workers in relation to their work.

  4. Heterogeneous ozonation kinetics of polycyclic aromatic hydrocarbons on organic films

    NASA Astrophysics Data System (ADS)

    Kahan, T. F.; Kwamena, N.-O. A.; Donaldson, D. J.

    The room temperature heterogeneous reaction rates of gas-phase ozone with naphthalene, anthracene, fluoranthene, phenanthrene, pyrene, and benzo[ a]pyrene were measured over a range of ozone concentrations from 3.5×10 14 to 2.3×10 16 molec. cm -3. The polycyclic aromatic hydrocarbons (PAHs) were dissolved in organic mixtures composed of octanol or decanol along with proxies for compounds known to be present in "urban grime" films. In all cases, the reaction kinetics were well-described by the Langmuir-Hinshelwood mechanism, which suggests a surface reaction. The adsorption of PAHs to the air-organic interface was confirmed by an adsorption isotherm of anthracene. The presence of the additional organic compounds generally did not affect the reaction rates; however, unsaturated species such as oleic acid and squalene reduced the observed rates significantly.

  5. Assessment of honey contamination with polycyclic aromatic hydrocarbons.

    PubMed

    Ciemniak, Artur; Witczak, Agata; Mocek, Kamila

    2013-01-01

    The aim of this study was to assess honey contamination by polycyclic aromatic hydrocarbons. Six species of honey were examined, as well as rape blossom and soil from villages Pęczerzyno and Przybysław in West Pomerania, Poland. The instrumental analysis was performed using a HP 6890 gas chromatograph coupled to a HP 5973 mass spectrometer with selected ion monitoring (SIM). Quantification was done by gas chromatography-mass spectrometry (GC-MS) using perdeuterated internal standards. Both soil samples showed high levels of all 23 PAHs, whereas honey contained mostly non-carcinogenic PAHs of low molecular weight. The most contaminated honey from Pęczerzyno contained 0.24 μg kg-1 benzo[a]pyrene. Moreover, despite low contamination of honey, a positive correlation was found between PAH content in honey, blossom and soil.

  6. In situ microbial metabolism of aromatic-hydrocarbon environmental pollutants.

    PubMed

    Jeon, Che Ok; Madsen, Eugene L

    2013-06-01

    Microbial processes that eliminate organic environmental contamination are important. Progress in the biotechnology of biodegradation relies upon the underlying sciences of environmental microbiology and analytical geochemistry. Recent key discoveries advancing knowledge of biodegradation (in general) and the aromatic-hydrocarbon biodegradation (in particular) have relied upon characterization of microorganisms: pure-culture isolates, laboratory enrichment cultures, and in contaminated field sites. New analytical and molecular tools (ranging from sequencing the DNA of biodegrading microorganisms to assessing changes in the isotopic ratios of 13C to 12C and 2H to 1H in contaminant pools in field sites) have deepened our insights into the mechanisms (how), the occurrence (what), and the identity (who) of active players that effect biodegradation of organic environmental pollutants.

  7. Polycyclic Aromatic Hydrocarbons in Mussels from a South American Estuary.

    PubMed

    Oliva, Ana L; Arias, Andrés H; Quintas, Pamela Y; Buzzi, Natalia S; Marcovecchio, Jorge E

    2017-03-18

    Bivalves, especially mussels, have been pointed as putative species to monitor polycyclic aromatic hydrocarbons (PAHs) in marine environment. After several environmental PAHs baseline reports, the present study was conducted to assess for the first time the levels of PAHs in native mussels (Brachidontes rodriguezii) collected from a critical industrialized estuary of Argentina. Under this objective, after an 18-month sampling period, 34 pools of mussels were assessed for 17 PAHs, including the 16 compounds prioritized by United States Environmental Protection Agency. By means of gas chromatography-mass spectrometry analysis, results showed total PAHs concentrations in mussel's tissue ranged from under laboratory detection limits to 482.4 ng/g dry weight. Mussel body burdens were dominated by lower molecular weight PAHs, such as phenanthrene, naphthalene, and pyrene, whereas the overall PAHs profile suggested the predominance of petrogenic sources. Finally, the potential ecotoxicological impact was evaluated by applying Environmental Assessment Criteria and benzo[a]pyrene toxic equivalent factors.

  8. Extraction of polycyclic aromatic hydrocarbons from spiked soil

    SciTech Connect

    Coover, M.P.; Sims, R.C.; Doucette, W.

    1987-11-01

    A homogenization method was evaluated for extracting polycyclic aromatic hydrocarbons (PAHs) from soils. Fifteen PAHs were spiked and recovered from 2 soils at concentrations ranging from 1 to 1000 micrograms/g, using the homogenization method and a Soxhlet extraction method. Each extraction method performed well in removing the 15 PAHs from both soils over a broad range of concentrations. In general, Soxhlet extraction yielded slightly but significantly (P less than 0.05) higher recoveries than did the homogenization method. The homogenization method, however, was easy to use, and the extraction step turnaround time was less than 15 min/sample. The method should be suitable for other applications requiring the extraction of hydrophobic organic compounds from soils.

  9. NMR shifts for polycyclic aromatic hydrocarbons from first-principles

    SciTech Connect

    Thonhauser, Timo; Ceresoli, Davide; Marzari, Nicola N.

    2009-09-03

    We present first-principles, density-functional theory calculations of the NMR chemical shifts for polycyclic aromatic hydrocarbons, starting with benzene and increasing sizes up to the one- and two-dimensional infinite limits of graphene ribbons and sheets. Our calculations are performed using a combination of the recently developed theory of orbital magnetization in solids, and a novel approach to NMR calculations where chemical shifts are obtained from the derivative of the orbital magnetization with respect to a microscopic, localized magnetic dipole. Using these methods we study on equal footing the 1H and 13C shifts in benzene, pyrene, coronene, in naphthalene, anthracene, naphthacene, and pentacene, and finally in graphene, graphite, and an infinite graphene ribbon. Our results show very good agreement with experiments and allow us to characterize the trends for the chemical shifts as a function of system size.

  10. Polycyclic Aromatic Hydrocarbons and Infrared Astrophysics with Spitzer

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Allamandola, L. J.

    2004-01-01

    Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role that carbon-rich plays in the interstellar medium (ISM). Twenty years ago, the possible existence of an abundant population of large, carbon-rich molecules in the ISM was unthinkable. Today, the unmistakable spectroscopic signatures of polycyclic aromatic hydrocarbons (PAHs) - shockingly large molecules by the standards of traditional interstellar chemistry -are recognized throughout the Universe. In this presentation, we will examine the current state of the interstellar PAH model and explore how this data, in conjunction with the unparalleled observational data provided by the Spitzer Space Telescope, can be used to draw ever-deeper insights into the physical and chemical natures of a wide range of astrophysical environments.

  11. In situ groundwater aeration of polycyclic aromatic hydrocarbons

    SciTech Connect

    Symons, B.D.; Linkenheil, R.; Pritchard, D.; Shanke, C.A.; Seep, D.

    1995-12-31

    At a former wood treating site in Minnesota, the feasibility of in situ groundwater aeration was investigated in a laboratory treatability setting, to evaluate biodegradability and optimal operation conditions of the site aquifer. After concluding that an aeration system would increase the dissolved oxygen concentrations in the groundwater enough to sustain microbial life, a field demonstration system was designed and installed. The system was operated for 1 year, during which groundwater quality at upgradient and downgradient wells was monitored to evaluate the system`s effectiveness. The groundwater aeration system successfully reduced groundwater polycyclic aromatic hydrocarbon (PAH) concentrations, especially naphthalene. Naphthalene concentrations were reduced from 1,319 {micro}g/L to below the laboratory detection limit of 0.5 {micro}g/L. Cumulative concentrations of other PAH compounds were reduced from 98 {micro}g/L to 23 {micro}g/L during the 1-year test.

  12. Polycyclic aromatic hydrocarbons in fuel-oil contaminated soils, Antarctica.

    PubMed

    Aislabie, J; Balks, M; Astori, N; Stevenson, G; Symons, R

    1999-12-01

    Where fuel oil spills have occurred on Antarctic soils polycyclic aromatic hydrocarbons (PAH) may accumulate. Surface and subsurface soil samples were collected from fuel spill sites up to 30 years old, and from nearby control sites, and analysed for the 16 PAHs on the USEPA priority pollutants list, as well as for two methyl substituted naphthalenes, 1-methylnaphthalene and 2-methylnaphthalene. PAH levels ranged from 41-8105 ng g-1 of dried soil in the samples from contaminated sites and were below detection limits in control site samples. PAH were detected in surface soils and had migrated to lower depths in the contaminated soil. The predominant PAH detected were naphthalene and its methyl derivatives.

  13. Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment

    SciTech Connect

    Varanasi, U.

    1989-01-01

    During the past decade, knowledge of polycyclic aromatic hydrocarbons (PAH) in the aquatic environment has advanced substantially to encompass studies of bioavailability, metabolism, subsequent toxic effects, and their ecological consequences. In this book, recent advances in the areas of PAH biogeochemistry and bioaccumulation, microbial degradation, enzymes of activation and detoxication, metabolism of PAH, and laboratory and field studies on carcinogenic/toxic effects, are presented. Additionally, important similarities and differences in metabolism of PAH by aquatic and terrestrial organisms are discussed. These chapters also illustrate that although considerable progress has been made in certain areas of PAH metabolism in the aquatic environment, the field is relatively unexplored and many exciting possibilities exist for future investigations. Separate abstracts are included for 9 chapters in this book for inclusion in the appropriate data bases.

  14. Polycyclic Aromatic Hydrocarbons and Infrared Astrophysics with Spitzer

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Allamandola, L. J.

    2004-01-01

    Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role that carbon-rich plays in the interstellar medium (ISM). Twenty years ago, the possible existence of an abundant population of large, carbon-rich molecules in the ISM was unthinkable. Today, the unmistakable spectroscopic signatures of polycyclic aromatic hydrocarbons (PAHs) - shockingly large molecules by the standards of traditional interstellar chemistry -are recognized throughout the Universe. In this presentation, we will examine the current state of the interstellar PAH model and explore how this data, in conjunction with the unparalleled observational data provided by the Spitzer Space Telescope, can be used to draw ever-deeper insights into the physical and chemical natures of a wide range of astrophysical environments.

  15. Evaluation of anthropogenic secondary organic aerosol tracers from aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Al-Naiema, Ibrahim M.; Stone, Elizabeth A.

    2017-02-01

    Products of secondary organic aerosol (SOA) from aromatic volatile organic compounds (VOCs) - 2,3-dihydroxy-4-oxopentanoic acid, dicarboxylic acids, nitromonoaromatics, and furandiones - were evaluated for their potential to serve as anthropogenic SOA tracers with respect to their (1) ambient concentrations and detectability in PM2.5 in Iowa City, IA, USA; (2) gas-particle partitioning behaviour; and (3) source specificity by way of correlations with primary and secondary source tracers and literature review. A widely used tracer for toluene-derived SOA, 2,3-dihydroxy-4-oxopentanoic acid was only detected in the particle phase (Fp = 1) at low but consistently measurable ambient concentrations (averaging 0.3 ng m-3). Four aromatic dicarboxylic acids were detected at relatively higher concentrations (9.1-34.5 ng m-3), of which phthalic acid was the most abundant. Phthalic acid had a low particle-phase fraction (Fp = 0.26) likely due to quantitation interferences from phthalic anhydride, while 4-methylphthalic acid was predominantly in the particle phase (Fp = 0.82). Phthalic acid and 4-methylphthalic acid were both highly correlated with 2,3-dihydroxy-4-oxopentanoic acid (rs = 0.73, p = 0.003; rs = 0.80, p < 0.001, respectively), suggesting that they were derived from aromatic VOCs. Isophthalic and terephthalic acids, however, were detected only in the particle phase (Fp = 1), and correlations suggested association with primary emission sources. Nitromonoaromatics were dominated by particle-phase concentrations of 4-nitrocatechol (1.6 ng m-3) and 4-methyl-5-nitrocatechol (1.6 ng m-3) that were associated with biomass burning. Meanwhile, 4-hydroxy-3-nitrobenzyl alcohol was detected in a lower concentration (0.06 ng m-3) in the particle phase only (Fp = 1) and is known as a product of toluene photooxidation. Furandiones in the atmosphere have only been attributed to the photooxidation of aromatic hydrocarbons; however the substantial partitioning toward the gas phase

  16. Carbohydrate-Aromatic Interactions in Proteins.

    PubMed

    Hudson, Kieran L; Bartlett, Gail J; Diehl, Roger C; Agirre, Jon; Gallagher, Timothy; Kiessling, Laura L; Woolfson, Derek N

    2015-12-09

    Protein-carbohydrate interactions play pivotal roles in health and disease. However, defining and manipulating these interactions has been hindered by an incomplete understanding of the underlying fundamental forces. To elucidate common and discriminating features in carbohydrate recognition, we have analyzed quantitatively X-ray crystal structures of proteins with noncovalently bound carbohydrates. Within the carbohydrate-binding pockets, aliphatic hydrophobic residues are disfavored, whereas aromatic side chains are enriched. The greatest preference is for tryptophan with an increased prevalence of 9-fold. Variations in the spatial orientation of amino acids around different monosaccharides indicate specific carbohydrate C-H bonds interact preferentially with aromatic residues. These preferences are consistent with the electronic properties of both the carbohydrate C-H bonds and the aromatic residues. Those carbohydrates that present patches of electropositive saccharide C-H bonds engage more often in CH-π interactions involving electron-rich aromatic partners. These electronic effects are also manifested when carbohydrate-aromatic interactions are monitored in solution: NMR analysis indicates that indole favorably binds to electron-poor C-H bonds of model carbohydrates, and a clear linear free energy relationships with substituted indoles supports the importance of complementary electronic effects in driving protein-carbohydrate interactions. Together, our data indicate that electrostatic and electronic complementarity between carbohydrates and aromatic residues play key roles in driving protein-carbohydrate complexation. Moreover, these weak noncovalent interactions influence which saccharide residues bind to proteins, and how they are positioned within carbohydrate-binding sites.

  17. Carbohydrate–Aromatic Interactions in Proteins

    PubMed Central

    2015-01-01

    Protein–carbohydrate interactions play pivotal roles in health and disease. However, defining and manipulating these interactions has been hindered by an incomplete understanding of the underlying fundamental forces. To elucidate common and discriminating features in carbohydrate recognition, we have analyzed quantitatively X-ray crystal structures of proteins with noncovalently bound carbohydrates. Within the carbohydrate-binding pockets, aliphatic hydrophobic residues are disfavored, whereas aromatic side chains are enriched. The greatest preference is for tryptophan with an increased prevalence of 9-fold. Variations in the spatial orientation of amino acids around different monosaccharides indicate specific carbohydrate C–H bonds interact preferentially with aromatic residues. These preferences are consistent with the electronic properties of both the carbohydrate C–H bonds and the aromatic residues. Those carbohydrates that present patches of electropositive saccharide C–H bonds engage more often in CH−π interactions involving electron-rich aromatic partners. These electronic effects are also manifested when carbohydrate–aromatic interactions are monitored in solution: NMR analysis indicates that indole favorably binds to electron-poor C–H bonds of model carbohydrates, and a clear linear free energy relationships with substituted indoles supports the importance of complementary electronic effects in driving protein–carbohydrate interactions. Together, our data indicate that electrostatic and electronic complementarity between carbohydrates and aromatic residues play key roles in driving protein–carbohydrate complexation. Moreover, these weak noncovalent interactions influence which saccharide residues bind to proteins, and how they are positioned within carbohydrate-binding sites. PMID:26561965

  18. Large Abundances of Polycyclic Aromatic Hydrocarbons in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Lopez-Puertas, M.; Dinelli, B. M.; Adriani, A.; Funke, B.; Garcia-Comas, M.; Moriconi, M. L.; D'Aversa, E.; Boersma, C.; Allamandola, L. J.

    2013-01-01

    In this paper, we analyze the strong unidentified emission near 3.28 micron in Titan's upper daytime atmosphere recently discovered by Dinelli et al.We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 micron. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) × 10(exp 4) particles / cubic cm. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is approx 430 u; the mean area is about 0.53 sq. nm; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  19. Biodegradation of aromatic hydrocarbons by aquifer microorganisms under denitrifying conditions

    SciTech Connect

    Hutchins, S.R.; Sewell, G.W.; Kovacs, D.A.; Smith, G.A.

    1991-01-01

    Laboratory tests were conducted to evaluate whether denitrification would be a suitable alternative for biorestoration of an aquifer contaminated with JP-4 jet fuel. Microcosms were prepared from uncontaminated and contaminated aquifer material, amended with nitrate, nutrients, and aromatic hydrocarbons, and incubated under a nitrogen atmosphere at 12 C. With uncontaminated core material, there was no observable lag period prior to removal of toluene whereas 30 days was required before biodegradation commenced for xylenes, ethylbenzene, and 1,2,4-trimethylbenzene. An identical test with contaminated aquifer material exhibited not only much longer lag periods but decreased rates of biodegradation; benzene, ethylbenzene, and o-xylene were not significantly degraded within the 6-month time period even though active denitrification occurred at this time. First-order biodegradation rate constants ranged from 0.016 to 0.38/day for uncontaminated core material and from 0.022 to 0.067/day for contaminated core material. Tests with individual compounds in uncontaminated core indicated that benzene and m-xylene inhibited the basal rate of denitrification. These data demonstrate that several aromatic compounds are degraded under denitrifying conditions, but rates of biodegradation may be lower in material contaminated with JP-4 jet fuel.

  20. POLYCYCLIC AROMATIC HYDROCARBON CLUSTERS AS SOURCES OF INTERSTELLAR INFRARED EMISSION

    SciTech Connect

    Roser, J. E.; Ricca, A.

    2015-03-10

    Polycyclic aromatic hydrocarbons (or PAHs) have been the subject of astrochemical research for several decades as principal sources of the interstellar aromatic infrared emission bands. PAH clusters could possibly contribute to these emission bands, but a lack of data on their infrared properties has made this hypothesis difficult to evaluate. Here we investigate homogeneous neutral PAH clusters by measuring the mid-infrared absorption spectra of the five nonlinear PAH molecules phenanthrene, chrysene, pyrene, perylene, and benzo[ghi]perylene within solid argon ice at a fixed temperature of 5 K. We attribute observed spectral shifts in their principal absorption bands as a function of argon/PAH ratio to clustering of the PAH molecules within the argon matrix. These shifts are related to the cluster structures forming in the matrix and the topology of the monomer PAH molecule. We predict that interstellar PAH molecules that are relatively large (no fewer than 50 carbon atoms per molecule) and compact will have clusters that contribute to the asymmetrically red-shaded profile of the interstellar 11.2 μm emission band.

  1. Thermochemical properties and phase behavior of halogenated polycyclic aromatic hydrocarbons.

    PubMed

    Fu, Jinxia; Suuberg, Eric M

    2012-03-01

    Knowledge of vapor pressure of organic pollutants is essential in predicting their fate and transport in the environment. In the present study, the vapor pressures of 12 halogenated polycyclic aromatic compounds (PACs), 9-chlorofluorene, 2,7-dichlorofluorene, 2-bromofluorene, 9-bromofluorene, 2,7-dibromofluorene, 2-bromoanthracene, 9-chlorophenanthrene, 9-bromophenanthrene, 9,10-dibromophenanthrene, 1-chloropyrene, 7-bromobenz[a]anthracene, and 6,12-dibromochrysene, were measured using the Knudsen effusion method over the temperature range of 301 to 464 K. Enthalpies and entropies of sublimation of these compounds were determined via application of the Clausius-Clapeyron equation. The data were also compared with earlier published literature values to study the influence of halogen substitution on vapor pressure of PACs. As expected, the halogen substitution decreases vapor pressure compared with parent compounds but does not necessarily increase the enthalpy of sublimation. Furthermore, the decrease of vapor pressure also depends on the substitution position and the substituted halogen, and the di-substitution of chlorine and/or bromine decreases the vapor pressure compared with single halogen-substituted polycyclic aromatic hydrocarbons. In addition, the enthalpy of fusion and melting temperature of these 12 PACs were determined using differential scanning calorimetry and melting point analysis.

  2. Alkyl polycyclic aromatic hydrocarbons emissions in diesel/biodiesel exhaust

    NASA Astrophysics Data System (ADS)

    Casal, Carina S.; Arbilla, Graciela; Corrêa, Sergio M.

    2014-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are widely studied in environmental matrices, such as air, water, soil and sediment, because of their toxicity, mutagenicity and carcinogenicity. Because of these properties, the environmental agencies of developed countries have listed sixteen PAHs as priority pollutants. Few countries have limits for these compounds for ambient air, but they only limit emissions from stationary and mobile sources and occupational areas. There are several studies to specifically address the 16 priority PAHs and very little for the alkyl PAHs. These compounds are more abundant, more persistent and frequently more toxic than the non-alkylated PAHs, and the toxicity increases with the number of alkyl substitutions on the aromatic ring. In this study, a method was developed for the analysis of PAHs and alkyl PAHs by using a GC-MS and large injection volume injection coupled with program temperature vaporisation, which allows for limits of detection below 1.0 ng μL-1. Several variables were tested, such as the injection volume, injection velocity, injector initial temperature, duration of the solvent split and others. This method was evaluated in samples from particulate matter from the emissions of engines employing standard diesel, commercial diesel and biodiesel B20. Samples were collected on a dynamometer bench for a diesel engine cycle and the results ranged from 0.5 to 96.9 ng mL-1, indicating that diesel/biodiesel makes a significant contribution to the formation of PAHs and alkyl PAHs.

  3. LARGE ABUNDANCES OF POLYCYCLIC AROMATIC HYDROCARBONS IN TITAN'S UPPER ATMOSPHERE

    SciTech Connect

    Lopez-Puertas, M.; Funke, B.; Garcia-Comas, M.; Dinelli, B. M.; Adriani, A.; D'Aversa, E.; Moriconi, M. L.; Boersma, C.; Allamandola, L. J.

    2013-06-20

    In this paper, we analyze the strong unidentified emission near 3.28 {mu}m in Titan's upper daytime atmosphere recently discovered by Dinelli et al. We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 {mu}m. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) Multiplication-Sign 10{sup 4} particles cm{sup -3}. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is {approx}430 u; the mean area is about 0.53 nm{sup 2}; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  4. Chemical Kinetics of Polycyclic Aromatic Hydrocarbons in Comet Impacts

    NASA Astrophysics Data System (ADS)

    Kress, M. E.; McKay, C.; Tielens, A. G.; Frenklach, M.

    2004-12-01

    Polycyclic aromatic hydrocarbons (PAHs) are stable, robust organic compounds that would have been an important constituent of the early atmospheres of terrestrial planets. These strongly-bound molecules readily absorb ultraviolet light and may play a role in aerosol formation. PAHs are one of the predominant carriers of carbon in interstellar space, after CO. They are common in carbonaceous chondrites, and quite likely in comets as well. Impacts of volatile-rich planetesimals such as carbonaceous chondrites and comets would have been common during the late stages of planet formation. Theoretical studies of impact chemistry typically assume that the chemical composition of the post-impact material is given by thermodynamic equilibrium at 2000 K. These calculations also typically ignore the formation of aromatic compounds because the closure of the first aromatic ring is kinetically inhibited, although thermodynamically favorable at the temperatures and pressures of an impact fireball. Do the PAHs present in a comet or asteroid survive impact? If so, how are these PAHs modified during impact? To address these questions, we model the chemical kinetics of PAH survival, formation, growth and destruction within a parameter space consisting of impact fireball cooling timescales, pressures, temperatures, C/O ratios and other factors. The chemistry of PAHs has been well studied under conditions present in plug flow reactors and sooting flames (P ≈ 1atm, T≥ 1000 K). We hope that our results will motivate more experimental investigation of reaction mechanisms and rate coefficients for a broader range of temperatures and pressures than those heretofore studied for industrial applications. This work has been supported by the NASA Astrobiology Institute's Virtual Planetary Laboratory and the Institute for Geophysics and Planetary Physics at Lawrence Livermore National Laboratory.

  5. Synergistic and antagonistic interactions of binary mixtures of polycyclic aromatic hydrocarbons in the upregulation of CYP1 activity and mRNA levels in precision-cut rat liver slices.

    PubMed

    Pushparajah, Daphnee S; Plant, Kathryn E; Plant, Nick J; Ioannides, Costas

    2017-03-01

    The current studies investigate whether synergistic or antagonistic interactions in the upregulation of CYP1 activity occur in binary mixtures of polycyclic aromatic hydrocarbons (PAHs) involving benzo[a]pyrene and five other structurally diverse PAHs of varying carcinogenic activity. Precision-cut rat liver slices were incubated with benzo[a]pyrene alone or in combination with a range of concentrations of a second PAH, and ethoxyresorufin O-deethylase, CYP1A1 and CYP1B1 mRNA levels determined. Concurrent incubation of benzo[a]pyrene with either dibenzo[a,h]anthracene or fluoranthene in liver slices led to a synergistic interaction, at least at low concentrations, in that ethoxyresorufin O-deethylase activity was statistically higher than the added effects when the slices were incubated with the individual compounds. In contrast, benzo[b]fluoranthene and, at high doses only, dibenzo[a,l]pyrene gave rise to antagonism, whereas 1-methylphenanthrene had no effect at all concentrations studied. When CYP1A1 mRNA levels were monitored, benzo[b]fluoranthene gave rise to an antagonistic response when incubated with benzo[a]pyrene, whereas all other compounds displayed synergism, with 1-methylphenathrene being the least effective. A similar picture emerged when CYP1B1 mRNA levels were determined, though the effects were less pronounced. In conclusion, it has been demonstrated that the benzo[a]pyrene-mediated upregulation of CYP1, at the mRNA and activity levels, is synergistically and antagonistically modulated by other PAHs. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 764-775, 2017. © 2016 Wiley Periodicals, Inc.

  6. Airborne polycyclic aromatic hydrocarbons trigger human skin cells aging through aryl hydrocarbon receptor.

    PubMed

    Qiao, Yuan; Li, Qiang; Du, Hong-Yang; Wang, Qiao-Wei; Huang, Ye; Liu, Wei

    2017-07-01

    Accumulating evidence suggests that polycyclic aromatic hydrocarbons (PAH) which adsorbed on the surface of ambient air particulate matters (PM), are the major toxic compound to cause cardiovascular and respiratory diseases, even cancer. However, its detrimental effects on human skin cell remain unclear. Here, we demonstrated that SRM1649b, a reference urban dust material of PAH, triggers human skin cells aging through cell cycle arrest, cell growth inhibition and apoptosis. Principally, SRM1649b facilitated Aryl hydrocarbon receptor (AhR) translocated into nucleus, subsequently activated ERK/MAPK signaling pathway, and upregulated aging-related genes expression. Most important, we found that AhR antagonist efficiently revert the aging of skin cells. Thus our novel findings firstly revealed the mechanism of skin aging under PAH contamination and provided potential strategy for clinical application. Copyright © 2017. Published by Elsevier Inc.

  7. Inhibitory effects of polycyclic aromatic hydrocarbons (PAHs) on photosynthetic performance are not related to their aromaticity.

    PubMed

    Jajoo, Anjana; Mekala, Nageswara Rao; Tomar, Rupal Singh; Grieco, Michele; Tikkanen, Mikko; Aro, Eva-Mari

    2014-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are very toxic and highly persistent environmental pollutants which accumulate in soil and affect growth of the plants adversely. This study aims to investigate inhibitory effects of 3 major PAH particularly on photosynthetic processes in Arabidopsis thaliana grown in soil treated with PAH. The 3 PAH chosen differ from each other in aromaticity (number of rings) comprising their structure (2 rings: naphthalene, 3 rings: anthracene and 4 rings: pyrene). Several growth parameters and Chlorophyll a fluorescence was monitored in PAH treated plants. BN-PAGe analysis was done in order to get information about change in the protein conformation. PAH treatment led to increased value of Fo which collaborated with increase in the amount of free LHC as seen through BN-Page analysis. Thus PAH were found to inhibit PS II photochemistry and caused distinct change in pigment composition. However the results led us to infer that 3-ring anthracence is more inhibitory as compared to 2-ring naphthalene and 4-ring pyrene. This indicates that aromaticity of PAH is unrelated to their response on photosynthetic processes.

  8. Reduction of Aromatic Hydrocarbons by Zero-Valent Iron and Palladium Catalyst

    SciTech Connect

    Kim, Young-Hun; Shin, Won Sik; Ko, Seok-Oh; Kim, Myung-Chul

    2004-03-31

    Permeable reactive barrier (PRB) is an alternative technology for soil and groundwater remediation. Zero valent iron, which is the most popular PRB material, is only applicable to halogenated aliphatic organics and some heavy metals. The objective of this study was to investigate reductive dechlorination of halogenated compounds and reduction of non-halogenated aromatic hydrocarbons using zero valent metals (ZVMs) and catalysts as reactive materials for PRBs. A group of small aromatic hydrocarbons such as monochlorophenols, phenol and benzene were readily reduced with palladium catalyst and zero valent iron. Poly-aromatic hydrocarbons (PAHs) were also tested with the catalysts and zero valent metal combinations. The aromatic rings were reduced and partly reduced PAHs were found as the daughter compounds. The current study demonstrates reduction of aromatic compounds by ZVMs and modified catalysts and implicates that PRB is applicable not only for halogenated organic compounds but nonhalogenated aromatic compounds such as PAHs.

  9. Sorption of polycyclic aromatic hydrocarbons (PAHs) to lignin: effects of hydrophobicity and temperature.

    PubMed

    Zhang, Ming; Ahmad, Mahtab; Lee, Sang Soo; Xu, Li Heng; Ok, Yong Sik

    2014-07-01

    The study of the sorption of contaminants to lignin is significant for understanding the migration of contaminants in the environment as well as developing low cost sorbent. In this study, sorption of three polycyclic aromatic hydrocarbons (PAHs), naphthalene, acenaphthene and phenanthrene, to lignin was investigated. Sorption isotherms were well described by both linear and Freundlich sorption models. Sorption coefficients of PAHs to lignin from water obtained from regression of both linear model (K d) and Freundlich model (K f) were highly positively correlated with hydrophobicity of PAHs. The amorphous structure of lignin provided sufficient sorption domain for partitioning of PAHs, and the attraction between PAHs molecules and aromatic fractions in lignin via π-π electron-donor-acceptor (π-π EDA) interaction is hypothesized to provide a strong sorption force. Thermodynamic modeling revealed that sorption of PAHs to lignin was a spontaneous and exothermic process.

  10. A review of polycyclic aromatic hydrocarbons (PAHs) research progress in China based on CNKI database

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao

    2017-03-01

    This article using the retroactive content analysis method summarizes the research progress of air polycyclic aromatic hydrocarbons during 1983 to 2016, and is based on the 72 search results about "Air Polycyclic Aromatic Hydrocarbons" in CNKI database. This article directly points out the study achievements and improvements about air polycyclic aromatic hydrocarbons from 4 aspects, the reviews of the studies of PAHs in a special stage, the studies on PAHs determination and analysis method, the studies on PAHs concentration in different places and the studies on the relationship between PAHs concentration in air and human health, respectively.

  11. Synergistic interaction between polycyclic aromatic hydrocarbons and environmental tobacco smoke on the risk of obesity in children and adolescents: The U.S. National Health and Nutrition Examination Survey 2003-2008.

    PubMed

    Kim, Hyun-Woo; Kam, Sin; Lee, Duk-Hee

    2014-11-01

    Polycyclic aromatic hydrocarbons (PAHs) may be obesogens. However, the role of PAHs independent of environmental tobacco smoke (ETS) is unclear, and the interaction between PAHs and ETS remains unknown. We performed cross-sectional analyses of urinary concentrations of PAH metabolites, body mass index (BMI), and waist circumference (WC) in 1985 people aged 6-18 years using data from the 2003-2008 U.S. National Health and Nutrition Examination Survey. ETS exposure level was measured as serum cotinine level. PAH metabolites were positively associated with BMI and WC in both the ETS-unexposed and ETS-exposed groups. The adjusted odds ratios for general obesity defined by age- and sex-specific BMI≥95th percentile across the quartiles of total PAH metabolites were 1, 4.51, 2.57, and 8.09 (Ptrend=0.003) in the ETS-unexposed group and 1, 2.02, 1.83, and 3.86 (Ptrend<0.001) in the ETS-exposed group. However, the association of PAH metabolites with obesity became stronger as serum cotinine levels increased (Pinteraction<0.05). Among those with high ETS exposure, the adjusted odds ratios for general obesity across quartiles of total PAH metabolites were 1, 2.89, 5.26, and 16.29 (Ptrend<0.001). Compared to the low PAH-exposure group without exposure to ETS, the high ETS- and high PAH-exposure group had 33.85- and 17.64-fold greater risks of general and central obesity, respectively. Environmental exposure to PAHs may be associated with childhood obesity irrespective of ETS. In particular, simultaneous exposure to PAHs and ETS may substantially increase the risk of obesity. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. The Photochemistry of Polycyclic Aromatic Hydrocarbons (PAHs) in Water Ice

    NASA Astrophysics Data System (ADS)

    Allamandola, L. J.; Bouwman, J.; Cuppen, H.; Gudipati, M. S.; Linnartz, H.

    2009-12-01

    Polycyclic aromatic hydrocarbons (PAHs) and related aromatic materials are present in virtually all phases of the interstellar medium. In dense clouds, they condense out of the gas and become part of the water-rich mixed molecular ices that are a major component of the dust in dense molecular clouds. PAHs are also likely to be frozen on icy Solar System objects. Although the UV radiative processing of simple mixed molecular ices has been studied for nearly 30 years, research into the in-situ photochemistry of PAH containing ices has only recently begun. This paper will review some of that work. The vacuum ultraviolet (VUV) photochemistry of the PAHs naphthalene, pyrene, 4-methylpyrene and quatterylene in water ice at 10 to 30 K will be summarized. In all cases, the neutral parent PAH is readily and efficiently (>70%) converted to the radical cation (PAH+) form upon exposure to VUV radiation. These PAH cations remain trapped and stabilized within the ice to remarkably high temperatures as the ice is warmed to the sublimation point. To understand the chemical processes and kinetics during photolysis we carried out a systematic study on several PAH/H2O ices. A new apparatus was developed which permits tracking the in-situ behavior of the parent PAH and its photoproducts as a function of ice temperature and time with sub-second responsivity. Ice temperature determines the dominant reaction routes while photolysis duration processes the ice. The ability to measure spectra simultaneously with photolysis and with sub-second time resolution permits kinetic studies previously inaccessible and provides new insights into the processes occurring within the ice during photolysis. These studies show that PAHs may well play important but overlooked roles in cosmic ice chemistry and physics, whether they are in the Solar System or near star forming regions in dense clouds.

  13. Emission of polycyclic aromatic hydrocarbons from gasohol and ethanol vehicles

    NASA Astrophysics Data System (ADS)

    de Abrantes, Rui; Vicente de Assunção, João; Pesquero, Célia Regina; Bruns, Roy Edward; Nóbrega, Raimundo Paiva

    The exhaust emission of the polycyclic aromatic hydrocarbons (PAHs) considered toxic to human health were investigated on two spark ignition light duty vehicles, one being gasohol (Gasohol, in Brazil, is the generic denomination for mixtures of pure gasoline plus 20-25% of anhydrous ethyl alcohol fuel (AEAF).)-fuelled and the other a flexible-fuel vehicle fuelled with hydrated ethanol. The influence of fuel type and quality, aged lubricant oil type and use of fuel additives on the formation of these compounds was tested using standardized tests identical to US FTP-75 cycle. PAH sampling and chemical analysis followed the basic recommendations of method TO-13 (United States. Environmental Protection Agency, 1999. Compendium Method TO-13A - Determination of polycyclic Aromatic hydrocarbons (PAH) in Ambient Air Using Gas Chromatography/Mass Spectrometry (CG/MS). Center for environmental research information, Cincinnati, p. 78), with the necessary modification for this particular application. Results showed that the total PAH emission factor varied from 41.9 μg km -1 to 612 μg km -1 in the gasohol vehicle, and from 11.7 μg km -1 to 27.4 μg km -1 in the ethanol-fuelled vehicle, a significant difference in favor of the ethanol vehicle. Generally, emission of light molecular weight PAHs was predominant, while high molecular weights PAHs were not detected. In terms of benzo( a)pyrene toxicity equivalence, emission factors varied from 0.00984 μg TEQ km -1 to 4.61 μg TEQ km -1 for the gasohol vehicle and from 0.0117 μg TEQ km -1 to 0.0218 μg TEQ km -1 in the ethanol vehicle. For the gasohol vehicle, results showed that the use of fuel additive causes a significant increase in the emission of naphthalene and phenanthrene at a confidence level of 90% or higher; the use of rubber solvent on gasohol showed a reduction in the emission of naphthalene and phenanthrene at the same confidence level; the use of synthetic oil instead of mineral oil also contributed

  14. Polycyclic aromatic hydrocarbons: from metabolism to lung cancer.

    PubMed

    Moorthy, Bhagavatula; Chu, Chun; Carlin, Danielle J

    2015-05-01

    Excessive exposure to polycyclic aromatic hydrocarbons (PAHs) often results in lung cancer, a disease with the highest cancer mortality in the United States. After entry into the lung, PAHs induce phase I metabolic enzymes such as cytochrome P450 (CYP) monooxygenases, i.e. CYP1A1/2 and 1B1, and phase II enzymes such as glutathione S-transferases, UDP glucuronyl transferases, NADPH quinone oxidoreductases (NQOs), aldo-keto reductases (AKRs), and epoxide hydrolases (EHs), via the aryl hydrocarbon receptor (AhR)-dependent and independent pathways. Humans can also be exposed to PAHs through diet, via consumption of charcoal broiled foods. Metabolism of PAHs through the CYP1A1/1B1/EH pathway, CYP peroxidase pathway, and AKR pathway leads to the formation of the active carcinogens diol-epoxides, radical cations, and o-quinones. These reactive metabolites produce DNA adducts, resulting in DNA mutations, alteration of gene expression profiles, and tumorigenesis. Mutations in xenobiotic metabolic enzymes, as well as polymorphisms of tumor suppressor genes (e.g. p53) and/or genes involved in gene expression (e.g. X-ray repair cross-complementing proteins), are associated with lung cancer susceptibility in human populations from different ethnicities, gender, and age groups. Although various metabolic activation/inactivation pathways, AhR signaling, and genetic susceptibilities contribute to lung cancer, the precise points at which PAHs induce tumor initiation remain unknown. The goal of this review is to provide a current state-of-the-science of the mechanisms of human lung carcinogenesis mediated by PAHs, the experimental approaches used to study this complex class of compounds, and future directions for research of these compounds.

  15. Identification and discrimination of polycyclic aromatic hydrocarbons using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Cloutis, Edward; Szymanski, Paul; Applin, Daniel; Goltz, Douglas

    2016-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are widely present throughout the Solar System and beyond. They have been implicated as a contributor to unidentified infrared emission bands in the interstellar medium, comprise a substantial portion of the insoluble organic matter in carbonaceous chondrites, are expected stable components of organic matter on Mars, and are present in a wide range of terrestrial hydrocarbons and as components of biomolecules. However, PAH structures can be very complicated, making their identification challenging. Raman spectroscopy is known to be especially sensitive to the highly polarizable C-C and C=C bonds found in PAHs, and therefore, can be a powerful tool for PAH structural and compositional elucidation. This study examined Raman spectra of 48 different PAHs to determine the degree to which Raman spectroscopy could be used to uniquely identify different species, factors that control the positions of major Raman peaks, the degree to which induced fluorescence affects the intensity of Raman peaks, its usefulness for PAH discrimination, and the effects of varying excitation wavelength on some PAH Raman spectra. It was found that the arrangement and composition of phenyl (benzene) rings, and the type and position of functional groups can greatly affect fluorescence, positions and intensities of Raman peaks associated with the PAH backbone, and the introduction of new Raman peaks. Among the functional groups found on many of the PAHs that were analyzed, only a few Raman peaks corresponding to the molecular vibrations of these groups could be clearly distinguished. Comparison of the PAH Raman spectra that were acquired with both 532 and 785 nm excitation found that the longer wavelength resulted in reduced fluorescence, consistent with previous studies.

