Science.gov

Sample records for aromatic polycarboxylic acids

  1. Supramolecular assemblies of 4,7-phenanthroline with various aromatic polycarboxylic acids

    NASA Astrophysics Data System (ADS)

    Biswas, Sharmita Nandy; Nandy, Purnendu

    2016-10-01

    Five molecular complexes 1a-1e, of 4,7-phenanthroline (1) with various aromatic polycarboxylic acids such as benzene-1,3-dicarboxylic acid (a), pyridine-2,6-dicarboxylic acid (b), pyridine-2,5-dicarboxylic acid (c), benzene-1,2,3,4,5-pentacarboxylic acid (d) and 1,2,3,4,5,6-benzenehexacarboxylic acid (e) have been prepared and characterized by single crystal X-ray diffraction and thermogravimetric analyses. The analysis shows that all the assemblies crystallized as hydrates, except complex, 1c, formed between 1 and pyridine-2,5-dicarboxylic acid. Single crystal X-ray data reveals that the packing patterns of all the molecular complexes have been directed by strong hydrogen bonding O-H⋯O/O-H⋯N/N+-H⋯O- and weak hydrogen bonding C-H⋯O interactions. All the hydrated assemblies aggregate through the formation of cyclic networks as basic recognition pattern. Further, we observed that water molecules play significant role for production of supramolecular assemblies.

  2. Ambient cure polyimide foams prepared from aromatic polyisocyanates, aromatic polycarboxylic compounds, furfuryl alcohol, and a strong inorganic acid

    NASA Technical Reports Server (NTRS)

    Sawko, Paul M. (Inventor); Riccitiello, Salvatore R. (Inventor); Hamermesh, Charles L. (Inventor)

    1980-01-01

    Flame and temperature resistant polyimide foams are prepared by the reaction of an aromatic dianhydride, e.g., pyromellitic dianhydride, with an aromatic polyisocyanate, e.g., polymethylene polyphenylisocyanate (PAPI) in the presence of an inorganic acid and a lower molecular weight alcohol, e.g., dilute sulfuric acid or phosphoric acid and furfuryl alcohol. The exothermic reaction between the acid and the alcohol provides the heat necessary for the other reactants to polymerize without the application of any external heat. Such mixtures, therefore, are ideally suited for in situ foam formation, especially where the application of heat is not practical or possible.

  3. 40 CFR 721.3110 - Polycarboxylic acid ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polycarboxylic acid ester (generic... Substances § 721.3110 Polycarboxylic acid ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polycarboxylic acid...

  4. 40 CFR 721.3110 - Polycarboxylic acid ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polycarboxylic acid ester (generic... Substances § 721.3110 Polycarboxylic acid ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polycarboxylic acid...

  5. 40 CFR 721.3110 - Polycarboxylic acid ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polycarboxylic acid ester (generic... Substances § 721.3110 Polycarboxylic acid ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polycarboxylic acid...

  6. 40 CFR 721.3110 - Polycarboxylic acid ester (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polycarboxylic acid ester (generic... Substances § 721.3110 Polycarboxylic acid ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polycarboxylic acid...

  7. 40 CFR 721.3110 - Polycarboxylic acid ester (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polycarboxylic acid ester (generic... Substances § 721.3110 Polycarboxylic acid ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polycarboxylic acid...

  8. 40 CFR 721.6475 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl polycarboxylic acids, esters... Significant New Uses for Specific Chemical Substances § 721.6475 Alkyl polycarboxylic acids, esters with... chemical substances identified generically as alkyl polycarboxylic acids, esters with ethoxylated...

  9. 40 CFR 721.6475 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl polycarboxylic acids, esters... Significant New Uses for Specific Chemical Substances § 721.6475 Alkyl polycarboxylic acids, esters with... chemical substances identified generically as alkyl polycarboxylic acids, esters with ethoxylated...

  10. 40 CFR 721.6475 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl polycarboxylic acids, esters... Significant New Uses for Specific Chemical Substances § 721.6475 Alkyl polycarboxylic acids, esters with... chemical substances identified generically as alkyl polycarboxylic acids, esters with ethoxylated...

  11. 40 CFR 721.6475 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl polycarboxylic acids, esters... Significant New Uses for Specific Chemical Substances § 721.6475 Alkyl polycarboxylic acids, esters with... chemical substances identified generically as alkyl polycarboxylic acids, esters with ethoxylated...

  12. 40 CFR 721.6475 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl polycarboxylic acids, esters... Significant New Uses for Specific Chemical Substances § 721.6475 Alkyl polycarboxylic acids, esters with... chemical substances identified generically as alkyl polycarboxylic acids, esters with ethoxylated...

  13. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid amine condensate, polycarboxylic acid salts. 721.3620 Section 721.3620 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts....

  14. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acid amine condensate, polycarboxylic acid salts. 721.3620 Section 721.3620 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts....

  15. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid amine condensate, polycarboxylic acid salts. 721.3620 Section 721.3620 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts....

  16. 40 CFR 721.2086 - Coco acid triamine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Coco acid triamine condensate, polycarboxylic acid salts. 721.2086 Section 721.2086 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2086 Coco acid triamine condensate, polycarboxylic acid salts....

  17. 40 CFR 721.2086 - Coco acid triamine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Coco acid triamine condensate, polycarboxylic acid salts. 721.2086 Section 721.2086 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2086 Coco acid triamine condensate, polycarboxylic acid salts....

  18. 40 CFR 721.2086 - Coco acid triamine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Coco acid triamine condensate, polycarboxylic acid salts. 721.2086 Section 721.2086 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2086 Coco acid triamine condensate, polycarboxylic acid salts....

  19. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acid amine condensate, polycarboxylic acid salts. 721.3620 Section 721.3620 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts....

  20. 40 CFR 721.2086 - Coco acid triamine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Coco acid triamine condensate, polycarboxylic acid salts. 721.2086 Section 721.2086 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2086 Coco acid triamine condensate, polycarboxylic acid salts....

  1. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid amine condensate, polycarboxylic acid salts. 721.3620 Section 721.3620 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts....

  2. 40 CFR 721.2086 - Coco acid triamine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Coco acid triamine condensate, polycarboxylic acid salts. 721.2086 Section 721.2086 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2086 Coco acid triamine condensate, polycarboxylic acid salts....

  3. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  4. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  5. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  6. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  7. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  8. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... salt (generic). 721.2098 Section 721.2098 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  9. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... salt (generic). 721.2098 Section 721.2098 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  10. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... salt (generic). 721.2098 Section 721.2098 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  11. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... salt (generic). 721.2098 Section 721.2098 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  12. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... salt (generic). 721.2098 Section 721.2098 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  13. Dimensional modulation and magnetic properties of triazole- and bis(triazole)-based copper(II) coordination polymers tuned by aromatic polycarboxylates

    SciTech Connect

    Zhang, Ju-Wen; Zhao, Wei; Lu, Qi-Lin; Luan, Jian; Qu, Yun; Wang, Xiu-Li

    2014-04-01

    Five new metal–organic coordination polymers ([Cu{sub 3}(μ{sub 2}-OH){sub 2}(atrz){sub 2}(nph){sub 2}(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n} (1), ([Cu{sub 2}(μ{sub 3}-OH)(atrz)(1,2,4-btc)]·2H{sub 2}O){sub n} (2), ([Cu{sub 2}(μ{sub 3}-OH)(atrz)(1,2,4-btc)(H{sub 2}O)]·H{sub 2}O){sub n} (3), [Cu(dth){sub 0.5}(nph)(H{sub 2}O)]{sub n} (4) and [Cu(dth)(Hnip){sub 2}]{sub n} (5) [atrz=4-amino-1,2,4-triazole, dth=N,N'-di(4H-1,2,4-triazole)hexanamide, H{sub 2}nph=3-nitrophthalic acid, 1,2,4-H{sub 3}btc=1,2,4-benzenetricarboxylic acid and H{sub 2}nip=5-nitroisophthalic acid] were hydrothermally synthesized and structurally characterized. Polymer 1 shows a one-dimensional (1D) chain. Polymers 2 and 3 exhibit similar tetranuclear Cu{sup II}{sub 4} cluster-based three-dimensional (3D) frameworks with the same components. Polymer 4 possesses a 3D framework with a 4{sup 12}·6{sup 3}-pcu topology. Polymer 5 displays a 3D framework with a 4{sup 4}·6{sup 10}·8-mab topology. The magnetic properties of 1–4 were investigated. - Graphical abstract: Five triazole-based copper(II) polymers modulated by polycarboxylates were synthesized. Bis-triazole-bis-amide ligand and polycarboxylates play important roles in tuning dimensionality of polymers. Magnetic properties of polymers were investigated. - Highlights: • Five triazole- and bis(triazole)-based copper(II) coordination polymers tuned by aromatic polycarboxylates were obtained. • The aromatic polycarboxylates have an important influence on the dimensionality of five polymers. • The magnetic properties of four polymers were investigated.

  14. Separation of aromatic carboxylic acids using quaternary ammonium salts on reversed-phase HPLC. 1. Separation behavior of aromatic carboxylic acids

    SciTech Connect

    Kawamura, K.; Okuwaki, A.; Verheyen, T.; Perry, G.J.

    2006-02-15

    In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt has been investigated. The retention mechanism of aromatic carboxylic acids was discussed on the basis of both ion-pair partition model and ion-exchange model. The retention behavior of aromatic carboxylic acids possessing one (or two) carboxylic acid group(s) followed the ion-pair partition model, where linear free energy relationship was observed between the capacity factor and the extraction equilibrium constants of benzoic acid and naphthalene carboxylic acid. Besides, the retention behavior followed ion-exchange model with increasing the number of carboxylic acids, where the capacity factor of benzene polycarboxylic acids is proportional to the association constants between aromatic acids and quaternary ammonium ions calculated on the basis of an electrostatic interaction model.

  15. Calcite crystal growth rate inhibition by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  16. Extraneous carbon assessment in ultra-microscale radiocarbon analysis using benzene polycarboxylic acids (BPCA)

    NASA Astrophysics Data System (ADS)

    Hanke, Ulrich M.; McIntyre, Cameron P.; Schmidt, Michael W. I.; Wacker, Lukas; Eglinton, Timothy I.

    2016-04-01

    Measurements of the natural abundance of radiocarbon (14C) concentrations in inorganic and organic carbon-containing materials can be used to investigate their date of origin. Particularly, the biogeochemical cycling of specific compounds in the environment may be investigated applying molecular marker analyses. However, the isolation of specific molecules from environmental matrices requires a complex processing procedure resulting in small sample sizes that often contain less than 30 μg C. Such small samples are sensitive to extraneous carbon (Cex) that is introduced during the purification of the compounds (Shah and Pearson, 2007). We present a thorough radiocarbon blank assessment for benzene polycarboxylic acids (BPCA), a proxy for combustion products that are formed during the oxidative degradation of condensed polyaromatic structures (Wiedemeier et al, in press). The extraneous carbon assessment includes reference material for (1) chemical extraction, (2) preparative liquid chromatography (3) wet chemical oxidation which are subsequently measured with gas ion source AMS (Accelerator Mass Spectrometer, 5-100 μg C). We always use pairs of reference materials, radiocarbon depleted (14Cfossil) and modern (14Cmodern) to determine the fraction modern (F14C) of Cex.Our results include detailed information about the quantification of Cex in radiocarbon molecular marker analysis using BPCA. Error propagation calculations indicate that ultra-microscale samples (20-30 μg) are feasible with uncertainties of less than 10 %. Calculations of the constant contamination reveal important information about the source (F14C) and mass (μg) of Cex (Wacker and Christl, 2011) for each sub procedure. An external correction of compound specific radiocarbon data is essential for robust results that allow for a high degree of confidence in the 14C results. References Shah and Pearson, 2007. Ultra-microscale (5-25μg C) analysis of individual lipids by 14C AMS: Assessment and

  17. Effects of acid diffusibility and affinity to cellulose on strength loss of polycarboxylic acid crosslinked fabrics.

    PubMed

    Ji, Bolin; Zhao, Cunyi; Yan, Kelu; Sun, Gang

    2016-06-25

    1,2,3,4-Butanetetracarboxylic acid (BTCA) imparts good anti-wrinkle property to cotton fabrics and results in significant strength loss due to cross-linking and acid degradation of cellulose simultaneously. However, benzophenone-3,3',4,4'- tetracarboxylic acid (BPTCA), an aromatic acid, crosslinks cellulose effectively but causes less strength loss to the products under similar conditions. The difference in damages to cellulose fibers was analyzed by using diffusibility and corresponding affinity of the acids to cellulose fibers, which were estimated by their molecular sizes and Hansen solubility parameters (HSP). Both experimental results and theoretical speculations revealed consistent agreement, indicating that smaller acid molecules could diffuse into cellulose fiber more rapidly and deeply, resulting in more acid degradation. Besides, the aliphatic acid such as BTCA has higher molecular affinity than BPTCA to cellulose, causing additional more degradation of cellulose. Both factors are potential reasons of the observed more severe tensile strength loss of the BTCA treated cotton fabrics. PMID:27083819

  18. Characterization, Quantification and Compound-specific Isotopic Analysis of Pyrogenic Carbon Using Benzene Polycarboxylic Acids (BPCA)

    PubMed Central

    Wiedemeier, Daniel B.; Lang, Susan Q.; Gierga, Merle; Abiven, Samuel; Bernasconi, Stefano M.; Früh-Green, Gretchen L.; Hajdas, Irka; Hanke, Ulrich M.; Hilf, Michael D.; McIntyre, Cameron P.; Scheider, Maximilian P. W.; Smittenberg, Rienk H.; Wacker, Lukas; Wiesenberg, Guido L. B.; Schmidt, Michael W. I.

    2016-01-01

    Fire-derived, pyrogenic carbon (PyC), sometimes called black carbon (BC), is the carbonaceous solid residue of biomass and fossil fuel combustion, such as char and soot. PyC is ubiquitous in the environment due to its long persistence, and its abundance might even increase with the projected increase in global wildfire activity and the continued burning of fossil fuel. PyC is also increasingly produced from the industrial pyrolysis of organic wastes, which yields charred soil amendments (biochar). Moreover, the emergence of nanotechnology may also result in the release of PyC-like compounds to the environment. It is thus a high priority to reliably detect, characterize and quantify these charred materials in order to investigate their environmental properties and to understand their role in the carbon cycle. Here, we present the benzene polycarboxylic acid (BPCA) method, which allows the simultaneous assessment of PyC's characteristics, quantity and isotopic composition (13C and 14C) on a molecular level. The method is applicable to a very wide range of environmental sample materials and detects PyC over a broad range of the combustion continuum, i.e., it is sensitive to slightly charred biomass as well as high temperature chars and soot. The BPCA protocol presented here is simple to employ, highly reproducible, as well as easily extendable and modifiable to specific requirements. It thus provides a versatile tool for the investigation of PyC in various disciplines, ranging from archeology and environmental forensics to biochar and carbon cycling research. PMID:27214064

  19. Characterization, Quantification and Compound-specific Isotopic Analysis of Pyrogenic Carbon Using Benzene Polycarboxylic Acids (BPCA).

