Bencivenni, Giorgio; Cesari, Riccardo; Nanni, Daniele; El Mkami, Hassane
2010-01-01
Summary The reactions of group 13 metal trichlorides with aromatic azides were examined by CW EPR and pulsed ENDOR spectroscopies. Complex EPR spectra were obtained from reactions of aluminium, gallium and indium trichlorides with phenyl azides containing a variety of substituents. Analysis of the spectra showed that 4-methoxy-, 3-methoxy- and 2-methoxyphenyl azides all gave ‘dimer’ radical cations [ArNHC6H4NH2]+• and trimers [ArNHC6H4NHC6H4NH2]+• followed by polymers. 4-Azidobenzonitrile, with its electron-withdrawing substituent, did not react. In general the aromatic azides appeared to react most rapidly with AlCl3 but this reagent tended to generate much polymer. InCl3 was the least reactive group 13 halide. DFT computations of the radical cations provided corroborating evidence and suggested that the unpaired electrons were accommodated in extensive π-delocalised orbitals. A mechanism to account for the reductive conversion of aromatic azides to the corresponding anilines and thence to the dimers and trimers is proposed. PMID:21049080
Functional electrolyte for lithium-ion batteries
Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil
2015-04-14
Functional electrolyte solvents include compounds having at least one aromatic ring with 2, 3, 4 or 5 substituents, at least one of which is a substituted or unsubstituted methoxy group, at least one of which is a tert-butyl group and at least one of which is a substituted or unsubstituted polyether or poly(ethylene oxide) (PEO) group bonded through oxygen to the aromatic ring, are provided.
Cation Radical Accelerated Nucleophilic Aromatic Substitution via Organic Photoredox Catalysis.
Tay, Nicholas E S; Nicewicz, David A
2017-11-15
Nucleophilic aromatic substitution (S N Ar) is a direct method for arene functionalization; however, it can be hampered by low reactivity of arene substrates and their availability. Herein we describe a cation radical-accelerated nucleophilic aromatic substitution using methoxy- and benzyloxy-groups as nucleofuges. In particular, lignin-derived aromatics containing guaiacol and veratrole motifs were competent substrates for functionalization. We also demonstrate an example of site-selective substitutive oxygenation with trifluoroethanol to afford the desired trifluoromethylaryl ether.
Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes
Smith, R.E.; Dolbeare, F.A.
1980-10-21
Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes. No Drawings
Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes
Smith, Robert E. [557 Escondido Cir., Livermore, CA 94550; Dolbeare, Frank A. [5178 Diane La., Livermore, CA 94550
1980-10-21
Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.
Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes
Smith, Robert E.; Dolbeare, Frank A.
1979-01-01
Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 5-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.
Foo, Guo Shiou; Rogers, Allyson K.; Yung, Matthew M.; ...
2016-01-11
The hydrodeoxygenation of various bio-oil model compounds (anisole, m-cresol and guaiacol) over Pt/HBEA and the evolution of surface species is investigated. Depending on the functional group, different surface species are formed when the compounds are adsorbed in the presence of Lewis acid sites. For anisole, the methoxy group is decomposed to form phenate species. The methyl and methoxy group remains intact on m-cresol and guaiacol to form cresolate and methoxy phenate species, respectively. The position of these functional groups have a strong influence in the degree of hydrodeoxygenation due to steric hindrance. Based on operando transmission FTIR spectroscopy, a timelinemore » for the formation of polynuclear aromatics and catalyst deactivation is constructed, which is also dependent on the substituents. The slow deactivation rate and low carbon content on Pt/HBEA is discussed.« less
Otani, T T; Briley, M R
1982-02-01
Twelve derivatives of 0-fluoro-dl-phenylalanine containing fluorine, chlorine, methoxy, and nitro radicals in various positions of the aromatic ring of the benzoyl group were prepared and tested in a Lactobacillus casei system. It was found that most substitutions in the benzoyl phenyl ring resulted in a compound exhibiting greater growth-inhibiting activity than the nonsubstituted benzoyl-o-fluorophenylalanine. The greatest activity was observed in the ortho-substituted fluoro compound and the meta- and para-substituted chloro and nitro compounds. With the methoxy group, the position of substitution appeared unimportant, since all three methoxy isomers exhibited essentially equal inhibition. Nitro substitution in the ortho position had a protective effect in that the product was less active than the unsubstituted benzoyl-o-fluoro-dl-phenylalanine.
Ravelli, Davide; Zema, Michele; Mella, Mariella; Fagnoni, Maurizio; Albini, Angelo
2010-09-21
Benzoyl radicals are generated directly from (hetero)aromatic aldehydes upon tetrabutylammonium decatungstate ((n-Bu(4)N)(4)W(10)O(32)), TBADT) photocatalysis under mild conditions. In the presence of alpha,beta-unsaturated esters, ketones and nitriles radical conjugate addition ensues and gives the corresponding beta-functionalized aryl alkyl ketones in moderate to good yields (stereoselectively in the case of 3-methylene-2-norbornanone). Due to the mild reaction conditions the presence of various functional groups on the aromatic ring is tolerated (e.g. methyl, methoxy, chloro). The method can be applied to hetero-aromatic aldehydes whether electron-rich (e.g. thiophene-2-carbaldehyde) or electron-poor (e.g. pyridine-3-carbaldehyde).
Chávez, María I.; Soto, Mauricio; Taborga, Lautaro; Díaz, Katy; Olea, Andrés F.; Bay, Camila; Peña-Cortés, Hugo; Espinoza, Luis
2015-01-01
The inhibitory effects on the mycelial growth of plant pathogen Botritys cinerea have been evaluated for a series of geranylphenols substituted with one, two and three methoxy groups in the aromatic ring. The results show that the antifungal activity depends on the structure of the geranylphenols, increasing from 40% to 90% by increasing the number of methoxy groups. On the other hand, the acetylation of the –OH group induces a change of activity that depends on the number of methoxy groups. The biological activity of digeranyl derivatives is lower than that exhibited by the respective monogeranyl compound. All tested geranylphenols have been synthesized by direct coupling of geraniol and the respective phenol. The effect of solvent on yields and product distribution is discussed. For monomethoxyphenols the reaction gives better yields when acetonitrile is used as a solvent and AgNO3 is used as a secondary catalyst. However, for di- and trimethoxyphenols the reaction proceeds only in dioxane. PMID:26287171
Crystal structure of 3-(2,5-di-meth-oxy-phen-yl)propionic acid.
Bugenhagen, Bernhard; Al Jasem, Yosef; AlAzani, Mariam; Thiemann, Thies
2015-05-01
In the crystal of the title compound, C11H14O4, the aromatic ring is almost coplanar with the 2-position meth-oxy group with which it subtends a dihedral of 0.54 (2)°, while the 5-position meth-oxy group makes a corresponding dihedral angle of just 5.30 (2)°. The angle between the mean planes of the aromatic ring and the propionic acid group is 78.56 (2)°. The fully extended propionic side chain is in a trans configuration with a C-C-C-C torsion angle of -172.25 (7)°. In the crystal, hydrogen bonding is limited to dimer formation via R 2 (2)(8) rings. The hydrogen-bonded dimers are stacked along the b axis. The average planes of the two benzene rings in a dimer are parallel to each other, but at an offset of 4.31 (2) Å. Within neighbouring dimers along the [101] direction, the average mol-ecular benzene planes are almost perpendicular to each other, with a dihedral angle of 85.33 (2)°.
de Oliveira, Laura Siqueira; dos Santos Poles, Ana Paula; Balbino, Marco Antonio; Teles de Menezes, Matheus Manoel; de Andrade, José Fernando; Dockal, Edward Ralph; Tristão, Heloísa Maria; de Oliveira, Marcelo Firmino
2013-01-01
A fast and non-destructive voltammetric method to detect cocaine in confiscated samples based on carbon paste electrode modified with methoxy-substituted N,N'-ethylene-bis(salcylideneiminato)uranyl(VI)complexes, [UO2(X-MeOSalen)(H2O)].H2O, where X corresponds to the positions 3, 4 or 5 of the methoxy group on the aromatic ring, is described. The electrochemical behavior of the modified electrode and the electrochemical detection of cocaine were investigated using cyclic voltammetry. Using 0.1 mol·L−1 KCl as supporting-electrolyte, a concentration-dependent, well-defined peak current for cocaine at 0.62 V, with an amperometric sensitivity of 6.25 × 104 μA·mol·L−1 for cocaine concentrations ranging between 1.0 × 10−7 and 1.3 × 10−6 mol·L−1 was obtained. Chemical interference studies using lidocaine and procaine were performed. The position of the methoxy group affects the results, with the 3-methoxy derivative being the most sensitive. PMID:23771156
Antioxidative and antiradical properties of plant phenolics.
Sroka, Zbigniew
2005-01-01
The plant phenolic compounds such as flavonoids, tannins and phenolic acids appeared to be strong antiradical and antioxidant compounds. The number of hydroxy groups and the presence of a 2,3-double bond and orthodiphenolic structure enhance antiradical and antioxidative activity of flavonoids. The glycosylation, blocking the 3-OH group in C-ring, lack of a hydroxy group or the presence of only a methoxy group in B-ring have a decreasing effect on antiradical or antioxidative activity of these compounds. Tannins show strong antioxidative properties. Some tannins in red wine or gallate esters were proved to have antioxidative effect in vivo. The number of hydroxy groups connected with the aromatic ring, in ortho or para position relative to each other, enhance antioxidative and antiradical activity of phenolic acids. The substitution of a methoxy group in ortho position to the OH in monophenols seems to favour the antioxidative activity of the former.
Side Group Addition to the PAH Coronene by UV Photolysis in Cosmic Ice Analogs
NASA Technical Reports Server (NTRS)
Bernstein, Max P.; Elsila, Jamie E.; Dworkin, Jason P.; Sandford, Scott A.; Allamandola, Louis J.; Zare, Richard N.; DeVincenzi, D. (Technical Monitor)
2002-01-01
Ultraviolet photolysis of various ice mixtures at low temperature and pressure caused the addition of amino (-NH2), methyl (-CH3), methoxy (-OCH3), and cyano (-CN) functional groups to the polycyclic aromatic hydrocarbon (PAH) coronene (C22H12). The implications of these results for interstellar and meteoritic chemistry are discussed. Previously only simple PAH photo-oxidation had been reported. This work represents the first experimental evidence that ice photochemistry may have contributed to aromatics bearing carbon and nitrogen containing side groups that are detected in primitive meteorites and interplanetary dust particles. Furthermore, these results suggest a wider range of modified PAHs should be expected in interstellar lees and materials predating solar system formation.
Langos, Daniel; Granvogl, Michael
2016-03-23
During the brewing process of wheat beer, the desired aroma-active vinyl aromatics 2-methoxy-4-vinylphenol and 4-vinylphenol as well as the undesired and toxicologically relevant styrene are formed from their respective precursors, free ferulic acid, p-coumaric acid, and cinnamic acid, deriving from the malts. Analysis of eight commercial wheat beers revealed high concentrations of 2-methoxy-4-vinylphenol and 4-vinylphenol always in parallel with high concentrations of styrene or low concentrations of the odorants in parallel with low styrene concentrations, suggesting a similar pathway. To better understand the formation of these vinyl aromatics, each process step of wheat beer brewing and the use of different strains of Saccharomyces cerevisiae were evaluated. During wort boiling, only a moderate decarboxylation of free phenolic acids and formation of desired and undesired vinyl aromatics were monitored due to the thermal treatment. In contrast, this reaction mainly occurred enzymatically catalyzed during fermentation with S. cerevisiae strain W68 with normal Pof(+) activity (phenolic off-flavor) resulting in a wheat beer eliciting the typical aroma requested by consumers due to high concentrations of 2-methoxy-4-vinylphenol (1790 μg/L) and 4-vinylphenol (937 μg/L). Unfortunately, also a high concentration of undesired styrene (28.3 μg/L) was observed. Using a special S. cerevisiae strain without Pof(+) activity resulted in a significant styrene reduction (
Shooter, Jesse; Allen, Caleb J; Tinsley, Colby W K; Zakharov, Lev N; Abbey, Eric R
2017-11-01
The title compound [systematic name: 4-(di-methyl-amino)-pyridine-4-meth-oxy-phenyl-borane (1/1)], C 14 H 19 BN 2 O, contains two independent mol-ecules in the asymmetric unit. Both molecules exhibit coplanar, mostly sp 2 -hybridized meth-oxy and di-methyl-amino substituents on their respective aromatic rings, consistent with π-donation into the aromatic systems. The B-H groups exhibit an intra-molecular close contact with a C-H group of the pyridine ring, which may be evidence of electrostatic attraction between the hydridic B-H and the electropositive aromatic C-H. There appears to be weak C-H⋯π(arene) inter-actions between two of the H atoms of an amino-methyl group and the meth-oxy-substituted benzene ring of the other independent mol-ecule, and another C-H⋯π (arene) inter-action between one of the pyridine ring H atoms and the same benzene ring.
Dalal, Aarti; Khanna, Radhika; Kumar, Parvin; Kamboj, Ramesh C
2017-05-17
Photo-reorganization of 3-alkoxy-6-chloro-2-(benzo[b]thiophen-2-yl)-4H-chromen-4-ones in methanol with Pyrex filtered UV-light from a medium pressure 125 W Hg-vapor lamp led to the formation of angular pentacyclic compounds (dihydro and aromatic products) along with some rearranged chromenones where the product(s) distribution depended upon the structure of 3-alkoxy groups (methoxy, ethoxy, allyloxy and benzyloxy). The phenyl moiety in the 3-benzyloxy group had a profound effect on the dihydro product(s) formation as the latter was in high yield when the alkoxy group was benzyloxy followed by allyloxy, ethoxy and methoxy groups. The present photochemical study represents a general method for the synthesis of some angular pentacyclic - benzothiophene fused xanthenone derivatives in a single step without using any specific and toxic reagent. The structures of the new organic scaffolds obtained were established by their spectral data (UV, IR and NMR).
Lee, Kyungtae; Gu, Geun Ho; Mullen, Charles A; Boateng, Akwasi A; Vlachos, Dionisios G
2015-01-01
Density functional theory is used to study the adsorption of guaiacol and its initial hydrodeoxygenation (HDO) reactions on Pt(111). Previous Brønsted-Evans-Polanyi (BEP) correlations for small open-chain molecules are inadequate in estimating the reaction barriers of phenolic compounds except for the side group (methoxy) carbon-dehydrogenation. New BEP relations are established using a select group of phenolic compounds. These relations are applied to construct a potential-energy surface of guaiacol-HDO to catechol. Analysis shows that catechol is mainly produced via dehydrogenation of the methoxy functional group followed by the CHx (x<3) removal of the functional group and hydrogenation of the ring carbon, in contrast to a hypothesis of a direct demethylation path. Dehydroxylation and demethoxylation are slow, implying that phenol is likely produced from catechol but not through its direct dehydroxylation followed by aromatic carbon-ring hydrogenation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hicks, Jacqueline D.; Hyde, Alan M.; Cuezva, Alberto Martinez; Buchwald, Stephen L.
2009-01-01
We report the efficient N-arylation of acyclic secondary amides and related nucleophiles with aryl nonaflates, triflates, and chlorides. This method allows for easy variation of the aromatic component in tertiary aryl amides. A new biaryl phosphine with P-bound 3,5-(bis)trifluoromethylphenyl groups was found to be uniquely effective for this amidation. The critical aspects of the ligand were explored through synthetic, mechanistic, and computational studies. Systematic variation of the ligand revealed the importance of (1) a methoxy group on the aromatic carbon of the “top ring” ortho to the phosphorus and (2) two highly electron-withdrawing P-bound 3,5-(bis)trifluoromethylphenyl groups. Computational studies suggest the electron-deficient nature of the ligand is important in facilitating amide binding to the LPd(II)(Ph)(X) intermediate. PMID:19886610
Cao, Xiaoyan; Drosos, Marios; Leenheer, Jerry A; Mao, Jingdong
2016-02-16
A lignite humic acid (HA) was separated from inorganic and non-HA impurities (i.e., aluminosilicates, metals) and fractionated by a combination of dialysis and XAD-8 resin. Fractionation revealed a more homogeneous structure of lignite HA. New and more specific structural information on the main lignite HA fraction is obtained by solid-state nuclear magnetic resonance (NMR) spectroscopy. Quantitative (13)C multiple cross-polarization (multiCP) NMR indicated oxidized phenyl propane structures derived from lignin. MultiCP experiments, conducted on potassium HA salts titrated to pH 10 and pH 12, revealed shifts consistent with carboxylate and phenolate formation, but structural changes associated with enolate formation from aromatic beta keto acids were not detected. Two-dimensional (1)H-(13)C heteronuclear correlation (2D HETCOR) NMR indicated aryl-aliphatic ketones, aliphatic and aromatic carboxyl groups, phenol, and methoxy phenyl ethers. Acidic protons from carboxyl groups in both the lignite HA fraction and a synthetic HA-like polycondensate were found to be hydrogen-bonded with electron-rich aromatic rings. Our results coupled with published infrared spectra provide evidence for the preferential hydrogen bonding of acidic hydrogens with electron-rich aromatic rings rather than adjacent carbonyl groups. These hydrogen-bonding interactions likely result from stereochemical arrangements in primary structures and folding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yohe, Sara L.; Choudhari, Harshavardhan J.; Mehta, Dhairya D.
2016-12-01
High-pressure, vapor-phase, hydrodeoxygenation (HDO) reactions of dihydroeugenol (2-methoxy-4-propylphenol), as well as other phenolic, lignin-derived compounds, were investigated over a bimetallic platinum and molybdenum catalyst supported on multi-walled carbon nanotubes (5%Pt2.5%Mo/MWCNT). Hydrocarbons were obtained in 100% yield from dihydroeugenol, including 98% yield of the hydrocarbon propylcyclohexane. The final hydrocarbon distribution was shown to be a strong function of hydrogen partial pressure. Kinetic analysis showed three main dihydroeugenol reaction pathways: HDO, hydrogenation, and alkylation. The major pathway occurred via Pt catalyzed hydrogenation of the aromatic ring and methoxy group cleavage to form 4-propylcyclohexanol, then Mo catalyzed removal of the hydroxyl group bymore » dehydration to form propylcyclohexene, followed by hydrogenation of propylcyclohexene on either the Pt or Mo to form the propylcyclohexane. Transalkylation by the methoxy group occurred as a minor side reaction. Catalyst characterization techniques including chemisorption, scanning transmission electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy were employed to characterize the catalyst structure. Catalyst components identified were Pt particles, bimetallic PtMo particles, a Mo carbide-like phase, and Mo oxide phases.« less
Characterization of products from hydrothermal carbonization of pine.
Wu, Qiong; Yu, Shitao; Hao, Naijia; Wells, Tyrone; Meng, Xianzhi; Li, Mi; Pu, Yunqiao; Liu, Shouxin; Ragauskas, Arthur J
2017-11-01
This study aims to reveal the structural features and reaction pathways for solid-liquid products from hydrothermal carbonization of Loblolly pine, where the solid products can be used as catalysts, adsorbents and electrode materials while liquid products can be treated yielding fuels and platform chemicals. Results revealed when treated at 240°C, cellulose and hemicellulose were degraded, in part, to 5-hydroxy-methyl furfural and furfural which were further transformed to aromatic structures via ring opening and Diels Alder reactions. Lignin degradation and formation of carbon-carbon bonds, forming aromatic motifs in the presence of furanic compounds connected via aliphatic bridges, ether or condensation reactions. After hydrothermal treatment, condensed aromatic carbon materials with methoxy groups were recovered with high fixed carbon content and HHV. The recovered liquid products are lignin-like value-added chemicals consisting of furfural and polyaromatic structure with alkanes and carboxyl, their total hydroxyl group content decreased when increasing reaction time. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterization of products from hydrothermal carbonization of pine
Wu, Qiong; Yu, Shitao; Hao, Naijia; ...
2017-07-27
This study aims to reveal the structural features and reaction pathways for solid–liquid products from hydrothermal carbonization of Loblolly pine, where the solid products can be used as catalysts, adsorbents and electrode materials while liquid products can be treated yielding fuels and platform chemicals. Results revealed when treated at 240 °C, cellulose and hemicellulose were degraded, in part, to 5-hydroxy-methyl furfural and furfural which were further transformed to aromatic structures via ring opening and Diels Alder reactions. Lignin degradation and formation of carbon–carbon bonds, forming aromatic motifs in the presence of furanic compounds connected via aliphatic bridges, ether or condensationmore » reactions. After hydrothermal treatment, condensed aromatic carbon materials with methoxy groups were recovered with high fixed carbon content and HHV. As a result, the recovered liquid products are lignin-like value-added chemicals consisting of furfural and polyaromatic structure with alkanes and carboxyl, their total hydroxyl group content decreased when increasing reaction time.« less
Ishizuka, T; Komiya, I; Hiratsuka, A; Watabe, T
1990-06-01
Rats orally given radioactive Clebopride [[14C]CP; N-(1'-benzyl-4'-piperidyl)-2-[14C]methoxy-4-amino-5-chlorobenzamide++ +], an antiulcer agent, excreted a novel type of ornithine (Orn)-GSH double conjugate in the bile as a major metabolite [( 14C]BMCP), corresponding to 18% of the dose. The present study provides the first evidence for Orn conjugation of a xenobiotic in mammals and demonstrates that the structure of the radioactive conjugate differs fundamentally from those known in birds and reptiles. The structure of the biliary metabolite, [14C]BMCP, purified to homogeneity by silica gel thin layer and reverse phase high pressure liquid chromatography, was elucidated as S-[2-ornithylamino-4-[14C]methoxy-5-(1'-methyl-4'-piperidylamin o) carboxyphenyl]glutathione, based mainly on the following facts: 1) BMCP showed a protonated molecular ion (M + H)+ peak at m/z 683 in the secondary ion mass spectrum and 2) [14C]BMCP afforded Orn, glutamic acid, glycine, S-(2-amino-4-[14C]methoxy-5-carboxyphenyl)cysteine [( 14C]AMCC), and 1-methyl-4-aminopiperidine (MAP) quantitatively, in an equal molar ratio, by complete hydrolysis with peptidase. Thus, BMCP was a metabolite with three enzymatically hydrolyzable amide bonds in addition to the one existing originally in the parent structure of the drug, which produces MAP by peptic digestion. Of the three additional amide bonds of BMCP, one was a novel type of bond formed by condensation of the alpha-carboxylic acid group of Orn with the primary aromatic amino group of the drug and the other two were in the S-glutathionyl residue, substituted for the chlorine atom vicinal to the Orn-conjugating primary amino group in the aromatic ring and affording glutamic acid, glycine, and the S-cysteine conjugate AMCC by hydrolysis of BMCP with the peptidase. Substitution of a methyl group for the benzyl group at the piperidine ring nitrogen atom, leading to the formation of MAP by peptic digestion, also occurred during metabolism of CP to BMCP.
Matthias Kinne; Marzena Poraj-Kobielska; Rene Ullrich; Paula Nousiainen; Jussi Sipilä; Katrin Scheibner; Kenneth E. Hammel; Martin Hofrichter
2011-01-01
The extracellular aromatic peroxygenase of the agaric fungus Agrocybe aegerita catalyzed the H2O2-dependent cleavage of non-phenolic arylgiycerol-Ã-aryl ethers (Ã-O-4 ethers). For instance 1-(3,4-dimethoxyphenyl)-2-(2-methoxy-phenoxy)propane-1,3-diol, a recalcitrant dimeric lignin model compound that represents the major...
Petković, Milena; Nakarada, Đura; Etinski, Mihajlo
2018-05-25
Interacting Quantum Atoms methodology is used for a detailed analysis of hydrogen abstraction reaction from hydroquinone by methoxy radical. Two pathways are analyzed, which differ in the orientation of the reactants at the corresponding transition states. Although the discrepancy between the two barriers amounts to only 2 kJ/mol, which implies that the two pathways are of comparable probability, the extent of intra-atomic and inter-atomic energy changes differs considerably. We thus demonstrated that Interacting Quantum Atoms procedure can be applied to unravel distinct energy transfer routes in seemingly similar mechanisms. Identification of energy components with the greatest contribution to the variation of the overall energy (intra-atomic and inter-atomic terms that involve hydroquinone's oxygen and the carbon atom covalently bound to it, the transferring hydrogen and methoxy radical's oxygen), is performed using the Relative energy gradient method. Additionally, the Interacting Quantum Fragments approach shed light on the nature of dominant interactions among selected fragments: both Coulomb and exchange-correlation contributions are of comparable importance when considering interactions of the transferring hydrogen atom with all other atoms, whereas the exchange-correlation term dominates interaction between methoxy radical's methyl group and hydroquinone's aromatic ring. This study represents one of the first applications of Interacting Quantum Fragments approach on first order saddle points. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Lin, C H; Haadsma-Svensson, S R; Lahti, R A; McCall, R B; Piercey, M F; Schreur, P J; Von Voigtlander, P F; Smith, M W; Chidester, C G
1993-04-16
The synthesis and structure-activity relationships (SAR) of 2,3,3a,4,5,9b-hexahydro-1H-benz[e]indole derivatives (3) are described. These compounds are conformationally restricted, angular tricyclic analogs of 2-aminotetralin. The synthesis was achieved in several steps from the corresponding 2-tetralones. The enantiomers of the cis analogs were obtained from either fractional recrystallizations of the diastereomeric salts of di-p-toluoyl-L-(or D)-tartaric acid or an asymmetric synthesis using chiral (R)-alpha-methylbenzylamine. All analogs were evaluated in the in vitro 5-HT1A and D2 binding assays and selected analogs were investigated further in biochemical and behavioral tests. Analogs with 9-methoxy substitution (R1 in 3) showed mixed 5-HT1A agonist and dopamine antagonist activities whereas the corresponding 9-hydroxy analogs displayed selective 5-HT1A agonist activity. The cis analogs were found to be more potent than the corresponding trans analogs and in the cis series, the (3aR)-(-)-enantiomers displayed higher potency. Nitrogen substitution (R2 in 3) with either an n-propyl or an allyl group produced similar activities whereas replacement with a bulky alpha-methylbenzyl group resulted in loss of activity. Analogs without aromatic substitution (R1 = H in 3) still showed good 5-HT1A agonist activity, although less potent than the 9-methoxy series. In this case, the trans analogs possessed equal or higher in vitro 5-HT1A affinity than the corresponding cis analogs. Analogs with either 6-methoxy or 6-hydroxy substitution (R1 in 3) were found to display dopamine antagonist properties. However, only N-allyl analogs showed this activity. In the 6-methoxy-N-allyl series, the cis analog was found to be more potent than the trans analog. Again, between the pair of cis enantiomers, the (3aR)-(-)-enantiomer showed higher potency. Incorporation of an additional methyl group into 9-methoxy cis analogs at C-2 resulted in retention of potent 5-HT1A agonist activity.
Wierzchowski, Marcin; Dutkiewicz, Zbigniew; Gielara-Korzańska, Agnieszka; Korzański, Artur; Teubert, Anna; Teżyk, Artur; Stefański, Tomasz; Baer-Dubowska, Wanda; Mikstacka, Renata
2017-12-01
Cytochromes P450 family 1 (CYP1) are responsible for the metabolism of procarcinogens, for example polycyclic aromatic hydrocarbons and aromatic and heterocyclic amines. The inhibition of CYP1 activity is examined in terms of chemoprevention and cancer chemotherapy. We designed and synthesized a series of trans-stilbene derivatives possessing a combination of methoxy and methylthio functional groups attached in different positions to the trans-stilbene skeleton. We determined the effects of synthesized compounds on the activities of human recombinant CYP1A1, CYP1A2 and CYP1B1 and, to explain the variation of inhibitory potency of methoxystilbene derivatives and their methylthio analogues, we employed computational analysis. The compounds were docked to CYP1A1, CYP1A2 and CYP1B1 binding sites with the use of Accelrys Discovery Studio 4.0 by the CDOCKER procedure. For CYP1A2 and CYP1B1, values of scoring functions correlated well with inhibitory potency of stilbene derivatives. All compounds were relatively poor inhibitors of CYP1A2 that possess the most narrow and flat enzyme cavity among CYP1s. For the most active CYP1A1 inhibitor, 2-methoxy-4'-methylthio-trans-stilbene, a high number of molecular interactions was observed, although the interaction energies were not distinctive. © 2017 John Wiley & Sons A/S.
Rasulev, Bakhtiyor; Kusić, Hrvoje; Leszczynska, Danuta; Leszczynski, Jerzy; Koprivanac, Natalija
2010-05-01
The goal of the study was to predict toxicity in vivo caused by aromatic compounds structured with a single benzene ring and the presence or absence of different substituent groups such as hydroxyl-, nitro-, amino-, methyl-, methoxy-, etc., by using QSAR/QSPR tools. A Genetic Algorithm and multiple regression analysis were applied to select the descriptors and to generate the correlation models. The most predictive model is shown to be the 3-variable model which also has a good ratio of the number of descriptors and their predictive ability to avoid overfitting. The main contributions to the toxicity were shown to be the polarizability weighted MATS2p and the number of certain groups C-026 descriptors. The GA-MLRA approach showed good results in this study, which allows the building of a simple, interpretable and transparent model that can be used for future studies of predicting toxicity of organic compounds to mammals.
Role of Pt during hydrodeoxygenation of biomass pyrolysis vapors over Pt/HBEA
Yung, Matthew M.; Foo, Guo Shiou; Sievers, Carsten
2017-03-27
1.3 wt% Pt/HBEA and HBEA were studied as catalysts for the hydrodeoxygenation of pine pyrolysis vapors at 500 °C. Both catalysts showed high initial conversion of oxygenated pyrolysis products into aromatic hydrocarbons, while Pt/HBEA showed higher stability in terms of hydrocarbon productivity and deferred breakthrough of oxygenated compounds. Among 1-, 2- and 3-ring aromatic hydrocarbons, Pt/HBEA had a significantly higher selectivity than HBEA towards unalkylated aromatics (e.g., benzene) as compared to the corresponding alkylated aromatics (e.g., toluene and xylene). Additionally, Pt addition to HBEA decreased coke deposition and improved resistance to pore and acid site blockage as determined by TPO,more » N 2 physisorption, and NH 3 TPD. The ability of Pt to promote cleavage and hydrogenation of methoxy and methyl groups was observed by increased methane production over Pt/HBEA relative to HBEA. A progressive decrease in the methane production over Pt/HBEA correlated with deactivation in terms of reduced benzene formation, breakthrough of oxygenated products, and increased formation of polynuclear aromatics and their degree of substitution, which indicate coke formation. In conclusion, the increased methane yield and suppressed coke formation with the addition of Pt is attributed to hydrogen spillover, through which hydrogen activated on Pt can subsequently migrate to the HBEA support to reverse the coke-forming hydrogen abstraction reaction.« less
Role of Pt during hydrodeoxygenation of biomass pyrolysis vapors over Pt/HBEA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yung, Matthew M.; Foo, Guo Shiou; Sievers, Carsten
1.3 wt% Pt/HBEA and HBEA were studied as catalysts for the hydrodeoxygenation of pine pyrolysis vapors at 500 °C. Both catalysts showed high initial conversion of oxygenated pyrolysis products into aromatic hydrocarbons, while Pt/HBEA showed higher stability in terms of hydrocarbon productivity and deferred breakthrough of oxygenated compounds. Among 1-, 2- and 3-ring aromatic hydrocarbons, Pt/HBEA had a significantly higher selectivity than HBEA towards unalkylated aromatics (e.g., benzene) as compared to the corresponding alkylated aromatics (e.g., toluene and xylene). Additionally, Pt addition to HBEA decreased coke deposition and improved resistance to pore and acid site blockage as determined by TPO,more » N 2 physisorption, and NH 3 TPD. The ability of Pt to promote cleavage and hydrogenation of methoxy and methyl groups was observed by increased methane production over Pt/HBEA relative to HBEA. A progressive decrease in the methane production over Pt/HBEA correlated with deactivation in terms of reduced benzene formation, breakthrough of oxygenated products, and increased formation of polynuclear aromatics and their degree of substitution, which indicate coke formation. In conclusion, the increased methane yield and suppressed coke formation with the addition of Pt is attributed to hydrogen spillover, through which hydrogen activated on Pt can subsequently migrate to the HBEA support to reverse the coke-forming hydrogen abstraction reaction.« less
2015-08-18
Parameter Explanation OCN Additional ‐OCN groups per monomer (e.g. 1 for tricyanates) K “Kinked” ‐OCN groups (that is, ‐OCN groups ‐ ortho or ‐meta to bridge...rings in monomer (e.g. 0 for the typical 4,4’ – OCN substitution pattern in dicyanate monomers) Me‐mp Methyl groups in positions ‐meta or ‐ para to ‐OCN...Methyl groups in positions ‐ ortho to ‐OCN groups; counting / averaging rules are the same as for Me‐mp. OCH3 Methoxy groups on cyanated aromatic rings
Zhang, Huiyan; Wang, Yun; Shao, Shanshan; Xiao, Rui
2016-11-21
Lignin is the most difficult to be converted and most easy coking component in biomass catalytic pyrolysis to high-value liquid fuels and chemicals. Catalytic conversion of guaiacol as a lignin model compound was conducted in a fixed-bed reactor over ZSM-5 to investigate its conversion and coking behaviors. The effects of temperature, weight hourly space velocity (WHSV) and partial pressure on product distribution were studied. The results show the maximum aromatic carbon yield of 28.55% was obtained at temperature of 650 °C, WHSV of 8 h -1 and partial pressure of 2.38 kPa, while the coke carbon yield was 19.55%. The reaction pathway was speculated to be removing methoxy group to form phenols with further aromatization to form aromatics. The amount of coke increased with increasing reaction time. The surface area and acidity of catalysts declined as coke formed on the acid sites and blocked the pore channels, which led to the decrease of aromatic yields. Finally, a kinetic model of guaiacol catalytic conversion considering coke deposition was built based on the above reaction pathway to properly predict product distribution. The experimental and model predicting data agreed well. The correlation coefficient of all equations were all higher than 0.90.
Zhang, Huiyan; Wang, Yun; Shao, Shanshan; Xiao, Rui
2016-01-01
Lignin is the most difficult to be converted and most easy coking component in biomass catalytic pyrolysis to high-value liquid fuels and chemicals. Catalytic conversion of guaiacol as a lignin model compound was conducted in a fixed-bed reactor over ZSM-5 to investigate its conversion and coking behaviors. The effects of temperature, weight hourly space velocity (WHSV) and partial pressure on product distribution were studied. The results show the maximum aromatic carbon yield of 28.55% was obtained at temperature of 650 °C, WHSV of 8 h−1 and partial pressure of 2.38 kPa, while the coke carbon yield was 19.55%. The reaction pathway was speculated to be removing methoxy group to form phenols with further aromatization to form aromatics. The amount of coke increased with increasing reaction time. The surface area and acidity of catalysts declined as coke formed on the acid sites and blocked the pore channels, which led to the decrease of aromatic yields. Finally, a kinetic model of guaiacol catalytic conversion considering coke deposition was built based on the above reaction pathway to properly predict product distribution. The experimental and model predicting data agreed well. The correlation coefficient of all equations were all higher than 0.90. PMID:27869228
Regulation of the Feruloyl Esterase (faeA) Gene from Aspergillus niger
de Vries, Ronald P.; Visser, Jaap
1999-01-01
Feruloyl esterases can remove aromatic residues (e.g., ferulic acid) from plant cell wall polysaccharides (xylan, pectin) and are essential for complete degradation of these polysaccharides. Expression of the feruloyl esterase-encoding gene (faeA) from Aspergillus niger depends on d-xylose (expression is mediated by XlnR, the xylanolytic transcriptional activator) and on a second system that responds to aromatic compounds with a defined ring structure, such as ferulic acid and vanillic acid. Several compounds were tested, and all of the inducing compounds contained a benzene ring which had a methoxy group at C-3 and a hydroxy group at C-4 but was not substituted at C-5. Various aliphatic groups occurred at C-1. faeA expression in the presence of xylose or ferulic acid was repressed by glucose. faeA expression in the presence of ferulic acid and xylose was greater than faeA expression in the presence of either compound alone. The various inducing systems allow A. niger to produce feruloyl esterase not only during growth on xylan but also during growth on other ferulic acid-containing cell wall polysaccharides, such as pectin. PMID:10584009
Nasr, Gihane; Cristian, Alina; Barboiu, Mihail; Vullo, Daniella; Winum, Jean-Yves; Supuran, Claudiu T
2014-05-15
A library of Schiff bases was synthesized by condensation of aromatic amines incorporating sulfonamide, carboxylic acid or carboxymethyl functionalities as Zn(2+)-binding groups, with aromatic aldehydes incorporating tert-butyl, hydroxy and/or methoxy groups. The corresponding amines were thereafter obtained by reduction of the imines. These compounds were assayed for the inhibition of two cytosolic human carbonic anhydrase (hCA, EC 4.2.1.1) isoenzymes, hCA I and II. The Ki values of the Schiff bases were in the range of 7.0-21,400nM against hCA II and of 52-8600nM against hCA I, respectively. The corresponding amines showed Ki values in the range of 8.6nM-5.3μM against hCA II, and of 18.7-251nM against hCA I, respectively. Unlike the imines, the reduced Schiff bases are stable to hydrolysis and several low-nanomolar inhibitors were detected, most of them incorporating sulfonamide groups. Some carboxylates also showed interesting CA inhibitory properties. Such hydrosoluble derivatives may show pharmacologic applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zakzeski, Joseph; Weckhuysen, Bert M
2011-03-21
The solubilization and aqueous phase reforming of lignin, including kraft, soda, and alcell lignin along with sugarcane bagasse, at low temperatures (T≤498 K) and pressures (P≤29 bar) is reported for the first time for the production of aromatic chemicals and hydrogen. Analysis of lignin model compounds and the distribution of products obtained during the lignin aqueous phase reforming revealed that lignin was depolymerized through disruption of the abundant β-O-4 linkages and, to a lesser extent, the 5-5' carbon-carbon linkages to form monomeric aromatic compounds. The alkyl chains contained on these monomeric compounds were readily reformed to produce hydrogen and simple aromatic platform chemicals, particularly guaiacol and syringol, with the distribution of each depending on the lignin source. The methoxy groups present on the aromatic rings were subject to hydrolysis to form methanol, which was also readily reformed to produce hydrogen and carbon dioxide. The composition of the isolated yields of monomeric aromatic compounds and overall lignin conversion based on these isolated yields varied from 10-15% depending on the lignin sample, with the balance consisting of gaseous products and residual solid material. Furthermore, we introduce the use of a high-pressure autoclave with optical windows and an autoclave with ATR-IR sentinel for on-line in situ spectroscopic monitoring of biomass conversion processes, which provides direct insight into, for example, the solubilization process and aqueous phase reforming reaction of lignin. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
de Almeida, Wagner B; Taguchi, Alexander T; Dikanov, Sergei A; Wraight, Colin A; O'Malley, Patrick J
2014-08-07
Recent studies have shown that only quinones with a 2-methoxy group can act simultaneously as the primary (Q A ) and secondary (Q B ) electron acceptors in photosynthetic reaction centers from purple bacteria such as Rb. sphaeroides . 13 C HYSCORE measurements of the 2-methoxy group in the semiquinone states, SQ A and SQ B , were compared with DFT calculations of the 13 C hyperfine couplings as a function of the 2-methoxy dihedral angle. X-ray structure comparisons support 2-methoxy dihedral angle assignments corresponding to a redox potential gap (Δ E m ) between Q A and Q B of 175-193 mV. A model having a methyl group substituted for the 2-methoxy group exhibits no electron affinity difference. This is consistent with the failure of a 2-methyl ubiquinone analogue to function as Q B in mutant reaction centers with a Δ E m of ∼160-195 mV. The conclusion reached is that the 2-methoxy group is the principal determinant of electron transfer from Q A to Q B in type II photosynthetic reaction centers with ubiquinone serving as both acceptor quinones.
2'-Chloro-4-meth-oxy-3-nitro-benzil.
Nithya, G; Thanuja, B; Chakkaravarthi, G; Kanagam, Charles C
2011-06-01
In the title compound, C(15)H(10)ClNO(5), the dihedral angle between the aromatic rings is 87.99 (5)°. The O-C-C-O torsion angle between the two carbonyl units is -119.03 (16)°. The crystal structure is stabilized by a weak intermolecular C-H⋯O hydrogen bond.
Namba, T; Hirota, T; Hayakawa, S
1988-06-01
It has been presumed that ring-A-aromatized bile acids are produced from biliary bile acids by intestinal flora and the acids thus formed participate in the large bowel carcinogenesis. One of these acids is probably 3-hydroxy-19-nor-1,3,5(10)-cholatrien-24-oic acid, judged from the literatures. Consequently, this acid was synthesized from previously prepared 3-methoxy-19-nor-1,3,5(10)-cholatrien-24-ol. The phenolic ether was successively oxidized with pyridinium chlorochromate and wet silver oxide to give 3-methoxy-19-nor-1,3,5(10)-cholatrien-24-oic acid in high yield, which, after successive treatments with methanol containing a catalytic amount of p-toluenesulfonic acid, a combination of aluminum chloride and ethanethiol, and alkali, gave the desired compound in satisfactory yield. The compound was not mutagenic in Salmonella tester strains TA 98 and TA 100, but it increased the mutagenicity of 2-aminoanthracene when both were applied to plates together. When compared with cholic, deoxycholic, and lithocholic acids, the investigated compound exhibited about two to threefold increase of mutagenicity in the latter assay.
NASA Astrophysics Data System (ADS)
Xia, Hanxue; Zhang, Yong; Attygalle, Athula B.
2018-06-01
Protonated methyl benzoate, upon activation, fragments by three distinct pathways. The m/z 137 ion for the protonated species generated by helium-plasma ionization (HePI) was mass-selected and subjected to collisional activation. In one fragmentation pathway, the protonated molecule generated a product ion of m/z 59 by eliminating a molecule of benzene (Pathway I). The m/z 59 ion (generally recognized as the methoxycarbonyl cation) produced in this way, then formed a methyl carbenium ion in situ by decarboxylation, which in turn evoked an electrophilic aromatic addition reaction on the benzene ring by a termolecular process to generate the toluenium cation (Pathway II). Moreover, protonated methyl benzoate undergoes also a methanol loss (Pathway III). However, it is not a simple removal of a methanol molecule after a protonation on the methoxy group. The incipient proton migrates to the ring and randomizes to a certain degree before a subsequent transfer of one of the ring protons to the alkoxy group for the concomitant methanol elimination. The spectrum recorded from deuteronated methyl benzoate showed two peaks at m/z 105 and 106 for the benzoyl cation at a ratio of 2:1, confirming the charge-imparting proton is mobile. However, the proton transfer from the benzenium intermediate to the methoxy group for the methanol loss occurs before achieving a complete state of scrambling. [Figure not available: see fulltext.
New indole, aminoindole and pyranoindole derivatives with anti-inflammatory activity.
Nakkady, S S; Fathy, M M; Hishmat, O H; Mahmond, S S; Ebeid, M Y
2000-01-01
6-Methoxy-1-methyl-2,3-diphenyl indol-5-carboxaldehyde (2) was demethylated to give the 6-hydroxy derivative (3) which was cyclized to the pyrano[3,2-f]indole derivatives (4a-d) by the action of ethyl acetoacetate, diethyl malonate, malononitrile, ethyl cyanoacetate. When 4c was boiled in acetic acid, it gave 4d. Reduction of 4c by sodium borohydride yielded the orthoaminonitrile (5). Friedel Craft's acetylation of 1b yielded the 5-acetyl derivative (6), which reacted with hydrazine hydrate, o-toluidine and o-aminophenol to afford (7a-c). Demethylation of (1b) yielded the hydroxyl derivative (8), which differs from compound (9) obtained by demethylation of 6-methoxy-2,3-diphenyl-indole (1a). Friedel Craft's acetylation of 9 gave the 7-acetyl compound (10) which yielded the hydrazone (11). The reaction of primary aromatic amines, (i.e. p-nitroaniline, p-anisidine and p-bromo aniline) with 6-methoxy-1-methyl-2,3-diphenyl-indol-5-carboxaldehyde (2) gave the Schiff bases (12a-c). The latter compounds were reduced by sodium borohydride to yield the corresponding Mannich bases (13a-c). Treatment of 12a-c with thioglycolic acid led to the thiazolidin-4-one-derivatives (14a-c). When (12a-c) reacted with cyanoacetamide, the amino group was replaced by the active methylene to form the cyano compound (15). The structure was confirmed by reacting the carboxaldehyde (2) with cyanoacetamide to yield (15). Pharmacological screening was has been carried out to test the anti-inflammatory activity, ulcerogenecity, effect on the isolated rabbit intestine and the antispasmodic activity.
NASA Astrophysics Data System (ADS)
Chao, Jianbin; Wang, Huijuan; Song, Kailun; Wang, Yongzhao; Zuo, Ying; Zhang, Liwei; Zhang, Bingtai
2017-02-01
The inclusion complexes of ferulic acid (FA) with p-Sulfonatocalix[n]arenes (SCXn, n = 4, 6, 8) were prepared and characterized both in the solid state and in solution using fluorescence spectroscopy, 1H nuclear magnetic resonance (1H NMR), attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and differential scanning calorimetry (DSC). The results show that FA is able to form inclusion complexes with SCXn in a molar ratio of 1:1, causing a significant decrease in the fluorescence intensity of FA. The association constant of the inclusion complexes was calculated from the fluorescence titration data. 1H NMR spectroscopy analysis demonstrates that the aromatic ring and methoxy group of FA are partially covered by SCXn.
The pyrolytic degradation of wood-derived lignin from pulping process.
Shen, D K; Gu, S; Luo, K H; Wang, S R; Fang, M X
2010-08-01
Lignin is a key component in the biomass with a complex polymeric structure of the phenyl-C(3) alkyl units. The kraft lignin from the wood pulping process is tested in TG-FTIR and Py-GC-MS. The samples are pyrolyzed in TGA coupled with FTIR from 30 to 900 degrees C at the heating rate of 20 and 40K/min. The evolution of phenolic compounds in the initial pyrolysis stage of lignin is determined by FTIR, while the second stage is mainly attributed to the production of the low molecular weight species. A bench-scale fast pyrolysis unit is employed to investigate the effect of temperature on the product yield and composition. It is found that the guaiacol-type and syringol-type compounds as the primary products of lignin pyrolysis are predominant in bio-oil, acting as the significant precursors for the formation of the derivatives such as the phenol-, cresol- and catechol-types. A series of free-radical chain-reactions, concerning the cracking of different side-chain structures and the methoxy groups on aromatic ring, are proposed to demonstrate the formation pathways for the typical compounds in bio-oil by closely relating lignin structure to the pyrolytic mechanisms. The methoxy group (-OCH(3)) is suggested to work as an important source for the formation of the small volatile species (CO, CO(2) and CH(4)) through the relevant free radical coupling reactions. (c) 2010 Elsevier Ltd. All rights reserved.
DeWeerd, K A; Saxena, A; Nagle, D P; Suflita, J M
1988-01-01
O-methyl substituents of aromatic compounds can provide C1 growth substrates for facultative and strict anaerobic bacteria isolated from diverse environments. The mechanism of the bioconversion of methoxylated benzoic acids to the hydroxylated derivatives was investigated with a model substrate and cultures of one anaerobic consortium, eight strict anaerobic bacteria, and one facultative anaerobic microorganism. Using high-pressure liquid chromatography and gas chromatography-mass spectral analysis, we found that a haloaromatic dehalogenating consortium, a dehalogenating isolate from that consortium, Eubacterium limosum, and a strain of Acetobacterium woodii metabolized 3-[methoxy-18O]methoxybenzoic acid (3-anisic acid) to 3-[hydroxy-18O]hydroxybenzoic acid stoichiometrically at rates of 1.5, 3.2, 52.4, and 36.7 nmol/min per mg of protein, respectively. A different strain of Acetobacterium and strains of Syntrophococcus, Clostridium, Desulfotomaculum, Enterobacter, and an anaerobic bacterium, strain TH-001, were unable to transform this compound. The O-demethylating ability of E. limosum was induced only with appropriate methoxylated benzoates but not with D-glucose, lactate, isoleucine, or methanol. Cross-acclimation and growth experiments with E. limosum showed a rate of metabolism that was an order of magnitude slower and showed no growth with either 4-methoxysalicylic acid (2-hydroxy-4-methoxybenzoic acid) or 4-anisic acid (4-methoxybenzoic acid) when adapted to 3-anisic acid. However, A. woodii NZva-16 showed slower rates and no growth with 3- or 4-methoxysalicylic acid when adapted to 3-anisic acid in similar experiments. The results clearly indicate a methyl rather than methoxy group removal mechanism for such reactions. PMID:3389815
NASA Astrophysics Data System (ADS)
De Almeida, Wagner B.; O'Malley, Patrick J.
2018-03-01
Ubiquinone is the key electron and proton transfer agent in biology. Its mechanism involves the formation of its intermediate one-electron reduced form, the ubisemiquinone radical. This is formed in a protein-bound form which permits the semiquinone to vary its electronic and redox properties. This can be achieved by hydrogen bonding acceptance by one or both oxygen atoms or as we now propose by restricted orientations for the methoxy groups of the headgroup. We show how the orientation of the two methoxy groups of the quinone headgroup affects the electronic structure of the semiquinone form and demonstrate a large dependence of the ubisemiquinone spin density distribution on the orientation each methoxy group takes with respect to the headgroup ring plane. This is shown to significantly modify associated hyperfine couplings which in turn needs to be accounted for in interpreting experimental values in vivo. The study uncovers the key potential role the methoxy group orientation can play in controlling the electronic structure and spin density of ubisemiquinone and provides an electronic-level insight into the variation in electron affinity and redox potential of ubiquinone as a function of the methoxy orientation. Taken together with the already known influence of cofactor conformation on heme and chlorophyll electronic structure, it reveals a more widespread role for cofactor conformational control of electronic structure and associated electron transfer in biology.
Boos, Terrence L; Greiner, Elisabeth; Calhoun, W Jason; Prisinzano, Thomas E; Nightingale, Barbara; Dersch, Christina M; Rothman, Richard B; Jacobson, Arthur E; Rice, Kenner C
2006-06-01
A series of 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-(substituted benzyl) piperidines with substituents at the ortho and meta positions in the aromatic ring of the N-benzyl side chain were synthesized and their affinities and selectivities for the dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET) were determined. One analogue, 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-1-(2-trifluoromethylbenzyl)piperidine (the C(2)-trifluoromethyl substituted compound), has been found to act as an allosteric modulator of hSERT binding and function. It had little affinity for any of the transporters. Several compounds showed affinity for the DAT in the low nanomolar range and displayed a broad range of SERT/DAT selectivity ratios and very little affinity for the NET. The pharmacological tools provided by the availability of compounds with varying transporter affinity and selectivity could be used to obtain additional information about the properties a compound should have to act as a useful pharmacotherapeutic agent for cocaine addiction and help unravel the pharmacological mechanisms relevant to stimulant abuse.
Taguchi, Alexander T; O'Malley, Patrick J; Wraight, Colin A; Dikanov, Sergei A
2013-07-09
Ubiquinone is an almost universal, membrane-associated redox mediator. Its ability to accept either one or two electrons allows it to function in critical roles in biological electron transport. The redox properties of ubiquinone in vivo are determined by its environment in the binding sites of proteins and by the dihedral angle of each methoxy group relative to the ring plane. This is an attribute unique to ubiquinone among natural quinones and could account for its widespread function with many different redox complexes. In this work, we use the photosynthetic reaction center as a model system for understanding the role of methoxy conformations in determining the redox potential of the ubiquinone/semiquinone couple. Despite the abundance of X-ray crystal structures for the reaction center, quinone site resolution has thus far been too low to provide a reliable measure of the methoxy dihedral angles of the primary and secondary quinones, QA and QB. We performed 2D ESEEM (HYSCORE) on isolated reaction centers with ubiquinones (13)C-labeled at the headgroup methyl and methoxy substituents, and have measured the (13)C isotropic and anisotropic components of the hyperfine tensors. Hyperfine couplings were compared to those derived by DFT calculations as a function of methoxy torsional angle allowing estimation of the methoxy dihedral angles for the semiquinones in the QA and QB sites. Based on this analysis, the orientation of the 2-methoxy groups are distinct in the two sites, with QB more out of plane by 20-25°. This corresponds to an ≈50 meV larger electron affinity for the QB quinone, indicating a substantial contribution to the experimental difference in redox potentials (60-75 mV) of the two quinones. The methods developed here can be readily extended to ubiquinone-binding sites in other protein complexes.
NASA Astrophysics Data System (ADS)
Hill Bembenic, Meredith A.
Biofuels, like cellulosic ethanol, may only be cost effective if the lignin byproduct is upgraded to value-added products. However, lignin's inherent aromatic structure and interunit crosslinkages hinder effective conversion. High temperature H2O is considered for lignin conversion, because H2O exhibits unusual properties at higher temperatures (particularly at its supercritical point of 374°C and 3205 psi) including a decreased ion product and a decreased static dielectric constant (similar to those of polar organic solvents at room temperature) such that there is a high solubility for organic compounds, like lignin. Much of the research concerning lignin and supercritical H2O has focused on further decomposition to gases (e.g., H2, CH4, and CO2) where nearly no char formation is expected in the presence of a catalyst. However, the conditions required for supercritical H2O are difficult to maintain, catalysts can be expensive, and gases are not favorable to the current liquid fuel infrastructure. Reactions using Organosolv lignin, subcritical H2O (365°C) and various industrial gases (N2, H2, CO, and CO2 at an initial pressure of 500 psi) for 30 min. were examined to determine both lignin's potential to generate value-added products (e.g., monomer compounds and methanol) and the role (if any) of the H2O and the gases during the reactions. The behavior of H2O at reaction temperature and pressure is expected to be similar to the behavior of supercritical H 2O without the need to maintain supercritical conditions. Different characterization techniques were used for the products collected including primarily GC/FID-TCD of the evolved gases, GC/MS analysis of the organic liquids, solid phase microextraction analysis of the water, and solid state 13C-NMR analysis of the residues. The reactor pressure at temperature was shown to influence the reactivity of the H2O and lignin, and the highest conversions (≈54--62%) were obtained when adding a gas. However, the collected solids from the CO reactions appeared to be the most reacted (i.e., the most changed from the unreacted lignin) according to solid state 13C-NMR analysis, and the widest variety of products (methoxy-substituted phenolic compounds) were obtained when using CO according to GC/MS analysis. Therefore, reactions with CO were completed that varied the initial reaction pressure (300, 500 and 800 psi) in order to elucidate the effects of CO pressure. Similar conversion (≈54--58%) and DCM-soluble liquid product yields (≈53--62%) were obtained for the different pressure reactions, but the reactions with an initial pressure of 500 psi had the greatest change in aromaticity from the unreacted lignin. Additional reactions between Organosolv lignin and H2O with CO (initial pressure of 500 psi) were conducted where the reaction time was varied (15, 30 and 60 min.) to determine the effect of reaction time. Longer reaction time (60 min.) appeared to inhibit conversion to low molecular weight compounds (i.e., conversion and DCM-soluble yields were lower at ≈53% and ≈28%, respectively). Solid state 13C-NMR of collected residues also showed that there are losses in carbons representative of both guaiacyl and syringyl components as reaction time increases, which may indicate that methoxy groups are being cleaved or the products are reacting with each other (i.e., repolymerization) to form high molecular weight compounds as reaction time is increased. The role of H2O and the gases during the baseline reactions and the expanded CO reactions is not intuitive based on the results, so reactions with lignin model compounds (i.e., aromatic aldehydes represented by vanillin and syringaldehyde, aromatic ketones represented by acetovanillone and acetosyringone, and aromatic ethers represented by dibenzyl ether and 2-phenethyl phenyl ether) were completed to study this. From these results, the suggested reaction pathway of Organosolv lignin reactions in subcritical H2O with and without added pressure is: 1) cleavage of ethers (via hydrolysis) to form smaller methoxy-substituted phenolic monomers with aldehyde- or ketone-substituents representative of lignin monomers; 2) cleavage of the methoxy-, aldehyde- and/or ketone-substituents to form primarily methoxy-substituted phenolic monomers; 3) rearrangement of these phenolic monomers due to the enhanced pressure at reaction temperature; 4) formation of oligomers due to interaction amongst the methoxy-substituted phenolic monomers, which is also due to the enhanced pressure at reaction temperature; and 5) repolymerization of the monomers and oligomers to form high molecular weight compounds (i.e., longer reactions times or different pressures seemed to enhance these reactions). Under these conditions, depolymerization seems to be the dominant reaction pathway versus repolymerization. Reactions with lignin and H2O at 365°C have not been previously reported nor has the reaction chemistry for lignin depolymerization at these conditions been established. The results with lignin (or lignin model compounds), subcritical H2O and CO also show that the desired product slate can be modified with different pressure and time conditions. In particular, increasing reaction time (from 15 to 60 min.) caused lignin conversion to decrease, and the products appeared to be reacting with each other. However, the longer reaction time also showed that more methanol is generated (along with more solids).
Benicewicz, B.C.; Hoyt, A.E.
1993-03-30
The present invention provides (1) curable polyamide monomers represented by the formula: R[sup 1]-A[sup 1]-B[sup 1]-A[sup 2]-B[sup 2]-A[sup 3]-R[sup 2] where R[sup 1] and R[sup 2] are radicals selected from the group consisting of maleimide, substituted maleimide, nadimide, substituted nadimide, ethynyl, and (C(R[sup 3])[sub 2])[sub 2] where R[sup 3] is hydrogen with the proviso that the two carbon atoms of (C(R[sup 3])[sub 2])[sub 2] are bound on the aromatic ring of A[sup 1] or A[sup 3] to adjacent carbon atoms, A[sup 1] and A[sup 3] are 1,4-phenylene and the same where said group contains one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro, lower alkyl, e.g., methyl, ethyl, and propyl, lower alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl or fluoroalkoxy, e.g., trifluoromethyl, pentafluoroethyl and the like, A[sup 2] is selected from the group consisting of 1,4-phenylene, 4,4[prime]-biphenyl, 2,6-naphthylene and the same where said groups contain one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro, lower alkyl, e.g., methyl, ethyl, and propyl, lower alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl or fluoroalkoxy, e.g., trifluoromethyl, pentafluoroethyl and the like, and B[sup 1] and B[sup 2] are selected from the group consisting of -C(O)-N(H)- and -N(H)-C(O)-, (2) thermoset polyamide compositions comprised of cured segments derived from monomers represented by the formula: R[sup 1]-A[sup 1]-B[sup 1]-A[sup 2]-B[sup 2]-A[sup 3]-R[sup 2] as described above, and curable blends of at least two of the polyamide monomers and (3) processes of preparing the curable polyamide monomers.
Liquid crystal polyester thermosets
Benicewicz, Brian C.; Hoyt, Andrea E.
1992-01-01
The present invention provides (1) curable liquid crystalline polyester monomers represented by the formula: R.sup.1 --A.sup.1 --B.sup.1 --A.sup.2 --B.sup.2 --A.sup.3 --R.sup.2 where R.sup.1 and R.sup.2 are radicals selected from the group consisting of maleimide, substituted maleimide, nadimide, substituted naimide, ethynyl, and (C(R.sup.3).sub.2).sub.2 where R.sup.3 is hydrogen with the proviso that the two carbon atoms of (C(R.sup.3).sub.2).sub.2 are bound on the aromatic ring of A.sup.1 or A.sup.3 to adjacent carbon atoms, A.sup.1 and A.sup.3 are 1,4-phenylene and the same where said group contains one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro lower alkyl, e.g., methyl, ethyl, or propyl, alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl, e.g., trifluoromethyl, pentafluoroethyl and the like, A.sup.2 is selected from the group consisting of 1,4-phenylene, 4,4'-biphenyl, 2,6-naphthylene and the same where said groups contain one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro, lower alkyl, e.g., methyl, ethyl, and propyl, lower alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl or fluoroalkoxy, e.g., trifluoromethyl, pentafluoroethyl and the like, and B.sup.1 and B.sup.2 are selected from the group consisting of --C(O)--O-- and --O--C(O)--, (2) thermoset liquid crystalline polyester compositions comprised of heat-cured segments derived from monomers represented by the formula: R.sup.1 --A.sup.1 --B.sup.1 --A.sup.2 --B.sup.2 --A.sup.3 --R.sup.2 as described above, (3) curable blends of at least two of the polyester monomers and (4) processes of preparing the curable liquid crystalline polyester monomers.
Benicewicz, Brian C.; Hoyt, Andrea E.
1993-01-01
The present invention provides (1) curable polyamide monomers represented by the formula: R.sup.1 -A.sup.1 -B.sup.1 -A.sup.2 -B.sup.2 -A.sup.3 -R.sup.2 where R.sup.1 and R.sup.2 are radicals selected from the group consisting of maleimide, substituted maleimide, nadimide, substituted nadimide, ethynyl, and (C(R.sup.3).sub.2).sub.2 where R.sup.3 is hydrogen with the proviso that the two carbon atoms of (C(R.sup.3).sub.2).sub.2 are bound on the aromatic ring of A.sup.1 or A.sup.3 to adjacent carbon atoms, A.sup.1 and A.sup.3 are 1,4-phenylene and the same where said group contains one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro, lower alkyl, e.g., methyl, ethyl, and propyl, lower alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl or fluoroalkoxy, e.g., trifluoromethyl, pentafluoroethyl and the like, A.sup.2 is selected from the group consisting of 1,4-phenylene, 4,4'-biphenyl, 2,6-naphthylene and the same where said groups contain one or more substitutents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro, lower alkyl, e.g., methyl, ethyl, and propyl, lower alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl or fluoroalkoxy, e.g., trifluoromethyl, pentafluoroethyl and the like, and B.sup.1 and B.sup.2 are selected from the group consisting of --C(O)--N(H)-- and --N(H)--C(O)--, (2) thermoset polyamide compositions comprised of cured segments derived from monomers represented by the formula: R.sup.1 -A.sup.1 -B.sup.1 -A.sup.2 -B.sup.2 -A.sup.3 -R.sup.2 as described above, and curable blends of at least two of the polyamide monomers and (4) processes of preparing the curable polyamide monomers.
Benicewicz, Brian C.; Hoyt, Andrea E.
1994-01-01
The present invention provides (1) curable polyamide monomers represented by the formula: R.sup.1 --A.sup.1 --B.sup.1 --A.sup.2 --B.sup.2 --A.sup.3 --R.sup.2 where R.sup.1 and R.sup.2 are radicals selected from the group consisting of maleimide, substituted maleimide, nadimide, substituted nadimide, ethynyl, and (C(R.sup.3).sub.2).sub.2 where R.sub.3 is hydrogen with the proviso that the two carbon atoms of (C(R.sup.3).sub.2).sub.2 are bound on the aromatic ring of A.sup.1 or A.sup.3 to adjacent carbon atoms, A.sup.1 and A.sup.3 are 1,4-phenylene and the same where said group contains one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro, lower alkyl, e.g., methyl, ethyl, and propyl, lower alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl or fluoroalkoxy, e.g., trifluoromethyl, pentafluoroethyl and the like, A.sup.2 is selected from the group consisting of 1,4-phenylene, 4,4'-biphenyl, 2,6-naphthylene and the same where said groups contain one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro, lower alkyl, e.g., methyl, ethyl, and propyl, lower alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl or fluoroalkoxy, e.g., trifluoromethyl, pentafluoroethyl and the like, and B.sup.1 and B.sup.2 are selected from the group consisting of --C(O)--N(H)-- and --N(H)--C(O)--, (2) thermoset polyamide compositions comprised of cured segments derived from monomers represented by the formula: R.sup.1 --A.sup.1 --B.sup.1 --A.sup.2 --B.sup.2 --A.sup.3 --R.sup.2 as described above, and curable blends of at least two of the polyamide monomers and (4) processes of preparing the curable polyamide monomers.
Valenzuela, Beatriz; Obreque, Javiera; Soto-Aguilera, Sarita; Maisey, Kevin; Imarai, Mónica; Modak, Brenda
2016-02-01
Filifolinone is a semi-synthetic terpenoid derivative obtained from Heliotropium filifolium that increases the expression level of pro-inflammatory and anti-inflammatory cytokines in kidney cells of salmon. Because cytokines are produced in response to a foreign organism and by distinct other signals modulating immune responses, we further studied the potential immunomodulatory effects of a group of structural related terpenoid derivatives from H. filifolium on salmonids to determine the relationship between the chemical structure of the derivatives and their ability to modify cytokine expression and the lymphoid content. The resin and four 3H-spiro 1-benzofuran-2,1'-cyclohexane derivatives were tested in vivo in rainbow trout (Oncorhynchus mykiss) by quantifying the transcript levels of antiviral and T helper-type cytokines and T and B cells in the kidney. Three of the four terpenoids differ only in the C-7'substituent of the cyclohexane and the presence of the ketone group at this position in Filifolinone appeared responsible of an important up-regulation of IFN-α1, IFN-γ, IL-4/13A and IL-17D in the kidney of the treated trout. In addition, the absence of a methoxy group in carbon 7 of the benzene ring, found in all compounds but not in Folifolinoic acid, produced a significant reduction of IFN-γ, IL-12 and IL-4/13A transcripts. B cells were not affected by the compound treatment but Filifolinoic acid and the resin induced a significant reduction of T cells. Altogether, results showed that immunomodulating responses observed in the trout by effect of 3H-spiro 1-benzofuran-2,1'-cyclohexane derivatives is related to the presence of the ketone group in the carbon 7' and the methoxy group in carbon 7 of the benzene ring, being Filifolinone the most active immunostimulatory compound identified. Copyright © 2015 Elsevier Ltd. All rights reserved.
Preparation of dibenzo[e,g]isoindol-1-ones via Scholl-type oxidative cyclization reactions.
van Loon, Amy A; Holton, Maeve K; Downey, Catherine R; White, Taryn M; Rolph, Carly E; Bruening, Stephen R; Li, Guanqun; Delaney, Katherine M; Pelkey, Sarah J; Pelkey, Erin T
2014-09-05
A flexible synthesis of dibenzo[e,g]isoindol-1-ones has been developed. Dibenzo[e,g]isoindol-1-ones represent simplified benzenoid analogues of biological indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-ones (indolocarbazoles), compounds that have demonstrated a wide range of biological activity. The synthesis of the title compounds involved tetramic acid sulfonates. Different aryl groups were introduced at C4 of the heterocyclic ring via Suzuki-Miyaura cross-coupling reactions. Finally, mild Scholl-type oxidative cyclizations mediated by phenyliodine(III) bis(trifluoroacetate) (PIFA) converted some of the latter compounds into the corresponding dibenzo[e,g]isoindol-1-ones. A systematic study of the oxidative cyclization revealed the following reactivity trend: 3,4-dimethoxyphenyl ≫ 3-methoxyphenyl > 3,4,5-trimethoxyphenyl > 4-methoxyphenyl ≈ phenyl. Overall, the oxidative cyclization required at least two methoxy groups distributed in the aromatic rings, at least one of which had to be located para to the site of the cyclization.
Preparation of Dibenzo[e,g]isoindol-1-ones via Scholl-Type Oxidative Cyclization Reactions
2015-01-01
A flexible synthesis of dibenzo[e,g]isoindol-1-ones has been developed. Dibenzo[e,g]isoindol-1-ones represent simplified benzenoid analogues of biological indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-ones (indolocarbazoles), compounds that have demonstrated a wide range of biological activity. The synthesis of the title compounds involved tetramic acid sulfonates. Different aryl groups were introduced at C4 of the heterocyclic ring via Suzuki–Miyaura cross-coupling reactions. Finally, mild Scholl-type oxidative cyclizations mediated by phenyliodine(III) bis(trifluoroacetate) (PIFA) converted some of the latter compounds into the corresponding dibenzo[e,g]isoindol-1-ones. A systematic study of the oxidative cyclization revealed the following reactivity trend: 3,4-dimethoxyphenyl ≫ 3-methoxyphenyl > 3,4,5-trimethoxyphenyl > 4-methoxyphenyl ≈ phenyl. Overall, the oxidative cyclization required at least two methoxy groups distributed in the aromatic rings, at least one of which had to be located para to the site of the cyclization. PMID:25138638
NASA Astrophysics Data System (ADS)
Wilke, Martin; Brand, Christian; Wilke, Josefin; Schmitt, Michael
2017-07-01
Even though the two possible rotamers of methoxy-substituted indoles only differ in the orientation of a methoxy group, this slight geometry change can have a strong influence on the stabilities and further molecular properties of the conformers. In the present study, we evaluate the effect of the methyl group position on the presence of different conformers in molecular beam studies for the systems 4-, 5-, and 6-methoxyindole. By using rotationally resolved electronic Stark spectroscopy in combination with high level ab initio calculations the structures of the observable conformers have been assigned and reasons for the absence of the missing conformers discussed. Thereby, we could show that the relative ground state energies and isomerization barriers for both conformers strongly depend on the position of the methoxy group and are the main explanation for the absence of the syn conformers of 4-, and 5-methoxyindole.
Anderson, Eric; Crisci, Anthony; Murugappan, Karthick; Román-Leshkov, Yuriy
2017-05-22
Reductive catalytic fractionation of biomass has recently emerged as a powerful lignin extraction and depolymerization method to produce monomeric aromatic oxygenates in high yields. Here, bifunctional molybdenum-based polyoxometalates supported on titania (POM/TiO 2 ) are shown to promote tandem hydrodeoxygenation (HDO) and alkylation reactions, converting lignin-derived oxygenated aromatics into alkylated benzenes and alkylated phenols in high yields. In particular, anisole and 4-propylguaiacol were used as model compounds for this gas-phase study using a packed-bed flow reactor. For anisole, 30 % selectivity for alkylated aromatic compounds (54 % C-alkylation of the methoxy groups by methyl balance) with an overall 72 % selectivity for HDO at 82 % anisole conversion was observed over H 3 PMo 12 O 40 /TiO 2 at 7 h on stream. Under similar conditions, 4-propylguaiacol was mainly converted into 4-propylphenol and alkylated 4-propylphenols with a selectivity to alkylated 4-propylphenols of 42 % (77 % C-alkylation) with a total HDO selectivity to 4-propylbenzene and alkylated 4-propylbenzenes of 4 % at 92 % conversion (7 h on stream). Higher catalyst loadings pushed the 4-propylguaiacol conversion to 100 % and resulted in a higher selectivity to propylbenzene of 41 %, alkylated aromatics of 21 % and alkylated phenols of 17 % (51 % C-alkylation). The reactivity studies coupled with catalyst characterization revealed that Lewis acid sites act synergistically with neighboring Brønsted acid sites to simultaneously promote alkylation and hydrodeoxygenation activity. A reaction mechanism is proposed involving activation of the ether bond on a Lewis acid site, followed by methyl transfer and C-alkylation. Mo-based POMs represent a versatile catalytic platform to simultaneously upgrade lignin-derived oxygenated aromatics into alkylated arenes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bruno, Giovanni; Babudri, Francesco; Operamolla, Alessandra; Bianco, Giuseppe V; Losurdo, Maria; Giangregorio, Maria M; Hassan Omar, Omar; Mavelli, Fabio; Farinola, Gianluca M; Capezzuto, Pio; Naso, Francesco
2010-06-01
Self-assembled monolayers (SAMs) derived of 4-methoxy-terphenyl-3'',5''-dimethanethiol (TPDMT) and 4-methoxyterphenyl-4''-methanethiol (TPMT) have been prepared by chemisorption from solution onto gold thin films and nanoparticles. The SAMs have been characterized by spectroscopic ellipsometry, Raman spectroscopy and atomic force microscopy to determine their optical properties, namely the refractive index and extinction coefficient, in an extended spectral range of 0.75-6.5 eV. From the analysis of the optical data, information on SAMs structural organization has been inferred. Comparison of SAMs generated from the above aromatic thiols to well-known SAMs generated from the alkanethiol dodecanethiol revealed that the former aromatic SAMs are densely packed and highly vertically oriented, with a slightly higher packing density and a absence of molecular inclination in TPMT/Au. The thermal behavior of SAMs has also been monitored using ellipsometry in the temperature range 25-500 degrees C. Gold nanoparticles functionalized by the same aromatic thiols have also been discussed for surface enhanced Raman spectroscopy applications. This study represents a step forward tailoring the optical and thermal behavior of surfaces as well as nanoparticles.
2,4-Bis(3-methoxy-phen-yl)-3-aza-bicyclo-[3.3.1]nonan-9-one.
