Sample records for aromatic nitro compounds

  1. Device for aqueous detection of nitro-aromatic compounds

    DOEpatents

    Reagen, W.K.; Schulz, A.L.; Ingram, J.C.; Lancaster, G.D.; Grey, A.E.

    1994-04-26

    This invention relates to a compact and portable detection apparatus for nitro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound. 4 figures.

  2. Dendrimer encapsulated Silver nanoparticles as novel catalysts for reduction of aromatic nitro compounds

    NASA Astrophysics Data System (ADS)

    Asharani, I. V.; Thirumalai, D.; Sivakumar, A.

    2017-11-01

    Polyethylene glycol (PEG) core dendrimer encapsulated silver nanoparticles (AgNPs) were synthesized through normal chemical reduction method, where dendrimer acts as reducing and stabilizing agent. The encapsulated AgNPs were well characterized using TEM, DLS and XPS techniques. The synthesized AgNPs showed excellent catalytic activity towards the reduction of aromatic nitro compounds with sodium borohydride as reducing agent and the results substantiate that dendrimer encapsulated AgNPs can be an effective catalyst for the substituted nitro aromatic reduction reactions. Also the kinetics of different nitro compounds reductions was studied and presented.

  3. Safety in the Chemical Laboratory: Nitric Acid, Nitrates, and Nitro Compounds.

    ERIC Educational Resources Information Center

    Bretherick, Leslie

    1989-01-01

    Discussed are the potential hazards associated with nitric acid, inorganic and organic nitrate salts, alkyl nitrates, acyl nitrates, aliphatic nitro compounds, aromatic nitro compounds, and nitration reactions. (CW)

  4. Device for aqueous detection of nitro-aromatic compounds

    DOEpatents

    Reagen, William K.; Schulz, Amber L.; Ingram, Jani C.; Lancaster, Gregory D.; Grey, Alan E.

    1994-01-01

    This invention relates to a compact and portable detection apparatus for ro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound.

  5. SOLVENT-FREE REDUCTION OF AROMATIC NITRO COMPOUNDS WITH ALUMINA-SUPPORTED HYDRAZINE UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    In a solvent-free microwave-expedited process, aromatic nitro compounds are readily reduced to the corresponding amino compounds in good yield with hydrazine hydrate supported on alumina in presence of FeCl3, 6H2), Fe(III) oxide hydroxide or Fe(III) oxides.

  6. Novel chemoselective hydrogenation of aromatic nitro compounds over ferric hydroxide supported nanocluster gold in the presence of CO and H2O.

    PubMed

    Liu, Lequan; Qiao, Botao; Chen, Zhengjian; Zhang, Juan; Deng, Youquan

    2009-02-14

    Chemoselective hydrogenation of aromatic nitro compounds were first efficiently achieved over Au/Fe(OH)(x) at 100-120 degrees C for 1.5-6 h (depending on different substrates) in the presence of CO and H(2)O.

  7. Al-based metal-organic gels for selective fluorescence recognition of hydroxyl nitro aromatic compounds

    NASA Astrophysics Data System (ADS)

    Guo, Mao Xia; Yang, Liu; Jiang, Zhong Wei; Peng, Zhe Wei; Li, Yuan Fang

    2017-12-01

    The novel class of luminescent Al3 +-based metal-organic gels (Al-MOGs) have been developed by mix 4-[2,2‧:6‧,2″-terpyridine]-4‧-ylbenzoic acid (Hcptpy) with Al3 + under mild condition. The as-prepared Al-MOGs have not only multiple stimuli-responsive properties, but selective recognition of hydroxyl nitro aromatic compounds, which can quench the fluorescence of the Al-MOGs, while other nitro aromatic analogues without hydroxyl substitutes cannot. The fluorescence of Al-MOGs at 467 nm was seriously quenched by picric acid (PA) whose lowest unoccupied molecular orbital (LUMO) energy levels are lower than those of three other hydroxyl nitro aromatic compounds including 4-nitrophenol (4-NP), 3,5-dinitrosalicylic acid (3,5-DNTSA) and 2,4-dinitrophenol (2,4-DNP). Thus, PA was chosen as a model compound under optimal conditions and the relative fluorescence intensity of Al-MOGs was proportional to the concentration of PA in the range of 5.0-320.0 μM with a detection limit of 4.64 μM. Furthermore, the fluorescence quenching mechanism has also been investigated and revealed that the quenching was attributed to inner filter effects (IFEs), as well as electron transfer (ET) between Al-MOGs and PA.

  8. Al-based metal-organic gels for selective fluorescence recognition of hydroxyl nitro aromatic compounds.

    PubMed

    Guo, Mao Xia; Yang, Liu; Jiang, Zhong Wei; Peng, Zhe Wei; Li, Yuan Fang

    2017-12-05

    The novel class of luminescent Al 3+ -based metal-organic gels (Al-MOGs) have been developed by mix 4-[2,2':6',2″-terpyridine]-4'-ylbenzoic acid (Hcptpy) with Al 3+ under mild condition. The as-prepared Al-MOGs have not only multiple stimuli-responsive properties, but selective recognition of hydroxyl nitro aromatic compounds, which can quench the fluorescence of the Al-MOGs, while other nitro aromatic analogues without hydroxyl substitutes cannot. The fluorescence of Al-MOGs at 467nm was seriously quenched by picric acid (PA) whose lowest unoccupied molecular orbital (LUMO) energy levels are lower than those of three other hydroxyl nitro aromatic compounds including 4-nitrophenol (4-NP), 3,5-dinitrosalicylic acid (3,5-DNTSA) and 2,4-dinitrophenol (2,4-DNP). Thus, PA was chosen as a model compound under optimal conditions and the relative fluorescence intensity of Al-MOGs was proportional to the concentration of PA in the range of 5.0-320.0μM with a detection limit of 4.64μM. Furthermore, the fluorescence quenching mechanism has also been investigated and revealed that the quenching was attributed to inner filter effects (IFEs), as well as electron transfer (ET) between Al-MOGs and PA. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Absorption of nitro-polycyclic aromatic hydrocarbons by biomembrane models: effect of the medium lipophilicity.

    PubMed

    Castelli, Francesco; Micieli, Dorotea; Ottimo, Sara; Minniti, Zelica; Sarpietro, Maria Grazia; Librando, Vito

    2008-10-01

    To demonstrate the relationship between the structure of nitro-polycyclic aromatic hydrocarbons and their effect on biomembranes, we have investigated the influence of three structurally different nitro-polycyclic aromatic hydrocarbons, 2-nitrofluorene, 2,7-dinitrofluorene and 3-nitrofluoranthene, on the thermotropic behavior of dimyristoylphosphatidylcholine multilamellar vesicles, used as biomembrane models, by means of differential scanning calorimetry. The obtained results indicate that the studied nitro-polycyclic aromatic hydrocarbons affected the thermotropic behavior of multilamellar vesicles to various extents, modifying the pretransition and the main phase transition peaks and shifting them to lower temperatures. The effect of the aqueous and lipophilic medium on the absorption process of these compounds by the biomembrane models has been also investigated revealing that the process is hindered by the aqueous medium but strongly allowed by the lipophilic medium.

  10. Atmospheric pressure solid analysis probe coupled to quadrupole-time of flight mass spectrometry as a tool for screening and semi-quantitative approach of polycyclic aromatic hydrocarbons, nitro-polycyclic aromatic hydrocarbons and oxo-polycyclic aromatic hydrocarbons in complex matrices.

    PubMed

    Carrizo, Daniel; Domeño, Celia; Nerín, Isabel; Alfaro, Pilar; Nerín, Cristina

    2015-01-01

    A new screening and semi-quantitative approach has been developed for direct analysis of polycyclic aromatic hydrocarbons (PAHs) and their nitro and oxo derivatives in environmental and biological matrices using atmospheric pressure solid analysis probe (ASAP) quadrupole-time of flight mass spectrometry (Q-TOF-MS). The instrumental parameters were optimized for the analysis of all these compounds, without previous sample treatment, in soil, motor oil, atmospheric particles (ashes) and biological samples such as urine and saliva of smokers and non-smokers. Ion source parameters in the MS were found to be the key parameters, with little variation within PAHs families. The optimized corona current was 4 µA, sample cone voltage 80 V for PAHs, nitro-PAHs and oxo-PAHs, while the desolvation temperatures varied from 300°C to 500°C. The analytical method performance was checked using a certified reference material. Two deuterated compounds were used as internal standards for semi-quantitative purposes together with the pure individual standard for each compound and the corresponding calibration plot. The compounds nitro PAH 9-nitroanthracene and oxo-PAH 1,4-naphthalenedione, were found in saliva and urine in a range below 1 µg/g while the range of PAHs in these samples was below 2 µg/g. Environmental samples provided higher concentration of all pollutants than urine and saliva. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Functional Group Analysis.

    ERIC Educational Resources Information Center

    Smith, Walter T., Jr.; Patterson, John M.

    1984-01-01

    Literature on analytical methods related to the functional groups of 17 chemical compounds is reviewed. These compounds include acids, acid azides, alcohols, aldehydes, ketones, amino acids, aromatic hydrocarbons, carbodiimides, carbohydrates, ethers, nitro compounds, nitrosamines, organometallic compounds, peroxides, phenols, silicon compounds,…

  12. A general method for N-methylation of amines and nitro compounds with dimethylsulfoxide.

    PubMed

    Jiang, Xue; Wang, Chao; Wei, Yawen; Xue, Dong; Liu, Zhaotie; Xiao, Jianliang

    2014-01-03

    DMSO methylates a broad range of amines in the presence of formic acid, providing a novel, green and practical method for amine methylation. The protocol also allows the one-pot transformation of aromatic nitro compounds into dimethylated amines in the presence of a simple iron catalyst. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. MICROBIAL METABOLISM OF AROMATIC COMPOUNDS I.

    PubMed Central

    Tabak, Henry H.; Chambers, Cecil W.; Kabler, Paul W.

    1964-01-01

    Tabak, Henry H. (Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio), Cecil W. Chambers, and Paul W. Kabler. Microbial metabolism of aromatic carbon compounds. I. Decomposition of phenolic compounds and aromatic hydrocarbons by phenol-adapted bacteria. J. Bacteriol. 87:910–919. 1964.—Bacteria from soil and related environments were selected or adapted to metabolize phenol, hydroxy phenols, nitrophenols, chlorophenols, methylphenols, alkylphenols, and arylphenols when cultured in mineral salts media with the specific substrate as the sole source of carbon. A phenol-adapted culture (substrate-induced enzyme synthesis proven) was challenged in respirometric tests with 104 related compounds; probable significant oxidative activity occurred with 65. Dihydric phenols were generally oxidized; trihydric phenols were not. Cresols and dimethylphenols were oxidized; adding a chloro group increased resistance. Benzoic and hydroxybenzoic acids were oxidized; sulfonated, methoxylated, nitro, and chlorobenzoic acids were not; m-toluic acid was utilized but not the o- and p-isomers. Benzaldehyde and p-hydroxybenzaldehyde were oxidized. In general, nitro- and chloro-substituted compounds and the benzenes were difficult to oxidize. PMID:14137630

  14. BINDING OF CARCINOGENS TO DNA AND COVALENT ADDUCTS DNA DAMAGE - PAH, AROMATIC AMINES, NITRO-AROMATIC COMPOUNDS, AND HALOGENATED COMPOUNDS

    EPA Science Inventory

    DNA adducts are the covalent addition products resulting from binding of reactive chemical species to DNA bases. The cancer initiating role of DNA adducts is well-established, and is clearly reflected in the high cancer incidence observed in individuals with deficiencies in any o...

  15. Self-Assembly of New Arene-Ruthenium Rectangles Containing Triptycene Building Block and Their Application in Fluorescent Detection of Nitro Aromatics

    PubMed Central

    Dubey, Abhishek; Mishra, Anurag; Min, Jin Wook; Lee, Min Hyung; Kim, Hyunuk; Stang, Peter J.; Chi, Ki-Whan

    2014-01-01

    A suite of two new tetraruthenium metallarectangles 5 and 6 have been obtained from [2 + 2] self-assemblies between dipyridylethynyltriptycene 2 and one of the two dinuclear arene ruthenium clips, [Ru2 (μ-η4-OO∩OO) (η6-p-cymene)2][OTf]2 ; (OO∩OO = oxalate 3; 6,11-dihydroxy-5,12-naphthacenedionato (dotq) 4; OTf = triflate). These molecular rectangles are fully characterized by 1H NMR spectroscopy, electrospray mass spectrometry. A single crystal of 6 was suitable for X-ray diffraction structural characterization. These new metallarectangles showed fluorescence behavior in solution, have been examined for emission quenching effects with various aromatic compounds, and show high quenching selectivity and sensitivity towards nitroaromatics, particularly picric acid and trinitrotoluene. Excited-state charge transfer from the rectangles to nitro aromatic substrates can be used to develop selective fluorescent sensors for nitro aromatics. PMID:26321767

  16. Graphene stabilized ultra-small CuNi nanocomposite with high activity and recyclability toward catalysing the reduction of aromatic nitro-compounds.

    PubMed

    Fang, Hao; Wen, Ming; Chen, Hanxing; Wu, Qingsheng; Li, Weiying

    2016-01-07

    Nowadays, it is of great significance and a challenge to design a noble-metal-free catalyst with high activity and a long lifetime for the reduction of aromatic nitro-compounds. Here, a 2D structured nanocomposite catalyst with graphene supported CuNi alloy nanoparticles (NPs) is prepared, and is promising for meeting the requirements of green chemistry. In this graphene/CuNi nanocomposite, the ultra-small CuNi nanoparticles (∼2 nm) are evenly anchored on graphene sheets, which is not only a breakthrough in the structures, but also brings about an outstanding performance in activity and stability. Combined with a precise optimization of the alloy ratios, the reaction rate constant of graphene/Cu61Ni39 reached a high level of 0.13685 s(-1), with a desirable selectivity as high as 99% for various aromatic nitro-compounds. What's more, the catalyst exhibited a unprecedented long lifetime because it could be recycled over 25 times without obvious performance decay or even a morphology change. This work showed the promise and great potential of noble-metal-free catalysts in green chemistry.

  17. Aromaticity of benzene derivatives: an exploration of the Cambridge Structural Database.

    PubMed

    Majerz, Irena; Dziembowska, Teresa

    2018-04-01

    The harmonic oscillator model of aromaticity (HOMA) index, one of the most popular aromaticity indices for solid-state benzene rings in the Cambridge Structural Database (CSD), has been analyzed. The histograms of HOMA for benzene, for benzene derivatives with one formyl, nitro, amino or hydroxy group as well as the histograms for the derivatives with two formyl, nitro, amino or hydroxy groups in ortho, meta and para positions were investigated. The majority of the substituted benzene derivatives in the CSD are characterized by a high value of HOMA, indicating fully aromatic character; however, the distribution of the HOMA value from 1 to about 0 indicates decreasing aromaticity down to non-aromatic character. Among the benzene derivatives investigated, a significant decrease in aromaticity can be related to compounds with diamino and dinitro groups in the meta position.

  18. Biotransformation and biodegradation of selected nitroaromatics under anaerobic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razo-Flores, E.; Lettinga, G.; Field, J.A.

    The fate of four nitroaromatic compounds (5-nitrosalicylate, 5NSA; 4-nitrobenzoate, 4NBc; 2,4-dinitrotoluene, 2,4DNT; nitrobenzene, NB) was studied in 160 mL laboratory-scale upward-flow anaerobic sludge bed reactors supplied with a mixture of volatile fatty acids and/or glucose as electron donors. All the nitroaromatics were transformed stoichiometrically to their corresponding aromatic amines. After prolonged reactor operation, 5NSA and 4NBc were completely mineralized to CH[sub 4] and CO[sub 2], whereas 2,4DNT was partially transformed to a nonidentified and nondegradable metabolite. Batch nitro-reduction experiments indicated that the position of the nitro group in relation to the other substituents in the aromatic ring plays a keymore » role in the rate of the nitro-group reduction. The results obtained indicate that certain nitroaromatic compounds can be completely mineralized and serve as a carbon and energy source for anaerobic bacteria.« less

  19. Two Dimensional Host-Guest Metal-Organic Framework Sensor with High Selectivity and Sensitivity to Picric Acid.

    PubMed

    Bagheri, Minoo; Masoomi, Mohammad Yaser; Morsali, Ali; Schoedel, Alexander

    2016-08-24

    A dye-sensitized metal-organic framework, TMU-5S, was synthesized based on introducing the laser dye Rhodamine B into the porous framework TMU-5. TMU-5S was investigated as a ratiometric fluorescent sensor for the detection of explosive nitro aromatic compounds and showed four times greater selectivity to picric acid than any state-of-the-art luminescent-based sensor. Moreover, it can selectively discriminate picric acid concentrations in the presence of other nitro aromatics and volatile organic compounds. Our findings indicate that using this sensor in two dimensions leads to a greatly reduced environmental interference response and thus creates exceptional sensitivity toward explosive molecules with a fast response.

  20. Bacterial Degradation of Aromatic Compounds

    PubMed Central

    Seo, Jong-Su; Keum, Young-Soo; Li, Qing X.

    2009-01-01

    Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms. PMID:19440284

  1. Graphene stabilized ultra-small CuNi nanocomposite with high activity and recyclability toward catalysing the reduction of aromatic nitro-compounds

    NASA Astrophysics Data System (ADS)

    Fang, Hao; Wen, Ming; Chen, Hanxing; Wu, Qingsheng; Li, Weiying

    2015-12-01

    Nowadays, it is of great significance and a challenge to design a noble-metal-free catalyst with high activity and a long lifetime for the reduction of aromatic nitro-compounds. Here, a 2D structured nanocomposite catalyst with graphene supported CuNi alloy nanoparticles (NPs) is prepared, and is promising for meeting the requirements of green chemistry. In this graphene/CuNi nanocomposite, the ultra-small CuNi nanoparticles (~2 nm) are evenly anchored on graphene sheets, which is not only a breakthrough in the structures, but also brings about an outstanding performance in activity and stability. Combined with a precise optimization of the alloy ratios, the reaction rate constant of graphene/Cu61Ni39 reached a high level of 0.13685 s-1, with a desirable selectivity as high as 99% for various aromatic nitro-compounds. What's more, the catalyst exhibited a unprecedented long lifetime because it could be recycled over 25 times without obvious performance decay or even a morphology change. This work showed the promise and great potential of noble-metal-free catalysts in green chemistry.Nowadays, it is of great significance and a challenge to design a noble-metal-free catalyst with high activity and a long lifetime for the reduction of aromatic nitro-compounds. Here, a 2D structured nanocomposite catalyst with graphene supported CuNi alloy nanoparticles (NPs) is prepared, and is promising for meeting the requirements of green chemistry. In this graphene/CuNi nanocomposite, the ultra-small CuNi nanoparticles (~2 nm) are evenly anchored on graphene sheets, which is not only a breakthrough in the structures, but also brings about an outstanding performance in activity and stability. Combined with a precise optimization of the alloy ratios, the reaction rate constant of graphene/Cu61Ni39 reached a high level of 0.13685 s-1, with a desirable selectivity as high as 99% for various aromatic nitro-compounds. What's more, the catalyst exhibited a unprecedented long lifetime because it could be recycled over 25 times without obvious performance decay or even a morphology change. This work showed the promise and great potential of noble-metal-free catalysts in green chemistry. Electronic supplementary information (ESI) available: Detailed SEM and TEM images, XRD patterns, XPS, EDS, Raman spectra, gas chromatograms, TG analyses, UV-vis spectra, and reaction rate constant tables. See DOI: 10.1039/c5nr05016b

  2. Biomonitoring of polycyclic aromatic compounds in the urine of mining workers occupationally exposed to diesel exhaust.

    PubMed

    Seidel, Albrecht; Dahmann, Dirk; Krekeler, Horst; Jacob, Juergen

    2002-02-01

    Diesel exhaust is considered a probable human carcinogen by the IARC. Biomonitoring of workers occupationally exposed to diesel exhaust was performed to determine their internal burden of diesel associated aromatic compounds. Personal air sampling also allowed to determine the exposure of the miners at their work place towards several polycyclic aromatic hydrocarbons (PAH) and nitro-arenes, the latter of which are thought to be specific constituents of diesel exhaust. For biomonitoring the urine of 18 underground salt miners was collected during and after their shift for 24-hours. half of the 18 miners were smokers. The urinary levels of 1-hydroxypyrene and hydroxylated phenanthrene metabolites were determined as biomarkers of PAH exposure, whereas urinary levels of some aromatic amines were chosen to monitor exposure towards specific nitro-arenes from diesel exhaust like 1-nitropyrene and 3-nitrobenzanthrone and to monitor the human burden by these compounds from inhaled cigarette smoke. Non-smoking workers exposed to diesel exhaust excrete an average level of about 4 micrograms phenanthrene metabolites, whereas the urinary levels in smokers were up to 3-fold higher. In summary the results indicate that (i) diesel exposure led to an increase of PAH metabolism in the workers examined, most probably by an induction of cytochrome P450 (ii) smokers could be identified in accordance with earlier studies by their increased ratio of phenanthrene metabolites derived from 1,2- and 3,4-oxidation and their higher amounts of excreted 1-naphthylamine, and (iii) the excreted amounts of aromatic amines found as metabolites of the nitro-arenes were about 5- to 10-fold higher as one might expect from the levels determined by personal air sampling at the workplace of the individuals.

  3. Ionization of EPA Contaminants in Direct and Dopant-Assisted Atmospheric Pressure Photoionization and Atmospheric Pressure Laser Ionization

    NASA Astrophysics Data System (ADS)

    Kauppila, Tiina J.; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  4. Aromatic fluorine compounds. II. 1,2,4,5-Tetrafluorobenzene and related compounds

    USGS Publications Warehouse

    Finger, G.C.; Reed, F.H.; Burness, D.M.; Fort, D.M.; Blough, R.R.

    1951-01-01

    The synthesis and properties of 1,2,4,5-tetrafluorobenzene and a group of bromofluoro and chlorofluorobenzenes with a predominating 1,2,4,5-structure are described. Flash point and surface tension data for the fluorinated benzenes and the influence of chlorine substitution upon these values were studied. Under nitration conditions, 1,2,4,5-tetrafluorobenzene will not form a nitro derivative, but will undergo a preferential 1,4-fluorine displacement-oxidation mechanism to give 2,5-difluoro-1,4-benzoquinone. Diazotization reactions on 2-nitro-3,4,6-trifluoroaniline reveal that the nitro group or a fluorine atom in the 4- or 6-position may become labilized, under certain conditions, and undergo replacement.

  5. Structure-activity relationships among substituted N-benzoyl derivatives of phenylalanine and its analogs in a microbial antitumor prescreen I: Derivatives of o-fluoro-DL-phenylalanine.

    PubMed

    Otani, T T; Briley, M R

    1982-02-01

    Twelve derivatives of 0-fluoro-dl-phenylalanine containing fluorine, chlorine, methoxy, and nitro radicals in various positions of the aromatic ring of the benzoyl group were prepared and tested in a Lactobacillus casei system. It was found that most substitutions in the benzoyl phenyl ring resulted in a compound exhibiting greater growth-inhibiting activity than the nonsubstituted benzoyl-o-fluorophenylalanine. The greatest activity was observed in the ortho-substituted fluoro compound and the meta- and para-substituted chloro and nitro compounds. With the methoxy group, the position of substitution appeared unimportant, since all three methoxy isomers exhibited essentially equal inhibition. Nitro substitution in the ortho position had a protective effect in that the product was less active than the unsubstituted benzoyl-o-fluoro-dl-phenylalanine.

  6. Compounds formed by treatment of corn (Zea mays) with nitrous acid.

    PubMed

    Archer, M C; Hansen, T J; Tannenbaum, S R

    1980-01-01

    Nitrohexane has been identified as a major product formed following treatment of corn (Zea mays) with nitrous acid. Preliminary evidence suggests that another compound isolated from the nitrosated corn is an unsaturated nitrolic acid. As an aid to the analysis of N-nitro compounds, we have characterized the response of a chemiluminescence detector (Thermal Energy Analyzer) as a function of pyrolysis chamber temperature for several nitrosamines and for an aliphatic C-nitroso compound, an aromatic C-nitro compound, a nitramine and an alkyl nitrite. The response-temperature profiles are valuable in distinguishing among the various compounds and in optimizing the sensitivity of the detector for use in chromatography. Other tests, including photolysis and stability toward nitrite-scavenging reagents, further aid in distinguishing among the various compounds.

  7. 4-Nitrophenol, 1-nitropyrene, and 9-nitroanthracene emissions in exhaust particles from diesel vehicles with different exhaust gas treatments

    NASA Astrophysics Data System (ADS)

    Inomata, Satoshi; Fushimi, Akihiro; Sato, Kei; Fujitani, Yuji; Yamada, Hiroyuki

    2015-06-01

    The dependence of nitro-organic compound emissions in automotive exhaust particles on the type of aftertreatment used was investigated. Three diesel vehicles with different aftertreatment systems (an oxidation catalyst, vehicle-DOC; a particulate matter and NOx reduction system, vehicle-DPNR; and a urea-based selective catalytic reduction system, vehicle-SCR) and a gasoline car with a three-way catalyst were tested. Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) and nitrophenols in the particles emitted were analyzed by thermal desorption gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. The secondary production of nitro-organic compounds on the filters used to collect particles and the adsorption of gaseous nitro-organic compounds by the filters were evaluated. Emissions of 1-nitropyrene, 9-nitroanthracene, and 4-nitrophenol in the diesel exhaust particles were then quantified. The NOx reduction process in vehicle-DPNR appeared to remove nitro-hydrocarbons efficiently but not to remove nitro-oxygenated hydrocarbons efficiently. The nitro-PAH emission factors were lower for vehicle-DOC when it was not fitted with a catalyst than when it was fitted with a catalyst. The 4-nitrophenol emission factors were also lower for vehicle-DOC with a catalyst than vehicle-DOC without a catalyst, suggesting that the oxidation catalyst was a source of both nitro-PAHs and 4-nitrophenol. The time-resolved aerosol mass spectrometry data suggested that nitro-organic compounds are mainly produced when an engine is working under load. The presence of 4-nitrophenol in the particles was not confirmed statistically because of interference from gaseous 4-nitrophenol. Systematic errors in the estimated amounts of gaseous 1-nitropyrene and 9-nitroanthracene adsorbed onto the filters and the estimated amounts of volatile nitro-organic compounds that evaporated during sampling and during post-sampling conditioning could not be excluded. An analytical method in which all gaseous compounds are absorbed before particles are collected, and in which the volatile compounds are derivatized, would improve the precision and the accuracy of the data.

  8. A DFT study on photoinduced surface catalytic coupling reactions on nanostructured silver: selective formation of azobenzene derivatives from para-substituted nitrobenzene and aniline.

    PubMed

    Zhao, Liu-Bin; Huang, Yi-Fan; Liu, Xiu-Min; Anema, Jason R; Wu, De-Yin; Ren, Bin; Tian, Zhong-Qun

    2012-10-05

    We propose that aromatic nitro and amine compounds undergo photochemical reductive and oxidative coupling, respectively, to specifically produce azobenzene derivatives which exhibit characteristic Raman signals related to the azo group. A photoinduced charge transfer model is presented to explain the transformations observed in para-substituted ArNO(2) and ArNH(2) on nanostructured silver due to the surface plasmon resonance effect. Theoretical calculations show that the initial reaction takes place through excitation of an electron from the filled level of silver to the lowest unoccupied molecular orbital (LUMO) of an adsorbed ArNO(2) molecule, and from the highest occupied molecular orbital (HOMO) of an adsorbed ArNH(2) molecule to the unoccupied level of silver, during irradiation with visible light. The para-substituted ArNO(2)(-)˙ and ArNH(2)(+)˙ surface species react further to produce the azobenzene derivatives. Our results may provide a new strategy for the syntheses of aromatic azo dyes from aromatic nitro and amine compounds based on the use of nanostructured silver as a catalyst.

  9. Denitration of 2,4,6-trinitrotoluene in aqueous solutions using small-molecular-weight catalyst(s) secreted by Pseudomonas aeruginosa ESA-5.

    PubMed

    Stenuit, Ben; Eyers, Laurent; Rozenberg, Raoul; Habib-Jiwan, Jean-Louis; Matthijs, Sandra; Cornelis, Pierre; Agathos, Spiros N

    2009-03-15

    The denitration of 2,4,6-trinitrotoluene (TNT) can produce mono- or dinitro aromatic compounds susceptible to microbial mineralization. In the present study, denitration of TNT and other nitro aromatic compounds was investigated with a solid-phase extract obtained from the culture supernatant of Pseudomonas aeruginosa ESA-5 grown on a chemically defined aerobic medium. When the C18 solid-phase extract containing extracellular catalysts (EC) was incubated with TNT and NAD(P)H, we observed a significant release of nitrite. The concentration of nitrite released in the reaction medium was strongly dependent on the concentration of NAD(P)H and EC. Denitration also occurred with two TNT-related molecules, 2,4,6-trinitrobenzaldehyde, and 2,4,6-trinitrobenzyl alcohol. The release of nitrite was coupled with the formation of two polar metabolites, and mass spectrometry analyses indicated that each of these compounds had lost two nitro groups from the trinitro aromatic parent molecule. During this process, the production of toxic reduced TNT metabolites was minimal. The incubation of EC with TNT, NAD(P)H, and specific scavengers of reactive oxygen species suggested the involvement of superoxide radicals (O2*-) and hydrogen peroxide in the denitration process. Results obtained in this study reveal for the first time that extracellular small-molecular-weight substance(s) of bacterial origin can serve as green catalyst(s) to initiate TNT denitration. In addition, this study gives clear evidence for the production of a TNT metabolite bearing a single nitro groupfollowing a denitration reaction with catalyst(s) of biotic origin.

  10. 3-O-Benzyl-6-O-benzoyl-1,2-O-isopropil-idene-5-C-nitro-methyl-a-d-glucofuran-ose.

    PubMed

    Pampín, Begoña; Valencia, Laura; Estévez, Juan C; Estévez, Ramón J

    2009-01-17

    The title compound, C(24)H(27)NO(9), is one of the epimers of the Henry reaction of 3-O-benzyl-6-O-benzoyl-2-O-isopropyl-idene-a-d-glucofuran-5-one with nitro-methane. The conformation of the five membered rings is as expected from the precursor compound and the mol-ecule is folded with a dihedral angle of 51.4 (2)° between the aromatic rings. One O-H⋯O hydrogen bond and some intra-molecular and inter-molecular C-H⋯O inter-actions are observed in the structure.

  11. Synthesis and antiproliferative activity of peracetylated 2-amino-1,2-dideoxy-1-nitro-d-glycero-l-manno and d-glycero-d-talo heptitols.

    PubMed

    Luque-Agudo, Verónica; González Gutiérrez, Ana María; Lagunes, Irene; López Galindo, Federico; Padrón, José M; Román, Emilio; Serrano, José Antonio; Gil, María Victoria

    2016-12-01

    Michael additions between carbohydrate derived nitroalkenes and several aliphatic and aromatic amines proceeded in a stereoselective way, leading to peracetylated 2-amino-1,2-dideoxy-1-nitro-heptitols. In addition, the antiproliferative activity of some of the new adducts has been studied. The results allowed to identify lead compounds which show GI 50 values in the range 1.7-19μM. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. 1-Methyl-4-(4-nitro­benzo­yl)pyridinium perchlorate

    PubMed Central

    Gruber, Tobias; Eissmann, Frank; Weber, Edwin; Schüürmann, Gerrit

    2011-01-01

    In the main mol­ecule of the title compound, C13H11N2O3 +·ClO4 −, the two aromatic rings are twisted by 56.19 (3)° relative to each other and the nitro group is not coplanar with the benzene ring [36.43 (4)°]. The crystal packing is dominated by infinite aromatic stacks in the a-axis direction. These are formed by the benzene units of the mol­ecule featuring an alternating arrangement, which explains the two different distances of 3.3860 (4) and 3.4907 (4) Å for the aromatic units (these are the perpendicular distances of the centroid of one aromatic ring on the mean plane of the other other aromatic ring). Adjacent stacks are connected by π–π stacking between two pyridinium units [3.5949 (4) Å] and weak C—H⋯O inter­actions. The perchlorate anions are accomodated in the lattice voids connected to the cation via weak C—H⋯O contacts between the O atoms of the anion and various aromatic as well as methyl H atoms. PMID:22059070

  13. Solid-phase extraction using bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes for the simultaneous determination of flavonoids and aromatic organic acid preservatives.

    PubMed

    Wang, Na; Liao, Yuan; Wang, Jiamin; Tang, Sheng; Shao, Shijun

    2015-12-01

    A novel bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes sorbent for solid-phase extraction was designed and synthesized by chemical immobilization of nitro-substituted 3,3'-bis(indolyl)methane on silica modified with multiwalled carbon nanotubes. Coupled with high-performance liquid chromatography analysis, the extraction properties of the sorbent were evaluated for flavonoids and aromatic organic acid compounds. Under optimum conditions, the sorbent can simultaneously extract five flavonoids and two aromatic organic acid preservatives in aqueous solutions in a single-step solid-phase extraction procedure. Wide linear ranges were obtained with correlation coefficients (R(2) ) ranging from 0.9843 to 0.9976, and the limits of detection were in the range of 0.5-5 μg/L for the compounds tested. Compared with the silica modified with multiwalled carbon nanotubes sorbent and the nitro-substituted 3,3'-bis(indolyl)methane-modified silica sorbent, the developed sorbent exhibited higher extraction efficiency toward the selected analytes. The synergistic effect of nitro-substituted 3,3'-bis(indolyl)methane and multiwalled carbon nanotubes not only improved the surface-to-volume ratio but also enhanced multiple intermolecular interactions, such as hydrogen bonds, π-π, and hydrophobic interactions, between the new sorbent and the selected analytes. The as-established solid-phase extraction with high-performance liquid chromatography and diode array detection method was successfully applied to the simultaneous determination of flavonoids and aromatic organic acid preservatives in grape juices with recoveries ranging from 83.9 to 112% for all the selected analytes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Copper nanoparticles on graphene support: an efficient photocatalyst for coupling of nitroaromatics in visible light.

    PubMed

    Guo, Xiaoning; Hao, Caihong; Jin, Guoqiang; Zhu, Huai-Yong; Guo, Xiang-Yun

    2014-02-10

    Copper is a low-cost plasmonic metal. Efficient photocatalysts of copper nanoparticles on graphene support are successfully developed for controllably catalyzing the coupling reactions of aromatic nitro compounds to the corresponding azoxy or azo compounds under visible-light irradiation. The coupling of nitrobenzene produces azoxybenzene with a yield of 90 % at 60 °C, but azobenzene with a yield of 96 % at 90 °C. When irradiated with natural sunlight (mean light intensity of 0.044 W cm(-2) ) at about 35 °C, 70 % of the nitrobenzene is converted and 57 % of the product is azobenzene. The electrons of the copper nanoparticles gain the energy of the incident light through a localized surface plasmon resonance effect and photoexcitation of the bound electrons. The excited energetic electrons at the surface of the copper nanoparticles facilitate the cleavage of the NO bonds in the aromatic nitro compounds. Hence, the catalyzed coupling reaction can proceed under light irradiation and moderate conditions. This study provides a green photocatalytic route for the production of azo compounds and highlights a potential application for graphene. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Vasodilator effects and putative guanylyl cyclase stimulation by 2-nitro-1-phenylethanone and 2-nitro-2-phenyl-propane-1,3-diol on rat aorta.

    PubMed

    Vasconcelos, Thiago Brasileiro de; Ribeiro-Filho, Helder Veras; Lahlou, Saad; Pereira, José Geraldo de Carvalho; Oliveira, Paulo Sérgio Lopes de; Magalhães, Pedro Jorge Caldas

    2018-07-05

    Compounds containing a nitro group may reveal vasodilator properties. Several nitro compounds have a NO 2 group in a short aliphatic chain connected to an aromatic group. In this study, we evaluated in rat aorta the effects of two nitro compounds, with emphasis on a putative recruitment of the soluble guanylate cyclase (sGC) pathway to induce vasodilation. Isolated aortic rings were obtained from male Wistar rats to compare the effects induced by 2-nitro-1-phenylethanone (NPeth) or 2-nitro-2-phenyl-propane-1,3-diol (NPprop). In aortic preparations contracted with phenylephrine or KCl, NPeth and NPprop induced vasorelaxant effects that did not depend on the integrity of vascular endothelium. NPeth had a lesser vasorelaxant efficacy than NPprop and only the NPprop effects were inhibited by pretreatment with the sGC inhibitors, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or methylene blue. In an ODQ-preventable manner, NPprop inhibited the contractile component of the phenylephrine-induced response mediated by intracellular Ca 2+ release or by extracellular Ca 2+ recruitment through receptor- or voltage-operated Ca 2+ channels. In contrast, NPprop was inert against the transient contraction induced by caffeine in Ca 2+ -free medium. In an ODQ-dependent manner, NPprop inhibited the contraction induced by the protein kinase C activator phorbol 12,13-dibutyrate or by the tyrosine phosphatase inhibitor sodium orthovanadate. In silico docking analysis of a sGC homologous protein revealed preferential site for NPprop. In conclusion, the nitro compounds NPeth and NPprop induced vasorelaxation in rat aortic rings. Aliphatic chain substituents selectively interfered in the ability of these compounds to induce vasorelaxant effects, and only NPprop relaxed aortic rings via a sGC pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Light absorption of secondary organic aerosol: Composition and contribution of nitro-aromatic compounds

    EPA Science Inventory

    Secondary organic aerosol (SOA) might affect the atmospheric radiation balance through absorbing light at shorter visible and UV wavelengths. However, the composition and optical properties of light-absorbing SOA is poorly understood. In this work, SOA filter samples were collect...

  17. Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review.

    PubMed

    Castillo-Carvajal, Laura C; Sanz-Martín, José Luis; Barragán-Huerta, Blanca E

    2014-01-01

    Agro-food, petroleum, textile, and leather industries generate saline wastewater with a high content of organic pollutants such as aromatic hydrocarbons, phenols, nitroaromatics, and azo dyes. Halophilic microorganisms are of increasing interest in industrial waste treatment, due to their ability to degrade hazardous substances efficiently under high salt conditions. However, their full potential remains unexplored. The isolation and identification of halophilic and halotolerant microorganisms from geographically unrelated and geologically diverse hypersaline sites supports their application in bioremediation processes. Past investigations in this field have mainly focused on the elimination of polycyclic aromatic hydrocarbons and phenols, whereas few studies have investigated N-aromatic compounds, such as nitro-substituted compounds, amines, and azo dyes, in saline wastewater. Information regarding the growth conditions and degradation mechanisms of halophilic microorganisms is also limited. In this review, we discuss recent research on the removal of organic pollutants such as organic matter, in terms of chemical oxygen demand (COD), dyes, hydrocarbons, N-aliphatic and N-aromatic compounds, and phenols, in conditions of high salinity. In addition, some proposal pathways for the degradation of aromatic compounds are presented.

  18. Systematic study on the TD-DFT calculated electronic circular dichroism spectra of chiral aromatic nitro compounds: A comparison of B3LYP and CAM-B3LYP.

    PubMed

    Komjáti, Balázs; Urai, Ákos; Hosztafi, Sándor; Kökösi, József; Kováts, Benjámin; Nagy, József; Horváth, Péter

    2016-02-15

    B3LYP is one of the most widely used functional for the prediction of electronic circular dichroism spectra, however if the studied molecule contains aromatic nitro group computations may fail to produce reliable results. A test set of molecules of known stereochemistry were synthesized to study this phenomenon in detail. Spectra were computed by B3LYP and CAM-B3LYP functionals with 6-311++G(2d,2p) basis set. It was found that the range separated CAM-B3LYP gives better predictions than B3LYP for all test molecules. Fragment population analysis revealed that the nitro groups form highly localized molecule orbitals but the exact composition depends on the functional. CAM-B3LYP allows sufficient spatial overlap between the nitro group and distant parts of the molecule, which is necessary for the accurate description of excited states especially for charge transfer states. This phenomenon and the synthesized test molecules can be used to benchmark theoretical methods as well as to help the development of new functionals intended for spectroscopical studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. 1-Nitro-4-(4-nitro-phen-oxy)benzene: a second monoclinic polymorph.

    PubMed

    Naz, Mehwish; Akhter, Zareen; McKee, Vickie; Nadeem, Arif

    2013-11-06

    In the title compound, C12H8N2O5, the aromatic rings are inclined to one another by 56.14 (7)°. The nitro groups are inclined by to the benzene rings to which they are attached by 3.86 (17) and 9.65 (15)°. In the crystal, mol-ecules are linked by C-H⋯O hydrogen bonds, forming a three-dimensional structure. The title compound is a new monoclinic polymorph, crystallizing in space group P21/c. The first polymorph crystallized in space group C2/c and the mol-ecule possesses twofold rotation symmetry. Two low-temperature structures of this polymorph (150 K and 100 K, respectively) have been reported [Meciarova et al. (2004). Private Communication (refcode IXOGAD). CCDC, Cambridge, England, and Dey & Desiraju (2005). Chem. Commun. pp. 2486-2488].

  20. 3-O-Benzyl-6-O-benzoyl-1,2-O-isopropil­idene-5-C-nitro­methyl-a-d-glucofuran­ose

    PubMed Central

    Pampín, Begoña; Valencia, Laura; Estévez, Juan C.; Estévez, Ramón J.

    2009-01-01

    The title compound, C24H27NO9, is one of the epimers of the Henry reaction of 3-O-benzyl-6-O-benzoyl-2-O-isopropyl­idene-a-d-glucofuran-5-one with nitro­methane. The conformation of the five membered rings is as expected from the precursor compound and the mol­ecule is folded with a dihedral angle of 51.4 (2)° between the aromatic rings. One O—H⋯O hydrogen bond and some intra­molecular and inter­molecular C—H⋯O inter­actions are observed in the structure. PMID:21581936

  1. Magnetic gold nanocatalyst (nanocat-Fe–Au): catalytic applications for the oxidative esterification and hydrogen transfer reactions

    EPA Science Inventory

    An efficient and sustainable protocol is described for the oxidative esterification of aldehydes and the reduction of aromatic nitro compounds that uses magnetically separable and reusable maghemite-supported gold nanocatalyst (nanocat-Fe-Au) under mild conditions. The complex ch...

  2. Mechanochemical Preparation of Organic Nitro Compounds

    DTIC Science & Technology

    selectivity were found to depend on the ratios of the reactants and the catalyst. A parametric study addressed the effects of milling time, temperature ...Aromatic compounds such as toluene are commercially nitrated using a combination of nitric acid with other strong acids. This process relies on the...was synthesized by milling toluene with sodium nitrate and molybdenum trioxide as a catalyst. Several parameters affecting the desired product yield and

  3. Characterization of organic nitrogen in aerosols at a forest site in the southern Appalachian Mountains

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Xie, Mingjie; Hays, Michael D.; Edgerton, Eric; Schwede, Donna; Walker, John T.

    2018-05-01

    This study investigates the composition of organic particulate matter in PM2.5 in a remote montane forest in the southeastern US, focusing on the role of organic nitrogen (N) in sulfur-containing secondary organic aerosol (nitrooxy-organosulfates) and aerosols associated with biomass burning (nitro-aromatics). Bulk water-soluble organic N (WSON) represented ˜ 14 % w/w of water-soluble total N (WSTN) in PM2.5 on average across seasonal measurement campaigns conducted in the spring, summer, and fall of 2015. The largest contributions of WSON to WSTN were observed in spring ( ˜ 18 % w/w) and the lowest in the fall ( ˜ 10 % w/w). On average, identified nitro-aromatic and nitrooxy-organosulfate compounds accounted for a small fraction of WSON, ranging from ˜ 1 % in spring to ˜ 4 % in fall, though were observed to contribute as much as 28 % w/w of WSON in individual samples that were impacted by local biomass burning. The highest concentrations of oxidized organic N species occurred during summer (average of 0.65 ng N m-3) along with a greater relative abundance of higher-generation oxygenated terpenoic acids, indicating an association with more aged aerosol. The highest concentrations of nitro-aromatics (e.g., nitrocatechol and methyl-nitrocatechol), levoglucosan, and aged SOA tracers were observed during fall, associated with aged biomass burning plumes. Nighttime nitrate radical chemistry is the most likely formation pathway for nitrooxy-organosulfates observed at this low NOx site (generally < 1 ppb). Isoprene-derived organosulfate (MW216, 2-methyltetrol derived), which is formed from isoprene epoxydiols (IEPOX) under low NOx conditions, was the most abundant individual organosulfate. Concentration-weighted average WSON / WSOC ratios for nitro-aromatics + organosulfates + terpenoic acids were 1 order of magnitude lower than the overall aerosol WSON / WSOC ratio, indicating the presence of other uncharacterized higher-N-content species. Although nitrooxy-organosulfates and nitro-aromatics contributed a small fraction of WSON, our results provide new insight into the atmospheric formation processes and sources of these largely uncharacterized components of atmospheric organic N, which also helps to advance the atmospheric models to better understand the chemistry and deposition of reactive N.

  4. A photoactive bimetallic framework for direct aminoformylation of nitroarenes

    EPA Science Inventory

    A bimetallic catalyst, AgPd@g-C3N4, was synthesized by immobilizing silver and palladium nanoparticles over the surface of graphitic carbon nitride (g-C3N4) and its utility was demonstrated for the concerted aminoformylation of aromatic nitro compounds under visible light conditi...

  5. Luminescent Li-based metal-organic framework tailored for the selective detection of explosive nitroaromatic compounds: direct observation of interaction sites.

    PubMed

    Kim, Tae Kyung; Lee, Jae Hwa; Moon, Dohyun; Moon, Hoi Ri

    2013-01-18

    A luminescent lithium metal-organic framework (MOF) is constructed from the solvothermal reaction of Li(+) and a well-designed organic ligand, bis(4-carboxyphenyl)-N-methylamine (H(2)CPMA). A Li-based MOF can detect an explosive aromatic compound containing nitro groups as an explosophore, by showing a dramatic color change with concurrent luminescence quenching in the solid state. The detection sites are proven directly through single-crystal-to-single-crystal transformations, which show strong interactions between the aromatic rings of the electron-rich CPMA(2-) molecules and the electron-deficient nitrobenzene.

  6. Mitigation of PAH and nitro-PAH emissions from nonroad diesel engines.

    PubMed

    Liu, Z Gerald; Wall, John C; Ottinger, Nathan A; McGuffin, Dana

    2015-03-17

    More stringent emission requirements for nonroad diesel engines introduced with U.S. Tier 4 Final and Euro Stage IV and V regulations have spurred the development of exhaust aftertreatment technologies. In this study, several aftertreatment configurations consisting of diesel oxidation catalysts (DOC), diesel particulate filters (DPF), Cu zeolite-, and vanadium-based selective catalytic reduction (SCR) catalysts, and ammonia oxidation (AMOX) catalysts are evaluated using both Nonroad Transient (NRTC) and Steady (8-mode NRSC) Cycles in order to understand both component and system-level effects of diesel aftertreatment on emissions of polycyclic aromatic hydrocarbons (PAH) and their nitrated derivatives (nitro-PAH). Emissions are reported for four configurations including engine-out, DOC+CuZ-SCR+AMOX, V-SCR+AMOX, and DOC+DPF+CuZ-SCR+AMOX. Mechanisms responsible for the reduction, and, in some cases, the formation of PAH and nitro-PAH compounds are discussed in detail, and suggestions are provided to minimize the formation of nitro-PAH compounds through aftertreatment design optimizations. Potency equivalency factors (PEFs) developed by the California Environmental Protection Agency are then applied to determine the impact of aftertreatment on PAH-derived exhaust toxicity. Finally, a comprehensive set of exhaust emissions including criteria pollutants, NO2, total hydrocarbons (THC), n-alkanes, branched alkanes, saturated cycloalkanes, aromatics, aldehydes, hopanes and steranes, and metals is provided, and the overall efficacy of the aftertreatment configurations is described. This detailed summary of emissions from a current nonroad diesel engine equipped with advanced aftertreatment can be used to more accurately model the impact of anthropogenic emissions on the atmosphere.

  7. Enhanced Photoreduction of Nitro-aromatic Compounds by Hydrated Electrons Derived from Indole on Natural Montmorillonite.

    PubMed

    Tian, Haoting; Guo, Yong; Pan, Bo; Gu, Cheng; Li, Hui; Boyd, Stephen A

    2015-07-07

    A new photoreduction pathway for nitro-aromatic compounds (NACs) and the underlying degradation mechanism are described. 1,3-Dinitrobenzene was reduced to 3-nitroaniline by the widely distributed aromatic molecule indole; the reaction is facilitated by montmorillonite clay mineral under both simulated and natural sunlight irradiation. The novel chemical reaction is strongly affected by the type of exchangeable cation present on montmorillonite. The photoreduction reaction is initiated by the adsorption of 1,3-dinitrobenzene and indole in clay interlayers. Under light irradiation, the excited indole molecule generates a hydrated electron and the indole radical cation. The structural negative charge of montmorillonite plausibly stabilizes the radical cation hence preventing charge recombination. This promotes the release of reactive hydrated electrons for further reductive reactions. Similar results were observed for the photoreduction of nitrobenzene. In situ irradiation time-resolved electron paramagnetic resonance and Fourier transform infrared spectroscopies provided direct evidence for the generation of hydrated electrons and the indole radical cations, which supported the proposed degradation mechanism. In the photoreduction process, the role of clay mineral is to both enhance the generation of hydrated electrons and to provide a constrained reaction environment in the galley regions, which increases the probability of contact between NACs and hydrated electrons.

  8. First application of core-shell Ag@Ni magnetic nanocatalyst for transfer hydrogenation reactions of aromatic nitro and carbonyl compounds

    EPA Science Inventory

    A magnetic separable core-shell Ag@Ni nanocatalyst was prepared by a simple one-pot synthetic route using oleylamine both as solvent and reducing agent and triphenylphosphine as surfactant. The synthesized nanoparticles were characterized by several techniques such as X-ray diffr...

  9. In silico quantitative structure-toxicity relationship study of aromatic nitro compounds.

    PubMed

    Pasha, Farhan Ahmad; Neaz, Mohammad Morshed; Cho, Seung Joo; Ansari, Mohiuddin; Mishra, Sunil Kumar; Tiwari, Sharvan

    2009-05-01

    Small molecules often have toxicities that are a function of molecular structural features. Minor variations in structural features can make large difference in such toxicity. Consequently, in silico techniques may be used to correlate such molecular toxicities with their structural features. Relative to nine different sets of aromatic nitro compounds having known observed toxicities against different targets, we developed ligand-based 2D quantitative structure-toxicity relationship models using 20 selected topological descriptors. The topological descriptors have several advantages such as conformational independency, facile and less time-consuming computation to yield good results. Multiple linear regression analysis was used to correlate variations of toxicity with molecular properties. The information index on molecular size, lopping centric index and Kier flexibility index were identified as fundamental descriptors for different kinds of toxicity, and further showed that molecular size, branching and molecular flexibility might be particularly important factors in quantitative structure-toxicity relationship analysis. This study revealed that topological descriptor-guided quantitative structure-toxicity relationship provided a very useful, cost and time-efficient, in silico tool for describing small-molecule toxicities.

  10. 2,3-Dimethyl-6-nitro-2H-indazole

    PubMed Central

    Chen, Yan; Fang, Zheng; Wei, Ping

    2009-01-01

    In the mol­ecule of the title compound, C9H9N3O2, the indazole ring system is almost planar [maximum deviation = 0.019 (3) Å for the C atom bearing the nitro group]. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules into centrosymmetric dimers, forming R 2 2(18) ring motifs. Aromatic π–π contacts between indazole rings [centroid–centroid distances = 3.632 (1) and 3.705 (1) Å] may further stabilize the structure. PMID:21583483

  11. Fast analysis of 29 polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs with ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry

    PubMed Central

    Lung, Shih-Chun Candice; Liu, Chun-Hu

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs are ubiquitous in the environment. Some of them are probable carcinogens and some are source markers. This work presents an ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry (UHPLC-APPI-MS/MS) method for simultaneous analysis of 20 PAHs and nine nitro-PAHs. These compounds are separated in 15 minutes in the positive mode and 11 minutes in the negative mode, one half of GC/MS analysis time. Two pairs of precursor/product ions are offered, which is essential for confirmation. This method separates and quantifies benzo[a]pyrene (the most toxic PAHs) and non-priority benzo[e]pyrene (isomers, little toxicity) to avoid overestimation of toxin levels, demonstrating its importance for health-related researches. With 0.5% 2,4-difluoroanisole in chlorobenzene as the dopant, limits of detection of PAHs except acenaphthylene and those of nitro-PAHs except 2-nitrofluoranthene are below 10 pg and 3 pg, respectively, mostly lower than or comparable to those reported using LC-related systems. The responses were linear over two orders of magnitude with fairly good accuracy and precision. Certified reference materials and real aerosol samples were analyzed to demonstrate its applicability. This fast, sensitive, and reliable method is the first UHPLC-APPI-MS/MS method capable of simultaneously analyzing 29 environmentally and toxicologically important PAHs and nitro-PAHs. PMID:26265155

  12. Study of nitro-polycyclic aromatic hydrocarbons in fine and coarse atmospheric particles

    NASA Astrophysics Data System (ADS)

    Teixeira, Elba Calesso; Garcia, Karine Oliveira; Meincke, Larissa; Leal, Karen Alam

    2011-08-01

    The purpose of the present study was to evaluate six nitro-polycyclic aromatic hydrocarbons (NPAHs) in fine (< 2.5 μm) and coarse (2.5-10 μm) atmospheric particles in an urban and industrial area located in the Metropolitan Area of Porto Alegre (MAPA), RS, Brazil. The method used was of NPAHs isolation and derivatization, and subsequent gas chromatography by electron capture detection (CG/ECD). Results revealed a higher concentration of NPAHs, especially 3-nitrofluoranthene and 1-nitropyrene, in fine particles in the sampling sites studied within the MAPA. The diagnostic ratios calculated for PAHs and NPAHs identified the influence of heavy traffic, mainly of diesel emissions. The correlation of NPAHs with other pollutants (NO x, NO 2, NO and O 3) evidence the influence of vehicular emissions in the MAPA. The seasonal variation evidenced higher NPAHs concentrations in the fine particles during winter for most compounds studied.

  13. Toxicity of N-substituted aromatics to acetoclastic methanogenic activity in granular sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donlon, B.A.; Razo-Flores, E.; Field, J.A.

    1995-11-01

    N-substituted aromatics are important priority pollutants entering the environment primarily through anthropogenic activities associated associated with the industrial production of dyes, explosives, pestides, and pharmaceuticals. Anaerobic treatment of wastewaters discharged by these industries could potentially be problematical as a result of the high toxicity of N-substituted aromatics. The objective of this study was to examine the structure-toxicity relationship of N-substituted aromatic compounds to acetoclastic methanogenic bacteria. The toxicity was assayed to serum flasks by measuring methane production in granular sludge. Unacclimated cultures were used to minimize the biotransformation of the toxic organic chemicals during the test. The nature and themore » degree of the aromatic substitution were observed to have a profound effect on the toxicity of the test compound. Nitroaromatic compounds were, on the average, over 500-fold more toxic than their corresponding aromatic amines. Considering the facile reduction of nitro groups by anerobic microorganisms, a dramatic detoxification of nitroaromatics towards methanogens can be expected to occur during anaerobic wastewater treatment. While the toxicity exerted by the N-substituted aromatic compounds was closely correlated with compound apolarity (log P), it was observed that at any given log P, N-substituted phenols had a toxicity that was 2 orders of magnitude higher than that of chlorophenols and alkylphenols. This indicates that toxicity due to the chemical reactivity of nitroaromatics is much more important than partitioning effects in bacterial membranes. 41 refs., 3 figs., 1 tab.« less

  14. 2'-Chloro-4-meth-oxy-3-nitro-benzil.

    PubMed

    Nithya, G; Thanuja, B; Chakkaravarthi, G; Kanagam, Charles C

    2011-06-01

    In the title compound, C(15)H(10)ClNO(5), the dihedral angle between the aromatic rings is 87.99 (5)°. The O-C-C-O torsion angle between the two carbonyl units is -119.03 (16)°. The crystal structure is stabilized by a weak intermolecular C-H⋯O hydrogen bond.

  15. Electric Hindrance and Precursor Complexes in the Regiochemistry of Some Nitrations

    ERIC Educational Resources Information Center

    Sanchez-Viesca, Francisco; Gomez, Maria Reina Gomez; Berros, Martha

    2011-01-01

    There are still gaps in the theory of supposedly well-known chemical reactions. For example, there is no explanation why there is a notorious preponderance of one of the expected isomers in some electrophilic aromatic substitutions. The preferred ortho orientation of acetyl nitrate has been used widely to obtain ortho nitro compounds; however,…

  16. Light fluorous-tagged traceless one-pot synthesis of benzimidazoles facilitated by microwave irradiation.

    PubMed

    Tseng, Chih-Chung; Tasi, Cheng-Hsun; Sun, Chung-Ming

    2012-06-01

    A novel protocol for rapid assemble of benzimidazole framework has been demonstrated. This method incorporated with light fluorous-tag provides a convenient method for diversification of benzimidazoles and for easy purification via fluorous solid-phase extraction (F-SPE) in a parallel manner. The key transformation of this study involves in situ reduction of aromatic nitro compound, amide formation, cyclization and aromatization promoted by microwave irradiation in a one-pot fashion. The strategy is envisaged to be applied for the establishment of drug-like small molecule libraries for high throughput screening.

  17. Diurnal variability of polycyclic aromatic compound (PAC) concentrations: Relationship with meteorological conditions and inferred sources

    NASA Astrophysics Data System (ADS)

    Alam, Mohammed S.; Keyte, Ian J.; Yin, Jianxin; Stark, Christopher; Jones, Alan M.; Harrison, Roy M.

    2015-12-01

    Polycyclic aromatic hydrocarbons (PAH) and their nitro and oxy derivatives have been sampled every three hours over one week in winter at two sites in Birmingham UK. One site is heavily influenced by road traffic and is close to residential dwellings, while the other site is a background urban location at some distance from both sources of emission. The time series of concentrations has been examined along with the ratio of concentrations between the two sampling sites. A comparison of averaged diurnal profiles has shown different patterns of behaviour which has been investigated through calculating ratios of concentration at 18:00-21:00 h relative to that at 06:00-09:00 h. This allows identification of those compounds with a strong contribution to a traffic-related maximum at 06:00-09:00 h which are predominantly the low molecular weight PAHs, together with a substantial group of quinones and nitro-PAHs. Changes in partitioning between vapour and particulate forms are unlikely to influence the ratio as the mean temperature at both times was almost identical. Most compounds show an appreciable increase in concentrations in the evening which is attributed to residential heating emissions. Compounds dominated by this source show high ratios of 18:00-21:00 concentrations relative to 06:00-09:00 concentrations and include higher molecular weight PAH and a substantial group of both quinones and nitro-PAH. The behaviour of retene, normally taken as an indicator of biomass burning, is suggestive of wood smoke only being one contributor to the evening peak in PAH and their derivatives, with coal combustion presumably being the other main contributor. Variations of PAH concentrations with wind speed show a dilution behaviour consistent with other primary pollutants, and high concentrations of a range of air pollutants were observed in an episode of low temperatures and low wind speeds towards the end of the overall sampling period consistent with poor local dispersion processes. Results from a short summer campaign give indications of the formation of some nitro-PAH by atmospheric chemical reactions.

  18. UVA Photoirradiation of Nitro-Polycyclic Aromatic Hydrocarbons—Induction of Reactive Oxygen Species and Formation of Lipid Peroxides †

    PubMed Central

    Xia, Qingsu; Yin, Jun J.; Zhao, Yuewei; Wu, Yuh-Sen; Wang, Yu-Qui; Ma, Liang; Chen, Shoujun; Sun, Xin; Fu, Peter P.; Yu, Hongtao

    2013-01-01

    Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are a class of genotoxic environmental contaminants. We have long been interested in determining the mechanisms by which nitro-PAHs induce genotoxicity. Although the metabolic activation of nitro-PAHs leading to toxicological activities has been well studied, the photo-induced activation of nitro-PAHs has seldom been reported. In this paper, we report photo-induced lipid peroxidation by 19 nitro-PAHs. The results indicated that all but two of the nitro-PAHs can induce lipid peroxidation. Mechanistic studies suggest that lipid peroxidation by nitro-PAHs is mediated by free radicals generated in the reaction. There was no structural correlation between the nitro-PAHs and their ability to induce lipid peroxidation upon UVA irradiation, or between the HOMO-LUMO gap and the ability to cause lipid peroxidation. Most of the nitro-PAHs are less potent in terms of causing lipid peroxidation than their parent PAHs. The lack of correlation is attributed to the complex photophysics and photochemistry of the nitro-PAHs and the yield of reactive oxygen species (ROS) and other factors. PMID:23493032

  19. Morphological effects on the selectivity of intramolecular versus intermolecular catalytic reaction on Au nanoparticles.

    PubMed

    Wang, Dan; Sun, Yuanmiao; Sun, Yinghui; Huang, Jing; Liang, Zhiqiang; Li, Shuzhou; Jiang, Lin

    2017-06-14

    It is hard for metal nanoparticle catalysts to control the selectivity of a catalytic reaction in a simple process. In this work, we obtain active Au nanoparticle catalysts with high selectivity for the hydrogenation reaction of aromatic nitro compounds, by simply employing spine-like Au nanoparticles. The density functional theory (DFT) calculations further elucidate that the morphological effect on thermal selectivity control is an internal key parameter to modulate the nitro hydrogenation process on the surface of Au spines. These results show that controlled morphological effects may play an important role in catalysis reactions of noble metal NPs with high selectivity.

  20. Synthesis of 1-phenyl-3-(4'-nitrophenyl)-5-(3',4'-dimethoxy-6'-nitrophenyl)-2-pyrazoline and its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Fauzi'ah, Lina; Wahyuningsih, Tutik Dwi

    2017-03-01

    Synthesis of pyrazoline substituted with nitro groups as antibacterial agent has been carried out by cycloaddition reaction. The compound was synthesized from chalcone and phenylhyrazine by refluxing them in 2-butanol for 24 h. The product was purified and characterized using FTIR and 1H-NMR spectrometers. The result showed that pyrazoline has been succesfully synthesized in 33.06% yield. The compund has antibacterial activity againts Bacillus subtilis and Shigella flexneri. However, it has tendency of activity for Gram-negative bacteria. In conclusion, the nitro groups that substituted in aromatic ring were predicted as a part of pharmacophore.

  1. 2′-Chloro-4-meth­oxy-3-nitro­benzil

    PubMed Central

    Nithya, G.; Thanuja, B.; Chakkaravarthi, G.; Kanagam, Charles C.

    2011-01-01

    In the title compound, C15H10ClNO5, the dihedral angle between the aromatic rings is 87.99 (5)°. The O—C—C—O torsion angle between the two carbonyl units is −119.03 (16)°. The crystal structure is stabilized by a weak intermolecular C—H⋯O hydrogen bond. PMID:21754895

  2. Pyridoxamine driven selective turn-off detection of picric acid using glutathione stabilized fluorescent copper nanoclusters and its applications with chemically modified cellulose strips.

    PubMed

    Patel, Ravi; Bothra, Shilpa; Kumar, Rajender; Crisponi, Guido; Sahoo, Suban K

    2018-04-15

    The present work reports the interaction of various vitamin B 6 cofactors with the red emitting glutathione stabilized copper nanoclusters (GSH-CuNCs). Addition of pyridoxamine (PM) resulted a new turn-on band at 410nm due to the possible adsorption over the surface of GSH-CuNCs. The nano-assembly PM-GSH-CuNCs was applied for the selective detection of nitro-aromatic compounds. Upon addition of picric acid (PA), the fluorescence of PM-GSH-CuNCs was selectively quenched at 410nm and ~ 625nm among the other tested nitro-aromatic compounds. With a linearity range from 9.9μM to 43μM, the concentration of PA can be detected down to 2.74μM. The high selectivity exhibited by the nano-assembly allows to detect PA in real samples like tap water, river water and matchstick. Advantageously, the nano-assembly PM-GSH-CuNCs was chemically adsorbed over the cellulosic strips and applied for the naked-eye detection of PA down to 1μM. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. CuNi Nanoparticles Assembled on Graphene for Catalytic Methanolysis of Ammonia Borane and Hydrogenation of Nitro/Nitrile Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Chao; Fu, Jiaju; Muzzio, Michelle

    Here we report a solution phase synthesis of 16 nm CuNi nanoparticles (NPs) with the Cu/Ni composition control. These NPs are assembled on graphene (G) and show Cu/Ni composition-dependent catalysis for methanolysis of ammonia borane (AB) and hydrogenation of aromatic nitro (nitrile) compounds to primary amines in methanol at room temperature. Among five different CuNi NPs studied, the G-Cu 36Ni 64 NPs are the best catalyst for both AB methanolysis (TOF = 49.1 mol H2 mol CuNi -1 min -1 and E a = 24.4 kJ/mol) and hydrogenation reactions (conversion yield >97%). In conclusion, the G-CuNi represents a unique noble-metal-freemore » catalyst for hydrogenation reactions in a green environment without using pure hydrogen.« less

  4. PHOTOCHEMICAL REACTION OF NITRO-POLYCYCLIC AROMATIC HYDROCARBONS: EFFECT BY SOLVENT AND STRUCTURE

    PubMed Central

    Stewart, Gernerique; Smith, Keonia; Chornes, Ashley; Harris, Tracy; Honeysucker, Tiffany; Dasary, Suman Raj; Yu, Hongtao

    2010-01-01

    Photochemical degradation of 1-nitropyrene, 2-nitrofluorene, 2,7-dinitrofluorene, 6-nitrochrysene, 3-nitrofluoranthene, 5-nitroacenaphthene, and 9-nitroanthracene were examined in CHCl3, CH2Cl2, DMF, DMF/H2O (80/20), CH3CN, or CH3CN/H2O (80/20). The degradation follows mostly the 1st order kinetics; but a few follow 2nd order kinetics or undergo self-catalysis. The photodegradation rates follow the order: CHCl3 > CH2Cl2 > DMF > DMF/H2O > CH3CN > CH3CN/H2O. DMF is an exceptional solvent because 3 of the 7 compounds undergo self-catalytic reaction. 9-Nitroanthracene, which has a perpendicular nitro group, is the fastest, while the more compact 1-nitropyrene and 3-nitrofluoranthene, are the slowest degrading compounds. PMID:21170286

  5. CuNi Nanoparticles Assembled on Graphene for Catalytic Methanolysis of Ammonia Borane and Hydrogenation of Nitro/Nitrile Compounds

    DOE PAGES

    Yu, Chao; Fu, Jiaju; Muzzio, Michelle; ...

    2017-01-12

    Here we report a solution phase synthesis of 16 nm CuNi nanoparticles (NPs) with the Cu/Ni composition control. These NPs are assembled on graphene (G) and show Cu/Ni composition-dependent catalysis for methanolysis of ammonia borane (AB) and hydrogenation of aromatic nitro (nitrile) compounds to primary amines in methanol at room temperature. Among five different CuNi NPs studied, the G-Cu 36Ni 64 NPs are the best catalyst for both AB methanolysis (TOF = 49.1 mol H2 mol CuNi -1 min -1 and E a = 24.4 kJ/mol) and hydrogenation reactions (conversion yield >97%). In conclusion, the G-CuNi represents a unique noble-metal-freemore » catalyst for hydrogenation reactions in a green environment without using pure hydrogen.« less

  6. Abiotic Remediation of Nitro-Aromatic Groundwater Contaminants by Zero-Valent Iron

    DTIC Science & Technology

    1994-03-18

    Paul G. Tratnyek 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Department of Environmental Science N/A...REMEDIATION OF NITRO-AROMATIC GROUNDWATER CONTAMINANTS BY ZERO-VALENT IRON Abinash Agrmwal and Paul G. Tratnyek Department of Environmental Science and

  7. Global simulation of aromatic volatile organic compounds in the atmosphere

    NASA Astrophysics Data System (ADS)

    Cabrera Perez, David; Taraborrelli, Domenico; Pozzer, Andrea

    2015-04-01

    Among the large number of chemical compounds in the atmosphere, the organic group plays a key role in the tropospheric chemistry. Specifically the subgroup called aromatics is of great interest. Aromatics are the predominant trace gases in urban areas due to high emissions, primarily by vehicle exhausts and fuel evaporation. They are also present in areas where biofuel is used (i.e residential wood burning). Emissions of aromatic compounds are a substantial fraction of the total emissions of the volatile organic compounds (VOC). Impact of aromatics on human health is very important, as they do not only contribute to the ozone formation in the urban environment, but they are also highly toxic themselves, especially in the case of benzene which is able to trigger a range of illness under long exposure, and of nitro-phenols which cause detrimental for humans and vegetation even at very low concentrations. The aim of this work is to assess the atmospheric impacts of aromatic compounds on the global scale. The main goals are: lifetime and budget estimation, mixing ratios distribution, net effect on ozone production and OH loss for the most emitted aromatic compounds (benzene, toluene, xylenes, ethylbenzene, styrene and trimethylbenzenes). For this purpose, we use the numerical chemistry and climate simulation ECHAM/MESSy Atmospheric Chemistry (EMAC) model to build the global atmospheric budget for the most emitted and predominant aromatic compounds in the atmosphere. A set of emissions was prepared in order to include biomass burning, vegetation and anthropogenic sources of aromatics into the model. A chemical mechanism based on the Master Chemical Mechanism (MCM) was developed to describe the chemical oxidation in the gas phase of these aromatic compounds. MCM have been reduced in terms of number of chemical equation and species in order to make it affordable in a 3D model. Additionally other features have been added, for instance the production of HONO via ortho-nitrophenols photolysis. The model results are compared with observations from different surface and aircraft campaigns in order to estimate the accuracy of the model.

  8. Nitro-polycyclic aromatic hydrocarbon concentrations and sources in urban and suburban atmospheres of the Mid-Atlantic region

    NASA Astrophysics Data System (ADS)

    Bamford, Holly A.; Baker, Joel E.