    PubMed

    Wiedemeier, Daniel B; Lang, Susan Q; Gierga, Merle; Abiven, Samuel; Bernasconi, Stefano M; Früh-Green, Gretchen L; Hajdas, Irka; Hanke, Ulrich M; Hilf, Michael D; McIntyre, Cameron P; Scheider, Maximilian P W; Smittenberg, Rienk H; Wacker, Lukas; Wiesenberg, Guido L B; Schmidt, Michael W I

    2016-01-01

    Fire-derived, pyrogenic carbon (PyC), sometimes called black carbon (BC), is the carbonaceous solid residue of biomass and fossil fuel combustion, such as char and soot. PyC is ubiquitous in the environment due to its long persistence, and its abundance might even increase with the projected increase in global wildfire activity and the continued burning of fossil fuel. PyC is also increasingly produced from the industrial pyrolysis of organic wastes, which yields charred soil amendments (biochar). Moreover, the emergence of nanotechnology may also result in the release of PyC-like compounds to the environment. It is thus a high priority to reliably detect, characterize and quantify these charred materials in order to investigate their environmental properties and to understand their role in the carbon cycle. Here, we present the benzene polycarboxylic acid (BPCA) method, which allows the simultaneous assessment of PyC's characteristics, quantity and isotopic composition ((13)C and (14)C) on a molecular level. The method is applicable to a very wide range of environmental sample materials and detects PyC over a broad range of the combustion continuum, i.e., it is sensitive to slightly charred biomass as well as high temperature chars and soot. The BPCA protocol presented here is simple to employ, highly reproducible, as well as easily extendable and modifiable to specific requirements. It thus provides a versatile tool for the investigation of PyC in various disciplines, ranging from archeology and environmental forensics to biochar and carbon cycling research. PMID:27214064

  20. Preparation of polyimides from mixtures of monomeric diamines and esters of polycarboxylic acids

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.; Lightsey, G. R. (Inventor)

    1973-01-01

    Polyimides having high thermal and oxidative stability are prepared by the reaction of a mixture of monomers comprising (1) a dialkyl or tetraalkyl ester of an aromatic tetracarboxylic acid; (2) an aromatic diamine; and (3) a monoalkyl or dialkyl ester of a dicarboxylic acid where in the ratio of a:b:c is n:(n+1):2, wherein n has a value from 1 to 20. The mixture of monomers is prepared in a 30 to 70 percent by weight solution of an organic solvent, a substrate impregnated with the solution and heated at 50 to 205 C to remove said solvent and form a low molecular weight prepolymer, and thereafter heated at 275 to 350 C to cure to a high molecular weight polyimide.

  1. Formation and preliminary in vitro evaluation of a zinc polycarboxylate cement reinforced with neat and acid-treated wollastonite fibers.

    PubMed

    Greish, Yaser E; Hamdan, Najwa M; El Maghraby, Hesham F

    2012-05-01

    Zinc polycarboxylate dental cement is known to form both molecular and mechanical bonds with native tooth materials. However, its relatively weak mechanical properties limit its applications. Wollastonite fibers, with different aspect ratios, were blended with ZnO, prior to its mixing with polyacrylic acid, at weight percentages up to 25%. Setting time, density, compressive strength, and Young's modulus of the formed composites were determined. Composition and morphology of the composites were determined by XRD, IR, and SEM before and after treatment in simulated body fluids. A slight delay in the setting time of the composites was observed. An overall improvement in the compressive strength and modulus of these composites was observed up to 5 wt % of wollastonites, followed by a decrease with increasing the proportion of wollastonite in the composites. Immersion of these composites in SBF solutions resulted in the formation of apatite deposits on the surfaces of the reinforcing fibers.

  2. Calcite growth-rate inhibition by fulvic acids isolated from Big Soda Lake, Nevada, USA, The Suwannee River, Georgia, USA and by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, Michael M.; Leenheer, Jerry

    2011-01-01

    Calcite crystallization rates are characterized using a constant solution composition at 25°C, pH=8.5, and calcite supersaturation (Ω) of 4.5 in the absence and presence of fulvic acids isolated from Big Soda Lake, Nevada (BSLFA), and a fulvic acid from the Suwannee River, Georgia (SRFA). Rates are also measured in the presence and absence of low-molar mass, aliphatic-alicyclic polycarboxylic acids (PCA). BSLFA inhibits calcite crystal-growth rates with increasing BSLFA concentration, suggesting that BSLFA adsorbs at growth sites on the calcite crystal surface. Calcite growth morphology in the presence of BSLFA differed from growth in its absence, supporting an adsorption mechanism of calcite-growth inhibition by BSLFA. Calcite growth-rate inhibition by BSLFA is consistent with a model indicating that polycarboxylic acid molecules present in BSLFA adsorb at growth sites on the calcite crystal surface. In contrast to published results for an unfractionated SRFA, there is dramatic calcite growth inhibition (at a concentration of 1 mg/L) by a SRFA fraction eluted by pH 5 solution from XAD-8 resin, indicating that calcite growth-rate inhibition is related to specific SRFA component fractions. A cyclic PCA, 1, 2, 3, 4, 5, 6-cyclohexane hexacarboxylic acid (CHXHCA) is a strong calcite growth-rate inhibitor at concentrations less than 0.1 mg/L. Two other cyclic PCAs, 1, 1 cyclopentanedicarboxylic acid (CPDCA) and 1, 1 cyclobutanedicarboxylic acid (CBDCA) with the carboxylic acid groups attached to the same ring carbon atom, have no effect on calcite growth rates up to concentrations of 10 mg/L. Organic matter ad-sorbed from the air onto the seed crystals has no effect on the measured calcite crystal-growth rates.

  3. Genetics Home Reference: aromatic l-amino acid decarboxylase deficiency

    MedlinePlus

    ... aromatic l-amino acid decarboxylase deficiency aromatic l-amino acid decarboxylase deficiency Enable Javascript to view the expand/ ... PDF Open All Close All Description Aromatic l-amino acid decarboxylase (AADC) deficiency is an inherited disorder that ...

  4. Ion exclusion chromatography of aromatic acids.

    PubMed

    Mansour, Fotouh R; Kirkpatrick, Christine L; Danielson, Neil D

    2013-08-01

    The determination of aromatic acids by ion exclusion chromatography is challenging due to peak tailing and the long retention time of hydrophobic solutes. This review discusses the retention mechanisms and the factors affecting retention, eluents and detection methods used in ion exclusion chromatography of aromatic acids such as mono-, di-, tri- and tetra-carboxylic acids, amino acids, sulfonates and phenol. In addition, the different approaches used to improve the chromatographic separation of these compounds are also discussed. These approaches include introducing an internal gradient of the ionic strength, using vacancy ion exclusion chromatography, employing a hydrophilic cation exchange resin or adding a modifier such as heptanol to the dilute sulfuric acid mobile phase. The applications of these methods in the analysis of aromatic acids are provided with a table summarizing the stationary phases, the mobile phases and the detection methods.

  5. Acidity constants in methanol/water mixtures of polycarboxylic acids used in drug salt preparations. Potentiometric determination of aqueous pKa values of quetiapine formulated as hemifumarate.

    PubMed

    Garrido, Gemma; Ràfols, Clara; Bosch, Elisabeth

    2006-05-01

    The acidic dissociation constants in a number of methanol/water mixtures of mono and polycarboxylic acids commonly used in the preparation of drug salts were determined. These solvent mixtures are usually used to determine the pKa of drugs of low aqueous solubility. However, when these drugs are prepared in salt form, the acid-base equilibria of both the basic drug and the counter-anion are involved in the potentiometric titration curves. In these instances, the inclusion of the pKa of acids as constant values in the curve fitting provides easy computation of the drug pKa without the need of any previous step to get the free base. As an application example, the aqueous pKa values of the quetiapine formulated as hemifumarate (Seroquel) were estimated by extrapolation from the experimental pKa in several methanol/water mixtures, which were then calculated according to the suitable constants of fumaric acid. The estimated aqueous pKa values of quetiapine are compared with those directly obtained in aqueous solution by potentiometry and by capillary electrophoresis.

  6. Vapor pressures of substituted polycarboxylic acids are much lower than previously reported

    NASA Astrophysics Data System (ADS)

    Huisman, A. J.; Krieger, U. K.; Zuend, A.; Marcolli, C.; Peter, T.

    2013-07-01

    The partitioning of compounds between the aerosol and gas phase is a primary focus in the study of the formation and fate of secondary organic aerosol. We present measurements of the vapor pressure of 2-methylmalonic (isosuccinic) acid, 2-hydroxymalonic (tartronic) acid, 2-methylglutaric acid, 3-hydroxy-3-carboxy-glutaric (citric) acid and DL-2,3-dihydroxysuccinic (DL-tartaric) acid, which were obtained from the evaporation rate of supersaturated liquid particles levitated in an electrodynamic balance. Our measurements indicate that the pure component liquid vapor pressures at 298.15 K for tartronic, citric and tartaric acids are much lower than the same quantity that was derived from solid state measurements in the only other room temperature measurement of these materials (made by Booth et al., 2010). This strongly suggests that empirical correction terms in a recent vapor pressure estimation model to account for the inexplicably high vapor pressures of these and similar compounds should be revisited, and that due caution should be used when the estimated vapor pressures of these and similar compounds are used as inputs for other studies.

  7. Complexation of amidated pectin with poly(itaconic acid) as a polycarboxylic polymer model compound.

    PubMed

    Nesic, Aleksandra R; Trifunovic, Snezana S; Grujic, Aleksandar S; Velickovic, Sava J; Antonovic, Dusan G

    2011-11-01

    Complexes based on amidated pectin (AP) and poly(itaconic acid) (PIA) were prepared by casting films from solutions of AP and PIA in different ratios with the pectin amount ranging from 10% to 90% by mass. The complexes were investigated by elemental analysis, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetry (TG). In all investigated ratios of AP/PIA glassy transparent films with a uniform structure were obtained. The results of elemental analysis confirmed the composition of the complexes, and FTIR spectroscopy has shown carboxylic and amide peak shifting, indicating complex formation between AP and PIA. Comparison of thermograms of AP/PIA films with different ratios of AP indicated that the increase of the amount of AP increases the thermal stability of the films by retarding the onset of the main degradation processes. PMID:21943549

  8. Pyrolysis Mechanisms of Aromatic Carboxylic Acids

    SciTech Connect

    Britt, P.F.; Eskay, T.P.; Buchanan, A.C. III

    1997-12-31

    Although decarboxylation of carboxylic acids is widely used in organic synthesis, there is limited mechanistic information on the uncatalyzed reaction pathways of aromatic carboxylic acids at 300-400 {degrees} C. The pyrolysis mechanisms of 1,2-(3,3-dicarboxyphenyl)ethane, 1,2-(4,4-dicarboxylphenyl)ethane, 1-(3-carboxyphenyl)-2-(4- biphenyl)ethane, and substituted benzoic acids have been investigated at 325-425 {degrees} C neat and diluted in an inert solvent. Decarboxylation is the dominant pyrolysis path. Arrhenius parameters, substituent effects, and deuterium isotope effects are consistent with decarboxylation by an electrophilic aromatic substitution reaction. Pyrolysis of benzoic acid in naphthalene, as a solvent, produces significant amounts of 1- and 2-phenylnaphthalenes. The mechanistic pathways for decarboxylation and arylation with be presented.

  9. Stable isotopic analysis of pyrogenic organic matter in soils by liquid chromatography-isotope-ratio mass spectrometry of benzene polycarboxylic acids.

    PubMed

    Yarnes, Christopher; Santos, Fernanda; Singh, Nimisha; Abiven, Samuel; Schmidt, Michael W I; Bird, Jeffrey A

    2011-12-30

    Pyrogenic organic matter (PyOM), the incomplete combustion product of organic materials, is considered stable in soils and represents a potentially important terrestrial sink for atmospheric carbon dioxide. One well-established method of measuring PyOM in the environment is as benzene polycarboxylic acids (BPCAs), a compound-specific method, which allows both qualitative and quantitative estimation of PyOM. Until now, stable isotope measurement of PyOM carbon involved measurement of the trimethylsilyl (TMS) or methyl (Me) polycarboxylic acid derivatives by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). However, BPCA derivatives can contain as much as 150% derivative carbon, necessitating post-analysis correction for the accurate measurement of δ¹³C values, leading to increased measurement error. Here, we describe a method for δ¹³C isotope ratio measurement and quantification of BPCAs from soil-derived PyOM, based on ion-exchange chromatography (IEC-IRMS). The reproducibility of the δ¹³C measurement of individual BPCAs by IEC-IRMS was better than 0.35‰ (1σ). The δ¹³C-BPCA analysis of PyOM in soils, including at natural and artificially enriched ¹³C-abundance, produced accurate and precise δ¹³C measurements. Analysis of samples that differed in δ¹³C by as much as 900‰ revealed carryover of <1‰ between samples. The weighted sum of individual δ¹³C-BPCA measurements was correlated with previous isotopic measurements of whole PyOM, providing complementary information for bulk isotopic measurements. We discuss potential applications of δ¹³C-BPCA measurements, including the study of turnover rates of PyOM in soils and the partitioning of PyOM sources based on photosynthetic pathways. PMID:22468329

  10. Biosynthesis of the Aromatic Amino Acids.

    PubMed

    Pittard, James; Yang, Ji

    2008-09-01

    This chapter describes in detail the genes and proteins of Escherichia coli involved in the biosynthesis and transport of the three aromatic amino acids tyrosine, phenylalanine, and tryptophan. It provides a historical perspective on the elaboration of the various reactions of the common pathway converting erythrose-4-phosphate and phosphoenolpyruvate to chorismate and those of the three terminal pathways converting chorismate to phenylalanine, tyrosine, and tryptophan. The regulation of key reactions by feedback inhibition, attenuation, repression, and activation are also discussed. Two regulatory proteins, TrpR (108 amino acids) and TyrR (513 amino acids), play a major role in transcriptional regulation. The TrpR protein functions only as a dimer which, in the presence of tryptophan, represses the expression of trp operon plus four other genes (the TrpR regulon). The TyrR protein, which can function both as a dimer and as a hexamer, regulates the expression of nine genes constituting the TyrR regulon. TyrR can bind each of the three aromatic amino acids and ATP and under their influence can act as a repressor or activator of gene expression. The various domains of this protein involved in binding the aromatic amino acids and ATP, recognizing DNA binding sites, interacting with the alpha subunit of RNA polymerase, and changing from a monomer to a dimer or a hexamer are all described. There is also an analysis of the various strategies which allow TyrR in conjunction with particular amino acids to differentially affect the expression of individual genes of the TyrR regulon. PMID:26443741