Parthiban, P; Ramkumar, V; Jeong, Yeon Tae
2009-12-04
In the crystal structure, the title compound, C(22)H(25)NO(3), exists in a twin-chair conformation with equatorial orientations of the meta-methoxy-phenyl groups on both sides of the secondary amino group. The title compound is a positional isomer of 2,4-bis-(2-methoxy-phen-yl)-3-aza-bicyclo-[3.3.1]nonan-9-one and 2,4-bis-(4-methoxy-phen-yl)-3-aza-bicyclo-[3.3.1]nonan-9-one, which both also exhibit twin-chair conformations with equatorial dispositions of the anisyl rings on both sides of the secondary amino group. In the title compound, the meta-methoxy-phenyl rings are orientated at an angle of 25.02 (3)° with respect to each other, whereas in the ortho and para isomers, the anisyl rings are orientated at dihedral angles of 33.86 (3) and 37.43 (4)°, respectively. The crystal packing is dominated by van der Waals inter-actions and by an inter-molecular N-H⋯O hydrogen bond, whereas in the ortho isomer, an inter-molecular N-H⋯π inter-action (H⋯Cg = 2.75 Å) is found.
Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation
NASA Astrophysics Data System (ADS)
Peng, Yongwu; Gong, Tengfei; Zhang, Kang; Lin, Xiaochao; Liu, Yan; Jiang, Jianwen; Cui, Yong
2014-07-01
The separation of racemic molecules is of substantial significance not only for basic science but also for technical applications, such as fine chemicals and drug development. Here we report two isostructural chiral metal-organic frameworks decorated with chiral dihydroxy or -methoxy auxiliares from enantiopure tetracarboxylate-bridging ligands of 1,1‧-biphenol and a manganese carboxylate chain. The framework bearing dihydroxy groups functions as a solid-state host capable of adsorbing and separating mixtures of a range of chiral aromatic and aliphatic amines, with high enantioselectivity. The host material can be readily recycled and reused without any apparent loss of performance. The utility of the present adsorption separation is demonstrated in the large-scale resolution of racemic 1-phenylethylamine. Control experiments and molecular simulations suggest that the chiral recognition and separation are attributed to the different orientations and specific binding energies of the enantiomers in the microenvironment of the framework.
Studies Toward the Total Synthesis of Eletefine
NASA Astrophysics Data System (ADS)
Rugg, Kyle William
Eletefine is a natural product of the stephaoxocane family of alkaloids. It possesses an isoquinoline moiety functionalized with three methoxy groups forming an electron rich aromatic system. Eletefine also possesses a ten-membered ring with a novel bridged vinyl ether functionality, and a remote chiral alcohol, making it a conspicuous and desirable target for the synthetic organic chemist. The plant from which eletefine was first isolated (Cissampelos glaberrima ) has been used in traditional medicine for the relief of symptoms from urinary tract infections and asthma. The proposed synthesis of eletefine is a convergent route which features a Sonogashira coupling and a novel alkyne hydration. Herein, methods towards the synthesis of the model system des-hydroxyeletefine are described, in particular attempts towards formation of the AB ring system of des-hydroxyeletefine, as well as C8-C9 bond formation methodology via acylation and Sonogashira coupling.
(2SR,3RS)-Benzyl[4-chloro-1-(4-chlorophenyl)-1-methoxycarbonyl-2-butyl]ammonium chloride
Kaupang, Åsmund; Bolsønes, Marianne; Gamadeku, Thywill; Hansen, Tore; Hennum, Martin Johanson; Görbitz, Carl Henrik
2008-01-01
In the racemic hydrochloride salt of the title ester, C19H22Cl2NO2 +·Cl−, the pentanoic acid chain shows a mixture of trans and gauche orientations to give an overall helical conformation. The dihedral angle between the two aromatic rings is 26.11 (10)°. The charged secondary amine function participates in two N—H⋯Cl hydrogen bonds. PMID:21201230
Prasanna Kumar, Basavapatna N; Mohana, Kikkeri N; Mallesha, Lingappa; Harish, Kikkeri P
2013-01-01
A series of new 1,3,4-oxadiazole derivatives, 4(a-h), containing 5-chloro-2-methoxy benzohydrazide moiety were synthesized by the reaction of 5-chloro-2-methoxybenzoate with different aromatic carboxylic acids. These newly synthesized compounds were characterized by FT-IR, (1)H NMR, mass spectra, and also by elemental analysis. All the newly synthesized compounds were screened for their antibacterial and antifungal activities. Antimicrobial studies revealed that compounds 4c, 4f, and 4g showed significant activity against tested strains.
Norinder, U; Högberg, T
1992-04-01
The advantageous approach of using an experimentally designed training set as the basis for establishing a quantitative structure-activity relationship with good predictive capability is described. The training set was selected from a fractional factorial design scheme based on a principal component description of physico-chemical parameters of aromatic substituents. The derived model successfully predicts the activities of additional substituted benzamides of 6-methoxy-N-(4-piperidyl)salicylamide type. The major influence on activity of the 3-substituent is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, Benedict T W.; Ye, Lin; Change, G.G. Z.
Here, we report that the pore opening of SAPO-34 can be significantly modified by an adsorbed surface methoxy species during induction of the catalytic methanol-to-olefins process, which offers molecular sieving properties due to physical obstacle of the methoxy group and its adsorption modification to other hydrocarbons. X-ray powder diffraction and Rietveld refinement clearly reveal that the adsorbed single carbon atom as the methoxy group is dynamically created from methanol dehydration on a Brønsted acid site in close proximity to the pore windows. As a result, industrial desirable smaller olefins such as ethylene and propylene can be favourably made at themore » expenses of higher olefins. The structures and fundamental understanding in alteration in the olefins selectivity during induction may allow rational optimisation in catalytic performance under the complex fluidisation conditions.« less
NASA Astrophysics Data System (ADS)
Gao, Jiajia; Jansen, Boris; Cerli, Chiara; Kalbitz, Karsten
2015-04-01
Interaction of organic matter molecules with the soil's solid phase is a key factor influencing the stabilization of carbon in soils and thus forms a crucial aspect of the global carbon cycle. While subject of much research attention so far, we still have much to learn about such interactions at the molecular level; in particular in the light of competition between different classes of organic molecules and in the presence of previously adsorbed soil organic matter. We studied the interaction of a group of low molecular weight (LMW) aromatic acids (salicylic, syringic, vanillic and ferulic acid) and amino acids (lysine, glutamic, leucine and phenylalanine) on goethite, kaolinite and bentonite with and without previously adsorbed dissolved organic matter (DOM). For this we used batch experiments at pH = 6.0 where some of the organic compounds were positively charged (i.e. lysine) or negatively charged (i.e. glutamic and salicylic acid) while the minerals also displayed positively (i.e. goethite) or negatively charged surfaces (i.e. bentonite). We found much higher sorption of salicylic acid and lysine than other compounds. On the bare minerals we found a great variety of sorption strength, with salicylic acid strongly adsorbed, while syringic, vanillic and ferulic acid showed little or no adsorption. For the amino acids, protonated lysine showed a stronger affinity to negatively charged kaolinite and bentonite than other amino acids. While deprotonated glutamic acid showed the strongest adsorption on goethite. Leucine and phenylalanine showed hardly any adsorption on any of the minerals. When present concurrently, amino acids decreased the sorption of salicylic acid on the three types of mineral, while the presence of LMW aromatic acids increased the sorption of lysine on kaolinite and bentonite and the sorption of glutamic acid on goethite. The presence of previously adsorbed DOM reduced the sorption of salicylic acid and lysine. The results confirm that interactions of different classes of organic molecules with solid soil phases cannot be understood in isolation, but must be interpreted in the context of the presence of other classes of molecules. It seems that the presence of methoxy groups decreases the adsorption of aromatic acids to minerals. We did not find evidence for protein conditioning of any mineral surface, i.e. increased adsorption of aromatic acids after adsorption of amino acids.
Modak, Brenda; Rojas, Macarena; Torres, René; Rodilla, Jesús; Luebert, Federico
2007-05-21
Heliotropium glutinosum Phil. (Heliotropiceae) is a resinous bush that grows at a height of 2000 m in Chañaral, Chile. From the resinous exudates of Heliotropium glutinosum Phil. a new aromatic geranyl derivative: 4-methoxy-3-[(2)-7'-methyl-3'-hydroxymethyl-2',6'-octadienyl] phenol (1) and three flavonoids: 5,3'-dihydroxy-7,4'-dimethoxyflavanone (2), 5,4'-dihydroxy-7-methoxyflavanone (3) and 4'-acetyl-5-hydroxy-7-methoxyflavanone (4) were isolated and their structures were determined. Their antioxidant activity were evaluated using the bleaching of ABTS and DPPH derived cation radical methods and expressed in terms of FRE (fast reacting equivalents) and TRE (total reacting equivalents), where FRE is a good measure of the quick protection of a given compound against oxidants and TRE measures the degree of long-term protection of the antioxidant, or how effective it is against a strong oxidative stress.
Oxidation of cinnamic acid derivatives: A pulse radiolysis and theoretical study
NASA Astrophysics Data System (ADS)
Yadav, Pooja; Mohan, Hari; Maity, Dilip Kumar; Suresh, Cherumuttathu H.; Rao, B. S. Madhav
2008-07-01
Second order rate constants in the range of ( k = 1.6-4.5) × 10 9 dm 3 mol -1 s -1 were obtained for the rad OH induced oxidation of nitro- and methoxycinnamic acid derivatives in neutral solutions using pulse radiolysis. The transient absorption spectra exhibited a broad peak around 360-410 nm in o-methoxy, o- and p-nitrocinnamates or two peaks around 310-330 and 370-410 nm in other isomers. Quantum chemical calculations revealed that addition of rad OH to olefinic moiety yielded considerably more stable structures than ring addition products and the para system among the latter is the most stable. Spin density analysis suggested that olefinic adducts retained the aromaticity in contrast to its loss in ring rad OH adducts. An excellent linear correlation between the relative stabilities of the rad OH adducts (after accounting for the aromatic stabilization in olefinic adducts) and the maximum Sd values is also obtained.
Chen, P; Tian, Z; Digenis, G A; Tai, H H
1996-06-01
Specific and sensitive enzyme immunoassays for two nicergoline metabolites, 10 alpha-methoxy-9, 10-dihydrolysergol (MDL) and 1-methyl-10 alpha-methoxy-9, 10-dihydrolysergol (MMDL) have been developed. The hydroxyl group of hydroxymethyl at position 8 of either MDL or MMDL was carboxymethylated to introduce a carboxyl group for protein conjugation. Antibodies generated from O-carboxymethyl MDL or MMDL recognized the spacer arm between the hapten and the carrier protein and the molecular domain near the conjugation site as well. A heterologous bridge strategy was used to improve the affinity of the hapten-enzyme conjugate to the antibodies. The sensitivity of both assays was greatly increased by using such an approach. Both antibodies are specific for their own haptens. Little cross reactivity was observed with nicergoline and other metabolites. Determination of MDL and MMDL from both spiked plasma and urine showed nearly quantitative recovery. Detection of MDL and MMDL can be as sensitive as 10 pg/ml.
Prasanna Kumar, Basavapatna N.; Mohana, Kikkeri N.; Mallesha, Lingappa; Harish, Kikkeri P.
2013-01-01
A series of new 1,3,4-oxadiazole derivatives, 4(a–h), containing 5-chloro-2-methoxy benzohydrazide moiety were synthesized by the reaction of 5-chloro-2-methoxybenzoate with different aromatic carboxylic acids. These newly synthesized compounds were characterized by FT-IR, 1H NMR, mass spectra, and also by elemental analysis. All the newly synthesized compounds were screened for their antibacterial and antifungal activities. Antimicrobial studies revealed that compounds 4c, 4f, and 4g showed significant activity against tested strains. PMID:25374693
Arctigenin: a lignan from Arctium lappa.
Gao, Haiyan; Li, Guanglei; Zhang, Junhe; Zeng, Jie
2008-07-19
The title compound {systematic name: (3R-trans)-4-[(3,4-dimethoxy-phen-yl)meth-yl]-3-[(4-hydr-oxy-3-methoxy-phen-yl)meth-yl]-4,5-dihydrofuran-2(3H)-one}, C(21)H(24)O(6), has a dibenz-yl-butyrolactone skeleton. The two aromatic rings are inclined at a dihedral angle of 68.75 (7)° with respect to each other. The lactone ring adopts an envelope conformation. A series of O-H⋯O and C-H⋯O hydrogen bonds contribute to the stabilization of the crystal packing. The absolute configuration was assigned on the basis of the published literature.
Kolarič, Anja; Švajger, Urban; Tomašič, Tihomir; Brox, Regine; Frank, Theresa; Minovski, Nikola; Tschammer, Nuska; Anderluh, Marko
2018-05-11
Based on the previously published pyrazolopyridine-based hit compound for which negative allosteric modulation of both CXCR3 and CXCR4 receptors was disclosed, we designed, synthesized and biologically evaluated a set of novel, not only negative, but also positive allosteric modulators with preserved pyrazolopyridine core. Compound 9e is a dual negative modulator, inhibiting G protein activity of both receptors. For CXCR4 receptor para-substituted aromatic group of compounds distinguishes between negative and positive modulation. Para-methoxy substitution leads to functional antagonism, while para-chloro triggers agonism. Additionally, we discovered that chemotaxis is not completely correlated with G protein pathways. This is the first work in which we have on a series of compounds successfully demonstrated that it is possible to produce selective as well as dual-acting modulators of chemokine receptors, which is very promising for future research in the field of discovery of selective or dual modulators of chemokine receptors. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Electronic structures and population dynamics of excited states of xanthione and its derivatives
NASA Astrophysics Data System (ADS)
Fedunov, Roman G.; Rogozina, Marina V.; Khokhlova, Svetlana S.; Ivanov, Anatoly I.; Tikhomirov, Sergei A.; Bondarev, Stanislav L.; Raichenok, Tamara F.; Buganov, Oleg V.; Olkhovik, Vyacheslav K.; Vasilevskii, Dmitrii A.
2017-09-01
A new compound, 1,3-dimethoxy xanthione (DXT), has been synthesized and its absorption (stationary and transient) and luminescence spectra have been measured in n-hexane and compared with xanthione (XT) spectra. The pronounced broadening of xanthione vibronic absorption band related to the electronic transition to the second singlet excited state has been observed. Distinctions between the spectra of xanthione and its methoxy derivatives are discussed. Quantum chemical calculations of these compounds in the ground and excited electronic states have been accomplished to clarify the nature of electronic spectra changes due to modification of xanthione by methoxy groups. Appearance of a new absorption band of DXT caused by symmetry changes has been discussed. Calculations of the second excited state structure of xanthione and its methoxy derivatives confirm noticeable charge transfer (about 0.1 of the charge of an electron) from the methoxy group to thiocarbonyl group. Fitting of the transient spectra of XT and DXT has been fulfilled and the time constants of internal conversion S2 →S1 and intersystem crossing S1 →T1 have been determined. A considerable difference between the time constants of internal conversion S2 →S1 in XT and DXT is uncovered.
Tarabanko, Valery E.; Tarabanko, Nikolay
2017-01-01
This review discusses principal patterns that govern the processes of lignins’ catalytic oxidation into vanillin (3-methoxy-4-hydroxybenzaldehyde) and syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde). It examines the influence of lignin and oxidant nature, temperature, mass transfer, and of other factors on the yield of the aldehydes and the process selectivity. The review reveals that properly organized processes of catalytic oxidation of various lignins are only insignificantly (10–15%) inferior to oxidation by nitrobenzene in terms of yield and selectivity in vanillin and syringaldehyde. Very high consumption of oxygen (and consequentially, of alkali) in the process—over 10 mol per mol of obtained vanillin—is highlighted as an unresolved and unexplored problem: scientific literature reveals almost no studies devoted to the possibilities of decreasing the consumption of oxygen and alkali. Different hypotheses about the mechanism of lignin oxidation into the aromatic aldehydes are discussed, and the mechanism comprising the steps of single-electron oxidation of phenolate anions, and ending with retroaldol reaction of a substituted coniferyl aldehyde was pointed out as the most convincing one. The possibility and development prospects of single-stage oxidative processing of wood into the aromatic aldehydes and cellulose are analyzed. PMID:29140301
Optical properties of humic substances and CDOM: effects of borohydride reduction.
Ma, Jiahai; Del Vecchio, Rossana; Golanoski, Kelli S; Boyle, Erin S; Blough, Neil V
2010-07-15
Treatment of Suwanee River humic (SRHA) and fulvic (SRFA) acids, a commercial lignin (LAC), and a series of solid phase extracts (C18) from the Middle Atlantic Bight (MAB extracts) with sodium borohydride (NaBH(4)), a selective reductant of carbonyl-containing compounds including quinones and aromatic ketones, produces a preferential loss of visible absorption (> or = 50% for SRFA) and substantially enhanced, blue-shifted fluorescence emission (2- to 3-fold increase). Comparison of the results with those obtained from a series of model quinones and hydroquinones demonstrates that these spectral changes cannot be assigned directly to the absorption and emission of visible light by quinones/hydroquinones. Instead, these results are consistent with a charge transfer model in which the visible absorption is due primarily to charge transfer transitions arising among hydroxy- (methoxy-) aromatic donors and carbonyl-containing acceptors. Unlike most of the model hydroquinones, the changes in optical properties of the natural samples following NaBH(4) reduction were largely irreversible in the presence of air and following addition of a Cu(2+) catalyst, providing tentative evidence that aromatic ketones (or other similar carbonyl-containing structures) may play a more important role than quinones in the optical properties of these materials.
Tarabanko, Valery E; Tarabanko, Nikolay
2017-11-15
This review discusses principal patterns that govern the processes of lignins' catalytic oxidation into vanillin (3-methoxy-4-hydroxybenzaldehyde) and syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde). It examines the influence of lignin and oxidant nature, temperature, mass transfer, and of other factors on the yield of the aldehydes and the process selectivity. The review reveals that properly organized processes of catalytic oxidation of various lignins are only insignificantly (10-15%) inferior to oxidation by nitrobenzene in terms of yield and selectivity in vanillin and syringaldehyde. Very high consumption of oxygen (and consequentially, of alkali) in the process-over 10 mol per mol of obtained vanillin-is highlighted as an unresolved and unexplored problem: scientific literature reveals almost no studies devoted to the possibilities of decreasing the consumption of oxygen and alkali. Different hypotheses about the mechanism of lignin oxidation into the aromatic aldehydes are discussed, and the mechanism comprising the steps of single-electron oxidation of phenolate anions, and ending with retroaldol reaction of a substituted coniferyl aldehyde was pointed out as the most convincing one. The possibility and development prospects of single-stage oxidative processing of wood into the aromatic aldehydes and cellulose are analyzed.
(E)-2-Meth-oxy-9-(2-meth-oxy-9H-xanthen-9-yl-idene)-9H-xanthene.
Tian, Xiang-Yu; Song, Qin-Hua
2013-01-01
The title compound, C28H20O4, was synthesized by a bimolecular Zn-HCl reduction in glacial acetic acid using the meth-oxy-substituted xanthone as a starting material. The crystal structure shows that the 2,2'-meth-oxy-bixanthenyl-idene unit is an E-type conformation anti-folded conformer. The mol-ecule lies on an inversion center. The meth-oxy group is almost coplanar with the attached benzene ring, with a C-O-C-C torsion angle of 179.38 (14)°.
Nobiletin: a citrus flavonoid displaying potent physiological activity.
Noguchi, Shuji; Atsumi, Haruka; Iwao, Yasunori; Kan, Toshiyuki; Itai, Shigeru
2016-02-01
Nobiletin [systematic name: 2-(3,4-dimethoxyphenyl)-5,6,7,8-tetramethoxy-4H-chromen-4-one; C21H22O8] is a flavonoid found in citrus peels, and has been reported to show a wide range of physiological properties, including anti-inflammatory, anticancer and antidementia activities. We have solved the crystal structure of nobiletin, which revealed that the chromene and arene rings of its flavone moiety, as well as the two methoxy groups bound to its arene ring, were coplanar. In contrast, the C atoms of the four methoxy groups bound to the chromene ring are out of the plane, making the molecule conformationally chiral. A comparison of the crystal structures of nobiletin revealed that it could adopt a variety of different conformations through rotation of the covalent bond between the chromene and arene rings, and the orientations of methoxy groups bound to the chromene ring.
Characteristic conformation of Mosher's amide elucidated using the cambridge structural database.
Ichikawa, Akio; Ono, Hiroshi; Mikata, Yuji
2015-07-16
Conformations of the crystalline 3,3,3-trifluoro-2-methoxy-2-phenylpropanamide derivatives (MTPA amides) deposited in the Cambridge Structural Database (CSD) were examined statistically as Racid-enantiomers. The majority of dihedral angles (48/58, ca. 83%) of the amide carbonyl groups and the trifluoromethyl groups ranged from -30° to 0° with an average angle θ1 of -13°. The other conformational properties were also clarified: (1) one of the fluorine atoms was antiperiplanar (ap) to the amide carbonyl group, forming a staggered conformation; (2) the MTPA amides prepared from primary amines showed a Z form in amide moieties; (3) in the case of the MTPA amide prepared from a primary amine possessing secondary alkyl groups (i.e., Mosher-type MTPA amide), the dihedral angles between the methine groups and the carbonyl groups were syn and indicative of a moderate conformational flexibility; (4) the phenyl plane was inclined from the O-Cchiral bond of the methoxy moiety with an average dihedral angle θ2 of +21°; (5) the methyl group of the methoxy moiety was ap to the ipso-carbon atom of the phenyl group.
NASA Astrophysics Data System (ADS)
Khandal, Dhriti; Mikus, Pierre-Yves; Dole, Patrice; Coqueret, Xavier
2013-03-01
This paper reports on the effects of electron beam (EB) irradiation on poly α-1,4-glucose oligomers (maltodextrins) in the presence of water and of various aromatic additives, as model blends for gaining a better understanding at a molecular level the modifications occurring in amorphous starch-lignin blends submitted to ionizing irradiation for improving the properties of this type of bio-based thermoplastic material. A series of aromatic compounds, namely p-methoxy benzyl alcohol, benzene dimethanol, cinnamyl alcohol and some related carboxylic acids namely cinnamic acid, coumaric acid, and ferulic acid, was thus studied for assessing the ability of each additive to counteract chain scission of the polysaccharide and induce interchain covalent linkages. Gel formation in EB-irradiated blends comprising of maltodextrin was shown to be dependent on three main factors: the type of aromatic additive, presence of glycerol, and irradiation dose. The chain scission versus grafting phenomenon as a function of blend composition and dose were studied using Size Exclusion Chromatography by determining the changes in molecular weight distribution (MWD) from Refractive Index (RI) chromatograms and the presence of aromatic grafts onto the maltodextrin chains from UV chromatograms. The occurrence of crosslinking was quantified by gel fraction measurements allowing for ranking the cross-linking efficiency of the additives. When applying the method to destructurized starch blends, gel formation was also shown to be strongly affected by the moisture content of the sample submitted to irradiation. The results demonstrate the possibility to tune the reactivity of tailored blend for minimizing chain degradation and control the degree of cross-linking.
Wubbels, Gene G; Tamura, Ryo; Gannon, Emmett J
2013-05-17
Irradiation (λ > 330 nm) of 2-chloro-4-nitroanisole (1) at 25 °C in aqueous NaOH forms three substitution photoproducts: 2-methoxy-5-nitrophenol (2), 2-chloro-4-nitrophenol (3), and 3-chloro-4-methoxyphenol (4), in chemical yields of 69.2%, 14.3%, and 16.5%. The activation energies for the elementary steps from the triplet state at 25 °C were determined to be 1.8, 2.4, and 2.7 kcal/mol, respectively. The chemical yields of each of the three products were determined for exhaustive irradiations at 0, 35, and 70 °C. The variation with temperature of the experimental yields is reproduced almost exactly by the yields calculated with the Arrhenius equation. This indicates that activation energy is the fundamental property related to regioselectivity in nucleophilic aromatic photosubstitution of the S(N)2 Ar* type. The many methods proposed for predicting regioselectivity in reactions of this type have had limited success and have not been related to activation energy.
El-Faham, Ayman; Osman, Sameh M; Al-Lohedan, Hamad A; El-Mahdy, Gamal A
2016-06-01
The corrosion inhibition performance of 2-hydrazino-4,6-dimethoxy-1,3,5-tirazine (DMeHT), 2,4-dihydrazino-6-methoxy-1,3,5-triaizine (DHMeT), and 2,4,6-tridydrazino-1,3,5-triaizne (TH₃) on steel corrosion in acidic media was examined using electrochemical techniques. The results showed 2,4-Ddihydrazino-6-methoxy-1,3,5-triaizine (DHMeT) gave the best corrosion protection performance among the other hydrazino derivatives even at a low concentration of 25 ppm (95%). The number of hydrazino groups play an important role in the corrosion inhibition, where the two hydrazine groups increased the electrostatic interactions between the protonated tested compounds, the negatively charged steel surface resulted from the adsorption of the chloride anions, and the presence of the methoxy group made the compound more reliable for formation of film protection on the surface of steel through the lone pair of oxygen atoms. Electrochemical Impedance Spectroscopy (EIS) measurements suggested that the corrosion process of steel in presence of the hydrazino-s-triazine derivatives (TH₃, DMeHT and DHMeT) were being controlled by the charge transfer reaction. Polarization curves indicated that the examined TH₃, DMeHT and DHMeT behaved as mixed type inhibitors.
NASA Astrophysics Data System (ADS)
Benković, T.; Kenđel, A.; Parlov-Vuković, J.; Kontrec, D.; Chiş, V.; Miljanić, S.; Galić, N.
2018-02-01
Structural analyses of aroylhydrazones were performed by computational and spectroscopic methods (solid state NMR, 1 and 2D NMR spectroscopy, FT-IR (ATR) spectroscopy, Raman spectroscopy, UV-Vis spectrometry and spectrofluorimetry) in solid state and in solution. The studied compounds were N‧-(2,3-dihydroxyphenylmethylidene)-3-pyridinecarbohydrazide (1), N‧-(2,5-dihydroxyphenylmethylidene)-3-pyridinecarbohydrazide (2), N‧-(3-chloro-2-hydroxy-phenylmethylidene)-3-pyridinecarbohydrazide (3), and N‧-(2-hydroxy-4-methoxyphenyl-methylidene)-3-pyridinecarbohydrazide (4). Both in solid state and in solution, all compounds were in ketoamine form (form I, sbnd COsbnd NHsbnd Ndbnd Csbnd), stabilized by intramolecular H-bond between hydroxyl proton and nitrogen atom of the Cdbnd N group. In solid state, the Cdbnd O group of 1-4 were involved in additional intermolecular H-bond between closely packed molecules. Among hydrazones studied, the chloro- and methoxy-derivatives have shown pH dependent and reversible fluorescence emission connected to deprotonation/protonation of salicylidene part of the molecules. All findings acquired by experimental methods (NMR, IR, Raman, and UV-Vis spectra) were in excellent agreement with those obtained by computational methods.
The effect of iodine on the peroxidation of carbonyl compounds.
Zmitek, Katja; Zupan, Marko; Stavber, Stojan; Iskra, Jernej
2007-08-17
Peroxidation of ketones and aldehydes with iodine as a catalyst was studied. Ketones reacted with 30% aq hydrogen peroxide in the presence of 10 mol % of iodine to yield gem-dihydroperoxides in acetonitrile and hydroperoxyketals in methanol. The yield of hydroperoxidation of various cyclic ketones was 60-98%, including androstane-3,17-dione, while acyclic ketones were converted with a similar efficiency. Aromatic aldehydes were also converted to gem-dihydroperoxides with hydrogen peroxide and iodine as catalyst in acetonitrile and to hydroperoxyacetal in methanol, while the reactivity of aliphatic ones remained the same as in noncatalyzed reactions. tert-Butylhydroperoxide reacted in a similar manner, giving the corresponding perether derivatives. A study was also made of the relative kinetics of dihydroperoxidation from which the Hammet equation gave a reaction constant (rho) of -2.76, indicating the strong positive charge development in the transition state and the important role of rehybridization in the conversion of hydroperoxyhemiketal to gem-dihydroperoxide. In acetonitrile, the iodine catalyst is apparently able to discriminate between the elimination of a hydroxy, methoxy, and hydroperoxy group and addition of water, methanol, and H2O2 to a carbonyl group.
Taguchi, Alexander T; Mattis, Aidas J; O'Malley, Patrick J; Dikanov, Sergei A; Wraight, Colin A
2013-10-15
Only quinones with a 2-methoxy group can act simultaneously as the primary (QA) and secondary (QB) electron acceptors in photosynthetic reaction centers from Rhodobacter sphaeroides. (13)C hyperfine sublevel correlation measurements of the 2-methoxy in the semiquinone states, SQA and SQB, were compared with quantum mechanics calculations of the (13)C couplings as a function of the dihedral angle. X-ray structures support dihedral angle assignments corresponding to a redox potential gap (ΔEm) between QA and QB of ~180 mV. This is consistent with the failure of a ubiquinone analogue lacking the 2-methoxy to function as QB in mutant reaction centers with a ΔEm of ≈160-195 mV.
4-Meth-oxy-3-(meth-oxy-meth-yl)benzalde-hyde.
Zhang, Jing-Chao; Sun, Jun; Zhang, Juan; Liu, Guang-Lin; Guo, Cheng
2013-01-01
In the title compound, C10H12O3, the dihedral angle between the benzene ring and the meth-oxy-methyl side chain is 9.7 (2)°. The O atom of the aldehyde group and the C atom of the meth-oxy group deviate from the plane of the ring by 0.039 (3) and 0.338 (4) Å, respectively. The only inter-molecular inter-actions are very weak C-H⋯π inter-actions.
NASA Astrophysics Data System (ADS)
Sasaki, Takehiko; Itai, Yuichiro; Iwasawa, Yasuhiro
1999-12-01
Decomposition processes of methanol on clean and oxygen-precovered Ru(001) surfaces have been visualized in real time with a temperature-programmed (TP) electron-stimulated desorption ion angular distribution (ESDIAD)/time-of-flight (TOF) system. The mass of desorbed ions during temperature-programmed surface processes was identified by TOF measurements. In the case of methanol (CH 3OD) adsorption on Ru(001)-p(2×2)-O, a halo pattern of H + from the methyl group of methoxy species was observed at 100-200 K, followed by a broad pattern from the methyl group at 230-250 K and by a near-center pattern from O + ions originating from adsorbed CO above 300 K. The halo pattern is attributed to a perpendicular conformation of the CO bond axis of the methoxy species, leading to off-normal CH bond scission. On the other hand, methanol adsorbed on clean Ru(001) did not give any halo pattern but a broad pattern was observed along the surface normal, indicating that the conformation of the methoxy species is not ordered on the clean surface. Comparison between the ESDIAD images of the oxygen-precovered surface and the clean surface suggests that the precovered oxygen adatoms induce ordering of the methoxy species. Real-time ESDIAD measurements revealed that the oxygen atoms at the Ru(001)-p(2×2)-O surface have a positive effect on selective dehydrogenation of the methoxy species to CO+H 2 and a blocking effect on CO bond breaking of the methoxy species.
Eurasian methoxy aromatic acid ice core record of biomass burning
NASA Astrophysics Data System (ADS)
Grieman, M. M.; Aydin, M.; Fritzsche, D.; McConnell, J. R.; Opel, T.; Sigl, M.; Saltzman, E. S.
2017-12-01
On a global basis, wildfires affect the carbon cycle, atmospheric chemistry, climate, and ecosystem dynamics. Well-dated regional proxy records can provide insight into the relationship between biomass burning and climate on millennial and centennial timescales. There is little historical information about long-term regional biomass burning variability in Siberia, the largest forested area in the Northern Hemisphere. In this study, vanillic acid and para-hydroxybenzoic acid were analyzed in the Eurasian Arctic Akademii Nauk ice core in samples covering the past 2600 years. These aromatic acids are generated during burning from the pyrolysis of lignin and transported as atmospheric aerosol. This is the first millennial-scale ice core record of these aromatic acids. Ice core meltwater samples were analyzed for vanillic acid and para-hydroxybenzoic acid using ion chromatography and electrospray tandem mass spectrometric detection. The levels of vanillic acid and para-hydroxybenzoic acid ranged from <0.05 to about 1 ppb. Three periods of strongly elevated levels were found during the preindustrial late Holocene: 650-300 BCE, 340-660 CE, and 1460-1660 CE. The most recent of these periods coincides with increased pulsing of ice-rafted debris in the North Atlantic (or Bond event) and a weakened Asian monsoon suggesting a link between Siberian burning and global patterns of climate change on centennial timescales.
Zanoni, Thalita Boldrin; Lizier, Thiago M; Assis, Marilda das Dores; Zanoni, Maria Valnice B; de Oliveira, Danielle Palma
2013-07-01
This work describes the mutagenic response of Sudan III, an adulterant food dye, using Salmonella typhimurium assay and the generation of hazardous aromatic amines after different oxidation methods of this azo dye. For that, we used metabolic activation by S9, catalytic oxidation by ironporphyrin and electrochemistry oxidation in order to simulate endogenous oxidation conditions. The oxidation reactions promoted discoloration from 65% to 95% of Sudan III at 1 × 10(-4)molL(-1) and generation of 7.6 × 10(-7)molL(-1) to 0.31 × 10(-4)molL(-1) of aniline, o-anisidine, 2-methoxi-5-methylaniline, 4-aminobiphenyl, 4,4'-oxydianiline; 4,4'-diaminodiphenylmethane and 2,6-dimethylaniline. The results were confirmed by LC-MS-MS experiments. We also correlate the mutagenic effects of Sudan III using S. typhimurium with the strain TA1535 in the presence of exogenous metabolic activation (S9) with the metabolization products of this compound. Our findings clearly indicate that aromatic amines are formed due to oxidative reactions that can be promoted by hepatic cells, after the ingestion of Sudan III. Considering that, the use of azo compounds as food dyestuffs should be carefully controlled. Copyright © 2013 Elsevier Ltd. All rights reserved.
A Green Synthesis of Chalcones As an Antioxidant and Anticancer
NASA Astrophysics Data System (ADS)
Susanti VH, Elfi; Agustina Eko Setyowati, Widiastuti
2018-01-01
Three chalcones (4’-amino-4-methoxy chalcone, 4’-amino-3,4-dimethoxy chalcone and 4’-amino-3,4,5-trimethoxy chalcone) has been synthesized by a green chemistry approach using grinding technique. Antioxidant activity of the chalcones were assessed using 1,1-biphenyl-2-picrylhydrazyl (DPPH) radical scavenging method. Cytotoxicity of chalcones sythesized was evaluated using a tetrazolium (MTT) colorimetric assay against cervical cancer cell line, HeLa. The antioxidant activity test showed that 4’-amino-4-methoxy chalcone had a stronger activity than the 4’-amino-3,4-dimethoxy chalcone and 4’-amino-3,4,5-trimethoxy chalcone, respectively with IC50 58.85, 64.79 and 210.3 μg/mL. These results indicate that there is a relationship between the structure of chalcone with antioxidant activity, the more methoxy groups in the ring B of the chalcone, antioxidant activity is getting smaller. The chalcone synthesized showed cytotoxicity against HeLa cell line with IC50 value of 31.75, 36.65, 49.04 μg/mL, respectively. It was observed that the highest cytotoxic activity was found at 4’-amino-4-methoxy chalcone (IC50 31.75 μg/mL). Lower activity was showed by 4’-amino-3,4,5-trimethoxy chalcone with IC50 value of 49,04 μg/mL. There is a relationship cytotoxicity with chalcone structure, the more the number of methoxy groups in ring B chalcone, will decrease the activity of cytotoxicity.
Vermaas, Josh V.; Taguchi, Alexander T.; Dikanov, Sergei A.; ...
2015-03-03
Ubiquinone forms an integral part of the electron transport chain in cellular respiration and photosynthesis across a vast number of organisms. Prior experimental results have shown that the photosynthetic reaction center (RC) from Rhodobacter sphaeroides is only fully functional with a limited set of methoxy-bearing quinones, suggesting that specific interactions with this substituent are required to drive electron transport and the formation of quinol. The nature of these interactions has yet to be determined. Through parameterization of a CHARMM-compatible quinone force field and subsequent molecular dynamics simulations of the quinone-bound RC, in this paper we have investigated and characterized themore » interactions of the protein with the quinones in the Q A and Q B sites using both equilibrium simulation and thermodynamic integration. In particular, we identify a specific interaction between the 2-methoxy group of ubiquinone in the Q B site and the amide nitrogen of GlyL225 that we implicate in locking the orientation of the 2-methoxy group, thereby tuning the redox potential difference between the quinones occupying the Q A and Q B sites. Finally, disruption of this interaction leads to weaker binding in a ubiquinone analogue that lacks a 2-methoxy group, a finding supported by reverse electron transfer electron paramagnetic resonance experiments of the Q A–Q B– biradical and competitive binding assays.« less
Vermaas, Josh V; Taguchi, Alexander T; Dikanov, Sergei A; Wraight, Colin A; Tajkhorshid, Emad
2015-03-31
Ubiquinone forms an integral part of the electron transport chain in cellular respiration and photosynthesis across a vast number of organisms. Prior experimental results have shown that the photosynthetic reaction center (RC) from Rhodobacter sphaeroides is only fully functional with a limited set of methoxy-bearing quinones, suggesting that specific interactions with this substituent are required to drive electron transport and the formation of quinol. The nature of these interactions has yet to be determined. Through parameterization of a CHARMM-compatible quinone force field and subsequent molecular dynamics simulations of the quinone-bound RC, we have investigated and characterized the interactions of the protein with the quinones in the Q(A) and Q(B) sites using both equilibrium simulation and thermodynamic integration. In particular, we identify a specific interaction between the 2-methoxy group of ubiquinone in the Q(B) site and the amide nitrogen of GlyL225 that we implicate in locking the orientation of the 2-methoxy group, thereby tuning the redox potential difference between the quinones occupying the Q(A) and Q(B) sites. Disruption of this interaction leads to weaker binding in a ubiquinone analogue that lacks a 2-methoxy group, a finding supported by reverse electron transfer electron paramagnetic resonance experiments of the Q(A)⁻Q(B)⁻ biradical and competitive binding assays.
Thermal Decomposition Mechanisms of Lignin Model Compounds: From Phenol to Vanillin
NASA Astrophysics Data System (ADS)
Scheer, Adam Michael
Lignin is a complex, aromatic polymer abundant in cellulosic biomass (trees, switchgrass etc.). Thermochemical breakdown of lignin for liquid fuel production results in undesirable polycyclic aromatic hydrocarbons that lead to tar and soot byproducts. The fundamental chemistry governing these processes is not well understood. We have studied the unimolecular thermal decomposition mechanisms of aromatic lignin model compounds using a miniature SiC tubular reactor. Products are detected and characterized using time-of-flight mass spectrometry with both single photon (118.2 nm; 10.487 eV) and 1 + 1 resonance-enhanced multiphoton ionization (REMPI) as well as matrix isolation infrared spectroscopy. Gas exiting the heated reactor (300 K--1600 K) is subject to a free expansion after a residence time of approximately 100 micros. The expansion into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. By understanding the unimolecular fragmentation patterns of phenol (C6H5OH), anisole (C6H 5OCH3) and benzaldehyde (C6H5CHO), the more complicated thermocracking processes of the catechols (HO-C 6H4-OH), methoxyphenols (HO-C6H4-OCH 3) and hydroxybenzaldehydes (HO-C6H4-CHO) can be interpreted. These studies have resulted in a predictive model that allows the interpretation of vanillin, a complex phenolic ether containing methoxy, hydroxy and aldehyde functional groups. This model will serve as a guide for the pyrolyses of larger systems including lignin monomers such as coniferyl alcohol. The pyrolysis mechanisms of the dimethoxybenzenes (H3C-C 6H4-OCH3) and syringol, a hydroxydimethoxybenzene have also been studied. These results will aid in the understanding of the thermal fragmentation of sinapyl alcohol, the most complex lignin monomer. In addition to the model compound work, pyrolyisis of biomass has been studied via the pulsed laser ablation of poplar wood. With the REMPI scheme, aromatic lignin decomposition products are directly and selectively detected. A number of these products are the lignin model compounds listed above, providing a direct link between the model compound studies and the pyrolysis of actual biomass.
Coadsorbed species explain the mechanism of methanol temperature-desorption on CeO 2(111)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, Jonathan E.; Steven H. Overbury; Beste, Ariana
2016-03-24
Here, we have used density functional theory calculations to investigate the temperature-programmed desorption (TPD) of methanol from CeO 2(111). For the first time, low-temperature water formation and high-temperature methanol desorption are explained by our calculations. High coverages of methanol, which correspond to experimental conditions, are required to properly describe these features of the TPD spectrum. We identify a mechanism for the low-temperature formation of water involving the dissociation of two methanol molecules on the same surface O atom and filling of the resulting surface vacancy with one of the methoxy products. After water desorption, methoxy groups are stabilized on themore » surface and react at higher temperatures to form methanol and formaldehyde by a disproportionation mechanism. Alternatively, the stabilized methoxy groups undergo sequential C–H scission reactions to produce formaldehyde. Calculated energy requirements and methanol/formaldehyde selectivity agree with the experimental data.« less
Podgorsek, Ajda; Iskra, Jernej
2010-04-20
Oxidative chlorination with HCl/H2O2 in 1,1,1-trifluoroethanol was used to transform aryl iodides into aryliodine(III) dihalides. In this instance 1,1,1-trifluoroethanol is not only the reaction medium, but is also an activator of hydrogen peroxide for the oxidation of hydrochloric acid to molecular chlorine. Aryliodine(III) dichlorides were formed in 72-91% isolated yields in the reaction of aryl iodides with 30% aqueous hydrogen peroxide and hydrochloric acid at ambient temperature. A study of the effect that substituents on the aromatic ring have on the formation and stability of aryliodine(III) dichlorides shows that the transformation is easier to achieve in the presence of the electron-donating groups (i.e. methoxy), but in this case the products rapidly decompose under the reported reaction conditions to form chlorinated arenes. The results suggest that oxidation of hydrogen chloride with hydrogen peroxide is the initial reaction step, while direct oxidation of aryl iodide with hydrogen peroxide is less likely to occur.
D'Abrosca, Brigida; Buommino, Elisabetta; D'Angelo, Grazia; Coretti, Lorena; Scognamiglio, Monica; Severino, Valeria; Pacifico, Severina; Donnarumma, Giovanna; Fiorentino, Antonio
2013-11-15
Two new acylated styrylpyrones, one 5-methoxy-1(3H)-isobenzofuranone glucoside and a hydroxymethyl-orcinol derivative, along with sixteen known aromatic metabolites, including lignans, quinic acid derivatives low-molecular weight phenol glucosides, have been isolated from the methanol extract of Helichrysum italicum, a medicinal plant typical of the Mediterranean vegetation. The structures of these compounds have been elucidated on the basis of extensive 2D-NMR spectroscopic analyses, including COSY, TOCSY, HSQC, CIGAR-HMBC, H2BC and HSQC-TOCSY, along with Q-TOF HRMS(2) analysis. Selected compounds were evaluated for their anti-biofilm properties against Pseudomonas aeruginosa. Copyright © 2013. Published by Elsevier Ltd.
Effect of electron donating groups on polyphenol-based antioxidant dendrimers.
Lee, Choon Young; Nanah, Cyprien N; Held, Rich A; Clark, Amanda R; Huynh, Uyen G T; Maraskine, Marina C; Uzarski, Rebecca L; McCracken, John; Sharma, Ajit
2015-04-01
Numerous studies have reported the beneficial effects of antioxidants in human diseases. Among their biological effects, a majority of antioxidants scavenge reactive radicals in the body, thereby reducing oxidative stress that is associated with the pathogenesis of many diseases. Antioxidant dendrimers are a new class of potent antioxidant compounds reported recently. In this study, six polyphenol-based antioxidant dendrimers with or without electron donating groups (methoxy group) were synthesized in order to elucidate the influence of electron donating groups (EDG) on their antioxidant activities. Syringaldehyde (2 ortho methoxy groups), vanillin (1 ortho methoxy group), and 4-hydroxybenzaldehyde (0 methoxy group) were derivatized with propargylamine to form building blocks for the dendrimers. All the six dendrimers contain polyether cores, which were synthesized by attaching pentaerythritol and methyl α-d-glucopyranoside to in-house prepared spacer units. To prepare generation 1 antioxidant dendrimers, microwave energy and granulated metallic copper catalyst were used to link the cores and building blocks together via alkyne-azide 1,3-cycloaddition click chemistry. These reaction conditions resulted in high yields of the target dendrimers that were free from copper contamination. Based on DPPH antioxidant assay, antioxidant dendrimers decorated with syringaldehyde and vanillin exhibited over 70- and 170-fold increase in antioxidant activity compared to syringaldehyde and vanillin, respectively. The antioxidant activity of dendrimers increased with increasing number of EDG groups. Similar results were obtained when the dendrimers were used to protect DNA and human LDL against organic carbon and nitrogen-based free radicals. In addition, the antioxidant dendrimers did not show any pro-oxidant activity on DNA in the presence of physiological amounts of copper. Although the dendrimers showed potent antioxidant activities against carbon and nitrogen free radicals, EPR and DNA protection studies revealed lack of effectiveness of these dendrimers against hydroxyl radicals. The dendrimers were not cytotoxic to CHO-K1 cells. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Tian, Yuhong; Qu, Ke; Zeng, Xiangqun
2017-01-01
It has been demonstrated in this study that the substituents on the monomer aniline benzene ring are able to introduce the significant differences to the resulting polyaniline’s collective properties. We systematically evaluated the structural perturbation effects of two substituents (methyl and methoxy) of aniline monomer through the electrochemical method. Our results showed that the methoxy group induces the less structural perturbation than the methyl counterpart, because of its partial double bond restriction. The morphologies are different for the polyaniline and the ring-substituted polyanilines, in which substituted polyanilines feature the larger porosities with the addition of these side groups. The influential effects of the methoxy side group have been further illustrated and amplified by its superior sensing performance towards the environmentally-significant sulfur dioxide gas, evaluated through the construction of the quartz crystal microbalance (QCM)-based gas sensor with these polyaniline materials. The as-constructed gas sensor’s sensitivity, selectivity and stability in terms of its SO2 responses have been evaluated in details. The methoxy-substituted polyaniline was tested to show the unique gas sensing properties for the sulfur dioxide at the low concentrations (50–250 ppm) and function as the adsorbing material at the high concentrations (500–1250 ppm). Thus it can be used both as sensing material as well as a novel filter and/or storage reservoir for the removal of sulfur dioxide pollutant from the environments. PMID:29033497
Materials for use as proton conducting membranes for fuel cells
Einsla, Brian R [Blacksburg, VA; McGrath, James E [Blacksburg, VA
2009-01-06
A family of polymers having pendent sulfonate moieties connected to polymeric main chain phenyl groups are described. These polymers are prepared by the steps of polymerization (using a monomer with a phenyl with an alkoxy substitution), deportation by converting the alkoxy to a hydroxyl, and functionalization of the polymer with a pendant sulfonate group. As an example, sulfonated poly(arylene ether sulfone) copolymers with pendent sulfonic acid groups are synthesized by the direct copolymerization of methoxy-containing poly(arylene ether sulfone)s, then converting the methoxy groups to the reactive hydroxyl form, and finally functionalizing the hydroxyl form with proton-conducting sites through nucleophilic substitution. The family of polymers may have application in proton exchange membranes and in other applications.
Wubbels, Gene G; Danial, Hanan; Policarpio, Danielle
2010-11-19
Photosubstitution of the nitro group vs the methoxy group of triplet 4-nitroanisole by hydroxide ion in water leads to product yields of about 80% 4-methoxyphenol and 20% 4-nitrophenol. The ratio depends slightly on temperature from 3 to 73 °C. The slight temperature variation in the yield ratio is reproduced almost perfectly with a simple Arrhenius model for a mechanism involving bonding of hydroxide ion with the triplet state of 4-nitroanisole. The competing transition states have activation energies of 2.2 and 2.6 kcal/mol, respectively. Correct prediction of regioselectivity can be done for this case by quantum chemical calculation of the competing triplet transition-state energies, or those of the corresponding triplet σ-complexes. Other models for aromatic photosubstitution regioselectivity in mechanisms of the S(N)2Ar* type, such as those based on calculated electron densities, HOMO/LUMO coefficients, or energy gap sizes, are discussed and shown to be inferior to the relative activation energies model. The photoreaction in alcohol solvents, claimed by others to generate the same products as in water and to have an exceedingly large variation of the product ratio with temperature, may reflect chemical changes other than those reported.
The anti-inflammatory activity of dillapiole and some semisynthetic analogues.
Parise-Filho, Roberto; Pastrello, Michelli; Pereira Camerlingo, Carla Emygdio; Silva, Gisele Juni; Agostinho, Leonardo Aguiar; de Souza, Thaís; Motter Magri, Fátima Maria; Ribeiro, Roberto Rodrigues; Brandt, Carlos Alberto; Polli, Michelle Carneiro
2011-11-01
Piper aduncum L. (Piperaceae) produces an essential oil (dillapiole) with great exploitative potential and it has proven effects against traditional cultures of phytopathogens, such as fungi, bacteria and mollusks, as well as analgesic action with low levels of toxicity. This study investigated the in vivo anti-inflammatory activity of dillapiole. Furthermore, in order to elucidate its structure-anti-inflammatory activity relationship (SAR), semisynthetic analogues were proposed by using the molecular simplification strategy. Dillapiole and safrole were isolated and purified using column chromatography. The semisynthetic analogues were obtained by using simple organic reactions, such as catalytic reduction and isomerization. All the analogues were purified by column chromatography and characterized by (1)H and (13)C NMR. The anti-inflammatory activities of dillapiole and its analogues were studied in carrageenan-induced rat paw edema model. Dillapiole and di-hydrodillapiole significantly (p<0.05) inhibited rat paw edema. All the other substances tested, including safrole, were less powerful inhibitors with activities inferior to that of indomethacin. These findings showed that dillapiole and di-hydrodillapiole have moderate anti-phlogistic properties, indicating that they can be used as prototypes for newer anti-inflammatory compounds. Structure-activity relationship studies revealed that the benzodioxole ring is important for biological activity as well as the alkyl groups in the side chain and the methoxy groups in the aromatic ring.
Electronic and vibrational exciton coupling in oxidized trianglimines.
Szymkowiak, Joanna; Kwit, Marcin
2018-02-01
Readily available chiral trianglimine and their (poly)oxygenated congeners represent a unique class of macrocyclic rigid compounds optimal for testing electronic and vibrational circular dichroism exciton chirality methods. Electronic and vibrational circular dichroism spectra of such trianglimines are strongly affected by polar substituents in macrocycle skeletons. Double substitution by OH groups in each aromatic fragment of the macrocycle causes sign reversal of the exciton couplet in the region of the strongest UV absorption. On the other hand, electronic circular dichroism spectrum of the macrocycle having 2 methoxy groups shows 2 exciton couplets-the long-wavelength positive and the second of the negative sign, observed at the shorter wavelengths. VCD spectra of macrocyclic imines show vibrational exciton couplets in the region of strong C=N stretches. The signs of these couplets are positive and the opposite of the diamine chirality. For trianglimine macrocycles the interpretation of VCD spectra in terms of excitons is much more convincing than for electronic circular dichroism spectra. By contrast, trans-1,2-diaminocyclohexane-based vicinal diimines, being a one-third of the respective macrocycle, do not exhibit any vibrational exciton effect. Experimental data were confronted with DFT calculations. We observed good-to-excellent agreement between experimental and computed data. © 2017 Wiley Periodicals, Inc.
Kakinuma, Hiroyuki; Oi, Takahiro; Hashimoto-Tsuchiya, Yuko; Arai, Masayuki; Kawakita, Yasunori; Fukasawa, Yoshiki; Iida, Izumi; Hagima, Naoko; Takeuchi, Hiroyuki; Chino, Yukihiro; Asami, Jun; Okumura-Kitajima, Lisa; Io, Fusayo; Yamamoto, Daisuke; Miyata, Noriyuki; Takahashi, Teisuke; Uchida, Saeko; Yamamoto, Koji
2010-04-22
Derivatives of a novel scaffold, C-phenyl 1-thio-D-glucitol, were prepared and evaluated for sodium-dependent glucose cotransporter (SGLT) 2 and SGLT1 inhibition activities. Optimization of substituents on the aromatic rings afforded five compounds with potent and selective SGLT2 inhibition activities. The compounds were evaluated for in vitro human metabolic stability, human serum protein binding (SPB), and Caco-2 permeability. Of them, (1S)-1,5-anhydro-1-[5-(4-ethoxybenzyl)-2-methoxy-4-methylphenyl]-1-thio-D-glucitol (3p) exhibited potent SGLT2 inhibition activity (IC(50) = 2.26 nM), with 1650-fold selectivity over SGLT1. Compound 3p showed good metabolic stability toward cryo-preserved human hepatic clearance, lower SPB, and moderate Caco-2 permeability. Since 3p should have acceptable human pharmacokinetics (PK) properties, it could be a clinical candidate for treating type 2 diabetes. We observed that compound 3p exhibits a blood glucose lowering effect, excellent urinary glucose excretion properties, and promising PK profiles in animals. Phase II clinical trials of 3p (TS-071) are currently ongoing.
Brunetti, Andrés E; Merib, Josias; Carasek, Eduardo; Caramão, Elina B; Barbará, Janaina; Zini, Claudia A; Faivovich, Julián
2015-04-01
A novel in vivo design was used in combination with solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) to characterize the volatile compounds from the skin secretion of two species of tree frogs. Conventional SPME-GC/MS also was used for the analysis of volatiles present in skin samples and for the analysis of volatiles present in the diet and terraria. In total, 40 and 37 compounds were identified in the secretion of Hypsiboas pulchellus and H. riojanus, respectively, of which, 35 were common to both species. Aliphatic aldehydes, a low molecular weight alkadiene, an aromatic alcohol, and other aromatics, ketones, a methoxy pyrazine, sulfur containing compounds, and hemiterpenes are reported here for the first time in anurans. Most of the aliphatic compounds seem to be biosynthesized by the frogs following different metabolic pathways, whereas aromatics and monoterpenes are most likely sequestered from environmental sources. The characteristic smell of the secretion of H. pulchellus described by herpetologists as skunk-like or herbaceous is explained by a complex blend of different odoriferous components. The possible role of the volatiles found in H. pulchellus and H. riojanus is discussed in the context of previous hypotheses about the biological function of volatile secretions in frogs (e.g., sex pheromones, defense secretions against predators, mosquito repellents).
Schmidt, Bernd; Elizarov, Nelli; Berger, René; Hölter, Frank
2013-06-14
4-Phenol diazonium salts undergo Pd-catalyzed Heck reactions with various styrenes to 4'-hydroxy stilbenes. In almost all cases higher yields and fewer side products were observed, compared to the analogous 4-methoxy benzene diazonium salts. In contrast, the reaction fails completely with 2- and 3-phenol diazonium salts. For these substitution patterns the methoxy-substituted derivatives are superior.
NASA Astrophysics Data System (ADS)
Li, L.; Tang, P.; Nakao, S.; Chen, C.-L.; Cocker, D. R., III
2015-11-01
Substitution of methyl groups onto the aromatic ring determines the SOA formation from the aromatic hydrocarbon precursor. This study links the number of methyl groups on the aromatic ring to SOA formation from aromatic hydrocarbons photooxidation under low NOx conditions (HC / NO > 10 ppb C : ppb). Aromatic hydrocarbons with increasing numbers of methyl groups are systematically studied. SOA formation from pentamethylbenzene and hexamethylbenzene are reported for the first time. A decreasing SOA yield with increasing number of methyl groups is observed. Linear trends are found in both f44 vs. f43 and O / C vs. H / C for SOA from aromatic hydrocarbons with zero to six methyl groups. An SOA oxidation state predictive method based on benzene is used to examine the effect of added methyl groups on aromatic oxidation under low NOx conditions. Further, the impact of methyl group number on density and volatility of SOA from aromatic hydrocarbons is explored. Finally, a mechanism for methyl group impact on SOA formation is suggested. Overall, this work suggests as more methyl groups are attached on the aromatic ring, SOA products from these aromatic hydrocarbons become less oxidized per mass/carbon.
MEH-PPV film thickness influenced fluorescent quenching of tip-coated plastic optical fiber sensors
NASA Astrophysics Data System (ADS)
Yusufu, A. M.; Noor, A. S. M.; Tamchek, N.; Abidin, Z. Z.
2017-12-01
The performance of plastic optical fiber sensors in detecting nitro aromatic explosives 1,4-dinitrobenzene (DNB) have been investigated by fluorescence spectroscopy and analyzed by using fluorescence quenching technique. The plastic optical fiber utilized is 90 degrees cut tip and dip-coated with conjugated polymer MEH-PPV poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] thin films for detection conjugants. The thicknesses of the MEH-PPV coating were varied to improvise the sensitivity whilst slowly reducing the fluorescence intensity. It was shown that fluorescence intensity from thinner film decreased by (82% in 40 s) in the presence of DNB signifying an improvement of 28% reduction with time 13 s less than that of the thicker film.
NASA Astrophysics Data System (ADS)
Molnár, Viktor; Billes, Ferenc; Tyihák, Ernő; Mikosch, Hans
2008-02-01
Compounds formed by exchanging one of the resveratrol hydroxy groups to methoxy or formyl groups are biologically important. Quantum chemical DFT calculations were applied for the simulation of some of their properties. Their optimized structures and charge distributions were computed. Based on the calculated vibrational force constants and optimized molecular structure infrared and Raman spectra were calculated. The characteristics of the vibrational modes were determined by normal coordinate analysis. Applying the calculated thermodynamic functions also for resveratrol, methanol, formaldehyde and water, thermodynamic equilibria were calculated for the equilibria between resveratrol and its methyl and formyl substituted derivatives, respectively.
Role of the Methoxy Group in Immune Responses to mPEG-Protein Conjugates
2012-01-01
Anti-PEG antibodies have been reported to mediate the accelerated clearance of PEG-conjugated proteins and liposomes, all of which contain methoxyPEG (mPEG). The goal of this research was to assess the role of the methoxy group in the immune responses to mPEG conjugates and the potential advantages of replacing mPEG with hydroxyPEG (HO-PEG). Rabbits were immunized with mPEG, HO-PEG, or t-butoxyPEG (t-BuO-PEG) conjugates of human serum albumin, human interferon-α, or porcine uricase as adjuvant emulsions. Assay plates for enzyme-linked immunosorbent assays (ELISAs) were coated with mPEG, HO-PEG, or t-BuO-PEG conjugates of the non-cross-reacting protein, porcine superoxide dismutase (SOD). In sera from rabbits immunized with HO-PEG conjugates of interferon-α or uricase, the ratio of titers of anti-PEG antibodies detected on mPEG-SOD over HO-PEG-SOD (“relative titer”) had a median of 1.1 (range 0.9–1.5). In contrast, sera from rabbits immunized with mPEG conjugates of three proteins had relative titers with a median of 3.0 (range 1.1–20). Analyses of sera from rabbits immunized with t-BuO-PEG-albumin showed that t-butoxy groups are more immunogenic than methoxy groups. Adding Tween 20 or Tween 80 to buffers used to wash the assay plates, as is often done in ELISAs, greatly reduced the sensitivity of detection of anti-PEG antibodies. Competitive ELISAs revealed that the affinities of antibodies raised against mPEG-uricase were c. 70 times higher for 10 kDa mPEG than for 10 kDa PEG diol and that anti-PEG antibodies raised against mPEG conjugates of three proteins had >1000 times higher affinities for albumin conjugates with c. 20 mPEGs than for analogous HO-PEG-albumin conjugates. Overall, these results are consistent with the hypothesis that antibodies with high affinity for methoxy groups contribute to the loss of efficacy of mPEG conjugates, especially if multiply-PEGylated. Using monofunctionally activated HO-PEG instead of mPEG in preparing conjugates for clinical use might decrease this undesirable effect. PMID:22332808
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathya, P.; Gopalakrishnan, R., E-mail: krgkrishnan@annauniv.edu
2015-06-24
Cyclohexylammonium 4-Methoxy Benzoate (C4MB) was synthesised and the functional groups were confirmed by FTIR analysis. The purified C4MB (by repeated recrystallisation) was used for single crystal growth. Single crystal of cyclohexylammonium 4-methoxy benzoate was successfully grown by slow evaporation solution growth method at ambient temperature. Structural orientations were determined from single crystal X-ray diffractometer. Optical absorption and cut off wavelength were identified by UV-Visible spectroscopy. Thermal stability of the crystal was studied from thermogravimetric and differential thermal analyses curves. Mechanical stability of the grown crystal was analysed by Vicker’s microhardness tester. The Second Harmonic Generation (SHG) study revealed that themore » C4MB compound exhibits the SHG efficiency 3.3 times greater than KDP crystal.« less
The electronic structure of oriented poly[2-methoxy-5-(2'-ethyl-hexyloxy)- 1,4-phenylene-vinylene
NASA Astrophysics Data System (ADS)
Chambers, D. K.; Karanam, S.; Qi, D.; Selmic, S.; Losovyj, Y. B.; Rosa, L. G.; Dowben, P. A.
2005-02-01
Poly[2-methoxy-5-(2’-ethyl-hexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) adopts a preferential orientation on indium tin oxide. Although the basic building block of this polymer provides a negligible overall point-group symmetry, the polymer MEH-PPV packs with sufficient order to exhibit band structure. The polymer is fragile with bond cleavage evident following both argon-ion impact and ultraviolet radiation, but annealing leads to the restoration of much of the bond order.
NASA Astrophysics Data System (ADS)
Li, L.; Tang, P.; Nakao, S.; Chen, C.-L.; Cocker, D. R., III
2016-02-01
Substitution of methyl groups onto the aromatic ring determines the secondary organic aerosol (SOA) formation from the monocyclic aromatic hydrocarbon precursor (SOA yield and chemical composition). This study links the number of methyl groups on the aromatic ring to SOA formation from monocyclic aromatic hydrocarbons photooxidation under low-NOx conditions (HC/NO > 10 ppbC : ppb). Monocyclic aromatic hydrocarbons with increasing numbers of methyl groups are systematically studied. SOA formation from pentamethylbenzene and hexamethylbenzene are reported for the first time. A decreasing SOA yield with increasing number of methyl groups is observed. Linear trends are found in both f44 vs. f43 and O / C vs. H / C for SOA from monocyclic aromatic hydrocarbons with zero to six methyl groups. An SOA oxidation state predictive method based on benzene is used to examine the effect of added methyl groups on aromatic oxidation under low-NOx conditions. Further, the impact of methyl group number on density and volatility of SOA from monocyclic aromatic hydrocarbons is explored. Finally, a mechanism for methyl group impact on SOA formation is suggested. Overall, this work suggests that, as more methyl groups are attached on the aromatic ring, SOA products from these monocyclic aromatic hydrocarbons become less oxidized per mass/carbon on the basis of SOA yield or chemical composition.
1-(2,4-Di-nitro-phen-yl)-2-[(E)-(3,4,5-tri-meth-oxy-benzyl-idene)]hydrazine.
Chantrapromma, Suchada; Ruanwas, Pumsak; Boonnak, Nawong; Chidan Kumar, C S; Fun, Hoong-Kun
2014-02-01
Mol-ecules of the title compound, C16H16N4O7, are not planar with a dihedral angle of 5.50 (11)° between the substituted benzene rings. The two meta-meth-oxy groups of the 3,4,5-tri-meth-oxy-benzene moiety lie in the plane of the attached ring [Cmeth-yl-O-C-C torsion angles -0.1 (4)° and -3.7 (3)°] while the para-meth-oxy substituent lies out of the plane [Cmeth-yl-O-C-C, -86.0 (3)°]. An intra-molecular N-H⋯O hydrogen bond involving the 2-nitro substituent generates an S(6) ring motif. In the crystal structure, mol-ecules are linked by weak C-H⋯O inter-actions into screw chains, that are arranged into a sheet parallel to the bc plane. These sheets are connected by π-π stacking inter-actions between the nitro and meth-oxy substituted aromatic rings with a centroid-centroid separation of 3.9420 (13) Å. C-H⋯π contacts further stabilize the two-dimensional network.
Structure and absolute configuration of some 5-chloro-2-methoxy-N-phenylbenzamide derivatives
NASA Astrophysics Data System (ADS)
Galal, Alaaeldin M. F.; Shalaby, Elsayed M.; Abouelsayed, Ahmed; Ibrahim, Medhat A.; Al-Ashkar, Emad; Hanna, Atef G.
2018-01-01
The absolute configuration of 5-chloro-2-methoxy-N-phenylbenzamide single crystal [compound (1)] and the effect of introducing -[CH2]n-, n = 1,2 group adjacent to the amide group [compounds (2) and (3)], were studied. Furthermore, the replacement of the methoxy group with a hydroxy group [compound (4)] was defined. Proton and carbon-13 NMR spectrometer were used to record the structural information of the prepared compounds. X-ray single crystal diffractometer were used to elucidate the 3D structural configurations. Intensity data for the studied compounds were collected at room temperature. The X-ray data prove that compound (1) is almost planar, with maximum r.m.s. deviations of 0.210(3) Å corresponds to C13. This planarity starts to disturb by adding -[CH2]n-, n = 1,2 groups between the NH group and the phenyl ring in compounds (2) and (3), respectively. By replacing the OCH3 group by an OH group in compound (4), the plane of the chlorophenyl moiety is nearly perpendicular to that of the phenyl ring. Such new structural configurations were further illustrated by the infrared, and ultraviolet-visible spectroscopy measurements in the frequency range 400-4000 cm-1 and 190-1100 nm, respectively. Spectroscopic analyses were verified with the help of molecular modeling using density functional theory. The estimated total dipole moment for the prepared compounds reflects its ability to interact with its surrounding molecules. The higher dipole moment for a given structures is combined with the higher reactivity for potential use in medicinal applications.
Rocha, Rafael E O; Lima, Leonardo H F
2018-05-17
Galantamine (Gnt) is a natural alkaloid inhibitor of acetylcholinesterase and is presently one of the most used drugs in the treatment against Alzheimer's disease during both the initial and intermediate stages. Among several natural Gnt derivatives, sanguinine (Sng) and lycoramine (Lyc) attract attention because of the way their subtle chemical differences from Gnt lead to drastic and opposite distinctions in inhibitory effects. However, to date, there is no solved structure for these natural derivatives. In the present study, we applied computational modeling and free energy calculation methods to better elucidate the molecular basis of the subtle distinctions between these derivatives and Gnt. The results showed that differences in the mobility of the non-aromatic ring carried by the Lyc-like sp 2 -sp 3 modification display drastic conformational, vibrational, and entropic penalties at binding compared to Gnt. Additionally, the establishment of a stronger hydrogen bond network added enthalpic advantages for the linkage of the Sng-like methoxy-hydroxy substituted ligands. These results, which suggest an affinity ranking in agreement with that found in the literature, provided insights that are helpful for future planning and development of new anti-Alzheimer's disease drugs.
Ning, Xun-An; Liang, Jie-Ying; Li, Rui-Jing; Hong, Zhen; Wang, Yu-Jie; Chang, Ken-Lin; Zhang, Ya-Ping; Yang, Zuo-Yi
2015-09-01
Aromatic amines (AAs), which are components of synthetic dyes, are recalcitrant to the wastewater treatment process and can accumulate in sludge produced by textile-dyeing, which may pose a threat to the environment. A comprehensive investigation of 10 textile-dyeing plants was undertaken in Guangdong Province in China. The contents and component distributions of AAs were evaluated in this study, and a risk assessment was performed. The total concentrations of 14 AAs (Σ14 AAs) varied from 11 μg g(-1)dw to 82.5 μg g(-1)dw, with a mean value of 25 μg g(-1)dw. The component distributions of AAs were characterized by monocyclic anilines, of which 2-methoxy-5-methylaniline and 5-nitro-o-toluidine were the most dominant components. The risk quotient (RQ) value was used to numerically evaluate the ecological risk of 14 AAs in the environment. The result showed that the 14 AAs contents in textile-dyeing sludge may pose a high risk to the soil ecosystem after being discarded on soil or in a landfill. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hayes, J D; Malik, A
2001-03-01
Sol-gel chemistry was successfully used for the fabrication of open tubular columns with surface-bonded octadecylsilane (ODS) stationary-phase coating for capillary electrochromatography (OT-CEC). Following column preparations, a series of experiments were performed to investigate the performance of the sol-gel coated ODS columns in OT-CEC. The incorporation of N-octadecyldimethyl[3-(trimethoxysilyl)propyl]ammonium chloride as one of the sol-gel precursors played an important role in the electrochromatographic performance of the prepared columns. This chemical reagent possesses a chromatographically favorable, bonded ODS moiety, in conjunction with three methoxy groups allowing for sol-gel reactivity. In addition, a positively charged nitrogen atom is present in the molecular structure of this reagent and provides a positively charged capillary surface responsible for the reversed electroosmotic flow (EOF) in the columns during CEC operation. Comparative studies involving the EOF within such sol-gel ODS coated and uncoated capillaries were performed using acetonitrile and methanol as the organic modifiers in the mobile phase. The use of a deactivating reagent, phenyldimethylsilane, in the sol-gel solution was evaluated. Efficiency values of over 400,000 theoretical plates per meter were achieved in CEC on a 64 cm x 25 microm i.d. sol-gel ODS open tubular column. Test mixtures of polycyclic aromatic hydrocarbons, benzene derivatives, and aromatic aldehydes and ketones were used to evaluate the CEC performances of both nondeactivated and deactivated open tubular sol-gel columns. The effects of mobile-phase organic modifier contents and pH on EOF in such columns were evaluated. The prepared sol-gel ODS columns are characterized by switchable electroosmotic flow. A pH value of approximately 8.5 was found correspond to the isoelectric point for the prepared sol-gel ODS coatings.
Teratology study of derivatives of tetramethylcyclopropyl amide analogues of valproic acid in mice.
Okada, Akinobu; Onishi, Yuko; Aoki, Yoshinobu; Yagen, Boris; Sobol, Eyal; Bialer, Meir; Fujiwara, Michio
2006-06-01
Although valproic acid (VPA) is used extensively for treating various kinds of epilepsies, it is well known that it causes neural tube and skeletal defects in both humans and animals. The amide and urea derivatives of the tetramethylcylcopropyl VPA analogue, N-methoxy-2,2,3,3-tetramethylcyclopropanecarboxamide (N-methoxy-TMCD) and 2,2,3,3-tetramethylcyclopropanecarbonylurea (TMC-urea), were synthesized and shown to have a more potent anticonvulsant activity than VPA. The objective of this study was to investigate the teratogenic effects of these compounds in NMRI mice. Pregnant NMRI mice were given a single subcutaneous injection of either VPA, N-methoxy-TMCD, or TMC-urea at 1.8 and 3.6 mmol/kg on gestation day (GD) 8. Cesarean section was performed on GD 18. First, the live fetuses were examined to detect any external malformations, then their skeletons were double-stained for bone and cartilage and subsequently examined. Significant increases in fetal losses and neural tube defects were observed with administration of VPA at 3.6 mmol/kg when compared to the vehicle control. In contrast, upon cesarean section, there were no significant differences between either N-methoxy-TMCD or TMC-urea and the control groups for any parameter. Skeletal examination revealed that a number of the abnormalities were induced by VPA dose-dependently at high rates of incidence. These abnormalities were mainly at the axial skeletal level. However, lower frequencies of skeletal abnormality were observed with N-methoxy-TMCD and TMC-urea than with VPA. In addition to their more potent antiepileptic activity, these findings clearly indicate that N-methoxy-TMCD and TMC-urea are distinctly less teratogenic than VPA in NMRI mice.
Alam, Md Fazle; Laskar, Amaj Ahmed; Choudhary, Hadi Hasan; Younus, Hina
2016-09-01
Human salivary aldehyde dehydrogenase (hsALDH) enzyme appears to be the first line of defense in the body against exogenous toxic aldehydes. However till date much work has not been done on this important member of the ALDH family. In this study, we have purified hsALDH to homogeneity by diethylaminoethyl-cellulose (DEAE-cellulose) ion-exchange chromatography in a single step. The molecular mass of the homodimeric enzyme was determined to be approximately 108 kDa. Four aromatic substrates; benzaldehyde, cinnamaldehyde, 2-naphthaldehyde and 6-methoxy-2-naphthaldehyde were used for determining the activity of pure hsALDH. K m values for these substrates were calculated to be 147.7, 5.31, 0.71 and 3.31 μM, respectively. The best substrates were found to be cinnamaldehyde and 2-naphthaldehyde since they exhibited high V max /K m values. 6-methoxy-2-naphthaldehyde substrate was used for further kinetic characterization of pure hsALDH. The pH and temperature optima of hsALDH were measured to be pH 8 and 45 °C, respectively. The pure enzyme is highly unstable at high temperatures. Ethanol, hydrogen peroxide and SDS activate hsALDH, therefore it is safe and beneficial to include them in mouthwashes and toothpastes in low concentrations.