    Gas and particle phase concentrations of 26 nitro-PAHs were quantified in ambient air collected in downtown Baltimore, MD, an urban region, and in Fort Meade, MD, a suburban area 20 km south-southeast of Baltimore, during January and July 2001. Total (gas+particle) concentrations for individual nitro-PAH compounds varied by as much as five times from sample to sample within each month. 2-Nitrofluoranthene and 9-nitroanthracene were the most abundant of the nitro-PAHs quantitatively analyzed in the air at both sites, accounting for approximately half of the total nitro-PAH concentrations during January and July. Concentrations at Baltimore were on average two to three times higher than those measured at the Fort Meade site. Concentrations for most nitro-PAHs were higher in January than in July, suggesting a reduction in photodecay of nitro-PAHs during January promoted the accumulation of nitro-PAHs. Concentrations of nitro-PAHs produced from gas-phase reactions were significantly correlated with concentrations of oxides of nitrogen (NO x) measured simultaneously at the Fort Meade site. 3-Nitrophenanthrene and 4-nitrophenanthrene were negatively correlated with NO x and were the only nitro-PAHs correlated with O 3, suggesting a different formation mechanism for these compounds compared to the other nitro-PAHs found in this study. The relative contribution of gas-phase reactions and primary emission sources of nitro-PAHs were evaluated using source specific concentration ratios of 2-nitrofluoranthene and 1-nitropyrene (2-NF/1-NP). The mean ratios of 2-NF/1-NP at both sites were statistically higher in July than January, indicating gas-phase reactions were an important source of 2-nitrofluoranthene in the summer. However, in January, gas-phase reactions were reduced, the NO 3-initiated reaction in particular, and primary emissions may significantly contribute to ambient nitro-PAH levels. The two dominant gas-phase production pathways of nitro-PAHs from the OH and NO 3-initiated reactions were investigated using concentration ratios of 2-nitrofluoranthene and 2-nitropyrene (2-NF/2-NP). At both sites, 2-NF/2-NP ratios indicated that the daytime OH-initiated reaction was the dominant gas-phase formation pathway. The estimated contributions of nitro-PAHs produced through gas-phase reactions via the OH pathway during July were >45% and during January were >83% at both Fort Meade and Baltimore.

  9. Synthesis of magnetically recyclable MnFe2O4@SiO2@Ag nanocatalyst: Its high catalytic performances for azo dyes and nitro compounds reduction

    NASA Astrophysics Data System (ADS)

    Kurtan, U.; Amir, Md.; Yıldız, A.; Baykal, A.

    2016-07-01

    In this study, magnetically recycable MnFe2O4@SiO2@Ag nanocatalyst (MnFe2O4@SiO2@Ag MRCs) has been synthesized through co-precipition and chemical reduction method. XRD analysis confirmed the synthesis of single phase nanoproduct with crystallite size of 10 nm. VSM measurements showed the superparamagnetic property of the product. Catalytic studies showed that MnFe2O4@SiO2@Ag MRC could catalyze the reduction of the various azo compounds like methyl orange (MO), methylene blue (MB), eosin Y (EY), and rhodamine B (RhB) and also aromatic nitro compounds such as 4-nitrophenol (4-NP), 4-nitroaniline (4-NA) and 2-nitroaniline (2-NA). Moreover, the magnetic nanocatalyst showed an excellent reusability properties that remained unchanged after several cycles. Therefore, MnFe2O4@SiO2@Ag is the potential candidate for the application of organic pollutants for wastewater treatment.

  10. Comparison of molecular structure of alkali metal o-, m- and p-nitrobenzoates

    NASA Astrophysics Data System (ADS)

    Regulska, E.; Świsłocka, R.; Samsonowicz, M.; Lewandowski, W.

    2008-09-01

    The influence of nitro-substituent in ortho, meta and para positions as well as lithium, sodium, potassium, rubidium and cesium on the electronic system of aromatic ring and the distribution of electronic charge in carboxylic group of the nitrobenzoates were estimated. Optimized geometrical structures were calculated (B3LYP/6-311++G ∗∗). To make quantitative evaluation of aromaticity of studied molecules the geometric (A J, BAC, I 6 and HOMA) as well as magnetic (NICS) aromaticity indices were calculated. Electronic charge distribution was also examined by molecular spectroscopic study, which may be the source of quality criterion for aromaticity. Experimental and theoretical FT-IR, FT-Raman and NMR ( 1H and 13C) spectra of the title compounds were analyzed. The calculated parameters were compared to experimental characteristics of these molecules.

  11. Chemically bonded stationary phases that use synthetic hosts containing aromatic binding clefts: HPLC analysis of nitro-substituted polycyclic aromatic hydrocarbons.

    PubMed Central

    Zimmerman, S C; Saionz, K W; Zeng, Z

    1993-01-01

    The synthesis of hosts with improved binding affinities for nitroaromatic guests is described. Association constants for several host-guest complexes were measured in chloroform solution and ranged over three orders of magnitude. Two hosts were covalently linked to silica gel to produce chemically bonded stationary phases for HPLC. The use of these phases for HPLC analysis of nitro-substituted polycyclic aromatic hydrocarbons is discussed. PMID:8433981

  12. Discreet passive explosive detection through 2-sided waveguided fluorescence

    DOEpatents

    Harper, Ross James [Stillwater, OK; la Grone, Marcus [Cushing, OK; Fisher, Mark [Stillwater, OK

    2011-10-18

    The current invention provides a passive sampling device suitable for collecting and detecting the presence of target analytes. In particular, the passive sampling device is suitable for detecting nitro-aromatic compounds. The current invention further provides a passive sampling device reader suitable for determining the collection of target analytes. Additionally, the current invention provides methods for detecting target analytes using the passive sampling device and the passive sampling device reader.

  13. Ferric hydroxide supported gold subnano clusters or quantum dots: enhanced catalytic performance in chemoselective hydrogenation.

    PubMed

    Liu, Lequan; Qiao, Botao; Ma, Yubo; Zhang, Juan; Deng, Youquan

    2008-05-21

    An attempt to prepare ferric hydroxide supported Au subnano clusters via modified co-precipitation without any calcination was made. High resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) have been employed to study the structure and chemical states of these catalysts. No Au species could be observed in the HRTEM image nor from the XRD pattern, suggesting that the sizes of the Au species in and on the ferric hydroxide support were less than or around 1 nm. Chemoselective hydrogenation of aromatic nitro compounds and alpha,beta-unsaturated aldehydes was selected as a probe reaction to examine the catalytic properties of this catalyst. Under the same reaction conditions, such as 100 degrees C and 1 MPa H2 in the hydrogenation of aromatic nitro compounds, a 96-99% conversion (except for 4-nitrobenzonitrile) with 99% selectivity was obtained over the ferric hydroxide supported Au catalyst, and the TOF values were 2-6 times higher than that of the corresponding ferric oxide supported catalyst with 3-5 nm size Au particles. For further evaluation of this Au catalyst in the hydrogenation of citral and cinnamaldehyde, selectivity towards unsaturated alcohols was 2-20 times higher than that of the corresponding ferric oxide Au catalyst.

  14. Discreet passive explosive detection through 2-sided wave guided fluorescence

    DOEpatents

    Harper, Ross James; la Grone, Marcus; Fisher, Mark

    2012-10-16

    The current invention provides a passive sampling device suitable for collecting and detecting the presence of target analytes. In particular, the passive sampling device is suitable for detecting nitro-aromatic compounds. The current invention further provides a passive sampling device reader suitable for determining the collection of target analytes. Additionally, the current invention provides methods for detecting target analytes using the passive sampling device and the passive sampling device reader.

  15. The Pd-Catalyzed Conversion of Aryl Chlorides, Triflates, and Nonaflates to Nitroaromatics

    PubMed Central

    Fors, Brett P.; Buchwald, Stephen L.

    2009-01-01

    An efficient Pd-catalyst for the transformation of aryl chlorides, triflates and nonaflates to nitroaromatics has been developed. This reaction proceeds under weekly basic conditions and displays a broad scope and excellent functional group compatibility. Moreover, this method allows for the synthesis of aromatic nitro compounds that cannot be accessed efficiently via other nitration protocols. Mechanistic insight into the trasmetallation step of the catalytic process is also reported. PMID:19737014

  16. Oxidation/Biodegradation of Solid Propellants Used in Legacy Chemical Rounds

    DTIC Science & Technology

    2007-08-01

    Bioreactor Sample Source Sample Number Similarity Index Genus Species ICB M28-1 Sample 1A 0.771 Kluyvera cryocrescenes 0.704 Enterobacter cloacae...0.678 Photorhabdus luminencent 0.676 Entrobacter aerogenes Sample 1B 0.901 Alcaligenes faecalis Sample 2 0.894 Pseudomonas stutzeri 0.807 Pseudomonas...et. al. 13 has also described the role of Enterobacter cloacae NADH in the degradation of nitro aromatic compounds. Paracoccus denitrificans, commonly

  17. Highly sensitive gas-phase explosive detection by luminescent microporous polymer networks.

    PubMed

    Räupke, André; Palma-Cando, Alex; Shkura, Eugen; Teckhausen, Peter; Polywka, Andreas; Görrn, Patrick; Scherf, Ullrich; Riedl, Thomas

    2016-07-04

    We propose microporous networks (MPNs) of a light emitting spiro-carbazole based polymer (PSpCz) as luminescent sensor for nitro-aromatic compounds. The MPNs used in this study can be easily synthesized on arbitrarily sized/shaped substrates by simple and low-cost electrochemical deposition. The resulting MPN afford an extremely high specific surface area of 1300 m(2)/g, more than three orders of magnitude higher than that of the thin films of the respective monomer. We demonstrate, that the luminescence of PSpCz is selectively quenched by nitro-aromatic analytes, e.g. nitrobenzene, 2,4-DNT and TNT. In striking contrast to a control sample based on non-porous spiro-carbazole, which does not show any luminescence quenching upon exposure to TNT at levels of 3 ppm and below, the microporous PSpCz shows a clearly detectable response even at TNT concentrations as low as 5 ppb, clearly demonstrating the advantage of microporous films as luminescent sensors for traces of explosive analytes. This level states the vapor pressure of TNT at room temperature.

  18. Highly sensitive gas-phase explosive detection by luminescent microporous polymer networks

    PubMed Central

    Räupke, André; Palma-Cando, Alex; Shkura, Eugen; Teckhausen, Peter; Polywka, Andreas; Görrn, Patrick; Scherf, Ullrich; Riedl, Thomas

    2016-01-01

    We propose microporous networks (MPNs) of a light emitting spiro-carbazole based polymer (PSpCz) as luminescent sensor for nitro-aromatic compounds. The MPNs used in this study can be easily synthesized on arbitrarily sized/shaped substrates by simple and low-cost electrochemical deposition. The resulting MPN afford an extremely high specific surface area of 1300 m2/g, more than three orders of magnitude higher than that of the thin films of the respective monomer. We demonstrate, that the luminescence of PSpCz is selectively quenched by nitro-aromatic analytes, e.g. nitrobenzene, 2,4-DNT and TNT. In striking contrast to a control sample based on non-porous spiro-carbazole, which does not show any luminescence quenching upon exposure to TNT at levels of 3 ppm and below, the microporous PSpCz shows a clearly detectable response even at TNT concentrations as low as 5 ppb, clearly demonstrating the advantage of microporous films as luminescent sensors for traces of explosive analytes. This level states the vapor pressure of TNT at room temperature. PMID:27373905

  19. Effect of Phenolic Compounds on the Synthesis of Gold Nanoparticles and Its Catalytic Activity in the Reduction of Nitro Compounds

    PubMed Central

    Mendes, Marta; Pombeiro, Armando J. L.

    2018-01-01

    Gold nanoparticles (AuNPs) were prepared using an eco-friendly approach in a single step by reduction of HAuCl4 with polyphenols from tea extracts, which act as both reducing and capping agents. The obtained AuNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV–vis), and X-ray photoelectron spectroscopy (XPS). They act as highly efficient catalysts in the reduction of various aromatic nitro compounds in aqueous solution. The effects of a variety of factors (e.g., reaction time, type and amount of reducing agent, shape, size, or amount of AuNPs) were studied towards the optimization of the processes. The total polyphenol content (TPC) was determined before and after the catalytic reaction and the results are discussed in terms of the tea extract percentage, the size of the AuNPs, and their catalytic activity. The reusability of the AuNP catalyst in the reduction of 4-nitrophenol was also tested. The reactions follow pseudo first-order kinetics. PMID:29748502

  20. Effect of Phenolic Compounds on the Synthesis of Gold Nanoparticles and its Catalytic Activity in the Reduction of Nitro Compounds.

    PubMed

    Alegria, Elisabete C B A; Ribeiro, Ana P C; Mendes, Marta; Ferraria, Ana M; do Rego, Ana M Botelho; Pombeiro, Armando J L

    2018-05-10

    Gold nanoparticles (AuNPs) were prepared using an eco-friendly approach in a single step by reduction of HAuCl₄ with polyphenols from tea extracts, which act as both reducing and capping agents. The obtained AuNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet⁻visible spectroscopy (UV⁻vis), and X-ray photoelectron spectroscopy (XPS). They act as highly efficient catalysts in the reduction of various aromatic nitro compounds in aqueous solution. The effects of a variety of factors (e.g., reaction time, type and amount of reducing agent, shape, size, or amount of AuNPs) were studied towards the optimization of the processes. The total polyphenol content (TPC) was determined before and after the catalytic reaction and the results are discussed in terms of the tea extract percentage, the size of the AuNPs, and their catalytic activity. The reusability of the AuNP catalyst in the reduction of 4-nitrophenol was also tested. The reactions follow pseudo first-order kinetics.

  1. Nitroaromatic Compounds, from Synthesis to Biodegradation

    PubMed Central

    Ju, Kou-San; Parales, Rebecca E.

    2010-01-01

    Summary: Nitroaromatic compounds are relatively rare in nature and have been introduced into the environment mainly by human activities. This important class of industrial chemicals is widely used in the synthesis of many diverse products, including dyes, polymers, pesticides, and explosives. Unfortunately, their extensive use has led to environmental contamination of soil and groundwater. The nitro group, which provides chemical and functional diversity in these molecules, also contributes to the recalcitrance of these compounds to biodegradation. The electron-withdrawing nature of the nitro group, in concert with the stability of the benzene ring, makes nitroaromatic compounds resistant to oxidative degradation. Recalcitrance is further compounded by their acute toxicity, mutagenicity, and easy reduction into carcinogenic aromatic amines. Nitroaromatic compounds are hazardous to human health and are registered on the U.S. Environmental Protection Agency's list of priority pollutants for environmental remediation. Although the majority of these compounds are synthetic in nature, microorganisms in contaminated environments have rapidly adapted to their presence by evolving new biodegradation pathways that take advantage of them as sources of carbon, nitrogen, and energy. This review provides an overview of the synthesis of both man-made and biogenic nitroaromatic compounds, the bacteria that have been identified to grow on and completely mineralize nitroaromatic compounds, and the pathways that are present in these strains. The possible evolutionary origins of the newly evolved pathways are also discussed. PMID:20508249

  2. QSAR modeling of acute toxicity on mammals caused by aromatic compounds: the case study using oral LD50 for rats.

    PubMed

    Rasulev, Bakhtiyor; Kusić, Hrvoje; Leszczynska, Danuta; Leszczynski, Jerzy; Koprivanac, Natalija

    2010-05-01

    The goal of the study was to predict toxicity in vivo caused by aromatic compounds structured with a single benzene ring and the presence or absence of different substituent groups such as hydroxyl-, nitro-, amino-, methyl-, methoxy-, etc., by using QSAR/QSPR tools. A Genetic Algorithm and multiple regression analysis were applied to select the descriptors and to generate the correlation models. The most predictive model is shown to be the 3-variable model which also has a good ratio of the number of descriptors and their predictive ability to avoid overfitting. The main contributions to the toxicity were shown to be the polarizability weighted MATS2p and the number of certain groups C-026 descriptors. The GA-MLRA approach showed good results in this study, which allows the building of a simple, interpretable and transparent model that can be used for future studies of predicting toxicity of organic compounds to mammals.

  3. Biodegradation of 3-Nitrotyrosine by Burkholderia sp. Strain JS165 and Variovorax paradoxus JS171

    DTIC Science & Technology

    2006-02-01

    Bukhalid, D. M. Gibson, B. R. Crane, and R. Loria. 2004. Nitration of a peptide phytotoxin by bacterial nitric oxide synthase. Nature 429:79–82. 15...The facile isolation and the specific, regulated pathway for 3-nitrotyrosine degradation in natural ecosystems suggest that there is a significant...mechanisms have been established (19). No information is available on the biodegradation of natural nitro- aromatic compounds, such as 3NTyr. We

  4. Polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs and related environmental compounds: biological markers of exposure and effects.

    PubMed Central

    Talaska, G; Underwood, P; Maier, A; Lewtas, J; Rothman, N; Jaeger, M

    1996-01-01

    Lung cancer caused by polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs and related environmental agents is a major problem in industrialized nations. The high case-fatality rate of the disease, even with the best supportive treatment, underscores the importance of primary lung cancer prevention. Development of biomarkers of exposure and effects to PAHs and related compounds is now underway and includes measurement of urinary metabolites of specific PAHs as well as detection of protein and DNA adducts as indicators of effective dose. Validation of these markers in terms of total environmental dose requires that concurrent measures of air levels and potential dermal exposure be made. In addition, the interrelationships between PAH biomarkers must be determined, particularly when levels of the marker in surrogate molecules (e.g., protein) or markers from surrogate tissues (e.g., lymphocyte DNA) are used to assess the risk to the target organ, the lung. Two approaches to biomarker studies will be reviewed in this article: the progress made using blood lymphocytes as surrogates for lung tissues and the progress made developing noninvasive markers of carcinogen-DNA adduct levels in lung-derived cells available in bronchial-alveolar lavage and in sputum. Data are presented from studies in which exfoliated urothelial cells were used as a surrogate tissue to assess exposure to human urinary bladder carcinogens in occupational groups. PMID:8933032

  5. Biomimetic synthesis of silver nanoparticles using the fish scales of Labeo rohita and their application as catalysts for the reduction of aromatic nitro compounds

    NASA Astrophysics Data System (ADS)

    Sinha, Tanur; Ahmaruzzaman, M.; Sil, A. K.; Bhattacharjee, Archita

    2014-10-01

    In this article, a cleaner, greener, cheaper and environment friendly method for the generation of self assembled silver nanoparticles (Ag NPs) applying a simple irradiation technique using the aqueous extract of the fish scales (which is considered as a waste material) of Labeo rohita is described. Gelatin is considered as the major ingredient responsible for the reduction as well as stabilisation of the self assembled Ag NPs. The size and morphology of the individual Ag NPs can be tuned by controlling the various reaction parameters, such as temperature, concentration, and pH. Studies showed that on increasing concentration and pH Ag NPs size decreases, while on increasing temperature, Ag NPs size increases. The present process does not need any external reducing agent, like sodium borohydride or hydrazine or others and gelatin itself can play a dual role: a ‘reducing agent' and ‘stabilisation agent' for the formation of gelatin-Ag NPs colloidal dispersion. The synthesized Ag NPs were characterised by Ultraviolet-Visible spectroscopy (UV-Vis), Transmission electron microscopy (TEM) and Selected area electron diffraction (SAED) analyses. The synthesized Ag NPs was used to study the catalytic reduction of various aromatic nitro compounds in aqueous and three different micellar media. The hydrophobic and electrostatic interaction between the micelle and the substrate is responsible for the catalytic activity of the nanoparticles in micelle.

  6. Vinylation of nitro-substituted indoles, quinolinones, and anilides with grignard reagents.

    PubMed

    Egris, Riccardo; Villacampa, Mercedes; Menéndez, J Carlos

    2009-10-19

    The reaction of vinyl Grignard reagents with o-methoxynitroarenes containing an electron-releasing substituent para to the nitro group proceeds through a pathway that is different from the initially expected Bartoli indole synthesis. Thus, instead of giving fused indole derivatives, these reactions provide a very mild and efficient new procedure for the synthesis of synthetically relevant aromatic systems containing an o-nitrovinyl moiety, such as 5-nitro-4-vinylindoles, 6-nitro-7-vinylindoles, 6-nitro-5-vinyl-2(1H)quinolinones, and 4-nitro-3-vinylanilines.

  7. Phase I and phase II reductive metabolism simulation of nitro aromatic xenobiotics with electrochemistry coupled with high resolution mass spectrometry.

    PubMed

    Bussy, Ugo; Chung-Davidson, Yu-Wen; Li, Ke; Li, Weiming

    2014-11-01

    Electrochemistry combined with (liquid chromatography) high resolution mass spectrometry was used to simulate the general reductive metabolism of three biologically important nitro aromatic molecules: 3-trifluoromethyl-4-nitrophenol (TFM), niclosamide, and nilutamide. TFM is a pesticide used in the Laurential Great Lakes while niclosamide and nilutamide are used in cancer therapy. At first, a flow-through electrochemical cell was directly connected to a high resolution mass spectrometer to evaluate the ability of electrochemistry to produce the main reduction metabolites of nitro aromatic, nitroso, hydroxylamine, and amine functional groups. Electrochemical experiments were then carried out at a constant potential of -2.5 V before analysis of the reduction products by LC-HRMS, which confirmed the presence of the nitroso, hydroxylamine, and amine species as well as dimers. Dimer identification illustrates the reactivity of the nitroso species with amine and hydroxylamine species. To investigate xenobiotic metabolism, the reactivity of nitroso species to biomolecules was also examined. Binding of the nitroso metabolite to glutathione was demonstrated by the observation of adducts by LC-ESI(+)-HRMS and the characteristics of their MSMS fragmentation. In conclusion, electrochemistry produces the main reductive metabolites of nitro aromatics and supports the observation of nitroso reactivity through dimer or glutathione adduct formation.

  8. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    DOEpatents

    Chang, S.G.

    1994-07-26

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

  9. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    DOEpatents

    Chang, Shih-Ger

    1994-01-01

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O.sub.3, PO, PO.sub.2, etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like.

  10. 4-Nitro­benzyl 2-bromo­acetate

    PubMed Central

    Zhu, Kai; Liu, Hui; Wang, Yan-Hua; Han, Ping-Fang; Wei, Ping

    2009-01-01

    In the mol­ecule of the title compound, C9H8BrNO4, the acetate group is close to planar [maximum deviation = 0.042 (3) Å] and is oriented at a dihedral angle of 73.24 (3)° with respect to the aromatic ring. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules into a three-dimensional network, forming R 2 2(10) ring motifs. PMID:21582813

  11. Structural and spectral comparisons between isomeric benzisothiazole and benzothiazole based aromatic heterocyclic dyes

    NASA Astrophysics Data System (ADS)

    Wang, Yin-Ge; Wang, Yue-Hua; Tao, Tao; Qian, Hui-Fen; Huang, Wei

    2015-09-01

    A pair of isomeric heterocyclic compounds, namely 3-amino-5-nitro-[2,1]-benzisothiazole and 2-amino-6-nitrobenzothiazole, are used as the diazonium components to couple with two N-substituted 4-aminobenzene derivatives. As a result, two pairs of isomeric aromatic heterocyclic azo dyes have been produced and they are structurally and spectrally characterized and compared including single-crystal structures, electronic spectra, solvatochromism and reversible acid-base discoloration, thermal stability and theoretically calculations. It is concluded that both benzisothiazole and benzothiazole based dyes show planar molecular structures and offset π-π stacking interactions, solvatochromism and reversible acid-base discoloration. Furthermore, benzisothiazole based aromatic heterocyclic dyes exhibit higher thermal stability, larger solvatochromic effects and maximum absorption wavelengths than corresponding benzothiazole based ones, which can be explained successfully by the differences of their calculated isomerization energy, dipole moment and molecular band gaps.

  12. Crystal structure and spectral properties of vitamin K3 based nitrobenzo[a]phenoxazines

    NASA Astrophysics Data System (ADS)

    Chadar, Dattatray; Chakravarty, Debamitra; Lande, Dipali N.; Gejji, Shridhar P.; Sahoo, Suprabha; Salunke-Gawali, Sunita

    2017-12-01

    Benzo[a]phenoxazines are the planar polycyclic fluorescent compounds, find a variety of applications in biological sciences and are of growing interest. In the present work we synthesized heterocyclic aromatic fluorescent benzo[a]phenoxazines namely, 6-methyl-9-nitro-5H-benzo[a]phenoxazin-5-one (1) and 6-methyl-10-nitro-5H-benzo[a]phenoxazin-5-one (2) which are characterized in terms of the 1H and 13C chemical shifts from 2D gHSQCAD NMR experiments. Single crystal X-ray experiments revealed both 1 and 2 possess the Csbnd H⋯O interactions. Moreover the π•••π stacking interactions between planar polycycles have been noticed only in 1. The structural and vibrational spectral inferences obtained from experiments are corroborated through the ωB97xD based density functional theory.

  13. Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide.

    PubMed

    Salter-Blanc, Alexandra J; Bylaska, Eric J; Lyon, Molly A; Ness, Stuart C; Tratnyek, Paul G

    2016-05-17

    New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. In this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett σ constants (σ(-)), pKas of the amines, and energies of the highest occupied molecular orbital (EHOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (Eox)]. The selection of calculated descriptors (pKa, EHOMO, and Eox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to EHOMO (calculated with a modest level of theory).

  14. Sodium hypochlorite as an alternative to hydrogen peroxide in Fenton process for industrial scale.

    PubMed

    Behin, Jamshid; Akbari, Abbas; Mahmoudi, Mohsen; Khajeh, Mehdi

    2017-09-15

    In present work, the treatment of aromatic compounds of simulated wastewater was performed by Fenton and NaOCl/Fe 2+ processes. The model solution was prepared based on the wastewater composition of Diisocyanate unit of Karoon Petrochemical Company/Iran containing Diamino-toluenes, Nitro-phenol, Mononitro-toluene, Nitro-cresol, and Dinitro-toluene. Experiments were conducted in a batch mode to examine the effects of operating variables such as pH, oxidant dosages, ferrous ion concentration and numbers of feeding on COD removal. Taguchi experimental design was used to determine the optimum conditions. The COD removal efficiency under optimum conditions (suggested by Taguchi design) in Fenton and NaOCl/Fe 2+ processes was 88.7% and 83.4%, respectively. The highest contribution factor in Fenton process belongs to pH (47.47%) and in NaOCl/Fe 2+ process belongs to NaOCl/pollutants (50.26%). High regression coefficient (R 2 : 0.98) obtained for Taguchi method, indicates that models are statistically significant and are in well agreement with each other. The NaOCl/Fe 2+ process utilizing a conventional oxidant, in comparison to hydrogen peroxide, is an efficient cost effective process for COD removal from real wastewater, although the removal efficiency is not as high as in Fenton process; however it is a suitable process to replace Fenton process in industrial scale for wastewater involved aromatic compounds with high COD. This process was successfully applied in Karoon Petrochemical Company/Iran. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Self-Assembled Molecular Squares Containing Metal-Based Donor: Synthesis and Application in the Sensing of Nitro-aromatics†

    PubMed Central

    Vajpayee, Vaishali; Kim, Hyunuk; Mishra, Anurag; Mukherjee, Partha Sarathi; Lee, Min Hyung; Kim, Hwan Kyu

    2012-01-01

    Self-assemblies between a linear Pt-based donor and ferrocene-chelated metallic acceptors produce novel heterometallic squares 4 and 5, which show fluorescence quenching upon addition of nitro-aromatics. PMID:21321785

  16. Crystal structure of (2Z,5Z)-3-(4-meth­oxy­phen­yl)-2-[(4-meth­oxy­phenyl)­imino]-5-[(E)-3-(2-nitro­phen­yl)allyl­idene]-1,3-thia­zolidin-4-one

    PubMed Central

    Rahmani, Rachida; Djafri, Ahmed; Daran, Jean-Claude; Djafri, Ayada; Chouaih, Abdelkader; Hamzaoui, Fodil

    2016-01-01

    In the title compound, C26H21N3O5S, the thia­zole ring is nearly planar with a maximum deviation of 0.017 (2) Å, and is twisted with respect to the three benzene rings, making dihedral angles of 25.52 (12), 85.77 (12) and 81.85 (13)°. In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions link the mol­ecules into a three-dimensional supra­molecular architecture. Aromatic π–π stacking is also observed between the parallel nitro­benzene rings of neighbouring mol­ecules, the centroid-to-centroid distance being 3.5872 (15) Å. PMID:26958377

  17. Emission comparison of urban bus engine fueled with diesel oil and 'biodiesel' blend.

    PubMed

    Turrio-Baldassarri, Luigi; Battistelli, Chiara L; Conti, Luigi; Crebelli, Riccardo; De Berardis, Barbara; Iamiceli, Anna Laura; Gambino, Michele; Iannaccone, Sabato

    2004-07-05

    The chemical and toxicological characteristics of emissions from an urban bus engine fueled with diesel and biodiesel blend were studied. Exhaust gases were produced by a turbocharged EURO 2 heavy-duty diesel engine, operating in steady-state conditions on the European test 13 mode cycle (ECE R49). Regulated and unregulated pollutants, such as carcinogenic polycyclic aromatic hydrocarbons (PAHs) and nitrated derivatives (nitro-PAHs), carbonyl compounds and light aromatic hydrocarbons were quantified. Mutagenicity of the emissions was evaluated by the Salmonella typhimurium/mammalian microsome assay. The effect of the fuels under study on the size distribution of particulate matter (PM) was also evaluated. The use of biodiesel blend seems to result in small reductions of emissions of most of the aromatic and polyaromatic compounds; these differences, however, have no statistical significance at 95% confidence level. Formaldehyde, on the other hand, has a statistically significant increase of 18% with biodiesel blend. In vitro toxicological assays show an overall similar mutagenic potency and genotoxic profile for diesel and biodiesel blend emissions. The electron microscopy analysis indicates that PM for both fuels has the same chemical composition, morphology, shape and granulometric spectrum, with most of the particles in the range 0.06-0.3 microm.

  18. 2-Nitro­benzyl 2-chloro­acetate

    PubMed Central

    Zhu, Kai; Liu, Hui; Wang, Yan-Hua; Han, Ping-Fang; Wei, Ping

    2009-01-01

    In the mol­ecule of the title compound, C9H8ClNO4, an intra­molecular C—H⋯O inter­action results in the formation of a near-planar (r.m.s. deviation 0.002 Å) five-membered ring, which is oriented at a dihedral angle of 4.07 (4)° with respect to the adjacent aromatic ring. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules into a two-dimensional network. PMID:21577790

  19. A photoactive bimetallic framework for direct aminoformylation ...

    EPA Pesticide Factsheets

    A bimetallic catalyst, AgPd@g-C3N4, was synthesized by immobilizing silver and palladium nanoparticles over the surface of graphitic carbon nitride (g-C3N4) and its utility was demonstrated for the concerted aminoformylation of aromatic nitro compounds under visible light conditions. The entwined AgPd@g-C3N4 catalyst was very effective in exploiting formic acid as a source of hydrogen and acting as a formylating agent under photochemical conditions. Prepared for submission to Royal Society of Chemistry (RSC) journal, Green Chemistry

  20. Synthesis of new 1,2,4-triazole compounds containing Schiff and Mannich bases (morpholine) with antioxidant and antimicrobial activities.

    PubMed

    Ünver, Yasemin; Deniz, Sadik; Çelik, Fatih; Akar, Zeynep; Küçük, Murat; Sancak, Kemal

    2016-01-01

    Compound 2 was synthesized by reacting CS 2 /KOH with compound 1. The treatment of compound 2 with hydrazine hydrate produced compound 3. Then, compound 3 was converted to Schiff bases (4a-d) by the handling with several aromatic aldehydes. The treatment of triazole compounds 4a-d containing Schiff base with morpholine gave compounds 5a-d. All compounds were tested for their antioxidant and antimicrobial activities. The antioxidant test results of DPPH• radical scavenging and ferric reducing/antioxidant power methods showed good antioxidant activity. The triazole-thiol (3) was the most active, and the effect of the substituent type of the thiophene ring on the activity was same for both Schiff bases (4a-d) and Mannich bases (5a-d). Among the newly synthesized triazole derivatives, the Schiff base 4d and the Mannich base 5d carrying nitro substituent on the thiophene ring showed promising antibacterial and antifungal activity, with lower MIC values than the standard antibacterial ampicillin.

  1. Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide

    DOE PAGES

    Salter-Blanc, Alexandra J.; Bylaska, Eric J.; Lyon, Molly A.; ...

    2016-04-13

    New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO 2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. Here in this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammettmore » $$\\sigma$$ constants ($$\\sigma^-$$), pK as of the amines, and energies of the highest occupied molecular orbital (E HOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (E ox)]. The selection of calculated descriptors (pK a), E HOMO, and E ox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO 2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to E HOMO (calculated with a modest level of theory).« less

  2. Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salter-Blanc, Alexandra J.; Bylaska, Eric J.; Lyon, Molly A.

    New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO 2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. Here in this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammettmore » $$\\sigma$$ constants ($$\\sigma^-$$), pK as of the amines, and energies of the highest occupied molecular orbital (E HOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (E ox)]. The selection of calculated descriptors (pK a), E HOMO, and E ox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO 2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to E HOMO (calculated with a modest level of theory).« less

  3. Potential amoebicidal activity of hydrazone derivatives: synthesis, characterization, electrochemical behavior, theoretical study and evaluation of the biological activity.

    PubMed

    Toledano-Magaña, Yanis; García-Ramos, Juan Carlos; Navarro-Olivarria, Marisol; Flores-Alamo, Marcos; Manzanera-Estrada, Mayra; Ortiz-Frade, Luis; Galindo-Murillo, Rodrigo; Ruiz-Azuara, Lena; Meléndrez-Luevano, Ruth Ma; Cabrera-Vivas, Blanca M

    2015-05-29

    Four new hydrazones were synthesized by the condensation of the selected hydrazine and the appropriate nitrobenzaldehyde. A complete characterization was done employing 1H- and 13C-NMR, electrochemical techniques and theoretical studies. After the characterization and electrochemical analysis of each compound, amoebicidal activity was tested in vitro against the HM1:IMSS strain of Entamoeba histolytica. The results showed the influence of the nitrobenzene group and the hydrazone linkage on the amoebicidal activity. meta-Nitro substituted compound 2 presents a promising amoebicidal activity with an IC50 = 0.84 μM, which represents a 7-fold increase in cell growth inhibition potency with respect to metronidazole (IC50 = 6.3 μM). Compounds 1, 3, and 4 show decreased amoebicidal activity, with IC50 values of 7, 75 and 23 µM, respectively, as a function of the nitro group position on the aromatic ring. The observed differences in the biological activity could be explained not only by the redox potential of the molecules, but also by their capacity to participate in the formation of intra- and intermolecular hydrogen bonds. Redox potentials as well as the amoebicidal activity can be described with parameters obtained from the DFT analysis.

  4. A novel porous framework as variable chemo-sensor: from response of specific carcinogenic alkyl-aromatic to selective detection of explosive nitro-aromatics.

    PubMed

    Chen, Qihui

    2018-06-07

    Selective probing one molecule from one class similar molecules is highly challenging due to their similar chemical and physical properties. Here, a novel metal-organic framework FJI-H15 with flexible porous cages has been designed and synthesized, which can specifically recognize ethyl-benzene with ultrahigh enhancement efficiency from series of alkyl-aromatics, in which an unusual size-dependent interaction has been found and proved. While it also can selectively detect phenolic-nitroaromatics among series of nitro-aromatics based on energy transferring and electrostatic interaction. Such unusual specificity and variable mechanisms responding to different type molecules has not been reported, which will provide a new strategy for developing more effective chemo-sensor based on MOFs for probing small structural differences in molecules. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. 1-(2,4-Di-nitro-phen-yl)-2-[(E)-(3,4,5-tri-meth-oxy-benzyl-idene)]hydrazine.

    PubMed

    Chantrapromma, Suchada; Ruanwas, Pumsak; Boonnak, Nawong; Chidan Kumar, C S; Fun, Hoong-Kun

    2014-02-01

    Mol-ecules of the title compound, C16H16N4O7, are not planar with a dihedral angle of 5.50 (11)° between the substituted benzene rings. The two meta-meth-oxy groups of the 3,4,5-tri-meth-oxy-benzene moiety lie in the plane of the attached ring [Cmeth-yl-O-C-C torsion angles -0.1 (4)° and -3.7 (3)°] while the para-meth-oxy substituent lies out of the plane [Cmeth-yl-O-C-C, -86.0 (3)°]. An intra-molecular N-H⋯O hydrogen bond involving the 2-nitro substituent generates an S(6) ring motif. In the crystal structure, mol-ecules are linked by weak C-H⋯O inter-actions into screw chains, that are arranged into a sheet parallel to the bc plane. These sheets are connected by π-π stacking inter-actions between the nitro and meth-oxy substituted aromatic rings with a centroid-centroid separation of 3.9420 (13) Å. C-H⋯π contacts further stabilize the two-dimensional network.

  6. Relationships for the impact sensitivities of energetic C-nitro compounds based on bond dissociation energy.

    PubMed

    Li, Jinshan

    2010-02-18

    The ZPE-corrected C-NO(2) bond dissociation energies (BDEs(ZPE)) of a series of model C-nitro compounds and 26 energetic C-nitro compounds have been calculated using density functional theory methods. Computed results show that for C-nitro compounds the UB3LYP calculated BDE(ZPE) is less than the UB3P86 using the 6-31G** basis set, and the UB3P86 BDE(ZPE) changes slightly with the basis set varying from 6-31G** to 6-31++G**. For the series of model C-nitro compounds with different chemical skeletons, it is drawn from NBO analysis that the order of BDE(ZPE) is not only in line with that of the NAO bond order but also with that of the energy gap between C-NO(2) bonding and antibonding orbitals. It is found that for the energetic C-nitro compounds whose drop energies (Es(dr)) are below 24.5 J a good linear correlation exists between E(dr) and BDE(ZPE), implying that these compounds ignite through the C-NO(2) dissociation mechanism. After excluding the so-called trinitrotoluene mechanism compounds, a polynomial correlation of ln(E(dr)) with the BDE(ZPE) calculated at density functional theory levels has been established successfully for the 18 C-NO(2) dissociation energetic C-nitro compounds.

  7. Toxicity and biodegradability of selected N-substituted phenols under anaerobic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donlon, B.; Razo-Flores, E.; Hwu, C.S.

    1995-12-31

    The anaerobic toxicity and biodegradability of N-substituted aromatics were evaluated in order to obtain information on their ultimate biotreatment. The toxicity of selected N-substituted aromatic compounds toward acetoclastic methanogens in granular sludge was measured in batch assays. This toxicity was highly correlated with compound hydrophobicity, indicating that partitioning into the bacterial membranes was an important factor in the toxicity. However, other factors, such as chemical interactions with key cell components, were suggested to be playing an important role. Nitroaromatic compounds were, on the average, over 300-fold more toxic than their amino-substituted counterparts. This finding suggests that the facile reduction ofmore » nitro-groups known to occur in anaerobic environments would result in a high level of detoxification. To test this hypothesis, continuous lab-scale upward-flow anaerobic sludge bed reactors treating 2-nitrophenol and 4-nitrophenol were established. The 4-nitrophenol was readily converted to the corresponding 4-aminophenol, whereas complete mineralization of 2-nitrophenol via intermediate formation of 2-aminophenol was obtained. These conversions led to a dramatic detoxification of the nitrophenols, because it was feasible to treat the highly toxic nitrophenolics at high organic loading rates.« less

  8. Phthalazin-1(2H)-one–picric acid (1/1)

    PubMed Central

    Yathirajan, H. S.; Narayana, B.; Swamy, M. T.; Sarojini, B. K.; Bolte, Michael

    2008-01-01

    The geometric parameters of the title compound, C8H6N2O·C6H3N3O7, are in the usual ranges. The three nitro groups are almost coplanar with the aromatic picrate ring [dihedral angles 10.2 (2)°, 7.62 (16) and 8.08 (17)°]. The mol­ecular conformation of the picric acid is stabilized by an intra­molecular O—H⋯O hydrogen bond. The phthalazin-1(2H)-one mol­ecules are connected via N—H⋯O hydrogen bonds, forming centrosymmetric dimers. PMID:21200682

  9. Atmospheric reactions of ortho cresol: Gas phase and aerosol products

    NASA Astrophysics Data System (ADS)

    Grosjean, Daniel

    Photo-oxidation of ortho-cresol (0.5-1.1 ppm) and oxides of nitrogen (0.12-0.66 ppm) in air yielded the following gas-phase products: pyruvic acid, acetaldehyde, formaldehyde, peroxyacetylnitrate, nitrocresol and trace levels of nitric acid and methyl nitrate. particulate phase products included 2-hydroxy3-nitro toluene, 2-hydroxy-5-nitro toluene, 2-hydroxy-3,5-dinitrotoluene and, tentatively, several hydroxynitrocresol isomers. Yields of gas-phase products (0.8 % for pyruvic acid, 5-11 % for the sum of the aromatic ring fragmentation products) and of aerosol products (5-19% on a carbon basis, with particulate carbon formation rates of 30-80 μ g m -3 h -1) are discussed in terms of photochemical reaction pathways. From 60 to 89 % of the initial NO x was consumed in these reactions and a significant fraction of the reacted NO x could be accounted for as particulate nitro-aromatic products.

  10. DETERMINATION OF AROMATIC AMINES IN SOILS

    EPA Science Inventory

    A rapid liquid chromatographic(LC)method with ultraviolet(UV)or fluorescence detection was developed for parts-per-billion levels of aromatic amines in soils. 2,4-Diaminotoluene, pyridine,aniline,2-picoline,2-toluidine,5-nitro-2-toluidine,2-methyl-6-ethylaniline,4-aminobiphenyl,4...

  11. Molecular Diversity of Brown Carbon Chromophores in Biomass Burning Aerosol

    NASA Astrophysics Data System (ADS)

    Lin, P.; Laskin, A.; Laskin, J.; Fleming, L.; Nizkorodov, S.

    2017-12-01

    Brown carbon (BrC) is ubiquitous in the atmosphere and significant contributor to climate forcing. Understanding the environmental effects of BrC, its sources, formation, and atmospheric transformation mechanisms requires identification of BrC chromophores and characterization of their light-absorption properties. In this study, we investigate the chemical composition, molecular identity and optical properties of BrC chromophores associated with biomass burning aerosols emitted from burns of different biofuels during the NOAA FIREX/FireLab experiment. The results show that BrC in the biomass burning smoke contains organic compounds of various molecular structures, polarities, and volatilities. The relative contributions to light absorption from different classes of chromophores such as nitro-phenols, polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs and heterocyclic PAHs are quantified and are shown to be diverse among aerosol samples from different biofuel sources. Despite complexity of BrC, grouping its chromophores according to their polarity and volatility may simplify the parameters for modelling input.

  12. Chemoselective Nitro Group Reduction and Reductive Dechlorination Initiate Degradation of 2-Chloro-5-Nitrophenol by Ralstonia eutropha JMP134

    PubMed Central

    Schenzle, Andreas; Lenke, Hiltrud; Spain, Jim C.; Knackmuss, Hans-Joachim

    1999-01-01

    Ralstonia eutropha JMP134 utilizes 2-chloro-5-nitrophenol as a sole source of nitrogen, carbon, and energy. The initial steps for degradation of 2-chloro-5-nitrophenol are analogous to those of 3-nitrophenol degradation in R. eutropha JMP134. 2-Chloro-5-nitrophenol is initially reduced to 2-chloro-5-hydroxylaminophenol, which is subject to an enzymatic Bamberger rearrangement yielding 2-amino-5-chlorohydroquinone. The chlorine of 2-amino-5-chlorohydroquinone is removed by a reductive mechanism, and aminohydroquinone is formed. 2-Chloro-5-nitrophenol and 3-nitrophenol induce the expression of 3-nitrophenol nitroreductase, of 3-hydroxylaminophenol mutase, and of the dechlorinating activity. 3-Nitrophenol nitroreductase catalyzes chemoselective reduction of aromatic nitro groups to hydroxylamino groups in the presence of NADPH. 3-Nitrophenol nitroreductase is active with a variety of mono-, di-, and trinitroaromatic compounds, demonstrating a relaxed substrate specificity of the enzyme. Nitrosobenzene serves as a substrate for the enzyme and is converted faster than nitrobenzene. PMID:10347008

  13. Design and synthesis of a new organic receptor and evaluation of colorimetric anion sensing ability in organo-aqueous medium

    NASA Astrophysics Data System (ADS)

    Srikala, P.; Tarafder, Kartick; Trivedi, Darshak R.

    2017-01-01

    A new organic receptor has been designed and synthesized by the combination of aromatic dialdehyde with nitro-substituted aminophenol resulting in a Schiff base compound. The receptor exhibited a colorimetric response for F- and AcO- ion with a distinct color change from pale yellow to red and pink respectively in dry DMSO solvent and yellow to pale greenish yellow in DMSO:H2O (9:1, v/v). UV-Vis titration studies displayed a significant shift in absorption maxima in comparison with the free receptor. The shift could be attributed to the hydrogen bonding interactions between the active anions and the hydroxyl functionality aided by the electron withdrawing nitro substituent on the receptor. 1H NMR titration and density functionality studies have been performed to understand the nature of interaction of receptor and anions. The lower detection limit of 1.12 ppm was obtained in organic media for F- ion confirming the real time application of the receptor.

  14. Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling

    PubMed Central

    Huang, Lei; Bohac, Stanislav V.; Chernyak, Sergei M.; Batterman, Stuart A.

    2015-01-01

    Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) for which emission information is limited, especially for idling conditions, new fuels and the new after-treatment systems. This study investigates exhaust emissions of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 900 kPa BMEP), with three types of fuel (ultra-low sulfur diesel or ULSD, Swedish low aromatic diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM2.5, Σ15PAHs, Σ11NPAHs, Σ5Hopanes and Σ6Steranes, and biodiesel resulted in the larger reductions. However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-nitroacenaphthene (biodiesel) and PM2.5 (biodiesel), a significant result given the attention to exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The DOC + DPF combination reduced PM2.5 and SVOC emissions during DPF loading (>99% reduction) and DPF regeneration (83–99%). The toxicity of diesel exhaust, in terms of the estimated carcinogenic risk, was greatly reduced using Swedish diesel, biodiesel fuels and the DOC + DPF. PAH profiles showed high abundances of three and four ring compounds as well as naphthalene; NPAH profiles were dominated by nitro-naphthalenes, 1-nitropyrene and 9-nitroanthracene. Both the emission rate and the composition of diesel exhaust depended strongly on fuel type, engine load and after-treatment system. The emissions data and chemical profiles presented are relevant to the development of emission inventories and exposure and risk assessments. PMID:25709535

  15. Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling.

    PubMed

    Huang, Lei; Bohac, Stanislav V; Chernyak, Sergei M; Batterman, Stuart A

    2015-02-01

    Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) for which emission information is limited, especially for idling conditions, new fuels and the new after-treatment systems. This study investigates exhaust emissions of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 900 kPa BMEP), with three types of fuel (ultra-low sulfur diesel or ULSD, Swedish low aromatic diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM 2.5 , Σ 15 PAHs, Σ 11 NPAHs, Σ 5 Hopanes and Σ 6 Steranes, and biodiesel resulted in the larger reductions. However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-nitroacenaphthene (biodiesel) and PM 2.5 (biodiesel), a significant result given the attention to exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The DOC + DPF combination reduced PM 2.5 and SVOC emissions during DPF loading (>99% reduction) and DPF regeneration (83-99%). The toxicity of diesel exhaust, in terms of the estimated carcinogenic risk, was greatly reduced using Swedish diesel, biodiesel fuels and the DOC + DPF. PAH profiles showed high abundances of three and four ring compounds as well as naphthalene; NPAH profiles were dominated by nitro-naphthalenes, 1-nitropyrene and 9-nitroanthracene. Both the emission rate and the composition of diesel exhaust depended strongly on fuel type, engine load and after-treatment system. The emissions data and chemical profiles presented are relevant to the development of emission inventories and exposure and risk assessments.

  16. Nitro-Assisted Brønsted Acid Catalysis: Application to a Challenging Catalytic Azidation.

    PubMed

    Dryzhakov, Marian; Hellal, Malik; Wolf, Eléna; Falk, Florian C; Moran, Joseph

    2015-08-05

    A cocatalytic effect of nitro compounds is described for the B(C6F5)3·H2O catalyzed azidation of tertiary aliphatic alcohols, enabling catalyst turnover for the first time and with a broad range of substrates. Kinetic investigations into this surprising effect reveal that nitro compounds induce a switch from first order concentration dependence in Brønsted acid to second order concentration dependence in Brønsted acid and second order dependence in the nitro compounds. Kinetic, electronic, and spectroscopic evidence suggests that higher order hydrogen-bonded aggregates of nitro compounds and acids are the kinetically competent Brønsted acid catalysts. Specific weak H-bond accepting additives may offer a new general approach to accelerating Brønsted acid catalysis in solution.

  17. Microbial toxicity of the insensitive munitions compound, 2,4-dinitroanisole (DNAN), and its aromatic amine metabolites.

    PubMed

    Liang, Jidong; Olivares, Christopher; Field, Jim A; Sierra-Alvarez, Reyes

    2013-11-15

    2,4-Dinitroanisole (DNAN) is an insensitive munitions compound considered to replace conventional explosives such as 2,4,6-trinitrotoluene (TNT). DNAN undergoes facile microbial reduction to 2-methoxy-5-nitroaniline (MENA) and 2,4-diaminoanisole (DAAN). This study investigated the inhibitory effect of DNAN, MENA, and DAAN toward various microbial targets in anaerobic (acetoclastic methanogens) and aerobic (heterotrophs and nitrifiers) sludge, and the bioluminescent bacterium, Aliivibrio fischeri, used in the Microtox assay. Aerobic heterotrophic and nitrifying batch experiments with DAAN could not be performed because the compound underwent extensive autooxidation in these assays. DNAN severely inhibited methanogens, nitrifying bacteria, and A. fischeri (50% inhibitory concentrations (IC50) ranging 41-57μM), but was notably less inhibitory to aerobic heterotrophs (IC50>390 μM). Reduction of DNAN to MENA and DAAN lead to a marked decrease in methanogenic inhibition (i.e., DNAN>MENA≈DAAN). Reduction of all nitro groups in DNAN also resulted in partial detoxification in assays with A. fischeri. In contrast, reduction of a single nitro group did not alter the inhibitory impact of DNAN toward A. fischeri and nitrifying bacteria given the similar IC50 values determined for MENA and DNAN in these assays. These results indicate that reductive biotransformation could reduce the inhibitory potential of DNAN. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Determination of polycyclic aromatic hydrocarbons and their nitro-, amino-derivatives absorbed on particulate matter 2.5 by multiphoton ionization mass spectrometry using far-, deep-, and near-ultraviolet femtosecond lasers.

    PubMed

    Tang, Yuanyuan; Imasaka, Tomoko; Yamamoto, Shigekazu; Imasaka, Totaro

    2016-06-01

    Multiphoton ionization processes of parent-polycyclic aromatic hydrocarbons (PPAHs), nitro-PAHs (NPAHs), and amino-PAHs (APAHs) were examined by gas chromatography combined with time-of-flight mass spectrometry using a femtosecond Ti:sapphire laser as the ionization source. The efficiency of multiphoton ionization was examined using lasers emitting in the far-ultraviolet (200 nm), deep-ultraviolet (267 nm), and near-ultraviolet (345 nm) regions. The largest signal intensities were obtained when the far-ultraviolet laser was employed. This favorable result can be attributed to the fact that these compounds have the largest molar absorptivities in the far-ultraviolet region. On the other hand, APAHs were ionized more efficiently than NPAHs in the near-ultraviolet region because of their low ionization energies. A sample extracted from a real particulate matter 2.5 (PM2.5) sample was measured, and numerous signal peaks arising from PAH and its analogs were observed at 200 nm. On the other hand, only a limited number of signed peaks were observed at 345 nm, some of which were signed to PPAHs, NPAHs, and APAHs. Thus, multiphoton ionization mass spectrometry has potential for the use in comprehensive analysis of toxic environmental pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. High-field FT-ICR-MS and aromaticity equivalent approach for structural identification of water soluble organic compounds (WSOC)

    NASA Astrophysics Data System (ADS)

    Harir, Mourad; Yassine, Mahmoud M.; Dabek-Zlotorzynska, Ewa; Hertkorn, Norbert; Schmitt-Kopplin, Philippe

    2015-04-01

    Organic aerosol (OA) makes up a large and often dominant fraction, (20 to 90%) of the submicron atmospheric particulate mass, and its effects are becoming increasingly important in determining climatic and health effects of atmospheric aerosols. Despite the abundance of OA, our understanding of the sources, formation processes and atmospheric properties of OA is limited. Atmospheric OA has both primary (directly emitted) and secondary (formed in the atmosphere from precursor gases) sources, which can be natural (e.g. vegetation) and/or anthropogenic (e.g. fossil-based vehicle exhaust or biomass burning). A significant fraction of OA contains as much as 20-70% of water soluble organic compounds (WSOC). The WSOC fraction is a very complex mixture of low volatility, polyfunctional aliphatic and aromatic compounds containing carboxyl, alcohol, carbonyl, sulfo, nitro, and other functionalities. This high degree of chemical complexity of atmospheric organics has inspired a number of sophisticated approaches that are capable of identifying and detecting a variety of different analytes in OA. Accordingly, one of the most challenging areas of atmospheric particulate matter (PM) analysis is to comprehend the molecular complexity of the OA, especially WSOC fraction, a significant component of atmospheric fine PM (PM2.5). The sources of WSOC are not well understood, especially the relative contributions of primary vs. secondary organic aerosol. Therefore, the molecular characterization of WSOC is important because it allows gaining insight into aerosol sources and underlying mechanisms of secondary organic aerosols (SOA) formation and transformation. In this abstract, molecular characterization of WSOC was achieved using high-field mass spectrometry FT-ICR-MS and aromaticity equivalent approach. Aromaticity equivalent (Xc), defined recently as a new parameter calculated from the assigned molecular formulas (complementary to the aromaticity index [1]), is introduced to improve identification and characterization of aromatic and condensed aromatic compounds in WSOC [2]. We proposed threshold values of Xc≥ 2.5000 and Xc≥ 2.7143 as ambiguous minimum criteria for the presence of aromatic structure and condensed aromatic compounds, respectively. The advantage of employing this parameter is that Xc would have a constant value for each proposed core structure regardless the degree of alkylation, and thus visual representation and structural interpretations of the spectra become advantageous for characterizing and comparing complex samples. Diesel particulate matter (DPM) and two atmospheric aerosols collected in the industrial area affected by biomass burning events were used to study the applicability of the proposed criteria for the improved identification of aromatic and condensed aromatic structures in complex mixtures in the FT-ICR mass spectra. References [1] Koch.BP, Dittmar.T. From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun. Mass Spectrom. 2006, 20, 926-932 [2] Yassine.MM, Harir.M, Dabek-Zlotorzynska.E, Schmitt-Kopplin.Ph. Structural characterization of organic aerosol using Fourier transform ion cyclotron resonance mass spectrometry: Aromaticity equivalent approach. Rapid Commun. Mass Spectrom. 2014. 28. 2445-2454

  20. Thermal Stability Characteristics of Nitroaromatic Compounds.

    DTIC Science & Technology

    1986-09-15

    of a methyl ortho to the nitro group in nitroaromatic compounds introduces a new element into the decomposition behavior of such compounds. Inasmuch...thus without the aid of acid, base or photon catalysis. It is clear that the presence of a methyl ortho to the nitro group in nitroaromatic compounds...particular interest in terms of the substance of this work is the drastic change in reaction product when a methyl group is ortho to the nitro . Furthermore

  1. 1-(2,4-Di­nitro­phen­yl)-2-[(E)-(3,4,5-tri­meth­oxy­benzyl­idene)]hydrazine

    PubMed Central

    Chantrapromma, Suchada; Ruanwas, Pumsak; Boonnak, Nawong; Chidan Kumar, C. S.; Fun, Hoong-Kun

    2014-01-01

    Mol­ecules of the title compound, C16H16N4O7, are not planar with a dihedral angle of 5.50 (11)° between the substituted benzene rings. The two meta-meth­oxy groups of the 3,4,5-tri­meth­oxy­benzene moiety lie in the plane of the attached ring [Cmeth­yl–O–C–C torsion angles −0.1 (4)° and −3.7 (3)°] while the para-meth­oxy substituent lies out of the plane [Cmeth­yl—O—C—C, −86.0 (3)°]. An intra­molecular N—H⋯O hydrogen bond involving the 2-nitro substituent generates an S(6) ring motif. In the crystal structure, mol­ecules are linked by weak C—H⋯O inter­actions into screw chains, that are arranged into a sheet parallel to the bc plane. These sheets are connected by π–π stacking inter­actions between the nitro and meth­oxy substituted aromatic rings with a centroid–centroid separation of 3.9420 (13) Å. C—H⋯π contacts further stabilize the two-dimensional network. PMID:24764900

  2. Evaluation of nitrate-substituted pseudocholine esters of aspirin as potential nitro-aspirins.

    PubMed

    Gilmer, John F; Moriarty, Louise M; Clancy, John M

    2007-06-01

    Herein we explore some designs for nitro-aspirins, compounds potentially capable of releasing both aspirin and nitric oxide in vivo. A series of nitrate-bearing alkyl esters of aspirin were prepared based on the choline ester template preferred by human plasma butyrylcholinesterase. The degradation kinetics of the compounds were followed in human plasma solution. All compounds underwent hydrolysis rapidly (t(1/2) approximately 1min) but generating exclusively the corresponding nitro-salicylate. The one exception, an N-propyl, N-nitroxyethyl aminoethanol ester produced 9.2% aspirin in molar terms indicating that the nitro-aspirin objective is probably achievable if due cognisance can be paid to the demands of the activating enzyme. Even at this low level of aspirin release, this compound is the most successful nitro-aspirin reported to date in the key human plasma model.

  3. Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive.

    PubMed

    Tu, Renyong; Liu, Bianhua; Wang, Zhenyang; Gao, Daming; Wang, Feng; Fang, Qunling; Zhang, Zhongping

    2008-05-01

    Mn2+-doped ZnS nanocrystals with an amine-capping layer have been synthesized and used for the fluorescence detection of ultratrace 2,4,6-trinitrotoluene (TNT) by quenching the strong orange Mn2+ photoluminescence. The organic amine-capped nanocrystals can bind TNT species from solution and atmosphere by the acid-base pairing interaction between electron-rich amino ligands and electron-deficient aromatic rings. The resultant TNT anions bound onto the amino monolayer can efficiently quench the Mn2+ photoluminescence through the electron transfer from the conductive band of ZnS to the lowest unoccupied molecular orbital (LUMO) of TNT anions. The amino ligands provide an amplified response to the binding events of nitroaromatic compounds by the 2- to approximately 5-fold increase in quenching constants. Moreover, a large difference in quenching efficiency was observed for different types of nitroaromatic analytes, dependent on the affinity of nitro analytes to the amino monolayer and their electron-accepting abilities. The amine-capped nanocrystals can sensitively detect down to 1 nM TNT in solution or several parts-per-billion of TNT vapor in atmosphere. The ion-doped nanocrystal sensors reported here show a remarkable air/solution stability, high quantum yield, and strong analyte affinity and, therefore, are well-suited for detecting the ultratrace TNT and distinguishing different nitro compounds.

  4. Multidirectional Efficacy of Biologically Active Nitro Compounds Included in Medicines.

    PubMed

    Olender, Dorota; Żwawiak, Justyna; Zaprutko, Lucjusz

    2018-05-29

    The current concept in searching for new bioactive products, including mainly original active substances with potential application in pharmacy and medicine, is based on compounds with a previously determined structure, well-known properties, and biological activity profile. Nowadays, many commonly used drugs originated from natural sources. Moreover, some natural materials have become the source of leading structures for processing further chemical modifications. Many organic compounds with great therapeutic significance have the nitro group in their structure. Very often, nitro compounds are active substances in many well-known preparations belonging to different groups of medicines that are classified according to their pharmacological potencies. Moreover, the nitro group is part of the chemical structure of veterinary drugs. In this review, we describe many bioactive substances with the nitro group, divided into ten categories, including substances with exciting activity and that are currently undergoing clinical trials.

  5. Characteristics of microbial community functional structure of a biological coking wastewater treatment system.

    PubMed

    Joshi, Dev Raj; Zhang, Yu; Zhang, Hong; Gao, Yingxin; Yang, Min

    2018-01-01

    Nitrogenous heterocyclic compounds are key pollutants in coking wastewater; however, the functional potential of microbial communities for biodegradation of such contaminants during biological treatment is still elusive. Herein, a high throughput functional gene array (GeoChip 5.0) in combination with Illumina HiSeq2500 sequencing was used to compare and characterize the microbial community functional structure in a long run (500days) bench scale bioreactor treating coking wastewater, with a control system treating synthetic wastewater. Despite the inhibitory toxic pollutants, GeoChip 5.0 detected almost all key functional gene (average 61,940 genes) categories in the coking wastewater sludge. With higher abundance, aromatic ring cleavage dioxygenase genes including multi ring1,2diox; one ring2,3diox; catechol represented significant functional potential for degradation of aromatic pollutants which was further confirmed by Illumina HiSeq2500 analysis results. Response ratio analysis revealed that three nitrogenous compound degrading genes- nbzA (nitro-aromatics), tdnB (aniline), and scnABC (thiocyanate) were unique for coking wastewater treatment, which might be strong cause to increase ammonia level during the aerobic process. Additionally, HiSeq2500 elucidated carbozole and isoquinoline degradation genes in the system. These findings expanded our understanding on functional potential of microbial communities to remove organic nitrogenous pollutants; hence it will be useful in optimization strategies for biological treatment of coking wastewater. Copyright © 2017. Published by Elsevier B.V.

  6. In Situ Biodegradation of Nitroaromatic Compounds in Soil

    DTIC Science & Technology

    1992-06-14

    appears to be through successive reduction of the para- then an ortho - nitro group to the amino derivatives. The diamino compounds are themselves...temperatures from 25-35 ’C, and with 10-25 mM added ammonium as a supplemental nitro - gen source. The initial stage of soil remediation is now regularly...than the amino- nitro compounds usually observed have been produced, and are further along the catabolic pathway than the previously known intermediates

  7. Final report on the safety assessment of amino nitrophenols as used in hair dyes.

    PubMed

    Burnett, Christina L; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Alan Andersen, F

    2009-01-01

    2-Amino-3-nitrophenol, 2-amino-4-nitrophenol, 2-amino-5-nitrophenol, 4-amino-3-nitrophenol, 4-amino-2-nitrophenol, 2-amino-4-nitrophenol sulfate, 3-nitro-p-hydroxyethylaminophenol, and 4-hydroxypropylamino-3-nitrophenol are substituted aromatic compounds used as semipermanent (nonoxidative) hair colorants and as toners in permanent (oxidative) hair dye products. All ingredients in this group except 2-amino-4-nitrophenol sulfate, 2-amino-5-nitrophenol, and 4-amino-2-nitrophenol have reported uses in cosmetics at use concentrations from 2% to 9%. The available toxicity studies for these amino nitrophenol hair dyes did not suggest safety concerns except for the potential carcinogenicity and mutagenicity of 4-amino-2-nitrophenol. 2-Amino-3-nitrophenol, 2-amino-4-nitrophenol, 2-amino-4-nitrophenol sulfate, 2-amino-5-nitrophenol, 4-amino-3-nitrophenol, 3-nitro-p-hydroxyethylaminophenol, and 4-hydroxypropylamino-3-nitrophenol are safe as hair dye ingredients in the practices of use and concentration as described in this safety assessment, but the data are insufficient to make a safety determination for 4-amino-2-nitrophenol.

  8. Theoretical and conceptual density functional theory (DFT) study on selectivity of 4-hydroxyquinazoline electrophilic aromatic nitration

    NASA Astrophysics Data System (ADS)

    Makhloufi, A.; Belhadad, O.; Ghemit, R.; Baitiche, M.; Merbah, M.; Benachour, DJ.

    2018-01-01

    In common with other aza-heterocycles, 4-hydroxyquinazoline and their derivatives are important pharmacophores and versatile lead molecule used in several specific biological activities. The potency of these compounds depends on the nature and/or position of their substituents. In this paper, we report a theoretical study of the most probable nitration reaction centers of 4-hydroxyquinazoline for electrophilic attack, the mono and di-nitration was also discussed. In parallel, a computational study has been performed in gas by using the B3LYP/6311 G(d) level. The stability of the four nitro isomers is rationalized by means of the global index and local reactivity indices. Their molecular electrostatic potential (MEP) and Milliken charge were explored. Molecular geometries and NMR H spectra was examined. In addition, stationary points of reactant, transition state and intermediate were optimized in water condensed phase at the same level. The relative energies of the regioisomeric δ-complexes confirm that the substitution at C6 (6-nitro σ-complexes) is favored in these conditions, what was in agreement with our others calculating results (in gas).

  9. Highly sensitive and selective dynamic light-scattering assay for TNT detection using p-ATP attached gold nanoparticle.

    PubMed

    Dasary, Samuel S R; Senapati, Dulal; Singh, Anant Kumar; Anjaneyulu, Yerramilli; Yu, Hongtao; Ray, Paresh Chandra

    2010-12-01

    TNT is one of the most commonly used nitro aromatic explosives for landmines of military and terrorist activities. As a result, there is an urgent need for rapid and reliable methods for the detection of trace amount of TNT for screenings in airport, analysis of forensic samples, and environmental analysis. Driven by the need to detect trace amounts of TNT from environmental samples, this article demonstrates a label-free, highly selective, and ultrasensitive para-aminothiophenol (p-ATP) modified gold nanoparticle based dynamic light scattering (DLS) probe for TNT recognition in 100 pico molar (pM) level from ethanol:acetonitile mixture solution. Because of the formation of strong π-donor-acceptor interaction between TNT and p-ATP, para-aminothiophenol attached gold nanoparticles undergo aggregation in the presence of TNT, which changes the DLS intensity tremendously. A detailed mechanism for significant DLS intensity change has been discussed. Our experimental results show that TNT can be detected quickly and accurately without any dye tagging in 100 pM level with excellent discrimination against other nitro compounds.

  10. No-carrier-added (NCA) aryl ([sup 18]F) fluorides via the nucleophilic aromatic substitution of electron rich aromatic rings

    DOEpatents

    Yushin Ding; Fowler, J.S.; Wolf, A.P.

    1993-10-19

    A method for synthesizing no-carrier-added (NCA) aryl [.sup.18 F] fluoride substituted aromatic aldehyde compositions bearing an electron donating group is described. The method of the present invention includes the step of reacting aromatic nitro aldehydes having a suitably protected hydroxyl substitutent on an electron rich ring. The reaction is The U.S. Government has rights in this invention pursuant to Contract Number DE-AC02-76CH00016, between the U.S. Department of Energy and Associated Universities Inc.

  11. No-carrier-added (NCA) aryl (18E) fluorides via the nucleophilic aromatic substitution of electron rich aromatic rings

    DOEpatents

    Ding, Yu-Shin; Fowler, Joanna S.; Wolf, Alfred P.

    1993-01-01

    A method for synthesizing no-carrier-added (NCA) aryl [.sup.18 F] fluoride substituted aromatic aldehyde compositions bearing an electron donating group is described. The method of the present invention includes the step of reacting aromatic nitro aldehydes having a suitably protected hydroxyl substitutent on an electron rich ring. The reaction is The U.S. Government has rights in this invention pursuant to Contract Number DE-AC02-76CH00016, between the U.S. Department of Energy and Associated Universities Inc.

  12. Thermodynamic properties of 5(nitrophenyl) furan-2-carbaldehyde isomers.

    PubMed

    Dibrivnyi, Volodymyr; Sobechko, Iryna; Puniak, Marian; Horak, Yuriy; Obushak, Mykola; Van-Chin-Syan, Yuriy; Andriy, Marshalek; Velychkivska, Nadiia

    2015-01-01

    The aim of the current work was to determine thermo dynamical properties of 5(2-nitro phenyl)-furan-2-carbaldehyde, 5(3-nitro phenyl)-furan-2-carbaldehyde and 5(4-nitro phenyl)-furan-2-carbaldehyde. The temperature dependence of saturated vapor pressure of 5(2-nitro phenyl)-furan-2-carbaldehyde, 5(3-nitro phenyl)-furan-2-carbaldehyde and 5(4-nitro phenyl)-furan-2-carbaldehyde was determined by Knudsen's effusion method. The results are presented by the Clapeyron-Clausius equation in linear form, and via this form, the standard enthalpies, entropies and Gibbs energies of sublimation and evaporation of compounds were calculated at 298.15 K. The standard molar formation enthalpies of compounds in crystalline state at 298.15 K were determined indirectly by the corresponding standard molar combustion enthalpy, obtained using bomb calorimetry combustion. Determination of the thermodynamic properties for these compounds may contribute to solving practical problems pertaining optimization processes of their synthesis, purification and application and it will also provide a more thorough insight regarding the theoretical knowledge of their nature.Graphical abstract:Generalized structural formula of investigated compounds and their formation enthalpy determination scheme in the gaseous state.

  13. A general method for copper-catalyzed arene cross-dimerization.

    PubMed

    Do, Hien-Quang; Daugulis, Olafs

    2011-08-31

    A general method for a highly regioselective copper-catalyzed cross-coupling of two aromatic compounds using iodine as an oxidant has been developed. The reactions involve an initial iodination of one arene followed by arylation of the most acidic C-H bond of the other coupling component. Cross-coupling of electron-rich arenes, electron-poor arenes, and five- and six-membered heterocycles is possible in many combinations. Typically, a 1/1.5 to 1/3 ratio of coupling components is used, in contrast to existing methodology that often employs a large excess of one of the arenes. Common functionalities such as ester, ketone, aldehyde, ether, nitrile, nitro, and amine are well-tolerated.