  16. Polycyclic Aromatic Hydrocarbons: From Metabolism to Lung Cancer

    PubMed Central

    Moorthy, Bhagavatula; Chu, Chun; Carlin, Danielle J.

    2015-01-01

    Excessive exposure to polycyclic aromatic hydrocarbons (PAHs) often results in lung cancer, a disease with the highest cancer mortality in the United States. After entry into the lung, PAHs induce phase I metabolic enzymes such as cytochrome P450 (CYP) monooxygenases, i.e. CYP1A1/2 and 1B1, and phase II enzymes such as glutathione S-transferases, UDP glucuronyl transferases, NADPH quinone oxidoreductases (NQOs), aldo-keto reductases (AKRs), and epoxide hydrolases (EHs), via the aryl hydrocarbon receptor (AhR)-dependent and independent pathways. Humans can also be exposed to PAHs through diet, via consumption of charcoal broiled foods. Metabolism of PAHs through the CYP1A1/1B1/EH pathway, CYP peroxidase pathway, and AKR pathway leads to the formation of the active carcinogens diol-epoxides, radical cations, and o-quinones. These reactive metabolites produce DNA adducts, resulting in DNA mutations, alteration of gene expression profiles, and tumorigenesis. Mutations in xenobiotic metabolic enzymes, as well as polymorphisms of tumor suppressor genes (e.g. p53) and/or genes involved in gene expression (e.g. X-ray repair cross-complementing proteins), are associated with lung cancer susceptibility in human populations from different ethnicities, gender, and age groups. Although various metabolic activation/inactivation pathways, AhR signaling, and genetic susceptibilities contribute to lung cancer, the precise points at which PAHs induce tumor initiation remain unknown. The goal of this review is to provide a current state-of-the-science of the mechanisms of human lung carcinogenesis mediated by PAHs, the experimental approaches used to study this complex class of compounds, and future directions for research of these compounds. PMID:25911656

  17. Physico-chemical methods for the study of polycyclic aromatic hydrocarbon - DNA interactions. Progress report, October 1, 1985-September 30, 1986

    SciTech Connect

    Geacintov, N.E.

    1986-10-10

    Previous linear dichroism measurements suggested that the (-)BPDE-DNA adducts are characterized by considerable interactions between the pyrene residue and the DNA bases. Such a conformation is consistent with intercalation, or partial intercalation. With the pyrene residue thus protected from the solvent environment, one might expect a low degree of accessibility to acrylamide quencher molecules. Since the fluorescence of these (-)BPDE-DNA adducts is indeed insensitive to acrylamide, the quenching results reported here are consistent with such a conformation. The covalent adducts derived from the binding of (+)BPDE to DNA appear to be 70% accessible to acrylamide, suggesting that a majority of these adducts reside at external binding sites, or in a locally disordered region of the DNA double helix. Again, these conclusions derived from the fluorescence quenching data are consistent with our previous linear dichroism results. 3 refs., 3 figs.

  18. Applying quantitative and semi-quantitative histopathology to address the interaction between sediment-bound polycyclic aromatic hydrocarbons in fish gills.

    PubMed

    Martins, Marta; Santos, José M; Costa, Maria H; Costa, Pedro M

    2016-09-01

    Even though PAHs are considered priority marine pollutants, information on the interaction effects between these compounds is scarce, furthermore under ecologically-relevant circumstances. Semi-quantitative and quantitative histological analyses were enforced on the gills of the seabass (Dicentrarchus labrax), exposed to two model PAHs, single or combined, through a series of 28-day laboratory bioassays. Fish exposed to sediments contaminated with either PAH (250-800ngg(-1)), isolated or combined, exhibited most significant gill histopathological alterations after 28 days of exposure, as determined through weighted condition indices, especially in animals exposed to the potential carcinogen benzo[b]fluoranthene (B[b]F) and to mixtures of this compound with its lower, non-carcinogenic counterpart Phenanthrene (Phe). Negative correlations between interlamellar hyperplasia (the most remarkable alteration) and goblet cell counts suggest that fish exposed to sediments contaminated with B[b]F or mixed PAHs increased the thickness of epithelial cells as a response to insult, albeit compromising cell differentiation, to which is likely added impaired gas exchange and osmotic balance. In contrast, animals exposed to Phe increased the number of chloride and goblet cells relatively to control fish at early stages of exposure, suggesting then a more efficient protective mechanism. The results also showed that histopathological alterations in mixture-exposed animals do not match the expected additive effects. Overall, the findings indicate that chronic exposures to sediment-bound PAHs, under realistic scenarios, may induce lesions in gills that may imply significant hindering of basal metabolic/homeostatic pathways in marine fish whose interpretation may be hindered by complicated interaction effects and unknown factor involving, more that dose-response, time-dependent effects.

  19. Webinar Presentation: Prenatal Exposures to Polycyclic Aromatic Hydrocarbons (PAH) and Childhood Body Mass Index Trajectories

    EPA Pesticide Factsheets

    This presentation, Prenatal Exposures to Polycyclic Aromatic Hydrocarbons (PAH) and Childhood Body Mass Index Trajectories, was given at the NIEHS/EPA Children's Centers 2015 Webinar Series held on Feb. 11, 2015.

  20. Molecular catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids.

    SciTech Connect

    Yang, Shiyong; Stock, L.M.

    1996-05-01

    This report presents the results of research on the development of new catalytic pathways for the hydrogenation of multiring aromatic hydrocarbons and the hydrotreating of coal liquids at The University of Chicago under DOE Contract No. DE-AC22-91PC91056. The work, which is described in three parts, is primarily concerned with the research on the development of new catalytic systems for the hydrogenation of aromatic hydrocarbons and for the improvement of the quality of coal liquids by the addition of dihydrogen. Part A discusses the activation of dihydrogen by very basic molecular reagents to form adducts that can facilitate the reduction of multiring aromatic hydrocarbons. Part B examines the hydrotreating of coal liquids catalyzed by the same base-activated dihydrogen complexes. Part C concerns studies of molecular organometallic catalysts for the hydrogenation of monocyclic aromatic hydrocarbons under mild conditions.

  1. Modeling the Role of Alkanes, Polycyclic Aromatic Hydrocarbons, and Their Oligomers in Secondary Organic Aerosol Formation

    EPA Science Inventory

    A computationally efficient method to treat secondary organic aerosol (SOA) from various length and structure alkanes as well as SOA from polycyclic aromatic hydrocarbons (PAHs) is implemented in the Community Multiscale Air Quality (CMAQ) model to predict aerosol concentrations ...

  2. ASSAYING PARTICLE-BOUND POLYCYCLIC AROMATIC HYDROCARBONS (PAH) FROM ARCHIVED PM2.5 FILTERS

    EPA Science Inventory

    Airborne particulate matter contains numerous organic species, including several polycyclic aromatic hydrocarbons (PAHs) that are known or suspected carcinogens. Existing methods for measuring airborne PAHs are complex and costly, primarily because they are designed to collect...

  3. Do lagoon area sediments act as traps for polycyclic aromatic hydrocarbons?

    PubMed

    Marini, Mauro; Frapiccini, Emanuela

    2014-09-01

    The coastal lagoons are vulnerable systems, located between the land and the sea, enriched by both marine and continental inputs and are among the most productive aquatic ecosystems. The purpose of this work is to understand the influence of the lagoon area sediments on the behaviour of polycyclic aromatic hydrocarbons, through the adsorption coefficient determination. In fact, the sorption of polycyclic aromatic hydrocarbons is an important process because it governs the fate, transport, bioavailability and toxicity of these compounds in sediments. It has been observed that the adsorption of polycyclic aromatic hydrocarbons in a transitional system is the outcome of different factors, such as their sources and physicochemical properties, salinity and sediment composition, hydrology and environmental conditions. The results showed that transitional areas contribute to the polycyclic aromatic hydrocarbon accumulation in the sediment turning it into a trap.

  4. Modeling the Role of Alkanes, Polycyclic Aromatic Hydrocarbons, and Their Oligomers in Secondary Organic Aerosol Formation

    EPA Science Inventory

    A computationally efficient method to treat secondary organic aerosol (SOA) from various length and structure alkanes as well as SOA from polycyclic aromatic hydrocarbons (PAHs) is implemented in the Community Multiscale Air Quality (CMAQ) model to predict aerosol concentrations ...

  5. Identification of persulfate oxidation products of polycyclic aromatic hydrocarbon during remediation of contaminated soil

    EPA Science Inventory

    The extent of PAH transformation, the formation and transformation of reaction byproducts during persulfate oxidation of polycyclic aromatic hydrocarbons (PAHs) in coking plant soil was investigated. Pre-oxidation analyses indicated that oxygen-containing PAHs (oxy-PAHs) existed ...

  6. Identification of persulfate oxidation products of polycyclic aromatic hydrocarbon during remediation of contaminated soil

    EPA Science Inventory

    The extent of PAH transformation, the formation and transformation of reaction byproducts during persulfate oxidation of polycyclic aromatic hydrocarbons (PAHs) in coking plant soil was investigated. Pre-oxidation analyses indicated that oxygen-containing PAHs (oxy-PAHs) existed ...

  7. Charge-transfer complex formation between o-chloranil and a series of polynuclear aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Chakraborty, Biswanath; Mukherjee, Asok K.; Seal, Bejoy K.

    2001-02-01

    The equilibrium constants, enthalpies and entropies of formation of molecular electron donor-acceptor (EDA) complexes of o-chloranil with a series of aromatic hydrocarbons have been determined spectrophotometrically. Spectroscopic and thermodynamic aspects of these complexes have been analysed.

  8. PHOTOACTIVATION AND TOXICITY OF MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBON COMPOUNDS IN MARINE SEDIMENT

    EPA Science Inventory

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration se...

  9. STUDIES ON BIOREMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBON-CONTAMINATED SEDIMENTS: BIOAVAILABILITY, BIODEGRADABILITY, AND TOXICITY ISSUES

    EPA Science Inventory

    The widespread contamination of aquatic sediments by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective bioremediation processes, on which the bioavailability and the toxicity of PAHs often have a significant impact. This research investigated the biode...

  10. MULTISUBSTRATE BIODEGRADATION KINETICS FOR BINARY AND COMPLEX MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    Biodegradation kinetics were studied for binary and complex mixtures of nine polycyclic aromatic hydrocarbons (PAHs): naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 2-ethylnaphthalene, phenanthrene, anthracene, pyrene, fluorene and fluoranthene. Discrepancies between the ...

  11. ASSAYING PARTICLE-BOUND POLYCYCLIC AROMATIC HYDROCARBONS (PAH) FROM ARCHIVED PM2.5 FILTERS

    EPA Science Inventory

    Airborne particulate matter contains numerous organic species, including several polycyclic aromatic hydrocarbons (PAHs) that are known or suspected carcinogens. Existing methods for measuring airborne PAHs are complex and costly, primarily because they are designed to collect...

  12. PHOTOACTIVATION AND TOXICITY OF MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBON COMPOUNDS IN MARINE SEDIMENT

    EPA Science Inventory

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration se...

  13. STUDIES ON BIOREMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBON-CONTAMINATED SEDIMENTS: BIOAVAILABILITY, BIODEGRADABILITY, AND TOXICITY ISSUES

    EPA Science Inventory

    The widespread contamination of aquatic sediments by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective bioremediation processes, on which the bioavailability and the toxicity of PAHs often have a significant impact. This research investigated the biode...

  14. MULTISUBSTRATE BIODEGRADATION KINETICS FOR BINARY AND COMPLEX MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    Biodegradation kinetics were studied for binary and complex mixtures of nine polycyclic aromatic hydrocarbons (PAHs): naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 2-ethylnaphthalene, phenanthrene, anthracene, pyrene, fluorene and fluoranthene. Discrepancies between the ...

  15. DIGESTIVE BIOAVAILABILITY TO A DEPOSIT FEDDER (ARENICOLA MARINA) OF POLYCYCLIC AROMATIC HYDROCARBONS ASSOCIATED WITH ANTHRPOGENIC PARTICLES

    EPA Science Inventory

    Marine sediments around urban areas serve as catch basins for anthropogenic particles containing polycyclic aromatic hydrocarbons (PAHs). Using incubations with gut fluids extracted from a deposit-feeding polychaete (Arenicola marina), we determined the digestive bioavailability ...

  16. The Exobiological Role of Interstellar Polycyclic Aromatic Hydrocarbons and Ices

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Before this time, the composition of interstellar dust was largely guessed-at, the presence of ices in interstellar clouds ignored, and the notion that large, gas phase, carbon rich molecules might be abundant and widespread throughout the interstellar medium (ISM) considered impossible. Today, the composition of dust in the ISM is reasonably well constrained to micron-sized cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. Shrouded within the protective confines of cold, opaque molecular clouds--the birthplace of stars and planets--these cold dust particles secrete mantles of mixed molecular ices whose compositions are also well constrained. Finally, amidst the molecular inventory of these ice mantles are likely to be found polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by the standards of interstellar chemistry, the telltale infrared spectral signature of which is now recognized throughout the Universe. In the first part of this talk, we will review the spectroscopic evidence that forms the basis for the currently accepted abundance and ubiquity of PANs in the ISM. We will then look at a few specific examples which illustrate how experimental and theoretical data can be applied to interpret the interstellar spectra and track how the PAN population evolves as it passes from its formation site in the circumstellar outflows of dying stars, through the various phases of the ISM, and into forniing planetary systems. Nevertheless, despite the fact that PANs likely represent the single largest molecular reservoir of organic carbon in evolving planetary systems, they are not what would be considered

  17. The Exobiological Role of Interstellar Polycyclic Aromatic Hydrocarbons and Ices

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Before this time, the composition of interstellar dust was largely guessed-at, the presence of ices in interstellar clouds ignored, and the notion that large, gas phase, carbon rich molecules might be abundant and widespread throughout the interstellar medium (ISM) considered impossible. Today, the composition of dust in the ISM is reasonably well constrained to micron-sized cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. Shrouded within the protective confines of cold, opaque molecular clouds--the birthplace of stars and planets--these cold dust particles secrete mantles of mixed molecular ices whose compositions are also well constrained. Finally, amidst the molecular inventory of these ice mantles are likely to be found polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by the standards of interstellar chemistry, the telltale infrared spectral signature of which is now recognized throughout the Universe. In the first part of this talk, we will review the spectroscopic evidence that forms the basis for the currently accepted abundance and ubiquity of PANs in the ISM. We will then look at a few specific examples which illustrate how experimental and theoretical data can be applied to interpret the interstellar spectra and track how the PAN population evolves as it passes from its formation site in the circumstellar outflows of dying stars, through the various phases of the ISM, and into forniing planetary systems. Nevertheless, despite the fact that PANs likely represent the single largest molecular reservoir of organic carbon in evolving planetary systems, they are not what would be considered

  18. Recent analytical methods for atmospheric polycyclic aromatic hydrocarbons and their derivatives.

    PubMed

    Hayakawa, Kazuichi; Tang, Ning; Toriba, Akira

    2017-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and nitropolycyclic aromatic hydrocarbons (NPAHs) are ubiquitous environmental pollutants. Moreover, some oxidative metabolites of these pollutants, such as hydroxylated and epoxide PAHs, cause endocrine disruption or produce reactive oxygen species. These compounds have become a large concern from the viewpoint of particulate matter (PM2.5 ) pollution. This report deals with recent studies concerning analytical methods for PAHs, NPAHs and related compounds in atmospheric and biological samples.

  19. Polycyclic aromatic hydrocarbons in Australian coals. III. Structural elucidation by proton nuclear magnetic resonance spectroscopy

    SciTech Connect

    Chaffee, A.L.; Fookes, C.J.R.

    1988-01-01

    The molecular structures of a number of tetra- and pentacyclic aromatic hydrocarbons present in extracts of Victorian brown coal have been unambiguously established by /sup 1/H-NMR. The determined structures support the hypothesis that these polycyclic aromatic hydrocarbons (PAHs) are diagenetically derived from triterpenoid precursors based on the oleanane, ursane and lupane skeletons. The occurrence of diastereoisomerism in these PAHs has been revealed for the first time and the diastereomeric configurations of one pair of triaromatic compounds (XI and XII) defined.

  20. Polycyclic aromatic hydrocarbons and fatal ischemic heart disease

    SciTech Connect

    Burstyn, I.; Kromhout, H.; Partanen, T.; Svane, O.; Langard, S.; Ahrens, W.; Kauppinen, T.; Stucker, I.; Shaham, J.; Heederik, D.; Ferro, G.; Heikkila, P.; Hooiveld, M.; Johansen, C.; Randem, B.G.; Boffetta, P.

    2005-11-01

    Several toxicologic and epidemiologic studies have produced evidence that occupational exposure to polycyclic aromatic hydrocarbons (PAH) is a risk factor for ischemic heart disease (IHD). However, a clear exposure-response relation has not been demonstrated. We studied a relation between exposure to PAH and mortality from IHD (418 cases) in a cohort of 12,367 male asphalt workers from Denmark, Finland, France, Germany, Israel, The Netherlands and Norway. Exposures to benzo(a)pyrene were assessed quantitatively using measurement-driven exposure models. Exposure to coal tar was assessed in a semiquantitative manner on the basis of information supplied by company representatives. We carried out sensitivity analyses to assess potential confounding by tobacco smoking. Both cumulative and average exposure indices for benzo(a)pyrene were positively associated with mortality from IHD. The highest relative risk for fatal IHD was observed for average benzo(a)pyrene exposures of 273 ng/m{sup 3} or higher, for which the relative risk was 1.64(95% confidence interval = 1.13-2.38). Similar results were obtained for coal tar exposure. Sensitivity analysis indicated that even in a realistic scenario of confounding by smoking, we would observe approximately 20% to 40% excess risk in IHD in the highest PAH-exposure categories. Our results lend support to the hypothesis that occupational PAH exposure causes fatal IHD and demonstrate a consistent exposure-response relation for this association.

  1. Occupational exposure to Polycyclic Aromatic Hydrocarbons in wood dust

    NASA Astrophysics Data System (ADS)

    Huynh, C. K.; Schüpfer, P.; Boiteux, P.

    2009-02-01

    Sino-nasal cancer (SNC) represents approximately 3% of Oto-Rhino-Laryngology (ORL) cancers. Adenocarcinoma SNC is an acknowledged occupational disease affecting certain specialized workers such as joiners and cabinetmakers. The high proportion of woodworkers contracting a SNC, subjected to an estimated risk 50 to 100 times higher than that affecting the general population, has suggested various study paths to possible causes such as tannin in hardwood, formaldehyde in plywood and benzo(a)pyrene produced by wood when overheated by cutting tools. It is acknowledged that tannin does not cause cancer to workers exposed to tea dust. Apart from being an irritant, formaldehyde is also classified as carcinogenic. The path involving carcinogenic Polycyclic Aromatic Hydrocarbons (PAHs) emitted by overheated wood is attractive. In this study, we measured the particle size and PAHs content in dust emitted by the processing of wood in an experimental chamber, and in field situation. Quantification of 16 PAHs is carried out by capillary GC-ion trap Mass Spectrometric analysis (GC-MS). The materials tested are rough fir tree, oak, impregnated polyurethane (PU) oak. The wood dust contains carcinogenic PAHs at the level of μg.g-1 or ppm. During sanding operations, the PU varnish-impregnated wood produces 100 times more PAHs in dust than the unfinished wood.

  2. Polycyclic aromatic hydrocarbon (PAH) ecotoxicology in marine ecosystems.

    PubMed

    Hylland, Ketil

    2006-01-08

    Low levels of oil and hence polycyclic aromatic hydrocarbons (PAHs) are naturally present in the marine environment, although levels have increased significantly following human extraction and use of oil and gas. Other major anthropogenic sources of PAHs include smelters, the use of fossil fuels in general, and various methods of waste disposal, especially incineration. There are two major sources for PAHs to marine ecosystems in Norway: the inshore smelter industry, and offshore oil and gas production activities. A distinction is generally made between petrogenic (oil-derived) and pyrogenic (combustion-derived) PAHs. Although petrogenic PAHs appear to be bioavailable to a large extent, pyrogenic PAHs are often associated with soot particles and less available for uptake into organisms. There is extensive evidence linking sediment-associated PAHs to induction of phase-I enzymes, development of DNA adducts, and eventually neoplastic lesions in fish. Most studies have focused on high-molecular-weight, carcinogenic PAHs such as benzo[a]pyrene. It is less clear how two- and three-ring PAHs affect fish, and there is even experimental evidence to indicate that these chemicals may inhibit some components of the phase I system rather than produce induction. There is a need for increased research efforts to clarify biological effects of two- and three-ring PAHs, PAH mixtures, and adaptation processes in marine ecosystems.

  3. Bioavailability of polycyclic aromatic hydrocarbons in the North Sea

    SciTech Connect

    Utvik, T.I.R. . Environmental Section); Johnsen, S. )

    1999-06-15

    Semipermeable membrane devices (SPMDs) and blue mussels (Mytilus edulis) were used to determine the bioavailable fraction of polycyclic aromatic hydrocarbons (PAHs) from oil field produced water in the North Sea. The SPMDs and mussels were deployed at 5, 10, and 50 m depth; 100 and 300 m downstream the discharge point; and at a reference site 16 km away. In both SPMDs and mussels, the concentration of PAHs increased significantly toward the discharge point, with the strongest contribution from the lower molecular weight compounds (naphthalene, phenanthrene, dibenzothiophene, and their C1-C3 alkyl homologues). The relative increase in PAH concentration from the reference site to the site at 100 m was higher for mussels than for the SPMDs. The SPMDs reflect the water-soluble fraction of the PAHs, which is probably the most important route of exposure for organisms at lower trophic levels and presumably also the fraction available for uptake by a respiratory route. Residues in the mussels represent both the water-soluble and particle-bound fraction and give information about bioavailability of the PAHs for organisms at higher trophic levels. The results of this study suggest that both techniques give important information about the bioavailability of PAHs to marine organisms.

  4. Some carcinogenic polycyclic aromatic hydrocarbons by photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Garg, R. K.; Kumar, Pardeep; Ram, R. S.; Zaidi, Zahid H.

    1999-12-01

    Polycyclic aromatic hydrocarbons (PAHs) have attracted spectroscopists, astrophysicts and environmentalist because of their importance in our day to day life. It is well known that epoxides are produced during the metabolism of PAHs and have the requisite chemical reactivity to qualify them for the role as an ultimate carcinogenic form of PAHs. Several carcinogenic PAHs such as 3.4-benzopyrene, 1.2,3.4-dibenzopyrene, 3.4,9.10- dibenzopyrene etc. are found to be present in tobacco smoke and among air pollutants. Although PAH molecules are being studied for last several years by using conventional spectroscopy but no systematic attempt has been made to study non-radiative transitions. In our laboratory, we have studied many PAH molecules by a non-destructive technique with unique capability and sensitivity, known as Photoacoustic (PA) spectroscopy. PA spectroscopy is an analytical and research tool to get information about non-radiative transitions and singlet-triplet electronic transitions, where the conventional spectroscopic technique fails. The study of electronic transitions of some carcinogenic molecules are reported using PA and optical absorption spectra in boric acid glass in the region 250 - 400 nm. The electronic transitions of these molecules observed experimentally, have been interpreted using the optimized geometries and CNDO/S-CI method. A good agreement is found between the experimental and calculated results. Assignments of observed electronic transitions are made on the basis of singlet-triplet electronic transitions. Vibrations attached to these electronic transitions are attributed to the ground state vibrational modes.

  5. Superconductivity in an Alkali Doped Polycyclic Aromatic Hydrocarbon, Picene

    NASA Astrophysics Data System (ADS)

    Tokumoto, Madoka; Shimizu, Fumihiko; Hata, Yoshiaki; Sawai, Shinya; Han, Jing; Inoue, Katsuya

    2010-03-01

    The effect of carrier doping into polycyclic aromatic hydrocarbons, including perylene and pentacene, has been extensively studied.[1] As a result of halogen or alkali metal doping, a drastic increase in electrical conductivity was observed. However, superconductivity has not been reported except the one by Sch"on et al.[2] Recently, Kubozono reported that one of them, i.e. picene (C22H14) showed superconductivity at 20 K by doping with potassium.[3] We anticipate that it will lead to surprising findings of hidden organic molecular superconductors. In this presentation, we will report on the characterization of superconducting properties of alkali doped picene. Instead of ordinary vapor phase alkali metal doping, we employ thermal decomposition of alkali azides, i.e. AN3 where A = K, Rb. We followed the doping procedure of thermal decomposition applied to fullerene C60.[4] A systematic variation of the superconducting transition temperature and fraction are studied as a function of alkali metal composition. [1] H. Akamatu, H. Inokuchi, and Y. Matsunaga, Nature 173 (1954) 168. [2] J. H. Sch"on, Ch. Kloc & B. Batlogg, Nature 406 (2000) 702; retraction, Nature 422 (2003) 93. [3] R. Mitsuhashi, Y. Kubozono et al.: private communication. [4] M. Tokumoto, et al. , J. Phys. Chem. Solids, 54 (1993) 1667.

  6. Smoking increases carcinogenic polycyclic aromatic hydrocarbons in human lung tissue.

    PubMed

    Goldman, R; Enewold, L; Pellizzari, E; Beach, J B; Bowman, E D; Krishnan, S S; Shields, P G

    2001-09-01

    Tobacco smoke is a major source of human exposure to polycyclic aromatic hydrocarbons (PAHs). The concentration of PAHs in lung tissue would reflect an individual's dose, and its variation could perhaps reflect cancer risk. Eleven PAHs were measured in 70 lung tissue samples from cancer-free autopsy donors by gas chromatography-mass spectrometry. There were 37 smokers and 33 nonsmokers as estimated by serum cotinine concentration. The sum of PAH concentrations was higher in smokers (P = 0.01), and there was a dose-response relationship for greater smoking (P < 0.01). Smoking increased the concentration of five PAHs including benzo(a)pyrene, which increased approximately 2-fold. The risk for increasing carcinogenic PAHs (odds ratio, 8.20; 95% confidence interval, 2.39-28.09) was 3-fold compared with noncarcinogenic PAHs (odds ratio, 2.61; 95% confidence interval, 0.75-9.12). A higher concentration of PAHs was detected in the lung tissue of males, although the estimated smoking was similar in males and females. Race was not associated with PAH concentrations overall, but PAH concentrations appeared to be higher in African-American males than in any other group. Age was weakly correlated with an increase in fluoranthene and pyrene. The measurement of PAHs in human lung tissue can be used to estimate the actual dose to the target organ.

  7. Polycyclic aromatic hydrocarbons in milk powders marketed in Uruguay.

    PubMed

    García Londoño, Víctor Alonso; Reynoso, Cora Marcela; Resnik, Silvia

    2017-12-01

    Polycyclic aromatic hydrocarbons (PAHs) occurrence in forty-four samples of milk powder, marketed in Uruguay, was determined. A high-performance liquid chromatography (HPLC) method was applied with fluorescence detector (FLD) and UV-VIS diodes array detector (DAD). Milk powder was fortified with PAHs at three levels producing average recovery higher than 78.6% for all levels. The highest concentration of benzo(a)pyrene (BaP) was 2.85 μg kg(-1) in milk powder. Contamination of samples expressed as the sum of 16 analysed PAHs varied between 5.77 and 427.28 μg kg(-1) and as PAH4 (BaP, chrysene, benzo(a)anthracene and benzo(b)fluoranthene) was between below LOD and 11.54 μg kg(-1). Only one sample exceeded the maximum limit for BaP, but 84% of the commercial milk powders did not comply with the European Union maximum limit for PAH4.

  8. Tailoring Colors by O Annulation of Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Miletić, Tanja; Fermi, Andrea; Orfanos, Ioannis; Avramopoulos, Aggelos; De Leo, Federica; Demitri, Nicola; Bergamini, Giacomo; Ceroni, Paola; Papadopoulos, Manthos G.; Couris, Stelios

    2017-01-01

    Abstract The synthesis of O‐doped polyaromatic hydro‐ carbons in which two polycyclic aromatic hydrocarbon sub units are bridged through one or two O atoms has been achieved. This includes high‐yield ring‐closure key steps that, depending on the reaction conditions, result in the formation of furanyl or pyranopyranyl linkages through intramolecular C−O bond formation. Comprehensive photophysical measurements in solution showed that these compounds have exceptionally high emission yields and tunable absorption properties throughout the UV/Vis spectral region. Electrochemical investigations showed that in all cases O annulation increases the electron‐donor capabilities by raising the HOMO energy level, whereas the LUMO energy level is less affected. Moreover, third‐order nonlinear optical (NLO) measurements on solutions or thin films containing the dyes showed very good values of the second hyperpolarizability. Importantly, poly(methyl methacrylate) films containing the pyranopyranyl derivatives exhibited weak linear absorption and NLO absorption compared to the nonlinearity and NLO refraction, respectively, and thus revealed them to be exceptional organic materials for photonic devices. PMID:27897357

  9. Plant bioindicators for polycyclic aromatic hydrocarbon toxicity in aquatic microcosms

    SciTech Connect

    Gensemer, R.W.; Solomon, K.R.; Day, K.E.; Hodson, P.V.; Servos, M.R.; Greenberg, B.M.

    1994-12-31

    Plant bioindicators are being developed to assess the effects of polycyclic aromatic hydrocarbons (PAHs) in experimental aquatic ecosystems. The approach is to develop and test biomarker assays that are specifically predictive of ecological events at the population and/or community levels of organization in artificial aquatic microcosms. PAH mixtures were introduced into a series of aquatic microcosms using the wood preservative creosote as a PAH source. The authors applied creosote at five dosage levels designed to simulate conductions observed at highly contaminated sites. The growth and biomass of phytoplankton, periphyton, and macrophytes were then measured throughout the growing season, and compared to one or more biomarker assays used to detect PAH contamination. Preliminary results using fluorescence induction on aquatic macrophytes suggest that PAHs can significantly inhibit photosynthesis at even modest concentrations 1--4 hours after exposure. This assay thus is not only a sensitive indicator of PAH exposure, but may also describe mechanisms of PAH toxicity that ultimately reduce biomass or population growth for aquatic plants in these microcosms.

  10. DUSTY WINDS: EXTRAPLANAR POLYCYCLIC AROMATIC HYDROCARBON FEATURES OF NEARBY GALAXIES

    SciTech Connect

    McCormick, Alexander; Veilleux, Sylvain; Rupke, David S. N. E-mail: veilleux@astro.umd.edu

    2013-09-10

    Recent observations have shown the presence of dust and molecular material in galactic winds, but relatively little is known about the distribution of these outflow components. To shed some light on this issue, we have used IRAC images from the Spitzer Space Telescope archive to investigate polycyclic aromatic hydrocarbon (PAH) emission from a sample of 16 local galaxies with known winds. Our focus on nearby sources (median distance 8.6 Mpc) has revealed detailed PAH structure in the winds and allowed us to measure extraplanar PAH emission. We have identified extraplanar PAH features on scales of {approx}0.8-6.0 kpc. We find a nearly linear correlation between the amount of extraplanar PAH emission and the total infrared flux, a proxy for star formation activity in the disk. Our results also indicate a correlation between the height of extraplanar PAH emission and star formation rate surface density, which supports the idea of a surface density threshold on the energy or momentum injection rate for producing detectable extraplanar wind material.

  11. Risk assessment of polycyclic aromatic hydrocarbons in aquatic ecosystems.

    PubMed

    Wu, Bing; Zhang, Rui; Cheng, Shu-Pei; Ford, Timothy; Li, Ai-Min; Zhang, Xu-Xiang

    2011-07-01

    A probability risk assessment of anthracene, benzo(a)pyrene, chrysene, fluorene, phenanthrene and pyrene was carried out to examine the ecological risk of these six polycyclic aromatic hydrocarbons (PAHs) in aquatic ecosystems in China. The literature on PAH concentrations in surface water in China was collected to evaluate the environmental exposure concentrations (EEC). The 10th percentile of predicted no observed effect concentration (PNEC(10%)) of PAHs, calculated according to the data from the USEPA AQUIRE database and regulatory reviews, was applied as the toxicity assessment endpoint. The ratio of EEC and PNEC(10%), expressed as a risk quotient (RQ), was used to characterize the risk value. Bootstrapping method and Monte Carlo simulation were utilized to calculate the distribution of EEC, PNEC(10%), RQ and associated uncertainties. Risk assessment showed that reliable maximum RQs of anthracene, benzo(a)pyrene, chrysene, fluorene and phenanthrene were in the range of 0.064-0.755, lower than the acceptable value of 1. However, the reliable maximum RQ of pyrene was 1.39, indicating its potential ecological risk. Notwithstanding the uncertainty, these results suggest that the aquatic ecosystems with high PAH concentrations might pose potential ecological risks, and concerted efforts are required to ensure that surface water is protected.

  12. Mild extractability and bioavailability of polycyclic aromatic hydrocarbons in soil

    SciTech Connect

    Tang, J.; Alexander, M.

    1999-12-01

    A study was conducted to determine the relationship between bioavailability of unaged and aged polycyclic aromatic hydrocarbons (PAHs) in soil and the amounts detected by mild solvent extraction. More aged than unaged anthracene remained in Lima loam following introduction of earthworms (Eisenia foetida), a mixed culture containing anthracene-degrading microorganisms, or earthworms or wheat after bacterial biodegradation of the compound. Aging decreased the percentage of anthracene recovered by mild extraction with n-butanol from soil following introduction of earthworms, growth of wheat, biodegradation by bacteria, or when maintained sterile. Biodegradation resulted in a marked decrease in the percentage of aged and unaged anthracene recovered from soil by mild extraction with n-butanol or ethyl acetate. Aging of fluoranthene and pyrene decreased the amount removed by mild extraction with n-butanol, ethyl acetate, and propanol. The uptake of aged and unaged anthracene, fluoranthene, and pyrene by earthworms was correlated with the amounts recovered from soil by mild extraction with n-butanol, propanol, and ethyl acetate. The retention of aged and unaged anthracene by wheat and barley was correlated with the amounts recovered from soil by the same procedure. The authors suggest that mild extraction with organic solvents can be used to predict the bioavailability of PAHs in soil.

  13. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Hydrocarbon Cations

    NASA Technical Reports Server (NTRS)

    Hudgins, D. M.; Allamandola, L. J.

    1995-01-01

    Gaseous, ionized polycyclic aromatic hydrocarbons (PAHs) are thought to be responsible for a very common family of interstellar infrared emission bands. Here the near- and mid-infrared spectra of the cations of the five most thermodynamically favored PAHs up to coronene: phenanthrene, pyrene, benzo(e)pyrene, benzo-(ghi)perylene, and coronene, are presented to test this hypothesis. For those molecules that have been studied previously (pyrene, pyrene-d(sub 10), and coronene), band positions and relative intensities are in agreement. In all of these cases we report additional features. Absolute integrated absorbance values are given for the phenanthrene, perdeuteriophenanthrene, pyrene, benzo(ghi]perylene, and coronene cations. With the exception of coronene, the cation bands corresponding to the CC modes are typically 2-5 times more intense than those of the CH out-of-plane bending vibrations. For the cations, the CC stretching and CH in-plane bending modes give rise to bands that are an order of magnitude stronger than those of the neutral species, and the CH out-of-plane bends produce bands that are 5-20 times weaker than those of the neutral species. This behavior is similar to that found in most other PAH cations studied to date. The astronomical implications of these PAH cation spectra are also discussed.

  14. Surface motility of polycyclic aromatic hydrocarbon (PAH)-degrading mycobacteria.

    PubMed

    Fredslund, Line; Sniegowski, Kristel; Wick, Lukas Y; Jacobsen, Carsten S; De Mot, René; Springael, Dirk

    2008-05-01

    Surface motility of the polycyclic aromatic hydrocarbon (PAH)-degrading Mycobacterium gilvum VM552 was tested on agar and agarose plates prepared with varying amounts of gelling agents in the presence and absence of phenanthrene. Extensive spreading, originating from the point of inoculation, was observed on the surfaces of plates prepared with up to 0.3% agar and up to 0.6% agarose. The spreading velocities were 15.8 mm d(-1) on 0.3% agar and 19.5 mm d(-1) on 0.3% agarose plates. No evidence was found of accelerated or directed surface motility towards PAH crystals. The morphology of spreading M. gilvum VM552 colonies depended on both the carbon source and the type and concentration of the gelling agent. In 0.3% agar plates, M. gilvum VM552 cells were organized in 1-2-mm-wide branches of 1-5 cm length, while on agarose they slid as a homogenous monolayer across the surface. Microscopic inspection of the colonies on agar surfaces suggested that formation of branches was the combined effect of: (i) cell division and growth at the tip of a branch; (ii) propulsion of cells from the mature basal parts of a branch towards the tip; and (iii) physiologically induced reduced friction between cells and agar. Similar surface migration patterns were observed for the anthracene-degrading M. frederiksbergense LB501T.

  15. Atmospheric transport and outflow of polycyclic aromatic hydrocarbons from China

    SciTech Connect

    Chang Lang; Shu Tao; Wenxin Liu; Yanxu Zhang; Staci Simonich

    2008-07-15

    A potential receptor influence function (PRIF) model, based on air mass forward trajectory calculations, was applied to simulate the atmospheric transport and outflow of polycyclic aromatic hydrocarbons (PAHs) emitted from China. With a 10 day atmospheric transport time, most neighboring countries and regions, as well as remote regions, were influenced by PAH emissions from China. Of the total annual PAH emission of 114 Gg, 92.7% remained within the boundary of mainland China. The geographic distribution of PRIFs within China was similar to the geographic distribution of the source regions, with high values in the North China Plain, Sichuan Basin, Shanxi, and Guizhou province. The Tarim basin and Sichuan basin had unfavorable meteorological conditions for PAH outflow. Of the PAH outflow from China (8092 tons or 7.1% of the total annual PAH emission), approximately 69.9% (5655 tons) reached no further than the offshore environment of mainland China and the South China Sea. Approximate 227, 71, 746, and 131 tons PAHs reached North Korea, South Korea, Russia-Mongolia region, and Japan, respectively, 2-4 days after the emission. Only 1.4 tons PAHs reached North America after more than 9 days. Interannual variation in the eastward PAH outflow was positively correlated to cold episodes of El Nino/Southern Oscillation. However, trans-Pacific atmospheric transport of PAHs from China was correlated to Pacific North America index (PNA) which is associated with the strength and position of westerly winds. 38 refs., 4 figs.