  11. Highly Energetic, Low Sensitivity Aromatic Peroxy Acids.

    PubMed

    Gamage, Nipuni-Dhanesha H; Stiasny, Benedikt; Stierstorfer, Jörg; Martin, Philip D; Klapötke, Thomas M; Winter, Charles H

    2016-02-18

    The synthesis, structure, and energetic materials properties of a series of aromatic peroxy acid compounds are described. Benzene-1,3,5-tris(carboperoxoic) acid is a highly sensitive primary energetic material, with impact and friction sensitivities similar to those of triacetone triperoxide. By contrast, benzene-1,4-bis(carboperoxoic) acid, 4-nitrobenzoperoxoic acid, and 3,5-dinitrobenzoperoxoic acid are much less sensitive, with impact and friction sensitivities close to those of the secondary energetic material 2,4,6-trinitrotoluene. Additionally, the calculated detonation velocities of 3,5-dinitrobenzoperoxoic acid and 2,4,6-trinitrobenzoperoxoic acid exceed that of 2,4,6-trinitrotoluene. The solid-state structure of 3,5-dinitrobenzoperoxoic acid contains intermolecular O-H⋅⋅⋅O hydrogen bonds and numerous N⋅⋅⋅O, C⋅⋅⋅O, and O⋅⋅⋅O close contacts. These attractive lattice interactions may account for the less sensitive nature of 3,5-dinitrobenzoperoxoic acid. PMID:26743434

  12. Highly Energetic, Low Sensitivity Aromatic Peroxy Acids.

    PubMed

    Gamage, Nipuni-Dhanesha H; Stiasny, Benedikt; Stierstorfer, Jörg; Martin, Philip D; Klapötke, Thomas M; Winter, Charles H

    2016-02-18

    The synthesis, structure, and energetic materials properties of a series of aromatic peroxy acid compounds are described. Benzene-1,3,5-tris(carboperoxoic) acid is a highly sensitive primary energetic material, with impact and friction sensitivities similar to those of triacetone triperoxide. By contrast, benzene-1,4-bis(carboperoxoic) acid, 4-nitrobenzoperoxoic acid, and 3,5-dinitrobenzoperoxoic acid are much less sensitive, with impact and friction sensitivities close to those of the secondary energetic material 2,4,6-trinitrotoluene. Additionally, the calculated detonation velocities of 3,5-dinitrobenzoperoxoic acid and 2,4,6-trinitrobenzoperoxoic acid exceed that of 2,4,6-trinitrotoluene. The solid-state structure of 3,5-dinitrobenzoperoxoic acid contains intermolecular O-H⋅⋅⋅O hydrogen bonds and numerous N⋅⋅⋅O, C⋅⋅⋅O, and O⋅⋅⋅O close contacts. These attractive lattice interactions may account for the less sensitive nature of 3,5-dinitrobenzoperoxoic acid.

  13. Synthesis and Characterization of Surface Grafted Poly(N-isopropylacrylamide) and Poly(Carboxylic Acid)– Iron Particles via Atom Transfer Radical Polymerization for Biomedical Applications

    PubMed Central

    Sutrisno, Joko; Fuchs, Alan; Evrensel, Cahit

    2014-01-01

    This research relates to the preparation and characterization of surface grafted poly(N-isopropylacrylamide) and poly(carboxylic acid)–micron-size iron particles via atom transfer radical polymerization (ATRP). The surface grafted polymers–iron particles result in multifunctional materials which can be used in biomedical applications. The functionalities consist of cell targeting, imaging, drug delivery, and immunological response. The multifunctional materials are synthesized in two steps. First, surface grafting is used to place polymer molecules on the iron particles surface. The second step, is conjugation of the bio-molecules onto the polymer backbone. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy were used to confirm the presence of polymers on the iron particles. The thickness of the grafted polymers and glass transition temperature of the surface grafted polymers were determined by transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The covalent bond between grafted polymers and iron particles caused higher glass transition temperature as compared with non-grafted polymers. The ability to target the bio-molecule and provide fluorescent imaging was simulated by conjugation of rat immunoglobulin and fluorescein isothiocyanate (FITC) labeled anti-rat. The fluorescence intensity was determined using flow cytometry and conjugated IgG-FITC anti-rat on iron particles which was imaged using a fluorescence microscopy. PMID:25382869

  14. Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 2. Major structures

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Reddy, M.M.

    1995-01-01

    Polycarboxylic acid structures that account for the strong-acid characteristics (pKa1 near 2.0) were examined for fulvic acid from the Suwannee River. Studies of model compounds demonstrated that pKa values near 2.0 occur only if the ??-ether or ??-ester groups were in cyclic structures with two to three additional electronegative functional groups (carboxyl, ester, ketone, aromatic groups) at adjacent positions on the ring. Ester linkage removal by alkaline hydrolysis and destruction of ether linkages through cleavage and reduction with hydriodic acid confirmed that the strong carboxyl acidity in fulvic acid was associated with polycarboxylic ??-ether and ??-ester structures. Studies of hypothetical structural models of fulvic acid indicated possible relation of these polycarboxylic structures with the amphiphilic and metal-binding properties of fulvic acid.

  15. How Do Haloarchaea Synthesize Aromatic Amino Acids?

    PubMed Central

    Gulko, Miriam Kolog; Dyall-Smith, Mike; Gonzalez, Orland; Oesterhelt, Dieter

    2014-01-01

    Genomic analysis of H. salinarum indicated that the de novo pathway for aromatic amino acid (AroAA) biosynthesis does not follow the classical pathway but begins from non-classical precursors, as is the case for M. jannaschii. The first two steps in the pathway were predicted to be carried out by genes OE1472F and OE1475F, while the 3rd step follows the canonical pathway involving gene OE1477R. The functions of these genes and their products were tested by biochemical and genetic methods. In this study, we provide evidence that supports the role of proteins OE1472F and OE1475F catalyzing consecutive enzymatic reactions leading to the production of 3-dehydroquinate (DHQ), after which AroAA production proceeds via the canonical pathway starting with the formation of DHS (dehydroshikimate), catalyzed by the product of ORF OE1477R. Nutritional requirements and AroAA uptake studies of the mutants gave results that were consistent with the proposed roles of these ORFs in AroAA biosynthesis. DNA microarray data indicated that the 13 genes of the canonical pathway appear to be utilised for AroAA biosynthesis in H. salinarum, as they are differentially expressed when cells are grown in medium lacking AroAA. PMID:25216252

  16. Affinity labelling enzymes with esters of aromatic sulfonic acids

    DOEpatents

    Wong, Show-Chu; Shaw, Elliott

    1977-01-01

    Novel esters of aromatic sulfonic acids are disclosed. The specific esters are nitrophenyl p- and m-amidinophenylmethanesulfonate. Also disclosed is a method for specific inactivation of the enzyme, thrombin, employing nitrophenyl p-amidinophenylmethanesulfonate.

  17. Mechanistic Investigation into the Decarboxylation of Aromatic Carboxylic Acids

    SciTech Connect

    Britt, P F; Buchanan, III, A C; Eskay, T P; Mungall, W S

    1999-08-22

    It has been proposed that carboxylic acids and carboxylates are major contributors to cross-linking reactions in low-rank coals and inhibit its thermochemical processing. Therefore, the thermolysis of aromatic carboxylic acids was investigated to determine the mechanisms of decarboxylation at temperatures relevant to coal processing, and to determine if decarboxylation leads to cross-linking (i.e., formation of more refractory products). From the thcrmolysis of simple and polymeric coal model compounds containing aromatic carboxylic acids at 250-425 °C, decarboxylation was found to occur primarily by an acid promoted ionic pathway. Carboxylate salts were found to enhance the decarboxylation rate, which is consistent with the proposed cationic mechanism. Thermolysis of the acid in an aromatic solvent, such as naphthalene, produced a small amount of arylated products (~5 mol%)), which constitute a low-temperature cross-link. These arylated products were formed by the rapid decomposition of aromatic anhydrides, which are in equilibrium with the acid. These anhydrides decompose by a free radical induced decomposition pathway to form atyl radicals that can add to aromatic rings to form cross-links or abstract hydrogen. Large amounts of CO were formed in the thennolysis of the anhydrides which is consistent with the induced decomposition pathway. CO was also formed in the thermolysis of the carboxylic acids in aromatic solvents which is consistent with the formation and decomposition of the anhydride. The formation of anhydride linkages and cross-links was found to be very sensitive to the reactions conditions. Hydrogen donor solvents, such as tetralin, and water were found to decrease the formation of arylated products. Silar reaction pathways were also found in the thermolysis of a polymeric model that contained aromatic carboxylic acids. In this case, anhydride formation and decomposition produced an insoluble polymer, while the O-methylated polymer and the non

  18. A novel star-shaped poly(carboxylic acid) for resin-modified glass-ionomer restoratives.

    PubMed

    Weng, Y; Howard, L; Xie, D

    2014-07-01

    We have developed a novel glass-ionomer cement (GIC) system composed of photo-curable star-shaped poly(acrylic acid-co-itaconic acid)s. These polyacids were synthesized via a chain-transfer radical polymerization using a newly synthesized multi-arm chain-transfer agent. The star-shaped polyacids showed significantly lower viscosities in water as compared to the linear polyacids. Due to the lower viscosities, the molecular weight (MW) of the polyacids can be significantly increased for enhancing the mechanical strengths while keeping the ease of mixing and handling. The effects of MW, GM-tethering ratio, P/L ratio, and aging on the compressive properties of the experimental cements were significant. The light-cured experimental cements showed significantly improved mechanical strengths i.e. 49% in yield strength, 41% in modulus, 25% in CS, 20% in DTS, and 36% in FS, higher than commercial Fuji II LC. After aging in water for 1 month, the compressive strength of the novel light-cured experimental cement reached 343 MPa, which was 34% and 42% higher than Fuji II and Fuji II LC, respectively. This one-month aged experimental cement was also 23% higher than itself after one day aging, indicating that aging in water can significantly enhance salt-bridge formation for this novel star-shaped polyacid-comprised GIC.

  19. A novel star-shaped poly(carboxylic acid) for resin-modified glass-ionomer restoratives.

    PubMed

    Weng, Y; Howard, L; Xie, D

    2014-07-01

    We have developed a novel glass-ionomer cement (GIC) system composed of photo-curable star-shaped poly(acrylic acid-co-itaconic acid)s. These polyacids were synthesized via a chain-transfer radical polymerization using a newly synthesized multi-arm chain-transfer agent. The star-shaped polyacids showed significantly lower viscosities in water as compared to the linear polyacids. Due to the lower viscosities, the molecular weight (MW) of the polyacids can be significantly increased for enhancing the mechanical strengths while keeping the ease of mixing and handling. The effects of MW, GM-tethering ratio, P/L ratio, and aging on the compressive properties of the experimental cements were significant. The light-cured experimental cements showed significantly improved mechanical strengths i.e. 49% in yield strength, 41% in modulus, 25% in CS, 20% in DTS, and 36% in FS, higher than commercial Fuji II LC. After aging in water for 1 month, the compressive strength of the novel light-cured experimental cement reached 343 MPa, which was 34% and 42% higher than Fuji II and Fuji II LC, respectively. This one-month aged experimental cement was also 23% higher than itself after one day aging, indicating that aging in water can significantly enhance salt-bridge formation for this novel star-shaped polyacid-comprised GIC. PMID:24865692

  20. Impact of dietary aromatic amino acids on osteoclastic activity.

    PubMed

    Refaey, Mona El; Zhong, Qing; Ding, Ke-Hong; Shi, Xing-Ming; Xu, Jianrui; Bollag, Wendy B; Hill, William D; Chutkan, Norman; Robbins, Richard; Nadeau, Hugh; Johnson, Maribeth; Hamrick, Mark W; Isales, Carlos M

    2014-08-01

    We had shown that aromatic amino acid (phenylalanine, tyrosine, and tryptophan) supplementation prevented bone loss in an aging C57BL/6 mice model. In vivo results from the markers of bone breakdown suggested an inhibition of osteoclastic activity or differentiation. To assess osteoclastic differentiation, we examined the effects of aromatic amino acids on early /structural markers as vitronectin receptor, calcitonin receptor, and carbonic anhydrase II as well as, late/functional differentiation markers; cathepsin K and matrix metalloproteinase 9 (MMP-9). Our data demonstrate that the aromatic amino acids down-regulated early and late osteoclastic differentiation markers as measured by real time PCR. Our data also suggest a link between the vitronectin receptor and the secreted cathepsin K that both showed consistent effects to the aromatic amino acid treatment. However, the non-attachment related proteins, calcitonin receptor, and carbonic anhydrase II, demonstrated less consistent effects in response to treatment. Our data are consistent with aromatic amino acids down-regulating osteoclastic differentiation by suppressing remodeling gene expression thus contributing initially to the net increase in bone mass seen in vivo.

  1. Oxidative photodegradation of herbicide fenuron in aqueous solution by natural iron oxide α-Fe2O3, influence of polycarboxylic acids.

    PubMed

    Kribéche, Mohamed El Amine; Mechakra, Hind; Sehili, Tahar; Brosillon, Stephan

    2016-01-01

    The photodegradation of the herbicide fenuron (1,1-dimethyl-3-phenylurea) by using a natural iron oxide (NIO), α-Fe2O3, in aqueous solution at acidic pH has been undertaken. The NIO was characterized by the Raman spectroscopy method. The degradation pathways and the formation of degradation products were studied. A high-pressure mercury lamp and sunlight were employed as light source. Fenuron photodegradation using NIO with oxalic acid followed the pseudo-first-order kinetics, the optimal experimental conditions were [oxalic acid]0 = 10(-3) M and [NIO] = 0.1 g L(-1) at pH 3. A UVA/NIO/oxalic acid system led to a low fenuron half-life (60 min). The results were even better when solar light is used (30 min). The variables studied were the doses of iron oxide, of carboxylic acids, the solution pH and the effect of sunlight irradiation. The effects of four carboxylic acids, oxalic, citric, tartaric and malic acids, on the fenuron photodegradation with NIO have been investigated, oxalic acid was the most effective carboxylic acid used at pH 3. A similar trend was observed for the removal of total organic carbon (TOC), 75% of TOC was removed. The analytical study showed many aromatic intermediates, short-chain carboxylic acids and inorganic ion. PMID:26102217

  2. Amino Acids, Aromatic Compounds, and Carboxylic Acids: How Did They Get Their Common Names?

    ERIC Educational Resources Information Center

    Leung, Sam H.