  14. A General Method for Copper-Catalyzed Arene Cross-Dimerization

    PubMed Central

    Do, Hien-Quang; Daugulis, Olafs

    2011-01-01

    A general method for a highly regioselective, copper-catalyzed cross-coupling of two aromatic compounds by using iodine oxidant has been developed. The reactions involve an initial iodination of one arene followed by arylation of the most acidic C-H bond of the other coupling component. Cross-coupling of electron-rich arenes, electron-poor arenes, five- and six-membered heterocycles is possible in many combinations. Typically, 1/1.5 to 1/3 ratio of coupling components is used in contrast to existing methodology that often employs a large excess of one of the arenes. Common functionalities such as ester, ketone, aldehyde, ether, nitrile, nitro, and amine are well-tolerated. PMID:21823581

  15. PAHs (Polycyclic Aromatic Hydrocarbons), Nitro-PAHs, Hopanes and Steranes Biomarkers in Sediments of Southern Lake Michigan, USA

    PubMed Central

    Huang, Lei; Chernyak, Sergei M.; Batterman, Stuart A.

    2014-01-01

    PAHs in the Great Lakes basin are of concern due to their toxicity and persistence in bottom sediments. Their nitro derivatives, nitro-PAHs (NPAHs), which can have stronger carcinogenic and mutagenic activity than parent PAHs, may follow similar transport routes and also are accumulated in sediments. Limited information exists regarding the current distribution, trends and loadings of these compounds, especially NPAHs, in Lake Michigan sediments. This study characterizes PAHs, NPAHs, and biomarkers steranes and hopanes in surface sediments collected at 24 offshore sites in southern Lake Michigan. The ΣPAH14 (sum of 14 compounds) ranged from 213 to 1291 ng/g dry weight (dw) across the sites, levels that are 2 to 10 times lower than those reported 20 to 30 years earlier. Compared to consensus-based sediment quality guidelines, PAH concentrations suggest very low risk to benthic organisms. The ΣNPAH5 concentration ranged from 2.9 to 18.6 ng/g dw, and included carcinogenic compounds 1-nitropyrene and 6-nitrochrysene. ΣSterane6 and ΣHopane5 concentrations ranged from 6.2 to 36 and 98 to 355 ng/g dw, respectively. Based on these concentrations, Lake Michigan is approximately receiving 11, 0.16, 0.25 and 3.6 metric tons per year (t/yr) of ΣPAH14, ΣNPAH5, ΣSterane6 and ΣHopane5, respectively. Maps of OC-adjusted concentrations display that concentrations decline with increasing off-shore distance. The major sources of PAHs and NPAHs are pyrogenic in nature, based on diagnostic ratios. Using chemical mass balance models, sources were apportioned to emissions from diesel engines (56±18%), coal power plants (27±14%), coal-tar pavement sealants (16±11%), and coke ovens (7±12%). The biomarkers identify a combination of petrogenic and biogenic sources, with the southern end of the lake more impacted by petroleum. This first report of NPAHs levels in sediments of Lake Michigan reveals several carcinogenic compounds at modest concentrations, and a need for further work to assess potential risks to aquatic organisms. PMID:24784742

  16. Analysis of organic compounds in aqueous samples of former ammunition plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levsen, K.; Preiss, A.; Berger-Preiss, E.

    1995-12-31

    In Germany, a large number of sites exist where ammunition was produced before and in particular during World War II. These former production sites represent a particular threat to the environment because these plants were constructed and operated under war conditions, where production was far more important than protection of the health of the (in general forced) workers and the environment. New approaches are presented for the extraction and analysis of explosives and related compounds in aqueous samples from former ammunition production sites. Quantitative extraction of nitro aromatics but also of the polar nitroamines such as RDX and HMX ismore » achieved by solid phase extraction with styrene-divinylbenzene polymers (Lichrolut EN). Proton nuclear magnetic resonance ({sup 1}H-NMR) has been used to identify and quantify unknowns in ammunition waste water. Finally, automated multiple development (AMD) high performance thin layer chromatography was applied for the first time to the analysis of this compound class.« less

  17. Thin film sensor materials for detection of Nitro-Aromatic explosives

    NASA Astrophysics Data System (ADS)

    Ramdasi, Dipali; Mudhalwadkar, Rohini

    2018-03-01

    Many countries have experienced terrorist activities and innocent people have suffered. Timely detection of explosives can avoid this situation. This paper targets the detection of Nitrobenzene and Nitrotoluene, which are nitroaromatic compounds possessing explosive properties. As direct sensors for detecting these compounds are not available, Polyaniline based thin film sensors doped with palladium are developed using the spin coating technique. The response of the developed sensors is observed for varying concentrations of explosives. It is observed that zinc oxide based sensor is more sensitive to Nitrotoluene exhibiting a relative change in resistance of 0.78. The tungsten oxide sensor is more sensitive to Nitrobenzene with a relative change in resistance of 0.48. The sensor performance is assessed by measuring the response and recovery time. The cross sensitivity of the sensors is evaluated for ethanol, acetone and methanol which was observed as very low.

  18. Chemical characterization of diesel and hydrotreated vegetable oil (HVO) soot after reactive gas probing using diffuse reflectance FTIR spectroscopy (DRIFTS).

    PubMed

    Tapia, A; Salgado, M S; Martín, M P; Rodríguez-Fernández, J; Rossi, M J; Cabañas, B

    2017-03-01

    A chemical characterization of diesel and hydrotreated vegetable oil (HVO) soot has been developed using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) before and after the reaction with different probe gases. Samples were generated under combustion conditions corresponding to an urban operation mode of a diesel engine and were reacted with probe gas-phase molecules in a Knudsen flow reactor. Specifically, NH 2 OH, O 3 and NO 2 were used as reactants (probes) and selected according to their reactivities towards specific functional groups on the sample surface. Samples of previously ground soot were diluted with KBr and were introduced in a DRIFTS accessory. A comparison between unreacted and reacted soot samples was made in order to establish chemical changes on the soot surface upon reaction. It was concluded that the interface of diesel and HVO soot before reaction mainly consists polycyclic aromatic hydrocarbons, nitro and carbonyl compounds, as well as ether functionalities. The main difference between both soot samples was observed in the band of the C=O groups that in diesel soot was observed at 1719 cm -1 but not in HVO soot. After reaction with probe gases, it was found that nitro compounds remain on the soot surface, that the degree of unsaturation decreases for reacted samples, and that new spectral bands such as hydroxyl groups are observed.

  19. Genotoxicity risk assessment of diversely substituted quinolines using the SOS chromotest.

    PubMed

    Duran, Leidy Tatiana Díaz; Rincón, Nathalia Olivar; Galvis, Carlos Eduardo Puerto; Kouznetsov, Vladimir V; Lorenzo, Jorge Luis Fuentes

    2015-03-01

    Quinolines are aromatic nitrogen compounds with wide therapeutic potential to treat parasitic and microbial diseases. In this study, the genotoxicity of quinoline, 4-methylquinoline, 4-nitroquinoline-1-oxide (4-NQO), and diversely functionalized quinoline derivatives and the influence of the substituents (functional groups and/or atoms) on their genotoxicity were tested using the SOS chromotest. Quinoline derivatives that induce genotoxicity by the formation of an enamine epoxide structure did not induce the SOS response in Escherichia coli PQ37 cells, with the exception of 4-methylquinoline that was weakly genotoxic. The chemical nature of the substitution (C-5 to C-8: hydroxyl, nitro, methyl, isopropyl, chlorine, fluorine, and iodine atoms; C-2: phenyl and 3,4-methylenedioxyphenyl rings) of quinoline skeleton did not significantly modify compound genotoxicities; however, C-2 substitution with α-, β-, or γ-pyridinyl groups removed 4-methylquinoline genotoxicity. On the other hand, 4-NQO derivatives whose genotoxic mechanism involves reduction of the C-4 nitro group were strong inducers of the SOS response. Methyl and nitrophenyl substituents at C-2 of 4-NQO core affected the genotoxic potency of this molecule. The relevance of these results is discussed in relation to the potential use of the substituted quinolines. The work showed the sensitivity of SOS chromotest for studying structure-genotoxicity relationships and bioassay-guided quinoline synthesis. © 2013 Wiley Periodicals, Inc.

  20. Thermometric titrations of amines with nitrosyl perchlorate in acetonitrile solvent.

    PubMed

    Gündüz, T; Kiliç, E; Cakirer, O

    1996-05-01

    Thirteen aliphatic and four aromatic amines, namely diethylamine, triethylamine, n-propylamine, di-n-propylamine, tri-n-butylamine, isopropylamine, di-isopropylamine, n-butylamine, di-n-butylamine, tri-n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, aniline, N,N-dimethylaniline, 2-nitroaniline and 4-nitroaniline were titrated thermometrically with nitrosyl perchlorate in acetonitrile solvent. All the aliphatic amines gave very well-shaped thermometric titration curves. The calculated recovery values of the amines were very good. In comparison, the aromatic amines, aniline and N,N-dimethylaniline gave rather well-shaped titration curves, but the recovery values were fairly low. 2-Nitro- and 4-nitro anilines gave no thermometric response at all. The heats of reaction of the amines with nitrosyl perchlorate are rather high. However, the average heat of reaction of the aromatic amines is approximately two-thirds that of the average heat of the aliphatic amines. To support this method all the amines were also titrated potentiometrically and very similar results to those obtained with the thermometric method are seen. The nitrosyl ion is a Lewis acid, strong enough to titrate quantitatively aliphatic amines in acetonitrile solvent, but not strong enough to titrate aromatic amines at the required level in the same solvent.

  1. Multi-residue analysis of legacy POPs and emerging organic contaminants in Singapore's coastal waters using gas chromatography-triple quadrupole tandem mass spectrometry.

    PubMed

    Zhang, Hui; Bayen, Stéphane; Kelly, Barry C

    2015-08-01

    A gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) based method was developed for determination of 86 hydrophobic organic compounds in seawater. Solid-phase extraction (SPE) was employed for sequestration of target analytes in the dissolved phase. Ultrasound assisted extraction (UAE) and florisil chromatography were utilized for determination of concentrations in suspended sediments (particulate phase). The target compounds included multi-class hydrophobic contaminants with a wide range of physical-chemical properties. This list includes several polycyclic and nitro-aromatic musks, brominated and chlorinated flame retardants, methyl triclosan, chlorobenzenes, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). Spiked MilliQ water and seawater samples were used to evaluate the method performance. Analyte recoveries were generally good, with the exception of some of the more volatile target analytes (chlorobenzenes and bromobenzenes). The method is very sensitive, with method detection limits typically in the low parts per quadrillion (ppq) range. Analysis of 51 field-collected seawater samples (dissolved and particulate-bound phases) from four distinct coastal sites around Singapore showed trace detection of several polychlorinated biphenyl congeners and other legacy POPs, as well as several current-use emerging organic contaminants (EOCs). Polycyclic and nitro-aromatic musks, bromobenzenes, dechlorane plus isomers (syn-DP, anti-DP) and methyl triclosan were frequently detected at appreciable levels (2-20,000pgL(-1)). The observed concentrations of the monitored contaminants in Singapore's marine environment were generally comparable to previously reported levels in other coastal marine systems. To our knowledge, these are the first measurements of these emerging contaminants of concern in Singapore or Southeast Asia. The developed method may prove beneficial for future environmental monitoring of hydrophobic organic contaminants in marine environments. Further, the study provides novel information regarding several potentially hazardous contaminants of concern in Singapore's marine environment, which will aid future risk assessment initiatives. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Magnetic graphene composites as both an adsorbent for sample enrichment and a MALDI-TOF MS matrix for the detection of nitropolycyclic aromatic hydrocarbons in PM2.5.

    PubMed

    Zhang, Jiangang; Zhang, Li; Li, Ruijin; Hu, Di; Ma, Nengxuan; Shuang, Shaomin; Cai, Zongwei; Dong, Chuan

    2015-03-07

    A simple and rapid method that uses synthesized magnetic graphene composites as both an adsorbent for enrichment and as a matrix in MALDI-TOF MS analysis was developed for the detection of nitropolycyclic hydrocarbons (nitro-PAHs) in PM2.5 samples. Three nitro-PAHs were detected down to sub pg μL(-1) levels based on calculations from an instrumental signal-to-noise better than 3, which shows the feasibility of using the new materials in MALDI-TOF MS as a potential powerful analytical approach for the analysis of nitro-PAHs in PM2.5 samples.

  3. Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles.

    PubMed

    Lin, Peng; Aiona, Paige K; Li, Ying; Shiraiwa, Manabu; Laskin, Julia; Nizkorodov, Sergey A; Laskin, Alexander

    2016-11-01

    Emissions from biomass burning are a significant source of brown carbon (BrC) in the atmosphere. In this study, we investigate the molecular composition of freshly emitted biomass burning organic aerosol (BBOA) samples collected during test burns of sawgrass, peat, ponderosa pine, and black spruce. We demonstrate that both the BrC absorption and the chemical composition of light-absorbing compounds depend significantly on the type of biomass fuels. Common BrC chromophores in the selected BBOA samples include nitro-aromatics, polycyclic aromatic hydrocarbon derivatives, and polyphenols spanning a wide range of molecular weights, structures, and light absorption properties. A number of biofuel-specific BrC chromophores are observed, indicating that some of them may be used as source-specific markers of BrC. On average, ∼50% of the light absorption in the solvent-extractable fraction of BBOA can be attributed to a limited number of strong BrC chromophores. The absorption coefficients of BBOA are affected by solar photolysis. Specifically, under typical atmospheric conditions, the 300 nm absorbance decays with a half-life of ∼16 h. A "molecular corridor" analysis of the BBOA volatility distribution suggests that many BrC compounds in the fresh BBOA have low saturation mass concentration (<1 μg m -3 ) and will be retained in the particle phase under atmospherically relevant conditions.

  4. Photooxidation of 3-substituted pyrroles:  a postcolumn reaction detection system for singlet molecular oxygen in HPLC.

    PubMed

    Denham, K; Milofsky, R E

    1998-10-01

    A postcolumn photochemical reaction detection scheme, based on the reaction of 3-substituted pyrroles with singlet molecular oxygen ((1)O(2)), has been developed. The method is selective and sensitive for the determination of a class of organic compounds called (1)O(2)-sensitizers and is readily coupled to HPLC. Following separation by HPLC, analytes ((1)O(2)-sensitizers) are excited by a Hg pen-ray lamp. Analytes that are efficient (1)O(2)-sensitizers promote ground-state O(2) ((3)Σ(g)(-)) to an excited state ((1)Σ(g)(+) or (1)Δ(g)), which reacts rapidly with tert-butyl-3,4,5-trimethylpyrrolecarboxylate (BTMPC) or N-benzyl-3-methoxypyrrole-2-tert-carboxylate (BMPC), which is added to the mobile phase. Detection is based on the loss of pyrrole (BTMPC or BMPC). The reaction is catalytic in nature since one analyte molecule may absorb light many times, producing large amounts of (1)O(2). Detection limits for several (1)O(2)-sensitizers were improved by 1-2 orders of magnitude over optimized UV-absorbance detection. This paper discusses the optimization of the reaction conditions for this photochemical reaction detection scheme and its application to the detection of PCBs, nitrogen heterocycles, nitro and chloro aromatics, and other substituted aromatic compounds.

  5. Optimization, validation and application of headspace solid-phase microextraction gas chromatography for the determination of 1-nitro-2-phenylethane and methyleugenol from Aniba canelilla (H.B.K.) Mez essential oil in skin permeation samples.

    PubMed

    Kreutz, Tainá; Lucca, Letícia G; Loureiro-Paes, Orlando A R; Teixeira, Helder F; Veiga, Valdir F; Limberger, Renata P; Ortega, George G; Koester, Letícia S

    2018-06-02

    Aniba canelilla (H.B.K.) Mez is an aromatic plant from the Amazon region whose essential oil has 1-nitro-2-phenylethane (NP) and methyleugenol (ME) as major compounds. Despite of the scientifically proven antifungal and anti-inflammatory activities for these compounds, there is no report up to date about the topical permeation or quantification of NP and ME on skin samples. The aim of this study was the validation of an optimized bioanalytical method by solid-phase microextraction in headspace mode in gas chromatograph with flame ionization detector (HS-SPME-GC-FID) for the determination of NP and ME from the oil in different samples from permeation study, such as porcine ear skin (PES) layers (stratum corneum, epidermis and dermis) and receptor fluid (RF). For this propose polydimethylsiloxane fibers (100 μm) were used and HS-SPME extraction condition consisted of 53 °C, 21 min, and 5% w.v -1 NaCl addition. The wide range of the calibration curve (2.08-207.87 μg mL -1 for NP and 0.40-40.41 μg mL -1 for ME), the presence of matrix interferences and the intrinsic characteristics of HS-SPME required a data linearization using Log 10 . Thereby, data and the gained results presented homoscedasticity, normalization of residues and adequate linearity (r 2  > 0.99) and accuracy for both compounds. In order to verify the applicability of the validated method, the HS-SPME-GC-FID procedure was performed to determine the amount of NP and ME permeated and retained in samples after Franz diffusion cell study from different dosages (20, 100 and 200 μL) of A. canelilla oil. Compounds permeation showed a progressive increase and penetration dependence based on the dosage applied. Furthermore, retention was in order receptor fluid > dermis > epidermis > stratum corneum for both compounds, suggesting NP and ME could penetrate deep tissue, probably due to the partition coefficient, mass, size, and solubility of these compounds. In conclusion, the proposed method by HS-SPME-GC-FID to quantify 1-nitro-2-phenylethane and methyleugenol from Aniba canelilla essential oil was able to determine selectively, precisely and accurately these main compounds in skin permeation samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Electronic properties and free radical production by nitrofuran compounds.

    PubMed

    Paulino-Blumenfeld, M; Hansz, M; Hikichi, N; Stoppani, A O

    1992-01-01

    Substitution of nifurtimox tetrahydrothiazine moiety by triazol-4-yl, benzimidazol-l-yl, pyrazol-l-yl or related aromatic nitrogen heterocycles determines changes in the quantum chemistry descriptors of the molecule, namely, (a) greater negative LUMO energy; (b) lesser electron density on specific atoms, especially on the nitro group atoms, and (c) modification of individual net atomic charges at relevant atoms. These variations correlate with the greater capability of nifurtimox analogues for redox-cycling and oxygen radical production, after one-electron reduction by ascorbate or reduced flavoenzymes. Variation of the nitrofurans electronic structure can also explain the greater activity of nifurtimox analogues as inhibitors of glutathione reductase and Trypanosoma cruzi growth, although other factors, such as molecular hydrophobicity and connectivity may contribute to the latter inhibition.

  7. Easy methods to study the smart energetic TNT/CL-20 co-crystal.

    PubMed

    Li, Huarong; Shu, Yuanjie; Gao, Shijie; Chen, Ling; Ma, Qing; Ju, Xuehai

    2013-11-01

    2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a high-energy nitramine explosive with high mechanical sensitivity. 2,4,6-trinitrotoluene (TNT) is insensitive but by no means a high performance explosive. To reveal the significant importance and smart-material functionality of the energetic-energetic co-crystals, the stability, mechanical and explosive properties TNT/CL-20 co-crystal, TNT crystal and CL-20 crystal were studied. Non-hydrogen bonded non-covalent interactions govern the structures of energetic-energetic co-crystals. However, it is very difficult to accurately calculate the non-covalent intermolecular interaction energies. In this paper, the local conformation and the intricate non-covalent interactions were effectively mapped and analyzed from the electron density (ρ) and its derivatives. The results show that the two components TNT and CL-20 are connected mainly by nitro-aromatic interactions, and nitro-nitro interactions. The steric interactions in TNT/CL-20 could not be confronted with the attractive interactions. Moreover, the scatter graph of TNT crystal reveals the reason why TNT is brittle. The detailed electrostatic potential analysis predicted that the detonation velocities (D) and impact sensitivity for the compounds both increase in the sequence of CL-20 > TNT/CL-20 co-crystal > TNT. Additionally, TNT/CL-20 co-crystal has better malleability than its pure components. This demonstrates the capacity and the feasibility of realizing explosive smart materials by co-crystallization, even if strong hydrogen bonding schemes are generally lacking in energetic materials.

  8. Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds.

    PubMed Central

    McCormick, N G; Feeherry, F E; Levinson, H S

    1976-01-01

    A variety of nitroaromatic compounds, including 2,4,6-trinitrotoluene (TNT), were reduced by hydrogen in the presence of enzyme preparations from Veillonella alkalescens. Consistent with the proposed reduction pathway, R-NO2 H2 leads to R-NO H2 leads to R-NHOH H2 leads to R-NH2, 3 mol of H2 was utilized per mol of nitro group. The rates of reduction of 40 mono-, di-, and trinitroaromatic compounds by V. alkalescens extract were determined. The reactivity of the nitro groups depended on other substituents and on the position of the nitro groups relative to these substituents. In the case of the nitrotoluenes, the para-nitro group was the most readily reduced, the 4-nitro position of 2,4-dinitrotulene being reduced first. The pattern of reduction of TNT (disappearance of TNT and reduction products formed) depended on the type of preparation (cell-free extract, resting cells, or growing culture), on the species, and on the atmosphere (air or H2). The "nitro-reductase" activity of V. alkalescens extracts was associated with protein fractions, one having some ferredoxin-like properties and the other possessing hydrogenase activity. Efforts to eliminate hydrogenase from the reaction have thus far been unsuccessful. The question of whether ferredoxin acts as a nonspecific reductase for nitroaromatic compounds remains unresolved. PMID:779650

  9. In vivo metabolism and genotoxic effects of nitrated polycyclic aromatic hydrocarbons.

    PubMed

    Möller, L

    1994-10-01

    During incomplete combustion of organic matter, nitro-polycyclic aromatic hydrocarbons (nitro-PAHs), are formed in a reaction that is catalyzed by a low pH. 2-Nitrofluorene (NF), a marker for nitro-PAHs, is metabolized in vivo by two different routes. After inhalation, potent mutagenic metabolites, hydroxylated nitrofluorenes (OH-NFs), are formed. The metabolites are distributed by systemic circulation. After oral administration, NF is reduced to the corresponding amine, a reaction mediated by the intestinal microflora. This metabolite is acetylated to 2-acetylaminofluorene (AAF), a potent carcinogen. Further ring-hydroxylation of AAF leads to detoxification and excretion. Induction of cytochrome P450s affects the metabolism, and more OH-NFs are formed. As a consequence, more mutagenic metabolites are found in the circulation. OH-NFs are excreted in the bile as, in terms of mutagenicity, totally harmless glucuronide conjugates. When these conjugates are excreted via the bile, intestinal beta-glucuronidase can liberate direct-acting mutagens in the intestine. Thus, inhalation of NF can lead to formation of potent mutagens in the intestine. NF is a direct-acting mutagen in bacterial assays and an initiator and promoter of the carcinogenic process, and gives rise to DNA adduct formation in laboratory animals.

  10. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines.

    PubMed

    Sheaff, Chrystal N; Eastwood, Delyle; Wai, Chien M

    2007-01-01

    The detection of explosive material is at the forefront of current analytical problems. A detection method is desired that is not restricted to detecting only explosive materials, but is also capable of identifying the origin and type of explosive. It is essential that a detection method have the selectivity to distinguish among compounds in a mixture of explosives. The nitro compounds found in explosives have low fluorescent yields or are considered to be non-fluorescent; however, after reduction, the amino compounds exhibit relatively high fluorescence. We discuss how to increase selectivity of explosive detection using fluorescence; this includes synchronous luminescence and derivative spectroscopy with appropriate smoothing. By implementing synchronous luminescence and derivative spectroscopy, we were able to resolve the reduction products of one major TNT-based explosive compound, 2,4-diaminotoluene, and the reduction products of other minor TNT-based explosives in a mixture. We also report for the first time the quantum yields of these important compounds. Relative quantum yields are useful in establishing relative fluorescence intensities and are an important spectroscopic measurement of molecules. Our approach allows for rapid, sensitive, and selective detection with the discrimination necessary to distinguish among various explosives.

  11. A comprehensive study of the optoelectronic properties of donor-acceptor based derivatives of 1,3,4-oxadiazole

    NASA Astrophysics Data System (ADS)

    Joshi, Ankita; Ramachandran, C. N.

    2017-07-01

    A variety of 1,3,4-oxadiazole derivatives based on electron- donor pyrrole and -acceptor nitro groups are modelled. Various isomers of pyrole-oxadiazole-nitro unit and its dimer linked to substituted and unsubstituted phenyl group are studied using the dispersion corrected density functional theoretical method. The electron density distribution in frontier orbitals of the phenyl-spacer compounds bearing amino and phenylamino groups indicates the possibility of intramolecular charge transfer. The isomers of phenyl-spacer compounds absorb in visible region of electromagnetic spectrum. The compounds show high values of light harvesting efficiency, despite the weak anchoring nature of nitro groups.

  12. USSR and Eastern Europe Scientific Abstracts, Physics and Mathematics, Number 36

    DTIC Science & Technology

    1977-07-06

    Russian, 2 Western. Calorimetry USSR COMBUSTION OF EXPLOSIVE COMPOUNDS WITH NITROGEN-NITROGEN BONDS Novosibirsk FIZIKA GORENIYA I VZRYVA in...trinitrosoamine was studied. The function U(IQ) was determined for some of these compounds (-80 - + 150°C) and the thermocouples embedded in the compounds at...method of calculation is apparently applicable to analysis of nitro esters and nitro compounds with the C-NO2 bond in the region of kinetically

  13. Composition and Integrity of PAHs, Nitro-PAHs, Hopanes and Steranes In Diesel Exhaust Particulate Matter.

    PubMed

    Huang, Lei; Bohac, Stanislav V; Chernyak, Sergei M; Batterman, Stuart A

    2013-08-01

    Diesel exhaust particulate matter contains many semivolatile organic compounds (SVOCs) of environmental and health significance. This study investigates the composition, emission rates, and integrity of 25 SVOCs, including polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and diesel biomarkers hopanes and steranes. Diesel engine particulate matter (PM), generated using an engine test bench, three engine conditions, and ultra-low sulfur diesel (ULSD), was collected on borosilicate glass fiber filters. Under high engine load, the PM emission rate was 0.102 g/kWh, and emission rate of ΣPAHs (10 compounds), ΣNPAHs (6 compounds), Σhopanes (2 compounds), and Σsteranes (2 compounds) were 2.52, 0.351, 0.02 ~ 2 and 1μg/kWh, respectively. Storage losses were evaluated for three cases: conditioning filters in clean air at 25 °C and 33% relative humidity (RH) for 24 h; storing filter samples (without extraction) wrapped in aluminum foil at 4 °C for up to one month; and storing filter extracts in glass vials capped with Teflon crimp seals at 4 °C for up to six months. After conditioning filters for 24 h, 30% of the more volatile PAHs were lost, but lower volatility NPAHs, hopanes and steranes showed negligible changes. Storing wrapped filters and extracts at 4 °C for up to one month did not lead to significant losses, but storing extracts for five months led to significant losses of PAHs and NPAHs; hopanes and steranes demonstrated greater integrity. These results suggest that even relatively brief filter conditioning periods, needed for gravimetric measurements of PM mass, and extended storage of filter extracts can lead to underestimates of SVOC concentrations. Thus, SVOC sampling and analysis protocols should utilize stringent criteria and performance checks to identify and limit possible biases occurring during filter and extract processing.

  14. Composition and Integrity of PAHs, Nitro-PAHs, Hopanes and Steranes In Diesel Exhaust Particulate Matter

    PubMed Central

    Huang, Lei; Bohac, Stanislav V.; Chernyak, Sergei M.; Batterman, Stuart A.

    2013-01-01

    Diesel exhaust particulate matter contains many semivolatile organic compounds (SVOCs) of environmental and health significance. This study investigates the composition, emission rates, and integrity of 25 SVOCs, including polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and diesel biomarkers hopanes and steranes. Diesel engine particulate matter (PM), generated using an engine test bench, three engine conditions, and ultra-low sulfur diesel (ULSD), was collected on borosilicate glass fiber filters. Under high engine load, the PM emission rate was 0.102 g/kWh, and emission rate of ΣPAHs (10 compounds), ΣNPAHs (6 compounds), Σhopanes (2 compounds), and Σsteranes (2 compounds) were 2.52, 0.351, 0.02 ~ 2 and 1μg/kWh, respectively. Storage losses were evaluated for three cases: conditioning filters in clean air at 25 °C and 33% relative humidity (RH) for 24 h; storing filter samples (without extraction) wrapped in aluminum foil at 4 °C for up to one month; and storing filter extracts in glass vials capped with Teflon crimp seals at 4 °C for up to six months. After conditioning filters for 24 h, 30% of the more volatile PAHs were lost, but lower volatility NPAHs, hopanes and steranes showed negligible changes. Storing wrapped filters and extracts at 4 °C for up to one month did not lead to significant losses, but storing extracts for five months led to significant losses of PAHs and NPAHs; hopanes and steranes demonstrated greater integrity. These results suggest that even relatively brief filter conditioning periods, needed for gravimetric measurements of PM mass, and extended storage of filter extracts can lead to underestimates of SVOC concentrations. Thus, SVOC sampling and analysis protocols should utilize stringent criteria and performance checks to identify and limit possible biases occurring during filter and extract processing. PMID:24363468

  15. Reduction of aromatic and heterocyclic aromatic N-hydroxylamines by human cytochrome P450 2S1.

    PubMed

    Wang, Kai; Guengerich, F Peter

    2013-06-17

    Many aromatic amines and heterocyclic aromatic amines (HAAs) are known carcinogens for animals, and there is also strong evidence of some in human cancer. The activation of these compounds, including some arylamine drugs, involves N-hydroxylation, usually by cytochrome P450 enzymes (P450) in Family 1 (1A2, 1A1, and 1B1). We previously demonstrated that the bioactivation product of the anticancer agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203), an N-hydroxylamine, can be reduced by P450 2S1 to its amine precursor under anaerobic conditions and, to a lesser extent, under aerobic conditions [Wang, K., and Guengerich, F. P. (2012) Chem. Res. Toxicol. 25, 1740-1751]. In the study presented here, we tested the hypothesis that P450 2S1 is involved in the reductive biotransformation of known carcinogenic aromatic amines and HAAs. The N-hydroxylamines of 4-aminobiphenyl (4-ABP), 2-naphthylamine (2-NA), and 2-aminofluorene (2-AF) were synthesized and found to be reduced by P450 2S1 under both anaerobic and aerobic conditions. The formation of amines due to P450 2S1 reduction also occurred under aerobic conditions but was less apparent because the competitive disproportionation reactions (of the N-hydroxylamines) also yielded amines. Further, some nitroso and nitro derivatives of the arylamines could also be reduced by P450 2S1. None of the amines tested were oxidized by P450 2S1. These results suggest that P450 2S1 may be involved in the reductive detoxication of several of the activated products of carcinogenic aromatic amines and HAAs.

  16. Reduction of Aromatic and Heterocyclic Aromatic N-Hydroxylamines by Human Cytochrome P450 2S1

    PubMed Central

    Wang, Kai; Guengerich, F. Peter

    2013-01-01

    Many aromatic amines and heterocyclic aromatic amines (HAAs) are known carcinogens for animals and there is also strong evidence for some in human cancer. The activation of these compounds, including some arylamine drugs, involves N-hydroxylation, usually by cytochrome P450 enzymes (P450) in Family 1 (1A2, 1A1, and 1B1). We previously demonstrated that the bioactivation product of the anti-cancer agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203), an N-hydroxylamine, can be reduced by P450 2S1 to its amine precursor under anaerobic conditions and, to a lesser extent, under aerobic conditions (Wang, K., and Guengerich, F. P. (2012) Chem. Res. Toxicol. 25, 1740–1751). In the present study, we tested the hypothesis that P450 2S1 is involved in the reductive biotransformation of known carcinogenic aromatic amines and HAAs. The N-hydroxylamines of 4-aminobiphenyl (4-ABP), 2-naphthylamine (2-NA), and 2-aminofluorene (2-AF) were synthesized and found to be reduced by P450 2S1 under both anaerobic and aerobic conditions. The formation of amines due to P450 2S1 reduction also occurred under aerobic conditions but was less apparent because the competitive disproportionation reactions (of the N-hydroxylamines) also yielded amines. Further, some nitroso and nitro derivatives of the arylamines could also be reduced by P450 2S1. None of the amines tested were oxidized by P450 2S1. These results suggest that P450 2S1 may be involved in the reductive detoxication of several of the activated products of carcinogenic aromatic amines and HAAs. PMID:23682735

  17. Use of experimental design in the investigation of stir bar sorptive extraction followed by ultra-high-performance liquid chromatography-tandem mass spectrometry for the analysis of explosives in water samples.

    PubMed

    Schramm, Sébastien; Vailhen, Dominique; Bridoux, Maxime Cyril

    2016-02-12

    A method for the sensitive quantification of trace amounts of organic explosives in water samples was developed by using stir bar sorptive extraction (SBSE) followed by liquid desorption and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The proposed method was developed and optimized using a statistical design of experiment approach. Use of experimental designs allowed a complete study of 10 factors and 8 analytes including nitro-aromatics, amino-nitro-aromatics and nitric esters. The liquid desorption study was performed using a full factorial experimental design followed by a kinetic study. Four different variables were tested here: the liquid desorption mode (stirring or sonication), the chemical nature of the stir bar (PDMS or PDMS-PEG), the composition of the liquid desorption phase and finally, the volume of solvent used for the liquid desorption. On the other hand, the SBSE extraction study was performed using a Doehlert design. SBSE extraction conditions such as extraction time profiles, sample volume, modifier addition, and acetic acid addition were examined. After optimization of the experimental parameters, sensitivity was improved by a factor 5-30, depending on the compound studied, due to the enrichment factors reached using the SBSE method. Limits of detection were in the ng/L level for all analytes studied. Reproducibility of the extraction with different stir bars was close to the reproducibility of the analytical method (RSD between 4 and 16%). Extractions in various water sample matrices (spring, mineral and underground water) have shown similar enrichment compared to ultrapure water, revealing very low matrix effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Di­chlorido­[N-(N,N-di­methyl­carbamimido­yl)-N′,N′,4-tri­methyl­benzohydrazonamide]­platinum(II) nitro­methane hemisolvate

    PubMed Central

    Bolotin, Dmitrii S.; Bokach, Nadezha A.; Haukka, Matti

    2014-01-01

    In the title compound, [PtCl2(C13H21N5)]·0.5CH3NO2, the PtII atom is coordinated in a slightly distorted square-planar geometry by two Cl atoms and two N atoms of the bidentate ligand. The (1,3,5-tri­aza­penta­diene)PtII metalla ring is slightly bent and does not conjugate with the aromatic ring. In the crystal, N—H⋯Cl hydrogen bonds link the complex mol­ecules, forming chains along [001]. The nitromethane solvent molecule shows half-occupancy and is disordered over two sets of sites about an inversion centre. PMID:24826095

  19. RE12 derivatives displaying Vaccinia H1-related phosphatase (VHR) inhibition in the presence of detergent and their anti-proliferative activity against HeLa cells.

    PubMed

    Thuaud, Frédéric; Kojima, Shuntaro; Hirai, Go; Oonuma, Kana; Tsuchiya, Ayako; Uchida, Takako; Tsuchimoto, Teruhisa; Sodeoka, Mikiko

    2014-05-01

    New derivatives of Vaccinia H1-related phosphatase (VHR) inhibitor RE12 (5) were designed by replacing the long straight alkyl chain with other hydrophobic functionalities containing two aromatic rings, with the aim of obtaining potent, cell-active inhibitors. We established a direct coupling reaction between tetronic acid derivative and thioimidate to prepare the RE derivatives 6a-6i efficiently. These compounds all showed VHR-inhibitory activity in the presence of 0.001% NP-40, whereas RE12 (5) was inactive under this condition, even at 100 μM. Further structure-activity studies focused on terminal substitution afforded trifluoromethyl derivative 6k (RE176) and nitro derivative 6l (RE177). The IC50 value of 6l in the presence of NP-40 was almost equivalent to that of RE12 (5) in its absence. Compound 6k (RE176) potently inhibited proliferation of HeLa cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Chemical Microsensors For Detection Of Explosives And Chemical Warfare Agents

    DOEpatents

    Yang, Xiaoguang; Swanson, Basil I.

    2001-11-13

    An article of manufacture is provided including a substrate having an oxide surface layer and a layer of a cyclodextrin derivative chemically bonded to said substrate, said layer of a cyclodextrin derivative adapted for the inclusion of selected compounds, e.g., nitro-containing organic compounds, therewith. Such an article can be a chemical microsensor capable of detecting a resultant mass change from inclusion of the nitro-containing organic compound.

  1. Reactions of Free Radicals with Nitro-Compounds and Nitrates

    DTIC Science & Technology

    1981-03-31

    PAGE(I/hmm a•Ia ntatemd the fragment derived from the nitrates but not from the nitro-compounds could undergo exothermic rearrangement. Product analyses...compounds could undergo exothermic rearrangement. Product analyses and computer modelling were undertaken, these provided a clear explanation of why the...Nitrate 14 Reaction of Oxygen Atoms with Nitromethane 16 Reaction of Oxygen Atoms with Nitroethane 17 Products from Nitrocompounds 18 Effect of Carbon

  2. Effects of nitro-heterocyclic derivatives against Leishmania (Leishmania) infantum promastigotes and intracellular amastigotes.

    PubMed

    Petri e Silva, Simone Carolina Soares; Palace-Berl, Fanny; Tavares, Leoberto Costa; Soares, Sandra Regina Castro; Lindoso, José Angelo Lauletta

    2016-04-01

    Leishmaniasis is an overlooked tropical disease affecting approximately 1 million people in several countries. Clinical manifestation depends on the interaction between Leishmania and the host's immune response. Currently available treatment options for leishmaniasis are limited and induce severe side effects. In this research, we tested nitro-heterocyclic compounds (BSF series) as a new alternative against Leishmania. Its activity was measured in Leishmania (Leishmania) infantum promastigotes and intracellular amastigotes using MTT colorimetric assay. Additionally, we assessed the phosphatidylserine exposure by promastigotes, measured by flow cytometry, as well as nitric oxide production, measured by Griess' method. The nitro-heterocyclic compounds (BSF series) showed activity against L. (L.) infantum promastigotes, inducting the phosphatidylserine exposition by promastigotes, decreasing intracellular amastigotes and increasing oxide nitric production. The selectivity index was more prominent to Leishmania than to macrophages. Compared to amphotericin b, our compounds presented higher IC50, however the selectivity index was more specific to parasite than to amphotericin b. In conclusion, these nitro-heterocyclic compounds showed to be promising as an anti-Leishmania drug, in in vitro studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Environmental nitration processes enhance the mutagenic potency of aromatic compounds.

    PubMed

    Bonnefoy, Aurélie; Chiron, Serge; Botta, Alain

    2012-05-01

    This work is an attempt to establish if aromatic nitration processes are always associated with an increase of genotoxicity. We determined the mutagenic and genotoxic effects of Benzene (B), Nitrobenzene (NB), Phenol (P), 2-Nitrophenol (2-NP), 2,4-Dinitrophenol (2,4-DNP), Pyrene (Py), 1-Nitropyrene (1-NPy), 1,3-Dinitropyrene (1,3-DNPy), 1,6-Dinitropyrene (1,6-DNPy), and 1,8-Dinitropyrene (1,8-DNPy). The mutagenic activities were evaluated with umuC test in presence and in absence of metabolic activation with S9 mix. Then, we used both cytokinesis-blocked micronucleus (CBMN) assay, in combination with fluorescent in situ hybridization (FISH) of human pan-centromeric DNA probes on human lymphocytes in order to evaluate the genotoxic effects. Analysis of all results shows that nitro polycyclic aromatic hydrocarbons (PAHs) are definitely environmental genotoxic/mutagenic hazards and confirms that environmental aromatic nitration reactions lead to an increase in genotoxicity and mutagenicity properties. Particularly 1-NPy and 1,8-DNPy can be considered as human potential carcinogens. They seem to be significant markers of the genotoxicity, mutagenicity, and potential carcinogenicity of complex PAHs mixtures present in traffic emission and industrial environment. In prevention of environmental carcinogenic risk 1-NPy and 1,8-DNPy must therefore be systematically analyzed in environmental complex mixtures in association with combined umuC test, CBMN assay, and FISH on cultured human lymphocytes. © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2012. Copyright © 2010 Wiley Periodicals, Inc.

  4. Emission characteristics of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons from diesel trucks based on on-road measurements

    NASA Astrophysics Data System (ADS)

    Cao, Xinyue; Hao, Xuewei; Shen, Xianbao; Jiang, Xi; Wu, Bobo; Yao, Zhiliang

    2017-01-01

    Polycyclic aromatic hydrocarbon (PAH) and nitro-polycyclic aromatic hydrocarbon (NPAH) emissions from 18 diesel trucks of different sizes and with different emission standards were tested in Beijing using a portable emission measurement system (PEMS). Both the gaseous- and particulate-phase PAHs and NPAHs were quantified by high-performance liquid chromatography (HPLC) in the laboratory. The emission factors (EFs) of the total PAHs from light-duty diesel trucks (LDDTs), medium-duty diesel trucks (MDDTs) and heavy-duty diesel trucks (HDDTs) were 82229.11 ± 41906.06, 52867.43 ± 18946.47 and 93837.35 ± 32193.14 μg/km, respectively, much higher than the respective values of total NPAHs from their counterpart vehicles. The gaseous phase had an important contribution to the total PAHs and NPAHs, with a share rate of approximately 69% and 97% on average, respectively. The driving cycle had important impacts on the emissions of PAHs and NPAHs, especially for LDDTs and HDDTs. Higher emissions of PAHs and NPAHs were detected on non-highway roads compared to that on highways for these two types of vehicles. Compared to the results of different studies, the difference in the EFs of PAHs and NPAHs can reach several orders of magnitudes, which would introduce errors in the development of an emission inventory of PAHs and NPAHs.

  5. Ruminal fermentation of anti-methanogenic nitrate- and nitro-containing forages in vitro

    USDA-ARS?s Scientific Manuscript database

    Nitrate, 3-nitro-1-propionic acid (NPA), and 3-nitro-1-propanol (NPOH) can accumulate in forages and be poisonous to animals if fed at high enough amounts. These chemicals are also recognized as potent anti-methanogenic compounds, but plants naturally containing these chemicals have been studied li...

  6. NITRO MUSK BOUND TO CARP HEMOGLOBIN: DETERMINATION BY GC WITH TWO MS DETECTION MODES: EIMS VERSUS ELECTRON CAPTURE NEGEATIVE ION MS

    EPA Science Inventory

    Nitroaromatic compounds including synthetic nitro musks are important raw materials and intermediates in the synthesis of explosives, dyes, and pesticides, pharmaceutical and personal care-products (PPCPs). The nitro musks such as musk xylene (MX) and musk ketone (MK) are extensi...

  7. Nitration of particle-associated PAHs and their derivatives (nitro-, oxy-, and hydroxy-PAHs) with NO 3 radicals

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Yang, Bo; Gan, Jie; Liu, Changgeng; Shu, Xi; Shu, Jinian

    2011-05-01

    The heterogeneous reactions of typical polycyclic aromatic hydrocarbons (PAHs) and their derivatives (nitro-, oxy-, and hydroxy-PAHs) adsorbed on azelaic acid particles with NO 3 radicals are investigated using a flow-tube reactor coupled to a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). The mono-nitro-, di-nitro-, and poly-nitro-products from successive nitro-substitution reactions of PAHs and their derivatives are observed in real time with VUV-ATOFMS. 9-Nitroanthracene, anthraquinone, anthrone, 9,10-dinitroanthracene, 2-, 4-, and 9-nitrophenanthrene, 1-nitropyrene, 1,3-, 1,6-, and 1,8-dinitropyrene, 7-nitrobenzo[ a]anthracene, and benzo[ a]anthracene-7,12-dione are identified by GC/MS analysis of the reaction products of PAHs and their derivatives coated on the inner bottom surface of the conical flasks with NO 3 radicals. Other oxygenated products are tentatively assigned. 1-Nitropyrene is the only mono-nitrated product detected in the reaction of surface-bound pyrene with gas-phase NO 3 radicals. This phenomenon is different from what has been observed in previous studies of the gas-phase pyrene nitration, showing that 2-nitropyrene is the sole nitration product. The experimental results may reveal the discrepancies between the heterogeneous and homogeneous nitrations of pyrene.

  8. Determination of the Temperature Dependence of Heat Capacity for Some Molecular Crystals of Nitro Compounds

    NASA Astrophysics Data System (ADS)

    Kovalev, Yu. M.; Kuropatenko, V. F.

    2018-05-01

    An analysis of the existing approximations used for describing the dependence of heat capacity at a constant volume on the temperature of a molecular crystal has been carried out. It is shown that the considered Debye and Einstein approximations do not enable one to adequately describe the dependence of heat capacity at a constant volume on the temperature of the molecular crystals of nitro compounds. This inference requires the development of special approximations that would describe both low-frequency and high-frequency parts of the vibrational spectra of molecular crystals. This work presents a universal dependence allowing one to describe the dependence of heat capacity at a constant volume on temperature for a number of molecular crystals of nitro compounds.

  9. Precursor ion scanning-mass spectrometry for the determination of nitro functional groups in atmospheric particulate organic matter.

    PubMed

    Dron, Julien; Abidi, Ehgere; Haddad, Imad El; Marchand, Nicolas; Wortham, Henri

    2008-06-23

    An analytical method for the quantitative determination of the total nitro functional group (R-NO2) content in atmospheric particulate organic matter is developed. The method is based on the selectivity of NO2(-) (m/z 46) precursor ion scanning (PAR 46) by atmospheric pressure chemical ionization-tandem mass spectrometry (APCI-MS/MS). PAR 46 was experimented on 16 nitro compounds of different molecular structures and was compared with a neutral loss of NO (30 amu) technique in terms of sensitivity and efficiency to characterize the nitro functional groups. Covering a wider range of compounds, PAR 46 was preferred and applied to reference mixtures containing all the 16 compounds under study. Repeatability carried out using an original statistical approach, and calibration experiments were performed on the reference mixtures proven the suitability of the technique for quantitative measurements of nitro functional groups in samples of environmental interest with good accuracy. A linear range was obtained for concentrations ranging between 0.005 and 0.25 mM with a detection limit of 0.001 mM of nitro functional groups. Finally, the analytical error based on an original statistical approach applied to numerous reference mixtures was below 20%. Despite of potential artifacts related to nitro-alkanes and organonitrates, this new methodology offers a promising alternative to FT-IR measurements. The relevance of the method and its potentialities are demonstrated through its application to aerosols collected in the EUPHORE simulation chamber during o-xylene photooxidation experiments and in a suburban area of a French alpine valley during summer.

  10. Electrode Potentials of l-Tryptophan, l-Tyrosine, 3-Nitro-l-tyrosine, 2,3-Difluoro-l-tyrosine, and 2,3,5-Trifluoro-l-tyrosine.

    PubMed

    Mahmoudi, Leila; Kissner, Reinhard; Nauser, Thomas; Koppenol, Willem H

    2016-05-24

    Electrode potentials for aromatic amino acid radical/amino acid couples were deduced from cyclic voltammograms and pulse radiolysis experiments. The amino acids investigated were l-tryptophan, l-tyrosine, N-acetyl-l-tyrosine methyl ester, N-acetyl-3-nitro-l-tyrosine ethyl ester, N-acetyl-2,3-difluoro-l-tyrosine methyl ester, and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester. Conditional potentials were determined at pH 7.4 for all compounds listed; furthermore, Pourbaix diagrams for l-tryptophan, l-tyrosine, and N-acetyl-3-nitro-l-tyrosine ethyl ester were obtained. Electron transfer accompanied by proton transfer is reversible, as confirmed by detailed analysis of the current waves, and because the slopes of the Pourbaix diagrams obey Nernst's law. E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) at pH 7 are 0.99 ± 0.01 and 0.97 ± 0.01 V, respectively. Pulse radiolysis studies of two dipeptides that contain both amino acids indicate a difference in E°' of approximately 0.06 V. Thus, in small peptides, we recommend values of 1.00 and 0.96 V for E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH), respectively. The electrode potential of N-acetyl-3-nitro-l-tyrosine ethyl ester is higher, while because of mesomeric stabilization of the radical, those of N-acetyl-2,3-difluoro-l-tyrosine methyl ester and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester are lower than that of tyrosine. Given that the electrode potentials at pH 7 of E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) are nearly equal, they would be, in principle, interchangeable. Proton-coupled electron transfer pathways in proteins that use TrpH and TyrOH are thus nearly thermoneutral.

  11. Synthesis and antimicrobial studies of some Mannich bases carrying imidazole moiety.

    PubMed

    Frank, Priya V; Manjunatha Poojary, Mahesha; Damodara, Naral; Chikkanna, Chandrashekhar

    2013-06-01

    3 Starting from 2-methyl-4-nitro-imidazole, new 5-(2-methyl- 4-nitro-1-imidazomethyl)-1,3,4-oxadiazole-2-thione () was synthesized and was subjected to Mannich reaction with appropriate amines to yield a new series of 3-substituted aminomethyl-5-(2-methyl-4-nitro-1-imidazomethyl)- 1,3,4-oxadiazole-2-thiones (4a-j). The structure of the title compounds was elucidated by elemental analysis and spectral data. The newly synthesized Mannich bases were screened for their antibacterial and antifungal activity. Many of these compounds exhibited potent antifungal activity.

  12. TDAE strategy in the benzoxazolone series: synthesis and reactivity of a new benzoxazolinonic anion.

    PubMed

    Nadji-Boukrouche, Aïda R; Khoumeri, Omar; Terme, Thierry; Liacha, Messaoud; Vanelle, Patrice

    2015-01-14

    We describe an original pathway to produce new 5-substituted 3-methyl-6-nitro-benzoxazolones by the reaction of aromatic carbonyl and α-carbonyl ester derivatives with a benzoxazolinonic anion formed exclusively via the TDAE strategy.

  13. Characterization of bovine ruminal and equine cecal microbial populations enriched for enhanced nitro-toxin metabolizing activity

    USDA-ARS?s Scientific Manuscript database

    The phytochemicals 3-nitro-1-propionic acid (NPA) and 3-nitro-1-propanol (NPOH) are produced by a wide variety of leguminous plants, including over 150 different species and varieties of Astragalus. These compounds are toxic to naive grazing animals, but can be safely fed to cattle and sheep that h...

  14. Property study of poly nitro compounds of cis-syn-cis-2, 6-dioxodecahydro-lH, 5H-diimidazo [4, 5-b: 4', 5'-e] pyrazine

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Xu, Zhibin; Xu, Yudong; Xu, Liang; Meng, Zihui

    2017-03-01

    Poly nitro group substituted cis-syn-cis-2, 6-dioxodecahydro-lH, 5H-diimidazo [4, 5-b: 4', 5'-e] pyrazine derivatives are synthesized by modified method and adequately characterized. All compounds have good performance both in density (ρ> 1.85 g/cm3) and high detonation velocity (vD > 8800 m/s, calculated). Some representative compounds, for example, 4 (vD: 9405 ms-1; P: 41.6 GPa) and 5 (vD:9781 ms-1; P: 45.6 GPa) exhibit excellent detonation performances, which are comparable with current energetic compounds such as RDX (vD: 8724 ms-1; P: 35.2 GPa) and HMX (vD:9059 ms-1; P: 39.2 GPa). Considering the sensitivity increasing with the number of nitro group, two componds with tetranitro groups (2 and 3) are worthy of deep research.

  15. Polycyclic aromatic hydrocarbons and their derivatives in indoor and outdoor air in an eight-home study

    NASA Astrophysics Data System (ADS)

    Chuang, Jane C.; Mack, Gregory A.; Kuhlman, Michael R.; Wilson, Nancy K.

    A pilot field study was performed in Columbus, OH, during the winter of 1986/1987. The objectives were to determine the feasibility of the use of a newly developed quiet sampler in indoor air sampling for particles and semivolatile organic compounds (SVOC) and to measure the concentrations of polycyclic aromatic hydrocarbons (PAH), PAH derivatives, and nicotine in air in selected residences. Eight homes were chosen for sampling on the basis of these characteristics: electric/gas heating system, electric/gas cooking appliances, and the absence/presence of environmental tobacco smoke (ETS). The indoor sampler was equipped with a quartz-fiber filter to collect particles followed by XAD-4 resin to trap SVOC. A PS-1 sampler with a similar sampling module was used outdoors. The indoor air was sampled in the kitchen and living room areas over two consecutive 8-h periods. The outdoor air was sampled concurrently with the indoor samples over a 16-h period. Fifteen PAH, five nitro-PAH, five oxygenated PAH, and three nitrogen heterocyclic compounds were determined in these samples. The most abundant PAH found indoors was naphthalene. The indoor concentrations of PAH derivatives were lower than those of their parent compounds. Average concentrations of all but three target compounds (naphthalene dicarboxylic acid anhydride, pyrene dicarboxylic acid anhydride, and 2-nitrofluoranthene) were higher indoors than outdoors. Environmental tobacco smoke was the most significant influence on indoor pollutant levels. Homes with gas heating systems had higher indoor pollutant levels than homes with electric heating systems. However, the true effects of heating and cooking systems were not characterized as accurately as the effects of ETS because of the small sample sizes and the lack of statistical significance for most pollutant differences in the absence of ETS. The concentrations of PAH marker compounds (phenanthrene, fluoranthene, and pyrene) correlated well with the concentrations of other target compounds. Quinoline and isoquinoline can be used to indicate indoor levels of ETS.

  16. Infrared monitoring of dinitrotoluenes in sunflower and maize roots.

    PubMed

    Dokken, K M; Davis, L C

    2011-01-01

    Infrared microspectroscopy (IMS) is emerging as an important analytical tool for the structural analysis of biological tissue. This report describes the use of IMS coupled to a synchrotron source combined with principal components analysis (PCA) to monitor the fate and effect of dinitrotoluenes in the roots of maize and sunflower plants. Infrared imaging revealed that maize roots metabolized 2,4-dinitrotoluene (DNT) and 2,6-DNT. The DNTs and their derivative aromatic amines were predominantly associated with epidermis and xylem. Both isomers of DNT altered the structure and production of pectin and pectic polysaccharides in maize and sunflower plant roots. Infrared peaks diagnostic for aromatic amines were seen at the 5 mg L concentrations for both DNTs in maize and sunflower treated tissue. However, only infrared peaks for nitro groups, not aromatic amines, were present in the maize treated at 10 mg L For sunflower, the 10 mg L level was toxic and also produced very dark root systems making spectra difficult to obtain. Maize and sunflower seem unable to metabolize effectively at concentrations higher than about 5 mg L DNT in hydroponic solution. Based on the results of this study, IMS combined with PCA can be an effective means of determining the fate and metabolism of organic contaminants in plant tissue when isotopically labeled compounds are not available. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  17. Synthesis and radical scavenging activity of 6-hydroxyl-4-methylcoumarin and its derivatives

    NASA Astrophysics Data System (ADS)

    Jumal, Juliana; Ayomide, Adetunji Fridaos

    2018-06-01

    Four compounds of coumarin derivatives namely 6-hydroxyl-4-methylcoumarin (I), 6-hydroxyl-4-methyl-5-(p-nitrophenyl azocoumarin) (II), 6-hydroxyl-4-methyl-5,7-(bis-p-nitrophenyl azocoumarin) (III) and 6-hydroxyl-4-methyl-5,7-(bis-p-chlorophenyl azocoumarin) (IV) were successfully synthesized. These compounds were prepared by reacting hydroquinone with ethylacetoacetate and selected anilines which are chloro and nitro aniline. All synthesized compounds were characterized by CHN micro-elemental analysis, 1H Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR) spectroscopic methods. The infrared spectra of these compounds exhibited five important stretching vibrations: ʋ(-OH), ʋ(C=O), ʋ(C=C), ʋ(C-O) and ʋ(C-N) at 3441-3359 cm-1, 1604-1632 cm-1, 1581-1496 cm-1, 1331-1225 cm-1, 1251-1109 cm-1, respectively. 1H NMR spectra of these compounds show the presence of proton aromatic, proton methyl and proton pyrone ring with the chemical shift at δH 7.00-8.70 ppm, δH 2.20-2.50 ppm and δH 6.10-6.90 ppm, respectively. CHN analysis results of all compounds are in good agreement with the calculated values. All the synthesized compounds were evaluated for their antioxidant activity using DPPH method and ascorbic acid used as the standard. UV-Vis spectroscopic technique was used to investigate the absorbance of these compounds. Compound (II) shows high antioxidant activities compared to compound (I), (III) and (IV) which show moderate to low activities.

  18. 1-(2,4-Dinitro­phen­yl)-2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)hydrazine

    PubMed Central

    Danish, M.; Hamid, Masood; Tahir, M. Nawaz; Ahmad, Nazir; Ghafoor, Sabiha

    2010-01-01

    In the title compound, C14H14N4O4, the dihedral angle between the benzene rings is 10.42 (8)°. The nitro groups make dihedral angles of 5.3 (2) and 6.47 (15)° with their parent ring and are oriented at 11.2 (3)° with respect to each other. An intra­molecular N—H⋯O hydrogen bond completes an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯O inter­actions, thus forming (010) chains in which R 2 2(13) ring motifs are present. There also exist aromatic π–π stacking inter­actions [centroid–centroid separation = 3.7046 (9) Å]. PMID:21588393

  19. Photothermal trace detection in capillary electrophoresis for biomedical diagnostics and toxic materials (invited)

    NASA Astrophysics Data System (ADS)

    Faubel, Werner; Heissler, Stefan; Pyell, Ute; Ragozina, Natalia

    2003-01-01

    Two applications of a near-field thermal lens capillary electrophoresis detector in the deep ultraviolet region (pump beam 257 nm wavelength) will be presented: (1) Capillary electrophoretic determination of the pharmaceuticals Tramadol, Verapamil, and Papaverin. Direct separation techniques were used for the different classes of substances with characteristic absorbance spectra. The combination of capillary electrophoresis and the highly sensitive detection with thermal lens spectroscopy permits the analysis of nanoliter volume samples common in biomedical diagnostics without any preconcentration step. (2) The determination of (nonfluorescent) nitro aromatic explosives in contaminated soil. These compounds are detected with the laboratory built thermal lens detector after their separation by micellar electrokinetic chromatography. Its shown that this type of detection makes it possible to obtain limits of detection 1-2 orders of magnitude lower than those obtained with classical absorption spectrometric detection.

  20. X-Ray Diffraction Studies of the Structure of Ordered Polymers and Related Electro-Active Materials

    DTIC Science & Technology

    1990-12-31

    benzothiazole, 2-[2-(N,N-diethylamino)-5-nitropHenyl]benzothiazole, and 2-(trimethylsilylethynyl)-4-nitro-N,N-dimethylaniline. In all four compounds , the alkyl...nitrophenyl]benzothiazole, and 2-(trimethylsilylethynyl)-4-nitro-N,N-dimethylaniline isee Preprint 2 for details). In all four compounds , the alkyl groups...septiphenyl (DPSP), and 1,2.4- Iriphenylbenzene TPS). The fm four compounds have the genral smcurn (1) where n - I and R - H for PQP. n a I and R

  1. On-road traffic emissions of polycyclic aromatic hydrocarbons and their oxy- and nitro- derivative compounds measured in road tunnel environments.

    PubMed

    Keyte, Ian J; Albinet, Alexandre; Harrison, Roy M

    2016-10-01

    Vehicular emissions are a key source of polycyclic aromatic compounds (PACs), including polycyclic aromatic hydrocarbons (PAHs) and their oxygenated (OPAH) and nitrated (NPAH) derivatives, in the urban environment. Road tunnels are a useful environment for the characterisation of on-road vehicular emissions, providing a realistic traffic fleet and a lack of direct sunlight, chemical reactivity and non-traffic sources. In the present investigation the concentrations of selected PAHs, OPAHs and NPAHs have been measured in the Parc des Princes Tunnel in Paris (PdPT, France), and at the Queensway Road Tunnel and an urban background site in Birmingham (QT, U.K). A higher proportion of semi-volatile (3-4 ring) PAH, OPAH and NPAH compounds are associated with the particulate phase compared with samples from the ambient environment. A large (~85%) decline in total PAH concentrations is observed between 1992 and 2012 measurements in QT. This is attributed primarily to the introduction of catalytic converters in the U.K as well as increasingly stringent EU vehicle emissions legislation. In contrast, NPAH concentrations measured in 2012 are similar to those measured in 1996. This observation, in addition to an increased proportion of (Phe+Flt+Pyr) in the observed PAH burden in the tunnel, is attributed to the increased number of diesel passenger vehicles in the U.K during this period. Except for OPAHs, comparable PAH and NPAH concentrations are observed in both investigated tunnels (QT and PdP). Significant differences are shown for specific substances between PAC chemical profiles in relation with the national traffic fleet differences (33% diesel passenger cars in U.K. vs 69% in France and up to 80% taking into account all vehicle categories). The dominating and sole contribution of 1-Nitropyrene observed in the PdPT NPAH profile strengthens the promising use of this compound as a diesel exhaust marker for PM source apportionment studies. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.

  2. Nitro drugs for the treatment of trypanosomatid diseases: past, present, and future prospects

    PubMed Central

    Patterson, Stephen; Wyllie, Susan

    2014-01-01

    There is an urgent need for new, safer, and effective treatments for the diseases caused by the protozoan parasites Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. In the search for more effective drugs to treat these ‘neglected diseases’ researchers have chosen to reassess the therapeutic value of nitroaromatic compounds. Previously avoided in drug discovery programs owing to potential toxicity issues, a nitro drug is now being used successfully as part of a combination therapy for human African trypanosomiasis. We describe here the rehabilitation of nitro drugs for the treatment of trypanosomatid diseases and discuss the future prospects for this compound class. PMID:24776300

  3. Optical Properties and Aging of Light Absorbing Secondary Organic Aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander

    2016-10-14

    The light-absorbing organic aerosol (OA), commonly referred to as “brown carbon (BrC)”, has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various VOC precursors, NOx concentrations, photolysis time and relative humidity (RH) on the lightmore » absorption of selected secondary organic aerosols (SOA). Light absorption of chamber generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficients (MAC) value is observed from toluene SOA products formed under high NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organonitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible and UV light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed-SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.« less

  4. Organic compounds of PM2.5 in Mexico Valley: spatial and temporal patterns, behavior and sources.

    PubMed

    Amador-Muñoz, O; Villalobos-Pietrini, R; Miranda, J; Vera-Avila, L E

    2011-03-15

    A longitudinal study on spatial and temporal behavior of particles less than 2.5 μm (PM(2.5)), solvent extracted organic matter (SEOM), polycyclic aromatic hydrocarbons (PAH), n-alkanes and nitro-PAH was carried out for a full year in 2006, at five sites simultaneously around the Metropolitan Zone of Mexico Valley (MZMV). There is rather uniform distribution of PM(2.5) and SEOM in the MZMV regarding gravimetric mass concentration, while some specific organic chemical components showed mass heterogeneity. The highest mass concentrations of target compounds occurred in the dry seasons with respect to the rainy season. Bonfires and fireworks are probably responsible for extreme values of PM(2.5), SEOM and PAH (≥ 228 gmol(-1)). Benzo[ghi]perylene was the most abundant PAH, with C(24)-C(26) the most abundant n-alkanes and 2-nitrofluoranthene and 9-nitroanthracene the most abundant nitro-PAH. The northeast zone was the area with the greatest presence of sources of incomplete diesel combustion, while the central for gasoline combustion. In the southwest, the biogenic sources were more abundant over the anthropogenic sources. This was opposite to the other sites. Factor analysis allowed us to relate different compounds to emitting sources. Three main factors were associated with combustion, pyrolysis and biogenic primary sources while the other factors were associated with secondary organic aerosol formation and industry. Correlation analyses indicated that SEOM originates from different primary emission sources or is formed by different processes than the other variables, except in southwest. Associations among variables suggest that PM(2.5) in the northwest and in the southeast originated mainly from primary emissions or consisted of primary organic compounds. PM(2.5) in the northeast, central and southwest contains a greater proportion of secondary organic compounds, with the less oxidized organic aerosols in the northeast and the most aged organic aerosol in the southwest. This follows the trends in the prevailing wind directions in MZMV during 2006. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Aerobic denitration of 2,4,6-trinitrotoluene in the presence of phenazine compounds and reduced pyridine nucleotides.

    PubMed

    Stenuit, Ben; Lamblin, Guillaume; Cornelis, Pierre; Agathos, Spiros N

    2012-10-02

    Phenazine-containing spent culture supernatants of Pseudomonas aeruginosa concentrated with a C18 solid-phase extraction cartridge initiate NAD(P)H-dependent denitration of 2,4,6-trinitrotoluene (TNT). In this study, TNT denitration was investigated under aerobic conditions using two phenazine secondary metabolites excreted by P. aeruginosa, pyocyanin (Py) and its precursor phenazine-1- carboxylic acid (PCA), and two chemically synthesized pyocyanin analogs, phenazine methosulfate (PMS+) and phenazine ethosulfate (PES+). The biomimetic Py/NAD(P)H/O2 system was characterized and found to extensively denitrate TNT in unbuffered aqueous solution with minor production of toxic amino aromatic derivatives. To a much lesser extent, TNT denitration was also observed with PMS+ and PES+ in the presence of NAD(P)H. No TNT denitration was detected with the biomimetic PCA/NAD(P)H/O2 system. Electron paramagnetic resonance (EPR) spectroscopy analysis of the biomimetic Py/NAD(P)H/O2 system revealed the generation of superoxide radical anions (O2 •−). In vitro TNT degradation experiments in the presence of specific inhibitors of reactive oxygen species suggest a nucleophilic attack of superoxide radical anion followed by TNT denitration through an as yet unknown mechanism. The results of this research confirm the high functional versatility of the redox-active metabolite pyocyanin and the susceptibility of aromatic compounds bearing electron withdrawing substituents, such as nitro groups, to superoxide-driven nucleophilic attack.

  6. Analysis of large oxygenated and nitrated polycyclic aromatic hydrocarbons formed under simulated diesel engine exhaust conditions (by compound fingerprints with SPE/LC-API-MS)

    PubMed Central

    Adelhelm, Christoph; Niessner, Reinhard; Pöschl, Ulrich

    2008-01-01

    The analysis of organic compounds in combustion exhaust particles and the chemical transformation of soot by nitrogen oxides are key aspects of assessment and mitigation of the climate and health effects of aerosol emissions from fossil fuel combustion and biomass burning. In this study we present experimental and analytical techniques for efficient investigation of oxygenated and nitrated derivatives of large polycyclic aromatic hydrocarbons (PAHs), which can be regarded as well-defined soot model substances. For coronene and hexabenzocoronene exposed to nitrogen dioxide under simulated diesel exhaust conditions, several reaction products with high molecular mass could be characterized by liquid chromatography-atmospheric pressure chemical (and photo) ionization-mass spectrometry (LC-APCI-MS and LC-APPI-MS). The main products of coronene contained odd numbers of nitrogen atoms (m/z 282, 256, 338), whereas one of the main products of hexabenzocoronene exhibited an even number of nitrogen atoms (m/z 391). Various reaction products containing carbonyl and nitro groups could be tentatively identified by combining chromatographic and mass spectrometric information, and changes of their relative abundance were observed to depend on the reaction conditions. This analytical strategy should highlight a relatively young technique for the characterization of various soot-contained, semi-volatile, and semi-polar reaction products of large PAHs. Figure LC-APCI-MS analysis of nitrated coronene (and HBC): Total-Ion-Chromatogram (TIC), Extracted Ion Chromatograms (EICs) and corresponding mass spectrum (top). PMID:18560812

  7. Method for digesting a nitro-bearing explosive compound

    DOEpatents

    Shah, Manish M.

    2000-01-01

    The present invention is a process wherein superoxide radicals from superoxide salt are used to break down the explosive compounds. The process has an excellent reaction rate for degrading explosives, and operates at ambient temperature and atmospheric pressure in aqueous or non-aqueous conditions. Because the superoxide molecules are small, much smaller than an enzyme molecule for example, they can penetrate the microstructure of plastic explosives faster. The superoxide salt generates reactive hydroxyl radicals, which can destroy other organic contaminants, if necessary, along with digesting the explosive nitro-bearing compound.

  8. Field measurement of nitromethane from automotive emissions at a busy intersection using proton-transfer-reaction mass spectrometry

    NASA Astrophysics Data System (ADS)

    Inomata, Satoshi; Fujitani, Yuji; Fushimi, Akihiro; Tanimoto, Hiroshi; Sekimoto, Kanako; Yamada, Hiroyuki

    2014-10-01

    Field measurements of seven nitro-organic compounds including nitromethane and ten related volatile organic compounds were carried out using proton-transfer-reaction mass spectrometry at a busy intersection of an urban city, Kawasaki, Japan from 26th February to 6th March, 2011. Among the nitro-organic compounds, nitromethane was usually observed along with air pollutants emitted from automobiles. The mixing ratios of nitromethane varied substantially and sometimes clearly varied at an approximately constant interval. The interval corresponded to the cycle of the traffic signals at the intersection and the regular peaks of nitromethane concentrations were caused by emissions from diesel trucks running with high speed. In addition to the regular peaks, sharp increases of nitromethane concentrations were often observed irregularly from diesel trucks accelerating in front of the measurement site. For other nitro-organic compounds such as nitrophenol, nitrocresol, dihydroxynitrobenzene, nitrobenzene, nitrotoluene, and nitronaphthalene, most of the data fluctuated within the detection limits.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldfarb, J.L.; Suuberg, E.M.

    Polycyclic aromatic hydrocarbons (PAHs) and their oxygenated derivatives (OPAHs) are ubiquitous environmental pollutants resulting from the incomplete combustion of coal and fossil fuels. Their vapor pressures are key thermodynamic data essential for modeling fate and transport within the environment. The present study involved nine PAHs containing oxygen heteroatoms, including aldehyde, carboxyl, and nitro groups, specifically 2-nitrofluorene, 9-fluorenecarboxylic acid, 2-fluorenecarboxaldehyde, 2-anthracenecarboxylic acid, 9-anthracenecarboxylic acid, 9-anthraldehyde, 1-nitropyrene, 1-pyrenecarboxaldehyde, and 1-bromo-2-naphthoic acid. The vapor pressures of these compounds, with molecular weights ranging from 194 to 251 g/mol, were measured using the isothermal Knudsen effusion technique in the temperature range of 329 to 421more » K. The corresponding enthalpies of sublimation, calculated via the Clausius-Clapeyron equation, are compared to parent, nonoxygenated PAH compound data to determine the effect of the addition of these oxygen-containing heteroatoms. As expected, the addition of -CHO, -COOH, and -NO{sub 2} groups onto these PAHs increases the enthalpy of sublimation and decreases the vapor pressure as compared to the parent PAH; the position of substitution also plays a significant role in determining the vapor pressure of these OPAHs.« less

  10. On-line measurements of nitro organic compounds emitted from automobiles by proton transfer reaction mass spectrometry: Laboratory experiments and a field measurement

    NASA Astrophysics Data System (ADS)

    Inomata, S.; Tanimoto, H.; Fujitani, Y.; Fushimi, A.; Sato, K.; Sekimoto, K.; Yamada, H.; Hori, S.; Shimono, A.; Hikida, T.