  16. Determinants of polycyclic aromatic hydrocarbon levels in house dust.

    PubMed

    Whitehead, Todd; Metayer, Catherine; Gunier, Robert B; Ward, Mary H; Nishioka, Marcia G; Buffler, Patricia; Rappaport, Stephen M

    2011-01-01

    Estimation of human exposures to polycyclic aromatic hydrocarbons (PAHs) is often desired for the epidemiological studies of cancer. One way to obtain information about indoor levels of PAHs is to measure these chemicals in house dust. In this study, we evaluated the predictive value of self-reported and geographic data for estimating measured levels of nine PAHs in house dust from 583 households in the Northern California Childhood Leukemia Study (NCCLS). Using multivariable linear regression models, we evaluated the effects on house-dust PAH concentrations from the following covariates: residential heating sources, smoking habits, house characteristics, and outdoor emission sources. House dust was collected from 2001 to 2007, using both high-volume surface samplers and household vacuum cleaners, and was analyzed for nine PAHs using gas chromatography-mass spectrometry. All nine PAHs were detected in more than 93% of dust samples, with median concentrations ranging from 14 to 94 ng/g dust. Statistically significant effects on PAH concentrations in house dust were found for gas heating, outdoor PAH concentrations, and residence age. Yet, the optimal regression model only explained 15% of the variation in PAH levels in house dust. As self-reported data and outdoor PAH sources were only marginally predictive of observed PAH levels, we recommend that PAH concentrations be measured directly in dust samples for use in epidemiological studies.

  17. Stochastic atomistic simulation of polycyclic aromatic hydrocarbon growth in combustion.

    PubMed

    Lai, Jason Y W; Elvati, Paolo; Violi, Angela

    2014-05-07

    Nanoparticles formed in gas phase environments, such as combustion, have an important impact on society both as engineering components and hazardous pollutants. A new software package, the Stochastic Nanoparticle Simulator (SNAPS) was developed, applying a stochastic chemical kinetics methodology, to computationally investigate the growth of nanoparticle precursors through trajectories of chemical reactions. SNAPS was applied to characterize the growth of polycyclic aromatic hydrocarbons (PAHs), important precursors of carbonaceous nanoparticles and soot, in a premixed laminar benzene flame, using a concurrently developed PAH growth chemical reaction mechanism, as well as an existing benzene oxidation mechanism. Simulations of PAH ensembles successfully predicted existing experimentally measured data and provided novel insight into chemical composition and reaction pathways. The most commonly observed PAH isomers in simulations showed the importance of 5-membered rings, which contrasts with traditionally assumed compositions involving primarily pericondensed 6-membered rings. In addition, the chemical growth of PAHs involved complex sequences of highly reversible reactions, rather than relatively direct routes of additions and ring closures. Furthermore, the most common reactions involved 5-membered rings, suggesting their importance to PAH growth. The framework developed in this work will facilitate future investigation of particle inception and soot formation and will benefit engineering of novel combustion technologies to mitigate harmful emissions.

  18. Fullerenes, fulleranes and polycyclic aromatic hydrocarbons in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Becker, L.; Bunch, T. E.

    1997-01-01

    In this paper, we confirm our earlier observations of fullerenes (C60 and C70) in the Allende meteorite (Becker et al., 1994a, 1995). Fullerene C60 was also detected in two separate C-rich (approximately 0.5-1.0%) dark inclusions (Heymann et al., 1987) that were hand picked from the Allende sample. The amounts of C60 detected were approximately 5 and approximately 10 ppb, respectively, which is considerably less than what was detected in the Allende 15/21 sample (approximately 100 ppb; Becker et al., 1994a, 1995). This suggests that fullerenes are heterogeneously distributed in the meteorite. In addition, we present evidence for fulleranes, (C60Hx), detected in separate samples by laser desorption (reflectron) time-of-flight (TOF) mass spectrometry (LDMS). The LDMS spectra for the Allende extracts were remarkably similar to the spectra generated for the synthetic fullerane mixtures. Several fullerane products were synthesized using a Rh catalyst (Becker et al., 1993a) and separated using high-performance liquid chromatography (HPLC). Polycyclic aromatic hydrocarbons (PAHs) were also observed ppm levels) that included benzofluoranthene and corannulene, a cup-shaped molecule that has been proposed as a precursor molecule to the formation of fullerenes in the gas phase (Pope et al., 1993).

  19. Dusty Winds: Extraplanar Polycyclic Aromatic Hydrocarbon Features of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    McCormick, Alexander; Veilleux, Sylvain; Rupke, David S. N.

    2013-09-01

    Recent observations have shown the presence of dust and molecular material in galactic winds, but relatively little is known about the distribution of these outflow components. To shed some light on this issue, we have used IRAC images from the Spitzer Space Telescope archive to investigate polycyclic aromatic hydrocarbon (PAH) emission from a sample of 16 local galaxies with known winds. Our focus on nearby sources (median distance 8.6 Mpc) has revealed detailed PAH structure in the winds and allowed us to measure extraplanar PAH emission. We have identified extraplanar PAH features on scales of ~0.8-6.0 kpc. We find a nearly linear correlation between the amount of extraplanar PAH emission and the total infrared flux, a proxy for star formation activity in the disk. Our results also indicate a correlation between the height of extraplanar PAH emission and star formation rate surface density, which supports the idea of a surface density threshold on the energy or momentum injection rate for producing detectable extraplanar wind material.

  20. Formation History of Polycyclic Aromatic Hydrocarbons in Galaxies

    NASA Astrophysics Data System (ADS)

    Seok, J. Y.; Hirashita, H.; Asano, R.

    Polycyclic aromatic hydrocarbons (PAHs) are one of the major dust components in the interstellar medium (ISM). We present our model calculations for the PAH abundance in the ISM on a galaxy-evolution timescale. We consider shattering of carbonaceous dust grains as the formation mechanism of PAHs while the PAH abundance is reduced by coagulation onto dust grains, destruction by supernova shocks, and injection into star formation. We implement these processes in an one-zone chemical evolution model to obtain the evolution of the PAH abundance in a galaxy. We find that PAH formation becomes accelerated at a certain metallicity at which shattering becomes efficient. For PAH destruction, while supernova shock is a primary mechanism in the metal-poor environment, coagulation is dominant in the metal-rich environment. We compare the calculated PAH abundances with the observed abundances in galaxies with a wide metallicity range. Our models reproduce both the low PAH abundance in low metallicity galaxies and the metallicity-dependence of the PAH abundance in high-metallicity galaxies. We conclude that the observational trend can be explained by shattering of carbonaceous grains being the source of PAHs in the ISM.

  1. An Evaluation of Polycyclic Aromatic Hydrocarbon Uptake into Polyethylene Samplers

    NASA Astrophysics Data System (ADS)

    Martynowych, D. J.; McDonough, C.; Lohmann, R.

    2013-12-01

    Polyethylene passive samplers (PEs) are simple reliable tools that have been widely used in the detection of hydrophobic organic compounds. Thick (>200μm or greater) PEs have important applications to specific sampling scenarios including biological assays, deployment on ships and aircraft (towing) and long term sampling, however little is known about their uptake kinetics. This study aimed to develop an accurate understanding of the uptake kinetics of these thick PEs. PE passive samplers of equal surface area, but differing thicknesses were co-deployed in the surface water and air of lower Narragansett Bay in 2013 to characterize differences in their uptake of polycyclic aromatic hydrocarbons (PAHs). PE samplers of approximately 50, 800, and 1600μm thicknesses were analyzed for 38 parent and alkylated PAHs, with replicate sampler reproducibility mostly within 25%. A number of smaller PAHs (typically those with a molecular weight less than 180) analyzed over a 4 week deployment equilibrated, while the larger molecules remained in the linear or curve linear uptake stages. Results from a second, 24 week deployment of 800μm and 1600μm samplers in surface waters suggest that all 38 compounds studied remained in the linear uptake stage. The PE-weight normalized concentration ratio of 1600μm to 800μm sampler fell below 1 for all analytes, implying equilibrium had not been established.

  2. Remediation of Polycyclic Aromatic Hydrocarbons in Soil Using Cosolvent Flushing

    NASA Astrophysics Data System (ADS)

    Birak, P. S.; Hauswirth, S.; Miller, C. T.

    2010-12-01

    The ability of cosolvents to increase the solubility of hydrophobic organic contaminants has been well documented in the literature; however, few studies have examined its effectiveness with respect to field contaminated media. In this work, we examine the use of methanol flushing as a possible in-situ remediation technology using an aged, tar-contaminated field soil from a former manufactured gas plant containing polycyclic aromatic hydrocarbons (PAHs). For 15 PAHs, batch experiments were used to determine the change in the equilibrium partitioning coefficient with cosolvent fraction based on a log-linear cosolvency model. Column experiments were conducted to examine the removal of PAHs using methanol solutions as a function of pore volumes flushed. Experiments were conducted in a 25-cm long glass column. Effluent concentrations were determined for PAHs. Methanol concentrations in effluent samples were also determined. A numerical model with coupled flow and transport equations was used to predict effluent concentrations of methanol and PAHs. During cosolvent flushing with 95% methanol solutions, approximately 80% of the total PAH mass was removed in the first four pore volumes. The remaining mass in the column appeared to be mass transfer limited, particularly for the low molecular weight PAHs.

  3. Aromatized arborane/fernane hydrocarbons as biomarkers for cordaites

    NASA Astrophysics Data System (ADS)

    Auras, Stefan; Wilde, Volker; Scheffler, Kay; Hoernes, Stephan; Kerp, Hans; Püttmann, Wilhelm

    2006-12-01

    Previous palaeobotanical and palynological studies on coals from Euramerican Pennsylvanian (≡ Late Carboniferous) coal basins indicate a major change in coal-swamp floras, especially at the Westphalian Stephanian (≈Kasimovian Gzhelian, according to Geological Time Scale 2004) boundary. A flora dominated by arborescent lycophytes was replaced by a vegetation dominated by marattialean tree ferns in various Euramerican coal basins. Earlier combined palynological and organic geochemical studies on Westphalian/Stephanian coals and shales from the Saar-Nahe Basin (Germany) revealed that the distribution of aromatized arborane/fernane hydrocarbons in solvent extracts reflects the increasing importance of seed plants, especially cordaites (extinct group of gymnosperms), conifers and pteridosperms. However, the biological source of the precursor molecules could not be specified. To clarify if the arborane/fernane derivatives MATH, MAPH, DAPH 1, and DAPH 2 in Westphalian/Stephanian coals can be assigned to one of the three potential source plant groups, we analyzed coals, sediments and fossil plant remains from different Euramerican locations with respect to their biomarker composition and stable carbon isotopic composition. Thereby, stable carbon isotopic ratios showed only insignificant variations between Westphalian and Stephanian samples and proved to be an unsuitable tool to describe floral changes during the Westphalian/Stephanian of the Saar-Nahe Basin. In contrast, we were able to show for the first time that MATH, MAPH, DAPH 1 and DAPH 2 are prominent constituents only in extracts of cordaitean macrofossils and can therefore be regarded as biomarkers for this group of gymnosperms.

  4. Investigation of polycyclic aromatic hydrocarbons from coal gasification.

    PubMed

    Zhou, Hong-cang; Jin, Bao-sheng; Zhong, Zhao-ping; Huang, Ya-ji; Xiao, Rui; Li, Da-ji

    2005-01-01

    The hazardous organic pollutants generated from coal gasification, such as polycyclic aromatic hydrocarbons(PAHs), are highly mutagenic and carcinogenic. More researchers have paid particular attention to them. Using air and steam as gasification medium, the experiments of three kinds of coals were carried out in a bench-scale atmospheric fluidized bed gasifier. The contents of the 16 PAHs specified by US EPA in raw coal, slag, bag house coke, cyclone coke and gas were measured by HPLC to study the contents of PAHs in raw coal and the effects of the inherent characters of coals on the formation and release of PAHs in coal gasification. The experimental results showed that the distributions of PAHs in the gasified products are similar to raw coals and the total-PAHs content in coal gasification is higher than in raw coal(except Coal C). The total-PAHs contents increase and then decrease with the rise of fixed carbon and sulfur of coal while there has an opposite variation when volatile matters content increase. The quantities of PAHs reduce with the increase of ash content or the drop of heating value during coal gasification.

  5. Polycyclic aromatic hydrocarbons from wood pyrolyis in charcoal production furnaces.

    PubMed

    Barbosa, Joyce Mara dos Santos; Ré-Poppi, Nilva; Santiago-Silva, Mary

    2006-07-01

    Polycyclic aromatic hydrocarbons (PAH) were measured in smoke samples from wood carbonization during charcoal production, in both particulate matter (PM) and gaseous phases. Samples were acquired using a medium-volume air sampler at 1.5 m distance from the furnace. Particle-bound PAH were collected on Fluoropore polytetrafluoroethylene filters and gas-phase PAH were collected into sorbent tubes with XAD-2 resin. PAH were extracted with dichloromethane-methanol and analyzed using gas chromatography-mass spectrometry. The results showed total emission from the furnace of 26 microg/m3 for the 16 PAH and 2.8 microg/m3 for the 10 genotoxic PAH (from fluoranthene to benzo[g,h,i]perylene). High emission of 16 PAH in the first 8 h of wood carbonization was detected (64 microg/m3; 56% of the total emission). Associated with PM, 11% of the total emission of 16 PAH (in both phases) and 60% of 10 genotoxic PAH were found. Relative ratios (for example, [Phe]/[Phe]+[Ant]) for the PAH of the same molecular weight were obtained and compared with the published data. The concentrations of benzo[a]pyrene equivalent (BaP(eq)) were estimated using the list of toxic equivalent factors suggested by . The values of 0.30 and 0.06 mg/m3 were obtained for the total concentrations of BaP(eq) in PM and gaseous phase, respectively.

  6. Polycyclic Aromatic Hydrocarbons in drinking water of Tehran, Iran.

    PubMed

    Karyab, Hamid; Yunesian, Masud; Nasseri, Simin; Mahvi, Amir Hosein; Ahmadkhaniha, Reza; Rastkari, Noushin; Nabizadeh, Ramin

    2013-08-05

    Distribution and seasonal variation of sixteen priority polycyclic aromatic hydrocarbons (PAHs) were investigated in the drinking water of Tehran, the capital of Iran. Detected single and total PAHs concentrations were in the range of 2.01-38.96 and 32.45-733.10 ng/L, respectively, which were quite high compared to the values recorded in other areas of the world. The average occurrence of PAHs with high molecular weights was 79.55%; for example, chrysene occurred in 60.6% of the samples, with a maximum concentration of 438.96 ng/L. In addition, mean carcinogen to non-carcinogen PAHs ratio was 63.84. Although the concentration of benzo[a]pyrene, as an indicator of water pollution to PAHs, was lower than the guideline value proposed by World Health Organization (WHO) as well as that of Iranian National Drinking Water Standards for all of the samples, the obtained results indicated that carcinogen PAHs present in the drinking water of Tehran can cause threats to human health.

  7. Fugacity analysis of polycyclic aromatic hydrocarbons between microplastics and seawater

    NASA Astrophysics Data System (ADS)

    Lee, Hwang; Chang, Sein; Kim, Seung-Kyu; Kwon, Jung-Hwan

    2017-01-01

    Recently, the accumulation of plastic debris in the marine environment has become a great concern worldwide. Although plastics are biologically and chemically inert, plastic debris has been suspected of causing adverse effects on ecosystems due to the increase in reactivity by size reduction and/or micropollutants associated with plastics. Because of the high sorption capacity of microplastics toward organic micropollutants, it is suspected that microplastics may play roles in the distribution and fate of micropollutants. In order to quantitatively evaluate the "net flow" of environmental contaminants in water-plastic-organism systems, a fugacity analysis was conducted using concentrations of polycyclic aromatic hydrocarbons (PAHs) in open oceans and in polyethylene as a representative material of plastic debris. Ratio of fugacity in polyethylene to that in seawater showed a decreasing trend with increasing partition coefficient between polyethylene and seawater (KPE/sw). This indicates that phase equilibrium between polyethylene and seawater is not attained for higher molecular weight PAHs. Disequilibrium of high molecular weight PAHs suggests that transfer from seawater to plastic debris is thermodynamically driven and the role of plastic debris as a vector to transfer them to living organisms would be minimal. However, additives may slowly migrate from plastics into the environment causing potentially serious effects on ecosystems.

  8. Molecular Spectroscopy in Astrophysics: The Case of Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincent, Donald L. (Technical Monitor)

    2000-01-01

    The role of molecular spectroscopy in astrophysics and astrochemistry is discussed in the context of the study of large, complex, carbon-bearing molecules, namely, Polycyclic Aromatic Hydrocarbons or PAHs. These molecular species are now thought to be widespread in the interstellar medium in their neutral and ionized forms. Identifying the carriers responsible for unidentified interstellar spectral bands will allow to derive important information on cosmic elemental abundances as well as information on the physical conditions (density, temperature) reigning in specific interstellar environments. These, in turn, are key elements for a correct understanding of the energetic mechanisms that govern the origin and the evolution of the interstellar medium. A multidisciplinary approach - combining astronomical observations with laboratory simulations and theoretical modeling - is required to address these complex issues. Laboratory spectra of several PAHs, isolated at low temperature in inert gas matrices or seeded in a supersonic jet expansion, are discussed here and compared to the astronomical spectra of reddened, early type, stars. The electronic spectroscopy of PAHs in the ultraviolet, visible, and near-infrared domains is reviewed and an assessment of the potential contribution of PAHs to the interstellar extinction in the ultraviolet and in the visible is discussed.

  9. Polycyclic aromatic hydrocarbons in household dust near diesel transport routes.

    PubMed

    Kuo, Chung-Yih; Chen, Heng-Chun; Cheng, Fang-Ching; Huang, Li-Ru; Chien, Po-Shan; Wang, Jing-Ya

    2012-02-01

    A river-dredging project has been undertaken in Nantou, Taiwan. A large number of diesel vehicles carrying gravel and sand shuttle back and forth on the main roads. Ten stations along major thoroughfares were selected as the exposure sites for testing, while a small village located about 9 km from a main traffic route was selected as the control site. Levels of household dust loading at the exposure sites (60.3 mg/m(2)) were significantly higher than those at the control site (38.2 mg/m(2)). The loading (μg/m(2)) of t-PAHs (total polycyclic aromatic hydrocarbons) in the household dust at the exposure sites was significantly higher (P < 0.05) than was the case at the control site. The diagnostic ratios of PAHs showed that diesel emissions were the dominant source of PAHs at the exposure sites. The lack of a significant correlation between the concentrations of Fe and t-PAHs suggested that the t-PAHs in household dust might come from diverse sources. However, a significant correlation (P = 0.003) between the concentrations of Mo and t-PAHs implied that the most of the t-PAHs in the household dust might have resulted from diesel emissions. The lifetime cancer risks of BaP(eq) from household dust exposure were markedly higher than those resulting from inhalation exposure. © Springer Science+Business Media B.V. 2011

  10. Polycyclic aromatic hydrocarbon ions and the diffuse interstellar bands

    NASA Technical Reports Server (NTRS)

    Salama, F.; Allamandola, L. J.

    1995-01-01

    Neutral naphthalene (C10H8), phenanthrene (C14H10), and pyrene (C16H10) absorb strongly in the ultraviolet and may contribute to the extinction curve. High abundances are required to produce detectable structures. The cations of these Polycyclic Aromatic Hydrocarbons (PAHs) absorb in the visible. C10H8(+) has 12 discrete absorption bands which fall between 6800 and 5000 A. The strongest band at 6741 A falls close to the weak 6742 A diffuse interstellar band (DIB). Five other weaker bands also match DIBs. The possibility that C10H8(+) is responsible for some of the DIBs can be tested by searching for new DIBS at 6520, 6151, and 5965 A, other moderately strong naphthalene cation band positions. If C10H8(+) is indeed responsible for the 6742 A feature, it accounts for 0.3% of the cosmic carbon. The spectrum of C16H10(+) is dominated by a strong band at 4435 A in an Ar matrix and 4395 A in a Ne matrix, a position which falls very close to the strongest DIB, that at 4430 A. If C16H10(+), or a closely related pyrene-like ion is indeed responsible for the 4430 A feature, it accounts for 0.2% of the cosmic carbon. We also report an intense, very broad UV-to-visible continuum which is associated with both ions and could explain how PAHs convert interstellar UV and visible radiation into IR.

  11. Polycyclic Aromatic Hydrocarbon Ionization Energy Lowering in Water Ices

    NASA Technical Reports Server (NTRS)

    Gudipati, Murthy S.; Allamandola, Louis J.

    2004-01-01

    In studying various interstellar and solar system ice analogs, we have recently found that upon vacuum ultraviolet photolysis, polycyclic aromatic hydrocarbons (PAHs) frozen in water ice at low temperatures are easily ionized and indefinitely stabilized as trapped ions (Gudipati; Gudipati & Allamandola). Here we report the first experimental study that shows that PAH ionization energy is significantly lowered in PAH/H2O ices, in agreement with recent theoretical work (Woon & Park). The ionization energy (IE) of the PAH studied here, quaterrylene (C40H20, IE = 6.11 eV), is lowered by up to 2.11 eV in water ice. PAH ionization energy reduction in low-temperature water ice substantially expands the astronomical regions in which trapped ions and electrons may be important. This reduction in ionization energy should also hold for other types of trapped species in waterrich interstellar, circumstellar, and solar system ices. Subject headings: ISM: clouds - methods: laboratory - molecular processes - radiation mechanisms: nonthermal -ultraviolet: ISM - ultraviolet: solar system

  12. Cardiac Autonomic Dysfunction from Occupational Exposure to Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Lee, Mi-Sun; Magari, Shannon; Christiani, David C.

    2013-01-01

    Objectives Polycyclic aromatic hydrocarbons (PAHs) exposures have been associated with cardiopulmonary mortality and cardiovascular events. This study investigated the association between a biological marker of PAHs exposure, assessed by urinary 1-hydroxypyrene (1-OHP), and heart rate variability (HRV) in an occupational cohort of boilermakers. Methods Continuous 24-hour monitoring of the ambulatory electrocardiogram (ECG) and pre and post shift urinary 1-OHP were repeated over extended periods of the work week. Mixed effects models were fit for the 5-minute standard deviation of normal-to-normal intervals (SDNN) in relation to urinary 1-OHP levels pre and post workshift on the day they wore the monitor, controlling for potential confounders. Results We found a significant decrease in 5-min SDNN during work of −13.6% (95% confidence interval, −17.2% to −9.8%) for every standard deviation (0.53 microgram/gram [μg/g] creatinine) increase in the next-morning pre-shift 1-OHP levels. The magnitude of reduction in 5-min SDNN were largest during the late night period after work and increased with every standard deviation (0.46 μg/g creatinine) increase in post-shift 1-OHP levels. Conclusion This is the first report providing evidence that occupational exposure to PAHs is associated with altered cardiac autonomic function. Acute exposure to PAHs may be an important predictor of cardiovascular disease risk in the work environment. PMID:21172795

  13. A critical review of polycyclic aromatic hydrocarbon phototoxicity models.

    PubMed

    Marzooghi, Solmaz; Di Toro, Dominic M

    2016-12-24

    Polycyclic aromatic hydrocarbons (PAHs) are known to exhibit photo-induced toxicity. Hundreds to thousands of PAH parent and substituted compounds are found in the environment, and developing a predictive model applicable to a wide variety of PAHs and organisms is a necessary precursor to environmental risk assessments. There has been evolutionary progress in phototoxicity modeling since 1977. In the present study, a comprehensive review of the models developed to predict phototoxicity of PAHs is presented. The contributions of each of the models to the state of the art are discussed. The models are compared in terms of their scope of applicability to different organisms, PAHs, endpoints (median lethal time and median lethal concentration), and light conditions. The current state of the science that accounts for the key elements of phototoxicity modeling, including the differences in species sensitivity, the partitioning of PAHs into the target lipid of the organisms, and light absorption by the chemicals, as well as light exposure time and conditions, is discussed. In addition, the remaining issues that need to be addressed are explored: the effect of time-varying exposures to light and PAH concentrations, and the lack of a mechanistic understanding that can explain the failure of the Bunsen-Roscoe law of reciprocity. Environ Toxicol Chem 2016;9999:1-11. © 2016 SETAC.

  14. Fugacity analysis of polycyclic aromatic hydrocarbons between microplastics and seawater

    NASA Astrophysics Data System (ADS)

    Lee, Hwang; Chang, Sein; Kim, Seung-Kyu; Kwon, Jung-Hwan

    2017-03-01

    Recently, the accumulation of plastic debris in the marine environment has become a great concern worldwide. Although plastics are biologically and chemically inert, plastic debris has been suspected of causing adverse effects on ecosystems due to the increase in reactivity by size reduction and/or micropollutants associated with plastics. Because of the high sorption capacity of microplastics toward organic micropollutants, it is suspected that microplastics may play roles in the distribution and fate of micropollutants. In order to quantitatively evaluate the "net flow" of environmental contaminants in water-plastic-organism systems, a fugacity analysis was conducted using concentrations of polycyclic aromatic hydrocarbons (PAHs) in open oceans and in polyethylene as a representative material of plastic debris. Ratio of fugacity in polyethylene to that in seawater showed a decreasing trend with increasing partition coefficient between polyethylene and seawater (KPE/sw). This indicates that phase equilibrium between polyethylene and seawater is not attained for higher molecular weight PAHs. Disequilibrium of high molecular weight PAHs suggests that transfer from seawater to plastic debris is thermodynamically driven and the role of plastic debris as a vector to transfer them to living organisms would be minimal. However, additives may slowly migrate from plastics into the environment causing potentially serious effects on ecosystems.

  15. [Comparison of polycyclic aromatic hydrocarbons (PAHS) contents in bakery products].

    PubMed

    Ciemniak, Artur; Witczak, Agata

    2010-01-01

    Polycyclic aromatic hydrocarbons are a group of well-known chemical carcinogens with a wide distribution in the environment and formed by the incomplete combustion of organic substances. PAHs have attracted most attention because of their carcinogenic potential. PAHs have been found as contaminants in different food categories such as dairy products, smoked and barbecued meat, vegetables, fruits, oils, coffee, tea, and cereals. Processing of food at high temperatures increases the amount of PAHs in the food Diet is the major source of human exposure to PAHs. The major dietary source of PAH are oils and fats, cereals products and vegetables. The aims of this study were to determine the content levels of 23 PAHs in various sorts of bread. The analytical procedure was based Soxhlet extraction with n--hexane and cleaned up in aflorisil cartridge. Chromatographic separation was performed using gas chromatography (HP 6890) coupled to mass spectrometry (HP 5973). The total concentration of PAHs was low end varied between 2.61 microg/kg to 43.4 microg/kg. Furthermore, the results revealed differences in concentrations of PAHs between rind and bread-crumb.

  16. Polycyclic Aromatic Hydrocarbons Transformations in an Urban Fog

    NASA Astrophysics Data System (ADS)

    Valsaraj, K.; Wornat, M. J.; Chen, J.; Ehrenhauser, F.

    2010-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are generated from incomplete combustion of fuels, coal-fired power plants and other anthropogenic activities. These are ubiquitous in all environments, especially the atmosphere. PAHs generally are found in the gaseous form and associated with the particles in the atmosphere. They are also found in the atmospheric water present in the form of fog, mist, rain, snow and ice. Particles (aerosols) in the atmosphere invariably contain a thin film of water which tends to have a high affinity for the adsorption of gaseous PAHs. Molecular dynamic simulations clearly show that the air-water interface is a preferable surface for adsorption of large molecular weight PAHs and atmospheric oxidants (e.g., O3, OH, 1O2, NO3). Thus, photochemical transformation of adsorbed PAHs in fog droplets is a possibility in the atmosphere. This could lead to the formation of water-soluble oxy-PAHs which are potential precursors for secondary organic aerosols (SOAs). Field work in Baton Rouge and Houston combined with laboratory work in thin film reactors have shown that this hypothesis is substantially correct. Field data on fog and aerosols (pre- and post-fog) will be enumerated. Laboratory work and their implications will be summarized. The thin film surface environment resulted in enhanced reaction kinetics compared to bulk phase kinetics. The influence of surface reactions on the product compositions is evaluated by performing experiments with different film thicknesses.

  17. Polycyclic aromatic hydrocarbons: levels and phase distributions in preschool microenvironment.

    PubMed

    Oliveira, M; Slezakova, K; Delerue-Matos, C; Pereira, M C; Morais, S

    2015-10-01

    This work aims to characterize levels and phase distribution of polycyclic aromatic hydrocarbons (PAHs) in indoor air of preschool environment and to assess the impact of outdoor PAH emissions to indoor environment. Gaseous and particulate (PM1 and PM(2.5)) PAHs (16 USEPA priority pollutants, plus dibenzo[a,l]pyrene, and benzo[j]fluoranthene) were concurrently sampled indoors and outdoors in one urban preschool located in north of Portugal for 35 days. The total concentration of 18 PAHs (ΣPAHs) in indoor air ranged from 19.5 to 82.0 ng/m(3) ; gaseous compounds (range of 14.1-66.1 ng/m(3)) accounted for 85% ΣPAHs. Particulate PAHs (range 0.7-15.9 ng/m(3)) were predominantly associated with PM1 (76% particulate ΣPAHs) with 5-ring PAHs being the most abundant. Mean indoor/outdoor ratios (I/O) of individual PAHs indicated that outdoor emissions significantly contributed to PAH indoors; emissions from motor vehicles and fuel burning were the major sources. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Polycyclic aromatic hydrocarbon adsorption on selected solid particulate matter fractions

    NASA Astrophysics Data System (ADS)

    Bozek, Frantisek; Huzlik, Jiri; Pawelczyk, Adam; Hoza, Ignac; Naplavova, Magdalena; Jedlicka, Jiri

    2016-02-01

    This article is directed to evaluating the proportion of polycyclic aromatic hydrocarbons (PAHs) captured on particulate matter (PM) classified as PM2.5-10 and PM2.5, i.e. particulate matter of aerodynamic diameter 2.5-10 μm and 2.5 μm. During three week-long and one 2-day campaigns, 22 paired air samples were taken in parallel of PM10 and PM2.5 fractions inside the Mrázovka tunnel in Prague, Czech Republic. Following sample preparation, concentrations of individual PAHs were determined using gas chromatography combined with mass spectrometry. Concentrations of individual pairs of each PAH were tested by the nonparametric method using Spearman's rank correlation coefficient. At significance level p < 0.01, it was demonstrated that all individual PAHs, including their totals, were bound to the PM2.5 fraction. Exceptions were seen in the cases of acenaphthylene, acenaphthene, and indeno[1,2,3-cd]pyrene, the concentrations of which fluctuated around the detection limit, where increased measurement error can be expected.

  19. Polycyclic Aromatic Hydrocarbons in drinking water of Tehran, Iran

    PubMed Central

    2013-01-01

    Distribution and seasonal variation of sixteen priority polycyclic aromatic hydrocarbons (PAHs) were investigated in the drinking water of Tehran, the capital of Iran. Detected single and total PAHs concentrations were in the range of 2.01-38.96 and 32.45-733.10 ng/L, respectively, which were quite high compared to the values recorded in other areas of the world. The average occurrence of PAHs with high molecular weights was 79.55%; for example, chrysene occurred in 60.6% of the samples, with a maximum concentration of 438.96 ng/L. In addition, mean carcinogen to non-carcinogen PAHs ratio was 63.84. Although the concentration of benzo[a]pyrene, as an indicator of water pollution to PAHs, was lower than the guideline value proposed by World Health Organization (WHO) as well as that of Iranian National Drinking Water Standards for all of the samples, the obtained results indicated that carcinogen PAHs present in the drinking water of Tehran can cause threats to human health. PMID:24499505

  20. Polycyclic aromatic hydrocarbons and pesticides in milk powder.

    PubMed

    Dobrinas, Simona; Soceanu, Alina; Popescu, Viorica; Coatu, Valentina

    2016-05-01

    This Research Communication reports analysis of 37 compounds comprising polycyclic aromatic hydrocarbons (PAHs), organochlorine and organophosphate pesticides (OCPS and OPPS) in milk powder (one brand each of commercial infant formulae, follow-on formulae and baby formulae purchased from a local supermarket in Romania). The selected analytes were investigated using gas chromatography-mass spectrometry (GC-MS), gas chromatography with electron capture detector (GC-ECD) and gas chromatography with thermionic sensitive detection (GC-TSD). The estimated limits of detection for most target analytes were in the μg/kg level (range 0·001-0·320 µg/kg). The purpose of the study was to determine the selected analytes, to assess the exposure of babies and infants and to produce data for comparison with tolerable limits according to the European Union Regulations. In most of the samples the organochlorine pesticides values were under the limit of detection. Exceptions were heptachlor epoxide and endosulfan sulphate, the last of which was found in all analysed samples at low concentrations. We also found detectable levels of ethoprophos, parathion-methyl, chlorpyrifos, prothiofos, guthion, disulfoton and fenchlorphos in most of the analysed samples. Benzo[a]pyrene, which is used as an indicator for the presence of PAHs, was not detected in selected samples. The low level of exposure to contaminants indicates that there are no health risks for the infants and babies that consume this brand of milk powder formulae.

  1. Sources of polycyclic aromatic hydrocarbons to the Hudson River Airshed

    NASA Astrophysics Data System (ADS)

    Lee, Jong Hoon; Gigliotti, Cari L.; Offenberg, John H.; Eisenreich, Steven J.; Turpin, Barbara J.

    2004-11-01

    Sources of polycyclic aromatic hydrocarbons (PAHs) to the Hudson River Estuary Airshed were investigated using positive matrix factorization (PMF). A three-city dataset was used to obtain common factor profiles. The contributions of each factor on each sampling day and site were then determined, and a sensitivity analysis was conducted. A stable eight-factor solution was identified. PMF was able to identify a factor associated with air-surface exchange. This factor contains low-molecular weight PAHs and was a dominant contributor to the measured PAHs concentrations. Factors linked to motor vehicle use (diesel and gasoline vehicle emissions and evaporative/uncombusted petroleum) and natural gas combustion were also major contributors. Motor vehicle combustion and oil combustion factors were the predominant contributors to particle-phase PAHs, while natural gas combustion, air-surface exchange, and evaporative/uncombusted petroleum factors made substantial contributions to gas-phase PAH concentrations. In contrast to fine particulate matter (PM2.5), which is dominated by regional transport, spatial variations in PAH concentrations suggest that PAH concentrations in the Hudson River Estuary Airshed are dominated by sources within the New York-New Jersey urban-industrial complex.

  2. Polycyclic Aromatic Hydrocarbons as Star Formation Rate Indicators

    NASA Astrophysics Data System (ADS)

    Calzetti, D.

    2011-03-01

    As images and spectra from ISO and Spitzer have provided increasingly higher-fidelity representations of the mid-infrared (MIR) and Polycyclic Aromatic Hydrocarbon (PAH) emission from galaxies and galactic and extra-galactic regions, more systematic efforts have been devoted to establishing whether the emission in this wavelength region can be used as a reliable star formation rate indicator. This has also been in response to the extensive surveys of distant galaxies that have accumulated during the cold phase of the Spitzer Space Telescope. Results so far have been somewhat contradictory, reflecting the complex nature of the PAHs and of the mid-infrared-emitting dust in general. The two main problems faced when attempting to define a star formation rate indicator based on the mid-infrared emission from galaxies and star-forming regions are: (1) the strong dependence of the PAH emission on metallicity; (2) the heating of the PAH dust by evolved stellar populations unrelated to the current star formation. I review the status of the field, with a specific focus on these two problems, and will try to quantify the impact of each on calibrations of the mid-infrared emission as a star formation rate indicator.

  3. Polycyclic aromatic hydrocarbons and metals in snow along a highway.

    PubMed

    Reinosdotter, K; Viklander, M; Malmqvist, P A

    2006-01-01

    Snow quality and its variations due to distance from the road were studied. Also, how the snow quality changes over time during the melting period was discussed. Snow samples were collected at three occasions during the winter of 2004. The samples were taken along a highway in the Luleå region, Sweden, with an average daily traffic load of 9200 vehicles. Snow samples were taken perpendicular to the road and at different distances. The snow samples were analysed for metals and polycyclic aromatic hydrocarbons (PAH). Also, weather parameters such as temperature, precipitation, and wind speed and wind direction were measured. The highest total metal and PAH concentrations were found at the sample site closest to the road and at the end of the season. Before the melting period started, 42-57% of the total amount of metals and PAH were found in the first 1 m of the snow pack. This information could be valuable when one is discussing how to achieve sustainable snow-handling management.

  4. Outflow of polycyclic aromatic hydrocarbons from Guangdong, southern China.

    PubMed

    Lang, Chang; Tao, Shu; Zhang, Gang; Fu, Jiamo; Simonich, Staci

    2007-12-15

    The atmospheric outflow of polycyclic aromatic hydrocarbons (PAHs) from Guangdong, China, a region of high PAH emission, was modeled using a potential receptor influence function (PRIF) probabilistic model which was based on a spatially resolved PAH inventory and air mass forward-trajectory calculations. Photochemical degradation and deposition (dry and wet) of PAHs during atmospheric transport were taken into consideration. On average, 48% of the PAHs (by mass) remained in the atmosphere for a transport period of 5 days, staying within the boundary of the source region. The medium molecular weight PAHs (four rings) were predicted to travel longer distances in the atmosphere than the low (three rings) or high molecular weight PAHs (five rings) because they are less photodegradable than the lower molecular weight, gas-phase PAHs and less likelyto undergo wet and dry depositions than the higher molecular weight, particulate phase PAHs. Under the strong influence of the East Asian monsoons in winter, the predominant outflow pattern of PAHs from Guangdong was to the South China Sea and Southeast Asian countries. In summer, PAHs were transported primarily to northern mainland China. Under particular weather conditions in winter, the PAH-containing air masses were lifted by cold fronts or convection and transported toward the Pacific Ocean by westerly winds. In addition to the distinct seasonality in PAH dispersion and outflow, interannual long-term variation in the outflow is likely influenced by El Niño and southern oscillation.

  5. Bioaccessibility of polycyclic aromatic hydrocarbons: relevance to toxicity and carcinogenesis

    PubMed Central

    Harris, Kelly L; Banks, Leah D; Mantey, Jane A; Huderson, Ashley C; Ramesh, Aramandla

    2014-01-01

    Introduction Bioaccessibility is a growing area of research in the field of risk assessment. As polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants, they are the toxicants of focus to establish cancer risks in humans. Orally ingested PAHs also cause toxicity and even affect the pharmacokinetic behavior of some therapeutic agents. Toward this end, bioaccessibility is being used as a tool to assess the risk of PAHs via dietary exposures. Areas covered This review covers some in vitro bioaccessibility models for PAHs that have been used for the past one-and-a-half decade. This review also considers the factors that influence bioaccessibility and debates the merits and limitations of using a bioaccessibility concept for estimating risk from ingestion of PAH-contaminated soil and food. Finally, the authors discuss the implications of bioaccessibility for PAH-induced toxicity and cancers in the context of risk assessment. Expert opinion So far, much of the focus on PAH bioaccessibility is centered on soil as a preferential matrix. However, ingestion of PAHs through diet far exceeds the amount accidentally ingested through soil. Therefore, bioaccessibility could be exploited as a tool to assess the relative risk of various dietary ingredients tainted with PAHs. While bioaccessibility is a promising approach for assessing PAH risk arising from various types of contaminated soils, none of the models proposed appears to be valid. Bioaccessibility values, derived from in vitro studies, still require validation from in vivo studies. PMID:23898780

  6. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation

    NASA Astrophysics Data System (ADS)

    Ravindra, Khaiwal; Sokhi, Ranjeet; Van Grieken, René

    There is an increasing concern about the occurrence of polycyclic aromatic hydrocarbons (PAHs) in the environment as they are ubiquitous in ambient air and some of them are among the strongest known carcinogens. PAHs and their derivatives are produced by the incomplete combustion of organic material arising, partly, from natural combustion such as forest and volcanic eruption, but with the majority due to anthropogenic emissions. The PAH concentration varies significantly in various rural and urban environments and is mainly influenced by vehicular and domestic emissions. The review serves as a database to identify and characterize the emission sources of PAHs and hence various approaches including diagnostic ratio (DR) and principal component analysis (PCA) are discussed in detail. These approaches allow individual PAHs to be associated with their origin sources. The factors that effect PAH emission and estimated emission rate are also discussed in this paper. Although the levels of low molecular weight PAHs are high in vapor phase, most of the probable human carcinogenic PAHs are found to be associated with particulate matter, especially in fine mode particles in ambient air. Many countries have proposed a non-mandatory concentration limit for PAHs, whereas the health risk studies conducted in relation to PAH exposure, urge that these pollutants should be given a high priority when considering air quality management and reduction of impacts.