    2000-01-01

    Surveys the roots of the common names of organic compounds most likely to be encountered by undergraduate organic chemistry students. Includes information for 19 amino acids, 17 aromatic compounds, and 21 carboxylic acids. (WRM)

  3. Multicenter bond index analysis of influence of metal cations on the aromaticity of aromatic amino acids: Phenylalanine and tyrosine

    NASA Astrophysics Data System (ADS)

    Pakiari, A. H.; Farrokhnia, M.; Azami, S. M.

    2008-05-01

    In order to provide insight into the influence of metal cations on the aromaticity of amino acids, evaluation of six-center delocalization indices is accomplished in the context of quantum theory of atoms in molecules (QTAIM). Aromaticity of two amino acids, phenylalanine and tyrosine, is investigated as typical amino acids containing aromatic ring in their isolated state and complexed by some metal cations. The results showed that the metal cations affect the most important three connectivities differently. Also, it is shown that the existence of metal cations can increase two-center delocalization in certain parts of the aromatic rings.

  4. Ultrasound assisted regioselective sulfonation of aromatic compounds with sulfuric acid.

    PubMed

    Qureshi, Ziyauddin S; Deshmukh, Krishna M; Jagtap, Sachin R; Nandurkar, Nitin S; Bhanage, Bhalchandra M

    2009-03-01

    A simple and convenient methodology for selective sulfonation of aromatic compounds using sulfuric acid under sonication is described. The present methodology shows a considerable enhancement in the reaction rate along with improved selectivity compared with the reactions performed under silent conditions. The effect of various parameters such as agitation speed, sulfuric acid concentration, and temperature on reaction system have been investigated and are explained on the basis of ultrasonically generated cavitational effects. PMID:19014895

  5. [Spectrophotometric determination of aromatic amino compounds with J-acid].

    PubMed

    Yin, Xiao-hang; Shi, Wen-jian; Shen, Xin; Ma, Jun-tao; Li, Liang

    2015-01-01

    The problems such as chromogenic reaction selectivity, reaction rate, sensitivity and water-solubility of azo compounds were considered. The molecular structures of coupling components were theoretically designed and screened in the present research The reaction conditions and methods of chromogenic reaction were investigated. J-Acid (2-amino-5-naphthol-7-sulfonic acid) as a coupling reagent to determine aromatic amino compounds was established. In the presence of potassium bromide, at room temperature, nitrite reacted with aromatic amino compounds in the medium of thin hydrochloric acid. Then diazonium salt reacted with J-Acid in the aqueous solution of sodium carbonate, forming coloured azo dye, which had a maximum adsorption at 480 nm. The molar adsorption coeffcients of aniline, 4-aminobenzene sulfonic acid and 1-naphthylamine were 3. 95 X 10(4), 3. 24 X 10(4) and 3. 91 X 10(4) L . mol-1 . cm-1 , respectively. Experimental results showed that common coexisting ions on the surface water did not affect the results of determination. J-Acid of spectrophotometry was used to determine the samples of Shanghai Fu Xing Dao canal. Meanwhile, recovery experiments by standard addition method were done. Experiment results showed that the recoveries of aniline were in the range of 98. 5%-102. 1%, and RSD was 2. 08%. J-Acid is a common organic reagent. It is soluble in water and low volatile, and its toxicity is much lower than N-ethylenediamine. spectrophotometric determination of aromatic amino compounds by J-Acid has the advantage of high sensitivity, good selectivity, simple rapid operation and accurate results, and thus it can be used for the determination of trace aromatic amino compounds in the environmental water.

  6. The adsorption of aromatic acids onto the graphite basal surface

    NASA Astrophysics Data System (ADS)

    Martin, David S.

    2003-06-01

    The adsorption of benzoic acid, toluic acid, and salicylic acid from solution onto the graphite basal surface has been studied using atomic force microscopy (AFM). A systematic study of these three related planar aromatic acids is conducted in order to observe the influence of the functional side-group upon adsorption. It is found that upon adsorption all three acids orient with the benzene ring parallel to the graphite surface. On the graphite terraces, the benzoic acid decoration follows a Stranski-Krastanov growth mode whereas toluic acid follows Volmer-Weber growth. Salicylic acid forms a fibrous aggregate network. In addition to the terraces, graphite steps and near-surface bulk defects are found to be important sites for adsorption. The AFM tip is used to create irreversible nanoscale modifications of adsorbate structures.

  7. 40 CFR 721.9620 - Aromatic sulfonic acid compound with amine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aromatic sulfonic acid compound with... Specific Chemical Substances § 721.9620 Aromatic sulfonic acid compound with amine. (a) Chemical substance... aromatic sulfonic acid compound with amine (PMN P-93-832) is subject to reporting under this section...

  8. 40 CFR 721.9620 - Aromatic sulfonic acid compound with amine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aromatic sulfonic acid compound with... Specific Chemical Substances § 721.9620 Aromatic sulfonic acid compound with amine. (a) Chemical substance... aromatic sulfonic acid compound with amine (PMN P-93-832) is subject to reporting under this section...

  9. 40 CFR 721.9620 - Aromatic sulfonic acid compound with amine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aromatic sulfonic acid compound with... Specific Chemical Substances § 721.9620 Aromatic sulfonic acid compound with amine. (a) Chemical substance... aromatic sulfonic acid compound with amine (PMN P-93-832) is subject to reporting under this section...

  10. 40 CFR 721.9620 - Aromatic sulfonic acid compound with amine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aromatic sulfonic acid compound with... Specific Chemical Substances § 721.9620 Aromatic sulfonic acid compound with amine. (a) Chemical substance... aromatic sulfonic acid compound with amine (PMN P-93-832) is subject to reporting under this section...

  11. 40 CFR 721.9620 - Aromatic sulfonic acid compound with amine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic sulfonic acid compound with... Specific Chemical Substances § 721.9620 Aromatic sulfonic acid compound with amine. (a) Chemical substance... aromatic sulfonic acid compound with amine (PMN P-93-832) is subject to reporting under this section...

  12. 40 CFR 721.10633 - Aromatic sulfonic acid amino azo dye salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aromatic sulfonic acid amino azo dye... Specific Chemical Substances § 721.10633 Aromatic sulfonic acid amino azo dye salts (generic). (a) Chemical... as aromatic sulfonic acid amino azo dye salts (PMN P-12-276) is subject to reporting under...

  13. Propensity of salicylamide and ethenzamide cocrystallization with aromatic carboxylic acids.

    PubMed

    Przybyłek, Maciej; Ziółkowska, Dorota; Mroczyńska, Karina; Cysewski, Piotr

    2016-03-31

    The cocrystallization of salicylamide (2-hydroxybenzamide, SMD) and ethenzamide (2-ethoxybenzamide, EMD) with aromatic carboxylic acids was examined both experimentally and theoretically. The supramolecular synthesis taking advantage of the droplet evaporative crystallization (DEC) technique was combined with powder diffraction and vibrational spectroscopy as the analytical tools. This led to identification of eleven new cocrystals including pharmaceutically relevant coformers such as mono- and dihydroxybenzoic acids. The cocrystallization abilities of SMD and EMD with aromatic carboxylic acids were found to be unexpectedly divers despite high formal similarities of these two benzamides and ability of the R2,2(8) heterosynthon formation. The source of diversities of the cocrystallization landscapes is the difference in the stabilization of possible conformers by adopting alternative intramolecular hydrogen boding patterns. The stronger intramolecular hydrogen bonding the weaker affinity toward intermolecular complexation potential. The substituent effects on R2,2(8) heterosynthon properties are also discussed.

  14. The roles of polycarboxylates in Cr(VI)/sulfite reaction system: Involvement of reactive oxygen species and intramolecular electron transfer.

    PubMed

    Jiang, Bo; Wang, Xianli; Liu, Yukun; Wang, Zhaohui; Zheng, Jingtang; Wu, Mingbo

    2016-03-01

    In this study, the effects of polycarboxylates on both Cr(VI) reduction and S(IV) consumption in Cr(VI)/S(IV) system was investigated in acidic solution. Under aerobic condition, the productions of reactive oxygen species (ROS), i.e., SO4(-) and OH, have been confirmed in S(IV) reducing Cr(VI) process by using electron spin resonance and fluorescence spectrum techniques, leading to the excess consumption of S(IV). However, when polycarboxylates (oxalic, citric, malic and tartaric acid) were present in Cr(VI)/S(IV) system, the affinity of polycarboxylates to CrSO6(2-) can greatly promote the reduction of Cr(VI) via expanding the coordination of Cr(VI) species from tetrahedron to hexahedron. Besides, as alternatives to S(IV), these polycarboxylates can also act as electron donors for Cr(VI) reduction via intramolecular electron transfer reaction, which is dependent on the energies of the highest occupied molecular orbital of these polycarboxylates. Notably, the variant electron donating capacity of these polycarboxylates resulted in different yield of ROS and therefore the oxidation efficiencies of other pollutants, e.g., rhodamine B and As(III). Generally, this study does not only shed light on the mechanism of S(IV) reducing Cr(VI) process mediated by polycarboxylates, but also provides an escalated, cost-effective and green strategy for the remediation of Cr(VI) using sulfite as a reductant. PMID:26610099

  15. Silver-catalyzed arylation of (hetero)arenes by oxidative decarboxylation of aromatic carboxylic acids.

    PubMed

    Kan, Jian; Huang, Shijun; Lin, Jin; Zhang, Min; Su, Weiping

    2015-02-01

    A long-standing challenge in Minisci reactions is achieving the arylation of heteroarenes by oxidative decarboxylation of aromatic carboxylic acids. To address this challenge, the silver-catalyzed intermolecular Minisci reaction of aromatic carboxylic acids was developed. With an inexpensive silver salt as a catalyst, this new reaction enables a variety of aromatic carboxylic acids to undergo decarboxylative coupling with electron-deficient arenes or heteroarenes regardless of the position of the substituents on the aromatic carboxylic acid, thus eliminating the need for ortho-substituted aromatic carboxylic acids, which were a limitation of previously reported methods.

  16. Aromatic amino acids in high selectivity bismuth(III) recognition.

    PubMed

    Ghatak, Sumanta Kumar; Dey, Debarati; Sen, Souvik; Sen, Kamalika

    2013-04-21

    The three aromatic amino acids, tyrosine, tryptophan and phenylalanine, play different physiological roles in life processes. Metal ions capable of binding these amino acids may aid in the reduction of effective concentration of these amino acids in any physiological system. Here we have studied the efficacy of some heavy metals for their complexation with these three amino acids. Bismuth has been found to bind selectively with these aromatic amino acids and this was confirmed using spectrofluorimetric, spectrophotometric and cyclic voltammetric studies. The series of heavy metals has been chosen because each of these metals remains associated with the others at very low concentration levels and Bi(III) is the least toxic amongst the other elements. So, selective recognition for Bi(III) would also mean no response for the other heavy elements if contaminants are present even at low concentration levels. The affinity towards these amino acids has been found to be in the order tryptophan < phenylalanine < tyrosine. The association constants of these amino acids have been calculated using Benesi-Hildebrand equations and the corresponding free energy change has also been calculated. The values of the association constants obtained from BH equations using absorbance values corroborate with the Stern-Volmer constants obtained from fluorimetric studies. The evidence for complexation is also supported by the results of cyclic voltammetry.

  17. Chlamydia pneumoniae encodes a functional aromatic amino acid hydroxylase.

    PubMed

    Abromaitis, Stephanie; Hefty, P Scott; Stephens, Richard S

    2009-03-01

    Chlamydia pneumoniae is a community-acquired respiratory pathogen that has been associated with the development of atherosclerosis. Analysis of the C. pneumoniae genome identified a gene (Cpn1046) homologous to eukaryotic aromatic amino acid hydroxylases (AroAA-Hs). AroAA-Hs hydroxylate phenylalanine, tyrosine, and tryptophan into tyrosine, dihydroxyphenylalanine, and 5-hydroxytryptophan, respectively. Sequence analysis of Cpn1046 demonstrated that residues essential for AroAA-H enzymatic function are conserved and that a subset of Chlamydia species contain an AroAA-H homolog. The chlamydial AroAA-Hs are transcriptionally linked to a putative bacterial membrane transport protein. We determined that recombinant Cpn1046 is able to hydroxylate phenylalanine, tyrosine, and tryptophan with roughly equivalent activity for all three substrates. Cpn1046 is expressed within 24 h of infection, allowing C. pneumoniae to hydroxylate host stores of aromatic amino acids during the period of logarithmic bacterial growth. From these results we can conclude that C. pneumoniae, as well as a subset of other Chlamydia species, encode an AroAA-H that is able to use all three aromatic amino acids as substrates. The maintenance of this gene within a number of Chlamydia suggests that the enzyme may have an important role in shaping the metabolism or overall pathogenesis of these bacteria. PMID:19141112

  18. Biodegradation of aromatic hydrocarbons in an extremely acidic environment

    SciTech Connect

    Stapleton, R.D.; Savage, D.C.; Sayler, G.S.; Stacey, G.

    1998-11-01

    The potential for biodegradation of aromatic hydrocarbons was evaluated in soil samples recovered along gradients of both contaminant levels and pH values existing downstream of a long-term coal pile storage basin. pH values for areas greatly impacted by runoff from the storage basin were 2.0. Even at such a reduced pH, the indigenous microbial community was metabolically active, showing the ability to oxidize more than 40% of the parent hydrocarbons, naphthalene and toluene, to carbon dioxide and water. Treatment of the soil samples with cycloheximide inhibited mineralization of the aromatic substrates. DNA hybridization analysis indicated that whole-community nucleic acids recovered from these samples did not hybridize with genes, such as nahA, nahG, nahH, todC1C2, and tomA, that encode common enzymes from neutrophilic bacteria. Since these data suggested that the degradation of aromatic compounds may involve a microbial consortium instead of individual acidophilic bacteria, experiments using microorganisms isolated from these samples were initiated. While no defined mixed cultures were able to evolve {sup 14}CO{sub 2} from labeled substrates in these mineralization experiments, an undefined mixed culture including a fungus, a yeast, and several bacteria successfully metabolized approximately 27% of supplied naphthalene after 1 week. This study shows that biodegradation of aromatic hydrocarbons can occur in environments with extremely low pH values.

  19. Aromatic Amino Acids and Related Substances: Chemistry, Biology, Medicine, and Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On the occasion of the "Transdisciplinary International Conference on Aromatic Amino Acids and Related Substances," the organizing committee honors and thanks the expert participants from many areas of aromatic amino acid (AAA)3 research. In this transdisciplinary meeting, "aromatic paradigms" were ...