Liang, Jidong; Olivares, Christopher; Field, Jim A; Sierra-Alvarez, Reyes
2013-11-15
2,4-Dinitroanisole (DNAN) is an insensitive munitions compound considered to replace conventional explosives such as 2,4,6-trinitrotoluene (TNT). DNAN undergoes facile microbial reduction to 2-methoxy-5-nitroaniline (MENA) and 2,4-diaminoanisole (DAAN). This study investigated the inhibitory effect of DNAN, MENA, and DAAN toward various microbial targets in anaerobic (acetoclastic methanogens) and aerobic (heterotrophs and nitrifiers) sludge, and the bioluminescent bacterium, Aliivibrio fischeri, used in the Microtox assay. Aerobic heterotrophic and nitrifying batch experiments with DAAN could not be performed because the compound underwent extensive autooxidation in these assays. DNAN severely inhibited methanogens, nitrifying bacteria, and A. fischeri (50% inhibitory concentrations (IC50) ranging 41-57μM), but was notably less inhibitory to aerobic heterotrophs (IC50>390 μM). Reduction of DNAN to MENA and DAAN lead to a marked decrease in methanogenic inhibition (i.e., DNAN>MENA≈DAAN). Reduction of all nitro groups in DNAN also resulted in partial detoxification in assays with A. fischeri. In contrast, reduction of a single nitro group did not alter the inhibitory impact of DNAN toward A. fischeri and nitrifying bacteria given the similar IC50 values determined for MENA and DNAN in these assays. These results indicate that reductive biotransformation could reduce the inhibitory potential of DNAN. Copyright © 2013 Elsevier B.V. All rights reserved.
A study of antagonists of 5-hydroxytryptamine and catechol amines on the rat's blood pressure.
OUTSCHOORN, A S; JACOB, J
1960-03-01
The effects of 5-hydroxytryptamine on the blood pressure of anaesthetized rats depended on the dose and the initial level of blood pressure. At medium blood pressure levels, 5-hydroxytryptamine gave a depressor response and sometimes a pressor response which was more evident with large doses. The depressor effect was less apparent or even absent at low, and more pronounced at high, blood pressure levels, and the converse applied to the pressor components. Adenosine also gave a depressor and pressor response. Lysergic acid diethylamide, dihydroergotamine, 1-(3,4-dichlorophenyl)-2-isopropylaminoethanol (a dichloro analogue of isoprenaline), dibenamine and 1-benzyl-5-methoxy-2-methyltryptamine antagonized 5-hydroxytryptamine and catechol amines. Lysergic acid diethylamide and 1-benzyl-5-methoxy-2-methyltryptamine were more effective against 5-hydroxytryptamine, 1-(3,4-dichlorophenyl)-2-isopropylaminoethanol and dibenamine against catechol amines; dihydroergotamine was equally effective against both groups. These antagonists fell into two groups according to their action against the two types of effects (depressor and pressor) of 5-hydroxytryptamine: lysergic acid diethylamide and 1-(3,4-dichlorophenyl)2-isopropylaminoethanol acted preferentially against depressor effects; 1-benzyl-5-methoxy-2-methyltryptamine and dibenamine preferentially against pressor; dihydroergotamine was not assignable to either group. Adenosine was affected similarly, but less than 5-hydroxytryptamine.
A study of antagonists of 5-hydroxytryptamine and catechol amines on the rat's blood pressure
Outschoorn, A. S.; Jacob, J.
1960-01-01
The effects of 5-hydroxytryptamine on the blood pressure of anaesthetized rats depended on the dose and the initial level of blood pressure. At medium blood pressure levels, 5-hydroxytryptamine gave a depressor response and sometimes a pressor response which was more evident with large doses. The depressor effect was less apparent or even absent at low, and more pronounced at high, blood pressure levels, and the converse applied to the pressor components. Adenosine also gave a depressor and pressor response. Lysergic acid diethylamide, dihydroergotamine, 1-(3,4-dichlorophenyl)-2-isopropylaminoethanol (a dichloro analogue of isoprenaline), dibenamine and 1-benzyl-5-methoxy-2-methyltryptamine antagonized 5-hydroxytryptamine and catechol amines. Lysergic acid diethylamide and 1-benzyl-5-methoxy-2-methyltryptamine were more effective against 5-hydroxytryptamine, 1-(3,4-dichlorophenyl)-2-isopropylaminoethanol and dibenamine against catechol amines; dihydroergotamine was equally effective against both groups. These antagonists fell into two groups according to their action against the two types of effects (depressor and pressor) of 5-hydroxytryptamine: lysergic acid diethylamide and 1-(3,4-dichlorophenyl)2-isopropylaminoethanol acted preferentially against depressor effects; 1-benzyl-5-methoxy-2-methyltryptamine and dibenamine preferentially against pressor; dihydroergotamine was not assignable to either group. Adenosine was affected similarly, but less than 5-hydroxytryptamine. PMID:14429484
Romagnoli, Romeo; Baraldi, Pier Giovanni; Salvador, Maria Kimatrai; Prencipe, Filippo; Lopez-Cara, Carlota; Ortega, Santiago Schiaffino; Brancale, Andrea; Hamel, Ernest; Castagliuolo, Ignazio; Mitola, Stefania; Ronca, Roberto; Bortolozzi, Roberta; Porcù, Elena; Basso, Giuseppe; Viola, Giampietro
2015-01-01
A new series of compounds characterized by the presence of a 2-methoxy/ethoxycarbonyl group, combined with either no substituent or a methoxy group at each of the four possible positions of the benzene portion of the 3-(3′,4′,5′-trimethoxyanilino)benzo[b]furan skeleton, were evaluated for antiproliferative activity against cancer cells in culture and, for selected, highly active compounds, inhibition of tubulin polymerization, cell cycle effects, and in vivo potency. The greatest antiproliferative activity occurred with a methoxy group introduced at the C-6 position, the least with this substituent at C-4. Thus far, the most promising compound in this series was 2-methoxycarbonyl-3-(3′,4′,5′-trimethoxyanilino)-6-methoxybenzo-[b]furan (3g), which inhibited cancer cell growth at nanomolar concentrations (IC50 values of 0.3–27 nM), bound to the colchicine site of tubulin, induced apoptosis, and showed, both in vitro and in vivo, potent vascular disrupting properties derived from the effect of this compound on vascular endothelial cells. Compound 3g had in vivo antitumor activity in a murine model comparable to the activity obtained with combretastatin A-4 phosphate. PMID:25785605
NASA Astrophysics Data System (ADS)
Lauraguais, Amélie; Coeur-Tourneur, Cécile; Cassez, Andy; Deboudt, Karine; Fourmentin, Marc; Choël, Marie
2014-04-01
Methoxyphenols are low molecular weight semi-volatile polar aromatic compounds produced from the pyrolysis of wood lignin. The reaction of guaiacol (2-methoxyphenol) with hydroxyl radicals has been studied in the LPCA simulation chamber at (294 ± 2) K, atmospheric pressure, low relative humidity (RH < 1%) and under high-NOx conditions using CH3ONO as OH source. The aerosol production was monitored using a SMPS (Scanning Mobility Particle Sizer); the SOA yields were in the range from 0.003 to 0.87 and the organic aerosol formation can be expressed by a one-product gas/particle partitioning absorption model. Transmission (TEM) and Scanning (SEM) Electron Microscopy observations were performed to characterize the physical state of SOA produced from the OH reaction with guaiacol; they display both liquid and solid particles (in an amorphous state). GC-FID (Gas Chromatography - Flame Ionization Detection) and GC-MS (Gas Chromatography - Mass Spectrometry) analysis show the formation of nitroguaiacol isomers as main oxidation products in the gas- and aerosol-phases. In the gas-phase, the formation yields were (10 ± 2) % for 4-nitroguaiacol (1-hydroxy-2-methoxy-4-nitrobenzene; 4-NG) and (6 ± 2) % for 3- or 6-nitroguaiacol (1-hydroxy-2-methoxy-3-nitrobenzene or 1-hydroxy-2-methoxy-6-nitrobenzene; 3/6-NG; the standards are not commercially available so both isomers cannot be distinguished) whereas in SOA their yield were much lower (≤0.1%). To our knowledge, this work represents the first identification of nitroguaiacols as gaseous oxidation products of the OH reaction with guaiacol. As the reactivity of nitroguaiacols with atmospheric oxidants is probably low, we suggest using them as biomass burning emission gas tracers. The atmospheric implications of the guaiacol + OH reaction are also discussed.
Antimalarial activity of 4-(5-trifluoromethyl-1H-pyrazol-1-yl)-chloroquine analogues.
Cunico, Wilson; Cechinel, Cleber A; Bonacorso, Helio G; Martins, Marcos A P; Zanatta, Nilo; de Souza, Marcus V N; Freitas, Isabela O; Soares, Rodrigo P P; Krettli, Antoniana U
2006-02-01
The antimalarial activity of chloroquine-pyrazole analogues, synthesized from the reaction of 1,1,1-trifluoro-4-methoxy-3-alken-2-ones with 4-hydrazino-7-chloroquinoline, has been evaluated in vitro against a chloroquine resistant Plasmodium falciparum clone. Parasite growth in the presence of the test drugs was measured by incorporation of [(3)H]hypoxanthine in comparison to controls with no drugs. All but one of the eight (4,5-dihydropyrazol-1-yl) chloroquine 2 derivatives tested showed a significant activity in vitro, thus, are a promising new class of antimalarials. The three most active ones were also tested in vivo against Plasmodium berghei in mice. However, the (pyrazol-1-yl) chloroquine 3 derivatives were mostly inactive, suggesting that the aromatic functionality of the pyrazole ring was critical.
Crystal structure of 2-meth-oxy-2-[(4-meth-oxy-phen-yl)sulfan-yl]-1-phenyl-ethanone.
Caracelli, Ignez; Olivato, Paulo R; Traesel, Henrique J; Valença, Jéssica; Rodrigues, Daniel N S; Tiekink, Edward R T
2015-09-01
In the title β-thio-carbonyl compound, C16H16O3S, the adjacent meth-oxy and carbonyl O atoms are synperiplanar [the O-C-C-O torsion angle is 19.8 (4)°] and are separated by 2.582 (3) Å. The dihedral angle between the rings is 40.11 (16)°, and the meth-oxy group is coplanar with the benzene ring to which it is connected [the C-C-O-C torsion angle is 179.1 (3)°]. The most notable feature of the crystal packing is the formation of methine and methyl C-H⋯O(carbon-yl) inter-actions that lead to a supra-molecular chain with a zigzag topology along the c axis. Chains pack with no specific inter-molecular inter-actions between them.
Arivazhagan, M; Kavitha, R; Subhasini, V P
2014-07-15
The detailed HF and B3LYP/6-311++G(d,p) comparative studies on the complete FT-IR and FT-Raman spectra of 6-methoxy-1,2,3,4-tetrahydronaphthalene [MTHN] have been studied. In view of the special properties and uses, the present investigation has been undertaken to provide a satisfactorily vibrational analysis of 6-methoxy-1,2,3,4-tetrahydronaphthalene. Therefore, a thorough Raman, IR, molecular electrostatic potential (MESP), non-linear optical (NLO) properties, UV-VIS, HOMO-LUMO and NMR spectroscopic investigation are reported complemented by B3LYP theoretical predictions with basis set 6-311++G(d,p) to provide novel insight on vibrational assignments and conformational stability of MTHN. Potential energy surface scans (PES) of the CH3 group are undertaken to shed light on the rather complicated conformational interchanges in the compound under investigation. Copyright © 2014 Elsevier B.V. All rights reserved.
Winter, Evelyn; Gozzi, Gustavo Jabor; Chiaradia-Delatorre, Louise Domeneghini; Daflon-Yunes, Nathalia; Terreux, Raphael; Gauthier, Charlotte; Mascarello, Alessandra; Leal, Paulo César; Cadena, Silvia M; Yunes, Rosendo Augusto; Nunes, Ricardo José; Creczynski-Pasa, Tania Beatriz; Di Pietro, Attilio
2014-01-01
A series of chalcones substituted by a quinoxaline unit at the B-ring were synthesized and tested as inhibitors of breast cancer resistance protein-mediated mitoxantrone efflux. These compounds appeared more efficient than analogs containing other B-ring substituents such as 2-naphthyl or 3,4-methylenedioxyphenyl while an intermediate inhibitory activity was obtained with a 1-naphthyl group. In all cases, two or three methoxy groups had to be present on the phenyl A-ring to produce a maximal inhibition. Molecular modeling indicated both electrostatic and steric positive contributions. A higher potency was observed when the 2-naphthyl or 3,4-methylenedioxyphenyl group was shifted to the A-ring and methoxy substituents were shifted to the phenyl B-ring, indicating preferences among polyspecificity of inhibition. PMID:24920885
Presence and potential significance of aromatic-ketone groups in aquatic humic substances
Leenheer, J.A.; Wilson, M.A.; Malcolm, R.L.
1987-01-01
Aquatic humic- and fulvic-acid standards of the International Humic Substances Society were characterized, with emphasis on carbonyl-group nature and content, by carbon-13 nuclear-magnetic-resonance spectroscopy, proton nuclear-magnetic-resonance spectroscopy, and infrared spectroscopy. After comparing spectral results of underivatized humic and fulvic acids with spectral results of chemically modified derivatives, that allow improved observation of the carbonyl group, the data clearly indicated that aromatic ketone groups comprised the majority of the carbonyl-group content. About one ketone group per monocyclic aromatic ring was determined for both humic and fulvic acids. Aromatic-ketone groups were hypothesized to form by photolytic rearrangements and oxidation of phenolic ester and hydrocarbon precursors; these groups have potential significance regarding haloform formation in water, reactivity resulting from active hydrogen of the methyl and methylene adjacent to the ketone groups, and formation of hemiketal and lactol structures. Aromatic-ketone groups also may be the point of attachment between aliphatic and aromatic moieties of aquatic humic-substance structure. ?? 1987.
Parajuli, Prakash; Pandey, Ramesh Prasad; Nguyen, Thi Huyen Trang; Dhakal, Dipesh; Sohng, Jae Kyung
2018-04-01
Methylation is a common post-modification reaction that is observed during the biosynthesis of secondary metabolites produced by plants and microorganisms. Based on the sequence information from Streptomyces peucetius ATCC27952, a putative O-methyltransferase (OMT) gene SpOMT7740 was polymerase chain reaction amplified and cloned into E. coli BL21 (DE3) host to test the substrate promiscuity and conduct functional characterization. In vitro and in vivo reaction assays were carried out over various classes of substrates: flavonoids (flavonol, flavones, and isoflavonoid), chalcones, anthraquinones, anthracyclines, and sterol molecules, and the applications in synthesizing diverse classes of O-methoxy natural products were also illustrated. SpOMT7740 catalyzed the O-methylation reaction to form various natural and non-natural O-methoxides, includes 7-hydroxy-8-O-methoxy flavone, 3-O-methoxy flavone, three mono-, di-, and tri-O-methoxy genistein, mono-O-methoxy phloretin, mono-O-methoxy luteolin, 3-O-methoxy β-sitosterol, and O-methoxy anthraquinones (emodin and aloe emodin) and O-methoxy anthracycline (daunorubicin) exhibiting diverse substrate flexibility. Daunorubicin is a native secondary metabolite of S. peucetius. Among the compounds tested, 7,8-dihydroxyflavone was the best substrate for bioconversion to 7-hydroxy-8-O-methoxy flavone, and it was structurally elucidated. This enzyme showed a flexible catalysis over the given ranges of temperature, pH, and divalent cationic conditions for O-methylation.
Son, Dong Ju; Lee, Gyung Rak; Oh, Sungil; Lee, Sung Eun; Choi, Won Sik
2015-01-01
This study investigated the gastroprotective efficacy of synthesized scoparone derivatives on experimentally induced gastritis and their toxicological safety. Six scoparone derivatives were synthesized and screened for gastroprotective activities against HCl/ethanol- and indomethacin-induced gastric ulcers in rats. Among these compounds, 5,6,7-trimethoxycoumarin and 6,7,8-trimethoxycoumarin were found to have gastroprotective activity greater than the standard drug rebamipide; 6-methoxy-7,8-methylenedioxycoumarin, 6-methoxy-7,8-(1-methoxy)-methylenedioxycoumarin, 6,7-methylenedioxycoumarin, and 6,7-(1-methoxy)-methylenedioxycoumarin were found to be equipotent or less potent that of rebamipide. Pharmacological studies suggest that the presence of a methoxy group at position C-5 or C-8 of the scoparone’s phenyl ring significantly improves gastroprotective activity, whereas the presence of a dioxolane ring at C-6, C-7, or C-8 was found to have decreased activity. In order to assess toxicological safety, two of the potent gastroprotective scoparone derivatives—5,6,7-trimethoxycoumarin and 6,7,8-trimethoxycoumarin—were examined for their acute toxicity in mice as well as their effect on cytochrome P450 (CYP) enzyme activity. These two compounds showed low acute oral toxicity in adult male and female mice, and caused minimal changes to CYP3A4 and CYP2C9 enzyme activity. These results indicate that compared to other scoparone derivatives, 5,6,7-trimethoxycoumarin and 6,7,8-trimethoxycoumarin can improve gastroprotective effects, and they have low toxicity and minimal effects on drug-metabolizing enzymes. PMID:25781220
NASA Astrophysics Data System (ADS)
Bandoli, Giuliano; Nicolini, Marino; Lumbroso, Henri; Grassi, Antonio; Pappalardo, Giuseppe C.
1987-09-01
N-( p-anisoyl)pyrrolidin-2-one in the crystalline state exhibites a cis— rans conrotatory conformation with NCO and COC ar rotational angles of 33.5° and 38.5° respectively, and the p-methoxy group situated cis to the central carbonyl bond, as shown by X-ray structure analysis. As suggested by dipole moment analysis and MMP2 molecular mechanics calculations, in solution similar conrotatory models hold for both c- and t-subconformers having the p-methoxy group cis or trans to the central carbonyl bond. INDO calculations were also carried out, indicating that both subconformers are equally stable.
(Bio)transformation of 2,4-dinitroanisole (DNAN) in Soils
Olivares, Christopher I.; Abrell, Leif; Khatiwada, Raju; Chorover, Jon; Sierra-Alvarez, Reyes; Field, Jim A.
2015-01-01
Recent studies have begun to assess the environmental fate and toxicity of 2,4-dinitroanisole (DNAN), an insensitive munition compound of interest to defense agencies. Aerobic and anaerobic DNAN biotransformation in soils was evaluated in this study. Under aerobic conditions, there was little evidence of transformation; most observed removal was attributed to adsorption and subsequent slow chemical reactions. Under anaerobic conditions, DNAN was reductively (bio)transformed and the rate of the transformation was positively correlated with soil organic carbon (OC) up to a threshold of 2.07% OC. H2 addition enhanced the nitroreduction rate compared to endogenous treatments lacking H2. Heat-killed treatments provided rates similar to the endogenous treatment, suggesting that abiotic factors play a role in DNAN reduction. Ten (bio)transformation products were detected by high-resolution mass spectrometry. The proposed transformation pathway involves reduction of DNAN to aromatic amines, with putative reactive nitroso-intermediates coupling with the amines to form azo dimers. Secondary reactions include N-alkyl substitution, O-demethylation (sometimes followed by dehydroxylation), and removal of an N-containing group. Globally, our results suggest that the main reaction DNAN undergoes in anaerobic soils is nitroreduction to 2-methoxy-5-nitroaniline (MENA) and 2,4-diaminoanisole (DAAN), followed by anaerobic coupling reactions yielding azo-dimers. The dimers were subsequently subject to further (bio)transformations. PMID:26551225
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zugic, Branko; Karakalos, Stavros; Stowers, Kara J.
2016-03-04
Here we demonstrate the gas-phase catalytic production of methyl acrylates by oxygen-assisted coupling of methanol with the unsaturated alcohols allyl alcohol and methylallyl alcohol over nanoporous gold (npAu) at atmospheric pressure. Analogous investigations on O-activated Au(110) exhibit the same pattern of reactivity and are used to establish that the competition between methoxy and allyloxy (or methallyloxy) reaction intermediates for adsorption sites, mediated by the reactants themselves, determines the selectivity of reaction. Our results clearly show that the C=C bond substantially increases the binding efficacy of the allyloxy (or methallyloxy), thus requiring extremely high methanol mole fractions (>0.99) in order tomore » achieve comparable surface concentrations of methoxy and produce optimum yields of either methacrylate or methyl methacrylate. Allyloxy and methallyloxy were favored by factors of ~100 and ~450, respectively, vs methoxy. These values are more than 1 order of magnitude greater than those measured for competitive binding of ethoxy and 1-butoxy vs methoxy, demonstrating the strong effect of the carbon–carbon bond unsaturation. The 4.5-fold increase due to the addition of the methyl group in methylallyl alcohol vs allyl alcohol indicates the significant effect of the additional van der Waals interactions between the methyl group and the surface. Gas-phase acidity is also shown to be a good qualitative indicator for the relative binding strength of the alkoxides. This work provides insight into the control of reaction selectivity for coupling reactions and demonstrates the value of fundamental studies on single crystals for establishing key principles governing reaction selectivity. Notably, these oxygen-assisted coupling reactions occur without oxidation of the C=C bond.« less
Zugic, Branko; Karakalos, Stavros; Stowers, Kara J.; ...
2016-02-02
We demonstrate the gas-phase catalytic production of methyl acrylates by oxygen-assisted coupling of methanol with the unsaturated alcohols allyl alcohol and methylallyl alcohol over nanoporous gold (npAu) at atmospheric pressure. Analogous investigations on O-activated Au(110) exhibit the same pattern of reactivity and are used to establish that the competition between methoxy and allyloxy (or methallyloxy) reaction intermediates for adsorption sites, mediated by the reactants themselves, determines the selectivity of reaction. These results clearly show that the C=C bond substantially increases the binding efficacy of the allyloxy (or methallyloxy), thus requiring extremely high methanol mole fractions (>0.99) in order to achievemore » comparable surface concentrations of methoxy and produce optimum yields of either methacrylate or methyl methacrylate. Allyloxy and methallyloxy were favored by factors of ~100 and ~450, respectively, vs methoxy. These values are more than 1 order of magnitude greater than those measured for competitive binding of ethoxy and 1-butoxy vs methoxy, demonstrating the strong effect of the carbon–carbon bond unsaturation. The 4.5-fold increase due to the addition of the methyl group in methylallyl alcohol vs allyl alcohol indicates the significant effect of the additional van der Waals interactions between the methyl group and the surface. Gas-phase acidity is also shown to be a good qualitative indicator for the relative binding strength of the alkoxides. This work then provides insight into the control of reaction selectivity for coupling reactions and demonstrates the value of fundamental studies on single crystals for establishing key principles governing reaction selectivity. Notably, these oxygen-assisted coupling reactions occur without oxidation of the C=C bond.« less
Crystal structure of 1-(8-meth-oxy-2H-chromen-3-yl)ethanone.
Koh, Dongsoo
2014-09-01
In the structure of the title compound, C12H12O3, the di-hydro-pyran ring is fused with the benzene ring. The di-hydro-pyran ring is in a half-chair conformation, with the ring O and methyl-ene C atoms positioned 1.367 (3) and 1.504 (4) Å, respectively, on either side of the mean plane formed by the other four atoms. The meth-oxy group is coplanar with the benzene ring to which it is connected [Cb-Cb-Om-Cm torsion angle = -0.2 (4)°; b = benzene and m = meth-oxy], and similarly the aldehyde is coplanar with respect to the double bond of the di-hydro-pyran ring [Cdh-Cdh-Ca-Oa = -178.1 (3)°; dh = di-hydro-pyran and a = aldehyde]. In the crystal, mol-ecules are linked by weak meth-yl-meth-oxy C-H⋯O hydrogen bonds into supra-molecular chains along the a-axis direction.
40 CFR 721.1070 - Benzenamine, 4-methoxy-2-methyl-N-(3-methylphenyl).
Code of Federal Regulations, 2010 CFR
2010-07-01
... as benzenamine, 4-methoxy-2-methyl-N-(3-methylphenyl) (PMN P-01-152; CAS No. 93072-06-1) is subject... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzenamine, 4-methoxy-2-methyl-N-(3... Specific Chemical Substances § 721.1070 Benzenamine, 4-methoxy-2-methyl-N-(3-methylphenyl). (a) Chemical...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-20
...] Schedules of Controlled Substances: Placement of 5-Methoxy-N,N- Dimethyltryptamine into Schedule I of the... Administration (DEA) places the substance 5- methoxy-N,N-dimethyltryptamine (5-MeO-DMT), including its salts..., actual abuse, pattern of abuse, and the relative potential for abuse of 5-methoxy-N,N-dimethyltryptamine...
Uenishi, Yuko; Fujita, Yukiko; Kusunose, Naoto; Yano, Ikuya; Sunagawa, Makoto
2008-02-01
The mycobacterial cell envelope consists of a characteristic cell wall skeleton (CWS), a mycoloyl arabinogalactan peptidoglycan complex, and related hydrophobic components that contribute to the cell surface properties. Since mycolic acids have recently been reported to play crucial roles in host immune response, detailed molecular characterization of mycolic acid subclasses and sub-subclasses of CWS from Mycobacterium bovis BCG Tokyo 172 (SMP-105) was performed. Mycolic acids were liberated by alkali hydrolysis from SMP-105, and their methyl esters were separated by silica gel TLC into three subclasses: alpha-, methoxy-, and keto-mycolates. Each mycolate subclass was further separated by silver nitrate (AgNO(3))-coated silica gel TLC into sub-subclasses. Molecular weights of individual mycolic acid were determined by MALDI-TOF mass spectrometry. alpha-Mycolates were sub-grouped into cis, cis-dicyclopropanoic (alpha1), and cis-monocyclopropanoic-cis-monoenoic (alpha2) series; methoxy-mycolates were sub-grouped into cis-monocyclopropanoic (m1), trans-monocyclopropanoic (m2), trans-monoenoic (m3), cis-monocyclopropanoic-trans-monoenoic (m4), cis-monoenoic (m5), and cis-monocyclopropanoic-cis-monoenoic (m6) series; and keto-mycolates were sub-grouped into cis-monocyclopropanoic (k1), trans-monocyclopropanoic (k2), trans-monoenoic (k3), cis-monoenoic (k4), and cis-monocyclopropanoic-cis-monoenoic (k5) series. The position of each functional group, including cyclopropane rings and methoxy and keto groups, was determined by analysis of the meromycolates with fast atom bombardment (FAB) mass spectrometry and FAB mass-mass spectrometry, and the cis/trans ratio of cyclopropane rings and double bonds were determined by NMR analysis of methyl mycolates. Mycolic acid subclass and molecular species composition of SMP-105 showed characteristic features including newly-identified cis-monocyclopropanoic-trans-monoenoic mycolic acid (m4).
GC-MS studies on the regioisomeric methoxy-methyl-phenethylamines related to MDEA, MDMMA, and MBDB.
Thigpen, Ashley; Awad, Tamer; Deruiter, Jack; Clark, C Randall
2008-01-01
Three regioisomeric 3,4-methylenedioxyphenethylamines having the same molecular weight and major mass spectral fragments of equal mass have been reported as drugs of abuse in forensic studies in recent years. These compounds are 3,4-methylenedioxy-N-ethylamphetamine (MDEA), 3,4-methylenedioxy-N-N-dimethylamphetamine (MDMMA), and N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB). The mass spectra of the regioisomers (4-methoxy-3-methyl and 4-methoxy-2-methyl-phenethylamines) are essentially equivalent to the three compounds reported as drugs of abuse. This project focused on the synthesis, mass spectral characterization, and chromatographic analysis of these six regioisomeric methoxy methyl phenethylamines. Additionally, the mass spectral and chromatographic properties of these compounds will be compared to the isobaric 2,3- and 3,4-methylenedioxyphenethyl-amines of the same side chain. The six regioisomeric methoxy-methyl-phenethylamines were synthesized from commercially available starting materials. Side chain differentiation by mass spectrometry was possible after the formation of the perfluoroacyl derivatives, pentafluoropropionylamides (PFPA) and heptafluorobutrylamides (HFBA). Gas chromatographic separation on Rtx-1 was successful at resolving the perfluoroacyl derivatives of the 4-methoxy-3-methyl phenethylamines from those of the 4-methoxy-2-methyl phenethylamines. The 4-methoxy-3-methyl-phenethylamine derivatives eluted before the 4-methoxy-2-methyl-phenethylamine derivatives as both the PFPA and HFBA derivatives.
Yoshinaga, Hidefumi; Masumoto, Shuji; Koyama, Koji; Kinomura, Naoya; Matsumoto, Yuji; Kato, Taro; Baba, Satoko; Matsumoto, Kenji; Horisawa, Tomoko; Oki, Hitomi; Yabuuchi, Kazuki; Kodo, Toru
2017-01-01
We report the discovery of a novel benzylpiperidine derivative with serotonin transporter (SERT) inhibitory activity and 5-HT 1A receptor weak partial agonistic activity showing the antidepressant-like effect. The 3-methoxyphenyl group and the phenethyl group of compound 1, which has weak SERT binding activity, but potent 5-HT 1A binding activity, were optimized, leading to compound 35 with potent and balanced dual SERT and 5-HT 1A binding activity, but also potent CYP2D6 inhibitory activity. Replacement of the methoxy group in the left part of compound 35 with a larger alkoxy group, such as ethoxy, isopropoxy or methoxy-ethoxy group ameliorated CYP2D6 inhibition, giving SMP-304 as a candidate. SMP-304 with serotonin uptake inhibitory activity and 5-HT 1A weak partial agonistic activity, which could work as a 5-HT 1A antagonist, displayed faster onset of antidepressant-like effect than a representative SSRI paroxetine in an animal model. Copyright © 2016 Elsevier Ltd. All rights reserved.
New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Qinhua
2004-12-19
The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I 2, ICl, PhSeCl, PhSCl and p-O 2NC 6H 4SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellentmore » yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields. Novel palladium migratiodarylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement with the idea that these palladium-catalyzed C-H activation reactions parallel electrophilic aromatic substitution. A relatively efficient synthesis of cyclopropanes has been developed using palladium-catalyzed C-H activation chemistry, in which two new carbon-carbon bonds are formed in a single step. This method involves the palladium-catalyzed activation of relatively unreactive C-H bonds, and provides a very efficient way to synthesize cyclopropapyrrolo[1,2-a]indoles, analogues of the mitomycin antibiotics.« less
1987-01-01
oven, LC-600 autosampler, and Sigma 15 data station. High pressure liquid chromatography ( HPLC ) determinations were performed with the same...white crystals of 99.0% purity as determined by HPLC . m.p.=184-186*C (lit. 25, m.p.=182-1830C). ’H-NMR (DMSO-de, TMS, 6, ppm): 2.2 (s, -CHa), 6.7 (s, =CH...is about 99% ( HPLC ). HPLC equipped with UV detector, can not discriminate between the two isomers of MHMS. 200 MHz 1H-NMR spectra of sample A and
NASA Astrophysics Data System (ADS)
Krajewski, J. W.; Gluziński, P.; Grochowski, E.; Pupek, K.; Mishnyov, A.; Kemme, A.
1992-08-01
The compound (5R*,6S*)-1-benzoyl-5-methylthio-6-methoxy-1-azapenam ( 3) has been synthesized and its structure investigated by X-ray diffraction. The compound crystallizes in a monoclinic system, space group Cc, Z = 4, a = 12.01(1), b = 16.51(1), c = 8.048(6) Å, β = 115.87(6)°. The structure was solved by direct methods and refined by a full-matrix, least-squares procedure to give R = 0.070, Rw = 0.046, w = 1.34/(σ 2F). The expected cis configuration around the β-lactam ring was fully confirmed.
[Studies on flavonoids of Oxytropis falcata].
Lu, Fang; Xu, Xiao-Jie
2007-02-01
To investigate the flavonoids of Oxytropisfalcata. Compounds were isolated by column chromatography using silica gel, Sephadex LH -20 and ODS as the adsorbents. Their structures were elucidated by NMR and MS spectroscopic data. Eight compounds were isolated and elucidated as 2', 4'-dihydroxy-4-methoxy chalcone (1), 2', 4'-dihydroxy chalcone (2), 5,7-dihydroxy-4'-methoxy flavonol (3), 7-hydroxy-4'-methoxy flavanones (4), 3', 7-dihydroxy-2',4'-dimethoxy isoflavan (5), 2'-hydroxy-4'-methoxy chalcone (6), 2'-methoxy-4'-hydroxy chalcone (7), 2',4'-dihydroxy dihydrochalcone (8). All compounds were obtained from O. falcata for the first time.
40 CFR 721.9078 - 6-Methoxy-1H-benz[de]isoquinoline-2 [3H]-dione derivative (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 6-Methoxy-1H-benz[de]isoquinoline-2... Significant New Uses for Specific Chemical Substances § 721.9078 6-Methoxy-1H-benz[de]isoquinoline-2 [3H...) The chemical substance identified generically as 6-methoxy-1H-benz[de]isoquinoline-2 [3H]-dione...
40 CFR 721.9078 - 6-Methoxy-1H-benz[de]isoquinoline-2 [3H]-dione derivative (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 6-Methoxy-1H-benz[de]isoquinoline-2... Significant New Uses for Specific Chemical Substances § 721.9078 6-Methoxy-1H-benz[de]isoquinoline-2 [3H...) The chemical substance identified generically as 6-methoxy-1H-benz[de]isoquinoline-2 [3H]-dione...
Aromaticity of benzene derivatives: an exploration of the Cambridge Structural Database.
Majerz, Irena; Dziembowska, Teresa
2018-04-01
The harmonic oscillator model of aromaticity (HOMA) index, one of the most popular aromaticity indices for solid-state benzene rings in the Cambridge Structural Database (CSD), has been analyzed. The histograms of HOMA for benzene, for benzene derivatives with one formyl, nitro, amino or hydroxy group as well as the histograms for the derivatives with two formyl, nitro, amino or hydroxy groups in ortho, meta and para positions were investigated. The majority of the substituted benzene derivatives in the CSD are characterized by a high value of HOMA, indicating fully aromatic character; however, the distribution of the HOMA value from 1 to about 0 indicates decreasing aromaticity down to non-aromatic character. Among the benzene derivatives investigated, a significant decrease in aromaticity can be related to compounds with diamino and dinitro groups in the meta position.
Methane production from coal by a single methanogen
NASA Astrophysics Data System (ADS)
Sakata, S.; Mayumi, D.; Mochimaru, H.; Tamaki, H.; Yamamoto, K.; Yoshioka, H.; Suzuki, Y.; Kamagata, Y.
2017-12-01
Previous geochemical studies indicate that biogenic methane greatly contributes to the formation of coalbed methane (CBM). It is unclear, however, what part of coal is used for the methane production and what types of microbes mediate the process. Here we hypothesized that methylotrophic methanogens use methoxylated aromatic compounds (MACs) derived from lignin. We incubated 11 species of methanogens belonging to order Methanosarcinales with 7 types of MACs. Two strains of methanogens, i.e., Methermicoccus shengliensis AmaM and ZC-1, produced methane from the MACs. In fact, these methanogens used over 30 types of commercially available MACs in addition to methanol and methylamines. To date, it is widely believed that methanogens use very limited number of small compounds such as hydrogen plus carbon dioxide, acetate, and methanol, and only three methanogenic pathways are recognized accordingly. Here, in contrast, two Methermicoccus strains used many types of MACs. We therefore propose this "methoxydotrophic" process as the fourth methanogenic pathway. Incubation of AmaM with 2-methoxybenzoate resulted in methanogenesis associated with the stoichiometric production of 2-hydroxybenzoate. Incubation with 2-methoxy-[7-13C] benzoate and with [13C] bicarbonate indicated that two thirds of methane carbon derived from the methoxy group and one third from CO2. Furthermore, incubation with [2-13C] acetate resulted in significant increases of 13C in both methane and CO2. These results suggest the occurrence of O-demethylation, CO2 reduction and acetyl-CoA metabolism in the methoxydotrophic methanogenesis. Furthermore, incubation of AmaM with lignite, subbituminous or bituminous coals in the bicarbonate-buffered media revealed that AmaM produced methane directly from coals via the methoxydotrophic pathway. Although 4 types of MACs were detected in the coal media in addition to methanol and methylamines, their total concentrations were too low to account for the methane production, suggesting that AmaM produced methane from MACs in the media not analyzed this time and/or MACs bound to the coal surface. In conclusion, the contribution of methoxydotrophic methanogenesis may be important not only to the formation of CBM but also to the global carbon cycle.
Antiplasmodial dimeric chalcone derivatives from the roots of Uvaria siamensis.
Salae, Abdul-Wahab; Chairerk, Orapan; Sukkoet, Piyanut; Chairat, Therdsak; Prawat, Uma; Tuntiwachwuttikul, Pittaya; Chalermglin, Piya; Ruchirawat, Somsak
2017-03-01
Four dimeric chalcone derivatives, 8″,9″-dihydrowelwitschin H, uvarins A-C, a naphthalene derivative, 2-hydroxy-3-methoxy-6-(4'- hydroxyphenyl)naphthalene, and the known dimeric chalcones, dependensin and welwitschin E, flavonoids, a cyclohexane oxide derivative, an aromatic aldehyde were isolated from the roots of Uvaria siamensis (Annonaceae). The structures of the compounds were elucidated by spectroscopic analysis, as well as by comparison with literature data. The isolated compounds with a sufficient amount for biological assays were evaluated for their antimalarial, antimycobacterial, and cytotoxic activities. The dimeric chalcones 8″,9″-dihydrowelwitschin H, uvarins B and C, dependensin and welwitschin E showed strong antiplasmodial activity with IC 50 values of 3.10, 3.02, 3.09, 4.21 and 3.99 μg/mL, respectively. A possible biosynthesis pathway of the dimeric chalcones is discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chintareddy, Venkat Reddy; Ellern, Arkady; Verkade, John G
2010-11-05
The bicyclic triaminophosphine P(RNCH(2)CH(2))(3)N (R = i-Bu, 1c) serves as an effective promoter for the room-temperature stereoselective synthesis of α,β-unsaturated esters, fluorides, and nitriles from a wide array of aromatic, aliphatic, heterocyclic, and cyclic aldehydes and ketones, using a range of Wadsworth-Emmons (WE) phosphonates. Among the analogues of 1c [R = Me (1a), i-Pr (1b), Bn (1d)], 1a and 1b performed well, although longer reaction times were involved, and 1d led to poorer yields than 1c. Functionalities such as cyano, chloro, bromo, methoxy, amino, ester, and nitro were well tolerated. We were able to isolate and characterize (by X-ray means; see above) the reactive WE intermediate species formed from 2b and 1c.
Kibdelones: novel anticancer polyketides from a rare Australian actinomycete.
Ratnayake, Ranjala; Lacey, Ernest; Tennant, Shaun; Gill, Jennifer H; Capon, Robert J
2007-01-01
The kibdelones are a novel family of bioactive heterocyclic polyketides produced by a rare soil actinomycete, Kibdelosporangium sp. (MST-108465). Complete relative stereostructures were assigned to kibdelones A-C (1-3), kibdelone B rhamnoside (5), 13-oxokibdelone A (7), and 25-methoxy-24-oxokibdelone C (8) on the basis of detailed spectroscopic analysis and chemical interconversion, as well as mechanistic and biosynthetic considerations. Under mild conditions, kibdelones B (2) and C (3) undergo a facile equilibration to kibdelones A-C (1-3), while kibdelone B rhamnoside (5) equilibrates to a mixture of kibdelone A-C rhamnosides (4-6). A plausible mechanism for this equilibration is proposed and involves air oxidation, quinone/hydroquinone redox transformations, and a choreographed sequence of keto/enol tautomerizations that aromatize ring C via a quinone methide intermediate. Kibdelones exhibit potent and selective cytotoxicity against a panel of human tumor cell lines and display significant antibacterial and nematocidal activity.
Yang, Xiao-Long; Zhang, Su; Hu, Qiong-Bo; Luo, Du-Qiang; Zhang, Yan
2011-11-01
Three new phthalide derivatives (1-3) named 5-(3'-methyl-2'-butenyl)-2-hydroxy-3-methoxy-4-methylbenzoic acid (1), 5-(3'-carboxyl-3'-methyl-2E-allyloxy)-3-methoxy-4-methylphthalide (2) and 5-(3',3'-dimethylallyloxy)-2-methoxycarbonyl-3-methoxy-4-methylbenzoic acid (3) together with six known phthalide derivatives named 5-(3',3'-dimethylallyloxy)-3-methoxy-4-methylphthalide (4), zinnimidine (5), 5-(3',3'-dimethylallyloxy)-3-methoxy-4-methylphthalide (6), 5-(3',3'-dimethylallyloxy)-3-methoxy-4-methylphthalic acid (7), zinniol anhydride (8) and porriolide (9) were isolated from the liquid culture of the plant endophytic fungus Pestalotiopsis photiniae isolated from the Chinese Podocarpaceae plant Podocarpus macrophyllus. Their structures were elucidated by extensive spectroscopic analysis. Compounds 1-9 displayed significant antifungal activities against three plant pathogens.
Thaxton-Weissenfluh, Amber; Belal, Tarek S; DeRuiter, Jack; Smith, Forrest; Abiedalla, Younis; Neel, Logan; Abdel-Hay, Karim M; Clark, C Randall
2018-06-16
The indole ring regioisomeric methoxy-1-n-pentyl-3-(1-naphthoyl)-indoles represent indole ring-substituted analogs of the synthetic cannabinoid JWH-018. The electron ionization mass spectra show equivalent regioisomeric major fragments resulting from cleavage of the groups attached to the central indole nucleus. The characteristic (M-17)+ fragment ion at m/z 354 resulting from the loss of OH group is significant in the mass spectra of all four compounds. Fragmentation of the naphthoyl and/or pentyl groups yields the cations at m/z 314, 300, 244 and 216. The vapor-phase infrared spectra provide a number of characteristic absorption bands to identify the individual isomers. Gas chromatographic separations on a capillary column containing a film of trifluoropropylmethyl polysiloxane (Rtx-200) provided excellent resolution of these compounds, their precursor indoles and intermediate pentylindoles. The elution order appears related to the degree of crowding of indole ring substituents.
NASA Technical Reports Server (NTRS)
Otterson, D. A.; Seng, G. T.
1985-01-01
An high performance liquid chromatography (HPLC) method to estimate four aromatic classes in middistillate fuels is presented. Average refractive indices are used in a correlation to obtain the concentrations of each of the aromatic classes from HPLC data. The aromatic class concentrations can be obtained in about 15 min when the concentration of the aromatic group is known. Seven fuels with a wide range of compositions were used to test the method. Relative errors in the concentration of the two major aromatic classes were not over 10 percent. Absolute errors of the minor classes were all less than 0.3 percent. The data show that errors in group-type analyses using sulfuric acid derived standards are greater for fuels containing high concentrations of polycyclic aromatics. Corrections are based on the change in refractive index of the aromatic fraction which can occur when sulfuric acid and the fuel react. These corrections improved both the precision and the accuracy of the group-type results.
Tan, Daoyong; Yuan, Peng; Annabi-Bergaya, Faïza; Liu, Dong; He, Hongping
2015-01-01
Methoxy-modified kaolinite was used as a novel carrier for loading and release of the herbicide 3-amino-1,2,4-triazole, known as amitrole (abbreviated here as AMT). The methoxy modification made the interlayer space of the kaolinite available for AMT intercalation. The AMT loading content in methoxy-modified kaolinite reached up to 20.8 mass% (twice the loading content by unmodified kaolinite). About 48% of this amount is located in the interlayer space. The release profiles of the AMT fit with the modified Korsmeyer-Peppas model. Due to the diffusional restriction of the intercalated AMT by the lamellar structure of the kaolinite and the strong electrostatic attraction between the intercalated AMT and the kaolinite, a slow release of AMT from the methoxy-modified kaolinite was achieved. These results show that the methoxy-modification is a facile method to make the interlayer space of kaolinite available for hosting other guest molecules. The methoxy-modified kaolinite is a promising candidate for high-capacity loading and controlled-release of other molecules such as drugs, agrochemicals, and biochemicals. PMID:25747124
NASA Astrophysics Data System (ADS)
Tan, Daoyong; Yuan, Peng; Annabi-Bergaya, Faïza; Liu, Dong; He, Hongping
2015-03-01
Methoxy-modified kaolinite was used as a novel carrier for loading and release of the herbicide 3-amino-1,2,4-triazole, known as amitrole (abbreviated here as AMT). The methoxy modification made the interlayer space of the kaolinite available for AMT intercalation. The AMT loading content in methoxy-modified kaolinite reached up to 20.8 mass% (twice the loading content by unmodified kaolinite). About 48% of this amount is located in the interlayer space. The release profiles of the AMT fit with the modified Korsmeyer-Peppas model. Due to the diffusional restriction of the intercalated AMT by the lamellar structure of the kaolinite and the strong electrostatic attraction between the intercalated AMT and the kaolinite, a slow release of AMT from the methoxy-modified kaolinite was achieved. These results show that the methoxy-modification is a facile method to make the interlayer space of kaolinite available for hosting other guest molecules. The methoxy-modified kaolinite is a promising candidate for high-capacity loading and controlled-release of other molecules such as drugs, agrochemicals, and biochemicals.
Methyl substituted polyimides containing carbonyl and ether connecting groups
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Havens, Stephen J. (Inventor)
1992-01-01
Polyimides were prepared from the reaction of aromatic dianhydrides with novel aromatic diamines having carbonyl and ether groups connecting aromatic rings containing pendant methyl groups. The methyl substituent polyimides exhibit good solubility and form tough, strong films. Upon exposure to ultraviolet irradiation and/or heat, the methyl substituted polyimides crosslink to become insoluble.
New insights into the origin of perylene in geological samples
NASA Astrophysics Data System (ADS)
Grice, Kliti; Lu, Hong; Atahan, Pia; Asif, Muhammad; Hallmann, Christian; Greenwood, Paul; Maslen, Ercin; Tulipani, Svenja; Williford, Kenneth; Dodson, John
2009-11-01
The origin of the polycyclic aromatic hydrocarbon (PAH) perylene in sediments and petroleum has been a matter of continued debate. Reported to occur in Phanerozoic organic matter (OM), fossil crinoids and tropical termite mounds, its mechanism of formation remains unclear. While a combustion source can be excluded, structural similarities to perylene quinone-like components present in e.g. fungi, plants, crinoids and insects, potentially suggest a product-precursor relationship. Here, we report perylene concentrations, 13C/ 12C, and D/H ratios from a Holocene sediment profile from the Qingpu trench, Yangtze Delta region, China. Perylene concentrations differ from those of pyrogenic PAHs, and rise to prominence in a stratigraphic interval that was dominated by woody vegetation as determined by palynology including fungal spores. In this zone, perylene concentrations exhibit an inverse relationship to the lignin marker guaiacol, D/H ratios between -284‰ and -317‰, similar to the methoxy groups in lignin, as well as co-variation with spores from wood-degrading fungi. 13C/ 12C of perylene differs from that of land plant wax alkanes and falls in the fractionation range expected for saprophytic fungi that utilise lignin, which is isotopically lighter than cellulose and whole wood. During progressive lignin degradation, the relative carbon isotopic ratio of the perylene decreases. We therefore hypothesise a relationship of perylene to the activity of wood-degrading fungi. To support our hypothesis, we analysed a wide range of Phanerozoic sediments and oils, and found perylene to generally be present in subordinate amounts before the evolutionary rise of vascular plants, and to be generally absent from marine-sourced oils, few exceptions being attributed perhaps to a contribution of marine and/or terrestrial-derived fungi, anoxia (especially under marine conditions) and/or contamination of core material by fungi. A series of low-molecular-weight aromatic quinones bearing the perylene-backbone were detected in Devonian and Cretaceous sediments, potentially representing precursor components to perylene.
Peculiarity of methoxy group-substituted phenylhydrazones in Fischer indole synthesis
MURAKAMI, Yasuoki
2012-01-01
We found that the Fischer indole synthesis of ethyl pyruvate 2-methoxyphenylhydrazone (5) with HCl/EtOH gave an abnormal product, ethyl 6-chloroindole-2-carboxylate (7), as the main product, with a smaller amount of ethyl 7-methoxyindole-2-carboxylate (6) as the normal product. This abnormal reaction was the result of a cyclization on the side with the substituent (methoxy group) of a benzene ring on phenylhydrazone, which was not previously observed. In this initial investigation, we focused on 1) the application of the above-mentioned abnormal Fischer indole synthesis, 2) the details of this reaction of phenylhydrazone with other kinds of substituents, 3) the mechanism of the first step of the Fischer indole synthesis, 4) the abnormal reaction in methoxydiphenylhydrazones, and 5) a synthetic device to avoid an abnormal reaction. The results of these studies are summarized herein. PMID:22241067
Biochemical diagnosis of phaeochromocytoma: two instructive case reports.
Stewart, M F; Reed, P; Weinkove, C; Moriarty, K J; Ralston, A J
1993-01-01
The biochemical features of two patients with phaeochromocytomas illustrate the inadvisability of depending on a single group of analytes for the diagnosis. The first case presented as a surgical emergency with retroperitoneal haemorrhage. Biochemical diagnosis was difficult since total 24 hour urinary free catecholamine excretion was within normal limits in two out of three samples, and only marginally raised in the third with an atypical preponderance of adrenaline. Plasma catecholamine concentrations were also normal. But urinary excretion of the catecholamine metabolites, metadrenaline and 4-hydroxy-3-methoxy mandelic acid (HMMA), was consistently raised. In contrast, the second patient presenting with headache and labile hypertension showed normal metabolite excretion in the face of grossly increased free noradrenaline excretion and raised plasma noradrenaline concentrations. It is therefore recommend that, as well as urinary free catecholamines, one group of their main metabolites, the 3-methoxy amines (normetadrenaline and metadrenaline) or HMMA, should routinely be measured whenever a phaeochromocytoma is suspected. PMID:8463426
Anti-inflammatory drugs interacting with Zn(II), Cd(II) and Pt(II) metal ions.
Dendrinou-Samara, C; Tsotsou, G; Ekateriniadou, L V; Kortsaris, A H; Raptopoulou, C P; Terzis, A; Kyriakidis, D A; Kessissoglou, D P
1998-09-01
Complexes of Zn(II), Cd(II) and Pt(II) metal ions with the anti-inflammatory drugs, 1-methyl-5-(p-toluoyl)-1H-pyrrole-2-acetic acid (Tolmetin), alpha-methyl-4-(2-methylpropyl)benzeneacetic acid (Ibuprofen), 6-methoxy-alpha-methylnaphthalene-2-acetic acid (Naproxen) and 1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indole-3-acetic acid (indomethacin) have been synthesized and characterized. In the structurally characterized Cd(naproxen)2 complex the anti-inflammatory drugs acts as bidentate chelate ligand coordinatively bound to metal ions through the deprotonated carboxylate group. Crystal data for 1: [C32H26O8Cd], orthorhombic, space group P22(1)2(1), a = 5.693(2) (A), b = 8.760(3) (A), c = 30.74(1) (A), V = 1533(1) A3, Z = 2. Antibacterial and growth inhibitory activity is higher than that of the parent ligands or the platinum(II) diamine compounds.
Melatonin and its precursors scavenge nitric oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noda, Y.; Mori, A.; Liburdy, R.
Nitric oxide (NO) scavenging activity of melatonin, N-acetyl-5-hydroxytryptamine, serotonin, 5-hydroxytryptophan and L-tryptophan was examined by the Griess reaction using flow injection analysis. 1-Hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene(NOC-7) was used as NO generator. The Griess reagent stoichiometrically reacts with NO2-, which was converted by a cadmium-copper reduction column from the stable end products of NO oxidation. Except for tryptophan, all the compounds examined scavenged NO in a dose-dependent manner. Melatonin, which has a methoxy group in the 5-position and an acetyl side chain, exhibited the most potent scavenging activity among the compounds tested. Serotonin, N-acetyl-5-hydroxytryptamine, and 5-hydroxytryptophan, respectively, showed moderate scavenging activity compared to melatonin.more » Tryptophan, which has neither a methoxy nor a hydroxyl group in the 5-position, exhibited the least NO scavenging activity.« less
NASA Astrophysics Data System (ADS)
Hijas, K. M.; Madan Kumar, S.; Byrappa, K.; Geethakrishnan, T.; Jeyaram, S.; Nagalakshmi, R.
2018-03-01
Single crystals of 2-methoxy-4(phenyliminomethyl)phenol were grown from ethanol by slow evaporation solution growth technique. Single crystal X-ray diffraction experiment reveals the crystallization in orthorhombic system having non-centrosymmetric space group C2221. Geometrical optimization by density functional theory method was carried out using Gaussian program and compared with experimental results. Detailed experimental and theoretical vibrational analyses were carried out and the results were correlated to find close agreement. Thermal analyses show the material is thermally stable with a melting point of 159 °C. Natural bond orbital analysis was carried out to explain charge transfer interactions through hydrogen bonding. Relatively smaller HOMO-LUMO band gap favors the non linear optical activity of the molecule. Natural population analysis and molecular electrostatic potential calculations visualize the charge distribution in an isolated molecule. Calculated first-order molecular hyperpolarizability and preliminary second harmonic generation test carried out using Kurtz-Perry technique establish 2-methoxy-4(phenyliminomethyl)phenol crystal as a good non linear optical material. Z-scan proposes the material for reverse saturable absorption.
Talamas, Francisco X.; Abbot, Sarah C.; Anand, Shalini; Brameld, Ken A.; Carter, David S.; Chen, Jun; Davis, Dana; de Vicente, Javier; Fung, Amy D.; Gong, Leyi; Harris, Seth F.; Inbar, Petra; Labadie, Sharada S.; Lee, Eun K.; Lemoine, Remy; Le Pogam, Sophie; Leveque, Vincent; Li, Jim; McIntosh, Joel; Nájera, Isabel; Park, Jaehyeon; Railkar, Aruna; Rajyaguru, Sonal; Sangi, Michael; Schoenfeld, Ryan C.; Staben, Leanna R.; Tan, Yunchou; Taygerly, Joshua P.; Villaseñor, Armando G.; Weller, Paul E.
2013-01-01
In the last few years, there have been many advances in the efforts to cure patients with hepatitis C virus (HCV). The ultimate goal of these efforts is to develop a combination therapy consisting of only direct-antiviral agents (DAA). In this paper, we discuss our efforts that led to the identification of a bicyclic template with potent activity against the NS5B polymerase, a critical enzyme on the life cycle of HCV. Continuing our exploration to improve the stilbene series, the 3,5,6,8-tetrasubstituted quinoline core was identified as replacement of the stilbene moiety. 6-Methoxy-2(1H)-pyridone was identified among several heterocyclic head groups to have the best potency. Solubility of the template was improved by replacing a planar aryl linker with a saturated pyrrolidine. Profiling of the most promising compounds led to the identification of quinoline 41 (RG7109) which was selected for advancement to clinical development. PMID:24195700
Methoxy-Directed Aryl-to-Aryl 1,3-Rhodium Migration
Zhang, Jing; Liu, Jun-Feng; Ugrinov, Angel; Pillai, Anthony F. X.; Sun, Zhong-Ming; Zhao, Pinjing
2015-01-01
Through-space metal/hydrogen shift is an important strategy for transition metal-catalyzed C-H bond activation. Here we describe the synthesis and characterization of a Rh(I) 2,6-dimethoxybenzoate complex that underwent stoichiometric rearrangement via a highly unusual 1,3- rhodium migration. This aryl-to-aryl 1,3-Rh/H shift was also demonstrated in a Rh(I)-catalyzed decarboxylative conjugate addition to form a C-C bond at a meta position instead of the ipso-carboxyl position. A deuterium-labeling study under the conditions of Rh(I)-catalyzed protodecarboxylation revealed the involvement of an ortho-methoxy group in a multi-step pathway of consecutive sp3 and sp2 C-H bond activations. PMID:24171626
Belenguer-Sapiña, Carolina; Pellicer-Castell, Enric; El Haskouri, Jamal; Guillem, Carmen; Simó-Alfonso, Ernesto Francisco; Amorós, Pedro; Mauri-Aucejo, Adela
2018-08-17
Determination of organic pollutants in environmental samples presents great difficulties due to the lack of sensitivity and selectivity in many of the existing analytical methods. In this work, the efficiency of materials based on silica structures containing bounded γ-cyclodextrin has been evaluated to determinate phenolic compounds and polycyclic aromatic hydrocarbons in air and water samples, respectively, in comparison with materials made of β-cyclodextrin. According to the results obtained for the material characterization, the new γ-cyclodextrin solid phase does not apparently present any porosity when used in air samples, but it has been shown to work efficiently for the preconcentration of polycyclic aromatic hydrocarbons in water, with recoveries around 80%. In addition, the use of the β-cyclodextrin material for phenolic compounds sampling can be highlighted with recoveries between 83% and 95%, and recoveries for 4-vinylphenol and 2-methoxy-4-vinylphenol have been especially improved in comparison with the use of materials containing trapped β-cyclodextrin in our previous researches. The observed phenomena can be explained on the basis of the analyte molecules size and the diameter of the cyclodextrin cavities, the influence of the cyclodextrin type in the material structure as well as on the interactions taking place with the pollutants and the influence of the matrix type in the retention and desorption mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.
Solvent-free iodination of organic molecules using the I(2)/urea-H(2)O(2) reagent system.
Pavlinac, Jasminka; Zupan, Marko; Stavber, Stojan
2007-02-21
Introduction of iodine under solvent-free conditions into several aromatic compounds activated toward electrophilic functionalization was found to proceed efficiently using elemental iodine in the presence of a solid oxidizer, the urea-H(2)O(2) (UHP) adduct. Two types of iodo-functionalization through an electrophilic process were observed: iodination of an aromatic ring, and side-chain iodo-functionalization in the case of arylalkyl ketones. Two reaction routes were established based on the required substrate : iodine : oxidizer ratio for the most efficient iodo-transformation, and the role of UHP was elucidated in each route. The first, requiring a 1 : 0.5 : 0.6 stoichiometric ratio of substrate to iodine to UHP, followed the atom economy concept in regard to iodine and was valid in the case of aniline, 4-t-Bu-phenol, 1,2-dimethoxy benzene, 1,3-dimethoxy benzene, 1,2,3-trimethoxy benzene, 1,2,4-trimethoxy benzene, 1,3,5-trimethoxy benzene, 1-indanone and 1-tetralone. The second reaction route, where a 1 : 1 : 1 stoichiometric ratio of substrate : I(2) : UHP was needed for efficient iodination, was suitable for side-chain iodo-functionalization of acetophenone and methoxy-substituted acetophenones. Moreover, addition of iodine to 1-octene and some phenylacetylenic derivatives was found to proceed efficiently without the presence of any oxidizer and solvent at room temperature.
Lee, Y W; Jin, S; Sim, W S; Nester, E W
1995-01-01
The virulence (vir) genes of Agrobacterium tumefaciens are induced by low-molecular-weight phenolic compounds and monosaccharides through a two-component regulatory system consisting of the VirA and VirG proteins. However, it is not clear how the phenolic compounds are sensed by the VirA/VirG system. We tested the vir-inducing abilities of 15 different phenolic compounds using four wild-type strains of A. tumefaciens--KU12, C58, A6, and Bo542. We analyzed the relationship between structures of the phenolic compounds and levels of vir gene expression in these strains. In strain KU12, vir genes were not induced by phenolic compounds containing 4'-hydroxy, 3'-methoxy, and 5'-methoxy groups, such as acetosyringone, which strongly induced vir genes of the other three strains. On the other hand, vir genes of strain KU12 were induced by phenolic compounds containing only a 4'-hydroxy group, such as 4-hydroxyacetophenone, which did not induce vir genes of the other three strains. The vir genes of strains KU12, A6, and Bo542 were all induced by phenolic compounds containing 4'-hydroxy and 3'-methoxy groups, such as acetovanillone. By transferring different Ti plasmids into isogenic chromosomal backgrounds, we showed that the phenolic-sensing determinant is associated with Ti plasmid. Subcloning of Ti plasmid indicates that the virA locus determines which phenolic compounds can function as vir gene inducers. These results suggest that the VirA protein directly senses the phenolic compounds for vir gene activation. PMID:8618878
Pasti-Grigsby, M B; Paszczynski, A; Goszczynski, S; Crawford, D L; Crawford, R L
1992-01-01
Twenty-two azo dyes were used to study the influence of substituents on azo dye biodegradability and to explore the possibility of enhancing the biodegradabilities of azo dyes without affecting their properties as dyes by changing their chemical structures. Streptomyces spp. and Phanerochaete chrysosporium were used in the study. None of the actinomycetes (Streptomyces rochei A10, Streptomyces chromofuscus A11, Streptomyces diastaticus A12, S. diastaticus A13, and S. rochei A14) degraded the commercially available Acid Yellow 9. Decolorization of monosulfonated mono azo dye derivatives of azobenzene by the Streptomyces spp. was observed with five azo dyes having the common structural pattern of a hydroxy group in the para position relative to the azo linkage and at least one methoxy and/or one alkyl group in an ortho position relative to the hydroxy group. The fungus P. chrysosporium attacked Acid Yellow 9 to some extent and extensively decolorized several azo dyes. A different pattern was seen for three mono azo dye derivatives of naphthol. Streptomyces spp. decolorized Orange I but not Acid Orange 12 or Orange II. P. chrysosporium, though able to transform these three azo dyes, decolorized Acid Orange 12 and Orange II more effectively than Orange I. A correlation was observed between the rate of decolorization of dyes by Streptomyces spp. and the rate of oxidative decolorization of dyes by a commercial preparation of horseradish peroxidase type II, extracellular peroxidase preparations of S. chromofuscus A11, or Mn(II) peroxidase from P. chrysosporium. Ligninase of P. chrysosporium showed a dye specificity different from that of the other oxidative enzymes.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1482183
40 CFR Table 6 to Subpart Vvvv of... - Default Organic HAP Contents of Petroleum Solvent Groups
Code of Federal Regulations, 2010 CFR
2010-07-01
... Spirits 150 EC, Naphtha, Mixed Hydrocarbon, Aliphatic Hydrocarbon, Aliphatic Naptha, Naphthol Spirits... Aromatic Naphtha, Light Aromatic Hydrocarbons, Aromatic Hydrocarbons, Light Aromatic Solvent.) 6 4% Xylene...
The Rotational Spectrum and Conformational Structures of Methyl Valerate
NASA Astrophysics Data System (ADS)
Nguyen, Ha Vinh Lam; Stahl, Wolfgang
2015-06-01
Methyl valerate, C4H9COOCH3, belongs to the class of fruit esters, which play an important role in nature as odorants of different fruits, flowers, and wines. A sufficient explanation for the structure-odor relation of is not available. It is known that predicting the odor of a substance is not possible by knowing only its chemical formula. A typical example is the blueberry- or pine apple-like odor of ethyl isovalerate while its isomers ethyl valerate and isoamyl acetate smell like green apple and banana, respectively. Obviously, not only the composition but also the molecular structures are not negligible by determining the odor of a substance. Gas phase structures of fruit esters are thus important for a first step towards the determination of structure-odor relation since the sense of smell starts from gas phase molecules. For this purpose, a combination of microwave spectroscopy and quantum chemical calculations (QCCs) is an excellent tool. Small esters often have sufficient vapor pressure to be transferred easily in the gas phase for a rotational study but already contain a large number of atoms which makes them too big for classical structure determination by isotopic substitution and requires nowadays a comparison with the structures optimized by QCCs. On the other hand, the results from QCCs have to be validated by the experimental values. About the internal dynamics, the methoxy methyl group -COOCH3 of methyl acetate shows internal rotation with a barrier of 424.581(56) wn. A similar barrier height of 429.324(23) wn was found in methyl propionate, where the acetyl group is extended to the propionyl group. The investigation on methyl valerate fits well in this series of methyl alkynoates. In this talk, the structure of the most energetic favorable conformer as well as the internal rotation shown by the methoxy methyl group will be reported. It could be confirmed that the internal rotation barrier of the methoxy methyl group remains by longer alkyl chain.
Kim, Y; Yoo, Y-H; Kim, K-O; Park, J-B; Yoo, S-H
2008-06-01
After deesterification of commercial pectins with a pectin methyl esterase (PME), their gelling properties were characterized using instrumental texture analysis. The final degree of esterification (DE) of the high- and low-methoxy pectins reached approximately 6% after the PME treatment, while deesterification of low-methoxy amidated pectin stopped at 18% DE. Furthermore, DE of high-methoxy pectin was tailored to be 40%, which is equivalent to the DE of commercial low-methoxy pectin. As a result, significant changes in molecular weight (Mw) distribution were observed in the PME-treated pectins. The texture profile analysis showed that PME modification drastically increased hardness, gumminess, and chewiness, while decreasing cohesiveness and adhesiveness of the pectin gels (P < 0.05). The pectin gel with relatively high peak molecular weight (Mp, 3.5 x 10(5)) and low DE (6), which was produced from high-methoxy pectin, exhibited the greatest hardness, gumminess, chewiness, and resilience. The hardness of low-methoxy amidated pectin increased over 300% after PME deesterification, suggesting that the effects of amide substitution could be reinforced when DE is even lower. The partial least square regression analysis indicated that the Mw and DE of the pectin molecule are the most crucial factors for hardness, chewiness, gumminess, and resilience of gel matrix.
Polyimides with carbonyl and ether connecting groups between the aromatic rings
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Havens, Stephen J. (Inventor)
1992-01-01
New polyimides have been prepared from the reaction of aromatic dianhydrides with novel aromatic diamines containing carbonyl and ether connecting groups between the aromatic rings. Several of these polyimides are shown to be semi-crystalline as evidenced by wide angle x ray diffraction and differential scanning calorimetry. Most of the polyimides form tough solvent resistant films with high tensile properties. Several of these materials can be thermally processed to form solvent and base resistant moldings.
Peters, Martijn; Zaquen, Neomy; D'Olieslaeger, Lien; Bové, Hannelore; Vanderzande, Dirk; Hellings, Niels; Junkers, Thomas; Ethirajan, Anitha
2016-08-08
Conjugated polymers have attracted significant interest in the bioimaging field due to their excellent optical properties and biocompatibility. Tailor-made poly(p-phenylenevinylene) (PPV) conjugated polymer nanoparticles (NPs) are in here described. Two different nanoparticle systems using poly[2-methoxy-5-(3',7'-dimethoxyoctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and a functional statistical copolymer 2-(5'-methoxycarbonylpentyloxy)-5-methoxy-1,4-phenylenevinylene (CPM-MDMO-PPV), containing ester groups on the alkoxy side chains, were synthesized by combining miniemulsion and solvent evaporation processes. The hydrolysis of ester groups into carboxylic acid groups on the CPM-MDMO-PPV NPs surface allows for biomolecule conjugation. The NPs exhibited excellent optical properties with a high fluorescent brightness and photostability. The NPs were in vitro tested as potential fluorescent nanoprobes for studying cell populations within the central nervous system. The cell studies demonstrated biocompatibility and surface charge dependent cellular uptake of the NPs. This study highlights that PPV-derivative based particles are a promising bioimaging probe and can cater potential applications in the field of nanomedicine.
Li, Chunying; Lu, Zhicheng; Zhao, Chunjian; Yang, Lei; Fu, Yujie; Shi, Kunming; He, Xin; Li, Zhao; Zu, Yuangang
2015-01-01
We evaluated an ionic-liquid-based ultrasound/microwave-assisted extraction method for the extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from etiolated maize seedlings. We performed single-factor and central composite rotatable design experiments to optimize the most important parameters influencing this technique. The best results were obtained using 1.00 M 1-octyl-3-methylimidazolium bromide as the extraction solvent, a 50°C extraction temperature, a 20:1 liquid/solid ratio (mL/g), a 21 min treatment time, 590 W microwave power, and 50 W fixed ultrasonic power. We performed a comparison between ionic-liquid-based ultrasound/microwave-assisted extraction and conventional homogenized extraction. Extraction yields of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one by the ionic-liquid-based ultrasound/microwave-assisted extraction method were 1.392 ± 0.051 and 0.205 ± 0.008 mg/g, respectively, which were correspondingly 1.46- and 1.32-fold higher than those obtained by conventional homogenized extraction. All the results show that the ionic-liquid-based ultrasound/microwave-assisted extraction method is therefore an efficient and credible method for the extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from maize seedlings. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phase Behavior of Pyrene and Vinyl Polymers with Aromatic Side Groups
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kangovi, Gagan N.; Lee, Sangwoo
The phase behavior and thermodynamic properties of mixtures of pyrene and model vinyl polymers with and without aromatic side groups are investigated using differential scanning calorimetry (DSC) measurements. The melting temperature and associated heat of melting of the pyrene crystals in the mixtures are utilized to extract the effective interaction parameters χ and the composition of polymer-rich phases, respectively. The χ of pyrene mixed with polymers with aromatic side groups investigated in this study, polystyrene, poly(2-vinylpyridine), and poly(3-vinylanisole), is less than 0.5 at the melting point of the pyrene crystals, suggesting that pyrene and the polymers with aromatic sides groupsmore » are enthalpically compatible, likely due to aromatic π–π interactions. In contrast, the χ of pyrene mixed with poly(1,4-isoprene) or poly(ethylene-alt-propylene) is larger than 0.5. The DSC measurements also enable characterization of the composition of polymer-rich phases. Interestingly, the polymers with aromatic side groups are found to have more pronounced miscibility with pyrene at symmetric compositions.« less
Bacterial Degradation of Aromatic Compounds
Seo, Jong-Su; Keum, Young-Soo; Li, Qing X.
2009-01-01
Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms. PMID:19440284
Key, Katherine C; Sublette, Kerry L; Duncan, Kathleen; Mackay, Douglas M; Scow, Kate M; Ogles, Dora
2013-01-01
Although the anaerobic biodegradation of methyl tert -butyl ether (MTBE) and tert -butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with 13 C 5 -MTBE, 13 C 1 -MTBE (only methoxy carbon labeled), or 13 C 4 -TBA. 13 C-DNA and 12 C-DNA extracted from the Bio-Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert -butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13 C-labeled MTBE and TBA in situ and the 13 C was incorporated into their DNA. Several sequences related to known MTBE- and TBA-degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three 13 C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate-reducing bacteria and iron-reducers, such as Geobacter and Geothrix , were only detected in the clone libraries where MTBE and TBA were fully labeled with 13 C, suggesting that they were involved in processing carbon from the tert -butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13 C. It is likely that members of this genus were secondary degraders cross-feeding on 13 C-labeled metabolites such as acetate.
Key, Katherine C.; Sublette, Kerry L.; Duncan, Kathleen; Mackay, Douglas M.; Scow, Kate M.; Ogles, Dora
2014-01-01
Although the anaerobic biodegradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with 13C5-MTBE, 13C1-MTBE (only methoxy carbon labeled), or13C4-TBA. 13C-DNA and 12C-DNA extracted from the Bio-Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert-butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13C-labeled MTBE and TBA in situ and the 13C was incorporated into their DNA. Several sequences related to known MTBE- and TBA-degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three13C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate-reducing bacteria and iron-reducers, such as Geobacter and Geothrix, were only detected in the clone libraries where MTBE and TBA were fully labeled with 13C, suggesting that they were involved in processing carbon from the tert-butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13C. It is likely that members of this genus were secondary degraders cross-feeding on 13C-labeled metabolites such as acetate. PMID:25525320
Rizk, Mary S; Shi, Xiaofeng; Platz, Matthew S
2006-01-17
The reactive 1,2-didehydroazepine (cyclic ketenimine) intermediates produced upon photolysis of phenyl azide, 3-hydroxyphenyl azide, 3-methoxyphenyl azide, and 3-nitrophenyl azide in water and in HEPES buffer were studied by laser flash photolysis techniques with UV-vis detection of the transient intermediates. The lifetimes of the 1,2-didehydroazepines were obtained along with the absolute rate constants of their reactions with typical amino acids, nucleosides, and other simple reagents present in a biochemical milieu. The nitro substituent greatly accelerates the bimolecular reactions of the cyclic ketenimines, and the 3-methoxy group greatly decelerates the absolute reactivity of 1,2-didehydroazepines. The intermediate produced by photolysis of 3-hydroxyphenyl azide is much more reactive than the intermediate produced by photolysis of 3-methoxyphenyl azide. We propose that the hydroxyl-substituted 1,2-didehydoazepines rapidly (<10 micros) tautomerize in water to form azepinones and much more rapidly than the corresponding 3-methoxy-substituted cyclic ketenimines undergo hydrolysis. Azepinones react more rapidly with nucleophiles than do methoxy-substituted 1,2-didehydroazepines and are the active species present upon the photolysis of 3-hydroxyphenyl azide in aqueous solution.