    2011-12-01

    On-line measurements of nitro organic compounds in automobile exhaust were carried out by proton transfer reaction mass spectrometry (PTR-MS) with a chassis dynamometer. Diesel vehicles with oxidation catalyst system (diesel vehicle A) and with diesel PM-NOx reduction system ((diesel vehicle B) and a gasoline vehicle were used as a test vehicle. In the case of the diesel vehicle A, the emissions of nitromethane, nitrophenol (NPh), C7-, C8-, C9-, and C10-nitrophenols, and dihydroxynitrobenzenes (DHNB) were observed in the diesel exhaust from the experiment under the constant driving at 60 km hr-1. Temporal variations of mixing ratios for nitromethane, NPh, and DHNB along with related volatile organic compounds (VOCs) were measured during a transient driving cycle. The time-resolved measurement revealed that the nitromethane emission was strongly correlated with the emissions of CO, benzene, and acetone, which are relatively quickly produced in acceleration processes and appeared as sharp peaks. On the other hand, the NPh emission was moderately correlated with the emissions of acetic acid and phenol, which peaks were broad. The emission of nitromethane was observed from the exhaust of the diesel vehicle B but the emission of other nitro organic compounds was not observed. This suggests that the emission of nitro organic compounds besides nitromethane may depend on the diesel exhaust aftertreatment devices. The emission of nitromethane was also observed from the exhaust of the gasoline vehicle with cold start. An in-situ measurement of nitro organic compounds and their related VOCs was carried out at the crossing of an urban city, Kawasaki. Nitromethane was observed at the crossing and we found that the concentration of nitrometane varied rapidly. During the measurement, the maximum of the concentration of nitrometane reached 5 ppbv. Not only nitrophenols but also nitroaromatics were sometimes detected in the field measurement.

  11. Bacterial metabolism of aromatic compounds and a complex hazardous waste under anaerobic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Connor, O.A.

    1992-01-01

    The biological fate of organic chemicals in the environment depends upon a variety of physical/chemical factors. In the absence of molecular oxygen, the importance of terminal electron acceptors has been often overlooked. Since anaerobic microbial consortia are dependent upon the availability of particular electron acceptors, these conditions can play an important role in influencing the fate of environmental pollutants. In this research, different electron acceptors were evaluated for their effects on the biodegradation of environmental toxicants. Two anaerobic bioassays, the Biochemical Methane Potential (BMP) and the Anaerobic Toxicity Assay (ATA), were used to evaluate a series of phthalic acid estersmore » (PAEs), substituted phenols and a landfill leachate, for their methanogenic biodegradability and toxicity. Many of the PAEs and phenols could be stoichiometrically mineralized. In addition, the landfill leachate was found to be inhibitory at concentrations greater than 10%, and partially mineralized in approximately 50 weeks. Based upon these assays, 6 different functional groups and their isomers were evaluated for their effect on the biodegradability and toxicity of phenol under methanogenic and denitrifying conditions. These results indicated that nitro- and chloro-substituted phenols were persistent under denitrifying conditions. Under methanogenic conditions, these compounds were metabolized to a more reduced intermediate with less toxicity. Conversely, amino-substituted phenols were not readily mineralized under methanogenic conditions, but were metabolized after minimal lag under denitrifying conditions. From active denitrifying phenol degrading cultures, a pure culture was obtained which could grow on phenol and on a variety of other alkyl-substituted aromatic compounds. Additional studies have tentatively identified several alicyclic metabolites including cyclohexanol, 2-cyclohexene-1-ol, cyclohexanone and 2-cyclohexene-1-one from phenol catabolism.« less

  12. Levels of synthetic musk compounds in municipal wastewater for potential estimation of biota exposure in receiving waters.

    PubMed

    Osemwengie, Lantis I; Gerstenberger, Shawn L

    2004-06-01

    We analyzed water samples from the confluence of three municipal sewage treatment effluent streams, surface water, and whole carp (Cyprinus carpio) for synthetic musks for a period of 7-12 months. The lipid content of each fish was determined and compared with the concentration of musks in the whole fish tissue. Enhanced methods were used for water sampling and musk extraction. The data presented here provide insight as to the relationship between concentrations of synthetic musks in the municipal effluent and associated biota. This study confirmed the presence of polycyclic and nitro musk compounds in sewage effluent, Lake Mead water, and carp. The concentrations were found to be considerably lower than previous studies conducted in other countries. This study also provides data for polycyclic and nitro musk compounds, as well as some of the nitro musk metabolites in sewage treatment plant effluent, lake water, and carp.

  13. PAHs, NITRO-PAHs, HOPANES, AND STERANES IN LAKE TROUT FROM LAKE MICHIGAN

    PubMed Central

    Huang, Lei; Chernyak, Sergei M.; Batterman, Stuart A.

    2015-01-01

    The present study examines concentrations and risks of polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), steranes, and hopanes in lake trout collected in Lake Michigan. A total of 74 fish were collected in 2 seasons at 3 offshore sites. The total PAH concentration (Σ9PAH) in whole fish ranged from 223 pg/g to 1704 pg/g wet weight, and PAH concentrations and profiles were similar across season, site, and sex. The total NPAH (Σ9NPAH) concentrations ranged from 0.2 pg/g to 31 pg/g wet weight, and carcinogenic compounds, including 1-nitropyrene and 6-nitrochrysene, were detected. In the fall, NPAH concentrations were low at the Illinois site (0.2–0.5 pg/g wet wt), and site profiles differed considerably; in the spring, concentrations and profiles were similar across sites, possibly reflecting changes in fish behavior. In the fall, the total sterane (Σ5Sterane) and total hopane (Σ2Hopane) levels reached 808 pg/g and 141 pg/g wet weight, respectively, but concentrations in the spring were 10 times lower. Concentrations in eggs (fall only) were on the same order of magnitude as those in whole fish. These results demonstrate the presence of target semivolatile organic compounds in a top predator fish, and are consistent with PAH biodilution observed previously. Using the available toxicity information for PAHs and NPAHs, the expected cancer risk from consumption of lake trout sampled are low. However, NPAHs contributed a significant portion of the toxic equivalencies in some samples. The present study provides the first measurements of NPAHs in freshwater fish, and results suggest that additional assessment is warranted. PMID:24764175

  14. The 8-Pyrrole-Benzothiazinones Are Noncovalent Inhibitors of DprE1 from Mycobacterium tuberculosis

    PubMed Central

    Makarov, Vadim; Neres, João; Hartkoorn, Ruben C.; Ryabova, Olga B.; Kazakova, Elena; Šarkan, Michal; Huszár, Stanislav; Piton, Jérémie; Kolly, Gaëlle S.; Vocat, Anthony; Conroy, Trent M.; Mikušová, Katarína

    2015-01-01

    8-Nitro-benzothiazinones (BTZs), such as BTZ043 and PBTZ169, inhibit decaprenylphosphoryl-β-d-ribose 2′-oxidase (DprE1) and display nanomolar bactericidal activity against Mycobacterium tuberculosis in vitro. Structure-activity relationship (SAR) studies revealed the 8-nitro group of the BTZ scaffold to be crucial for the mechanism of action, which involves formation of a semimercaptal bond with Cys387 in the active site of DprE1. To date, substitution of the 8-nitro group has led to extensive loss of antimycobacterial activity. Here, we report the synthesis and characterization of the pyrrole-benzothiazinones PyrBTZ01 and PyrBTZ02, non-nitro-benzothiazinones that retain significant antimycobacterial activity, with MICs of 0.16 μg/ml against M. tuberculosis. These compounds inhibit DprE1 with 50% inhibitory concentration (IC50) values of <8 μM and present favorable in vitro absorption-distribution-metabolism-excretion/toxicity (ADME/T) and in vivo pharmacokinetic profiles. The most promising compound, PyrBTZ01, did not show efficacy in a mouse model of acute tuberculosis, suggesting that BTZ-mediated killing through DprE1 inhibition requires a combination of both covalent bond formation and compound potency. PMID:25987616

  15. Synthesis, optical properties and explosive sensing performances of a series of novel π-conjugated aromatic end-capped oligothiophenes.

    PubMed

    Liu, Taihong; Zhao, Keru; Liu, Ke; Ding, Liping; Yin, Shiwei; Fang, Yu

    2013-02-15

    Four novel terthiophene (3T) derivatives, have been synthesized by employing Grignard coupling reaction via end-capping of naphthyl (NA) or pyrenyl (Py) unit to the one or two ends of 3T. It has been shown that both increasing electron donating strength and extending conjugation are effective approaches to improve the photochemical stability of the oligothiophene. Fluorescence studies demonstrated that the emission of the 3T derivatives is sensitive to the presence of some important nitro-containing explosives in their ethanol solution, in particular, 2,4,6-trinitrophenol (PA) and 3,5-dinitro-2,6-bispicrylamino pyridine (PYX). As an example, the detection limits of 4 to PA and PYX were determined to be 6.21 × 10(-7)mol/L and 8.95 × 10(-7)mol/L, respectively. Based on the discovery, a colorimetric detection method has been developed. The sensitive and selective response of the modified 3T to the explosives have been tentatively attributed to the adsorptive affinity of the compounds to the explosives, and to the higher probability of the electron transfer from the electron-rich 3T derivatives to the electron-poor nitro-containing explosives. No doubt, present study broadens the family of fluorophores which may be employed for the development of fluorescent sensors. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Effects of diesel/biodiesel blends on regulated and unregulated pollutants from a passenger vehicle operated over the European and the Athens driving cycles

    NASA Astrophysics Data System (ADS)

    Karavalakis, George; Stournas, Stamoulis; Bakeas, Evangelos

    This paper presents the regulated and unregulated exhaust emissions of a diesel passenger vehicle, operated with low sulphur automotive diesel and soy methyl ester blends. Emission and fuel consumption measurements were conducted under real driving conditions (Athens Driving Cycle, ADC) and compared with those of a modified New European Driving Cycle (NEDC) using a chassis dynamometer. A Euro II compliant diesel vehicle was used in this study, equipped with an indirect injection diesel engine, fuelled with diesel fuel and biodiesel blends at proportions of 5, 10, and 20% respectively. Unregulated emissions of 11 polycyclic aromatic hydrocarbons (PAHs), 5 nitro-PAHs, 13 carbonyl compounds (CBCs) and the soluble organic fraction (SOF) of the particulate matter were measured. Qualitative hydrocarbon analysis was also performed on the SOF. Regulated emissions of NO x, CO, HC, CO 2, and PM were also measured over the two test cycles. It was established that some of the emissions measured over the (hot-start) NEDC differed from the real-world cycle. Significant differences were also observed in the vehicle's fuel consumption between the two test cycles. The addition of biodiesel reduced the regulated emissions of CO, HC and PM, while an increase in NO x was observed over the ADC. Carbonyl emissions, PAHs and nitro-PAHs were reduced with the addition of biodiesel over both driving cycles.

  17. Identification of Metabolic Routes and Catabolic Enzymes Involved in Phytoremediation of the Nitro- Substituted Explosives TNT, RDX, and HMX

    DTIC Science & Technology

    2006-07-31

    Identification of Metabolic Routes and Catabolic Enzymes Involved in Phytoremediation of the Nitro- Substituted Explosives TNT, RDX...Routes and Catabolic Enzymes Involved in Phytoremediation of the Nitro- Substituted Explosives TNT, RDX, and HMX 5a. CONTRACT NUMBER 5b. GRANT NUMBER...and groundwater in the United States and across Europe. The compounds have been shown to be toxic and are considered pollutants. Phytoremediation has

  18. High performance of a cobalt–nitrogen complex for the reduction and reductive coupling of nitro compounds into amines and their derivatives

    PubMed Central

    Zhou, Peng; Jiang, Liang; Wang, Fan; Deng, Kejian; Lv, Kangle; Zhang, Zehui

    2017-01-01

    Replacement of precious noble metal catalysts with low-cost, non-noble heterogeneous catalysts for chemoselective reduction and reductive coupling of nitro compounds holds tremendous promise for the clean synthesis of nitrogen-containing chemicals. We report a robust cobalt–nitrogen/carbon (Co–Nx/C-800-AT) catalyst for the reduction and reductive coupling of nitro compounds into amines and their derivates. The Co–Nx/C-800-AT catalyst was prepared by the pyrolysis of cobalt phthalocyanine–silica colloid composites and the subsequent removal of silica template and cobalt nanoparticles. The Co–Nx/C-800-AT catalyst showed extremely high activity, chemoselectivity, and stability toward the reduction of nitro compounds with H2, affording full conversion and >97% selectivity in water after 1.5 hours at 110°C and under a H2 pressure of 3.5 bar for all cases. The hydrogenation of nitrobenzene over the Co–Nx/C-800-AT catalyst can even be smoothly performed under very mild conditions (40°C and a H2 pressure of 1 bar) with an aniline yield of 98.7%. Moreover, the Co–Nx/C-800-AT catalyst has high activity toward the transfer hydrogenation of nitrobenzene into aniline and the reductive coupling of nitrobenzene into other derivates with high yields. These processes were carried out in an environmentally friendly manner without base and ligands. PMID:28232954

  19. Optical properties and aging of light-absorbing secondary organic aerosol

    DOE PAGES

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; ...

    2016-10-14

    The light-absorbing organic aerosol (OA) commonly referred to as “brown carbon” (BrC) has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various volatile organic carbon (VOC) precursors, NO x concentrations, photolysis time, and relative humidity (RH) on the lightmore » absorption of selected secondary organic aerosols (SOA). Light absorption of chamber-generated SOA samples, especially aromatic SOA, was found to increase with NO x concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficient (MAC) value is observed from toluene SOA products formed under high-NO x conditions at moderate RH, in which nitro-aromatics were previously identified as the major light-absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organic nitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible (Vis) and ultraviolet (UV) light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.« less

  20. Novel 3-Nitro-1H-1,2,4-triazole-based Amides and Sulfonamides as Potential anti-Trypanosomal Agents

    PubMed Central

    Papadopoulou, Maria V.; Bloomer, William D.; Rosenzweig, Howard S.; Chatelain, Eric; Kaiser, Marcel; Wilkinson, Shane R.; McKenzie, Caroline; Ioset, Jean-Robert

    2012-01-01

    A series of novel 3-nitro-1H-1,2,4-triazole-(and in some cases 2-nitro-1H-imidazole)-based amides and sulfonamides were characterized for their in vitro anti-trypanosomal and antileishmanial activities as well as mammalian toxicity. Out of 36 compounds tested, 29 (mostly 3-nitro-1H-1,2,4-triazoles) displayed significant activity against T. cruzi intracellular amastigotes (IC50 ranging from 28 nM to 3.72 μM) without concomitant toxicity to L6 host cells (selectivity 66 to 2782). Twenty three of these active compounds were more potent (up to 58 fold) than the reference drug benznidazole, tested in parallel. In addition, 9 nitrotriazoles which were moderately active (0.5 μM ≤ IC50 < 6.0 μM) against T. b. rhodesiense trypomastigotes, were 5 to 31 fold more active against bloodstream-form T. b. brucei trypomastigotes engineered to overexpress NADH-dependent nitroreductase (TbNTR). Finally, 3 nitrotriazoles displayed a moderate activity against the axenic form of Leishmania donovani. Therefore, 3-nitro-1H-1,2,4-triazole-based amides and sulfonamides are potent anti-trypanosomal agents. PMID:22550999

  1. Spectrum of the Reductive Dehalogenation Activity of Desulfitobacterium frappieri PCP-1

    PubMed Central

    Dennie, D.; Gladu, I.; Lépine, F.; Villemur, R.; Bisaillon, J.-G.; Beaudet, R.

    1998-01-01

    Desulfitobacterium frappieri PCP-1 was induced for ortho- and para-dechlorinating activities by different chlorophenols. Dehalogenation rates ranging from 25 to 1,158 nmol/min/mg of cell protein were observed according to the chlorophenol tested and the position of the chlorine removed. D. frappieri shows a broad substrate specificity; in addition to tetrachloroethylene and pentachloropyridine, strain PCP-1 can dehalogenate at ortho, meta, and para positions a large variety of aromatic molecules with substituted hydroxyl or amino groups. Reactions of O demethylation and reduction of nitro to amino substituents on aromatic molecules were also observed. PMID:9797330

  2. Band gaps and the possible effect on impact sensitivity for some nitro aromatic explosive materials

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Cheung, Frankie; Zhao, Feng; Cheng, Xin-Lu

    The first principle density functional theory method SIESTA has been used to compute the band gap of several polynitroaromatic explosives, such as TATB, DATB, TNT, and picric acid. In these systems, the weakest bond is the one between an NO2 group and the aromatic ring. The bond dissociation energy (BDE) alone cannot predicate the relative sensitivity to impact of these four systems correctly. It was found that their relative impact sensitivity could be explained by considering the BDE and the band gap value of the crystal state together.

  3. Luminescent MOFs comprising mixed tritopic linkers and Cd(II)/Zn(II) nodes for selective detection of organic nitro compounds and iodine capture

    NASA Astrophysics Data System (ADS)

    Rachuri, Yadagiri; Bisht, Kamal Kumar; Parmar, Bhavesh; Suresh, Eringathodi

    2015-03-01

    Two CPs {[Cd3(BTC)2(TIB)2(H2O)4].(H2O)2}n (1) and {[Zn3(BTC)2(TIB)2].(H2O)6}n (2) composed of tripodal linkers BTC (1,3,5-benzenetricarboxylate) and TIB (1,3,5-tris(imidazol-1-ylmethyl)benzene) were synthesized via solvothermal route and structurally characterized. Single crystal structural analysis reveals 1 possesses a novel 3D framework structure, whereas 2 represents a previously established compound. Owing to the d10 configuration of metal nodes and robust 3D frameworks, 1 and 2 exhibit excellent fluorescence properties which have been exploited to sense organic nitro compounds in vapor phase. Compound 1 demonstrates selective sensing of nitromethane over structurally similar methanol with ca. 70 and 43% fluorescence quenching in case of former and later. Similarly, 58% fluorescence quenching was observed in case of nitrobenzene over the structurally resembling toluene for which 30% quenching was observed. Compound 2 did not show any preference for nitro compounds and exhibited comparable fluorescence quenching when exposed to the vapors of nitro or other geometrically resembling organic molecules. Furthermore, adsorption experiments revealed that 1 and 2 can uptake 2.74 and 14.14 wt% molecular iodine respectively in vapor phase which can be released in organic solvents such as hexane and acetonitrile. The maximal iodine uptake in case of 1 and 2 corresponds to 0.15 and 0.80 molecules of iodine per formula unit of respective frameworks. Comprehensive structural description, thermal stability and luminescence behavior for both CPs has also been presented.

  4. Reaction of nitrosonium cation with resorc[4]arenes activated by supramolecular control: covalent bond formation.

    PubMed

    Ghirga, Francesca; D'Acquarica, Ilaria; Delle Monache, Giuliano; Mannina, Luisa; Molinaro, Carmela; Nevola, Laura; Sobolev, Anatoly P; Pierini, Marco; Botta, Bruno

    2013-07-19

    Resorc[4]arenes 1 and 2, which previously proved to entrap NO(+) cation within their cavities under conditions of host-to-guest excess, were treated with a 10-fold excess of NOBF4 salt in chloroform. Kinetic and spectral UV-visible analyses revealed the formation of isomeric 1:2 complexes as a direct evolution of the previously observed event. Accordingly, three-body 1-(NO(+))2 and 2-(NO(+))2 adducts were built by MM and fully optimized by DFT calculations at the B3LYP/6-31G(d) level of theory. Notably, covalent nitration products 4, 5 and 6, 7 were obtained by reaction of NOBF4 salt with host 1 and 2, respectively, involving macrocycle ring-opening and insertion of a nitro group in one of the four aromatic rings. In particular, compounds 4 and 6, both containing a trans-double bond in the place of the methine bridge, were oxidized to aldehydes 5 and 7, respectively, after addition of water to the reaction mixture. Calculation of the charge and frontier orbitals of the aromatic donor (HOMO) and the NO(+) acceptor (LUMO) clearly suggests an ipso electrophilic attack by a first NO(+) unit on the resorcinol ring, mediated by the second NO(+) unit.

  5. SYNTHESIS AND EVALUATION OF NEW PHTHALAZINE SUBSTITUTED β-LACTAM DERIVATIVES AS CARBONIC ANHYDRASE INHIBITORS.

    PubMed

    Berber, Nurcan; Arslan, Mustafa; Bilen, Çiğdem; Sackes, Zübeyde; Gençer, Nahit; Arslan, Oktay

    2015-01-01

    A new series of phthalazine substituted β-lactam derivatives were synthesized and their inhibitory effects on the activity of purified human carbonic anhydrase (hCA I and II) were evaluated. 2H-Indazolo[2,1-b]phthala- zine-trione derivative was prepared with 4-nitrobenzaldehyde, dimedone, and phthalhydrazide in the presence of TFA in DMF, and the nitro group was reduced to 13-(4-aminophenyl)-3,3-dimethyl-3,4-dihydro- 2H-indazolo[1,2-b]phthalazine-1,6,11(13H)-trione with SnCl2 · 2H2O. The reduced compound was re- acted with different aromatic aldehydes, and phthalazine substituted imines were synthesized. The imine compounds undergo (2+2) cycloaddition reactions with ketenes to produce 2H-indazolo[2,1-b]phthala-zine-trione substituted β-lactam derivatives. The β-lactam compounds were tested as inhibitors of the CA isoenzyme activity. The results showed that all the synthesized compounds inhibited the CA isoenzyme activity. 1-(4-(3,3-dimethyl- 1,6,1 1-trioxo-2,3,4,6,11,13-hexahydro-1H-indazolo[1,2-b]phthalazin-13- yl)phenyl)-2-oxo-4-p-tolylazetidin-3-yl acetate (IC50 = 6.97 µM for hCA I and 8.48 µM for hCA II) had the most inhibitory effect.

  6. A rapid, convenient, solventless green approach for the synthesis of oximes using grindstone chemistry.

    PubMed

    Saikia, Lakhinath; Baruah, Jejiron Maheswari; Thakur, Ashim Jyoti

    2011-10-04

    Synthesis of oximes is an important reaction in organic chemistry, because these versatile oximes are used for protection, purification, and characterization of carbonyl compounds. Nitriles, amides via Beckmann rearrangement, nitro compounds, nitrones, amines, and azaheterocycles can be synthesised from oximes. They also find applications for selective α-activation. In inorganic chemistry, oximes act as a versatile ligand.Several procedures for the preparation of oximes exist, but, most of them have not addressed the green chemistry issue. They are associated with generation of pollutants, requirement of high reaction temperature, low yields, lack of a generalized procedure, etc. Hence, there is a demand for developing an efficient, convenient, and non-polluting or less polluting alternative method for the preparation of oximes. In this context, bismuth compounds are very useful as they are cheap in general, commercially available, air stable crystalline solids, safe, and non-toxic, hence easy to handle. Carbonyl compounds (aliphatic, heterocyclic, and aromatic) were converted into the corresponding oximes in excellent yields by simply grinding the reactants at room temperature without using any solvent in the presence of Bi2O3. Most importantly, this method minimizes waste disposal problems, provides a simple yet efficient example of unconventional methodology and requires short time. We have developed a novel, quick, environmentally safe, and clean synthesis of aldoximes and ketoximes under solvent-free grinding condition.

  7. Metabolism of 1-, 3-, and 6-nitrobenzo(a)pyrene by intestinal microflora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, K.E.; Fu, P.P.; Cerniglia, C.E.

    1988-01-01

    The compounds 1-, 3-, and 6-nitrobenzo(a)pyrene (nitro-BaP) are environmental pollutants and have been shown to be potent bacterial mutagens. The anaerobic metabolism of these isomeric nitro-BaPs was investigated by the incubation of rat intestinal microflora with each isomer for 48 h. Aliquots were removed at several time intervals, extracted, fractionated by high-pressure liquid chromatography (HPLC), and the radioactivity determined. Metabolites were identified by comparison of their chromatographic, ultraviolet-visible absorption, and mass spectral properties with those of authentic standards. The order of the extent of nitroreduction for these isomers was 3-nitro-BaP greater than 6-nitro-BaP greater than 1-nitro-BaP. After 48 h ofmore » exposure, 84% of the added 3-nitro-BaP was present as 3-amino-BaP, 51% of the 6-nitro-BaP was metabolized to 6-amino-BaP, and 1-nitro-BaP was reduced to 1-amino-BaP (13%) and 1-nitro-BaP (4%). The order of the extent of microbial nitroreduction for these nitro-BaP isomers is different from the predictions based on electronic and steric hindrance effects. These results suggest that intestinal microflora nitroreductases exhibit a markedly high degree of substrate specificity toward nitro-BaPs that affects the extent of nitroreduction.« less

  8. [Occurrence and Removal of Polycyclic Aromatic Hydrocarbons and Their Derivatives in Typical Wastewater Treatment Plants in Beijing].

    PubMed

    Qiao, Meng; Qi, Wei-xiao; Zhao, Xu; Liu, Hui-juan; Qu, Jiu-hui

    2016-04-15

    Substituted polycyclic aromatic hydrocarbons (SPAHs) can be emitted to the environment not only through the incomplete combustion, but also through the transformation from parent polycyclic aromatic hydrocarbons (PAHs) by photo chemical and biological processes. The toxicities of some SPAHs are higher than their corresponding PAHs. Samples were collected from the wastewater treatment plants in Beijing. Three types of SPAHs, including oxy-PAHs (OPAHs), methyl-PAHs (MPAHs) and nitro-PAHs (NPAHs), as well as 16 PAHs were analyzed, in order to study the occurrence and behavior of these compounds during the wastewater biological treatment process. MPAHs, OPAHs and PAHs were detected in the influent and effluent, but no NPAHs. The concentrations of PAHs in the influent in both the aquatic and particulate phases ranged from 1.94 to 4.34 µg · L⁻¹, and SPAHs from 1.16 to 2.20 µg · L⁻¹. The concentrations of PAHs in the effluent were between 0.77 and 0.98 µg · L⁻¹, and SPAHs from 0.39 to 0.45 µg · L⁻¹. The concentrations of the MPAHs were lower than their corresponding PAHs, while OPAHs were higher. The removal efficiencies of all the compounds ranged from 53% to 83%. PAHs and SPAHs were mainly removed by adsorption and biodegradation during the activated sludge treatment processes. Some OPAHs could be transformed from PAHs, and could be accumulated. The PAHs were mainly originated from incomplete combustion of wood and coal, and some from combustion of petroleum, while only a little from the discharge of petroleum. The concentrations of PAHs and SPAHs in the effluent were higher in autumn than summer and winter. Most of the SPAHs and PAHs were discharged to the agriculture area through the river-water irrigation, which might pose potential risk to the humans. As a result, it is necessary to upgrade the wastewater treatment process to improve the removal efficiency of PAHs and SPAHs.

  9. Gas chromatographic detection of some nitro explosive compounds in soil samples after solid-phase microextraction with carbon ceramic copper nanoparticle fibers.

    PubMed

    Farhadi, Khalil; Bochani, Shayesteh; Hatami, Mehdi; Molaei, Rahim; Pirkharrati, Hossein

    2014-07-01

    In this research, a new solid-phase microextraction fiber based on carbon ceramic composites with copper nanoparticles followed by gas chromatography with flame ionization detection was applied for the extraction and determination of some nitro explosive compounds in soil samples. The proposed method provides an overview of trends related to synthesis of solid-phase microextraction sorbents and their applications in preconcentration and determination of nitro explosives. The sorbents were prepared by mixing of copper nanoparticles with a ceramic composite produced by mixture of methyltrimethoxysilane, graphite, methanol, and hydrochloric acid. The prepared sorbents were coated on copper wires by dip-coating method. The prepared nanocomposites were evaluated statistically and provided better limits of detection than the pure carbon ceramic. The limit of detection of the proposed method was 0.6 μg/g with a linear response over the concentration range of 2-160 μg/g and square of correlation coefficient >0.992. The new proposed fiber has been demonstrated to be a suitable, inexpensive, and sensitive candidate for extraction of nitro explosive compounds in contaminated soil samples. The constructed fiber can be used more than 100 times without the need for surface generation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Method of digesting an explosive nitro compound

    DOEpatents

    Shah, Manish M.

    2000-01-01

    The present invention is a process wherein bleaching oxidants are used to digest explosive nitro compounds. The process has an excellent reaction rate for digesting explosives and operates under multivariate conditions. Reaction solutions may be aqueous, non-aqueous or a combination thereof, and can also be any pH, but preferably have a pH between 2 and 9. The temperature may be ambient as well as any temperature above which freezing of the solution would occur and below which any degradation of the bleaching oxidant would occur or below which any explosive reaction would be initiated. The pressure may be any pressure, but is preferably ambient or atmospheric, or a pressure above a vapor pressure of the aqueous solution to avoid boiling of the solution. Because the bleaching oxidant molecules are small, much smaller than an enzyme molecule for example, they can penetrate the microstructure of plastic explosives faster. The bleaching oxidants generate reactive hydroxyl radicals, which can destroy other organic contaminants, if necessary, along with digesting the explosive nitro compound.

  11. Luminescent MOFs comprising mixed tritopic linkers and Cd(II)/Zn(II) nodes for selective detection of organic nitro compounds and iodine capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rachuri, Yadagiri; Bisht, Kamal Kumar; Academy of Scientific and Innovative Research

    2015-03-15

    Two CPs ([Cd{sub 3}(BTC){sub 2}(TIB){sub 2}(H{sub 2}O){sub 4}].(H{sub 2}O){sub 2}){sub n} (1) and ([Zn{sub 3}(BTC){sub 2}(TIB){sub 2}].(H{sub 2}O){sub 6}){sub n} (2) composed of tripodal linkers BTC (1,3,5-benzenetricarboxylate) and TIB (1,3,5-tris(imidazol-1-ylmethyl)benzene) were synthesized via solvothermal route and structurally characterized. Single crystal structural analysis reveals 1 possesses a novel 3D framework structure, whereas 2 represents a previously established compound. Owing to the d{sup 10} configuration of metal nodes and robust 3D frameworks, 1 and 2 exhibit excellent fluorescence properties which have been exploited to sense organic nitro compounds in vapor phase. Compound 1 demonstrates selective sensing of nitromethane over structurally similar methanolmore » with ca. 70 and 43% fluorescence quenching in case of former and later. Similarly, 58% fluorescence quenching was observed in case of nitrobenzene over the structurally resembling toluene for which 30% quenching was observed. Compound 2 did not show any preference for nitro compounds and exhibited comparable fluorescence quenching when exposed to the vapors of nitro or other geometrically resembling organic molecules. Furthermore, adsorption experiments revealed that 1 and 2 can uptake 2.74 and 14.14 wt% molecular iodine respectively in vapor phase which can be released in organic solvents such as hexane and acetonitrile. The maximal iodine uptake in case of 1 and 2 corresponds to 0.15 and 0.80 molecules of iodine per formula unit of respective frameworks. Comprehensive structural description, thermal stability and luminescence behavior for both CPs has also been presented. - Graphical abstract: Two 3D luminescent CPs comprising mixed tripodal ligands have been hydrothermally synthesized and structurally characterized. Iodine encapsulation capacity of synthesized CPs is evaluated and their fluorescence quenching in presence of small organic molecules is exploited for sensing of nitro organics. - Highlights: • Two 3D mixed ligand coordination polymers containing Cd and Zn center are prepared. • Crystal structure and thermal stability of synthesized CPs has been described. • Photoluminescence intensity of CPs was observed to vary in presence of organic vapors. • Photoluminescence quenching in case of Cd CP is exploited to selectively sense nitro organics. • These thermally stable robust CPs are also used for iodine adsorption.« less

  12. Fluorescent Polystyrene Microbeads as Invisible Security Ink and Optical Vapor Sensor for 4-Nitrotoluene.

    PubMed

    Sonawane, Swapnil L; Asha, S K

    2016-04-27

    Color-tunable solid-state emitting polystyrene (PS) microbeads were developed by dispersion polymerization, which showed excellent fluorescent security ink characteristics along with sensitive detection of vapors of nitro aromatics like 4-nitro toluene (4-NT). The fluorophores pyrene and perylenebisimide were incorporated into the PS backbone as acrylate monomer and acrylate cross-linker, respectively. Solid state quantum yields of 94 and 20% were observed for the pyrene and perylenebisimide, respectively, in the PS/Py and PS/PBI polymers. The morphology and solid state fluorescence was measured by SEM, fluorescence microscopy, and absorbance and fluorescence spectroscopy techniques. The ethanol dispersion of the polymer could be used directly as a fluorescent security "invisible" ink, which became visible only under ultraviolet light. The color of the ink could be tuned depending on the amounts of the pyrene and perylenebisimide incorporated with blue and orange-green for pyrene alone or perylenebisimide alone beads respectively and various shades in between including pure white for beads incorporating both the fluorophores. More than 80% quenching of pyrene emission was observed upon exposure of the polymer in the form of powder or as spin-coated films to the vapors of 4-NT while the emission of perylenebisimide was unaffected. The limit of detection was estimated at 10(-5) moles (2.7 ppm) of 4-NT vapors. The ease of synthesis of the material along with its invisible ink characteristics and nitro aromatic vapor detection opens up new opportunities for exploring the application of these PS-based materials as optical sensors and fluorescent ink for security purposes.

  13. Diesel particle filter and fuel effects on heavy-duty diesel engine emissions.

    PubMed

    Ratcliff, Matthew A; Dane, A John; Williams, Aaron; Ireland, John; Luecke, Jon; McCormick, Robert L; Voorhees, Kent J

    2010-11-01

    The impacts of biodiesel and a continuously regenerated (catalyzed) diesel particle filter (DPF) on the emissions of volatile unburned hydrocarbons, carbonyls, and particle associated polycyclic aromatic hydrocarbons (PAH) and nitro-PAH, were investigated. Experiments were conducted on a 5.9 L Cummins ISB, heavy-duty diesel engine using certification ultra-low-sulfur diesel (ULSD, S ≤ 15 ppm), soy biodiesel (B100), and a 20% blend thereof (B20). Against the ULSD baseline, B20 and B100 reduced engine-out emissions of measured unburned volatile hydrocarbons and PM associated PAH and nitro-PAH by significant percentages (40% or more for B20 and higher percentage for B100). However, emissions of benzene were unaffected by the presence of biodiesel and emissions of naphthalene actually increased for B100. This suggests that the unsaturated FAME in soy-biodiesel can react to form aromatic rings in the diesel combustion environment. Methyl acrylate and methyl 3-butanoate were observed as significant species in the exhaust for B20 and B100 and may serve as markers of the presence of biodiesel in the fuel. The DPF was highly effective at converting gaseous hydrocarbons and PM associated PAH and total nitro-PAH. However, conversion of 1-nitropyrene by the DPF was less than 50% for all fuels. Blending of biodiesel caused a slight reduction in engine-out emissions of acrolein, but otherwise had little effect on carbonyl emissions. The DPF was highly effective for conversion of carbonyls, with the exception of formaldehyde. Formaldehyde emissions were increased by the DPF for ULSD and B20.

  14. OH Radical Reactions with Nitroimidazole and Nitrotriazole Derivatives

    NASA Astrophysics Data System (ADS)

    Gümüş, Selçuk

    2012-04-01

    The reactions between hydroxyl radical and 5-nitro-1H-imidazole (A), 2-nitro-1H-imidazole (B), and 3-nitro-4H-1,2,4-triazole (C) were theoretically investigated using B3LYP/6-31G(d,p) level of theory. The OH radical additions to double bonds were explored in bulk solvent (water). The data presented show that the barriers to reaction were very low, 3-7 kcal/mol, indicating fast reactions. Thermodynamically, OH addition to position 2 of structure A leads to the most stable radical product. The main geometrical parameters are reported for reactants, transition states, and radical products together with some energetic data of the nitro-imidazolone-type final compounds.

  15. 1-(3,3-Dichloro-all-yloxy)-2-nitro-benzene.

    PubMed

    Ren, Dong-Mei; Wang, Yong-Yi

    2012-04-01

    In the title compound, C(9)H(7)Cl(2)NO(3), the dihedral angle between the benzene ring and the plane of the nitro group is 50.2 (1)°, and that between the benzene ring and the best plane through the dichloro-allyl fragment is 40.1 (1)°.

  16. 40 CFR 721.775 - Brominated aromatic com-pound (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a) Chemical... as a brominated aromatic compound (PMN P-84-824) is subject to reporting under this section for the...

  17. PA-824 Kills Nonreplicating Mycobacterium tuberculosis by Intracellular NO Release

    PubMed Central

    Singh, Ramandeep; Manjunatha, Ujjini; Boshoff, Helena I. M.; Ha, Young Hwan; Niyomrattanakit, Pornwaratt; Ledwidge, Richard; Dowd, Cynthia S.; Lee, Ill Young; Kim, Pilho; Zhang, Liang; Kang, Sunhee; Keller, Thomas H.; Jiricek, Jan; Barry, Clifton E.

    2009-01-01

    Bicyclic nitroimidazoles, including PA-824, are exciting candidates for the treatment of tuberculosis. These prodrugs require intracellular activation for their biological function. We found that Rv3547 is a deazaflavin-dependent nitroreductase (Ddn) that converts PA-824 into three primary metabolites; the major one is the corresponding des-nitroimidazole (des-nitro). When derivatives of PA-824 were used, the amount of des-nitro metabolite formed was highly correlated with anaerobic killing of Mycobacterium tuberculosis (Mtb). Des-nitro metabolite formation generated reactive nitrogen species, including nitric oxide (NO), which are the major effectors of the anaerobic activity of these compounds. Furthermore, NO scavengers protected the bacilli from the lethal effects of the drug. Thus, these compounds may act as intracellular NO donors and could augment a killing mechanism intrinsic to the innate immune system. PMID:19039139

  18. Measurement of organic and elemental carbon in downtown Rome and background area: physical behavior and chemical speciation.

    PubMed

    Avino, Pasquale; Manigrasso, Maurizio; Rosada, Alberto; Dodaro, Alessandro

    2015-02-01

    A significant portion of the particulate matter is the total carbonaceous fraction (or total carbon, TC), composed of two main fractions, elemental carbon (EC) and organic carbon (OC), which shows a large variety of organic compounds, e.g. aliphatic, aromatic compounds, alcohols, acids, etc. In this paper, TC, EC and OC concentrations determined in a downtown Rome urban area are discussed considering the influence of meteorological conditions on the temporal-spatial aerosol distribution. Similar measurements were performed at ENEA Casaccia, an area outside Rome, which is considered as the ome background. Since 2000, TC, EC and OC measurements have been performed by means of an Ambient Carbon Particulate Monitor equipped with a NDIR detector. The EC and OC concentrations trends are compared with benzene and CO trends, which are specific indicators of autovehicular traffic, for identifying the primary EC and OC contributions and the secondary OC fraction origin. Further, a chemical investigation is reported for investigating how the main organic (i.e., n-alkanes, n-alkanoic acids, polyaromatic hydrocarbons and nitro-polyaromatic hydrocarbons) and inorganic (i.e., metals, ions) fractions vary their levels during the investigated period in relationship to new regulations and/or technological innovations.

  19. Biocidal additives for lubricating/cooling fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozova, L.P.; Klyavlina, E.A.; Lebedev, E.V.

    1984-03-01

    This article reports on the synthesis of new biocidal products for the protection of water emulsions of lubricating/cooling fluids (LCFs) against microbiological damage. The new biocides are based on compounds belonging to the classes of oxazolidines and oxazines, and also compounds of these classes but activated by nitro derivatives of aromatic hydrocarbons. Results are presented from evaluations of the biocidal activity of the new products with respect to aerobes, anaerobes, and fungi growing in a 3% emulsion of the widely used LCF Ukrinol-1. The comparative evaluation was based on the optimal biocidal concentration corresponding to the smallest quantity of addedmore » biocide to give maximum suppression of the microorganisms in a minimum time, and with the longest period of effectiveness. The lubricating properties of the biocides were evaluated in an emulsion of the Ukrinol-1 LCF is a four-ball tester. It is concluded that the developed biocides are homogeneous, transparent liquids with a specific odor and can be considered as nontoxic to man; they mix readily with components used in formulating LCFs and detergents (sulfonates, oxyethylated alcohols, phenols, polyglycols, fatty acid soaps, etc.). They are readily soluble in water and in oils. Includes 3 tables.« less

  20. New hydrazones of ferulic acid: synthesis, characterization and biological activity.

    PubMed

    Wolszleger, Maria; Stan, Cătălina Daniela; Apotrosoaei, Maria; Vasincu, Ioana; Pânzariu, Andreea; Profire, Lenuţa

    2014-01-01

    The ferulic acid (4-hydroxy-3-methoxy-cinnamic acid) is a phenolic compound with important antioxidant effects and which nowadays is being extensively studied for his potential indications in inflammatory and neurodegenerative diseases, hypertension, atherosclerosis, etc. The synthesis of new ferulic acid compounds with potential antioxidant activity. The synthesis of the designed compounds was performed in several steps: (i) the obtaining of ferulic acid chloride by reacting of ferulic acid with thionyl chloride; (ii) the reaction between the ferulic acid chloride and hydrazine hydrate 98% to obtain the ferulic acid hydrazide; (iii) the condensation of ferrulic acid hydrazide with various benzaldehydes (2-hydroxy/3-hydroxy/4-hydroxy/2-nitro/3-nitro/4-nitro/2-methoxi/ 4-chloro/4-fluoro/4-bromo-benzaldehyde) resulting the correspond- ing hydrazones. The structure of the synthesized compounds was confirmed by FT-IR spectroscopy and the evaluation of antioxidant potential was achieved by determining the total antioxidant capacity and reducing power. In this study new hydrazones of ferulic acid have been synthesized, physic-chemical and spectral characterized. The evaluation of antioxidant potential using in vitro methods showed the favorable influence of the structural modulation on the antioxidant effects of ferulic acid.

  1. Nitroreductase-dependent mutagenicity of p-nitrophenylhydroxylamine and its N-acetyl and N-formyl hydroxamic acids.

    PubMed

    Corbett, M D; Wei, C; Corbett, B R

    1985-05-01

    p-Nitrophenylhydroxylamine (NPH) and two hydroxamic acids derived from it were synthesized and subjected to mutagenicity testing in Salmonella typhimurium strains TA98, TA98NR, TA1538 and TA1538NR. In addition, p-dinitrobenzene (DNB), p-nitroaniline (NA) and p-nitroacetanilide (AcNA) were simultaneously examined for mutagenic action against these four tester strains. NPH, its N-acetyl (AcNPH) and N-formyl (FoNPH) derivatives, and also DNB displayed strong mutagenic action to the nitroreductase-containing strains, TA98 and TA1538. NPH was the most potent chemical in this series against both of these strains, while the two hydroxamic acids AcNPH and FoNPH, and also DNB displayed approximately the same degree of mutagenicity. In the nitroreductase-deficient strains, TA98NR and TA1538NR, the mutagenicity of these four compounds was markedly reduced. The necessity for nitroreduction in order to activate these promutagens is fairly certain; however, the lack of mutagenicity of NA and AcNA towards all four tester strains made the interpretation of these data somewhat more complicated. Several possible bioactivation pathways were presented, with one mechanism in particular being proposed. This mechanism requires only that the strong electron-withdrawing nitro group be converted to an electron-donating group by bacterial nitroreductase. Such a mechanism is unique for the bioactivation of nitro aromatics by nitroreductase, since the enzymatic reduction need not produce the intermediary hydroxylamine metabolite.

  2. Aromatic hydrocarbon nitration under tropospheric and combustion conditions. A theoretical mechanistic study.

    PubMed

    Ghigo, Giovanni; Causà, Mauro; Maranzana, Andrea; Tonachini, Glauco

    2006-12-14

    The viability of some nitration pathways is explored for benzene (B), naphthalene (N), and in part pyrene (P). In principle, functionalization can either take place by direct nitration (NO2 or N2O5 attack) or be initiated by more reactive species, as the nitrate and hydroxyl radicals. The direct attack of the NO2 radical on B and N, followed by abstraction of the H geminal to the nitro group (most likely accomplished by 3O2) could yield the final nitro-derivatives. Nevertheless, the initial step (NO2 attack) involves significant free energy barriers. N2O5 proves to be an even worst nitrating agent. These results rule out direct nitration at room temperature. Instead, NO3 and, even more easily, HO can form pi-delocalized nitroxy- or hydroxycyclohexadienyl radicals. A subsequent NO2 attack can produce several regio- and diastereoisomers of nitroxy-nitro or hydroxy-nitro cyclohexadienes. In this respect, the competition between NO2 and O2 is considered: the rate ratios are such to indicate that the NO3 and HO initiated pathways are the major source of nitroarenes. Finally, if the two substituents are 1,2-trans, either a HNO3 or a H2O concerted elimination can give the nitro-derivatives. Whereas HNO3 elimination is feasible, H2O elimination presents, by contrast, a high barrier. Under combustion conditions the NO2 direct nitration pathway is more feasible, but remains a minor channel.

  3. Imidazolium 3-nitro­benzoate

    PubMed Central

    Hou, Guang-Yang; Zhou, Li-Na; Yin, Qiu-Xiang; Su, Wei-Yi; Mao, Hui-Lin

    2009-01-01

    In the title compound, C3H5N2 +·C7H4NO4 −, the benzene ring forms a dihedral angle of 40.60 (5)° with the imidizolium ring. The nitro­benzoate anion is approximately planar: the benzene ring makes dihedral angles of 3.8 (3) and 3.2 (1)° with the nitro and carboxyl­ate groups, respectively. In the crystal structure, the cations and anions are linked by inter­molecular N—H⋯O hydrogen bonds, forming a zigzag chain along the b axis. PMID:21583857

  4. Composition of diesel exhaust with particular reference to particle bound organics including formation of artifacts.

    PubMed

    Lies, K H; Hartung, A; Postulka, A; Gring, H; Schulze, J

    1986-01-01

    For particulate emissions, standards were established by the US EPA in February 1980. Regulations limiting particulates from new light duty diesel vehicles are valid by model year 1982. The corresponding standards on a pure mass basis do not take into account any chemical character of the diesel particulate matter. Our investigation of the material composition shows that diesel particulates consist mainly of soot (up to 80% by weight) and adsorptively bound organics including polycyclic aromatic hydrocarbons (PAH). The qualitative and quantitative nature of hydrocarbon compounds associated with the particulates is dependent not only on the combustion parameters of the engine but also to an important degree on the sampling conditions when the particulates are collected (dilution ratio, temperature, filter material, sampling time etc.). Various methods for the analyses of PAH and their oxy- and nitro-derivatives are described including sampling, extraction, fractionation and chemical analysis. Quantitative comparison of PAH, nitro-PAH and oxy-PAH from different engines are given. For assessing mutagenicity of particulate matter, short-term biological tests are widely used. These biological tests often need a great amount of particulate matter requiring prolonged filter sampling times. Since it is well known that facile PAH oxidation can take place under the conditions used for sampling and analysis, the question rises if these PAH-derivates found in particle extracts partly or totally are produced during sampling (artifacts). Various results concerning nitro- and oxy-PAH are presented characterizing artifact formation as a minor problem under the conditions of the Federal Test Procedure. But results show that under other sampling conditions, e.g. electrostatic precipitation, higher NO2-concentrations and longer sampling times, artifact formation can become a bigger problem. The more stringent particulate standard of 0.2 g/mi for model years 1986 and 1987 respectively requires particulate trap technology. Preliminary investigations of the efficiency of ceramic filters used reveal that the reduction of the adsorptively bound organics is lower than the decrease of the solid carbonaceous fractions.

  5. Ultra-small rhenium nanoparticles immobilized on DNA scaffolds: An excellent material for surface enhanced Raman scattering and catalysis studies.

    PubMed

    Anantharaj, S; Sakthikumar, K; Elangovan, Ayyapan; Ravi, G; Karthik, T; Kundu, Subrata

    2016-12-01

    Highly Sensitive and ultra-small Rhenium (Re) metal nanoparticles (NPs) were successfully stabilized in water by the staging and fencing action of the versatile biomolecule DNA that resulted in two distinct aggregated chain-like morphologies with average grain sizes of 1.1±0.1nm and 0.7±0.1nm for the very first time within a minute of reaction time. Re NPs are formed by the borohydride reduction of ammonium perrhenate (NH4ReO4) in the presence of DNA at room temperature (RT) under stirring. The morphologies were controlled by carefully monitoring the molar ratio of NH4ReO4 and DNA. The synthesized material was employed in two potential applications: as a substrate for surface enhanced Raman scattering (SERS) studies and as a catalyst for the reduction of aromatic nitro compounds. SERS study was carried out by taking methylene blue (MB) as the probe and the highest SERS enhancement factor (EF) of 2.07×10(7) was found for the aggregated chain-like having average grain size of 0.7±0.1nm. Catalytic reduction of 4-nitro phenol (4-NP), 2-nitro phenol (2-NP) and 4-nitroaniline (4-NA) with a rate constant value of 6×10(-2)min(-1), 33.83×10(-2)min(-1) and 37.4×10(-2)min(-1) have testified the excellent catalytic performance of our Re NPs immobilized on DNA. The overall study have revealed the capability of DNA in stabilizing the highly reactive Re metal at nanoscale and made them applicable in practice. The present route can also be extended to prepare one dimensional (1-D), self-assembled NPs of other reactive metals, mixed metals or even metal oxides for specific applications in water based solutions. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOEpatents

    Baker, E.G.; Elliott, D.C.

    1993-01-19

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compounds as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  7. Infrared, Raman and density functional characterization and structural study of 2-Nitro-2-phenyl-propane-1,3-diol

    NASA Astrophysics Data System (ADS)

    Kaya, Mehmet Fatih; Bağlayan, Özge; Kaya, Esma Güneş; Alver, Özgür

    2017-12-01

    Nitro compound and nitro derivatives are industrially important to produce rubber and agricultural chemicals. In this study, one of the promising derivatives of nitro compound 2-Nitro-2-phenyl-propane-1,3-diol (2NPP) is examined in detail. FT-Infrared and dispersive Raman spectra of 2NPP (C9H11NO4) were respectively recorded in 4000-10 cm-1 and 4000-100 cm-1. The bond distances and angles, conformational distributions, vibrational frequencies and the assignment of each mode, some thermodynamic parameters and reactivity descriptors: total energy, hardness, chemical potential, electrophilicity index, electronegativity, frontier orbitals energy gap of 2NPP were investigated by using DFT/B3LYP method with 6-31++G (d,p) basis set. In order to locate the global minimum on the potential energy surface of 2NPP, a beforehand conformational examinations were carried out using Spartan 10 along with semi-emprical PM6 method. The results of conformational analyses showed that there are five possible conformations having energies under 2 kcal/mol. Comparison of the theoretical and experimental results clearly indicates that density functional hybrid B3LYP/6-31++G (d,p) level of theory can be used to predict vibrational frequencies and structural parameters of 2NPP. Further, C1 geometry is considered to be the global minimum conformation of 2NPP.

  8. Nitroamino and Nitro Energetics

    DTIC Science & Technology

    2012-09-13

    converted into the azo compound, 55, by treating with alkaline potassium permanganate . Compound 55 was reacted with mixed acids at room temperature to...aminotriazole 49 with potassium permanganate was converted to the corresponding trinitromethyl compound 56 by mixed acid nitration (Scheme 15) .22b

  9. Melt-castable energetic compounds comprising oxadiazoles and methods of production thereof

    DOEpatents

    Pagoria, Philip F; Zhang, Mao X

    2013-11-12

    In one embodiment, a melt-castable energetic material comprises at least one of: 3,5-bis(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,4-oxadiazole (DNFO), and 3-(4-amino-1,2,5-oxadiazol-3-yl)-5-(4-nitro-1,2,5-oxadiazol-3-yl)-1,2- ,4-oxadiazole (ANFO). In another embodiment, a method for forming a melt-castable energetic material includes reacting 3,5-bis(4-amino-1,2,5-oxadiazol-3-yl)-1,2,4-oxadiazole (DAFO) with oxygen or an oxygen-containing compound to form a mixture of at least: DNFO, and ANFO.

  10. Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Peng; Aiona, Paige K.; Li, Ying

    Emissions from biomass burning are a significant source of brown carbon (BrC) in the atmosphere. In this study, we investigate the molecular composition of freshly-emitted biomass burning organic aerosol (BBOA) samples collected during test burns of selected biomass fuels: sawgrass, peat, ponderosa pine, and black spruce. We characterize individual BrC chromophores present in these samples using high performance liquid chromatography coupled to a photodiode array detector and a high-resolution mass spectrometer. We demonstrate that both the overall BrC absorption and the chemical composition of light-absorbing compounds depend significantly on the type of biomass fuels and burning conditions. Common BrC chromophoresmore » in the selected BBOA samples include nitro-aromatics, polycyclic aromatic hydrocarbon derivatives, and polyphenols spanning a wide range of molecular weights, structures, and light absorption properties. A number of biofuel-specific BrC chromophores are observed, indicating that some of them may be used as potential markers of BrC originating from different biomass burning sources. On average, ~50% of the light absorption above 300 nm can be attributed to a limited number of strong BrC chromophores, which may serve as representative light-absorbing species for studying atmospheric processing of BrC aerosol. The absorption coefficients of BBOA are affected by solar photolysis. Specifically, under typical atmospheric conditions, the 300 nm absorbance decays with a half-life of 16 hours. A “molecular corridors” analysis of the BBOA volatility distribution suggests that many BrC compounds in the fresh BBOA have low volatility (<1 g m-1) and will be retained in the particle phase under atmospherically relevant conditions.« less

  11. 5-Chloro-2-nitro-phenol.

    PubMed

    Ren, Dong-Mei

    2012-05-01

    The asymmetric unit of the title compound, C(6)H(4)ClNO(3), contains two independent mol-ecules in which the dihedral angles between the benzene ring and the nitro groups are 2.5 (1) and 8.5 (1)°. Intra-molecular O-H⋯O hydrogen bonds involving the hy-droxy and nitro substituents result in the formation of S(6) six-membered rings. In the crystal, O-H⋯O, O-H⋯Cl and C-H⋯O hydrogen bonds together with Cl⋯O contacts [3.238 (3) and 3.207 (3) Å] generate a three-dimensional network.

  12. Nitration Enzyme Toolkit for the Biosynthesis of Energetic Materials

    DTIC Science & Technology

    by - products that degrade performance of the energetic products . To reduce the...bionitration mechanisms used by microorganisms to produce nitro-containing natural products . We investigated biosynthetic pathways for 2-nitroimidazole...producing a diverse set of nitrophenols. This growing bionitration toolkit represents a diverse range of nitration mechanisms and products that can be adapted for the green chemistry production of nitro compounds and

  13. Hydrogenation of 4-nitrophenol to 4-aminophenol at room temperature: Boosting palladium nanocrystals efficiency by coupling with copper via liquid phase pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Park, Hanbit; Reddy, D. Amaranatha; Kim, Yujin; Lee, Seunghee; Ma, Rory; Lim, Manho; Kim, Tae Kyu

    2017-04-01

    Ultra-dispersed bimetallic nanomaterials have attracted much attention in the hydrogenation of highly toxic aromatic nitro compounds to aromatic amines owing to their high stability, superior activity, reusability, and unique optical and electronic properties, as compared to monometalic nanocrystals. However, the lack of facile and economically controllable strategies of producing highly pure ultra-dispersed bimetallic nanocatalysts limits their practical industrial applications. Considering the above obstacles, we present a simple and effective strategy for the formation of bimetallic (PdCu) nanocrystals by liquid phase pulsed laser ablation using a bulk Pd metal plate submerged in CuCl2 solutions with different concentrations, in contrast to the complex and costly experimental methods used previously. The microstructural and optical properties of the synthesized nanocrystals indicate that the obtained bimetallic nanostructures are highly pure and monodispersed. Moreover, bimetallic PdCu nanostructures show a higher catalytic activity than monometallic Pd nanocrystals for the hydrogenation of 4-nitrophenol to 4-aminophenol at room temperature, also exhibiting high stability for up to four recycles. The mechanism of the enhanced catalytic activity and stability of bimetallic nanocrystals is discussed in detail. Finally, we believe that the presented design strategy and utilization of bimetallic nanocrystals for catalytic applications enables the development of novel bimetallic nanostructures by liquid phase pulsed laser ablation and their catalytic application for environmental remediation.

  14. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOEpatents

    Baker, Eddie G.; Elliott, Douglas C.

    1993-01-01

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compouns as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  15. TREATMENT OF TOXOPLASMOSIS

    DTIC Science & Technology

    Screening tests of various kinds of compounds were carried out with the purpose of obtaining new drugs for toxoplasmosis . Compounds tested were 66...Nitro-4’-formylamino-difenylsulfone might be effective in treatments of human toxoplasmosis . (Author)

  16. Crystal structures, spectroscopic and theoretical study of novel Schiff bases of 2-(methylthiomethyl)anilines.

    PubMed

    Olalekan, Temitope E; Adejoro, Isaiah A; VanBrecht, Bernardus; Watkins, Gareth M

    2015-03-15

    New Schiff bases derived from p-methoxysalicylaldehyde and 2-(methylthiomethyl)anilines (substituted with methyl, methoxy, nitro) were synthesized and characterized by elemental analyses, FT-IR, NMR, electronic spectra and quantum chemical calculations. X-ray crystallography of two compounds showed the solid structures are stabilized by intramolecular and intermolecular H-bonds. The effect of OH⋯N interaction between the phenolic hydrogen and imine nitrogen on the proton and carbon NMR shifts, and the role of CH⋯O and CH⋯S contacts are discussed. The bond lengths and angles, (1)H and (13)C NMR data, E(LUMO-HOMO), dipole moments and polarizability of the compounds were predicted by density functional theory, DFT (B3LYP/6-31G∗∗) method. The experimental geometric parameters and the NMR shifts were compared with the calculated values, which gave good correlations. The electronic effects of aryl ring substituents (methyl, methoxy and nitro) on the properties of the resulting compounds, such as the color, NMR shifts, electronic spectra and the calculated energy band gaps, dipole moments and polarizability are discussed. Increase in electron density shifted the phenolic proton resonance to lower fields. The methoxy-substituted compound has a small dipole moment and subsequent large polarizability value. Highest polarity was indicated by the nitro compound which also showed high polarizability due to its larger size. The energy gaps obtained from E(LUMO-HOMO) calculations suggest these compounds may have applications as organic semiconducting materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Anaerobic Catabolism of Aromatic Compounds: a Genetic and Genomic View

    PubMed Central

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F.; Valderrama, J. Andrés; Barragán, María J. L.; García, José Luis; Díaz, Eduardo

    2009-01-01

    Summary: Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach. PMID:19258534

  18. Nitro-polycyclic aromatic hydrocarbons - gas-particle partitioning, mass size distribution, and formation along transport in marine and continental background air

    NASA Astrophysics Data System (ADS)

    Lammel, Gerhard; Mulder, Marie D.; Shahpoury, Pourya; Kukučka, Petr; Lišková, Hana; Přibylová, Petra; Prokeš, Roman; Wotawa, Gerhard

    2017-05-01

    Nitro-polycyclic aromatic hydrocarbons (NPAH) are ubiquitous in polluted air but little is known about their abundance in background air. NPAHs were studied at one marine and one continental background site, i.e. a coastal site in the southern Aegean Sea (summer 2012) and a site in the central Great Hungarian Plain (summer 2013), together with the parent compounds, PAHs. A Lagrangian particle dispersion model was used to track air mass history. Based on Lagrangian particle statistics, the urban influence on samples was quantified for the first time as a fractional dose to which the collected volume of air had been exposed. At the remote marine site, the 3-4-ring NPAH (sum of 11 targeted species) concentration was 23.7 pg m-3 while the concentration of 4-ring PAHs (6 species) was 426 pg m-3. The most abundant NPAHs were 2-nitrofluoranthene (2NFLT) and 3-nitrophenanthrene. Urban fractional doses in the range of < 0.002-5.4 % were calculated. At the continental site, the Σ11 3-4-ring NPAH and Σ6 4-ring PAH were 58 and 663 pg m-3, respectively, with 9-nitroanthracene and 2NFLT being the most concentrated amongst the targeted NPAHs. The NPAH levels observed in the marine background air are the lowest ever reported and remarkably lower, by more than 1 order of magnitude, than 1 decade before. Day-night variation of NPAHs at the continental site reflected shorter lifetime during the day, possibly because of photolysis of some NPAHs. The yields of formation of 2NFLT and 2-nitropyrene (2NPYR) in marine air seem to be close to the yields for OH-initiated photochemistry observed in laboratory experiments under high NOx conditions. Good agreement is found for the prediction of NPAH gas-particle partitioning using a multi-phase poly-parameter linear free-energy relationship. Sorption to soot is found to be less significant for gas-particle partitioning of NPAHs than for PAHs. The NPAH levels determined in the south-eastern outflow of Europe confirm intercontinental transport potential.

  19. Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass.

    PubMed

    Lee, Jin-Ho; Wendisch, Volker F

    2017-09-10

    Aromatic chemicals that contain an unsaturated ring with alternating double and single bonds find numerous applications in a wide range of industries, e.g. paper and dye manufacture, as fuel additives, electrical insulation, resins, pharmaceuticals, agrochemicals, in food, feed and cosmetics. Their chemical production is based on petroleum (BTX; benzene, toluene, and xylene), but they can also be obtained from plants by extraction. Due to petroleum depletion, health compliance, or environmental issues such as global warming, the biotechnological production of aromatics from renewable biomass came more and more into focus. Lignin, a complex polymeric aromatic molecule itself, is a natural source of aromatic compounds. Many microorganisms are able to catabolize a plethora of aromatic compounds and interception of these pathways may lead to the biotechnological production of value-added aromatic compounds which will be discussed for Corynebacterium glutamicum. Biosynthesis of aromatic amino acids not only gives rise to l-tryptophan, L-tyrosine and l-phenylalanine, but also to aromatic intermediates such as dehydroshikimate or chorismate from which value-added aromatic compounds can be derived. In this review, we will summarize recent strategies for the biotechnological production of aromatic and related compounds from renewable biomass by Escherichia coli, Pseudomonas putida, C. glutamicum and Saccharomyces cerevisiae. In particular, we will focus on metabolic engineering of the extended shikimate pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. PERFLUORINATED AROMATIC COMPOUND

    DTIC Science & Technology

    octafluorobiphenyl, and perfluoroaliphatic aldehydes. Synthetic routes to perfluoro cyclohexyls via reactions of phenyl and pentafluorphenyl lithium with...other perfluorinated aromatic compounds were employed in the synthesis of perfluorinated aromatic model compounds and polymers. The hydrogenic analogues...hydrazides, and imides. Synthetic routes to perfluoro aralkyl compounds are being investigated. Starting materials are tetrafluorobenzene

  1. The gas/particle partitioning of nitro- and oxy-polycyclic aromatic hydrocarbons in the atmosphere of northern China

    NASA Astrophysics Data System (ADS)

    Li, Wei; Shen, Guofeng; Yuan, Chenyi; Wang, Chen; Shen, Huizhong; Jiang, Huai; Zhang, Yanyan; Chen, Yuanchen; Su, Shu; Lin, Nan; Tao, Shu

    2016-05-01

    The gas/particle partitioning of nitro-polycyclic aromatic hydrocarbons (nPAHs) and oxy-PAHs (oPAHs) is pivotal to estimate their environmental fate. Simultaneously measured atmospheric concentrations of nPAHs and oPAHs in both gaseous and particulate phases at 18 sites in northern China make it possible to investigate their partitioning process in a large region. The gas/particle partitioning coefficients (Kp) in this study were higher than those measured in the emission exhausts. The Kp for most individual nPAHs was higher than those for their corresponding parent PAHs. Generally higher Kp values were found at rural field sites compared to values in the rural villages and cities. Temperature, subcooled liquid-vapor pressure (Pl0) and octanol-air partition coefficient (Koa) were all significantly correlated with Kp. The slope values between log Kp and log Pl0, ranging from - 0.54 to - 0.34, indicate that the equilibrium of gas/particle partitioning might not be reached, which could be also revealed from a positive correlation between log Kp and particulate matter (PM) concentrations. Underestimation commonly exists in all three partitioning models, but the predicted values of Kp from the dual model are closer to the measured Kp for derivative PAHs in northern China.

  2. Initial Reductive Reactions in Aerobic Microbial Metabolism of 2,4,6-Trinitrotoluene

    PubMed Central

    Vorbeck, Claudia; Lenke, Hiltrud; Fischer, Peter; Spain, Jim C.; Knackmuss, Hans-Joachim

    1998-01-01

    Because of its high electron deficiency, initial microbial transformations of 2,4,6-trinitrotoluene (TNT) are characterized by reductive rather than oxidation reactions. The reduction of the nitro groups seems to be the dominating mechanism, whereas hydrogenation of the aromatic ring, as described for picric acid, appears to be of minor importance. Thus, two bacterial strains enriched with TNT as a sole source of nitrogen under aerobic conditions, a gram-negative strain called TNT-8 and a gram-positive strain called TNT-32, carried out nitro-group reduction. In contrast, both a picric acid-utilizing Rhodococcus erythropolis strain, HL PM-1, and a 4-nitrotoluene-utilizing Mycobacterium sp. strain, HL 4-NT-1, possessed reductive enzyme systems, which catalyze ring hydrogenation, i.e., the addition of a hydride ion to the aromatic ring of TNT. The hydride-Meisenheimer complex thus formed (H−-TNT) was further converted to a yellow metabolite, which by electrospray mass and nuclear magnetic resonance spectral analyses was established as the protonated dihydride-Meisenheimer complex of TNT (2H−-TNT). Formation of hydride complexes could not be identified with the TNT-enriched strains TNT-8 and TNT-32, or with Pseudomonas sp. clone A (2NT−), for which such a mechanism has been proposed. Correspondingly, reductive denitration of TNT did not occur. PMID:16349484

  3. Structural Mechanism of Replication Stalling on a Bulky Amino-Polycyclic Aromatic Hydrocarbon DNA Adduct by a Y Family DNA Polymerase

    PubMed Central

    Kirouac, Kevin N.; Basu, Ashis K.; Ling, Hong

    2013-01-01

    Polycyclic aromatic hydrocarbons and their nitro derivatives are culprits of the detrimental health effects of environmental pollution. These hydrophobic compounds metabolize to reactive species and attach to DNA producing bulky lesions, such as N-[deoxyguanosine-8-yl]-1-aminopyrene (APG), in genomic DNA. The bulky adducts block DNA replication by high-fidelity polymerases and compromise replication fidelities and efficiencies by specialized lesion bypass polymerases. Here we present three crystal structures of the DNA polymerase Dpo4, a model translesion DNA polymerase of the Y family, in complex with APG-lesion-containing DNA in pre-insertion and extension stages. APG is captured in two conformations in the pre-insertion complex; one is highly exposed to the solvent, whereas the other is harbored in a shallow cleft between the finger and unique Y family little finger domain. In contrast, APG is in a single conformation at the extension stage, in which the pyrene ring is sandwiched between the little finger domain and a base from the turning back single-stranded template strand. Strikingly, a nucleotide intercalates the DNA helix to form a quaternary complex with Dpo4, DNA, and an incoming nucleotide, which stabilizes the distorted DNA structure at the extension stage. The unique APG DNA conformations in Dpo4 inhibit DNA translocation through the polymerase active site for APG bypass. We also modeled an insertion complex that illustrates a solvent-exposed pyrene ring contributing to an unstable insertion state. The structural work combined with our lesion replication assays provides a novel structural mechanism on bypass of DNA adducts containing polycyclic aromatic hydrocarbon moieties. PMID:23876706

  4. Structural mechanism of replication stalling on a bulky amino-polycyclic aromatic hydrocarbon DNA adduct by a y family DNA polymerase.

    PubMed

    Kirouac, Kevin N; Basu, Ashis K; Ling, Hong

    2013-11-15

    Polycyclic aromatic hydrocarbons and their nitro derivatives are culprits of the detrimental health effects of environmental pollution. These hydrophobic compounds metabolize to reactive species and attach to DNA producing bulky lesions, such as N-[deoxyguanosine-8-yl]-1-aminopyrene (APG), in genomic DNA. The bulky adducts block DNA replication by high-fidelity polymerases and compromise replication fidelities and efficiencies by specialized lesion bypass polymerases. Here we present three crystal structures of the DNA polymerase Dpo4, a model translesion DNA polymerase of the Y family, in complex with APG-lesion-containing DNA in pre-insertion and extension stages. APG is captured in two conformations in the pre-insertion complex; one is highly exposed to the solvent, whereas the other is harbored in a shallow cleft between the finger and unique Y family little finger domain. In contrast, APG is in a single conformation at the extension stage, in which the pyrene ring is sandwiched between the little finger domain and a base from the turning back single-stranded template strand. Strikingly, a nucleotide intercalates the DNA helix to form a quaternary complex with Dpo4, DNA, and an incoming nucleotide, which stabilizes the distorted DNA structure at the extension stage. The unique APG DNA conformations in Dpo4 inhibit DNA translocation through the polymerase active site for APG bypass. We also modeled an insertion complex that illustrates a solvent-exposed pyrene ring contributing to an unstable insertion state. The structural work combined with our lesion replication assays provides a novel structural mechanism on bypass of DNA adducts containing polycyclic aromatic hydrocarbon moieties. © 2013.

  5. Environmentally Responsible Microbiological Production of Energetic Ingredients

    DTIC Science & Technology

    2007-11-01

    effort was to develop an environmentally benign and economical microbial process for nitro-energetics production . The specific targets of this method...microbial production of nitro-based EM. As the processes and compounds of choice, RDX/HMX (nitramine) generation was selected. Microorganisms capable of...Current synthetic methods for the production of RDX and HMX utilize hexamine as the precursor. Hexamine is an industrial chemical available on a large

  6. [Peculiarities of detection of 4-nitro-3-(trifluoromethyl)-aniline in the biological material].