  7. Vibrational spectroscopic study of vinyl substituted polycyclic aromatic hydrocarbons.

    PubMed

    Maurya, Anju; Rastogi, Shantanu

    2015-12-05

    The mid infrared emission features observed in various astrophysical sources are attributed to polycyclic aromatic hydrocarbon (PAH) molecules. The models of emission spectra from a collection of PAHs show uncertainty in matching the 6.2 μm feature. This indicates the need to consider a larger variety of PAHs and PAH derivatives. Chemical pathways towards formation of PAHs in the astrophysical environments involve vinyl substituted PAHs as intermediate products. Vibrational spectroscopic study of vinyl-PAHs is reported in the present work. The vinyl group is substituted at similar positions in eight different PAHs. The obtained optimized structures show that vinyl substitution at 2 position in acenes gives planar geometry, while all other vinyl-PAHs are non-planar. Infrared spectra is simulated for neutrals as well as for cations. The results are compared with the spectra of corresponding plain PAHs and analyzed for possible match with astrophysical observations. New features, due to vinyl group in the composite spectra, identified at 6.64, 6.92, 7.27, 8.77 and 10.35 μm fall close to some sub features of the observed emission spectra. The paper provides data that may be used in the emission models particularly along proto planetary nebulae type cool objects. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Distribution of polycyclic aromatic hydrocarbons in coke plant wastewater.

    PubMed

    Burmistrz, Piotr; Burmistrz, Michał

    2013-01-01

    The subject of examinations presented in this paper is the distribution of polycyclic aromatic hydrocarbons (PAHs) between solid and liquid phases in samples of raw wastewater and wastewater after treatment. The content of 16 PAHs according to the US EPA was determined in the samples of coke plant wastewater from the Zdzieszowice Coke Plant, Poland. The samples contained raw wastewater, wastewater after physico-chemical treatment as well as after biological treatment. The ΣPHA16 content varied between 255.050 μg L(-1) and 311.907 μg L(-1) in raw wastewater and between 0.940 and 4.465 μg L(-1) in wastewater after full treatment. Investigation of the distribution of PAHs showed that 71-84% of these compounds is adsorbed on the surface of suspended solids and 16-29% is dissolved in water. Distribution of individual PAHs and ΣPHA16 between solid phase and liquid phase was described with the use of statistically significant, linear equations. The calculated values of the partitioning coefficient Kp changed from 0.99 to 7.90 for naphthalene in samples containing mineral-organic suspension and acenaphthylene in samples with biological activated sludge, respectively.

  9. Particle-bound polycyclic aromatic hydrocarbon concentrations in transportation microenvironments

    NASA Astrophysics Data System (ADS)

    Houston, Douglas; Wu, Jun; Yang, Dongwoo; Jaimes, Guillermo

    2013-06-01

    This study is one of the first case studies to characterize the exposure of urban residents to traffic-related air pollution across locations and transportation microenvironments during everyday activities. Twenty-four adult residents of Boyle Heights, a neighborhood near downtown Los Angeles, carried a portable air pollution monitor and a Global Positioning Systems (GPS) tracking device for a total of 96 days. We found significant spatial and temporal variation in the particle-bound polycyclic aromatic hydrocarbon (pPAH) concentrations in transportation microenvironments. Average pPAH concentrations were higher while walking outdoors (190 ng m-3) compared to traveling in private passenger vehicles (138-155 ng m-3) or traveling in public transportation (61-124 ng m-3). Although travel comprised 5% of participant days, it was associated with 27% of overall daily pPAH exposure. Regression models explained 40-55% of the variation in daily average pPAH concentrations, and 40-44% of the variation in 1-min interval concentrations. Important factors included time spent traveling, travel speed, meteorological and nearby land use factors, time of day, and proximity to roadways. Although future research is needed to develop stronger predictive models, our study demonstrates portable tracking devices can provide a more complete, diurnal characterization of air pollution exposures for urban populations.

  10. Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons under Interstellar Conditions

    NASA Technical Reports Server (NTRS)

    Stone, Bradley M.

    1996-01-01

    The presence and importance of polycyclic aromatic hydrocarbons (PAHs, a large family of organic compounds containing carbon and hydrogen) in the interstellar medium has already been well established. The Astrochemistry Laboratory at NASA Ames Research Center (under the direction of Louis Allamandola and Scott Sandford) has been the center of pioneering work in performing spectroscopy on these molecules under simulated interstellar conditions, and consequently in the identification of these species in the interstellar medium by comparison to astronomically obtained spectra. My project this summer was twofold: (1) We planned on obtaining absorption spectra of a number of PAHs and their cations in cold (4K) Ne matrices. The purpose of these experiments was to increase the number of different PAHs for which laboratory spectra have been obtained under these simulated interstellar conditions; and (2) I was to continue the planning and design of a new laser facility that is being established in the Astrochemistry laboratory. The laser-based experimental set-up will greatly enhance our capability in examining this astrophysically important class of compounds.

  11. Carbonyl atmospheric reaction products of aromatic hydrocarbons in ambient air

    NASA Astrophysics Data System (ADS)

    Obermeyer, Genevieve; Aschmann, Sara M.; Atkinson, Roger; Arey, Janet

    To convert gaseous carbonyls to oximes during sampling, an XAD-4 resin denuder system pre-coated with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine and followed by analysis with methane positive chemical ionization gas chromatography/mass spectrometry was used to measure carbonyls in ambient air samples in Riverside, CA. In conjunction with similar analyses of environmental chamber OH radical-initiated reactions of o- and p-xylene, 1,2,4-trimethylbenzene, ethylbenzene, 4-hydroxy-2-butanone and 1,4-butanediol, we identified benzaldehyde, o-, m- and p-tolualdehyde and acetophenone and the dicarbonyls glyoxal, methylglyoxal, biacetyl, ethylglyoxal, 1,4-butenedial, 3-hexene-2,5-dione, 3-oxo-butanal, 1,4-butanedial and malonaldehyde in the ambient air samples. As discussed, these carbonyls and dicarbonyls can be formed from the OH radical-initiated reactions of aromatic hydrocarbons and other volatile organic compounds emitted into the atmosphere, and we conclude that in situ atmospheric formation is a major source of these carbonyls in our Riverside, CA, ambient air samples.

  12. Isoxazolidinyl polycyclic aromatic hydrocarbons as DNA-intercalating antitumor agents.

    PubMed

    Rescifina, Antonio; Chiacchio, Ugo; Corsaro, Antonino; Piperno, Anna; Romeo, Roberto

    2011-01-01

    The second generation and an isosteric series of isoxazolidinyl polycyclic aromatic hydrocarbons, as DNA-intercalator agents designed to act on remotely implanted tumors, have been synthesized in good yields according to the 1,3-dipolar cycloaddition methodology. The structure of the obtained cycloadducts has been determined by NOE experiments and supported by computational studies at PM3 level. The utility of this new template in the synthesis of structures designed to capitalize on its intercalative properties has been examined. All the obtained compounds have been tested for their in vitro cytotoxic activity and the most potent of them showed an IC(50) of 9 μM upon the human lung cancer (A-549) cell and a binding constant, for the intercalation with calf thymus DNA, of 9.6 × 10(4) M(-1). Biological and docking studies showed that these compounds complex exclusively by intercalation between base pairs, approaching the DNA from its minor groove, with a neat selectivity for the AT or GC nucleobases. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  13. Novel isoxazole polycyclic aromatic hydrocarbons as DNA-intercalating agents.

    PubMed

    Rescifina, Antonio; Varrica, Maria Giulia; Carnovale, Caterina; Romeo, Giovanni; Chiacchio, Ugo

    2012-05-01

    The third generation of isoxazole polycyclic aromatic hydrocarbons, acting as DNA-intercalator agents and possessing the binding constants in the range 10(4)-10(5) M(-1), in order to easily diffuse targeting remotely implanted tumors, has been synthesized in good yields according to the 1,3-dipolar cycloaddition methodology. The structure of the obtained cycloadducts has been determined by NOE experiments and supported by computational studies at PM3 level. All the obtained compounds have been tested for their in vitro cytotoxic activity and the most potent of them, (3RS,5SR)-2-benzyl-N,N-dimethyl-3-(pyren-1-yl)isoxazolidine-5-carboxamide (7d), showed an IC(50) of 4 μM upon the human lung cancer (A-549) cells. Moreover, compound 7d showed binding constant for the intercalation with calf thymus DNA, poly-d(AT)(2) and poly-d(GC)(2) of 1.7 × 10(5) M(-1), 1.6 × 10(5) M(-1) and 0.3 × 10(5) M(-1), respectively. Biological and docking studies showed that, in vitro, these compounds complex by intercalation between base pairs, approaching the DNA from its minor groove with a preference for the AT nucleobases pairs. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. New insights into thermal decomposition of polycyclic aromatic hydrocarbon oxyradicals.

    PubMed

    Liu, Peng; Lin, He; Yang, Yang; Shao, Can; Gu, Chen; Huang, Zhen

    2014-12-04

    Thermal decompositions of polycyclic aromatic hydrocarbon (PAH) oxyradicals on various surface sites including five-membered ring, free-edge, zigzag, and armchair have been systematically investigated by using ab initio density functional theory B3LYP/6-311+G(d,p) basis set. The calculation based on Hückel theory indicates that PAHs (3H-cydopenta[a]anthracene oxyradical) with oxyradicals on a five-membered ring site have high chemical reactivity. The rate coefficients of PAH oxyradical decomposition were evaluated by using Rice-Ramsperger-Kassel-Marcus theory and solving the master equations in the temperature range of 1500-2500 K and the pressure range of 0.1-10 atm. The kinetic calculations revealed that the rate coefficients of PAH oxyradical decomposition are temperature-, pressure-, and surface site-dependent, and the oxyradical on a five-membered ring is easier to decompose than that on a six-membered ring. Four-membered rings were found in decomposition of the five-membered ring, and a new reaction channel of PAH evolution involving four-membered rings is recommended.

  15. Polycyclic aromatic hydrocarbons in stormwater runoff from sealcoated pavements.

    PubMed

    Watts, Alison W; Ballestero, Thomas P; Roseen, Robert M; Houle, James P

    2010-12-01

    Coal-tar based sealcoat has been identified as a source of polycyclic aromatic hydrocarbons (PAHs) in the environment. This study measured the long-term release of PAHs in parking lot runoff and found that the presence of coal tar sealant increased the mass of PAHs released in runoff by over an order of magnitude. PAH concentrations in stormwater from two coal tar sealed parking lots and one unsealed parking lot (control) were monitored over a two-year period. The measured flow volume and concentrations were used to calculate a mass of 9.8-10.8 kg total Σ16 PAHs per hectare exported in stormwater runoff from the two sealed parking lots and 0.34 kg total Σ16 PAHs per hectare from the unsealed control. The study also measured sediment PAH concentration changes in a receiving drainage and found that even partial coverage of a drainage area by coal tar sealant resulted in measurable increases in PAH sediment concentrations; PAH concentrations in sediment in a stormwater swale receiving runoff from both sealed and unsealed lots increased near the outfall from less than 4 mg/kg prior to sealing to 95.7 mg/kg after sealing. Compound ratio plots and principal components analysis were examined and were able to clearly differentiate between pre- and postsealant samples.

  16. Aliphatic and aromatic hydrocarbons in the mediterranean aerosol.

    PubMed

    Sicre, M A; Marty, J C; Saliot, A; Aparicio, X; Grimalt, J; Albaiges, J

    1987-01-01

    The atmospheric transport of organic pollutants over long distances and their effect on the biological cycles of the sea are two major questions of concern in environmental chemistry. These processes are of particular importance in the Mediterranean Sea because of its semi-enclosed characteristics, which determine the accumulation of the pollutants entering into the system. In order to get some insight into these processes a project (PHYCEMED), was developed for the evaluation of the atmospheric budget of organic and inorganic substances in the Western Mediterranean and for the investigation of the exchange mechanisms of these materials across the air/sea interface. A high volume air sampling system including a cascade impactor was placed on board of the R/V le Suroit for collecting the aerosols along several transects parallel to the French, Spanish and North-African coasts, facing areas of different population densities and industrial activities. The cruise was realised on October 1983 and the particulate material was fractionated into the following sizes: 7.2, 3.0, 1.5, 0.96, and 0.03 micron. Quantitative and qualitative analyses of the aliphatic and the aromatic hydrocarbons present in these fractions were performed by high resolution gas chromatography and gas chromatography-mass spectrometry.

  17. Fullerenes, fulleranes and polycyclic aromatic hydrocarbons in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Becker, L.; Bunch, T. E.

    1997-01-01

    In this paper, we confirm our earlier observations of fullerenes (C60 and C70) in the Allende meteorite (Becker et al., 1994a, 1995). Fullerene C60 was also detected in two separate C-rich (approximately 0.5-1.0%) dark inclusions (Heymann et al., 1987) that were hand picked from the Allende sample. The amounts of C60 detected were approximately 5 and approximately 10 ppb, respectively, which is considerably less than what was detected in the Allende 15/21 sample (approximately 100 ppb; Becker et al., 1994a, 1995). This suggests that fullerenes are heterogeneously distributed in the meteorite. In addition, we present evidence for fulleranes, (C60Hx), detected in separate samples by laser desorption (reflectron) time-of-flight (TOF) mass spectrometry (LDMS). The LDMS spectra for the Allende extracts were remarkably similar to the spectra generated for the synthetic fullerane mixtures. Several fullerane products were synthesized using a Rh catalyst (Becker et al., 1993a) and separated using high-performance liquid chromatography (HPLC). Polycyclic aromatic hydrocarbons (PAHs) were also observed ppm levels) that included benzofluoranthene and corannulene, a cup-shaped molecule that has been proposed as a precursor molecule to the formation of fullerenes in the gas phase (Pope et al., 1993).

  18. Identifying risk sources of air contamination by polycyclic aromatic hydrocarbons.

    PubMed

    Huzlik, Jiri; Bozek, Frantisek; Pawelczyk, Adam; Licbinsky, Roman; Naplavova, Magdalena; Pondelicek, Michael

    2017-09-01

    This article is directed to determining concentrations of polycyclic aromatic hydrocarbons (PAHs), which are sorbed to solid particles in the air. Pollution sources were identified on the basis of the ratio of benzo[ghi]perylene (BghiPe) to benzo[a]pyrene (BaP). Because various important information is lost by determining the simple ratio of concentrations, least squares linear regression (classic ordinary least squares regression), reduced major axis, orthogonal regression, and Kendall-Theil robust diagnostics were utilized for identification. Statistical evaluation using all aforementioned methods demonstrated different ratios of the monitored PAHs in the intervals examined during warmer and colder periods. Analogous outputs were provided by comparing gradients of the emission factors acquired from the measured concentrations of BghiPe and BaP in motor vehicle exhaust gases. Based on these outputs, it was possible plausibly to state that the influence of burning organic fuels in heating stoves is prevalent in colder periods whereas in warmer periods transport was the exclusive source because other sources of PAH emissions were not found in the examined locations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Polycyclic aromatic hydrocarbon ions and the diffuse interstellar bands

    NASA Technical Reports Server (NTRS)

    Salama, F.; Allamandola, L. J.

    1995-01-01

    Neutral naphthalene (C10H8), phenanthrene (C14H10), and pyrene (C16H10) absorb strongly in the ultraviolet and may contribute to the extinction curve. High abundances are required to produce detectable structures. The cations of these Polycyclic Aromatic Hydrocarbons (PAHs) absorb in the visible. C10H8(+) has 12 discrete absorption bands which fall between 6800 and 5000 A. The strongest band at 6741 A falls close to the weak 6742 A diffuse interstellar band (DIB). Five other weaker bands also match DIBs. The possibility that C10H8(+) is responsible for some of the DIBs can be tested by searching for new DIBS at 6520, 6151, and 5965 A, other moderately strong naphthalene cation band positions. If C10H8(+) is indeed responsible for the 6742 A feature, it accounts for 0.3% of the cosmic carbon. The spectrum of C16H10(+) is dominated by a strong band at 4435 A in an Ar matrix and 4395 A in a Ne matrix, a position which falls very close to the strongest DIB, that at 4430 A. If C16H10(+), or a closely related pyrene-like ion is indeed responsible for the 4430 A feature, it accounts for 0.2% of the cosmic carbon. We also report an intense, very broad UV-to-visible continuum which is associated with both ions and could explain how PAHs convert interstellar UV and visible radiation into IR.

  20. Measurement of polycyclic aromatic hydrocarbon (PAHs) in interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Clemett, S. J.; Maechling, C. R.; Zare, R. N.; Swan, P. D.; Walker, R. M.

    1993-01-01

    We report here the first definitive measurements of specific organic molecules (polycyclic aromatic hydrocarbons (PAH's)) in interplanetary dust particles (IDP's). An improved version of the microbeam-two-step laser mass spectrometer was used for the analysis. Two IDP's gave similar mass spectra showing an abundance of PAH's. Control samples, including particles of probable terrestrial origin from the same stratospheric collector, gave either null results or quite different spectra. We conclude that the PAH's are probably indigenous to the IDP's and are not terrestrial contaminants. The instrument used to study the particles is a two-step laser mass spectrometer. Constituent neutral molecules of the sample are first desorbed with a pulsed infrared laser beam focussed to 40 micrometers. In the second step, PAH's in the desorbed plume are preferentially ionized by a pulsed UV laser beam. Resulting ions produced by resonant absorption are extracted into a reflectron time-of-flight mass spectrometer. This instrument has high spatial resolution, high ion transmission, unlimited mass range, and multichannel detection of all ion masses from a single laser shot.

  1. Oxidation of polynuclear aromatic hydrocarbons in water. 1: Ozonation

    SciTech Connect

    Beltran, F.J.; Encinar, J.M.; Rivas, J.; Ovejero, G.

    1995-05-01

    The oxidation of three polynuclear aromatic hydrocarbons (PAHs), fluorene, phenanthrene, and acenaphthene, in aqueous solution with ozone has been studied. The influence of hydroxyl radical inhibitors, pH, ozone partial pressure, and temperature was investigated. All the PAHs studied show high oxidation rates with ozone. The ozonation of fluorene seems to be due to both direct and hydroxyl radical reactions while for the rest of the PAHs the ozonation develops only through direct reactions with ozone. Rate constants for the direct reaction between these PAHs and ozone have also been calculated. The reactivity with ozone goes in the following order: fluorene < phenanthrene < acenaphthene. The contribution of radical reactions represents more than 90% in the ozonation of fluorene in most cases except in the presence of hydroxyl radical inhibitors. In a standard agitated reactor the kinetic regime of the absorption of ozone corresponds to a slow reaction in the case of fluorene and phenanthrene and to a fast reaction in the case of acenaphthene.

  2. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review.

    PubMed

    Lamichhane, Shanti; Bal Krishna, K C; Sarukkalige, Ranjan

    2016-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are organic micro pollutants which are persistent compounds in the environment due to their hydrophobic nature. Concerns over their adverse effects in human health and environment have resulted in extensive studies on various types of PAHs removal methods. Sorption is one of the widely used methods as PAHs possess a great sorptive ability into the solid media and their low aqueous solubility property. Several adsorbent media such as activated carbon, biochar, modified clay minerals have been largely used to remove PAHs from aqueous solution and to immobilise PAHs in the contaminated soils. According to the past studies, very high removal efficiency could be achieved using the adsorbents such as removal efficiency of activated carbon, biochar and modified clay mineral were 100%, 98.6% and >99%, respectively. PAHs removal efficiency or adsorption/absorption capacity largely depends on several parameters such as particle size of the adsorbent, pH, temperature, solubility, salinity including the production process of adsorbents. Although many studies have been carried out to remove PAHs using the sorption process, the findings have not been consolidated which potentially hinder to get the correct information for future study and to design the sorption method to remove PAHs. Therefore, this paper summarized the adsorbent media which have been used to remove PAHs especially from aqueous solutions including the factor affecting the sorption process reported in 142 literature published between 1934 and 2015.

  3. Measurement of polycyclic aromatic hydrocarbon (PAHs) in interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Clemett, S. J.; Maechling, C. R.; Zare, R. N.; Swan, P. D.; Walker, R. M.

    1993-01-01

    We report here the first definitive measurements of specific organic molecules (polycyclic aromatic hydrocarbons (PAH's)) in interplanetary dust particles (IDP's). An improved version of the microbeam-two-step laser mass spectrometer was used for the analysis. Two IDP's gave similar mass spectra showing an abundance of PAH's. Control samples, including particles of probable terrestrial origin from the same stratospheric collector, gave either null results or quite different spectra. We conclude that the PAH's are probably indigenous to the IDP's and are not terrestrial contaminants. The instrument used to study the particles is a two-step laser mass spectrometer. Constituent neutral molecules of the sample are first desorbed with a pulsed infrared laser beam focussed to 40 micrometers. In the second step, PAH's in the desorbed plume are preferentially ionized by a pulsed UV laser beam. Resulting ions produced by resonant absorption are extracted into a reflectron time-of-flight mass spectrometer. This instrument has high spatial resolution, high ion transmission, unlimited mass range, and multichannel detection of all ion masses from a single laser shot.

  4. Enhancement of polycyclic aromatic hydrocarbon biodegradation in the rhizosphere

    SciTech Connect

    Kim, S.C.; Banks, M.K.; Schwab, A.P.

    1994-12-31

    Polycyclic aromatic hydrocarbons (PAHs) are a class of potentially hazardous chemicals that exhibit toxic, mutagenic or carcinogenic properties. Microbial degradation is the major route through which PAHs are removed from contaminated environments although other mechanisms such as volatilization, leaching and photodegradation may also be effective. The rhizosphere contains a diversity of microorganisms that contribute to plant health and soil homeostasis. Recent studies indicate that microorganisms in the rhizosphere can degrade toxicants of concern to human health and the environment. The increased density and diversity of rhizosphere microflora may be an important factor for enhanced microbial degradation of PAHs. The objective of this study is to evaluate degradation of a number of different PAHs in rhizosphere and non-rhizosphere soil. It has been shown that the biodegradation rates of PAHs increase as the number of PAH rings decrease, but there is little information about the biodegradation in rhizosphere soil. The study will provide results from a microcosm experiment designed to evaluate degradation of PAHs in rhizosphere and non-rhizosphere. Also, kinetic models will be developed to represent data collected.

  5. Biodegradation of polycyclic aromatic hydrocarbons in rhizosphere soil

    SciTech Connect

    Schwab, A.P.; Banks, M.K.; Arunachalam, M.

    1995-12-31

    Increased contaminant biodegradation in soil in the presence of plants has been demonstrated for several classes of organic compounds. Although enhanced dissipation of polycyclic aromatic hydrocarbons (PAHs) was observed previously in the rhizosphere of several plant species, the mechanism of this effect has not been assessed. A laboratory experiment was conducted to test the importance of cometabolism and the presence of common rhizosphere organic acids on the loss of PAHs (pyrene and phenanthrene) from soil. The role of cometabolism in the mineralization of pyrene was tested by observing the impact of adding phenanthrene to soil containing {sup 14}C-pyrene and observing the effects on {sup 14}CO{sub 2} generation. Adding phenanthrene apparently induced cometabolism of pyrene, particularly in the presence of organic acids. In a subsequent experiment, mineralization of pyrene to {sup 14}CO{sub 2} was significantly greater in soil from the rhizospheres of warm-season grasses, sorghum (Sorghum bicolor L.) and bermuda grass (Cynodon dactylon L.), compared to soil from alfalfa (Medicago sativa L.), which did not differ from sterilized control soil. A highly branched, fine root system appears to be more effective in enhancing biodegradation than taproots, and the presence of organic acids increases rates of PAH mineralization.

  6. Polycyclic aromatic hydrocarbon biodegradation by a mixed bacterial culture

    SciTech Connect

    Dreyer, G.; Koenig, J.; Ringpfeil, M.

    1995-12-31

    Biodegradation of polycyclic aromatic hydrocarbons (PAHs), which are a complex mixture of organic compounds, was demonstrated using a bacterial mixed culture selected from a contaminated site by the BIOPRACT GmbH. The investigations were carried out in a laboratory fermenter using emulsified tar oil as the substrate to determine the following: (1) concentration of the single PAH and of the sum of PAHs relative to fermentation time, (2) carbon dioxide (CO{sub 2}) and oxygen (O{sub 2}) content in the outflowing air during fermentation, (3) chemical oxygen demand (COD) of the broth, and (4) toxicity of the broth before and after fermentation according to the bioluminescence test (DIN 38412, part 34/1). The results of this model experiment indicated that the investigated mixed culture is able to effectively metabolize the PAHs contained in tar oil, including the higher condensed compounds such as benzo(a)pyrene. In the first 8 days of fermentation, the PAH sum decreased to below 5% of the starting concentration connected with a five-fold reduction of the toxic effect on Vibrio fischeri. The PAH degradation rate correlated with the rate of COD decrease, the rate of evolving CO{sub 2}, and the consumption of O{sub 2}.

  7. Methanogenic biodegradation of two-ringed polycyclic aromatic hydrocarbons.

    PubMed

    Berdugo-Clavijo, Carolina; Dong, Xiaoli; Soh, Jung; Sensen, Christoph W; Gieg, Lisa M

    2012-07-01

    Polycyclic aromatic hydrocarbons (PAH) are widespread in methane-rich subsurface environments, such as oil reservoirs and fuel-contaminated aquifers; however, little is known about the biodegradation of these compounds under methanogenic conditions. To assess the metabolism of PAH in the absence of electron acceptors, a crude oil-degrading methanogenic enrichment culture was tested for the ability to biodegrade naphthalene, 1-methylnaphthalene (1-MN), 2-methylnaphthalene (2-MN), and 2, 6-dimethylnaphthalene (2, 6-diMN). When methane was measured as an indicator of metabolism, nearly 400 μmol of methane was produced in the 2-MN- and 2, 6-diMN-amended cultures relative to substrate-unamended controls, which is close to the amount of methane stoichiometrically predicted based on the amount of substrate added (51-56 μmol). In contrast, no substantial methane was produced in the naphthalene- and 1-MN-amended enrichments. In time course experiments, metabolite analysis of enrichments containing 2-MN and 2, 6-diMN revealed the formation of 2-naphthoic acid and 6-methyl-2-naphthoic acid, respectively. Microbial community analysis by 454 pyrosequencing revealed that these PAH-utilizing enrichments were dominated by archaeal members most closely affiliated with Methanosaeta and Methanoculleus species and bacterial members most closely related to the Clostridiaceae, suggesting that these organisms play an important role in the methanogenic metabolism of the substituted naphthalenes in these cultures.

  8. Magnetic Beads-based Bioelectrochemical Immunoassay of Polycyclic Aromatic Hydrocarbons

    SciTech Connect

    Lin, Ying-Ying; Liu, Guodong; Wai, Chien M.; Lin, Yuehe

    2007-07-01

    A simple, rapid, and sensitive bioelectrochemical immunoassay method based on magnetic beads (MBs) has been developed to detect polycyclic aromatic hydrocarbons (PAHs). The principle of this bioassay is based on a direct competitive enzyme-linked immunosorbent assay using PAH-antibody-coated MBs and horseradish peroxidase (HRP)-labeled PAH (HRP-PAH). A magnetic process platform was used to mix and shake the samples during the immunoreactions and to separate free and unbound reagents after the liquid-phase competitive immunoreaction among PAH-antibody-coated MBs, PAH analyte, and HRP-PAH. After a complete immunoassay, the HRP tracers attached to MBs were transferred to a substrate solution containing 3, 3´, 5, 5´- tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2) for electrochemical detection. The voltammetric characteristics of the substrate were investigated, and the reduction peak current of TMB was used to quantify the concentration of PAH. The different parameters, including the amount of HRP-PAH conjugates, the enzyme catalytic reaction time, and the pH of the supporting electrolyte that governs the analytical performance of the immunoassay have been studied in detail and optimized. The detection limit of 50 pg mL-1 was obtained under optimum experimental conditions. The performance of this bioelectrochemical magnetic immunoassay was successfully evaluated with tap water spiked with PAHs, indicating that this convenient and sensitive technique offers great promise for decentralized environmental applications.

  9. Fibrous adsorbent for removal of aqueous aromatic hydrocarbons.

    PubMed

    Jung, Yong-Jun; Kiso, Yoshiaki; Oguchi, Tatsuo; Yamada, Toshiro; Takagi, Hiroo; Nishimura, Kazuyuki

    2007-01-01

    Bundles of a strongly hydrophobic fibrous material (p-phenylene-2,6-benzobisoxazole; PBO; Zylon) were employed as an adsorbent for the removal of aqueous aromatic compounds, because the PBO fibers are too rigid to be woven and did not entrap suspended solids. The removal performance for nine kinds of polyaromatic hydrocarbons (PAHs) and di-(2-ethylhexyl) phthalate (DEHP) was evaluated. PAHs and DEHP at initial concentrations of 50 microg L(-1) were removed at 72.5-99.9% and ca. 95%, respectively, although the removal efficiencies were affected by the phase ratio (fiber weight/solution volume). The logarithm of the partition coefficient (log K) for planar PAHs was linearly correlated with the logarithm of the n-octanol/water partition coefficient (log P), but nonplanar PAHs, such as cis-stilbene, p-terphenyl, and o-terphenyl, showed significantly lower adsorption performance. The adsorbed PAHs were not desorbed effectively with CH3CN, CH2Cl2, and toluene. On the other hand, DEHP was effectively desorbed with methanol.

  10. Reptilian exposure to polycyclic aromatic hydrocarbons and associated effects.

    PubMed

    Zychowski, Gregory V; Godard-Codding, Céline A J

    2017-01-01

    Reptiles are an underrepresented taxon in ecotoxicological literature, and the means by which toxicants play a role in population declines are only partially understood. Among the contaminants of interest for reptiles are polycyclic aromatic hydrocarbons (PAHs), a class of organic compounds that is already a concern for numerous other taxa. The objectives of the present review are to summarize the existing literature on reptilian exposure to PAHs and synthesize general conclusions, to identify knowledge gaps within this niche of research, and to suggest future directions for research. Results confirm a relative scarcity of information on reptilian exposure to PAHs, although research continues to grow, particularly after significant contamination events. The orders Testudines and Squamata are better represented than the orders Crocodilia and Rhynchocephalia. For the taxonomic orders with relevant literature (all but Rhynchocephalia), some species are more frequently represented than others. Few studies establish solid cause-effect relationships after reptilian exposure to PAHs, and many more studies are suggestive of effect or increased risk of effect. Despite the scarcity of information in this area, researchers have already employed a wide variety of approaches to address PAH-related questions for reptiles, including molecular techniques, modeling, and field surveys. As more research is completed, a thoughtful interpretation of available and emerging data is necessary to make the most effective use of this information. Environ Toxicol Chem 2017;36:25-35. © 2016 SETAC. © 2016 SETAC.

  11. Distribution of polycyclic aromatic hydrocarbons in lime spray dryer ash

    SciTech Connect

    Ping Sun; Panuwat Taerakul; Linda K. Weavers; Harold W. Walker

    2005-10-01

    Four lime spray dryer (LSD) ash samples were collected from a spreader stoker boiler and measured for their concentrations of 16 U.S. EPA specified polycyclic aromatic hydrocarbons (PAHs). Results showed that the total measured PAH concentration correlated with the organic carbon content of the LSD ash. Each LSD ash sample was then separated using a 140 mesh sieve into two fractions: a carbon-enriched fraction ({gt}140 mesh) and a lime-enriched fraction ({lt}140 mesh). Unburned carbon was further separated from the carbon-enriched fraction with a lithiumheteropolytungstate (LST) solution. PAH measurements on these different fractions showed that unburned carbon had the highest PAH concentrations followed by the carbon-enriched fraction, indicating that PAHs were primarily associated with the carbonaceous material in LSD ash. However, detectable levels of PAHs were also found in the lime-enriched fraction, suggesting that the fine spray of slaked lime may sorb PAH compounds from the flue gas in the LSD process. 37 refs., 5 figs., 4 tabs.

  12. Role of radical cations in aromatic hydrocarbon carcinogenesis.

    PubMed Central

    Cavalieri, E; Rogan, E

    1985-01-01

    Carcinogenic activation of polycyclic aromatic hydrocarbons (PAH) involves two main pathways: one-electron oxidation and monooxygenation. One-electron oxidation produces PAH radical cations, which can react with cellular nucleophiles. Results from biochemical and biological experiments indicate that only PAH with ionization potentials below ca. 7.35 eV can be metabolically activated by one-electron oxidation. In addition, the radical cations of carcinogenic PAH must have relatively high charge localization to react effectively with macromolecules in target cells. Metabolic formation of PAH quinones proceeds through radical cation intermediates. Binding of benzo[a]pyrene (BP) to mouse skin DNA occurs predominantly at C-6, the position of highest charge localization in the BP radical cation, and binding of 6-methyl BP to DNA in mouse skin yields a major adduct with the 6-methyl group bound to the 2-amino group of deoxyguanosine. Studies of carcinogenicity by direct application of PAH to rat mammary gland indicate that only PAH with ionization potentials low enough for activation by one-electron oxidation produce tumors in this target tissue. These constitute some of the results which provide evidence for the involvement of one-electron oxidation in PAH carcinogenesis. PMID:3830701

  13. Ab initio calculation of through-space magnetic shielding of linear polycyclic aromatic hydrocarbons (acenes): extent of aromaticity.

    PubMed

    Martin, Ned H; Caldwell, Brian W; Carlson, Katie P; Teague, Matthew R

    2009-02-01

    GIAO-HF within Gaussian 03 was employed to compute the NMR isotropic shielding values of a diatomic hydrogen probe above a series of acenes (linear polycyclic aromatic hydrocarbons). Subtraction of the isotropic shielding of diatomic hydrogen by itself allowed the determination of computed through-space proton NMR shielding increment surfaces for these systems. Shielding was observed above the center of each aromatic ring, but the magnitude of calculated shielding above each ring center depends on the number of fused benzenoid rings. The computed shielding increments above each ring center were correlated to other measures of extent of aromaticity, including geometric, energetic, and magnetic measurements.

  14. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOEpatents

    Baker, Eddie G.; Elliott, Douglas C.

    1993-01-01

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compouns as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  15. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOEpatents

    Baker, E.G.; Elliott, D.C.

    1993-01-19

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compounds as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  16. Polytetrafluoroethylene-jacketed stirrer modified with graphene oxide and polydopamine for the efficient extraction of polycyclic aromatic hydrocarbons.

    PubMed

    Zhang, Zinxin; Mwadini, Mwadini Ahmada; Chen, Zilin

    2016-10-01

    Steel stirrers jacketed with polytetrafluoroethylene can be regarded as an ideal substrate for stirrer bar sorptive extraction. However, it is still a great challenge to immobilize graphene onto a polytetrafluoroethylene stirrer due to the high chemical resistance of the surface of a polytetrafluoroethylene stirrer. We describe here a method to modify the surface of polytetrafluoroethylene stirrers with graphene. In this work, graphene was used as the sorbent due to its excellent adsorption capability for aromatic compounds, such as polycyclic aromatic compounds. Graphene was successfully immobilized onto polytetrafluoroethylene-stirrer by a bio-inspired polydopamine functionalization method. The graphene-modified polytetrafluoroethylene-stirrer shows good stability and tolerance to stirring, ultrasonication, strong acidic and basic solutions, and to organic solvents. The multilayer coating was characterized by scanning electronic microscopy and Fourier transform infrared spectroscopy. After the optimization of some experimental conditions, the graphene-modified polytetrafluoroethylene stirrer was used for the stirrer bar sorptive extraction of polycyclic aromatic hydrocarbons, in which the binding between the polycyclic aromatic hydrocarbons and the graphene layer was mainly based on π-π stacking and hydrophobic interactions. The graphene-modified polytetrafluoroethylene-stirrer-based stirrer bar sorptive extraction and high-performance liquid chromatography method was developed for the determination of polycyclic aromatic hydrocarbons with great extraction efficiency, with enrichment factors from 18 to 62. The method has low limits of detection of 1-5 pg/mL, wide linear range (5-100 and 10-200 pg/mL), good linearity (R ≥ 0.9957) and good reproducibility (RSD ≤ 6.45%). The proposed method has been applied to determine polycyclic aromatic hydrocarbons in real dust samples. Good recoveries were obtained, ranging from 88.53 to 109.43%.

  17. Aliphatic and polycyclic aromatic hydrocarbons in the surface sediments of the Mediterranean: assessment and source recognition of petroleum hydrocarbons.

    PubMed

    El Nemr, Ahmed; El-Sadaawy, Manal M; Khaled, Azza; Draz, Suzanne O

    2013-06-01

    Coastal marine sediment samples were collected from ten sampling stations along the Egyptian Mediterranean coast in April 2010. All sediment samples were analyzed for aliphatic (C7 to C34) and polycyclic aromatic hydrocarbons (PAHs) as well as total organic carbon (TOC) contents and grain size analysis. Total aliphatic hydrocarbons ranged from 1621.82 to 9069.99 ng/g (dry weight), while aromatic hydrocarbons (16 PAHs) varied between 208.69 and 1020.02 ng/g with an average of 530.68 ± 225.86 ng/g dwt. Good correlations observed between certain PAH concentrations allowed to identify its origin. The average TOC percent was varied from 0.13 to 1.46 %. Principal component analysis was used to determine the sources of hydrocarbon pollutants in sediments of Mediterranean. Additionally, special PAHs compound ratios suggest the petrogenic origins.

  18. Catalytic activity of in situ synthesized MoWNi sulfides in hydrogenation of aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Topolyuk, Yu. A.; Maksimov, A. L.; Kolyagin, Yu. G.

    2017-02-01

    MoWNi-sulfide catalysts were obtained in situ by thermal decomposition of metal-polymer precursors based on the copolymers of polymaleic anhydride in a hydrocarbon raw material. The activity of the synthesized catalysts in hydrogenation of bicyclic aromatic hydrocarbons was studied, and the composition and structure of active phase nanoparticles were determined.

  19. UV irradiation of polycyclic aromatic hydrocarbons in ices: production of alcohols, quinones, and ethers

    NASA Technical Reports Server (NTRS)

    Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.; Gillette, J. S.; Clemett, S. J.; Zare, R. N.

    1999-01-01

    Polycyclic aromatic hydrocarbons (PAHs) in water ice were exposed to ultraviolet (UV) radiation under astrophysical conditions, and the products were analyzed by infrared spectroscopy and mass spectrometry. Peripheral carbon atoms were oxidized, producing aromatic alcohols, ketones, and ethers, and reduced, producing partially hydrogenated aromatic hydrocarbons, molecules that account for the interstellar 3.4-micrometer emission feature. These classes of compounds are all present in carbonaceous meteorites. Hydrogen and deuterium atoms exchange readily between the PAHs and the ice, which may explain the deuterium enrichments found in certain meteoritic molecules. This work has important implications for extraterrestrial organics in biogenesis.