  20. Method for continuous production of aromatic carboxylic acid

    SciTech Connect

    Abrams, K.J.

    1988-12-20

    This patent describes a method for the continuous production of an aromatic carboxylic acid product in a pressurized oxidation reactor by liquid-phase, exothermic oxidation of an aromatic alkyl feed with an oxygen-containing gas, in the presence of an aromatic alkyl feed with an oxygen-containing gas, in the presence of an oxidation catalyst and in an aqueous monocarboxylic C/sub 2/ to C/sub 6/ aliphatic acid solvent medium, wherein the heat generated during the course of the oxidation is removed from the reactor by vaporization of a portion of the reaction medium and water, wherein the resulting vapors are condensed in part in a reflux loop externally of the oxidation reactor to produce a condensate and a gaseous phase, and wherein at least a portion of the condensate is returned to the oxidation reactor, the improvement comprising a method for controlling within desired limits the concentration of water in the oxidation reactor, which comprises: partitioning the vapors into a parallel condensate having a relatively lesser water-to-solvent weight ratio and a vapor phase having a relatively greater water-to-solvent weight ratio; returning the partial condensate directly to the oxidation reactor as a direct reflux stream; withdrawing the vapor phase from the reflux loop as a vapor stream; subjecting the withdrawn vapor stream to heat exchange while decreasing the vapor stream pressure to less than the oxidation reactor pressure to thereby produce an aqueous aliphatic acid stream having a water-to-solvent weight ratio greater than that of the direct reflux stream.

  1. UV photoinduced dynamics in protonated aromatic amino acid

    NASA Astrophysics Data System (ADS)

    Grã©Goire, G.; Lucas, B.; Barat, M.; Fayeton, J. A.; Dedonder-Lardeux, C.; Jouvet, C.

    2009-01-01

    UV photoinduced fragmentation of protonated aromatic amino acids has emerged the last few years, coming from a situation where nothing was known to what we think a good understanding of the optical properties. We will mainly focus this review on the tryptophan case. Three groups have mostly done spectroscopic studies and one has mainly been involved in dynamics studies of the excited states in the femtosecond/picosecond range and also in the fragmentation kinetics from nanosecond to millisecond. All these data, along with high level ab initio calculations, have shed light on the role of the different electronic states of the protonated molecules upon the fragmentation mechanisms.

  2. Formic-acid-induced depolymerization of oxidized lignin to aromatics.

    PubMed

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J; Stahl, Shannon S

    2014-11-13

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  3. Formic-acid-induced depolymerization of oxidized lignin to aromatics

    NASA Astrophysics Data System (ADS)

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J.; Stahl, Shannon S.

    2014-11-01

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  4. Hydration of protonated aromatic amino acids: phenylalanine, tryptophan, and tyrosine.

    PubMed

    Gao, Bing; Wyttenbach, Thomas; Bowers, Michael T

    2009-04-01

    The first steps of hydration of the protonated aromatic amino acids phenylalanine, tryptophan, and tyrosine were studied experimentally employing a mass spectrometer equipped with a drift cell to examine the sequential addition of individual water molecules in equilibrium experiments and theoretically by a combination of molecular mechanics and electronic structure calculations (B3LYP/6-311++G**) on the three amino acid systems including up to five water molecules. It is found that both the ammonium and carboxyl groups offer good water binding sites with binding energies of the order of 13 kcal/mol for the first water molecule. Subsequent water molecules bind less strongly, in the range of 7-11 kcal/mol for the second through fifth water molecules. The ammonium group is able to host up to three water molecules and the carboxyl group one water molecule before additional water molecules bind either to the amino acid side chain as in tyrosine or to already-bound water in a second solvation shell around the ammonium group. Reasons for the surprisingly high water affinity of the neutral carboxyl group, comparable to that of the charge-carrying ammonium group, are found to be high intrinsic hydrophilicity, favorable charge-dipole alignment, and--for the case of multiply hydrated species--favorable dipole-dipole interaction among water molecules and the lack of alternative fully exposed hydration sites.

  5. Electromembrane extraction and HPLC analysis of haloacetic acids and aromatic acetic acids in wastewater.

    PubMed

    Alhooshani, Khalid; Basheer, Chanbasha; Kaur, Jagjit; Gjelstad, Astrid; Rasmussen, Knut E; Pedersen-Bjergaard, Stig; Lee, Hian Kee

    2011-10-30

    For the first time, haloacetic acids and aromatic acetic acids were extracted from wastewater samples using electromembrane extraction (EME). A thin layer of toluene immobilized on the walls of a polypropylene membrane envelope served as an artificial supported liquid membrane (SLM). The haloacetic acids (HAAs) (chloroacetic acid, dichloroacetic acid, and trifluoroacetic acid) and aromatic acetic acids (phenylacetic acid and p-hydroxyphenylacetic acid) were extracted through the SLM and into an alkalized aqueous buffer solution. The buffer solution was located inside the membrane envelope. The electrical potential difference sustained over the membrane acted as the driving force for the transport of haloacetic acids into the membrane by electrokinetic migration. After extraction, the extracts were analyzed by high-performance liquid chromatography-ultraviolet detection. The detection limits were between 0.072 and 40.3 ng L(-1). The calibration plot linearity was in the range of 5 and 200 μg L(-1) while the correlation coefficients for the analytes ranged from 0.9932 to 0.9967. Relative recoveries were in the range of 87-106%. The extraction efficiency was found to be comparable to that of solid-phase extraction.

  6. Applications of electrochemically-modulated liquid chromatography (EMLC): Separations of aromatic amino acids and polycyclic aromatic hydrocarbons

    SciTech Connect

    Deng, L.

    1998-03-27

    The research in this thesis explores the separation capabilities of a new technique termed electrochemically-modulated liquid chromatography (EMLC). The thesis begins with a general introduction section which provides a literature review of this technique as well as a brief background discussion of the two research projects in each of the next two chapters. The two papers which follow investigate the application of EMLC to the separation of a mixture of aromatic amino acids and of a mixture of polycyclic aromatic hydrocarbons (PAHs). The last section presents general conclusions and summarizes the thesis. References are compiled in the reference section of each chapter. The two papers have been removed for separate processing.

  7. Solwaric acids A and B, antibacterial aromatic acids from a marine Solwaraspora sp.

    PubMed

    Ellis, Gregory A; Wyche, Thomas P; Fry, Charles G; Braun, Doug R; Bugni, Tim S

    2014-02-14

    Two novel trialkyl-substituted aromatic acids, solwaric acids A and B, were isolated from a marine Solwaraspora sp. cultivated from the ascidian Trididemnum orbiculatum. Solwaric acids A and B were isotopically labeled with U-¹³C glucose, and analysis of a ¹³C-¹³C COSY allowed for unambiguous determination of the location of the phenyl methyl group. The two novel compounds demonstrated antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA).

  8. Carbonic anhydrase inhibitors. A general approach for the preparation of water-soluble sulfonamides incorporating polyamino-polycarboxylate tails and of their metal complexes possessing long-lasting, topical intraocular pressure-lowering properties.

    PubMed

    Scozzafava, Andrea; Menabuoni, Luca; Mincione, Francesco; Supuran, Claudiu T

    2002-03-28

    Reaction of polyamino-polycarboxylic acids or their dianhydrides with aromatic/heterocyclic sulfonamides possessing a free amino/imino/hydrazino/hydroxy group afforded mono- and bis-sulfonamides containing polyamino-polycarboxylic acid moieties in their molecule. The acids/anhydrides used in synthesis included IDA, NTA, EDDA, EDTA and EDTA dianhydride, DTPA and DTPA dianhydride, EGTA and EGTA dianhydride, and EDDHA, among others. All the newly prepared derivatives showed strong affinity toward isozymes I, II, and IV of carbonic anhydrase (CA). Metal complexes of the new compounds have also been prepared. Metal ions used in such preparations included di- and trivalent main-group and transition cations, such as Zn(II), Cu(II), Al(III), etc. Some of the new sulfonamides/disulfonamides obtained in this way, as well as their metal complexes, behaved as nanomolar CA inhibitors against isozymes II and IV, being slightly less effective in inhibiting isozyme I. Some of these sulfonamides as well as their metal complexes strongly lowered intraocular pressure (IOP) when applied topically, directly into the normotensive/glaucomatous rabbit eye, as 1-2% water solutions/suspensions. The good water solubility of these sulfonamide CA inhibitors, correlated with the neutral pH of their water solutions used in the ophthalmologic applications and the long duration of action of the IOP-lowering effect, makes them interesting candidates for developing novel types of antiglaucoma drugs devoid of serious topical side effects. PMID:11906288

  9. Polycarboxylic acids as network modifiers for water durability improvement of inorganic-organic hybrid tin-silico-phosphate low-melting glasses

    SciTech Connect

    Menaa, Bouzid . E-mail: bouzidmenaa@noncry.kuicr.kyoto-u.ac.jp; Mizuno, Megumi; Takahashi, Masahide . E-mail: masahide@noncry.kuicr.kyoto-u.ac.jp; Tokuda, Yomei; Yoko, Toshinobu

    2006-02-15

    We investigated the water durability of the inorganic-organic hybrid tin-silico-phosphate glasses Me{sub 2}SiO-SnO-P{sub 2}O{sub 5} (Me designs the organic methyl group) doped with organic acids (salicylic acid (SA), tartaric acid (TA), citric acid (Canada) and butane tetracarboxylic acid (BTCA)) containing one or more of carboxylic groups per molecule. The structure, thermal properties and durability of the final glasses obtained via a non-aqueous acid-base reaction were discussed owing to the nature and the concentration of the acid added. {sup 29}Si magic angle spinning (MAS) NMR and {sup 31}P MAS NMR spectra, respectively, showed clearly a modification of the network in the host glass matrix of the Me{sub 2}SiO-SnO-P{sub 2}O{sub 5} system. The polycondensation enhancement to form -P-O-Si-O-P- linkages (PSP) and the increase of the Q {sup 2} unit (two bridging oxygens per phosphorus atom) over the Q {sup 3} unit (three bridging oxygens per phosphorus atom) as a function of the acid in the order SAacids containing a large number of carboxylic groups per molecule. The presence of carboxylic groups of the acid acting as network modifier may retard the movement of water molecules through the glasses due to the steric hindrance strengthening the PSP connections in a chain-like structure.

  10. Synthesis of novel amphiphilic hyaluronan containing-aromatic fatty acids for fabrication of polymeric micelles.

    PubMed

    Matelová, Alena; Huerta-Angeles, Gloria; Šmejkalová, Daniela; Brůnová, Zdislava; Dušek, Jan; Vícha, Robert; Velebný, Vladimír

    2016-10-20

    Novel hydrophobized hyaluronan (HA) derivatives, containing ω-phenylalkanoic acids (ω-PAA, 4-phenylbutyric acid, 6-phenylhexanoic, 8-phenyloctanoic or 11-tolylundecanoic acids) were prepared by esterification. Mixed anhydrides obtained after reaction of the carboxyl acid moiety and benzoyl chloride were found to be active acylating agents, affording hydrophobized HA in good yield and under mild conditions. The reactivity of the aromatic fatty acids towards esterification has decreased with the increasing length of the aliphatic spacer between the aromatic substituent and carboxylic acid moiety. The novel HA derivatives self-assembled from very low concentrations and were found to be non-cytotoxic. The potential use of ω-phenylalkanoic acids grafted-HA towards drug delivery applications was demonstrated by hydrophobic drugs (resveratrol and retinyl palmitate) encapsulation. The drug loading capacity of the novel HA derivatives was significantly improved most likely because of π⋯π interactions between the micelle core and loaded hydrophobic aromatic compound.

  11. Synthesis of novel amphiphilic hyaluronan containing-aromatic fatty acids for fabrication of polymeric micelles.

    PubMed

    Matelová, Alena; Huerta-Angeles, Gloria; Šmejkalová, Daniela; Brůnová, Zdislava; Dušek, Jan; Vícha, Robert; Velebný, Vladimír

    2016-10-20

    Novel hydrophobized hyaluronan (HA) derivatives, containing ω-phenylalkanoic acids (ω-PAA, 4-phenylbutyric acid, 6-phenylhexanoic, 8-phenyloctanoic or 11-tolylundecanoic acids) were prepared by esterification. Mixed anhydrides obtained after reaction of the carboxyl acid moiety and benzoyl chloride were found to be active acylating agents, affording hydrophobized HA in good yield and under mild conditions. The reactivity of the aromatic fatty acids towards esterification has decreased with the increasing length of the aliphatic spacer between the aromatic substituent and carboxylic acid moiety. The novel HA derivatives self-assembled from very low concentrations and were found to be non-cytotoxic. The potential use of ω-phenylalkanoic acids grafted-HA towards drug delivery applications was demonstrated by hydrophobic drugs (resveratrol and retinyl palmitate) encapsulation. The drug loading capacity of the novel HA derivatives was significantly improved most likely because of π⋯π interactions between the micelle core and loaded hydrophobic aromatic compound. PMID:27474668

  12. Inhibition of barium sulfate deposition by polycarboxylates of various molecular structures

    SciTech Connect

    van der Leeden, M.C.; van Rosmalen, G.M. )

    1990-02-01

    To establish a relationship between the molecular structure of polycarboxylates and their growth-retarding influence on barium sulfate, seeded-suspension-growth experiments were performed at various inhibitor concentrations and pH values. Two types of polycarboxylates with a molecular structure based on their polyacrylic or maleic acid were studied. The molecular structure of these compounds were varied by particle substitution with monomers containing hydroxyl, amide, and sulfonic acid, as well as hydrophobic groups. Hydrophobic groups are detrimental to good inhibitor performance, whereas the introduction of OH, NH {sub 2}, or SO {sub 3} H groups presents opportunities to enhance the inhibitor effectiveness. The sequence in performance of the compounds on barium sulfate was compared with the sequence formerly obtained for calcium sulfate dihydrate.

  13. Applications of FT-IR spectroscopy to the studies of esterification and crosslinking of cellulose by polycarboxylic acids: Part II. The performance of the crosslinked cotton fabrics

    NASA Astrophysics Data System (ADS)

    Wei, Weishu; Yang, Charles Q.

    1998-06-01

    Durable press finishing processes are commonly used in the textile industry to produce wrinkle-free cotton fabrics and garments. A durable press finishing agent forms covalent bands with cellulosic hydroxyl groups, thus crosslinking the cellulose molecules. The crosslinking of cellulose increases wrinkle resistance of the treated cotton fabric and reduces fabric mechanical strength. Wrinkle recovery angle (WRA) and tensile strength are the two most important parameters used to evaluate the performance of the crosslinked cotton fabrics and garments. In this study, we investigated the correlation between WRA and tensile strength on one hand, and the amount of crosslinkages formed by the crosslinking agents including dimethyloldihydroxylethyleneurea (DMDHEU) and 1,2,3,4-butanetetracarboxylic acid (BTCA) determined by FT-IR spectroscopy on the other hand. Linear regression curves between the carbonyl band absorbance, and WRA and tensile strength of the treated cotton fabric were developed. The data indicated that FT-IR spectroscopy is a reliable technique for predicting the performance of durable press finished cotton fabrics, therefore can be used as a convenient instrumental method for quality control in the textile and garment industry.