    PubMed

    Shormanov, V K; Andreeva, Yu V; Omel'chenko, V A

    2016-01-01

    The objective of the present work was to study peculiarities of detection of 4-nitro-3-(trifluoromethyl)-aniline in the biological material with the use of TLC, GC-MS, and electron spectrophotometry. We have proposed the rationale for the application of acetone as an insulating agent for the extraction of 4-nitro-3-(trifluoromethyl)-aniline from the cadaveric hepatic tissue and biological fluids. It was shown that this compound is possible to separate from endogenous biomaterials on the silicagel L column (40/100 mcm). The results of the quantitative evaluation of different amounts of 4-nitro-3-(trifluoromethyl)-aniline in the cadaveric hepatic tissue, blood, plasma, and urine are presented. The proposed method makes it possible to determine a minimum of 0.12 mg of 4-nitro-3-(trifluoromethyl)-aniline in 100 g of the biological material (cadaveric hepatic tissue), 0.09 mg in 100 g of blood, 0.06 mg and 0.05 mg in 100 u of plasma and urine respectively.

  7. Boron-based dual imaging probes, compositions and methods for rapid aqueous F-18 labeling, and imaging methods using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zibo; Gabbai, Francois P.; Conti, Peter S.

    A composition useful as a PET and/or fluorescence imaging probe a compound a compound of Formula I, including salts, hydrates and solvates thereof: ##STR00001## wherein R.sub.1-R.sub.7 may be independently selected from hydrogen, halogen, hydroxy, alkoxy, nitro, substituted and unsubstituted amino, cycloalkyl, carboxy, carboxylic acids and esters thereof, cyano, haloalkyl, aryl, X is selected from the group consisting of C and N; and A is selected of hydrogen, halogen, hydroxy, alkoxy, nitro, substituted and unsubstituted amino, alkyl, cycloalkyl, carboxy, carboxylic acids and esters thereof, cyano, haloalkyl, aryl, including phenyl and aminophenyl, and heteroaryl.

  8. Development of genetically engineered bacteria for production of selected aromatic compounds

    DOEpatents

    Ward, Thomas E.; Watkins, Carolyn S.; Bulmer, Deborah K.; Johnson, Bruce F.; Amaratunga, Mohan

    2001-01-01

    The cloning and expression of genes in the common aromatic pathway of E. coli are described. A compound for which chorismate, the final product of the common aromatic pathway, is an anabolic intermediate can be produced by cloning and expressing selected genes of the common aromatic pathway and the genes coding for enzymes necessary to convert chorismate to the selected compound. Plasmids carrying selected genes of the common aromatic pathway are also described.

  9. Crystal structure of quinolinium 2-carboxy-6-nitro-benzoate monohydrate.

    PubMed

    Mohana, J; Divya Bharathi, M; Ahila, G; Chakkaravarthi, G; Anbalagan, G

    2015-05-01

    In the anion of the title hydrated mol-ecular salt, C9H8N(+)·C8H4NO6 (-)·H2O, the protonated carboxyl and nitro groups makes dihedral angles of 27.56 (5) and 6.86 (8)°, respectively, with the attached benzene ring, whereas the deprotonated carb-oxy group is almost orthogonal to it with a dihedral angle of 80.21 (1)°. In the crystal, the components are linked by O-H⋯O and N-H⋯O hydrogen bonds, generating [001] chains. The packing is consolidated by weak C-H⋯N and C-H⋯O inter-actions as well as aromatic π-π stacking [centroid-to-centroid distances: 3.7023 (8) & 3.6590 (9)Å] inter-actions, resulting in a three-dimensional network.

  10. Polyimides and Process for Preparing Polyimides Having Thermal-Oxidative Stability

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor)

    2001-01-01

    Polyimides and the process for preparing polyimides having improved thermal-oxidative stability derived from the polymerization of effective amounts of one or more of the polyamines such as the aromatic diamines, one or more of the tetracarboxylic dianhydrides and a novel dicarboxylic endcap having formula with an R1 group of either hydrogen or an alkyl radical of one to four carbons, an R2 group of either OH, NH2, F, or Cl radical, an R3 group of either H, OH, NH2, F, Cl or an alkylene radical, an R4 group of either an alkyl, aryl, aryloxy, nitro, F, or Cl radical, and/or an R5 group of either H, alkyl, aryl, alkoxy, aryloxy, nitro, F, or Cl radical. The polyimides are useful particularly in the preparation of prepegs and PMR composites.

  11. Effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds using a modified QSAR model.

    PubMed

    Lim, Seung Joo; Fox, Peter

    2014-02-01

    The effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds were investigated using a modified half life equation. The potential future pharmaceutical compounds investigated were approximately 2000 pharmaceutical drugs currently undergoing the United States Food and Drug Administration (US FDA) testing. EPI Suite (BIOWIN) model estimates the fates of compounds based on the biodegradability under aerobic conditions. While BIOWIN considered the biodegradability of a compound only, the half life equation used in this study was modified by biodegradability, sorption and cometabolic oxidation. It was possible that the potential future pharmaceutical compounds were more accurately estimated using the modified half life equation. The modified half life equation considered sorption and cometabolic oxidation of halogenated aromatic/aliphatics and nitrogen(N)-heterocyclic aromatics in the sub-surface, while EPI Suite (BIOWIN) did not. Halogenated aliphatics in chemicals were more persistent than halogenated aromatics in the sub-surface. In addition, in the sub-surface environment, the fates of organic chemicals were much more affected by halogenation in chemicals than by nitrogen(N)-heterocyclic aromatics. © 2013.

  12. 3-nitro-1,2,4-triazol-5-one: A less sensitive explosive

    DOEpatents

    Lee, Kien-Yin; Coburn, M.D.

    1987-01-30

    A less sensitive explosive, 3-nitro-1,2,4-triazol-5-one. The compound 3-nitro--1,2,4-triazol-5-one (NTO) has a crystal density of 1.93 g/cm/sup 3/ and calculated detonation velocity and pressure equivalent to those of RDX. It can be prepared in high yield from inexpensive starting materials in a safe synthesis. Results from initial small-scale sensitivity tests indicate that NTO is less sensitive than RDX and HMX in all respects. A 4.13 cm diameter, unconfined plate-dent test at 92% of crystal density gave the detonation pressure predicted for NTO by the BKW calculation. 3 tabs.

  13. 3-nitro-1,2,4-triazol-5-one, a less sensitive explosive

    DOEpatents

    Lee, Kien-Yin; Coburn, Michael D.

    1988-01-01

    A less sensitive explosive, 3-nitro-1,2,4-triazol-5-one. The compound 3-nitro-1,2,4-triazol-5-one (NTO) has a crystal density of 1.93 g/cm.sup.3 and calculated detonation velocity and pressure equivalent to those of RDX. It can be prepared in high yield from inexpensive starting materials in a safe synthesis. Results from initial small-scale sensitivity tests indicate that NTO is less sensitive than RDX and HMX in all respects. A 4.13 cm diameter, unconfined plate-dent test at 92% of crystal density gave the detonation pressure predicted for NTO by the BKW calculation.

  14. Insight into unresolved complex mixtures of aromatic hydrocarbons in heavy oil via two-dimensional gas chromatography coupled with time-of-flight mass spectrometry analysis.

    PubMed

    Weng, Na; Wan, Shan; Wang, Huitong; Zhang, Shuichang; Zhu, Guangyou; Liu, Jingfu; Cai, Di; Yang, Yunxu

    2015-06-12

    The aromatic hydrocarbon fractions of five crude oils representing a natural sequence of increasing degree of biodegradation from the Liaohe Basin, NE, China, were analyzed using conventional gas chromatography-mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography (GC×GC). Because of the limited peak capability and low resolution, compounds in the aromatic fraction of a heavily biodegraded crude oil that were analyzed by GC-MS appeared as unresolved complex mixtures (UCMs) or GC "humps". They could be separated based on their polarity by GC×GC. UCMs are composed mainly of aromatic biomarkers and aromatic hydrocarbons with branched alkanes or cycloalkanes substituents. The quantitative results achieved by GC×GC-FID were shown that monoaromatic hydrocarbons account for the largest number and mass of UCMs in the aromatic hydrocarbon fraction of heavily biodegraded crude oil, at 45% by mass. The number and mass of diaromatic hydrocarbons ranks second at 33% by mass, followed by the aromatic biomarker compounds, triaromatic, tetraaromatic, and pentaaromatic hydrocarbons, that account for 10%, 6%, 1.5%, and 0.01% of all aromatic compounds by mass, respectively. In the heavily biodegraded oil, compounds with monocyclic cycloalkane substituents account for the largest proportion of mono- and diaromatic hydrocarbons, respectively. The C4-substituted compounds account for the largest proportion of naphthalenes and the C3-substituted compounds account for the largest proportion of phenanthrenes, which is very different from non-biodegraded, slightly biodegraded, and moderately biodegraded crude oil. It is inferred that compounds of monoaromatic, diaromatic and triaromatic hydrocarbons are affected by biodegradation, that compounds with C1-, C2-substituents are affected by the increase in degree of biodegradation, and that their relative content decreased, whereas compounds with C3-substituents or more were affected slightly or unaffected, and their relative content also increased. The varying regularity of relative content of substituted compounds may be used to reflect the degree of degradation of heavy oil. Moreover, biomarkers for the aromatic hydrocarbons of heavily biodegraded crude oil are mainly aromatic steranes, aromatic secohopanes, aromatic pentacyclotriterpanes, and benzohopanes. According to resultant data, aromatic secohopanes could be used as a specific marker because of their relatively high concentration. This aromatic compound analysis of a series of biodegraded crude oil is useful for future research on the quantitative characterization of the degree of biodegradation of heavy oil, unconventional oil maturity evaluation, oil source correlation, depositional environment, and any other geochemical problems. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Biodegradation of Aromatic Compounds by Escherichia coli

    PubMed Central

    Díaz, Eduardo; Ferrández, Abel; Prieto, María A.; García, José L.

    2001-01-01

    Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications. PMID:11729263

  16. 3,3,6,6-Tetra-methyl-9-(2-nitro-phen-yl)-3,4,6,7-tetra-hydro-2H-xanthene-1,8(5H,9H)-dione.

    PubMed

    Mo, Yingming; Zang, Hong-Jun; Cheng, Bo-Wen

    2010-07-31

    In the title compound, C(23)H(25)NO(5), the pyran ring adopts a flattened boat conformation, while the two cyclo-hexenone rings are in envelope conformations. The 3-nitro-phenyl ring is almost perpendicular to the pyran ring, making a dihedral angle of 87.1 (3)°.

  17. Essential oil composition of stems and fruits of Caralluma europaea N.E.Br. (Apocynaceae).

    PubMed

    Zito, Pietro; Sajeva, Maurizio; Bruno, Maurizio; Maggio, Antonella; Rosselli, Sergio; Formisano, Carmen; Senatore, Felice

    2010-01-27

    The essential oil of the stems and fruits of Caralluma europaea (Guss.) N.E.Br. (Apocynaceae) from Lampedusa Island has been obtained by hydrodistillation and its composition analyzed. The analyses allowed the identification and quantification of 74 volatile compounds, of which 16 were aromatic and 58 non-aromatic. Stems and fruits contained 1.4% and 2.7% of aromatic compounds respectively, while non-aromatic were 88.3% and 88.8%. Non-aromatic hydrocarbons were the most abundant compounds in both organs, followed by fatty acids. Data showed differences in the profiles between stems and fruits which shared only eighteen compounds; stems accounted for 38 compounds while fruits for 53. Fruits showed a higher diversity especially in aromatic compounds with twelve versus four in stems. Among the volatiles identified in stems and fruits of C. europaea 26 are present in other taxa of Apocynaceae, 52 are semiochemicals for many insects, and 21 have antimicrobial activity. The possible ecological role of the volatiles found is briefly discussed.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang, Haobo; Gallou, Fabrice; Sohn, Hyuntae

    A remarkable synergistic effect has been uncovered between ppm levels of Pd and Ni embedded within iron nanoparticles that leads to mild and selective catalytic reductions of nitro-containing aromatics and heteroaromatics in water at room temperature. NaBH4 serves as the source of inexpensive hydride. Broad substrate scope is documented, along with several other features including: low catalyst loading, low residual metal in the products, and recycling of the catalyst and reaction medium, highlight the green nature of this new technology.

  19. Anaerobic biotransformation of roxarsone and related N-substituted phenylarsonic acids

    USGS Publications Warehouse

    Cortinas, I.; Field, J.A.; Kopplin, M.; Garbarino, J.R.; Gandolfi, A.J.; Sierra-Alvarez, R.

    2006-01-01

    Large quantities of arsenic are introduced into the environment through land application of poultry litter containing the organoarsenical feed additive roxarsone (3-nitro-4-hydroxyphenylarsonic acid). The objective of this study was to evaluate the bioconversion of roxarsone and related N-substituted phenylarsonic acid derivatives under anaerobic conditions. The results demonstrate that roxarsone is rapidly transformed in the absence of oxygen to the corresponding aromatic amine, 4-hydroxy-3-aminophenylarsonic acid (HAPA). The formation of HAPA is attributable to the facile reduction of the nitro group. Electron-donating substrates, such as hydrogen gas, glucose, and lactate, stimulated the rate of nitro group reduction, indicating a microbial role. During long-term incubations, HAPA and the closely related 4-aminophenylarsonic acid (4-APA) were slowly biologically eliminated by up to 99% under methanogenic and sulfate-reducing conditions, whereas little or no removal occurred in heat-killed inoculum controls. Arsenite and, to a lesser extent, arsenate were observed as products of the degradation. Freely soluble forms of the inorganic arsenical species accounted for 19-28% of the amino-substituted phenylarsonic acids removed. This constitutes the first report of a biologically catalyzed rupture of the phenylarsonic group under anaerobic conditions. ?? 2006 American Chemical Society.

  20. Heterobimetallic transition metal/rare earth metal bifunctional catalysis: a Cu/Sm/Schiff base complex for syn-selective catalytic asymmetric nitro-Mannich reaction.

    PubMed

    Handa, Shinya; Gnanadesikan, Vijay; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2010-04-07

    The full details of a catalytic asymmetric syn-selective nitro-Mannich reaction promoted by heterobimetallic Cu/Sm/dinucleating Schiff base complexes are described, demonstrating the effectiveness of the heterobimetallic transition metal/rare earth metal bifunctional catalysis. The first-generation system prepared from Cu(OAc)(2)/Sm(O-iPr)(3)/Schiff base 1a = 1:1:1 with an achiral phenol additive was partially successful for achieving the syn-selective catalytic asymmetric nitro-Mannich reaction. The substrate scope and limitations of the first-generation system remained problematic. After mechanistic studies on the catalyst prepared from Sm(O-iPr)(3), we reoptimized the catalyst preparation method, and a catalyst derived from Sm(5)O(O-iPr)(13) showed broader substrate generality as well as higher reactivity and stereoselectivity compared to Sm(O-iPr)(3). The optimal system with Sm(5)O(O-iPr)(13) was applicable to various aromatic, heteroaromatic, and isomerizable aliphatic N-Boc imines, giving products in 66-99% ee and syn/anti = >20:1-13:1. Catalytic asymmetric synthesis of nemonapride is also demonstrated using the catalyst derived from Sm(5)O(O-iPr)(13).

  1. Effect of nitro substituent on electrochemical oxidation of phenols at boron-doped diamond anodes.

    PubMed

    Jiang, Yi; Zhu, Xiuping; Li, Hongna; Ni, Jinren

    2010-02-01

    In order to investigate nitro-substitutent's effect on degradation of phenols at boron-doped diamond (BDD) anodes, cyclic voltammetries of three nitrophenol isomers: 2-nitrophenol (2NP), 3-nitrophenol (3NP) and 4-nitrophenol (4NP) were studied, and their bulk electrolysis results were compared with phenol's (Ph) under alkaline condition. The voltammetric study showed nitrophenols could be attacked by hydroxyl radicals and nitro-group was released from the aromatic ring. Results of bulk electrolysis showed degradation of all phenols were fit to a pseudo first-order equation and followed in this order: 2NP>4NP>3NP>Ph. Molecular structures, especially carbon atom charge, significantly influenced the electrochemical oxidation of these isomers. Intermediates were analyzed during the electrolysis process, and were mainly catechol, resorcinol, hydroquinone, and carboxylic acids, such as acetic acid and oxalic acid. A simple degradation pathway was proposed. Moreover, a linear increasing relationship between degradation rates and Hammett constants of the studied phenols was observed, which demonstrated that electrochemical oxidation of these phenols was mainly initiated by electrophilic attack of hydroxyl radicals at BDD anodes. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  2. Formation of nitro-PAHs from the heterogeneous reaction of ambient particle-bound PAHs with NO3/N2O5

    NASA Astrophysics Data System (ADS)

    Zimmermann, K.; Jariyasopit, N.; Simonich, S. L.; Atkinson, R.; Arey, J.

    2012-12-01

    Polycyclic aromatic hydrocarbons (PAHs) and their nitrated derivatives (nitro-PAHs) have been shown to be mutagenic in bacterial and mammalian assays and are classified as probable human carcinogens. Semi-volatile PAHs partition between the gas and particulate phases, depending on their liquid-phase vapor pressures and ambient temperatures. These PAHs have been extensively measured in ambient particulate matter and can ultimately undergo long-range transport from source regions (e.g., China to the western USA) (1). During transport these particle-bound PAHs may undergo reaction with NO3/N2O5 to form nitro-PAH derivatives. Previous studies of heterogeneous nitration of PAHs have used particles composed of graphite, diesel soot, and wood smoke (2-4). This study investigates the heterogeneous formation of nitro-PAHs from ambient particle-bound PAHs from Beijing, China and sites located within the Los Angeles air basin. These ambient particle samples, along with filters coated with isotopically labeled PAHs, were exposed to a mix of NO2/NO3/N2O5 in a 7000 L Teflon chamber, with analysis focused on the heterogeneous formation of molecular weight 247 and 273 nitro-PAHs. The heterogeneous formation of certain nitro-PAHs (including1-nitropyrene and 1- and 2-nitrotriphenylene) was observed for some, but not all, ambient samples. Formation of nitro-PAHs typically formed through gas-phase reactions (2-nitrofluoranthene and 2-nitropyrene) was not observed. The effect of particle age and local photochemical conditions during sampling on the degree of nitration in environmental chamber reactions, as well as ambient implications, will be presented. 1. Primbs, T.; Simonich, S.; Schmedding, D.; Wilson, G.; Jaffe, D.; Takami, A.; Kato, S.; Hatakeyama, S.; Kajii, Y. Environ. Sci. Technol. 2007, 41, 3551-3558. 2. Esteve, W.; Budzinski, H.; Villenave, E. Atmospheric Environment 2004, 38, 6063-6072. 3. Nguyen, M.; Bedjanian, Y.; Guilloteau, A. Journal of Atmospheric Chemistry 2009, 62, 139-150. 4. Kamens, R. M.; Zhi-Hua, F.; Yao, Y.; Chen, D.; Chen, S.; Vartiainen, M. Chemosphere 1994, 28, 1623-1632.

  3. Study of improved resins for advanced supersonic technology composites. Part 1: Heteroaromatic polymers containing ether groups. Part 2: Curing chemistry of aromatic polymers and composite studies

    NASA Technical Reports Server (NTRS)

    Takekoshi, T.; Hillig, W. B.; Mellinger, G. A.

    1975-01-01

    Fourteen ether-containing, aromatic dianhydrides have been synthesized from N-phenyl-3 or 4-nitrophthalimide and various bisphenols. The process involves nucleophilic displacement of activated nitro groups with bisphenolate ions. Ether-containing dianhydrides were indefinitely stable in the presence of atmospheric moisture. One-step, high temperature solution polymerization of the ether-containing dianhydrides with m-phenylene diamine, 4,4'-oxydianiline and 1, 3-bis(4-aminophenoxy)benzene afforded 42 polyetherimides. The polyetherimides were all soluble in m-cresol except two which were found to be crystalline. The glass transition temperatures of the polyetherimides ranged from 178 to 277 C. Soluble polybenzimidazopyrrolones containing ether groups were also prepared from the same ether-containing dianhydrides and aromatic tetraamines by one-step solution polymerization. Using low molecular weight polyetherimides, various thermoset resin systems were developed and tested as matrices for fiber-reinforced composites. The curing chemistry involving reaction of the phthalonitrile group and the o-diaminophenyl group was found to be generally applicable to crosslinking various aromatic polymers other than polyimides.

  4. Emission factors of polycyclic and nitro-polycyclic aromatic hydrocarbons from residential combustion of coal and crop residue pellets.

    PubMed

    Yang, Xiaoyang; Liu, Shijie; Xu, Yisheng; Liu, Yu; Chen, Lijiang; Tang, Ning; Hayakawa, Kazuichi

    2017-12-01

    Polycyclic aromatic hydrocarbons (PAHs) and nitro-polycyclic aromatic hydrocarbons (NPAHs) are toxic pollutants mainly produced during fossil fuel combustion. Domestic coal stoves, which emit large amounts of PAHs and NPAHs, are widely used in the Chinese countryside. In this study, emission factors (Efs) for 13 PAH species and 21 NPAH species for four raw coal (three bituminous and one anthracite), one honeycomb briquette, and one crop residue pellet (peanut hulls) samples burned in a typical Chinese rural cooking stove were determined experimentally. The PAH and NPAH Efs for the six fuels were 3.15-49 mg/kg and 0.32-100 μg/kg, respectively. Peanut hulls had very high Efs for both PAHs and NPAHs, and honeycomb briquettes had the lowest Efs. 2-Nitropyrene and 2-nitrofluoranthene, which are NPAHs typically found in secondary organic aerosol, were detected in the emissions from some fuels, suggesting that chemical reactions may have occurred in the dilution tunnel between the flue gas leaving the stove and entering the sampler. The 1-nitropyrene to pyrene diagnostic ratios for coal and peanut hulls were 0.0001 ± 0.0001 and 0.0005, respectively. These were in the same order of magnitude as reference ratios for emissions during coal combustion. The 6-nitrobenzo[a]pyrene to benzo[a]pyrene ratios for the fuels were determined, and the ratios for coal and peanut hulls were 0.0010 ± 0.0001 and 0.0014, respectively. The calculated potential toxic risks indicated that peanut hull emissions were very toxic, especially in terms of NPAHs, compared with emissions from the other fuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1983-09-20

    A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.

  6. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, John M.; Napier, John M.; Travaglini, Michael A.

    1983-01-01

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced.

  7. 40 CFR 721.3320 - Ethanol, 2-amino-, com-pound with N-hydroxy-N-nitro-soben-zena-mine (1:1).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Ethanol, 2-amino-, com-pound with N... Significant New Uses for Specific Chemical Substances § 721.3320 Ethanol, 2-amino-, com-pound with N-hydroxy-N...) The chemical substance identified as ethanol, 2-amino-, compound with N-hydroxy-N-nitrosobenzenamine...

  8. 40 CFR 721.3320 - Ethanol, 2-amino-, com-pound with N-hydroxy-N-nitro-soben-zena-mine (1:1).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethanol, 2-amino-, com-pound with N... Significant New Uses for Specific Chemical Substances § 721.3320 Ethanol, 2-amino-, com-pound with N-hydroxy-N...) The chemical substance identified as ethanol, 2-amino-, compound with N-hydroxy-N-nitrosobenzenamine...

  9. 40 CFR 721.3320 - Ethanol, 2-amino-, com-pound with N-hydroxy-N-nitro-soben-zena-mine (1:1).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Ethanol, 2-amino-, com-pound with N... Significant New Uses for Specific Chemical Substances § 721.3320 Ethanol, 2-amino-, com-pound with N-hydroxy-N...) The chemical substance identified as ethanol, 2-amino-, compound with N-hydroxy-N-nitrosobenzenamine...

  10. 40 CFR 721.3320 - Ethanol, 2-amino-, com-pound with N-hydroxy-N-nitro-soben-zena-mine (1:1).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Ethanol, 2-amino-, com-pound with N... Significant New Uses for Specific Chemical Substances § 721.3320 Ethanol, 2-amino-, com-pound with N-hydroxy-N...) The chemical substance identified as ethanol, 2-amino-, compound with N-hydroxy-N-nitrosobenzenamine...

  11. 40 CFR 721.3320 - Ethanol, 2-amino-, com-pound with N-hydroxy-N-nitro-soben-zena-mine (1:1).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethanol, 2-amino-, com-pound with N... Significant New Uses for Specific Chemical Substances § 721.3320 Ethanol, 2-amino-, com-pound with N-hydroxy-N...) The chemical substance identified as ethanol, 2-amino-, compound with N-hydroxy-N-nitrosobenzenamine...

  12. Selective and sensitive aqueous-phase detection of 2,4,6-trinitrophenol (TNP) by an amine-functionalized metal-organic framework.

    PubMed

    Joarder, Biplab; Desai, Aamod V; Samanta, Partha; Mukherjee, Soumya; Ghosh, Sujit K

    2015-01-12

    Highly selective and sensitive aqueous-phase detection of nitro explosive 2,4,6-trinitrophenol (TNP) by a hydrolytically stable 3D luminescent metal-organic framework is reported. The compound senses TNP exclusively even in the presence of other nitro-compounds, with an unprecedented sensitivity in the MOF regime by means of strategic deployment of its free amine groups. Such an accurate sensing of TNP, widely recognized as a harmful environmental contaminant in water media, establishes this new strategic approach as one of the frontiers to tackle present-day security and health concerns in a real-time scenario. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A fluoride-sensing receptor based on 2,2'-bis(indolyl)methane by dual-function of colorimetry and fluorescence.

    PubMed

    Wei, Wei; Shao, Shi Jun; Guo, Yong

    2015-10-05

    A compound based on 2,2'-bis(indolyl)methane containing nitro group was studied as a new anion receptor. It could recognize selectively F(-) by an increasing fluorescence signal and a visible color change from colorless to blue. The introduction of nitro group induced the spectral dual-function related to the deprotonation of N-H protons. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Research in Energetic Compounds.

    DTIC Science & Technology

    1981-01-01

    The ring is thus amenable to electrophilic opening. Efforts to polymerize 3, 3-dinitrooxetane will be continued. An intermediate In the preparation of...r- nitronate salts and formaldehyde.2 This reaction is ported to give a stable dialkoxide salt. In order to explore markedly inhibited by a fluorine ...a to nitro as a manifes- further the chemistry of 2-fluoro-2-nitro-I,3-propanediol, tation of the " fluorine effect" or the destabilization of a we

  15. 3-Nitro-phenol-1,3,5-triazine-2,4,6-tri-amine (2/1).

    PubMed

    Sangeetha, V; Kanagathara, N; Chakkaravarthi, G; Marchewka, M K; Anbalagan, G

    2013-06-01

    The asymmetric unit of the title compound, C3H6N6·2C6H5NO3, contains one melamine and two 3-nitro-phenol mol-ecules. The mean planes of the 3-nitro-phenol mol-ecules are almost orthogonal to the plane of melamine, making dihedral angles of 82.77 (4) and 88.36 (5)°. In the crystal, mol-ecules are linked via O-H⋯N, N-H⋯N and N-H⋯O hydrogen bonds, forming a three-dimensional network. The crystal also features weak C-H⋯π and π-π inter-actions [centroid-centroid distance = 3.9823 (9) Å].

  16. Time to Say Goodbye to the 16 EPA PAHs? Toward an Up-to-Date Use of PACs for Environmental Purposes

    PubMed Central

    Andersson, Jan T.; Achten, Christine

    2015-01-01

    The 16 EPA PAHs have played an exceptionally large role above all in environmental and analytical sciences in the last 40 years, but now there are good reasons to question their utility in many circumstances even though their use is so established and comfortable. Here we review the reasons why the list has been so successful and why sometimes it is seen as less relevant. Three groups of polycyclic aromatic compounds (PAC) are missing: larger and highly relevant PAHs, alkylated PACs, and compounds containing heteroatoms. Attempts to improve the situation for certain matrixes are known and here: (1) an updated list of PAHs (including the 16 EPA PAHs) for the evaluation of the toxicity in the environment (40 EnvPAHs); (2) a list of 23 NSO-heterocyclic compounds and 6 heterocyclic metabolites; and (3) lists of 10 oxy-PAHs and 10 nitro-PAHs are proposed for practical use in the future. A discussion in the scientific community about these lists is invited. Although the state of knowledge has improved dramatically since the introduction of the 16 EPA PAHs in the 1970s, this summary also shows that more research is needed about the toxicity, occurrence in the environment and chemical analysis, particularly of alkylated PAHs, higher molecular weight PAHs and substituted PACs such as amino-PAHs, cyano-PAHs, etc.. We also suggest that a long overdue discussion of an update of regulatory environmental PAH analysis is initiated. PMID:26823645

  17. Characterization of oxidation products of TNT metabolism in aquatic phytoremediation systems of Myriophyllum aquaticum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhadra, R.; Spanggord, R.J.; Wayment, D.G.

    TNT transformation processes in sediment-free, natural, aquatic phytoremediation systems of Myriophyllum aquaticum were investigated with specific interest in oxidation products. Extraction procedures combining liquid-liquid extractions and solid-phase extractions were developed for the isolation of the mostly acidic, oxidized TNT metabolites. Six compounds unique from the reduction products of TNT were isolated and characterized by UV-vis, {sup 1}H, and {sup 13}C NMR spectroscopy, by mass spectroscopy, and by chemical synthesis where feasible. These compounds include 2-amino-4,6-dinitrobenzoic acid, 2,4-dinitro-6-hydroxyl-benzyl alcohol, 2-N-acetoxyamino-4,6-dinitrobenzaldehyde, 2,4-dinitro-6,hydroxytoluene, and two binuclear metabolites unique from the customary azoxytetranitrotoluenes. The monoaryl compounds show clear evidence of oxidative transformations, methyl oxidationmore » and/or aromatic hydroxylation. It is possible that oxidative transformation(s) preceded nitro reduction since studies on exposure of M. aquaticum to either 2-amino-4,6-dinitrotoluene or 4-amino-2,6-dinitrotoluene did not yield any of the oxidation products identified here. The accumulation of oxidation products was significant: 2-amino-4,6-dinitrobenzoic acid, 4.4%; 2,4-dinitro-6-hydroxy-benzyl alcohol, 8.1%; 2-N-acetoxyamino-4,6-dinitrobenzaldehyde, 7.8%; and, 2,4-dinitro-6-hydroxytoluene, 15.6%. The binuclear metabolites accounted for an estimated 5.6%. This study is the first direct evidence for oxidative transformations in aquatic phytoremediation systems.« less

  18. Crystal structure of quinolinium 2-carboxy-6-nitro­benzoate monohydrate

    PubMed Central

    Mohana, J.; Divya Bharathi, M.; Ahila, G.; Chakkaravarthi, G.; Anbalagan, G.

    2015-01-01

    In the anion of the title hydrated mol­ecular salt, C9H8N+·C8H4NO6 −·H2O, the protonated carboxyl and nitro groups makes dihedral angles of 27.56 (5) and 6.86 (8)°, respectively, with the attached benzene ring, whereas the deprotonated carb­oxy group is almost orthogonal to it with a dihedral angle of 80.21 (1)°. In the crystal, the components are linked by O—H⋯O and N—H⋯O hydrogen bonds, generating [001] chains. The packing is consolidated by weak C—H⋯N and C—H⋯O inter­actions as well as aromatic π–π stacking [centroid-to-centroid distances: 3.7023 (8) & 3.6590 (9)Å] inter­actions, resulting in a three-dimensional network. PMID:25995899

  19. Structural dissection of Shewanella oneidensis old yellow enzyme 4 bound to a Meisenheimer complex and (nitro)phenolic ligands.

    PubMed

    Elegheert, Jonathan; Brigé, Ann; Van Beeumen, Jozef; Savvides, Savvas N

    2017-10-01

    Shewanella oneidensis, a Gram-negative γ-proteobacterium with an extensive redox capacity, possesses four old yellow enzyme (OYE) homologs. Of these, Shewanella yellow enzyme 4 (SYE4) is implicated in resistance to oxidative stress. Here, we present a series of high-resolution crystal structures for SYE4 in the oxidized and reduced states, and in complex with phenolic ligands and the nitro-aromatic explosive picric acid. The structures unmask new features, including the identification of a binding platform for long-chain hydrophobic molecules. Furthermore, we present the first structural observation of a hydride-Meisenheimer complex of picric acid with a flavoenzyme. Overall, our study exposes the binding promiscuity of SYE4 toward a variety of electrophilic substrates and is consistent with a general detoxification function for SYE4. © 2017 Federation of European Biochemical Societies.

  20. Noscapinoids with anti-cancer activity against human acute lymphoblastic leukemia cells (CEM): a three dimensional chemical space pharmacophore modeling and electronic feature analysis.

    PubMed

    Naik, Pradeep K; Santoshi, Seneha; Joshi, Harish C

    2012-01-01

    We have identified a new class of microtubule-binding compounds-noscapinoids-that alter microtubule dynamics at stoichiometric concentrations without affecting tubulin polymer mass. Noscapinoids show great promise as chemotherapeutic agents for the treatment of human cancers. To investigate the structural determinants of noscapinoids responsible for anti-cancer activity, we tested 36 structurally diverse noscapinoids in human acute lymphoblastic leukemia cells (CEM). The IC(50) values of these noscapinoids vary from 1.2 to 56.0 μM. Pharmacophore models of anti-cancer activity were generated that identify two hydrogen bond acceptors, two aromatic rings, two hydrophobic groups, and one positively charged group as essential structural features. Additionally, an atom-based quantitative structure-activity relationship (QSAR) model was developed that gave a statistically satisfying result (R(2) = 0.912, Q(2) = 0.908, Pearson R = 0.951) and effectively predicts the anti-cancer activity of training and test set compounds. The pharmacophore model presented here is well supported by electronic property analysis using density functional theory at B3LYP/3-21*G level. Molecular electrostatic potential, particularly localization of negative potential near oxygen atoms of the dimethoxy isobenzofuranone ring of active compounds, matched the hydrogen bond acceptor feature of the generated pharmacophore. Our results further reveal that all active compounds have smaller lowest unoccupied molecular orbital (LUMO) energies concentrated over the dimethoxy isobenzofuranone ring, azido group, and nitro group, which is indicative of the electron acceptor capacity of the compounds. Results obtained from this study will be useful in the efficient design and development of more active noscapinoids.

  1. Oxidation of aromatic contaminants coupled to microbial iron reduction

    USGS Publications Warehouse

    Lovley, D.R.; Baedecker, M.J.; Lonergan, D.J.; Cozzarelli, I.M.; Phillips, E.J.P.; Siegel, D.I.

    1989-01-01

    THE contamination of sub-surface water supplies with aromatic compounds is a significant environmental concern1,2. As these contaminated sub-surface environments are generally anaerobic, the microbial oxidation of aromatic compounds coupled to nitrate reduction, sulphate reduction and methane production has been studied intensively1-7. In addition, geochemical evidence suggests that Fe(III) can be an important electron acceptor for the oxidation of aromatic compounds in anaerobic groundwater. Until now, only abiological mechanisms for the oxidation of aromatic compounds with Fe(III) have been reported8-12. Here we show that in aquatic sediments, microbial activity is necessary for the oxidation of model aromatic compounds coupled to Fe(III) reduction. Furthermore, a pure culture of the Fe(III)-reducing bacterium GS-15 can obtain energy for growth by oxidizing benzoate, toluene, phenol or p-cresol with Fe(III) as the sole electron acceptor. These results extend the known physiological capabilities of Fe(III)-reducing organisms and provide the first example of an organism of any type which can oxidize an aromatic hydrocarbon anaerobically. ?? 1989 Nature Publishing Group.

  2. Novel naïve Bayes classification models for predicting the chemical Ames mutagenicity.

    PubMed

    Zhang, Hui; Kang, Yan-Li; Zhu, Yuan-Yuan; Zhao, Kai-Xia; Liang, Jun-Yu; Ding, Lan; Zhang, Teng-Guo; Zhang, Ji

    2017-06-01

    Prediction of drug candidates for mutagenicity is a regulatory requirement since mutagenic compounds could pose a toxic risk to humans. The aim of this investigation was to develop a novel prediction model of mutagenicity by using a naïve Bayes classifier. The established model was validated by the internal 5-fold cross validation and external test sets. For comparison, the recursive partitioning classifier prediction model was also established and other various reported prediction models of mutagenicity were collected. Among these methods, the prediction performance of naïve Bayes classifier established here displayed very well and stable, which yielded average overall prediction accuracies for the internal 5-fold cross validation of the training set and external test set I set were 89.1±0.4% and 77.3±1.5%, respectively. The concordance of the external test set II with 446 marketed drugs was 90.9±0.3%. In addition, four simple molecular descriptors (e.g., Apol, No. of H donors, Num-Rings and Wiener) related to mutagenicity and five representative substructures of mutagens (e.g., aromatic nitro, hydroxyl amine, nitroso, aromatic amine and N-methyl-N-methylenemethanaminum) produced by ECFP_14 fingerprints were identified. We hope the established naïve Bayes prediction model can be applied to risk assessment processes; and the obtained important information of mutagenic chemicals can guide the design of chemical libraries for hit and lead optimization. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Identification of products formed during the heterogeneous nitration and ozonation of polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Cochran, Richard E.; Jeong, Haewoo; Haddadi, Shokouh; Fisseha Derseh, Rebeka; Gowan, Alexandra; Beránek, Josef; Kubátová, Alena

    2016-03-01

    The 3- and 4-ring polycyclic aromatic hydrocarbons (PAHs) are the most abundant of PAHs in air particulate matter (PM). Thus we have investigated heterogeneous oxidation of 3- and 4-ring PAHs in a small-scale flow reactor using quartz filter as a support. Four representative PAHs, anthracene, phenanthrene, pyrene, and fluoranthene, were exposed to either NO2, O3 or NO2+O3 (NO3/N2O5) with a goal to identify and attempt quantification of major product distribution. A combination of gas chromatography with mass spectrometry (GC-MS) with/without derivatization and liquid chromatography with high resolution MS (LC-HRMS) was used for identification. For the first time, a comprehensive characterization of a broad range of products enabled identifying ketone/diketone, aldehyde, hydroxyl, and carboxylic acid PAH derivatives. Exposure to NO3/N2O5 (formed by reacting NO2 with O3, a more powerful reactant than either O3 or NO2) produced additional compounds not observed with either oxidant alone. Multiple isomers of nitrofluoranthene and, for the first time, nitrophenanthrene were identified. In addition hydroxy-nitro-PAH derivatives were observed for the reaction of anthracene with NO3/N2O5. Monitoring of specific common ions such as those of 176 and 205 m/z attributed to carbonyl phenanthrene and deprotonated phenanthrene ions respectively was shown to be a useful tool for identification of multiple pyrene oxidation products.

  4. Process for removing halogenated aliphatic and aromatic compounds from petroleum products. [Polychlorinated biphenyls; methylene chloride; perchloroethylene; trichlorofluoroethane; trichloroethylene; chlorobenzene

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1982-03-31

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contracting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible polyhydroxy compound, such as, water, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds in the low polar or nonpolar solvent by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered for recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 2 tables.

  5. PHARMACOKINETICS AND METABOLISM OF A SELECTIVE ANDROGEN RECEPTOR MODULATOR IN RATS: IMPLICATION OF MOLECULAR PROPERTIES AND INTENSIVE METABOLIC PROFILE TO INVESTIGATE IDEAL PHARMACOKINETIC CHARACTERISTICS OF A PROPANAMIDE IN PRECLINICAL STUDY

    PubMed Central

    Wu, Di; Wu, Zengru; Yang, Jun; Nair, Vipin A.; Miller, Duane D.; Dalton, James T.

    2007-01-01

    S-1 [3-(4-fluorophenoxy)-2-hydroxy-2-methyl-N-[4-nitro-3-(trifluoromethyl)phenyl]-propanamide] is one member of a series of potent selective androgen receptor modulators (SARMs) that are being explored and developed for androgen-dependent diseases. Recent studies showed that S-1 holds great promise as a novel therapeutic agent for benign hyperplasia [W. Gao, J. D. Kearbey, V. A. Nair, K. Chung, A. F. Parlow, D. D. Miller, and J. T. Dalton (2004) Endocrinology 145:5420–5428]. We examined the pharmacokinetics and metabolism of S-1 in rats as a component of our preclinical development of this compound and continued interest in structure-activation relationships for SARM action. Forty male Sprague-Dawley rats were randomly assigned to treatment groups and received either an i.v. or a p.o. dose of S-1 at a dose level of 0.1, 1, 10, or 30 mg/kg. S-1 demonstrated a low clearance (range, 3.6–5.2 ml/min/kg), a moderate volume of distribution (range, 1460–1560 ml/kg), and a terminal half-life ranging from 3.6 to 5.2 h after i.v. doses. The oral bioavailability of S-1 ranged from 55% to 60%. Forty phase I and phase II metabolites of S-1 were identified in the urine and feces of male Sprague-Dawley rats dosed at 50 mg/kg via the i.v. route. The two major urinary metabolites of S-1 were a carboxylic acid and a sulfate-conjugate of 4-nitro-3-trifluoromethylphenylamine. Phase I metabolites arising from A-ring nitro reduction to an aromatic amine and B-ring hydroxylation were also identified in the urinary and fecal samples of rats. Furthermore, a variety of phase II metabolites through sulfation, glucuronidation, and methylation were also found. These studies demonstrate that S-1 is rapidly absorbed, slowly cleared, moderately distributed, and extensively metabolized in rats. PMID:16381665

  6. 40 CFR 721.775 - Brominated aromatic com-pound (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Requirements as specified in § 721.80 (j) (use as an additive flame retardant for plastics) and (q). (iv... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a) Chemical...

  7. 40 CFR 721.775 - Brominated aromatic com-pound (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Requirements as specified in § 721.80 (j) (use as an additive flame retardant for plastics) and (q). (iv... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a) Chemical...

  8. 40 CFR 721.775 - Brominated aromatic com-pound (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Requirements as specified in § 721.80 (j) (use as an additive flame retardant for plastics) and (q). (iv... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a) Chemical...

  9. Structure-Activity Relationships of Nitro-Substituted Aroylhydrazone Iron Chelators with Antioxidant and Antiproliferative Activities.

    PubMed

    Hrušková, Kateřina; Potůčková, Eliška; Opálka, Lukáš; Hergeselová, Tereza; Hašková, Pavlína; Kovaříková, Petra; Šimůnek, Tomáš; Vávrová, Kateřina

    2018-05-23

    Aroylhydrazone iron chelators such as salicylaldehyde isonicotinoyl hydrazone (SIH) protect various cells against oxidative injury and display antineoplastic activities. Previous studies have shown that a nitro-substituted hydrazone, namely, NHAPI, displayed markedly improved plasma stability, selective antitumor activity, and moderate antioxidant properties. In this study, we prepared four series of novel NHAPI derivatives and explored their iron chelation activities, anti- or pro-oxidant effects, protection against model oxidative injury in the H9c2 cell line derived from rat embryonic cardiac myoblasts, cytotoxicities to the corresponding noncancerous H9c2 cells, and antiproliferative activities against the MCF-7 human breast adenocarcinoma and HL-60 human promyelocytic leukemia cell lines. Nitro substitution had both negative and positive effects on the examined properties, and we identified new structure-activity relationships. Naphthyl and biphenyl derivatives showed selective antiproliferative action, particularly in the breast adenocarcinoma MCF-7 cell line, where they exceeded the selectivity of the parent compound NHAPI. Of particular interest is a compound prepared from 2-hydroxy-5-methyl-3-nitroacetophenone and biphenyl-4-carbohydrazide, which protected cardiomyoblasts against oxidative injury at 1.8 ± 1.2 μM with 24-fold higher selectivity than SIH. These compounds will serve as leads for further structural optimization and mechanistic studies.

  10. Anaerobic biodegradation of aromatic compounds.

    PubMed

    Jothimani, P; Kalaichelvan, G; Bhaskaran, A; Selvaseelan, D Augustine; Ramasamy, K

    2003-09-01

    Many aromatic compounds and their monomers are existing in nature. Besides they are introduced into the environment by human activity. The conversion of these aromatic compounds is mainly an aerobic process because of the involvement of molecular oxygen in ring fission and as an electron acceptor. Recent literatures indicated that ring fission of monomers and obligomers mainly occurs in anaerobic environments through anaerobic respiration with nitrate, sulphate, carbon dioxide or carbonate as electron acceptors. These anaerobic processes will help to work out the better situation for bioremediation of contaminated environments. While there are plenty of efforts to reduce the release of these chemicals to the environment, already contaminated sites need to be remediated not only to restore the sites but to prevent the leachates spreading to nearby environment. Basically microorganisms are better candidates for breakdown of these compounds because of their wider catalytic mechanisms and the ability to act even in the absence of oxygen. These microbes can be grouped based on their energy mechanisms. Normally, the aerobic counterparts employ the enzymes like mono-and-dioxygenases. The end product is basically catechol, which further may be metabolised to CO2 by means of quinones reductases cycles. In the absense of reductases compounds, the reduced catechols tend to become oxidised to form many quinone compounds. The quinone products are more recalcitrant and lead to other aesthetic problems like colour in water, unpleasant odour, etc. On the contrary, in the reducing environment this process is prevented and in a cascade of pathways, the cleaved products are converted to acetyl co-A to be integrated into other central metabolite paths. The central metabolite of anaerobic degradation is invariably co-A thio-esters of benzoic acid or hydroxy benzoic acid. The benzene ring undergoes various substitution and addition reactions to form chloro-, nitro-, methyl- compounds. For complete degradation the side chains must be removed first and then the benzene ring is activated by carboxylation or hydroxylation or co-A thioester formation. In the next step the activated ring is converted to a form that can be collected in the central pool of metabolism. The third step is the channeling reaction in which the products of the catalysis are directed into central metabolite pool. The enzymes involved in these mechanisms are mostly benzyl co-A ligase, benzyl alcohol dehydrogenase. Other enzymes involved in this path are yet to be purified though many of the reactions products that have been theoretically postulated have been identified. This is mainly due to the instability of intermediate compounds as well as the association of the enzyme substrate is femoral and experimental conditions need to be sophisticated further for isolation of these enzymes. The first structural genes of benzoate and hydroxy benzoate ligases were isolated from Rhodopseudomonas palustris. This gene cluster of 30 kb size found in Rhodopseudomonas palustris coded for the Bad A protein. Similarly, some of the bph A,B,C and D cluster of genes coding for the degradation of pentachlorobenzenes were located in Pseudomonas pseudoalgaligenesKF 707.

  11. Glionitrin A, an antibiotic-antitumor metabolite derived from competitive interaction between abandoned mine microbes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, H.B.; Kown, H.C.; Lee, C.H.

    The nutrient conditions present in abandoned coal mine drainages create an extreme environment where defensive and offensive microbial interactions could be critical for survival and fitness. Coculture of a mine drainage-derived Sphingomonas bacterial strain, KMK-001, and a mine drainage-derived Aspergillus fumigatus fungal strain, KMC-901, resulted in isolation of a new diketopiperazine disulfide, glionitrin A (1). Compound 1 was not detected in monoculture broths of KMK-001 or KMC-901. The structure of 1, a (3S,10aS) diketopiperazine disulfide containing a nitro aromatic ring, was based on analysis of MS, NMR, and circular dichroism spectra and confirmed by X-ray crystal data. Glionitrin A displayedmore » significant antibiotic activity against a series of microbes including methicillin-resistant Staphylococcus aureus. An in vitro MTT cytotoxicity assay revealed that 1 had potent submicromolar cytotoxic activity against four human cancer cell lines: HCT-116, A549, AGS, and DU145. The results provide further evidence that microbial coculture can produce novel biologically relevant molecules.« less

  12. Investigation of alternative prodrugs for use with E. coli nitroreductase in 'suicide gene' approaches to cancer therapy.

    PubMed

    Bailey, S M; Knox, R J; Hobbs, S M; Jenkins, T C; Mauger, A B; Melton, R G; Burke, P J; Connors, T A; Hart, I R

    1996-12-01

    The most commonly employed 'suicide' gene/prodrug system used in cancer gene therapy is the herpes simplex virus thymidine kinase (HSVtk)/ganciclovir system. We have examined the efficacy of an alternative approach utilising the E. coli nitroreductase B enzyme with CB1954 and a variety of other prodrugs. V79 cells transfected with a nitroreductase expression vector were up to 770-fold more sensitive to CB1954 than control non-expressing cells. In general other prodrugs which were found by HPLC to act as substrates for purified E. coli nitroreductase also exhibited increased cytotoxicity against the nitroreductase-expressing cells, although this correlation was not absolute. In particular nitrofurazone (97-fold) and additional aromatic nitro-compounds (nine- to 50-fold) showed a large differential whereas the quinones and the antimetabolite, B-FU, were less effective (< three-fold). The results support the possibility of using nitroreductase and CB1954 for 'suicide gene' therapy and in addition suggest that alternative prodrugs, such as nitrofurazone, warrant further investigation in this novel approach.

  13. Treatment of soil eluate containing nitro aromatic compounds by adsorption on activated coke (AC).

    PubMed

    Zhang, Yiping; Jiang, Zhenming; Zhao, Quanlin; Zhang, Zhenzhong; Su, Hongping; Gao, Xuewen; Ye, Zhengfang

    2016-01-01

    Soil washing is a kind of physical method to remove organic matters from contaminated soil. However, its eluate after washing may result in secondary pollution to the environment. In this study, activated coke (AC) was used to remove organic pollutants from contaminated soil eluate. The effect of temperature, initial chemical oxygen demand (COD) and AC dosage on COD removal efficiency was investigated. The results showed that the organic matter can be removed in the eluate because the COD dropped a lot. When the AC dosage was 20 g·L(-1), 88.92% of COD decreased after 480 min of adsorption at 50 °C. The process of adsorption can be described by the Redlich-Peterson isotherm. The adsorption was spontaneous and endothermic. The pseudo-second-order model can be used to describe the adsorption process. After adsorption, the acute toxicity of the eluate was reduced by 76%, and the water qualities were in agreement with Chinese discharge standard GB 14470.1-2002, which means the eluate could be discharged to the environment.

  14. Shape Engineering of Biomass-Derived Nanoparticles from Hollow Spheres to Bowls via Solvent-Induced Buckling.

    PubMed

    Chen, Chunhong; Li, Xuefeng; Jiang, Deng; Wang, Zhe; Wang, Yong

    2018-06-19

    To realize the asymmetry for the hollow carbonaceous nanostructures remains to be a great challenge, especially when biomass is chosen as the carbon resource via hydrothermal carbonization (HTC). Herein, a simple and straightforward solvent induced buckling strategy is demonstrated for the synthesis of asymmetric spherical and bowllike carbonaceous nanomaterials. The formation of the bowllike morphology was attributed to the buckling of the spherical shells induced by the dissolution of the oligomers. The bowllike particles made by this solvent-driven approach demonstrated a well-controlled morphology and a uniform particle size of ~360 nm. The obtained nanospheres and nanobowls can be loaded with CoS2 nanoparticles to act as novel heterogeneous catalysts for the selective hydrogenation of aromatic nitro compounds. With the bowllike structure in hand, as expected, the CoS2/nanobowls catalyst showed good tolerance to a wide scope of reducible groups and afforded both high activity and selectivity in almost all the tested substrates (14). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Acetylene-Terminated Aromatic Amide Monomers

    DTIC Science & Technology

    1989-10-01

    syntheses. . The diacid with the sulfone moiety (3) (Z=SO,) had been prepared via the action of m- cresol on bis(p-ch-loropheAyl)- sulfone in the presence...from the nitro -displace- ment reaction of 4,4,-dipitrobenzophenone and m-hydroxybenzoic acid in the presence of base. The ready availability of the...aminophenylacetylene (5) (R=m-C-CH) could be purchased from a commercial source, the ortho - and para- substituted analogs (5) (R=o,p-C=CH) as well as their

  16. Multimedia Model for Polycyclic Aromatic Hydrocarbons (PAHs) and Nitro-PAHs in Lake Michigan

    PubMed Central

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) contamination in the U.S. Great Lakes has long been of concern, but information regarding the current sources, distribution, and fate of PAH contamination is lacking, and very little information exists for the potentially more toxic nitro-derivatives of PAHs (NPAHs). This study uses fugacity, food web, and Monte Carlo models to examine 16 PAHs and five NPAHs in Lake Michigan, and to derive PAH and NPAH emission estimates. Good agreement was found between predicted and measured PAH concentrations in air, but concentrations in water and sediment were generally under-predicted, possibly due to incorrect parameter estimates for degradation rates, discharges to water, or inputs from tributaries. The food web model matched measurements of heavier PAHs (≥5 rings) in lake trout, but lighter PAHs (≤4 rings) were overpredicted, possibly due to overestimates of metabolic half-lives or gut/gill absorption efficiencies. Derived PAH emission rates peaked in the 1950s, and rates now approach those in the mid-19th century. The derived emission rates far exceed those in the source inventories, suggesting the need to reconcile differences and reduce uncertainties. Although additional measurements and physiochemical data are needed to reduce uncertainties and for validation purposes, the models illustrate the behavior of PAHs and NPAHs in Lake Michigan, and they provide useful and potentially diagnostic estimates of emission rates. PMID:25373871

  17. Spectroscopic investigation of 4-nitro-3-(trifluoromethyl)aniline, NBO analysis with 4-nitro-3-(trichloromethyl)aniline and 4-nitro-3-(tribromomethyl)aniline.

    PubMed

    Saravanan, S; Balachandran, V; Viswanathan, K

    2014-01-01

    The Fourier transform infrared (FT-IR) and FT-Raman spectra of 4-nitro-3-(trifluoromethyl)aniline (NTFA) were recorded in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. Utilizing the observed FT-IR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the compounds was carried out. Extensive studies on the vibrational, structural, thermodynamic characteristics as well as the electronic properties of NTFA were carried out using ab initio and DFT methods. In this kind of systems, the position of the substituent group in the benzene ring as well as its electron donor-acceptor capabilities play a very important role on the molecular and electronic properties. The values of the total dipole moment (μ) and the first order hyperpolarizability (β) were computed using B3LYP/6-311++G(d,p) and B3LYP/6-311G(d) calculations. The Mulliken's charges, the natural bonding orbital (NBO) analysis on 4-nitro-3-(trifluoromethyl)aniline, 4-nitro-3-(trichloromethyl)aniline and 4-nitro-3-tribromomethyl)aniline were carried out for various intramolecular interactions that are responsible for the stabilization of the molecule. Thermodynamic functions of the investigated molecule were also computed. The calculated HOMO-LUMO energies show that charge transfer occurs in the molecule. The influence of fluorine, amino and nitro group on the geometry of benzene and its normal modes of vibrations has also been discussed. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  18. Human exposure to nitro musks and the evaluation of their potential toxicity: an overview

    PubMed Central

    2014-01-01

    Synthetic nitro musks are fragrant chemicals found in household and personal care products. The use of these products leads to direct exposures via dermal absorption, as well as inhalation of contaminated dust and volatilized fragrances. Evidence also suggests that humans are exposed to low doses of these chemicals through oral absorption of contaminated liquids and foods. As these compounds are lipophilic, they and their metabolites, have been found not only in blood, but also breast milk and adipose tissue. After personal use, these environmentally persistent pollutants then pass through sewage treatment plants through their effluent into the environment. Little is known about the biological effects in humans after such a prolonged low dose exposure to these chemicals. While epidemiologic studies evaluating the effects of nitro musk exposures are lacking, there is limited evidence that suggest blood levels of nitro musks are inversely related to luteal hormone levels. This is supported by animal models and laboratory studies that have shown that nitro musks are weakly estrogenic. Nitro musks exposure has been associated with an increased risk of tumor formation in mice. The evidence suggests that while nitro musks by themselves are not genotoxic, they may increase the genotoxicity of other chemicals. However, animal models for nitro musk exposure have proven to be problematic since certain outcomes are species specific. This may explain why evidence for developmental effects in animals is conflicting and inconclusive. Given that animal models and cell-line experiments are suggestive of adverse outcomes, further epidemiologic studies are warranted. PMID:24618224

  19. 3,3,6,6-Tetra­methyl-9-(2-nitro­phen­yl)-3,4,6,7-tetra­hydro-2H-xanthene-1,8(5H,9H)-dione

    PubMed Central

    Mo, Yingming; Zang, Hong-Jun; Cheng, Bo-Wen

    2010-01-01

    In the title compound, C23H25NO5, the pyran ring adopts a flattened boat conformation, while the two cyclo­hexenone rings are in envelope conformations. The 3-nitro­phenyl ring is almost perpendicular to the pyran ring, making a dihedral angle of 87.1 (3)°. PMID:21588418

  20. Optimization of a sensitive method for the determination of nitro musk fragrances in waters by solid-phase microextraction and gas chromatography with micro electron capture detection using factorial experimental design.

    PubMed

    Polo, Maria; Garcia-Jares, Carmen; Llompart, Maria; Cela, Rafael

    2007-08-01

    A solid-phase microextraction method (SPME) followed by gas chromatography with micro electron capture detection for determining trace levels of nitro musk fragrances in residual waters was optimized. Four nitro musks, musk xylene, musk moskene, musk tibetene and musk ketone, were selected for the optimization of the method. Factors affecting the extraction process were studied using a multivariate approach. Two extraction modes (direct SPME and headspace SPME) were tried at different extraction temperatures using two fiber coatings [Carboxen-polydimethylsiloxane (CAR/PDMS) and polydimethylsiloxane-divinylbenzene (PDMS/DVB)] selected among five commercial tested fibers. Sample agitation and the salting-out effect were also factors studied. The main effects and interactions between the factors were studied for all the target compounds. An extraction temperature of 100 degrees C and sampling the headspace over the sample, using either CAR/PDMS or PDMS/DVB as fiber coatings, were found to be the experimental conditions that led to a more effective extraction. High sensitivity, with detection limits in the low nanogram per liter range, and good linearity and repeatability were achieved for all nitro musks. Since the method proposed performed well for real samples, it was applied to different water samples, including wastewater and sewage, in which some of the target compounds (musk xylene and musk ketone) were detected and quantified.

  1. Development of (6R)-2-Nitro-6-[4-(trifluoromethoxy)phenoxy]-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (DNDI-8219): A New Lead for Visceral Leishmaniasis

    PubMed Central

    2018-01-01

    Discovery of the potent antileishmanial effects of antitubercular 6-nitro-2,3-dihydroimidazo[2,1-b][1,3]oxazoles and 7-substituted 2-nitro-5,6-dihydroimidazo[2,1-b][1,3]oxazines stimulated the examination of further scaffolds (e.g., 2-nitro-5,6,7,8-tetrahydroimidazo[2,1-b][1,3]oxazepines), but the results for these seemed less attractive. Following the screening of a 900-compound pretomanid analogue library, several hits with more suitable potency, solubility, and microsomal stability were identified, and the superior efficacy of newly synthesized 6R enantiomers with phenylpyridine-based side chains was established through head-to-head assessments in a Leishmania donovani mouse model. Two such leads (R-84 and R-89) displayed promising activity in the more stringent Leishmania infantum hamster model but were unexpectedly found to be potent inhibitors of hERG. An extensive structure–activity relationship investigation pinpointed two compounds (R-6 and pyridine R-136) with better solubility and pharmacokinetic properties that also provided excellent oral efficacy in the same hamster model (>97% parasite clearance at 25 mg/kg, twice daily) and exhibited minimal hERG inhibition. Additional profiling earmarked R-6 as the favored backup development candidate. PMID:29461823

  2. Speciation of organic fractions does matter for aerosol source apportionment. Part 2: Intensive short-term campaign in the Paris area (France).

    PubMed

    Srivastava, D; Favez, O; Bonnaire, N; Lucarelli, F; Haeffelin, M; Perraudin, E; Gros, V; Villenave, E; Albinet, A

    2018-09-01

    The present study aimed at performing PM 10 source apportionment, using positive matrix factorization (PMF), based on filter samples collected every 4h at a sub-urban station in the Paris region (France) during a PM pollution event in March 2015 (PM 10 >50μgm -3 for several consecutive days). The PMF model allowed to deconvolve 11 source factors. The use of specific primary and secondary organic molecular markers favoured the determination of common sources such as biomass burning and primary traffic emissions, as well as 2 specific biogenic SOA (marine+isoprene) and 3 anthropogenic SOA (nitro-PAHs+oxy-PAHs+phenolic compounds oxidation) factors. This study is probably the first one to report the use of methylnitrocatechol isomers as well as 1-nitropyrene to apportion secondary OA linked to biomass burning emissions and primary traffic emissions, respectively. Secondary organic carbon (SOC) fractions were found to account for 47% of the total OC. The use of organic molecular markers allowed the identification of 41% of the total SOC composed of anthropogenic SOA (namely, oxy-PAHs, nitro-PAHs and phenolic compounds oxidation, representing 15%, 9%, 11% of the total OC, respectively) and biogenic SOA (marine+isoprene) (6% in total). Results obtained also showed that 35% of the total SOC originated from anthropogenic sources and especially PAH SOA (oxy-PAHs+nitro-PAHs), accounting for 24% of the total SOC, highlighting its significant contribution in urban influenced environments. Anthropogenic SOA related to nitro-PAHs and phenolic compounds exhibited a clear diurnal pattern with high concentrations during the night indicating the prominent role of night-time chemistry but with different chemical processes involved. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Compounds having aromatic rings and side-chain amide-functionality and a method for transporting monovalent anions across biological membranes using the same

    DOEpatents

    Davis, Jeffery T [College Park, MD; Sidorov, Vladimir [Richmond, VA; Kotch, Frank W [New Phila., PA

    2008-04-08

    A compound containing at least two aromatic rings covalently bonded together, with each aromatic ring containing at least one oxyacetamide-based side chain, the compound being capable of forming a chloride ion channel across a lipid bilayer, and transporting chloride ion across the lipid bilayer.

  4. Effects of humic acid and heavy metals on the sorption of polar and apolar organic pollutants onto biochars.

    PubMed

    Wang, Fei; Sun, Hongwen; Ren, Xinhao; Liu, Yarui; Zhu, Hongkai; Zhang, Peng; Ren, Chao

    2017-12-01

    The effects of humic acid (HA) and heavy metals (Cu 2+ and Ag + ) on the sorption of polar and apolar organic pollutants onto biochars that were produced at temperatures of 200 °C (BC200) and 700 °C (BC700) were studied. Due to the plentiful polar functional groups on BC200, cationic propranolol exhibited higher levels of sorption than naphthalene on BC200 while naphthalene and propranolol showed similar sorption capacities on BC700. HA changed the characteristics of biochars and generally inhibited the sorption of target organic pollutants on biochars; however, enhancement occurred in some cases depending on the pollutants involved and their concentrations, biochars used and the addition sequences and concentrations of HA. On BC200, HA modifications mainly influenced sorption by decreasing its polarity and increasing its aromaticity, while on BC700, the surface area and pore volume greatly decreased due to the pore-blocking effects of HA. Residue dissolved HA in solution may also contribute to sorption inhibition. Complexation between polar functional groups on BC200 and heavy metals slightly enhanced the sorption of neutral naphthalene and significantly enhanced that of anionic 4-nitro-1-naphtol, while limited the sorption of cationic propranolol. Heavy metals together with their associated water molecules decreased the sorption of target chemicals on BC700 via pore-filling or pore-mouth-covering. Inhibition of heavy metals for 4-nitro-1-naphthol was found to be the weakest due to the bridge effects of heavy metals between 4-nitro-1-naphtol and BC700. The higher polarizability of Ag + led to the increase of its sorption on biochars in the presence of organic aromatic pollutants. The results of the present study shed light on the sorption mechanisms of bi-solute systems and enable us to select suitable biochar sorbents when chemicals co-exist. Copyright © 2017. Published by Elsevier Ltd.

  5. Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass.

    PubMed

    Mäkelä, Miia R; Marinović, Mila; Nousiainen, Paula; Liwanag, April J M; Benoit, Isabelle; Sipilä, Jussi; Hatakka, Annele; de Vries, Ronald P; Hildén, Kristiina S

    2015-01-01

    The biological conversion of plant lignocellulose plays an essential role not only in carbon cycling in terrestrial ecosystems but also is an important part of the production of second generation biofuels and biochemicals. The presence of the recalcitrant aromatic polymer lignin is one of the major obstacles in the biofuel/biochemical production process and therefore microbial degradation of lignin is receiving a great deal of attention. Fungi are the main degraders of plant biomass, and in particular the basidiomycete white rot fungi are of major importance in converting plant aromatics due to their ability to degrade lignin. However, the aromatic monomers that are released from lignin and other aromatic compounds of plant biomass are toxic for most fungi already at low levels, and therefore conversion of these compounds to less toxic metabolites is essential for fungi. Although the release of aromatic compounds from plant biomass by fungi has been studied extensively, relatively little attention has been given to the metabolic pathways that convert the resulting aromatic monomers. In this review we provide an overview of the aromatic components of plant biomass, and their release and conversion by fungi. Finally, we will summarize the applications of fungal systems related to plant aromatics. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. DFT calculations, spectroscopy and antioxidant activity studies on (E)-2-nitro-4-[(phenylimino)methyl]phenol

    NASA Astrophysics Data System (ADS)

    Temel, Ersin; Alaşalvar, Can; Gökçe, Halil; Güder, Aytaç; Albayrak, Çiğdem; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan; Dilek, Nefise

    2015-02-01

    We have reported synthesis and characterization of (E)-2-nitro-4-[(phenylimino)methyl]phenol by using X-ray crystallographic method, FT-IR and UV-vis spectroscopies and density functional theory (DFT). Optimized geometry and vibrational frequencies of the title compound in the ground state have been computed by using B3LYP with the 6-311G+(d,p) basis set. HOMO-LUMO energy gap, Non-linear optical properties and NBO analysis of the compound are performed at B3LYP/6-311G+(d,p) level. Additionally, as remarkable properties, antioxidant activity of the title compound (CMPD) has been determined by using different antioxidant test methods i.e. ferric reducing antioxidant power (FRAP), hydrogen peroxide scavenging (HPSA), free radical scavenging (FRSA) and ferrous ion chelating activities (FICA). When compared with standards (BHA, BHT, and α-tocopherol), we have concluded that CPMD has effective FRAP, HPSA, FRSA and FICA.

  7. 4-Nitro styrylquinoline is an antimalarial inhibiting multiple stages of Plasmodium falciparum asexual life cycle.

    PubMed

    Roberts, Bracken F; Zheng, Yongsheng; Cleaveleand, Jacob; Lee, Sukjun; Lee, Eunyoung; Ayong, Lawrence; Yuan, Yu; Chakrabarti, Debopam

    2017-04-01

    Drugs against malaria are losing their effectiveness because of emerging drug resistance. This underscores the need for novel therapeutic options for malaria with mechanism of actions distinct from current antimalarials. To identify novel pharmacophores against malaria we have screened compounds containing structural features of natural products that are pharmacologically relevant. This screening has identified a 4-nitro styrylquinoline (SQ) compound with submicromolar antiplasmodial activity and excellent selectivity. SQ exhibits a cellular action distinct from current antimalarials, acting early on malaria parasite's intraerythrocytic life cycle including merozoite invasion. The compound is a fast-acting parasitocidal agent and also exhibits curative property in the rodent malaria model when administered orally. In this report, we describe the synthesis, preliminary structure-function analysis, and the parasite developmental stage specific action of the SQ scaffold. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Synthesis and evaluation of in vitro anti-microbial and anti-tubercular activity of 2-styryl benzimidazoles.

    PubMed

    Shingalapur, Ramya V; Hosamani, Kallappa M; Keri, Rangappa S

    2009-10-01

    A new series of novel 5-(nitro/bromo)-styryl-2-benzimidazoles (1-12) has been synthesized by simple, mild and efficient synthetic protocol by attempted condensation of 5-(nitro/bromo)-o-phenylenediamine with trans-cinnamic acids in ethylene glycol. Screening for in vitro anti-tubercular activity against Mycobacterium tuberculosis H(37) Rv, anti-bacterial activity against Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae bacterial strains and anti-fungal activity against Candida albicans and Asperigillus fumigatus fungal strains were carried out. Compounds 5, 7, 8, 9, 11 showed higher anti-tubercular activity and compounds 7, 8, 10, 11, 12 have proved to be effective with MIC (microg/ml) and emerged as lead molecules showing excellent activities against a panel of microorganisms. All synthesized compounds were characterized using IR, (1)H, (13)C NMR, GC-MS and elemental analysis.

  9. Retardation effect of nitrogen compounds and condensed aromatics on shale oil catalytic cracking processing and their characterization.

    PubMed

    Li, Nan; Chen, Chen; Wang, Bin; Li, Shaojie; Yang, Chaohe; Chen, Xiaobo

    Untreated shale oil, shale oil treated with HCl aqueous solution and shale oil treated with HCl and furfural were used to do comparative experiments in fixed bed reactors. Nitrogen compounds and condensed aromatics extracted by HCl and furfural were characterized by electrospray ionization Fourier transform cyclotron resonance mass spectrometry and gas chromatography and mass spectrometry, respectively. Compared with untreated shale oil, the conversion and yield of liquid products increased considerably after removing basic nitrogen compounds by HCl extraction. Furthermore, after removing nitrogen compounds and condensed aromatics by both HCl and furfural, the conversion and yield of liquid products further increased. In addition, N 1 class species are predominant in both basic and non-basic nitrogen compounds, and they are probably indole, carbazole, cycloalkyl-carbazole, pyridine and cycloalkyl-pyridine. As for the condensed aromatics, most of them possess aromatic rings with two to three rings and zero to four carbon atom.