  20. Vapor pressures and enthalpies of sublimation of polycyclic aromatic hydrocarbons and their derivatives

    SciTech Connect

    Oja, V.; Suuberg, E.M.

    1998-05-01

    The vapor pressures of a series of polycyclic aromatic hydrocarbons (PAH) and heteroatom-containing PAH have been measured using the Knudsen effusion technique. Aromatic hydrocarbons examined included anthracene, phenanthrene, pyrene, 2,3-benzofluorene, naphthacene, perylene, pentacene, and coronene. Heteroatomic aromatic species examined included phenanthridine, perinaphthenone, 3-hydroxy-1-phenalen-1-one, benz[g]isoquinoline-5,10-dione, 1,2-benzodiphenylene sulfide, 1-hydroxypyrene, and 6,11-dihydroxy-5,12-naphthacenedione. The measurements were all made in the solid sublimation regime, and enthalpies of sublimation were calculated from the Clausius-Clapeyron equation.

  1. Refractometric determination of content of aromatic hydrocarbons in AI-93 gasolines

    SciTech Connect

    Kuznetsova, L.M.; Ioffe, B.V.; Mikheeva, E.G.

    1982-11-01

    Investigates the possibility of extending the use of the dispersometric method to the control of aromatic hydrocarbon content in AI-93 gasolines. Uses 4 model blends with aromatics content of 20-40% by weight. Finds that the dispersometric method can be used in analyzing both unleaded and leaded AI-93 gasolines, since the addition of ethyl fluid and dye in formulating the leaded gasolines does not affect the accuracy in determining the aromatic hydrocarbon content. Concludes that the dispersometric method can be used to determine the aromatic hydrocarbon content in AI-93 gasolines to within + or - 1.0% by weight, both in the laboratory (IRF-23M refractometer) and under commercial conditions (in ''Nafta-74'' unit).

  2. Identification of cytochrome P4501A inducers in complex mixtures of polycyclic aromatic hydrocarbons

    SciTech Connect

    Villeneuve, D.L.; DeVita, W.M.; Crunkilton, R.L.

    1998-12-31

    An in vitro ethoxyresorufin O-deethylase (EROD) assay was used to study the ability of individual polycyclic aromatic hydrocarbons (PAHs) and mixtures of PAHs to induce Ah receptor (AhR) mediated cytochrome P4501A activity in PLHC-1 fish hepatoma cells. The purpose was to identify the most potent inducers from a set of thirteen separate PAHs and describe interactions occurring in complex mixtures of these PAHs. Where possible, potency was expressed in terms of 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) equivalents (TCDD-EQ) by normalizing the PAH results to a TCDD standard curve. The most potent inducers were benzo(k)fluoranthene > benzo(a)pyrene {approx} benzo(b)fluoranthene > chrysene {approx} benzo(a)anthracene. At equal concentrations, these PAHs yielded potencies of 1670, 940, 655, 255, and 185 pg TCDD-EQ/g, respectively. Analysis of various mixtures of the thirteen PAHs suggested that complex interactions may be occurring.

  3. Simulation of polycyclic aromatic hydrocarbons transport in multimedia

    SciTech Connect

    Chen, L.; Chu, C.J.

    1999-07-01

    Many studies have indicated that the threat from toxic air pollutants such as VOCs comes not through inhalation by humans while the pollutants are in a gaseous state but through absorption when the pollutants are in a solid state such as in an aerosol or particulate form. Pollutants such as Polycyclic Aromatic Hydrocarbons (PAHs) usually exist in a semi-volatile state. To assess the risk of the PAHs, one needs to estimate the dose of the pollutants to which a human would be exposed through various pathways. In this study, the authors modified a Spatial Multimedia Compartmental Model (SMCM) originally developed by UCLA Professor Cohen to predict the PAHs distribution among multimedia such as air, water, soil and sediment in the Taipei metropolitan area. Three PAHs were considered in this study. They are Benzo(a)pyrene, Pyrene and Chrysene. When PAHs are emitted into atmosphere, physical and chemical mechanisms may redistribute the PAHs among multimedia. Five cases of PAHs distribution in multimedia were simulated: (1) PAHs distribution in a dry condition, (2) PAHs distribution when there are different dry deposition velocities, (3) PAHs distribution under a single rainfall event, (4) PAHs distribution when there are different soil properties, (5) PAHs distribution under a random rainfall case. The simulation results are concluded: (1) In the dry case, the PAHs accumulate mostly in soil and air compartments, (2) Different dry depositing velocities will affect the PAHs distribution among compartments. (3) Different soil properties affect the PAHs concentration in the soil and sediment compartments, (4) The soil PAHs concentrations usually increase for those PAHs with a high solid/gas ratio. (5) The random rainfall only affects the PAHs concentration in the soil.

  4. Tracing Star Formation Around Quasars With Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Bilton, Lawrence Edward

    2016-09-01

    The feedback processes linking quasar activity to galaxy stellar mass growth are not well understood. If star formation is closely causally linked to black hole accretion, one may expect star formation confined to nuclear regions rather than extended over several kpc scales. Since Polycyclic Aromatic Hydrocarbon (PAH) emission features are widely used as tracers of stellar formation, it is, therefore, possible to use PAH emission detected around QSOs to help resolve this question. PAH data from a sample of 63 QSOs procured from the Spitzer Space Telescope’s Infrared Spectrograph (IRS) is used, employing the Spectroscopic Modelling Analysis and Reduction Tool’s (SMART) Advanced Optimal (AdOpt) extraction routines. A composite spectrum was also produced to help determine the average conditions and compositions of star forming regions. It is found, from our high redshift (>1) sample of QSOs, there is a marginally significant extended star formation on average of 34 scales. At low redshift, the median extension after deconvolving the instrumental point spread function is 3.2 , potentially showing evolutionary variations in star formation activity. However, limitations of the spatial resolving power constrain the ability to make any absolute conclusive remarks. It is also found that the QSO/AGN composite has more neutral PAHs than the starbursting and the main sequence galaxies, consistent with the AGN having no contribution to heating the PAH emission, and also consistent with the average PAH emission found on scales (i.e. not confined to the nuclear regions). A tentative detection of water vapour emission from the gravitationally lensed Einstein Cross quasar, QSO J2237+0305, is also presented suggesting a strong molecular outflow possibly driven by the active nucleus.

  5. Engineered antibodies for monitoring of polynuclear aromatic hydrocarbons

    SciTech Connect

    Karu, A.E.; Roberts, V.A.; Li, Q.X.

    1998-06-01

    'The long-term goal of this project is to develop antibodies and antibody-based methods for detection and recovery of polynuclear aromatic hydrocarbons (PAHs) and PAH adducts that are potential biomarkers in environmental and biological samples. The inherent cross-reactivity will be exploited by pattern recognition methods. Dr. Karu''s laboratory uses new haptens representing key PAHs to derive recombinant Fab (rFab) and single-chain Fv (scFv) antibodies from hybridoma lines and combinatorial phage display libraries. Computational models of the haptens and combining sites made by Dr. Roberts''s group are used to guide antibody engineering by mutagenesis. Dr. Li''s laboratory develops enzyme immunoassays (EIAs), sensors, and immunoaffinity methods that make use of the novel haptens and antibodies for practical analytical applications in support of DOE''s mission. This report summarizes work completed in one and one-half years of a 3-year project, with close collaboration between the three research groups. Dr. Alexander Karu''s laboratory: the authors proceeded with the two strategies described in the original proposal. Site-directed mutagenesis was used to correct differences in the rFab N-terminal amino acids that were introduced by the degenerate PCR primers used for gene amplification. The binding constants of the rFabs with the corrected sequences will be compared with those of the parent MAbs, and should be very similar. The 4D5 and 10C10 heavy and light chain sequences are being moved to the pCOMB3H phagemid vector to facilitate selection of new engineered mutants.'

  6. Photolysis of polycyclic aromatic hydrocarbons adsorbed on fly ash

    SciTech Connect

    Behymer, T.D.

    1987-01-01

    Polycyclic aromatic hydrocarbons (PAH) are formed by the combustion of almost any fuel under oxygen-deficient conditions. Previous laboratory studies have found that many PAH degrade with lifetimes as short as a few hours; however, studies of marine and lacustrine sediments, the ultimate sinks of PAH, have shown relative abundances of PAH which are similar to those in combustion sources; this suggests that PAH are stable in the atmosphere. Eighteen PAH adsorbed on carbon black and fifteen coal fly ashes of varying physical and chemical composition were photolyzed in order to study their atmospheric fate. Photolytic half-lives for these particle-bound PAH were found to be highly dependent on the substrate onto which they were adsorbed. On low-carbon fly ash, PAH showed a wide range of half-lives, indicating a relationship between PAH structure and photochemical reactivity. However, PAH on carbon black and fly ashes with a high-carbon content, show similar half-lives for most PAH including reactive PAH such as anthracene and benzo(a)pyrene. This indicates a photolytic process that is independent of structure and dependent on the physical and chemical nature of the fly ash. Surprisingly, no other parameter accounts for observed PAH reactivity. Substrate characteristics such as surface area, porosity, particle size, surface pH, and iron content have all been suggested to influence the rate of PAH degradation. However, these parameters, measured for substrates studied in this thesis, do not correlate with PAH reactivity. Because carbon black and high-carbon fly ashes stabilize reactive PAH, it is these substrates which would facilitate the transport of PAH from combustion sources through the atmosphere to ultimate sinks.

  7. Efficient polycyclic aromatic hydrocarbons dihydroxylation in direct micellar systems.

    PubMed

    Randazzo, D; Berti, D; Briganti, F; Baglioni, P; Scozzafava, A; Di Gennaro, P; Galli, E; Bestetti, G

    2001-08-05

    Optimization of whole-cell bioconversion of the polycyclic aromatic hydrocarbons (PAHs) anthracene, phenanthrene, and naphthalene to the enantiomerically pure corresponding cis-dihydroxydihydro derivatives by the Escherichia coli JM109 (pPS1778) recombinant strain, carrying the naphthalene dioxygenase and corresponding regulatory genes cloned from Pseudomonas fluorescens N3, in micellar systems, is presented. We show that direct microemulsion systems, where a nonionic surfactant such as 1.5% (v/v) Triton X-100 plus 0.6% to 1.0% (v/v) selected oils are able to solubilize the PAHs tested at relatively high concentrations (initial concentrations in the reaction medium > or =10 mM for naphthalene and phenanthrene and > or =2 mM for anthracene), and allow for more efficient substrate bioconversion. These media, while not affecting bacteria viability and performance, provide increased efficiency and final product yields (100% for naphthalene, >30% for anthracene, >60% for phenanthrene). The phase behavior of the direct microemulsion systems for the different substrates and oils utilized was monitored as a function of their volume fraction by light scattering experiments, and related to the bioconversion results. For anthracene and phenanthrene, the dihydroxylated products have an inhibitory effect on the conversion reactions, thus hindering complete turnover of the substrates. We ascertain that such inhibition is reversible because removal of the products formed allowed the process to start over at rates comparable to initial rates. To allow for complete conversion of the PAHs tested a stepwise or continuous separation of the product formed from the micellar reaction environment is being developed. Copyright 2001 John Wiley & Sons, Inc.

  8. Estimation of Chronic Personal Exposure to Airborne Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Choi, Hyunok; Zdeb, Michael; Perera, Frederica; Spengler, John

    2015-01-01

    Background Polycyclic aromatic hydrocarbons (PAH) exposure from solid fuel burning represents an important public health issue for the majority of the global population. Yet, understanding of individual-level exposures remains limited. Objectives To develop regionally adaptable chronic personal exposure model to pro-carcinogenic PAH (c-PAH) for the population in Kraków, Poland. Methods We checked the assumption of spatial uniformity in eight c-PAH using the coefficients of divergence (COD), a marker of absolute concentration differences. Upon successful validation, we developed personal exposure models for eight pro-carcinogenic PAH by integrating individual-level data with area-level meteorological or pollutant data. We checked the resulting model for accuracy and precision against home outdoor monitoring data. Results During winter, COD of 0.1 for Kraków suggest overall spatial uniformity in the ambient concentration of the eight c-PAH. The three models that we developed were associated with index of agreement approximately equal to 0.9, root mean square error < 2.6 ng/m3, and 90th percentile of absolute difference ≤ 4 ng/m3 for the predicted and the observed concentrations for eight pro-carcinogenic PAH. Conclusions Inexpensive and logistically feasible information could be used to estimate chronic personal exposure to PAH profiles, in lieu of costly and labor-intensive personal air monitoring at wide scale. At the same time, thorough validation through direct personal monitoring and assumption checking are critical for successful model development. PMID:25965038

  9. [Desorption of polycyclic aromatic hydrocarbons in soils assisted by SPMD].

    PubMed

    Sun, Hong-Wen; Huo, Chong; Wang, Cui-Ping

    2007-08-01

    In order to develop a new method to study the desorption and bioavailability of hydrophobic organic chemicals (HOCs) in soils, a method using semi-permeable membrane device (SPMD) to study desorption of HOCs in soils has been set up, and assisted desorption of polycyclic aromatic hydrocarbons (PAHs), phenanthrene(PHE), pyrene(PYE), and benzo[a] pyrene (B[a]PYE) in three different kinds of soils was studied using SPMD. The results show that SPMD is a good measurement to study the desorption and bioavailability of HOCs in soils. SPMD assisted desorption of PAHs is highly dependent on the properties of the soils and the chemicals. PHE and PYE desorption percentages increase with the reduction of the content of soil organic matter (SOM), so that the desorption of the two chemicals increases from 56.45% and 48.28% to almost 100% when SOM content was reduced from 18.68% to 0.3%. However, clay has a significant holding effect on B[a]PYE, and PYE desorption is only 66.97% in Soil 3 with SOM of 0.3% and clay content of 39.05%. There is a great variety in the desorption among the different PAHs. With the reduction of SOM content and the elevation of contamination concentration, the difference between PHE and PYE decreases gradually, while B[a]PYE exhibits a significant difference from them. This could be attributed to the high lipophilicity and large molecular size of B[a]PYE, which make the molecule of B[a]PYE to be more easier to be held in the nanopores of clay and the dense region of SOM.

  10. Partition of polycyclic aromatic hydrocarbons on organobentonites from water.

    PubMed

    Chen, B L; Zhu, L Z

    2001-04-01

    A series of organobentonites synthesized by exchanging organic cation such as dodecyltri-methylammonium (DTMA), benzyldimethyltetradecylammonium (BDTDA), cetyltrimethyl-ammonium (CTMA), octodeyltrimethylammonium (OTMA) on bentonite. The optimal condition, properties and mechanisms for the organobentonites to sorb phenanthrene, anthracene, naphthalene, acenaphthene in water were investigated in detail. The partition behavior was determined for four polycyclic aromatic hydrocarbons (PAHs), such as naphthalene, phenanthrene, anthracene and acenaphthene, from water to a series of organobentonites. The interlayer spacings and organic carbon contents of organobentonites, removal rate and sorption capacities for organobentonites to treat phenanthrene, anthracene, naphthalene, acenaphthene were correlated to the length of alkyl chains and the amounts of cation surfactant exchanged on the bentonite. Phenanthrene, anthracene, naphthalene, and acenaphthene sorption to organobentonites were characterized by linear isotherms, indicating solute partition between water and the organic phase composed of the large alkyl functional groups of quaternary ammonium cations. PAHs distribution coefficients (Kd) between organobentonites and water were proportional to the organic carbon contents of organobentonites. However, the partition coefficients (Koc) were nearly constants for PAHs in the system of organobentonite-water. The Koc of phenanthrene, anthracene, naphthalene, acenaphthene were 2.621 x 10(5), 2.106 x 10(5), 2.247 x 10(4), 5.085 x 10(4), respectively. The means Koc values on the organobentonites are about ten to twenty times larger than the values on the soils/sediments, what is significant prerequisite for organobentonite to apply to remediation of pollution soil and groundwater. The sorption mechanism was also evaluated from octanol-water partition coefficients and aqueous solubility of PAHs. The correlations between 1gKoc and 1gKow, 1gKoc and 1gS for PAHs in the system of

  11. Human Colon Microbiota Transform Polycyclic Aromatic Hydrocarbons to Estrogenic Metabolites

    PubMed Central

    Van de Wiele, Tom; Vanhaecke, Lynn; Boeckaert, Charlotte; Peru, Kerry; Headley, John; Verstraete, Willy; Siciliano, Steven

    2005-01-01

    Ingestion is an important exposure route for polycyclic aromatic hydrocarbons (PAHs) to enter the human body. Although the formation of hazardous PAH metabolites by human biotransformation enzymes is well documented, nothing is known about the PAH transformation potency of human intestinal microbiota. Using a gastrointestinal simulator, we show that human intestinal microbiota can also bioactivate PAHs, more in particular to estrogenic metabolites. PAH compounds are not estrogenic, and indeed, stomach and small intestine digestions of 62.5 nmol naphthalene, phenanthrene, pyrene, and benzo(a)pyrene showed no estrogenic effects in the human estrogen receptor bioassay. In contrast, colon digests of these PAH compounds displayed estrogenicity, equivalent to 0.31, 2.14, 2.70, and 1.48 nmol 17α-ethynylestradiol (EE2), respectively. Inactivating the colon microbiota eliminated these estrogenic effects. Liquid chromatography–mass spectrometry analysis confirmed the microbial PAH transformation by the detection of PAH metabolites 1-hydroxypyrene and 7-hydroxybenzo(a)pyrene in colon digests of pyrene and benzo(a)pyrene. Furthermore, we show that colon digests of a PAH-contaminated soil (simulated ingestion dose of 5 g/day) displayed estrogenic activity equivalent to 0.58 nmol EE2, whereas stomach or small intestine digests did not. Although the matrix in which PAHs are ingested may result in lower exposure concentrations in the gut, our results imply that the PAH bioactivation potency of colon microbiota is not eliminated by the presence of soil. Moreover, because PAH toxicity is also linked to estrogenicity of the compounds, the PAH bioactivation potency of colon microbiota suggests that current risk assessment may underestimate the risk from ingested PAHs. PMID:15626640

  12. Polycyclic Aromatic Hydrocarbons and digestive tract cancers - a perspective

    PubMed Central

    Diggs, Deacqunita L.; Huderson, Ashley C.; Harris, Kelly L.; Myers, Jeremy N.; Banks, Leah D.; Rekhadevi, Perumalla V.; Niaz, Mohammad S.; Ramesh, Aramandla

    2011-01-01

    Cancers of the colon are most common in the Western world. In majority of these cases, there is no familial history and sporadic gene damage seems to play an important role in the development of tumors in the colon. Studies have shown that environmental factors, especially diet, play an important role in susceptibility to GI tract cancers. Consequently, environmental chemicals that contaminate food or diet during its preparation becomes important in the development of GI cancers. Polycyclic aromatic hydrocarbons (PAHs) are one such family of ubiquitous environmental toxicants. These pollutants enter the human body through consumption of contaminated food, drinking water, inhalation of cigarette smoke, automobile exhausts, and contaminated air from occupational settings. Among these pathways, dietary intake of PAHs constitutes a major source of exposure in humans. Although many reviews and books on PAHs and their ability to cause toxicity and breast or lung cancer have been published, aspects on contribution of diet, smoking and other factors towards development of digestive tract cancers and strategies to assess risk from exposure to PAHs have received much less attention. This review, therefore, focuses on dietary intake of PAHs in humans, animal models, and cell cultures used for GI cancer studies along with epidemiological findings. Bioavailability and biotransformation processes, which influence the disposition of PAHs in body and the underlying causative mechanisms of GI cancers, are also discussed. The existing data gaps and scope for future studies is also emphasized. This information is expected to stimulate research on mechanisms of sporadic GI cancers caused by exposure to environmental carcinogens. PMID:22107166

  13. Background'' soil concentration of polycyclic aromatic hydrocarbons from Burlington, Vermont

    SciTech Connect

    Parker, R.L.; Sparks, M.K. )

    1993-03-01

    Polycyclic Aromatic Hydrocarbons (PAH's) were identified in soils from waterfront industrial land in Burlington prior to conversion to a park. PAH's ranged from 2,457 to 16,005 ppb. As a result, this area was placed on the Vt. DEC list of active'' hazardous sites. The few studies available regarding background concentrations of PAH's (i.e. ATSDR, 1990), suggested that the waterfront PAH values were low for urban soils. To provide a context for evaluating the waterfront PAH concentrations, a background study of soils in the City of Burlington was conducted. Twelve composite soil samples were collected from within a 1-mile radius of the proposed park; an area that encompasses a large portion of the City. To correlate PAH concentrations with land-uses, three samples were collected from each of four zones: industrial, mixed commercial-residential, residential and recreational. Samples (and one field blank) were analyzed via EPA method 8100. Total PAH's from the study ranged from 105.7 to 122,035 ppb. The minimum value was from a baseball field; the maximum value from a residential lawn. The arithmetic mean for the Burlington study was 19,380 ppb (compared to 10,530 ppb for the waterfront). The background'' values indicate that the waterfront park soils are below the study background'' mean. It is difficult to assess the origin of the elevated PAH values because of the numerous contributors of environmental PAH. One common element that appears to characterize soils with the highest background'' PAH values is linkage to recent or historic building fires. In many instances building combustion may be a dominant local source of soil PAH's.

  14. Polycyclic aromatic hydrocarbons in mountain soils of the subtropical Atlantic.

    PubMed

    Ribes, A; Grimalt, J O; Torres García, C J; Cuevas, E

    2003-01-01

    Surface soil samples from various altitudes on Tenerife Island, ranging from sea level up to 3400 m above mean sea level, were analyzed to study the distribution of 26 polycyclic aromatic hydrocarbons (PAHs) in a remote subtropical area. The stable atmospheric conditions in this island define three vertically stratified layers: marine boundary, trade-wind inversion, and free troposphere. Total PAH concentrations, 1.9 to 6000 microg/kg dry wt., were high when compared with those in tropical areas and in a similar range to those in temperate areas. In the marine boundary layer, fluoranthene (Fla), pyrene (Pyr), benz [a]anthracene (BaA), and chrysene (C + T) were largely dominant. The predominance of Fla over Pyr may reflect photo-oxidative processes during atmospheric transport, although coal combustion inputs cannot be excluded. The PAHs found in higher concentration in the soils from the inversion layer were benzo[b + j]fluoranthene (BbjF) + benzo[k]fluoranthene (BkF) > benzo[e]pyrene (BeP) approximately indeno[1,2, 3-cd]pyrene (Ind) > benzo[a]pyrene (BaP) approximately benzo[ghi]perylene (Bghi) > coronene (Cor) approximately dibenz[a,h]anthracene (Dib), reflecting that high temperatures and insolation prevent the accumulation of PAHs more volatile than BbjF in significant amounts. These climatic conditions involve a process of standardization that prevents the identification of specific PAH sources such as traffic, forest fires, or industrial inputs. Only soils with high total organic carbon (TOC) (e.g., 10-30%) preserve the more volatile compounds such as phenanthrene (Phe), methylphenanthrenes (MPhe), dimethylphenanthrenes (DMPhe), and retene (Ret). However, no relation between PAHs and soil TOC and black carbon (BC) was found. The specific PAH distributions of the free tropospheric region suggest a direct input from pyrolytic processes related to the volcanic emission of gases in Teide.

  15. Dry deposition of polycyclic aromatic hydrocarbons in ambient air

    SciTech Connect

    Sheu, H.L.; Lee, W.J.; Su, C.C.; Chao, H.R.; Fan, Y.C.

    1996-12-01

    Dry deposition and air sampling were undertaken, simultaneously, in the ambient air of an urban site and a petrochemical-industry (PCI) plant by using several dry deposition plates and PS-1 samplers from January to May 1994 in southern Taiwan. The dry deposition plate with a smooth surface was always pointed into the wind. Twenty-one polycyclic aromatic hydrocarbons (PAHs) were analyzed by a gas chromatography/mass spectrometer (GC/MSD). The dry deposition flux of total-PAHs in urban and PCI sites averaged 166 and 211 {micro}g/m{sup 2}{center_dot}d, respectively. In general, the PAH dry deposition flux increased with increases in the PAH concentration in the ambient air. The PAH pattern of dry deposition flux in both urban and PCI sites were similar to the pattern measured by the filter of the PS-1 sampler and completely different from the PAH pattern in the gas phase. The higher molecular weight PAHs have higher dry deposition velocities. This is due to the fact that higher molecular weight PAHs primarily associated with the particle phase are deposited mostly by gravitational settling, while the gas phase PAHs were between 0.001 and 0.010 cm/s, only the lower molecular-weight PAHs--Nap and AcPy--had a significant fraction of dry deposition flux contributed by the gas phase. All the remaining higher molecular-weight PAHs had more than 94.5% of their dry deposition flux resulting from the particle phase. This is due to the fact that higher molecular weight PAHs have a greater fraction in the particle phase and the dry deposition velocities of particulates are much higher than those of the gas phase.

  16. Polycyclic Aromatic Hydrocarbons in Residential Dust: Sources of Variability

    PubMed Central

    Metayer, Catherine; Petreas, Myrto; Does, Monique; Buffler, Patricia A.; Rappaport, Stephen M.

    2013-01-01

    Background: There is interest in using residential dust to estimate human exposure to environmental contaminants. Objectives: We aimed to characterize the sources of variability for polycyclic aromatic hydrocarbons (PAHs) in residential dust and provide guidance for investigators who plan to use residential dust to assess exposure to PAHs. Methods: We collected repeat dust samples from 293 households in the Northern California Childhood Leukemia Study during two sampling rounds (from 2001 through 2007 and during 2010) using household vacuum cleaners, and measured 12 PAHs using gas chromatography–mass spectrometry. We used a random- and a mixed-effects model for each PAH to apportion observed variance into four components and to identify sources of variability. Results: Median concentrations for individual PAHs ranged from 10 to 190 ng/g of dust. For each PAH, total variance was apportioned into regional variability (1–9%), intraregional between-household variability (24–48%), within-household variability over time (41–57%), and within-sample analytical variability (2–33%). Regional differences in PAH dust levels were associated with estimated ambient air concentrations of PAH. Intraregional differences between households were associated with the residential construction date and the smoking habits of residents. For some PAHs, a decreasing time trend explained a modest fraction of the within-household variability; however, most of the within-household variability was unaccounted for by our mixed-effects models. Within-household differences between sampling rounds were largest when the interval between dust sample collections was at least 6 years in duration. Conclusions: Our findings indicate that it may be feasible to use residential dust for retrospective assessment of PAH exposures in studies of health effects. PMID:23461863

  17. Characterization of polycyclic aromatic hydrocarbons in fog-rain events.

    PubMed

    Li, Xiang; Li, Pengfei; Yan, Lili; Chen, Jianmin; Cheng, Tiantao; Xu, Shifen

    2011-11-01

    Atmospheric polycyclic aromatic hydrocarbons (PAHs) mainly originate from incomplete combustion or pyrolysis of materials containing carbon and hydrogen. They exist in gas and particle phases, as well as dissolved or suspended in precipitation (fog or rain). Current studies in atmospheric PAHs are predominantly focused on fog and rainwater samples. Some sampling difficulties are associated with fog samples. This study presented the first observation of the characteristics of PAHs in fog samples using a solid phase microextraction (SPME) technique. Eighteen fog samples were collected during ten fog events from March to December 2009 in the Shanghai area. PAHs were extracted by SPME and analyzed by gas chromatography-mass spectrometry (GC-MS). As the compounds were partially soluble in water, with solubility decreasing with increasing molecular weight, low molecular weight (LMW) PAH compounds were universally found in the fog water samples. Naphthalene (NaP), phenanthrene (Phe), anthracene (Ant) and fluoranthene (Flo) were dominant compounds in fog water. The total PAH concentration in fog water ranged from 0.03 to 6.67 μg L(-1) (mean of 1.06 μg L(-1)), and was much higher in winter than in summer. The concentration of PAHs in fog or rain water decreased after undergoing a pre-rain or pre-fog wash. The average concentration of PAHs was higher in fog than in rain. Diagnostic ratio analysis suggested that petroleum and combustion were the dominant contributors to PAHs in urban Shanghai. Backward trajectories were calculated to determine the origin of the air masses, showing that air masses were mostly from the northeast territory.

  18. Intraperitoneal mesotheliomas induced in mice by a polycyclic aromatic hydrocarbon

    SciTech Connect

    Rice, J.M.; Anderson, L.M. ); Kovatch, R.M. )

    1989-01-01

    Female mice of 6 strains (C3H/HeN, BALB/c, C57BL/6N, DBA/2, NIH Swiss, and AKR/N) were given the polycyclic aromatic hydrocarbon carcinogen 3-methylcholanthrene (MC) intragastrically in olive oil at a dose of 20 mg/kg, weekly for 12 wk. Half were pretreated 24 h before each MC administration with intraperitoneal {beta}-naphthoflavone ({beta}-NF, 150 mg/kg in olive oil), a noncarinogenic inducer of certain cytochrome P-450 isozymes. Remaining mice were given olive oil prior to MC in the same fashion, or {beta}-NF in olive oil or olive oil alone without subsequent exposure to MC. All mice were killed when moribund or 13 mo after the start of treatment. Most of the mice, irrespective of treatment, exhibited signs of peritoneal injury, including inflammation, necrosis, granuloma formation, and mineralization. Mice of some of the strains also presented peritoneal mesotheliomas, in addition to a variety of other tumors. {beta}-NF pretreatment reduced the frequency of mesotheliomas: there was only one definite mesothelioma in any of the {beta}-NF-MC groups, in a C3H/He mouse. Most of the measotheliomas were mixed fibro-mesothelial type, sometimes with papillary epithelial excrescences. They typically grew in a botryoid pattern within the peritoneal cavity, coating the abdominal organs and sometimes actively invading these organs and the diaphragm. Some lesions exhibited pleomorphism, prominent giant cells, and frequent mitoses. In addition, several lesions consisting of severe mesothelial hyperplasia associated with tissue necrosis and inflammation were considered as possible early stages of mesothelioma development. It was postulated that peritoneal injury imposed by repeated intraperitoneal injection of oil acted as an enhancing factor for mesothelioma induction by MC.

  19. Infrared Spectroscopy of Polycyclic Aromatic Hydrocarbon Cations. 3; The Members

    NASA Technical Reports Server (NTRS)

    Hudgins, D. M.; Allamandola, L. J.; Wittebon, Fred C. (Technical Monitor)

    1994-01-01

    In spite of the fact that the infrared spectroscopic properties of only a few isolated ionized polycyclic aromatic hydrocarbons (PAHs) are known, gaseous, ionized PAHs are thought to be responsible for a very common family of infrared interstellar emission bands. In order to provide a data base to test this hypothesis and, if borne out, to use this emission band family as a probe of many different interstellar environments, we are carrying out a thorough study of the infrared spectroscopic properties of neutral and ionized PAHs in argon matrices. Here we present the near and mid-infrared spectra of the cations of the five most thermodynamically favored PAHs up to coronene: phenanthrene, pyrene, benzo[e]pyrene, benzo[ghilperylene, and coronene. The properties of naphthalene, the first member of the series, are given elsewhere. The spectra of perdeuterated phenanthrene and pyrene are also reported. For those molecules which have been previously studied (pyrene, d(10)-pyrene, and coronene), band positions and relative intensities are in agreement. In all cases we report additional features. Absolute integrated absorbance values are given for the phenanthrene, perdeutero-phenanthrene, pyrene, benzo[ghi]perylene, and coronene cations. With the exception of coronene,the cation bands corresponding to the CC modes are typically 2-5 times more intense than those of the CH out-of-plane bending vibrations. For the cations the CC stretching and CH in-plane bending modes give rise to bands which are an order of magnitude stronger than for the neutral species, and the CH out-of-plane bends produce bands which are 5-20 times weaker than in the neutral species. This behavior is similar to that found in most other PAH cations studied to date. The astronomical implications of these PAH cation spectra are also discussed.

  20. Polycyclic aromatic hydrocarbon ecotoxicity data for developing soil quality criteria.

    PubMed

    Jensen, John; Sverdrup, Line E

    2003-01-01

    With the overall perspective of calculating soil quality criteria (SQC) for the group of polycyclic aromatic hydrocarbons (PAHs), the existing ecotoxicity data for the soil compartment have been reviewed. The majority of data useful in the context of deriving SQC are of recent origin. Soil quality criteria are considered valuable tools for assessing the environmental risk of contamination, as they may give guidance on concentration limits for various chemicals to protect the function and structure of ecosystems. Soil quality criteria for soil-dwelling species were calculated using various assumptions and two internationally accepted methods, i.e., application of assessment factors and species sensitivity distributions, respectively. It was suggested to derive ecotoxicological soil quality criteria, which focus on the lower molecular weight PAHs, i.e., those with log Kow values lower than 5.5 or 6; this is the log Kow range where a cutoff in toxicity for terrestrial species is expected for narcotic substances. Predicted values from the two methods were similar. Calculations showed that, for four individual PAHs of three or four rings, SQC fall in the range of 1.0 and 2.5 mg kg(-1). However, as no individual PAH is fond alone it is suggested to use a sum criterion for a group of PAHs instead. The different possibilities to calculate such a sum criterion are discussed. Based on toxicity data presented here and the average abundance of different PAHs in nearly 1000 Danish soil samples, an ecotoxicological soil quality criterion of 25 mg kg(-1) dry weight for the sum of the eight PAHs acenaphthene, fluorene, anthracene, phenanthrene, pyrene, fluoranthene, benz[a]anthracene, and chrysene is suggested.

  1. Fluorescence Spectroscopy of Gas-phase Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Thomas, J. D.; Witt, A. N.

    2006-01-01

    The purpose of this investigation was to produce fluorescence spectra of polycyclic aromatic hydrocarbon (PAH) molecules in the gas-phase for comparison with blue luminescence (BL) emission observed in astrophysical sources Vijh et al. (2004, 2005a,b). The BL occurs roughly from 350 to 450 nm, with a sharp peak near 380 nm. PAHs with three to four rings, e.g. anthracene and pyrene, were found to produce luminescence in the appropriate spectral region, based on existing studies. Relatively few studies of the gas-phase fluorescence of PAHs exist; those that do exist have dealt primarily with the same samples commonly available for purchase such as pyrene and anthracene. In an attempt to understand the chemistry of the nebular environment we also obtained several nitrogen substituted PAHs from our colleagues at NASA Ames. In order to simulate the astrophysical environment we also took spectra by heating the PAHs in a flame. The flame environment counteracts the formation of eximers and permits the spectroscopy of free-flying neutral molecules. Experiments with coal tar demonstrate that fluorescence spectroscopy reveals primarily the presence of the smallest molecules, which are most abundant and which possess the highest fluorescence efficiencies. One gas-phase PAH that seems to fit the BL spectrum most closely is phenanthridine. In view of the results from the spectroscopy of coal tar, a compound containing a mixture of PAHs ranging from small to very large PAH molecules, we can not preclude the presence of larger PAHs in interstellar sources exhibiting BL.

  2. Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites.

    PubMed

    Van de Wiele, Tom; Vanhaecke, Lynn; Boeckaert, Charlotte; Peru, Kerry; Headley, John; Verstraete, Willy; Siciliano, Steven

    2005-01-01

    Ingestion is an important exposure route for polycyclic aromatic hydrocarbons (PAHs) to enter the human body. Although the formation of hazardous PAH metabolites by human biotransformation enzymes is well documented, nothing is known about the PAH transformation potency of human intestinal microbiota. Using a gastrointestinal simulator, we show that human intestinal microbiota can also bioactivate PAHs, more in particular to estrogenic metabolites. PAH compounds are not estrogenic, and indeed, stomach and small intestine digestions of 62.5 nmol naphthalene, phenanthrene, pyrene, and benzo(a)pyrene showed no estrogenic effects in the human estrogen receptor bioassay. In contrast, colon digests of these PAH compounds displayed estrogenicity, equivalent to 0.31, 2.14, 2.70, and 1.48 nmol 17alpha-ethynylestradiol (EE2), respectively. Inactivating the colon microbiota eliminated these estrogenic effects. Liquid chromatography-mass spectrometry analysis confirmed the microbial PAH transformation by the detection of PAH metabolites 1-hydroxypyrene and 7-hydroxybenzo(a)pyrene in colon digests of pyrene and benzo(a)pyrene. Furthermore, we show that colon digests of a PAH-contaminated soil (simulated ingestion dose of 5 g/day) displayed estrogenic activity equivalent to 0.58 nmol EE2, whereas stomach or small intestine digests did not. Although the matrix in which PAHs are ingested may result in lower exposure concentrations in the gut, our results imply that the PAH bioactivation potency of colon microbiota is not eliminated by the presence of soil. Moreover, because PAH toxicity is also linked to estrogenicity of the compounds, the PAH bioactivation potency of colon microbiota suggests that current risk assessment may underestimate the risk from ingested PAHs.

  3. Polycyclic aromatic hydrocarbons and heavy metals in Kostrena coastal area.

    PubMed

    Linsak, Dijana Tomić; Linsak, Zeljko; Besić, Denis; Vojcić, Nina; Telezar, Mirna; Coklo, Miran; Susnić, Sasa; Mićović, Vladimir

    2011-12-01

    The aim of this study was to determine pollution by polycyclic aromatic hydrocarbons (PAH) and heavy metals in seawater and sediment in Kostrena coastal area, as well as their toxicity using bioluminescence based tests. Total PAH concentration in seawater ranged 1.7-155.3 ng/L. The share of carcinogenetic PAH was relatively high, ranging 22-48.3%. Nickel concentrations in seawater were beyond detection limits (< 0.1 microg/L), vanadium concentrations ranged 0.66-1.96 microg/L, chrome concentrations were beyond detection limits, and copper concentrations were also beyond detection limits or extremely low (up to 0.32 microg/L). EC50 values in seawater ranged 23.80-90.90 ng/L. Correlation between total PAH concentration and toxicity of seawater showed strong connection between them (r = 0.9579). Total PAH concentration in marine sediment ranged 58.02-1116 microg/kg dry weight (d.w.). The share of carcinogenetic PAH was extremely high ranging 10-53%. Nickel concentrations in marine sediment ranged 8-24 mg/kg d.w., vanadium concentrations ranged 24-42 mg/kg d.w., chrome concentrations ranged 11-19 mg/kg d.w., and copper concentrations ranged 7-25 mg/kg d.w. EC50 values in marine sediment ranged 818-4596 microg/kg d.w. Correlation between total PAH concentration and toxicity of marine sediment showed weak connection between them (r = 0.2590). Previous studies of seawater samples from areas of the Adriatic sea under the direct influence of oil industry did not include concentrations of heavy metals, which makes our study the first to present such comprehensive results. Our results point out the need for further evaluations and following of marine environment pollution and its consequences on living organisms and marine ecosystem in whole.

  4. Exposure to polycyclic aromatic hydrocarbons among Dutch children.

    PubMed

    van Wijnen, J H; Slob, R; Jongmans-Liedekerken, G; van de Weerdt, R H; Woudenberg, F

    1996-05-01

    We determined the urinary 1-hydroxypyrene (1-HP) concentration and the creatinine-adjusted 1-HP concentration in 644 randomly selected Dutch children, aged 1-6 years and living in five areas with roughly different levels of polycyclic aromatic hydrocarbons (PAHs) in soil and ambient air. The presence of other factors that might influence the exposure to PAHs was studied using a questionnaire. To evaluate the reliability of a single urinary 1-HP determination, measurements were repeated after 3 weeks for approximately 200 children. The mean urinary 1-HP content of the total study population was 2.06 nmol/l. This varied from 1.58 nmol/l in the reference area (Flevoland) to 2.71 nmol/l in the valley of the Geul. Only indoor sources of PAHs showed a small, positive association with urinary 1-HP. The urinary 1-HP concentrations of children from the valley of the Geul were higher (p < 0.01) and those of children from a suburb of Amsterdam were lower (p < 0.01) than those of children from the reference area. The possible ambient environment-related differences were probably too small to be detected in the variations of the intake of PAHs from the daily diet. The reliability of a single 1-HP measurement was low. Similar results were obtained with the creatinine-adjusted data. In one neighborhood built on coal-mine tailings, the urinary 1-HP content in children was weakly but positively associated with the PAH content in the upper soil layer of the garden of their homes. However, this association was not found for the children from the other neighborhood built on coal-mine tailings and with similar PAH levels in soil.