  14. Solid-supported acids as mild and versatile reagents for the deprotection of aromatic ethers.

    PubMed

    Ploypradith, Poonsakdi; Cheryklin, Pannarin; Niyomtham, Nattisa; Bertoni, Daniel R; Ruchirawat, Somsak

    2007-07-01

    p-Toluene sulfonic acid (p-TsOH) immobilized either on polystyrene (PS) or silica (Si) was found to be effective in cleaving aromatic ethers containing isopropyl, tert-butyl, allyl, and benzyl groups, as well as mono-, di-, and trimethoxylated benzyl groups, in moderate to excellent yields (54-95%). These protecting groups could be selectively deprotected when they were simultaneously present on the same or different aromatic rings in a substrate.

  15. Efficient Route to Highly Water-Soluble Aromatic Cyclic Hydroxamic Acid Ligands

    SciTech Connect

    Seitz, Michael; Raymond, Kenneth N.

    2008-02-06

    2-Hydroxyisoquinolin-1-one (1,2-HOIQO) is a new member of the important class of aromatic cyclic hydroxamic acid ligands which are widely used in metal sequestering applications and metal chelating therapy. The first general approach for the introduction of substituents at the aromatic ring of the chelating moiety is presented. As a useful derivative, the highly water-soluble sulfonic acid has been synthesized by an efficient route that allows general access to 1,2-HOQIO 3-carboxlic acid amides, which are the most relevant for applications.

  16. Fluorinated Aromatic Amino Acids Distinguish Cation-π Interactions from Membrane Insertion.

    PubMed

    He, Tao; Gershenson, Anne; Eyles, Stephen J; Lee, Yan-Jiun; Liu, Wenshe R; Wang, Jiangyun; Gao, Jianmin; Roberts, Mary F

    2015-07-31

    Cation-π interactions, where protein aromatic residues supply π systems while a positive-charged portion of phospholipid head groups are the cations, have been suggested as important binding modes for peripheral membrane proteins. However, aromatic amino acids can also insert into membranes and hydrophobically interact with lipid tails. Heretofore there has been no facile way to differentiate these two types of interactions. We show that specific incorporation of fluorinated amino acids into proteins can experimentally distinguish cation-π interactions from membrane insertion of the aromatic side chains. Fluorinated aromatic amino acids destabilize the cation-π interactions by altering electrostatics of the aromatic ring, whereas their increased hydrophobicity enhances membrane insertion. Incorporation of pentafluorophenylalanine or difluorotyrosine into a Staphylococcus aureus phosphatidylinositol-specific phospholipase C variant engineered to contain a specific PC-binding site demonstrates the effectiveness of this methodology. Applying this methodology to the plethora of tyrosine residues in Bacillus thuringiensis phosphatidylinositol-specific phospholipase C definitively identifies those involved in cation-π interactions with phosphatidylcholine. This powerful method can easily be used to determine the roles of aromatic residues in other peripheral membrane proteins and in integral membrane proteins. PMID:26092728

  17. Fluorinated Aromatic Amino Acids Distinguish Cation-π Interactions from Membrane Insertion*

    PubMed Central

    He, Tao; Gershenson, Anne; Eyles, Stephen J.; Lee, Yan-Jiun; Liu, Wenshe R.; Wang, Jiangyun; Gao, Jianmin; Roberts, Mary F.

    2015-01-01

    Cation-π interactions, where protein aromatic residues supply π systems while a positive-charged portion of phospholipid head groups are the cations, have been suggested as important binding modes for peripheral membrane proteins. However, aromatic amino acids can also insert into membranes and hydrophobically interact with lipid tails. Heretofore there has been no facile way to differentiate these two types of interactions. We show that specific incorporation of fluorinated amino acids into proteins can experimentally distinguish cation-π interactions from membrane insertion of the aromatic side chains. Fluorinated aromatic amino acids destabilize the cation-π interactions by altering electrostatics of the aromatic ring, whereas their increased hydrophobicity enhances membrane insertion. Incorporation of pentafluorophenylalanine or difluorotyrosine into a Staphylococcus aureus phosphatidylinositol-specific phospholipase C variant engineered to contain a specific PC-binding site demonstrates the effectiveness of this methodology. Applying this methodology to the plethora of tyrosine residues in Bacillus thuringiensis phosphatidylinositol-specific phospholipase C definitively identifies those involved in cation-π interactions with phosphatidylcholine. This powerful method can easily be used to determine the roles of aromatic residues in other peripheral membrane proteins and in integral membrane proteins. PMID:26092728

  18. Labeling proteins via hole burning of their aromatic amino acids: pressure tuning spectroscopy of BPTI.

    PubMed Central

    Stübner, Markus; Hecht, Christoph; Friedrich, Josef

    2002-01-01

    We demonstrate hole burning on a protein by using an intrinsic aromatic amino acid as a probe. The protein is bovine pancreatic trypsin inhibitor (BPTI), the labeled amino acid is tyrosine. Only one of the four tyrosines could be burned. As an application we present pressure tuning experiments from which the local compressibility around the burned tyrosine probe is determined. PMID:12496122

  19. Comparative effects of oral aromatic and branched-chain amino acids on urine calcium and excretion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aromatic amino acids (AAAs) bind to the calcium sensor receptor (CaR) but branched-chain amino acids (B-CAAs) do not; by binding to this receptor, AAAs have an increased potential to affect calcium homeostasis. This study was conducted to determine and compare the effects of AAAs and B-CAAs on calci...

  20. Interactions of aromatic amino acids with heterocyclic ligand: An IR spectroscopic study

    NASA Astrophysics Data System (ADS)

    Tyunina, E. Yu.; Badelin, V. G.; Tarasova, G. N.

    2015-09-01

    The interactions of L-phenylalanine and L-tryptophan with nicotinic acid and uracyl in an aqueous buffer solution at pH 7.35 were studied by IR spectroscopy. The contributions of various functional groups to the complexation of aromatic amino acids with heterocyclic ligands were determined from the IR spectra of the starting substances and their mixtures.

  1. [Asymmetric synthesis of aromatic L-amino acids catalyzed by transaminase].

    PubMed

    Xia, Wenna; Sun, Yu; Min, Cong; Han, Wei; Wu, Sheng

    2012-11-01

    Aromatic L-Amino acids are important chiral building blocks for the synthesis of many drugs, pesticides, fine chemicals and food additives. Due to the high activity and steroselectivity, enzymatic synthesis of chiral building blocks has become the main research direction in asymmetric synthesis field. Guided by the phylogenetic analysis of transaminases from different sources, two representative aromatic transaminases TyrB and Aro8 in type I subfamily, from the prokaryote Escherichia coli and eukaryote Saccharomyces cerevisia, respectively, were applied for the comparative study of asymmetric transamination reaction process and catalytic efficiency of reversely converting keto acids to the corresponding aromatic L-amino acid. Both TyrB and Aro8 could efficiently synthesize the natural aromatic amino acids phenylalanine and tyrosine as well as non-natural amino acid phenylglycine. The chiral HPLC analysis showed the produced amino acids were L-configuration and the e.e value was 100%. L-alanine was the optimal amino donor, and the transaminase TyrB and Aro8 could not use D-amino acids as amino donor. The optimal molar ratio of amino donor (L-alanine) and amino acceptor (aromatic alpha-keto acids) was 4:1. Both of the substituted group on the aromatic ring and the length of fatty acid carbon chain part in the molecular structure of aromatic substrate alpha-keto acid have the significant impact on the enzyme-catalyzed transamination efficiency. In the experiments of preparative-scale transamination synthesis of L-phenylglycine, L-phenylalanine and L-tyrosine, the specific production rate catalyzed by TryB were 0.28 g/(g x h), 0.31 g/(g x h) and 0.60 g/(g x h) and the specific production rate catalyzed by Aro8 were 0.61 g/(g x h), 0.48 g/(g x h) and 0.59 g/(g x h). The results obtained here were useful for applying the transaminases to asymmetric synthesis of L-amino acids by reversing the reaction balance in industry.

  2. Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids

    PubMed Central

    Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C.; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R.

    2013-01-01

    Lignin comprises 15.25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP.binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute.binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins. PMID:23606130

  3. Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids.

    PubMed

    Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R

    2013-10-01

    Lignin comprises 15-25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP-binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute-binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins.

  4. Evidence for transport intermediates in aromatic amino acid synthesis of non-green tissues

    SciTech Connect

    Leuschner, C.; Schultz, G. )

    1990-05-01

    Quinate (QA) is the predominant pre-aromatic compound formed at high rates in leaves of many plants at the early vegetation stage and transported through the phloem. The transfer of 3-dehydroquinate, 3-dehydroshikimate and (SkA) across the plastidial membranes has been evidenced. The question was whether the rate of QA uptake is comparable to that of the 3 SkA-pathway intermediates. To demonstrate this, /U-{sup 14}C/QA and /U-{sup 14}C/SkA were applied to Brassica rapa roots. Both compounds were uptaken at considerable rates and incorporated into aromatic amino acids (Phe + Tyr + Trp formation, in nmol/g fresh wt x h: applying 145 {mu}mol QA: 21.2; applying 156 {mu}mol Ska: 31.8). Thus, QA is a possible candidate for transport into non-green tissues for aromatic amino acid synthesis.

  5. Gene-Enzyme Relationships of Aromatic Amino Acid Biosynthesis in Higher Plants

    SciTech Connect

    2002-08-12

    Inhibition studies of amino acids in Nicotiana silvestris suspension cells gave clues to the difficulties for obtaining mutants deficient in post prephenate pathway proteins of aromatic amino acid biosynthesis (prephenate aminotransferase, arogenate dehydrogenase and arogenate dehydratase). Such mutants, if successfully obtained, would allow gene-enzyme relationships of aromatic amino acid proteins to be studied. We found that amino acids were inhibitory toward plant cell growth, and thus were unable to rescue analog resistant mutants. Toxicity of all amino acids toward exponentially dividing Nicotiana silvestris suspension cultured cells was monitored by following growth rates. Except for L-glutamine, all 19 protein amino acids inhibited cell growth. Inhibition of growth progressed to cell deterioration. Electron microscopy showed that amino acids triggered a state of cell shrinkage that eventually degenerated to total cellular disorganization. L-glutamine was not only an effective agent for prevention of amino acid toxicity, but enhanced the final growth yield. L-glutamine also was able to completely reverse inhibition effects in cells that had been in the slowed exponential phase. Two types of inhibition occurred and we have proposed that any amino acid inhibition that can be completely antagonized by L-glutamine be called ''general amino acid inhibition''. ''Specific amino acid inhibition'' resulting from particular pathway imbalances caused by certain exogenous amino acids, can be recognized and studied in the presence of L-glutamine which can abolishes the complication effects of general amino acid inhibition.

  6. Formation of aromatic compounds from carbohydrates. X reaction of xylose, glucose, and glucuronic acid in acidic solution at 300C

    SciTech Connect

    Theander, O.; Nelson, D.A.; Hallen, R.T.

    1987-04-01

    For several years our respective groups have investigated the formation of aromatic compounds from carbohydrates in aqueous solution at various pH-values under reflux or hydrothermolytic conditions. For instance, previous papers in this series concerned the degradation of hexoses, pentoses, erythrose, dihydroxyacetone, and hexuronic acids to phenolic and enolic components. Of particular interest were the isolation and identification of catechols, an acetophenone, and chromones from pentoses and hexuronic acids at pH 4.5. The formation of these compounds, as well as reductic acid, was found to be more pronounced than that of 2-furaldehyde under acidic conditions. The aromatic precursors of 3 and 4 were also isolated from these reaction mixtures. This is in contrast to the high yields of 2 obtained from pentoses and hexuronic acids at very low pH.

  7. 40 CFR 721.10289 - Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic). 721.10289 Section 721.10289 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New...

  8. 40 CFR 721.10289 - Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic). 721.10289 Section 721.10289 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New...

  9. 40 CFR 721.10289 - Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic). 721.10289 Section 721.10289 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New...

  10. Evidence that phenylalanine may not provide the full needs for aromatic amino acids in children.

    PubMed

    Hsu, Jean W C; Ball, Ronald O; Pencharz, Paul B

    2007-03-01

    Phenylalanine is nutritionally classified as an indispensable amino acid and can be converted to tyrosine by phenylalanine hydroxylation. The initial goal of the present study was to determine the aromatic amino acid (phenylalanine plus tyrosine) requirements in healthy children fed a diet without tyrosine by using the indicator amino acid oxidation (IAAO) method using lysine as the indicator amino acid. Healthy school-age children (n = 5) were fed in random order a diet with eight graded intakes of phenylalanine without tyrosine. The requirement was determined by the rate of recovery of CO2 from L-[1-C]lysine oxidation (FCO2). Phenylalanine (total aromatic amino acid) requirement, in the absence of tyrosine, for children was determined to be 28 mg/kg/d, which was only 64% of the adult requirement, which is biologically absurd. A possible reason for the lower estimate of phenylalanine requirement could be lower phenylalanine hydroxylation rate in children, which is supported by the finding of lower urinary tyrosine/phenylalanine ratios in children compared with adults. In conclusion, this study indicates that phenylalanine may not provide the total needs for aromatic amino acids in children fed an amino acid-based diet without tyrosine.

  11. Steroidal aromatic 'naphthenic acids' in oil sands process-affected water: structural comparisons with environmental estrogens.