  10. Quantitative mammalian cell genetic toxicology: study of the cytotoxicity and mutagenicity of 70 individual environmental agents related to energy technologies and 3 subfractions of a crude synthetic oil in the CHO/HGPRT system. [Hamsters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsie, A W; ,; Neill, J P

    1978-01-01

    Conditions necessary for quantifying mutation-induction to 6-thioguanine resistance, which selects for >98% mutants deficient in the activity of hypoxanthine-guanine phosphoribosyl transferase (HGPRT) in a near-diploid Chinese hamster ovary (CHO) cell line, referred to as CHO/HGPRT system, have been defined. Employing this mutation assay, we have determined the mutagenicity of diversified agents including 11 direct-acting alkylating agents, 16 nitrosamines, 10 heterocyclic nitrogen mustards, 15 metallic compounds, 5 quinolines, 5 aromatic amines, 27 polycyclic hydrocarbons, 13 miscellaneous chemicals, 7 ionizing and non-ionizing physical agents. The direct-acting carcinogen N-methyl-N'-nitro-N-nitrosoguanidine is mutagenic while its noncarcinogenic analogue N-methyl-N'-nitro-N-nitroguanidine is not. Coupled with the rat livermore » S/sub 9/-activation system, procarcinogens such as nitrosopyrrolidine, benzo(a)pyrene, and 2-acetylaminofluorene are mutagenic while their analogues 2,5-dimethylnitrosopyrrolidine, pyrene and fluorene are not. The assay appears to be applicable for monitoring the genetic toxicity of crude organic mixtures in addition to diverse individual chemical and physical agents. The quantitative nature of the assay enables a study of EMS exposure dose: the mutagenic potential of EMS can be described as 310 x 10/sup -6/ mutants (cell mg ml/sup -1/ h)./sup -1/ It is also feasible to expand the CHO/HGPRT system for quantifying cytotoxicity and mutagenicity to determination of chromosomal aberrations and sister chromatid exchanges in cells treated under identical conditions which allows a simultaneous study of these four distinctive biological effects.« less

  11. CHARACTERIZATION OF THE IN VITRO METABOLISM OF SELECTIVE ANDROGEN RECEPTOR MODULATOR USING HUMAN, RAT, AND DOG LIVER ENZYME PREPARATIONS

    PubMed Central

    Gao, Wenqing; Wu, Zengru; Bohl, Casey E.; Yang, Jun; Miller, Duane D.; Dalton, James T.

    2007-01-01

    Compound S4 [S-3-(4-acetylamino-phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamide] is a novel nonsteroidal selective androgen receptor modulator that demonstrates tissue-selective androgenic and anabolic effects. The purpose of this in vitro study was to identify the phase I metabolites, potential species differences in metabolism, and the cytochromes P450 (P450s) involved in the phase I metabolism of S4 using 14C-S4, recombinant P450s, and other liver enzyme preparations from human, rat, and dog. The major phase I metabolism pathways of S4 in humans were identified as deacetylation of the B-ring acetamide group, hydrolysis of the amide bond, reduction of the A-ring nitro group, and oxidation of the aromatic rings, with deacetylation being the predominant pathway observed with most of the enzyme preparations tested. Among the major human P450 enzymes tested, CYP3A4 appeared to be one of the major phase I enzymes that could be responsible for the phase I metabolism of S4 [Km = 16.1 μM, Vmax = 1.6 pmol/(pmol · min)] in humans and mainly catalyzed the deacetylation, hydrolysis, and oxidation of S4. In humans, the cytosolic enzymes mainly catalyzed the hydrolysis reaction, whereas the microsomal enzymes primarily catalyzed the deacetylation reactions. Similar phase I metabolic profiles were observed in rats and dogs as well, except that the amide bond hydrolysis seemed to occur more rapidly in rats. In summary, these results showed that the major phase I reaction of S4 in human, rat, and dog is acetamide group deacetylation. PMID:16272404

  12. Functional Group Analysis.

    ERIC Educational Resources Information Center

    Smith, Walter T., Jr.; Patterson, John M.

    1980-01-01

    Discusses analytical methods selected from current research articles. Groups information by topics of general interest, including acids, aldehydes and ketones, nitro compounds, phenols, and thiols. Cites 97 references. (CS)

  13. PERFLUORINATED AROMATIC COMPOUNDS

    DTIC Science & Technology

    decafluorodiphenylamine, 3,3’,4,4’-tetra substituted- hexafluorobiphenyls, tetrafluororesorcinol, perfluoroaromatic thioethers, and dithiols. These...and other perfluorinated aromatic compounds are the intermediates employed in the synthesis of perfluorinated model compounds and polymers.

  14. 2-Amino-3-methyl-6-[meth­yl­(phen­yl)­amino]-5-nitro­pyrimidin-4(3H)-one: polarized mol­ecules within hydrogen-bonded sheets

    PubMed Central

    Rodríguez, Ricaurte; Nogueras, Manuel; Cobo, Justo; Glidewell, Christopher

    2009-01-01

    The pyrimidinone ring in the title compound, C12H13N5O3, is effectively planar, despite the presence of five substituents. The bond distances provide evidence for significant polarization of the electronic structure, with charge separation, and the mol­ecules are linked into sheets by a combination of N—H⋯O and N—H⋯π(arene) hydrogen bonds. Comparisons are made with the mol­ecular and supra­molecular structures of the precursor compound 2-amino-6-[meth­yl(phen­yl)amino]-5-nitro­pyrimidin-4(3H)-one. PMID:19726857

  15. THE EXCHANGE OF DEUTERIUM WITH METHANOL OVER RANEY NICKEL CATALYST AND THE EFFECT OF CERTAIN NITRO COMPOUNDS UPON THE EXCHANGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, H.A.; Stewart, B.B.

    Deuterium gas exchanges slowly with liquid methanol over Raney nickel catalyst at 35 deg . The reaction is zero order with respect to deuterium pressure and has a low activation energy. The influences of catalyst weight, catalyst treatment, and of the presence of certain nitro compounds were studied. Since active Raney nickel can liberate hydrogen directly, a method for determining the origin of hydrogen which undergoes exchange with the deuterium gas was developed. It was shown that the exchanged hydrogen does originate from the hydroxyl hydrogen of methanol. The results are discussed in the light of the mechanism of catalyticmore » exchange and catalytic hydrogenation reactions. (auth)« less

  16. Bond cleavage of lignin model compounds into aromatic monomers using supported metal catalysts in supercritical water

    PubMed Central

    Yamaguchi, Aritomo; Mimura, Naoki; Shirai, Masayuki; Sato, Osamu

    2017-01-01

    More efficient use of lignin carbon is necessary for carbon-efficient utilization of lignocellulosic biomass. Conversion of lignin into valuable aromatic compounds requires the cleavage of C–O ether bonds and C–C bonds between lignin monomer units. The catalytic cleavage of C–O bonds is still challenging, and cleavage of C–C bonds is even more difficult. Here, we report cleavage of the aromatic C–O bonds in lignin model compounds using supported metal catalysts in supercritical water without adding hydrogen gas and without causing hydrogenation of the aromatic rings. The cleavage of the C–C bond in bibenzyl was also achieved with Rh/C as a catalyst. Use of this technique may greatly facilitate the conversion of lignin into valuable aromatic compounds. PMID:28387304

  17. Three-dimensional aromatic networks.

    PubMed

    Toyota, Shinji; Iwanaga, Tetsuo

    2014-01-01

    Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.

  18. Enhanced Oxidative Bioremediation of cis-dichloroethene (cis-DCE) and Vinyl Chloride (VC) using Electron Shuttles

    DTIC Science & Technology

    2009-07-01

    1989) Abiotic Reduction of Nitro Aromatic Pesticides in Anaerobic Laboratory Systems. J, Agric, Food Chem, 37: 248. 13 Doménech-Carbó A., Doménech-Carbó...in general. Agricultural Use Humic acids have been used for decades as soil amendments and adjuvants for pesticide formulations for various food...necessary" to support an exception tolerance for pesticide formulations (EPA 2000, Federal Register, July 18, Vol 65, Number 138). Further, materials

  19. 1-Bromo-2,3,5,6-tetra­fluoro-4-nitro­benzene

    PubMed Central

    Stein, Mario; Schwarzer, Anke; Hulliger, Jürg; Weber, Edwin

    2011-01-01

    In the title compound, C6BrF4NO2, the nitro group is twisted by 41.7 (3)° with reference to the arene ring mean plane. The main inter­actions stabilizing the crystal structure include O⋯Br contacts [3.150 (2) and 3.201 (2) Å], while F⋯F inter­actions are minor [2.863 (3)–2.908 (3) Å]. PMID:21837056

  20. 1-Allyl-3-chloro-5-nitro-1H-indazole

    PubMed Central

    Chicha, Hakima; Rakib, El Mostapha; Spinelli, Domenico; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    In the title compound, C10H8ClN3O2, the indazole ring system makes a dihedral angle of 7.9 (3)° with the plane through the nitro group. The allyl group is rotated out of the plane of the indazole ring system [N—N—C—C torsion angle = 104.28 (19)°]. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming zigzag chains propagating along the b-axis direction. PMID:24427047

  1. 1-Allyl-3-chloro-5-nitro-1H-indazole.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Spinelli, Domenico; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    In the title compound, C10H8ClN3O2, the indazole ring system makes a dihedral angle of 7.9 (3)° with the plane through the nitro group. The allyl group is rotated out of the plane of the indazole ring system [N-N-C-C torsion angle = 104.28 (19)°]. In the crystal, mol-ecules are linked by C-H⋯O hydrogen bonds, forming zigzag chains propagating along the b-axis direction.

  2. COMPLEX RUTHENIUM ACIDO-NITROS COMPOUNDS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zvyagintsev, O.E.; Starostin, S.M.

    1961-06-01

    The chemical nature of the water in the complex ruthenium acidonitroso compounds is studied by measuring certain acid properties, reactions, and behaviors of the compounds in aqueous solution. The dependence of molecular electrical conductivity on time and dilution, variations of specific electroconductivity, the optical density, and the light absorption of the compounds at 200 to 800 m mu wave range were investigated and the dissociation constants were calculated. (R.V.J.)

  3. Trace Detection of RDX, HMX and PETN Explosives Using a Fluorescence Spot Sensor

    PubMed Central

    Wang, Chen; Huang, Helin; Bunes, Benjamin R.; Wu, Na; Xu, Miao; Yang, Xiaomei; Yu, Li; Zang, Ling

    2016-01-01

    1,3,5-trinitroperhydro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and pentaerythritol tetranitrate (PETN), the major components in plastic explosives, pose a significant threat to public safety. A quick, sensitive, and low-cost detection method for these non-volatile explosives is eagerly demanded. Here we present a fluo-spot approach, which can be employed for in situ detection of trace amount of explosives. The sensor molecule is a charge-transfer fluorophore, DCM, which is strongly fluorescent in its pristine state, but non-fluorescent after the quick reaction with NO2· (or NO2+) generated from the UV photolysis of RDX, HMX (or PETN). When fabricated within silica gel TLC plate, the fluo-spot sensor features high sensitivity owing to the large surface area and porous structure of the substrate. The sensor reaction mechanism was verified by various experimental characterizations, including chromatography, UV-Vis absorption and fluorescence spectroscopy, MS and 1H NMR spectrometry. The fluo-spot also demonstrated high selectivity towards RDX, HMX and PETN, as no significant fluorescence quenching was observed for other chemical compounds including common nitro-aromatic explosives and inorganic oxidative compounds. The DCM sensor can also be used as an economical spray kit to directly spot the explosives by naked eyes, implying great potential for quick, low-cost trace explosives detection. PMID:27146290

  4. Trace Detection of RDX, HMX and PETN Explosives Using a Fluorescence Spot Sensor.

    PubMed

    Wang, Chen; Huang, Helin; Bunes, Benjamin R; Wu, Na; Xu, Miao; Yang, Xiaomei; Yu, Li; Zang, Ling

    2016-05-05

    1,3,5-trinitroperhydro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and pentaerythritol tetranitrate (PETN), the major components in plastic explosives, pose a significant threat to public safety. A quick, sensitive, and low-cost detection method for these non-volatile explosives is eagerly demanded. Here we present a fluo-spot approach, which can be employed for in situ detection of trace amount of explosives. The sensor molecule is a charge-transfer fluorophore, DCM, which is strongly fluorescent in its pristine state, but non-fluorescent after the quick reaction with NO2· (or NO2(+)) generated from the UV photolysis of RDX, HMX (or PETN). When fabricated within silica gel TLC plate, the fluo-spot sensor features high sensitivity owing to the large surface area and porous structure of the substrate. The sensor reaction mechanism was verified by various experimental characterizations, including chromatography, UV-Vis absorption and fluorescence spectroscopy, MS and (1)H NMR spectrometry. The fluo-spot also demonstrated high selectivity towards RDX, HMX and PETN, as no significant fluorescence quenching was observed for other chemical compounds including common nitro-aromatic explosives and inorganic oxidative compounds. The DCM sensor can also be used as an economical spray kit to directly spot the explosives by naked eyes, implying great potential for quick, low-cost trace explosives detection.

  5. Mass spectral analysis of long chain alkyl aromatic compounds synthesized from alpha-olefin alkylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, M.T.; Hudson, J.D.

    1994-12-31

    Long chain alkyl aromatic compounds are important petrochemicals with many applications. They are generally synthesized by alkylating the corresponding aromatic nucleus. In this report, the authors will describe the mass spectral fragmentation of alkylphenols and alkylsalicylates.

  6. Bioaccessibility of nitro- and oxy-PAHs in fuel soot assessed by an in vitro digestive model with absorptive sink.

    PubMed

    Zhang, Yanyan; Pignatello, Joseph J; Tao, Shu

    2016-11-01

    Ingestion of soot present in soil or other environmental particles is expected to be an important route of exposure to nitro and oxygenated derivatives of polycyclic aromatic hydrocarbons (PAHs). We measured the apparent bioaccessibility (B app ) of native concentrations of 1-nitropyrene (1N-PYR), 9-fluorenone (9FLO), anthracene-9,10-dione (ATQ), benzo[a]anthracene-7,12-dione (BaAQ), and benzanthrone (BZO) in a composite fuel soot sample using a previously-developed in vitro human gastrointestinal model that includes silicone sheet as a third-phase absorptive sink. Along with B app , we determined the 24-h sheet-digestive fluid partition coefficient (K s,24h ), the soot residue-fluid distribution ratio of the labile sorbed fraction after digestion (K r,lab ), and the maximum possible (limiting) bioaccessibility, B lim . The B app of PAH derivatives was positively affected by the presence of the sheet due to mass-action removal of the sorbed compounds. In all cases B app increased with imposition of fed conditions. The enhancement of B app under fed conditions is due to increasingly favorable mass transfer of target compounds from soot to fluid (increasing bile acid concentration, or adding food lipids) or transfer from fluid to sheet (by raising small intestinal pH). Food lipids may also enhance B app by mobilizing contaminants from nonlabile to labile states of the soot. Compared to the parent PAH, the derivatives had larger K r,lab , despite having lower partition coefficients to various hydrophobic reference phases including silicone sheet. The B lim of the derivatives under the default conditions of the model ranged from 65.5% to 34.4%, in the order, 1N-PYR > ATQ > 9FLO > BZO > BaAQ, with no significant correlation with hydrophobic parameters, nor consistent relationship with B lim of the parent PAH. Consistent with earlier experiments on a wider range of PAHs, the results suggest that a major determinant of bioaccessibility is the distribution of chemical between nonlabile and labile states in the original solid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Chemical composition and heterogeneous reactivity of soot generated in the combustion of diesel and GTL (Gas-to-Liquid) fuels and amorphous carbon Printex U with NO2 and CF3COOH gases

    NASA Astrophysics Data System (ADS)

    Tapia, A.; Salgado, S.; Martín, P.; Villanueva, F.; García-Contreras, R.; Cabañas, B.

    2018-03-01

    The heterogeneous reactions of nitrogen dioxide (NO2) and trifluoroacetic acid (CF3COOH) with soot produced by diesel and GTL (gas-to-liquid) fuels were investigated using a Knudsen flow reactor with mass spectrometry as a detection system for gas phase species. Soot was generated with a 4 cylinder diesel engine working under steady-state like urban operation mode. Heterogeneous reaction of the mentioned gases with a commercial carbon, Printex U, used as reference, was also analyzed. The initial and the steady-state uptake coefficients, γ0 and γss, respectively, were measured indicating that GTL soot reacts faster than diesel soot and Printex U carbon for NO2 gas reactant. According to the number of reacted molecules on the surface, Printex U soot presents more reducing sites than diesel and GTL soot. Initial uptake coefficients for GTL and diesel soot for the reaction with CF3COOH gas reactant are very similar and no clear conclusions can be obtained related to the initial reactivity. The number of reacted molecules calculated for CF3COOH reactions shows values two orders of magnitude higher than the corresponding to NO2 reactions, indicating a greater presence of basic functionalities in the soot surfaces. More information of the surface composition has been obtained using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) before and after the reaction of soot samples with gas reactants. As conclusion, the interface of diesel and GTL soot before reaction mainly consists of polycyclic aromatic hydrocarbons (PAHs), nitro-compounds as well as ether functionalities. After reaction with gas reactant, it was observed that PAHs and nitro-compounds remain on the soot surface and new spectral bands such as carbonyl groups (carboxylic acids, aldehydes, esters and ketones) are observed. Physical properties of soot from both fuels studied such as BET surface isotherm and SEM analysis were also developed and related to the observed reactivity.

  8. LEVELS OF SYNTHETIC MUSK COMPOUNDS IN ...

    EPA Pesticide Factsheets

    To test the ruggedness of a newly developed analytical method for synthetic musks, a 1-year monthly monitoring of synthetic musks in water and biota was conducted for LakeMead (near Las Vegas, Nevada) as well as for combined sewage-dedicated effluent streams feeding Lake Mead. Data obtained from analyses of combined effluent streams from three municipal sewage treatment plants, from the effluent-receiving lake water, and from whole carp (Cyprinus carpio) tissue, indicated bioconcentration of synthetic musks in carp (1400-4500 pg/g). That same data were evaluated for the prediction of levels of synthetic musk compounds in fish, using values from the source (sewage treatment plant effluent [STP]). This study confirmed the presence of polycyclic and nitro musks in STP effluent, Lake Mead water, and carp. The concentrations of the polycyclic and nitro musks found in Lake Mead carp were considerably lower than previous studies in Germany, other European countries, and Japan. The carp samples were found to have mostly the mono-amino-metabolites of the nitro musks and intact polycyclic musks, principally HHCB (Galaxolide®) and AHTN (Tonalide®). Finally, the determination of sufficiently high levels of Galaxolide® and 4-amino musk xylene in STP effluent may be used to infer the presence of trace levels of other classes of musk compounds in the lake water. To be presented is an overview of the chemistry, the monitoring methodology, andthe statistical evaluation of con

  9. Oxidative decomposition of aromatic hydrocarbons by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Han, Do-Hung; Stuchinskaya, Tatiana; Won, Yang-Soo; Park, Wan-Sik; Lim, Jae-Kyong

    2003-05-01

    Decomposition of aromatic volatile organic compounds (VOCs) under electron beam irradiation was studied in order to examine the kinetics of the process, to characterize the reaction product distribution and to develop a process of waste gas control technology. Toluene, ethylbenzene, o-, m-, p-xylenes and chlorobenzene were used as target materials. The experiments were carried out at doses ranging from 0.5 to 10 kGy, using a flow reactor utilized under electron beam irradiation. Maximum degrees of decomposition carried out at 10 kGy in air environment were 55-65% for “non-chlorinated” aromatic VOC and 85% for chlorobenzene. It was found that a combination of aromatic pollutants with chlorobenzene would considerably increase the degradation value up to nearly 50% compared to the same compounds in the absence of chlorine groups. Based on our experimental observation, the degradation mechanism of the aromatic compounds combined with chloro-compound suggests that a chlorine radical, formed from EB irradiation, induces a chain reaction, resulting in an accelerating oxidative destruction of aromatic VOCs.

  10. Secondary organic aerosol formation and composition from the photo-oxidation of methyl chavicol (estragole)

    NASA Astrophysics Data System (ADS)

    Pereira, K. L.; Hamilton, J. F.; Rickard, A. R.; Bloss, W. J.; Alam, M. S.; Camredon, M.; Muñoz, A.; Vásquez, M.; Borrás, E.; Ródenas, M.

    2013-12-01

    The increasing demand for palm oil for uses in biofuel and food products is leading to rapid expansion of oil palm agriculture. Methyl chavicol (also known as estragole and 1-allyl-4-methoxybenzene) is an oxygenated biogenic volatile organic compound that was recently identified as the main floral emission from an oil palm plantation in Malaysian Borneo. The emissions of methyl chavicol observed may impact regional atmospheric chemistry, but little is known of its ability to form secondary organic aerosol (SOA). The photo-oxidation of methyl chavicol was investigated at the European Photoreactor chamber as a part of the atmospheric chemistry of methyl chavicol (ATMECH) project. Aerosol samples were collected using a particle into liquid sampler (PILS) and analysed offline using an extensive range of instruments including; high performance liquid chromatography mass spectrometry (HPLC-ITMS), high performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The SOA yield was determined as 18-29% depending on initial precursor (VOC : NOx) mixing ratios. In total, 59 SOA compounds were observed and the structures of 10 compounds have been identified using high resolution tandem mass spectrometry. The addition of hydroxyl and/or nitro functional groups to the aromatic ring appears to be an important mechanistic pathway for aerosol formation. This results in the formation of compounds with both low volatility and high O : C ratios, where functionalisation rather than fragmentation is mainly observed as a~result of the stability of the ring. The SOA species observed can be characterized as semi-volatile to low volatile oxygenated organic aerosol (SVOOA and LVOOA) components and therefore may be important in aerosol formation and growth.

  11. Fragrance compounds: The wolves in sheep's clothings.

    PubMed

    Patel, Seema

    2017-05-01

    In the past few decades, synthetic fragrance compounds have become ubiquitous components of personal care and household cleaning products. Overwhelming consumerism trends have led to the excess usage of these chemicals. It has been observed that this fragrance-laden unhealthy lifestyle runs parallel with the unprecedented rates of diabetes, cancer, neural ailments, teratogenicity, and transgender instances. The link between fragrances as and the multiplicity of pathogens remained latent for decades. However, now this health hazard and its role in homeostasis breakdown is getting attention. The adverse effects of the fragrance constituents as phthalates, paraben, glutaraldehyde, hydroperoxides, oil of turpentine, metals, nitro musks, and essential oils, among others, are being identified. The endocrine-immune-neural axis perturbation pathways of these chemicals are being proven. Despite the revelations of cause-effect nexus, a majority of the vulnerable populations are unaware and unmotivated to avoid these 'slow poisons'. Hence, the researchers need to further validate the toxicity of fragrance compounds, and raise awareness towards the health risks. In this regard, a number of pathologies triggered by fragrance exposure, yet proven only scantily have been hypothesized. Analysis of the health issues from multiple facets, including the pivotal 'stressors - extracellular acidosis - aromatase upregulation - estrogen hyperproduction - inflammation' link has been proposed. Fragrance compounds share configurational similarity with carcinogenic environmental hydrocarbons and they provoke the expression of cytochrome group monooxygenase enzyme aromatase. This enzyme aromatizes androgens to form estrogen, the powerful signaling hormone, which underlies the majority of morbidities. This holistic review with a repertoire of preliminary evidences and robust hypotheses is expected to usher in deserving extent of research on this pervasive health risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Aromatic Amino Acid-Derived Compounds Induce Morphological Changes and Modulate the Cell Growth of Wine Yeast Species

    PubMed Central

    González, Beatriz; Vázquez, Jennifer; Cullen, Paul J.; Mas, Albert; Beltran, Gemma; Torija, María-Jesús

    2018-01-01

    Yeasts secrete a large diversity of compounds during alcoholic fermentation, which affect growth rates and developmental processes, like filamentous growth. Several compounds are produced during aromatic amino acid metabolism, including aromatic alcohols, serotonin, melatonin, and tryptamine. We evaluated the effects of these compounds on growth parameters in 16 different wine yeasts, including non-Saccharomyces wine strains, for which the effects of these compounds have not been well-defined. Serotonin, tryptamine, and tryptophol negatively influenced yeast growth, whereas phenylethanol and tyrosol specifically affected non-Saccharomyces strains. The effects of the aromatic alcohols were observed at concentrations commonly found in wines, suggesting a possible role in microbial interaction during wine fermentation. Additionally, we demonstrated that aromatic alcohols and ethanol are able to affect invasive and pseudohyphal growth in a manner dependent on nutrient availability. Some of these compounds showed strain-specific effects. These findings add to the understanding of the fermentation process and illustrate the diversity of metabolic communication that may occur among related species during metabolic processes. PMID:29696002

  13. In vivo formation of mutagens by intraperitoneal administration of polycyclic aromatic hydrocarbons in animals during exposure to nitrogen dioxide.

    PubMed

    Miyanishi, K; Kinouchi, T; Kataoka, K; Kanoh, T; Ohnishi, Y

    1996-07-01

    Consumption of fossil fuels has increased indoor and outdoor concentrations of polycyclic aromatic hydrocarbons (PAHs) and nitrogen dioxide (NO2). To study the combined effect of PAH administration and NO2 exposure on mutagenicity of urine from animals we injected 400 mg/kg body wt i.p. one of five kinds of PAH (pyrene, fluoranthene, fluorene, anthracene and chrysene) into ICR mice, Wistar rats, Syrian golden hamsters or Hartley guinea pigs after exposure to 20 p.p.m. NO2 gas for 24 h and then exposed the animals to NO2 gas for an additional 24 h. During the latter 24 h we collected the urine and assayed its mutagenicity with the Ames Salmonella strains after treatment with beta-glucuronidase and arylsulfatase and extraction with dichloromethane. The urine from mice treated with both PAH and NO2 showed high mutagenicity for Salmonella typhimurium strains TA98 and TA100, whereas the urine from mice treated with PAH and air showed almost no mutagenic activity. The mutagenicity was decreased in nitroreductase- and acetyltransferase-deficient strains TA98NR and TA98/1,8-DNP6 respectively. Treatment with a mixture of 20% of each of the five kinds of PAH and NO2 augmented the urinary mutagenicity of mice 1.5-fold. The urine from hamsters treated with pyrene or fluoranthene and NO2 was also highly mutagenic, but that from rats or guinea pigs was not very mutagenic. The mutagenicity was also decreased in strains TA98NR and TA98/1,8-DNP6. These results suggest that the urine contains nitro compounds and that the nitration of PAHs occurs in the body of animals under exposure to NO2 gas. Actually, the nitrated metabolites of pyrene, 1-nitro-6/8-hydroxypyrene and 1-nitro-3-hydroxypyrene, were detected in the urine from mice treated with pyrene under exposure to NO2 gas. To elucidate the mechanism of in vivo nitration, NO2 (20 p.p.m.) was bubbled through 50 mM Tris-HCl buffer (pH 7.4) or dichloromethane solution containing pyrene or 1-hydroxypyrene (10 microg/ml). Pyrene was not nitrated by NO2 in either aqueous or organic solutions. However, 1-hydroxypyrene was changed to nitrohydroxypyrenes by NO2 in the Tris-HCl buffer, but not in the organic solution. Ascorbic acid, alpha-tocopherol, glutathione oleic acid and hemoglobin were found to inhibit the nitration of 1-hydroxypyrene in aqueous solution. The urinary mutagenicity of mice treated with both pyrene and NO2 was also decreased by oral administration of ascorbic acid and alpha-tocopherol. These results suggest that 1-hydroxypyrene is nitrated by an ionic reaction in the animal body after hydroxylation of pyrene in the liver.

  14. GLOBAL INVENTORY OF VOLATILE COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The report describes a global inventory anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds....

  15. New Findings on Aromatic Compounds' Degradation and Their Metabolic Pathways, the Biosurfactant Production and Motility of the Halophilic Bacterium Halomonas sp. KHS3.

    PubMed

    Corti Monzón, Georgina; Nisenbaum, Melina; Herrera Seitz, M Karina; Murialdo, Silvia E

    2018-04-24

    The study of the aromatic compounds' degrading ability by halophilic bacteria became an interesting research topic, because of the increasing use of halophiles in bioremediation of saline habitats and effluents. In this work, we focused on the study of aromatic compounds' degradation potential of Halomonas sp. KHS3, a moderately halophilic bacterium isolated from hydrocarbon-contaminated seawater of the Mar del Plata harbour. We demonstrated that H. sp. KHS3 is able to grow using different monoaromatic (salicylic acid, benzoic acid, 4-hydroxybenzoic acid, phthalate) and polyaromatic (naphthalene, fluorene, and phenanthrene) substrates. The ability to degrade benzoic acid and 4-hydroxybenzoic acid was analytically corroborated, and Monod kinetic parameters and yield coefficients for degradation were estimated. Strategies that may enhance substrate bioavailability such as surfactant production and chemotactic responses toward aromatic compounds were confirmed. Genomic sequence analysis of this strain allowed us to identify several genes putatively related to the metabolism of aromatic compounds, being the catechol and protocatechuate branches of β-ketoadipate pathway completely represented. These features suggest that the broad-spectrum xenobiotic degrader H. sp. KHS3 could be employed as a useful biotechnological tool for the cleanup of aromatic compounds-polluted saline habitats or effluents.

  16. Diastereoselective synthesis and molecular docking studies of novel fused tetrahydropyridine derivatives as new inhibitors of HIV protease

    NASA Astrophysics Data System (ADS)

    Mohammadi, Ali A.; Taheri, Salman; Amouzegar, Ali; Ahdenov, Reza; Halvagar, Mohammad Reza; Sadr, Ahmad Shahir

    2017-07-01

    An efficient one-pot, catalyst-free, and four-components procedure for the synthesis of novel 10b-hydroxy-4-nitro-5-phenyl-2,3,5,5a-tetrahydro-1H-imidazo[1,2-a]indeno[2,1-e]pyridin-6(10bH)-one derivatives from corresponding diamine, nitro ketene dithioacetal, aldehydes and 1,3-indandione in ethanol has been achieved upon a Knoevenagel condensation-Michael addition-tautomerism-cyclisation sequence. All the newly synthesized compounds were screened for molecular docking studies. Molecular docking studies were carried out using the crystal structure of HIV protease enzyme. Some of the compounds obtain minimum binding energy and good affinity toward the active pocket of HIV protease enzyme in compare with Saquinavir as a standard HIV protease inhibitor.

  17. Direct hydrogenation and one-pot reductive amidation of nitro compounds over Pd/ZnO nanoparticles as a recyclable and heterogeneous catalyst

    NASA Astrophysics Data System (ADS)

    Hosseini-Sarvari, Mona; Razmi, Zahra

    2015-01-01

    A novel Pd supported on ZnO nanoparticles was readily synthesized and characterized. The amount of palladium on ZnO is 9.84 wt% which was determined by ICP analysis and atomic absorption spectroscopy (AAS). Percentage of accessible Pd as active catalyst is also estimated to 2.72% based on the thermogravimetric (TG) analysis. This nano-sized Pd/ZnO with an average particle size of 20-25 nm and specific surface area 40.61 m2 g-1 was used as a new reusable heterogeneous catalyst for direct hydrogenation and one-pot reductive amidation of nitro compounds without the use of any ligands under atmospheric pressure. The catalyst can be recovered and recycled several times without marked loss of activity.

  18. Biomarkers of oral exposure to 3-nitro-1,2,4-triazol-5-one (NTO) and 2,4-dinitroanisole (DNAN) in blood and urine of rhesus macaques (Macaca mulatta).

    PubMed

    Hoyt, Nathan; Brunell, Marla; Kroeck, Karl; Hable, Mike; Crouse, Lee; O'Neill, Art; Bannon, Desmond I

    2013-11-01

    The U.S. Department of Defense is using the chemicals 2,4-dinitroanisole (DNAN) and 3-nitro-1, 2,4-triazol-5-one (NTO) in new munitions development. In a screen for biomarkers of exposure, these compounds were measured in urine and blood of male rhesus monkeys after oral doses. NTO peaked at 4 h, with urinary concentrations at least 100-fold higher than that of blood or serum while 4-dinitrophenol (DNP), a metabolite of DNAN, appeared in blood at concentrations 10- to 20-fold higher than the parent compound. For human exposure monitoring, urine is optimal for NTO while the metabolite DNP in blood is best for DNAN.

  19. Airborne Exposures to Polycyclic Aromatic Compounds Among Workers in Asphalt Roofing Manufacturing Facilities.

    PubMed

    Trumbore, David C; Osborn, Linda V; Johnson, Kathleen A; Fayerweather, William E

    2015-01-01

    We studied exposure of 151 workers to polycyclic aromatic compounds and asphalt emissions during the manufacturing of asphalt roofing products-including 64 workers from 10 asphalt plants producing oxidized, straight-run, cutback, and wax- or polymer-modified asphalts, and 87 workers from 11 roofing plants producing asphalt shingles and granulated roll roofing. The facilities were located throughout the United States and used asphalt from many refiners and crude oils. This article helps fill a gap in exposure data for asphalt roofing manufacturing workers by using a fluorescence technique that targets biologically active 4-6 ring polycyclic aromatic compounds and is strongly correlated with carcinogenic activity in animal studies. Worker exposures to polycyclic aromatic compounds were compared between manufacturing plants, at different temperatures and using different raw materials, and to important external benchmarks. High levels of fine limestone particulate in the plant air during roofing manufacturing increased polycyclic aromatic compound exposure, resulting in the hypothesis that the particulate brought adsorbed polycyclic aromatic compounds to the worker breathing zone. Elevated asphalt temperatures increased exposures during the pouring of asphalt. Co-exposures in these workplaces which act as confounders for both the measurement of total organic matter and fluorescence were detected and their influence discussed. Exposures to polycyclic aromatic compounds in asphalt roofing manufacturing facilities were lower than or similar to those reported in hot-mix paving application studies, and much below those reported in studies of hot application of built-up roofing asphalt. These relatively low exposures in manufacturing are primarily attributed to air emission controls in the facilities, and the relatively moderate temperatures, compared to built-up roofing, used in these facilities for oxidized asphalt. The exposure to polycyclic aromatic compounds was a very small part of the overall worker exposure to asphalt fume, on average less than 0.07% of the benzene-soluble fraction. Measurements of benzene-soluble fraction were uniformly below the American Conference of Governmental Industrial Hygienists' Threshold Limit Value for asphalt fume.

  20. Core-shell indium (III) sulfide@metal-organic framework nanocomposite as an adsorbent for the dispersive solid-phase extraction of nitro-polycyclic aromatic hydrocarbons.

    PubMed

    Jia, Yuqian; Zhao, Yanfang; Zhao, Mei; Wang, Zhenhua; Chen, Xiangfeng; Wang, Minglin

    2018-05-25

    A core-shell discoid shaped indium (III) sulfide@metal-organic framework (MIL-125(Ti)) nanocomposite was synthesized by a solvothermal method and explored as an adsorbent material for dispersive solid-phase extraction (d-SPE). The as-synthesized sorbent was characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, powder X-ray diffraction, N 2 adsorption-desorption analysis, and Fourier transform infrared spectroscopy. The extraction performance was evaluated by the d-SPE of 16 nitro-polycyclic aromatic hydrocarbons (NPAHs) from water samples. The analysis was carried out by gas chromatography (GC) coupled with triple quadruple mass spectrometer in negative chemical ionization (NCI) mode. The selected ion monitoring (SIM) was used in the quantification of the target NPAHs. Extraction factors affecting the d-SPE, including the ionic strength, extraction temperature, and extraction time were optimized by the response surface methodology. The developed d-SPE method showed good linear correlations from 10 to 1000 ng L -1 (r > 0.99), low detection limits (2.9-83.0 ng L -1 ), satisfactory repeatability (relative standard deviation of <10%, n = 6), and acceptable recoveries (71.3%-112.2%) for water samples. The developed method was used for the food and environmental sample analysis. The results demonstrated that the method could be used for sample preparation of trace NPAHs in real samples. Copyright © 2018. Published by Elsevier B.V.

  1. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review.

    PubMed

    Srogi, K

    2007-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic compounds with two or more fused aromatic rings. They have a relatively low solubility in water, but are highly lipophilic. Most of the PAHs with low vapour pressure in the air are adsorbed on particles. When dissolved in water or adsorbed on particulate matter, PAHs can undergo photodecomposition when exposed to ultraviolet light from solar radiation. In the atmosphere, PAHs can react with pollutants such as ozone, nitrogen oxides and sulfur dioxide, yielding diones, nitro- and dinitro-PAHs, and sulfonic acids, respectively. PAHs may also be degraded by some microorganisms in the soil. PAHs are widespread environmental contaminants resulting from incomplete combustion of organic materials. The occurrence is largely a result of anthropogenic emissions such as fossil fuel-burning, motor vehicle, waste incinerator, oil refining, coke and asphalt production, and aluminum production, etc. PAHs have received increased attention in recent years in air pollution studies because some of these compounds are highly carcinogenic or mutagenic. Eight PAHs (Car-PAHs) typically considered as possible carcinogens are: benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene (B(a)P), dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene. In particular, benzo(a)pyrene has been identified as being highly carcinogenic. The US Environmental Protection Agency (EPA) has promulgated 16 unsubstituted PAHs (EPA-PAH) as priority pollutants. Thus, exposure assessments of PAHs in the developing world are important. The scope of this review will be to give an overview of PAH concentrations in various environmental samples and to discuss the advantages and limitations of applying these parameters in the assessment of environmental risks in ecosystems and human health. As it well known, there is an increasing trend to use the behavior of pollutants (i.e. bioaccumulation) as well as pollution-induced biological and biochemical effects on human organisms to evaluate or predict the impact of chemicals on ecosystems. Emphasis in this review will, therefore, be placed on the use of bioaccumulation and biomarker responses in air, soil, water and food, as monitoring tools for the assessment of the risks and hazards of PAH concentrations for the ecosystem, as well as on its limitations.

  2. Electronic tongue for nitro and peroxide explosive sensing.

    PubMed

    González-Calabuig, Andreu; Cetó, Xavier; Del Valle, Manel

    2016-06-01

    This work reports the application of a voltammetric electronic tongue (ET) towards the simultaneous determination of both nitro-containing and peroxide-based explosive compounds, two families that represent the vast majority of compounds employed either in commercial mixtures or in improvised explosive devices. The multielectrode array was formed by graphite, gold and platinum electrodes, which exhibited marked mix-responses towards the compounds examined; namely, 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), pentaerythritol tetranitrate (PETN), 2,4,6-trinitrotoluene (TNT), N-methyl-N,2,4,6-tetranitroaniline (Tetryl) and triacetone triperoxide (TATP). Departure information was the set of voltammograms, which were first analyzed by means of principal component analysis (PCA) allowing the discrimination of the different individual compounds, while artificial neural networks (ANNs) were used for the resolution and individual quantification of some of their mixtures (total normalized root mean square error for the external test set of 0.108 and correlation of the obtained vs. expected concentrations comparison graphs r>0.929). Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Antiproliferative effect of a novel nitro-oxy derivative of celecoxib in human colon cancer cells: role of COX-2 and nitric oxide.

    PubMed

    Bocca, Claudia; Bozzo, Francesca; Bassignana, Andrea; Miglietta, Antonella

    2010-07-01

    It has been shown previously that a novel nitrooxy derivative of celecoxib exerts antiproliferative and pro-apoptotic effects in human colon cancer cells. The aim of this study was to elucidate whether these biological properties depend on COX-2 inhibition and/or NO release. Therefore, the derivative was decomposed into the parent compound celecoxib and the NO donor benzyl nitrate and the biological role of each was tested in COX-2-positive (HT-29) and -negative (SW-480) colon cancer cells. The main findings were that the nitro-oxy derivative behaved like celecoxib in HT-29 cells in terms of COX-2 and ERK/MAPK inhibition, as well as induction of apoptosis, while the benzyl nitrate had no such effects. Interestingly, the beta-catenin system was activated by the nitro-oxy derivative as well as by benzyl nitrate alone more potently than by the parent compound celecoxib, suggesting a possible regulatory role for NO. In SW480 cells, these activities were substantially less pronounced, suggesting the presence of COX-2-dependent mechanisms in the modulation of these parameters.

  4. Multisite constrained model of trans-4-(N,N-dimethylamino)-4'-nitrostilbene for structural elucidation of radiative and nonradiative excited states.

    PubMed

    Lin, Cheng-Kai; Wang, Yu-Fu; Cheng, Yuan-Chung; Yang, Jye-Shane

    2013-04-18

    A constrained model compound of trans-4-(N,N-dimethylamino)-4'-nitrostilbene (DNS), namely, compound DNS-B3 that is limited to torsions about the phenyl-nitro C-N bond and the central C═C bond, was prepared to investigate the structural nature of the radiative and nonradiative states of electronically excited DNS. The great similarities in solvent-dependent electronic spectra, fluorescence decay times, and quantum yields for fluorescence (Φf) and trans → cis photoisomerization (Φtc) between DNS and DNS-B3 indicate that the fluorescence is from a planar charge-transfer state and torsion of the nitro group is sufficient to account for the nonradiative decay of DNS. This conclusion is supported by TDDFT calculations on DNS-B3 in dichloromethane. The structure at the conical intersection for internal conversion is associated with not only a twisting but also a pyramidalization of the nitro group. The mechanism of the NO2 torsion is discussed in terms of the effects of solvent polarity, the substituents, and the volume demand. The differences and analogies of the NO2- vs amino-twisted intramolecular charge-transfer (TICT) state of trans-aminostilbenes are also discussed.

  5. Amino Acids, Aromatic Compounds, and Carboxylic Acids: How Did They Get Their Common Names?

    ERIC Educational Resources Information Center

    Leung, Sam H.

    2000-01-01

    Surveys the roots of the common names of organic compounds most likely to be encountered by undergraduate organic chemistry students. Includes information for 19 amino acids, 17 aromatic compounds, and 21 carboxylic acids. (WRM)

  6. Multi-Phase Equilibrium and Solubilities of Aromatic Compounds and Inorganic Compounds in Sub- and Supercritical Water: A Review.

    PubMed

    Liu, Qinli; Ding, Xin; Du, Bowen; Fang, Tao

    2017-11-02

    Supercritical water oxidation (SCWO), as a novel and efficient technology, has been applied to wastewater treatment processes. The use of phase equilibrium data to optimize process parameters can offer a theoretical guidance for designing SCWO processes and reducing the equipment and operating costs. In this work, high-pressure phase equilibrium data for aromatic compounds+water systems and inorganic compounds+water systems are given. Moreover, thermodynamic models, equations of state (EOS) and empirical and semi-empirical approaches are summarized and evaluated. This paper also lists the existing problems of multi-phase equilibria and solubility studies on aromatic compounds and inorganic compounds in sub- and supercritical water.

  7. DFT calculations, spectroscopy and antioxidant activity studies on (E)-2-nitro-4-[(phenylimino)methyl]phenol.

    PubMed

    Temel, Ersin; Alaşalvar, Can; Gökçe, Halil; Güder, Aytaç; Albayrak, Çiğdem; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan; Dilek, Nefise

    2015-02-05

    We have reported synthesis and characterization of (E)-2-nitro-4-[(phenylimino)methyl]phenol by using X-ray crystallographic method, FT-IR and UV-vis spectroscopies and density functional theory (DFT). Optimized geometry and vibrational frequencies of the title compound in the ground state have been computed by using B3LYP with the 6-311G+(d,p) basis set. HOMO-LUMO energy gap, Non-linear optical properties and NBO analysis of the compound are performed at B3LYP/6-311G+(d,p) level. Additionally, as remarkable properties, antioxidant activity of the title compound (CMPD) has been determined by using different antioxidant test methods i.e. ferric reducing antioxidant power (FRAP), hydrogen peroxide scavenging (HPSA), free radical scavenging (FRSA) and ferrous ion chelating activities (FICA). When compared with standards (BHA, BHT, and α-tocopherol), we have concluded that CPMD has effective FRAP, HPSA, FRSA and FICA. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarkson, Sonya M.; Giannone, Richard J.; Kridelbaugh, Donna M.

    The production of biofuels from lignocellulose yields a substantial lignin by-product stream that currently has few applications. Biological conversion of lignin-derived compounds into chemicals and fuels has the potential to improve the economics of lignocellulose-derived biofuels, but few microbes are able both to catabolize lignin-derived aromatic compounds and to generate valuable products. WhileEscherichia colihas been engineered to produce a variety of fuels and chemicals, it is incapable of catabolizing most aromatic compounds. Therefore, we engineeredE. colito catabolize protocatechuate, a common intermediate in lignin degradation, as the sole source of carbon and energy via heterologous expression of a nine-gene pathway fromPseudomonasmore » putidaKT2440. Then, we used experimental evolution to select for mutations that increased growth with protocatechuate more than 2-fold. Increasing the strength of a single ribosome binding site in the heterologous pathway was sufficient to recapitulate the increased growth. After optimization of the core pathway, we extended the pathway to enable catabolism of a second model compound, 4-hydroxybenzoate. These engineered strains will be useful platforms to discover, characterize, and optimize pathways for conversions of lignin-derived aromatics. IMPORTANCELignin is a challenging substrate for microbial catabolism due to its polymeric and heterogeneous chemical structure. Therefore, engineering microbes for improved catabolism of lignin-derived aromatic compounds will require the assembly of an entire network of catabolic reactions, including pathways from genetically intractable strains. By constructing defined pathways for aromatic compound degradation in a model host would allow rapid identification, characterization, and optimization of novel pathways. Finally, we constructed and optimized one such pathway inE. colito enable catabolism of a model aromatic compound, protocatechuate, and then extended the pathway to a related compound, 4-hydroxybenzoate. This optimized strain can now be used as the basis for the characterization of novel pathways.« less

  9. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds.

    PubMed

    Clarkson, Sonya M; Giannone, Richard J; Kridelbaugh, Donna M; Elkins, James G; Guss, Adam M; Michener, Joshua K

    2017-09-15

    The production of biofuels from lignocellulose yields a substantial lignin by-product stream that currently has few applications. Biological conversion of lignin-derived compounds into chemicals and fuels has the potential to improve the economics of lignocellulose-derived biofuels, but few microbes are able both to catabolize lignin-derived aromatic compounds and to generate valuable products. While Escherichia coli has been engineered to produce a variety of fuels and chemicals, it is incapable of catabolizing most aromatic compounds. Therefore, we engineered E. coli to catabolize protocatechuate, a common intermediate in lignin degradation, as the sole source of carbon and energy via heterologous expression of a nine-gene pathway from Pseudomonas putida KT2440. We next used experimental evolution to select for mutations that increased growth with protocatechuate more than 2-fold. Increasing the strength of a single ribosome binding site in the heterologous pathway was sufficient to recapitulate the increased growth. After optimization of the core pathway, we extended the pathway to enable catabolism of a second model compound, 4-hydroxybenzoate. These engineered strains will be useful platforms to discover, characterize, and optimize pathways for conversions of lignin-derived aromatics. IMPORTANCE Lignin is a challenging substrate for microbial catabolism due to its polymeric and heterogeneous chemical structure. Therefore, engineering microbes for improved catabolism of lignin-derived aromatic compounds will require the assembly of an entire network of catabolic reactions, including pathways from genetically intractable strains. Constructing defined pathways for aromatic compound degradation in a model host would allow rapid identification, characterization, and optimization of novel pathways. We constructed and optimized one such pathway in E. coli to enable catabolism of a model aromatic compound, protocatechuate, and then extended the pathway to a related compound, 4-hydroxybenzoate. This optimized strain can now be used as the basis for the characterization of novel pathways. Copyright © 2017 American Society for Microbiology.

  10. 5-Nitroimidazole-derived Schiff bases and their copper(II) complexes exhibit potent antimicrobial activity against pathogenic anaerobic bacteria.

    PubMed

    Oliveira, Alexandre A; Oliveira, Ana P A; Franco, Lucas L; Ferencs, Micael O; Ferreira, João F G; Bachi, Sofia M P S; Speziali, Nivaldo L; Farias, Luiz M; Magalhães, Paula P; Beraldo, Heloisa

    2018-05-07

    In the present work a family of novel secnidazole-derived Schiff base compounds and their copper(II) complexes were synthesized. The antimicrobial activities of the compounds were evaluated against clinically important anaerobic bacterial strains. The compounds exhibited in vitro antibacterial activity against Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides vulgatus, Bacteroides ovatus, Parabacteroides distasonis and Fusubacterium nucleatum pathogenic anaerobic bacteria. Upon coordination to copper(II) the antibacterial activity significantly increased in several cases. Some derivatives were even more active than the antimicrobial drugs secnidazole and metronidazole. Therefore, the compounds under study are suitable for in vivo evaluation and the microorganisms should be classified as susceptible to them. Electrochemical studies on the reduction of the nitro group revealed that the compounds show comparable reduction potentials, which are in the same range of the bio-reducible drugs secnidazole and benznidazole. The nitro group reduction potential is more favorable for the copper(II) complexes than for the starting ligands. Hence, the antimicrobial activities of the compounds under study might in part be related to intracellular bio-reduction activation. Considering the increasing resistance rates of anaerobic bacteria against a wide range of antimicrobial drugs, the present work constitutes an important contribution to the development of new antibacterial drug candidates.

  11. Detection of chlorinated aromatic compounds

    DOEpatents

    Ekechukwu, A.A.

    1996-02-06

    A method for making a composition for measuring the concentration of chlorinated aromatic compounds in aqueous fluids, and an optical probe for use with the method are disclosed. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis. 5 figs.

  12. Detection of chlorinated aromatic compounds

    DOEpatents

    Ekechukwu, Amy A.

    1996-01-01

    A method for making a composition for measuring the concentration of chloated aromatic compounds in aqueous fluids, and an optical probe for use with the method. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis.

  13. 1-(3,3-Dichloro-all-yloxy)-4-methyl-2-nitro-benzene.

    PubMed

    Ren, Dong-Mei

    2012-06-01

    In the title compound, C(10)H(9)Cl(2)NO(3), the dihedral angle between the benzene ring and the plane of the nitro group is 39.1 (1)°, while that between the benzene ring and the plane through the three C and two Cl atoms of the dichloro-all-yloxy unit is 40.1 (1)°. In the crystal, C-H⋯O hydrogen bonds to the nitro groups form chains along the b axis. These chains are linked by inversion-related pairs of Cl⋯O inter-actions at a distance of 3.060 (3) Å, forming sheets approximately parallel to [-201] and generating R(2) (2)(18) rings. π-π contacts between benzene rings in adjacent sheets, with centroid-centroid distances of 3.671 (2) Å, stack mol-ecules along c.

  14. Dual Mechanism of Action of 5-Nitro-1,10-Phenanthroline against Mycobacterium tuberculosis

    PubMed Central

    Kidwai, Saqib; Park, Chan-Yong; Mawatwal, Shradha; Tiwari, Prabhakar; Jung, Myung Geun; Gosain, Tannu Priya; Kumar, Pradeep; Alland, David; Kumar, Sandeep; Bajaj, Avinash; Hwang, Yun-Kyung; Song, Chang Sik; Dhiman, Rohan

    2017-01-01

    ABSTRACT New chemotherapeutic agents with novel mechanisms of action are urgently required to combat the challenge imposed by the emergence of drug-resistant mycobacteria. In this study, a phenotypic whole-cell screen identified 5-nitro-1,10-phenanthroline (5NP) as a lead compound. 5NP-resistant isolates harbored mutations that were mapped to fbiB and were also resistant to the bicyclic nitroimidazole PA-824. Mechanistic studies confirmed that 5NP is activated in an F420-dependent manner, resulting in the formation of 1,10-phenanthroline and 1,10-phenanthrolin-5-amine as major metabolites in bacteria. Interestingly, 5NP also killed naturally resistant intracellular bacteria by inducing autophagy in macrophages. Structure-activity relationship studies revealed the essentiality of the nitro group for in vitro activity, and an analog, 3-methyl-6-nitro-1,10-phenanthroline, that had improved in vitro activity and in vivo efficacy in mice compared with that of 5NP was designed. These findings demonstrate that, in addition to a direct mechanism of action against Mycobacterium tuberculosis, 5NP also modulates the host machinery to kill intracellular pathogens. PMID:28893784

  15. Understanding the hydrogen transfer mechanism for the biodegradation of 2,4,6-trinitrotoluene catalyzed by pentaerythritol tetranitrate reductase: molecular dynamics simulations.

    PubMed

    Yang, Zhilin; Chen, Junxian; Zhou, Yang; Huang, Hui; Xu, Dingguo; Zhang, Chaoyang

    2018-05-03

    The explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic pollutant. Biodegradation is inevitably one of the most cost-effective and enviromentally friendly means of removing TNT pollution. However, the aromatic derivatives from the reduction of nitro groups by several classic enzymes are still toxic. Besides the reduction of nitro groups, pentaerythritol tetranitrate reductase (PETNR) offers a potential route to ring fission and complete degradation of TNT through the pathway of the Meisenheimer complex. This work is devoted to deeply understand the essence of the Meisenheimer pathway and mainly focus on the crucial hydrogen-transfer reaction by means of molecular dynamics (MD) simulations. We obtain three valuable findings. Firstly, the parallel π-π stacking between TNT and the flavin mononucleotide (FMN) cofactor is a precondition. The key residue controlling this conformation is His181. Although His184 does not interact with TNT, the mutation from His184 to Asn184 would abolish the π-π structure. Secondly, the data of the empirical valence bond (EVB) show that the Meisenheimer pathway is predominant because its activation barrier is 6.7 kcal mol-1 far less than that of nitro reduction (26.6 kcal mol-1). Finally, based on the results of thermodynamic integration (TI), the type of transferred hydrogen is also ensured, that is, the H anion (H-) for the Meisenheimer complex and the H radical (H˙) for nitro reduction. Our findings provide an exhaustive understanding for the first hydrogen transfer reaction that has a decisive effect on two competing pathways, and help in searching for and designing new enzymes that can effectively degrade TNT.

  16. Airborne nitro-PAHs induce Nrf2/ARE defense system against oxidative stress and promote inflammatory process by activating PI3K/Akt pathway in A549 cells.

    PubMed

    Shang, Yu; Zhou, Qian; Wang, Tiantian; Jiang, Yuting; Zhong, Yufang; Qian, Guangren; Zhu, Tong; Qiu, Xinghua; An, Jing

    2017-10-01

    Ambient particulate matter (PM) is a worldwide health issue of concern. However, limited information is available regarding the toxic contributions of the nitro-derivatives of polycyclic aromatic hydrocarbons (nitro-PAHs). This study intend to examine whether 1-nitropyrene (1-NP) and 3-nitrofluoranthene (3-NF) could activate the nuclear factor-erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) antioxidant defense system, and whether the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway participates in regulating pro-inflammatory responses in A549 cells. Firstly, 1-NP and 3-NF concentration-dependently induced cellular apoptosis, reactive oxygen species (ROS) generation, DNA damage, S phase cell cycle arrest and differential expression of related cytokine genes. Secondly, 1-NP and 3-NF activated the Nrf2/ARE defense system, as evidenced by increased protein expression levels and nuclear translocation of transcription factor Nrf2, elevated Nrf2/ARE binding activity, up-regulated expression of the target gene heme oxygenase-1 (HO-1). Significantly increased protein expression of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and phosphorylation level of Akt indicated that the PI3K/Akt pathway was activated during pro-inflammatory process. Further, both PI3K inhibitor (LY294002) and Akt inhibitor (MK-2206) reversed the elevated TNF-α expression to control level. Our results suggested that Nrf2/ARE pathway activation might cause an initiation step in cellular protection against oxidative stress caused by nitro-PAHs, and the PI3K/Akt pathway participated in regulating inflammatory responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Development and validation of a general derivatization HPLC method for the trace analysis of acyl chlorides in lipophilic drug substances.

    PubMed

    Zheng, Xiangyuan; Luo, Lan; Zhou, Jie; Ruan, Xiaoling; Liu, Wenyuan; Zheng, Feng

    2017-06-05

    Acyl chlorides are important acylating agents in the synthesis of active pharmaceutical ingredients. Determining the residual acyl chlorides in drug substances is a challenge due to their high reactivity and the matrix interferences from drug substances and their related impurities. This paper describes a general derivatization HPLC method for the determination of aromatic and aliphatic acyl chlorides in lipophilic drug substances. Since most drug substances have weak absorptions in the visible range (above 380nm), the nitro-substituted anilines and nitro-substituted phenylhydrazines were selected as the derivatization reagents due to their weak basicity and red-shift of UV absorption spectra. The maximum wavelength and absorption intensity of nitro-substituted anilines decreased after derivatization with acyl chlorides, whereas the derivatization products of nitro-substituted phenylhydrazines showed the slight increases of maximum wavelength and absorbance intensity. Hence, 2-nitrophenylhydrazine was selected as the suitable derivatization reagent because the derivatives have the maximum UV wavelength absorbance at 395nm, which could largely minimize the matrix interferences. The optimization of the concentration of 2-nitrophenylhydrazine is important for the sensitivity and stability of derivatives. Other reaction conditions including reaction temperature, time and the influence of three competitive solvents (water, methanol and ethanol) on the reaction efficiency were also studied. After derivatization with 100μgmL -1 2-nitrophenylhydrazine at room temperature for 30min, the method was validated for high specificity and sensitivity with the detection limits in the range of 0.01-0.03μgmL -1 . The proposed method was applied as a generic method to determine the residual acyl chlorides in lipophilic drug substances. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Nitro Lignin-Derived Nitrogen-Doped Carbon as an Efficient and Sustainable Electrocatalyst for Oxygen Reduction.

    PubMed

    Graglia, Micaela; Pampel, Jonas; Hantke, Tina; Fellinger, Tim-Patrick; Esposito, Davide

    2016-04-26

    The use of lignin as a precursor for the synthesis of materials is nowadays considered very interesting from a sustainability standpoint. Here we illustrate the synthesis of a micro-, meso-, and macroporous nitrogen-doped carbon (NDC) using lignin extracted from beech wood via alkaline hydrothermal treatment and successively functionalized via aromatic nitration. The so obtained material is thus carbonized in the eutectic salt melt KCl/ZnCl2. The final NDC shows an excellent activity as electrocatalyst for the oxygen reduction reaction.

  19. Aromatic Chlorosulfonylation by Photoredox Catalysis.

    PubMed

    Májek, Michal; Neumeier, Michael; Jacobi von Wangelin, Axel

    2017-01-10

    Visible-light photoredox catalysis enables the efficient synthesis of arenesulfonyl chlorides from anilines. The new protocol involves the convenient in situ preparation of arenediazonium salts (from anilines) and the reactive gases SO 2 and HCl (from aqueous SOCl 2 ). The photocatalytic chlorosulfonylation operates at mild conditions (room temperature, acetonitrile/water) with low catalyst loading. Various functional groups are tolerated (e.g., halides, azides, nitro groups, CF 3 , SF 5 , esters, heteroarenes). Theoretical and experimental studies support a photoredox-catalysis mechanism. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. An ylide transformation of rhodium(I) carbene: enantioselective three-component reaction through trapping of rhodium(I)-associated ammonium ylides by β-nitroacrylates.

    PubMed

    Ma, Xiaochu; Jiang, Jun; Lv, Siying; Yao, Wenfeng; Yang, Yang; Liu, Shunying; Xia, Fei; Hu, Wenhao

    2014-11-24

    The chiral Rh(I)-diene-catalyzed asymmetric three-component reaction of aryldiazoacetates, aromatic amines, and β-nitroacrylates was achieved to obtain γ-nitro-α-amino-succinates in good yields and with high diastereo- and enantioselectivity. This reaction is proposed to proceed through the enantioselective trapping of Rh(I)-associated ammonium ylides by nitroacrylates. This new transformation represents the first example of Rh(I)-carbene-induced ylide transformation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Relationship between Composition and Toxicity of Motor Vehicle Emission Samples

    PubMed Central

    McDonald, Jacob D.; Eide, Ingvar; Seagrave, JeanClare; Zielinska, Barbara; Whitney, Kevin; Lawson, Douglas R.; Mauderly, Joe L.

    2004-01-01

    In this study we investigated the statistical relationship between particle and semivolatile organic chemical constituents in gasoline and diesel vehicle exhaust samples, and toxicity as measured by inflammation and tissue damage in rat lungs and mutagenicity in bacteria. Exhaust samples were collected from “normal” and “high-emitting” gasoline and diesel light-duty vehicles. We employed a combination of principal component analysis (PCA) and partial least-squares regression (PLS; also known as projection to latent structures) to evaluate the relationships between chemical composition of vehicle exhaust and toxicity. The PLS analysis revealed the chemical constituents covarying most strongly with toxicity and produced models predicting the relative toxicity of the samples with good accuracy. The specific nitro-polycyclic aromatic hydrocarbons important for mutagenicity were the same chemicals that have been implicated by decades of bioassay-directed fractionation. These chemicals were not related to lung toxicity, which was associated with organic carbon and select organic compounds that are present in lubricating oil. The results demonstrate the utility of the PCA/PLS approach for evaluating composition–response relationships in complex mixture exposures and also provide a starting point for confirming causality and determining the mechanisms of the lung effects. PMID:15531438

  2. Mechanism and kinetic properties for the OH-initiated atmospheric oxidation degradation of 9,10-Dichlorophenanthrene.

    PubMed

    Dang, Juan; Shi, Xiangli; Zhang, Qingzhu; Hu, Jingtian; Wang, Wenxing

    2015-02-01

    Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) have become a serious environmental concern due to their widespread occurrence and dioxin-like toxicities. In this work, the mechanism of the OH-initiated atmospheric oxidation degradation of 9,10-dichlorophenanthrene (9,10-Cl₂Phe) was investigated by using high-accuracy quantum chemistry calculations. The rate constants of the crucial elementary reactions were determined by the Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The theoretical results were compared with the available experimental data. The main oxidation products are a group of ring-retaining and ring-opening compounds including chlorophenanthrols, 9,10-dichlorophenanthrene-3,4-dione, dialdehydes, chlorophenanthrenequinones, nitro-9,10-Cl₂Phe and epoxides et al. The overall rate constant of the OH addition reaction is 2.35 × 10(-12)cm(3) molecule(-1)s(-1) at 298 K and 1 atm. The atmospheric lifetime of 9,10-Cl₂Phe determined by OH radicals is about 5.05 days. This study provides a comprehensive investigation of the OH-initiated oxidation degradation of 9,10-Cl₂Phe and should contribute to clarifying its atmospheric fate. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Experimental and density functional theoretical investigations of linkage isomerism in six-coordinate FeNO(6) iron porphyrins with axial nitrosyl and nitro ligands.

    PubMed

    Novozhilova, Irina V; Coppens, Philip; Lee, Jonghyuk; Richter-Addo, George B; Bagley, Kimberly A

    2006-02-15

    A critical component of the biological activity of NO and nitrite involves their coordination to the iron center in heme proteins. Irradiation (330 < lambda < 500 nm) of the nitrosyl-nitro compound (TPP)Fe(NO)(NO(2)) (TPP = tetraphenylporphyrinato dianion) at 11 K results in changes in the IR spectrum associated with both nitro-to-nitrito and nitrosyl-to-isonitrosyl linkage isomerism. Only the nitro-to-nitrito linkage isomer is obtained at 200 K, indicating that the isonitrosyl linkage isomer is less stable than the nitrito linkage isomer. DFT calculations reveal two ground-state conformations of (porphine)Fe(NO)(NO(2)) that differ in the relative axial ligand orientations (i.e., GS parallel and GS perpendicular). In both conformations, the FeNO group is bent (156.4 degrees for GS parallel, 159.8 degrees for GS perpendicular) for this formally {FeNO}(6) compound. Three conformations of the nitrosyl-nitrito isomer (porphine)Fe(NO)(ONO) (MSa parallel, MSa perpendicular, and MSa(L)) and two conformations of the isonitrosyl-nitro isomer (porphine)Fe(ON)(NO(2)) (MSb parallel and MSb perpendicular) are identified, as are three conformations of the double-linkage isomer (porphine)Fe(ON)(ONO) (MSc parallel, MSc perpendicular, MSc(L)). Only 2 of the 10 optimized geometries contain near-linear FeNO (MSa(L)) and FeON (MSc(L)) bonds. The energies of the ground-state and isomeric structures increase in the order GS < MSa < MSb < MSc. Vibrational frequencies for all of the linkage isomers have been calculated, and the theoretical gas-phase absorption spectrum of (porphine)Fe(NO)(NO(2)) has been analyzed to obtain information on the electronic transitions responsible for the linkage isomerization. Comparison of the experimental and theoretical IR spectra does not provide evidence for the existence of a double linkage isomer of (TPP)Fe(NO)(NO(2)).

  4. Partitioning studies of coal-tar constituents in a two-phase contaminated ground-water system

    USGS Publications Warehouse

    Rostad, C.E.; Pereira, W.E.; Hult, M.F.

    1985-01-01

    Organic compounds derived from coal-tar wastes in a contaminated aquifer in St. Louis Park, Minnesota, were identified, and their partition coefficients between the tar phase and aqueous phase were determined and compared with the corresponding n-octanol/water partition coefficients. Coal tar contains numerous polycyclic aromatic compounds, many of which are suspected carcinogens or mutagens. Groundwater contamination by these toxic compounds may pose an environmental health hazard in nearby public water-supply wells. Fluid samples from this aquifer developed two phases upon settling: an upper aqueous phase, and a lower oily-tar phase. After separating the phases, polycyclic aromatic compounds in each phase were isolated using complexation with N-methyl-2-pyrrolidone and identified by fused-silica capillary gas chromatography/mass spectrometry. Thirty-one of the polycyclic aromatic compounds were chosen for further study from four different classes: 12 polycyclic aromatic hydrocarbons, 10 nitrogen heterocycles, 5 sulfur heterocycles, and 4 oxygen heterocycles. Within each compound class, the tar/water partition coefficients of these compounds were reasonably comparable with the respective n-octanol/water partition coefficient.

  5. Aromatic ring generation as a dust precursor in acetylene discharges

    NASA Astrophysics Data System (ADS)

    De Bleecker, Kathleen; Bogaerts, Annemie; Goedheer, Wim

    2006-04-01

    Production of aromatic hydrocarbon compounds as an intermediate step for particle formation in low-pressure acetylene discharges is investigated via a kinetic approach. The detailed chemical reaction mechanism contains 140 reactions among 55 species. The cyclic hydrocarbon chemistry is mainly based on studies of polycyclic aromatic hydrocarbon formation in cosmic environments. The model explicitly includes organic chain, cyclic molecules, radicals, and ions up to a size of 12 carbon atoms. The calculated density profiles show that the aromatic formation yields are quite significant, suggesting that aromatic compounds play a role in the underlying mechanisms of particle formation in hydrocarbon plasmas.

  6. Low severity coal conversion by ionic hydrogenation: Quarterly report, October--December 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maioriello, J.; Larsen, J.W.

    1988-12-31

    A newly developed reaction system consisting of H/sub 2/O:BF/sub 3//H/sub 2//(CH/sub 3/CN)/sub 2/PtCl/sub 2/ was applied to the ionic hydrogenation of aromatic and functionalized aromatic compounds. Hydrogenations were carried out in this aqueous system at 50/degree/C and 500 psi H/sub 2/. Aryl ethers were hydrogenated and cleaved, yielding deoxygenated, fully saturated compounds as the major products. Reactions of nitrogen-containing aromatic compounds resulted in partial saturation of aromatic rings without cleavage of the C-N bonds. Aromatic and PNA compounds can be fully or partially hydrogenated depending on their structures. Aromatic thiols, sulfides and thiophenes poison the catalyst; the oxidized sulfur formsmore » (sulfonic acids, sulfones) were not reduced and did not poison the catalyst. It was found that certain aromatic compounds were easier to hydrogenate than others. Ionic hydrogenation of Wyodak cola using a H/sub 2/O:BF/sub 3//H/sub 2//(MeCN)/sub 2/PtCl/sub 2/ resulted in no significant increase in THF extractability (5.8--9.6% THF-extractables, wt) over that of the parent coal (4.6--6.7% THF-extractables, wt). Ionic hydrogenation of a demineralized Wyodak coal (1 M aq. citric acid, reflux 1 day) resulted in a slight increase in THF extractability (10.4%) over the untreated parent coal (5.6--5.8%). 4 refs., 1 fig., 1 tab.« less

  7. Oxidation of cinnamic acid derivatives: A pulse radiolysis and theoretical study

    NASA Astrophysics Data System (ADS)

    Yadav, Pooja; Mohan, Hari; Maity, Dilip Kumar; Suresh, Cherumuttathu H.; Rao, B. S. Madhav

    2008-07-01

    Second order rate constants in the range of ( k = 1.6-4.5) × 10 9 dm 3 mol -1 s -1 were obtained for the rad OH induced oxidation of nitro- and methoxycinnamic acid derivatives in neutral solutions using pulse radiolysis. The transient absorption spectra exhibited a broad peak around 360-410 nm in o-methoxy, o- and p-nitrocinnamates or two peaks around 310-330 and 370-410 nm in other isomers. Quantum chemical calculations revealed that addition of rad OH to olefinic moiety yielded considerably more stable structures than ring addition products and the para system among the latter is the most stable. Spin density analysis suggested that olefinic adducts retained the aromaticity in contrast to its loss in ring rad OH adducts. An excellent linear correlation between the relative stabilities of the rad OH adducts (after accounting for the aromatic stabilization in olefinic adducts) and the maximum Sd values is also obtained.

  8. Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids.

    PubMed

    Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R

    2013-10-01

    Lignin comprises 15-25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP-binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute-binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins. Copyright © 2013 Wiley Periodicals, Inc.

  9. Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids

    PubMed Central

    Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C.; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R.

    2013-01-01

    Lignin comprises 15.25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP.binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute.binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins. PMID:23606130

  10. Biodegradation of aromatic compounds by white rot and ectomycorrhizal fungal species and the accumulation of chlorinated benzoic acid in ectomycorrhizal pine seedlings.

    PubMed

    Dittmann, Jens; Heyser, Wolfgang; Bücking, Heike

    2002-10-01

    The capability of different white rot (WR, Heterobasidion annosum, Phanerochaete chrysosporium, Trametes versicolor) and ectomycorrhizal (ECM, Paxillus involutus, Suillus bovinus) fungal species to degrade different aromatic compounds and the absorption of 3-chlorobenzoic acid (3-CBA) by ECM pine seedlings was examined. The effect of aromatic compounds on the fungal biomass development varied considerably and depended on (a) the compound, (b) the external concentration, and (c) the fungal species. The highest effect on the fungal biomass development was observed for 3-CBA. Generally the tolerance of WR fungi against aromatic compounds was higher than that of the biotrophic fungal species. The capability of different fungi to degrade aromatic substances varied between the species but not generally between biotrophic and saprotrophic fungi. The highest degradation capability for aromatic compounds was detected for T. versicolor and H. annosum, whereas for Phanerochaete chrysosporium and the ECM fungi lower degradation rates were found. However, Paxillus involutus and S. bovinus showed comparable degradation rates at low concentrations of benzoic acid and 4-hydroxybenzoic acid. In contrast to liquid cultures, where no biodegradation of 3-CBA by S. bovinus was observed, mycorrhizal pines inoculated with S. bovinus showed a low capability to remove 3-CBA from soil substrates. Additional X-ray microanalytical investigations showed, that 3-CBA supplied to mycorrhizal plants was accumulated in the root cell cytoplasm and is translocated across the endodermis to the shoot of mycorrhizal pine seedlings.