  5. Sorption of polycyclic aromatic hydrocarbons (PAHs) on glass surfaces.

    PubMed

    Qian, Yuan; Posch, Tjorben; Schmidt, Torsten C

    2011-02-01

    Sorption of polycyclic aromatic hydrocarbons (PAHs) to glass commonly used in laboratories was studied. Sorption coefficients (Kd) of five selected PAHs to borosilicate glass surfaces were measured using column chromatography. A linear relationship between log Kd and the corresponding water solubility of the subcooled liquid (log Sw) of the investigated PAHs was observed. Based on the determined sorption coefficients our data revealed that mass loss caused by sorption on glass walls strongly depends on the ratio of solution volume to contacted surface area (V/S). The influence of solution chemistry such as ionic strength, solution pH, presence of cosolvent, and the influence of temperature on the sorption process were investigated. In the presence of ionic strength, sorption coefficients concurrently increased but less than a factor of 2 up to 0.005 M calcium chloride concentration. However, further increasing ionic strength had no influence on Kd. The cosolvent reduced sorption at a concentration of methanol in water above 0.5% (v/v); however, for benzo[a]pyrene even with 10% (v/v) methanol the mass loss would be still higher than 10% (with a V/S ratio less than 0.25). Significant effects of the solution pH and temperature were not observed. These results suggest that van der Waal's forces dominate the sorption process. In the analysis of highly hydrophobic PAHs in aqueous samples, mass loss due to sorption on glass walls should be accounted for in the final result if untreated glass is used. The presented relationship between log Kd and log Sw may help to decide if such a correction is necessary. Furthermore, the frequently used silanization of glass surfaces may not be sufficient to suppress sorption for large PAHs.

  6. Dissociation of polycyclic aromatic hydrocarbons: molecular dynamics studies

    NASA Astrophysics Data System (ADS)

    Simon, A.; Rapacioli, M.; Rouaut, G.; Trinquier, G.; Gadéa, F. X.

    2017-03-01

    We present dynamical studies of the dissociation of polycyclic aromatic hydrocarbon (PAH) radical cations in their ground electronic states with significant internal energy. Molecular dynamics simulations are performed, the electronic structure being described on-the-fly at the self-consistent-charge density functional-based tight binding (SCC-DFTB) level of theory. The SCC-DFTB approach is first benchmarked against DFT results. Extensive simulations are achieved for naphthalene , pyrene and coronene at several energies. Such studies enable one to derive significant trends on branching ratios, kinetics, structures and hints on the formation mechanism of the ejected neutral fragments. In particular, dependence of branching ratios on PAH size and energy were retrieved. The losses of H and C2H2 (recognized as the ethyne molecule) were identified as major dissociation channels. The H/C2H2 ratio was found to increase with PAH size and to decrease with energy. For , which is the most interesting PAH from the astrophysical point of view, the loss of H was found as the quasi-only channel for an internal energy of 30 eV. Overall, in line with experimental trends, decreasing the internal energy or increasing the PAH size will favour the hydrogen loss channels with respect to carbonaceous fragments. This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.

  7. Ambient polycyclic aromatic hydrocarbons and pulmonary function in children

    PubMed Central

    Padula, Amy M.; Balmes, John R.; Eisen, Ellen A.; Mann, Jennifer; Noth, Elizabeth M.; Lurmann, Frederick W.; Pratt, Boriana; Tager, Ira B.; Nadeau, Kari; Hammond, S. Katharine

    2014-01-01

    Few studies have examined the relationship between ambient polycyclic aromatic hydrocarbons (PAHs) and pulmonary function in children. Major sources include vehicular emissions, home heating, wildland fires, agricultural burning, and power plants. PAHs are an important component of fine particulate matter that has been linked to respiratory health. This cross-sectional study examines the relationship between estimated individual exposures to the sum of PAHs with 4, 5, or 6 rings (PAH456) and pulmonary function tests (forced expiratory volume in one second (FEV1) and forced expiratory flow between 25% and 75% of vital capacity) in asthmatic and non-asthmatic children. We applied land-use regression to estimate individual exposures to ambient PAHs for averaging periods ranging from 1 week to 1 year. We used linear regression to estimate the relationship between exposure to PAH456 with pre- and postbronchodilator pulmonary function tests in children in Fresno, California (N =297). Among non-asthmatics, there was a statistically significant association between PAH456 during the previous 3 months, 6 months, and 1 year and postbronchodilator FEV1. The magnitude of the association increased with the length of the averaging period ranging from 60 to 110 ml decrease in FEV1 for each 1 ng/m3 increase in PAH456. There were no associations with PAH456 observed among asthmatic children. We identified an association between annual PAHs and chronic pulmonary function in children without asthma. Additional studies are needed to further explore the association between exposure to PAHs and pulmonary function, especially with regard to differential effects between asthmatic and non-asthmatic children. PMID:24938508

  8. Polycyclic aromatic hydrocarbons in surface sediments of the Jialu River.

    PubMed

    Fu, Jie; Sheng, Sheng; Wen, Teng; Zhang, Zhi-Ming; Wang, Qing; Hu, Qiu-Xiang; Li, Qing-Shan; An, Shu-Qing; Zhu, Hai-Liang

    2011-07-01

    The Jialu River, an important branch of the Huaihe River in China, was seriously polluted because of rapid economic growth and urbanization. In order to evaluate the potential for serious environmental consequences as a result of anthropogenic contamination, the distribution of polycyclic aromatic hydrocarbons (PAHs) has been investigated in surface sediment samples collected in connection with field surveys of 19 sites along the Jialu River. The total concentration of the 16 USEPA priority PAHs ranged from 466.0 to 2605.6 ng/g dry weight with a mean concentration of 1363.2 ng/g. Sediment samples with the highest PAH concentrations were from the upper reaches of the river, where Zhengzhou City is located; the PAH levels in the middle and lower reaches were relatively low. According to the observed molecular indices, PAHs originated largely from the high-temperature pyrolytic process. According to the numerical effect-based sediment quality guidelines (SQGs) of the United States, the levels of PAHs in the Jialu River should not exert adverse biological effects. The total benzo[a]pyrene toxicity equivalent (TEQ) values calculated for samples varied from 50.4 to 312.8 ng/g dry weight with an average of 167.4 ng/g. The relationships between PAHs and environmental factors, including chemical properties of sediments, water quality, aquatic organisms, hydrological conditions, and anthropogenic activities, are also discussed. PAHs exerted a potential negative impact on the benthos. Settlement percentage, population density and industrial GDP per capita had a significant influence on the distribution of PAHs.

  9. Generation of polycyclic aromatic hydrocarbons (PAHs) during woodworking operations

    PubMed Central

    Bruschweiler, Evin D.; Danuser, Brigitta; Huynh, Cong Khanh; Wild, Pascal; Schupfer, Patrick; Vernez, David; Boiteux, Philippe; Hopf, Nancy B.

    2012-01-01

    Occupational exposures to wood dust have been associated with an elevated risk of sinonasal cancer (SNC). Wood dust is recognized as a human carcinogen but the specific cancer causative agent remains unknown. One possible explanation is a co-exposure to; wood dust and polycyclic aromatic hydrocarbons (PAHs). PAHs could be generated during incomplete combustion of wood due to heat created by use of power tools. To determine if PAHs are generated from wood during common wood working operations, PAH concentrations in wood dust samples collected in an experimental chamber operated under controlled conditions were analyzed. In addition, personal air samples from workers exposed to wood dust (n = 30) were collected. Wood dust was generated using three different power tools: vibrating sander, belt sander, and saw; and six wood materials: fir, Medium Density Fiberboard (MDF), beech, mahogany, oak and wood melamine. Monitoring of wood workers was carried out by means of personal sampler device during wood working operations. We measured 21 PAH concentrations in wood dust samples by capillary gas chromatography-ion trap mass spectrometry (GC-MS). Total PAH concentrations in wood dust varied greatly (0.24–7.95 ppm) with the lowest being in MDF dust and the highest in wood melamine dust. Personal PAH exposures were between 37.5–119.8 ng m−3 during wood working operations. Our results suggest that PAH exposures are present during woodworking operations and hence could play a role in the mechanism of cancer induction related to wood dust exposure. PMID:23087908

  10. Polycyclic aromatic hydrocarbons and digestive tract cancers: a perspective.

    PubMed

    Diggs, Deacqunita L; Huderson, Ashley C; Harris, Kelly L; Myers, Jeremy N; Banks, Leah D; Rekhadevi, Perumalla V; Niaz, Mohammad S; Ramesh, Aramandla

    2011-10-01

    Cancers of the colon are most common in the Western world. In majority of these cases, there is no familial history and sporadic gene damage seems to play an important role in the development of tumors in the colon. Studies have shown that environmental factors, especially diet, play an important role in susceptibility to gastrointestinal (GI) tract cancers. Consequently, environmental chemicals that contaminate food or diet during preparation become important in the development of GI cancers. Polycyclic aromatic hydrocarbons (PAHs) are one such family of ubiquitous environmental toxicants. These pollutants enter the human body through consumption of contaminated food, drinking water, inhalation of cigarette smoke, automobile exhausts, and contaminated air from occupational settings. Among these pathways, dietary intake of PAHs constitutes a major source of exposure in humans. Although many reviews and books on PAHs and their ability to cause toxicity and breast or lung cancer have been published, aspects on contribution of diet, smoking and other factors toward development of digestive tract cancers, and strategies to assess risk from exposure to PAHs have received much less attention. This review, therefore, focuses on dietary intake of PAHs in humans, animal models, and cell cultures used for GI cancer studies along with epidemiological findings. Bioavailability and biotransformation processes, which influence the disposition of PAHs in body and the underlying causative mechanisms of GI cancers, are also discussed. The existing data gaps and scope for future studies is also emphasized. This information is expected to stimulate research on mechanisms of sporadic GI cancers caused by exposure to environmental carcinogens.

  11. Phototoxic target lipid model of single polycyclic aromatic hydrocarbons.

    PubMed

    Marzooghi, Solmaz; Finch, Bryson E; Stubblefield, William A; Dmitrenko, Olga; Neal, Sharon L; Di Toro, Dominic M

    2017-04-01

    A phototoxic target lipid model (PTLM) is developed to predict phototoxicity of individual polycyclic aromatic hydrocarbons (PAHs) measured either as median lethal concentration (LC50) or median lethal time (LT50) for a 50% toxic response. The model is able to account for the differences in the physical/chemical properties of PAHs, test species sensitivities, and variations in light source characteristics, intensity, and length of exposure. The PTLM is based on the narcotic target lipid model (NTLM) of PAHs. Both models rely on the assumption that mortality occurs when the toxicant concentration in the target lipid of the organism reaches a threshold concentration. The PTLM is applied to observed LC50s and LT50s for 20 individual PAHs, 15 test species-including arthropods, fishes, amphibians, annelids, mollusks, and algae-exposed to simulated solar and various UV light sources, for exposure times varying from less than 1 h to 100 h, a total of 333 observations. The LC50 concentrations range from less than 0.1 µg/L to greater that 10(4)  µg/L. The model has 2 fitting parameters that are constant and apply to all PAHs and organisms. The root mean square errors of prediction for log(LC50) and log(LT50) are 0.473 and 0.382, respectively. The results indicate that the PTLM can predict the phototoxicity of single PAHs over a wide range of exposure conditions and to organisms with a wide range of sensitivities. Environ Toxicol Chem 2017;36:926-937. © 2016 SETAC. © 2016 SETAC.

  12. Infrared Spectroscopy of Polycyclic Aromatic Hydrocarbon Cations. 3; The Members

    NASA Technical Reports Server (NTRS)

    Hudgins, D. M.; Allamandola, L. J.; Wittebon, Fred C. (Technical Monitor)

    1994-01-01

    In spite of the fact that the infrared spectroscopic properties of only a few isolated ionized polycyclic aromatic hydrocarbons (PAHs) are known, gaseous, ionized PAHs are thought to be responsible for a very common family of infrared interstellar emission bands. In order to provide a data base to test this hypothesis and, if borne out, to use this emission band family as a probe of many different interstellar environments, we are carrying out a thorough study of the infrared spectroscopic properties of neutral and ionized PAHs in argon matrices. Here we present the near and mid-infrared spectra of the cations of the five most thermodynamically favored PAHs up to coronene: phenanthrene, pyrene, benzo[e]pyrene, benzo[ghilperylene, and coronene. The properties of naphthalene, the first member of the series, are given elsewhere. The spectra of perdeuterated phenanthrene and pyrene are also reported. For those molecules which have been previously studied (pyrene, d(10)-pyrene, and coronene), band positions and relative intensities are in agreement. In all cases we report additional features. Absolute integrated absorbance values are given for the phenanthrene, perdeutero-phenanthrene, pyrene, benzo[ghi]perylene, and coronene cations. With the exception of coronene,the cation bands corresponding to the CC modes are typically 2-5 times more intense than those of the CH out-of-plane bending vibrations. For the cations the CC stretching and CH in-plane bending modes give rise to bands which are an order of magnitude stronger than for the neutral species, and the CH out-of-plane bends produce bands which are 5-20 times weaker than in the neutral species. This behavior is similar to that found in most other PAH cations studied to date. The astronomical implications of these PAH cation spectra are also discussed.

  13. Ambient polycyclic aromatic hydrocarbons and pulmonary function in children.

    PubMed

    Padula, Amy M; Balmes, John R; Eisen, Ellen A; Mann, Jennifer; Noth, Elizabeth M; Lurmann, Frederick W; Pratt, Boriana; Tager, Ira B; Nadeau, Kari; Hammond, S Katharine

    2015-05-01

    Few studies have examined the relationship between ambient polycyclic aromatic hydrocarbons (PAHs) and pulmonary function in children. Major sources include vehicular emissions, home heating, wildland fires, agricultural burning, and power plants. PAHs are an important component of fine particulate matter that has been linked to respiratory health. This cross-sectional study examines the relationship between estimated individual exposures to the sum of PAHs with 4, 5, or 6 rings (PAH456) and pulmonary function tests (forced expiratory volume in one second (FEV1) and forced expiratory flow between 25% and 75% of vital capacity) in asthmatic and non-asthmatic children. We applied land-use regression to estimate individual exposures to ambient PAHs for averaging periods ranging from 1 week to 1 year. We used linear regression to estimate the relationship between exposure to PAH456 with pre- and postbronchodilator pulmonary function tests in children in Fresno, California (N=297). Among non-asthmatics, there was a statistically significant association between PAH456 during the previous 3 months, 6 months, and 1 year and postbronchodilator FEV1. The magnitude of the association increased with the length of the averaging period ranging from 60 to 110 ml decrease in FEV1 for each 1 ng/m(3) increase in PAH456. There were no associations with PAH456 observed among asthmatic children. We identified an association between annual PAHs and chronic pulmonary function in children without asthma. Additional studies are needed to further explore the association between exposure to PAHs and pulmonary function, especially with regard to differential effects between asthmatic and non-asthmatic children.

  14. STRONG POLYCYCLIC AROMATIC HYDROCARBON EMISSION FROM z {approx} 2 ULIRGs

    SciTech Connect

    Desai, Vandana; Soifer, B. T.; Melbourne, Jason; Dey, Arjun; Brand, Kate; Brodwin, Mark; Jannuzi, Buell T.; Le Floc'h, Emeric; Armus, Lee; Teplitz, Harry; Brown, Michael J. I.; Houck, James R.; Weedman, Daniel W.; Ashby, Matthew L. N.; Huang Jiasheng; Smith, Howard A.; Willner, Steve P.; Gonzalez, Anthony

    2009-08-01

    Using the Infrared Spectrograph on board the Spitzer Space Telescope, we present low-resolution (64 < {lambda}/{delta}{lambda} < 124), mid-infrared (20-38 {mu}m) spectra of 23 high-redshift ULIRGs detected in the Booetes field of the NOAO Deep Wide-Field Survey. All of the sources were selected to have (1) f {sub {nu}}(24 {mu}m)>0.5 mJy; (2) R - [24]>14 Vega mag; and (3) a prominent rest frame 1.6 {mu}m stellar photospheric feature redshifted into Spitzer's 3-8 {mu}m IRAC bands. Of these, 20 show emission from polycyclic aromatic hydrocarbons (PAHs), usually interpreted as signatures of star formation. The PAH features indicate redshifts in the range 1.5 < z < 3.0, with a mean of (z) = 1.96 and a dispersion of 0.30. Based on local templates, these sources have extremely large infrared luminosities, comparable to that of submillimeter galaxies. Our results confirm previous indications that the rest-frame 1.6 {mu}m stellar bump can be efficiently used to select highly obscured star-forming galaxies at z {approx} 2, and that the fraction of starburst-dominated ULIRGs increases to faint 24 {mu}m flux densities. Using local templates, we find that the observed narrow redshift distribution is due to the fact that the 24 {mu}m detectability of PAH-rich sources peaks sharply at z = 1.9. We can analogously use observed spectral energy distributions to explain the broader redshift distribution of Spitzer-detected ULIRGs that are dominated by an active galactic nucleus (AGN). Finally, we conclude that z {approx} 2 sources with a detectable 1.6 {mu}m stellar opacity feature lack sufficient AGN emission to veil the 7.7 {mu}m PAH band.

  15. Sorption characteristics of polycyclic aromatic hydrocarbons in aluminum smelter residues

    SciTech Connect

    Gijs D. Breedveld; Emilien Pelletier; Richard St. Louis; Gerard Cornelissen

    2007-04-01

    High temperature carbon oxidation in primary aluminum smelters results in the release of polycyclic aromatic hydrocarbons (PAH) into the environment. The main source of PAH are the anodes, which are composed of petroleum coke (black carbon, BC) and coal tar pitch. To elucidate the dominant carbonaceous phase controlling the environmental fate of PAH in aluminum smelter residues (coke BC and/or coal tar), the sorptive behavior of PAHs has been determined, using passive samplers and infinite-sink desorption methods. Samples directly from the wet scrubber were studied as well as ones from an adjacent 20-year old storage lagoon and roof dust from the smelter. Carbon-normalized distribution coefficients of native PAHs were 2 orders of magnitude higher than expected based on amorphous organic carbon (AOC)/water partitioning, which is in the same order of magnitude as reported literature values for soots and charcoals. Sorption isotherms of laboratory-spiked deuterated phenanthrene showed strong (about 100 times stronger than AOC) but nonetheless linear sorption in both fresh and aged aluminum smelter residues. The absence of nonlinear behavior typical for adsorption to BC indicates that PAH sorption in aluminum smelter residues is dominated by absorption into the semi-solid coal tar pitch matrix. Desorption experiments using Tenax showed that fresh smelter residues had a relatively large rapidly desorbing fraction of PAH (35-50%), whereas this fraction was strongly reduced (11-16%) in the lagoon and roof dust material. Weathering of the coal tar residue and/or redistribution of PAH between coal tar and BC phases could explain the reduced availability in aged samples. 38 refs., 5 figs., 1 tab.

  16. High levels of carcinogenic polycyclic aromatic hydrocarbons in mate drinks.

    PubMed

    Kamangar, Farin; Schantz, Michele M; Abnet, Christian C; Fagundes, Renato B; Dawsey, Sanford M

    2008-05-01

    Drinking mate has been associated with cancers of the esophagus, oropharynx, larynx, lung, kidney, and bladder. We conducted this study to determine whether drinking mate could lead to substantial exposure to polycyclic aromatic hydrocarbons (PAH), including known carcinogens, such as benzo[a]pyrene. The concentrations of 21 individual PAHs were measured in dry leaves of eight commercial brands of yerba mate and in infusions made with hot (80 degrees C) or cold (5 degrees C) water. Measurements were done using gas chromatography/mass spectrometry, with deuterated PAHs as the surrogates. Infusions were made by adding water to the leaves, removing the resulting infusion after 5 min, and then adding more water to the remaining leaves. This process was repeated 12 times for each infusion temperature. The total concentrations of the 21 PAHs in different brands of yerba mate ranged from 536 to 2,906 ng/g dry leaves. Benzo[a]pyrene concentrations ranged from 8.03 to 53.3 ng/g dry leaves. For the mate infusions prepared using hot water and brand 1, 37% (1,092 of 2,906 ng) of the total measured PAHs and 50% (25.1 of 50 ng) of the benzo[a]pyrene content were released into the 12 infusions. Similar results were obtained for other hot and cold infusions. Very high concentrations of carcinogenic PAHs were found in yerba mate leaves and in hot and cold mate infusions. Our results support the hypothesis that the carcinogenicity of mate may be related to its PAH content.

  17. Exposure to polycyclic aromatic hydrocarbons among Dutch children

    SciTech Connect

    Wijnen, J.H. van; Slob, R.; Jongmans-Liedekerken, G.

    1996-05-01

    We determined the urinary 1-hydroxypyrene (1-HP) concentration and the creatinine-adjusted 1-HP concentration in 644 randomly selected Dutch children, aged 1-6 years and living in five areas with roughly different levels of polycyclic aromatic hydrocarbons (PAHs) in soil and ambient air. The presence of other factors that might influence the exposure to PAHs was studied using a questionnaire. To evaluate the reliability of a single urinary 1-HP determination, measurements were repeated after 3 weeks for approximately 200 children. The mean urinary 1-HP content of the total study population was 2.06 nmol/1. This varied from 1.58 nmol/l in the reference area (Flevoland) to 2.71 nmol/l in the valley of the Geul. Only indoor sources of PAHs showed a small, positive association with urinary 1-HP. The urinary 1-HP concentrations of children from the valley of the Geul were higher (p<0.01) and those of children from a suburb of Amsterdam were lower (p<0.01) than those of children from the reference area. The possible ambient environment-related differences were probably too small to be detected in the variations of the intake of PAHs from the daily diet. The reliability of a single 1-HP measurement was low. Similar results were obtained with the creatinine-adjusted data. In one neighborhood built on coal-mine tailings, the urinary 1-HP content in children was weakly but positively associated with the PAH content in the upper soil layer of the garden of their homes. However, this association was not found for the children from the other neighborhood built on coal-mine tailings and with similar PAH levels in soil. 25 refs., 4 tabs.

  18. Biodegradation of a mixture of aromatic hydrocarbons and heterocyclic NSO-compounds

    SciTech Connect

    Arvin, E.; Arcangeli, J.P.; Gundersen, A.T.

    1995-12-31

    The rate of biodegradation of specific compounds in a complex mixture of aromatic compounds in an aerobic biofilm system is presented. Two systems were investigated, one with a mixture of aromatic hydrocarbons (System A), the other with a mixture of aromatic hydrocarbons, phenols, and heterocyclic nitrogen-, sulfur-, and oxygen-containing compounds (NSO-compounds, System B). At total hydrocarbon concentrations below 0.1 mg/L, the compounds were degraded according to first-order kinetics. With increasing concentrations of total hydrocarbons the pattern differed. The removal rates of naphthalene, biphenyl, phenanthrene, quinoline, phenol, and o-cresol increased with increasing total hydrocarbon concentration or reached a maximum (zero-order) level, whereas the removal rates of toluene, benzene, o-xylene, 1,4-dimethylnaphthalene, and indene reached a maximum and then decreased. Toluene and benzene are normally considered easily biodegradable under aerobic conditions based on experiments with single compounds. It was, therefore, surprising to observe that these compounds degraded slowly in complex mixtures at total hydrocarbon concentrations of only 1 to 1.8 mg/L. The inhibition of benzene and toluene degradation was particularly strong in System B, consisting of a complex mixture of aromatic hydrocarbons, phenols, and heterocyclic NSO-compounds.

  19. Combined effect of urinary monohydroxylated polycyclic aromatic hydrocarbons and impaired lung function on diabetes.

    PubMed

    Hou, Jian; Sun, Huizhen; Xiao, Lili; Zhou, Yun; Yin, Wenjun; Xu, Tian; Cheng, Juan; Chen, Weihong; Yuan, Jing

    2016-07-01

    Associations of type 2 diabetes with exposure to polycyclic aromatic hydrocarbons and reduced lung function have been reported. The aim of the present study was to investigate effect of reduced lung function and exposure to background PAHs on diabetes. A total of 2730 individuals were drawn from the Wuhan-Zhuhai (WHZH) Cohort Study (n=3053). Participants completed physical examination, measurement of lung function and urinary monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs). Risk factors for type 2 diabetes were identified by multiple logistic regression analysis, and the presence of additive interaction between levels of urinary OH-PAHs and lower lung function was evaluated by calculation of the relative excess risk due to interaction (RERI) and attributable proportion due to interaction (AP). Urinary OH-PAHs levels was positively associated with type 2 diabetes among individuals with impaired lung function (p<0.05). Forced expiratory volume in one second (FEV1, odd ratio (OR): 0.664, 95% confidence interval (CI): 0.491-0.900) and forced vital capacity (FVC, OR: 0.693, 95% CI: 0.537-0.893) were negatively associated with diabetes among individuals. Additive interaction of higher urinary levels of OH-PAHs and lower FVC (RERI: 0.679, 95% CI: 0.120-1.238); AP: 0.427, 95% CI: 0.072-0.782) was associated with diabetes. Exposure to background PAHs was related to diabetes among individuals with lower lung function. Urinary levels of OH-PAHs and reduced lung function had an additive effect on diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Potentiometric online detection of aromatic hydrocarbons in aqueous phase using carbon nanotube-based sensors.

    PubMed

    Washe, Alemayehu P; Macho, Santiago; Crespo, Gastón A; Rius, F Xavier

    2010-10-01

    Surfaces made of entangled networks of single-walled carbon nanotubes (SWCNTs) display a strong adsorption affinity for aromatic hydrocarbons. Adsorption of these compounds onto the walls of SWCNTs changes the electrical characteristics of the SWCNT-solution interface. Using these features, we have developed a potentiometric sensor to detect neutral aromatic species. Specifically, we can detect online aromatic hydrocarbons in industrial coolant water. Our chromatographic results confirm the adsorption of toluene onto the walls of carbon nanotubes, and our impedance spectroscopy data show the change in the double layer capacitance of the carbon nanotube-solution interface upon addition of toluene, thus confirming the proposed sensing mechanism. The sensor showed a toluene concentration dependent EMF response that follows the shape of an adsorption isotherm and displayed an immediate response to the presence of toluene with a detection limit of 2.1 ppm. The sensor does not respond to other nonaromatic hydrocarbons that may coexist with aromatic hydrocarbons in water. It shows a qualitative sensitivity and selectivity of 100% and 83%, respectively, which confirms its ability to detect aromatic hydrocarbons in aqueous solutions. The sensor showed an excellent ability to immediately detect the presence of toluene in actual coolant water. Its operational characteristics, including its fast response, low cost, portability, and easy use in online industrial applications, improve those of current chromatographic or spectroscopic techniques.

  1. Trace level determination of polycyclic aromatic hydrocarbons in river water with automated pretreatment HPLC.

    PubMed

    Watabe, Yoshiyuki; Kubo, Takuya; Tanigawa, Tetsuya; Hayakawa, Yoshihiro; Otsuka, Koji; Hosoya, Ken

    2013-03-01

    A novel on-line pretreatment pump-injection HPLC system for polycyclic aromatic hydrocarbons is proposed. We report novel pump-injection HPLC-based on-line SPE with a specially designed pretreatment column for the determination of trace amounts of chemical substances in surface water. Polycyclic aromatic hydrocarbons are well known for strong carcinogenicity and thus a severe concentration control is required for drinking water and/or river water, which is the main resource of tap water. We found it possible to detect ng/L levels of polycyclic aromatic hydrocarbons by using pump-injection column switching HPLC with fluorescence detection. To avoid the phenomenon, in which polycyclic aromatic hydrocarbons can be often adsorbed on the surface of flow lines of HPLC by their highly hydrophobicity especially resin-made parts in sample delivery pump, we employed "autodilution" device that provides reliable recovery and repeatability. Additionally, real water samples were collected and then the spiked polycyclic aromatic hydrocarbons were determined at ng/L levels.

  2. Optimization and determination of polycyclic aromatic hydrocarbons in biochar-based fertilizers.

    PubMed

    Chen, Ping; Zhou, Hui; Gan, Jay; Sun, Mingxing; Shang, Guofeng; Liu, Liang; Shen, Guoqing

    2015-03-01

    The agronomic benefit of biochar has attracted widespread attention to biochar-based fertilizers. However, the inevitable presence of polycyclic aromatic hydrocarbons in biochar is a matter of concern because of the health and ecological risks of these compounds. The strong adsorption of polycyclic aromatic hydrocarbons to biochar complicates their analysis and extraction from biochar-based fertilizers. In this study, we optimized and validated a method for determining the 16 priority polycyclic aromatic hydrocarbons in biochar-based fertilizers. Results showed that accelerated solvent extraction exhibited high extraction efficiency. Based on a Box-Behnken design with a triplicate central point, accelerated solvent extraction was used under the following optimal operational conditions: extraction temperature of 78°C, extraction time of 17 min, and two static cycles. The optimized method was validated by assessing the linearity of analysis, limit of detection, limit of quantification, recovery, and application to real samples. The results showed that the 16 polycyclic aromatic hydrocarbons exhibited good linearity, with a correlation coefficient of 0.996. The limits of detection varied between 0.001 (phenanthrene) and 0.021 mg/g (benzo[ghi]perylene), and the limits of quantification varied between 0.004 (phenanthrene) and 0.069 mg/g (benzo[ghi]perylene). The relative recoveries of the 16 polycyclic aromatic hydrocarbons were 70.26-102.99%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Aromatic hydrocarbons from the Middle Jurassic fossil wood of the Polish Jura

    NASA Astrophysics Data System (ADS)

    Smolarek, Justyna; Marynowski, Leszek

    2013-09-01

    Aromatic hydrocarbons are present in the fossil wood samples in relatively small amounts. In almost all of the tested samples the dominating aromatic hydrocarbon is perylene and its methyl and dimethyl derivatives. The most important biomarkers present in the aromatic fraction are dehydroabietane, siomonellite and retene, compounds characteristic for conifers. The distribution of discussed compounds is highly variable due to such early diagenetic processes affecting the wood as oxidation and the activity of microorganisms. MPI1 parameter values (methylphenanthrene index) for the majority of the samples are in the range of 0.1 to 0.5, which results in the highly variable values of Rc (converted value of vitrinite reflectance) ranging from 0.45 to 0.70%. Such values suggest that MPI1 parameter is not useful as maturity parameter in case of Middle Jurassic ore-bearing clays, even if measured strictly on terrestrial organic matter (OM). As a result of weathering processes (oxidation) the distribution of aromatic hydrocarbons changes. In the oxidized samples the amount of aromatic hydrocarbons, both polycyclic as well as aromatic biomarkers decreases.

  4. Polycyclic aromatic hydrocarbons in the South American environment.

    PubMed

    Barra, Ricardo; Castillo, Caroline; Torres, Joao Paulo Machado

    2007-01-01

    Pollution of the environment with polycyclic aromatic hydrocarbons (PAHs) should be a global concern, especially in urbanized areas. In South American countries, where notable increase in urban populations has been observed in the past few years, reliable information about the pollution status of these urban environments is not always easily accessible, and therefore an effort to collect updated information is required. This review attempts to contribute by analyzing the existing information regarding environmental levels of PAHs in some South American countries. A regional trend for environmental PAH information is an uneven contribution, because some countries, such as Bolivia, Peru, Paraguay, and Ecuador, have reported no information at all in the scientific literature, reflecting to a certain extent the different patterns of economic, technical, and scientific development. PAH air monitoring is one of the areas that has received the most attention during the last few years, mainly in Brazil, Chile, and Argentina, where data represent a few geographical areas within the region. PAH levels in air from some urban areas in Argentina, Brazil, and Chile, considered moderate to high (100-1000ng/m3), are probably among the highest values reported in the open literature. Urbanization, vehicle pollution, and wood fires are the principal contributors to the high reported levels. In more temperate areas, a clear distinction is observed between summer and winter levels. PAH monitoring in soils is very limited within the region, with few data available, and most information indicates widespread pollution. In Brazil, values for many representative ecosystems were found. In Chile, data from forestry and agricultural areas indicate in general low concentrations, in spite of a relatively high detection frequency. Pollution levels in soils are highly dependent on their closeness to PAH sources and certain cultural practices (agricultural burnings, forest fires, etc.). Water PAH

  5. Determination of polycyclic aromatic hydrocarbons in dry tea

    PubMed Central

    ADISA, AFOLABI; JIMENEZ, ANGELICA; WOODHAM, CARA; ANTHONY, KEVIN; NGUYEN, THAO; SALEH, MAHMOUD A.

    2016-01-01

    Twenty-eight different tea samples sold in the United States were evaluated using high-performance liquid chromatography (HPLC) with fluorescence detection (FLD) for their contamination with polycyclic aromatic hydrocarbons (PAHs). Many PAHs exhibit carcinogenic, mutagenic, and teratogenic properties and have been related to several kinds of cancer in man and experimental animals. The presence of PAHs in environmental samples such as water, sediments, and particulate air has been extensively studied, but food samples have received little attention. Eighteen PAHs congeners were analyzed, with percentage recovery higher than 85%. Contamination expressed as the sum of the 18 analyzed PAHs was between 101 and 1337 μg/kg on dry mass and the average contents in all of the 28 examined samples was 300 μg/kg on dry mass. Seven of the congeners were found in all samples with wide ranges of concentrations as follows: fluorene (7–48 μg/kg), anthracene (1–31 μg/kg), pyrene (1–970 μg/kg), benzo(a)anthracene (1–18 μg/kg) chrysene (17–365 μg/kg), benzo(a)pyrene (1–29 μg/kg), and indeno(1,2,3-cd)pyrene (4–119 μg/kg). The two most toxic congeners benzo(a)pyrene and dibenzo(a,h)anthracene were found at high concentrations only in Earl Grey Twinnings, Earl Grey Harney& Sons Fine Teas, and Chai Ultra Spice Black Tea Twinnings. Six PAH congeners are considered as suspected carcinogens (U.S.EPA), formed the basis of the estimation of the toxic equivalent (TEQ), Chai Ultra-Spice Black Tea Twinnings had the highest TEQ (110.9) followed by two grey tea samples, Earl Grey Harney & Sons Fine Tea (57.7) and Earl Grey Twinnings (54.5). Decaffeinated grey teas had the lowest TEQs, decaffeinated Earl Grey Bigelow (9.4) and Green Tea Honey Lemon Decaffeinated Lipton (9.6). PMID:26065515

  6. An Emission Inventory of Polycyclic Aromatic Hydrocarbons in China

    NASA Astrophysics Data System (ADS)

    Mu, Xilong; Zhu, Xianlei; Wang, Xuesong

    2015-04-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are among the most dangerous compounds due to their high carcinogenic and mutagenic character. Emission inventory provides the primary data to account for the sources of ambient PAHs and server as a necessary database for effective PAHs pollution control. China is experiencing fast economic growth and large energy consumption, which might result in a large amount of PAHs anthropogenic emissions. Therefore, based on the previous studies and combined recently field emission measurements as well as socio-economic activity data, the development of a nationwide PAHs emission inventory is needed. In this work, the emission inventory of 16 PAHs listed as U.S. Environmental Protection Agency priority pollutants in China in the year 2012 is compiled. The emission amounts of PAHs were estimated as annual rates of emission-related activities multiplied by respective emission factors. The activities such as fuel consumption, including fossil fuel and biofuel, and socio-economic statistics were obtained from yearbook released by Chinese central government and/or provincial governments, as well as related industry reports. Emission factors were derived from the related literature. Recently reported emission factors from local measurements were used. The total emissions of PAHs were 120611 ton in 2012. In China, PAHs were emitted predominantly from domestic combustion of coal and biofuel, coking industry and motor vehicles, accounting for 72% of the total amount. PAHs emission profiles were significantly different between China and the other countries. The emission profile in China featured a relatively higher portion of high molecular weight species with carcinogenic potential due to large contributions of domestic combustion and coking industry. Domestic combustion of straw, coal and firewood emitted 19464 ton, 8831 ton, and 5062 ton of PAHs, respectively, which were much higher than those in other countries. Emission per capita showed

  7. Mitochondrial DNA Copy Number and Exposure to Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Pavanello, Sofia; Dioni, Laura; Hoxha, Mirjam; Fedeli, Ugo; Mielzynska-Švach, Danuta; Baccarelli, Andrea A.