    PubMed

    Rowland, Steven J; West, Charles E; Jones, David; Scarlett, Alan G; Frank, Richard A; Hewitt, L Mark

    2011-11-15

    The large volumes, acute toxicity, estrogenicity, and antiandrogenicity of process-affected waters accruing in tailings ponds from the operations of the Alberta oil sands industries pose a significant task for environmental reclamation. Synchronous fluorescence spectra (SFS) suggest that oil sands process-affected water (OSPW) may contain aromatic carboxylic acids, which are among the potentially environmentally important toxicants, but no such acids have yet been identified, limiting interpretations of the results of estrogenicity and other assays. Here we show that multidimensional comprehensive gas chromatography-mass spectrometry (GCxGC-MS) of methyl esters of acids in an OSPW sample produces mass spectra consistent with their assignment as C(19) and C(20) C-ring monoaromatic hydroxy steroid acids, D-ring opened hydroxy and nonhydroxy polyhydrophenanthroic acids with one aromatic and two alicyclic rings and A-ring opened steroidal keto acids. High resolution MS data support the assignment of several of the so-called 'O3' species. When fractions of distilled, esterified, OSPW acid-extractable organics were examined, the putative aromatics were mainly present in a high boiling fraction; when examined by argentation thin layer chromatography, some were present in a fraction with a retardation factor between that of the methyl esters of synthetic monoalicyclic and monoaromatic acids. Ultraviolet absorption spectra of these fractions indicated the presence of benzenoid moieties. SFS of model octahydro- and tetrahydrophenanthroic acids produced emissions at the characteristic excitation wavelengths observed in some OSPW extracts, consistent with the postulations from ultraviolet spectroscopy and mass spectrometry data. We suggest the acids originate from extensive biodegradation of C-ring monoaromatic steroid hydrocarbons and offer a means of differentiating residues at different biodegradation stages in tailings ponds. Structural similarities with estrone and

  12. Photosensitivity and allergy to aromatic lichen acids, Compositae oleoresins and other plant substances.

    PubMed

    Thune, P O; Solberg, Y J

    1980-01-01

    Sixteen patients with verified light sensitivity to both UVB and UVA wavebands showed allergic reactions to various lichen plants (Parmelia spp., Hypogymnia spp., Pseuodovernia spp., Cladonia spp., Platismatia spp., Physcia spp., Umbilicaria spp. and Cetraria spp.). Among the aromatic lichen compounds, atranorin was observed to be the most frequently involved allergen but also several other isolated lichen acids were immunologically active: d-usnic, evernic, stictic, fumarprotocetraric, lobaric, salazinic, diffractaic and physodic/physodalic acid. Several patients showed allergy to other plant substances from other sources such as seven different species from the Compositae family, alantolactone, balsam of Peru, colophony and wood tars. Sensitivity to known photosensitizers was observed in four patients. Aromatic lichen acids are UV-absorbing substances and several are evidently able to photosensitive human skin. PMID:7398280

  13. Photosensitivity and allergy to aromatic lichen acids, Compositae oleoresins and other plant substances.

    PubMed

    Thune, P O; Solberg, Y J

    1980-01-01

    Sixteen patients with verified light sensitivity to both UVB and UVA wavebands showed allergic reactions to various lichen plants (Parmelia spp., Hypogymnia spp., Pseudovernia spp., Cladonia spp., Platismatia spp., Physcia spp., Umbilicaria spp. and Cetraria spp.). Among the aromatic lichen compounds, atranorin was observed to be the most frequently involved allergen, but also several other isolated lichen acids were immunologically active: d-usnic, evernic, stictic, fumarprotocetraric, lobaric, salazinic, diffractaic and physodic/physodalic acid. Several patients showed allergy to other plant substances from other sources such as seven different species from the Compositae family, alantolactone, balsam of Peru, colophony and wood tars. Sensitivity to known photosensitizers was observed in four patients. Aromatic lichen acids are UV-absorbing substances and several are evidently able to photosensitize human skin. PMID:7398259

  14. Photosensitivity and allergy to aromatic lichen acids, Compositae oleoresins and other plant substances.

    PubMed

    Thune, P O; Solberg, Y J

    1980-01-01

    Sixteen patients with verified light sensitivity to both UVB and UVA wavebands showed allergic reactions to various lichen plants (Parmelia spp., Hypogymnia spp., Pseuodovernia spp., Cladonia spp., Platismatia spp., Physcia spp., Umbilicaria spp. and Cetraria spp.). Among the aromatic lichen compounds, atranorin was observed to be the most frequently involved allergen but also several other isolated lichen acids were immunologically active: d-usnic, evernic, stictic, fumarprotocetraric, lobaric, salazinic, diffractaic and physodic/physodalic acid. Several patients showed allergy to other plant substances from other sources such as seven different species from the Compositae family, alantolactone, balsam of Peru, colophony and wood tars. Sensitivity to known photosensitizers was observed in four patients. Aromatic lichen acids are UV-absorbing substances and several are evidently able to photosensitive human skin.

  15. Protein Quantification by Derivatization-Free High-Performance Liquid Chromatography of Aromatic Amino Acids

    PubMed Central

    Hesse, Almut

    2016-01-01

    Amino acid analysis is considered to be the gold standard for quantitative peptide and protein analysis. Here, we would like to propose a simple HPLC/UV method based on a reversed-phase separation of the aromatic amino acids tyrosine (Tyr), phenylalanine (Phe), and optionally tryptophan (Trp) without any derivatization. The hydrolysis of the proteins and peptides was performed by an accelerated microwave technique, which needs only 30 minutes. Two internal standard compounds, homotyrosine (HTyr) and 4-fluorophenylalanine (FPhe) were used for calibration. The limit of detection (LOD) was estimated to be 0.05 µM (~10 µg/L) for tyrosine and phenylalanine at 215 nm. The LOD for a protein determination was calculated to be below 16 mg/L (~300 ng BSA absolute). Aromatic amino acid analysis (AAAA) offers excellent accuracy and a precision of about 5% relative standard deviation, including the hydrolysis step. The method was validated with certified reference materials (CRM) of amino acids and of a pure protein (bovine serum albumin, BSA). AAAA can be used for the quantification of aromatic amino acids, isolated peptides or proteins, complex peptide or protein samples, such as serum or milk powder, and peptides or proteins immobilized on solid supports. PMID:27559481

  16. Aliphatic, Cyclic, and Aromatic Organic Acids, Vitamins, and Carbohydrates in Soil: A Review

    PubMed Central

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-01-01

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research. PMID:24319374

  17. Protein Quantification by Derivatization-Free High-Performance Liquid Chromatography of Aromatic Amino Acids.

    PubMed

    Hesse, Almut; Weller, Michael G

    2016-01-01

    Amino acid analysis is considered to be the gold standard for quantitative peptide and protein analysis. Here, we would like to propose a simple HPLC/UV method based on a reversed-phase separation of the aromatic amino acids tyrosine (Tyr), phenylalanine (Phe), and optionally tryptophan (Trp) without any derivatization. The hydrolysis of the proteins and peptides was performed by an accelerated microwave technique, which needs only 30 minutes. Two internal standard compounds, homotyrosine (HTyr) and 4-fluorophenylalanine (FPhe) were used for calibration. The limit of detection (LOD) was estimated to be 0.05 µM (~10 µg/L) for tyrosine and phenylalanine at 215 nm. The LOD for a protein determination was calculated to be below 16 mg/L (~300 ng BSA absolute). Aromatic amino acid analysis (AAAA) offers excellent accuracy and a precision of about 5% relative standard deviation, including the hydrolysis step. The method was validated with certified reference materials (CRM) of amino acids and of a pure protein (bovine serum albumin, BSA). AAAA can be used for the quantification of aromatic amino acids, isolated peptides or proteins, complex peptide or protein samples, such as serum or milk powder, and peptides or proteins immobilized on solid supports. PMID:27559481

  18. Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review.

    PubMed

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-11-10

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research.

  19. Probing the Sophisticated Synergistic Allosteric Regulation of Aromatic Amino Acid Biosynthesis in Mycobacterium tuberculosis Using ᴅ-Amino Acids

    PubMed Central

    Reichau, Sebastian; Blackmore, Nicola J.; Jiao, Wanting; Parker, Emily J.

    2016-01-01

    Chirality plays a major role in recognition and interaction of biologically important molecules. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) is the first enzyme of the shikimate pathway, which is responsible for the synthesis of aromatic amino acids in bacteria and plants, and a potential target for the development of antibiotics and herbicides. DAH7PS from Mycobacterium tuberculosis (MtuDAH7PS) displays an unprecedented complexity of allosteric regulation, with three interdependent allosteric binding sites and a ternary allosteric response to combinations of the aromatic amino acids l-Trp, l-Phe and l-Tyr. In order to further investigate the intricacies of this system and identify key residues in the allosteric network of MtuDAH7PS, we studied the interaction of MtuDAH7PS with aromatic amino acids that bear the non-natural d-configuration, and showed that the d-amino acids do not elicit an allosteric response. We investigated the binding mode of d-amino acids using X-ray crystallography, site directed mutagenesis and isothermal titration calorimetry. Key differences in the binding mode were identified: in the Phe site, a hydrogen bond between the amino group of the allosteric ligands to the side chain of Asn175 is not established due to the inverted configuration of the ligands. In the Trp site, d-Trp forms no interaction with the main chain carbonyl group of Thr240 and less favourable interactions with Asn237 when compared to the l-Trp binding mode. Investigation of the MtuDAH7PSN175A variant further supports the hypothesis that the lack of key interactions in the binding mode of the aromatic d-amino acids are responsible for the absence of an allosteric response, which gives further insight into which residues of MtuDAH7PS play a key role in the transduction of the allosteric signal. PMID:27128682

  20. Aromatic and volatile acid intermediates observed during anaerobic metabolism of lignin-derived oligomers

    SciTech Connect

    Colberg, P.J.; Young, L.Y.

    1985-02-01

    Anaerobic enrichment cultures acclimated for 2 years to use a /sup 14/C-labeled, lignin-derived substrate with a molecular weight of 600 as a sole source of carbon were characterized by capillary and packed column gas chromatography. After acclimation, several of the active methanogenic organisms were inhibited with 2-bromoethanesulfonic acid, which suppressed methane formation and enhanced accumulation of a series of metabolic intermediates. Volatile fatty acids levels in 2-bromoethansulfonic acid-amended cultures were 10 times greater than those in the uninhibited, methane-forming organisms with acetate as the predominant component. Furthermore, in the 2-bromoethanesulfonic acid-amended organisms, almost half of the original substrate carbon was metabolized to 10 monaromatic compounds, with the most appreciable quantities accumulated as cinnamic, benzoic, caffeic, vanillic, and ferulic acids. 2-Bromoethanesulfonic acid seemed to effectively block CH/sub 4/ formation in the anaerobic food chain, resulting in the observed buildup of volatile fatty acids and monoaromatic intermediates. Neither fatty acids nor aromatic compounds were detected in the oligolignol substrate before its metabolism, suggesting that these anaerobic organisms have the ability to mediate the cleavage of the ..beta..-aryl-ether bond, the most common intermonomeric linkage in lignin, with the subsequent release of the observed constituent aromatic monomers.

  1. Aromatic and Volatile Acid Intermediates Observed during Anaerobic Metabolism of Lignin-Derived Oligomers

    PubMed Central

    Colberg, P. J.; Young, L. Y.

    1985-01-01

    Anaerobic enrichment cultures acclimated for 2 years to use a 14C-labeled, lignin-derived substrate with a molecular weight of 600 as a sole source of carbon were characterized by capillary and packed column gas chromatography. After acclimation, several of the active methanogenic consortia were inhibited with 2-bromoethanesulfonic acid, which suppressed methane formation and enhanced accumulation of a series of metabolic intermediates. Volatile fatty acids levels in 2-bromoethanesulfonic acid-amended cultures were 10 times greater than those in the uninhibited, methane-forming consortia with acetate as the predominant component. Furthermore, in the 2-bromoethanesulfonic acid-amended consortia, almost half of the original substrate carbon was metabolized to 10 monoaromatic compounds, with the most appreciable quantities accumulated as cinnamic, benzoic, caffeic, vanillic, and ferulic acids. 2-Bromoethanesulfonic acid seemed to effectively block CH4 formation in the anaerobic food chain, resulting in the observed buildup of volatile fatty acids and monoaromatic intermediates. Neither fatty acids nor aromatic compounds were detected in the oligolignol substrate before its metabolism, suggesting that these anaerobic consortia have the ability to mediate the cleavage of the β-aryl-ether bond, the most common intermonomeric linkage in lignin, with the subsequent release of the observed constituent aromatic monomers. PMID:16346722

  2. Fluorescence enhancement of glutaraldehyde functionalized polyaniline nanofibers in the presence of aromatic amino acids.

    PubMed

    Borah, Rajiv; Kumar, Ashok

    2016-04-01

    Polyaniline nanofibers (PNFs) synthesized by dilute polymerization method have been surface functionalized with glutaraldehyde at their N-terminals in Phosphate Buffered Saline (PBS) at P(H)=7.4 in order to achieve improved interaction of surface functionalized polyaniline nanofibers (SF-PNFs) with aromatic amino acids-Tyrosine, Tryptophan and Phenylalanine through incorporation of aldehyde (-CHO) and hydroxyl (-OH) functionalities. HRTEM reveals nanofibers of average diameter of 35.66 nm. FESEM depicts interconnected networks of nanofibers of polyaniline (PAni). UV-visible absorption and Fluorescence spectroscopy indicate that the PNFs and SF-PNFs are in emeraldine base (EB) form. FT-IR, (1)H NMR spectroscopy suggests covalent interactions of SF-PNFs with aromatic amino acids and possible reaction mechanisms have been proposed based on these results. Remarkable enhancement in fluorescence signals of SF-PNFs in the presence of aromatic amino acids has been observed and the apparent binding constant (KA) and the number of binding sites (n) have been calculated using fluorescence enhancement equation. The KA value is found to be highest for SF-PNFs+Tyrosine and n is two for all the polymer amino acid complexes, which are in agreement with the FT-IR and (1)H NMR results. Fluorescence resonance energy transfer (FRET) efficiency has been found to be highest for SF-PNFs+Tyrosine giving maximum fluorescence enhancement. The study of interaction mechanisms by means of an extremely sensitive technique like fluorescence using SF-PNFs as a substrate may provide a promising analytical tool for detection and monitoring any biochemical reactions involving these three aromatic amino acids.

  3. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds.

    PubMed

    Rodriguez, Alberto; Martínez, Juan A; Flores, Noemí; Escalante, Adelfo; Gosset, Guillermo; Bolivar, Francisco

    2014-09-09

    The production of aromatic amino acids using fermentation processes with recombinant microorganisms can be an advantageous approach to reach their global demands. In addition, a large array of compounds with alimentary and pharmaceutical applications can potentially be synthesized from intermediates of this metabolic pathway. However, contrary to other amino acids and primary metabolites, the artificial channelling of building blocks from central metabolism towards the aromatic amino acid pathway is complicated to achieve in an efficient manner. The length and complex regulation of this pathway have progressively called for the employment of more integral approaches, promoting the merge of complementary tools and techniques in order to surpass metabolic and regulatory bottlenecks. As a result, relevant insights on the subject have been obtained during the last years, especially with genetically modified strains of Escherichia coli. By combining metabolic engineering strategies with developments in synthetic biology, systems biology and bioprocess engineering, notable advances were achieved regarding the generation, characterization and optimization of E. coli strains for the overproduction of aromatic amino acids, some of their precursors and related compounds. In this paper we review and compare recent successful reports dealing with the modification of metabolic traits to attain these objectives.