NASA Astrophysics Data System (ADS)
Gür, Mahmut; Muğlu, Halit; Çavuş, M. Serdar; Güder, Aytaç; Sayıner, Hakan S.; Kandemirli, Fatma
2017-04-01
A series of 1,3,4-thiadiazole derivatives including 2- and 3-methoxy cinnamic acids were synthesized, and their structures were elucidated by the UV, IR, 1H NMR, 13C NMR spectroscopies and elemental analysis. The UV and IR calculations of the molecules were performed by using B3LYP, HF and MP2 methods with selected 6-311++G(2d,2p), 6-311++G(3df,3pd) and cc-pvtz basis sets. Dipole moment, polarizability, chemical hardness/softness and electronegativity were also calculated and analyzed. Experimental FT-IR spectra and UV-Vis spectrum of the compounds were compared with theoretical data. Furthermore, antioxidant activities of the compounds were practised via different test methods such as 2,2-diphenyl-1-picryl-hydrazyl (DPPHrad), N,N-dimethyl-p-phenylenediamine (DMPDrad +), and 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTSrad +) scavenging activity assays. When compared with standards (BHA-Butylated hydroxyanisole, RUT-Rutin, and TRO-Trolox), it was observed that especially XIII and XIV which include methoxy groups at the o- and m-positions, respectively, had effective activities.
Samant, Manoj P; Hong, Doley J; Croston, Glenn; Rivier, Catherine; Rivier, Jean
2006-06-15
Novel degarelix (Fe200486) analogues were screened for antagonism of GnRH-induced response (IC(50)) in a reporter gene assay. Inhibition of luteinizing hormone release over time was measured in the castrated male rat. N(omega)-Hydroxy- and N(omega)-methoxy-carbamoylation of Dab and Dap at position 3 (3-6), and N(omega)-hydroxy-,N(omega)-methoxy-carbamoylation and pegylation of 4Aph at positions 5 and 6 (7-10, 15-17, 22-25) were carried out. Modulation of hydrophobicity was achieved using different acylating groups at the N-terminus (11-14, 18-21, 26-28). Analogues 8, 15-17, 22, and 23 were equipotent to acyline (IC(50) = 0.69 nM) and degarelix (IC(50) = 0.58 nM) in vitro. Analogues 7, 17, and 23 were shorter acting than acyline, when 9, 11, 13, 15, 16, and 22 were longer acting. Only 9 and 14 were inactive at releasing histamine. No analogue exhibited a duration of action comparable to that of degarelix. Analogues with shorter and longer retention times on HPLC (a measure of hydrophilicity) than degarelix were identified.
Anchoring energy of photo-sensitive polyimide alignment film containing methoxy cinnamate
NASA Astrophysics Data System (ADS)
Kim, Suyoung; Shin, Sung Eui; Shin, DongMyung
2010-02-01
Photosensitive polyimide containing 2-methoxy cinnamate was synthesized for photo-alignment layer of liquid crystals (LCs). 2-Methoxy cinnamic acid was confirmed photo-sensitive material by linearly polarized UV light. We studied that effect of polarized UV light on rubbed polyimide film. Anchoring energy of liquid crystal with aligning surface was measured. Irradiation of depolarized UV light on rubbed Polyimide film suppressed effective anchoring energy. Linearly polarized UV light on rubbed polyimide film controlled anchoring energy effectively. Polyimide film containing 2-methoxy cinnamate can control the photo-alignment layer easily due to its photo-sensitivity.
Carballeira, N M; Emiliano, A; Hernández-Alonso, N; González, F A
1998-12-01
The total synthesis of the naturally occurring (Z)-2-methoxy-5-hexadecenoic acid and (Z)-2-methoxy-6-hexadecenoic acid was accomplished using as a key step Mukaiyama's trimethylsilyl cyanide addition to 4- and 5-pentadecenal, respectively. These syntheses further confirm the structures of the natural marine fatty acids and corroborate their cis double-bond stereochemistry. The title compounds were antimicrobial against the Gram-positive bacteria Staphylococcus aureus (MIC 0.35 micromol/mL) and Streptococcus faecalis (MIC 0.35 micromol/mL).
Gung, Benjamin W; Zou, Yan; Xu, Zhigang; Amicangelo, Jay C; Irwin, Daniel G; Ma, Shengqian; Zhou, Hong-Cai
2008-01-18
Current models describe aromatic rings as polar groups based on the fact that benzene and hexafluorobenzene are known to have large and permanent quadrupole moments. This report describes a quantitative study of the interactions between oxygen lone pair and aromatic rings. We found that even electron-rich aromatic rings and oxygen lone pairs exhibit attractive interactions. Free energies of interactions are determined using the triptycene scaffold and the equilibrium constants were determined by low-temperature 1H NMR spectroscopy. An X-ray structure analysis for one of the model compounds confirms the close proximity between the oxygen and the center of the aromatic ring. Theoretical calculations at the MP2/aug-cc-pVTZ level corroborate the experimental results. The origin of attractive interactions was explored by using aromatic rings with a wide range of substituents. The interactions between an oxygen lone pair and an aromatic ring are attractive at van der Waals' distance even with electron-donating substituents. Electron-withdrawing groups increase the strength of the attractive interactions. The results from this study can be only partly rationalized by using the current models of aromatic system. Electrostatic-based models are consistent with the fact that stronger electron-withdrawing groups lead to stronger attractions, but fail to predict or rationalize the fact that weak attractions even exist between electron-rich arenes and oxygen lone pairs. The conclusion from this study is that aromatic rings cannot be treated as a simple quadrupolar functional group at van der Waals' distance. Dispersion forces and local dipole should also be considered.
Michely, Julian A; Helfer, Andreas G; Brandt, Simon D; Meyer, Markus R; Maurer, Hans H
2015-10-01
N,N-Diallyltryptamine (DALT) and 5-methoxy-DALT (5-MeO-DALT) are synthetic tryptamine derivatives commonly referred to as so-called new psychoactive substances (NPS). They have psychoactive effects that may be similar to those of other tryptamine derivatives. The objectives of this work were to study the metabolic fate and detectability, in urine, of DALT and 5-MeO-DALT. For metabolism studies, rat urine obtained after high-dose administration was prepared by precipitation and analyzed by liquid chromatography-high-resolution mass spectrometry (LC-HR-MS-MS). On the basis of the metabolites identified, several aromatic and aliphatic hydroxylations, N-dealkylation, N-oxidation, and combinations thereof are proposed as the main metabolic pathways for both compounds. O-Demethylation of 5-MeO-DALT was also observed, in addition to extensive glucuronidation or sulfation of both compounds after phase I transformation. The cytochrome P450 (CYP) isoenzymes predominantly involved in DALT metabolism were CYP2C19, CYP2D6, and CYP3A4; those mainly involved in 5-MeO-DALT metabolism were CYP1A2, CYP2C19, CYP2D6, and CYP3A4. For detectability studies, rat urine was screened by GC-MS, LC-MS(n), and LC-HR-MS-MS after administration of low doses. LC-MS(n) and LC-HR-MS-MS were deemed suitable for monitoring consumption of both compounds. The most abundant targets were a ring hydroxy metabolite of DALT, the N,O-bis-dealkyl metabolite of 5-MeO-DALT, and their glucuronides. GC-MS enabled screening of DALT by use of its main metabolites only.
NASA Astrophysics Data System (ADS)
Sudharsana, N.; Krishnakumar, V.; Nagalakshmi, R.
2016-10-01
A 3-methoxy-4-hydroxybenzaldehyde-2,4,6-trinitrophenol (mhba-tnp) cocrystal was grown by the slow evaporation solution growth technique using ethanol as a solvent. As-grown crystals were characterized by single crystal X-ray diffraction (XRD) study and crystallized with a centrosymmetric space group. Optical properties of the grown crystal have been studied by Ultraviolet-Visible (UV-Vis) absorption spectra in the range from 200 to 800nm and the band gap energy of the crystal was obtained as 2.8eV. Fourier transform infrared (FTIR) and micro Raman spectral analyses have been carried out to confirm the functional groups present in the title compound. Differential scanning calorimetry (DSC) and polarized light thermomicroscopy (PLTM) analyses were carried out to find the melting point. In addition, the optimized geometric parameters and the molecular orbitals were calculated using density functional theory (DFT) with the help of the Gaussian 03W software.
Wang, Xiaohong; Dong, Fugui; Miao, Caihong; Li, Wei; Wang, Min; Gao, Mingzhang; Zheng, Qi-Huang; Xu, Zhidong
2018-06-01
Carbon-11-labeled serotonin (5-hydroxytryptamine) 6 receptor (5-HT 6 R) antagonists, 1-[(2-bromophenyl)sulfonyl]-5-[ 11 C]methoxy-3-[(4-methyl-1-piperazinyl)methyl]-1H-indole (O-[ 11 C]2a) and 1-[(2-bromophenyl)sulfonyl]-5-methoxy-3-[(4-[ 11 C]methyl-1-piperazinyl)methyl]-1H-indole (N-[ 11 C]2a), 5-[ 11 C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1-(phenylsulfonyl)-1H-indole (O-[ 11 C]2b) and 5-methoxy-3-((4-[ 11 C]methylpiperazin-1-yl)methyl)-1-(phenylsulfonyl)-1H-indole (N-[ 11 C]2b), 1-((4-isopropylphenyl)sulfonyl)-5-[ 11 C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1H-indole (O-[ 11 C]2c) and 1-((4-isopropylphenyl)sulfonyl)-5-methoxy-3-((4-[ 11 C]methylpiperazin-1-yl)methyl)-1H-indole (N-[ 11 C]2c), 1-((4-fluorophenyl)sulfonyl)-5-[ 11 C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1H-indole (O-[ 11 C]2d) and 1-((4-fluorophenyl)sulfonyl)-5-methoxy-3-((4-[ 11 C]methylpiperazin-1-yl)methyl)-1H-indole (N-[ 11 C]2d), were prepared from their O- or N-desmethylated precursors with [ 11 C]CH 3 OTf through O- or N-[ 11 C]methylation and isolated by HPLC combined with SPE in 40-50% radiochemical yield, based on [ 11 C]CO 2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the molar activity (MA) at EOB was 370-740 GBq/μmol with a total synthesis time of ∼40-min from EOB. Copyright © 2018 Elsevier Ltd. All rights reserved.
Synthesis of methoxy-X04 derivatives and their evaluation in Alzheimer's disease pathology.
Boländer, Alexander; Kieser, Daniel; Scholz, Christoph; Heyny-von Haußen, Roland; Mall, Gerhard; Goetschy, Valérie; Czech, Christian; Schmidt, Boris
2014-01-01
Alzheimer's disease is characterized by two notorious protein aggregates in the brain: extracellular senile plaques mainly consisting of amyloid-β peptides and tau-protein-derived intracellular paired helical filaments. The diagnosis of Alzheimer's disease is impaired by insufficient sensitivity and specificity of diagnostic methods to visualize these pathological hallmarks over all disease stages. The established fluorescence marker methoxy-X04 stains plaques, tau tangles and amyloid-derived angiopathies with good specificity, yet it is limited by slow elimination in vivo. Since the need for new markers is high, we prepared methoxy-X04 derivatives and evaluated their potential as imaging agents in Alzheimer's disease pathology. In this study, we describe an improved synthesis for methoxy-X04 and its derivatives and their affinity determination for the respective protein targets by immunohistology and a displacement assay. This resulted in the identification of new derivatives of methoxy-X04 with improved binding affinity.
Amidation reaction of eugenyl oxyacetate ethyl ester with 1,3 diaminopropane
NASA Astrophysics Data System (ADS)
Suryanti, V.; Wibowo, F. R.; Kusumaningsih, T.; Wibowo, A. H.; Khumaidah, S. A.; Wijayanti, L. A.
2016-04-01
Eugenol having various substituents on the aromatic ring (hydroxy, methoxy and allyl) are useful for starting material in synthesizing of its derivatives. Eugenol derivatives have shown wide future potential applications in many areas, especially as future drugs against many diseases. The aim of this work was to synthesize an amide of eugenol derivative. The starting material used was eugenol from clove oil and the reaction was conducted in 3 step reactions to give the final product. Firstly, eugenol was converted into eugenyl oxyacetate [2-(4-allyl-2-methoxyphenoxy) acetic acid] as a white crystal with 70.5% yield, which was then esterified with ethanol to have eugenyl oxyacetate ethyl ester [ethyl 2-(4-allyl-2-methoxyphenoxy) acetate] as brown liquid in 75.7%. The last step was the reaction between eugenyl oxyacetate ethyl ester and 1,3 diaminopropane to give 2-(4-allyl-2-methoxyphenoxy)-N-(3-aminopropyl) acetamide as a brown powder with 71.6% yield, where the amidation reaction was occurred.
2005-01-01
Spectral and catalytic properties of the flavoenzyme AAO (aryl-alcohol oxidase) from Pleurotus eryngii were investigated using recombinant enzyme. Unlike most flavoprotein oxidases, AAO does not thermodynamically stabilize a flavin semiquinone radical and forms no sulphite adduct. AAO catalyses the oxidative dehydrogenation of a wide range of unsaturated primary alcohols with hydrogen peroxide production. This differentiates the enzyme from VAO (vanillyl-alcohol oxidase), which is specific for phenolic compounds. Moreover, AAO is optimally active in the pH range of 5–6, whereas VAO has an optimum at pH 10. Kinetic studies showed that AAO is most active with p-anisyl alcohol and 2,4-hexadien-1-ol. AAO converts m- and p-chlorinated benzyl alcohols at a similar rate as it does benzyl alcohol, but introduction of a p-methoxy substituent in benzyl alcohol increases the reaction rate approx. 5-fold. AAO also exhibits low activity on aromatic aldehydes. 19F NMR analysis showed that fluorinated benzaldehydes are converted into the corresponding benzoic acids. Inhibition studies revealed that the AAO active site can bind a wide range of aromatic ligands, chavicol (4-allylphenol) and p-anisic (4-methoxybenzoic) acid being the best competitive inhibitors. Uncompetitive inhibition was observed with 4-methoxybenzylamine. The properties described above render AAO a unique oxidase. The possible mechanism of AAO binding and oxidation of substrates is discussed in the light of the results of the inhibition and kinetic studies. PMID:15813702
Thomson, Paul F.; Parrish, Damon; Pradhan, Padmanava; Lakshman, Mahesh K.
2015-01-01
Palladium-catalyzed cross-coupling reactions of 2-bromobenzaldehyde and 6-bromo-2,3-dimethoxybenzaldehyde with 4-methyl-1-naphthaleneboronic acid and acenaphthene-5-boronic acid gave corresponding o-naphthyl benzaldehydes. Corey–Fuchs olefination followed by reaction with n-BuLi led to various 1-(2-ethynylphenyl)naphthalenes. Cycloisomerization of individual 1-(2-ethynylphenyl)naphthalenes to various benzo[c]phenanthrene (BcPh) analogues was accomplished smoothly with catalytic PtCl2 in PhMe. In the case of 4,5-dihydrobenzo[l]acephenanthrylene, oxidation with DDQ gave benzo[l]acephenanthrylene. The dimethoxy-substituted benzo[c]phenanthrenes were demethylated with BBr3 and oxidized to the ortho-quinones with PDC. Reduction of these quinones with NaBH4 in THF/EtOH in an oxygen atmosphere gave the respective dihydrodiols. Exposure of the dihydrodiols to N-bromoacetamide in THF-H2O led to bromohydrins that were cyclized with Amberlite IRA 400 HO− to yield the series 1 diol epoxides. Epoxidation of the dihydrodiols with mCPBA gave the isomeric series 2 diol epoxides. All of the hydrocarbons as well as the methoxy-substituted ones were crystallized and analyzed by X-ray crystallography, and these data are compared to other previously studied BcPh derivatives. The methodology described is highly modular and can be utilized for the synthesis of a wide variety of angularly fused polycyclic aromatic hydrocarbons and their putative metabolites and/or other derivatives. PMID:26196673
Xue, Jiadan; Luk, Hoi Ling; Eswaran, S. V.; Hadad, Christopher M.; Platz, Matthew S.
2012-01-01
The photochemistry of 4-methoxycarbonylphenyl azide (2a), 2-methoxycarbonylphenyl azide (3a) and 2-methoxy-6-methoxycarbonylphenyl azide (4a) were studied by ultrafast time-resolved infrared (IR) and UV-vis spectroscopies in solution. Singlet nitrenes and ketenimines were observed and characterized for all three azides. Isoxazole species 3g and 4g are generated after photolysis of 3a and 4a, respectively, in acetonitrile. Triplet nitrene 4e formation correlated with the decay of singlet nitrene 4b. The presence of water does not change the chemistry or kinetics of singlet nitrenes 2b and 3b, but leads to protonation of 4b to produce nitrenium ion 4f. Singlet nitrenes 2b and 3b have lifetimes of 2 ns and 400 ps, respectively, in solution at ambient temperature. The singlet nitrene 4b in acetonitrile has a lifetime of about 800 ps, and reacts with water with a rate constant of 1.9 × 108 L·mol−1·s−1 at room temperature. These results indicate that a methoxycarbonyl group at either the para or ortho positions has little influence on the ISC rate, but that the presence of a 2-methoxy group dramatically accelerates the ISC rate relative to the unsubstituted phenylnitrene. An ortho methoxy group highly stabilizes the corresponding nitrenium ion and favors its formation in aqueous solvents. This substituent has little influence on the ring-expansion rate. These results are consistent with theoretical calculations for the various intermediates and their transition states. Cyclization from the nitrene to the azirine intermediate is favored to proceed towards the electron-deficient ester group; however, the higher energy barrier is the ring-opening process, that is azirine to ketenimine formation, rendering the formation of the ester-ketenimine to be less favorable than the isomeric MeO-ketenimine. PMID:22568477
Xue, Jiadan; Luk, Hoi Ling; Eswaran, S V; Hadad, Christopher M; Platz, Matthew S
2012-06-07
The photochemistry of 4-methoxycarbonylphenyl azide (2a), 2-methoxycarbonylphenyl azide (3a), and 2-methoxy-6-methoxycarbonylphenyl azide (4a) were studied by ultrafast time-resolved infrared (IR) and UV-vis spectroscopies in solution. Singlet nitrenes and ketenimines were observed and characterized for all three azides. Isoxazole species 3g and 4g are generated after photolysis of 3a and 4a, respectively, in acetonitrile. Triplet nitrene 4e formation correlated with the decay of singlet nitrene 4b. The presence of water does not change the chemistry or kinetics of singlet nitrenes 2b and 3b, but leads to protonation of 4b to produce nitrenium ion 4f. Singlet nitrenes 2b and 3b have lifetimes of 2 ns and 400 ps, respectively, in solution at ambient temperature. The singlet nitrene 4b in acetonitrile has a lifetime of about 800 ps, and reacts with water with a rate constant of 1.9 × 10(8) L·mol(-1)·s(-1) at room temperature. These results indicate that a methoxycarbonyl group at either the para or ortho positions has little influence on the ISC rate, but that the presence of a 2-methoxy group dramatically accelerates the ISC rate relative to the unsubstituted phenylnitrene. An ortho-methoxy group highly stabilizes the corresponding nitrenium ion and favors its formation in aqueous solvents. This substituent has little influence on the ring-expansion rate. These results are consistent with theoretical calculations for the various intermediates and their transition states. Cyclization from the nitrene to the azirine intermediate is favored to proceed toward the electron-deficient ester group; however, the higher energy barrier is the ring-opening process, that is, azirine to ketenimine formation, rendering the formation of the ester-ketenimine (4d') to be less favorable than the isomeric MeO-ketenimine (4d).
Design, synthesis, and antitumor activities of some novel substituted 1,2,3-benzotriazines.
Lv, Jin-Ling; Wang, Rui; Liu, Dan; Guo, Gang; Jing, Yong-Kui; Zhao, Lin-Xiang
2008-06-24
A series of novel substituted 1,2,3-benzotriazines based on the structures of vatalanib succinate (PTK787) and vandetanib (ZD6474) were designed and synthesized. The antiproliferative effects of these compounds were tested on microvascular endothelial cells (MVECs) using the MTT assay. Introduction of a methoxy and a 3-chloropropoxy group into the 1,2,3-benzotriazines increased the antiproliferative effects. 4-(3-Chloro-4- fluoroanilino)-7-(3-chloropropoxy)-6-methoxy-1,2,3-benzotriazine (8m) was the most effective compound. It was 4-10 fold more potent than PTK787 in inhibiting the growth of T47D breast cancer cells, DU145 and PC-3 prostate cancer cells, LL/2 murine Lewis lung cancer cells and B16F0 melanoma cells.
Carballeira, Néstor M; Oyola, Delise; Vicente, Jan; Rodriguez, Abimael D
2007-11-01
The phospholipid fatty acid composition of the Caribbean sponge Erylus goffrilleri is described for the first time. A total of 70 fatty acids with chain lengths between 13 and 29 carbons were identified in the sponge. Methyl-branched fatty acids predominated in E. goffrilleri suggesting the presence of a considerable number of bacterial symbionts. The novel fatty acids (5Z,9Z)-2-methoxy-5,9-hexadecadienoic acid, (5Z,9Z)-2-methoxy-5,9-octadecadienoic acid, (5Z,9Z)-2-methoxy-5,9-nonadecadienoic acid, and (5Z,9Z)-2-methoxy-5,9-eicosadienoic acid are described for the first time in the literature. In addition, the iso-methyl-branched fatty acids (9Z)-2-methoxy-15-methyl-9-hexadecenoic acid and (5Z,9Z)-2-methoxy-15-methyl-5,9-hexadecadienoic acid, also identified in E. goffrilleri, were identified for the first time in nature. Based on the identified metabolites it is proposed that the unprecedented biosynthetic sequence: i-17:1Delta9 --> 2-OMe-i-17:1Delta9 --> 2-OMe-i-17:2Delta5,9 might be responsible for the biosynthesis of the novel iso-alpha-methoxylated fatty acids in E. goffrilleri.
Aromatic polyimides containing a dimethylsilane-linked dianhydride
NASA Technical Reports Server (NTRS)
St.clair, Anne K. (Inventor); St.clair, Terry L. (Inventor); Pratt, J. Richard (Inventor)
1989-01-01
A high-temperature stable, optically transparent, low dielectric aromatic polyimide is prepared by chemically combining equimolar quantities of an aromatic dianhydride reactant and an aromatic diamine reactant, which are selected so that one reactant contains at least one Si(CH3)2 group in its molecular structure, and the other reactant contains at least one -CF3 group in its molecular structure. The reactants are chemically combined in a solvent medium to form a solution of a high molecular weight polyamic acid, which is then converted to the corresponding polyimide.
Aromatic polyimides containing a dimethylsilane-linked dianhydride
NASA Technical Reports Server (NTRS)
St. Clair, Anne K. (Inventor); St. Clair, Terry L. (Inventor); Pratt, J. Richard (Inventor)
1992-01-01
A high-temperature stable, optically transparent, low dielectric aromatic polyimide is prepared by chemically combining equimolar quantities of an aromatic dianhydride reactant and an aromatic diamine reactant, which are selected so that one reactant contains at least one Si(CH.sub.3).sub.2 group in its molecular structure, and the other reactant contains at least one --CH.sub.3 group in its molecular structure. The reactants are chemically combined in a solvent medium to form a solution of a high molecular weight polyamic acid, which is then converted to the corresponding polyimide.
He, Yun-feng; Zhang, Wang-zhen; Kuang, Dan; Deng, Hua-xin; Li, Xiao-hai; Lin, Da-feng; Deng, Qi-fei; Huang, Kun; Wu, Tang-chun
2012-12-01
To explore the effects of smoking on urinary 10 metabolites of polycyclic aromatic hydrocarbons (PAHs) in the coke oven workers. Occupational health examination was performed on 1401 coke oven workers in one coking plant, their urine were collected respectively. The concentrations of the ten monohydroxy polycyclic aromatic hydrocarbons in urine were detected by gas chromatography/mass spectrometry. The 1401 workers were divided into four groups, namely control, adjunct workplaces, bottom and side, top group according to their workplaces and the different concentrations of PAHs in the environment. The concentrations of the ten monohydroxy polycyclic aromatic hydrocarbons between smokers and nonsmokers in each workplace group were compared using analysis of covariance, respectively. The levels of concentrations of the sixteen polycyclic aromatic hydrocarbons we detected at control were significantly higher than those at other areas (P < 0.05). Comparing the ten monohydroxy polycyclic aromatic hydrocarbons levels between smokers and nonsmokers, the levels of 1-hydroxynaphthalene and 2-hydroxynaphthalene among smokers were higher than nonsmokers with statistically significance in control, adjunct workplaces, bottom and side and top groups (P < 0.05). However, the levels of 1-hydroxypyrene had no statistically significant differences between the four areas. Urinary 1-hydroxynaphthalene and 2-hydroxynaphthalene may be used as biomarkers for the impact of smoking on monohydroxy polycyclic aromatic hydrocarbons in the coke oven workers.
Wang, Wei; Hu, Fa-Yun; Wu, Xin-Tong; An, Dong-Mei; Yan, Bo; Zhou, Dong
2014-08-01
The cross-allergic reactions among aromatic antiepileptic drugs (AEDs) are common, but little is known about the genetic mechanisms. The aim of this study was to investigate the genetic associations of the human leukocyte antigen (HLA) genes with the cross-reactivity of cutaneous adverse drug reactions (cADRs) induced by different aromatic AEDs. We reviewed 60 Chinese patients with a history of cADRs induced by an aromatic AED, and which re-challenged other aromatic AEDs as an alternative to the causative AED owing to some particular reasons. According to whether developing another episode of cADRs, these patients were automatically divided into the cross-reactivity group and tolerant control group. High-resolution HLA-A, -B, -DRB1 genotyping were performed for each patient. One out of 10 patients (10%, 1/10) carried the HLA-A*2402 allele in the cross-reactivity group. However, 23 patients (46%, 23/50) carried this allele in the tolerant control group. The difference of the HLA-A*2402 allele between the two groups is statistically significant (P=0.040, OR=0.130, 95% CI: 0.015-1.108). In addition, the frequency differences of other HLA alleles between the two groups, including the HLA-B*1502 allele, did not reach statistical significance (P>0.05). The HLA genes contribute to the genetic susceptibility of the cross-reactivity of cADRs among aromatic AEDs. Our results suggest that HLA-B*1502 is not a major responsible allele for the cross-reactivity of cADRs to aromatic AEDs, but the HLA-A*2402 allele may be a protective marker for the cross-allergic reactions among aromatic AEDs in Han Chinese. Further studies are warranted to test the potential predictive value of the HLA-A*2402 allele in future. Copyright © 2014. Published by Elsevier B.V.
Jet-Cooled Laser-Induced Fluorescence Spectroscopy of T-Butoxy
NASA Astrophysics Data System (ADS)
Reilly, Neil J.; Cheng, Lan; Stanton, John F.; Miller, Terry A.; Liu, Jinjun
2015-06-01
The vibrational structures of the tilde A ^2A_1 and tilde X ^2E states of t-butoxy were obtained in jet-cooled laser-induced fluorescence (LIF) and dispersed fluorescence (DF) spectroscopic measurements. The observed transitions are assigned based on vibrational frequencies calculated using Complete Active Space Self-Consistent Field (CASSCF) method and the predicted Franck-Condon factors. The spin-orbit (SO) splitting was measured to be 35(5) cm-1 for the lowest vibrational level of the ground (tilde X ^2E) state and increases with increasing vibrational quantum number of the CO stretch mode. Vibronic analysis of the DF spectra suggests that Jahn-Teller (JT)-active modes of the ground-state t-butoxy radical are similar to those of methoxy and would be the same if methyl groups were replaced by hydrogen atoms. Coupled-cluster calculations show that electron delocalization, introduced by the substitution of hydrogens with methyl groups, reduces the electronic contribution of the SO splittings by only around ten percent, and a calculation on the vibronic levels based on quasidiabatic model Hamiltonian clearly attributes the relatively small SO splitting of the tilde X ^2E state of t-butoxy mainly to stronger reduction of orbital angular momentum by the JT-active modes when compared to methoxy. The rotational and fine structure of the LIF transition to the first CO stretch overtone level of the tilde A^2A_1 state has been simulated using a spectroscopic model first proposed for methoxy, yielding an accurate determination of the rotational constants of both tilde A and tilde X states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamura, K.; Okuwaki, A.; Verheyen, T.
In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt has been investigated. The retention mechanism of aromatic carboxylic acids was discussed on the basis of both ion-pair partition model and ion-exchange model. The retention behavior of aromatic carboxylic acids possessing one (or two) carboxylic acid group(s) followed the ion-pair partition model, where linear free energy relationship was observed between the capacity factor and the extraction equilibrium constants of benzoic acid and naphthalene carboxylic acid.more » Besides, the retention behavior followed ion-exchange model with increasing the number of carboxylic acids, where the capacity factor of benzene polycarboxylic acids is proportional to the association constants between aromatic acids and quaternary ammonium ions calculated on the basis of an electrostatic interaction model.« less
Fabbro, Simone Del; Nazzi, Francesco
2013-01-01
Tick-borne zoonoses are considered as emerging diseases. Tick repellents represent an effective tool for reducing the risk of tick bite and pathogens transmission. Previous work demonstrated the repellent activity of the phenylpropanoid eugenol against Ixodes ricinus; here we investigate the relationship between molecular structure and repellency in a group of substances related to that compound. We report the biological activity of 18 compounds varying for the presence/number of several moieties, including hydroxyl and methoxy groups and carbon side-chain. Each compound was tested at different doses with a bioassay designed to measure repellency against individual tick nymphs. Both vapor pressure and chemical features of the tested compounds appeared to be related to repellency. In particular, the hydroxyl and methoxy groups as well as the side-chain on the benzene ring seem to play a role. These results are discussed in light of available data on chemical perception in ticks. In the course of the study new repellent compounds were identified; the biological activity of some of them (at least as effective as the “gold standard” repellent DEET) appears to be very promising from a practical point of view. PMID:23805329
Karci, Akin; Wurtzler, Elizabeth M; de la Cruz, Armah A; Wendell, David; Dionysiou, Dionysios D
2018-05-05
Transformation products and toxicity patterns of microcystin-LR (MC-LR), a common cyanotoxin in freshwaters, during degradation by solar photo-Fenton process were studied in the absence and presence of two major water components, namely fulvic acid and alkalinity. The transformation products m/z 795, 835, 515/1030 and 532 can be formed through attack of OH on the conjugated carbon double bonds of Adda. Transformation products with m/z 1010, 966 and 513 can be generated through the attack of OH on the methoxy group of Adda. The transformation products m/z 783, 508 and 1012 can be originated from the attack of OH on the cyclic structure of MC-LR. Transformation products (m/z 522, 1028, 1012, 1046 and 514) formed after hydroxylation of the aromatic ring with OH were also identified in this study. The toxicity study revealed that fulvic acid and alkalinity strongly influence the toxicity profiles of solar photo-Fenton treated MC-LR. Fulvic acid enhanced the detoxification whereas low level total alkalinity (1.8 mg L -1 CaCO 3 ) inhibited the detoxification of MC-LR by solar photo-Fenton process as assessed by protein phosphatase-1 (PP-1) inhibition assay. This work provides insights on the utility of solar photo-Fenton destruction of MC-LR in water based on transformation products and toxicity data. Copyright © 2017 Elsevier B.V. All rights reserved.
Gao, Mingzhang; Wang, Min; Zheng, Qi-Huang
2016-03-01
The target tracer carbon-11-labeled imidazopyridine- and purine-thioacetamide derivatives, N-(3-[(11)C]methoxy-4-methoxyphenyl)-2-((5-methoxy-3H-imidazo[4,5-b]pyridin-2-yl)thio)acetamide (3-[(11)C]4a) and N-(4-[(11)C]methoxy-3-methoxyphenyl)-2-((5-methoxy-3H-imidazo[4,5-b]pyridin-2-yl)thio)acetamide (4-[(11)C]4a); 2-((6-amino-9H-purin-8-yl)thio)-N-(3-[(11)C]methoxy-4-methoxyphenyl)acetamide (3-[(11)C]8a) and 2-((6-amino-9H-purin-8-yl)thio)-N-(4-[(11)C]methoxy-3-methoxyphenyl)acetamide (4-[(11)C]8a), were prepared by O-[(11)C]methylation of their corresponding precursors with [(11)C]CH3OTf under basic condition (2N NaOH) and isolated by a simplified solid-phase extraction (SPE) method in 50-60% radiochemical yields based on [(11)C]CO2 and decay corrected to end of bombardment (EOB). The overall synthesis time from EOB was 23min, the radiochemical purity was >99%, and the specific activity at end of synthesis (EOS) was 185-555GBq/μmol. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Qingqing; Wang, Huiting; Lin, Fankai; Dai, Rongji; Yu, Deng lin; Lv, Fang
2017-12-01
A phytochemical study was performed on Arundina graminifolia (D.Don) Hochr. by silica gel column and semi-preparative HPLC, and ten stilbenoids were obtained. Their structures were elucidated by NMR and MS spectra and identified as 7-hydroxy-2,4-dimethoxy-9,10-dihydrophenanthrene (1), 4,7-dihydroxy-2-methoxy-9,10-dihydrophenanthrene (2), 2,7-dihydroxy-4-methoxy-9,10-dihydrophenanthrene (3), 3,3’-dihydroxy-5-methoxy-bibenzyl (4), 7-hydroxy-2,8-dimethoxy-phenanthrene-1,4-dione (5), 7-hydroxy-2,10-dimethoxy-phenanthre-ne-1,4-dione (6), 7-dihydroxy-2-methoxy-9,10-dihydrophenanthrene-1,4-dione (7), 7-hydroxy-2-methoxy-phenanthrene-1,4-dione (8), 7-hydroxy-1-(p-hydroxybenzyl)-2,4-dimethoxy-9,10-dihydroxy-phenanthrene (9), 2,7-dihydroxy-1-(p-hydroxybenzyl)-4-methoxy-9,10-dihydroxy-phenanthrene (10). Compounds 5 and 6 were isolated from this plant for the first time. The isolated compounds were examined for their anti-hepatic fibrosis activity against HSC-T6 cells in vitro. The results showed that compounds 4 and 5 exhibited moderate growth inhibitory effects with IC50 61.9 μg/mL and 52.7 μg/mL, respectively.
Accelerated simulations of aromatic polymers: application to polyether ether ketone (PEEK)
NASA Astrophysics Data System (ADS)
Broadbent, Richard J.; Spencer, James S.; Mostofi, Arash A.; Sutton, Adrian P.
2014-10-01
For aromatic polymers, the out-of-plane oscillations of aromatic groups limit the maximum accessible time step in a molecular dynamics simulation. We present a systematic approach to removing such high-frequency oscillations from planar groups along aromatic polymer backbones, while preserving the dynamical properties of the system. We consider, as an example, the industrially important polymer, polyether ether ketone (PEEK), and show that this coarse graining technique maintains excellent agreement with the fully flexible all-atom and all-atom rigid bond models whilst allowing the time step to increase fivefold to 5 fs.
Sinensetin attenuates LPS-induced inflammation by regulating the protein level of IκB-α.
Shin, Hye-Sun; Kang, Seong-Il; Yoon, Seon-A; Ko, Hee-Chul; Kim, Se-Jae
2012-01-01
Sinensetin is one of the polymethoxyflavones (PMFs) having five methoxy groups on the basic benzo-γ-pyrone skeleton with a carbonyl group at the C(4) position. We investigated in this study the anti-inflammatory activity of sinensetin in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Sinensetin showed anti-inflammatory activity by regulating the protein level of inhibitor κB-α (IκB-α).
Reaction of methyl formate with VC(1 0 0) and TiC(1 0 0) surfaces
NASA Astrophysics Data System (ADS)
Frantz, Peter; Kim, Hyun I.; Didziulis, Stephen V.; Li, Shuang; Chen, Zhiying; Perry, Scott S.
2005-12-01
The chemistry of the (1 0 0) surface of the tribologically important materials vanadium carbide (VC) and titanium carbide (TiC) with methyl formate (CH 3OCHO) has been studied with X-ray photoelectron spectroscopy (XPS), high resolution electron energy loss spectroscopy (HREELS), and temperature programmed desorption (TPD). The molecule reacts with each surface at temperatures below 150 K, although the extent of reaction is greater on the TiC surface. XPS and HREELS results indicate that the first step in this chemistry is the cleavage of the CH 3O-CHO bond, generating surface methoxy groups (CH 3O-) and either carbon monoxide on VC or a formyl (CHO) group on TiC. The methoxy group reacts further on both surfaces via pathways expected based on previous methanol adsorption studies, primarily decomposing through a formyl intermediate on VC to generate formaldehyde and evolving methanol on TiC. The formyl group formed directly from methyl formate on TiC enables the production and evolution of formaldehyde, and also appears to break down further to the elements. These results indicate a propensity for these carbides to react with esters, leading potentially to the beneficial formation of friction lowering surface films or the deleterious degradation of ester-based lubricants.
NASA Astrophysics Data System (ADS)
Prachumrat, P.; Kobkeatthawin, T.; Ruanwas, P.; Boonnak, N.; Laphookhieo, S.; Kassim, M. B.; Chantrapromma, S.
2018-05-01
Eight methoxy substituted at the benzylidene moiety benzohydrazide derivatives [ R = 2-OCH3 ( 1), 3-OCH3 ( 2), 4-OCH3 ( 3), 2,3-(OCH3)2 ( 4), 3,4-(OCH3)2 ( 5), 2,4,5-(OCH3)3 ( 6), 2,4,6-(OCH3)3 ( 7), and 3,4,5-(OCH3)3 ( 8)] were synthesized and characterized by 1H NMR, FT-IR and UV-Vis spectroscopy. The crystal structure of 4 was determined by single crystal X-ray diffraction (sp. gr. Pbca, Z = 8). The molecule is slightly twisted with the dihedral angle between the two phenyl rings being 9.33(14)°. The methoxy group at the ortho position is twisted [C-O-C-C angle is-109.2(3)°] whereas the other at meta position is co-planar with the attached benzene ring. In the crystal packing, the molecules are linked into two-dimensional network parallel to the (001) plane by O-H···O, O-H···N, and N-H···O hydrogen bonds. Compounds 1-8 were evaluated for an antioxidant and α-glucosidase inhibitory activities and the results suggested that the -OCH3 substituent was ineffective for bioactivity enhancement.
Fluorescent aromatic sensors and their methods of use
NASA Technical Reports Server (NTRS)
Meador, Michael A. (Inventor); Tyson, Daniel S. (Inventor); Ilan, Ulvi F. (Inventor)
2012-01-01
Aromatic molecules that can be used as sensors are described. The aromatic sensors include a polycyclic aromatic hydrocarbon core with a five-membered imide rings fused to the core and at least two pendant aryl groups. The aromatic sensor molecules can detect target analytes or molecular strain as a result of changes in their fluorescence, in many cases with on-off behavior. Aromatic molecules that fluoresce at various frequencies can be prepared by altering the structure of the aromatic core or the substituents attached to it. The aromatic molecules can be used as sensors for various applications such as, for example, the detection of dangerous chemicals, biomedical diagnosis, and the detection of damage or strain in composite materials. Methods of preparing aromatic sensor molecules are also described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishna, N.R.; Nettesheim, D.G.; Klevit, R.E.
1989-02-21
The amino acid sequence for the variant-3 (CsE-v3) toxin from the venom of the scorpion Centruroides sculpturatus Ewing contains eight aromatic residues. By use of 2D NMR spectroscopic methods, the resonances from the individual protons (NH, C{sup alpha}H, C{sup beta}H{prime}, H{double prime}, and the ring) for each of the individual aromatic residues have been completely assigned. The spatial arrangement of the aromatic ring systems with respect to each other has been qualitatively analyzed by 2D-NOESY techniques. The results show that Trp-47, Tyr-4, and Tyr-42 are in close spatial proximity to each other. The NOESY contacts and the ring current inducedmore » shifts in the resonances of the individual protons of Tyr-4 and Trp-47 suggest that the aromatic ring planes of these residues are in an orthogonal arrangement. A comparison with the published crystal structure suggests that there is a minor rearrangement of the aromatic rings in the solution phase. No 2D-NOESY contacts involving Phe-44 and Tyr-14 to any other aromatic ring protons have been observed. The pH dependence of the aromatic ring proton chemical shifts has also been studied. These results suggest that the Tyr-58 phenolic group is experiencing a hydrogen-bonding interaction with a positively charged group, while Tyr-4, -14, -38, and -40 are experiencing through-space interactions with proximal negatively charged groups. These studies define the microenvironment of the aromatic residues in the variant-3 neurotoxin in aqueous solution.« less
Synthesis of 4-alkyl and 4-(beta-alkylvinyl) derivatives of primaquine as potential antimalarials.
Carroll, F I; Berrang, B D; Linn, C P
1979-11-01
4(beta-Alkylvinyl)-6-methoxy-8-nitroquinolines (6) were prepared from 6-methoxy-8-nitroquinoline-4-carboxaldehyde (5) via a Wittig reaction. Stannous chloride reduction of 6 gave 4-(beta-alkylvinyl)-8-amino-6-methoxyquinolines (8), whereas catalytic reduction of 6 using Raney nickel catalyst gave 4-alkyl-8-amino-6-methoxyquinolines (7). Alkylation of 7 and 8 with 4-iodo-1-phthalimidopentane, followed by removal of the phthaloyl-protecting group with hydrazine, gave 4-alkyl and 4-(beta-alkylvinyl) derivatives of primiquine, respectively. These compounds were evaluated for antimalarial activity against P. berghei and P. berghei yoelii in mice and against P. cynomolgi in rhesus monkeys. Several of the compounds were active in the P. bergheii yoelii screen. None of the compounds showed significant activity in the other two screens.
SEDIMENT-ASSOCIATED REACTIONS OF AROMATIC AMINES: QSAR DEVELOPMENT
Despite the common occurrence of the aromatic amine functional group in environmental contaminants, few quantitative structure-activity relationships (QSARs) have been developed to predict sorption kinetics for aromatic amines in natural soils and sediments. Towards the goal of d...
Branchial and renal pathology in the fish exposed chronically to methoxy ethyl mercuric chloride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, T.S.; Pant, J.C.; Tewari, H.
1988-08-01
Pathological manifestations causally related to pesticide poisoning have been described in both surficial and internal tissues of the fishes. Among the various organomercurials are phenyl mercuric acetate, methyl mercuric dicyanidiamide, methoxy ethyl mercuric chloride, methoxy ethyl mercuric silicate etc. Of these, the methoxy ethyl mercuric chloride (MEMC) is used in agriculture as an antifungal seed dressing, and its toxicity is primarily manifest in the Hg/sup 2 +/ ion. This report describes pathogenesis of branchial and renal lesions in the common freshwater fish, Puntius conchonius exposed chronically to sublethal levels of MEMC. Prior to this, alterations in the peripheral blood andmore » metabolite levels in response to experimental MEMC poisoning have been demonstrated in this species.« less
Abad, T; McNaughton-Smith, G; Fletcher, W Q; Echeverri, F; Diaz-Peñate, R; Tabraue, C; Ruiz de Galarreta, C M; López-Blanco, F; Luis, J G
2000-06-01
The isolation and characterisation of (S)-(+)-6-methoxy-alpha-methyl-2-naphthaleneacetic acid, a well known synthetic non-steroidal anti-inflammatory drug (naproxene), from a natural source is described for the first time. We evaluated the ability of naproxene and its 7-methoxy isomer to abrogate constitutive COX-1 and inducible COX-2 activity in human A549 cells. Naproxene inhibited COX-1 (IC50 = 3.42 microM) and COX-2 (IC50 = 1.53 microM), whereas the 7-methoxy isomer had no appreciable effect on COX-1 (IC50 > 100 microM) but also abrogated the activity of COX-2 enzyme (IC50 = 14.42 microM).
NASA Astrophysics Data System (ADS)
Nycz, Jacek E.; Malecki, Grzegorz; Zawiazalec, Marcin; Pazdziorek, Tadeusz; Skop, Patrycja
2010-12-01
1-Pentyl-3-(4-methoxy-1-naphthoyl)indole (shortly named JWH-081) ( 1) and 2-(2-methoxy-phenyl)-1-(1-pentyl-1 H-indol-3-yl)-ethanone (shortly named JWH-250) ( 2), are examples of cannabinoids which were characterized by FTIR, UV-Vis, multinuclear NMR spectroscopy and single crystal X-ray diffraction method. The geometries of the studied compounds were optimized in singlet states using the density functional theory (DFT) method with B3LYP functional. Electronic spectra were calculated by TDDFT method. In general, the predicted bond lengths and angles are in a good agreement with the values based on the X-ray crystal structure data.
Renauld, A.E.; Melancon, M.J.; Sordillo, L.M.
1999-01-01
Seven modulators of mammalian monooxygenase activity were screened for their ability to selectively stimulate or inhibit in vitro monooxygenase activities of hepatic microsomes from mallard ducklings treated with phenobarbital, β-naphthoflavone, 3,3′,4,4′,5-pentachlorobiphenyl or vehicle. Microsomes were assayed fluorometrically for four monooxygenases: benzyloxy-, ethoxy-, methoxy-, and pentoxyresorufin-O-dealkylase, in combination with each of the seven modulators. Four combinations: α-naphthoflavone and 2-methylbenzimidazole with benzyloxyresorufin, and Proadifen with methoxy- and ethoxyresorufin, respectively, were evaluated further. β-Naphthoflavone-treated groups were clearly distinguished from the corn oil vehicle control group by all of the assays and by the effects of the modulators in three of the four assay/modulator combinations. Enzyme activities of the phenobarbital and saline groups were statistically similar (P≥0.05) when assayed without modulator added, but each assay/modulator combination distinguished between these groups. The PCB-treated group was distinguished from the corn oil vehicle control group only for BROD activity, with or without the presence of modulator. Graphing of per cent modulation of BROD activity versus initial BROD activity provided the clearest distinction between all of the study groups. Identification of these selective in vitro modulators may improve detection and measurement of low level cytochrome P450 induction in avian species. Also, both the monooxygenase activities induced and the impacts of the modulators indicated differences between mammalian and avian cytochromes P450.
1-Bromo-2-(4-methoxyphenoxy)ethane
Shen, Lei; Hu, Yong-Hong; Yang, Wen-Ge; Zhao, Xiao-Lei; Yao, Jin-Feng
2010-01-01
In the crystal structure of the title compound, C9H11BrO2, molecules are stacked parallel to the b-axis direction, forming double layers in which the molecules are arranged head-to-head, with the bromomethyl groups pointing towards each other. PMID:21579854
NASA Astrophysics Data System (ADS)
Monobe, Hirosato; Ni, Hai-Liang; Hu, Ping; Wang, Bi-Qin; Zhao, Ke-Qing; Shimizu, Yo
2016-03-01
In this study, the charge carrier transport property of 3,8,13-trioctyloxytruxene [Trx(OC8)3] and its analogues, to which two different ring substituents of hydroxyl [Trx(OH)3(OC8)3] and methoxy [Trx(OMe)3(OC8)3] groups are introduced, has been studied relative to mesomorphism. Three analogues exhibit a hexagonal columnar (Colh) mesophase and their thermal stability increases with the introduction of hydroxyl and methoxy groups. The drift mobility measurements of Trx(OC8)3 and Trx(OH)3(OC8)3 reveal that the drift mobility is on the order of 5 × 10-2 cm2 V-1 s-1 in the Colh phase and it increases to 10-1 cm2 V-1 s-1 at the Colh-metastable phase transition, although Trx(OMe)3(OC8)3 shows a drift mobility of 1 × 10-2 cm2 V-1 s-1 in the Colh phase with temperature dependence. These results indicate that truxene with three alkoxy chains is an interesting molecular core for mesophase semiconductors.
Romagnoli, Romeo; Baraldi, Pier Giovanni; Lopez-Cara, Carlota; Preti, Delia; Tabrizi, Mojgan Aghazadeh; Balzarini, Jan; Bassetto, Marcella; Brancale, Andrea; Fu, Xian-Hua; Gao, Yang; Li, Jun; Zhang, Su-Zhan; Hamel, Ernest; Bortolozzi, Roberta; Basso, Giuseppe; Viola, Giampietro
2014-01-01
The biological importance of microtubules make them an interesting target for the synthesis of antitumor agents. The 2-(3′,4′,5′-trimethoxybenzoyl)-5-aminobenzo[b]thiophene moiety was identified as a novel scaffold for the preparation of potent inhibitors of microtubule polymerization acting through the colchicine site of tubulin. The position of the methoxy group on the benzo[b]thiophene was important for maximal antiproliferative activity. Structure–activity relationship analysis established that the best activities were obtained with amino and methoxy groups placed at the C-5 and C-7 positions, respectively. Compounds 3c–e showed more potent inhibition of tubulin polymerization than combretastatin A-4 and strong binding to the colchicine site. These compounds also demonstrated substantial antiproliferative activity, with IC50 values ranging from 2.6 to 18 nM in a variety of cancer cell lines. Importantly, compound 3c (50 mg/kg), significantly inhibited the growth of the human osteosarcoma MNNG/HOS xenograft in nude mice. PMID:24164557
SEDIMENT-ASSOCIATED REACTIONS OF AROMATIC AMINES. 2. QSAR DEVELOPMENT
The fate of aromatic amines in soils and sediments is dominated by irreversible binding through nucleophilic addition and oxidative radical coupling. Despite the common occurrence of the aromatic amine functional group in organic chemicals, the molecular properties useful for pr...
NASA Astrophysics Data System (ADS)
Huang, Liliang; He, Chengxiang; Sun, Zhihua
2015-07-01
Chan-Lam cross coupling allowed efficient synthesis of N,N’-disubstituted ortho-phenylene diamines bearing strong electron donating or withdrawing groups, such as nitro or methoxy groups, with moderate to high yields. These diamines can then be turned into N-heterocyclic carbene precursors after condensation with trimethyl orthoformate. The same strategy can also be utilized for the synthesis of N-monosubstituted aniline derivatives containing a functionalized ortho-aminomethyl group as intermediates for chiral 6-membered ring carbene precursors.
Ji, Bin; Zhao, Yunli; Zhang, Qili; Wang, Pei; Guan, Jiao; Rong, Rong; Yu, Zhiguo
2015-09-15
A simple and rapid ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed for the simultaneous determination of cinnamaldehyde, cinnamic acid, and 2-methoxy cinnamic acid in rat whole blood. It was the first time to study the pharmacokinetics of 2-methoxy cinnamic acid in rat whole blood. Samples were processed by a one-step protein precipitation with acetonitrile-37% formaldehyde (90:10, v:v). Chromatographic separation was performed on a Thermo Scientific C18 column (2.1mm×50mm, 1.9μm) at room temperature. The total run time was 4min. The detection was accomplished by using positive and negative ion electrospray ionization in multiple reaction monitoring mode. The method was linear for all of the analytes over 1000 times concentration range with correlation coefficients greater than 0.99. The lower limits of quantification (LLOQ) were 0.1ng/mL for cinnamaldehyde, 5.8ng/mL for cinnamic acid, and 10ng/mL for 2-methoxy cinnamic acid, respectively. To our knowledge, this was the first time that the LLOQ for cinnamaldehyde in validated methods for biological samples was as low as 0.1ng/mL. Intra- and inter-day precision and accuracy were within ±9% for all of the analytes during the assay validation. Assay recoveries were higher than 80% and the matrix effects were minimal. The half-life were 8.7±0.7h for cinnamaldehyde, 1.0±0.5h for cinnamic acid, and 1.4±0.4h for 2-methoxy cinnamic acid, respectively. The validated assay was firstly applied to the simultaneous quantification of cinnamaldehyde, cinnamic acid, and 2-methoxy cinnamic acid, especially for 2-methoxy cinnamic acid in rat whole blood after oral administration of 15mg/kg essential oil of Cinnamoni Ramulus. It was observed that the Cmax and AUC of 2-methoxy cinnamic acid (0.01% in essential oil of Cinnamoni Ramulus) were greater than those of cinnamaldehyde (83.49% in essential oil of Cinnamoni Ramulus), which implied that 2-methoxy cinnamic acid might be the major bioactive constitutes in essential oil of Cinnamoni Ramulus. Copyright © 2015 Elsevier B.V. All rights reserved.
Mignot, Mélanie; Schammé, Benjamin; Tognetti, Vincent; Joubert, Laurent; Cardinael, Pascal; Peulon-Agasse, Valérie
2017-10-13
New polar embedded aromatic stationary phases (mono- and trifunctional versions) that contain an amide-embedded group coupled with a tricyclic aromatic moiety were developed for chromatographic applications and described in the first paper of this series. These phases offered better separation performance for PAHs than for alkylbenzene homologues, and an enhanced ability to differentiate aromatic planarity to aromatic tridimensional conformation, especially for the trifunctional version and when using methanol instead of acetonitrile. In this second paper, a density functional theory study of the retention process is reported. In particular, it was shown that the selection of the suitable computational protocol allowed for describing rigorously the interactions that could take place, the solvent effects, and the structural changes for the monofunctional and the trifunctional versions. For the first time, the experimental data coupled with these DFT results provided a better understanding of the interaction mechanisms and highlighted the importance of the multimodal character of the designed stationary phases: alkyl spacers for interactions with hydrophobic solutes, amide embedded groups for dipole-dipole and hydrogen-bond interactions, and aromatic terminal groups for π-π interactions. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantifying reactivity for electrophilic aromatic substitution reactions with Hirshfeld charge.
Liu, Shubin
2015-03-26
An electrophilic aromatic substitution is a process where one atom or group on an aromatic ring is replaced by an incoming electrophile. The reactivity and regioselectivity of this category of reactions is significantly impacted by the group that is already attached to the aromatic ring. Groups promoting substitution at the ortho/para and meta position are called ortho/para and meta directing groups, respectively. Earlier, we have shown that regioselectivity of the electrophilic aromatic substitution is dictated by the nucleophilicity of the substituted aromatic ring, which is proportional to the Hirshfeld charge on the regioselective site. Ortho/para directing groups have the largest negative charge values at the ortho/para positions, whereas meta directing groups often have the largest negative charge value at the meta position. The electron donation or acceptance feature of a substitution group is irrelevant to the regioselectivity. In this contribution, we extend our previous study by quantifying the reactivity for this kind of reactions. To that end, we examine the transition-state structure and activation energy of an identity reaction for a series of monosubstituted-benzene molecules reacting with hydrogen fluoride using BF3 as the catalyst in the gas phase. A total of 18 substitution groups will be considered, nine of which are ortho/para directing and the other nine groups meta directing. From this study, we found that the barrier height of these reactions strongly correlates with the Hirshfeld charge on the regioselective site for both ortho/para and meta directing groups, with the correlation coefficient R(2) both better than 0.96. We also discovered a less accurate correlation between the barrier height and HOMO energy. These results reconfirm the validity and effectiveness of employing the Hirshfeld charge as a reliable descriptor of both reactivity and regioselectivity for this vastly important category of chemical transformations.
Gao, Jinhong; Zhang, Ouyang; Ren, Jing; Wu, Chuanliu; Zhao, Yibing
2016-02-16
The presence of large hydrophobic aromatic residues in cell-penetrating peptides or proteins has been demonstrated to be advantageous for their cell penetration. This phenomenon has also been observed when AuNPs were modified with peptides containing aromatic amino acids. However, it is still not clear how the presence of hydrophobic and aromatic groups on the surface of anionic AuNPs affects their interaction with lipid bilayers. Here, we studied the interaction of a range of anionic amphiphilic AuNPs coated by different combinations of hydrophobic and anionic ligands with four different types of synthetic lipid vesicles. Our results demonstrated the important role of the surface aromatic or bulky groups, relative to the hydrocarbon chains, in the interaction of anionic AuNPs with lipid bilayers. Hydrophobic interaction itself arising from the insertion of aromatic/bulky ligands on the surface of AuNPs into lipid bilayers is sufficiently strong to cause overt disruption of lipid vesicles and cell membranes. Moreover, by comparing the results obtained from AuNPs coated with aromatic ligands and cyclohexyl ligands lacking aromaticity respectively, we demonstrated that the bulkiness of the terminal groups in hydrophobic ligands instead of the aromatic character might be more important to the interaction of AuNPs with lipid bilayers. Finally, we further correlated the observation on model liposomes with that on cell membranes, demonstrating that AuNPs that are more disruptive to the more negatively charged liposomes are also substantially more disruptive to cell membranes. In addition, our results revealed that certain cellular membrane domains that are more susceptible to disruption caused by hydrophobic interactions with nanoparticle surfaces might determine the threshold of AuNP-mediated cytotoxicity.
NASA Astrophysics Data System (ADS)
Sarau Devi, A.; Aswathy, V. V.; Sheena Mary, Y.; Yohannan Panicker, C.; Armaković, Stevan; Armaković, Sanja J.; Ravindran, Reena; Van Alsenoy, C.
2017-11-01
The vibrational spectra and corresponding vibrational assignments of 2-(3-methoxy-4-hydroxyphenyl)benzothiazole is reported. Single crystal XRD data of the title compound is reported and the orientation of methoxy group is cis to nitrogen atom of the thiazole ring. The phenyl ring breathing modes of the title compound are assigned at 1042 and 731 cm-1 theoretically. The charge transfer within the molecule is studied using frontier molecular orbital analysis. The chemical reactivity descriptors are calculated theoretically. The NMR spectral data predicted theoretically are in good agreement with the experimental data. The strong negative region spread over the phenyl rings, nitrogen atom and oxygen atom of the hydroxyl group in the MEP plot is due to the immense conjugative and hyper conjugative resonance charge delocalization of π-electrons. Molecule sites prone to electrophilic attacks have been determined by analysis of ALIE surfaces, while Fukui functions provided further insight into the local reactivity properties of title molecule. Autoxidation properties have been investigated by calculation of bond dissociation energies (BDEs) of hydrogen abstraction, while BDEs of the rest of the single acyclic bonds were valuable for the further investigation of degradation properties. Calculation of radial distribution functions was performed in order to determine which atoms of the title molecule have pronounced interactions with water molecules. The title compound forms a stable complex with aryl hydrocarbon receptor and can be a lead compound for developing new anti-tumor drug. Antimicrobial properties of the title compound was screened against one bacterial culture Escherchia coli and four fungal cultures viz., Aspergillus niger, Pencillum chrysogenum, Saccharomyces cerevisiae and Rhyzopus stolonifer.
Oxidation of phenolic acids by soil iron and manganese oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehmann, R.G.; Cheng, H.H.; Harsh, J.B.
Phenolic acids are intermediary metabolites of many aromatic chemicals and may be involved in humus formation, allelopathy, and nutrient availability. Depending on their structures, six phenolic acids were shown to react at different rates with oxidized forms of Fe and Mn in a Palouse soil (fine-silty, mixed, mesic Pachic Ultic Haploxeroll). Increasing methoxy substitution on the aromatic ring of phenolic acids increased the reaction rate. Reaction rate was also increased for longer carboxyl-containing side chains. After 4 h reaction, little of the applied (10 mg kg/sup -1/ soil) p-hydroxybenzoic or p-coumaric acids had reacted, while 0 to 5, 70, 90,more » and 100% of the vanillic, ferulic, syringic, and sinapic acids, respectively, had reacted. After 72 h under conditions limiting microbial growth, none of the p-hydroxybenzoic, 30% of the p-coumaric, and 50% of the vanillic acids had reacted. The reaction was shown to be predominantly chemical, and not biological, since phenolic acid extractabilities were similar for Palouse soil and for Palouse soil pretreated with LiOBr to remove organic matter. When the Palouse soil was pretreated with a sodium dithionite-citrate solution to remove Fe and Mn oxides, none of the phenolic acids reacted after 1 h. The reaction of sinapic acid with Palouse soil was shown to produce Fe(II) and soluble Mn as reaction products. The reaction of phenolic acids with soil was thus shown to be an oxidation of the phenolic acids, coupled with a reduction of soil Fe and Mn oxides.« less
Two new compounds from an endophytic fungus Pestalotiopsis heterocornis.
Xing, Jian-Guang; Deng, Hui-Ying; Luo, Du-Qiang
2011-12-01
Two new compounds, 7-hydroxy-5-methoxy-4,6-dimethyl-7-O-α-L-rhamnosyl-phthalide and 7-hydroxy-5-methoxy-4,6-dimethyl-7-O-β-D-glucopyranosyl-phthalide, along with one known and related metabolite 7-hydroxy-5-methoxy-4,6-dimethylphthalide were isolated from the EtOAc extract of fermentation broth of an endophytic fungus Pestalotiopsis heterocornis. The structures of these compounds were elucidated on the basis of spectroscopic methods (UV, IR, HR-ESI-MS, 1D NMR, and 2D NMR).
A potential-energy surface study of the 2A1 and low-lying dissociative states of the methoxy radical
NASA Technical Reports Server (NTRS)
Jackels, C. F.
1985-01-01
Accurate, ab initio quantum chemical techniques are applied in the present study of low lying bound and dissociative states of the methoxy radical at C3nu conformations, using a double zeta quality basis set that is augmented with polarization and diffuse functions. Excitation energy estimates are obtained for vertical excitation, vertical deexcitation, and system origin. The rate of methoxy photolysis is estimated to be too small to warrant its inclusion in atmospheric models.
Balakrishnan, Swati; Sarma, Siddhartha P
2017-08-22
Aromatic interactions are an important force in protein folding as they combine the stability of a hydrophobic interaction with the selectivity of a hydrogen bond. Much of our understanding of aromatic interactions comes from "bioinformatics" based analyses of protein structures and from the contribution of these interactions to stabilizing secondary structure motifs in model peptides. In this study, the structural consequences of aromatic interactions on protein folding have been explored in engineered mutants of the molten globule protein apo-cytochrome b 5 . Structural changes from disorder to order due to aromatic interactions in two variants of the protein, viz., WF-cytb5 and FF-cytb5, result in significant long-range secondary and tertiary structure. The results show that 54 and 52% of the residues in WF-cytb5 and FF-cytb5, respectively, occupy ordered regions versus 26% in apo-cytochrome b 5 . The interactions between the aromatic groups are offset-stacked and edge-to-face for the Trp-Phe and Phe-Phe mutants, respectively. Urea denaturation studies indicate that both mutants have a C m higher than that of apo-cytochrome b 5 and are more stable to chaotropic agents than apo-cytochrome b 5 . The introduction of these aromatic residues also results in "trimer" interactions with existing aromatic groups, reaffirming the selectivity of the aromatic interactions. These studies provide insights into the aromatic interactions that drive disorder-to-order transitions in intrinsically disordered regions of proteins and will aid in de novo protein design beyond small peptide scaffolds.
Vongvanrungruang, A; Mongkolsiriwatana, C; Boonkaew, T; Sawatdichaikul, O; Srikulnath, K; Peyachoknagul, S
2016-09-19
The fragrance gene, betaine aldehyde dehydrogenase 2 (Badh2), has been well studied in many plant species. The objectives of this study were to clone Badh2 and compare the sequences between aromatic and non-aromatic coconuts. The complete coding region was cloned from cDNA of both aromatic and non-aromatic coconuts. The nucleotide sequences were highly homologous to Badh2 genes of other plants. Badh2 consisted of a 1512-bp open reading frame encoding 503 amino acids. A single nucleotide difference between aromatic and non-aromatic coconuts resulted in the conversion of alanine (non-aromatic) to proline (aromatic) at position 442, which was the substrate binding site of BADH2. The ring side chain of proline could destabilize the structure leading to a non-functional enzyme. Badh2 genomic DNA was cloned from exon 1 to 4, and from exon 5 to 15 from the two coconut types, except for intron 4 that was very long. The intron sequences of the two coconut groups were highly homologous. No differences in Badh2 expression were found among the tissues of aromatic coconut or between aromatic and non-aromatic coconuts. The amino acid sequences of BADH2 from coconut and other plants were compared and the genetic relationship was analyzed using MEGA 7.0. The phylogenetic tree reconstructed by the Bayesian information criterion consisted of two distinct groups of monocots and dicots. Among the monocots, coconut (Cocos nucifera) and oil palm (Elaeis guineensis) were the most closely related species. A marker for coconut differentiation was developed from one-base substitution site and could be successfully used.
Hashim, Nur Athirah; Ahmad, Farediah; Basar, Norazah; Awang, Khalijah; Ng, Seik Weng
2011-09-01
The reaction of 5,6-(2,2-dimethyl-chroman-yl)-2-hy-droxy-4-meth-oxy-acetophenone and 3,4-bis-(meth-oxy-meth-yloxy)benzaldehyde affords the intense orange title chalcone derivative, C(25)H(30)O(8). The two benzene rings are connected through a -C(=O)-CH=CH- (propenone) unit, which is in an E conformation; the ring with the hy-droxy substitutent is aligned at 19.5 (2)° with respect to this unit, whereas the ring with the meth-oxy-meth-yloxy substituent is aligned at 9.3 (3)°. The dihedral angle between the rings is 19.38 (10)°. The hy-droxy group engages in an intra-molecular O-H⋯O hydrogen bond with the carbonyl O atom of the propenone unit, generating an S(5) ring.
Cuya, Teobaldo; Gonçalves, Arlan da Silva; da Silva, Jorge Alberto Valle; Ramalho, Teodorico C; Kuca, Kamil; C C França, Tanos
2017-10-27
The oximes 4-carbamoyl-1-[({2-[(E)-(hydroxyimino) methyl] pyridinium-1-yl} methoxy) methyl] pyridinium (known as HI-6) and 3-carbamoyl-1-[({2-[(E)-(hydroxyimino) methyl] pyridinium-1-yl} methoxy) methyl] pyridinium (known as HS-6) are isomers differing from each other only by the position of the carbamoyl group on the pyridine ring. However, this slight difference was verified to be responsible for big differences in the percentual of reactivation of acetylcholinesterase (AChE) inhibited by the nerve agents tabun, sarin, cyclosarin, and VX. In order to try to find out the reason for this, a computational study involving molecular docking, molecular dynamics, and binding energies calculations, was performed on the binding modes of HI-6 and HS-6 on human AChE (HssAChE) inhibited by those nerve agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oezay, H.; Yildiz, M., E-mail: myildiz@comu.edu.tr; Uenver, H.
2013-01-15
The compound called 3-methoxy-2- [(2,4,4,6,6-pentachloro-1,3,5,2{lambda}{sup 5},4{lambda}{sup 5},6{lambda}{sup 5}-triazatriphosphin-2-yl)oxy] benzaldehyde has been synthesized from the reaction of 2-hydroxy-3-methoxybenzaldehyde with hexachlorocyclotriphosphazene. It has been characterized by elemental analysis, MS, IR, {sup 1}H NMR, {sup 13}C NMR, {sup 31}P NMR and UV-visible spectroscopic techniques. The structure of the title compound has been determind by X-ray analysis. Crystals are orthorhombic, space group P2{sub 1}2{sub 1}2{sub 1}, Z = 4, a = 7.705(1), b = 12.624(1), c = 17.825(2) A, R{sub 1} = 0.0390 and wR{sub 2} = 0.1074 [I > 2{sigma}(I)], respectively.
40 CFR 180.637 - Mandipropamid; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of the fungicide mandipropamid, 4-chloro-N-[2-(3-methoxy-4-(2-propynyloxy)phenyl]ethyl]-alpha-(2... cones 50 Okra 1.0 Onion, dry bulb 0.05 Onion, green 4 Potato, wet peel 0.03 Vegetable, cucurbit, group 9..., tuberous and corm, subgroup 1C 0.01 (b) Section 18 emergency exemptions. [Reserved] (c) Tolerances with...
77 FR 21998 - Importer of Controlled Substances, Notice of Application, Lipomed, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-12
...)... I 4-Methoxyamphetamine (7411) I 5-Methoxy-N-N-dimethyltryptamine (7431).... I Alpha-methyltryptamine (7432) I Dimethyltryptamine (7435) I Psilocybin (7437) I Psilocyn (7438) I 5-Methoxy-N,N...
Wardell, James L; Wardell, Solange M S V; Tiekink, Edward R T
2016-06-01
The asymmetric unit of the title salt, C17H17F6N2O(+)·C10H8F3O3 (-), comprises two piperidin-1-ium cations and two carboxyl-ate anions. The cations, each having an l-shaped conformation owing to the near orthogonal relationship between the quinolinyl and piperidin-1-ium residues, are pseudo-enanti-omeric. The anions have the same absolute configuration but differ in the relative orientations of the carboxyl-ate, meth-oxy and benzene groups. Arguably, the most prominent difference between the anions occurs about the Cq-Om bond as seen in the Cc-Cq-Om-Cm torsion angles of -176.1 (3) and -67.1 (4)°, respectively (q = quaternary, m = meth-oxy and c = carboxyl-ate). The presence of Oh-H⋯Oc and Np-H⋯Oc hydrogen bonds leads to the formation of a supra-molecular chain along the a axis (h = hy-droxy and p = piperidin-1-ium); weak intra-molecular Np-H⋯Oh hydrogen bonds are also noted. Chains are connected into a three-dimensional architecture by C-H⋯F inter-actions. Based on a literature survey, related mol-ecules/cations adopt a uniform conformation in the solid state based on the letter L.
Infrared Spectroscopy of the Mass 31 Cation: Protonated Formaldehyde VS. The Triplet Methoxy Cation
NASA Astrophysics Data System (ADS)
Mosley, J. D.; Cheng, T. C.; Duncan, M. A.
2012-06-01
The m/z=31 cation is produced by ionization and fragmentation of methanol, ethanol, dimethyl ether, etc. Two structures have been proposed, protonated formaldehyde (^1CH_2OH^+) and the triplet methoxy cation (^3CH_3O^+). The infrared spectrum of the mass 31 cation is obtained using infrared photodissociation spectroscopy with Ar tagging. The spectrum reveals the presence of two stable isomers, protonated formaldehyde (^1CH_2OH^+) and the triplet methoxy cation (^3CH_3O^+). The triplet methoxy cation has been studied extensively and is predicted to interconvert to protonated formaldehyde through an essentially barrierless process on a timescale much faster than our experiment (>100 μs). The presence of two structural isomers is verified by comparison of spectra from different precursors and spectra of different temperature ions from the same precursor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, G.F.; Miller, J.D.
1994-05-07
Fossil resins occurring in the Wasatch Plateau coal field are composed mainly of aliphatic components, partially aromatized multi-cyclic terpenoids and a few oxygen functional groups (such as {minus}OH and {minus}COOH). The solvent extracted resins show the presence of a relatively large number of methyl groups when compared to the methylene groups, and this indicates the presence of extensive tertiary carbon and/or highly branching chains. In contrast coal consists primarily of aromatic ring structures, various oxygen functional groups ({minus}OH, >C=O, {minus}C{minus}O) and few aliphatic chains. The color difference observed among the four resin types is explained by the presence of chromophoresmore » (aromatized polyterpenoid) and also by the presence of finely dispersed coal particle inclusions in the resin matrix. The hexane soluble resin fraction has few aromatic compounds when compared to the hexane insoluble but toluene soluble resin fraction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, W.B.; Sih, J.C.; Blakeman, D.P.
1985-04-25
Omeprazole (5-methoxy-2-(((4-methoxy-3,5- dimethylpyridinyl)methyl)sulfinyl)-1H-benzimidazole) appeared to inhibit gastric (H/sup +/-K/sup +/)-ATPase by oxidizing its essential sulfhydryl groups, since the gastric ATPase inactivated by the drug in vivo or in vitro recovered its K+-dependent ATP hydrolyzing activity upon incubation with mercaptoethanol. Biological reducing agents like cysteine or glutathione, however, were unable to reverse the inhibitory effect of omeprazole. Moreover, acidic environments enhanced the potency of omeprazole. The chemical reactivity of omeprazole with mercaptans is also consistent with the biological action of omeprazole. The N-sulfenylated compound reacted at neutral pH with another stoichiometric amount of ethyl mercaptan to produce omeprazole sulfide quantitatively. Themore » gastric polypeptides of 100 kilodaltons representing (H/sup +/-K/sup +/)-ATPase in the rat gastric mucosa or isolated hog gastric membranes were covalently labeled with (/sup 14/C)omeprazole. The radioactive label bound to the ATPase, however, could not be displaced by mercaptoethanol under the identical conditions where the ATPase activity was fully restored. These observations suggest that the essential sulfhydryl groups which reacted with omeprazole did not form a stable covalent bond with the drug, but rather that they further reacted with adjacent sulfhydryl groups to form disulfides which could be reduced by mercaptoethanol.« less
NASA Astrophysics Data System (ADS)
Vusovich, O. V.; Tchaikovskaya, O. N.; Sokolova, I. V.; Vasil'eva, N. Yu.