    2013-01-01

    Background Increased mitochondrial DNA copy number (mtDNAcn) is a biological response to mtDNA damage and dysfunction predictive of lung cancer risk. Polycyclic aromatic hydrocarbons (PAHs) are established lung carcinogens and may cause mitochondrial toxicity. Whether PAH exposure and PAH-related nuclear DNA (nDNA) genotoxic effects are linked with increased mtDNAcn has never been evaluated. Methods We investigated the effect of chronic exposure to PAHs on mtDNAcn in peripheral blood lymphocytes (PBLs) of 46 Polish male non-current smoking cokeoven workers and 44 matched controls, who were part of a group of 94 study individuals examined in our previous work. Subjects PAH exposure and genetic alterations were characterized through measures of internal dose (urinary 1-pyrenol), target dose [anti-benzo[a]pyrene diolepoxide (anti-BPDE)-DNA adduct], genetic instability (micronuclei, MN and telomere length [TL]) and DNA methylation [p53 promoter] in PBLs. mtDNAcn (MT/S) was measured using a validated real-time PCR method. Results Workers with PAH exposure above the median value (>3 µmol 1-pyrenol/mol creatinine) showed higher mtDNAcn [geometric means (GM) of 1.06 (unadjusted) and 1.07 (age-adjusted)] compared to controls [GM 0.89 (unadjusted); 0.89 (age-adjusted)] (p=0.029 and 0.016), as well as higher levels of genetic and chromosomal [i.e. anti-BPDE-DNA adducts (p<0.001), MN (p<0.001) and TL (p=0.053)] and epigenetic [i.e., p53 gene-specific promoter methylation (p<0.001)] alterations in the nDNA. In the whole study population, unadjusted and age-adjusted mtDNAcn was positively correlated with 1-pyrenol (p=0.043 and 0.032) and anti-BPDE-DNA adducts (p=0.046 and 0.049). Conclusions PAH exposure and PAH-related nDNA genotoxicity are associated with increased mtDNAcn. Impact The present study is suggestive of potential roles of mtDNAcn in PAH-induced carcinogenesis. PMID:23885040

  8. The Origins of Polycyclic Aromatic Hydrocarbons: Are They Everywhere?

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Morrison, David (Technical Monitor)

    1994-01-01

    During the past 15 years considerable progress in observational techniques has been achieved in the middle-infrared region (5000-500 per centimeter, 2-20 micron), the region where most diagnostic molecular vibrations occur. Spectra of many different astronomical infrared sources, some deeply embedded in dark molecular clouds and others at their edges, are now available. These spectra provide a powerful probe, not only for the identification of interstellar molecules in both the gas and solid phases, but also of the physical and chemical conditions which prevail in these two very different domains. The two lectures will focus on the evidence that polycyclic aromatic hydrocarbons (PAHs) are an important, ubiquitous and abundant interstellar species. PAHs are. extremely stable species which can range in size from a few angstroms across to several hundred angstroms (PAHs are also the building blocks of amorphous carbon particles). This identification rests on the suggestive agreement between the laboratory spectra of PAHs with a set of IR emission bands which emanate from many different sources where ultraviolet starlight impinges on a "dusty" region. The picture is that individual PAHs are first pumped into highly vibrationally excited states and relax by fluorescence at their fundamental vibrational frequencies. That PAHs are a ubiquitous interstellar component has serious ramifications in other spectral regions as well, including the strong extinction in the ultraviolet, and the classic visible diffuse interstellar bands discovered more than 50 years ago (but unexplained to this day) The first part of the course will focus on the interpretation of astronomical spectra. The second lecture will start by showing how recent laboratory data on PAHs taken under realistic interstellar conditions has con borated the PAH hypothesis and led to great insight into the conditions in the PAH containing regions. This lecture will end by reviewing the ever-increasing evidence for

  9. Ecotoxicity of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil.

    PubMed

    Eom, I C; Rast, C; Veber, A M; Vasseur, P

    2007-06-01

    Soil samples from a former cokery site polluted with polycyclic aromatic hydrocarbons (PAHs) were assessed for their toxicity to terrestrial and aquatic organisms and for their mutagenicity. The total concentration of the 16 PAHs listed as priority pollutants by the US Environmental Protection Agency (US-EPA) was 2634+/-241 mg/kgdw in soil samples. The toxicity of water-extractable pollutants from the contaminated soil samples was evaluated using acute (Vibrio fischeri; Microtox test, Daphnia magna) and chronic (Pseudokirchneriella subcapitata, Ceriodaphnia dubia) bioassays and the EC values were expressed as percentage water extract in the test media (v/v). Algal growth (EC50-3d=2.4+/-0.2% of the water extracts) and reproduction of C. dubia (EC50-7d=4.3+/-0.6%) were the most severely affected, compared to bacterial luminescence (EC50-30 min=12+/-3%) and daphnid viability (EC50-48 h=30+/-3%). The Ames and Mutatox tests indicated mutagenicity of water extracts, while no response was found with the umu test. The toxicity of the soil samples was assessed on the survival and reproduction of earthworms (Eisenia fetida) and collembolae (Folsomia candida), and on the germination and growth of higher plants (Lactuca sativa L.: lettuce and Brassica chinensis J.: Chinese cabbage). The EC50 values were expressed as percentage contaminated soil in ISO soil test medium (weight per weight-w/w) and indicated severe effects on reproduction of the collembola F. candida (EC50-28 d=5.7%) and the earthworm E. fetida (EC50-28 d=18% and EC50-56 d=8%, based on cocoon and juvenile production, respectively). Survival of collembolae was already affected at a low concentration of the contaminated soil (EC50-28 d=11%). The viability of juvenile earthworms was inhibited at much lower concentrations of the cokery soil (EC50-14 d=28%) than the viability of adults (EC50-14 d=74%). Only plant growth was inhibited (EC50-17d=26%) while germination was not. Chemical analyses of water extracts allowed

  10. The environmental fate of polycyclic aromatic hydrocarbons associated with particles

    NASA Astrophysics Data System (ADS)

    Kim, Daekyun

    This study focused on the transport and distribution in the environment, the phototransformation, and the source identification of particle-associated polycyclic aromatic hydrocarbons (PAHs). To investigate the main inputs and sources of PAHs, particulate, dissolved, and colloid-bound PAHs in stream and precipitation samples collected along an urban tributary were monitored between October 2004 and March 2005. Particulate matter carried by stormwater runoff was the major source of PAHs in surface water in the early rainy season. Indirect deposition of PAHs into surface water is likely a more significant input pathway for total PAHs than direct dry or wet deposition during the wet season. Selected PAH ratios indicate that observed PAHs in rainwater came from pyrogenic sources and those in surface water had more complicated and variable origins. To examine possible changes in the PAH profiles caused by environmental aging, soot particles were exposed to simulated sunlight and disappearance rates of PAHs were determined. An obvious two-phase disappearance was observed for naphthalene, acenaphthylene, acenaphthene, and fluorene, while phenanthrene and anthracene exhibited this behavior for all but the highest soot loading. The first phase loss occurred within 3-10 hours is 5-40 times faster than the second phase loss. Only single mode of disappearance, however, was observed for the higher molecular weight PAHs with 4-6 rings. Sources of PAHs from surface waters and sediments should be determined by considering the potential influence of aging on any diagnostic method. Due to differences in disappearance rates of individual PAHs, prolonged exposure to sunlight could change the interpretation of characteristic PAH ratios. The apparent disappearance rates of PAHs on soot are governed by photodegradation and diffusion kinetics. The effective diffusion coefficients, the photodegradation rate constants, and the light penetration depth for fluorene, phenanthrene, and

  11. New biomarkers of occupational exposure to polycyclic aromatic hydrocarbons.

    PubMed

    Seidel, Albrecht; Spickenheuer, Anne; Straif, Kurt; Rihs, Hans-Peter; Marczynski, Boleslaw; Scherenberg, Michael; Dettbarn, Gerhard; Angerer, Jürgen; Wilhelm, Michael; Brüning, Thomas; Jacob, Jürgen; Pesch, Beate

    2008-01-01

    Polycyclic aromatic hydrocarbons (PAH) are metabolized in a complex manner. Although biological activity is associated with diol-epoxide formation, phenolic metabolites have predominantly been used in human biomonitoring. In this study monohydroxylated and new metabolites were characterized as biomarkers for occupational PAH exposure. In 97 male workers, personal exposure to 16 airborne PAH compounds was measured during shift. In postshift urine, 1-hydroxypyrene and 1,6- and 1,8-dihydroxypyrene (1-OHP, DiOHP) were determined as metabolites of pyrene (P), and the sum of 1-, 2-, 3-, 4-, and 9-hydroxyphenanthrenes (OHPHE), and PHE-dihydrodiols (PHED) as metabolites of phenanthrene (PHE). The referent group comprised 21 nonsmoking construction workers. Median (interquartile range) shift concentrations of airborne P and PHE were 1.46 (0.62-4.05 microg/m(3)) and 10.9 (3.69-23.77 microg/m(3)), respectively. The corresponding parameters were 3.86 (2.08-7.44) microg/g creatinine (crn) for 1-OHP, 0.66 (0.17-1.65) microg/g crn for DiOHP, 11.44 (5.21-34.76) microg/g crn for OHPHE, and 12.28 (3.3-97.76) microg/g crn for PHED in PAH-exposed workers. The median levels of 1-OHP and OHPHE were 0.09 (0.08-0.17 microg/m(3)) and 0.59 (0.45-1.39 microg/m(3)), respectively, in the referents. PHE correlated significantly with OHPHE and PHED, and P with 1-OHP but not with DiOHP. Under a doubling of PHE, OHPHE increased by a factor of 1.56 and PHED by 1.57. With a doubling of P, 1-OHP rose by 1.31 and DiOHP by 1.27. P is predominantly metabolized into 1-OHP, whereas PHE is metabolized equally into OHPHE and PHED. Thus metabolites of PHE were found as reliable biomarkers for PAH exposure.

  12. The Origins of Polycyclic Aromatic Hydrocarbons: Are They Everywhere?

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Morrison, David (Technical Monitor)

    1994-01-01

    During the past 15 years considerable progress in observational techniques has been achieved in the middle-infrared region (5000-500 per centimeter, 2-20 micron), the region where most diagnostic molecular vibrations occur. Spectra of many different astronomical infrared sources, some deeply embedded in dark molecular clouds and others at their edges, are now available. These spectra provide a powerful probe, not only for the identification of interstellar molecules in both the gas and solid phases, but also of the physical and chemical conditions which prevail in these two very different domains. The two lectures will focus on the evidence that polycyclic aromatic hydrocarbons (PAHs) are an important, ubiquitous and abundant interstellar species. PAHs are. extremely stable species which can range in size from a few angstroms across to several hundred angstroms (PAHs are also the building blocks of amorphous carbon particles). This identification rests on the suggestive agreement between the laboratory spectra of PAHs with a set of IR emission bands which emanate from many different sources where ultraviolet starlight impinges on a "dusty" region. The picture is that individual PAHs are first pumped into highly vibrationally excited states and relax by fluorescence at their fundamental vibrational frequencies. That PAHs are a ubiquitous interstellar component has serious ramifications in other spectral regions as well, including the strong extinction in the ultraviolet, and the classic visible diffuse interstellar bands discovered more than 50 years ago (but unexplained to this day) The first part of the course will focus on the interpretation of astronomical spectra. The second lecture will start by showing how recent laboratory data on PAHs taken under realistic interstellar conditions has con borated the PAH hypothesis and led to great insight into the conditions in the PAH containing regions. This lecture will end by reviewing the ever-increasing evidence for

  13. Sorption of polycyclic aromatic hydrocarbons by aquia aquifer materials

    SciTech Connect

    Ostazeski, S.A.

    1992-01-01

    The sorption of three polycyclic aromatic hydrocarbons (PAHs) by Aquia Aquifer materials was investigated. Laboratory studies were conducted to generate equilibrium isotherm data using batch shake techniques. Six aquifer materials, with f[sub oc] values ranging from 0.0002 to 0.0089 were used. The influence of the solution phase conditions of pH, ionic strength, and cosolvent on sorption was investigated. Sorption isotherms could be described by the linear form of the Freundlich relationship. The sorption partition coefficients (K[sub d]) for sorption from aqueous solution were greater than predicted by an f[sub oc] basis alone. The K[sub d]s obtained for pyrene and phenanthrene were significantly related to f[sub oc] SA[sup [minus]1] (SA = specific surface area). This was not the case K[sub d] values obtained for naphthalene sorption. The solution phase conditions of pH and ionic strength were found to have a significant effect on the sorption of PAHs by aquifer materials. The effect of solution phase pH on the sorption of individual PAHs by aquifer materials was seen to be a concave up curve with a minimum about a pH of 7. The data obtained from ionic strength experiments indicated maximum sorption occurs at NaCl molar concentration of zero. The data is not well represented by a modified Setchenow relationship, but suggest that the sorptive capacity of the aquifer material may be modified by changes in the sorbent organic carbon. The isotherms generated for sorption of PAHs from methanol/water solution were found to be linear. The (K[sub d]) values were consistent with predictions made on the basis of sorbent f[sub oc] at low volume fractions of methanol. For all solutes and sorbents studied deviations from the predicted occurred as the volume fraction of methanol increased. These results suggest conformational changes in the sorbent f[sub oc] occur with varying solution phase conditions.

  14. Aromatic hydrocarbons in the atmospheric environment. Part III: personal monitoring

    NASA Astrophysics Data System (ADS)

    Ilgen, E.; Levsen, K.; Angerer, J.; Schneider, P.; Heinrich, J.; Wichmann, H.-E.

    As part of a larger study, personal sampling of the aromatic hydrocarbons benzene, toluene, ethylbenzene and the isomeric xylenes (BTEX) was carried out by 55 nonsmoking volunteers for a period of 14 days. Thirty-nine persons lived in a rural area near Hannover (Germany) with hardly any traffic at all, while 16 persons lived in a high-traffic city street in Hannover. The personal exposure level of the persons in the rural area (some commuting to Hannover) was: 2.9, 24.8, 2.4 and 7.7 μg m -3 for benzene, toluene, ethylbenzene and the sum of xylenes, respectively, while the corresponding data for the high traffic city streets were 4.0, 22.2, 2.8 and 9.7 μg m -3 (geometric means). Four microenvironments have been monitored which contribute to the total exposure to BTEX, i.e. the home, the outdoor air, the workplace and the car cabin. The most important microenvironment for non-working persons is the private home. The concentration of most BTEX in the private home is almost equal to the personal exposure level, demonstrating that the indoor pollution in the home makes by far the highest contribution to the total exposure. For working people (mostly office workers), the workplace is the second most important microenvironment contributing to the total BTEX exposure. Taking all working persons into consideration (independent of the location of their private home) the personal exposure level is higher by a factor of 1.2-1.4 than that of the workplace (for toluene this factor is 2.2). As already found by others, very high BTEX concentrations may be found in car cabins, in particular, if the engine is gasoline-driven. In the cabin of 44 cars in the rural/urban area average benzene concentrations (geometric mean) of 12/14 μg m -3 and a maximum value of ˜550 μg m -3 were found. On average, the participating volunteers drove their car for 45 min day -1 (i.e. 3% of the day). Nevertheless, the car cabin constitutes about 10% of the total benzene exposure. Refueling of the

  15. Fate of polycyclic aromatic hydrocarbons during composting of oily sludge.

    PubMed

    Kriipsalu, M; Marques, M; Hogland, W; Nammari, D R

    2008-01-01

    In order to assess the effectiveness of aerobic degradation with emphasis on the 16 U.S. EPA priority polycyclic aromatic hydrocarbons (PAH), oily sludge generated by a dissolved air flotation flocculation unit of a wastewater treatment plant in a petroleum refinery was amended with remediated oil-contaminated soil and non-mature garden waste compost 40:40:20 (wet weight) respectively. About 21 t of the mixture with a top-layer formed by 30 cm of remediated soil was treated in a 28 m3 air-forced reactor. The PAH concentration was monitored for 370 days. In the top-layer, a reduction of 88 % of the total extractable PAH was measured at day 62 and a final reduction of 93% at day 370. In the mixture, a reduction of 72% in total PAH was measured at day 62, followed by fluctuation in concentration with a final measured reduction of 53% at day 370. The analysis of individual PAH in the mixture suggested that volatilization and biodegradation are the main mechanisms responsible for the reduction of 2 ring PAH and 3-4 ring PAH, respectively. Fluctuation of 5-6 ring PAH concentrations with increase observed at the end of the period might result from a combination of the following: (i) sequestration of large PAH in the organic matrix (reducing bioavailability, biodegradability and eventually, extractability) and desorption as composting progresses; (ii) heterogeneous distribution of the stable large PAH in the mixture, thus affecting sampling. It was concluded that one-time composting in static-aerated biopiles with organic amendments as the sole strategy to treat oily sludge is very effective in reducing the content of 2-4 ring PAH, but it is not effective in reducing the content of 5-6 ring PAHs, even after a relatively long time span (370 d). The concentrations measured in the remediated soil that formed the top layer after 62 days of composting suggests that further relevant reduction of residual PAH (89% of total PAH and 69% of 5-6 ring PAH) can be obtained if the

  16. Polycyclic aromatic hydrocarbons in US and Swedish smokeless tobacco products

    PubMed Central

    2013-01-01

    Background Debate about the health implications of using smokeless tobacco products (STPs) has prompted considerable interest in characterising their levels of toxic and carcinogenic components. In the present study seventy smokeless tobacco products from the US and Sweden, categorized as chewing tobacco, dry and moist snuff, hard and soft pellets, plug, and loose and portion snus, were analysed for twenty one polycyclic aromatic hydrocarbons (PAHs). The tested brands represented 80-90% of the 2008 market share for the major STP categories in these two countries. Results There were significant differences in the total and individual PAH concentrations in the different styles of product. Substantially higher levels of total PAHs (10–60 fold) were found in moist and dry snuff and soft pellets than in the other smokeless tobacco styles. The individual PAH concentrations followed the same patterns as total PAHs except for naphthalene, for which the highest concentrations were found in snus and moist snuff. Good correlations were obtained between benzo[a]pyrene (B[a]P) and all the other PAHs except naphthalene, 1-methylnaphthalene and 2-methylnaphthalene, providing evidence for the first time that it can be used as a good marker for PAHs in STPs. Results were generally in good agreement with two previous studies of PAHs in STPs, except for naphthalene for which significantly lower concentrations were found than previously reported. Analysis of the ratios of different PAHs confirmed that the use of fire-cured tobaccos in the snuffs and soft pellet were the major source of PAHs in these product styles, and provided, for the first time, some indications as to the source of PAHs in the other STP styles, including petrogenic and other combustion sources. Conclusions This study confirms the presence of PAHs in STPs, and identifies substantial differences between the levels in different STP categories. Since previous studies of naphthalene concentrations in STPs differed so

  17. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review.

    PubMed

    Haritash, A K; Kaushik, C P

    2009-09-30

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H(2)O, CO(2) (aerobic) or CH(4) (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions and the rate

  18. Contribution of methyl group to secondary organic aerosol formation from aromatic hydrocarbon photooxidation

    NASA Astrophysics Data System (ADS)

    Li, Lijie; Qi, Li; Cocker, David R.

    2017-02-01

    The complete atmospheric oxidation pathways leading to secondary organic aerosol remain elusive for aromatic compounds including the role of methyl substitutes on oxidation. This study investigates the contribution of methyl group to Secondary Organic Aerosol (SOA) formation during the photooxidation of aromatic hydrocarbons under low NOx condition by applying methyl carbon labeled aromatic hydrocarbons ((13C2) m-xylene and (13C2) p-xylene). Particle and gas phase oxidation products are analyzed by a series of mass spectrometers (HR-TOF-AMS, PTR-MS and SIFT-MS). The methyl group carbon containing oxidation products partition to the particle-phase at a lower rate than the carbons originating from the aromatic ring as a result of ring opening reactions. Further, the methyl carbon in the original aromatic structure is at least 7 times less likely to be oxidized when forming products that partition to SOA than the aromatic ring carbon. Therefore, oxidation of the methyl group in xylenes exerts little impact on SOA formation in current study. This study provides supporting evidence for a recent finding - a similarity in the SOA formation and composition from aromatic hydrocarbons regardless of the alkyl substitutes.

  19. [Carcinogenic risk of polycyclic aromatic hydrocarbons: classification and interpretation of the monitoring].

    PubMed

    Catalani, Simona; Fostinelli, Jacopo; Apostoli, Pietro

    2014-01-01

    The polycyclic aromatic hydrocarbons (PAHs) are widespread contaminants characterized by various chemical, physical and toxic properties. The characterization of occupational and environmental exposures and the use of suitable measurements protocols are very significant because their presence in mixtures and environmental persistency. In the past few years, the knowledge concerning carcinogenicity of PAHs have been reviewed, the mechanisms involved are the interaction of PAH's metabolites with DNA and oxidative damages. The main requirement for research concerns lack of knowledge on reference values and occupational exposure's assessment in particular PAHs sampling methods that can lead to combined measurements of vapor and aerosol mixtures. Aims of this study are to describe a possible occupational sources of PAHs providing also an update of mechanism involved in their carcinogenicity and risk calculation as is done in the TEF approach. The classifications provided by International Agencies and Institutions and the limit values adopted have been reviewed and taken into account.

  20. Atypical kinetic behavior of chloroperoxidase-mediated oxidative halogenation of polycyclic aromatic hydrocarbons.

    PubMed

    Aburto, Jorge; Correa-Basurto, Jose; Torres, Eduardo

    2008-12-01

    We have identified an atypical kinetic behavior for the oxidative halogenation of several polycyclic aromatic hydrocarbons (PAHs) by chloroperoxidase (CPO) from Caldariomyces fumago. This behavior resembles the capacity of some members of the P450 family to simultaneously recognize several substrate molecules at their active sites. Indeed, fluorometric studies showed that PAHs exist in solution as monomers and pi-pi dimers that interact to different extents with CPO. The dissociation constants of dimerization were evaluated for every single PAH by spectrofluorometry. Furthermore, docking studies also suggest that CPO might recognize either one or two substrate molecules in its active site. The atypical sigmoidal kinetic behavior of CPO in the oxidative halogenation of PAHs is explained in terms of different kinetic models for non-heteroatomic PAHs (naphthalene, anthracene and pyrene). The results suggest that the actual substrate for CPO in this study was the pi-pi dimer for all evaluated PAHs.

  1. Responses of Chironomus tentans and Hyalella azteca to polycyclic aromatic hydrocarbons

    SciTech Connect

    Hatch, A.C.; Burton, G.A. Jr.

    1995-12-31

    The toxicity of polycyclic aromatic hydrocarbons (PAHs) is affected by ultraviolet (UV) light and a number of interacting environmental variables. The effect of two photoinduced PAHs, anthracene and fluoranthene, was studied with the midge, C. tentans, and the amphipod H. azteca in water-only and sediment exposures. Reduced growth was observed in the presence of UV light at low (ug/L) concentrations. Mixtures showed approximately additive responses. The amphipod was slightly more sensitive to photoinduced toxicity. Responses were modified by exposure differences due to behavior patterns, which altered UV exposures. Results suggest natural factors such as inorganic and organic particulates, in combination with behavior, have a significant role in determining the ecological relevance of photoinduced PAH toxicity.

  2. Applications of electrochemically-modulated liquid chromatography (EMLC): Separations of aromatic amino acids and polycyclic aromatic hydrocarbons

    SciTech Connect

    Deng, Li

    1998-03-27

    The research in this thesis explores the separation capabilities of a new technique termed electrochemically-modulated liquid chromatography (EMLC). The thesis begins with a general introduction section which provides a literature review of this technique as well as a brief background discussion of the two research projects in each of the next two chapters. The two papers which follow investigate the application of EMLC to the separation of a mixture of aromatic amino acids and of a mixture of polycyclic aromatic hydrocarbons (PAHs). The last section presents general conclusions and summarizes the thesis. References are compiled in the reference section of each chapter. The two papers have been removed for separate processing.

  3. Binding of polycyclic aromatic hydrocarbons and graphene dimers in density functional theory

    NASA Astrophysics Data System (ADS)

    Chakarova-Käck, Svetla D.; Vojvodic, Aleksandra; Kleis, Jesper; Hyldgaard, Per; Schröder, Elsebeth

    2010-01-01

    An early van der Waals density functional (vdW-DF) described layered systems (such as graphite and graphene dimers) using a layer-averaged electron density in the evaluation of nonlocal correlations. This early vdW-DF version was also adapted to approximate the binding of polycyclic aromatic hydrocarbons (PAHs) (Chakarova S D and Schröder E 2005 J. Chem. Phys. 122 054102). In parallel to that PAH study, a new vdW-DF version (Dion M, Rydberg H, Schröder E, Langreth D C and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401) was developed that provides accounts of nonlocal correlations for systems of general geometry. We apply here the latter vdW-DF version to aromatic dimers of benzene, naphthalene, anthracene and pyrene, stacked in sandwich (AA) structure, and the slipped-parallel (AB) naphthalene dimer. We further compare the results of the two methods as well as other theoretical results obtained by quantum-chemistry methods. We also compare calculations for two interacting graphene sheets in the AA and the AB structures and provide the corresponding graphene-from-graphite exfoliation energies. Finally, we present an overview of the scaling of the molecular-dimer interaction with the number of carbon atoms and with the number of carbon rings.

  4. Risk assessment of occupational exposure to polycyclic aromatic hydrocarbons by means of urinary1-hydroxypyrene.

    PubMed

    Maina, Giovanni; Manzari, Marco; Palmas, Antonio; Passini, Valter; Filon, Francesca Larese

    2007-02-01

    Polycyclic aromatic hydrocarbons have mutagenic and carcinogenic properties and some of them are classified as probable or possible human carcinogens. Aim of this study was to evaluate the genotoxic risk in workers exposed to diesel exaust. Environmental and biological monitoring exposure to polycyclic aromatic hydrocarbons was carried out on fifty-two workers exposed to diesel exhaust. Urinary 1-hydroxypyrene was employed as a biomarker of internal dose. Significant urinary 1-hydroxypyrene differences between smokers and non-smokers were found. Twenty per cent of urinary 1-hydroxypyrene values exceeded benchmark level for genotoxic effect, while the results of environmental monitoring excluded the existence of exposure to polycyclic aromatic hydrocarbons. In the absence of greater knowledge about the relationship between urinary 1-hydroxypyrene and genotoxic effects under the conditions of very low exposure, extreme caution is recommended when this biomarker of internal dose is employed as an indicator of genotoxic risk.

  5. Measurement procedures of polycyclic aromatic hydrocarbons in undiluted diesel exhaust gases

    SciTech Connect

    Wajsman, J.; Champoussin, J.C.; Dessalces, G.; Claus, G.

    1996-09-01

    Procedures for the measurement of aromatic hydrocarbons in undiluted Diesel exhaust gases were developed and compared. In the first one, hydrocarbons are trapped on sorbents, then analyzed by thermal desorption coupled to GC/FID. Eight monoaromatic hydrocarbons and eleven PAHs from two to four aromatic rings have been detected. The second procedure uses three media: a filter, a condenser and a resin cartridge. After extraction, samples are purified and analyzed by GC/FID or by HPLC/Fluorescence. Fourteen PAHs of two to six aromatic rings have been thus quantified. The two procedures are in agreement for the common species measured. The procedure using the analysis by HPLC/Fluorescence is both more selective and more sensitive. It allows an estimate to be made of the influence of load and speed on PAH emissions.

  6. Absorption of nitro-polycyclic aromatic hydrocarbons by biomembrane models: effect of the medium lipophilicity.

    PubMed

    Castelli, Francesco; Micieli, Dorotea; Ottimo, Sara; Minniti, Zelica; Sarpietro, Maria Grazia; Librando, Vito

    2008-10-01

    To demonstrate the relationship between the structure of nitro-polycyclic aromatic hydrocarbons and their effect on biomembranes, we have investigated the influence of three structurally different nitro-polycyclic aromatic hydrocarbons, 2-nitrofluorene, 2,7-dinitrofluorene and 3-nitrofluoranthene, on the thermotropic behavior of dimyristoylphosphatidylcholine multilamellar vesicles, used as biomembrane models, by means of differential scanning calorimetry. The obtained results indicate that the studied nitro-polycyclic aromatic hydrocarbons affected the thermotropic behavior of multilamellar vesicles to various extents, modifying the pretransition and the main phase transition peaks and shifting them to lower temperatures. The effect of the aqueous and lipophilic medium on the absorption process of these compounds by the biomembrane models has been also investigated revealing that the process is hindered by the aqueous medium but strongly allowed by the lipophilic medium.

  7. Modelling study of electron-beam polycyclic and nitro-polycyclic aromatic hydrocarbons treatment

    NASA Astrophysics Data System (ADS)

    Gerasimov, Gennady

    2007-01-01

    The efficiency of the electron-beam removal of harmful impurities from industrial flue gases was studied as applied to polycyclic and nitro-polycyclic aromatic hydrocarbons. The mathematical model of radiation-induced processes was proposed. The model includes aromatic molecules decomposition in gas-phase reactions, and their liquid-phase conversion in the aerosol droplets produced upon the binary volume condensation of water and sulfuric acid vapors. The presence of active species (atoms and radicals) in radiation zone and their reactions with aliphatic and aromatic hydrocarbons can result in an opposite effect: the formation of aromatic molecules and growth of their structure. Modelling study of such processes allows evaluating the efficiency of this purification technology at various initial conditions. Results of calculations are compared with available experimental data.

  8. Microbial in situ degradation of aromatic hydrocarbons in a contaminated aquifer monitored by carbon isotope fractionation

    NASA Astrophysics Data System (ADS)

    Richnow, Hans H.; Annweiler, Eva; Michaelis, Walter; Meckenstock, Rainer U.

    2003-08-01

    end of the plume, the bioavailable toluene and o-xylene fractions had been almost completely reduced by in situ microbial degradation. Although indane and indene showed decreasing concentrations downstream of the groundwater flow path, suggesting microbial degradation, their carbon isotope ratios remained constant. As the physical properties of these compounds are similar to those of BTEX compounds, the constant isotope values of indane and indene indicated that microbial degradation did not lead to isotope fractionation of all aromatic hydrocarbons. In addition, physical interaction with the aquifer material during the groundwater passage did not significantly alter the carbon isotope composition of aromatic hydrocarbons.

  9. Anomalously high efficiencies for electronic energy transfer from saturated to aromatic hydrocarbons at low aromatic concentrations

    SciTech Connect

    Yiming Wang; Johnston, D.B.; Lipsky, S. )

    1993-01-14

    The absolute efficiency of electric energy transfer from cis-decalin excited at 161 nm to 2,5-diphenyloxazole (PPO) has been measured over a PPO concentration range from 1.0 [times] 10[sup [minus]2] to 2.0 [times] 10[sup [minus]5] M via measurements of both the cis-decalin and the PPO fluorescence. At concentrations above ca. 10[sup [minus]3] M, the normal fluorescing state of cis-decalin plays the dominant role in the energy transfer. At lower concentrations, however, there appears to be an important contribution from some other nonfluorescing state of cis-decalin. The fraction of PPO fluorescence generated by this dark state rises from ca.10% at 0.01 M to ca. 70% at 2 [times] 10[sup [minus]5] M. The effects of addition of O[sub 2] of dilution with isooctane, and of cooling to [minus]35[degrees]C on the quantum yield of this process are reported. The results obtained here confirm earlier results with other saturated hydrocarbon donor + aromatic acceptor systems that have suggested the existence of a dark donor state that dominates the transfer process at low acceptor concentrations via some anomalously efficient mechanism. For the system cis-decalin + PPO at 21[degrees]C, the transfer probability for this process at the lowest concentration studied of 2 [times] 10[sup [minus]5] M is 2.5 [times] 10[sup [minus]3] per photon absorbed and 0.060 per dark state produced. 34 refs., 13 figs., 6 tabs.

  10. Kinetic double-layer model of aerosol surface chemistry and gas-particle interactions (K2-SURF): Degradation of polycyclic aromatic hydrocarbons exposed to O3, NO2, H2O, OH and NO3

    NASA Astrophysics Data System (ADS)

    Shiraiwa, Manabu; Garland, Rebecca M.; Pöschl, Ulrich

    2010-05-01

    We present a kinetic double-layer surface model (K2-SURF) that describes the degradation of polycyclic aromatic hydrocarbons (PAHs) on aerosol particles exposed to ozone, nitrogen dioxide, water vapor, hydroxyl and nitrate radicals [1]. The model is based on multiple experimental studies of PAH degradation and on the Pöschl-Rudich-Ammann (PRA) framework [2] for aerosol and cloud surface chemistry and gas-particle interactions. For a wide range of substrates, including solid and liquid organic and inorganic substances (soot, silica, sodium chloride, octanol/decanol, organic acids, etc.), the concentration- and time-dependence of the heterogeneous reaction between PAHs and O3 can be efficiently described with a Langmuir-Hinshelwood-type mechanism. Depending on the substrate material, the Langmuir adsorption constants for O3 vary over three orders of magnitude, and the second-order rate coefficients for the surface layer reaction of O3 with different PAH vary over two orders of magnitude. The available data indicate that the Langmuir adsorption constants for NO2 are similar to those of O3, while those of H2O are several orders of magnitude smaller. The desorption lifetimes and adsorption enthalpies suggest chemisorption of NO2 and O3 and physisorption of H2O. Note, however, that the exact reaction mechanisms, rate limiting steps and possible intermediates still remain to be resolved (e.g., surface diffusion and formation of O atoms or O3- ions at the surface). The K2-SURF model enables the calculation of ozone uptake coefficients, γO3, and of PAH concentrations in the quasi-static particle surface layer. Competitive adsorption and chemical transformation of the surface (aging) lead to a strong non-linear dependence of γO3 on time and gas phase composition, with different characteristics under dilute atmospheric and concentrated laboratory conditions. Under typical ambient conditions, γO3 of PAH-coated aerosol particles are expected to be in the range of 10-6 - 10

  11. Kinetic double-layer model of aerosol surface chemistry and gas-particle interactions (K2-SURF): Degradation of polycyclic aromatic hydrocarbons exposed to O3, NO2, H2O, OH and NO3

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Garland, R. M.; Pöschl, U.

    2009-12-01

    We present a kinetic double-layer surface model (K2-SURF) that describes the degradation of polycyclic aromatic hydrocarbons (PAHs) on aerosol particles exposed to ozone, nitrogen dioxide, water vapor, hydroxyl and nitrate radicals. The model is based on multiple experimental studies of PAH degradation and on the PRA framework (Pöschl-Rudich-Ammann, 2007) for aerosol and cloud surface chemistry and gas-particle interactions. For a wide range of substrates, including solid and liquid organic and inorganic substances (soot, silica, sodium chloride, octanol/decanol, organic acids, etc.), the concentration- and time-dependence of the heterogeneous reaction between PAHs and O3 can be efficiently described with a Langmuir-Hinshelwood-type mechanism. Depending on the substrate material, the Langmuir adsorption constants for O3 vary over three orders of magnitude (Kads,O3 ≍ 10-15-10-13 cm3), and the second-order rate coefficients for the surface layer reaction of O3 with different PAH vary over two orders of magnitude (kSLR,PAH,O3 ≍ 10-18-10-17 cm2 s-1). The available data indicate that the Langmuir adsorption constants for NO2 are similar to those of O3, while those of H2O are several orders of magnitude smaller (Kads,H2O ≍ 10-18-10-17 cm3). The desorption lifetimes and adsorption enthalpies inferred from the Langmuir adsorption constants suggest chemisorption of NO2 and O3 and physisorption of H2O. Note, however, that the exact reaction mechanisms, rate limiting steps and possible intermediates still remain to be resolved (e.g., surface diffusion and formation of O atoms or O3- ions at the surface). The K2-SURF model enables the calculation of ozone uptake coefficients, γO3, and of PAH concentrations in the quasi-static particle surface layer. Competitive adsorption and chemical transformation of the surface (aging) lead to a strong non-linear dependence of γO3 on time and gas phase composition, with different characteristics under dilute atmospheric and

  12. Kinetic double-layer model of aerosol surface chemistry and gas-particle interactions (K2-SURF): degradation of polycyclic aromatic hydrocarbons exposed to O3, NO2, H2O, OH and NO3

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Garland, R. M.; Pöschl, U.

    2009-09-01

    We present a kinetic double-layer surface model (K2-SURF) that describes the degradation of polycyclic aromatic hydrocarbons (PAHs) on aerosol particles exposed to ozone, nitrogen dioxide, water vapor, hydroxyl and nitrate radicals. The model is based on multiple experimental studies of PAH degradation and on the PRA framework (Pöschl et al., 2007) for aerosol and cloud surface chemistry and gas-particle interactions. For a wide range of substrates, including solid and liquid organic and inorganic substances (soot, silica, sodium chloride, octanol/decanol, organic acids, etc.), the concentration- and time-dependence of the heterogeneous reaction between PAHs and O3 can be efficiently described with a Langmuir-Hinshelwood-type mechanism. Depending on the substrate material, the Langmuir adsorption constants for O3 vary over three orders of magnitude (Kads,O3≍10-15-10-13 cm3), and the second-order rate coefficients for the surface layer reaction of O3 with different PAH vary over two orders of magnitude (kSLR,PAH,O3≍10-18-10-17 cm2 s-1). The available data indicate that the Langmuir adsorption constants for NO2 are similar to those of O3, while those of H2O are several orders of magnitude smaller (Kads,H2O≍10-18-10-17 cm3). The desorption lifetimes and adsorption enthalpies inferred from the Langmuir adsorption constants suggest chemisorption of NO2 and O3 - possibly in the form of O atoms - and physisorption of H2O. The K2-SURF model enables the calculation of ozone uptake coefficients, γO3, and of PAH concentrations in the quasi-static particle surface layer. Competitive adsorption and chemical transformation of the surface (aging) lead to a strong non-linear dependence of γO3 on time and gas phase composition, with different characteristics under dilute atmospheric and concentrated laboratory conditions. Under typical ambient conditions, γO3 of PAH-coated aerosol particles are expected to be in the range of 10-6-10-5. At ambient temperatures, NO2 alone

  13. Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Commamonas testosteroni GZ39

    SciTech Connect

    Goyal, A.K.; Zylstra, G.J.

    1996-01-01

    The mechanisms by which bacteria degrade simple polycyclic aromatic compounds have been studied for some time. The genes for the initial steps in the degradation of maphthalene have been cloned from many different Pseudomonas stains. This study was undertaken to investigate the diversity of genes involved in phenanthrene degradation and to identify novel organisms and genes for polycyclic aromatic hydrocarbon degradations. 53 refs., 5 figs., 1 tab.

  14. Determination of total and polycyclic aromatic hydrocarbons in aviation jet fuel.

    PubMed

    Bernabei, M; Reda, R; Galiero, R; Bocchinfuso, G

    2003-01-24

    The aviation jet fuel widely used in turbine engine aircraft is manufactured from straight-run kerosene. The combustion quality of jet fuel is largely related to the hydrocarbon composition of the fuel itself; paraffins have better burning properties than aromatic compounds, especially naphthalenes and light polycyclic aromatic hydrocarbons (PAHs), which are characterised as soot and smoke producers. For this reason the burning quality of fuel is generally measured as smoke fermation. This evaluation is carried out with UV spectrophotometric determination of total naphthalene hydrocarbons and a chromatographic analysis to determine the total aromatic compounds. These methods can be considered insufficient to evaluate the human health impact of these compounds due to their inability to measure trace (ppm) amounts of each aromatic hyrcarbon and each PAH in accordance with limitations imposed because of their toxicological properties. In this paper two analytical methods are presented. Both are based on a gas chromatographic technique with a mass detector operating in be selected ion monitoring mode. The first method was able to determine more than 60 aromatic hydrocarbons in a fuel sample in a 35-min chromatographic run, while the second was able to carry out the analysis of more than 30 PAHs in a 40-min chromatographic run. The linearity and sensitivity of the methods in measuring these analytes at trace levels are described.

  15. Polycyclic aromatic hydrocarbons profiles of spent drilling fluids deposited at Emu-Uno, Delta State, Nigeria.

    PubMed

    Iwegbue, Chukwujindu M A

    2011-10-01

    The concentrations and profiles of polycyclic aromatic hydrocarbons were determined in spent drilling fluid deposited at Emu-Uno, Delta State of Nigeria. The total concentrations of polycyclic aromatic hydrocarbons in the spent drilling fluid deposits ranged between 40 and 770 μg kg(-1). The PAHs profile were predominantly 2- and 3-rings with acenaphthalene, phenanthrene, fluorene being the predominant PAHs. The prevalence of 2- and 3-rings PAHs in the spent drilling fluid deposits indicate contamination of the drilling fluids with crude oil during drilling. Incorporation of spent drilling fluids into the soil has serious implication for soil, surface water and groundwater quality.

  16. Remediation of polycyclic aromatic hydrocarbons. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    1995-10-01

    The bibliography contains citations concerning the removal of polycyclic aromatic hydrocarbons from contaminated soil or water. The chemical or biological processes that destroy these contaminants or reduce their toxicity are discussed. Techniques include treatments used in above-ground reactors or in situ detoxification of contaminated sites. The citations examine the relationship between the chemical structure of polycyclic aromatic hydrocarbons and rate of decomposition; selection of the most effective microorganisms for biological degradation; and factors which can accelerate or inhibit degradation.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  17. Remediation of polycyclic aromatic hydrocarbons. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect

    1995-03-01

    The bibliography contains citations concerning the removal of polycyclic aromatic hydrocarbons from contaminated soil or water. The chemical or biological processes that destroy these contaminants or reduce their toxicity are discussed. Techniques include treatments used in above-ground reactors or in situ detoxification of contaminated sites. The citations examine the relationship between the chemical structure of polycyclic aromatic hydrocarbons and rate of decomposition; selection of the most effective microorganisms for biological degradation; and factors which can accelerate or inhibit degradation. (Contains a minimum of 108 citations and includes a subject term index and title list.)