  11. [Recent advances in Sphingobium sp. SYK-6 for lignin aromatic compounds degradation--a review].

    PubMed

    Zhang, Xiaoyan; Peng, Xue; Masai, Eiji

    2014-08-04

    Lignin is complex heteropolymer produced from hydroxycinnamyl alcohols through radical coupling. In nature, white-rot fungi are assumed initially to attack native lignin and release lignin-derived-low-molecular-weight compounds, and soil bacteria play an importent role for completely degradation of these compounds. Study on the soil bacteria degrading lignin-derived-low-molecular-weight compounds will give way to understand how aromatic compounds recycle in nature, and to utilize lignin compounds as the renewable materials for valuable materials production. Sphingobium sp. SYK-6 that grows on lignin biphenyl (5,5'-dehydrodivanillate) had been isolated from pulp effluent in 1987. We have researched this bacterium more than 25 years, a serious aromatic metabolic pathway has been determined, and related genes have been isolated. As the complete genome sequence of SYK-6 has been opened to the public in 2012, the entire aromatic compounds degradation mechanisms become more clear. Main contents in our review cover: (1) genome information; (2) aryl metabolism; (3) biphenyl metabolism; (4) ferulate metabolism; (5) tetrahydrofolate-dependent O-demethylation system for lignin compound degrdation; (6) protocatechuate 4,5-cleavage pathway; (7) multiple pathways for 3-O-methylgallate metabolism.

  12. Effect of interlayer cations of montmorillonite on the biodegradation and adsorption of crude oil polycyclic aromatic compounds.

    PubMed

    Ugochukwu, Uzochukwu C; Manning, David A C; Fialips, Claire I

    2014-09-01

    Cation exchange capacity, surface acidity and specific surface area are surface properties of clay minerals that make them act as catalysts or supports in most biogeochemical processes hence making them play important roles in environmental control. However, the role of homoionic clay minerals during the biodegradation of polycyclic aromatic compounds is not well reported. In this study, the effect of interlayer cations of montmorillonites in the removal of some crude oil polycyclic aromatic compounds during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The homoionic montmorillonites were prepared via cation exchange reactions by treating the unmodified montmorillonite with the relevant metallic chloride. The study indicated that potassium-montmorillonite and zinc-montmorillonite did not enhance the biodegradation of the polycyclic aromatic hydrocarbons whereas calcium-montmorillonite, and ferric-montmorillonite enhanced their biodegradation significantly. Adsorption of polycyclic aromatic hydrocarbons was significant during biodegradation with potassium- and zinc-montmorillonite where there was about 45% removal of the polycyclic aromatic compounds by adsorption in the experimental microcosm containing 5:1 ratio (w/w) of clay to oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Pt- and Pd-decorated MWCNTs for vapour and gas detection at room temperature

    PubMed Central

    Baccar, Hamdi; Clément, Pierrick; Abdelghani, Adnane

    2015-01-01

    Summary Here we report on the gas sensing properties of multiwalled carbon nanotubes decorated with sputtered Pt or Pd nanoparticles. Sputtering allows for an oxygen plasma treatment that removes amorphous carbon from the surface of the carbon nanotubes and creates oxygenated surface defects in which metal nanoparticles nucleate within a few minutes. The decoration with the 2 nm Pt or the 3 nm Pd nanoparticles is very homogeneous. This procedure is performed at the device level (i.e., for carbon nanotubes deposited onto sensor substrates) for many devices in one batch, which illustrates the scalability for the mass production of affordable nanosensors. The response to selected aromatic and non-aromatic volatile organic compounds, as well as pollutant gases has been studied. Pt- and Pd-decorated multiwalled carbon nanotubes show a fully reversible response to the non-aromatic volatile organic compounds tested when operated at room temperature. In contrast, these nanomaterials were not responsive to the aromatic compounds studied (measured at concentrations up to 50 ppm). Therefore, these sensors could be useful in a small, battery-operated alarm detector, for example, which is able to discriminate aromatic from non-aromatic volatile organic compounds in ambient. PMID:25977863

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ijam, M.J.; Al-Qatami, S.Y.; Arif, S.F.

    For several decades removal of aromatics from crude oil fractions has been practiced in oil refining to produce fuels and lubricants of lower aromatic content and hence of improved quality. These aromatics are suitable raw materials for the manufacture of aromatic solvents, aromatic process oils, high octane gasoline, and as basic materials for making detergents, perfumes and dyes. A study for the UV and IR spectra of the aromatic hydrocarbons showed them to consist mainly of bi-, tri-, tetra-, and penta-substituted benzene, bicyclic and tricyclic compounds. Detailed studies have been reported of molecular structure and substituent effects have been reportedmore » on the retention characteristics of aromatic hydrocarbons on alumina, silica and various chemically bonded silicas containing {minus}C{sub 18}, {minus}NH{sub 2}, {minus}R(NH){sub 2}, {minus}CN, RCN, and phenyl-mercuric acetate for compound class (ring-numbered) high performance liquid chromatography separation. With the aid of a Finnegan type 9612-4000 GC/MS apparatus, the mixture of neutral + basic aromatic hydrocarbons was qualitatively identified and revealed the presence of more than 112 peaks. The neutral + basic aromatic hydrocarbons consist mainly of: 3.68% monoaromatics (C{sub 3} - C{sub 6} alkyl benzenes), 52.81% bicycloaromatics (C{sub 0} - C{sub 4} alkylnaphthalenes), 6.20% tricycloaromatics (C{sub 0} - C{sub 4} alkyl phenanthrenes), and 37.32% nonhydrocarbons aromatic compounds. The components in major HPLC peaks corresponding to bicycloaromatics were further separated into small groups (3-4 components in each) by HPLC using an ODS-reverse phase-C{sub 18} column. To separate a single component from the mixture is a difficult problem. The individual compounds in the separated fractions were identified by GC/MS (Hewlett Packard 5993 system).« less

  15. Dense Energetic Compounds of C, H, N, and O Atoms. III. 5-(4-Nitro-(1,2, 5)oxadiazolyl)-5H-(1,2,3)triazolo(4,5-c)(1,2,5)oxadiazole

    DTIC Science & Technology

    1993-07-21

    1,2,5)oxadiazolyl]-5H- [1,2,3]triazolo[4,5-c] [1,2,5]oxadiazole 1. The azide 5 was con- verted to a phosphinimine 9 in a reaction with triphenylphosphine ...and led instead to an intractable mixture in which neither a primary amine nor triphenylphosphine oxide were de- tected. ACKNOWLEDGEMENTS Financial...coi-responding amine 13 was obtained from the azide 5 by reduction with stannous chloride and was oxidized by ammonium persulfate to 5-[4- nitro

  16. Laboratory and Ambient Studies of the Products of Gas-Phase Hydroxyl and Nitrate Ion Radical-Initiated Reactions with Selected PAHs

    NASA Astrophysics Data System (ADS)

    Zimmermann, Kathryn Jean

    Nitrated polycyclic aromatic hydrocarbon (nitro-PAH) product distributions from the gas-phase hydroxyl (OH) and nitrate (NO3) radical-initiated reactions with selected PAHs, as well as the heterogeneous reactions of surface-bound PAHs with N2O5 and HNO3, were investigated. Chapter 2 presents formation yields of nitro-PAHs from the gas-phase OH radical-initiated reactions of 1,7- and 2,7-dimethylnaphthalene (DMN) as a function of NO 2 concentration over the range 0.04-0.14 ppmv. The measured formation yields of dimethylnitronaphthalenes (DMNNs) under conditions that the OH-DMN adducts reacted solely with NO2 were 0.252 ± 0.094% for Σ1,7-DMNNs and 0.010 ± 0.005% for Σ2,7-DMNNs. 1,7-dimethyl-5-nitronaphthalene (1,7DM5NN) was the major nitro-isomer formed, with a limiting high-NO 2 concentration yield of 0.212 ± 0.080% and with equal reactions of the 1,7-DMN-OH adduct with NO2 and O2 occurring in air at 60 ± 39 ppbv of NO2, indicating that the OH-DMN adduct reaction with NO2 can be important at NO2 concentrations commonly found in urban atmospheres. Although the yields of the DMNNs are low, ≤0.3%, the DMNN (and ethylnitronaphthalene) profiles from chamber experiments match well with those observed in polluted urban areas under conditions where OH radical-initiated chemistry is dominant, such as Mexico City, Mexico. Chapter 3 examines the nitro-PAH products of gas-phase OH and NO 3 radicals and heterogeneous N2O5 reactions with fluoranthene, pyrene, benz[a]anthracene, chrysene, and triphenylene. Analysis of nitro-PAHs in the NIST diesel particulate SRM (1975) and selected ambient samples are also presented. 2-Nitrofluoranthene (2-NFL) was the most abundant nitro-PAH in Riverside, CA and Mexico City, and the mw 273 nitro-PAHs were observed in lower concentrations. However, in Tokyo, Japan, concentrations of 1- + 2-nitrotriphenylene (NTP) were more similar to those of 2-NFL. Comparing specific nitro-PAH ratios in ambient particulate samples from Tokyo, Mexico City, and Riverside, and in diesel particles with those from chamber experiments confirms the atmospheric formation of 2-NFL and 2-nitropyrene (2-NPY) via gas-phase radical-initiated reactions. Heterogeneous nitration of ambient particle-bound PAHs is investigated in Chapter 4. Ambient particulate samples collected in Beijing, China, and from four sites within the Los Angeles air basin (Los Angeles, Azusa, Riverside, and Banning), along with filter-bound deuterated PAHs, were exposed to a gas-phase equilibrium mixture of N2O5, NO3 radicals, and NO2 in an environmental chamber at ambient pressure and temperature. For the majority of these reactions 1-nitropyrene was the nitro-PAH formed in the greatest amount and was determined to occur heterogeneously (and not in the gas-phase) by using isomer distribution patterns of deuterated nitro-PAHs either formed on filter surfaces or collected from the chamber in the gas-phase. Chapter 5 investigates the contributions of atmospheric formation (OH versus NO3 chemistry) and direct emissions (electrophilic nitration products) to ambient gas-phase and particulate nitro-PAHs sampled in the Los Angeles air basin and Mexico City, Mexico, over several sampling campaigns using a combination of several marker ratios of volatile and semi-volatile nitro-PAHs. Ratios of 2-nitrofluoranthene (2-NFL)/2-nitropyrene (2-NPY), 2-methyl-4-nitronaphthalene (2M4NN)/1-methyl-5-nitronaphthalene (1M5NN), and 2,7-dimethyl-4-nitronaphthalene (2,7DM4NN)/1,7-dimethyl-5-nitronaphthalene (1,7DM5NN) were used to assess the contribution of OH radical chemistry versus NO3 radical chemistry to ambient nitro-PAHs from 50 particle-phase and gas-phase samples. (Abstract shortened by UMI.).

  17. Effectiveness of Liquid-Liquid Extraction, Solid Phase Extraction, and Headspace Technique for Determination of Some Volatile Water-Soluble Compounds of Rose Aromatic Water

    PubMed Central

    2017-01-01

    Steam distillation is used to isolate scent of rose flowers. Rose aromatic water is commonly used in European cuisine and aromatherapy besides its use in cosmetic industry for its lovely scent. In this study, three different sampling techniques, liquid-liquid extraction (LLE), headspace technique (HS), and solid phase extraction (SPE), were compared for the analysis of volatile water-soluble compounds in commercial rose aromatic water. Some volatile water-soluble compounds of rose aromatic water were also analyzed by gas chromatography mass spectrometry (GCMS). In any case, it was concluded that one of the solid phase extraction methods led to higher recoveries for 2-phenylethyl alcohol (PEA) in the rose aromatic water than the liquid-liquid extraction and headspace technique. Liquid-liquid extraction method provided higher recovery ratios for citronellol, nerol, and geraniol than others. Ideal linear correlation coefficient values were observed by GCMS for quantitative analysis of volatile compounds (r2 ≥ 0.999). Optimized methods showed acceptable repeatability (RSDs < 5%) and excellent recovery (>95%). For compounds such as α-pinene, linalool, β-caryophyllene, α-humulene, methyl eugenol, and eugenol, the best recovery values were obtained with LLE and SPE. PMID:28791049

  18. The nitro-reduced metabolite of nimesulide: Crystal structure, spectroscopic characterization, ESI-QTOF mass spectrometric analysis and antibacterial evaluation

    NASA Astrophysics Data System (ADS)

    Nunes, Julia H. B.; Nakahata, Douglas H.; Lustri, Wilton R.; Corbi, Pedro P.; de Paiva, Raphael E. F.

    2018-04-01

    Here we present a synthetic procedure, spectroscopic characterization and single-crystal X-ray structure for the nitro-reduced metabolite of the anti-inflammatory drug nimesulide, hereby referred to as NMS-NH2. The nitro-reduced metabolite was synthesized using the Béchamp reduction (iron powder under acidic media), leading to the conversion of the nitrobenzene group of nimesulide to an aniline. Mass spectrometry, infrared and nuclear magnetic resonance spectroscopies data are also provided for NMS-NH2, and discussed in comparison to nimesulide. NMS-NH2 was also evaluated in terms of its antibacterial activities, considering that the free sbnd NH2 group could allow the compound to act as a dihydropteroate synthase inhibitor. NMS-NH2 had a modest antibacterial activity against P. aeruginosa (5.0 mg mL-1), which was not observed for NMS.

  19. Nature of electrogenerated intermediates in nitro-substituted nor-β-lapachones: the structure of radical species during successive electron transfer in multiredox centers.

    PubMed

    Armendáriz-Vidales, Georgina; Hernández-Muñoz, Lindsay S; González, Felipe J; de Souza, Antonio A; de Abreu, Fabiane C; Jardim, Guilherme A M; da Silva, Eufrânio N; Goulart, Marilia O F; Frontana, Carlos

    2014-06-06

    Electrochemical, spectroelectrochemical, and theoretical studies of the reduction reactions in nor-β-lapachone derivatives including a nitro redox center showed that reduction of the compounds involves the formation of several radical intermediates, including a biradical dianion resultant from the separate reduction of the quinone and nitro groups in the molecules. Theoretical descriptions of the corresponding Fukui functions f(αα)⁺ and f(ββ)⁺(r) and LUMO densities considering finite differences and frozen core approximations for describing the changes in electron and spin densities of the system allowed us to confirm these results. A description of the potential relationship with the obtained results and biological activity selectivity indexes suggests that both the formation of stable biradical dianion species and the stability of the semiquinone intermediates during further reduction are determining factors in the description of their biological activity.

  20. Determination of nitroaromatic and nitramine type energetic materials in synthetic and real mixtures by cyclic voltammetry.

    PubMed

    Üzer, Ayşem; Sağlam, Sener; Tekdemir, Yasemin; Ustamehmetoğlu, Belkıs; Sezer, Esma; Erçağ, Erol; Apak, Reşat

    2013-10-15

    Nitro-explosives contain reducible aromatic -NO2 groups or cyclic >N-NO2 bonds that may undergo reductive cleavage. This work reports the development of a cyclic voltammetric (CV) assay for nitro-aromatics (trinitrotoluene (TNT), dinitrotoluene (DNT)) and nitramines (1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)) using a glassy carbon electrode. This determination was first used for these energetic materials by resolving current responses of reduction potentials primarily due to one constituent but partly contributed by other constituents. Calibration curves of current intensity versus concentration were linear in the range of 30-120 mg L(-1) for RDX with a limit of detection (LOD) of 10.2 mg L(-1), 40-120 mg L(-1) for HMX (LOD=11.7 mg L(-1)), 40-120 mg L(-1) for TNT (LOD=11.2 mg L(-1)), and 40-140 mg L(-1) for DNT (LOD=10.8 mg L(-1)). Results showed that the CV method could provide a sensitive approach for the simultaneous determination of RDX and TNT in synthetic and real mixtures. Deconvolution of current contributions of mixtures at peak potentials of constituents was performed by multiple linear regression. The proposed method was successfully applied to the analysis of military explosives comp A5 and octol, and method validation was performed both against HPLC on a comp B (TNT+RDX) sample and against GC-MS on real post-blast residual samples containing both explosives. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Theoretical Studies on Structures and Relative Stability for Polynitrohexaazaadamantanes

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-juan; Xiao, He-ming; Wang, Gui-xiang; Ju, Xue-hai

    2006-10-01

    The density function theory at the B3LYP/6-31G* level was employed to study the structures, including the total energies (EZPE), the geometries, the oxygen balances (OB100), the dipole moments, of polynitro-hexaazaadamantanes (PNHAAs) and the potential candidates of high energy density compounds (HEDCs). The structural parameters of PNHAAs, such as the the maximum N—NO2 bond length (LBmax), the least N—N Mulliken population (BN—N), the least negative charge on the nitro group (QNO2) and OB100, were studied to predict their relative stability or sensitivity (the easiness for initiating a detonation, high sensitivity means low stability). It was found that the same conclusion was drawn from the four parameters. With the number of nitro groups increasing, the stabilities of these compounds decrease. OB100 failed in identifying the isomers, but the EZPE energy and the dipole moment were considered to give more reliable results for the isomers.

  2. Voltammetric analysis of N-containing drugs using the hanging galinstan drop electrode (HGDE).

    PubMed

    Channaa, H; Surmann, P

    2009-03-01

    The electrochemical behaviour of several N-containing voltammetric active drugs such as 1,4-benzodiazepines (chlordiazepoxide, nitrazepam and diazepam) as well as one nitro-compound (nitrofurantoin) and one azo-compound (phenazopyridine) is described using a new kind of liquid electrode, the hanging galinstan drop electrode. Concentrations of 10(-5) - 10(-8) mol L(-1) are generally measurable. Differential pulse and adsorptive stripping voltammograms are recorded in different supporting electrolytes, like 0.1 M KNO3, acetate buffer solution pH = 4.6 and phosphate buffer solution pH = 7.0. The effects of varying the starting potentials, U(start) for DPV and accumulation times, t(acc) for AdSV are considered. Briefly, it is shown that the novel galinstan electrode is suitable for reducing several functional groups in organic substances, here presented for N-oxide-, azomethine-, nitro- and azo-groups.

  3. Can Baird's and Clar's Rules Combined Explain Triplet State Energies of Polycyclic Conjugated Hydrocarbons with Fused 4nπ- and (4n + 2)π-Rings?

    PubMed

    Ayub, Rabia; Bakouri, Ouissam El; Jorner, Kjell; Solà, Miquel; Ottosson, Henrik

    2017-06-16

    Compounds that can be labeled as "aromatic chameleons" are π-conjugated compounds that are able to adjust their π-electron distributions so as to comply with the different rules of aromaticity in different electronic states. We used quantum chemical calculations to explore how the fusion of benzene rings onto aromatic chameleonic units represented by biphenylene, dibenzocyclooctatetraene, and dibenzo[a,e]pentalene modifies the first triplet excited states (T 1 ) of the compounds. Decreases in T 1 energies are observed when going from isomers with linear connectivity of the fused benzene rings to those with cis- or trans-bent connectivities. The T 1 energies decreased down to those of the parent (isolated) 4nπ-electron units. Simultaneously, we observe an increased influence of triplet state aromaticity of the central 4n ring as given by Baird's rule and evidenced by geometric, magnetic, and electron density based aromaticity indices (HOMA, NICS-XY, ACID, and FLU). Because of an influence of triplet state aromaticity in the central 4nπ-electron units, the most stabilized compounds retain the triplet excitation in Baird π-quartets or octets, enabling the outer benzene rings to adapt closed-shell singlet Clar π-sextet character. Interestingly, the T 1 energies go down as the total number of aromatic cycles within a molecule in the T 1 state increases.

  4. MOLECULAR BASIS OF BIODEGRADATION OF CHLOROAROMATIC COMPOUNDS

    EPA Science Inventory

    Chlorinated aromatic hydrocarbons are widely used in industry and agriculture, and comprise the bulk of environmental pollutants. Although simple aromatic compounds are biodegradable by a variety of degradative pathways, their halogenated counterparts are more resistant to bacter...

  5. Saccharomyces cerevisiae Mixed Culture of Blackberry (Rubus ulmifolius L.) Juice: Synergism in the Aroma Compounds Production

    PubMed Central

    Ragazzo-Sánchez, Juan Arturo; Ortiz-Basurto, Rosa Isela; Luna-Solano, Guadalupe; Calderón-Santoyo, Montserrat

    2014-01-01

    Blackberry (Rubus sp.) juice was fermented using four different strains of Saccharomyces cerevisiae (Vitilevure-CM4457, Enoferm-T306, ICV-K1, and Greroche Rhona-L3574) recognized because of their use in the wine industry. A medium alcoholic graduation spirit (<6°GL) with potential to be produced at an industrial scale was obtained. Alcoholic fermentations were performed at 28°C, 200 rpm, and noncontrolled pH. The synergistic effect on the aromatic compounds production during fermentation in mixed culture was compared with those obtained by monoculture and physic mixture of spirits produced in monoculture. The aromatic composition was determined by HS-SPME-GC. The differences in aromatic profile principally rely on the proportions in aromatic compounds and not on the number of those compounds. The multivariance analysis, principal component analysis (PCA), and factorial discriminant analysis (DFA) permit to demonstrate the synergism between the strains. PMID:25506606

  6. The aromatic amino acids biosynthetic pathway: A core platform for products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lievense, J.C.; Frost, J.W.

    The aromatic amino acids biosynthetic pathway is viewed conventionally and primarily as the source of the amino acids L-tyrosine, L-phenylalanine. The authors have recognized the expanded role of the pathway as the major source of aromatic raw materials on earth. With the development of metabolic engineering approaches, it is now possible to biosynthesize a wide variety of aromatic compounds from inexpensive, clean, abundant, renewable sugars using fermentation methods. Examples of already and soon-to-be commercialized biosynthesis of such compounds are described. The long-term prospects are also assessed.

  7. Survey of the mutagenicity of surface water, sediments, and drinking water from the Penobscot Indian Nation.

    PubMed

    Warren, Sarah H; Claxton, Larry D; Diliberto, Janet; Hughes, Thomas J; Swank, Adam; Kusnierz, Daniel H; Marshall, Valerie; DeMarini, David M

    2015-02-01

    U.S. Environmental Protection Agency (US EPA) Regional Applied Research Effort (RARE) projects address the effects of environmental pollutants in a particular region on the health of the population in that region. This report is part of a RARE project that addresses this for the Penobscot Indian Nation (PIN), Penobscot Island, Maine, U.S., where the Penobscot River has had fish advisories for many years due to high levels of mercury. We used the Salmonella mutagenicity assay with strains TA100, TA98, YG1041, and YG1042 with and without metabolic activation to assess the mutagenic potencies of organic extracts of the Penobscot River water and sediment, as well as drinking-water samples, all collected by the PIN Department of Natural Resources. The source water for the PIN drinking water is gravel-packed groundwater wells adjacent to the Penobscot River. Most samples of all extracts were either not mutagenic or had low to moderate mutagenic potencies. The average mutagenic potencies (revertants/L-equivalent) were 337 for the drinking-water extracts and 177 for the river-water extracts; the average mutagenic potency for the river-sediment extracts was 244 revertants(g-equivalent)(-1). This part of the RARE project showed that extracts of the Penobscot River water and sediments and Penobscot drinking water have little to no mutagenic activity that might be due to the classes of compounds that the Salmonella mutagenicity assay detects, such as polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (nitroarenes), and aromatic amines. This study is the first to examine the mutagenicity of environmental samples from a tribal nation in the U.S. Published by Elsevier Ltd.

  8. Natural Mediators in the Oxidation of Polycyclic Aromatic Hydrocarbons by Laccase Mediator Systems

    PubMed Central

    Johannes, Christian; Majcherczyk, Andrzej

    2000-01-01

    The oxidation of polycyclic aromatic compounds was studied in systems consisting of laccase from Trametes versicolor and so-called mediator compounds. The enzymatic oxidation of acenaphthene, acenaphthylene, anthracene, and fluorene was mediated by various laccase substrates (phenols and aromatic amines) or compounds produced and secreted by white rot fungi. The best natural mediators, such as phenol, aniline, 4-hydroxybenzoic acid, and 4-hydroxybenzyl alcohol were as efficient as the previously described synthetic compounds ABTS [2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] and 1-hydroxybenzotriazole. The oxidation efficiency increased proportionally with the redox potentials of the phenolic mediators up to a maximum value of 0.9 V and decreased thereafter with redox potentials exceeding this value. Natural compounds such as methionine, cysteine, and reduced glutathione, containing sulfhydryl groups, were also active as mediator compounds. PMID:10653713

  9. Photoacoustic study on the possible components of total suspended particles

    NASA Astrophysics Data System (ADS)

    Wang, Xidong; Huang, Zuohua; Tang, Zhilie

    2006-02-01

    Total suspended particles (TSP) are one of the main atmospheric pollutants. The ingredients are very complex, mainly including black carbon (C),organic compound, inorganic compound and biologic component, which will do great harm to human's health. During environmental monitoring, the airborne suspended particle always is an index for evaluating the quality of atmosphere. In this article, possible mixture of TSP is proposed to determine its ingredients and content by photoacoustic spectroscopy. The normalized photoacoustic (PA) signal of the sulfur powder, mixtures of sulfur and black carbon in different proportions are obtained respectively. Simulation with linear equation says that the PA signal has a certain relationship with the content of sample. The normalized PA spectroscopy of various materials is acquired via examining the sample of the powder of cupric sulfate mixed with nitro compound (2, 5 -methoxybenzoic-4nitro-dehyde), Portland cement, residual particles of automobile exhaust pipe, ash of power plant's stocks. The experimental results have important reference value to the practical analysis of TSP, it also provides new possible methodology to the environmental monitoring.

  10. Bromination of aromatic compounds by residual bromide in sodium chloride matrix modifier salt during heated headspace GC/MS analysis.

    PubMed

    Fine, Dennis D; Ko, Saebom; Huling, Scott

    2013-12-15

    Analytical artifacts attributed to the bromination of toluene, xylenes, and trimethylbenzenes were found during the heated headspace gas chromatography/mass spectrometry (GC/MS) analysis of aqueous samples. The aqueous samples were produced from Fenton-like chemical oxidation reactions and contained aromatic compounds, hydrogen peroxide (H2O2), and ferric sulfate. Prior to GC/MS headspace analysis, the samples were acidified (pH<2), and sodium chloride was amended to the headspace vial as a matrix modifier. The brominated artifacts were generated during heated headspace analysis. Further, when samples were spiked with a mixture of volatile chlorinated and aromatic compounds (50 µg/L), poor spike recoveries of toluene and xylenes occurred, and in some cases complete loss of trimethylbenzenes and naphthalene resulted. Where poor recovery of aromatic spike compounds occurred, brominated aromatic compounds were found. The only significant source of bromine in the reaction scheme is the bromide typically present (<0.01% w/w) in the sodium chloride amended to the samples. Conversely, brominated artifacts were absent when a buffered salt mixture composed of sodium chloride and potassium phosphate dibasic/monobasic was used as a matrix modifier and raised the sample pH (pH~6). This indicated that the brominated artifacts resulted from the reaction of the aromatic compounds with BrCl, which was formed by the reaction of H2O2, chloride, and bromide under acidic conditions. An alternative matrix modifier salt is recommended that prevents the bromination reaction and avoids these deleterious effects on sample integrity during headspace analysis. Published by Elsevier B.V.

  11. Assessing Uncertainty of Interspecies Correlation Estimation Models for Aromatic Compounds

    EPA Science Inventory

    We developed Interspecies Correlation Estimation (ICE) models for aromatic compounds containing 1 to 4 benzene rings to assess uncertainty in toxicity extrapolation in two data compilation approaches. ICE models are mathematical relationships between surrogate and predicted test ...

  12. Anaerobic Microbial Transformation of Aromatic Hydrocarbons and Mixtures of Aromatic Hydrocarbons and Halogenated Solvents

    DTIC Science & Technology

    1992-08-25

    concentrations of these compounds may be toxic or Inhibitory to the microflora, especially if the microorganisms have not been exposed to these compounds before...Slow acclimation of the microflora to lower concentrations of these compounds , that occur at the outskirts of contamination plumes, gradually...sulfate may impair the capability of the microorganisms to degrade these compounds , although anaerobic respiration -- in theory -- is more favorable

  13. The Effects of Molecular Properties on Ready Biodegradation of Aromatic Compounds in the OECD 301B CO2 Evolution Test.

    PubMed

    He, Mei; Mei, Cheng-Fang; Sun, Guo-Ping; Li, Hai-Bei; Liu, Lei; Xu, Mei-Ying

    2016-07-01

    Ready biodegradation is the primary biodegradability of a compound, which is used for discriminating whether a compound could be rapidly and readily biodegraded in the natural ecosystems in a short period and has been applied extensively in the environmental risk assessment of many chemicals. In this study, the effects of 24 molecular properties (including 2 physicochemical parameters, 10 geometrical parameters, 6 topological parameters, and 6 electronic parameters) on the ready biodegradation of 24 kinds of synthetic aromatic compounds were investigated using the OECD 301B CO2 Evolution test. The relationship between molecular properties and ready biodegradation of these aromatic compounds varied with molecular properties. A significant inverse correlation was found for the topological parameter TD, five geometrical parameters (Rad, CAA, CMA, CSEV, and N c), and the physicochemical parameter K ow, and a positive correlation for two topological parameters TC and TVC, whereas no significant correlation was observed for any of the electronic parameters. Based on the correlations between molecular properties and ready biodegradation of these aromatic compounds, the importance of molecular properties was demonstrated as follows: geometrical properties > topological properties > physicochemical properties > electronic properties. Our study first demonstrated the effects of molecular properties on ready biodegradation by a number of experiment data under the same experimental conditions, which should be taken into account to better guide the ready biodegradation tests and understand the mechanisms of the ready biodegradation of aromatic compounds.

  14. Evidence for behavioral attractiveness of methoxylated aromatics in a dynastid scarab beetle-pollinated araceae.

    PubMed

    Dötterl, Stefan; David, Anja; Boland, Wilhelm; Silberbauer-Gottsberger, Ilse; Gottsberger, Gerhard

    2012-12-01

    Many plants attract their pollinators with floral scents, and these olfactory signals are especially important at night, when visual signals become inefficient. Dynastid scarab beetles are a speciose group of night-active pollinators, and several plants pollinated by these insects have methoxylated aromatic compounds in their scents. However, there is a large gap in our knowledge regarding the compounds responsible for beetle attraction. We used chemical analytical analyses to determine temporal patterns of scent emission and the composition of scent released from inflorescences of Philodendron selloum. The attractiveness of the main components in the scent to the dynastid scarab beetle Erioscelis emarginata, the exclusive pollinator of this plant, was assessed in field biotests. The amount of scent increased rapidly in the evening, and large amounts of scent were released during the activity time of the beetle pollinators. Inflorescences emitted a high number of compounds of different biosynthetic origin, among them both uncommon and also widespread flower scents. Methoxylated aromatic compounds dominated the scent, and 4-methoxystyrene, the most abundant compound, attracted E. emarginata beetles. Other compounds, such as (Z)-jasmone and possibly also the methoxylated aromatic compound 3,4-dimethoxystyrene increased the attractiveness of 4-methoxystyrene. Methoxylated aromatics, which are known from other dynastid pollinated plants as well, are important signals in many scarab beetles in a different context (e.g., pheromones), thus suggesting that these plants exploit pre-existing preferences of the beetles for attracting this group of insects as pollinators.

  15. Synthesis, antihyperglycemic activity and computational studies of antioxidant chalcones and flavanones derived from 2,5 dihydroxyacetophenone

    NASA Astrophysics Data System (ADS)

    Tajammal, Affifa; Batool, Majda; Ramzan, Ayesha; Samra, Malka M.; Mahnoor, Idrees; Verpoort, Francis; Irfan, Ahmad; Al-Sehemi, Abdullah G.; Munawar, Munawar Ali; Basra, Muhammad Asim R.

    2017-11-01

    Chronic exposure of supraphysiologic glucose concentration to cells and tissues resulted in glucose toxicity which causes oxidative stress. Antioxidants have promising effect in suppressing the oxidative stress in the pathogenesis of diabetes mellitus (DM). Condensation of 2,5-dihydroxyacetophenone with different nitrobenzaldehydes was used to synthesize antioxidant nitro substituted chalcones along with nitro substituted flavanones in one step protocol. The compounds were characterized by IR, 1H NMR and 13C NMR and then screened for their in vitro antioxidant and in vivo antihyperglycemic activities. Postulated structures of the synthesized compounds were in agreement with their spectral data. The results indicated that the novel compound (2E)-1-(2,5-Dihydroxyphenyl)-3-(2-nitrophenyl) prop-2-en-1-one (2a) was potent antioxidant because of its lower IC50 value compared with trolox and ascorbic acid. Compound 2a also exhibited excellent antihyperglycemic activity in diabetic rats while the compound (E)-1-(2,5-Dihydroxyphenyl)-3-(4-nitrophenyl)prop-2-one (2c) suppressed the hyperglycemia more effectively in normal rats. The radical scavenging activity behavior was elucidated on the basis of hydrogen atom transfer and one-electron transfer mechanisms by density functional theory (DFT). The compound 2a showed the smallest ionization potential and bond dissociation enthalpy. Experimental and computational investigations concluded that compound 2a might be an effective antihyperglycemic agent because of its antioxidative nature and smallest ionization potential.

  16. Selective and Sensitive Fluorescent Detection of Picric Acid by New Pyrene and Anthracene Based Copper Complexes.

    PubMed

    Reddy, Kumbam Lingeshwar; Kumar, Anabathula Manoj; Dhir, Abhimanew; Krishnan, Venkata

    2016-11-01

    New pyrene and anthracene based copper complexes 4 and 7 respectively were designed, synthesized and characterized. The fluorescence behaviour of both 4 and 7 were evaluated towards nitro aromatics and anions. Both 4 and 7 possess high selectivity for the detection of well-known explosive picric acid (PA) by showing maximum fluorescence affinity. Furthermore, complex 4 showed similar sensing efficiency towards PA at different pH ranges. It was also used for real world applications, as illustrated by the very fast detection of PA from soil samples observed directly by naked eye.

  17. Redox shuttles having an aromatic ring fused to a 1,1,4,4-tetrasubstituted cyclohexane ring

    DOEpatents

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2015-12-01

    An electrolyte includes an alkali metal salt; an aprotic solvent; and a redox shuttle additive including an aromatic compound having at least one aromatic ring fused with at least one non-aromatic ring, the aromatic ring having two or more oxygen or phosphorus-containing substituents.

  18. Incombustible resin composition

    NASA Technical Reports Server (NTRS)

    Akima, T.

    1982-01-01

    Incombustible resin compositions composed of aromatic compounds were obtained through (1) combustion polymer material and (2) bisphenol A or halogenated bisphenol A and bisphenol A diglycidl ether or halogenated bisphenol A diglycidyl ether. The aromatic compound is an adduct of bifunctional phenols and bifunctional epoxy resins.

  19. Reactions of aromatic diazonium salts with unsaturated compounds in the presence of nucleophiles

    NASA Astrophysics Data System (ADS)

    Grishchuk, B. D.; Gorbovoi, P. M.; Ganushchak, N. I.; Dombrovskii, A. V.

    1994-03-01

    The review surveys the reactions of aromatic diazonium salts with diene and monounsaturated compounds in the presence of nucleophiles. Certain further reactions of the reaction products and their application are considered. The bibliography includes 63 references.

  20. Superficial distribution of aromatic compounds and geomicrobiology of sediments from Suruí Mangrove, Guanabara Bay, RJ, Brazil.

    PubMed

    Fontana, Luiz F; da Silva, Frederico S; de Figueiredo, Natália G; Brum, Daniel M; Netto, Annibal D Pereira; de Gigueiredo Junior, Alberto G; Crapez, Mirian A C

    2010-12-01

    The distribution of selected aromatic compounds and microbiology were assessed in superficial sediments from Suruí Mangrove, Guanabara Bay. Samples were collected at 23 stations, and particle size, organic matter, aromatic compounds, microbiology activity, biopolymers, and topography were determined. The concentration of aromatic compounds was distributed in patches over the entire mangrove, and their highest total concentration was determinated in the mangrove's central area. Particle size differed from most mangroves in that Suruí Mangrove has chernies on the edges and in front of the mangrove, and sand across the whole surface, which hampers the relationship between particle size and hydrocarbons. An average @ 10% p/p of organic matter was obtained, and biopolymers presented high concentrations, especially in the central and back areas of the mangrove. The biopolymers were distributed in high concentrations. The presence of fine sediments is an important factor in hydrocarbon accumulation. With high concentration of organic matter and biopolymers, and the topography with chernies and roots protecting the mangrove, calmer areas are created with the deposition of material transported by wave action. Compared to global distributions, concentrations of aromatic compounds in Suruí Mangrove may be classified from moderate to high, showing that the studied area is highly impacted.

  1. Theoretical study on stabilization mechanisms of nitrate esters using aromatic amines as stabilizers.

    PubMed

    Sun, Zhi-Dan; Fu, Xiao-Long; Yu, Hong-Jian; Fan, Xue-Zhong; Ju, Xue-Hai

    2017-10-05

    The propellants of nitrate esters can be stabilized by some aromatic amines practically. To probe the mechanism of this phenomenon, we performed DFT calculations on: (1) The decompositions of nitrate esters (with and without the catalysis of NO 2 ) and (2) the reaction between the stabilizers and the nitro dioxide (NO 2 is released during the storage of nitrate esters). The structures on the reaction paths (reactants, intermediates and products) were optimized at the (U)B3LYP/6-31G** level. It was shown that NO 2 lowers the activation energy barrier in the decomposition of nitrate ester by 11.82-17.86kJ/mol and efficiently catalyzes the rupture of ONO 2 bond. However, the aromatic amines, typical stabilizers for nitrate esters, can easily eliminate NO 2 with activation barriers as low as 27-113kJ/mol (with one exception of 128kJ/mol). These values are, for most cases, lower or much lower than the activation energy barriers for reactions between nitrate esters and NO 2 (127-137kJ/mol). Consequently, the stabilizers can block the NO 2 catalysis for the decompositions of nitrate esters. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Centrohexaindane: six benzene rings mutually fixed in three dimensions - solid-state structure and six-fold nitration.

    PubMed

    Kuck, Dietmar; Linke, Jens; Teichmann, Lisa Christin; Barth, Dieter; Tellenbröker, Jörg; Gestmann, Detlef; Neumann, Beate; Stammler, Hans-Georg; Bögge, Hartmut

    2016-04-28

    The solid-state molecular structure of centrohexaindane (), a unique hydrocarbon comprising six benzene rings clamped to each other in three dimensions around a neopentane core, and the molecular packing in crystals of ·CHCl3 are reported. The molecular Td-symmetry and the Cartesian orientation of the six indane wings of in the solid state have been confirmed. The course and limitation of electrophilic aromatic substitution of are demonstrated for the case of nitration. Based on nitration experiments of a lower congener of , tribenzotriquinacene , the six-fold nitrofunctionalisation of has been achieved in excellent yield, giving four constitutional isomers, two nonsymmetrical ( and ) and two C3-symmetrical ones ( and ), all of which contain one single nitro group in each of the six benzene rings. The relative yields of the four isomers (∼3 : 1 : 1 : 3) point to a random electrophilic attack of the electrophiles at the twelve formally equivalent outer positions of the aromatic periphery of , suggesting electronic independence of its six aromatic π-electron systems. In turn, the pronounced conformational rigidity of the centrohexacyclic framework of enables the unequivocal structural identification of the isomeric hexanitrocentrohexaindanes by (1)H NMR spectroscopy.

  3. Fabrication of biomembrane-like films on carbon electrodes using alkanethiol and diazonium salt and their application for direct electrochemistry of myoglobin.

    PubMed

    Anjum, Saima; Qi, Wenjing; Gao, Wenyue; Zhao, Jianming; Hanif, Saima; Aziz-Ur-Rehman; Xu, Guobao

    2015-03-15

    Alkanethiols generally form self-assembled monolayers on gold electrodes and the electrochemical reduction of aromatic diazonium salts is a popular method for the covalent modification of carbon. Based on the reaction of alkanethiol with aldehyde groups covalently bound on carbon surface by the electrochemical reduction of aromatic diazonium salts, a new strategy for the modification of carbon electrodes with alkanethiols has been developed. The modification of carbon surface with aldehyde groups is achieved by the electrochemical reduction of aromatic diazonium salts in situ electrogenerated from a nitro precursor, p-nitrophenylaldehyde, in the presence of nitrous acid. By this way, in situ electrogenerated p-aminophenyl aldehyde from p-nitrophenylaldehyde immediately reacts with nitrous acid, effectively minimizing the side reaction of amine groups and aldehyde groups. The as-prepared alkanethiol-modified glassy carbon electrode was further used to make biomembrane-like films by casting didodecyldimethylammonium bromide on its surface. The biomembrane-like films enable the direct electrochemistry of immobilized myoglobin for the detection of hydrogen peroxide. The response is linear over the range of 1-600μM with a detection limit of 0.3μM. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Polyimidazoles via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor)

    1992-01-01

    Polyimidazoles (PI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl) imidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The reactions are carried out in polar aprotic solvents such as N,N-dimethyl acetamide, sulfolane, N-methylpyrrolidinone, dimethylsulfoxide, or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl) imidazole monomers are prepared by reacting an aromatic aldehyde with a dimethoxybenzil or by reacting an aromatic dialdehyde with a methoxybenzil in the presence of ammonium acetate. The di(methoxyphenyl) imidazole is subsequently treated with aqueous hydrobromic acid to give the di(hydroxphenyl) imidazole monomer. This synthetic route has provided high molecular weight PI of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the availability of a large variety of activated aromatic dihalides and dinitro compounds.

  5. Polyimidazoles via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor)

    1991-01-01

    Polyimidazoles (Pl) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl)imidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The reactions are carried out in polar aprotic solvents such as N,N-dimethylacetamide, sulfolane, N-methylpyrroldinone, dimethylsulfoxide, or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperature under nitrogen. The di(hydroxyphenyl)imidazole monomers are prepared by reacting an aromatic aldehyde with a dimethoxybenzil or by reacting an aromatic dialdehyde with a methoxybenzil in the presence of ammonium acetate. The di(methoxyphenyl)imidazole is subsequently treated with aqueous hydrobromic acid to give the di(hydroxyphenyl)imidazole monomer. This synthetic route has provided high molecular weight Pl of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the availability of a large variety of activated aromatic dihalides and dinitro compounds.

  6. Anaerobic Microbial Transformation of Aromatic Hydrocarbons and Mixtures of Aromatic Hydrocarbons and Halogenated Solvents.

    DTIC Science & Technology

    1992-08-25

    High initial concentrations of these compounds may be toxic or inhibitory to the microflora, especially if the microorganisms have not been exposed to...these compounds before. Slow acclimation of the microflora to lower concentrations of these compounds , that occur at the outskirts of contamination...acceptors such as nitrate or sulfate may impair the capability of the microorganisms to degrade these compounds , although anaerobic respiration -- in theory

  7. Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johannes, C.; Majcherczyk, A.

    2000-02-01

    The oxidation of polycyclic aromatic compounds was studied in systems consisting of laccase from Trametes versicolor and so-called mediator compounds. The enzymatic oxidation of acenaphthene, acenaphthylene, anthracene, and fluorene was mediated by various laccase substrates (phenols and aromatic amines) or compounds produced and secreted by white rot fungi. The best natural mediators, such as phenol, aniline, 4-hydroxybenzoic acid, and 4-hydroxybenzyl alcohol were as efficient as the previously described synthetic compounds ABTS [2,2{prime}-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] and 1-hydroxybenzotriazole. The oxidation efficiency increased proportionally with the redox potentials of the phenolic mediators up to a maximum value of 0.9 V and decreased thereafter withmore » redox potentials exceeding this value. Natural compounds such as methionine, cysteine, and reduced glutathione, containing sulfhydryl groups, were also active as mediator compounds.« less

  8. Leaching of styrene and other aromatic compounds in drinking water from PS bottles.

    PubMed

    Ahmad, Maqbool; Bajahlan, Ahmad S

    2007-01-01

    Bottled water may not be safer, or healthier, than tap water. The present studies have proved that styrene and some other aromatic compounds leach continuously from polystyrene (PS) bottles used locally for packaging. Water sapmles in contact with PS were extracted by a preconcentration technique called as "purge and trap" and analysed by gas chromatograph-mass spectrometer (GC/MS). Eleven aromatic compounds were identified in these studies. Maximum concentration of styrene in PS bottles was 29.5 microg/L. Apart from styrene, ethyl benzene, toluene and benzene were also quantified but their concentrations were much less than WHO guide line values. All other compounds were in traces. Quality of plastic and storage time were the major factor in leaching of styrene. Concentration of styrene was increased to 69.53 microg/L after one-year storage. In Styrofoam and PS cups studies, hot water was found to be contaminated with styrene and other aromatic compounds. It was observed that temperature played a major role in the leaching of styrene monomer from Styrofoam cups. Paper cups were found to be safe for hot drinks.

  9. Evaluation of the in vivo genotoxic potential of three carcinogenic aromatic amines using the Big Blue{trademark} transgenic mouse mutation assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suter, W.; Ahiabor, R.; Blanco, B.

    Three genotoxic mouse carcinogens, 4-chloro-o-phenylenediamine (4-C-o-PDA), 2-nitro-p-phenylenediamine (2-N-p-PDA), and 2,4-diaminotoluene (2,4-DAT), were tested in the Big Blue{trademark} transgenic mouse mutation assay. Each experiment consisted of a vehicle control group with ten Big Blue{trademark} C57BL/6 mice, five of either sex, and an equally sized group treated with a high dose of the test chemical. In addition, four animals were treated with the vehicle and six animals with the test compound for the measurement of bromodeoxyuridine (BrdU) incorporation to determine cellular proliferation. The doses used in the main study were 200 mg/kg/day for 4-C-o-PDA, 150 mg/kg/day for 2-N-p-PDA, and 80 mg/kg/day formore » 2,4-DAT. There was no increase in BrdU incorporation immediately after treatment with 4-C-o-PDA or with 2,4-DAT. However, 10 days after the last treatment with 2,4-DAT, a strong mitogenic effect was found with both techniques. 4-C-o-PDA, a liver carcinogen in both genders of mice, induced a small, statistically significant increase of the mutant frequencies in females, none in males. 2-N-p-PDA was found positive in males and was clearly negative in females. 2,4-DAT, a liver carcinogen in female mice, was positive in females and negative in males when the animals were killed 10 days after the last treatment. After an expression time of 28 days, 2,4-DAT induced a statistically significant increase in both sexes. The effect in females was marginally stronger than after 10 days` expression time and almost identical to the effect observed in makes under these test conditions. In conclusion, the experiments showed that the Big Blue{trademark} assay detects the genotoxicity of the three carcinogenic monocyclic aromatic amines tested. However, it seems that the sex specificity of the carcinogenic effects of these compounds is not reflected by the mutagenicity data in Big Blue{trademark} mice. 39 refs., 6 tabs.« less

  10. Investigation on modes of toxic action to rats based on aliphatic and aromatic compounds and comparison with fish toxicity based on exposure routes.

    PubMed

    He, Jia; Li, Jin J; Wen, Yang; Tai, Hong W; Yu, Yang; Qin, Wei C; Su, Li M; Zhao, Yuan H

    2015-06-01

    The modes of toxic action (MOAs) play an important role in the assessment of the ecotoxicity of organic pollutants. However, few studies have been reported on the MOAs in rat toxicity. In this paper, the toxic contributions of functional groups in 1255 aromatic compounds were calculated from regression and were then compared with the toxic contributions in aliphatic compounds. The results show that some functional groups have same toxic contributions both in aromatic and aliphatic compounds, but some have not. To investigate the MOAs in rat toxicity, the distribution of toxic ratio (TR) was examined for well-known baseline and less inert compounds and thresholds of log TR=0.3 and 0.5 were used to classify baseline, less inert and reactive compounds. The results showed that some compounds identified as baseline compounds in fish toxicity were also classified as baseline compounds in rat toxicity. Except for phenols and anilines which were identified as less inert compounds in fish toxicity, aromatic compounds with functional groups such as ether, nitrile, nitrophenol, isocyanatoe and chloro were identified as less inert chemicals in rat toxicity. Reactive compounds identified in fish toxicity exhibit greater toxicity to rats. These compounds can undergo nucleophilic substitution, acylation and Schiff base formation with biological macromolecules. The critical body residues (CBRs) calculated from absorption and bioconcentration show that log 1/CBRs in rat toxicity are not equal to that in fish for some compounds. It suggests that the exposure route can affect the identification of MOAs between these two species for these compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. On the Extraction of Aromatic Compounds from Hydrocarbons by Imidazolium Ionic Liquids

    PubMed Central

    Cassol, Cláudia C.; Umpierre, Alexandre P.; Ebeling, Günter; Ferrera, Bauer; Chiaro, Sandra S. X.; Dupont, Jairton

    2007-01-01

    The liquid-liquid equilibrium for the ternary system formed by n-octane and aromatic (alkylbenzenes) and heteroaromatic compounds (nitrogen and sulfur containing heterocyles) and 1-alkyl-3-methylimidazolium ionic liquids (ILs) associated with various anions has been investigated. The selectivity on the extraction of a specific aromatic compound is influenced by anion volume, hydrogen bond strength between the anion and the imidazolium cation and the length of the 1-methyl-3-alkylimidazolium alkyl side chain. The interaction of alkylbenzenes and sulfur heterocyles with the IL is preferentially through CH-π hydrogen bonds and the quantity of these aromatics in the IL phase decreases with the increase of the steric hindrance imposed by the substituents on the aromatic nucleus. In the case of nitrogen heterocycles the interaction occurs preferentially through N(heteroaromatic)-H(imidazolium) hydrogen bonds and the extraction process is largely controlled by the nitrogen heterocycle pKa. Competitive extraction experiments suggest that benzene, pyridine and dibenzothiophene do not compete for the same hydrogen bond sites of the IL.

  12. Pseudomonads biodegradation of aromatic compounds in oil sands process-affected water.

    PubMed

    Zhang, Yanyan; McPhedran, Kerry N; Gamal El-Din, Mohamed

    2015-07-15

    Aromatic naphthenic acids (NAs) have been shown to be more toxic than the classical NAs found in oil sands process-affected water (OSPW). To reduce this toxicity, Pseudomonas fluorescens and Pseudomonas putida were used to determine their ability to biodegrade aromatic compounds including treatments considering the impacts of external carbon and iron addition. Results showed that with added carbon P. fluorescens and P. putida have the capability of biodegrading these aromatics. In the presence of external carbon, gene expression of a functional PAH-ring hydroxylating dioxygenase (PAH-RHDα) was determined through reverse transcription real-time PCR, suggesting active degradation of OSPW aromatic compounds. Although no significant classical NAs removal was observed during this process, toxicity was reduced by 49.3% under optimal conditions. OSPW toxicity was eliminated with the combination of ozonation at a dose of 80 mg/L followed by biodegradation, indicating that it is a promising combined OSPW treatment approach for the safe discharge to the aquatic environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Vapor-phase concentrations of PAHs and their derivatives determined in a large city: correlations with their atmospheric aerosol concentrations.

    PubMed

    Barrado, Ana Isabel; García, Susana; Sevillano, Marisa Luisa; Rodríguez, Jose Antonio; Barrado, Enrique

    2013-11-01

    Thirteen PAHs, five nitro-PAHs and two hydroxy-PAHs were determined in 55 vapor-phase samples collected in a suburban area of a large city (Madrid, Spain), from January 2008 to February 2009. The data obtained revealed correlations between the concentrations of these compounds and a series of meteorological factors (e.g., temperature, atmospheric pressure) and physical-chemical factors (e.g., nitrogen and sulfur oxides). As a consequence, seasonal trends were observed in the atmospheric pollutants. A "mean sample" for the 14-month period would contain a total PAH concentration of 13835±1625 pg m(-3) and 122±17 pg m(-3) of nitro-PAHs. When the data were stratified by season, it emerged that a representative sample of the coldest months would contain 18900±2140 pg m(-3) of PAHs and 150±97 pg m(-3) of nitro-PAHs, while in an average sample collected in the warmest months, these values drop to 9293±1178 pg m(-3) for the PAHs and to 97±13 pg m(-3) for the nitro-PAHs. Total vapor phase concentrations of PAHs were one order of magnitude higher than concentrations detected in atmospheric aerosol samples collected on the same dates. Total nitro-PAH concentrations were comparable to their aerosol concentrations whereas vapor phase OH-PAHs were below their limits of the detection, indicating these were trapped in airborne particles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Irradiated Benzene Ice Provides Clues to Meteoritic Organic Chemistry

    NASA Technical Reports Server (NTRS)

    Callahan, Michael Patrick; Gerakines, Perry Alexander; Martin, Mildred G.; Hudson, Reggie L.; Peeters, Zan

    2013-01-01

    Aromatic hydrocarbons account for a significant portion of the organic matter in carbonaceous chondrite meteorites, as a component of both the low molecular weight, solvent-extractable compounds and the insoluble organic macromolecular material. Previous work has suggested that the aromatic compounds in carbonaceous chondrites may have originated in the radiation-processed icy mantles of interstellar dust grains. Here we report new studies of the organic residue made from benzene irradiated at 19 K by 0.8 MeV protons. Polyphenyls with up to four rings were unambiguously identified in the residue by gas chromatography-mass spectrometry. Atmospheric pressure photoionization Fourier transform mass spectrometry was used to determine molecular composition, and accurate mass measurements suggested the presence of polyphenyls, partially hydrogenated polyphenyls, and other complex aromatic compounds. The profile of low molecular weight compounds in the residue compared well with extracts from the Murchison and Orgueil meteorites. These results are consistent with the possibility that solid phase radiation chemistry of benzene produced some of the complex aromatics found in meteorites.

  15. Secondary organic aerosol formation and composition from the photo-oxidation of methyl chavicol (estragole)

    NASA Astrophysics Data System (ADS)

    Pereira, K. L.; Hamilton, J. F.; Rickard, A. R.; Bloss, W. J.; Alam, M. S.; Camredon, M.; Muñoz, A.; Vázquez, M.; Borrás, E.; Ródenas, M.

    2014-06-01

    The increasing demand for palm oil for uses in biofuel and food products is leading to rapid expansion of oil palm agriculture. Methyl chavicol (also known as estragole and 1-allyl-4-methoxybenzene) is an oxygenated biogenic volatile organic compound (VOC) that was recently identified as the main floral emission from an oil palm plantation in Malaysian Borneo. The emissions of methyl chavicol observed may impact regional atmospheric chemistry, but little is known of its ability to form secondary organic aerosol (SOA). The photo-oxidation of methyl chavicol was investigated at the European Photoreactor chamber as a part of the atmospheric chemistry of methyl chavicol (ATMECH) project. Aerosol samples were collected using a particle into liquid sampler (PILS) and analysed offline using an extensive range of instruments including; high-performance liquid chromatography mass spectrometry (HPLC-ITMS), high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The SOA yield was determined as 18 and 29% for an initial VOC mixing ratio of 212 and 460 ppbv (parts per billion by volume) respectively; using a VOC:NOx ratio of ~5:1. In total, 59 SOA compounds were observed and the structures of 10 compounds have been identified using high-resolution tandem mass spectrometry. The addition of hydroxyl and/or nitro-functional groups to the aromatic ring appears to be an important mechanistic pathway for aerosol formation. This results in the formation of compounds with both low volatility and high O:C ratios, where functionalisation rather than fragmentation is mainly observed as a result of the stability of the ring. The SOA species observed can be characterised as semi-volatile to low-volatility oxygenated organic aerosol (SVOOA and LVOOA) components and therefore may be important in aerosol formation and growth.

  16. Toxic organic substances and marker compounds in size-segregated urban particulate matter - Implications for involvement in the in vitro bioactivity of the extractable organic matter.

    PubMed

    Besis, Athanasios; Tsolakidou, Alexandra; Balla, Dimitra; Samara, Constantini; Voutsa, Dimitra; Pantazaki, Anastasia; Choli-Papadopoulou, Theodora; Lialiaris, Theodore S

    2017-11-01

    Toxic organic substances and polar organic marker compounds, i.e. polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs) and their nitro-derivatives (N-PAHs), as well as dicarboxylic acids (DCAs) and sugars/sugar anhydrites (S/SAs) were analyzed in size-segregated PM samples (<0.49, 0.49-0.97, 0.97-3 and >3 μm) collected at two urban sites (urban traffic and urban background) during the cold and the warm season. The potential associations between the organic PM determinants and the adverse cellular effects (i.e. cytotoxicity, genotoxicity, DNA damage, oxidative DNA adduct formation, and inflammatory response) induced by the extractable organic matter (EOM) of PM, previously measured in Velali et al. (2016b), were investigated by bivariate correlations and Principal Component Analysis (PCA). Partial Least Square regression analysis (PLS) was also employed in order to identify the chemical classes mainly involved in the EOM-induced toxicological endpoints in the various particle size fractions. Results indicated that particle size range <0.49 μm was the major carrier of PM mass and organic compounds at both sites. All toxic organic compounds exhibited higher concentrations at the urban traffic site, except PCBs and OCPs that did not exhibit intra-urban variations. Conversely, wintertime levels of levoglucosan were significantly higher at the urban background site as a result of residential biomass burning. The PLS regression analysis allowed quite good prediction of the EOM-induced cytotoxicity and genotoxicity based on the determined organic chemical classes, particularly for the finest size fraction of PM. Nevertheless, it is expected that other chemical constituents, not determined here, also contribute to the measured toxicological responses. Copyright © 2017. Published by Elsevier Ltd.

  17. Toxicity and metabolism of nitroalkanes and substituted nitroalkanes

    USDA-ARS?s Scientific Manuscript database

    A series of low molecular weight nitro- containing compounds has recently been discovered to have a variety of biological activities including the reduction of anaerobic methane production in ruminant animals and activity against economically important human pathogens, including Salmonella sp. and s...

  18. Antimicrobial activity of select anti-methanogenic nitro- and thio-containing compounds

    USDA-ARS?s Scientific Manuscript database

    New technologies are needed to help livestock producers maintain optimal health and wellbeing in their animals while minimizing risks of propagating and disseminating antimicrobial resistant bacteria to humans or other animals. Where possible, these interventions should contribute to the efficiency...

  19. Biodegradation studies of selected hydrocarbons from diesel oil.

    PubMed

    Sepic, E; Trier, C; Leskovsek, H

    1996-10-01

    In-vitro biodegradation of aliphatic and aromatic hydrocarbons present in diesel oil by Pseudomonas fluorescens, Texaco was studied in an aqueous medium. Small aliquots of diesel oil and its aromatic fraction were incubated aerobically for periods of up to seven months and analysed by GC-MS. Biotic losses proved to be greater for aliphatic than aromatic compounds. Most biodegradation occurred within the first 20 d of incubation. The most rapid biodegradation, up to 65% in 8 d, was observed for n-alkanes (C14-C18). The same compounds were also shown to be less affected by abiotic losses. Biodegradation of n-alkanes from diesel oil and diesel oil itself showed first order kinetics for the initial incubation period. Aromatic compounds proved to be resistant to biodegradation and only phenanthrene had been degraded (30%) within 6 months.

  20. Personal inhalation exposure to polycyclic aromatic hydrocarbons and their nitro-derivatives in rural residents in northern Thailand.

    PubMed

    Orakij, Walaiporn; Chetiyanukornkul, Thaneeya; Chuesaard, Thanyarat; Kaganoi, Yuichi; Uozaki, Waka; Homma, Chiharu; Boongla, Yaowatat; Tang, Ning; Hayakawa, Kazuichi; Toriba, Akira

    2017-09-18

    A personal inhalation exposure and cancer risk assessment of rural residents in Lampang, Thailand, was conducted for the first time. This highlighted important factors that may be associated with the highest areal incidence of lung cancer. Personal exposure of rural residents to polycyclic aromatic hydrocarbons (PAHs) and their nitro-derivatives (NPAHs) through inhalation of fine particulate matter (PM 2.5 ) was investigated in addition to stationary air sampling in an urban area. The personal exposure of the subjects to PM 2.5 ranged from 44.4 to 316 μg/m 3 , and the concentrations of PAHs (4.2-224 ng/m 3 ) and NPAHs (120-1449 pg/m 3 ) were higher than those at the urban site, indicating that personal exposure was affected by microenvironments through individual activities. The smoking behaviors of the rural residents barely affected their exposure to PAHs and NPAHs compared to other sources. The most important factor concerning the exposure of rural populations to PAHs was cooking activity, especially the use of charcoal open fires. The emission sources for rural residents and urban air were evaluated using diagnostic ratios, 1-nitropyrene/pyrene, and benzo[a]pyrene/benzo[ghi]perylene. Their analyses showed a significant contribution to emission from residents' personal activities in addition to the atmospheric environment. Furthermore, the personal inhalation cancer risks for all rural subjects exceeded the USEPA guideline value, suggesting that the residents have a potentially increased cancer risk. The use of open fires showed the highest cancer risk. A reduction in exposure to air pollutants for the residents could potentially be achieved by using clean fuel such as liquid petroleum gas or electricity for daily cooking.

  1. In Vitro Enzymatic Depolymerization of Lignin with Release of Syringyl, Guaiacyl, and Tricin Units

    PubMed Central

    Gall, Daniel L.; Kontur, Wayne S.; Lan, Wu; Kim, Hoon; Li, Yanding; Ralph, John

    2017-01-01

    ABSTRACT New environmentally sound technologies are needed to derive valuable compounds from renewable resources. Lignin, an abundant polymer in terrestrial plants comprised predominantly of guaiacyl and syringyl monoaromatic phenylpropanoid units, is a potential natural source of aromatic compounds. In addition, the plant secondary metabolite tricin is a recently discovered and moderately abundant flavonoid in grasses. The most prevalent interunit linkage between guaiacyl, syringyl, and tricin units is the β-ether linkage. Previous studies have shown that bacterial β-etherase pathway enzymes catalyze glutathione-dependent cleavage of β-ether bonds in dimeric β-ether lignin model compounds. To date, however, it remains unclear whether the known β-etherase enzymes are active on lignin polymers. Here we report on enzymes that catalyze β-ether cleavage from bona fide lignin, under conditions that recycle the cosubstrates NAD+ and glutathione. Guaiacyl, syringyl, and tricin derivatives were identified as reaction products when different model compounds or lignin fractions were used as substrates. These results demonstrate an in vitro enzymatic system that can recycle cosubstrates while releasing aromatic monomers from model compounds as well as natural and engineered lignin oligomers. These findings can improve the ability to produce valuable aromatic compounds from a renewable resource like lignin. IMPORTANCE Many bacteria are predicted to contain enzymes that could convert renewable carbon sources into substitutes for compounds that are derived from petroleum. The β-etherase pathway present in sphingomonad bacteria could cleave the abundant β–O–4-aryl ether bonds in plant lignin, releasing a biobased source of aromatic compounds for the chemical industry. However, the activity of these enzymes on the complex aromatic oligomers found in plant lignin is unknown. Here we demonstrate biodegradation of lignin polymers using a minimal set of β-etherase pathway enzymes, the ability to recycle needed cofactors (glutathione and NAD+) in vitro, and the release of guaiacyl, syringyl, and tricin as depolymerized products from lignin. These observations provide critical evidence for the use and future optimization of these bacterial β-etherase pathway enzymes for industrial-level biotechnological applications designed to derive high-value monomeric aromatic compounds from lignin. PMID:29180366

  2. Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter

    USGS Publications Warehouse

    Lindsey, M.E.; Tarr, M.A.

    2000-01-01

    Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater than that expected based on a simple model in which aromatic compound molecules bound to NOM are considered to be unreactive. In this study, hydroxyl radical was produced at steady-state concentrations using Fenton chemistry (H2O2 + Fe2+ ??? Fe3+ + HO- + HO??). Suwannee River fulvic acid and humic acid were used as NOM. The most likely mechanism for the observed inhibition is that hydroxyl radical formation occurs in microenvironmental sites remote from the aromatic compounds. In addition to changes in kinetics, pyrene hydroxyl radical reaction also exhibited a mechanistic change in the presence of fulvic acid. The mechanism changed from a reaction that was apparently firstorder in pyrene to one that was apparently secondorder in pyrene, indicating that pyrene self-reaction may have become the dominant mechanism in the presence of fulvic acid. Dissolved NOM causes significant changes in the rate and mechanism of hydroxyl radical degradation of aromatic compounds. Consequently, literature rate constants measured in pure water will not be useful for predicting the degradation of pollutants in environmental systems. The kinetic and mechanistic information in this study will be useful for developing improved degradation methods involving Fenton chemistry.Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater than that expected based on a simple model in which aromatic compounds molecules bounds to NOM are considered to be unreactive. In this study, hydroxyl radical was produced at steady-state concentrations using Fenton chemistry (H2O2 + Fe2+ ??? Fe3+ + HO- + HO??). Suwannee River fulvic acid and humic acid were used as NOM. The most likely mechanisms for the observed inhibition is that hydroxyl radical formation occurs in microenvironmental sites remote from the aromatic compounds. In addition to changes in kinetics, pyrene hydroxyl radical reaction also exhibited a mechanistic change in the presence of fulvic acid. The mechanism changed from a reaction that was apparently first-order in pyrene to one that was apparently second-order in pyrene, indicating that pyrene self-reaction may have become the dominant mechanism in the presence of fulvic acid. Dissolved NOM causes significant changes in the rate and mechanism of hydroxyl radical degradation of aromatic compounds. Consequently, literature rate constants measured in pure water will not be useful for predicting the degradation of pollutants in environmental systems. The kinetic and mechanistic information in this study will be useful for developing improved degradation methods involving Fenton chemistry.

  3. EFFECT OF IRRADIANCE SPECTRA ON THE PHOTOINDUCED TOXICITY OF THREE POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light received. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events un...

  4. THE EFFECT OF IRRADIANCE SPECTRA ON THE PHOTOACTIVATED TOXICITY OF THREE POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light recieved. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events un...

  5. Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: A review

    USDA-ARS?s Scientific Manuscript database

    Residual pollutants including polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and carbon(aceous) nanoparticles are inevitably generated during the pyrolysis of waste biomass, and remain on the solid co-product called biochar. Such pollutants could have adverse effects on ...

  6. Decomposition mechanisms and kinetics of novel energetic molecules BNFF-1 and ANFF-1: quantum-chemical modeling.

    PubMed

    Tsyshevsky, Roman V; Kuklja, Maija M

    2013-07-18

    Decomposition mechanisms, activation barriers, Arrhenius parameters, and reaction kinetics of the novel explosive compounds, 3,4-bis(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazole (BNFF-1), and 3-(4-amino-1,2,5-oxadiazol-3-yl)-4-(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazole (ANFF-1) were explored by means of density functional theory with a range of functionals combined with variational transition state theory. BNFF-1 and ANFF-1 were recently suggested to be good candidates for insensitive high energy density materials. Our modeling reveals that the decomposition initiation in both BNFF-1 and ANFF-1 molecules is triggered by ring cleavage reactions while the further process is defined by a competition between two major pathways, the fast C-NO₂ homolysis and slow nitro-nitrite isomerization releasing NO. We discuss insights on design of new energetic materials with targeted properties gained from our modeling.

  7. Selective Sorbents For Purification Of Hydrocarbons

    DOEpatents

    Yang, Ralph T.; Yang, Frances H.; Takahashi, Akira; Hernandez-Maldonado, Arturo J.

    2006-04-18

    A method for removing thiophene and thiophene compounds from liquid fuel includes contacting the liquid fuel with an adsorbent which preferentially adsorbs the thiophene and thiophene compounds. The adsorption takes place at a selected temperature and pressure, thereby producing a non-adsorbed component and a thiophene/thiophene compound-rich adsorbed component. The adsorbent includes either a metal or a metal ion that is adapted to form p-complexation bonds with the thiophene and/or thiophene compounds, and the preferential adsorption occurs by p-complexation. A further method includes selective removal of aromatic compounds from a mixture of aromatic and aliphatic compounds.

  8. Selective sorbents for purification of hydrocarbons

    DOEpatents

    Yang, Ralph T.; Hernandez-Maldonado, Arturo J.; Yang, Frances H.; Takahashi, Akira

    2006-08-22

    A method for removing thiophene and thiophene compounds from liquid fuel includes contacting the liquid fuel with an adsorbent which preferentially adsorbs the thiophene and thiophene compounds. The adsorption takes place at a selected temperature and pressure, thereby producing a non-adsorbed component and a thiophene/thiophene compound-rich adsorbed component. The adsorbent includes either a metal or a metal cation that is adapted to form .pi.-complexation bonds with the thiophene and/or thiophene compounds, and the preferential adsorption occurs by .pi.-complexation. A further method includes selective removal of aromatic compounds from a mixture of aromatic and aliphatic compounds.

  9. Selective sorbents for purification of hydrocarbons

    DOEpatents

    Yang, Ralph T.; Yang, Frances H.; Takahashi, Akira; Hernandez-Maldonado, Arturo J.

    2006-05-30

    A method for removing thiophene and thiophene compounds from liquid fuel includes contacting the liquid fuel with an adsorbent which preferentially adsorbs the thiophene and thiophene compounds. The adsorption takes place at a selected temperature and pressure, thereby producing a non-adsorbed component and a thiophene/thiophene compound-rich adsorbed component. The adsorbent includes either a metal or a metal cation that is adapted to form .pi.-complexation bonds with the thiophene and/or thiophene compounds, and the preferential adsorption occurs by .pi.-complexation. A further method includes selective removal of aromatic compounds from a mixture of aromatic and aliphatic compounds.

  10. Selective sorbents for purification of hydrocartons

    DOEpatents

    Yang, Ralph T.; Yang, Frances H.; Takahashi, Akira; Hermandez-Maldonado, Arturo J.