2014-05-01
Methods of electronic spectroscopy and quantum chemistry are used to compare protolytic vanillin and isovanillin species. Three protolytic species: anion, cation, and neutral are distinguished in the ground state of the examined molecules. Vanillin and isovanillin in the ground state in water possess identical spectral characteristics: line positions and intensities in the absorption spectra coincide. Minima of the electrostatic potential demonstrate that the deepest isomer minimum is observed on the carbonyl oxygen atom. However, investigations of the fluorescence spectra show that the radiative properties of isomers differ. An analysis of results of quantum-chemical calculations demonstrate that the long-wavelength ππ* transition in the vanillin absorption spectra is formed due to electron charge transfer from the phenol part of the molecule to oxygen atoms of the methoxy and carbonyl groups, and in the isovanillin absorption spectra, it is formed only on the oxygen atom of the methoxy group. The presence of hydroxyl and carbonyl groups in the structure of the examined molecules leads to the fact that isovanillin in the ground S0 state, the same as vanillin, possesses acidic properties, whereas in the excited S1 state, they possess basic properties. A comparison of the рKа values of aqueous solutions demonstrates that vanillin possesses stronger acidic and basic properties in comparison with isovanillin.
Kim, L U; Kim, J W; Kim, C K
2006-09-01
To prepare a dental composite that has a low amount of curing shrinkage and excellent mechanical strength, various 2,2-bis[4-(2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane (Bis-GMA) derivatives were synthesized via molecular structure design, and afterward, properties of their mixtures were explored. Bis-GMA derivatives, which were obtained by substituting methyl groups for hydrogen on the phenyl ring in the Bis-GMA, exhibited lower curing shrinkage than Bis-GMA, whereas their viscosities were higher than that of Bis-GMA. Other Bis-GMA derivatives, which contained a glycidyl methacrylate as a molecular end group exhibited reduced curing shrinkage and viscosity. Methoxy substitution for hydroxyl groups on the Bis-GMA derivatives was performed for the further reduction of the viscosity and curing shrinkage. Various resin mixtures, which had the same viscosity as the commercial one, were prepared, and their curing shrinkage was examined. A resin mixture containing 2,2-bis[3,5-dimethyl, 4-(2-methoxy-3-methacryloyloxy propoxy) phenyl] propane] (TMBis-M-GMA) as a base resin and 4-tert-butylphenoxy-2-methyoxypropyl methacrylate (t-BP-M-GMA) as a diluent exhibited the lowest curing shrinkage among them. The composite prepared from this resin mixture also exhibited the lowest curing shrinkage along with enhanced mechanical properties.
NASA Technical Reports Server (NTRS)
Takekoshi, T.; Hillig, W. B.; Mellinger, G. A.
1975-01-01
Fourteen ether-containing, aromatic dianhydrides have been synthesized from N-phenyl-3 or 4-nitrophthalimide and various bisphenols. The process involves nucleophilic displacement of activated nitro groups with bisphenolate ions. Ether-containing dianhydrides were indefinitely stable in the presence of atmospheric moisture. One-step, high temperature solution polymerization of the ether-containing dianhydrides with m-phenylene diamine, 4,4'-oxydianiline and 1, 3-bis(4-aminophenoxy)benzene afforded 42 polyetherimides. The polyetherimides were all soluble in m-cresol except two which were found to be crystalline. The glass transition temperatures of the polyetherimides ranged from 178 to 277 C. Soluble polybenzimidazopyrrolones containing ether groups were also prepared from the same ether-containing dianhydrides and aromatic tetraamines by one-step solution polymerization. Using low molecular weight polyetherimides, various thermoset resin systems were developed and tested as matrices for fiber-reinforced composites. The curing chemistry involving reaction of the phthalonitrile group and the o-diaminophenyl group was found to be generally applicable to crosslinking various aromatic polymers other than polyimides.
Hanprasertpong, Tharangrut; Kor-anantakul, Ounjai; Leetanaporn, Roengsak; Suwanrath, Chitkasaem; Suntharasaj, Thitima; Pruksanusak, Ninlapa; Pranpanus, Savitree
2015-08-01
To evaluate the benefit of aromatic therapy using menthol for decrease pain perception during amniocentesis. A prospective randomized study was conducted to compare pain level between groups ofpregnant women who underwent amniocentesis with and without aromatic therapy using menthol. Visual analogue scale (VAS) was usedfor pain assessment. The participants were askedfor their anticipated pain and anxiety level and level ofpain before and immediately after the procedure. Three hundred seventeen pregnant women were recruited into the present study, 158 in the menthol group and 159 in the non-menthol group. Mean VAS score of the post-procedure pain and anxiety did not differ significantly between the two groups. Mean VAS score of the anticipated pain influenced the mean VAS score of the pre-procedure anxiety and post-procedure pain and anxiety irrespective of the group. Mean VAS score of the pre-procedure anxiety and post-procedure pain and anxiety increased about 0.3 cm for each 1 cm of increasing mean VAS score of anticipated pain. Aromatic therapy using menthol was not significantly effective in reducing pain and anxiety during second trimester genetic amniocentesis.
The influence of recycling non-condensable gases in the fractional catalytic pyrolysis of biomass.
Mante, Ofei D; Agblevor, F A; Oyama, S T; McClung, R
2012-05-01
In this study, the effect of recycling the non-condensable gases (NCG) in the catalytic pyrolysis of hybrid poplar using FCC catalyst was investigated. A 50mm bench scale fluidized bed reactor at 475°C with a weight hourly space velocity (WHSV) of 2h(-1) and a gas recycling capability was used for the studies. Model fluidizing gas mixtures of CO/N(2), CO(2)/N(2), CO/CO(2)/N(2) and H(2)/N(2) were used to determine their independent effects. Recycling of the NCG in the process was found to potentially increase the liquid yield and decrease char/coke yield. The model fluidizing gases increased the liquid yield and the CO(2)/N(2) fluidizing gas had the lowest char/coke yield. The (13)C-NMR analysis showed that recycling of NCG increases the aromatic fractions and decreases the methoxy, carboxylic and sugar fractions. Recycling of NCG increased the higher heating value and the pH of the bio-oil as well as decreased the viscosity and density. Copyright © 2012 Elsevier Ltd. All rights reserved.
Synthesis of novel acid electrolytes for phosphoric acid fuel cells
NASA Astrophysics Data System (ADS)
Adcock, James L.
1988-11-01
A 40 millimole per hour scale aerosol direct fluorination reactor was constructed. F-Methyl F-4-methoxybutanoate and F-4-methoxybutanoyl fluoride were synthesized by aerosol direct fluorination of methyl 4-methoxybutanoate. Basic hydrolysis of the perfluorinated derivatives produce sodium F-4 methoxybutanoate which was pyrolyzed to F-3-methoxy-1-propene. Purification and shipment of 33 grams of F-3-methoxy-1-propene followed. Syntheses by analogous methods allowed production and shipment of 5 grams of F-3-ethoxy 1-propene, 18 grams of F-3-(2-methoxy.ethoxy) 1-propene, and 37 grams of F-3,3-dimethyl 1-butene. Eighteen grams of F-2,2-dimethyl 1-chloropropane was produced directly and shipped. As suggested by other contractors, 5 grams of F-3-methoxy 1-iodopropane, and 5 grams of F-3-(2-methoxy.ethoxy) 1-iodopropane were produced by converting the respective precursor acid sodium salts produced for olefin synthesis to the silver salts and pyrolyzing them with iodine. Each of these compounds was prepared for the first time by the aerosol fluorination process during the course of the contract. These samples were provided to other Gas Research Institute (GRI) contractors for synthesis of perfluorinated sulfur (VI) and phosphorous (V) acids.
Mohamed, Hany M; Fouda, Ahmed M; Khattab, Essam S A E H; Agrody, Ahmed M El-; Afifi, Tarek H
2017-05-01
A series of 1H-benzo[f]chromene-2-carbonitriles was synthesized and evaluated for their cytotoxic activities against MCF-7, HCT-116, and HepG-2 cancer cells. The SAR studies reported that the substitution in the phenyl ring at 1-position of 1H-benzo[f]chromene nucleus with the specific group, H atom, or methoxy group at 9-position increases the ability of the molecule against the different cell lines.
deRonde, Brittany M; Birke, Alexander; Tew, Gregory N
2015-02-09
Cell-penetrating peptides (CPPs) and their synthetic mimics (CPPMs) represent a class of molecules that facilitate the intracellular delivery of various cargo. Previous studies indicated that the presence of aromatic functionalities improved CPPM activity. Given that aromatic functionalities play prominent roles in membrane biology and participate in various π interactions, we explored whether these interactions could be optimized for improved CPPM activity. CPPMs were synthesized by ring-opening metathesis polymerization by using monomers that contained aromatic rings substituted with electron-donating and electron-withdrawing groups and covered an electrostatic potential range from -29.69 to +15.57 kcal mol(-1) . These groups altered the quadrupole moments of the aromatic systems and were used to test if such structural modifications changed CPPM activity. CPPMs were added to dye-loaded vesicles and the release of carboxyfluorescein was monitored as a function of polymer concentration. Changes in the effective polymer concentration to release 50% of the dye (effective concentration, EC50 ) were monitored. Results from this assay showed that the strength of the electron-donating and electron-withdrawing groups incorporated in the CPPMs did not alter polymer EC50 values or activity. This suggests that other design parameters may have a stronger impact on CPPM activity. In addition, these results indicate that a wide range of aromatic groups can be incorporated without negatively impacting polymer activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ilieva, S.; Hadjieva, B.; Galabov, B.
1999-09-01
Ab initio molecular orbital calculations at HF/4-31G level and infrared spectroscopic data for the frequencies are applied to analyse the grouping in a series model aromatic secondary amides: formanilide; acetanilide; o-methylacetanilide; 2,6-dimethylformanilide, 2,6-dimethylacetanilide; N-benzylacetamide and N-benzylformamide. The theoretical and experimental data obtained show that the conformational state of the molecules studied is determined by the fine balance of several intramolecular factors: resonance effect between the amide group and the aromatic ring, steric interaction between various substituents around the -NH-CO- grouping in the aromatic ring, conjugation between the carbonyl bond and the nitrogen lone pair as well as direct field influences inside the amide group.
Further drimane sesquiterpenes from Drimys brasiliensis stem barks with cytotoxic potential.
Fratoni, Eduarda; Claudino, Vanessa Duarte; Yunes, Rosendo Augusto; Franchi, Gilberto C; Nowill, Alexandre E; Filho, Valdir Cechinel; Monache, Franco Delle; Malheiros, Angela
2016-07-01
Drimys brasiliensis Miers (Winteraceae) is used in folk medicine for the treatment of cancer. Its anti-tumor activity has been demonstrated in vitro models using extracts and isolated compounds. This study investigates the cytotoxic effects of stem bark extracts of D. brasiliensis as well as isolated compounds that may be responsible for the activitys and evaluates them in leukemia cells. The stem bark extract were subjected to column chromatography, and the structures of compounds were elucidated based on spectroscopic methods by using NMR and infrared spectroscopy and GC/MS. The cytotoxicity of the isolated compounds was evaluated in chronic myeloid (K562) and acute B lymphoblastic (Nalm6) leukemia cells using tetrazolium assay (MTT). Two new compounds were isolated 1β-O-p-methoxy-E-cinnamoyl-5α-keto-11α-enol-albicanol (1a) and the isomer 1β-O-p-methoxy-E-cinnamoyl-5α-keto-11β-enol-albicanol (1b) and 1β-O-p-methoxy-E-cinnamoyl-isodrimeninol (2). The known compounds polygonal acid (3a) and the isomer isopolygonal acid (3b), fuegin (4a) and the isomer epifuegin (4b), the mixture drimanial (5) and 1β-O-(p-methoxy-E-cinnamoyl)-6α-hydroxypolygodial (6) were also isolated. The drimanes (1-4) and drimanial (5), 1β-(p-coumaroyloxy)-polygodial (7), 1β-(p-methoxycinnamoyl)-polygodial (8), and polygodial (9) isolated previously were assessed in tumor cells. The IC50 values were between 3.56 and 128.91 μM. 1-β-(p-cumaroiloxi)-polygodial showed the best result with IC50 8.18 and 3.56 μM by K562 and Nalm6, respectively. The chloroform extract of the stem bark of D. brasiliensis is a great source of drimane sesquiterpenes. Our experimental data suggest that drimanes are responsible for cytotoxicity activity demonstrated by this species, especially those with the aldehyde group linked to carbons C-11 and C-12.
NASA Astrophysics Data System (ADS)
Pienkina, A.; Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.
2017-06-01
Recent detection of methyl isocyanate (CH_3NCO) in the Orion, towards Sgr B2(N) and on the surface of the comet 67P/Churyumov-Gerasimenko motivated us to study another isocyanate, methoxy isocyanate (CH_3ONCO) as a possible candidate molecule for searches in the interstellar clouds. Neither identification or laboratory rotational spectra of CH_3ONCO has been reported up to now. Methoxy isocyanate was synthesized by the flash vacuum pyrolysis of N-Methoxycarbonyl-O-methyl-hydroxylamine (MeOC(O)NHOMe) at a temperature of 800 K. Experimental spectrum of CH_3ONCO was recorded in situ in the millimeter-wave range (75-105 GHz and 150-330 GHz) using Lille's fast-scan fully solid-state DDS spectrometer. The recorded spectrum is strongly perturbed due to the interaction between the overall rotation and the skeletal torsion. Perturbations affect even rotational transitions with low K_a levels of the ground vibrational state, appearing in shifting frequency predictions and intensities distortions of the lines. The interactions are significant due to the relatively small vibrational energy difference (≈50 \\wn) between the states and different representations of the C_s symmetry point group for the ground (A'), ν_{18}=1 (A'') and ν_{18}=2 (A') vibrational states, thus leading to a "ladder" of multiple resonances by means of a-, and b-type Coriolis coupling. The global fit analysis of the rotational spectrum of methoxy isocyanate using Coriolis coupling terms in the ground and two lowest vibrational states (ν_{18}=1 and ν_{18}=2) will be presented. J. Cernicharo, N. Marcelino, E. Roueff et al. 2012, ApJ, 759, L43 D. T. Halfen, V. V. Ilyushin, & L. M. Ziurys, 2015, ApJ, 812, L5 F. Goesmann, H. Rosenbauer, J. H. Bredehöft et al. 2015, Science, 349.6247, aab0689 This work was funded by the French ANR under the Contract No. ANR-13-BS05-0008-02 IMOLABS.
In vivo metabolism of clebopride in three animal species and in man.
Segura, J; Bakke, O M; Huizing, G; Beckett, A H
1980-01-01
Clebopride is extensively metabolized in the rat, rabbit, dog, and man. By use of chromatographic methods, up to 25 metabolites in hydrolyzed and nonhydrolyzed urine have been detected. All four species produced the same main metabolites, as indicated by thin-layer chromatography. These, isolated from urine of the three animal species, were identified as N-(4'-piperidyl)-2-methoxy-4-amino-5-chlorobenzamide, N-(4'-piperidyl-2'-one)-2-methoxy-4-amino-5-chlorobenzamide, and N-(1'-alpha-hydroxybenzyl-4'-piperidyl)-2-methoxy-4-amino-5-chlorobenzamide (tentative structure of a carbinolamine more stable than expected). In the dog, 2-methoxy-4-amino-5-chlorobenzoic acid was also detected. N4-glucuronidation of clebopride and some of its metabolites has been shown to occur in the three animal species. The rabbit produced large amounts of these conjugates. Clebopride N4-sulfonate was not present in the urine of any of the species investigated.
Total synthesis of (+)-antroquinonol and (+)-antroquinonol D.
Sulake, Rohidas S; Chen, Chinpiao
2015-03-06
The first total synthesis of (+)-antroquinonol and (+)-antroquinonol D, two structurally unique quinonols with a sesquiterpene side chain, is described. The route features an iridium-catalyzed olefin isomerization-Claisen rearrangement reaction (ICR), lactonization, and Grubbs olefin metathesis. The requisite α,β-unsaturation was achieved via the selenylation/oxidation protocol and elimination of β-methoxy group to provide two natural products from a common intermediate.
NASA Astrophysics Data System (ADS)
Briseño-Ortega, Horacio; Juárez-Guerra, Lizbeth; Rojas-Lima, Susana; Mendoza-Huizar, Luis Humberto; Vázquez-García, Rosa A.; Farfán, Norberto; Arcos-Ramos, Rafael; Santillan, Rosa; López-Ruiz, Heralio
2018-04-01
A series of five 2-(2-hydroxyphenyl)oxazolo [4,5-b]pyridines (HPOP) (3a-e), where four are novel, were synthesized by a mild, one pot, phenylboronic acid-NaCN catalyzed reaction. Spectroscopic characterization and photophysical properties of these compounds are reported. Absorption and excitation spectra of the compounds were dependent on the substituents in the phenyl ring. Fluorescence quantum yields (0.009-0.538) were associated with the donor strength and the position of the substituents. Also, DFT analysis allowed us to determine the contribution of diethylamino and methoxy moieties to the π-system, which is in agreement with the experimental data analyzed in solution and by cyclic voltammetry. The results obtained in the solid state by single-crystal X-ray diffraction experiments indicate that, the quasi-planarity envisioned for the explored compounds is present, supporting the hypothesis that both the H-bonding of a hydroxyl group to the Cdbnd N moiety and a donor groups such as diethylamino and methoxy moieties favor an electronic communication. Due to the facile synthesis and their photophysical properties, the novel HPOP 3a-e have potential application as organic semiconductors.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... - [ [ [methyl - 3 - [ [ [ (polyfluoroalkyl)oxy]carbonyl ] amino] phenyl]amino]carbonyl] - .omega. - methoxy... Specific Chemical Substances § 721.10409 Poly(oxyalkylenediyl), .alpha. - [ [ [methyl - 3 - [ [ [ (polyfluoroalkyl)oxy]carbonyl ] amino] phenyl]amino]carbonyl] - .omega. - methoxy - (generic). (a) Chemical...
Selifonov, S. A.; Grifoll, M.; Eaton, R. W.; Chapman, P. J.
1996-01-01
Oxidation of acenaphthene, acenaphthylene, and fluorene was examined with recombinant strain Pseudomonas aeruginosa PAO1(pRE695) expressing naphthalene dioxygenase genes cloned from plasmid NAH7. Acenaphthene underwent monooxygenation to 1-acenaphthenol with subsequent conversion to 1-acenaphthenone and cis- and trans-acenaphthene-1,2-diols, while acenaphthylene was dioxygenated to give cis-acenaphthene-1,2-diol. Nonspecific dehydrogenase activities present in the host strain led to the conversion of both of the acenaphthene-1,2-diols to 1,2-acenaphthoquinone. The latter was oxidized spontaneously to naphthalene-1,8-dicarboxylic acid. No aromatic ring dioxygenation products were detected from acenaphthene and acenaphthylene. Mixed monooxygenase and dioxygenase actions of naphthalene dioxygenase on fluorene yielded products of benzylic 9-monooxygenation, aromatic ring dioxygenation, or both. The action of naphthalene dioxygenase on a variety of methyl-substituted aromatic compounds, including 1,2,4-trimethylbenzene and isomers of dimethylnaphthalene, resulted in the formation of benzylic alcohols, i.e., methyl group monooxygenation products, which were subsequently converted to the corresponding carboxylic acids by dehydrogenase(s) in the host strain. Benzylic monooxygenation of methyl groups was strongly predominant over aromatic ring dioxygenation and essentially nonspecific with respect to the substitution pattern of the aromatic substrates. In addition to monooxygenating benzylic methyl and methylene groups, naphthalene dioxygenase behaved as a sulfoxygenase, catalyzing monooxygenation of the sulfur heteroatom of 3-methylbenzothiophene. PMID:16535238
Microbial metabolism part 13 metabolites of hesperetin
USDA-ARS?s Scientific Manuscript database
The fungal culture, Mucor ramannianus (ATCC 2628) transformed hesperitin to four metabolites: 4'-methoxy -5, 7, 8, 3'-tetrahydroxyflavanone (8-hydroxyhesperetin), 5, 7, 3', 4'-tetrahydroxyflavanone (eriodictyol), 4'-methoxy-5, 3'-dihydroxyflavanone 7-sulfate (hesperetin 7-sulfate) and 5, 7, 3'-tri...
Hermawan, Idam; Furuta, Atsushi; Higashi, Masahiro; Fujita, Yoshihisa; Akimitsu, Nobuyoshi; Yamashita, Atsuya; Moriishi, Kohji; Tsuneda, Satoshi; Tani, Hidenori; Nakakoshi, Masamichi; Tsubuki, Masayoshi; Sekiguchi, Yuji; Noda, Naohiro; Tanaka, Junichi
2017-01-01
Bioassay-guided separation of a lipophilic extract of the crinoid Alloeocomatella polycladia, inhibiting the activity of HCV NS3 helicase, yielded two groups of molecules: cholesterol sulfate and four new aromatic sulfates 1–4. The structures of the aromatics were elucidated by spectroscopic analysis in addition to theoretical studies. The aromatic sulfates 1–4 showed moderate inhibition against NS3 helicase with IC50 values of 71, 95, 7, and 5 μM, respectively. PMID:28398249
Hermawan, Idam; Furuta, Atsushi; Higashi, Masahiro; Fujita, Yoshihisa; Akimitsu, Nobuyoshi; Yamashita, Atsuya; Moriishi, Kohji; Tsuneda, Satoshi; Tani, Hidenori; Nakakoshi, Masamichi; Tsubuki, Masayoshi; Sekiguchi, Yuji; Noda, Naohiro; Tanaka, Junichi
2017-04-11
Bioassay-guided separation of a lipophilic extract of the crinoid Alloeocomatella polycladia , inhibiting the activity of HCV NS3 helicase, yielded two groups of molecules: cholesterol sulfate and four new aromatic sulfates 1 - 4 . The structures of the aromatics were elucidated by spectroscopic analysis in addition to theoretical studies. The aromatic sulfates 1 - 4 showed moderate inhibition against NS3 helicase with IC 50 values of 71, 95, 7, and 5 μM, respectively.
White wines aroma recovery and enrichment: Sensory-led aroma selection and consumer perception.
Lezaeta, Alvaro; Bordeu, Edmundo; Agosin, Eduardo; Pérez-Correa, J Ricardo; Varela, Paula
2018-06-01
We developed a sensory-based methodology to aromatically enrich wines using different aromatic fractions recovered during fermentations of Sauvignon Blanc must. By means of threshold determination and generic descriptive analysis using a trained sensory panel, the aromatic fractions were characterized, selected, and clustered. The selected fractions were grouped, re-assessed, and validated by the trained panel. A consumer panel assessed overall liking and answered a CATA question on some enriched wines and their ideal sample. Differences in elicitation rates between non-enriched and enriched wines with respect to the ideal product highlighted product optimization and the role of aromatic enrichment. Enrichment with aromatic fractions increased the aromatic quality of wines and enhanced consumer appreciation. Copyright © 2018. Published by Elsevier Ltd.
Kamiński, M; Gilgenast, E; Przyjazny, A; Romanik, G
2006-07-28
The content of aromatic hydrocarbons in diesel fuels is regulated by appropriate standards, and a further reduction in the allowed concentration of these hazardous substances in these fuels is expected. The content of aromatic hydrocarbons in diesel fuels is most often determined using standard methods EN-12916 or ASTM D-6591. The content of polycyclic aromatic hydrocarbons (PAHs) is determined from a single peak obtained using normal phase high-performance liquid chromatography (NP-HPLC), a column of the NH2 type, n-heptane as the eluent, refractive index detector (RID) and backflushing of the eluent. However, the methods mentioned above cannot be applied when the fuel contains fatty acid methyl esters (FAME), which lately has become more common. The content of FAME in diesel oils is determined using mid-IR spectrophotometry based on the absorption of carbonyl group. However, no standard procedure for the determination of classes of aromatic hydrocarbons in diesel fuels containing FAME is yet available. The present work describes such a modification of methods EN-12916/ASTM D-6591 that provides a simultaneous determination of individual groups of aromatic hydrocarbons, total content of polycyclic aromatic hydrocarbons and the FAME content in diesel fuels. The refractive index detector (RID) and n-heptane as the mobile phase are still used, but backflushing of the eluent is applied after the elution of all polycyclic aromatic hydrocarbons. Additionally, ultraviolet diode array detection is used for the exact determination of low contents of polycyclic aromatic hydrocarbons and to confirm the presence of FAME in the analyzed fuel.
Goyal, Siddharth; Chattopadhyay, Aditya; Kasavajhala, Koushik; Priyakumar, U Deva
2017-10-25
A delicate balance of different types of intramolecular interactions makes the folded states of proteins marginally more stable than the unfolded states. Experiments use thermal, chemical, or mechanical stress to perturb the folding equilibrium for examining protein stability and the protein folding process. Elucidation of the mechanism by which chemical denaturants unfold proteins is crucial; this study explores the nature of urea-aromatic interactions relevant in urea-assisted protein denaturation. Free energy profiles corresponding to the unfolding of Trp-cage miniprotein in the presence and absence of urea at three different temperatures demonstrate the distortion of the hydrophobic core to be a crucial step. Exposure of the Trp6 residue to the solvent is found to be favored in the presence of urea. Previous experiments showed that urea has a high affinity for aromatic groups of proteins. We show here that this is due to the remarkable ability of urea to form stacking and NH-π interactions with aromatic groups of proteins. Urea-nucleobase stacking interactions have been shown to be crucial in urea-assisted RNA unfolding. Examination of these interactions using microsecond-long unrestrained simulations shows that urea-aromatic stacking interactions are stabilizing and long lasting. Further MD simulations, thermodynamic integration, and quantum mechanical calculations on aromatic model systems reveal that such interactions are possible for all the aromatic amino acid side-chains. Finally, we validate the ubiquitous nature of urea-aromatic stacking interactions by analyzing experimental structures of urea transporters and proteins crystallized in the presence of urea or urea derivatives.
Polyimides containing amide and perfluoroisopropylidene connecting groups
NASA Technical Reports Server (NTRS)
Dezern, James F. (Inventor)
1993-01-01
New, thermooxidatively stable polyimides were prepared from the reaction of aromatic dianhydrides containing isopropylidene bridging groups with aromatic diamines containing amide connecting groups between the rings. Several of these polyimides were shown to be semi-crystalline as evidenced by wide angle x ray scattering and differential scanning calorimetry. Most of the polyimides form tough, flexible films with high tensile properties. These polyimide films exhibit enhanced solubility in organic solvents.
NASA Astrophysics Data System (ADS)
Del Vecchio, R.; Schendorf, T. M.; Koech, K.; Blough, N. V.
2016-02-01
HS have been studied extensively over the last decades, yet the structural basis of their optical properties is still highly debated. Aromatic ketones, aldehydes and quinones along with carboxylic groups and phenolic moieties are significant constituents of HS, however their contribution to the optical properties has only recently been investigated. Chemical manipulation of selected functional groups thus represents an extremely promising approach to highlight the contribution of such groups to the HS (and CDOM) optical properties. Chemical reduction (and re-oxidation) along with pH titrations are employed herein to assess the relative contribution of aromatic ketones/aldehydes/quinones and carboxylic groups/phenolic moieties, respectively to the optical properties of HS (and CDOM). Results indicate that (a) the contribution of quinones to HS absorption and fluorescence is minor (or nil), while that of aromatic ketones (and aldehydes) is significant; (b) phenolic groups contribute more than carboxylic acids to the HS optical properties; (c) the effects of borohydride reduction and pH on the long-wavelength absorption and fluorescence is consistent with charge-transfer interactions between carbonyl and phenolic groups (as well as aromatic carboxylic acids, but to a smaller extent). Results will be presented within the context of our proposed charge-transfer model.
Indole alkaloids from Rauvolfia bahiensis A.DC. (Apocynaceae).
Kato, Lucilia; Marques Braga, Raquel; Koch, Ingrid; Sumiko Kinoshita, Luiza
2002-06-01
Four indole alkaloids, 12-methoxy-N(a)-methyl-vellosimine, demethoxypurpeline, 12-methoxyaffinisine, and 12-methoxy-vellosimine, in addition to picrinine, vinorine, raucaffrinoline, normacusine B, norseredamine, seredamine, 10-methoxynormacusine B, norpurpeline and purpeline, were isolated from the bark or leaf extracts of Rauvolfia bahiensis.
40 CFR 721.8130 - Propanamide, -(2-hydroxyethyl)-3-methoxy-.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8130 Propanamide, -(2-hydroxyethyl)-3-methoxy-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as propanamide...
Organocatalytic asymmetric arylation of indoles enabled by azo groups
NASA Astrophysics Data System (ADS)
Qi, Liang-Wen; Mao, Jian-Hui; Zhang, Jian; Tan, Bin
2018-01-01
Arylation is a fundamental reaction that can be mostly fulfilled by electrophilic aromatic substitution and transition-metal-catalysed aryl functionalization. Although the azo group has been used as a directing group for many transformations via transition-metal-catalysed aryl carbon-hydrogen (C-H) bond activation, there remain significant unmet challenges in organocatalytic arylation. Here, we show that the azo group can effectively act as both a directing and activating group for organocatalytic asymmetric arylation of indoles via formal nucleophilic aromatic substitution of azobenzene derivatives. Thus, a wide range of axially chiral arylindoles have been achieved in good yields with excellent enantioselectivities by utilizing chiral phosphoric acid as catalyst. Furthermore, highly enantioenriched pyrroloindoles bearing two contiguous quaternary chiral centres have also been obtained via a cascade enantioselective formal nucleophilic aromatic substitution-cyclization process. This strategy should be useful in other related research fields and will open new avenues for organocatalytic asymmetric aryl functionalization.
Organocatalytic asymmetric arylation of indoles enabled by azo groups.
Qi, Liang-Wen; Mao, Jian-Hui; Zhang, Jian; Tan, Bin
2018-01-01
Arylation is a fundamental reaction that can be mostly fulfilled by electrophilic aromatic substitution and transition-metal-catalysed aryl functionalization. Although the azo group has been used as a directing group for many transformations via transition-metal-catalysed aryl carbon-hydrogen (C-H) bond activation, there remain significant unmet challenges in organocatalytic arylation. Here, we show that the azo group can effectively act as both a directing and activating group for organocatalytic asymmetric arylation of indoles via formal nucleophilic aromatic substitution of azobenzene derivatives. Thus, a wide range of axially chiral arylindoles have been achieved in good yields with excellent enantioselectivities by utilizing chiral phosphoric acid as catalyst. Furthermore, highly enantioenriched pyrroloindoles bearing two contiguous quaternary chiral centres have also been obtained via a cascade enantioselective formal nucleophilic aromatic substitution-cyclization process. This strategy should be useful in other related research fields and will open new avenues for organocatalytic asymmetric aryl functionalization.
García-Méndez, Marbella Claudia; Macías-Ruvalcaba, Norma A; Lappe-Oliveras, Patricia; Hernández-Ortega, Simón; Macías-Rubalcava, Martha Lydia
2016-06-01
Bioactivity-directed fractionation of the combined culture medium and mycelium extract of the endophytic fungus Xylaria feejeensis strain SM3e-1b, isolated from Sapium macrocarpum, led to the isolation of three known natural products: (4S,5S,6S)-4-hydroxy-3-methoxy-5-methyl-5,6-epoxycyclohex-2-enone or coriloxine, 1; 2-hydroxy-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione, 2; and 2,6-dihydroxy-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione or fumiquinone B, 3. This is the first report of compound 3 being isolated from this species. Additionally, four new derivatives of coriloxine were prepared: (4R,5S,6R)-6-chloro-4,5-dihydroxy-3-methoxy-5-methylcyclohex-2-enone, 4; 6-hydroxy-5-methyl-3-(methylamino)cyclohexa-2,5- diene-1,4-dione, 5; (4R,5R,6R)-4,5-dihydroxy-3-methoxy-5-methyl-6-(phenylamino)cyclohex-2-enone, 6; and 2-((4-butylphenyl)amino)-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione, 7. X-ray analysis allowed us to unambiguously determine the structures and absolute configuration of semisynthetic derivatives 4, 5, and 6. The phytotoxic activity of the three isolated natural products and the coriloxine derivatives is reported. Germination of the seed, root growth, and oxygen uptake of the seedlings of Trifolium pratense, Medicago sativa, Panicum miliaceum, and Amaranthus hypochondriacus were significantly inhibited by all of the tested compounds. In general, they were more effective inhibiting root elongation than suppressing the germination and seedling oxygen uptake processes as shown by their IC50 values.
NASA Astrophysics Data System (ADS)
Farid Rahman, Moh.; Nazhif Haykal, Muhammad; Andriani Siagian, Novi; Maiselina Sriepindonnta, Priscilla; Tampubolon, Norman Alexander
2018-01-01
Proapoptotic activity of ester eugenol,1-(3-methoxy-4-hydroxy)phenyl-2-propylmethanoat, which synthesized from eugenol is reported. Eugenol as starting material in the synthesis of ester eugenol was obtained from fractional distillation of clove oil with the yield of 70.66%. Synthesis of ester eugenol was camed out by addition-esterification reaction through reaction between eugenol and formic acid with mol ratio of 1:27 and reaction time for11 h. GC-MS analysis showed ester eugenol was afforded purity of 92.42% and the yield in of 93.34%. UV spectra of ester eugenol was observed the formation of carbonyl group at λmax 290 nm and supported by FT-IR analysis at 1714.60 cm-1 (carbonyl group), 1193.65 cm-1 (C-O-C ester group) and the absence of vynil group in eugenol structure at region 914.20 and 995.20 cm-1. Mass spectra showed ion molecule at m/z 210 was accordance with molecular weight of ester eugenol. Afterward, HeLa cell culture media was prepared for cervical cancer antiproliferative test. The result which showed in histogram indicated that LC50 of ester eugenol was reached at concentration below 0.01% while eugenol was up to 0.01% that observed cervical cancer cell apoptotic activity. LC50 value of ester eugenol was obtained at concentration 48.73 ppm. This research reported that natural product modified its structure has potency to cure cervical cancer.
Reflectance spectroscopy (350-2500 nm) of solid-state polycyclic aromatic hydrocarbons (PAHs)
NASA Astrophysics Data System (ADS)
Izawa, M. R. M.; Applin, D. M.; Norman, L.; Cloutis, E. A.
2014-07-01
Polycyclic aromatic hydrocarbons (PAHs) are organic compounds based on fused aromatic rings, and are formed in a variety of astrophysical, solar nebula and planetary processes. Polycyclic aromatic hydrocarbons are known or suspected to occur in a wide variety of planetary settings including icy satellites, Titan’s hazes, carbonaceous meteorites, comet nuclei, ring particles; and terrestrial organic-rich lithologies such as coals, asphaltites, and bituminous sands. Relatively few measurements of the visible and near-infrared spectra of PAHs exist, yet this wavelength region (350-2500 nm) is widely used for remote sensing. This study presents detailed analyses of the 350-2500 nm reflectance spectra of 47 fine-grained powders of different high-purity solid-state PAHs. Spectral properties of PAHs change with variations in the number and connectivity of linked aromatic rings and the presence and type of side-groups and heterocycles. PAH spectra are characterized by three strong features near ∼880 nm, ∼1145 nm, and ∼1687 nm due to overtones of νCH fundamental stretching vibrations. Some PAHs are amenable to remote detection due to the presence of diagnostic spectral features, including: Nsbnd H stretching overtones at 1490-1515 nm in NH- and NH2-bearing PAHs, aliphatic or saturated bond Csbnd H overtone vibrations at ∼1180-1280 nm and ∼1700-1860 nm; a broad asymmetric feature between ∼1450 nm and ∼1900 nm due to Osbnd H stretching overtones in aromatic alcohols, Csbnd H and Cdbnd O combinations near ∼2000-2010 nm and ∼2060-2270 nm in acetyl and carboxyl-bearing PAHs. Other substituents such as sulphonyl, thioether ether and carboxyl heterocycles, or cyano, nitrate, and aromatic side groups, do not produce well-resolved diagnostic spectral features but do cause shifts in the positions of the aromatic Csbnd H vibrational overtone features. Fluorescence is commonly suppressed by the presence of heterocycles, side-groups and in many non-alternant PAHs. The spectral characteristics of PAHs offer the potential, under suitable circumstances, for remote characterization of the classes of PAH present and in some cases, identification of particular heterocyclic or side-group substituents.
Arteagoitia, Iciar; Zumarraga, Mercedes; Dávila, Ricardo; Barbier, Luis; Santamaría, Gorka
2014-01-01
Objectives: Was to evaluate the effect of different regional anesthetics (articaine with epinephrine versus prilocaine with felypressin) on stress in the extraction of impacted lower third molars in healthy subjects. Sutdy Desing: A prospective single-blind, split-mouth cross-over randomized study was designed, with a control group. The experimental group consisted of 24 otherwise healthy male volunteers, with two impacted lower third molars which were surgically extracted after inferior alveolar nerve block (regional anesthesia), with a fortnight’s interval: the right using 4% articaine with 1:100.000 epinephrine, and the left 3% prilocaine with 1:1.850.000 felypressin. Patients were randomized for the first surgical procedure. To analyze the variation in four stress markers, homovanillic acid, 3-methoxy-4-hydroxyphenylglycol, prolactin and cortisol, 10-mL blood samples were obtained at t = 0, 5, 60, and 120 minutes. The control group consisted of 12 healthy volunteers, who did not undergo either extractions or anesthetic procedures but from whom blood samples were collected and analyzed in the same way. Results: Plasma cortisol increased in the experimental group (multiple range test, P<0.05), the levels being significantly higher in the group receiving 3% prilocaine with 1:1.850,000 felypressin (signed rank test, p<0.0007). There was a significant reduction in homovanillic acid over time in both groups (multiple range test, P<0.05). No significant differences were observed in homovanillic acid, 3-methoxy-4-hydroxyphenylglycol or prolactin concentrations between the experimental and control groups. Conclusions: The effect of regional anesthesia on stress is lower when 4% articaine with 1:100,000 epinephrine is used in this surgical procedure. Key words:Stress markets, epinephrine versus felypressin. PMID:24316704
Copolyimide with a combination of flexibilizing groups
NASA Technical Reports Server (NTRS)
Stclair, Terry L. (Inventor); Burks, Harold D. (Inventor); Progar, Donald J. (Inventor)
1989-01-01
Copolyimides are prepared by reacting one or more aromatic dianhydrides with a meta-substituted phenylene diamine and an aromatic bridged diamine. The incorporation of meta-substituted phenylene diamine derived units and bridged aromatice diamine derived units into the linear aromatic polymer backbone results in a copolyimide of improved flexibility, processability, and melt-flow characteristics. The copolyimides are especially useful as thermoplastic hot-melt adhesives.
NASA Astrophysics Data System (ADS)
Venkatesan, Perumal; Rajakannan, Venkatachalam; Venkataramanan, Natarajan S.; Ilangovan, Andivelu; Sundius, Tom; Thamotharan, Subbiah
2016-09-01
The title compound, (2E)-2-(ethoxycarbonyl)-3-[(4-methoxyphenyl)amino]prop-2-enoic acid is characterized by means of X-ray crystallography, spectroscopic methods and quantum chemical calculations. The title compound crystallizes in centrosymmetric space group P21/c. Moreover, the crystal structure is primarily stabilized through intramolecular Nsbnd H⋯O and Osbnd H⋯O and intermolecular Nsbnd H⋯O and Csbnd H⋯O interactions along with carbonyl⋯carbonyl and Csbnd H⋯C contacts. These intermolecular interactions are analysed and quantified by using Hirshfeld surface analysis, PIXEL energy, NBO, AIM and DFT calculations. The overall lattice energies of the title and parent compounds suggest that the title compound is stabilized by a 4.5 kcal mol-1 higher energy than the parent compound. The additional stabilization force comes from the methoxy substitution on the title molecule, which is evident since the methoxy group is involved in the intermolecular Csbnd H⋯O interaction as an acceptor. The vibrational modes of the interacting groups are investigated using both experimental and theoretical FT-IR and FT-Raman spectra. The experimental and theoretical UV-Vis spectra agree well. The time dependent DFT spectra show that the ligand-to-ligand charge transfer is responsible for the intense absorbance of the compound.
Kondo, Ryuichiro; Yamagami, Hikari; Sakai, Kokki
1993-01-01
When 4-methylguaiacol (MeG), a phenolic lignin model compound, was added to a culture that was inoculated with Coriolus versicolor, it was bioconverted into 2-methoxy-4-methylphenyl β-d-xyloside (MeG-Xyl). The phenolic hydroxyl group of vanillyl alcohol was much more extensively xylosylated than the alcoholic hydroxyl group. When a mixture of MeG and commercial UDP-xylose was incubated with cell extracts of mycelia, transformation of UDP-xylose into MeG-Xyl was observed. This result suggested that UDP-xylosyltransferase was involved in the xylosylation of phenolic hydroxyl groups of lignin model compounds. PMID:16348869
Gonzalez-de la Parra, M; Ramos-Mundo, C; Jimenez-Estrada, M; Ponce-de Leon, C; Castillo, R; Tejeda, V; Cuevas, K G; Enriquez, R G
1998-01-01
A germination bioassay with radish (Raphanus sativus L.) seeds was developed as a toxicological screening system for assessing the effects of new potential prodrugs of naproxen, as an alternative to animals and animal cell toxicity screens. Both enantiomers of naproxen (6-methoxy-α-methyl-2-naphthaleneacetic acid) and naproxol (6-methoxy-β-2-naphthaleneethanol), and their racemic mixtures, inhibited the radicle growth of R. sativus at a concentration of 1mM, while only (R)-(+ )-naproxol and racemic naproxol inhibited the hypocotyl growth of R. sativus at the same concentration. Four novel combinatorial esters, naproxen naproxyl esters (6-methoxy-β-methyl-2-naphthaleneethyl 6-methoxy-α-methyl-2-naphthaleneacetate), resulting from the combinatorial chemistry of the esterification reaction between naproxen and naproxol, were synthesised and then tested in the germination bioassay, at a concentration of 0.5mM. It was found that they did not inhibit either the radicle or the hypocotyl growth of R. sativus. 1998 FRAME.
[Cochinchinenin--a new chalcone dimer from the Chinese dragon blood].
Zhou, Z H; Wang, J L; Yang, C R
2001-03-01
To study the active constituents of Dracaena cochinchinensis (Lour.) S.C. Chen. in the commercial dragon blood. Various column chromatographies with Sephadex L-20 gel, MCI gel and silica gel were employed for the isolation and purification. The structures of compounds were elucidated by spectral analysis. Nine chalcones were isolated from the commercial dragon's blood which was made of D. cochinchinensis (Lour.) S.C. Chen.. By means of spectral data, they were identified as 1-[5-(2,4,4'-trihydroxydihydrochalconyl)]-1- (p-hydroxyphenyl)-3-(2-methoxy-4-hydroxy-phenyl)-propane (1), 2'-methoxysocotrin-5'-ol (2), socotrin-4'-ol (3), 2-methoxy-4, 4'-dihydroxydihydrochalcone (4), 2, 4, 4'-trihydroxy-dihydrochalcone (5), 2, 4, 4'-trihydroxy-6-methoxydihydrochalcone (6), 2', 4', 4-trihydroxychalcone (7), 2-methoxy-4, 4'-dihydroxychalcone (8) and 2'-methoxy-4', 4-dihydroxychalcone (9). Compound 1 is a new chalcone dimer and named as cochinchinenin. Compounds 2-9 were isolated from D. cochinchinensis (Lour.) S.C. Chen. for the first time.
Chiang, Chien-Min; Ding, Hsiou-Yu; Tsai, Ya-Ting; Chang, Te-Sheng
2015-01-01
Biotransformation of 8-hydroxydaidzein by recombinant Escherichia coli expressing O-methyltransferase (OMT) SpOMT2884 from Streptomyces peucetius was investigated. Two metabolites were isolated and identified as 7,4′-dihydroxy-8-methoxy-isoflavone (1) and 8,4′-dihydroxy-7-methoxy-isoflavone (2), based on mass, 1H-nuclear magnetic resonance (NMR) and 13C-NMR spectrophotometric analysis. The maximum production yields of compound (1) and (2) in a 5-L fermenter were 9.3 mg/L and 6.0 mg/L, respectively. The two methoxy-isoflavones showed dose-dependent inhibitory effects on melanogenesis in cultured B16 melanoma cells under non-toxic conditions. Among the effects, compound (1) decreased melanogenesis to 63.5% of the control at 25 μM. This is the first report on the 8-O-methylation activity of OMT toward isoflavones. In addition, the present study also first identified compound (1) with potent melanogenesis inhibitory activity. PMID:26610478
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Na; Xiong, Yijia; Squier, Thomas C.
2013-01-21
To optimize cellular delivery and specific labeling of tagged cytosolic proteins by biarsenical fluorescent probes build around a cyanine dye scaffold, we have systematically varied the polarity of the hydrophobic tails (i.e., 4-5 methylene groups appended by a sulfonate or methoxy ester moiety) and arsenic capping reagent (ethanedithiol versus benzenedithiol). Targeted labeling of the cytosolic proteins SlyD and the alpha subunit of RNA polymerase engineered with a tetracysteine tagging sequences demonstrate the utility of the newly synthesized probes for live-cell visualization, albeit with varying efficiencies and background intensities. Optimal routine labeling and visualization is apparent using the ethanedithiol capping reagentmore » with the uncharged methoxy ester functionalized acyl chains. These measurements demonstrate the general utility of this class of photostable and highly fluorescent biarsenical reagents based on the cyanine scaffold for in vivo targeting of tagged cellular proteins for live cell measurements of protein dynamics.« less
NASA Astrophysics Data System (ADS)
Erande, Yogesh; Kothavale, Shantaram; Sreenath, Mavila C.; Chitrambalam, Subramaniyan; Joe, Isaac H.; Sekar, Nagaiyan
2017-11-01
Molecules containing methoxy supported triphenylamine as strong electron-donor and dicyanovinyl as electron-acceptor groups interacting via isophorone as a configurationally locked polyene π-conjugated bridge are studied for their nonlinear optical properties. The photophysical study of examined chromophores in non-polar and polar solvents suggest that they exhibit strong emission solvatochromism and significant charge transfer characteristics supported by Lippert-Mataga plots and Generalised Mulliken Hush analysis. Linear and nonlinear optical properties as well as electronic properties measured by spectroscopic methods and cyclic voltametry and supported by DFT calculation were used to elucidate the structure property relationships. All three chromophores exhibit very high thermal stabilities with the decomposition temperatures higher than 340°C. The vibrational motions play very important role in determining the overall NLO response styryl chromophores which was established by DFT study. Dye 3 with maximum nonlinear optical susceptibility among three D-π-A systems proves that the multibranched push-pull chromophores exhibit a higher third order nonlinear susceptibility and justifies the design strategy.
[Phenanthrene constituents from rhizome of Arundina graminifolia].
Liu, Mei-feng; Ding, Yi; Zhang, Dong-ming
2005-03-01
To isolate and elucidate the constituents from rhizome of Arundina graminifolia. Theconstituents were extracted with 95% alcohol and isolated by chromatography on silica gel, Sephedax LH-20. The structures were determined by UV, IR, NMR and MS spectral analysis. Five phenanthrene constituents were identified as 7-hydroxy-2, 4-dimethoxy-9, 10-dihydrophenanthrene( I ), 4, 7-dihydroxy-2-methoxy-9, 10-dihydrophenanthrene ( II ), 2, 7-dihydroxy-4-methoxy-9, 10-dihydrophenanthrene ( III ), 7-hydroxy-2-methoxyphenanthrene-1,4-dione ( IV ), 7-hydroxy-2-methoxy-9, 10-dihydrophenanthrene-1,4-dione (V), respectively. All compounds were isolated from rhizome of A. graminifolia for the first time.
Yushin Ding; Fowler, J.S.; Wolf, A.P.
1993-10-19
A method for synthesizing no-carrier-added (NCA) aryl [.sup.18 F] fluoride substituted aromatic aldehyde compositions bearing an electron donating group is described. The method of the present invention includes the step of reacting aromatic nitro aldehydes having a suitably protected hydroxyl substitutent on an electron rich ring. The reaction is The U.S. Government has rights in this invention pursuant to Contract Number DE-AC02-76CH00016, between the U.S. Department of Energy and Associated Universities Inc.
Ding, Yu-Shin; Fowler, Joanna S.; Wolf, Alfred P.
1993-01-01
A method for synthesizing no-carrier-added (NCA) aryl [.sup.18 F] fluoride substituted aromatic aldehyde compositions bearing an electron donating group is described. The method of the present invention includes the step of reacting aromatic nitro aldehydes having a suitably protected hydroxyl substitutent on an electron rich ring. The reaction is The U.S. Government has rights in this invention pursuant to Contract Number DE-AC02-76CH00016, between the U.S. Department of Energy and Associated Universities Inc.
NASA Astrophysics Data System (ADS)
Paradies, Henrich H.; Reichelt, Hendrik
2016-06-01
The crystal structures of the hydrated cationic surfactant benzethonium (Bzth) chloride, bromide, hydroxide, and citrate have been determined by X-ray diffraction analysis and compared with their structures in solution well above their critical micelle concentration. The differences in the nature of the various anions of the four Bzth-X materials lead to unique anion environments and 3-D molecular arrangements. The water molecule in the monoclinic Bzth-Cl or Bzth-Br forms is hydrogen bonded to the halides and particularly to the hydrogens of the methoxy groups of the Bzth moiety notwithstanding the weak Brønsted acidity of the methoxy hydrogens. The citrate strongly interacts with the hydrogens of the methoxy group forming an embedded anionic spherical cluster of a radius of 2.6 Å. The Bzth-OH crystallizes in a hexagonal lattice with two water molecules and reveals free water molecules forming hydrogen bonded channels through the Bzth-OH crystal along the c-axis. The distances between the cationic nitrogen and the halides are 4.04 Å and 4.20 Å, significantly longer than expected for typical van der Waals distances of 3.30 Å. The structures show weakly interacting, alternating apolar and polar layers, which run parallel to the crystallographic a-b planes or a-c planes. The Bzth-X salts were also examined in aqueous solution containing 20% (v/v) ethanol and 1.0 % (v/v) glycerol well above their critical micelle concentration by small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). The [1,1,1] planes for the Bzth Cl or Br, the [0,0,2] and [1,1,0] planes for the Bzth-citrate, the [2,-1,0] planes and the [0,0,1] planes for the Bzth-OH found in the crystalline phase were also present in the solution phase, accordingly, the preservation of these phases are a strong indication of periodicity in the solution phase.
NASA Astrophysics Data System (ADS)
Dertinger, Jennifer J.; Walker, Amy V.
2013-08-01
The role of the ionic liquid (IL) anion structure on analyte signal enhancements has been systematically investigated in secondary ion mass spectrometry (SIMS) using a variety of samples, including lipids, sterols, polymers, and peptides. Twenty-four ILs were synthesized. The 12 matrix acids were cinnamic acid derivatives. Two bases were employed: 1-methylimidazole and tripropylamine. Three matrices, methylimmidazolium o-coumarate, tripropylammonium o-coumarate, and tripropylammonium 3,4,5-trimethoxycinnamate, were "universal" matrices enhancing all analytes tested. The pKa of the matrix acid does not appear to have a strong effect on analyte ion intensities. Rather, it is observed that a single hydroxyl group on the anion aromatic ring leads to significantly increased molecular ion intensities. No analyte signal enhancements were observed for -CH3, -CF3 and -OCH3 groups present on the aromatic ring. The position of the -OH group on the aromatic ring also alters molecular ion intensity enhancements. As well as the chemical identity and position of substituents, the number of moieties on the aromatic ring may affect the analyte signal enhancements observed. These observations suggest that the activation of the IL anion aromatic ring is important for optimizing analyte signal intensities. The implications for SIMS imaging of complex structures, such as biological samples, are discussed.
Guinchard, Xavier; Denis, Jean-Noël
2008-03-07
A new class of alpha-aromatic-N-hydroxylamines has been prepared by reaction of tert-butyl (phenylsulfonyl)alkyl-N-hydroxycarbamates with aromatic and heteroaromatic Grignard reagents. Reactions proceed via a base-assisted elimination of the phenylsulfonyl group leading to N-Boc nitrones. This methodology has been applied to the synthesis of zileuton.
Kakinuma, Shohei; Ramati, Sharon; Wishart, James F.; ...
2018-05-21
We investigate the temperature dependence of low-frequency spectra in the frequency range of 0.3–200 cm -1 for ionic liquids (ILs) whose cations possess two systematically different cyclic groups, using femtosecond Raman-induced Kerr effect spectroscopy. The target ILs are bis(trifluoromethylsulfonyl)amide [NTf 2]– salts of 1-cyclohexylmethyl-1-methylpyrrolidinium [CHxmMPyrr] +, 1-cyclohexylmethyl-3-methylimidazolium [CHxmMIm] +, N-cyclohexylmethylpyridinium [CHxmPy]+, 1-benzyl-1-methylpyrrolidinium [BzMPyrr] +, 1-benzyl-3-methylimidazolium [BzMIm] +, and N-benzylpyridinium [BzPy] + cations. The aim of this study is to better understand the effects of aromaticity in the cations’ constituent groups on the temperature-dependent low-frequency spectral features of the ILs. The low-frequency spectra of these ILs are temperature dependent, but themore » temperature-dependent spectrum of [CHxmMPyrr][NTf 2] is different from that of other ILs. While [CHxmMPyrr][NTf 2] shows spectral changes with temperature in the low-frequency region below 50 cm -1, the other ILs also show spectral changes in the high-frequency region above 80 cm -1 (above 50 cm -1 in the case of [BzMPyrr][NTf 2]). We conclude that the spectral change in the low-frequency region is due to both the cation and anion, while the change in the high-frequency region is attributed to the red shift of the aromatic ring librations. On the basis of the plots of the first moment of the spectra vs. temperature, we found that the first moment of the low-frequency spectrum of the IL whose cation does not have an aromatic ring is less temperature dependent than that of the other ILs. However, the intrinsic first moment, the first moment at 0 K, of the low-frequency spectrum is governed by the absence or presence of a charged aromatic group, while a neutral aromatic group does not have much influence on determining the intrinsic first moment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kakinuma, Shohei; Ramati, Sharon; Wishart, James F.
We investigate the temperature dependence of low-frequency spectra in the frequency range of 0.3–200 cm -1 for ionic liquids (ILs) whose cations possess two systematically different cyclic groups, using femtosecond Raman-induced Kerr effect spectroscopy. The target ILs are bis(trifluoromethylsulfonyl)amide [NTf 2]– salts of 1-cyclohexylmethyl-1-methylpyrrolidinium [CHxmMPyrr] +, 1-cyclohexylmethyl-3-methylimidazolium [CHxmMIm] +, N-cyclohexylmethylpyridinium [CHxmPy]+, 1-benzyl-1-methylpyrrolidinium [BzMPyrr] +, 1-benzyl-3-methylimidazolium [BzMIm] +, and N-benzylpyridinium [BzPy] + cations. The aim of this study is to better understand the effects of aromaticity in the cations’ constituent groups on the temperature-dependent low-frequency spectral features of the ILs. The low-frequency spectra of these ILs are temperature dependent, but themore » temperature-dependent spectrum of [CHxmMPyrr][NTf 2] is different from that of other ILs. While [CHxmMPyrr][NTf 2] shows spectral changes with temperature in the low-frequency region below 50 cm -1, the other ILs also show spectral changes in the high-frequency region above 80 cm -1 (above 50 cm -1 in the case of [BzMPyrr][NTf 2]). We conclude that the spectral change in the low-frequency region is due to both the cation and anion, while the change in the high-frequency region is attributed to the red shift of the aromatic ring librations. On the basis of the plots of the first moment of the spectra vs. temperature, we found that the first moment of the low-frequency spectrum of the IL whose cation does not have an aromatic ring is less temperature dependent than that of the other ILs. However, the intrinsic first moment, the first moment at 0 K, of the low-frequency spectrum is governed by the absence or presence of a charged aromatic group, while a neutral aromatic group does not have much influence on determining the intrinsic first moment.« less
NASA Astrophysics Data System (ADS)
Kakinuma, Shohei; Ramati, Sharon; Wishart, James F.; Shirota, Hideaki
2018-05-01
In this study, we investigate the temperature dependence of low-frequency spectra in the frequency range of 0.3-200 cm-1 for ionic liquids (ILs) whose cations possess two systematically different cyclic groups, using femtosecond Raman-induced Kerr effect spectroscopy. The target ILs are bis(trifluoromethylsulfonyl)amide [NTf2]- salts of 1-cyclohexylmethyl-1-methylpyrrolidinium [CHxmMPyrr]+, 1-cyclohexylmethyl-3-methylimidazolium [CHxmMIm]+, N-cyclohexylmethylpyridinium [CHxmPy]+, 1-benzyl-1-methylpyrrolidinium [BzMPyrr]+, 1-benzyl-3-methylimidazolium [BzMIm]+, and N-benzylpyridinium [BzPy]+ cations. The aim of this study is to better understand the effects of aromaticity in the cations' constituent groups on the temperature-dependent low-frequency spectral features of the ILs. The low-frequency spectra of these ILs are temperature dependent, but the temperature-dependent spectrum of [CHxmMPyrr][NTf2] is different from that of other ILs. While [CHxmMPyrr][NTf2] shows spectral changes with temperature in the low-frequency region below 50 cm-1, the other ILs also show spectral changes in the high-frequency region above 80 cm-1 (above 50 cm-1 in the case of [BzMPyrr][NTf2]). We conclude that the spectral change in the low-frequency region is due to both the cation and anion, while the change in the high-frequency region is attributed to the red shift of the aromatic ring librations. On the basis of the plots of the first moment of the spectra vs. temperature, we found that the first moment of the low-frequency spectrum of the IL whose cation does not have an aromatic ring is less temperature dependent than that of the other ILs. However, the intrinsic first moment, the first moment at 0 K, of the low-frequency spectrum is governed by the absence or presence of a charged aromatic group, while a neutral aromatic group does not have much influence on determining the intrinsic first moment.
40 CFR 180.184 - Linuron; tolerances for residues.
Code of Federal Regulations, 2011 CFR
2011-07-01
... herbicide linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea) and its metabolites convertible to 3,4... tolerances specified in the following table are established for combined residues of the herbicide linuron (3... established for the combined residues of the herbicide linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea...
40 CFR 180.184 - Linuron; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
... herbicide linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea) and its metabolites convertible to 3,4... tolerances specified in the following table are established for combined residues of the herbicide linuron (3... established for the combined residues of the herbicide linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea...
40 CFR 180.184 - Linuron; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
... herbicide linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea) and its metabolites convertible to 3,4... tolerances specified in the following table are established for combined residues of the herbicide linuron (3... established for the combined residues of the herbicide linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea...
40 CFR 180.184 - Linuron; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
... herbicide linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea) and its metabolites convertible to 3,4... tolerances specified in the following table are established for combined residues of the herbicide linuron (3... established for the combined residues of the herbicide linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea...
Code of Federal Regulations, 2014 CFR
2014-07-01
....-[[[methyl-3-[[[(polyfluoroalkyl)oxy]carbonyl] amino]phenyl]amino]carbonyl]- .omega.-methoxy-(generic). 721....-[[[methyl-3-[[[(polyfluoroalkyl) oxy]carbonyl]amino]phenyl]amino] carbonyl]-.omega.-methoxy- (PMN P-11-217... Substances § 721.10409 Poly(oxyalkylenediyl), .alpha.-[[[methyl-3-[[[(polyfluoroalkyl)oxy]carbonyl] amino...
Code of Federal Regulations, 2012 CFR
2012-07-01
....-[[[methyl-3-[[[(polyfluoroalkyl) oxy]carbonyl]amino]phenyl]amino] carbonyl]-.omega.-methoxy- (generic). 721....-[[[methyl-3-[[[(polyfluoroalkyl) oxy]carbonyl]amino]phenyl]amino] carbonyl]-.omega.-methoxy- (PMN P-11-217... Substances § 721.10409 Poly(oxyalkylenediyl), .alpha.-[[[methyl-3-[[[(polyfluoroalkyl) oxy]carbonyl]amino...
Point, Vanessa; Pavan Kumar, K V P; Marc, Sylvain; Delorme, Vincent; Parsiegla, Goetz; Amara, Sawsan; Carrière, Frédéric; Buono, Gérard; Fotiadu, Frédéric; Canaan, Stéphane; Leclaire, Julien; Cavalier, Jean-François
2012-12-01
We report here the reactivity and selectivity of three 5-Methoxy-N-3-Phenyl substituted-1,3,4-Oxadiazol-2(3H)-ones (MPOX, as well as meta and para-PhenoxyPhenyl derivatives, i.e.MmPPOX and MpPPOX) with respect to the inhibition of mammalian digestive lipases: dog gastric lipase (DGL), human (HPL) and porcine (PPL) pancreatic lipases, human (HPLRP2) and guinea pig (GPLRP2) pancreatic lipase-related proteins 2, human pancreatic carboxyl ester hydrolase (hCEH), and porcine pancreatic extracts (PPE). All three oxadiazolones displayed similar inhibitory activities on DGL, PLRP2s and hCEH than the FDA-approved anti-obesity drug Orlistat towards the same enzymes. These compounds appeared however to be discriminative of HPL (poorly inhibited) and PPL (fully inhibited). The inhibitory activities obtained experimentally in vitro were further rationalized using in silico molecular docking. In the case of DGL, we demonstrated that the phenoxy group plays a key role in specific molecular interactions within the lipase's active site. The absence of this group in the case of MPOX, as well as its connectivity to the neighbouring aromatic ring in the case of MmPPOX and MpPPOX, strongly impacts the inhibitory efficiency of these oxadiazolones and leads to a significant gain in selectivity towards the lipases tested. The powerful inhibition of PPL, DGL, PLRP2s, hCEH and to a lesser extend HPL, suggests that oxadiazolone derivatives could also provide useful leads for the development of novel and more discriminative inhibitors of digestive lipases. These inhibitors could be used for a better understanding of individual lipase function as well as for drug development aiming at the regulation of the whole gastrointestinal lipolysis process. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Amsacrine as a Topoisomerase II Poison: Importance of Drug-DNA Interactions†
Ketron, Adam C.; Denny, William A.; Graves, David E.; Osheroff, Neil
2012-01-01
Amsacrine (m-AMSA) is an anticancer agent that displays activity against refractory acute leukemias as well as Hodgkin’s and non-Hodgkin’s lymphomas. The drug is comprised of an intercalative acridine moiety coupled to a 4’-amino-methanesulfon-m-anisidide head group. m-AMSA is historically significant in that it was the first drug demonstrated to function as a topoisomerase II poison. Although m-AMSA was designed as a DNA binding agent, the ability to intercalate does not appear to be the sole determinant of drug activity. Therefore, to more fully analyze structure-function relationships and the role of DNA binding in the action of m-AMSA, we analyzed a series of derivatives for the ability to enhance DNA cleavage mediated by human topoisomerase IIα and topoisomerase IIβ and to intercalate DNA. Results indicate that the 3’-methoxy (m-AMSA) positively affects drug function, potentially by restricting the rotation of the head group in a favorable orientation. Shifting the methoxy to the 2’-position (o-AMSA), which abrogates drug function, appears to increase rotational freedom of the head group and may impair interactions of the 1’-substituent or other portions of the head group within the ternary complex. Finally, the non-intercalative m-AMSA head group enhanced enzyme-mediated DNA cleavage when it was detached from the acridine moiety, albeit with 100-fold lower affinity. Taken together, our results suggest that much of the activity and specificity of m-AMSA as a topoisomerase II poison is embodied in the head group, while DNA intercalation is used primarily to increase the affinity of m-AMSA for the topoisomerase II-DNA cleavage complex. PMID:22304499
Synthesis and bioelectrochemical behavior of aromatic amines.
Shabbir, Muhammad; Akhter, Zareen; Ahmad, Iqbal; Ahmed, Safeer; Bolte, Michael; McKee, Vickie
2017-12-01
Four aromatic amines 1-amino-4-phenoxybenzene (A 1 ), 4-(4-aminophenyloxy) biphenyl (A 2 ), 1-(4-aminophenoxy) naphthalene (A 3 ) and 2-(4-aminophenoxy) naphthalene (A 4 ) were synthesized and characterized by elemental, spectroscopic (FTIR, NMR), mass spectrometric and single crystal X-ray diffraction methods. The compounds crystallized in monoclinic crystal system with space group P2 1 . Intermolecular hydrogen bonds were observed between the amine group and amine/ether acceptors of neighboring molecules. Electrochemical investigations were done using cyclic voltammetry (CV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV). CV studies showed that oxidation of aromatic amines takes place at about 0.9 V (vs. Ag/AgCl) and the electron transfer (ET) process has irreversible nature. After first scan reactive intermediate were generated electrochemically and some other cathodic and anodic peaks also appeared in the succeeding scans. DPV study revealed that ET process is accompanied by one electron. DNA binding study of aromatic amines was performed by CV and UV-visible spectroscopy. These investigations revealed groove binding mode of interaction of aromatic amines with DNA. Copyright © 2017 Elsevier Inc. All rights reserved.
GLOBAL INVENTORY OF VOLATILE COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES
The report describes a global inventory anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds....
Mayo, Muhammad Shareef; Yu, Xiaoqiang; Zhou, Xiaoyu; Feng, Xiujuan; Yamamoto, Yoshinori; Bao, Ming
2014-02-07
Brønsted acid catalyzed cyclization reactions of 2-amino thiophenols/anilines with β-diketones under oxidant-, metal-, and radiation-free conditions are described. Various 2-substituted benzothiazoles/benzimidazoles are obtained in satisfactory to excellent yields. Different groups such as methyl, chloro, nitro, and methoxy linked on benzene rings were tolerated under the optimized reaction conditions.
1988-11-09
with m.ethoxy groups- on the Three aninoketone hydrochlorides derived From 1 -indanorles have been prepared. These are 2-amino-i- indanone , 3, 3-dimethiyl... indanone , was commercially available. The substituted 1 - indanones for preparation of VIb and VJc were prepared by addition of phenylmagnesium bromide...dimethyl-l- indanone by heating with polyphosphoric acid.7 The 1 - indanones were all converted to the 2-oximes by reaction with butyl nitrite under acid
Sun, Weichao; Ren, Haisheng; Tao, Ye; Xiao, Dong; Qin, Xin; Deng, Li; Shao, Mengyao; Gao, Jiali; Chen, Xiaohua
2015-01-01
The cooperative interactions among two aromatic rings with a S-containing group are described, which may participate in electron hole transport in proteins. Ab initio calculations reveal the possibility for the formations of the π∴S:π↔π:S∴π and π∴π:S↔π:π∴S five-electron bindings in the corresponding microsurrounding structures in proteins, both facilitating electron hole transport as efficient relay stations. The relay functionality of these two special structures comes from their low local ionization energies and proper binding energies, which varies with the different aromatic amino acids, S-containing residues, and the arrangements of the same aromatic rings according to the local microsurroundings in proteins. PMID:26120374
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shubin, E-mail: shubin@email.unc.edu
Electrophilic aromatic substitution as one of the most fundamental chemical processes is affected by atoms or groups already attached to the aromatic ring. The groups that promote substitution at the ortho/para or meta positions are, respectively, called ortho/para and meta directing groups, which are often characterized by their capability to donate electrons to or withdraw electrons from the ring. Though resonance and inductive effects have been employed in textbooks to explain this phenomenon, no satisfactory quantitative interpretation is available in the literature. Here, based on the theoretical framework we recently established in density functional reactivity theory (DFRT), where electrophilicity andmore » nucleophilicity are simultaneously quantified by the Hirshfeld charge, the nature of ortho/para and meta group directing is systematically investigated for a total of 85 systems. We find that regioselectivity of electrophilic attacks is determined by the Hirshfeld charge distribution on the aromatic ring. Ortho/para directing groups have most negative charges on the ortho/para positions, while meta directing groups often possess the largest negative charge on the meta position. Our results do not support that ortho/para directing groups are electron donors and meta directing groups are electron acceptors. Most neutral species we studied here are electron withdrawal in nature. Anionic systems are always electron donors. There are also electron donors serving as meta directing groups. We predicted ortho/para and meta group directing behaviors for a list of groups whose regioselectivity is previously unknown. In addition, strong linear correlations between the Hirshfeld charge and the highest occupied molecular orbital have been observed, providing the first link between the frontier molecular orbital theory and DFRT.« less
Patupilone-loaded poly(L-glutamic acid)-graft-methoxy-poly(ethylene glycol) micelle for oncotherapy.
Yan, Jing; Zhang, Dawei; Yu, Haiyang; Ma, Lili; Deng, Mingxiao; Tang, Zhaohui; Zhang, Xuefei
2017-03-01
Patupilone, an original natural anti-cancer agent, also known as epothilone B or Epo906, has shown promise for the treatment of a variety of cancers, however, the systematic side effects of patupilone significantly impaired its clinical translation. Herein, patupilone-loaded PLG-g-mPEG micelles were prepared. Patupilone was grafted to a poly(L-glutamic acid)-graft-methoxy-poly(ethylene glycol) (PLG-g-mPEG) by Steglich esterification reaction to give PLG-g-mPEG/Epo906 that could self-assemble to form patupilone-loaded micelles (Epo906-M). The Epo906-M was able to inhibit the proliferation of A549, MCF-7 cancer cells and BEAs-2B cells in vitro. For in vivo treatment of orthotopic xenograft tumor models (MCF-7), the Epo906-M exhibited higher tumor inhibition efficiency with lower side effects as compared with free Epo906. Seventeen percent of the body weight loss appeared in the group treated with free Epo906 of 0.25 mg kg -1 , while the group treated with Epo906-M of 10 mg kg -1 showed less than ten percent of body weight loss and displayed stronger tumor inhibiting effect. Therefore, the polypeptide-patupilone conjugate has improved potential for oncotherapy.
VizieR Online Data Catalog: methoxy radical (CH3O) rotational spectrum (Laas+,
NASA Astrophysics Data System (ADS)
Laas, J. C.; Widicus Weaver, S. L.
2017-08-01
The methoxy radical (CH3O) has recently been detected interstellar medium and may be an important tracer of methanol-related chemistry in cold sources. Despite its importance, the spectral information needed to guide further astronomical searches is limited. We have therefore studied the low-temperature rotational spectrum in the laboratory within the spectral range of 246-303GHz. We have combined these new measurements with results from a number of literature reports to refine the molecular parameters and provide an updated and improved spectral line catalog. We present here the results of the laboratory studies and the refined analysis for the millimeter and submillimeter spectrum of methoxy. (1 data file).
Oka, K; Kojima, K; Togari, A; Nagatsu, T; Kiss, B
1984-06-08
A new method using high-performance liquid chromatography with electrochemical detection (HPLC-ED) for the simultaneous determination of monoamines, their precursor amino acids, and related major metabolites in small samples of brain tissue weighing from 0.5 to 50 mg is described. The method is based on the preliminary isolation of monoamines (dopamine, norepinephrine, epinephrine, and serotonin), their precursor amino acids (tyrosine, 3,4-dihydroxyphenylalanine, tryptophan and 5-hydroxytryptophan), and their major metabolites (3-methoxytyramine, normetanephrine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, vanillylmandelic acid, 3-methoxy-4-hydroxyphenylethyleneglycol, and 5-hydroxyindoleacetic acid) by chromatography on small columns of Amberlite CG-50 and Dowex 50W, and by ethyl acetate extraction. All the compounds in the four isolated fractions were measured by HPLC-ED on a reversed-phase column under four different conditions. The sensitivity was from 0.1 to 40 pmol, depending on the substances analysed. This newly established method was applied to the study of the effects of an aromatic L-amino acid decarboxylase inhibitor (NSD-1015) and a monoamine oxidase inhibitor (pargyline) on the levels of monoamines, their precursor amino acids and their major metabolites in brain regions of mice.