  18. Remediation of polycyclic aromatic hydrocarbons. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect

    1996-12-01

    The bibliography contains citations concerning the removal of polycyclic aromatic hydrocarbons from contaminated soil or water. The chemical or biological processes that destroy these contaminants or reduce their toxicity are discussed. Techniques include treatments used in above-ground reactors or in situ detoxification of contaminated sites. The citations examine the relationship between the chemical structure of polycyclic aromatic hydrocarbons and rate of decomposition; selection of the most effective microorganisms for biological degradation; and factors which can accelerate or inhibit degradation.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  19. Remediation of polycyclic aromatic hydrocarbons. (Ltest citations from Pollution abstracts). Published Search

    SciTech Connect

    Not Available

    1994-07-01

    The bibliography contains citations concerning the removal of polycyclic aromatic hydrocarbons from contaminated soil or water. The chemical or biological processes that destroy these contaminants or reduce their toxicity are discussed. Techniques include treatments used in above-ground reactors or in situ detoxification of contaminated sites. The citations examine the relationship between the chemical structure of polycyclic aromatic hydrocarbons and rate of decomposition; selection of the most effective microorganisms for biological degradation; and factors which can accelerate or inhibit degradation. (Contains a minimum of 82 citations and includes a subject term index and title list.)

  20. Remediation of polycyclic aromatic hydrocarbons. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    1997-12-01

    The bibliography contains citations concerning the removal of polycyclic aromatic hydrocarbons from contaminated soil or water. The chemical or biological processes that destroy these contaminants or reduce their toxicity are discussed. Techniques include treatments used in above-ground reactors or in situ detoxification of contaminated sites. The citations examine the relationship between the chemical structure of polycyclic aromatic hydrocarbons and rate of decomposition; selection of the most effective microorganisms for biological degradation; and factors which can accelerate or inhibit degradation.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  1. Geochemistry of polycyclic aromatic hydrocarbons in Columbia River and Washington coastal sediments

    SciTech Connect

    Prahl, F.G.

    1982-01-20

    A field investigation was conducted to determine the origins, dispersal pathways and fates of polycyclic aromatic hydrocarbons (PAH) in a river-influenced coastal marine environment. Complete PAH characterizations were combined with analyses of aliphatic hydrocarbons, organic carbon and nitrogen, lignin, lead-210 and several other parameters to clarify the geochemistry of this class of compounds in the Columbia River basin and the southern Washington continental shelf and slope. 94 references, 18 figures, 24 tables.

  2. Isotherms for adsorption of aromatic hydrocarbons from liquid paraffins on zeolites

    SciTech Connect

    Fominykh, L.F.; Abaimova, T.Ya.; Druzhkina, S.V.; Kondrat'ev, I.I.; Shevelev, Yu,V.

    1986-07-01

    This paper studies zeolite adsorption, under static conditions, of aromatic hydrocarbons from liquid paraffins obtained by the Parex method, and also the determination of adsorption isotherms. A weighed sample of the zeolite was activated in a muffle furnace at 450 C for 5 h and then cooled in a desiccator. The calculated values of the saturation adsorption of the hydrocarbons and the separation factor for the zeolites are listed.

  3. The possible existence of interstellar Polycyclic Aromatic Hydrocarbons (PAHs) in collected interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.

    1986-01-01

    Extraterrestrial dust particles which are 3 to 50 microns in size are routinely collected in the stratosphere and are now available for general laboratory study. These grains represent true Interplanetary Dust Particles (IDPs). Issues associated with the carbon containing components of IDPs which occur in a variety of physical forms, including amorphous mantles and matrix materials, are addressed. The observed properties of the hydrocarbon phase in IDPs are compared with those expected for polycyclic aromatic hydrocarbons (PAHs).

  4. Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons

    SciTech Connect

    Deziel, E.; Paquette, G.; Villemur, R.; Lepine, F.

    1996-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants occurring mostly as a result of fossil fuel combustion and as by-products of industrial activities. The bioremediation of soils contaminated with PAHs is limited by the poor availability of dyrophobic contaminants to microorganisms. Surfactants can help. Recent studies indicate that addition of surfactants can enhance hydrocarbon biodegradation. This study examines whether production of surfactants by PAH-metabolizing microorganisms is part of their strategy for growing on such poorly available substrates.

  5. Polycyclic Aromatic Hydrocarbons in an industrialized urban area

    NASA Astrophysics Data System (ADS)

    Cachada, A.; Pereira, R.; Ferreira da Silva, E.; Duarte, A. C.

    2009-04-01

    Urbanization, agricultural intensification and industrialization are contributing to erosion, local and diffuse contamination and sealing of soil surfaces, resulting in soil quality degradation. Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in urban environments and considered good markers of anthropogenic activities such as traffic, industry, domestic heating and agriculture. Although they are subject to biodegradation and photodegradation, once in the soil, they tend to bind to the soil organic fraction. Estarreja is a small coastal town in the Northwestern Portuguese coast, with a close relation with the lagoon of Aveiro which supports a variety of biotopes (channels, islands with vegetation, mudflats, salt marshes and agricultural fields) of important ecological value. It supports an intensive and diversified agriculture, a variety of heavy and light industries and a population of about half a million people which is dependent on this resource. This is a very industrialized area, due to its five decades of chemical industry. This study aims to assess the impact of the urbanization and of the chemical industry in PAHs distribution. The survey and sampling method were based on pre-interpreted maps, aerial photographs, and directly checked in the field, in order to get an overall characterization of the area. Topsoils were collected from 34 sites, considering different land uses. Five land uses were chosen: ornamental gardens, parks, roadsides, forest and agricultural. Parameters such as soil pH (ISO method 10390:1994), total C, N, H, S percentages (microanalyser LECO, CNHS-932), organic matter (LOI at 430°), particle size distribution (Micromeritics® Sedigraph 5100), cation exchange capacity and exchangeable bases, were determined in order to have a general characterization of soil. Determination of the 16 EPA PAHs in soils was performed by GC/MS after a Soxhlet extraction and an alumina clean-up of extracts. Procedure blanks, duplicates and reference

  6. Peat fires as source of polycyclic aromatic hydrocarbons in soils

    NASA Astrophysics Data System (ADS)

    Tsibart, Anna

    2013-04-01

    Polycyclic aromatic hydrocarbons (PAHs) arrive from pyrogenic sources including volcanism and the combustion of oil products and plant materials. The production of PAHs during the combustion of plant materials was considered in a number of publications, but their results were mainly obtained in laboratory experiments. Insufficient data are available on the hightemperature production of PAHs in environmental objects. For example, natural fires are frequently related to the PAH sources in landscapes, but very little factual data are available on this topic. On Polistovskii reserve (Russia, Pskov region) the soil series were separated depending on the damage to the plants; these series included soils of plots subjected to fires of different intensities, as well as soils of the background plots. The series of organic and organomineral soils significantly differed in their PAH distributions. In this series, the concentration of PAHs in the upper horizons of the peat soils little varied or slightly decreased, but their accumulation occurred at a depth of 5-10 or 10-20 cm in the soils after the fires. For example, in the series of high moor soils, the content of PAHs in the upper horizons remained almost constant; significant differences were observed in the subsurface horizons: from 2 ng/g in the background soil to 70 ng/g after the fire. In the upper horizons of the oligotrophic peat soils under pine forests, the total PAH content also varied only slightly. At the same time, the content of PAHs in the soil series increased from 15 to 90 ng/g with the increasing pyrogenic damage to the plot. No clear trends of the PAH accumulation were recorded in the organomineral soils. The content of PAHs in the soddy-podzolic soil subjected to fire slightly decreased (from 20 to 10 ng/g) compared to the less damaged soil. In peat fires, the access of oxygen to the fire zone is lower than in forest fires. The oxygen deficit acts as a factor of the organic fragments recombination and

  7. Mutagenic hazards of complex polycyclic aromatic hydrocarbon mixtures in contaminated soil

    SciTech Connect

    Lemieux, C.L.; Lambert, A.B.; Lundstedt, S.; Tysklind, M.; White, P.A.

    2008-04-15

    The objective of the present study was to evaluate hazard/risk assessment methods for complex environmental mixtures that involve a targeted, priority chemical approach based on the cumulative hazard/risk of known mixture components or analyses of sufficiently similar mixtures. Ten polycyclic aromatic hydrocarbon (PAH)-contaminated soils were separated into nonpolar and semipolar fractions, and both fractions elicited positive responses on the Salmonella reverse mutation assay. Targeted and nontargeted methods of hazard prediction routinely overestimated mutagenic activities for the nonpolar soil fractions, suggesting nonadditive interactions of PAHs in complex mixtures. This suggests that current risk assessment methods for complex mixtures may provide conservative estimates regarding soils contaminated with priority PAHs alone. Significant underestimations of total risk, however, will be obtained if the soils also contain unidentified PAHs as well as polycyclic aromatic compounds and related compounds that contribute to the total mutagenic activity. Furthermore, estimates of excess lifetime cancer risk associated with the nondietary ingestion of the PAH-contaminated soils studied here indicate that a traditional risk assessment model based on identified priority PAHs and an assumption of additivity generally underestimates the risk associated with the nonpolar soil fractions (in comparison to bioassay-derived risk estimates). Additional cancer risk may be associated with the more polar compounds that also are found at these contaminated sites and that rarely are included in the standard risk assessment methodology.

  8. Theoretical Study of the Electronic Spectra of a Polycyclic Aromatic Hydrocarbon, Naphthalene, and its Derivatives

    NASA Technical Reports Server (NTRS)

    Du, Ping; Salama, Farid; Loew, Gilda H.

    1993-01-01

    In order to preselect possible candidates for the origin of diffuse interstellar bands observed, semiempirical quantum mechanical method INDO/S was applied to the optical spectra of neutral, cationic, and anionic states of naphthalene and its hydrogen abstraction and addition derivatives. Comparison with experiment shows that the spectra of naphthalene and its ions were reliably predicted. The configuration interaction calculations with single-electron excitations provided reasonable excited state wavefunctions compared to ab initio calculations that included higher excitations. The degree of similarity of the predicted spectra of the hydrogen abstraction and derivatives to those of naphthalene and ions depends largely on the similarity of the it electron configurations. For the hydrogen addition derivatives, very little resemblance of the predicted spectra to naphthalene was found because of the disruption of the aromatic conjugation system. The relevance of these calculations to astrophysical issues is discussed within the context of these polycyclic aromatic hydrocarbon models. Comparing the calculated electronic energies to the Diffuse Interstellar Bands (DIBs), a list of possible candidates of naphthalene derivatives is established which provides selected candidates for a definitive test through laboratory studies.

  9. A study on the coagulation of polycyclic aromatic hydrocarbon clusters to determine their collision efficiency

    SciTech Connect

    Raj, Abhijeet; Sander, Markus; Janardhanan, Vinod; Kraft, Markus

    2010-03-15

    This paper presents a theoretical study on the physical interaction between polycyclic aromatic hydrocarbons (PAHs) and their clusters of different sizes in laminar premixed flames. Two models are employed for this study: a detailed PAH growth model, referred to as the kinetic Monte Carlo - aromatic site (KMC-ARS) model [Raj et al., Combust. Flame 156 (2009) 896-913]; and a multivariate PAH population balance model, referred to as the PAH - primary particle (PAH-PP) model. Both the models are solved by kinetic Monte Carlo methods. PAH mass spectra are generated using the PAH-PP model, and compared to the experimentally observed spectra for a laminar premixed ethylene flame. The position of the maxima of PAH dimers in the spectra and their concentrations are found to depend strongly on the collision efficiency of PAH coagulation. The variation in the collision efficiency with various flame and PAH parameters is studied to determine the factors on which it may depend. A correlation for the collision efficiency is proposed by comparing the computed and the observed spectra for an ethylene flame. With this correlation, a good agreement between the computed and the observed spectra for a number of laminar premixed ethylene flames is found. (author)

  10. Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation.

    PubMed

    Stroud, J L; Paton, G I; Semple, K T

    2007-05-01

    Aliphatic hydrocarbons make up a substantial portion of organic contamination in the terrestrial environment. However, most studies have focussed on the fate and behaviour of aromatic contaminants in soil. Despite structural differences between aromatic and aliphatic hydrocarbons, both classes of contaminants are subject to physicochemical processes, which can affect the degree of loss, sequestration and interaction with soil microflora. Given the nature of hydrocarbon contamination of soils and the importance of bioremediation strategies, understanding the fate and behaviour of aliphatic hydrocarbons is imperative, particularly microbe-contaminant interactions. Biodegradation by microbes is the key removal process of hydrocarbons in soils, which is controlled by hydrocarbon physicochemistry, environmental conditions, bioavailability and the presence of catabolically active microbes. Therefore, the aims of this review are (i) to consider the physicochemical properties of aliphatic hydrocarbons and highlight mechanisms controlling their fate and behaviour in soil; (ii) to discuss the bioavailability and bioaccessibility of aliphatic hydrocarbons in soil, with particular attention being paid to biodegradation, and (iii) to briefly consider bioremediation techniques that may be applied to remove aliphatic hydrocarbons from soil.

  11. Sources, fates, and effects of aromatic hydrocarbons in the Alaskan marine environment with recommendations for monitoring strategies

    SciTech Connect

    Anderson, J.W.; Neff, J.M.; Boehm, P.D.

    1986-03-01

    Information about polycyclic aromatic hydrocarbons in the Alaskan marine environment is relatively sparse. About 300 references were reviewed to create an assessment of the current state of knowledge on sources, fates and effects of oil-derived polycyclic aromatic hydrocarbons in cold marine waters. The objective of the report is to critically review what is known about the sources, fates and effects of polycyclic aromatic hydrocarbons (PAH) in the Alaskan marine environment. The specific areas reviewed are (1) the natural and anthropogenic sources of aromatic hydrocarbons in the Alaskan marine environment, (2) the physical, chemical and biochemical fates of these compounds in marine ecosystems, and (3) the bioaccumulation and biological effects of aromatic hydrocarbons in marine organisms.

  12. Highly Dispersed Pt Nanoparticles for the Production of Aromatic Hydrocarbons by the Catalytic Degrading of Alkali Lignin.

    PubMed

    Sanyoto, Bernardi; Dwiatmoko, Adid Adep; Choi, Jae-Wook; Ha, Jeong-Myeong; Suh, Dong Jin; Kim, Chang Soo; Lim, Jong-Choo

    2016-05-01

    Aromatic hydrocarbons were produced from lignin, a complex natural amorphous polymer commonly regarded as by-product of the pulping process and from biofuel production. The catalytic decomposition of lignin using supported Pt catalysts was performed to produce small molecule hydrocarbons. Aromatic small-molecule hydrocarbon products were identified and quantified using GC/MS and GC-FID, which demonstrated that 27.6% of aromatic hydrocarbons were obtained from the activated carbon-supported Pt (Pt/AC) catalyst which had the highest Pt surface area.

  13. Maternal exposure to polycyclic aromatic hydrocarbons diminishes murine ovarian reserve via induction of Harakiri

    PubMed Central

    Jurisicova, Andrea; Taniuchi, Asako; Li, Han; Shang, Yuan; Antenos, Monica; Detmar, Jacqui; Xu, Jing; Matikainen, Tiina; Benito Hernández, Adalberto; Nunez, Gabriel; Casper, Robert F.

    2007-01-01

    Maternal smoking during pregnancy is associated with a variety of adverse neonatal outcomes including altered reproductive performance. Herein we provide molecular evidence for a pathway involved in the elimination of the female germline due to prepregnancy and/or lactational exposure to polycyclic aromatic hydrocarbons (PAHs), environmental toxicants found in cigarette smoke. We show that ovaries of offspring born to mice exposed to PAHs contained only a third of the ovarian follicle pool compared with offspring of unexposed female mice. Activation of the cell death pathway in immature follicles of exposed females was mediated by the aryl hydrocarbon receptor (Ahr), as ovarian reserve was fully rescued by maternal cotreatment with the Ahr antagonist, resveratrol, or by inactivation of the Ahr gene. Furthermore, in response to PAHs, Ahr-mediated activation of the harakiri, BCL2 interacting protein (contains only BH3 domain), was necessary for execution of cell death. This pathway appeared to be conserved between mouse and human, as xenotransplanted human ovarian cortex exposed to PAHs responded by activation of the identical cell death cascade. Our data indicate that maternal exposure to PAHs prior to pregnancy and/or during lactation compromises ovarian reserve of female offspring, raising the concern about the transgenerational impact of maternal smoking on ovarian function in the human. PMID:18037991

  14. Identification of Benzothiazole Derivatives and Polycyclic Aromatic Hydrocarbons as Aryl Hydrocarbon Receptor Agonists Present in Tire Extracts

    PubMed Central

    He, Guochun; Zhao, Bin; Denison, Michael S.

    2012-01-01

    Leachate from rubber tire material contains a complex mixture of chemicals previously shown to produce toxic and biological effects in aquatic organisms. While the ability of these leachates to induce Ah receptor (AhR)-dependent cytochrome P4501A1 expression in fish indicated the presence of AhR active chemicals, the responsible chemical(s) and their direct interaction with the AhR signaling pathway were not examined. Using a combination of AhR-based bioassays, we have demonstrated the ability of tire extract to stimulate both AhR DNA binding and AhR-dependent gene expression and confirmed that the responsible chemical(s) was metabolically labile. The application of CALUX (Chemical-Activated LUciferase gene eXpression) cell bioassay-driven toxicant identification evaluation not only revealed that tire extract contained a variety of known AhR-active polycyclic aromatic hydrocarbons, but also identified 2-methylthiobenzothiazole and 2-mercaptobenzothiazole as AhR agonists. Analysis of a structurally diverse series of benzothiazoles identified many that could directly stimulate AhR DNA binding and transiently activate the AhR signaling pathway and identified benzothiazoles as a new class of AhR agonists. In addition to these compounds, the relatively high AhR agonist activity of a large number of fractions strongly suggests that tire extract contains a large number of physiochemically diverse AhR agonists whose identities and toxicological/biological significances are unknown. PMID:21590714

  15. Identification of benzothiazole derivatives and polycyclic aromatic hydrocarbons as aryl hydrocarbon receptor agonists present in tire extracts.

    PubMed

    He, Guochun; Zhao, Bin; Denison, Michael S

    2011-08-01

    Leachate from rubber tire material contains a complex mixture of chemicals previously shown to produce toxic and biological effects in aquatic organisms. The ability of these leachates to induce Ah receptor (AhR)-dependent cytochrome P4501A1 expression in fish indicated the presence of AhR active chemicals, but the responsible chemicals and their direct interaction with the AhR signaling pathway were not examined. Using a combination of AhR-based bioassays, we have demonstrated the ability of tire extract to stimulate both AhR DNA binding and AhR-dependent gene expression and confirmed that the responsible chemicals were metabolically labile. The application of CALUX (chemical-activated luciferase gene expression) cell bioassay-driven toxicant identification evaluation not only revealed that tire extract contained a variety of known AhR-active polycyclic aromatic hydrocarbons but also identified 2-methylthiobenzothiazole and 2-mercaptobenzothiazole as AhR agonists. Analysis of a structurally diverse series of benzothiazoles identified many that could directly stimulate AhR DNA binding and transiently activate the AhR signaling pathway and identified benzothiazoles as a new class of AhR agonists. In addition to these compounds, the relatively high AhR agonist activity of a large number of fractions strongly suggests that tire extract contains a large number of physiochemically diverse AhR agonists whose identities and toxicological/biological significances are unknown.

  16. Characterization of polycyclic aromatic compounds in diesel exhaust particulate extract responsible for aryl hydrocarbon receptor activity

    NASA Astrophysics Data System (ADS)

    Soontjens, Carol D.; Holmberg, Kristina; Westerholm, Roger N.; Rafter, Joseph J.

    Chemical fractions of a model diesel exhaust particulate extract, notably the fraction containing polycyclic aromatic hydrocarbons (PAH) (Fraction II), mono-nitro PAH (Fraction III), and dinitro-PAH (Fraction IV) have been shown to displace binding of 2,3,7,8-tetrachloro[1,6-[ 3H

  17. Hybrid membranes of metal-organic molecule nanocages for aromatic/aliphatic hydrocarbon separation by pervaporation.

    PubMed

    Zhao, Cui; Wang, Naixin; Wang, Lin; Huang, Hongliang; Zhang, Rong; Yang, Fan; Xie, Yabo; Ji, Shulan; Li, Jian-Rong

    2014-11-21

    Hybrid membranes composed of porous metal-organic molecule nanocages as fillers embedded in a hyperbranched polymer (Boltorn W3000) were fabricated, which exhibit excellent pervaporation separation performances towards aromatic/aliphatic hydrocarbons. The unique nature of the molecule-based fillers and their good dispersion and compatibility in/with the polymer are responsible for the good membrane properties.

  18. EFFECT OF IRRADIANCE SPECTRA ON THE PHOTOINDUCED TOXICITY OF THREE POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light received. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events un...

  19. Polycyclic aromatic hydrocarbon hazards to fish, wildlife, and invertebrates: a synoptic review

    SciTech Connect

    Eisler, R.

    1987-05-01

    The report synthesizes technical literature on ecological and toxicological aspects of polycyclic aromatic hydrocarbons (PAH) in the environment, with special reference to fisheries and wildlife resources. Subtopics include: chemical properties, sources, and fate; background concentrations in biological and nonbiological samples; toxic and sublethal effects of PAH to flora and fauna; proposed criteria and research needs for the protection of sensitive, nonhuman organisms.

  20. Role of sooty mold fungi in degradation of polycycllic aromatic hydrocarbons (PAHS) in soil

    Treesearch

    Venera A. Jouraeva; David L. Johnson; John P. Hassett; David J. Nowak; Natalia A. Shipunova; Dana Barbarossa

    2006-01-01

    The focus of this research was on elucidation of the role of deciduous tree ecosystems in accumulation of fine-particle-associated polycyclic aromatic hydrocarbons (PAHs) and heavy metals on leaves of deciduous trees. The studied species were Tilia x euchlora (frequently infested by sooty mold fungi) and Pyrus calleryana (...

  1. SOLAR RADIATION DOSE AND PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS: A CASE STUDY

    EPA Science Inventory

    The toxicity of polycyclic aromatic hydrocarbons increases by as much as three orders of magnitude in the presence of solar radiation. The risk of this photoactive toxicity is thus based on both tissue concentrations of potentially photo activated compounds and the levels of subs...

  2. THE PHOTOTOXOICITY OF POLYCYCLIC AROMATIC HYDROCARBONS: A THEORETICAL STUDY OF EXCITED STATES AND CORRELATION TO EXPERIMENT

    EPA Science Inventory



    Investigators using models to determine the phototoxic effects of sunlight on polycyclic aromatic hydrocarbons (PAHS) have invoked the excited states of the molecule as important in elucidating the mechanism of these reactions. Energies of actual excited states were calcu...

  3. ELECTRON AFFINITIES OF POLYNUCLEAR AROMATIC HYDROCARBONS AND NEGATIVE ION CHEMICAL IONIZATION SENSITIVITIES

    EPA Science Inventory

    Negative-ion chemical-ionization mass spectrometry (NICI MS) has the potential to be a very useful technique in identifying various polycyclic aromatic hydrocarbons (PAHs) in soil and sediment samples. Some PAHs give much stronger signals under NICI MS conditions than others. On ...

  4. Characterization of emissions of PAH's (polynuclear aromatic hydrocarbon) from residential coal-fired space heaters

    SciTech Connect

    Sanborn, C.R.; Cooke, M.; Bresler, W.; Osborne, M.C.

    1985-10-01

    The paper gives results of a joint emissions testing and analysis program--the U.S. EPA and the State of Vermont--to determine polynuclear aromatic hydrocarbon (PAH), particulate, sulfur dioxide, and carbon monoxide emissions from two coal-fired residential space heaters. One had a magazine-type feed system; and the other, a batch loader.

  5. Immunological disorders associated with polychlorinated biphenyls and related halogenated aromatic hydrocarbon compounds

    USGS Publications Warehouse

    Noguchi, G.E.; Leatherland, J.F.; Woo, P.T.K.

    1998-01-01

    This review characterizes immunological disorders in fish associated with the widespread environmental contaminants, polychlorinated biphenyls (PCBs), and related halogenated aromatic hydrocarbons (HAHs). Special attention is devoted to comparing the sensitivity of fish species, identifying sensitive immunological endpoints and postulating mechanisms of action.

  6. Sources and deposition of polycyclic aromatic hydrocarbons to western US national parks

    EPA Science Inventory

    Seasonal snowpack, lichens, and lake sediment cores were collected from fourteen lake catchments in eight western U.S. National Parks and analyzed for sixteen polycyclic aromatic hydrocarbons (PAHs) to determine their current and historical deposition, as well as to identify thei...

  7. Shock synthesis of poly cyclic aromatic hydrocarbons from benzene: Its role in astrophysical processes

    NASA Astrophysics Data System (ADS)

    Mimura, Koichi; Kato, Manabu; Sugisaki, Ryuichi; Handa, Nobuhiko

    1994-09-01

    It was experimentally shown that shock waves generated by projectile impact cause a reaction between benzene molecules to produce heavier aromatic hydrocarbons such as naphthalene, biphenyl, phenanthrene, and chrysene. Most of these shock induced-molecules are detected in meteorites and cosmic dusts; some in interstellar environments. Such processes may have operated during shock events in interstellar environments.

  8. PERSONAL EXPOSURES TO POLYCYCLIC AROMATIC HYDROCARBONS ASSOCIATED WITH THE NHEXAS PILOT

    EPA Science Inventory

    Personal exposure monitoring for select polycyclic aromatic hydrocarbons (PAHs) was performed as part of the National Human Exposure Assessment Survey (NHEXAS) Pilot Study in Baltimore, MD. Twenty-four hour PM10 sample collections (~5.7 m3) were performed using personal envi...

  9. Toxicity of polycyclic aromatic hydrocarbons. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    1995-07-01

    The bibliography contains citations concerning the toxicity and biochemical effects of aromatic polycyclic hydrocarbons. Citations discuss air, water, soil, and sediment pollution and control. Topics include vehicle emissions and control, pollutant pathways, carcinogens and mutagenic activity, and photoinduced toxicity. Food contamination, environmental monitoring, and soil contamination along highways are examined. (Contains 50-250 citations and includes a subject term index and title list.)

  10. Coal-tar-based pavement sealcoat, polycyclic aromatic Hydrocarbons (PAHs), and environmental health

    USGS Publications Warehouse

    Mahler, B.J.; Van Metre, P.C.

    2011-01-01

    Studies by the U.S. Geological Survey (USGS) have identified coal-tar-based sealcoat-the black, viscous liquid sprayed or painted on asphalt pavement such as parking lots-as a major source of polycyclic aromatic hydrocarbon (PAH) contamination in urban areas for large parts of the Nation. Several PAHs are suspected human carcinogens and are toxic to aquatic life.

  11. SELECTIVE ENUMERATION OF AROMATIC AND ALIPHATIC HYDROCARBON DEGRADING BACTERIA BY A MOST-PROBABLE-NUMBER PROCEDURE

    EPA Science Inventory

    A most-portable-number (MPN) procedure was developed to separately enumerate aliphatic and aromatic hydrocarbon degrading bacteria, because most of the currently available methods are unable to distinguish between these two groups. Separate 96-well microtiter plates are used to ...

  12. PERSONAL EXPOSURE TO FINE PARTICLE POLYCYCLIC AROMATIC HYDROCARBONS: OUTDOOR SOURCE TRACERS

    EPA Science Inventory


    The most carcinogenic and toxic polycyclic aromatic hydrocarbons (PAH) are the 4-5 ring PAH found preferentially adsorbed to the fine particles (<2.54u in urban ambient air and personal air. Personal exposure to the carcinogenic particle bound PAH is also highly correlated ...

  13. Fluorescence, Absorption, and Excitation Spectra of Polycyclic Aromatic Hydrocarbons as a Tool for Quantitative Analysis

    ERIC Educational Resources Information Center

    Rivera-Figueroa, A. M.; Ramazan, K. A.; Finlayson-Pitts, B. J.

    2004-01-01

    A quantitative and qualitative study of the interplay between absorption, fluorescence, and excitation spectra of pollutants called polycyclic aromatic hydrocarbons (PAHs) is conducted. The study of five PAH displays the correlation of the above-mentioned properties along with the associated molecular changes.

  14. Production of aromatic hydrocarbons via catalytic pyrolysis of biomass over fe-modified HZSM-5 zeolites

    USDA-ARS?s Scientific Manuscript database

    Iron modified HZSM-5 catalysts were prepared by partial ion exchange of NH4ZSM-5 with Fe (II) at three different loadings (1.4, 2.8 and 4.2 wt%), and their effectiveness for producing aromatic hydrocarbons from cellulose, cellobiose, lignin and switchgrass by catalytic pyrolysis were screened using ...

  15. Moss as bio-indicators of human exposure to polycyclic aromatic hydrocarbons in Portland, OR

    Treesearch

    Geoffrey H. Donovan; Sarah E. Jovan; Demetrios Gatziolis; Vicente J. Monleon

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a class of air pollutants linked to a wide range of adverse health outcomes, including asthma, cancers, cardiovascular disease, and fetal growth impairment. PAHs are emitted by combustion of organic matter (e.g. fossil fuels, plant biomass) and can accumulate in plant and animal tissues over time. Compared to criteria...

  16. New SERS Substrates For Polycyclic Aromatic Hydrocarbon (PAH) Detection: Towards Quantitative SERS Sensors For Environmental Analysis

    SciTech Connect

    Peron, O.; Rinnert, E.; Compere, C.; Toury, T.; Lamy de la Chapelle, M.

    2010-08-06

    In the investigation of chemical pollutions, such as PAHs (Polycyclic Aromatic Hydrocarbons) at low concentration in aqueous medium, surface-enhanced Raman scattering (SERS) stands for an alternative to the inherent low cross-section of normal Raman scattering. Indeed, SERS is a very sensitive spectroscopic technique due to the excitation of the surface plasmon modes of the nanostructured metallic film.

  17. PERSONAL EXPOSURES TO POLYCYCLIC AROMATIC HYDROCARBONS ASSOCIATED WITH THE NHEXAS PILOT

    EPA Science Inventory

    Personal exposure monitoring for select polycyclic aromatic hydrocarbons (PAHs) was performed as part of the National Human Exposure Assessment Survey (NHEXAS) Pilot Study in Baltimore, MD. Twenty-four hour PM10 sample collections (~5.7 m3) were performed using personal envi...

  18. DEGRADATION OF POLYNUCLEAR AROMATIC HYDROCARBONS UNDER BENCH-SCALE COMPOST CONDITIONS

    EPA Science Inventory

    The relationship between biomass growth and degradation of polynuclear aromatic hydrocarbons (PAHs) in soil, and subsequent toxicity reduction, was evaluated in 10 in-vessel, bench-scale compost units. Field soil was aquired from the Reilly Tar and Chemical Company Superfund site...

  19. "Super-Reducing" Photocatalysis: Consecutive Energy and Electron Transfers with Polycyclic Aromatic Hydrocarbons.

    PubMed

    Brasholz, Malte

    2017-08-21

    Donation welcome: Recent developments in visible-light photocatalysis allow the utilization of increasingly negative reduction potentials. Successive energy and electron transfer with polycyclic aromatic hydrocarbons enables the catalytic formation of strongly reducing arene radical anions, classical stoichiometric reagents for one-electron reduction in organic synthesis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Empirical modeling of soot formation in shock-tube pyrolysis of aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Frenklach, M.; Clary, D. W.; Matula, R. A.

    1986-01-01

    A method for empirical modeling of soot formation during shock-tube pyrolysis of aromatic hydrocarbons is developed. The method is demonstrated using data obtained in pyrolysis of argon-diluted mixtures of toluene behind reflected shock waves. The developed model is in good agreement with experiment.

  1. POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN OPPOSED FLOW DIFFUSION FLAMES OF ETHANE. (R825412)

    EPA Science Inventory

    Abstract

    The effect of fuel-side carbon density on the levels of polycyclic aromatic hydrocarbon (PAH) formation in atmospheric pressure, opposed flow, ethane diffusion flames has been studied using heated micro-probe sampling and gas chromatography/mass spectrometry (...

  2. Public Health Impacts of Secondary Particulate Formation from Aromatic Hydrocarbons in Gasoline

    EPA Science Inventory

    Background: Aromatic hydrocarbons emitted from gasoline‐powered vehicles contribute to the formation of secondary organic aerosol (SOA), which increases the atmospheric mass concentration of fine particles (PM2.5). Here we estimate the public health burden associated w...

  3. SELECTIVE ENUMERATION OF AROMATIC AND ALIPHATIC HYDROCARBON DEGRADING BACTERIA BY A MOST-PROBABLE-NUMBER PROCEDURE

    EPA Science Inventory

    A most-portable-number (MPN) procedure was developed to separately enumerate aliphatic and aromatic hydrocarbon degrading bacteria, because most of the currently available methods are unable to distinguish between these two groups. Separate 96-well microtiter plates are used to ...

  4. Determination of polycyclic aromatic hydrocarbons in biochar and biochar amended soil

    USDA-ARS?s Scientific Manuscript database

    A method for the determination of the 16 USEPA polycyclic aromatic hydrocarbons (PAHs) in biochar and soil amended with biochar was developed. Samples were Soxhlet extracted with acetone:cyclohexane 1:1, and PAHs were analysed by GC-MS after silica gel clean-up. In a comparative study based on reflu...

  5. THE EFFECT OF IRRADIANCE SPECTRA ON THE PHOTOACTIVATED TOXICITY OF THREE POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light recieved. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events un...

  6. Public Health Impacts of Secondary Particulate Formation from Aromatic Hydrocarbons in Gasoline

    EPA Science Inventory

    Background: Aromatic hydrocarbons emitted from gasoline‐powered vehicles contribute to the formation of secondary organic aerosol (SOA), which increases the atmospheric mass concentration of fine particles (PM2.5). Here we estimate the public health burden associated w...

  7. Toxicity of aromatic polycyclic hydrocarbons. (Latest citations from the Life Sciences Collection database). Published Search

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations concerning the toxicity and biochemical effects of aromatic polycyclic hydrocarbons. Topics include effects on metabolism and liver activity, cellular responses, binding characteristics, and the occurrence and path of the compounds in food chains. Bioaccumulation studies in specific areas, and isolation and detection techniques are also considered. (Contains 250 citations and includes a subject term index and title list.)

  8. Toxicity of aromatic polycyclic hydrocarbons. (Latest citations from the Life Sciences Collection database). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations concerning the toxicity and biochemical effects of aromatic polycyclic hydrocarbons. Topics include effects on metabolism and liver activity, cellular responses, binding characteristics, and the occurrence and path of the compounds in food chains. Bioaccumulation studies in specific areas, and isolation and detection techniques are also considered. (Contains 250 citations and includes a subject term index and title list.)

  9. ELECTRON AFFINITIES OF POLYNUCLEAR AROMATIC HYDROCARBONS AND NEGATIVE ION CHEMICAL IONIZATION SENSITIVITIES

    EPA Science Inventory

    Negative-ion chemical-ionization mass spectrometry (NICI MS) has the potential to be a very useful technique in identifying various polycyclic aromatic hydrocarbons (PAHs) in soil and sediment samples. Some PAHs give much stronger signals under NICI MS conditions than others. On ...

  10. Extraction of low molecular weight polynuclear aromatic hydrocarbons from ashes of coal-operated power plants

    SciTech Connect

    Mangani, F.; Cappiello, A.; Crescentini, G.; Bruner, F.; Bonfanti, L.

    1987-09-01

    A new procedure based on liquid-solid chromatography for the extraction of polynuclear aromatic hydrocarbons has been implemented. This yields results analogous to those of Soxhlet extraction for low molecular weight compounds. A very important reduction in the time required for sample preparation prior to gas chromatography/mass spectrometry analysis is obtained.

  11. CALCULATION OF ELECTRON AFFINITIES OF POLYCYCLIC AROMATIC HYDROCARBONS AND SOVATION ENERGIES OF THEIR ANIONS

    EPA Science Inventory

    Electron affinities (EAs) and free energies for electron attachment have been calculated for 42 polynuclear aromatic hydrocarbons and related molecules by a variety of theoretical models, including Koopmans' theorem methods and the L1E method from differences in energy between th...

  12. Polycyclic aromatic hydrocarbon migration from creosote-treated railway ties into ballast and adjacent wetlands

    Treesearch

    Kenneth M. Brooks

    2004-01-01

    Occasionally, creosote-treated railroad ties need to be replaced, sometimes in sensitive environments such as wetlands. To help determine if this is detrimental to the surrounding environment, more information is needed on the extent and pattern of creosote, or more specifically polycyclic aromatic hydrocarbon (PAH), migration from railroad ties and what effects this...

  13. THE PHOTOTOXOICITY OF POLYCYCLIC AROMATIC HYDROCARBONS: A THEORETICAL STUDY OF EXCITED STATES AND CORRELATION TO EXPERIMENT

    EPA Science Inventory



    Investigators using models to determine the phototoxic effects of sunlight on polycyclic aromatic hydrocarbons (PAHS) have invoked the excited states of the molecule as important in elucidating the mechanism of these reactions. Energies of actual excited states were calcu...

  14. CALCULATION OF ELECTRON AFFINITIES OF POLYCYCLIC AROMATIC HYDROCARBONS AND SOVATION ENERGIES OF THEIR ANIONS

    EPA Science Inventory

    Electron affinities (EAs) and free energies for electron attachment have been calculated for 42 polynuclear aromatic hydrocarbons and related molecules by a variety of theoretical models, including Koopmans' theorem methods and the L1E method from differences in energy between th...

  15. Fluorescence, Absorption, and Excitation Spectra of Polycyclic Aromatic Hydrocarbons as a Tool for Quantitative Analysis

    ERIC Educational Resources Information Center

    Rivera-Figueroa, A. M.; Ramazan, K. A.; Finlayson-Pitts, B. J.

    2004-01-01

    A quantitative and qualitative study of the interplay between absorption, fluorescence, and excitation spectra of pollutants called polycyclic aromatic hydrocarbons (PAHs) is conducted. The study of five PAH displays the correlation of the above-mentioned properties along with the associated molecular changes.

  16. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene

    ERIC Educational Resources Information Center

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.

    2014-01-01

    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…

  17. Sources and deposition of polycyclic aromatic hydrocarbons to western US national parks

    EPA Science Inventory

    Seasonal snowpack, lichens, and lake sediment cores were collected from fourteen lake catchments in eight western U.S. National Parks and analyzed for sixteen polycyclic aromatic hydrocarbons (PAHs) to determine their current and historical deposition, as well as to identify thei...

  18. POLYCYCLIC AROMATIC HYDROCARBON BIODEGRADATION AS A FUNCTION OF OXYGEN TENSION IN CONTAMINATED SOIL

    EPA Science Inventory

    Laboratory tests were conducted to determine the effect of soil gas oxygen concentration on the degradation and mineralization of spiked 14C-pyrene and nonspiked 16 priority pollutant polycyclic aromatic hydrocarbons (PAH) present in the soil. The soil used for the evaluation was...

  19. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene

    ERIC Educational Resources Information Center

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.

    2014-01-01

    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…

  20. Enumeration and phylogenetic analysis of polycyclic aromatic hydrocarbon-degrading marine bacteria from Puget Sound sediments

    SciTech Connect

    Geiselbrecht, A.D.; Herwig, R.P.; Deming, J.W.; Staley, J.T.

    1996-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are primarily released into the environment through anthropomorphic sources. PAH degradation has been known to occur in marine sediments. This paper describes the enumeration, isolation, and preliminary characterization of PAH-degrading strains from Puget Sound sediments. 38 refs., 3 figs., 3 tabs.