    2006-12-12

    A method for removing thiophene and thiophene compounds from liquid fuel includes contacting the liquid fuel with an adsorbent which preferentially adsorbs the thiophene and thiophene compounds. The adsorption takes place at a selected temperature and pressure, thereby producing a non-adsorbed component and a thiophene/thiophene compound-rich adsorbed component. The adsorbent includes either a metal or a metal ion that is adapted to form .pi.-complexation bonds with the thiophene and/or thiophene compounds, and the preferential adsorption occurs by .pi.-complexation. A further method includes selective removal of aromatic compounds from a mixture of aromatic and aliphatic compounds.

  11. Radiosynthesis of carbon-11 and fluorine-18 labelled radiotracers to image the ionotropic and metabotropic glutamate receptors.

    PubMed

    Sobrio, Franck

    2013-01-01

    l-Glutamate is the major neurotransmitter in the central nervous system and activates both ionotropic and metabotropic receptors. Here the radiosynthesis of radiotracers developed for both types of receptors are reviewed with a highlight on the radiopharmaceuticals used or evaluated in humans. At first, radiotracers were developed for ionotropic N-methyl-d-aspartate receptors without any success to obtain radiopharmaceuticals useable for clinical or even preclinical positron emission tomography (PET) imaging purposes. Some compounds were radiolabelled and evaluated for α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors without any successful results. The recent development of radiotracers for metabotropic glutamate receptors was more efficient because radiopharmaceuticals are currently evaluated or used in clinical trials to study the mGluR1, mGluR2 or mGluR5 receptors by PET. Although the majority of the radiotracers were classically labelled with carbon-11 by O- or N-[(11) C]-methylation or with fluorine-18 nucleophilic substitution of aromatic nitro or halogeno precursors using krypofix 2.2.2/potassium [(18) F]fluoride complex, some radiosyntheses were performed with recent radiolabelling reactions like the use of iodionium salt for [(18) F]-labelling. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Bioremediation of p-Nitrophenol by Pseudomonas putida 1274 strain

    PubMed Central

    2014-01-01

    Background p-Nitrophenol (PNP) occurs as contaminants of industrial effluents and it is the most important environmental pollutant and causes significant health and environmental risks, because it is toxic to many living organisms. Nevertheless, the information regarding PNP degradation pathways and their enzymes remain limited. Objective To evaluate the efficacy of the Pseudomonas Putida 1274 for removal of PNP. Methods P. putida MTCC 1274 was obtained from MTCC Chandigarh, India and cultured in the minimal medium in the presence of PNP. PNP degradation efficiency was compared under different pH and temperature ranges. The degraded product was isolated and analyzed with different chromatographic and spectroscopic techniques. Results P. putida 1274 shows good growth and PNP degradation at 37°C in neutral pH. Acidic and alkali pH retarded the growth of P. putida as well as the PNP degradation. On the basis of specialized techniques, hydroquinone was identified as major degraded product. The pathway was identified for the biodegradation of PNP. It involved initial removal of the nitrate group and formation of hydroquinone as one of the intermediates. Conclusion Our results suggested that P. putida 1274 strain would be a suitable aspirant for bioremediation of nitro-aromatic compounds contaminated sites in the environment. PMID:24581307

  13. Natural polymers supported copper nanoparticles for pollutants degradation

    NASA Astrophysics Data System (ADS)

    Haider, Sajjad; Kamal, Tahseen; Khan, Sher Bahadar; Omer, Muhammad; Haider, Adnan; Khan, Farman Ullah; Asiri, Abdullah M.

    2016-11-01

    In this report, chitosan (CS) was adhered on cellulose microfiber mat (CMM) to prepare CS-CMM. This was used as host for copper (Cu) nanoparticles preparation. After adsorption of Cu2+ ions from an aqueous solution of CuSO4, the metal ions entrapped in CS coating layer was treated with sodium borohydride (NaBH4) to prepare Cu nanoparticles loaded CS-CMM (Cu/CS-CMM). Fourier transform infrared spectroscopy, and X-ray diffraction confirmed the formation of Cu/CS-CMM hybrid. Scanning electron microscopy analysis was performed to reveal the morphology of the prepared catalyst. The prepared Cu/CS-CMM was employed as a catalyst for the degradation of nitro-aromatic compounds of 2-nitrophenol (2NP) and 4-nitrophenol (4NP) as well as an organic cresyl blue (CB) dye. Remarkably, the turnover frequency in the case of 2NP and 4NP using Cu/CS-CMM reaches 103.3 and 88.6 h-1, outperforming previously reported Cu nanoparticles immobilized in hydrogel-based catalytic systems. The rate constants for 2NP, 4NP and CB were 1.2 × 10-3 s-1, 2.1 × 10-3 s-1 and, 1.3 × 10-3 s-1, respectively. Besides, we discussed the separation of the catalyst from the reaction mixture and its re-usability.

  14. Investigation of Source of Irritant Gas Produced by PATRIOT Missile System Air Conditioners

    DTIC Science & Technology

    1986-03-31

    is the mass fragment CF3 . It is a common fragment of perfluorinated hydrocarbons, and is found to be present in most of the compounds detected by...used would allow detection of the target par3meters acrolein, aromatics, a broad range of organic compounds ,. formaldehyde, and hydrogen cyanide...organic compounds were observed. Thus, aromatic organic compounds were not produced by or from any of the four new units tested. 4 1CZ 3) With the

  15. DNA tests for strawberry: mesifurane "sherry" aroma - FaOMT-SI/NO

    USDA-ARS?s Scientific Manuscript database

    The amazing flavor and texture in strawberries is caused by a complex balance of numerous sugars and aromatic compounds. One of the most important aromatic compounds contributing to the flavor we have come to love in strawberries is mesifurane. Mesifurane produces a sweet sherry-like aroma and incre...

  16. Aqueous and Tissue Residue-Based Interspecies Correlation Estimation Models Provide Conservative Hazard Estimates for Aromatic Compounds

    EPA Science Inventory

    Interspecies correlation estimation (ICE) models were developed for 30 nonpolar aromatic compounds to allow comparison of prediction accuracy between 2 data compilation approaches. Type 1 models used data combined across studies, and type 2 models used data combined only within s...

  17. Magnetic Carbon Supported Palladium Nanoparticles: An Efficient and Sustainable Catalyst for Hydrogenation Reactions

    EPA Science Inventory

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; the catalyst can be used for the hydrogenation of alkenes and reduction of aryl nitro compounds.

  18. Green synthesis, characterization and some physico-chemical studies on a novel intermolecular compound; 4-nitro-o-phenylenediamine-N, N-dimethylaminobenzaldehyde system

    NASA Astrophysics Data System (ADS)

    Rai, U. S.; Singh, Manjeet; Rai, R. N.

    2017-09-01

    An inter-molecular compound (IMC) L1 was synthesized by taking 1:1 molar ratio of p-nitro-o-phenylenediamine (NOPDA) and N, N-dimethylaminobenzaldehyde (DMAB) via thermally initiated solid state reaction. It was characterized by X-ray diffraction, spectral and optical studies. The single crystal of the (L1) was grown from saturated solution of ethanol using slow evaporation technique at 29 °C. From the single crystal X-ray diffraction analysis, it can be inferred that it crystallizes in triclinic unit cell with P-1 space group (CCDC No 1422765). Absorption spectrum of IMC (L1) shows a band at 318 nm attributed to the intra-molecular charge-transfer (ICT) excited state absorption and the other band at 376 nm is due to n→π* transition. The IMC (L1) shows a strong fluorescence at 418 nm with a Stokes shift (≈100 nm) and quantum efficiency (0.22) upon excitation in methyl alcohol at 318 nm.

  19. Dependence of the basic properties of meso-nitro-substituted derivatives of β-octaethylporphyrin on the nature of substituents

    NASA Astrophysics Data System (ADS)

    Pukhovskaya, S. G.; Ivanova, Yu. B.; Nam, Dao The; Vashurin, A. S.

    2014-10-01

    Spectrophotometric titration is used to study the basic properties of a series of porphyrins with a continuously increasing degree of macrocycle deformation resulting from the introduction of strong electron-withdrawing substituents: 2,3,7,8,12,13,17,18-octaethylporphyrin ( I), 5-nitro-2,3,7,8,12,13,17,18-octaethylporphyrin ( II), 5,15-dinitro-2,3,7,8,12,13,17,18-octaethylporphyrin ( III), 5,10,15-trinitro-2,3,7,8,12,13,17,18-octaethylporphyrin ( IV), and 5,10,15,20-tetranitro-2,3,7,8,12,13,17,18-octaethylporphyrin ( V). It is found that the values of log K b (total basicity constants) obtained for the investigated compounds consistently diminish with an increase in the number of meso-substituents: 11.85 ( I) > 10.45 ( II) > 10.31 ( III) > 10.23 ( IV) > 9.56 ( V). It is shown that two opposing factors, the steric and electronic effects of the substituents, change the basic properties of the above series of compounds.

  20. Photochemical reactions of aromatic compounds and the concept of the photon as a traceless reagent.

    PubMed

    Hoffmann, Norbert

    2012-11-01

    Electronic excitation significantly changes the reactivity of chemical compounds. Compared to ground state reactions, photochemical reactions considerably enlarge the application spectrum of a particular functional group in organic synthesis. Multistep syntheses may be simplified and perspectives for target oriented synthesis (TOS) and diversity oriented synthesis (DOS) are developed. New compound families become available or may be obtained more easily. In contrast to common chemical reagents, photons don't generate side products resulting from the transformation of a chemical reagent. Therefore, they are considered as a traceless reagent. Consequently, photochemical reactions play a central role in the methodology of sustainable chemistry. This aspect has been recognized since the beginning of the 20th century. As with many other photochemical transformations, photochemical reactions of aromatic, benzene-like compounds illustrate well the advantages in this context. Photochemical cycloadditions of aromatic compounds have been investigated for a long time. Currently, they are applied in various fields of organic synthesis. They are also studied in supramolecular structures. The phenomena of reactivity and stereoselectivity are investigated. During recent years, photochemical electron transfer mediated reactions are particularly focused. Such transformations have likewise been performed with aromatic compounds. Reactivity and selectivity as well as application to organic synthesis are studied.

  1. Synthesis and biological evaluation of novel 6-hydroxy-benzo[d][1,3]oxathiol-2-one Schiff bases as potential anticancer agents.

    PubMed

    Chazin, Eliza de Lucas; Sanches, Paola de Souza; Lindgren, Eric Brazil; Vellasco Júnior, Walcimar Trindade; Pinto, Laine Celestino; Burbano, Rommel Mario Rodríguez; Yoneda, Julliane Diniz; Leal, Kátia Zaccur; Gomes, Claudia Regina Brandão; Wardell, James Lewis; Wardell, Solange Maria Silva Veloso; Montenegro, Raquel Carvalho; Vasconcelos, Thatyana Rocha Alves

    2015-01-27

    With the aim of discovering new anticancer agents, we have designed and synthesized novel 6-hydroxy-benzo[d][1,3]oxathiol-2-one Schiff bases. The synthesis started with the selective nitration at 5-position of 6-hydroxybenzo[d][1,3]oxathiol-2-one (1) leading to the nitro derivative 2. The nitro group of 2 was reduced to give the amino intermediate 3. Schiff bases 4a-r were obtained from coupling reactions between 3 and various benzaldehydes and heteroaromatic aldehydes. All the new compounds were fully identified and characterized by NMR (1H and 13C) and specifically for 4q by X-ray crystallography. The in vitro cytotoxicity of the compounds was evaluated against cancer cell lines (ACP-03, SKMEL-19 and HCT-116) by using MTT assay. Schiff bases 4b and 4o exhibited promising cytotoxicity against ACP-03 and SKMEL-19, respectively, with IC50 values lower than 5 μM. This class of compounds can be considered as a good starting point for the development of new lead molecules in the fight against cancer.

  2. Solid state synthesis, structural, physicochemical and optical properties of an inter-molecular compound: 2-hydroxy-1, 2-diphenylethanone-4-nitro-o-phenylenediamine system

    NASA Astrophysics Data System (ADS)

    Rai, U. S.; Singh, Manjeet; Rai, R. N.

    2017-09-01

    The phase diagram of 2-hydroxy-1, 2-diphenylethanone (HDPE)-4-nitro-o-phenylenediamine (NOPDA) system, determined by the thaw-melt method, gives two eutectics E1 (m p = 66.0 °C) and E2 (m p = 155.0 °C) with 0.30 and 0.55 mol fractions of NOPDA, respectively, and an 1:1 inter-molecular compound (IMC) (m p 162.0 °C). This IMC was synthesized by adopting the green synthetic method of solid state reaction. While its formation and structure were confirmed by the X-ray diffraction and spectroscopic methods, the ORTEP view gives mode of crystal packing, C‒H…O, C‒H…N, π-π stacking and the inter-molecular hydrogen bonding in the compound. The single crystal of the IMC shows 53% transmission and emits significantly higher dual fluorescence, and the band gap was computed to be 3.04 eV. The values of solubility of the IMC, measured in the temperature range 304-322 K, satisfy the mole fraction (X) and temperature equation: Xeq= 5.1324 × 10-7 e 0.01356T.

  3. Photooxidation products of polycyclic aromatic compounds containing sulfur.

    PubMed

    Bobinger, Stefan; Andersson, Jan T

    2009-11-01

    Photooxidation of crude oil components is an important process that removes pollutants from the environment. Polycyclic aromatic compounds (PACs) are known to be toxic to many life forms, but little is known about their photooxidation products in the aqueous phase. We here identify a large number of photoproducts from 11 benzothiophenes, a polycyclic aromatic sulfur heterocycle that is a major representative of PACs in crude oil. The investigated compounds contain two to four methyl groups and an ethyl or an n-octyl group. In water, the products arise through oxidation of alkyl side chains to aldehydes and carboxylic acids or through an opening in one of the aromatic rings. The product analysis was performed using gas chromatography with mass spectrometric or atomic emission detection. The main product is always a sulfobenzoic acid, which strongly lowers the pH of the solution. With long alkyl substituents, surfactants are formed, which may possess solubilizing properties in water. The larger the number of alkyl groups, the faster is the photooxidation. Several of the identified acidic compounds were also found when whole crude oil was photooxidized, showing that simulation with individual compounds reflects the situation in whole crude.

  4. Selective Oxidation of Lignin Model Compounds.

    PubMed

    Gao, Ruili; Li, Yanding; Kim, Hoon; Mobley, Justin K; Ralph, John

    2018-05-02

    Lignin, the planet's most abundant renewable source of aromatic compounds, is difficult to degrade efficiently to welldefined aromatics. We developed a microwave-assisted catalytic Swern oxidation system using an easily prepared catalyst, MoO 2 Cl 2 (DMSO) 2 , and DMSO as the solvent and oxidant. It demonstrated high efficiency in transforming lignin model compounds containing the units and functional groups found in native lignins. The aromatic ring substituents strongly influenced the selectivity of β-ether phenolic dimer cleavage to generate sinapaldehyde and coniferaldehyde, monomers not usually produced by oxidative methods. Time-course studies on two key intermediates provided insight into the reaction pathway. Owing to the broad scope of this oxidation system and the insight gleaned with regard to its mechanism, this strategy could be adapted and applied in a general sense to the production of useful aromatic chemicals from phenolics and lignin. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Activity of selected aromatic amino acids in biological systems.

    PubMed

    Krzyściak, Wirginia

    2011-01-01

    Besides the structural function in proteins, aromatic amino acids are precursors of many important biological compounds essential for normal functioning of the human organism. Many of these compounds may be used as markers for identification of specific pathological states. Comprehensive knowledge about the metabolism of aromatic amino acids and mechanisms of action of their metabolites made it possible to develop effective treatments for many disorders. However, it should not be forgotten that in some pathological conditions, these compounds could not only be involved in the pathogenesis of many disease entities but could also be used as an important tool in prediction of many diseases. This paper contains a review of published literature on aromatic amino acids in the context of physiological processes of the human body and chosen social disorders, such as cancers; psychiatric disorders: depression, anxiety states, schizophrenia, bipolar affective disorders; neurodegenerative, and cardiovascular diseases; chronic kidney insufficiency or diabetes.

  6. Methods for performing electrochemical nitration reactions

    DOEpatents

    Lister, Tedd Edward; Fox, Robert Vincent

    2010-05-11

    A method for the electrochemical synthesis of dinitro compounds is disclosed. The method comprises using an anode to oxidize an inactive chemical mediator, such as a ferrocyanide (Fe(CN).sub.6.sup.-4) ion, to an active chemical mediator or oxidizing agent, such as a ferricyanide (Fe(CN).sub.6.sup.-3) ion, in the presence of a differential voltage. The oxidizing agent reacts with a nitro compound and a nitrite ion to form a geminal dinitro compound. The anode may continuously oxidize ferrocyanide to regenerate active ferricyanide, thus keeping sufficient amounts of ferricyanide available for reaction..

  7. (1E,2E)-1,2-Bis[1-(3-nitro­phen­yl)ethyl­idene]hydrazine

    PubMed Central

    Asik, Safra Izuani Jama; Fun, Hoong-Kun; Razak, Ibrahim Abdul; Jansrisewangwong, Patcharaporn; Chantraproma, Suchada

    2012-01-01

    The asymmetric unit of the title compound, C16H14N4O4, contains one half-mol­ecule of (nitro­phen­yl)ethanimine and the complete mol­ecule is generated by a crystallographic inversion centre. The mol­ecule has an E conformation with respect to each C=N double bond. The central C=N—N=C plane is twisted from the benzene rings with a dihedral angle of 24.76 (11)°. In the crystal, C—H⋯O inter­actions link the molecules to form sheets that lie parallel to (10-4). PMID:22412546

  8. 2-(4-Chloro-3-nitro­phen­yl)-4-(4-chloro­phen­yl)-1,3-thia­zole

    PubMed Central

    Nayak, Susanta K.; Venugopala, K. N.; Chopra, Deepak; Govender, Thavendran; Kruger, Hendrik G.; Maguire, Glenn E. M.; Guru Row, T. N.

    2009-01-01

    The title compound, C15H8Cl2N2O2S, crystallizes with two mol­ecules in the asymmetric unit. The dihedral angles between the 4-chloro-3-nitro­phenyl ring and the thia­zole ring are 0.5 (1) and 7.1 (1)° and those between the 4-chloro­phenyl ring and the thia­zole ring are 7.1 (1) and 7.4 (1)° in the two mol­ecules. The crystal structure is stabilized by inter­molecular C—H⋯Cl and C—H⋯O hydrogen bonds. PMID:21578228

  9. Dicarboxylic acid anhydride condensation with compounds containing active methylene groups. 4: Some 4-nitrophthalic anhydride condensation reactions

    NASA Technical Reports Server (NTRS)

    Oskaja, V.; Rotberg, J.

    1985-01-01

    By 4-nitrophthalic anhydride condensation with acetoacetate in acetic anhydride and triethylamine solution with subsequent breakdown of the intermediate condensation product, 5-nitroindanedione-1,3 was obtained. A 4-nitrophthalic anhydride with acetic anhydride, according to reaction conditions, may yield two products: in the presence of potassium acetate and at high temperatures 4-(or 5-)-nitro-2-acetylbenzoic acid is formed: in the presence of triethylamine and at room temperature 5-( or 6-)-nitrophthalic acetic acid is isolated. A 4-nitrophthalic anhydride and malonic acid in pyridine solution according to temperature yield either 5-( or 6-)-nitrophthalic acetic acid or 4-(or 5-)-nitro-2-acetylbenzoic acid.

  10. Amination of electrophilic aromatic compounds by vicarious nucleophilic substitution

    DOEpatents

    Mitchell, Alexander R.; Pagoria, Philip F.; Schmidt, Robert D.

    2000-01-01

    The present invention relates to a process to aminate electrophilic aromatic compounds by vicarious nucleophilic substitution of hydrogen using quaternary hydrazinium salts. The use of trialkylhydrazinium halide, e.g., trimethylhydrazinium iodide, as well as hydroxylamine, alkoxylamines, and 4-amino-1,2,4-triazole to produce aminated aromatic structures, such as 1,3-diamino-2,4,6-trinitrobenzene (DATB), 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and 3,5-diamino-2,4,6-trinitrotoluene (DATNT), is described. DATB and TATB are useful insensitive high explosives. TATB is also used for the preparation of benzenehexamine, a starting material for the synthesis of novel materials (optical imaging devices, liquid crystals, ferromagnetic compounds).

  11. Influence of polychlorinated aromatic compounds on the biotransformation and toxicity of organophosphorus pesticides (OP) to the Daphnia magna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonkopii, V.; Zagrebin, A.; Sherstneva, L.

    1995-12-31

    The effect of different polychlorinated aromatics (DDT, Aroclor 1254, certain polychlorinated biphenyls and dibenzofurans) on the toxicity of OP (DDVP paraoxon, malaoxon) to Daphnia magna was studied. Pretreatment of daphnids with chlorinated compounds during 72 hours in nontoxic concentrations (1/5--1/20 CL{sub 50}) has been shown to reduce the toxicity of OP for hydrobionts. For study of influence of chlorinated compounds on biotransformation of OP the activity of enzymes which are hydrolyzing the OP was investigated in Daphnia`s homogenates or microsomes. The activity of carboxylesterase (tributyrinase, aliesterase) and arylesterase (phosphorylphosphatase) with usage as substrates accordingly {alpha}-naphthylacetate and paraoxon was measured. Besidesmore » that the activity of cholinesterase with application of propionylthiocholine as substrate was determined. After polychlorinated aromatic compounds treatment of daphnids activities of both aryl-and carboxylesterase increased markedly. It decreased the inhibition of Daphnia`s cholinesterase caused by incubation with OP in concentrations 0.5--1.0 CL{sub 50}. Thus the induction by chlorinate aromatics of OP metabolizing enzymes seems to play the important role in reduction of OP toxicity to Daphnia magna. Perhaps the aryl- and carboxylesterase of Daphnia can be used as biomarkers of pollution by polychlorinated aromatics in water.« less

  12. Anti-Tumor Activity of a Novel HS-Mimetic-Vascular Endothelial Growth Factor Binding Small Molecule

    PubMed Central

    Sugahara, Kazuyuki; Thimmaiah, Kuntebommanahalli N.; Bid, Hemant K.; Houghton, Peter J.; Rangappa, Kanchugarakoppal S.

    2012-01-01

    The angiogenic process is controlled by variety of factors of which the vascular endothelial growth factor (VEGF) pathway plays a major role. A series of heparan sulfate mimetic small molecules targeting VEGF/VEGFR pathway has been synthesized. Among them, compound 8 (2-butyl-5-chloro-3-(4-nitro-benzyl)-3H-imidazole-4-carbaldehyde) was identified as a significant binding molecule for the heparin-binding domain of VEGF, determined by high-throughput-surface plasmon resonance assay. The data predicted strong binding of compound 8 with VEGF which may prevent the binding of VEGF to its receptor. We compared the structure of compound 8 with heparan sulfate (HS), which have in common the functional ionic groups such as sulfate, nitro and carbaldehyde that can be located in similar positions of the disaccharide structure of HS. Molecular docking studies predicted that compound 8 binds at the heparin binding domain of VEGF through strong hydrogen bonding with Lys-30 and Gln-20 amino acid residues, and consistent with the prediction, compound 8 inhibited binding of VEGF to immobilized heparin. In vitro studies showed that compound 8 inhibits the VEGF-induced proliferation migration and tube formation of mouse vascular endothelial cells, and finally the invasion of a murine osteosarcoma cell line (LM8G7) which secrets high levels of VEGF. In vivo, these effects produce significant decrease of tumor burden in an experimental model of liver metastasis. Collectively, these data indicate that compound 8 may prevent tumor growth through a direct effect on tumor cell proliferation and by inhibition of endothelial cell migration and angiogenesis mediated by VEGF. In conclusion, compound 8 may normalize the tumor vasculature and microenvironment in tumors probably by inhibiting the binding of VEGF to its receptor. PMID:22916091

  13. Evaluation of Weapons’ Combustion Products in Armored Vehicles

    DTIC Science & Technology

    1989-01-01

    H.S, SO HC ) Particulates Filter Gravimetry This program also addressed other pollutants including volatile organic compounds, aldehydes and nitro...the number of samples collected due to failure of pumps as a result of vibrational stress, precipitation , restriction of sample flow tube in vests, or

  14. Metal complexes of substituted Gable porphyrins as oxidation catalysts

    DOEpatents

    Lyons, James E.; Ellis, Jr., Paul E.; Wagner, Richard W.

    1996-01-01

    Transition metal complexes of Gable porphyrins having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

  15. Embryotoxic and teratogenic effects of petroleum hydrocarbons in mallards (Anas platyrhynchos)

    USGS Publications Warehouse

    Hoffman, D.J.

    1979-01-01

    Egg surface applications of microliter quantities of crude and refined oils of high aromatic content are embryotoxic to mallards (Anas platyrhynchos) and other avian species; applications of aliphatic hydrocarbons have virtually no effect. Mallard eggs at 72 h of development were exposed to a mixture of aromatic hydrocarbons or to aromatic compounds representative to those present in crude oil to assess their toxicity. The class composition of the mixture was similar to that of South Louisiana crude oil, an American Petroleum Institute reference oil. Application of 20 microliter of the mixture reduced embryonic survival by nearly 70%. The temporal pattern of embryonic death was similar to that after exposure to South Louisiana crude oil. Embryonic growth was stunted, as reflected by weight, crown-rump length, and bill length, and there was a significant increase in the incidence of abnormal survivors. When individual classes of aromatic hydrocarbons were tested, tetracyclics caused some embryonic death at the concentrations in the mixture. When classes were tested in all possible combinations of two, no combination appeared to be as toxic as the entire mixture. Addition of the tetracyclic compound chrysene to the aromatic mixture considerably enhanced embryotoxicity, but could not completely account for the toxicity of the crude oil. The presence of additional unidentified polycyclic aromatic hydrocarbons as well as methylated derivatives of polycyclic aromatic compounds such as chrysene may further account for the embryotoxicity of the crude oil.

  16. Studies on in vitro biostability and blood compatibility of polyurethane potting compound based on aromatic polymeric MDI for extracorporeal devices.

    PubMed

    Hridya, V K; Jayabalan, M

    2009-12-01

    Polyurethane potting compound based on aromatic isocyanurate of polymeric MDI, poly propylene glycol (PPG400) and trimethylol propane (TMP) has significant favourable properties, good pot life and setting characteristics. The cured potting compound of this formulation has appreciable thermal stability and mechanical properties. In vitro biostability of cured potting compound has been found to be excellent without any significant degradation in simulated physiological media and chemical environment. Studies on blood-material interaction and cytotoxicity reveal in vitro blood compatibility and compatibility with cells of this potting compound.

  17. Structure-activity relationship and docking studies of thiazolidinedione-type compounds with monoamine oxidase B.

    PubMed

    Carroll, Richard T; Dluzen, Dean E; Stinnett, Hilary; Awale, Prabha S; Funk, Max O; Geldenhuys, Werner J

    2011-08-15

    The neuroprotective activity of pioglitazone and rosiglitazone in the MPTP parkinsonian mouse prompted us to evaluate a set of thiazolidinedione (TZD) type compounds for monoamine oxidase A and B inhibition activity. These compounds were able to inhibit MAO-B over several log units of magnitude (82 nM to 600 μM). Initial structure-activity relationship studies identified key areas to modify the aromatic substituted TZD compounds. Primarily, substitutions on the aromatic group and the TZD nitrogen were key areas where activity was enhanced within this group of compounds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Nitroxoline Molecule: Planar or Not? A Story of Battle between π-π Conjugation and Interatomic Repulsion.

    PubMed

    Tikhonov, Denis S; Sharapa, Dmitry I; Otlyotov, Arseniy A; Solyankin, Peter M; Rykov, Anatolii N; Shkurinov, Alexander P; Grikina, Olga E; Khaikin, Leonid S

    2018-02-15

    The conformational properties of the nitro group in nitroxoline (8-hydroxy-5-nitroquinoline, NXN) were investigated in the gas phase by means of gas electron diffraction (GED) and quantum chemical calculations, and also with solid-state analysis performed using terahertz time-domain spectroscopy (THz-TDS). The results of the GED refinement show that in the equilibrium structure the NO 2 group is twisted by angle ϕ = 8 ± 3° with respect to the 8-hydroxyoquinoline plane. This is the result of interatomic repulsion of oxygen in the NO 2 group from the closest hydrogen, which overcomes the energy gain from the π-π conjugation of the nitro group and aromatic system of 8-hydroxyoquinoline. The computation of equilibrium geometry using MP2/cc-pVXZ (X = T, Q) shows a large overestimation of the ϕ value, while DFT with the cc-pVTZ basis set performs reasonably well. On the other hand, DFT computations with double-ζ basis sets yield a planar structure of NXN. The refined potential energy surface of the torsion vibration the of nitro group in the condensed phase derived from the THz-TDS data indicates the NXN molecule to be planar. This result stays in good agreement with the previous X-ray structure determination. The strength of the π-system conjugation for the NO 2 group and 8-hydroxyoquinoline is discussed using NBO analysis, being further supported by comparison of the refined semiexperimental gas-phase structure of NXN from GED with other nitrocompounds.

  19. Theoretical investigation of the interaction between aromatic sulfur compounds and [BMIM](+)[FeCl4](-) ionic liquid in desulfurization: A novel charge transfer mechanism.

    PubMed

    Li, Hongping; Zhu, Wenshuai; Chang, Yonghui; Jiang, Wei; Zhang, Ming; Yin, Sheng; Xia, Jiexiang; Li, Huaming

    2015-06-01

    In this work, interaction nature between a group of aromatic sulfur compounds and [BMIM](+)[FeCl4](-) have been investigated by density functional theory (DFT). A coordination structure is found to be critical to the mechanism of extractive desulfurization. Interaction energy and extractive selectivity follow the order: thiophene (TH)

  20. Influence of silicon defects on the adsorption of thiophene-like compounds on polycyclic aromatic hydrocarbons: a theoretical study using thiophene + coronene as the simplest model.

    PubMed

    Galano, Annia

    2007-03-08

    Physisorption and chemisorption processes of thiophene on coronene and 2Si-coronene have been studied using density functional theory and MP2 methods. These systems have been chosen as the simplest models to describe the adsorption of thiophene-like compounds on polycyclic aromatic hydrocarbons (PAHs). The calculated data suggest that the presence of silicon atoms in PAHs could favor their interaction with thiophene and similar compounds. Small stabilization energies have been found for several physisorbed complexes. The thiophene chemisorption on coronene seems very unlikely to occur, while that on 2Si-coronene leads to addition products which are very stable, with respect to the isolated reactants. These chemisorption processes were found to be exoergic (DeltaG < 0) in the gas phase and in the nonpolar liquid phase. The results reported in this work suggest that silicon defects on extended polycyclic aromatic hydrocarbons, such as graphite, soot, and large-diameter carbon nanotubes, could make them useful in the removal processes of aromatic sulfur compounds from oil hydrocarbons.

  1. Substituent effect on the oxidation of phenols and aromatic amines by horseradish peroxidase compound I.

    PubMed

    Job, D; Dunford, H B

    1976-07-15

    A stopped-flow kinetic study shows that the reduction rate of horseradish peroxidase compound I by phenols and aromatic amines is greatly dependent upon the substituent effect on the benzene ring. Morever it has been possible to relate the reduction rate constants of monosubstituted substrates by a linear free-energy relationship (Hammett equation). The correlation of log (rate constants) with sigma values (Hammett equation) and the absence of correlation with sigma+ values (Okamoto-Brown equation) can be explained by a mechanism of aromatic substrate oxidations, in which the substrate gives an electron to the enzyme compound I and simultaneously loses a proton. The analogy which has been made with oxidation potentials of phenols or anilines strengthens the view that the reaction is only dependent on the relative ease of oxidation of the substrate. The rate constant obtained for p-aminophenol indicates that a value of 2.3 X 10(8) M-1 S-1 probably approaches the diffusion-controlled limit for a bimolecular reaction involving compound I and an aromatic substrate.

  2. Shape-selective adsorption of aromatic molecules from water by tetramethylammonium-smectite

    USGS Publications Warehouse

    Lee, J.; Mortland, M.M.; Boyd, S.A.; Chiou, C.T.

    1989-01-01

    The adsorption of aromatic compounds by smectite exchanged with tetramethylammonium (TMA) has been studied. Aromatic compounds adsorbed by TMA-smectite are assumed to adopt a tilted orientation in a face-to-face arrangment with the TMA tetrahedra. The sorptive characteristics of TMA-smectite were influenced strongly by the presence of water. The dry TMA-smectite showed little selectivity in the uptake of benzen, toluene and xylene. In the presence of water, TMA-smectite showed a high degree of selectivity based on molecular size/shape, resulting in high uptake of benzene and progressively lower uptake of larger aromatic molecules. This selectivity appeared to result from the shrinkage of interlamellar cavities by water.

  3. Polybenzimidazole via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Joseph G. (Inventor)

    1994-01-01

    Di(hydroxyphenyl)benzimidazole monomers were prepared from phenyl-4-hydroxybenzoate and aromatic bis(o-diamine)s. These monomers were used in the synthesis of soluble polybenzimidazoles. The reaction involved the aromatic nucleophilic displacement of various di(hydroxyphenyl)benzimidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds in the presence of an alkali metal base. These polymers exhibited lower glass transition temperatures, improved solubility, and better compression moldability over their commercial counterparts.

  4. Highly effective degradation of selected groups of organic compounds by cavitation based AOPs under basic pH conditions.

    PubMed

    Gągol, Michał; Przyjazny, Andrzej; Boczkaj, Grzegorz

    2018-07-01

    Cavitation has become on the most often applied methods in a number of industrial technologies. In the case of oxidation of organic pollutants occurring in the aqueous medium, cavitation forms the basis of numerous advanced oxidation processes (AOPs). This paper presents the results of investigations on the efficiency of oxidation of the following groups of organic compounds: organosulfur, nitro derivatives of benzene, BTEX, and phenol and its derivatives in a basic model effluent using hydrodynamic and acoustic cavitation combined with external oxidants, i.e., hydrogen peroxide, ozone and peroxone. The studies revealed that the combination of cavitation with additional oxidants allows 100% oxidation of the investigated model compounds. However, individual treatments differed with respect to the rate of degradation. Hydrodynamic cavitation aided by peroxone was found to be the most effective treatment (100% oxidation of all the investigated compounds in 60 min). When using hydrodynamic and acoustic cavitation alone, the effectiveness of oxidation was diversified. Under these conditions, nitro derivatives of benzene and phenol and its derivatives were found to be resistant to oxidation. In addition, hydrodynamic cavitation was found to be more effective in degradation of model compounds than acoustic cavitation. The results of investigations presented in this paper compare favorably with the investigations on degradation of organic contaminants using AOPs under conditions of basic pH published thus far. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Reversible inhibition of cathepsin L-like proteases by 4-mer pseudopeptides.

    PubMed

    Lecaille, F; Cotton, J; McKerrow, J H; Ferrer-Di Martino, M; Boll-Bataillé, E; Gauthier, F; Lalmanach, G

    2001-11-02

    A library of 121 pseudopeptides was designed to develop reversible inhibitors of trypanosomal enzymes (cruzain from Trypanosoma cruzi and congopain from Trypanosoma congolense). The peptides share the framework: Cha-X1-X2-Pro (Cha=cyclohexyl-alanine, X1 and X2 were phenylalanyl analogs), based on a previous report [Lecaille, F., Authié, E., Moreau, T., Serveau, C., Gauthier, F. and Lalmanach, G. (2001) Eur. J. Biochem. 268, 2733-2741]. Five peptides containing a nitro-substituted aromatic residue (Tyr/Phe) and one a 4-chloro-phenylalanine at the X1 position, and 3-(2-naphthyl)-alanine, homocyclohexylalanine or 3-nitro-tyrosine (3-NO(2)-Tyr) at the X2 position, were selected. They inhibited congopain more effectively than cruzain, except Cha-4-NO(2)-Phe-3-NO(2)-Tyr-Pro which bound the two parasitic enzymes similarly. Among this series, Cha-3-NO(2)-Tyr-HoCha-Pro and Cha-4-NO(2)-Phe-3-NO(2)-Tyr-Pro are the most selective for congopain relative to host cathepsins. No hydrolysis occurred upon prolonged incubation time with purified enzymes. In addition introduction of non-proteogenic residues in the peptidyl backbone greatly enhanced resistance to proteolysis by mammalian sera.

  6. Photoluminescence spectroscopy of YVO4:Eu3+ nanoparticles with aromatic linker molecules: A precursor to biomedical functionalization

    NASA Astrophysics Data System (ADS)

    Senty, T. R.; Yalamanchi, M.; Zhang, Y.; Cushing, S. K.; Seehra, M. S.; Shi, X.; Bristow, A. D.

    2014-04-01

    Photoluminescence spectra of YVO4:Eu3+ nanoparticles are presented, with and without the attachment of organic molecules that are proposed for linking to biomolecules. YVO4:Eu3+ nanoparticles with 5% dopant concentration were synthesized via wet chemical synthesis. X-ray diffraction and transmission electron microscopy show the expected wakefieldite structure of tetragonal particles with an average size of 17 nm. Fourier-transform infrared spectroscopy determines that metal-carboxylate coordination is successful in replacing native metal-hydroxyl bonds with three organic linkers, namely, benzoic acid, 3-nitro 4-chloro-benzoic acid, and 3,4-dihydroxybenzoic acid, in separate treatments. UV-excitation photoluminescence spectra show that the position and intensity of the dominant 5D0 - 7F2 electric-dipole transition at 619 nm are unaffected by the benzoic acid and 3-nitro 4-chloro-benzoic acid treatments. Attachment of 3,4-dihydroxybenzoic acid produces an order-of-magnitude quenching in the photoluminescence, due to the presence of high-frequency vibrational modes in the linker. Ratios of the dominant electric- and magnetic-dipole transitions confirm infrared measurements, which indicate that the bulk crystal of the nanoparticle is unchanged by all three treatments.

  7. Remarkably selective iridium catalysts for the elaboration of aromatic C-H bonds.

    PubMed

    Cho, Jian-Yang; Tse, Man Kin; Holmes, Daniel; Maleczka, Robert E; Smith, Milton R

    2002-01-11

    Arylboron compounds have intriguing properties and are important building blocks for chemical synthesis. A family of Ir catalysts now enables the direct synthesis of arylboron compounds from aromatic hydrocarbons and boranes under "solventless" conditions. The Ir catalysts are highly selective for C-H activation and do not interfere with subsequent in situ transformations, including Pd-mediated cross-couplings with aryl halides. By virtue of their favorable activities and exceptional selectivities, these Ir catalysts impart the synthetic versatility of arylboron reagents to C-H bonds in aromatic and heteroaromatic hydrocarbons.

  8. BIODEGRADATION OF AROMATIC COMPOUNDS UNDER MIXED OXYGEN/DENITRIFYING CONDITIONS: A REVIEW

    EPA Science Inventory

    Bioremediation of aromatic hydrocarbons in groundwater and sediments is often limited by dissolved oxygen. Many aromatic hydrocarbons degrade very slowly or not at all under anaerobic conditions. Nitrate is a good alternative electron acceptor to oxygen, and denitrifying bacteria...

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wear, Jr., John Edmund

    The objective of this study was to examine the hypothesis that select functional groups of bacteria from pristine sites have an innate ability to degrade synthetic aromatics that often contaminate groundwater environments,due to exposure to naturally occurring recalcitrant aromatics in their environment. This study demonstrates that subsurface microbial communities are capable of utilizing lignin and humic acid breakdown products. Utilizers of these compounds were found to be present in most all the wells tested. Even the deepest aquifer tested had utilizers present for all six of the aromatics tested. Highest counts for the aromatics tested were observed with the naturallymore » occurring breakdown products of either lignin or humic acid. Carboxylic acids were found to be an important sole carbon source for groundwater bacteria possibly explained by the fact that they are produced by the oxidative cleavage of aromatic ring structures. The carbohydrate sole carbon sources that demonstrated the greatest densities were ones commonly associated with humics. This study indicates that utilization of naturally occurring aromatic compounds in the subsurface is an important nutritional source for groundwater bacteria. In addition, it suggests that adaptation to naturally occurring recalcitrant substrates is the origin of degradative pathways for xenobiotic compounds with analogous structure. This work has important implications for in situ bioremediation as a method of environmental cleanup.« less

  10. Synthesis of Difluoroaminoxy-, Difluoroamino- or Fluorodiazonium-Containing Materials.

    DTIC Science & Technology

    1987-01-30

    the olefin. The cyclic nitroso compounds underwent thermal decomposition at 165 OC in Pyrex glass to form colorless nitro derivatives. 1,2...absence of glass , (perfluorocvcloaikvl)difluoroamines, e.g., (DNF2 , formed. All of the new compounds are stable at 25 "C and are hvdrolvticallv stable...extended periods in Pyrex glass at 25 OC. Strong vibrational bands in the Raman spectra at 7󈧶 cm r were assigned to v__ H. Carbonvl fluoride as a

  11. Preparation of Chemicals and Bulk Drug Substances for the U.S. Army Drug Development Program

    DTIC Science & Technology

    1997-12-01

    alkylation method. Reduction of the 8-nitro group in compound 3 was accomplished readily by hydrogenation over Raney nickel catalyst . Pure 8...1 with fuming nitric acid in concentrated sulfuric acid gave the 4- nitropyridine 2. The reduction of compound 2 by hydrogenation over Raney nickel catalyst as...The isomers were separated by fractional crystallization and the pure 3-nitropyridine 5 was hydrogenated over Raney nickel catalyst to give

  12. In Situ Bioremediation of Perchlorate and Nitrate in Vadose Zone Soil using Gaseous Electron Donor Injection Technology (GEDIT)

    DTIC Science & Technology

    2010-08-01

    maximum contaminant level mg-N/kg milligrams of nitrogen per kilogram N2 nitrogen NA not applicable ND non-detect NDMA n-nitrosodimethylamine...Pertechnetate  N-Nitrosodimethylamine ( NDMA )  Chlorinated VOCs such as trichloroethene (TCE)  Highly energetic compounds including nitro

  13. Metal complexes of substituted Gable porphyrins as oxidation catalysts

    DOEpatents

    Lyons, J.E.; Ellis, P.E. Jr.; Wagner, R.W.

    1996-01-02

    Transition metal complexes of Gable porphyrins are disclosed having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

  14. Evaluation of 1,3-benzoxathiol-2-one Derivatives as Potential Antifungal Agents.

    PubMed

    Terra, Luciana; de L Chazin, Eliza; de S Sanches, Paola; Saito, Max; de Souza, Marcus V N; Gomes, Claudia R B; Wardell, James L; Wardell, Solange M S V; Sathler, Plinio C; Silva, Gabriela C C; Lione, Viviane O; Kalil, Marcos; Joffily, Ana; Castro, Helena C; Vasconcelos, Thatyana R A

    2018-01-01

    Over the last few years, fungal infections have emerged as a worrisome global public health problem. Candidiasis is a disease caused by Candida species and has been a problem worldwide mainly for immunosuppressed patients. Lately, the resistant strains and side effects have been reported as important issues for treating Candidiasis, which have to be solved by identifying new drugs. The goal of this work was to synthesize a series of 1,3-benzoxathiol-2-one derivatives, XYbenzo[ d][1,3]oxathiol-2-ones, and evaluate their antifungal activity against five Candida species. In vitro antifungal screening test and minimum inhibitory concentration determination were performed according to CLSI protocols using ketoconazole as the reference drug. The cytotoxicity of the most active compounds was evaluated by hemolysis and MTT (Vero cells) assays. Compounds 2 (XY = 6-hydroxy-5-nitro, MIC = 4-32 µg/mL) and 7 (XY = 6-acetoxy-5-nitro, MIC =16-64 µg/mL) showed good results when compared with current antifungals in CLSI values (MIC = 0.04-250 µg/mL). These compounds exhibited a safer cytotoxicity as well as a lower hemolytic profile than ketoconazole. Overall, the in vitro results pointed to the potential of compounds 2 and 7 as new antifungal prototypes to be further explored. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Cyclic terpenoids of contemporary resinous plant detritus and of fossil woods, ambers and coals

    USGS Publications Warehouse

    Simoneit, B.R.T.; Grimalt, J.O.; Wang, T.-G.; Cox, R.E.; Hatcher, P.G.; Nissenbaum, A.

    1986-01-01

    Cyclic terpenoids present in the solvent extractable material of fossil woods, ambers and brown coals have been analyzed. The sample series chosen consisted of wood remains preserved in Holocene to Jurassic sediments and a set of of ambers from the Philippines (copalite), Israel, Canada and Dominican Republic. The brown coals selected were from the Fortuna Garsdorf Mine and Miocene formations on Fiji. The fossil wood extracts contained dominant diterpenoid or sesquiterpenoid skeletons, and aromatized species were present at high concentrations, with a major amount of two-ring aromatic compounds. Tricyclic diterpenoids were the predominant compounds in the ambers. Aromatized derivatives were the major components, consisting of one or two aromatic ring species with the abietane and occasionally pimarane skeletons. The saturated structures were comprised primarily of the abietane and pimarane skeletons having from three to five carbon (C1, C2, etc.) substituents. Kaurane and phyllocladane isomers were present in only minor amounts. Bicyclic sesquiterpenoids as saturated and partial or fully aromatized forms were also common in these samples, but only traces of sesterterpenoids and triterpenoid derivatives were found. The brown coal extracts were composed of major amounts of one- and two-ring aromatized terpenoids, with a greater proportion of triterpenoid derivatives than in the case of the woods and ambers. This was especially noticeable for the German coal, where the triterpenoids were predominant. Open C-ring aromatized structures were also present in this coal. Steroid compounds were not detectable, but some hopanes were found as minor components in the German brown coal. An overview of the skeletal structure classes identified in each sample, as well as the general mass spectrometric characteristics of the unknown compounds are included in the present paper. It can be concluded from these structural distributions that aromatization is the main process for the transformation of terrestrial cyclic terpenoids during diagenesis, constituting a general pathway for all terpenoids. ?? 1986 Pergamon Journals Ltd.

  16. Composition of the black crusts from the Saint Denis Basilica, France, as revealed by gas chromatography-mass spectrometry.

    PubMed

    Gaviño, Maria; Hermosin, Bernardo; Vergès-Belmin, Véronique; Nowik, Witold; Saiz-Jimenez, Cesareo

    2004-05-01

    The organic fraction of black crusts from Saint Denis Basilica, France, is composed of a complex mixture of aliphatic and aromatic compounds. These compounds were studied by two different analytical approaches: tetramethyl ammonium hydroxide (TMAH) thermochemolysis in combination with gas chromatography-mass spectrometry (GC-MS), and solvent extraction, fractionation by silica column, and identification of the fraction components by GC-MS. The first approach, feasible at the microscale level, is able to supply fairly general information on a wide range of compounds. Using the second approach, we were able to separate the complex mixture of compounds into four fractions, enabling a better identification of the extractable compounds. These compounds belong to different classes: aliphatic hydrocarbons (nalkanes, n-alkenes), aliphatic and aromatic carboxylic acids (n-fatty acids, alpha,omega-dicarboxylic acids, and benzenecarboxylic acids), polycyclic aromatic hydrocarbons (PAH), and molecular biomarkers (isoprenoid hydrocarbons, diterpenoids, and triterpenoids). With each approach, similar classes of compounds were identified, although TMAH thermochemolysis failed to identify compounds present at low concentrations in black crusts. The two proposed methodological approaches are complementary, particularly in the study of polar fractions.

  17. Remedial Investigation/Feasibility Study/Interim Response Actions

    DTIC Science & Technology

    1988-03-25

    organosulfur compounds (CC/FP), organophosphorus compounds (CC/FPD), hydrocarbons (CC/FID), volatile aromatic compounds (GC/ PID ), volatile halogenated...ICP metals, mercury and arsenic (AA). Water samples are being analyzed for volatile halogenated organics (GC/CON), volatile aromatic organics (GC/ PID ...Feb Mar Apr May Jun Jul Aug SepSI - I I I I I • .. I I I ----+----- 685 27-90 so ONSITE DISPOSAL FACILITY .i * 686 27-01 Prep FLUE Plan Fz=m8u> 6e7

  18. Microbial reductive dehalogenation.

    PubMed Central

    Mohn, W W; Tiedje, J M

    1992-01-01

    A wide variety of compounds can be biodegraded via reductive removal of halogen substituents. This process can degrade toxic pollutants, some of which are not known to be biodegraded by any other means. Reductive dehalogenation of aromatic compounds has been found primarily in undefined, syntrophic anaerobic communities. We discuss ecological and physiological principles which appear to be important in these communities and evaluate how widely applicable these principles are. Anaerobic communities that catalyze reductive dehalogenation appear to differ in many respects. A large number of pure cultures which catalyze reductive dehalogenation of aliphatic compounds are known, in contrast to only a few organisms which catalyze reductive dehalogenation of aromatic compounds. Desulfomonile tiedjei DCB-1 is an anaerobe which dehalogenates aromatic compounds and is physiologically and morphologically unusual in a number of respects, including the ability to exploit reductive dehalogenation for energy metabolism. When possible, we use D. tiedjei as a model to understand dehalogenating organisms in the above-mentioned undefined systems. Aerobes use reductive dehalogenation for substrates which are resistant to known mechanisms of oxidative attack. Reductive dehalogenation, especially of aliphatic compounds, has recently been found in cell-free systems. These systems give us an insight into how and why microorganisms catalyze this activity. In some cases transition metal complexes serve as catalysts, whereas in other cases, particularly with aromatic substrates, the catalysts appear to be enzymes. Images PMID:1406492

  19. Gondola-shaped tetra-rhenium metallacycles modified evanescent wave infrared chemical sensors for selective determination of volatile organic compounds.

    PubMed

    Huang, Genin Gary; Lee, Chung-Jay; Tsai, Bo-Chan; Yang, Jyisy; Sathiyendiran, Malaichamy; Lu, Kuang-Lieh

    2011-07-15

    Water-stable and cavity-contained rhenium metallacycles were synthesized, and their ability to selectively interact with volatile organic compounds (VOCs) systematically studied using attenuated total reflection infrared (ATR-IR) spectroscopy. Integrating the unique properties of rhenium metallacycles into optical sensing technologies significantly improves selectivity in detecting aromatic compounds. To explore the interaction of rhenium metallacycles with VOCs, the surface of ATR sensing elements was modified with the synthesized rhenium metallacycles and used to detect VOCs. The results indicate that rhenium metallacycles have crown ether-like recognition sites, which can selectively interact with aromatic compounds, especially those bearing polar functional groups. The IR absorption bands of rhenium metallacycles shift significantly upon adsorption of aromatic VOCs, revealing a strong interaction between the tetra-rhenium metallacycles and guest aromatic compounds. Optimizing the thickness of the metallacycles coated on the surface of the sensing element led to rapid response in detection. The dynamic range of response was generally up to 30 mg/L with detection limits ca. 30 μg/L. Further studies of the effect of interferences indicate that recovery can be higher than 95% for most of the compounds tested. The results on the flow-cell device indicated that the performances were similar to a static detection system but the detection of VOCs can be largely simplified. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Lee, S. C.; Chiu, Gloria M. Y.

    Volatile organic compounds (VOCs), PAHs and carbonyl compounds are the major toxic components in Hong Kong. Emissions from motor vehicles have been one of the primary pollution sources in the metropolitan areas throughout Hong Kong for a long time. A 1-yr monitoring program for VOCs, PAHs and carbonyl compounds had been performed at a roadside urban station at Hong Kong Polytechnic University in order to determine the variations and correlations of each selected species (VOCs, PAHs and carbonyl compounds). This study is aimed to analyze toxic volatile organic compounds (benzene, toluene, ethylbenzene and xylene), two carbonyl compounds (formaldehyde, acetaldehyde), and selective polycyclic aromatic hydrocarbons. The monitoring program started from 16 April 1999 to 30 March 2000. Ambient VOC concentrations, many of which originate from the same sources as particulate PAHs and carbonyls compounds, show significant quantities of benzene, toluene and xylenes. Correlations and multivariate analysis of selected gaseous and particulate phase organic pollutants were performed. Source identification by principle component analysis and hierarchical cluster analysis allowed the identification of four sources (factors) for the roadside monitoring station. Factor 1 represents the effect of diesel vehicle exhaust. Factor 2 shows the contribution of aromatic compounds. Factor 3 explains photochemical products—formaldehyde and acetaldehyde. Factor 4 explains the effect of gasoline vehicle exhaust.

  1. The chemistry and beneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices

    USDA-ARS?s Scientific Manuscript database

    Aromatic plants produce organic compounds that may be involved in the defense of plants against phytopathogenic insects, bacteria, fungi, and viruses. One of these compounds called carvacrol that is found in high concentrations in essential oils such as oregano has been reported to exhibit numerous...

  2. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.

    1989-07-18

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  3. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1994-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  4. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.

    1989-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  5. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1994-06-14

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  6. Aromatic hydrocarbons from the Middle Jurassic fossil wood of the Polish Jura

    NASA Astrophysics Data System (ADS)

    Smolarek, Justyna; Marynowski, Leszek

    2013-09-01

    Aromatic hydrocarbons are present in the fossil wood samples in relatively small amounts. In almost all of the tested samples the dominating aromatic hydrocarbon is perylene and its methyl and dimethyl derivatives. The most important biomarkers present in the aromatic fraction are dehydroabietane, siomonellite and retene, compounds characteristic for conifers. The distribution of discussed compounds is highly variable due to such early diagenetic processes affecting the wood as oxidation and the activity of microorganisms. MPI1 parameter values (methylphenanthrene index) for the majority of the samples are in the range of 0.1 to 0.5, which results in the highly variable values of Rc (converted value of vitrinite reflectance) ranging from 0.45 to 0.70%. Such values suggest that MPI1 parameter is not useful as maturity parameter in case of Middle Jurassic ore-bearing clays, even if measured strictly on terrestrial organic matter (OM). As a result of weathering processes (oxidation) the distribution of aromatic hydrocarbons changes. In the oxidized samples the amount of aromatic hydrocarbons, both polycyclic as well as aromatic biomarkers decreases.

  7. Graphene and graphene nanocomposites for the removal of aromatic organic compounds from the water: systematic review

    NASA Astrophysics Data System (ADS)

    Monsores Paixão, Monique; Tadeu Gomes Vianna, Marco; Marques, Marcia

    2018-01-01

    Aromatic organic pollutants are highly toxic to the human and environmental health and are considered as priority pollutants by regulatory agencies. Managing contaminated sites with organic pollutants is one of the major environmental challenges today. Of all technologies that have been proposed to remove contaminants, adsorption is recognized worldwide as an attractive option due to its versatility, wide applicability and economic viability. Recent studies report the use of graphene (GN), a recently carbon nanomaterial, and its derivatives in sorption processes for the removal of aromatic organic compounds. The present review has shown that GN structures are a promising alternative to traditional adsorbent materials, with excellent results in the removal of organic compounds from water, due to their unique structural characteristics and great adsorption capacity for organic compounds. Although, there is still a long way to go until that practical applications can be implemented.

  8. Detecting aromatic compounds on planetary surfaces using ultraviolet time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Eshelman, E.; Daly, M. G.; Slater, G.; Cloutis, E.

    2018-02-01

    Many aromatic organic molecules exhibit strong and characteristic fluorescence when excited with ultraviolet radiation. As laser excitation in the ultraviolet generates both fluorescence and resonantly enhanced Raman scattering of aromatic vibrational modes, combined Raman and fluorescence instruments have been proposed to search for organic compounds on Mars. In this work the time-resolved fluorescence of a suite of 24 compounds composed of 2-5 ringed alternant, non-alternant, and heterocyclic PAHs was measured. Fluorescence instrumentation with similar specifications to a putative flight instrument was capable of observing the fluorescence decay of these compounds with a sub-ns resolution. Incorporating time-resolved capabilities was also found to increase the ability to discriminate between individual PAHs. Incorporating time-resolved fluorescence capabilities into an ultraviolet gated Raman system intended for a rover or lander can increase the ability to detect and characterize PAHs on planetary surfaces.

  9. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen.

    PubMed

    Zakzeski, Joseph; Weckhuysen, Bert M

    2011-03-21

    The solubilization and aqueous phase reforming of lignin, including kraft, soda, and alcell lignin along with sugarcane bagasse, at low temperatures (T≤498 K) and pressures (P≤29 bar) is reported for the first time for the production of aromatic chemicals and hydrogen. Analysis of lignin model compounds and the distribution of products obtained during the lignin aqueous phase reforming revealed that lignin was depolymerized through disruption of the abundant β-O-4 linkages and, to a lesser extent, the 5-5' carbon-carbon linkages to form monomeric aromatic compounds. The alkyl chains contained on these monomeric compounds were readily reformed to produce hydrogen and simple aromatic platform chemicals, particularly guaiacol and syringol, with the distribution of each depending on the lignin source. The methoxy groups present on the aromatic rings were subject to hydrolysis to form methanol, which was also readily reformed to produce hydrogen and carbon dioxide. The composition of the isolated yields of monomeric aromatic compounds and overall lignin conversion based on these isolated yields varied from 10-15% depending on the lignin sample, with the balance consisting of gaseous products and residual solid material. Furthermore, we introduce the use of a high-pressure autoclave with optical windows and an autoclave with ATR-IR sentinel for on-line in situ spectroscopic monitoring of biomass conversion processes, which provides direct insight into, for example, the solubilization process and aqueous phase reforming reaction of lignin. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effects of gasoline aromatic content on emissions of volatile organic compounds and aldehydes from a four-stroke motorcycle.

    PubMed

    Yao, Yung-Chen; Tsai, Jiun-Horng

    2013-01-01

    A new four-stroke carburettor motorcycle engine without any engine adjustments was used to study the impact of fuel aromatic content on the exhaust emissions of organic air pollutants (volatile organic compounds and carbonyls). Three levels of aromatic content, i.e. 15, 25, and 50% (vol.) aromatics mixed with gasoline were tested. The emissions of aromatic fuel were compared with those of commercial unleaded gasoline. The results indicated that the A 15 (15 vol% aromatics in gasoline) fuel exhibited the greatest total organic emission improvement among these three aromatic fuels as compared with commercial gasoline, reaching 59%. The highest emission factors of alkanes, alkenes, and carbonyl groups appeared in the reference fuel (RF) among all of the test fuels. A 15 showed the highest emission reduction in alkanes (73%), aromatics (36%), and carbonyls (28%), as compared to those of the RF. The highest emission reduction ofalkenes was observed when using A25 as fuel. A reduction in fuel aromatic content from 50 to 25 and 15 vol% in gasoline decreased benzene and toluene emissions, but increased the aldehyde emissions. In general, the results showed that the highest emission reductions for the most of measured organic pollutants appeared when using A 15 as the fuel.

  11. Aromatic-degrading Sphingomonas isolates from the deep subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredrickson, J.K.; Romine, M.F.; Balkwill, D.L.

    An obligately aerobic chemoheterotrophic bacterium (strain F199) previously isolated from Southeast Coastal Plain subsurface sediments and shown to degrade toluene, naphthalene, and other aromatic compounds was characterized by analysis of its 16S rRNA nucleotide base sequence and cellular lipid composition. Strain F199 contained 2-OH14:0 and 18:1{omega}7c as the predominant cellular fatty acids and sphingolipids that are characteristic of the genus Sphingomonas. Phylogenetic analysis of its 16SrRNA sequence indicated that F199 was most closely related to Sphingomonas capsulata among the bacteria currently in the Ribosomal Database. Five additional isolates from deep Southeast Coastal Plain sediments were determined by 16S rRNA sequencemore » analysis to be closely related to F199. These strains also contained characteristic sphingolipids. Four of these five strains could also grow on a broad range of aromatic compounds and could mineralize [{sup 14C}]toluene and [{sup 14C}]naphthalene. S. capsulata (ATCC 14666), Sphingomonas paucimobiolis (ATCC 29837), and one of the subsurface isolates were unable to grow on any of the aromatic compounds or mineralize toluene or naphthalene. These results indicate that bacteria within the genus Sphingomonas are present in Southeast Coastal Plain subsurface sediments and that the capacity for degrading a broad range of substituted aromatic compounds appears to be common among Sphingomonas species from this environment. 41 refs., 2 figs., 5 tabs.« less

  12. Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds.

    PubMed Central

    Grifoll, M; Selifonov, S A; Gatlin, C V; Chapman, P J

    1995-01-01

    Pseudomonas cepacia F297 grew with fluorene as a sole source of carbon and energy; its growth yield corresponded to an assimilation of about 40% of fluorene carbon. The accumulation of a ring meta-cleavage product during growth and the identification of 1-indanone in growth media and washed-cell suspensions suggest that strain F297 metabolizes fluorene by mechanisms analogous to those of naphthalene degradation. In addition to fluorene, strain F297 utilized for growth a wide variety of polycyclic aromatic compounds (PACs), including naphthalene, 2,3-dimethylnaphthalene, phenanthrene, anthracene, and dibenzothiophene. Fluorene-induced cells of the strain also transformed 2,6-dimethylnaphthalene, biphenyl, dibenzofuran, acenaphthene, and acenaphthylene. The identification of products formed from those substrates (by gas chromatography-mass spectrometry) in washed-cell suspensions indicates that P. cepacia F297 carries out the following reactions: (i) aromatic ring oxidation and cleavage, apparently using the pyruvate released for growth, (ii) methyl group oxidations, (iii) methylenic oxidations, and (iv) S oxidations of aromatic sulfur heterocycles. Strain F297 grew with a creosote-PAC mixture, producing an almost complete removal of all aromatic compounds containing 2 to 3 rings in 14 days, as demonstrated by gas chromatography analysis of the remaining PACs recovered from cultures. The identification of key chemicals confirmed that not only are certain compounds depleted but also the anticipated reaction products are found. PMID:7487007

  13. Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds.

    PubMed

    Grifoll, M; Selifonov, S A; Gatlin, C V; Chapman, P J

    1995-10-01

    Pseudomonas cepacia F297 grew with fluorene as a sole source of carbon and energy; its growth yield corresponded to an assimilation of about 40% of fluorene carbon. The accumulation of a ring meta-cleavage product during growth and the identification of 1-indanone in growth media and washed-cell suspensions suggest that strain F297 metabolizes fluorene by mechanisms analogous to those of naphthalene degradation. In addition to fluorene, strain F297 utilized for growth a wide variety of polycyclic aromatic compounds (PACs), including naphthalene, 2,3-dimethylnaphthalene, phenanthrene, anthracene, and dibenzothiophene. Fluorene-induced cells of the strain also transformed 2,6-dimethylnaphthalene, biphenyl, dibenzofuran, acenaphthene, and acenaphthylene. The identification of products formed from those substrates (by gas chromatography-mass spectrometry) in washed-cell suspensions indicates that P. cepacia F297 carries out the following reactions: (i) aromatic ring oxidation and cleavage, apparently using the pyruvate released for growth, (ii) methyl group oxidations, (iii) methylenic oxidations, and (iv) S oxidations of aromatic sulfur heterocycles. Strain F297 grew with a creosote-PAC mixture, producing an almost complete removal of all aromatic compounds containing 2 to 3 rings in 14 days, as demonstrated by gas chromatography analysis of the remaining PACs recovered from cultures. The identification of key chemicals confirmed that not only are certain compounds depleted but also the anticipated reaction products are found.

  14. Pistachio oil (Pistacia vera L. cv. Uzun): Characterization of key odorants in a representative aromatic extract by GC-MS-olfactometry and phenolic profile by LC-ESI-MS/MS.

    PubMed

    Sonmezdag, Ahmet Salih; Kelebek, Hasim; Selli, Serkan

    2018-02-01

    Volatile, aroma-active, and phenolic compounds of pistachio oil obtained from cv. Uzun were investigated in the current study. To obtain a representative aromatic extract, three of the most widely used extraction methods were compared using a representative test; the solvent-assisted flavour extraction (SAFE) aromatic extract from pistachio oil was found to be the most representative. A total of 50 aroma compounds were determined in pistachio oil and it was found that terpenes, aldehydes, and alcohols were the most abundant volatile compounds. Applying GC-MS-olfactometry and aroma extract dilution analysis (AEDA) resulted in a total of 14 aroma-active areas being detected in the extract of pistachio oil. In the phenolic fraction obtained by the LC-ESI-MS/MS method, a total of 12 phenolic compounds was found in the pistachio oil, of which seven compounds were reported for the first time. Eriodictyol-7-O-glucoside and protocatechuic acid were the most dominant phenolic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Fusing porphyrins with polycyclic aromatic hydrocarbons and heterocycles for optoelectronic applications

    DOEpatents

    Thompson, Mark E.; Diev, Viacheslav; Hanson, Kenneth; Forrest, Stephen R.

    2015-08-18

    A compound that can be used as a donor material in organic photovoltaic devices comprising a non-activated porphyrin fused with one or more non-activated polycyclic aromatic rings or one or more non-activated heterocyclic rings can be obtained by a thermal fusion process. The compounds can include structures of Formula I: ##STR00001## By heating the reaction mixture of non-activated porphyrins with non-activated polycyclic aromatic rings or heterocyclic rings to a fusion temperature and holding for a predetermined time, fusion of one or more polycyclic rings or heterocyclic rings to the non-activated porphyrin core in meso,.beta. fashion is achieved resulting in hybrid structures containing a distorted porphyrin ring with annulated aromatic rings. The porphyrin core can be olygoporphyrins.

  16. Zwitterionic (E)-1-[(4-nitro­phen­yl)iminio­meth­yl]naphthalen-2-olate

    PubMed Central

    Damous, Maamar; Hamlaoui, Meriem; Bouacida, Sofiane; Merazig, Hocine; Daran, Jean-Claude

    2011-01-01

    The title compound, C17H12N2O3, was synthesized by the reaction of 2-hy­droxy-1-naphthaldehyde with 4-nitro­benzenamine. These condense to form the Schiff base, which crystallizes in the zwitterionic form. In the structure, the keto–amino tautomer has a fairly short intra­molecular N—H⋯O hydrogen bond between the 2-naphthalenone and amino groups, with electron delocalization. The mol­ecule is essentially planar, with a dihedral angle of 1.96 (3)° between the ring systems. In the crystal, the mol­ecules are linked via inter­molecular C—H⋯O hydrogen bonds, forming a layer parallel to (101). PMID:21754437

  17. In vitro and in vivo anti-Trypanosoma cruzi activity of a novel nitro-derivative.

    PubMed

    Muelas-Serrano, Susana; Le-Senne, Ana; Fernandez-Portillo, Carlos; Nogal, Juan José; Ochoa, Carmen; Gomez-Barrio, Alicia

    2002-06-01

    Nitroarylidenemalononitriles and their cyanoacetamide derivatives with remarkable anti-epimastigote properties, were synthesized attempting to obtain new 3,5-diamino-4-(5'-nitroarylidene)-4H-thiadiazine 1,1-dioxide derivatives, which in previous reports had shown anti-Trypanosoma cruzi activity. Tests to evaluate the cytotoxicity of compounds were performed on J774 macrophages. 5-nitro-2-thienyl-malononitrile (5NO2TM), was the only product which maintained a high anti-epimastigote activity at concentrations in which it was no longer cytotoxic, thus it was assayed against intracellular amastigotes. Its anti-amastigote activity was similar to that of nifurtimox. Afterwards in vivo toxicity and anti-chagasic activity were determined. A reduction in parasitemia was observed.

  18. 1,3-Bis(chloro-meth-yl)-2-methyl-5-nitro-benzene.

    PubMed

    Shao, Chang-Lun; Li, Chunyuan; Liu, Zhen; Wei, Mei-Yan; Wang, Chang-Yun

    2008-03-20

    The title compound, C(9)H(9)Cl(2)NO(2), is a natural product isolated from the endophytic fungus No. B77 of the mangrove tree from the South China Sea coast. In the crystal structure, the mol-ecules lie on twofold axes and form offset stacks through face-to-face π-π inter-actions. Adjacent mol-ecules in each stack are related by a centre of inversion and have an inter-planar separation of 3.53 (1) Å, with a centroid-centroid distance of 3.76 (1) Å. Between stacks, there are C-H⋯O inter-actions to the nitro groups and Cl⋯Cl contacts of 3.462 (1) Å.

  19. Formation of highly oxygenated organic molecules from aromatic compounds

    NASA Astrophysics Data System (ADS)

    Molteni, Ugo; Bianchi, Federico; Klein, Felix; El Haddad, Imad; Frege, Carla; Rossi, Michel J.; Dommen, Josef; Baltensperger, Urs

    2018-02-01

    Anthropogenic volatile organic compounds (AVOCs) often dominate the urban atmosphere and consist to a large degree of aromatic hydrocarbons (ArHCs), such as benzene, toluene, xylenes, and trimethylbenzenes, e.g., from the handling and combustion of fuels. These compounds are important precursors for the formation of secondary organic aerosol. Here we show that the oxidation of aromatics with OH leads to a subsequent autoxidation chain reaction forming highly oxygenated molecules (HOMs) with an O : C ratio of up to 1.09. This is exemplified for five single-ring ArHCs (benzene, toluene, o-/m-/p-xylene, mesitylene (1,3,5-trimethylbenzene) and ethylbenzene), as well as two conjugated polycyclic ArHCs (naphthalene and biphenyl). We report the elemental composition of the HOMs and show the differences in the oxidation patterns of these ArHCs. A potential pathway for the formation of these HOMs from aromatics is presented and discussed. We hypothesize that AVOCs may contribute substantially to new particle formation events that have been detected in urban areas.

  20. Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway.

    PubMed Central

    Nelson, M J; Montgomery, S O; Mahaffey, W R; Pritchard, P H

    1987-01-01

    Biodegradation of trichloroethylene (TCE) by bacterial strain G4 resulted in complete dechlorination of the compound, as indicated by the production of inorganic chloride. A component of the water from which strain G4 was isolated that was required for TCE degradation was identified as phenol. Strain G4 degraded TCE in the presence of chloramphenicol only when preinduced with phenol. Toluene, o-cresol. and m-cresol could replace the phenol requirement. Two of the inducers of TCE metabolism, phenol and toluene, apparently induced the same aromatic degradative pathway that cleaved the aromatic ring by meta fission. Cells induced with either phenol or toluene had similar oxidation rates for several aromatic compounds and had similar levels of catechol-2,3-dioxygenase. The results indicate that one or more enzymes of an inducible pathway for aromatic degradation in strain G4 are responsible for the degradation of TCE. PMID:3606099

Top