Three new natural compounds from the root bark essential oil from Xylopia aethiopica.
Yapi, Thierry Acafou; Boti, Jean Brice; Attioua, Barthelemy Koffi; Ahibo, Antoine Coffy; Bighelli, Ange; Casanova, Joseph; Tomi, Félix
2012-01-01
In the course of on-going work on the characterisation of aromatic plants from the Ivory Coast we investigated the composition of the root oil from Xylopia aethiopica. The aim of this work was to investigate the chemical composition of X. aethiopica root oil and elucidate the structure of two new compounds. Analysis of the essential oil was carried out using a combination of chromatographic (CC, GC with retention indices) and spectroscopic techniques (MS, (13)C-NMR, 2D-NMR). Twenty seven components, accounting for 95.6% of the whole composition, were identified including various compounds for which spectroscopic data were absent on commercial computerised MS libraries. Three compounds are reported for the first time as natural compounds and the structure of two new compounds, 4,4-dimethyl-2-vinylcyclohexene and endo-5-methoxy-3-patchoulene, has been elucidated using extensive two-dimensional NMR spectroscopy. The composition of X. aethiopica root oil is dominated by two dimethylvinylcyclohexene isomers. It differs drastically from the composition of leaf and fruit oils of the same plant. The combination of analytical techniques appeared crucial for a fruitful analysis. Copyright © 2012 John Wiley & Sons, Ltd.
Anari, M R; Khan, S; Liu, Z C; O'Brien, P J
1995-12-01
Cytochrome P450 (P450) can utilize organic hydroperoxides and peracids to support hydroxylation and dealkylation of various P450 substrates. However, the biological significance of this P450 peroxygenase/peroxidase activity in the bioactivation of xenobiotics in intact cells has not been demonstrated. We have shown that tert-butyl hydroperoxide (tBHP) markedly enhances 3-20-fold the cytotoxicity of various aromatic hydrocarbons and their phenolic metabolites. The tBHP-enhanced hepatocyte cytotoxicity of 4-nitroanisole (4-NA) and 4-hydroxyanisole (4-HA) was also accompanied by an increase in the hepatocyte O-demethylation of 4-NA and 4-HA up to 7.5- and 21-fold, respectively. Hepatocyte GSH conjugation by 4-HA was also markedly increased by tBHP. An LC/MS analysis of the GSH conjugates identified hydroquinone-GSH and 4-methoxy-catechol:GSH conjugates as the predominant adducts. Pretreatment of hepatocytes with P450 inhibitors, e.g., phenylimidazole, prevented tBHP-enhanced 4-HA metabolism, GSH depletion, and cytotoxicity. In conclusion, hydroperoxides can therefore be used by intact cells to support the bioactivation of xenobiotics through the P450 peroxidase/peroxygenase system.
Bonfield, Kevin; Amato, Erica; Bankemper, Tony; Agard, Hannah; Steller, Jeffrey; Keeler, James M.; Roy, David; McCallum, Adam; Paula, Stefan; Ma, Lili
2014-01-01
Aromatase (CYP19) catalyzes the aromatization reaction of androgen substrates to estrogens, the last and rate-limiting step in estrogen biosynthesis. Inhibition of aromatase is a new and promising approach to treat hormone-dependent breast cancer. We present here the design and development of isoflavanone derivatives as potential aromatase inhibitors. Structural modifications were performed on the A and B rings of isoflavanones via microwave-assisted, gold-catalyzed annulation reactions of hydroxyaldehydes and alkynes. The in vitro aromatase inhibition of these compounds was determined by fluorescence-based assays utilizing recombinant human aromatase (baculovirus/insect cell-expressed). The compounds 3-(4-phenoxyphenyl)chroman-4-one (1h), 6-methoxy-3-phenylchroman-4-one (2a) and 3-(pyridin-3-yl)chroman-4-one (3b) exhibited potent inhibitory effects against aromatase with IC50 values of 2.4 μM, 0.26 μM and 5.8 μM, respectively. Docking simulations were employed to investigate crucial enzyme/inhibitor interactions such as hydrophobic interactions, hydrogen bonding and heme iron coordination. This report provides useful information on aromatase inhibition and serves as a starting point for the development of new flavonoid aromatase inhibitors. PMID:22444875
Yusuf, Mohammad; Khan, Riaz A; Khan, Maria; Ahmed, Bahar
2013-05-01
New imines, derived from aromatic aldehyde, chalcones and 5-amino-1,3,4-thiadiazole-2-thiol exhibited promising anti-convulsant activity which is explained through chemo-biological interactions at receptor site producing the inhibition of human Carbonic Anhydrase-II enzyme (hCA-II) through the proposed pharmacophore model at molecular levels as basis for pharmacological activity. The compounds 5-{1-(4-Chlorophenyl)-3-[4-(methoxy-phenyl)-prop-2-en-1-ylidene]amino}-1,3,4-thiadiazole-2-thiol (2b), 5-{[1-(4-chloro-phenyl)]-3-[4-(dimethyl-amino-phenyl)-prop-2-en-1-ylidene]amino}-1,3,4-thiadiazole-2-thiol (2c) and 5-{[1-(4-chloro-phenyl)]-3-[(4-amino-phenyl)-prop-2-en-1-ylidene]amino}-1,3,4-thiadiazole-2-thiol (2f) showed 100% activity in comparison with standard Acetazolamide, a known anti-convulsant drug. The compounds 2c, 2f also passed the Rotarod and Ethanol Potentiation tests which further confirmed them to be safe in motor coordination activity and safe from generating neurological toxicity. © 2013 John Wiley & Sons A/S.
USDA-ARS?s Scientific Manuscript database
Chemical studies of an organic extract of Epicoccum purpurascens NRRL 37031, isolated from a wood decay fungus in Florida, led to the isolation of two new metabolites, 7-methoxy-4-oxo-chroman-5-carboxylic acid methyl ester (1) and 1,3-dihydro-5-methoxy-7-methylisobenzofuran (2). Two known isobenzof...
Wu, Wan-Hsun; Chen, Tzu-Yu; Lu, Rui-Wen; Chen, Shui-Tein; Chang, Chia-Chuan
2012-11-01
Sweet broomweed (Scoparia dulcis) is an edible perennial medicinal herb widely distributed in tropical and subtropical regions of Asia, Africa, and the Americas. Four compounds, (2R)-7-methoxy-2H-1,4-benzoxazin-3(4H)-one 2-O-β-galactopyranoside [(2R)-HMBOA-2-O-Gal], 3,6-dimethoxy-benzoxazolin-2(3H)-one (3,6-M2BOA), 3-hydroxy-6-methoxy-2-benzoxazolinone (3-OH-MBOA), and scutellarein 7-O-β-glucuronamide, along with eight known compounds, including two 7-methoxy-1,4-benzoxazin-3(2H)-one 3-O-hexopyranosides [(2R)-HMBOA-2-O-Glc and (2R)-HDMBOA-2-O-Glc], 6-methoxy-benzoxazolin-2(3H)-one (MBOA), acteoside, sodium scutellarin, p-coumaric acid, and two monosaccharides (fructose and glucose), were isolated from the aqueous extract of S. dulcis. Antiproliferative activities of the six benzoxazinoid compounds against the DU-145 human prostate cancer cell line were assayed, and one of these displayed an IC₅₀ of 65.8 μg/mL. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zheng, Zhong; Dutton, P. Leslie; Gunner, M. R.
2010-01-01
Quinones play important roles in mitochondrial and photosynthetic energy conversion acting as intramembrane, mobile electron and proton carriers between catalytic sites in various electron transfer proteins. They display different affinity, selectivity, functionality and exchange dynamics in different binding sites. The computational analysis of quinone binding sheds light on the requirements for quinone affinity and specificity. The affinities of ten oxidized, neutral benzoquinones (BQs) were measured for the high affinity QA site in the detergent solubilized Rhodobacter sphaeroides bacterial photosynthetic reaction center. Multi-Conformation Continuum Electrostatics (MCCE) was then used to calculate their relative binding free energies by Grand Canonical Monte Carlo sampling with a rigid protein backbone, flexible ligand and side chain positions and protonation states. Van der Waals and torsion energies, Poisson-Boltzmann continuum electrostatics and accessible surface area dependent ligand-solvent interactions are considered. An initial, single cycle of GROMACS backbone optimization improves the match with experiment as do coupled ligand and side chain motions. The calculations match experiment with an RMSD of 2.29 and a slope of 1.28. The affinities are dominated by favorable protein-ligand van der Waals rather than electrostatic interactions. Each quinone appears in a closely clustered set of positions. Methyl and methoxy groups move into the same positions as found for the native quinone. Difficulties putting methyls into methoxy sites are observed. Calculations using an SAS dependent implicit van der Waals interaction smoothed out small clashes, providing a better match to experiment with a RMSD of 0.77 and a slope of 0.97. PMID:20607696
Manzano, Carlos A; Marvin, Chris; Muir, Derek; Harner, Tom; Martin, Jonathan; Zhang, Yifeng
2017-05-16
The aromatic fractions of snow, lake sediment, and air samples collected during 2011-2014 in the Athabasca oil sands region were analyzed using two-dimensional gas chromatography following a nontargeted approach. Commonly monitored aromatics (parent and alkylated-polycyclic aromatic hydrocarbons and dibenzothiophenes) were excluded from the analysis, focusing mainly on other heterocyclic aromatics. The unknowns detected were classified into isomeric groups and tentatively identified using mass spectral libraries. Relative concentrations of heterocyclic aromatics were estimated and were found to decrease with distance from a reference site near the center of the developments and with increasing depth of sediments. The same heterocyclic aromatics identified in snow, lake sediments, and air were observed in extracts of delayed petroleum coke, with similar distributions. This suggests that petroleum coke particles are a potential source of heterocyclic aromatics to the local environment, but other oil sands sources must also be considered. Although the signals of these heterocyclic aromatics diminished with distance, some were detected at large distances (>100 km) in snow and surface lake sediments, suggesting that the impact of industry can extend >50 km. The list of heterocyclic aromatics and the mass spectral library generated in this study can be used for future source apportionment studies.
Synthesis of tetra- and octa-aurated heteroaryl complexes towards probing aromatic indoliums
Yuan, Jun; Sun, Tingting; He, Xin; An, Ke; Zhu, Jun; Zhao, Liang
2016-01-01
Polymetalated aromatic compounds are particularly challenging synthetic goals because of the limited thermodynamic stability of polyanionic species arising from strong electrostatic repulsion between adjacent carbanionic sites. Here we describe a facile synthesis of two polyaurated complexes including a tetra-aurated indole and an octa-aurated benzodipyrrole. The imido trinuclear gold(I) moiety exhibits nucleophilicity and undergoes an intramolecular attack on a gold(I)-activated ethynyl to generate polyanionic heteroaryl species. Their computed magnetic properties reveal the aromatic character in the five-membered ring. The incorporation of the aurated substituents at the nitrogen atom can convert non-aromaticity in the parent indolium into aromaticity in the aurated one because of hyperconjugation. Thus, the concept of hyperconjugative aromaticity is extended to heterocycles with transition metal substituents. More importantly, further analysis indicates that the aurated substituents can perform better than traditional main-group substituents. This work highlights the difference in aromaticity between polymetalated aryls and their organic prototypes. PMID:27186982
Shi, Yang; van der Meel, Roy; Theek, Benjamin; Blenke, Erik Oude; Pieters, Ebel H.E.; Fens, Marcel H.A.M.; Ehling, Josef; Schiffelers, Raymond M.; Storm, Gert; van Nostrum, Cornelus F.; Lammers, Twan; Hennink, Wim E.
2015-01-01
Treatment of cancer patients with taxane-based chemotherapeutics, such as paclitaxel (PTX), is complicated by their narrow therapeutic index. Polymeric micelles are attractive nanocarriers for tumor-targeted delivery of PTX, as they can be tailored to encapsulate large amounts of hydrophobic drugs and achieve prolonged circulation kinetics. As a result, PTX deposition in tumors is increased while drug exposure to healthy tissues is reduced. However, many PTX-loaded micelle formulations suffer from low stability and fast drug release in the circulation, limiting their suitability for systemic drug targeting. To overcome these limitations, we have developed paclitaxel (PTX)-loaded micelles which are stable without chemical crosslinking and covalent drug attachment. These micelles are characterized by excellent loading capacity and strong drug retention, attributed to π-π stacking interaction between PTX and the aromatic groups of the polymer chains in the micellar core. The micelles are based on methoxy poly(ethylene glycol)-b-(N-(2-benzoyloxypropyl) methacrylamide) (mPEG-b-p(HPMAm-Bz)) block copolymers, which improved the pharmacokinetics and the biodistribution of PTX, and substantially increased PTX tumor accumulation (by more than 2000%; as compared to Taxol® or control micellar formulations). Improved biodistribution and tumor accumulation were confirmed by hybrid μCT-FMT imaging using near-infrared labeled micelles and payload. The PTX-loaded micelles were well tolerated at different doses while they induced complete tumor regression in two different xenograft models (i.e. A431 and MDA-MB-468). Our findings consequently indicate that π-π stacking-stabilized polymeric micelles are promising carriers to improve the delivery of highly hydrophobic drugs to tumors and to increase their therapeutic index. PMID:25831471
Wegner, Rainer; Dubs, Manuela; Görls, Helmar; Robl, Christian; Schönecker, Bruno; Jäger, Ernst-G
2002-09-01
Copper is next to iron the most important element in the biological transport, storage and in redox reactions of dioxygen. A bioanalogous activation of dioxygen with copper complexes is used for catalytical epoxidation, allylic hydroxylation and oxidative coupling of aromatic substrates, for example. With stereochemical information in form of chiral ligands, enantioselective reactions may be possible. Another aspect of interest on copper catalyzed reactions with dioxygen is that the exact mechanism and biological function of some enzymes (especially catechol oxidase) is yet not fully clear. For studies mimicking the copper-containing catechol oxidase appropriate chiral steroid ligands with defined stereochemistry and conformation have been synthesized. The four diastereomeric 16,17-aminoalcohols of the 3-methoxy-estra-1,3,5(10)-triene series have been condensed with salicylic aldehyde and different beta-ketoenols to the chiral ligand types 1-5. These compounds with different steric and electronic properties and different arrangements of the neighboring hydroxy and nitrogen functions were reacted with copper(II) acetate to copper complexes. The structure of these complexes will be discussed. The bioanalogous oxidation of 3,5-di-tbutyl-catechol (dtbc) to the corresponding quinone was catalyzed by most of the complexes, indicating their ability to activate dioxygen. The trans configurations c and d showed an activity one magnitude higher than the cis configurations a and b. Comparing compounds with the same diastereomeric configuration, the main influence was that of the peripheral R(1-3) substituents at the beta-ketoenaminic group which are useful for the fine-tuning of the properties of the copper atoms like redox potential and Lewis acidity.
Yu, L.; Smith, J.; Laskin, A.; ...
2014-08-19
Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol and two methoxy-phenols (syringol and guaiacol) with two major aqueous phase oxidants – the triplet excited states of an aromatic carbonyl ( 3C*) and hydroxyl radical (·OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenated molecules aremore » identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85–1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than ·OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenol had reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-vis region, suggesting that aqueous-phase reactions of phenols are likely an important source of brown carbon in the atmosphere, especially in regions influenced by biomass burning.« less
A theoretical probe on the non-covalent interactions of sulfadoxine drug with pi-acceptors
NASA Astrophysics Data System (ADS)
Sandhiya, L.; Senthilkumar, K.
2014-09-01
A detailed analysis of the interaction between an antimalarial drug sulfadoxine and four pi-acceptors, tetrachloro-catechol, picric acid, chloranil, and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone is presented in this study. The interaction of the amine, amide, methoxy, Csbnd H groups and π electron density of the drug molecule with the acceptors are studied using DFT method at M06-2X level of theory with 6-31G(d,p) basis set. The interaction energy of the complexes is calculated using M06-2X, M06-HF, B3LYP-D and MP2 methods with 6-31G(d,p) basis set. The role of weak interactions on the formation and stability of the complexes is discussed in detail. The two aromatic platforms of sulfadoxine play a major role in determining the stability of the complexes. The electron density difference maps have been plotted for the most stable drug interacting complexes to understand the changes in electron density delocalization upon the complex formation. The nature of the non-covalent interaction has been addressed from NCI plot. The infrared spectra calculated at M06-2X/6-31G(d,p) level of theory is used to characterize the most stable complexes. The SDOX-pi acceptor complexation leads to characteristic changes in the NMR spectra. The 13C, 1H, 17O and 15N NMR chemical shifts have been calculated using GIAO method at M06-2X/6-311+G(d,p)//M06-2X/6-31G(d,p) level of theory. The results obtained from this study confirm the role of non-covalent interactions on the function of the sulfadoxine drug.
Wolf, W M
2001-09-01
The conformations of the two approximately isomorphous structures 4'-[[benzoyl(4-chlorophenylhydrazono)methyl]sulfonyl]acetanilide, C(22)H(18)ClN(3)O(4)S, and 4'-[[benzoyl(4-methoxyphenylhydrazono)methyl]sulfonyl]acetanilide, C(23)H(21)N(3)O(5)S, are stabilized by resonance-assisted intramolecular hydrogen bonds linking the hydrazone moieties and sulfonyl groups. The stronger bond is observed in the former compound. The difference in electronic properties between the Cl atom and the methoxy group is too small to significantly alter the non-bonding interactions of the sulfonyl and beta-carbonyl groups.
Binkhathlan, Ziyad; Qamar, Wajhul; Ali, Raisuddin; Kfoury, Hala; Alghonaim, Mohammed
2017-09-01
Methoxy poly(ethylene oxide)- block -poly(ɛ-caprolactone) (PEO- b -PCL) copolymers are amphiphilic and biodegradable copolymers designed to deliver a variety of drugs and diagnostic agents. The aim of this study was to synthesize PEO- b -PCL block copolymers and assess the toxic effects of drug-free PEO- b -PCL micelles after multiple-dose administrations via oral or intraperitoneal (ip) administration in rats. Assembly of block copolymers was achieved by co-solvent evaporation method. To investigate the toxicity profile of PEO- b -PCL micelles, sixty animals were divided into two major groups: The first group received PEO- b -PCL micelles (100 mg/kg) by oral gavage daily for seven days, while the other group received the same dose of micelles by ip injections daily for seven days. Twenty-four hours following the last dose, half of the animals from each group were sacrificed and blood and organs (lung, liver, kidneys, heart and spleen) were collected. Remaining animals were observed for further 14 days and was sacrificed at the end of the third week, and blood and organs were collected. None of the polymeric micelles administered caused any significant effects on relative organ weight, animal body weight, leucocytes count, % lymphocytes, liver and kidney toxicity markers and organs histology. Although the dose of copolymers used in this study is much higher than those used for drug delivery, it did not cause any significant toxic effects in rats. Histological examination of all the organs confirmed the nontoxic nature of the micelles.
Effect of LEO Exposure on Aromatic Polymers Containing Phenylphosphine Oxide Groups
NASA Technical Reports Server (NTRS)
Lillehei, P. T.; Smith, J. G., Jr.; Connell, J. W.
2008-01-01
As part of the Materials on The International Space Station Experiment (MISSE), aromatic polymers containing phenylphosphine oxide groups were exposed to low Earth orbit for approx.4 years. All of the aromatic polymers containing phenylphosphine oxide groups survived the exposure despite the high fluence of atomic oxygen that completely eroded other polymer films such as Kapton(TradeMark) and Mylar(Trademark) of comparable or greater thickness. The samples were characterized for changes in physical properties, thermal/optical properties surface chemistry, and surface topography. The data from the polymer samples on MISSE were compared to samples from the same batch of material stored under ambient conditions on Earth. In addition, comparisons were made between the MISSE samples and those subjected to shorter term space flight exposures. The results of these analyses will be presented.
Precise through-space control of an abiotic electrophilic aromatic substitution reaction
NASA Astrophysics Data System (ADS)
Murphy, Kyle E.; Bocanegra, Jessica L.; Liu, Xiaoxi; Chau, H.-Y. Katharine; Lee, Patrick C.; Li, Jianing; Schneebeli, Severin T.
2017-04-01
Nature has evolved selective enzymes for the efficient biosynthesis of complex products. This exceptional ability stems from adapted enzymatic pockets, which geometrically constrain reactants and stabilize specific reactive intermediates by placing electron-donating/accepting residues nearby. Here we perform an abiotic electrophilic aromatic substitution reaction, which is directed precisely through space. Ester arms--positioned above the planes of aromatic rings--enable it to distinguish between nearly identical, neighbouring reactive positions. Quantum mechanical calculations show that, in two competing reaction pathways, both [C-H...O]-hydrogen bonding and electrophile preorganization by coordination to a carbonyl group likely play a role in controlling the reaction. These through-space-directed mechanisms are inspired by dimethylallyl tryptophan synthases, which direct biological electrophilic aromatic substitutions by preorganizing dimethylallyl cations and by stabilizing reactive intermediates with [C-H...N]-hydrogen bonding. Our results demonstrate how the third dimension above and underneath aromatic rings can be exploited to precisely control electrophilic aromatic substitutions.
Aluminum Cluster-Based Materials for Propulsion and Other Applications
2012-04-04
CuMg8- and AuMg8- . It was shown that aromaticity, traditionally used to understand stability of organic systems , can also stabilize metallic...of arsenic and K atoms. Extensions of these to other systems is currently under study. Since 2009, 12 group publications (GP) have resulted with...CuAl22- using DFT. 9 B. Stable Aromatic Aluminum-Based Metal Clusters: Aromaticity has historically been applied to organic systems that are
Chromium removal from electroplating wastewater by coir pith.
Suksabye, Parinda; Thiravetyan, Paitip; Nakbanpote, Woranan; Chayabutra, Supanee
2007-03-22
Coir pith is a by-product from padding used in mattress factories. It contains a high amount of lignin. Therefore, this study investigated the use of coir pith in the removal of hexavalent chromium from electroplating wastewater by varying the parameters, such as the system pH, contact time, adsorbent dosage, and temperature. The maximum removal (99.99%) was obtained at 2% (w/v) dosage, particle size <75microm, at initial Cr(VI) 1647mgl(-1), system pH 2, and an equilibrium time of 18h. The adsorption isotherm of coir pith fitted reasonably well with the Langmuir model. The maximum Cr(VI) adsorption capacity of coir pith at 15, 30, 45 and 60 degrees C was 138.04, 197.23, 262.89 and 317.65mgCr(VI)g(-1) coir pith, respectively. Thermodynamic parameters indicated an endothermic process and the adsorption process was favored at high temperature. Desorption studies of Cr(VI) on coir pith and X-ray absorption near edge structure (XANES) suggested that most of the chromium bound on the coir pith was in Cr(III) form due to the fact that the toxic Cr(VI) adsorbed on the coir pith by electrostatic attraction was easily reduced to less toxic Cr(III). Fourier transform infrared (FT-IR) spectrometry analysis indicated that the carbonyl (CO) groups and methoxy (O-CH(3)) groups from the lignin structure in coir pith may be involved in the mechanism of chromium adsorption. The reduced Cr(III) on the coir pith surface may be bound with CO groups and O-CH(3) groups through coordinate covalent bonding in which a lone pair of electrons in the oxygen atoms of the methoxy and carbonyl groups can be donated to form a shared bond with Cr(III).
Wheelan, P; Zirrolli, J A; Clay, K L
1992-01-01
A method has been developed for the analysis of derivatized diradylglycerols obtained from glycerophosphocholine (GPC) of transformed murine bone marrow-derived mast cells that provided high performance liquid chromatography (HPLC) separation of GPC subclasses and molecular species separation with on-line quantitation using UV detection. In addition, the derivatized diradylglycerol species were unequivocably identified by continuous flow fast-atom bombardment mass spectrometry. GPC was initially isolated by thin-layer chromatography (TLC), the phosphocholine group was hydrolyzed, and the resultant diradylglycerol was derivatized with 7-[(chlorocarbonyl)-methoxy]-4-methylcoumarin (CMMC). After separation of the derivatized subclasses by normal phase HPLC, the individual molecular species of the alkylacyl and diacyl subclasses were quantitated and collected during a subsequent reverse phase HPLC step. With an extinction coefficient of 14,700 l mol-1 cm-1 at a wavelength detection of 320 nm, the CMMC derivatives afforded sensitive UV detection (100 pmol) and quantitation of the molecular species. Continuous flow fast-atom bombardment mass spectrometry of the alkylacyl CMMC derivatives yielded abundant [MH]+ ions and a single fragment ion formed by loss of alkylketene from the sn-2 acyl group, [MH-(R = C = O)]+. No fragmentation of the sn-1 alkyl chain was observed. Diacyl derivatives also produced abundant [MH]+ ions plus two fragment ions arising from loss of RCOOH from each of the acyl substituents and two fragment ions from the loss of alkyketene from each acyl group. Individual molecular species substituents were assigned from these ions.
ADSORPTION OF POLYCYCLIC AROMATIC HYDROCARBONS IN AGED HARBOR SEDIMENTS
Polycyclic aromatic hydrocarbons (PAHs) are a group of hydrophobic organic contaminants which have low aqueous solubilities and are common pollutants in harbor sediments. Adsorption and desorption isotherms for PAHs are conducted to study the abiotic sorption of PAHs in uncontami...
Mao, J.; Fang, X.; Lan, Y.; Schimmelmann, A.; Mastalerz, Maria; Xu, L.; Schmidt-Rohr, K.
2010-01-01
We have used advanced and quantitative solid-state nuclear magnetic resonance (NMR) techniques to investigate structural changes in a series of type II kerogen samples from the New Albany Shale across a range of maturity (vitrinite reflectance R0 from 0.29% to 1.27%). Specific functional groups such as CH3, CH2, alkyl CH, aromatic CH, aromatic C-O, and other nonprotonated aromatics, as well as "oil prone" and "gas prone" carbons, have been quantified by 13C NMR; atomic H/C and O/C ratios calculated from the NMR data agree with elemental analysis. Relationships between NMR structural parameters and vitrinite reflectance, a proxy for thermal maturity, were evaluated. The aromatic cluster size is probed in terms of the fraction of aromatic carbons that are protonated (???30%) and the average distance of aromatic C from the nearest protons in long-range H-C dephasing, both of which do not increase much with maturation, in spite of a great increase in aromaticity. The aromatic clusters in the most mature sample consist of ???30 carbons, and of ???20 carbons in the least mature samples. Proof of many links between alkyl chains and aromatic rings is provided by short-range and long-range 1H-13C correlation NMR. The alkyl segments provide most H in the samples; even at a carbon aromaticity of 83%, the fraction of aromatic H is only 38%. While aromaticity increases with thermal maturity, most other NMR structural parameters, including the aromatic C-O fractions, decrease. Aromaticity is confirmed as an excellent NMR structural parameter for assessing thermal maturity. In this series of samples, thermal maturation mostly increases aromaticity by reducing the length of the alkyl chains attached to the aromatic cores, not by pronounced growth of the size of the fused aromatic ring clusters. ?? 2010 Elsevier Ltd. All rights reserved.
Iwanowicz, Edwin J; Watterson, Scott H; Guo, Junqing; Pitts, William J; Murali Dhar, T G; Shen, Zhongqi; Chen, Ping; Gu, Henry H; Fleener, Catherine A; Rouleau, Katherine A; Cheney, Daniel L; Townsend, Robert M; Hollenbaugh, Diane L
2003-06-16
The first reported structure-activity relationships (SARs) about the N-[3-methoxy-4-(5-oxazolyl)phenyl moiety for a series of recently disclosed inosine monophosphate dehydrogenase (IMPDH) inhibitors are described. The syntheses and in vitro inhibitory values for IMPDH II, and T-cell proliferation (for select analogues) are given.
40 CFR 721.8145 - Propane,1,1,1,2,2,3,3-heptafluoro-3-methoxy-.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8145 Propane,1,1,1,2,2,3,3-heptafluoro-3-methoxy-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as propane,1...
Antileukemic alpha-pyrone derivatives from the endophytic fungus Alternaria phragmospora
USDA-ARS?s Scientific Manuscript database
Four new (1–4) and two known (5 and 6)a-pyrone derivatives have been isolated from Alternaria phragmospora, an endophytic fungus from Vinca rosea, leaves. The isolated compounds were chemically identi'ed to be 5-butyl-4-methoxy-6-methyl-2H-pyran-2-one (2) 5-butyl-6-(hydroxymethyl)-4-methoxy-2H-py...
Yao, Yung-Chen; Tsai, Jiun-Horng
2013-01-01
A new four-stroke carburettor motorcycle engine without any engine adjustments was used to study the impact of fuel aromatic content on the exhaust emissions of organic air pollutants (volatile organic compounds and carbonyls). Three levels of aromatic content, i.e. 15, 25, and 50% (vol.) aromatics mixed with gasoline were tested. The emissions of aromatic fuel were compared with those of commercial unleaded gasoline. The results indicated that the A 15 (15 vol% aromatics in gasoline) fuel exhibited the greatest total organic emission improvement among these three aromatic fuels as compared with commercial gasoline, reaching 59%. The highest emission factors of alkanes, alkenes, and carbonyl groups appeared in the reference fuel (RF) among all of the test fuels. A 15 showed the highest emission reduction in alkanes (73%), aromatics (36%), and carbonyls (28%), as compared to those of the RF. The highest emission reduction ofalkenes was observed when using A25 as fuel. A reduction in fuel aromatic content from 50 to 25 and 15 vol% in gasoline decreased benzene and toluene emissions, but increased the aldehyde emissions. In general, the results showed that the highest emission reductions for the most of measured organic pollutants appeared when using A 15 as the fuel.
Cytotoxic Flavones from the Stem Bark of Bougainvillea spectabilis Willd.
Do, Lien T M; Aree, Thammarat; Siripong, Pongpun; Vo, Nga T; Nguyen, Tuyet T A; Nguyen, Phung K P; Tip-Pyang, Santi
2018-01-01
Five new flavones possessing a fully substituted A-ring with C-6 and C-8 methyl groups, bougainvinones I - M (1: -5: ), along with three known congeners, 2'-hydroxydemethoxymatteucinol (6: ), 5,7,3',4'-tetrahydroxy-3-methoxy-6,8-dimethylflavone (7: ) and 5,7,4'-trihydroxy-3-methoxy-6,8-dimethylflavone (8: ), were isolated from the EtOAc extract of the stem bark of Bougainvillea spectabilis . Their structures were established by means of spectroscopic data (ultraviolet, infrared, high-resolution electrospray ionization mass spectrometry, and one-dimensional and two-dimensional nuclear magnetic resonance) and single-crystal X-ray crystallographic analysis. The in vitro cytotoxicity of all isolated compounds against five cancer cell lines (KB, HeLa S-3, MCF-7, HT-29, and HepG2) was evaluated. Compound 5: showed promising cytotoxic activity against the KB and HeLa S-3 cell lines, with IC 50 values of 7.44 and 6.68 µM. The other compounds exhibited moderate cytotoxicity against the KB cell line. Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Khalaji, A. D.; Maddahi, E.; Dusek, M.; Fejfarova, K.; Chow, T. J.
2015-12-01
Metal-free organic compounds 24-SC (( E)-2-cyano-3-(2,4-dimethoxyphenyl)acrylic acid) and 34-SC (( E)-2-cyano-3-(3,4-dimethoxyphenyl)acrylic acid), containing methoxy groups as a donor and the acrylic acid as an acceptor were synthesized and characterized by CHN, FT-IR, UV-Vis, 1H-NMR and single crystal X-ray diffraction and used as photosensitizers for the application of dye-sensitized solar cells (DSSC). The sensitizing characteristics of them were evaluated. Both compounds contain the natural molecule, its anionic form and the piperidinium cation and they differ by number of these molecules in the asymmetric unit. To get further insight into the effect of molecular structure on the performance of DSSC, their geometry and energies of HOMO and LUMO were optimized by density functional theory calculation at the B3LYP/6-31G(d) level with Gaussian 03. Overall conversion efficiencies of 0.78 under full sunlight irradiation are obtained for DSSCs based on the new metal-free organic dyes 24-SC and 34-SC.
NASA Astrophysics Data System (ADS)
Melnik, Dmitry G.; Miller, Terry A.; Liu, Jinjun
2012-06-01
We have recorded the high resolution spectra of tilde{B} ← tilde{X} of isopropoxy radical. The isopropoxy radical can be qualitatively viewed as a "chemically substituted" methoxy (with two methyl groups playing roles of "isotopes" of hydrogen), and the calculations indicate the methyl substitution only moderately removes the degeneracy of the tilde{X}^2E state of methoxy. Therefore, isopropoxy is expected to exhibit the effects of the vibronic coupling within near-degenerate electronic state twofold. Such a coupling can affect the selection rules of vibronic transitions as well as the observed parameters of the effective rotational Hamiltonian. These effects can be understood if the details of the vibronic eigenstates are available. To obtain such information we used a simple semi-quantitative model which accounts for spin-orbit and vibronic coupling involving several vibrational modes. We have subsequently use these results to predict the effects of the vibronic coupling on the observed parameters of the molecule. The results of these calculations will be discussed. R. A. Young and D. R. Yarkony, J. Chem. Phys., 125, 234301 (2006)
NASA Astrophysics Data System (ADS)
Bharty, M. K.; Dani, R. K.; Kushawaha, S. K.; Prakash, Om; Singh, Ranjan K.; Sharma, V. K.; Kharwar, R. N.; Singh, N. K.
2015-06-01
Two new compounds N‧-[bis(methylsulfanyl) methylene]-2-hydroxybenzohydrazide {Hbmshb (1)} and N‧-(4-methoxy benzoyl)-hydrazinecarbodithioic acid ethyl ester {H2mbhce (2)} have been synthesized and characterized with the aid of elemental analyses, IR, NMR and single crystal X-ray diffraction data. Compounds 1 and 2 crystallize in orthorhombic and monoclinic systems with space group Pna21 and P21/n, respectively. Inter and intra molecular hydrogen bonding link two molecules and provide linear chain structure. In addition to this, compound 2 is stabilized by CH⋯π and NH⋯π interactions. Molecular geometry from X-ray analysis, geometry optimization, charge distribution, bond analysis, frontier molecular orbital (FMO) analysis and non-linear optical (NLO) effects have been performed using the density functional theory (DFT) with the B3LYP functional. The bioefficacy of compounds has been examined against the growth of bacteria to evaluate their anti-microbial potential. Compounds 1 and 2 are thermally stable and show NLO behaviour better than the urea crystal.
Photooxidation products of polycyclic aromatic compounds containing sulfur.
Bobinger, Stefan; Andersson, Jan T
2009-11-01
Photooxidation of crude oil components is an important process that removes pollutants from the environment. Polycyclic aromatic compounds (PACs) are known to be toxic to many life forms, but little is known about their photooxidation products in the aqueous phase. We here identify a large number of photoproducts from 11 benzothiophenes, a polycyclic aromatic sulfur heterocycle that is a major representative of PACs in crude oil. The investigated compounds contain two to four methyl groups and an ethyl or an n-octyl group. In water, the products arise through oxidation of alkyl side chains to aldehydes and carboxylic acids or through an opening in one of the aromatic rings. The product analysis was performed using gas chromatography with mass spectrometric or atomic emission detection. The main product is always a sulfobenzoic acid, which strongly lowers the pH of the solution. With long alkyl substituents, surfactants are formed, which may possess solubilizing properties in water. The larger the number of alkyl groups, the faster is the photooxidation. Several of the identified acidic compounds were also found when whole crude oil was photooxidized, showing that simulation with individual compounds reflects the situation in whole crude.
Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites
Goodman, Mark M.; Faraj, Bahjat
1999-01-01
Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.
USDA-ARS?s Scientific Manuscript database
The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) is demonstrated to share biological activities with 4-formylaminooxyvinylglycine, a related molecule produced by Pseudomonas fluorescens WH6. We found that culture filtrates of a P. aeruginosa strain overproduc...
Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites
Goodman, M.M.; Faraj, B.
1999-07-06
Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.
1H NMR study of the complexation of aromatic drugs with dimethylxanthine derivatives
NASA Astrophysics Data System (ADS)
Hernandez Santiago, A. A.; Gonzalez Flores, M.; Rosas Castilla, S. A.; Cervantes Tavera, A. M.; Gutierrez Perez, R.; Khomich, V. V.; Ovchinnikov, D. V.; Parkes, H. G.; Evstigneev, M. P.
2012-02-01
With an aim of searching efficient interceptors of aromatic drugs, the self- and hetero-association of dimethylxanthine derivatives with different structures, selected according to Strategy 1 (variation of the position of methyl groups) and Strategy 2 (variation of the length of sbnd (CH2)nsbnd COOH group), with aromatic drug molecules: Ethidium Bromide, Proflavine and Daunomycin, were studied using 1H NMR spectroscopy. It was found that the association proceeds in a form of stacking-type complexation and its energetics is relatively independent on the structure of the dimethylxanthines. However, on average, the dimethylxanthines possess higher hetero-association constant and, hence, higher interceptor ability as compared to the trimethylxanthine, Caffeine, used during the past two decades as a typical interceptor molecule.
Species-specific glucosylation of DIMBOA in larvae of the rice Armyworm.
Sasai, Hiroaki; Ishida, Masahiro; Murakami, Kenjiro; Tadokoro, Naoko; Ishihara, Atsushi; Nishida, Ritsuo; Mori, Naoki
2009-06-01
DIMBOA [2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one] is a benzoxazinoid (Bx), part of the chemical defense system of graminaceous plants such as maize, wheat, and rye. When Bombyx mori larvae were fed artificial diets containing DIMBOA, they died in three days. In contrast, Mythimna separata larvae, a serious pest of rice, maize, sorghum, wheat etc., grew well on the same diets. Three kinds of glucosides [1-(2-hydroxy-4-methoxyphenylamino)-1-deoxy-beta-glucopyranoside-1,2-carbamate (methoxy glucoside carbamate), 2-O-beta-glucopyranosyl-4-hydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA-2-O-Glc), and 2-O-beta-glucopyranosyl-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (HMBOA-2-O-Glc)] were identified by LC-MS and NMR analyses from the frass of M. separata that had been fed on a DIMBOA-containing diet. Furthermore, the incubation of DIMBOA with a midgut tissue suspension of M. separata in the presence of UDP-D-glucose generated DIMBOA-2-O-Glc. These findings strongly suggest that glucosylation by UDP-glucosyltransferase(s) was important for detoxification to circumvent the defenses of host plants against M. separata larvae.
Oxidation of aromatic contaminants coupled to microbial iron reduction
Lovley, D.R.; Baedecker, M.J.; Lonergan, D.J.; Cozzarelli, I.M.; Phillips, E.J.P.; Siegel, D.I.
1989-01-01
THE contamination of sub-surface water supplies with aromatic compounds is a significant environmental concern1,2. As these contaminated sub-surface environments are generally anaerobic, the microbial oxidation of aromatic compounds coupled to nitrate reduction, sulphate reduction and methane production has been studied intensively1-7. In addition, geochemical evidence suggests that Fe(III) can be an important electron acceptor for the oxidation of aromatic compounds in anaerobic groundwater. Until now, only abiological mechanisms for the oxidation of aromatic compounds with Fe(III) have been reported8-12. Here we show that in aquatic sediments, microbial activity is necessary for the oxidation of model aromatic compounds coupled to Fe(III) reduction. Furthermore, a pure culture of the Fe(III)-reducing bacterium GS-15 can obtain energy for growth by oxidizing benzoate, toluene, phenol or p-cresol with Fe(III) as the sole electron acceptor. These results extend the known physiological capabilities of Fe(III)-reducing organisms and provide the first example of an organism of any type which can oxidize an aromatic hydrocarbon anaerobically. ?? 1989 Nature Publishing Group.
Qi, Yan-Bing; Wang, Xiao-Lei; Shi, Ting; Liu, Shuchang; Xu, Zhen-Hao; Li, Xiqing; Shi, Xuling; Xu, Ping; Zhao, Yi-Lei
2015-11-28
Laccase catalyzes the oxidation of natural phenols and thereby is believed to initialize reactions in lignification and delignification. Numerous phenolic mediators have also been applied in laccase-mediator systems. However, reaction details after the primary O-H rupture of phenols remain obscure. In this work two types of isomeric phenols, EUG (eugenol) and ISO (trans-/cis-isoeugenol), were used as chemical probes to explore the enzymatic reaction pathways, with the combined methods of time-resolved UV-Vis absorption spectra, MCR-ALS, HPLC-MS, and quantum mechanical (QM) calculations. It has been found that the EUG-consuming rate is linear to its concentration, while the ISO not. Besides, an o-methoxy quinone methide intermediate, (E/Z)-4-allylidene-2-methoxycyclohexa-2,5-dienone, was evidenced in the case of EUG with the UV-Vis measurement, mass spectra and TD-DFT calculations; in contrast, an ISO-generating phenoxyl radical, a (E/Z)-2-methoxy-4-(prop-1-en-1-yl) phenoxyl radical, was identified in the case of ISO. Furthermore, QM calculations indicated that the EUG-generating phenoxyl radical (an O-centered radical) can easily transform into an allylic radical (a C-centered radical) by hydrogen atom transfer (HAT) with a calculated activation enthalpy of 5.3 kcal mol(-1) and then be fast oxidized to the observed eugenol quinone methide, rather than an O-radical alkene addition with barriers above 12.8 kcal mol(-1). In contrast, the ISO-generating phenoxyl radical directly undergoes a radical coupling (RC) process, with a barrier of 4.8 kcal mol(-1), while the HAT isomerization between O- and C-centered radicals has a higher reaction barrier of 8.0 kcal mol(-1). The electronic conjugation of the benzyl-type radical and the aromatic allylic radical leads to differentiation of the two pathways. These results imply that competitive reaction pathways exist for the nascent reactive intermediates generated in the laccase-catalyzed oxidation of natural phenols, which is important for understanding the lignin polymerization and may shed some light on the development of efficient laccase-mediator systems.
A most-portable-number (MPN) procedure was developed to separately enumerate aliphatic and aromatic hydrocarbon degrading bacteria, because most of the currently available methods are unable to distinguish between these two groups. Separate 96-well microtiter plates are used to ...
Nimmala, Praneeth Reddy; Dass, Amala
2011-06-22
A new core size protected completely by an aromatic thiol, Au(36)(SPh)(23), is synthesized and characterized by MALDI-TOF mass spectrometry and UV-visible spectroscopy. The synthesis involving core size changes is studied by MS, and the complete ligand coverage by aromatic thiol group is shown by NMR.
Novel Br-DPQ blue light-emitting phosphors for OLED.
Dahule, H K; Thejokalyani, N; Dhoble, S J
2015-06-01
A new series of blue light-emitting 2,4-diphenylquinoline (DPQ) substituted blue light-emitting organic phosphors namely, 2-(4-methoxy-phenyl)-4-phenyl-quinoline (OMe-DPQ), 2-(4-methyl-phenyl)-4-phenylquinoline (M-DPQ), and 2-(4-bromo-phenyl)-4-phenylquinoline (Br-DPQ) were synthesized by substituting methoxy, methyl and bromine at the 2-para position of DPQ, respectively by Friedländer condensation of 2-aminobenzophenone and corresponding acetophenone. The synthesized phosphors were characterized by different techniques, e.g., Fourier transform infra-red (FTIR), differential scanning calorimeter (DSC), UV-visible absorption and photoluminescence spectra. FTIR spectra confirms the presence of chemical groups such as C=O, NH, or OH in all the three synthesized chromophores. DSC studies show that these complexes have good thermal stability. Although they are low-molecular-weight organic compounds, they have the potential to improve the stability and operating lifetime of a device made out of these complexes. The synthesized polymeric compounds demonstrate a bright emission in the blue region in the wavelength range of 405-450 nm in solid state. Thus the attachment of methyl, methoxy and bromine substituents to the diphenyl quinoline ring in these phosphors results in colour tuning of the phosphorescence. An electroluminescence (EL) cell of Br-DPQ phosphor was made and its EL behaviour was studied. A brightness-voltage characteristics curve of Br-DPQ cell revealed that EL begins at 400 V and then the brightness increases exponentially with applied AC voltage, while current-voltage (I-V) characteristics revealed that the turn on voltage of the fabricated EL cell was 11 V. Hence this phosphor can be used as a promising blue light material for electroluminescent devices. Copyright © 2014 John Wiley & Sons, Ltd.
Molecular Basis for Cyclooxygenase Inhibition by the Non-steroidal Anti-inflammatory Drug Naproxen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duggan, Kelsey C.; Walters, Matthew J.; Musee, Joel
Naproxen ((S)-6-methoxy-{alpha}-methyl-2-naphthaleneacetic acid) is a powerful non-selective non-steroidal anti-inflammatory drug that is extensively used as a prescription and over-the-counter medication. Naproxen exhibits gastrointestinal toxicity, but its cardiovascular toxicity may be reduced compared with other drugs in its class. Despite the fact that naproxen has been marketed for many years, the molecular basis of its interaction with cyclooxygenase (COX) enzymes is unknown. We performed a detailed study of naproxen-COX-2 interactions using site-directed mutagenesis, structure-activity analysis, and x-ray crystallography. The results indicate that each of the pendant groups of the naphthyl scaffold are essential for COX inhibition, and only minimal substitutions aremore » tolerated. Mutation of Trp-387 to Phe significantly reduced inhibition by naproxen, a result that appears unique to this inhibitor. Substitution of S or CH2 for the O atom of the p-methoxy group yielded analogs that were not affected by the W387F substitution and that exhibited increased COX-2 selectivity relative to naproxen. Crystallization and x-ray analysis yielded structures of COX-2 complexed to naproxen and its methylthio analog at 1.7 and 2.3 {angstrom} resolution, respectively. The combination of mutagenesis, structure analysis, and x-ray crystallography provided comprehensive information on the unique interactions responsible for naproxen binding to COX-2.« less
Oxidative decomposition of aromatic hydrocarbons by electron beam irradiation
NASA Astrophysics Data System (ADS)
Han, Do-Hung; Stuchinskaya, Tatiana; Won, Yang-Soo; Park, Wan-Sik; Lim, Jae-Kyong
2003-05-01
Decomposition of aromatic volatile organic compounds (VOCs) under electron beam irradiation was studied in order to examine the kinetics of the process, to characterize the reaction product distribution and to develop a process of waste gas control technology. Toluene, ethylbenzene, o-, m-, p-xylenes and chlorobenzene were used as target materials. The experiments were carried out at doses ranging from 0.5 to 10 kGy, using a flow reactor utilized under electron beam irradiation. Maximum degrees of decomposition carried out at 10 kGy in air environment were 55-65% for “non-chlorinated” aromatic VOC and 85% for chlorobenzene. It was found that a combination of aromatic pollutants with chlorobenzene would considerably increase the degradation value up to nearly 50% compared to the same compounds in the absence of chlorine groups. Based on our experimental observation, the degradation mechanism of the aromatic compounds combined with chloro-compound suggests that a chlorine radical, formed from EB irradiation, induces a chain reaction, resulting in an accelerating oxidative destruction of aromatic VOCs.
Huang, Pin-Wen; Wang, Cong-Zhi; Wu, Qun-Yan; Lan, Jian-Hui; Song, Gang; Chai, Zhi-Fang; Shi, Wei-Qun
2018-05-23
Am3+/Cm3+ separation is an extremely hard but important task in nuclear waste treatment. In this study, Am and Cm complexes formed with a back-extraction agent N,N,N',N'-tetrakis[(6-carboxypyridin-2-yl)methyl]ethylene-diamine (H4TPAEN) and its two derivatives with hydrophilic substituents (methoxy and morpholine groups) were investigated using the density functional theory (DFT). The optimized geometrical structures indicated that the Am3+ cation matched better with the cavities of the three studied ligands than Cm3+, and the Am3+ cations were located deeper in the cavities of the ligands. The bond order and quantum theory of atoms in molecules (QTAIM) analyses suggested that ionic interactions dominated An-N and An-O (An = Cm and Am) bonds. However, weak and different extents of partial covalency could also be found in the Am-N and Cm-N bonds. The O donor atoms in the carboxylate groups preferably coordinated with Cm3+ rather than Am3+, whereas the N atoms preferred Am3+. Therefore, the Am3+/Cm3+ selectivity of H4TPAEN and its two hydrophilic derivatives may be ascribed to the competition between the An-N and An-O interactions and the few dissimilarities in their geometrical structures. Based on our calculations, the methoxy and morpholine groups in the two derivatives can serve as electron-donating groups and enhance the strength of the An-NPY bonds (NPY denotes the nitrogen atom of pyridine ring). When compared with the Am-complex, the Cm-complex exhibited significant strength effect, resulting in the relatively lower Am3+/Cm3+ separation ability of the H4TPAEN's hydrophilic derivatives.
NASA Astrophysics Data System (ADS)
Almodarresiyeh, H. A.; Shahab, S. N.; Zelenkovsky, V. M.; Agabekov, V. E.
2014-03-01
The electronic structure and geometry of the synthesized azodye sodium 2-hydroxy-5-({2-methoxy-4[(4-sulfophenyl) diazenyl]phenyl}diazenyl)benzoate (M12) were calculated theoretically by an ab initio Hartree-Fock method in basis set 6-31G. The nature of absorption bands in the visible and near-UV spectral regions was interpreted.
Pan, Yang; Zhang, Xiangru
2013-02-05
Bromide is naturally present in source waters worldwide. Chlorination of drinking water can generate a variety of chlorinated and brominated disinfection byproducts (DBPs). Although substantial efforts have been made to examine the effect of bromide concentration on the formation and speciation of halogenated DBPs, almost all previous studies have focused on trihalomethanes and haloacetic acids. Given that about 50% of total organic halogen formed in chlorination remains unknown, it is still unclear how bromide concentration affects the formation and speciation of the new/unknown halogenated DBPs. In this study, chlorinated drinking water samples with different bromide concentrations were prepared, and a novel approach-precursor ion scan using ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry-was adopted for the detection and identification of polar halogenated DBPs in these water samples. With this approach, 11 new putative aromatic halogenated DBPs were identified, and they were classified into four groups: dihalo-4-hydroxybenzaldehydes, dihalo-4-hydroxybenzoic acids, dihalo-salicylic acids, and trihalo-phenols. A mechanism for the formation of the four groups of new aromatic halogenated DBPs was proposed. It was found that increasing the bromide concentration shifted the entire polar halogenated DBPs as well as the four groups of new DBPs from being less brominated to being more brominated; these new aromatic halogenated DBPs might be important intermediate DBPs formed in drinking water chlorination. Moreover, the speciation of the four groups of new DBPs was modeled: the speciation patterns of the four groups of new DBPs well matched those determined from the model equations, and the reactivity differences between HOBr and HOCl in reactions forming the four groups of new DBPs were larger than those in reactions forming trihalomethanes and haloacetic acids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paradies, Henrich H., E-mail: hparadies@aol.com, E-mail: hparadies@jacobs-university.de; Jacobs University Bremen, Life Sciences and Chemistry Department, Campus Ring 1, D-28759 Bremen; Reichelt, Hendrik
The crystal structures of the hydrated cationic surfactant benzethonium (Bzth) chloride, bromide, hydroxide, and citrate have been determined by X-ray diffraction analysis and compared with their structures in solution well above their critical micelle concentration. The differences in the nature of the various anions of the four Bzth-X materials lead to unique anion environments and 3-D molecular arrangements. The water molecule in the monoclinic Bzth-Cl or Bzth-Br forms is hydrogen bonded to the halides and particularly to the hydrogens of the methoxy groups of the Bzth moiety notwithstanding the weak Brønsted acidity of the methoxy hydrogens. The citrate strongly interactsmore » with the hydrogens of the methoxy group forming an embedded anionic spherical cluster of a radius of 2.6 Å. The Bzth-OH crystallizes in a hexagonal lattice with two water molecules and reveals free water molecules forming hydrogen bonded channels through the Bzth-OH crystal along the c-axis. The distances between the cationic nitrogen and the halides are 4.04 Å and 4.20 Å, significantly longer than expected for typical van der Waals distances of 3.30 Å. The structures show weakly interacting, alternating apolar and polar layers, which run parallel to the crystallographic a-b planes or a-c planes. The Bzth-X salts were also examined in aqueous solution containing 20% (v/v) ethanol and 1.0 % (v/v) glycerol well above their critical micelle concentration by small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). The [1,1,1] planes for the Bzth Cl or Br, the [0,0,2] and [1,1,0] planes for the Bzth-citrate, the [2,-1,0] planes and the [0,0,1] planes for the Bzth-OH found in the crystalline phase were also present in the solution phase, accordingly, the preservation of these phases are a strong indication of periodicity in the solution phase.« less
Sureshan, Kana M; Trusselle, Melanie; Tovey, Stephen C; Taylor, Colin W; Potter, Barry V L
2008-03-07
Adenophostin A (AdA) is a potent agonist of the d-myo-inositol 1,4,5-trisphosphate receptor (Ins(1,4,5)P3R). Various 2-aminopurine analogues of AdA were synthesized, all of which (guanophostin 5, 2,6-diaminopurinophostin 6, 2-aminopurinophostin 7, and chlorophostin 8) are more potent than 2-methoxy-N6-methyl AdA, the only benchmark of this class. The 2-amino-6-chloropurine nucleoside 11, from Vorbrüggen condensation of 2-amino-6-chloropurine with appropriately protected disaccharide, served as the advanced common precursor for all the analogues. Alcoholysis provided the precursor for 5, ammonolysis at high temperature the precursor for 6, and ammonolysis under mild conditions the precursor for synthesis of 7 and 8. For 8, the debenzylation of precursor leaving the chlorine untouched was achieved by judicious use of BCl3. The reduced potency of chlorophostin 8 and higher potency of guanophostin 5 in assays of Ca2+ release via recombinant Ins(1,4,5)P3R are in agreement with our model suggesting a cation-pi interaction between AdA and Ins(1,4,5)P3R. The similar potencies of 2,6-diaminopurinophostin (6) and 2-aminopurinophostin (7) concur with previous reports that the 6-NH2 moiety contributes negligibly to the potency of AdA. Molecular modeling of the 2-amino derivatives suggests an interaction between the carboxylate side chain of Glu505 of the receptor and the 2-NH2 of the ligand, but for 2-methoxy-N6-methyl AdA the carboxylate group of Glu505 is deflected away from the methoxy group. A helix-dipole interaction between the 1-phosphate of Ins(1,4,5)P3 and the 2'-phosphate of AdA with alpha-helix 6 of Ins(1,4,5)P3R is postulated. The results support a proposed model for high-affinity binding of AdA to Ins(1,4,5)P3R.
Ye, Cui-Ping; Feng, Jie; Li, Wen-Ying
2012-07-01
Coal structure, especially the macromolecular aromatic skeleton structure, has a strong influence on coke reactivity and coal gasification, so it is the key to grasp the macromolecular aromatic skeleton coal structure for getting the reasonable high efficiency utilization of coal. However, it is difficult to acquire their information due to the complex compositions and structure of coal. It has been found that the macromolecular aromatic network coal structure would be most isolated if small molecular of coal was first extracted. Then the macromolecular aromatic skeleton coal structure would be clearly analyzed by instruments, such as X-ray diffraction (XRD), fluorescence spectroscopy with synchronous mode (Syn-F), Gel permeation chromatography (GPC) etc. Based on the previous results, according to the stepwise fractional liquid extraction, two Chinese typical power coals, PS and HDG, were extracted by silica gel as stationary phase and acetonitrile, tetrahydrofuran (THF), pyridine and 1-methyl-2-pyrollidinone (NMP) as a solvent group for sequential elution. GPC, Syn-F and XRD were applied to investigate molecular mass distribution, condensed aromatic structure and crystal characteristics. The results showed that the size of aromatic layers (La) is small (3-3.95 nm) and the stacking heights (Lc) are 0.8-1.2 nm. The molecular mass distribution of the macromolecular aromatic network structure is between 400 and 1 130 amu, with condensed aromatic numbers of 3-7 in the structure units.
KiranKumar, Hulihalli N; RohitKumar, Heggodu G; Advirao, Gopal M
2018-01-01
Two new derivatives of pyrimido[4',5';4,5]thieno(2,3-b)quinoline (PTQ), 9-hydroxy-4-(3-diethylaminopropylamino)pyrimido[4',5';4,5]thieno(2,3-b)quinoline (Hydroxy-DPTQ) and 8-methoxy-4-(3-diethylaminopropylamino)pyrimido[4',5';4,5]thieno(2,3-b)quinoline (Methoxy-DPTQ) were synthesized and their DNA binding ability was analyzed using spectroscopy (UV-visible, fluorescence and circular dichroism), ethidium bromide dye displacement assay, melting temperature (T m ) analysis and computational docking studies. The hypochromism in UV-visible spectrum and increased fluorescence emission of Hydroxy-DPTQ and Methoxy-DPTQ in the presence of DNA suggested the molecule-DNA interaction. The association constants calculated from UV-visible and spectral titrations were of the order 10 4 to 10 6 M -1 . Circular dichroism studies corroborated the induced conformational changes in DNA upon addition of molecules. The change in the ellipticity was observed both in negative and positive peak of DNA, thus, suggesting the intercalation of molecules. The observed displacement of ethidium bromide from the DNA and increased T m , upon addition of DNA confirmed the intercalative mode of binding. This was further validated by computational docking, which showed clear intercalation of molecules into the d(GpC)-d(CpG) site of the receptor DNA. Anticancer activities of these molecules are evaluated by using MTT assay. Both molecules showed antiproliferative activity against all the three cancer cells studied, with Hydroxy-DPTQ being more potential molecule among the two. IC 50 value of Hydroxy-DPTQ and Methoxy-DPTQ were in the range of 3-5μM and 130-250μM, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Modeling Aromatic Liquids: Toluene, Phenol, and Pyridine.
Baker, Christopher M; Grant, Guy H
2007-03-01
Aromatic groups are now acknowledged to play an important role in many systems of interest. However, existing molecular mechanics methods provide a poor representation of these groups. In a previous paper, we have shown that the molecular mechanics treatment of benzene can be improved by the incorporation of an explicit representation of the aromatic π electrons. Here, we develop this concept further, developing charge-separation models for toluene, phenol, and pyridine. Monte Carlo simulations are used to parametrize the models, via the reproduction of experimental thermodynamic data, and our models are shown to outperform an existing atom-centered model. The models are then used to make predictions about the structures of the liquids at the molecular level and are tested further through their application to the modeling of gas-phase dimers and cation-π interactions.
Mechanism for Ring-Opening of Aromatic Polymers by Remote Atmospheric Pressure Plasma
NASA Astrophysics Data System (ADS)
Gonzalez, Eleazar; Barankin, Michael; Guschl, Peter; Hicks, Robert
2009-10-01
A low-temperature, atmospheric pressure oxygen and helium plasma was used to treat the surfaces of polyetheretherketone, polyphenylsulfone, polyethersulfone, and polysulfone. These aromatic polymers were exposed to the afterglow of the plasma, which contained oxygen atoms, and to a lesser extent metastable oxygen (^1δg O2) and ozone. After less than 2.5 seconds treatment, the polymers were converted from a hydrophobic state with a water contact angle of 85±5 to a hydrophilic state with a water contact angle of 13±5 . It was found that plasma activation increased the bond strength to adhesives by as much as 4 times. X-ray photoelectron spectroscopy revealed that between 7% and 27% of the aromatic carbon atoms on the polymer surfaces was oxidized and converted into aldehyde and carboxylic acid groups. Analysis of polyethersulfone by internal reflection infrared spectroscopy showed that a fraction of the aromatic carbon atoms were transformed into C=C double bonds, ketones, and carboxylic acids after plasma exposure. It was concluded that the oxygen atoms generated by the atmospheric pressure plasma insert into the double bonds on the aromatic rings, forming a 3-member epoxy ring, which subsequently undergoes ring opening and oxidation to yield an aldehyde and a carboxylic acid group.
Organic Molecules On the Surfaces of Iapetus and Phoebe
NASA Technical Reports Server (NTRS)
Pendleton, Yvonne J.; Dalle Ore, Cristina M.; Clark, Roger N.; Cruikshank, Dale P.
2017-01-01
Absorption bands of both aliphatic and aromatic organic molecules are found in the reflectance spectra of Saturn satellites Iapetus, Phoebe, and Hyperion obtained with the Cassini Visible-Infrared Mapping Spectrometer (VIMS). The VIMS data do not fully resolve the individual bands of C-H functional groups specific to particular molecules, but instead show absorption envelopes representing blended clusters of the bands of aromatic (approximately 3.28 microns) and aliphatic (approximately 3.4 microns) hydrocarbons known in spectra of interstellar dust. In Cruikshank et al. (2014), we matched components of the unresolved hydrocarbon band envelopes with clusters of bands of a range of functional groups in specific types of organic compounds (e.g., normal and N-substituted polycyclic aromatic hydrocarbons, olefins, cycloalkanes, and molecules with lone-pair interactions of N and O with CH3+). In the work reported here, we revisit the spectra of Iapetus and Phoebe using VIMS data processed with improved radiometric and wavelength calibration (denoted RC19). The band envelopes of both aromatic and aliphatic hydrocarbons are now more clearly defined, corroborating the provisional assignment of specific classes of molecules in Cruikshank et al. 2014, but permitting a more reliable quantitative assessment of the relative contributions of those classes, and a revision to the earlier estimate of the ratio of the abundances of aromatic to aliphatic molecules.
Polyimides containing pendent trifluoromethyl groups
NASA Technical Reports Server (NTRS)
Havens, S. J.; Hergenrother, P. M.
1993-01-01
Several new polyimides containing trifluoromethyl groups were prepared from the reaction of various aromatic dianhydrides and two new diamines containing trifluoromethyl groups, 4,4'-bis(3-amino-5-trifluoromethylphenoxy)biphenyl and l,4-bis(3-amino-5-trifluoromethylphenoxy)benzene. The diamines were prepared from the aromatic nucleophilic displacement of the disodium salts of 4,4'-biphenol or hydroquinone with 3,5-dinitrobenzotrifluoride followed by hydrogenation of the resultant dinitro compounds. The thermally cured polyimides exhibited glass transition temperatures between 186 and 262 C. By thermogravimetric analysis, the polyimides exhibited 5 percent weight losses at 484-527 C in nitrogen and 452-506 C in air.
2-(4-Meth-oxy-phen-yl)-1-pentyl-4,5-di-phenyl-1H-imidazole.
Simpson, Jim; Mohamed, Shaaban K; Marzouk, Adel A; Talybov, Avtandil H; Abdelhamid, Antar A
2013-01-01
The title compound, C27H28N2O, is a lophine (2,4,5-triphenyl-1H-imidazole) derivative with an n-pentyl chain on the amine N atom and a 4-meth-oxy substituent on the benzene ring. The two phenyl and meth-oxy-benzene rings are inclined to the imidazole ring at angles of 25.32 (7), 76.79 (5) and 35.42 (7)°, respectively, while the meth-oxy substituent lies close to the plane of its benzene ring, with a maximum deviation of 0.126 (3) Å for the meth-oxy C atom. In the crystal, inversion dimers linked by pairs of C-H⋯O hydrogen bonds generate R2(2)(22) loops. These dimers are stacked along the a-axis direction.
NASA Astrophysics Data System (ADS)
Sanader, Željka; Brunet, Claire; Broyer, Michel; Antoine, Rodolphe; Dugourd, Philippe; Mitrić, Roland; Bonačić-Koutecký, Vlasta
2013-05-01
We have theoretically investigated the influence of protons and noble metal cations on optical properties of 2,4-dinitrophenylhydrazine (DNPH). We show that optical properties of aromatic rings can be tuned by cation-induced electrochromism in DNPH due to binding to specific NO2 groups. Our findings on cation-induced electrochromism in DNPH may open new routes in two different application areas, due to the fact that DNPH can easily bind to biological molecules and surface materials through carbonyl groups.
Fluorinated Aromatic Amino Acids Distinguish Cation-π Interactions from Membrane Insertion*
He, Tao; Gershenson, Anne; Eyles, Stephen J.; Lee, Yan-Jiun; Liu, Wenshe R.; Wang, Jiangyun; Gao, Jianmin; Roberts, Mary F.
2015-01-01
Cation-π interactions, where protein aromatic residues supply π systems while a positive-charged portion of phospholipid head groups are the cations, have been suggested as important binding modes for peripheral membrane proteins. However, aromatic amino acids can also insert into membranes and hydrophobically interact with lipid tails. Heretofore there has been no facile way to differentiate these two types of interactions. We show that specific incorporation of fluorinated amino acids into proteins can experimentally distinguish cation-π interactions from membrane insertion of the aromatic side chains. Fluorinated aromatic amino acids destabilize the cation-π interactions by altering electrostatics of the aromatic ring, whereas their increased hydrophobicity enhances membrane insertion. Incorporation of pentafluorophenylalanine or difluorotyrosine into a Staphylococcus aureus phosphatidylinositol-specific phospholipase C variant engineered to contain a specific PC-binding site demonstrates the effectiveness of this methodology. Applying this methodology to the plethora of tyrosine residues in Bacillus thuringiensis phosphatidylinositol-specific phospholipase C definitively identifies those involved in cation-π interactions with phosphatidylcholine. This powerful method can easily be used to determine the roles of aromatic residues in other peripheral membrane proteins and in integral membrane proteins. PMID:26092728
1-Methoxy-agroclavine from Penicillium sp. WC75209, a novel inhibitor of the Lck tyrosine kinase.
Padmanabha, R; Shu, Y Z; Cook, L S; Veitch, J A; Donovan, M; Lowe, S; Huang, S; Pirnik, D; Manly, S P
1998-03-17
A high-throughput screen was developed and implemented to identify inhibitors of the Lck tyrosine kinase. This report describes the identification of a specific inhibitor of this enzyme from the solid fermentation culture of the Penicillium sp., WC75209. The active compound was isolated and structurally characterized as 1-methoxy-5R, 10S-agroclavine, a new member of the ergot alkaloid family.
Synthesis of Improved Antileishmanial and Antitrypanosomal Drugs, Treatment and Prophylaxis
1988-02-01
methyl-8-nitroquinoline was hydrogenated using Raney nickel catalyst to give the corresponding 8-aminoquinoline J_ in 84$ yield as described under... nickel catalyst using a procedure (slightly modified) developed under a prior contract (10). The crude product was chromatographed over silica gel...8-Amino-6-methoxy-4-methylquinoline (1): - The title compd was prepared by the reduction of 6-methoxy-4-methyl-8-nitroquinoline (16 g) with Raney
Wang, Yuh-Tai; Lien, Ling-Lan; Chang, Ya-Chu; Wu, James Swi-Bea
2013-01-01
Pectin methyl esterase (PME) has been postulated to catalyse the transacylation reaction between pectin molecules. The present study aimed to prove the occurrence of this reaction. The feasibility of applying PME-catalysed transacylation between high-methoxy pectin molecules in making fruit jam with reduced sugar content was also investigated. PME treatment increased the turbidity and particle size in pectin solution and the molecular weight of pectin, while it decreased the number of methoxy ester linkages and the intensity of the CH₃ absorption peak in the Fourier transform infrared spectrum without changes in the number of total ester linkages in pectin molecules. These findings support the occurrence of PME-catalysed transacylation between pectin molecules. Higher values of hardness, gumminess and chewiness were found in a jam containing PME-treated citrus pectin (10 g L⁻¹) and sugar (350 g L⁻¹) as compared with either a jam containing untreated citrus pectin (10 g L⁻¹) and sugar (350 g L⁻¹) or strawberry jam containing pectin (10 g L⁻¹) from the fruit and sugar (650 g L⁻¹). The demand for sugar in jam making can be greatly reduced by the use of PME-treated high-methoxy pectin. Copyright © 2012 Society of Chemical Industry.
Aysin, Rinat R; Bukalov, Sergey S; Leites, Larissa A; Zabula, Alexander V
2017-07-11
A series of benzannulated N-heterocyclic compounds containing divalent 14 group atoms, C 6 H 4 (NR) 2 E II , E = C, Si, Ge, Sn, Pb, have been studied by various experimental (vibrational and UV-vis spectroscopy) and theoretical (NICS, ISE, ACID) techniques. The methods used confirm 10 π-electron delocalization (aromaticity) in these heterocycles, however, the aromaticity sequences estimated by the criteria based on different physical properties do not coincide.
NASA Astrophysics Data System (ADS)
Yao, Zhiliang; Wu, Bobo; Shen, Xianbao; Cao, Xinyue; Jiang, Xi; Ye, Yu; He, Kebin
2015-03-01
This paper is the second in a series of papers aimed at understanding volatile organic compound (VOC) emissions from motor vehicles in Beijing using on-board emission measurements, focusing specifically on rural vehicles (RVs). In this work, 13 RVs, including 6 different 3-wheel (3-W) RVs and 7 different 4-wheel (4-W) RVs, were examined using a portable emissions measurement system (PEMS) as the vehicles were driven on predesigned fixed test routes in rural areas of Beijing. Overall, 50 VOC species were quantified in this study, including 18 alkanes, 5 alkenes, 11 aromatics, 13 carbonyls and 3 other compounds. The average emission factor (EF) of the total VOCs for the 4-W RVs based on the distance traveled was 326.2 ± 129.3 mg/km, which is 2.5 times greater than that of the 3-W RVs. However, the VOC emissions for the 3-W RVs had higher EFs based on their CO2 emissions due to the different fuel economies of the two types of RVs. Formaldehyde, toluene, acetaldehyde, m-xylene, p-xylene, isopentane, benzene, ethylbenzene, n-pentane, 2-methoxy-2-methylpropane and butenal were the dominant VOC species from the RVs, accounting for an average of 68.6% of the total VOC emissions. Overall, the RVs had high proportions of aromatics and carbonyls. The ozone formation potentials (OFPs) were 670.6 ± 227.2 and 1454.1 ± 643.0 mg O3/km for the 3-W and 4-W RVs, respectively, and approximately 60%-70% of the OFP resulted from carbonyls. We estimated that the 3-W and 4-W RVs accounted for approximately 50% and 10%, respectively, of the total OFP caused by diesel vehicles (including diesel trucks and RVs) in Beijing in 2012. Thus, more attention should be given to VOC emissions and their impact on ozone formation.
Muñoz, C; Guillén, F; Martínez, A T; Martínez, M J
1997-01-01
Two laccase isoenzymes produced by Pleurotus eryngii were purified to electrophoretic homogeneity (42- and 43-fold) with an overall yield of 56.3%. Laccases I and II from this fungus are monomeric glycoproteins with 7 and 1% carbohydrate content, molecular masses (by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) of 65 and 61 kDa, and pIs of 4.1 and 4.2, respectively. The highest rate of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) oxidation for laccase I was reached at 65 degrees C and pH 4, and that for laccase II was reached at 55 degrees C and pH 3.5. Both isoenzymes are stable at high pH, retaining 60 to 70% activity after 24 h from pH 8 to 12. Their amino acid compositions and N-terminal sequences were determined, the latter strongly differing from those of laccases of other basidiomycetes. Antibodies against laccase I reacted with laccase II, as well as with laccases from Pleurotus ostreatus, Pleurotus pulmonarius, and Pleurotus floridanus. Different hydroxy- and methoxy-substituted phenols and aromatic amines were oxidized by the two laccase isoenzymes from P. eryngii, and the influence of the nature, number, and disposition of aromatic-ring substituents on kinetic constants is discussed. Although both isoenzymes presented similar substrate affinities, the maximum rates of reactions catalyzed by laccase I were higher than those of laccase II. In reactions with hydroquinones, semiquinones produced by laccase isoenzymes were in part converted into quinones via autoxidation. The superoxide anion radical produced in the latter reaction dismutated, producing hydrogen peroxide. In the presence of manganous ion, the superoxide union was reduced to hydrogen peroxide with the concomitant production of manganic ion. These results confirmed that laccase in the presence of hydroquinones can participate in the production of both reduced oxygen species and manganic ions. PMID:9172335
Domino approach to 2-aroyltrimethoxyindoles as novel heterocyclic combretastatin A4 analogues.
Arthuis, Martin; Pontikis, Renée; Chabot, Guy G; Quentin, Lionel; Scherman, Daniel; Florent, Jean-Claude
2011-01-01
Two series of 2-aroyltrimethoxyindoles were designed to investigate the effects of the replacement of the trimethoxyphenyl ring of phenstatin with a trimethoxyindole moiety. These compounds were efficiently prepared through a domino palladium-catalyzed sequence from 2-gem-dibromovinylanilines substituted by three methoxy groups and arylboronic acids under carbon monoxide atmosphere. These novel heterocyclic combretastatin A4 analogues were evaluated for their cell growth inhibitory properties and their ability to inhibit the tubulin polymerization. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
2016-12-30
Toxicity is expressed as percentage of toxicant- free activity 125 Figure 4.12-1. Panel A: (Bio)transformation pathways of DNAN in anaerobic incubations...O-demethylation of the methoxy group was confirmed by formation of formaldehye. Cell free extracts of the Bacillus culture yielded formation of 2...periodically until the production of methane became constant in the toxicant- free controls. The maximum specific methanogenic activity of the
1992-07-22
Scheme I. The first nucleophilic displacement of halide of an n-haloalkan-l-ol with 4-cyano-4’-hydroxybiphenyl employed potassium carbonate in...21 polysiloxanes, 23.24 and polyacrylates . 2- All these polymers exhibit an odd-even effect. If one considers the total number of atoms between the...0.019 mol) and 4’-methoxy-4-hydroxybiphenyl (4.0g, 0.020 tool) were heated at 100°C in 40 mL of dimethylformamide in the presence of potassium carbonate
Laminate comprising fibers embedded in cured amine terminated bis-imide
NASA Technical Reports Server (NTRS)
Kumar, D. (Inventor); Fohlen, G. M. (Inventor); Parker, J. A. (Inventor)
1986-01-01
Amine terminated bisaspartimides are prepared by a Michael type reaction of an aromatic bismaleimide and an aromatic diamine in an aprotic solvent. These bisaspartimides are thermally polymerized to yield tough, resinous polymers crosslinked through -NH- groups. Such polymers are useful in applications requiring materials with resistance to change at elevated temperatures.
Effect of LEO Exposure on Aromatic Polymers Containing Phenylphosphine Oxide Groups
NASA Technical Reports Server (NTRS)
Watson, K. A.; Ghose, S.; Lillehei, P. T.; Smith, J. G., Jr.; Connell, J. W.
2007-01-01
As part of the Materials on The International Space Station Experiment (MISSE), aromatic polymers containing phenylphosphine oxide groups were exposed to low Earth orbit (LEO) for approximately 4 years. All of the aromatic polymers containing phenylphosphine oxide groups survived the exposure despite the high fluence of atomic oxygen that completely eroded other polymer films such as Kapton and Mylar of comparable or greater thickness. The samples consisted of a colorless polyimide film and a poly(arylene ether benzimidazole) film and thread. The samples were characterized for changes in physical properties, thermal/optical properties (i.e. solar absorptivity and thermal emissivity), surface chemistry (X-ray photoelectron spectroscopy), and surface topography (atomic force microscopy). The data from the polymer samples on MISSE were compared to samples from the same batch of material stored under ambient conditions on Earth. In addition, comparisons were made between the MISSE samples and those subjected to shorter term space flight exposures. The results of these analyses will be presented.
Spraul, Bryan K; Suresh, S; Jin, Jianyong; Smith, Dennis W
2006-05-31
A series of 19 p-substituted aromatic trifluorovinyl ether compounds were prepared from versatile intermediate p-Br-C(6)H(4)-O-CF=CF(2) and underwent thermal radical mediated cyclodimerization to new difunctional compounds containing the 1,2-disubstituted perfluorocyclobutyl (PFCB) linkage. The synthetic scope demonstrates the functional group transformation tolerance of the fluorovinyl ether, and the dimers are useful as monomers for traditional step-growth polymerization methods. (19)F NMR spectra confirmed that p-substitution affects the trifluorovinyl ether group chemical shifts. The first kinetic studies and substituent effects on thermal cyclodimerization were performed, and the results indicated that electron-withdrawing groups slow the rate of cyclodimerization. The data were further analyzed using the Hammett equation, and reaction constants (rho) of -0.46 at 120 degrees C and -0.59 at 130 degrees C were calculated. This study presents the first liner free energy relationship reported for the cyclodimerization of aromatic trifluorovinyl ethers to PFCB compounds.
NASA Astrophysics Data System (ADS)
Barman, Siti; Barman, Biraj Kumar; Roy, Mahendra Nath
2018-03-01
The supramolecular interaction of metoclopramide hydrochloride (MP) with α-cyclodextrin (α-CD) and β-cyclodextrin (β-CD) has been inspected by ultraviolet-visible (UV-vis) light, infra-red (IR) light, fluorescence and 1H NMR spectroscopy. The formation of an inclusion complex greatly affects the physical-chemical properties of the guest molecules, such as solubility, chemical reactivity and the spectroscopic and electrochemical properties. Thus the changes in the spectral properties and physico-chemical properties confirm the inclusion complex formation. Surface tension, conductivity studies and Job's plot indicate a 1: 1 stoichiometry of the MP:CD host-guest inclusion complexes. The binding/association constants have been evaluated by both UV-Vis and fluorescence spectroscopic study indicating a higher degree of encapsulation for β-cyclodextrin (β-CD). Furthermore, the negative value of thermodynamic parameter (ΔG°) of the host-guest system suggests that the inclusion process proceeded spontaneously at 298.15 K. Based on the NMR data, the plausible mode of interaction of MP:α-CD and MP:β-CD complexes were proposed, which suggested that lipophilic aromatic ring of the MP entered into the cavity of CDs from the wider side, with the amide (sbnd CONH) and methoxy (-OMe) residues inside the CD cavity.
Molecular Packing of Amphiphilic Nanosheets Resolved by X-ray Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harutyunyan, Boris; Dannenhoffer, Adam; Kewalramani, Sumit
2016-12-29
Molecular packing in light harvesting 2D assemblies of photocatalytic materials is a critical factor for solar-to-fuel conversion efficiency. However, structure–function correlations have yet to be fully established. This is partly due to the difficulties in extracting the molecular arrangements from the complex 3D powder averaged diffraction patterns of 2D lattices, obtained via in situ wide-angle X-ray scattering. Here, we develop a scattering theory formalism and couple it with a simple geometrical model for the molecular shape of chromophore 9-methoxy-N-(sodium hexanoate)perylene-3,4-dicarboximide (MeO-PMI) used in our study. This generally applicable method fully reproduces the measured diffraction pattern including the asymmetric line shapesmore » for the Bragg reflections and yields the molecular packing arrangement within a 2D crystal structure with a remarkable degree of detail. We find an approximate edge-centered herringbone structure for the PMI fused aromatic rings and ordering of the carboxypentyl chains above and below the nanosheets. Such a packing arrangement differs from the more symmetric face-to-face orientation of the unsubstituted PMI rings. This structural difference is correlated to our measurement of the reduced catalytic performance of MeO-PMI nanosheets as compared to the mesoscopically similar unsubstituted PMI assemblies.« less
Impact of aryloxy initiators on the living and immortal polymerization of lactide.
Chile, L-E; Ebrahimi, T; Wong, A; Aluthge, D C; Hatzikiriakos, S G; Mehrkhodavandi, P
2017-05-23
This report describes two different methodologies for the synthesis of aryl end-functionalized poly(lactide)s (PLAs) catalyzed by indium complexes. In the first method, a series of para-functionalized phenoxy-bridged dinuclear indium complexes [(NNO)InCl] 2 (μ-Cl)(μ-OPh R ) (R = OMe (1), Me (2), H (3), Br (4), NO 2 (5)) were synthesized and fully characterized. The solution and solid state structures of these complexes reflect the electronic differences between these initiators. The polymerization rates correlate with the electron donating ability of the phenoxy initiators: the para-nitro substituted complex 5 is essentially inactive. However, the para-methoxy variant, while less active than the ethoxy-bridged complex [(NNO)InCl] 2 (μ-Cl)(μ-OEt) (A), shows sufficient activity. Alternatively, aryl-capped PLAs were synthesized via immortal polymerization of PLA with A in the presence of a range of arylated chain transfer agents. Certain aromatic diols shut down polymerization by chelating one indium centre to form a stable metal complex. Immortal ROP was successful when using phenol, and 1,5-naphthalenediol. These polymers were analysed and chain end fidelity was confirmed using 1 H NMR spectroscopy, MALDI-TOF mass spectrometry, and UV-Vis spectroscopy. This study shed light on possible speciation when attempting to generate PLA-lignin copolymers.
Fujimori, Takashi; Tanino, Yuta; Takaoka, Masaki
2014-01-01
We investigated chemical determinants of the generation of chlorinated aromatic compounds (aromatic-Cls), such as polychlorinated biphenyls (PCBs) and chlorobenzenes (CBzs), in fly ash from municipal solid waste incineration. The influences of the following on aromatic-Cls formation in model fly ash (MFA) were systematically examined quantitatively and statistically: (i) inorganic chlorides (KCl, NaCl, CaCl2), (ii) base materials (SiO2, Al2O3, CaCO3), (iii) metal oxides (CuO, Fe2O3, PbO, ZnO), (iv) metal chlorides (CuCl2, FeCl3, PbCl2, ZnCl2), and (v) "coexisting multi-models." On the basis of aromatic-Cls concentrations, the ∑CBzs/∑PCBs ratio, and the similarity between distribution patterns, MFAs were categorized into six groups. The results and analysis indicated that the formation of aromatic-Cls depended strongly on the "coexistence condition", namely multimodels composed of not only metal chlorides, but also of metal oxides. The precise replication of metal chloride to oxide ratios, such as the precise ratios of Cu-, Fe-, Pb-, and Zn-chlorides and oxides, may be an essential factor in changing the thermochemical formation patterns of aromatic-Cls. Although CuCl2 acted as a promoter of aromatic-Cls generation, statistical analyses implied that FeCl3 also largely influenced the generation of aromatic-Cls under mixture conditions. Various additional components of fly ash were also comprehensively analyzed.
Lucas, Ricardo; Peñalver, Pablo; Gómez-Pinto, Irene; Vengut-Climent, Empar; Mtashobya, Lewis; Cousin, Jonathan; Maldonado, Olivia S; Perez, Violaine; Reynes, Virginie; Aviñó, Anna; Eritja, Ramón; González, Carlos; Linclau, Bruno; Morales, Juan C
2014-03-21
Carbohydrate-aromatic interactions are highly relevant for many biological processes. Nevertheless, experimental data in aqueous solution relating structure and energetics for sugar-arene stacking interactions are very scarce. Here, we evaluate how structural variations in a monosaccharide including carboxyl, N-acetyl, fluorine, and methyl groups affect stacking interactions with aromatic DNA bases. We find small differences on stacking interaction among the natural carbohydrates examined. The presence of fluorine atoms within the pyranose ring slightly increases the interaction with the C-G DNA base pair. Carbohydrate hydrophobicity is the most determinant factor. However, gradual increase in hydrophobicity of the carbohydrate does not translate directly into a steady growth in stacking interaction. The energetics correlates better with the amount of apolar surface buried upon sugar stacking on top of the aromatic DNA base pair.
Interactions between manganese oxides and multiple-ringed aromatic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, G.; Sims, R.C.
1992-08-01
Objective is to determine whether Mn reductive dissolution can oxidize multiple-ringed aromatics, such as PAHs, in an oxic environment Research indicated that certain PAHs (eg, dihydrodiols and diones that form free-radical intermediates) are susceptible to oxidation and polymerization. Over 14 days, 83, 76, 54, 70, and 20% of the Mn was reduced by 2,3-, 1,3-, and 1,4-naphthalenediol, quinizarin, and 1,4-naphthoquinone, respectively. 100, 100, and 65% of the first three PAHs were oxidized, respectively. Aromatics with diol functional groups were more easily oxidized than those with only dione groups. Relatively insoluble compounds like quinizarin can be oxidized; insoluble ''humic-like'' material precipitated,more » indicating a polymerization-humification process. Results suggest that electron transfer/organic release from the oxide surface is the rate-limiting step.« less
Interactions between manganese oxides and multiple-ringed aromatic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, G.; Sims, R.C.
1992-08-01
Objective is to determine whether Mn reductive dissolution can oxidize multiple-ringed aromatics, such as PAHs, in an oxic environment? Research indicated that certain PAHs (eg, dihydrodiols and diones that form free-radical intermediates) are susceptible to oxidation and polymerization. Over 14 days, 83, 76, 54, 70, and 20% of the Mn was reduced by 2,3-, 1,3-, and 1,4-naphthalenediol, quinizarin, and 1,4-naphthoquinone, respectively. 100, 100, and 65% of the first three PAHs were oxidized, respectively. Aromatics with diol functional groups were more easily oxidized than those with only dione groups. Relatively insoluble compounds like quinizarin can be oxidized; insoluble ``humic-like`` material precipitated,more » indicating a polymerization-humification process. Results suggest that electron transfer/organic release from the oxide surface is the rate-limiting step.« less
Infrared and Raman spectra of N-acetyl- L-amino acid methylamides with aromatic side groups
NASA Astrophysics Data System (ADS)
Matsuura, Hiroatsu; Hasegawa, Kodo; Miyazawa, Tatsuo
Infrared and Raman spectra of N-acetyl- L-phenylalanine methylamide, N-acetyl- L-tyrosine methylamide and N-acetyl- L-tryptophan methylamide, as model compounds of aromatic amino acid residues in proteins, were measured in the solid state and in methanol solutions. Vibrational assignments of the spectra were made by utilizing the deuteration effect and by comparison with the spectra of related compounds which include toluene, p-cresol and 3-methylindole. The amide I, III and IV bands were strong in Raman scattering, but other characteristic amide bands were ill-defined. In the Raman spectra of methanol solutions, only the bands due to the aromatic side group vibrations were markedly observed, but those due to the peptide backbone vibrations were very weak, suggesting the coexistence of various molecular conformations in solution.
Nucleophilic fluorination of aromatic compounds
Satyamurthy, Nagichettiar; Barrio, Jorge R
2014-03-18
Iodylbenzene derivatives substituted with electron donating as well as electron withdrawing groups on the aromatic ring are used as precursors in aromatic nucleophilic substitution reactions. The iodyl group (IO.sub.2) is regiospecifically substituted by nucleophilic fluoride to provide the corresponding fluoroaryl derivatives. No-carrier-added [F-18]fluoride ion derived from anhydrous [F-18](F/Kryptofix, [F-18]CsF or a quaternary ammonium fluoride (e.g., Me.sub.4NF, Et.sub.4NF, n-Bu.sub.4NF, (PhCH.sub.2).sub.4NF) exclusively substitutes the iodyl moiety in these derivatives and provides high specific activity F-18 labeled fluoroaryl analogs. Iodyl derivatives of a benzothiazole analog and 6-iodyl-L-dopa derivatives have been synthesized as precursors and have been used in the preparation of no-carrier-added [F-18]fluorobenzothiazole as well as 6-[F-18]fluoro-L-dopa.
Janeczko, Tomasz; Dymarska, Monika; Kostrzewa-Susłow, Edyta
2014-12-04
Biotransformation of ten α-haloacetophenones in the growing culture of the strain Rhodotorula rubra KCh 82 has been carried out. Nine of the substrates underwent an effective enantioselective reduction to the respective (R)-alcohols according to Prelog's rule, with the exception of 2-chloro-1,2-diphenylethan-1-one that was not transformed by this strain. The expected reduction proceeded without dehalogenation, leading to the respective (R)-halohydrins in high yields. The use of this biocatalyst yielded (R)-2-bromo-1-phenyl-ethan-1-ol (enantiomeric excess (ee) = 97%) and its derivatives: 4'-Bromo- (ee = 99%); 4'-Chloro- (ee > 99%); 4'-Methoxy- (ee = 96%); 3'-Methoxy- (ee = 93%); 2'-Methoxy- (ee = 98%). There were also obtained and characterized 2,4'-dichloro-, 2,2',4'-trichloro- and 2-chloro-4'-fluoro-phenyetan-1-ol with >99% of enantiomeric excesses.
Janeczko, Tomasz; Dymarska, Monika; Kostrzewa-Susłow, Edyta
2014-01-01
Biotransformation of ten α-haloacetophenones in the growing culture of the strain Rhodotorula rubra KCh 82 has been carried out. Nine of the substrates underwent an effective enantioselective reduction to the respective (R)-alcohols according to Prelog’s rule, with the exception of 2-chloro-1,2-diphenylethan-1-one that was not transformed by this strain. The expected reduction proceeded without dehalogenation, leading to the respective (R)-halohydrins in high yields. The use of this biocatalyst yielded (R)-2-bromo-1-phenyl-ethan-1-ol (enantiomeric excess (ee) = 97%) and its derivatives: 4'-Bromo- (ee = 99%); 4'-Chloro- (ee > 99%); 4'-Methoxy- (ee = 96%); 3'-Methoxy- (ee = 93%); 2'-Methoxy- (ee = 98%). There were also obtained and characterized 2,4'-dichloro-, 2,2',4'-trichloro- and 2-chloro-4'-fluoro-phenyetan-1-ol with >99% of enantiomeric excesses. PMID:25486054
Androstanes and pregnanes from Trichilia emetica ssp. suberosa J.J. de Wilde.
Malafronte, Nicola; Sanogo, Rokia; Vassallo, Antonio; De Tommasi, Nunziatina; Bifulco, Giuseppe; Dal Piaz, Fabrizio
2013-12-01
Four pregnanes: 1-methoxy-pregnan-17(R)-1,4-dien-3,16-dione (1), 1-methoxy-pregnan-17(S)-1,4-dien-3,16-dione (2), 2,3-seco-pregnan-17(S)-2,3-dioic acid-16-oxo-dimethyl ester (4), 2α,3α,16α-trihydroxy-5α-pregnan-17(R)-20-yl acetate (7), three androstanes: 1-methoxy-androstan-1,4-dien-3,16-dione (3), 2,3-seco-androstan-2,3-dioic acid-16-oxo-dimethyl ester (5), 3-methoxycarbonyl-2,3-seco-androstan-3-oic acid-16-oxo-2,19-lactone (6), together with three known pregnane derivatives, were isolated from the roots of Trichilia emetica ssp. suberosa. Their structures were determined by means of 1D and 2D NMR spectroscopy, mass spectrometry analysis, as well as by quantum chemical calculations. Copyright © 2013 Elsevier Ltd. All rights reserved.
Eren, Baran; Kersell, Heath; Weatherup, Robert S; Heine, Christian; Crumlin, Ethan J; Friend, Cynthia M; Salmeron, Miquel B
2018-01-18
Using ambient pressure X-ray photoelectron spectroscopy (APXPS) and high pressure scanning tunneling microscopy (HPSTM), we show that in equilibrium with 0.01-0.2 Torr of methanol vapor, at room temperature, the Cu(100) surface is covered with methoxy species forming a c(2 × 2) overlayer structure. In contrast, no methoxy is formed if the surface is saturated with an ordered oxygen layer, even when the methanol pressure is 0.2 Torr. At oxygen coverages below saturation, methanol dissociates and reacts with the atomic oxygen, producing methoxy and formate on the surface, and formaldehyde that desorbs to the gas phase. Unlike the case of pure carbon monoxide and carbon dioxide, methanol does not induce the restructuring of the Cu(100) surface. These results provide insight into catalytic anhydrous production of aldehydes.
Elongated and substituted triazine-based tricarboxylic acid linkers for MOFs.
Klinkebiel, Arne; Beyer, Ole; Malawko, Barbara; Lüning, Ulrich
2016-01-01
New triazine-based tricarboxylic acid linkers were prepared as elongated relatives of triazinetribenzoic acid (TATB). Additionally, functional groups (NO 2 , NH 2 , OMe, OH) were introduced for potential post-synthetic modification (PSM) of MOFs. Functionalized tris(4-bromoaryl)triazine "cores" ( 3a , 3b ) were obtained by unsymmetric trimerization mixing one equivalent of an acid chloride (OMe or NO 2 substituted) with two equivalents of an unsubstituted nitrile. Triple Suzuki coupling of the cores 3 with suitable phenyl- and biphenylboronic acid derivatives provided elongated tricarboxylic acid linkers as carboxylic acids 17 and 20 or their esters 16 and 19 . Reduction of the nitro group and cleavage of the methoxy group gave the respective amino and hydroxy-substituted triazine linkers.
Elongated and substituted triazine-based tricarboxylic acid linkers for MOFs
Klinkebiel, Arne; Beyer, Ole; Malawko, Barbara
2016-01-01
New triazine-based tricarboxylic acid linkers were prepared as elongated relatives of triazinetribenzoic acid (TATB). Additionally, functional groups (NO2, NH2, OMe, OH) were introduced for potential post-synthetic modification (PSM) of MOFs. Functionalized tris(4-bromoaryl)triazine “cores” (3a,3b) were obtained by unsymmetric trimerization mixing one equivalent of an acid chloride (OMe or NO2 substituted) with two equivalents of an unsubstituted nitrile. Triple Suzuki coupling of the cores 3 with suitable phenyl- and biphenylboronic acid derivatives provided elongated tricarboxylic acid linkers as carboxylic acids 17 and 20 or their esters 16 and 19. Reduction of the nitro group and cleavage of the methoxy group gave the respective amino and hydroxy-substituted triazine linkers. PMID:28144293
Catalytic oxidation of o-aminophenols and aromatic amines by mushroom tyrosinase.
Muñoz-Muñoz, Jose Luis; Garcia-Molina, Francisco; Garcia-Ruiz, Pedro Antonio; Varon, Ramon; Tudela, Jose; Rodriguez-Lopez, Jose N; Garcia-Canovas, Francisco
2011-12-01
The kinetics of tyrosinase acting on o-aminophenols and aromatic amines as substrates was studied. The catalytic constants of aromatic monoamines and o-diamines were both low, these results are consistent with our previous mechanism in which the slow step is the transfer of a proton by a hydroxyl to the peroxide in oxy-tyrosinase (Fenoll et al., Biochem. J. 380 (2004) 643-650). In the case of o-aminophenols, the hydroxyl group indirectly cooperates in the transfer of the proton and consequently the catalytic constants in the action of tyrosinase on these compounds are higher. In the case of aromatic monoamines, the Michaelis constants are of the same order of magnitude than for monophenols, which suggests that the monophenols bind better (higher binding constant) to the enzyme to facilitate the π-π interactions between the aromatic ring and a possible histidine of the active site. In the case of aromatic o-diamines, both the catalytic and Michaelis constants are low, the values of the catalytic constants being lower than those of the corresponding o-diphenols. The values of the Michaelis constants of the aromatic o-diamines are slightly lower than those of their corresponding o-diphenols, confirming that the aromatic o-diamines bind less well (lower binding constant) to the enzyme. Copyright © 2011 Elsevier B.V. All rights reserved.
Zaikin, Vladimir G; Borisov, Roman S; Polovkov, Nikolai Yu; Zhilyaev, Dmitry I; Vinogradov, Aleksei A; Ivanyuk, Aleksei V
2013-01-01
Gas chromatography/mass spectrometry (GC/MS) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry, in conjunction with various derivatization approaches, have been applied to structure determination of individual oligomers and molecular-mass distributions (MMD) in low-molecular mass polyethylene having an iodine terminus. Direct GC/MS analysis has shown that the samples under investigation composed of polyethyelene-iodides (major components) and n-alkanes. Exchange reaction with methanol in the presence of NaOH gave rise to methoxy-derivatives and n-alkenes. Electron ionization mass spectra have shown that the former contained terminal methoxy groups indicating the terminal position of the iodine atom in the initial oligomers. MMD parameters have been determined with the aid of MALDI mass spectrometry followed by preliminary derivatization-formation of covalently bonded charge through the reaction of iodides with triphenylphosphine, trialkylamines, pyridine or quinoline. The mass spectra revealed well-resolved peaks for cationic parts of derivatized oligomers allowing the determination of MMD. The latter values have been compared with those calculated from GC/MS data.
Amini, Ahmad; Nilsson, Elin
2008-02-13
An accurate method based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been developed for quantitative analysis of calcitonin and insulin in different commercially available pharmaceutical products. Tryptic peptides derived from these polypeptides were chemically modified at their C-terminal lysine-residues with 2-methoxy-4,5-dihydro-imidazole (light tagging) as standard and deuterated 2-methoxy-4,5-dihydro-imidazole (heavy tagging) as internal standard (IS). The heavy modified tryptic peptides (4D-Lys tag), differed by four atomic mass units from the corresponding light labelled counterparts (4H-Lys tag). The normalized peak areas (the ratio between the light and heavy tagged peptides) were used to construct a standard curve to determine the concentration of the analytes. The concentrations of calcitonin and insulin content of the analyzed pharmaceutical products were accurately determined, and less than 5% error was obtained between the present method and the manufacturer specified values. It was also found that the cysteine residues in CSNLSTCVLGK from tryptic calcitonin were converted to lanthionine by the loss of one sulfhydryl group during the labelling procedure.
Bedini, Annalida; Lucarini, Simone; Spadoni, Gilberto; Tarzia, Giorgio; Scaglione, Francesco; Dugnani, Silvana; Pannacci, Marilou; Lucini, Valeria; Carmi, Caterina; Pala, Daniele; Rivara, Silvia; Mor, Marco
2011-12-22
New derivatives of 4-phenyl-2-propionamidotetralin (4-P-PDOT) were prepared and tested on cloned MT1 and MT2 receptors, with the purpose of merging previously reported pharmacophores for nonselective agonists and for MT2-selective antagonists. A 8-methoxy group increases binding affinity of both (±)-cis- and (±)-trans-4-P-PDOT, and it can be bioisosterically replaced by a bromine. Conformational analysis of 8-methoxy-4-P-PDOT by molecular dynamics, supported by NMR data, revealed an energetically favored conformation for the (2S,4S)-cis isomer and a less favorable conformation for the (2R,4S)-trans one, fulfilling the requirements of a pharmacophore model for nonselective melatonin receptor agonists. A new superposition model, including features characteristic of MT2-selective antagonists, suggests that MT1/MT2 agonists and MT2 antagonists can share the same arrangement for their pharmacophoric elements. The model correctly predicted the eutomers of (±)-cis- and (±)-trans-4-P-PDOT. The model was validated by preparing three dihydronaphthalene derivatives, either able or not able to reproduce the putative active conformation of 4-P-PDOT.
ERIC Educational Resources Information Center
Santos, Elvira Santos; Garcia, Irma Cruz Gavilan; Gomez, Eva Florencia Lejarazo; Vilchis-Reyes, Miguel Angel
2010-01-01
A series of experiments based on problem-solving and collaborative-learning pedagogies are described that encourage students to interpret results and draw conclusions from data. Different approaches including parallel library synthesis, solvent variation, and leaving group variation are used to study a nucleophilic aromatic substitution of…
Palladium-catalysed electrophilic aromatic C-H fluorination
NASA Astrophysics Data System (ADS)
Yamamoto, Kumiko; Li, Jiakun; Garber, Jeffrey A. O.; Rolfes, Julian D.; Boursalian, Gregory B.; Borghs, Jannik C.; Genicot, Christophe; Jacq, Jérôme; van Gastel, Maurice; Neese, Frank; Ritter, Tobias
2018-02-01
Aryl fluorides are widely used in the pharmaceutical and agrochemical industries, and recent advances have enabled their synthesis through the conversion of various functional groups. However, there is a lack of general methods for direct aromatic carbon-hydrogen (C-H) fluorination. Conventional methods require the use of either strong fluorinating reagents, which are often unselective and difficult to handle, such as elemental fluorine, or less reactive reagents that attack only the most activated arenes, which reduces the substrate scope. A method for the direct fluorination of aromatic C-H bonds could facilitate access to fluorinated derivatives of functional molecules that would otherwise be difficult to produce. For example, drug candidates with improved properties, such as increased metabolic stability or better blood-brain-barrier penetration, may become available. Here we describe an approach to catalysis and the resulting development of an undirected, palladium-catalysed method for aromatic C-H fluorination using mild electrophilic fluorinating reagents. The reaction involves a mode of catalysis that is unusual in aromatic C-H functionalization because no organometallic intermediate is formed; instead, a reactive transition-metal-fluoride electrophile is generated catalytically for the fluorination of arenes that do not otherwise react with mild fluorinating reagents. The scope and functional-group tolerance of this reaction could provide access to functional fluorinated molecules in pharmaceutical and agrochemical development that would otherwise not be readily accessible.
Ibero-Baraibar, Idoia; Romo-Hualde, Ana; Gonzalez-Navarro, Carlos J; Zulet, M Angeles; Martinez, J Alfredo
2016-04-01
Metabolomics is used to assess the compliance and bioavailability of food components, as well as to evaluate the metabolic changes associated with food consumption. This study aimed to analyze the effect of consuming ready-to-eat meals containing a cocoa extract, within an energy restricted diet on urinary metabolomic changes. Fifty middle-aged volunteers [30.6 (2.3) kg m(-2)] participated in a 4-week randomised, parallel and double-blind study. Half consumed meals supplemented with 1.4 g of cocoa extract (645 mg polyphenols) while the remaining subjects received meals without cocoa supplementation. Ready-to-eat meals were included within a 15% energy restricted diet. Urine samples (24 h) were collected at baseline and after 4 weeks and were analyzed by high-performance-liquid chromatography-time-of-flight-mass-spectrometry (HPLC-TOF-MS) in negative and positive ionization modes followed by multivariate analysis. The relationship between urinary metabolites was evaluated by the Spearman correlation test. Interestingly, the principal component analysis discriminated among the baseline group, control group at the endpoint and cocoa group at the endpoint (p < 0.01), although in the positive ionization mode the baseline and control groups were not well distinguished. Metabolites were related to theobromine metabolism (3-methylxanthine and 3-methyluric acid), food processing (L-beta-aspartyl-L-phenylalanine), flavonoids (2,5,7,3',4'-pentahydroxyflavanone-5-O-glucoside and 7,4'-dimethoxy-6-C-methylflavanone), catecholamine (3-methoxy-4-hydroxyphenylglycol-sulphate) and endogenous metabolism (uridine monophosphate). These metabolites were present in higher (p < 0.001) amounts in the cocoa group. 3-Methylxanthine and l-beta-aspartyl-L-phenylalanine were confirmed with standards. Interestingly, 3-methoxy-4-hydroxyphenylglycol-sulphate was positively correlated with 3-methylxanthine (rho = 0.552; p < 0.001) and 7,4'-dimethoxy-6-C-methylflavanone (rho = 447; p = 0.002). In conclusion, the metabolomic approach supported the compliance of the volunteers with the intervention and suggested the bioavailability of cocoa compounds within the meals.
Kumano, Takuto; Richard, Stéphane B.; Noel, Joseph P.; Nishiyama, Makoto; Kuzuyama, Tomohisa
2010-01-01
NphB is a soluble prenyltransferase from Streptomyces sp. strain CL190 that attaches a geranyl group to a 1,3,6,8-tetrahydroxynaphthalene-derived polyketide during the biosynthesis of anti-oxidant naphterpin. Here we report multiple chemoenzymatic syntheses of various prenylated compounds from aromatic substrates including flavonoids using two prenyltransferases NphB and SCO7190, a NphB homolog from Streptomyces coelicolor A3(2), as biocatalysts. NphB catalyzes carbon–carbon-based and carbon–oxygen-based geranylation of a diverse collection of hydroxyl-containing aromatic acceptors. Thus, this simple method using the prenyltransferases can be used to explore novel prenylated aromatic compounds with biological activities. Kinetic studies with NphB reveal that the prenylation reaction follows a sequential ordered mechanism. PMID:18682327
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ijam, M.J.; Al-Qatami, S.Y.; Arif, S.F.
For several decades removal of aromatics from crude oil fractions has been practiced in oil refining to produce fuels and lubricants of lower aromatic content and hence of improved quality. These aromatics are suitable raw materials for the manufacture of aromatic solvents, aromatic process oils, high octane gasoline, and as basic materials for making detergents, perfumes and dyes. A study for the UV and IR spectra of the aromatic hydrocarbons showed them to consist mainly of bi-, tri-, tetra-, and penta-substituted benzene, bicyclic and tricyclic compounds. Detailed studies have been reported of molecular structure and substituent effects have been reportedmore » on the retention characteristics of aromatic hydrocarbons on alumina, silica and various chemically bonded silicas containing {minus}C{sub 18}, {minus}NH{sub 2}, {minus}R(NH){sub 2}, {minus}CN, RCN, and phenyl-mercuric acetate for compound class (ring-numbered) high performance liquid chromatography separation. With the aid of a Finnegan type 9612-4000 GC/MS apparatus, the mixture of neutral + basic aromatic hydrocarbons was qualitatively identified and revealed the presence of more than 112 peaks. The neutral + basic aromatic hydrocarbons consist mainly of: 3.68% monoaromatics (C{sub 3} - C{sub 6} alkyl benzenes), 52.81% bicycloaromatics (C{sub 0} - C{sub 4} alkylnaphthalenes), 6.20% tricycloaromatics (C{sub 0} - C{sub 4} alkyl phenanthrenes), and 37.32% nonhydrocarbons aromatic compounds. The components in major HPLC peaks corresponding to bicycloaromatics were further separated into small groups (3-4 components in each) by HPLC using an ODS-reverse phase-C{sub 18} column. To separate a single component from the mixture is a difficult problem. The individual compounds in the separated fractions were identified by GC/MS (Hewlett Packard 5993 system).« less
Segro, Scott S; Malik, Abdul
2008-09-26
A sol-gel polydimethyldiphenylsiloxane (PDMDPS) coating was developed for capillary microextraction on-line hyphenated with high-performance liquid chromatography (HPLC). This coating was created using methyltrimethoxysilane (MTMS) as the sol-gel precursor and di-hydroxy-terminated PDMDPS as the sol-gel active polymer. The methyl and phenyl groups on the sol-gel active polymer and the methyl groups on the sol-gel precursor ultimately turned into pendant groups providing the ability to extract non-polar analytes. A 40-cm segment of 0.25 mm I.D. fused silica capillary containing the sol-gel PDMDPS coating was installed as an external sampling loop in an HPLC injection port. Aqueous samples containing polycyclic aromatic hydrocarbons (PAHs), aromatic compounds, ketones, and aldehydes were passed through this capillary wherein the analytes were extracted by the sol-gel coating. The extracted analytes were then transferred to the HPLC column using isocratic or gradient elution with an acetonitrile/water mobile phase. This capillary demonstrated excellent extraction capability for non-polar (e.g., polycyclic aromatic hydrocarbons and aromatic compounds) as well as moderately polar compounds, such as aromatic amines, ketones, and aldehydes. The test results indicate that PDMDPS can be successfully immobilized into a sol-gel network and that the resulting solvent-resistant sol-gel organic-inorganic hybrid coating can be effectively used for on-line hyphenation of capillary microextraction with high-performance liquid chromatography. The test results also indicate that the sol-gel PDMDPS coated capillary is resistant to high-temperature solvents, making it suitable for applications in high-temperature HPLC. To the best of our knowledge, this is the first report on the creation of a silica-based sol-gel PDMDPS coating used in capillary microextraction on-line hyphenated to HPLC.
Analytical, Characterization and Stability Studies of Chemicals, Bulk Drugs and Drug Formulations
1997-10-01
assay, Report No. 933. 19. WR-242511AF, BM19356, 8-[(4-amino-l-methylbutyl)amino]-5-(1-hexyloxy)-6-methoxy- 4-methylquinoline DL- tartrate , assay...colorimetric protein assay based on complexation between bicinchoninic acid and cuprous ion, which results from reduction of cupric ion by a protein, was...amino-l-methylbutyl)amino]-5-(1-hexyloxy)-6-methoxy-4- methylquinoline DL- tartrate , shelf life, 3- and 6-month samplings, Report No. 738; 9-, 12-, 18
Bis-Aryloxalates as Convenient Unimolecular Sources of Aryloxyl Radicals
1990-03-06
Research Tower Department of Chemistry, University of Massachusetts, Amherst, MA 01003 ii Synthesis of Diphenyl Oxalate : This general reaction is a useful...preparative method for any unhindered diaryl oxalate . Phenol was used as received. Oxalyl chloride was distilled under vacuum. Pyridine was distilled...Found C 79.12 H 9.93. iii Bis(4-Methoxy-2.6-di-t-butylphenyl) oxalate : Oxalyl chloride was distilled under vacuum. 4-Methoxy-2,6-di-t-butyl phenol was
Gauchat, Eric; Nazarenko, Alexander Y
2017-01-01
(9 S ,13 S ,14 S )-3-Meth-oxy-17-methyl-morphinan (dextromethorphan) forms two isostructural salts with ( a ) tetra-chlorido-cobaltate, namely bis-[(9 S ,13 S ,14 S )-3-meth-oxy-17-methyl-morphinanium] tetra-chlorido-cobaltate, (C 18 H 26 NO) 2 [CoCl 4 ], and ( b ) tetra-chlorido-cuprate, namely bis-[(9 S ,13 S ,14 S )-3-meth-oxy-17-methyl-morphinanium] tetra-chlorido-cuprate, (C 18 H 26 NO) 2 [CuCl 4 ]. The distorted tetra-hedral anions are located on twofold rotational axes. The dextromethorphan cation can be described as being composed of two ring systems, a tetra-hydro-naphthalene system A + B and a deca-hydro-isoquinolinium subunit C + D , that are nearly perpendicular to one another: the angle between mean planes of the A + B and C + D moieties is 78.8 (1)° for ( a ) and 79.0 (1)° for ( b ). Two symmetry-related cations of protonated dextromethorphan are connected to the tetra-chlorido-cobaltate (or tetra-chlorido-cuprate) anions via strong N-H⋯Cl hydrogen bonds, forming neutral ion associates. These associates are packed in the (001) plane with no strong attractive bonding between them. Both compounds are attractive crystalline forms for unambiguous identification of the dextromethorphan and, presumably, of its optical isomer, levomethorphan.
Zhao, Xinyu; He, Xiaosong; Xi, Beidou; Gao, Rutai; Tan, Wenbing; Zhang, Hui; Huang, Caihong; Li, Dan; Li, Meng
2017-12-01
Humic substance (HS) could be utilized by humus-reducing microorganisms (HRMs) as the terminal acceptors. Meanwhile, the reduction of HS can support the microbial growth. This process would greatly affect the redox conversion of inorganic and organic pollutants. However, whether the redox properties of HS lined with HRMs community during composting still remain unclear. This study aimed to assess the relationships between the redox capability of HS [i.e. humic acids (HA) and fulvic acids (FA)] and HRMs during composting. The results showed that the changing patterns of electron accepting capacity and electron donating capacity of HS were diverse during seven composting. Electron transfer capacities (ETC) of HA was significantly correlated with the functional groups (i.e. alkyl C, O-alkyl C, aryl C, carboxylic C, aromatic C), aromaticity and molecular weight of HA. Aromatic C, phenols, aryl C, carboxylic C, aromaticity and molecular weight of HS were the main structuralfeatures associated with the ETC of FA. Ten key genera of HRMs were found significantly determine these redox-active functional groups of HS during composting, thus influencing the ETC of HS in composts. In addition, a regulating method was suggested to enhance the ETC of HS during composting based on the relationships between the key HRMs and redox-active functional groups as well as environmental variables. Copyright © 2017 Elsevier Ltd. All rights reserved.
Seifert, Georg; Kanitz, Jenny-Lena; Rihs, Carolina; Krause, Ingrid; Witt, Katharina; Voss, Andreas
2018-05-01
Rhythmical massage therapy (RMT) is a massage technique used in anthroposophic medicine. The authors aimed to investigate the physiological action of RMT on the cardiovascular system by analysing heart rate variability (HRV). This study was a randomised, controlled and single-blinded trial, involving 44 healthy women (mean age: (26.20 ± 4.71) years). The subjects were randomised to one of three arms: RMT with aromatic oil (RA), RMT without aromatic oil (RM) or standardised sham massage (SM). In the study the subjects were exposed to a standardised stress situation followed by one of the study techniques and Holter electrocardiograms (ECGs) were recorded for 24 h. HRV parameters were calculated from linear (time and frequency domain) and nonlinear dynamics (symbolic dynamics, Poincare plot analysis) of the 24-h Holter ECG records. Short- and long-term effects of massage on autonomic regulation differed significantly among the three groups. Immediately after an RMT session, stimulation of HRV was found in the groups RA and RM. The use of an aromatic oil produced greater short-term measurable changes in HRV compared with rhythmic massage alone, but after 24 h the effect was no longer distinguishable from the RM group. The lowest stimulation of HRV parameters was measured in the SM group. RMT causes specific and marked stimulation of the autonomic nervous system. Use of a medicinal aromatic oil had only a temporary effect on HRV, indicating that the RM causes the most relevant long-term effect. The effect is relatively specific, as the physiological effects seen in the group of subjects who received only SM were considerably less pronounced. Registration trial DRKS00004164 on DRKS. Copyright © 2018 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.
Sabbioni, G
1993-01-01
Aromatic amines are important intermediates in industrial manufacturing. N-Oxidation to N-hydroxyarylamines is a key step in determining the genotoxic properties of aromatic amines. N-Hydroxyarylamines can form adducts with DNA, with tissue proteins, and with the blood proteins albumin and hemoglobin in a dose-dependent manner. The determination of hemoglobin adducts is a useful tool for biomonitoring exposed populations. We have established the hemoglobin binding index (HBI) [(mmole compound/mole hemoglobin)/(mmole compound/kg body weight)] of several aromatic amines in female Wistar rats. Including the values from other researchers obtained in the same rat strain, the logarithm of hemoglobin binding (logHBI) was plotted against the following parameters: the sum of the Hammett constants(sigma sigma = sigma p + sigma m), pKa, logP (octanol/water), the half-wave oxidation potential (E1/2), and the electronic descriptors of the amines and their corresponding nitrenium ions obtained by semi-empirical calculations (MNDO, AMI, and PM3), such as atomic charge densities, energies of the highest occupied molecular orbit and lowest occupied molecular orbit and their coefficients, the bond order of C-N, the dipole moments, and the reaction enthalpy [MNDOHF, AM1HF or PM3HF = Hf(nitrenium) - Hf(amine)]. The correlation coefficients were determined from the plots of all parameters against log HBI for all amines by means of linear regression analysis. The amines were classified in three groups: group 1, all parasubstituted amines (maximum, n = 9); group 2, all amines with halogens (maximun, n = 11); and group 3, all amines with alkyl groups (maximum, n = 13).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8319626
Zwitterionic and free forms of arylmethyl Meldrum's acids.
Mierina, Inese; Mishnev, Anatoly; Jure, Mara
2015-09-01
C-Alkyl (including C-arylmethyl) derivatives of Meldrum's acids are attractive building blocks in organic synthesis, mainly due to the unusually high acidity of the resulting compounds. Three examples, namely 5-[4-(diethylamino)benzyl]-2,2-dimethyl-1,3-dioxane-4,6-dione, C17H23NO4, (I), 2,2-dimethyl-5-(2,4,6-trimethoxybenzyl)-1,3-dioxane-4,6-dione, C16H20O7, (II), and 5-(4-hydroxy-3,5-dimethoxybenzyl)-2,2-dimethyl-1,3-dioxane-4,6-dione, C15H18O7, (III), have been synthesized, characterized by NMR and IR spectroscopy, and studied by single-crystal X-ray structure analysis. The nature of the different substituents resulted in remarkable differences in both the molecular conformations and the crystal packing arrangements. The presence of a substituent with a basic centre in compound (I) leads to the formation of an inner salt accompanied by drastic changes in the conformation of the 1,3-dioxane-4,6-dione fragment. By virtue of strong N-H···O hydrogen bonds, the residues are assembled into infinite chains with the graph-set descriptor C(10). Compound (II) contains methoxy groups in both the ortho- and para-positions of the arylmethyl fragment. Because of the absence of classical hydrogen-bond donors in this structure, the crystal packing is controlled by van der Waals forces and weak C-H···O interactions. Compound (III) contains methoxy groups in both meta-positions and a hydroxy group in the para-position. Supramolecular tetrameric synthons which comprise hydrogen-bonded dimers associated into tetramers through π-π interactions of overlapping benzene rings were observed.
Infrared Spectra of Polycyclic Aromatic Hydrocarbons: Methyl Substitution and Loss of H
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W.; Langhoff, Stephen R.; Arnold, James O. (Technical Monitor)
1998-01-01
The B3LYP approach, in conjunction with the 4-31G basis set, is used to compute the harmonic frequencies of 1- and 2-methylnaphthalene, 1-, 2-, and 9-methylanthracene, and their cations. The IR spectra of the methyl substituted species are very similar to the parent spectra, except for the addition of the methyl C-H stretch at lower frequency than the aromatic C-H stretch. The loss of a single hydrogen from naphthalene, anthracene, and their cations is shown to have a very small effect on the IR spectra. Loss of a methyl hydrogen from 1- or 2-methylnaphthalene, or their cations, is shown to shift the side group C-H frequencies from below aromatic hydrogen stretching frequencies to above them. The loss of IT from 2-methylenenaphthalene shows only a small shift in the side group C-H stretching frequency.
NASA Technical Reports Server (NTRS)
Wagner, D. R.; Kim, H. S.; Saykally, R. J.
2000-01-01
Infrared emission spectra of five gas-phase UV laser-excited polycyclic aromatic hydrocarbons (PAHs) containing aliphatic hydrogens are compared with the main 3.3 microns and associated interstellar unidentified infrared emission bands (UIRs). We show that neutral PAHs can account for the majority of the 3 microns emission complex while making little contribution to the other UIR bands; peripherally hydrogenated PAHs produce a better match to astrophysical data than do those containing methyl side groups; 3.4 microns plateau emission is shown to be a general spectral feature of vibrationally excited PAHs containing aliphatic hydrogens, especially those containing methyl groups; and finally, hot-band and overtone emissions arising from aromatic C-H vibrations are not observed in laboratory emission spectra, and therefore, in contrast to current assignments, are not expected to be observed in the UIRs.
He, Bo; Dai, Jing; Zherebetskyy, Danylo; ...
2015-03-31
Combining core annulation and peripheral group modification, we have demonstrated a divergent synthesis of a family of highly functionalized coronene derivatives from a readily accessible dichlorodiazaperylene intermediate. Various reactions, such as aromatic nucleophilic substitution, Kumada coupling and Suzuki coupling proceed effectively on α-positions of the pyridine sites, giving rise to alkoxy, thioalkyl, alkyl or aryl substituted polycyclic aromatic hydrocarbons. In addition to peripheral group modulation, the aromatic core structures can be altered by annulation with thiophene or benzene ring systems. Corresponding single crystal X-ray diffraction and optical studies indicate that the heteroatom linkages not only impact the solid state packing,more » but also significantly influence the optoelectronic properties. Moreover, these azacoronene derivatives display significant acid-induced spectroscopic changes, suggesting their great potential as colorimetric and fluorescence proton sensors.« less
Metal-sulfur type cell having improved positive electrode
Dejonghe, Lutgard C.; Visco, Steven J.; Mailhe, Catherine C.; Armand, Michel B.
1989-01-01
An novel metal-sulfur type cell operable at a temperature of 200.degree. C. or less with an energy density of 150 Whrs/Kg or better is disclosed characterized by an organo-sulfur cathode formed from an organic-sulfur compound having the general formula, in its charged state, of (R(S).sub.y).sub.n wherein y=1 to 6; n=2 to 20; and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, or nitrogen heteroatoms when R comprisises one of more aromatic rings, or one or more oxygen, sulfur, nitrogen, or fluorine atoms associtated with the chain when R comprises an aliphatic chain, wherein the aliphatic group may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon.
Metal-sulfur type cell having improved positive electrode
DeJonghe, L.C.; Visco, S.J.; Mailhe, C.C.; Armand, M.B.
1988-03-31
A novel metal-sulfur type cell operable at a temperature of 200/degree/C or less with an energy density of 150 Whrs/Kg or better is disclosed characterized by an organo-sulfur cathode formed from an organic-sulfur compound having the general formula, in its charged state, of (R(S)/sub y/)n wherein y = 1 to 6; n = 2 to 20; and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, or nitrogen heteroatoms when R comprises one or more aromatic rings, or one or more oxygen, sulfur, nitrogen, or fluorine atoms associated with the chain when R comprises an aliphatic chain, wherein the aliphatic group may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon. 4 figs.
Zhao, Jiang; Yu, Yue; Yang, Xiaolong; Yan, Xiaogang; Zhang, Huiming; Xu, Xianbin; Zhou, Guijiang; Wu, Zhaoxin; Ren, Yixia; Wong, Wai-Yeung
2015-11-11
A series of heteroleptic functional Ir(III) complexes bearing different fluorinated aromatic sulfonyl groups has been synthesized. Their photophysical features, electrochemical behaviors, and electroluminescent (EL) properties have been characterized in detail. These complexes emit intense yellow phosphorescence with exceptionally high quantum yields (ΦP > 0.9) at room temperature, and the emission maxima of these complexes can be finely tuned depending upon the number of the fluorine substituents on the pendant phenyl ring of the sulfonyl group. Furthermore, the electrochemical properties and electron injection/transporting (EI/ET) abilities of these Ir(III) phosphors can also be effectively tuned by the fluorinated aromatic sulfonyl group to furnish some desired characters for enhancing the EL performance. Hence, the maximum luminance efficiency (ηL) of 81.2 cd A(-1), corresponding to power efficiency (ηP) of 64.5 lm W(-1) and external quantum efficiency (ηext) of 19.3%, has been achieved, indicating the great potential of these novel phosphors in the field of organic light-emitting diodes (OLEDs). Furthermore, a clear picture has been drawn for the relationship between their optoelectronic properties and chemical structures. These results should provide important information for developing highly efficient phosphors.
Anjum, Saima; Qi, Wenjing; Gao, Wenyue; Zhao, Jianming; Hanif, Saima; Aziz-Ur-Rehman; Xu, Guobao
2015-03-15
Alkanethiols generally form self-assembled monolayers on gold electrodes and the electrochemical reduction of aromatic diazonium salts is a popular method for the covalent modification of carbon. Based on the reaction of alkanethiol with aldehyde groups covalently bound on carbon surface by the electrochemical reduction of aromatic diazonium salts, a new strategy for the modification of carbon electrodes with alkanethiols has been developed. The modification of carbon surface with aldehyde groups is achieved by the electrochemical reduction of aromatic diazonium salts in situ electrogenerated from a nitro precursor, p-nitrophenylaldehyde, in the presence of nitrous acid. By this way, in situ electrogenerated p-aminophenyl aldehyde from p-nitrophenylaldehyde immediately reacts with nitrous acid, effectively minimizing the side reaction of amine groups and aldehyde groups. The as-prepared alkanethiol-modified glassy carbon electrode was further used to make biomembrane-like films by casting didodecyldimethylammonium bromide on its surface. The biomembrane-like films enable the direct electrochemistry of immobilized myoglobin for the detection of hydrogen peroxide. The response is linear over the range of 1-600μM with a detection limit of 0.3μM. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Deshmukh, Ashish P.; Pacheco, Carlos; Hay, Michael B.; Myneni, Satish C. B.
2007-07-01
Carboxyl groups are abundant in natural organic molecules (NOM) and play a major role in their reactivity. The structural environments of carboxyl groups in IHSS soil and river humic samples were investigated using 2D NMR (heteronuclear and homonuclear correlation) spectroscopy. Based on the 1H- 13C heteronuclear multiple-bond correlation (HMBC) spectroscopy results, the carboxyl environments in NOM were categorized as Type I (unsubstituted and alkyl-substituted aliphatic/alicyclic), Type II (functionalized carbon substituted), Type IIIa, b (heteroatom and olefin substituted), and Type IVa, b (5-membered heterocyclic aromatic and 6-membered aromatic). The most intense signal in the HMBC spectra comes from the Type I carboxyl groups, including the 2JCH and 3JCH couplings of unsubstituted aliphatic and alicyclic acids, though this spectral region also includes the 3JCH couplings of Type II and III structures. Type II and III carboxyls have small but detectable 2JCH correlations in all NOM samples except for the Suwannee River humic acid. Signals from carboxyls bonded to 5-membered aromatic heterocyclic fragments (Type IVa) are observed in the soil HA and Suwannee River FA, while correlations to 6-membered aromatics (Type IVb) are only observed in Suwannee River HA. In general, aromatic carboxylic acids may be present at concentrations lower than previously imagined in these samples. Vibrational spectroscopy results for these NOM samples, described in an accompanying paper [Hay M. B. and Myneni S. C. B. (2007) Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochim. Cosmochim. Acta (in press)], suggest that Type II and Type III carboxylic acids with α substituents (e.g., -OH, -OR, or -CO 2H) constitute the majority of carboxyl structures in all humic substances examined. Furoic and salicylic acid structures (Type IV) are also feasible fragments, albeit as minor constituents. The vibrational spectroscopy results also suggest that much of the "Type I" signal observed in the HMBC spectrum is due to carboxylic acid esters and possibly α-substituted alicyclic acids.
Spherical sila- and germa-homoaromaticity.
Chen, Zhongfang; Hirsch, Andreas; Nagase, Shigeru; Thiel, Walter; Schleyer, Paul von Ragué
2003-12-17
Guided by the 2(N + 1)2 electron-counting rule for spherical aromatic molecules, we have designed various spherical sila- and germa-homoaromatic systems rich in group 14 elements. Their aromaticity is revealed by density-functional computations of their structures and the nucleus-independent chemical shifts (NICS). Besides the formerly used endohedral inclusion strategy, spherical homoaromaticity is another way to stabilize silicon and germanium clusters.
Interactions of aromatic amino acids with heterocyclic ligand: An IR spectroscopic study
NASA Astrophysics Data System (ADS)
Tyunina, E. Yu.; Badelin, V. G.; Tarasova, G. N.
2015-09-01
The interactions of L-phenylalanine and L-tryptophan with nicotinic acid and uracyl in an aqueous buffer solution at pH 7.35 were studied by IR spectroscopy. The contributions of various functional groups to the complexation of aromatic amino acids with heterocyclic ligands were determined from the IR spectra of the starting substances and their mixtures.
Wilson, Walter B; Hayes, Hugh V; Sander, Lane C; Campiglia, Andres D; Wise, Stephen A
2018-02-01
Retention indices for 67 polycyclic aromatic sulfur heterocycles (PASHs) and 80 alkyl-substituted PASHs were determined using normal-phase liquid chromatography (NPLC) on an aminopropyl (NH 2 ) stationary phase. The retention behavior of PASH on the NH 2 phase is correlated with the number of aromatic carbon atoms and two structural characteristics have a significant influence on their retention: non-planarity (thickness, T) and the position of the sulfur atom in the bay-region of the structure. Correlations between solute retention on the NH 2 phase and T of PASHs were investigated for three cata-condensed (cata-) PASH isomer groups: (a) 13 four-ring molecular mass (MM) 234 Da cata-PASHs, (b) 20 five-ring MM 284 Da cata-PASHs, and (c) 12 six-ring MM 334 Da cata-PASHs. Correlation coefficients ranged from r = -0.49 (MM 234 Da) to r = -0.65 (MM 334 Da), which were significantly lower than structurally similar PAH isomer groups (r = -0.70 to r = -0.99). The NPLC retention behavior of the PASHs are compared to similar results for PAHs.
Wang, Yanlan; Monfredini, Anna; Deyris, Pierre-Alexandre; Blanchard, Florent; Derat, Etienne; Malacria, Max
2017-01-01
We present that cationic rings can act as donor ligands thanks to suitably delocalized metal–metal bonds. This could grant parent complexes with the peculiar properties of aromatic rings that are crafted with main group elements. We assembled Pd nuclei into equilateral mono-cationic triangles with unhindered faces. Like their main group element counterparts and despite their positive charge, these noble-metal rings form stable bonding interactions with other cations, such as positively charged silver atoms, to deliver the corresponding tetranuclear dicationic complexes. Through a mix of modeling and experimental techniques we propose that this bonding mode is an original coordination-like one rather than a 4-centre–2-electron bond, which have already been observed in three dimensional aromatics. The present results thus pave the way for the use of suitable metal rings as ligands. PMID:29163890
Ra, Doyoung; Gauger, Kelly A.; Muthukumaran, Kannan; ...
2015-04-01
Advances in chlorin synthetic chemistry now enable the de novo preparation of diverse chlorin-containing molecular architectures. Five distinct molecular designs have been explored here, including hydrophobic bioconjugatable (oxo)chlorins; a hydrophilic bioconjugatable chlorin; a trans-ethynyl/iodochlorin building block; a set of chlorins bearing electron-rich (methoxy, dimethylamino, methylthio) groups at the 3-position; and a set of ten 3,13-disubstituted chlorins chiefly bearing groups with extended π-moieties. Altogether 23 new chlorins (17 targets, 6 intermediates) have been prepared. Lastly, the challenge associated with molecular designs that encompass the combination of “hydrophilic, bioconjugatable and wavelength-tunable” chiefly resides in the nature of the hydrophilic unit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, A.; Jeffery, J.C.; Maher, J.P.
The authors have prepared the new monodentate ligands 4-(4-methoxyphenyl)pyridine, 1-(4-pyridyl)-2-(4-methoxyphenyl)ethene, 1-(4-pyridyl)-2-(3-methoxyphenyl)ethene, and 1-(3-pyridyl)-2-(4-methoxyphenyl)ethene (L[sup 5]-L[sup 8]); demethylation of the methoxy group in each case afforded the new bridging bidentate ligands HL[sup 1]-HL[sup 4], which contain one pyridyl and one phenolate donor. Attachment of a MoL*(NO)Cl [L* = hydrotris(3,5-dimethylpyrazolyl)borate] moiety to the pyridyl groups of L[sup 5]-L[sup 8] gave the 17-electron complexes [Mo(NO)L*ClL[prime
1-Methyl-4-(4-nitrobenzoyl)pyridinium perchlorate
Gruber, Tobias; Eissmann, Frank; Weber, Edwin; Schüürmann, Gerrit
2011-01-01
In the main molecule of the title compound, C13H11N2O3 +·ClO4 −, the two aromatic rings are twisted by 56.19 (3)° relative to each other and the nitro group is not coplanar with the benzene ring [36.43 (4)°]. The crystal packing is dominated by infinite aromatic stacks in the a-axis direction. These are formed by the benzene units of the molecule featuring an alternating arrangement, which explains the two different distances of 3.3860 (4) and 3.4907 (4) Å for the aromatic units (these are the perpendicular distances of the centroid of one aromatic ring on the mean plane of the other other aromatic ring). Adjacent stacks are connected by π–π stacking between two pyridinium units [3.5949 (4) Å] and weak C—H⋯O interactions. The perchlorate anions are accomodated in the lattice voids connected to the cation via weak C—H⋯O contacts between the O atoms of the anion and various aromatic as well as methyl H atoms. PMID:22059070
The effect of aromatization on the isotopic compositions of hydrocarbons during early diagenesis
NASA Technical Reports Server (NTRS)
Freeman, K. H.; Boreham, C. J.; Summons, R. E.; Hayes, J. M.
1994-01-01
Polycyclic aromatic hydrocarbons with varying degrees of aromatization were isolated from the Eocene Messel Shale (Rheingraben, Germany). The high abundances of these compounds and their structural resemblances to cyclic triterpenoid lipids are consistent with derivation from microbial rather than thermal processes. Compounds structurally related to oleanane contain from five to nine double bonds; those within a series of aromatized hopanoids contain from three to nine. All are products of diagenetic reactions that remove hydrogen or methyl groups, and, in several cases, break carbon-carbon bonds to open rings. Aromatized products are on average depleted in 13C relative to possible precursors by l.2% (range: l.5% enrichment to 4% depletion, n = 9). The dependence of 13C content on the number of double bonds is not, however, statistically significant and it must be concluded that there is no strong evidence for isotopic fractionation accompanying diagenetic aromatization. Isotopic differences between series (structures related to ursane, des-A-ursane, des-A-lupane, des-A-arborane, and possibly, des-A-gammacerane are present) are much greater, indicating that 13C contents are controlled primarily by source effects. Fractionations due to chromatographic isotope effects during HPLC ranged from 0.1 to 2.8%.
Quantum chemical study of methane oxidation species
NASA Technical Reports Server (NTRS)
Jackels, C. F.
1984-01-01
Work completed on the 2A1 excited state and low-lying dissociative states of the methoxy radical is reported. A manuscript was prepared that reports the characterization of the 2A1 electronic state, the excitation energies and Franck-Condon factors for the 2A1 - 2E system, and the energies of intersection between the 2A1 state and the nearby dissociative states. The minimum excitation energy needed for predissociation of methoxy is predicted along with the corresponding implications for atmospheric chemistry.
Syntheses and evaluation of multicaulin and miltirone-like compounds as antituberculosis agents.
Burmaoğlu, Serdar; Seçinti, Hatice; Mozioğlu, Erkan; Gören, Ahmet C; Altundaş, Ramazan; Seçen, Hasan
2017-12-01
Four multicaulin and miltirone-like phenanthrene derivatives were synthesised and evaluated as antituberculosis agents. The crucial step of the synthesis was Pschorr coupling of 4-(3-isopropyl-4-methoxyphenyl)-2-(2-aminophenyl)ethane (13) to give 2-isopropyl-3-methoxy-9,10-dihydrophenanthrene (9) and 4-isopropyl-3-methoxy-9,10-dihydrophenanthrene (9a). Compound 9 was converted to multicaulin and miltirone-like phenanthrene derivatives by further reactions. The best antituberculosis activity was exhibited by 2-isopropylphenanthrene-3-ol (11).
NASA Astrophysics Data System (ADS)
Soriano-Correa, Catalina; Raya, Angélica; Barrientos-Salcedo, Carolina; Esquivel, Rodolfo O.
2014-06-01
Activity of steroid hormones is dependent upon a number of factors, as solubility, transport and metabolism. The functional differences caused by structural modifications could exert an influence on the chemical reactivity and biological effect. The goal of this work is to study the influence of the physicochemical and aromatic properties on the chemical reactivity and its relation with the carcinogenic risk that can associate with the anticoagulant effect of 17β-aminoestrogens using quantum-chemical descriptors at the DFT-B3LYP, BH&HLYP and M06-2X levels. The relative acidity of (H1) of the hydroxyl group increases with electron-withdrawing groups. Electron-donor groups favor the basicity. The steric hindrance of the substituents decreases the aromatic character and consequently diminution the carcinogenic effect. Density descriptors: hardness, electrophilic index, atomic charges, molecular orbitals, electrostatic potential and their geometric parameters permit analyses of the chemical reactivity and physicochemical features and to identify some reactive sites of 17β-aminoestrogens.
Thermoplastic composite matrices with improved solvent resistance
NASA Technical Reports Server (NTRS)
Hergenrother, P. M.; Jensen, B. J.; Havens, S. J.
1984-01-01
In order to improve solvent resistance of aromatic thermoplastic polymers, ethynyl-terminated aromatic sulfone polymers (ETS), sulfone/ester polymers (SEPE) containing pendent ethynyl groups, and phenoxy resin containing pendent ethynyl groups are synthesized. Cured polysulfones and phenoxy resins containing ethynyl groups on the ends or pendent on the molecules exhibited systematic behavior in solvent resistance, film flexibility, and toughness as a function of crosslink density. The film and composite properties of a cured solvent-resistant ETS were better than those of a commercially available solvent sensitive polysulfone. The study was part of a NASA program to better understand the trade-offs between solvent resistance, processability and mechanical properties which may be useful in designing composite structures for aerospace vehicles.
Mao, J.-D.; Schimmelmann, A.; Mastalerz, Maria; Hatcher, P.G.; Li, Y.
2010-01-01
Quantitative and advanced 13C solid-state NMR techniques were employed to investigate (i) the chemical structure of a high volatile bituminous coal, as well as (ii) chemical structural changes of this coal after evacuation of adsorbed gases, (iii) during oxidative air exposure at room temperature, and (iv) after oxidative heating in air at 75 ??C. The solid-state NMR techniques employed in this study included quantitative direct polarization/magic angle spinning (DP/MAS) at a high spinning speed of 14 kHz, cross polarization/total sideband suppression (CP/TOSS), dipolar dephasing, CH, CH2, and CHn selection, 13C chemical shift anisotropy (CSA) filtering, two-dimensional (2D) 1H-13C heteronuclear correlation NMR (HETCOR), and 2D HETCOR with 1H spin diffusion. With spectral editing techniques, we identified methyl CCH 3, rigid and mobile methylene CCH2C, methine CCH, quaternary Cq, aromatic CH, aromatic carbons bonded to alkyls, small-sized condensed aromatic moieties, and aromatic C-O groups. With direct polarization combined with spectral-editing techniques, we quantified 11 different types of functional groups. 1H-13C 2D HETCOR NMR experiments indicated spatial proximity of aromatic and alkyl moieties in cross-linked structures. The proton spin diffusion experiments indicated that the magnetization was not equilibrated at a 1H spin diffusion time of 5 ms. Therefore, the heterogeneity in spatial distribution of different functional groups should be above 2 nm. Recoupled C-H long-range dipolar dephasing showed that the fraction of large charcoal-like clusters of polycondensed aromatic rings was relatively small. The exposure of this coal to atmospheric oxygen at room temperature for 6 months did not result in obvious chemical structural changes of the coal, whereas heating at 75 ??C in air for 10 days led to oxidation of coal and generated some COO groups. Evacuation removed most volatiles and caused a significant reduction in aliphatic signals in its DP/MAS spectrum. DP/MAS, but not CP/MAS, allowed us to detect the changes during low-temperature oxidation and loss of volatiles. These results demonstrate the applicability of advanced solid-state NMR techniques in chemical characterization of coal. ?? 2010 American Chemical Society.
Comparison of molecular structure of alkali metal o-, m- and p-nitrobenzoates
NASA Astrophysics Data System (ADS)
Regulska, E.; Świsłocka, R.; Samsonowicz, M.; Lewandowski, W.
2008-09-01
The influence of nitro-substituent in ortho, meta and para positions as well as lithium, sodium, potassium, rubidium and cesium on the electronic system of aromatic ring and the distribution of electronic charge in carboxylic group of the nitrobenzoates were estimated. Optimized geometrical structures were calculated (B3LYP/6-311++G ∗∗). To make quantitative evaluation of aromaticity of studied molecules the geometric (A J, BAC, I 6 and HOMA) as well as magnetic (NICS) aromaticity indices were calculated. Electronic charge distribution was also examined by molecular spectroscopic study, which may be the source of quality criterion for aromaticity. Experimental and theoretical FT-IR, FT-Raman and NMR ( 1H and 13C) spectra of the title compounds were analyzed. The calculated parameters were compared to experimental characteristics of these molecules.
Jiménez-Osés, Gonzalo; Brockway, Anthony J; Shaw, Jared T; Houk, K N
2013-05-01
The mechanism of direct displacement of alkoxy groups in vinylogous and aromatic esters by Grignard reagents, a reaction that is not observed with expectedly better tosyloxy leaving groups, is elucidated computationally. The mechanism of this reaction has been determined to proceed through the inner-sphere attack of nucleophilic alkyl groups from magnesium to the reacting carbons via a metalaoxetane transition state. The formation of a strong magnesium chelate with the reacting alkoxy and carbonyl groups dictates the observed reactivity and selectivity. The influence of ester, ketone, and aldehyde substituents was investigated. In some cases, the calculations predicted the formation of products different than those previously reported; these predictions were then verified experimentally. The importance of studying the actual system, and not simplified models as computational systems, is demonstrated.
Jiménez-Osés, Gonzalo; Brockway, Anthony J.; Shaw, Jared T.; Houk, K. N.
2013-01-01
The mechanism of direct displacement of alkoxy groups in vinylogous and aromatic esters by Grignard reagents, a reaction that is not observed with expectedly better tosyloxy leaving groups, is elucidated computationally. The mechanism of this reaction has been determined to proceed through the inner-sphere attack of nucleophilic alkyl groups from magnesium to the reacting carbons via a metalaoxetane transition state. The formation of a strong magnesium chelate with the reacting alkoxy and carbonyl groups dictates the observed reactivity and selectivity. The influence of ester, ketone and aldehyde substituents was investigated. In some cases, the calculations predicted the formation of products different than those previously reported; these predictions were then verified experimentally. The importance of studying the actual system, and not simplified models as computational systems, is demonstrated. PMID:23601086
Dötterl, Stefan; David, Anja; Boland, Wilhelm; Silberbauer-Gottsberger, Ilse; Gottsberger, Gerhard
2012-12-01
Many plants attract their pollinators with floral scents, and these olfactory signals are especially important at night, when visual signals become inefficient. Dynastid scarab beetles are a speciose group of night-active pollinators, and several plants pollinated by these insects have methoxylated aromatic compounds in their scents. However, there is a large gap in our knowledge regarding the compounds responsible for beetle attraction. We used chemical analytical analyses to determine temporal patterns of scent emission and the composition of scent released from inflorescences of Philodendron selloum. The attractiveness of the main components in the scent to the dynastid scarab beetle Erioscelis emarginata, the exclusive pollinator of this plant, was assessed in field biotests. The amount of scent increased rapidly in the evening, and large amounts of scent were released during the activity time of the beetle pollinators. Inflorescences emitted a high number of compounds of different biosynthetic origin, among them both uncommon and also widespread flower scents. Methoxylated aromatic compounds dominated the scent, and 4-methoxystyrene, the most abundant compound, attracted E. emarginata beetles. Other compounds, such as (Z)-jasmone and possibly also the methoxylated aromatic compound 3,4-dimethoxystyrene increased the attractiveness of 4-methoxystyrene. Methoxylated aromatics, which are known from other dynastid pollinated plants as well, are important signals in many scarab beetles in a different context (e.g., pheromones), thus suggesting that these plants exploit pre-existing preferences of the beetles for attracting this group of insects as pollinators.
CHEMISTRY OF OXIDATION OF POLYCYCLIC AROMATIC HYDROCARBONS BY SOIL PSEUDOMONADS
Rogoff, Martin H.
1962-01-01
Rogoff, Martin H. (U.S. Bureau of Mines, Pittsburgh, Pa.). Oxidation of polycyclic aromatic hydrocarbons by soil pseudomonads. J. Bacteriol. 83:998–1004. 1962.—Substitution of phenanthrene by a methyl group at the 9-carbon blocks oxidation of the compound by a resting-cell suspension of a phenanthrene-grown soil pseudomonad. When 2-methylphenanthrene is provided, the oxidation rate is considerably higher; 3-methylphenanthrene is oxidized at a rate intermediate between the other two, even though the methyl group is attached to a carbon directly involved in ring splitting. Cells grown on naphthalene or anthracene oxidize phenanthrene at a much lower rate than cells grown with phenanthrene or 2-methylnaphthalene as the source of carbon. Naphthalene-grown cells also absorb less phenanthrene from aqueous solution than do their phenanthrene-grown counterparts. The data are in keeping with the hypothesis that polynuclear aromatic hydrocarbons attach to the relevant bacterial enzymes at carbon-carbon bonds of high electron density (K regions; localized double bonds), and that the ring-splitting reactions then occur at other bonds on the substrate molecule. The actual bond that undergoes fission is determined by the electronic and steric configurations of the enzyme-substrate complex. When linearly arranged aromatic compounds such as naphthalene or anthracene are attacked, attachment to an enzyme and ring splitting may take place on the same ring; angular aromatic compounds such as phenanthrene afford attachment to an enzyme at a bond in a ring other than the one containing the ring-splitting site. PMID:14493381
Weißenstein, Annike; Saha-Möller, Chantu R; Würthner, Frank
2018-06-04
The host-guest binding properties of a fluorescent perylene bisimide (PBI) receptor equipped with crown ether were studied in detail with a series of aromatic amino acids and dipeptides by UV/Vis, fluorescence and NMR spectroscopy. Fluorescence titration experiments showed that electron-rich aromatic amino acids and dipeptides strongly quench the fluorescence of the electron-poor PBI host molecule. Benesi-Hildebrand plots of fluorescence titration data confirmed the formation of host-guest complexes with 1:2 stoichiometry. Binding constants determined by global analysis of UV/Vis and fluorescence titration experiments revealed values between 10 3 m -1 and 10 5 m -1 in acetonitrile/methanol (9:1) at 23 °C. These data showed that amino acid l-Trp having an indole group and dipeptides containing this amino acid bind to the PBI receptor more strongly than other amino acids and dipeptides investigated here. For dipeptides containing l-Trp or l-Tyr, the binding strength is dependent on the distance between the ammonium group and the aromatic unit of the amino acids and dipeptides leading to a strong sensitivity for Ala-Trp dipeptide. 1D and 2D NMR experiments also corroborated 1:2 host-guest complexation and indicated formation of two diastereomeric species of host-guest complexes. The studies have shown that a properly functionalized PBI fluorophore functions as a molecular probe for the optical sensing of aromatic amino acids and dipeptides. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aromatic hydroxylation by cytochrome P450: model calculations of mechanism and substituent effects.
Bathelt, Christine M; Ridder, Lars; Mulholland, Adrian J; Harvey, Jeremy N
2003-12-10
The mechanism and selectivity of aromatic hydroxylation by cytochrome P450 enzymes is explored using new B3LYP density functional theory computations. The calculations, using a realistic porphyrin model system, show that rate-determining addition of compound I to an aromatic carbon atom proceeds via a transition state with partial radical and cationic character. Reactivity is shown to depend strongly on ring substituents, with both electron-withdrawing and -donating groups strongly decreasing the addition barrier in the para position, and it is shown that the calculated barrier heights can be reproduced by a new dual-parameter equation based on radical and cationic Hammett sigma parameters.
Production of aromatics from di- and polyoxygenates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, Taylor; Blank, Brian; Jones, Casey
Methods, catalysts, and reactor systems for producing in high yield aromatic chemicals and liquid fuels from a mixture of oxygenates comprising di- and polyoxygenates are disclosed. Also disclosed are methods, catalysts, and reactor systems for producing aromatic chemicals and liquid fuels from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like; and methods, catalysts, and reactor systems for producing the mixture of oxygenates from oxygenated hydrocarbons such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like. The disclosed catalysts for preparing the mixture of oxygenates comprise a Group VIII metal and a crystallinemore » alumina support.« less
Wang, Man-Juing; Tsai, Chih-Hsin; Hsu, Wei-Ya; Liu, Ju-Tsung; Lin, Cheng-Huang
2009-02-01
The optimal separation conditions and online sample concentration for N,N-dimethyltryptamine (DMT) and related compounds, including alpha-methyltryptamine (AMT), 5-methoxy-AMT (5-MeO-AMT), N,N-diethyltryptamine (DET), N,N-dipropyltryptamine (DPT), N,N-dibutyltryptamine (DBT), N,N-diisopropyltryptamine (DiPT), 5-methoxy-DMT (5-MeO-DMT), and 5-methoxy-N,N-DiPT (5-MeO-DiPT), using micellar EKC (MEKC) with UV-absorbance detection are described. The LODs (S/N = 3) for MEKC ranged from 1.0 1.8 microg/mL. Use of online sample concentration methods, including sweeping-MEKC and cation-selective exhaustive injection-sweep-MEKC (CSEI-sweep-MEKC) improved the LODs to 2.2 8.0 ng/mL and 1.3 2.7 ng/mL, respectively. In addition, the order of migration of the nine tryptamines was investigated. A urine sample, obtained by spiking urine collected from a human volunteer with DMT, was also successfully examined.
Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.
Shah, Aamer Ali; Kato, Satoshi; Shintani, Noboru; Kamini, Numbi Ramudu; Nakajima-Kambe, Toshiaki
2014-04-01
Biodegradable plastics (BPs) have attracted much attention since more than a decade because they can easily be degraded by microorganisms in the environment. The development of aliphatic-aromatic co-polyesters has combined excellent mechanical properties with biodegradability and an ideal replacement for the conventional nondegradable thermoplastics. The microorganisms degrading these polyesters are widely distributed in various environments. Although various aliphatic, aromatic, and aliphatic-aromatic co-polyester-degrading microorganisms and their enzymes have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. In this review, we have reported some new microorganisms and their enzymes which could degrade various aliphatic, aromatic, as well as aliphatic-aromatic co-polyesters like poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), poly(L-lactic acid) (PLA), poly(3-hydroxybutyrate) and poly(3-hydoxybutyrate-co-3-hydroxyvalterate) (PHB/PHBV), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(butylene adipate-co-terephthalate (PBAT), poly(butylene succinate-co-terephthalate) (PBST), and poly(butylene succinate/terephthalate/isophthalate)-co-(lactate) (PBSTIL). The mechanism of degradation of aliphatic as well as aliphatic-aromatic co-polyesters has also been discussed. The degradation ability of microorganisms against various polyesters might be useful for the treatment and recycling of biodegradable wastes or bioremediation of the polyester-contaminated environments.
Bio-Based Aromatic Epoxy Monomers for Thermoset Materials.
Ng, Feifei; Couture, Guillaume; Philippe, Coralie; Boutevin, Bernard; Caillol, Sylvain
2017-01-18
The synthesis of polymers from renewable resources is a burning issue that is actively investigated. Polyepoxide networks constitute a major class of thermosetting polymers and are extensively used as coatings, electronic materials, adhesives. Owing to their outstanding mechanical and electrical properties, chemical resistance, adhesion, and minimal shrinkage after curing, they are used in structural applications as well. Most of these thermosets are industrially manufactured from bisphenol A (BPA), a substance that was initially synthesized as a chemical estrogen. The awareness on BPA toxicity combined with the limited availability and volatile cost of fossil resources and the non-recyclability of thermosets implies necessary changes in the field of epoxy networks. Thus, substitution of BPA has witnessed an increasing number of studies both from the academic and industrial sides. This review proposes to give an overview of the reported aromatic multifunctional epoxide building blocks synthesized from biomass or from molecules that could be obtained from transformed biomass. After a reminder of the main glycidylation routes and mechanisms and the recent knowledge on BPA toxicity and legal issues, this review will provide a brief description of the main natural sources of aromatic molecules. The different epoxy prepolymers will then be organized from simple, mono-aromatic di-epoxy, to mono-aromatic poly-epoxy, to di-aromatic di-epoxy compounds, and finally to derivatives possessing numerous aromatic rings and epoxy groups.
Karavalakis, Georgios; Short, Daniel; Vu, Diep; Russell, Robert; Hajbabaei, Maryam; Asa-Awuku, Akua; Durbin, Thomas D
2015-06-02
We assessed the emissions response of a fleet of seven light-duty gasoline vehicles for gasoline fuel aromatic content while operating over the LA92 driving cycle. The test fleet consisted of model year 2012 vehicles equipped with spark-ignition (SI) and either port fuel injection (PFI) or direct injection (DI) technology. Three gasoline fuels were blended to meet a range of total aromatics targets (15%, 25%, and 35% by volume) while holding other fuel properties relatively constant within specified ranges, and a fourth fuel was formulated to meet a 35% by volume total aromatics target but with a higher octane number. Our results showed statistically significant increases in carbon monoxide, nonmethane hydrocarbon, particulate matter (PM) mass, particle number, and black carbon emissions with increasing aromatics content for all seven vehicles tested. Only one vehicle showed a statistically significant increase in total hydrocarbon emissions. The monoaromatic hydrocarbon species that were evaluated showed increases with increasing aromatic content in the fuel. Changes in fuel composition had no statistically significant effect on the emissions of nitrogen oxides (NOx), formaldehyde, or acetaldehyde. A good correlation was also found between the PM index and PM mass and number emissions for all vehicle/fuel combinations with the total aromatics group being a significant contributor to the total PM index followed by naphthalenes and indenes.
NASA Astrophysics Data System (ADS)
Kuwahara, Takuya; Moras, Gianpietro; Moseler, Michael
2017-09-01
Large-scale quantum molecular dynamics of water-lubricated diamond (111) surfaces in sliding contact reveals multiple friction regimes. While water starvation causes amorphization of the tribological interface, small H2O traces are sufficient to preserve crystallinity. This can result in high friction due to cold welding via ether groups or in ultralow friction due to aromatic surface passivation triggered by tribo-induced Pandey reconstruction. At higher water coverage, Grotthuss-type diffusion and H2O dissociation yield dense H /OH surface passivation leading to another ultralow friction regime.
Carroll, Richard T; Dluzen, Dean E; Stinnett, Hilary; Awale, Prabha S; Funk, Max O; Geldenhuys, Werner J
2011-08-15
The neuroprotective activity of pioglitazone and rosiglitazone in the MPTP parkinsonian mouse prompted us to evaluate a set of thiazolidinedione (TZD) type compounds for monoamine oxidase A and B inhibition activity. These compounds were able to inhibit MAO-B over several log units of magnitude (82 nM to 600 μM). Initial structure-activity relationship studies identified key areas to modify the aromatic substituted TZD compounds. Primarily, substitutions on the aromatic group and the TZD nitrogen were key areas where activity was enhanced within this group of compounds. Copyright © 2011 Elsevier Ltd. All rights reserved.
Aromatic VOCs global influence in the ozone production
NASA Astrophysics Data System (ADS)
Cabrera-Perez, David; Pozzer, Andrea
2016-04-01
Aromatic hydrocarbons are a subgroup of Volatile Organic Compounds (VOCs) of special interest in the atmosphere of urban and semi-urban areas. Aromatics form a high fraction of VOCs, are highly reactive and upon oxidation they are an important source of ozone. These group of VOCs are released to the atmosphere by processes related to biomass burning and fossil fuel consumption, while they are removed from the atmosphere primarily by OH reaction and by dry deposition. In addition, a branch of aromatics (ortho-nitrophenols) produce HONO upon photolysis, which is responsible of certain amount of the OH recycling. Despite their importance in the atmosphere in anthropogenic polluted areas, the influence of aromatics in the ozone production remains largely unknown. This is of particular relevance, being ozone a pollutant with severe side effects on air quality, health and climate. In this work the atmospheric impacts at global scale of the most emitted aromatic VOCs in the gas phase (benzene, toluene, xylenes, ethylbenzene, styrene, phenol, benzaldehyde and trimethylbenzenes) are analysed and assessed. Specifically, the impact on ozone due to aromatic oxidation is estimated, as this is of great interest in large urban areas and can be helpful for developing air pollution control strategies. Further targets are the quantification of the NOx loss and the OH recycling due to aromatic oxidation. In order to investigate these processes, two simulations were performed with the numerical chemistry and climate simulation ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The simulations compare two cases, one with ozone concentrations when aromatics are present or the second one when they are missing. Finally, model simulated ozone is compared against a global set of observations in order to better constrain the model accuracy.
Amine terminated bisaspartimide polymer
NASA Technical Reports Server (NTRS)
Kumar, D. (Inventor); Fohlen, G. M. (Inventor); Parker, J. A. (Inventor)
1986-01-01
Novel amine terminated bisaspartimides are prepared by a Michael-type reaction of an aromatic bismalteimide and an aromatic diamine in an aprotic solvent. These bisaspartimides are thermally polymerized to yield tough, resinous polymers cross-lined through -NH- groups. Such polymers are useful in applications requiring materials with resistance to change at elevated temperatures, e.g., as lightweight laminates with graphite cloth, molding material prepregs, adhesives and insulating material.
Used Oil and Its Regulation in the United States
1988-09-30
product containing significant quantities of alkyl, naphthenic , and aromatic hydrocarbons. The oil may also contain additives to improve its...delivered to the re-refiners each year is disposed of primarily in the process residues including spent clay, acid sludge, and wastewater.13 8 13 7 Frank...hydrocarbon structure into three main groups: parafinic, naphthenic , and aromatic. Paraffinic (alkanic) crude oils contain mostly saturated straight and
Xu, Di; Zhou, Zhi-Ming; Dai, Li; Tang, Li-Wei; Zhang, Jun
2015-05-01
Newly developed ferrocene-oxazoline-phosphine ligands containing quaternary ammonium ionic groups exhibited excellent catalytic performance for the ruthenium-catalyzed hydrogenation of aromatic ketonic substrates to give chiral secondary alcohols with high levels of conversions and enantioselectivities. Simple manipulation process, water tolerance, high activity and good recyclable property make this catalysis practical and appealing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aromatic and heterocyclic perfluoroalkyl sulfides. Methods of preparation
2010-01-01
Summary This review covers all of the common methods for the syntheses of aromatic and heterocyclic perfluoroalkyl sulfides, a class of compounds which is finding increasing application as starting materials for the preparation of agrochemicals, pharmaceutical products and, more generally, fine chemicals. A systematic approach is taken depending on the mode of incorporation of the SRF groups and also on the type of reagents used. PMID:20978611
Combined effects of prenatal polycyclic aromatic hydrocarbons and material hardship on child IQ.
Vishnevetsky, Julia; Tang, Deliang; Chang, Hsin-Wen; Roen, Emily L; Wang, Ya; Rauh, Virginia; Wang, Shuang; Miller, Rachel L; Herbstman, Julie; Perera, Frederica P
2015-01-01
Polycyclic aromatic hydrocarbons are common carcinogenic and neurotoxic urban air pollutants. Toxic exposures, including air pollution, are disproportionately high in communities of color and frequently co-occur with chronic economic deprivation. We examined whether the association between child IQ and prenatal exposure to polycyclic aromatic hydrocarbons differed between groups of children whose mothers reported high vs. low material hardship during their pregnancy and through child age 5. We tested statistical interactions between hardships and polycyclic aromatic hydrocarbons, as measured by DNA adducts in cord blood, to determine whether material hardship exacerbated the association between adducts and IQ scores. Prospective cohort. Participants were recruited from 1998 to 2006 and followed from gestation through age 7 years. Urban community (New York City) A community-based sample of 276 minority urban youth EXPOSURE MEASURE: Polycyclic aromatic hydrocarbon-DNA adducts in cord blood as an individual biomarker of prenatal polycyclic aromatic hydrocarbon exposure. Maternal material hardship self-reported prenatally and at multiple timepoints through early childhood. Child IQ at 7 years assessed using the Wechsler Intelligence Scale for Children. Significant inverse effects of high cord PAH-DNA adducts on full scale IQ, perceptual reasoning and working memory scores were observed in the groups whose mothers reported a high level of material hardship during pregnancy or recurring high hardship into the child's early years, and not in those without reported high hardship. Significant interactions were observed between high cord adducts and prenatal hardship on working memory scores (β = -8.07, 95% CI (-14.48, -1.66)) and between high cord adducts and recurrent material hardship (β = -9.82, 95% CI (-16.22, -3.42)). The findings add to other evidence that socioeconomic disadvantage can increase the adverse effects of toxic physical "stressors" like air pollutants. Observed associations between high cord adducts and reduced IQ were significant only among the group of children whose mothers reported high material hardship. These results indicate the need for a multifaceted approach to prevention. Copyright © 2015 Elsevier Inc. All rights reserved.
Cobo, Justo; Vicentes, Daniel E; Rodríguez, Ricaurte; Marchal, Antonio; Glidewell, Christopher
2018-06-01
A concise and efficient synthesis of 6-benzimidazolyl-5-nitrosopyrimidines has been developed using Schiff base-type intermediates derived from N 4 -(2-aminophenyl)-6-methoxy-5-nitrosopyrimidine-2,4-diamine. 6-Methoxy-N 4 -{2-[(4-methylbenzylidene)amino]phenyl}-5-nitrosopyrimidine-2,4-diamine, (I), and N 4 -{2-[(ethoxymethylidene)amino]phenyl}-6-methoxy-5-nitrosopyrimidine-2,4-diamine, (III), both crystallize from dimethyl sulfoxide solution as the 1:1 solvates C 19 H 18 N 6 O 2 ·C 2 H 6 OS, (Ia), and C 14 H 16 N 6 O 3 ·C 2 H 6 OS, (IIIa), respectively. The interatomic distances in these intermediates indicate significant electronic polarization within the substituted pyrimidine system. In each of (Ia) and (IIIa), intermolecular N-H...O hydrogen bonds generate centrosymmetric four-molecule aggregates. Oxidative ring closure of intermediate (I), effected using ammonium hexanitratocerate(IV), produced 4-methoxy-6-[2-(4-methylphenyl-1H-benzimidazol-1-yl]-5-nitrosopyrimidin-2-amine, C 19 H 16 N 6 O 2 , (II) [Cobo et al. (2018). Private communication (CCDC 1830889). CCDC, Cambridge, England], where the extent of electronic polarization is much less than in (Ia) and (IIIa). A combination of N-H...N and C-H...O hydrogen bonds links the molecules of (II) into complex sheets.
Orange juice (poly)phenols are highly bioavailable in humans.
Pereira-Caro, Gema; Borges, Gina; van der Hooft, Justin; Clifford, Michael N; Del Rio, Daniele; Lean, Michael E J; Roberts, Susan A; Kellerhals, Michele B; Crozier, Alan
2014-11-01
We assessed the bioavailability of orange juice (poly)phenols by monitoring urinary flavanone metabolites and ring fission catabolites produced by the action of the colonic microbiota. Our objective was to identify and quantify metabolites and catabolites excreted in urine 0-24 h after the acute ingestion of a (poly)phenol-rich orange juice by 12 volunteers. Twelve volunteers [6 men and 6 women; body mass index (in kg/m(2)): 23.9-37.2] consumed a low (poly)phenol diet for 2 d before first drinking 250 mL pulp-enriched orange juice, which contained 584 μmol (poly)phenols of which 537 μmol were flavanones, and after a 2-wk washout, the procedure was repeated, and a placebo drink was consumed. Urine collected for a 24-h period was analyzed qualitatively and quantitatively by using high-performance liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS). A total of 14 metabolites were identified and quantified in urine by using HPLC-MS after orange juice intake. Hesperetin-O-glucuronides, naringenin-O-glucuronides, and hesperetin-3'-O-sulfate were the main metabolites. The overall urinary excretion of flavanone metabolites corresponded to 16% of the intake of 584 μmol (poly)phenols. The GC-MS analysis revealed that 8 urinary catabolites were also excreted in significantly higher quantities after orange juice consumption. These catabolites were 3-(3'-methoxy-4'-hydroxyphenyl)propionic acid, 3-(3'-hydroxy-4'-methoxyphenyl)propionic acid, 3-(3'-hydroxy-4'-methoxyphenyl)hydracrylic acid, 3-(3'-hydroxyphenyl)hydracrylic acid, 3'-methoxy-4'-hydroxyphenylacetic acid, hippuric acid, 3'-hydroxyhippuric acid, and 4'-hydroxyhippuric acid. These aromatic acids originated from the colonic microbiota-mediated breakdown of orange juice (poly)phenols and were excreted in amounts equivalent to 88% of (poly)phenol intake. When combined with the 16% excretion of metabolites, this percentage raised the overall urinary excretion to ∼ 100% of intake. When colon-derived phenolic catabolites are included with flavanone glucuronide and sulfate metabolites, orange juice (poly)phenols are much-more bioavailable than previously envisaged. In vitro and ex vivo studies on mechanisms underlying the potential protective effects of orange juice consumption should use in vivo metabolites and catabolites detected in this investigation at physiologic concentrations. The trial was registered at BioMed Central Ltd (www.controlledtrials.com) as ISRCTN04271658. © 2014 American Society for Nutrition.
Membrane Proteomics of Arabidopsis Glucosinolate Mutants cyp79B2/B3 and myb28/29
Mostafa, Islam; Yoo, Mi-Jeong; Zhu, Ning; Geng, Sisi; Dufresne, Craig; Abou-Hashem, Maged; El-Domiaty, Maher; Chen, Sixue
2017-01-01
Glucosinolates (Gls) constitute a major group of natural metabolites represented by three major classes (aliphatic, indolic and aromatic) of more than 120 chemical structures. In our previous work, soluble proteins and metabolites in Arabidopsis mutants deficient of aliphatic (myb28/29) and indolic Gls (cyp79B2B3) were analyzed. Here we focus on investigating the changes at the level of membrane proteins in these mutants. Our LC/MS-MS analyses of tandem mass tag (TMT) labeled peptides derived from the cyp79B2/B3 and myb28/29 relative to wild type resulted in the identification of 4,673 proteins, from which 2,171 are membrane proteins. Fold changes and statistical analysis showed 64 increased and 74 decreased in cyp79B2/B3, while 28 increased and 17 decreased in myb28/29. As to the shared protein changes between the mutants, one protein was increased and eight were decreased. Bioinformatics analysis of the changed proteins led to the discovery of three cytochromes in glucosinolate molecular network (GMN): cytochrome P450 86A7 (At1g63710), cytochrome P450 71B26 (At3g26290), and probable cytochrome c (At1g22840). CYP86A7 and CYP71B26 may play a role in hydroxyl-indolic Gls production. In addition, flavone 3′-O-methyltransferase 1 represents an interesting finding as it is likely to participate in the methylation process of the hydroxyl-indolic Gls to form methoxy-indolic Gls. The analysis also revealed additional new nodes in the GMN related to stress and defense activity, transport, photosynthesis, and translation processes. Gene expression and protein levels were found to be correlated in the cyp79B2/B3, but not in the myb28/29. PMID:28443122
Zang, Yun-xiang; Ge, Jia-li; Huang, Ling-hui; Gao, Fei; Lv, Xi-shan; Zheng, Wei-wei; Hong, Seung-beom; Zhu, Zhu-jun
2015-08-01
Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively.
Selective Oxidation of Lignin Model Compounds.
Gao, Ruili; Li, Yanding; Kim, Hoon; Mobley, Justin K; Ralph, John
2018-05-02
Lignin, the planet's most abundant renewable source of aromatic compounds, is difficult to degrade efficiently to welldefined aromatics. We developed a microwave-assisted catalytic Swern oxidation system using an easily prepared catalyst, MoO 2 Cl 2 (DMSO) 2 , and DMSO as the solvent and oxidant. It demonstrated high efficiency in transforming lignin model compounds containing the units and functional groups found in native lignins. The aromatic ring substituents strongly influenced the selectivity of β-ether phenolic dimer cleavage to generate sinapaldehyde and coniferaldehyde, monomers not usually produced by oxidative methods. Time-course studies on two key intermediates provided insight into the reaction pathway. Owing to the broad scope of this oxidation system and the insight gleaned with regard to its mechanism, this strategy could be adapted and applied in a general sense to the production of useful aromatic chemicals from phenolics and lignin. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Qi-Kui; Ma, Jian-Ping; Dong, Yu-Bin
2010-05-26
A series of reactive group functionalized aromatics, namely 2-furaldehyde, 3-furaldehyde, 2-thenaldehyde, 3-thenaldehyde, o-toluidine, m-toluidine, p-toluidine, and aniline, can be absorbed by a CdL(2) (1; L = 4-amino-3,5-bis(4-pyridyl-3-phenyl)-1,2,4-triazole) porous framework in both vapor and liquid phases to generate new G(n) [symbol: see text] CdL(2) (n = 1, 2) host-guest complexes. In addition, the CdL(2) framework can be a shield to protect the active functional group (-CHO and -NH(2)) substituted guests from reaction with the outside medium containing their reaction partners. That is, aldehyde-substituted guests within the CdL(2) host become "stable" in the aniline phase and vice versa. Moreover, 1 displays a very strict selectivity for these reactive group substituted aromatic isomers and can completely separate these guest isomers under mild conditions (i.e., 2-furaldehyde vs 3-furaldehyde, 2-thenaldehyde vs 3-thenaldehyde, and o-toluidine vs m-toluidine vs p-toluidine). All adsorptions and separations are directly performed on the single crystals of 1. More interestingly, these reactive group substituted aromatics readily transform to the corresponding radicals within the CdL(2) host upon ambient light or UV light (355 nm) irradiation. Furthermore, the generated organic radicals are alive for 1 month within the interior cavity in air under ambient conditions. Simple organic radicals are highly reactive short-lived species, and they cannot be generally isolated and conserved under ambient conditions. Thus, the CdL(2) host herein could be considered as a radical generator and storage vessel.
Solid polymer battery electrolyte and reactive metal-water battery
Harrup, Mason K.; Peterson, Eric S.; Stewart, Frederick F.
2000-01-01
In one implementation, a reactive metal-water battery includes an anode comprising a metal in atomic or alloy form selected from the group consisting of periodic table Group 1A metals, periodic table Group 2A metals and mixtures thereof. The battery includes a cathode comprising water. Such also includes a solid polymer electrolyte comprising a polyphosphazene comprising ligands bonded with a phosphazene polymer backbone. The ligands comprise an aromatic ring containing hydrophobic portion and a metal ion carrier portion. The metal ion carrier portion is bonded at one location with the polymer backbone and at another location with the aromatic ring containing hydrophobic portion. The invention also contemplates such solid polymer electrolytes use in reactive metal/water batteries, and in any other battery.
NASA Technical Reports Server (NTRS)
Pratt, J. R.
1981-01-01
Eight glycidyl amines were prepared by alkylating the parent amine with epichlorohydrin to form chlorohydrin, followed by cyclization with aqueous NaOH. Three of these compounds contained propargyl groups with postcuring studies. A procedure for quantitatively estimating the epoxy content of these glycidyl amines was employed for purity determination. Two diamond carbonates and several model propargly compounds were prepared. The synthesis of three new diamines, two which contain propargyloxy groups, and another with a sec-butyl group is in progress. These materials are at the dinitro stage ready for the final hydrogenation step. Four aromatic diamines were synthesized for mutagenic testing purposes. One of these compounds rapidly decomposes on exposure to air.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malek-Adamian, Elise; Guenther, Dale C.; Matsuda, Shigeo
We designed novel 4'-modified 2'-deoxy-2'-fluorouridine (2'-F U) analogues with the aim to improve nuclease resistance and potency of therapeutic siRNAs by introducing 4'-C-methoxy (4'-OMe) as the alpha (C4'α) or beta (C4'β) epimers. The C4'α epimer was synthesized by a stereoselective route in six steps; however, both α and β epimers could be obtained by a nonstereoselective approach starting from 2'-F U. 1H NMR analysis and computational investigation of the α-epimer revealed that the 4'-OMe imparts a conformational bias toward the North-East sugar pucker, due to intramolecular hydrogen bonding and hyperconjugation effects. The α-epimer generally conceded similar thermal stability as unmodifiedmore » nucleotides, whereas the β-epimer led to significant destabilization. Both 4'-OMe epimers conferred increased nuclease resistance, which can be explained by the close proximity between 4'-OMe substituent and the vicinal 5'- and 3'-phosphate group, as seen in the X-ray crystal structure of modified RNA. siRNAs containing several C4'α-epimer monomers in the sense or antisense strands triggered RNAi-mediated gene silencing with efficiencies comparable to that of 2'-F U.« less
Venkatesan, Perumal; Thamotharan, Subbiah; Ilangovan, Andivelu; Liang, Hongze; Sundius, Tom
2016-01-15
Nonlinear optical (NLO) activity of the compound (2E)-2-(ethoxycarbonyl)-3-[(1-methoxy-1-oxo-3-phenylpropan-2-yl)amino] prop-2-enoic acid is investigated experimentally and theoretically using X-ray crystallography and quantum chemical calculations. The NLO activity is confirmed by both powder Second Harmonic Generation (SHG) experiment and first hyper polarizability calculation. The title compound displays 8 fold excess of SHG activity when compared with the standard compound KDP. The gas phase geometry optimization and vibrational frequencies calculations are performed using density functional theory (DFT) incorporated in B3LYP with 6-311G++(d,p) basis set. The title compound crystallizes in non-centrosymmetric space group P21. Moreover, the crystal structure is primarily stabilized through intramolecular N-H···O and O-H···O hydrogen bonds and intermolecular C-H···O and C-H···π interactions. These intermolecular interactions are analyzed and quantified using Hirshfeld surface analysis and PIXEL method. The detailed vibrational assignments are performed on the basis of the potential energy distributions (PED) of the vibrational modes. Copyright © 2015 Elsevier B.V. All rights reserved.
Toward a four-toothed molecular bevel gear with C2-symmetrical rotors.
Kao, Chen-Yi; Hsu, Ya-Ting; Lu, Hsiu-Feng; Chao, Ito; Huang, Shou-Ling; Lin, Ying-Chih; Sun, Wei-Ting; Yang, Jye-Shane
2011-07-15
The design, synthesis, conformational analysis, and variable-temperature NMR studies of pentiptycene-based molecular gears Pp(2)X, where Pp is the unlabeled (in 1H) or methoxy groups-labeled (in 1OM) pentiptycene rotor and X is the phenylene stator containing ortho-bridged ethynylene axles, are reported. The approach of using shape-persistent rotors of four teeth but C(2) symmetry for constructing four-toothed molecular gears is unprecedented. In addition, the first example of enantioresolution of chiral pentiptycene scaffolds is demonstrated. Density functional theory (DFT) and AM1 calculations on these Pp(2)X systems suggest two possible correlated torsional motions, geared rocking and four-toothed geared rotations, which compete with the uncorrelated gear slippage. The DFT-derived torsional barriers in 1H for rocking, four-toothed rotation, and gear slippage are approximately 2.9, 5.5, and 4.7 kcal mol(-1), respectively. The low energy barriers for these torsional motions result from the low energy cost of bending the ethynylene axles. Comparison of the NMR spectra of 1OM in a mixture of stereoisomers (1OM-mix) and in an enantiopure form (1OM-op) confirms a fast gear slippage in these Pp(2)X systems. The effect of the methoxy labels on rotational potential energy surface and inter-rotor dynamics is also discussed.
NASA Astrophysics Data System (ADS)
Obasi, L. N.; Kaior, G. U.; Rhyman, L.; Alswaidan, Ibrahim A.; Fun, Hoong-Kun; Ramasami, P.
2016-09-01
The Schiff base, 4-[3-(4-methoxy-phenyl)-allylideneamino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (TPMC/AAP) was synthesized by the condensation of 4-aminoantipyrine (4-amino-1,5-dimethyl-2-phenylpyrazole-3-one) and trans-para-methoxycinnamaldehyde (trans-3,4-methoxyphenyl-2-propenal) in dry methanol at 75 °C. The compound was characterized using elemental microanalysis, IR, NMR, UV spectroscopies and single-crystal X-ray crystallography. The X-ray structure determination shows that the Schiff base, (TPMC/AAP) is orthorhombic with the Pbca space group. The anti-microbial screening of the compound was carried out with Escherichia coli, Bacillus subtillis, Staphylococcus aureus, Pseudemonas aeruginosa, Candida albicans and Aspergillus niger using agar well diffusion method. The Schiff base possesses significant antimicrobial activity. The minimum inhibitory concentration (MIC) of the compound was also determined and the activity was compared with that of conventional drugs ciprofloxacin and ketoconazole. The compound (TPMC/AAP) showed varying activity against the cultured bacteria and fungi used. To complement the experimental data, density functional theory (DFT) was used to have deeper understanding into the molecular parameters and infrared spectra of the compound.
Computational study of antimalarial pyrazole alkaloids from Newbouldia laevis.
Mammino, Liliana; Bilonda, Mireille K
2014-11-01
Six pyrazole alkaloids of natural origin (isolated from Newbouldia laevis in DR Congo) that exhibit antimalarial activity-namely withasomnine, newbouldine, and their para-hydroxy and -methoxy derivatives-were investigated theoretically. The nitro derivatives of withasomnine and para-hydroxywithasomnine, which show enhanced antimalarial activity, were also studied in this manner. A thorough conformational study was performed in vacuo and in three solvents (chloroform, acetonitrile, and water) at different levels of theory (HF, DFT/B3LYP, and MP2) using different basis sets. Adducts with explicit water molecules were calculated at the HF level. Due to the rigidity of the pyrazole system and the benzene ring, the only factor that influences the energies of withasomnine and newbouldine is the relative orientation of the two ring systems; two orientations are equally preferred. The para-hydroxy and -methoxy derivatives show a preference for a planar orientation of the OH and OC bonds. The main stabilizing influence on the nitro derivative of para-hydroxywithasomnine is the intramolecular hydrogen bond between the two consecutive functional groups. The calculated adducts show the preferred arrangements of water molecules in the vicinity of the N atoms of the pyrazole system and, for the derivatives, also in the vicinity of the substituents on the benzene ring.
Hannah, D R; Sherer, E C; Davies, R V; Titman, R B; Laughton, C A; Stevens, M F
2000-04-01
The immunological agent bropirimine 5 is a tetra-substituted pyrimidine with anticancer and interferon-inducing properties. Synthetic routes to novel 5-aryl analogues of bropirimine have been developed and their potential molecular recognition properties analysed by molecular modelling methods. Sterically challenged 2-amino-5-halo-6-phenylpyrimidin-4-ones (halo = Br or I) are poor substrates for palladium catalysed Suzuki cross-coupling reactions with benzeneboronic acid because the basic conditions of the reaction converts the amphoteric pyrimidinones to their unreactive enolic forms. Palladium-mediated reductive dehalogenation of the pyrimidinone substrates effectively competes with cross-coupling. 2-Amino-5-halo-4-methoxy-6-phenylpyrimidines can be converted to a range of 5-aryl derivatives with the 5-iodopyrimidines being the most efficient substrates. Hydrolysis of the 2-amino-5-aryl-4-methoxy-6-phenylpyrimidines affords the required pyrimidin-4-ones in high yields. Semi-empirical quantum mechanical calculations show how the nature of the 5-substituent influences the equilibrium between the 1H- and 3H-tautomeric forms, and the rotational freedom about the bond connecting the 6-phenyl group and the pyrimidine ring. Both of these factors may influence the biological properties of these compounds.
Thibaut, F; Ribeyre, J M; Dourmap, N; Ménard, J F; Dollfus, S; Petit, M
1998-01-01
Discrepancies in the biochemical research on negative symptoms in schizophrenia may be ascribed to the lack of differentiation into primary and secondary negative symptoms. We have used Carpenter's criteria to define the deficit syndrome of schizophrenia as the presence of enduring and primary negative symptoms and measured catecholaminergic parameters in deficit as compared with nondeficit schizophrenics. We have investigated plasma homovanillic acid (pHVA) and 3-methoxy-4-hydroxyphenylglycol (pMHPG) concentrations in 34 DSM-III-R neuroleptic-treated schizophrenic patients who were classified into deficit (n = 14) and nondeficit (n = 20) forms of schizophrenia. All these patients were in a stable clinical and therapeutic status for the preceding 12 months. The 14 deficit schizophrenic patients had lower plasma levels of pHVA and higher plasma concentrations of pMHPG from 9 AM to 12 AM as compared with the 20 nondeficit schizophrenic patients. The two groups did not differ on any demographic, therapeutic, or clinical variable considered. Our data are consistent with the postulated distinct pathophysiological basis for the deficit syndrome of schizophrenia and suggest that opposite alterations in the pHVA or pMHPG levels may reflect specific changes in noradrenergic and dopaminergic functions in these deficit patients.
Varnali, Tereza; Edwards, Howell G M
2010-07-13
The recognition that scytonemin, the radiation protectant pigment produced by extremophilic cyanobacterial colonies in stressed terrestrial environments, is a key biomarker for extinct or extant life preserved in geological scenarios is critically important for the detection of life signatures by remote analytical instrumentation on planetary surfaces and subsurfaces. The ExoMars mission to seek life signatures on Mars is just one experiment that will rely upon the detection of molecules such as scytonemin in the Martian regolith. Following a detailed structural analysis of the parent scytonemin, we report here for the first time a similar analysis of several of its methoxy derivatives that have recently been extracted from stressed cyanobacteria. Ab initio calculations have been carried out to determine the most stable molecular configurations, and the implications of the structural changes imposed by the methoxy group additions on the spectral characteristics of the parent molecule are discussed. The calculated electronic absorption bands of the derivative molecules reveal that their capability of removing UVA wavelengths is removed while preserving the ability to absorb the shorter wavelength UVB and UVC radiation, in contrast to scytonemin itself. This is indicative of a special role for these molecules in the protective strategy of the cyanobacterial extremophiles.
Nakano, Shu-ichi; Uotani, Yuuki; Sato, Yuichi; Oka, Hirohito; Fujii, Masayuki; Sugimoto, Naoki
2013-01-01
DNA lesions produced by aromatic isocyanates have an extra bulky group on the nucleotide bases, with the capability of forming stacking interaction within a DNA helix. In this work, we investigated the conformation of the 2′-deoxyadenosine and 2′-deoxycytidine derivatives tethering a phenyl or naphthyl group, introduced in a DNA duplex. The chemical modification experiments using KMnO4 and 1-cyclohexyl-3 -(2-morpholinoethyl) carbodiimide metho-p-toluenesulfonate have shown that the 2′-deoxycytidine lesions form the base pair with guanine while the 2′-deoxyadenosine lesions have less ability of forming the base pair with thymine in solution. Nevertheless, the kinetic analysis shows that these DNA lesions are compatible with DNA ligase and DNA polymerase reactions, as much as natural DNA bases. We suggest that the adduct lesions have a capability of adopting dual conformations, depending on the difference in their interaction energies between stacking of the attached aromatic group and base pairing through hydrogen bonds. It is also presented that the attached aromatic groups change their orientation by interacting with the minor groove binding netropsin, distamycin and synthetic polyamide. The nucleotide derivatives would be useful for enhancing the phenotypic diversity of DNA molecules and for exploring new non-natural nucleotides. PMID:23873956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wear, Jr., John Edmund
The objective of this study was to examine the hypothesis that select functional groups of bacteria from pristine sites have an innate ability to degrade synthetic aromatics that often contaminate groundwater environments,due to exposure to naturally occurring recalcitrant aromatics in their environment. This study demonstrates that subsurface microbial communities are capable of utilizing lignin and humic acid breakdown products. Utilizers of these compounds were found to be present in most all the wells tested. Even the deepest aquifer tested had utilizers present for all six of the aromatics tested. Highest counts for the aromatics tested were observed with the naturallymore » occurring breakdown products of either lignin or humic acid. Carboxylic acids were found to be an important sole carbon source for groundwater bacteria possibly explained by the fact that they are produced by the oxidative cleavage of aromatic ring structures. The carbohydrate sole carbon sources that demonstrated the greatest densities were ones commonly associated with humics. This study indicates that utilization of naturally occurring aromatic compounds in the subsurface is an important nutritional source for groundwater bacteria. In addition, it suggests that adaptation to naturally occurring recalcitrant substrates is the origin of degradative pathways for xenobiotic compounds with analogous structure. This work has important implications for in situ bioremediation as a method of environmental cleanup.« less
Novel oxidized derivatives of antifungal pyrrolnitrin from the bacterium Burkholderia cepacia K87.
Sultan, Zakir; Park, Kyungseok; Lee, Sang Yeob; Park, Jung Kon; Varughese, Titto; Moon, Surk-Sik
2008-07-01
The screening of antifungal active compounds from the fermentation extracts of soil-borne bacterium Burkholderia cepacia K87 afforded pyrrolnitrin (1) and two new pyrrolnitrin analogs, 3-chloro-4-(3-chloro-2-nitrophenyl)-5-methoxy-3-pyrrolin-2-one (2) and 4-chloro-3-(3-chloro-2-nitrophenyl)-5-methoxy-3-pyrrolin-2-one (3). Pyrrolnitrin showed strong antifungal activity against Rhizoctonia solani but the analogs (2 and 3) were found to be marginally active. The isolates, 2 and 3, are believed to be biodegraded derivatives of pyrrolnitrin.
Crystal structure of ethyl (E)-4-(4-chlorophen-yl)-4-meth-oxy-2-oxobut-3-enoate.
Flores, Darlene Correia; Vicenti, Juliano Rosa de Menezes; Pereira, Bruna Ávila; da Silva, Gabriele Marques Dias; Zambiazi, Priscilla Jussiane
2014-09-01
In the title compound, C13H13ClO4, the dihedral angle between the chloro-benezene ring and the least-squares plane through the 4-meth-oxy-2-oxobut-3-enoate ethyl ester residue (r.m.s. deviation = 0.0975 Å) is 54.10 (5)°. In the crystal, mol-ecules are connected by meth-oxy-ketone and benzene-carboxyl-ate carbonyl C-H⋯O inter-actions, generating a supra-molecular layer in the ac plane.
Bis(6-meth-oxy-2-{[tris-(hydroxy-meth-yl)-meth-yl]-imino-meth-yl}phenolato)-copper(II) dihydrate.
Zhang, Xiutang; Wei, Peihai; Dou, Jianmin; Li, Bin; Hu, Bo
2009-01-08
In the title compound, [Cu(C(12)H(16)NO(5))(2)]·2H(2)O, the Cu(II) ion adopts a trans-CuN(2)O(4) octa-hedral geometry arising from two N,O,O'-tridentate 6-meth-oxy-2-{[tris-(hydroxy-meth-yl)meth-yl]-imino-meth-yl}phenolate ligands. The Jahn-Teller distortion of the copper centre is unusally small. In the crystal structure, O-H⋯O hydrogen bonds, some of which are bifurcated, link the component species.
1984-01-06
NO-1 ARCUASSII 004-3K-40F /G74N L 2874 Lj6l 1.0= = aM22 1.2 1.1 1. 1. MICROCOP ’ RP’-OLLI’ION liT[* CHART %".NA. H~.Nt I -’AN, All - ,- A t$ CUeavr...The cyclic voltammogram of the methoxy compound -has been simulated by the orthogonal collocation method. Products of bulk electrolysis have been...spectroelectrochemical means. The cyclic volta-mocra. of the methoxy compound has been simulated by the orthoccna. collocation method. Products of bulk
Reinvestigation of structure of porritoxin, a phytotoxin of Alternaria porri.
Horiuchi, Masayuki; Maoka, Takashi; Iwase, Noriyasu; Ohnishi, Keiichiro
2002-08-01
The structure of porritoxin, a phytotoxin of Alternaria porri, was reinvestigated by detailed 2D NMR analysis including (1)H-(13)C and (1)H-(15)N HMBC experiments. The structure of porritoxin was determined to be 2-(2'-hydroxyethyl)-4-methoxy-5-methyl-6-(3' '-methyl-2' '-butenyloxy)-2,3-dihydro-1H-isoindol-1-one (1). Thus our previous proposed structure, 8-(3',3'-dimethylallyloxy)-10-methoxy-9-methyl-1H-3,4-dihydro-2,5-benzoxazocin-6(5H)-one (2), is incorrect.
Leenheer, J.A.; Wershaw, R. L.; Reddy, M.M.
1995-01-01
An investigation of the strong-acid characteristics (pKa 3.0 or less) of fulvic acid from the Suwannee River, Georgia, was conducted. Quantitative determinations were made for amino acid and sulfur-containing acid structures, oxalate half-ester structures, malonic acid structures, keto acid structures, and aromatic carboxyl-group structures. These determinations were made by using a variety of spectrometric (13C-nuclear magnetic resonance, infrared, and ultraviolet spectrometry) and titrimetric characterizations on fulvic acid or fulvic acid samples that were chemically derivatized to indicate certain functional groups. Only keto acid and aromatic carboxyl-group structures contributed significantly to the strong-acid characteristics of the fulvic acid; these structures accounted for 43% of the strong-acid acidity. The remaining 57% of the strong acids are aliphatic carboxyl groups in unusual and/or complex configurations for which limited model compound data are available.
NASA Technical Reports Server (NTRS)
Moore, C. E.; Cardelino, B. H.; Frazier, D. O.; Niles, J.; Wang, X.-Q.
1998-01-01
The static third-order polarizabilities (gamma) of C60, C70, five isomers of C78 and two isomers of C84 were analyzed in terms of three properties, from a geometric point of view: symmetry, aromaticity and size. The polarizability values were based on the finite field approximation using a semiempirical Hamiltonian (AM1) and applied to molecular structures obtained from density functional theory calculations. Symmetry was characterized by the molecular group order. The selection of 6-member rings as aromatic was determined from an analysis of bond lengths. Maximum interatomic distance and surface area were the parameters considered with respect to size. Based on triple linear regression analysis, it was found that the static linear polarizability (alpha) and gamma in these molecules respond differently to geometrical properties: alpha depends almost exclusively on surface area while gamma is affected by a combination of number of aromatic rings, length and group order, in decreasing importance. In the case of alpha, valence electron contributions provide the same information as all-electron estimates. For gamma, the best correlation coefficients are obtained when all-electron estimates are used and when the dependent parameter is ln(gamma) instead of gamma.
Negahdar, Leila; Gonzalez-Quiroga, Arturo; Otyuskaya, Daria; Toraman, Hilal E; Liu, Li; Jastrzebski, Johann T B H; Van Geem, Kevin M; Marin, Guy B; Thybaut, Joris W; Weckhuysen, Bert M
2016-09-06
Fast pyrolysis bio-oils are feasible energy carriers and a potential source of chemicals. Detailed characterization of bio-oils is essential to further develop its potential use. In this study, quantitative 13 C nuclear magnetic resonance ( 13 C NMR) combined with comprehensive two-dimensional gas chromatography (GC × GC) was used to characterize fast pyrolysis bio-oils originated from pinewood, wheat straw, and rapeseed cake. The combination of both techniques provided new information on the chemical composition of bio-oils for further upgrading. 13 C NMR analysis indicated that pinewood-based bio-oil contained mostly methoxy/hydroxyl (≈30%) and carbohydrate (≈27%) carbons; wheat straw bio-oil showed to have high amount of alkyl (≈35%) and aromatic (≈30%) carbons, while rapeseed cake-based bio-oil had great portions of alkyl carbons (≈82%). More than 200 compounds were identified and quantified using GC × GC coupled to a flame ionization detector (FID) and a time of flight mass spectrometer (TOF-MS). Nonaromatics were the most abundant and comprised about 50% of the total mass of compounds identified and quantified via GC × GC. In addition, this analytical approach allowed the quantification of high value-added phenolic compounds, as well as of low molecular weight carboxylic acids and aldehydes, which exacerbate the unstable and corrosive character of the bio-oil.
NASA Astrophysics Data System (ADS)
Nimith, K. M.; Satyanarayan, M. N.; Umesh, G.
2018-06-01
We have investigated the effect of blending electron deficient heterocycle Benzothiadiazole (BT) on the photo-physical properties of conjugated polymer Poly [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV). Quantum yield (QY) value has been found to increase from 37% for pure MEH-PPV to 45% for an optimum MEH-PPV:BT blend ratio of 1:3. This can be attributed to the efficient energy transfer from the wide bandgap BT (host) to the small bandgap MEH-PPV (guest). The FTIR spectrum of MEH-PPV:BT blended thin film indicates suppression of aromatic C-H out-of-plane and in-plane bending, suggesting planarization of the conjugated polymer chains and, hence, leading to increase in the conjugation length. The increase in conjugation length is also evident from the red-shifted PL spectra of MEH-PPV:BT blended films. Single layer MEH-PPV:BT device shows lower turn-on voltage than single layer MEH-PPV alone device. Further, the effect of electrical conductivity of PEDOT:PSS on the current-voltage characteristics is investigated in the PLED devices with MEH-PPV:BT blend as the active layer. PEDOT:PSS with higher conductivity as HIL reduces the turn on voltage from 4.5 V to 3.9 V and enhances the current density and optical output in the device.
Segal, Meirav; Fischer, Bilha
2012-02-28
Uridine cannot be utilized as fluorescent probe due to its extremely low quantum yield. For improving the uracil fluorescence characteristics we extended the natural chromophore at the C5 position by coupling substituted aromatic rings directly or via an alkenyl or alkynyl linker to create fluorophores. Extension of the uracil base was achieved by treating 5-I-uridine with the appropriate boronic acid under the Suzuki coupling conditions. Analogues containing an alkynyl linker were obtained from 5-I-uridine and the suitable boronic acid in a Sonogashira coupling reaction. The uracil fluorescent analogues proposed here were designed to satisfy the following requirements: a minimal chemical modification at a position not involved in base-pairing, resulting in relatively long absorption and emission wavelengths and high quantum yield. 5-((4-Methoxy-phenyl)-trans-vinyl)-2'-deoxy-uridine, 6b, was found to be a promising fluorescent probe. Probe 6b exhibits a quantum yield that is 3000-fold larger than that of the natural chromophore (Φ 0.12), maximum emission (478 nm) which is 170 nm red shifted as compared to uridine, and a Stokes shift of 143 nm. In addition, since probe 6b adopts the anti conformation and S sugar puckering favored by B-DNA, it makes a promising nucleoside analogue to be incorporated in an oligonucleotide probe for detection of genetic material.
Akiyama, Tomoyuki; Hayashi, Yumiko; Hanaoka, Yoshiyuki; Shibata, Takashi; Akiyama, Mari; Nakamura, Kazuyuki; Tsuyusaki, Yu; Kubota, Masaya; Yoshinaga, Harumi; Kobayashi, Katsuhiro
2017-02-01
We describe a new method for simultaneous measurement of monoamine metabolites (3-O-methyldopa [3-OMD], 3-methoxy-4-hydroxyphenylethyleneglycol [MHPG], 5-hydroxyindoleacetic acid [5-HIAA], and homovanillic acid [HVA]) and 5-methyltetrahydrofolate (5-MTHF) and its use on cerebrospinal fluid (CSF) samples from pediatric patients. Monoamine metabolites and 5-MTHF were measured by high-performance liquid chromatography with fluorescence detection. CSF samples were prospectively collected from children according to a standardized collection protocol in which the first 1-ml fraction was used for analysis. Monoamine metabolites and 5-MTHF were separated within 10min. They showed linearity from the limit of detection to 1024nmol/l. The limit of quantification of each metabolite was sufficiently low for the CSF sample assay. In 42 CSF samples after excluding cases with possibly altered neurotransmitter profiles, the concentrations of 3-OMD, MHPG, 5-HIAA, HVA, and 5-MTHF showed significant age dependence and their ranges were comparable with the reference values in the literature. The metabolite profiles of aromatic l-amino acid decarboxylase deficiency, Segawa disease, and folate receptor α defect by this method were compatible with those in the literature. This method is a simple means of measuring CSF monoamine metabolites and 5-MTHF, and is especially useful for laboratories not equipped with electrochemical detectors. Copyright © 2016 Elsevier B.V. All rights reserved.
Rajgopal, Arun; Missler, Stephen R; Scholten, Jeffery D
2016-12-04
The highly aromatic bark of Magnolia officinalis Rehder and EH Wilson, (magnolia bark) has been widely used in traditional Chinese medicine where it is known as Hou Po. Historically the bark of the tree has been used for treating variety of disorders the most common use of magnolia bark in traditional prescription has been to treat stress and anxiety disorders. Till date it is not clear regarding the fundamental cellular pathway it modulates. NRF2 signaling has emerged as the central pathway that protects cells from variety of stressors this led us to hypothesize that basis for magnolia bark's effects could be via activating NRF2 pathway. We utilized variety of biochemical procedures like luciferase reporter assay, enzyme induction, gene expression to determine NRF2 inducing activity by magnolia bark extract and its significance. Further we identified the phytochemicals inducing this activity using bio-directed fractionation procedure. In this study, we demonstrate that magnolia bark extract activates Nrf2-dependent gene expression and protects against hydrogen peroxide mediated oxidative stress in hepatocytes. We further identified through HPLC fractionation and mass spectroscopy that magnolol, 4-methoxy honokiol and honokiol are the active phytochemicals inducing the Nrf2-mediated activity. This could be the molecular basis for its numerous beneficial activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Polyether-polyester graft copolymer
NASA Technical Reports Server (NTRS)
Bell, Vernon L. (Inventor)
1987-01-01
Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.
Chavez, María I; Soto, Mauricio; Cimino, Franco A; Olea, Andrés F; Espinoza, Luis; Díaz, Katy; Taborga, Lautaro
2018-05-29
A series of new and known geranylated phenol/methoxyphenol derivatives has been tested in vitro as inhibitor agents of mycelial growth of Phytophthora cinnamomi . The activity of tested compounds is correlated with the nature, number, and position of the substituent group on the aromatic ring. Results indicate that the most active geranylated derivatives are those having two hydroxyl groups (or one ⁻OH and one ⁻OCH₃) attached to the aromatic ring. Interestingly, these derivatives are as active as Metalaxil ® , a commonly used commercial fungicide. Thus, our results suggest that some of these compounds might be of agricultural interest due to their potential use as fungicides against P. cinnamomi . The effect of structure on fungicide activity is discussed in terms of electronic distribution on both the aromatic ring and side geranyl chain. All tested compounds have been synthesized by direct coupling of geraniol and the respective phenol. Interestingly, new digeranylated derivatives were obtained by increasing the reaction time.
Group type analysis of asphalt by column liquid chromatography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, C.; Yang, J.; Xue, Y.
2008-07-01
An improved analysis method for characterization of asphalt was established. The method is based on column chromatography technique. The asphalts were separated into four groups: saturates, aromatics, resins, and asphaltenes, quantitatively. About 0.1 g of sample was required in each analysis. About 20 mL of n-heptanes was used to separate out saturates first. Then about 35 mL of n-heptanes/dichloromethane (.5, v/v) mixture was used to separate out aromatics. About 30 mL of dichloromethane/tetrahydrofuran (1/3, v/v) mixture was used to separate out resin. The quality of the separation was confirmed by infrared spectra (IR) and {sup 1}H NMR analysis. The modelmore » compounds, tetracosan for saturates, dibenz(o)anthracen for aromatics, and acetanilide for resins were used for verification. The IR and {sup 1}H NMR analysis of the prepared fractions from the column liquid chromatography were in good agreement that of pure reagents.« less
Global volatile profile of virgin olive oils flavoured by aromatic/medicinal plants.
Perestrelo, R; Silva, C; Silva, P; Câmara, J S
2017-07-15
The global volatile profile of commercial virgin olive oils and flavoured olive oils with aromatic/medicinal plants, was established using liquid-liquid microextraction (LLME) and headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-quadrupole mass spectrometry (GC-qMS). More than 60 volatile organic compounds (VOCs belonging to different groups were identified using both methods. Olive oils volatile profile was slightly influenced by maceration process, which occurred at room temperature (20±2°C) for 15days. The predominant differences were observed in terpenoids group, since some of them were only identified in the flavoured olive oils, while others showed an increase with the maceration process. VOCs mass transfer from plants to olive oils could explain the observed results. Principal components analysis (PCA) applied to LLME/GC-qMS data allowed to distinguish the olive oils. The flavoured oils would increase the use of olive oil among consumers as consequence of the improvement of its aromatic profile and healthy properties. Copyright © 2017 Elsevier Ltd. All rights reserved.
Toxicity of N-substituted aromatics to acetoclastic methanogenic activity in granular sludge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donlon, B.A.; Razo-Flores, E.; Field, J.A.
1995-11-01
N-substituted aromatics are important priority pollutants entering the environment primarily through anthropogenic activities associated associated with the industrial production of dyes, explosives, pestides, and pharmaceuticals. Anaerobic treatment of wastewaters discharged by these industries could potentially be problematical as a result of the high toxicity of N-substituted aromatics. The objective of this study was to examine the structure-toxicity relationship of N-substituted aromatic compounds to acetoclastic methanogenic bacteria. The toxicity was assayed to serum flasks by measuring methane production in granular sludge. Unacclimated cultures were used to minimize the biotransformation of the toxic organic chemicals during the test. The nature and themore » degree of the aromatic substitution were observed to have a profound effect on the toxicity of the test compound. Nitroaromatic compounds were, on the average, over 500-fold more toxic than their corresponding aromatic amines. Considering the facile reduction of nitro groups by anerobic microorganisms, a dramatic detoxification of nitroaromatics towards methanogens can be expected to occur during anaerobic wastewater treatment. While the toxicity exerted by the N-substituted aromatic compounds was closely correlated with compound apolarity (log P), it was observed that at any given log P, N-substituted phenols had a toxicity that was 2 orders of magnitude higher than that of chlorophenols and alkylphenols. This indicates that toxicity due to the chemical reactivity of nitroaromatics is much more important than partitioning effects in bacterial membranes. 41 refs., 3 figs., 1 tab.« less
Correia, Hugo D; Marangon, Jacopo; Brondino, Carlos D; Moura, Jose J G; Romão, Maria J; González, Pablo J; Santos-Silva, Teresa
2015-03-01
Desulfovibrio gigas aldehyde oxidoreductase (DgAOR) is a mononuclear molybdenum-containing enzyme from the xanthine oxidase (XO) family, a group of enzymes capable of catalyzing the oxidative hydroxylation of aldehydes and heterocyclic compounds. The kinetic studies reported in this work showed that DgAOR catalyzes the oxidative hydroxylation of aromatic aldehydes, but not heterocyclic compounds. NMR spectroscopy studies using (13)C-labeled benzaldehyde confirmed that DgAOR catalyzes the conversion of aldehydes to the respective carboxylic acids. Steady-state kinetics in solution showed that high concentrations of the aromatic aldehydes produce substrate inhibition and in the case of 3-phenyl propionaldehyde a suicide substrate behavior. Hydroxyl-substituted aromatic aldehydes present none of these behaviors but the kinetic parameters are largely affected by the position of the OH group. High-resolution crystallographic structures obtained from single crystals of active-DgAOR soaked with benzaldehyde showed that the side chains of Phe425 and Tyr535 are important for the stabilization of the substrate in the active site. On the other hand, the X-ray data of DgAOR soaked with trans-cinnamaldehyde showed a cinnamic acid molecule in the substrate channel. The X-ray data of DgAOR soaked with 3-phenyl propionaldehyde showed clearly how high substrate concentrations inactivate the enzyme by binding covalently at the surface of the enzyme and blocking the substrate channel. The different reactivity of DgAOR versus aldehyde oxidase and XO towards aromatic aldehydes and N-heterocyclic compounds is explained on the basis of the present kinetic and structural data.
Robust, self-assembled, biocompatible films
Swanson, Basil I; Anderson, Aaron S.; Dattelbaum, Andrew M.; Schmidt, Jurgen G.
2014-06-24
The present invention provides a composite material including a substrate having an oxide surface, and, a continuous monolayer on the oxide surface, the monolayer including a silicon atom from a trifunctional alkyl/alkenyl/alkynyl silane group that attaches to the oxide surface, an alkyl/alkenyl/alkynyl portion of at least three carbon atoms, a polyalkylene glycol spacer group, and either a reactive site (e.g., a recognition ligand) or a site resistant to non-specific binding (e.g., a methoxy or the like) at the terminus of each modified SAM. The present invention further provides a sensor element, a sensor array and a method of sensing, each employing the composite material. Patterning is also provided together with backfilling to minimize non-specific binding.
Three-dimensional organic Dirac-line materials due to nonsymmorphic symmetry: A data mining approach
NASA Astrophysics Data System (ADS)
Geilhufe, R. Matthias; Bouhon, Adrien; Borysov, Stanislav S.; Balatsky, Alexander V.
2017-01-01
A data mining study of electronic Kohn-Sham band structures was performed to identify Dirac materials within the Organic Materials Database. Out of that, the three-dimensional organic crystal 5,6-bis(trifluoromethyl)-2-methoxy-1 H -1,3-diazepine was found to host different Dirac-line nodes within the band structure. From a group theoretical analysis, it is possible to distinguish between Dirac-line nodes occurring due to twofold degenerate energy levels protected by the monoclinic crystalline symmetry and twofold degenerate accidental crossings protected by the topology of the electronic band structure. The obtained results can be generalized to all materials having the space group P 21/c (No. 14, C2h 5) by introducing three distinct topological classes.
Duveau, Damien Y; Arce, Pablo M; Schoenfeld, Robert A; Raghav, Nidhi; Cortopassi, Gino A; Hecht, Sidney M
2010-09-01
Analogues of mitoQ and idebenone were synthesized to define the structural elements that support oxygen consumption in the mitochondrial respiratory chain. Eight analogues were prepared and fully characterized, then evaluated for their ability to support oxygen consumption in the mitochondrial respiratory chain. While oxygen consumption was strongly inhibited by mitoQ analogues 2-4 in a chain length-dependent manner, modification of idebenone by replacement of the quinone methoxy groups by methyl groups (analogues 6-8) reduced, but did not eliminate, oxygen consumption. Idebenone analogues 6-8 also displayed significant cytoprotective properties toward cultured mammalian cells in which glutathione had been depleted by treatment with diethyl maleate. Copyright 2010 Elsevier Ltd. All rights reserved.
Carcinogenic potential of hydrotreated petroleum aromatic extracts.
Doak, S M; Hend, R W; van der Wiel, A; Hunt, P F
1985-01-01
Five experimental petroleum extracts were produced from luboil distillates derived from Middle East paraffinic crude by solvent extraction and severe hydrotreatment. The polycyclic aromatic content (PCA) of the extracts was determined by dimethyl sulphoxide extraction and ranged from 3.7-9.2% w/w. The five extracts were evaluated for their potential to induce cutaneous and systemic neoplasia in female mice derived from Carworth Farm No 1 strain (CF1). The test substances were applied undiluted (0.2 ml per application) to the shorn dorsal skin twice weekly for up to 78 weeks, with 48 mice in each treatment group and 96 in the untreated control group; two further groups, each of 48 mice, were similarly treated either with a non-hydrotreated commercial aromatic extract (PCA content, 19.7% w/v) or with a low dose of benzo(a)pyrene (12.5 micrograms/ml acetone). The mice were housed individually in polypropylene cages in specified pathogen free conditions. The incidence of cutaneous and systemic tumours was determined from histological analysis of haematoxylin and eosin stained tissue sections. The results were correlated with the PCA content of the extracts and compared with those from female mice exposed to a non-hydrotreated commercial aromatic extract. Four of the hydrotreated extracts were carcinogenic for murine skin; the two products with the lower PCA contents were less carcinogenic than the products with the higher PCA contents and all were less carcinogenic than the commercial extract. One extract with the lowest PCA content was non-carcinogenic. Thus refining by severe hydrotreatment was an effective method of reducing the carcinogenic potential of petroleum aromatic extracts. Although other physicochemical properties may influence the biological activity of oil products, the PCA content determined by dimethyl sulphoxide extraction may be a useful indicator of the potential of oil products to induce cutaneous tumours in experimental animals. There was no evidence that the commercial or hydrotreated extracts increased the incidence of systemic neoplasms when applied twice weekly to the dorsal skin. PMID:4005190
Transition metal catalyzed manipulation of non-polar carbon–hydrogen bonds for synthetic purpose
MURAI, Shinji
2011-01-01
The direct addition of ortho C–H bonds in various aromatic compounds such as ketones, esters, imines, imidates, nitriles, and aldehydes to olefins and acetylenes can be achieved with the aid of transition metal catalysts. The ruthenium catalyzed reaction is usually highly efficient and useful as a general synthetic method. The coordination to the metal center by a heteroatom in a directing group such as carbonyl and imino groups in aromatic compounds is the key step in this process. Mechanistically, the reductive elimination to form a C–C bond is the rate-determining step, while the C–H bond cleavage step is not. PMID:21558759
Positron annihilation studies in solid substituted aromatic compounds
NASA Astrophysics Data System (ADS)
Oliveira, F. C.; Oliveira, A. M.; Donnici, C. L.; Machado, J. C.; Magalhães, W. F.; Windmöller, D.; Fulgêncio, F. H.; Souza, L. R.
2011-04-01
Positronium formation was investigated in benzene and naphthalene compounds with electron donating (sbnd NH2 and sbnd OH) and electron withdrawing (sbnd CN and sbnd NO2) substituents. The results exhibit an increase in the positronium formation yield whenever donating groups are bound to the ring and a decrease with withdrawing groups. These results can be attributed to the π-system electronic density variation in the aromatic ring. The amount of positronium obtained, I3 parameter, has been correlated with the Hammett (σ) and Brown-Okamoto (σp+) constants and adjusted through the modified Hammett equation, which employs the ratio I3/I3ϕ, yielding a satisfactory fit.
Hirano, Shin-Ichi; Haruki, Mitsuru; Takano, Kazufumi; Imanaka, Tadayuki; Morikawa, Masaaki; Kanaya, Shigenori
2006-02-01
Xanthobacter polyaromaticivorans sp. nov. 127W is a bacterial strain that is capable of degrading a wide range of cyclic aromatic compounds such as dibenzothiophene, biphenyl, naphthalene, anthracene, and phenanthrene even under extremely low oxygen [dissolved oxygen (DO)< or = 0.2 ppm] conditions (Hirano et al., Biosci Biotechnol Biochem 68:557-564, 2004). A major protein fraction carrying dibenzothiophene degradation activity was purified. Based on its partial amino acid sequences, dbdCa gene encoding alpha subunit terminal oxygenase (DbdCa) and its flanking region were cloned and sequenced. A phylogenetic analysis based on the amino acid sequence demonstrates that DbdCa is a member of a terminal oxygenase component of group IV ring-hydroxylating dioxygenases for biphenyls and monocyclic aromatic hydrocarbons, rather than group III dioxygenases for polycyclic aromatic hydrocarbons. Gene disruption in dbdCa abolished almost of the degradation activity against biphenyl, dibenzothiophene, and anthracene. The gene disruption also impaired degradation activity of the strain under extremely low oxygen conditions (DO< or = 0.2 ppm). These results indicate that Dbd from 127W represents a group IV dioxygenase that is functional even under extremely low oxygen conditions.
Wang, Zhen; Wang, Dong; Qian, Zhenchao; Guo, Jing; Dong, Haixia; Zhao, Ning; Xu, Jian
2015-01-28
Aerogels are a family of highly porous materials whose applications are commonly restricted by poor mechanical properties. Herein, thiol-ene chemistry is employed to synthesize a series of novel bridged silsesquioxane (BSQ) precursors with various alkoxy groups. On the basis of the different hydrolyzing rates of the methoxy and ethoxy groups, robust superhydrophobic BSQ aerogels with tailorable morphology and mechanical performances have been prepared. The flexible thioether bridge contributes to the robustness of the as-formed aerogels, and the property can be tuned on the basis of the distinct combinations of alkoxy groups with the density of the aerogels almost unchanged. To the best of our knowledge, the lowest density among the ambient pressure dried aerogels is obtained. Further, potential application of the aerogels for oil/water separation and acoustic materials has also been presented.
Hydroxamic acid content and toxicity of rye at selected growth stages.
Rice, Clifford P; Park, Yong Bong; Adam, Frédérick; Abdul-Baki, Aref A; Teasdale, John R
2005-08-01
Rye (Secale cereale L.) is an important cover crop that provides many benefits to cropping systems including weed and pest suppression resulting from allelopathic substances. Hydroxamic acids have been identified as allelopathic compounds in rye. This research was conducted to improve the methodology for quantifying hydroxamic acids and to determine the relationship between hydroxamic acid content and phytotoxicity of extracts of rye root and shoot tissue harvested at selected growth stages. Detection limits for an LC/MS-MS method for analysis of hydroxamic acids from crude aqueous extracts were better than have been reported previously. (2R)-2-beta-D-Glucopyranosyloxy-4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA-G), 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA), benzoxazolin-2(3H)-one (BOA), and the methoxy-substituted form of these compounds, (2R)-2-beta-D-glucopyranosyloxy-4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA glucose), 2,4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA), and 6-methoxy-benzoxazolin-2(3H)-one (MBOA), were all detected in rye tissue. DIBOA and BOA were prevalent in shoot tissue, whereas the methoxy-substituted compounds, DIMBOA glucose and MBOA, were prevalent in root tissue. Total hydroxamic acid concentration in rye tissue generally declined with age. Aqueous crude extracts of rye shoot tissue were more toxic than extracts of root tissue to lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.) root length. Extracts of rye seedlings (Feekes growth stage 2) were most phytotoxic, but there was no pattern to the phytotoxicity of extracts of rye sampled at growth stages 4 to 10.5.4, and no correlation of hydroxamic acid content and phytotoxicity (I50 values). Analysis of dose-response model slope coefficients indicated a lack of parallelism among models for rye extracts from different growth stages, suggesting that phytotoxicity may be attributed to compounds with different modes of action at different stages. Hydroxamic acids may account for the phytoxicity of extracts derived from rye at early growth stages, but other compounds are probably responsible in later growth stages.
D’Addio, Suzanne M.; Baldassano, Steven; Shi, Lei; Cheung, Lila; Adamson, Douglas H.; Bruzek, Matthew; Anthony, John E.; Laskin, Debra L.; Sinko, Patrick J.; Prud’homme, Robert K.
2013-01-01
Treatment of tuberculosis is impaired by poor drug bioavailability, systemic side effects, patient non-compliance, and pathogen resistance to existing therapies. The mannose receptor (MR) is known to be involved in the recognition and internalization of Mycobacterium tuberculosis. We present a new assembly process to produce nanocarriers with variable surface densities of mannose targeting ligands in a single step, using kinetically-controlled, block copolymer-directed assembly. Nanocarrier association with murine macrophage J774 cells expressing the MR is examined as a function of incubation time and temperature, nanocarrier size, dose, and PEG corona properties. Amphiphilic diblock copolymers are prepared with terminal hydroxyl, methoxy, or mannoside functionality and incorporated into nanocarrier formulations at specific ratios by Flash NanoPrecipitation. Association of nanocarriers protected by a hydroxyl-terminated PEG corona with J774 cells is size dependent, while nanocarriers with methoxy-terminated PEG coronas do not associate with cells, regardless of size. Specific targeting of the MR is investigated using nanocarriers having 0-75% mannoside-terminated PEG chains in the PEG corona. This is a wider range of mannose densities than has been previously studied. Maximum nanocarrier association is attained with 9% mannoside-terminated PEG chains, increasing uptake more than 3-fold compared to non-targeted nanocarriers with a 5 kg mol−1 methoxy-terminated PEG corona. While a 5 kg mol−1 methoxy-terminated PEG corona prevents non-specific uptake, a 1.8 kg mol−1 methoxy-terminated PEG corona does not sufficiently protect the nanocarriers from nonspecific association. There is continuous uptake of MR-targeted nanocarriers at 37°C, but a saturation of association at 4°C. The majority of targeted nanocarriers associate with J774E cells are internalized at 37°C and uptake is receptor-dependent, diminishing with competitive inhibition by dextran. This characterization of nanocarrier uptake and targeting provides promise for optimizing drug delivery to macrophages for TB treatment and establishes a general route for optimizing targeted formulations of nanocarriers for specific delivery at targeted sites. PMID:23419950
Miyazaki, Yasunori; Yamamoto, Kanji; Aoki, Jun; Ikeda, Toshiaki; Inokuchi, Yoshiya; Ehara, Masahiro; Ebata, Takayuki
2014-12-28
The S1 state dynamics of methoxy methylcinnamate (MMC) has been investigated under supersonic jet-cooled conditions. The vibrationally resolved S1-S0 absorption spectrum was recorded by laser induced fluorescence and mass-resolved resonant two-photon ionization spectroscopy and separated into conformers by UV-UV hole-burning (UV-UV HB) spectroscopy. The S1 lifetime measurements revealed different dynamics of para-methoxy methylcinnamate from ortho-methoxy methylcinnamate and meta-methoxy methylcinnamate (hereafter, abbreviated as p-, o-, and m-MMCs, respectively). The lifetimes of o-MMC and m-MMC are on the nanosecond time scale and exhibit little tendency of excess energy dependence. On the other hand, p-MMC decays much faster and its lifetime is conformer and excess energy dependent. In addition, the p-MMC-H2O complex was studied to explore the effect of hydration on the S1 state dynamics of p-MMC, and it was found that the hydration significantly accelerates the nonradiative decay. Quantum chemical calculation was employed to search the major decay route from S1(ππ(∗)) for three MMCs and p-MMC-H2O in terms of (i) trans → cis isomerization and (ii) internal conversion to the (1)nπ(∗) state. In o-MMC and m-MMC, the large energy barrier is created for the nonradiative decay along (i) the double-bond twisting coordinate (∼1000 cm(-1)) in S1 as well as (ii) the linear interpolating internal coordinate (∼1000 cm(-1)) from S1 to (1)nπ(∗) states. The calculation on p-MMC decay dynamics suggests that both (i) and (ii) are available due to small energy barrier, i.e., 160 cm(-1) by the double-bond twisting and 390 cm(-1) by the potential energy crossing. The hydration of p-MMC raises the energy barrier of the IC route to the S1/(1)nπ(∗) conical intersection, convincing that the direct isomerization is more likely to occur.
NASA Astrophysics Data System (ADS)
Durand, Kirt L.; Tan, Lei; Stinson, Craig A.; Love-Nkansah, Chasity B.; Ma, Xiaoxiao; Xia, Yu
2017-06-01
Pinpointing disulfide linkage pattern is critical in the characterization of proteins and peptides consisting of multiple disulfide bonds. Herein, we report a method based on coupling online disulfide modification and tandem mass spectrometry (MS/MS) to distinguish peptide disulfide regio-isomers. Such a method relies on a new disulfide bond cleavage reaction in solution, involving methanol as a reactant and 254 nm ultraviolet (UV) irradiation. This reaction leads to selective cleavage of a disulfide bond and formation of sulfenic methyl ester (-SOCH3) at one cysteine residue and a thiol (-SH) at the other. Under low energy collision-induced dissociation (CID), cysteine sulfenic methyl ester motif produces a signature methanol loss (-32 Da), allowing its identification from other possible isomeric structures such as S-hydroxylmethyl (-SCH2OH) and methyl sulfoxide (-S(O)-CH3). Since disulfide bond can be selectively cleaved and modified upon methoxy addition, subsequent MS2 CID of the methoxy addition product provides enhanced sequence coverage as demonstrated by the analysis of bovine insulin. More importantly, this reaction does not induce disulfide scrambling, likely due to the fact that radical intermediates are not involved in the process. An approach based on methoxy addition followed by MS3 CID has been developed for assigning disulfide linkage patterns in peptide disulfide regio-isomers. This methodology was successfully applied to characterizing peptide systems having two disulfide bonds and three disulfide linkage isomers: side-by-side, overlapped, and looped-within-a-loop configurations. [Figure not available: see fulltext.