  4. Humic acids enhanced removal of aromatic hydrocarbons from contaminated aquifers: developing a sustainable technology.

    PubMed

    Lesage, S; Brown, S; Millar, K; Novakowski, K

    2001-09-01

    Contamination by gasoline and diesel fuels is a threat to groundwater resources. Polynuclear aromatic hydrocarbons (PAHs) which can represent up to 60% of volume in diesel fuels are of particular concern because many of them are carcinogenic and they are persistent, especially in oxygen-limited environment. Despite the development of alternative approaches, pump and treat continues to be the leading technology for the remediation of groundwater contaminated by gasoline and diesel fuels. The efficiency of this technology is however limited by the low solubility of the aromatic hydrocarbons. The objective of this study was to investigate the influence of humic acids on the removal of aromatic hydrocarbons from petroleum products in groundwater aquifers and to evaluate the potential use of humic acids, as a cost effective additive, in groundwater and soil remediation. In order to prove the feasibility of using humic acid in the field, a pilot scale experiment was conducted in a model aquifer with a very dense monitoring network, providing controlled conditions only possible in a semi-artificial system. In addition, different sources of humic acids were compared with surfactants for their ability to bind PAHs.

  5. A novel approach in cinnamic acid synthesis: direct synthesis of cinnamic acids from aromatic aldehydes and aliphatic carboxylic acids in the presence of boron tribromide.

    PubMed

    Chiriac, Constantin I; Tanasa, Fulga; Onciu, Marioara

    2005-02-28

    Cinnamic acids have been prepared in moderate to high yields by a new direct synthesis using aromatic aldehydes and aliphatic carboxylic acids, in the presence of boron tribromide as reagent, 4-dimethylaminopyridine (4-DMAP) and pyridine (Py) as bases and N-methyl-2-pyrolidinone (NMP) as solvent, at reflux (180-190 degrees C) for 8-12 hours.

  6. New fatty acid, aromatic ester and monoterpenic benzyl glucoside from the fruits of Withania coagulans Dunal.

    PubMed

    Ali, Abuzer; Jameel, Mohammad; Ali, Mohammed

    2015-01-01

    The fruits of Withania coagulans Dunal (family: Solanaceae) are sweet, sedative, emetic, alterative and diuretic; used to treat asthma, biliousness, strangury, wounds, dyspepsia, flatulent colic, liver complaints and intestinal infections in the indigenous system of medicine. Phytochemical investigation of the methanolic extract of W. coagulans fruits led to the isolation of a new fatty acid, an aromatic ester and a monoterpenic benzyl glucoside characterised as n-octatriacont-17-enoic acid (3), geranilan-10-olyl dihydrocinnamoate (4) and geranilan-8-oic acid-10-olyl salicyloxy-2-O-β-D-glucofuranosyl-(6″→1‴)-O-β-D-glucofuranosyl-6‴-n-octadec-9‴',11‴'-dienoate (5) along with two known fatty acids, n-dotriacont-21-enoic acid (1) and n-tetratriacontanoic acid (2). The structures of isolated phytoconstituents were established on the basis of 1D and 2D NMR, FT-IR, UV, and MS data and chemical means.

  7. Porosity-Acidity Interplay in Hierarchical ZSM-5 Zeolites for Pyrolysis Oil Valorization to Aromatics.

    PubMed

    Puértolas, Begoña; Veses, Alberto; Callén, Maria Soledad; Mitchell, Sharon; García, Tomás; Pérez-Ramírez, Javier

    2015-10-12

    The properties of crude bio-oils attained by the pyrolysis of lignocellulosic biomass can be greatly enhanced by means of catalytic upgrading. Here, we demonstrate an efficient process concept coupling the production of pyrolysis oil from pine wood with a consecutive catalytic upgrading step over hierarchically structured ZSM-5 zeolites to attain aromatic-rich bio-oils. The selective upgrading of these complex mixtures is shown to be tightly connected to the extent of mesopore development and the density of Brønsted acid sites at the mesopore surface. A full product analysis enables elucidation of the impact of mesopore introduction and the acidic properties on the complex reaction network. The preferential occurrence of decarbonylation reactions in hierarchical zeolites versus dehydration transformations in the bulk counterparts is believed to be decisive in promoting increased aromatics formation.

  8. Porosity-Acidity Interplay in Hierarchical ZSM-5 Zeolites for Pyrolysis Oil Valorization to Aromatics.

    PubMed

    Puértolas, Begoña; Veses, Alberto; Callén, Maria Soledad; Mitchell, Sharon; García, Tomás; Pérez-Ramírez, Javier

    2015-10-12

    The properties of crude bio-oils attained by the pyrolysis of lignocellulosic biomass can be greatly enhanced by means of catalytic upgrading. Here, we demonstrate an efficient process concept coupling the production of pyrolysis oil from pine wood with a consecutive catalytic upgrading step over hierarchically structured ZSM-5 zeolites to attain aromatic-rich bio-oils. The selective upgrading of these complex mixtures is shown to be tightly connected to the extent of mesopore development and the density of Brønsted acid sites at the mesopore surface. A full product analysis enables elucidation of the impact of mesopore introduction and the acidic properties on the complex reaction network. The preferential occurrence of decarbonylation reactions in hierarchical zeolites versus dehydration transformations in the bulk counterparts is believed to be decisive in promoting increased aromatics formation. PMID:26336806

  9. A compilation of genotoxicity and carcinogenicity data on aromatic aminosulphonic acids.

    PubMed

    Jung, R; Steinle, D; Anliker, R

    1992-07-01

    A review is presented to evaluate existing information on genotoxicity and carcinogenicity testing of various aromatic aminosulphonic acids (AASAs). A great variety of water-soluble azo dyes can form aromatic phenyl- or naphthyl-aminosulphonic acids by chemical and enzymatic reduction. AASAs are also used as intermediates in the synthesis of azo dyes and azo pigments and can arise as contaminants in the final products. Comparisons have been made with the data available on the corresponding unsulphonated analogues, some of which are known to be genotoxic and/or carcinogenic. The vast majority of the AASAs were conclusively non-mutagenic in the Ames test. In most cases the absence of genotoxicity was also demonstrated with a variety of other test systems in vitro and in vivo. It is concluded that AASAs, in contrast with some of their unsulphonated analogues, generally have no or very low genotoxic and tumorigenic potential.

  10. Liquid-liquid distribution of aromatic α-amino acids in multicomponent systems

    NASA Astrophysics Data System (ADS)

    Korenman, Ya. I.; Mokshina, N. Ya.; Pakhomova, O. A.

    2010-02-01

    Distribution coefficients and recovery factors of phenylalanine, tyrosine, and tryptophan are measured in extraction systems with butanol, pentanol, acetone, and ethyl acetate, their binary and ternary mixtures, and water-soluble polymers. Extraction conditions—extractant composition, salting-out agents, and pH—are optimized. Efficient systems providing maximum quantitative characteristics of the process of liquid-liquid distribution of aromatic α-amino acids are proposed.

  11. Relevance of Aromatic Amino Acids for Electron Conduction along Geobacter Pili Protein

    NASA Astrophysics Data System (ADS)

    Adhikari, Ramesh; Malvankar, Nikhil; Tuominen, Mark; Lovley, Derek

    It has been proposed that the charge transport though Geobacter sulfurreducens pili protein occurs through the aromatic amino acids forming helical conducting chain within pili. X-ray studies of pili show that the aromatic amino acids are packed close enough (3-4 Å) for pi-stacking to occur. Conductivity of the pili network increases with lowering temperature indicating metallic-like transport mechanism. However due to the complexity of charge percolation path in 3D network, the intrinsic conductivity of an individual pili was not known. Here, we report transport measurements of individual pili of G. sulfurreducens. The conductivity, similar to that of organic polymers, shows that the pili may have implications in materials research. In addition, the conductivity value is sufficient to explain the respiration rate of the G. sulfurreducens. Further studies of pili from different natural and genetically modified species with varying amount of aromatic amino acid density demonstrate that it can play a decisive role on the magnitude of the conductivity. This research was supported by the Office of Naval Research (ONR) and National Science Foundation (NSF) Center for Hierarchical Manufacturing (CHM). Nikhil S. Malvankar holds a Career Award from the Burroughs Wellcome Fund.

  12. Rh(III)-catalyzed decarboxylative ortho-heteroarylation of aromatic carboxylic acids by using the carboxylic acid as a traceless directing group.

    PubMed

    Qin, Xurong; Sun, Denan; You, Qiulin; Cheng, Yangyang; Lan, Jingbo; You, Jingsong

    2015-04-01

    Highly selective decarboxylative ortho-heteroarylation of aromatic carboxylic acids with various heteroarenes has been developed through Rh(III)-catalyzed two-fold C-H activation, which exhibits a wide substrate scope of both aromatic carboxylic acids and heteroarenes. The use of naturally occurring carboxylic acid as the directing group avoids troublesome extra steps for installation and removal of an external directing group.

  13. Polycarboxylates Enhance Beetle Antifreeze Protein Activity

    PubMed Central

    Amornwittawat, Natapol; Wang, Sen; Duman, John G.; Wen, Xin

    2008-01-01

    Summary Antifreeze proteins (AFPs) lower the noncolligative freezing point of water in the presence of ice below the ice melting point. The temperature difference between the melting point and the noncolligative freezing point is termed thermal hysteresis (TH). The magnitude of the TH depends on the specific activity and the concentration of AFP, and the concentration of enhancers in the solution. Known enhancers are certain low molecular mass molecules and proteins. Here, we investigated a series of polycarboxylates that enhance the TH activity of an AFP from the beetle Dendroides canadensis (DAFP) using differential scanning calorimetry (DSC). Triethylenetetramine-N,N,N′,N″,N‴,N‴-hexaacetate, the most efficient enhancer identified in this work, can increase the TH of DAFP by nearly 1.5 fold over than that of the published best enhancer, citrate. The Zn2+ coordinated carboxylate results in loss of the enhancement ability of the carboxylate on antifreeze activity. There is not an additional increase in TH when a weaker enhancer is added to a stronger enhancer solution. These observations suggest that the more carboxylate groups per enhancer molecule the better the efficiency of the enhancer and that the freedom of motion of these molecules is necessary for them to serve as enhancers for AFP. The hydroxyl groups in the enhancer molecules can also positively affect their TH enhancement efficiency, though not as strongly as carboxylate groups. Mechanisms are discussed. PMID:18620083

  14. Study on the performance of polycarboxylate-based superplasticizers synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization

    NASA Astrophysics Data System (ADS)

    Yu, Binbin; Zeng, Zhong; Ren, Qinyu; Chen, Yang; Liang, Mei; Zou, Huawei

    2016-09-01

    A series of block type polycarboxylate-based superplasticizers (PCs) with different molecular architectures were synthesized with macromonomer butenyl alkylene polyoxyethylene-polyoxypropylene ether (BAPP) and acrylic acid (AA) by reversible addition-fragmentation chain transfer (RAFT) polymerization. Fourier-Transformed Infrared (FTIR) Spectroscopy and dynamic light scattering (DLS) were applied to investigate the PCs' molecular structure. The dispersion capacity of the PCs in cement were also measured, and the results showed that the polycarboxylic dispersing agents prepared by this method were suitable for portlant cement. It was found that the PCs could affect the hydration process, which was performed through retarding the generation of ettringite in the hydrated product. Our studies with X-ray diffraction (XRD), scanning electron microscopy (SEM) and compressive strength measurement of hydrated production were all supporting this conclusion.

  15. Electronic structure of aromatic amino acids studied by soft x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhua; Carravetta, Vincenzo; Plekan, Oksana; Feyer, Vitaliy; Richter, Robert; Coreno, Marcello; Prince, Kevin C.

    2009-07-01

    The electronic structure of phenylalanine, tyrosine, tryptophan, and 3-methylindole in the gas phase was investigated by x-ray photoemission spectroscopy (XPS) and near edge x-ray absorption fine structure (NEXAFS) spectroscopy at the C, N, and O K-edges. The XPS spectra have been calculated for the four principal conformers of each amino acid, and the spectra weighted by the Boltzmann population ratios calculated from published free energies. Instead of the single peaks expected from the stoichiometry of the compounds, the N 1s core level spectra of phenylalanine and tryptophan show features indicating that more than one conformer is present. The calculations reproduce the experimental features. The C and O 1s spectra do not show evident effects due to conformational isomerism. The calculations predict that such effects are small for carbon, and for oxygen it appears that only broadening occurs. The carbon K-edge NEXAFS spectra of these aromatic amino acids are similar to the published data of the corresponding molecules in the solid state, but show more structure due to the higher resolution in the present study. The N K-edge spectra of tryptophan and 3-methylindole differ from phenylalanine and tyrosine, as the first two both contain a nitrogen atom located in a pyrrole ring. The nitrogen K-edge NEXAFS spectra of aromatic amino acids do not show any measurable effects due to conformational isomerism, in contrast to the photoemission results. Calculations support this result and show that variations of the vertical excitation energies of different conformers are small, and cannot be resolved in the present experiment. The O NEXAFS spectra of these three aromatic compounds are very similar to other, simpler amino acids, which have been studied previously.

  16. Biomolecular Interactions and Biological Responses of Emerging Two-Dimensional Materials and Aromatic Amino Acid Complexes.

    PubMed

    Mallineni, Sai Sunil Kumar; Shannahan, Jonathan; Raghavendra, Achyut J; Rao, Apparao M; Brown, Jared M; Podila, Ramakrishna

    2016-07-01

    The present work experimentally investigates the interaction of aromatic amino acids viz., tyrosine, tryptophan, and phenylalnine with novel two-dimensional (2D) materials including graphene, graphene oxide (GO), and boron nitride (BN). Photoluminescence, micro-Raman spectroscopy, and cyclic voltammetry were employed to investigate the nature of interactions and possible charge transfer between 2D materials and amino acids. Graphene and GO were found to interact strongly with aromatic amino acids through π-π stacking, charge transfer, and H-bonding. Particularly, it was observed that both physi and chemisorption are prominent in the interactions of GO/graphene with phenylalanine and tryptophan while tyrosine exhibited strong chemisorption on graphene and GO. In contrast, BN exhibited little or no interactions, which could be attributed to localized π-electron clouds around N atoms in BN lattice. Lastly, the adsorption of amino acids on 2D materials was observed to considerably change their biological response in terms of reactive oxygen species generation. More importantly, these changes in the biological response followed the same trends observed in the physi and chemisorption measurements. PMID:27281436

  17. Biomolecular Interactions and Biological Responses of Emerging Two-Dimensional Materials and Aromatic Amino Acid Complexes.

    PubMed

    Mallineni, Sai Sunil Kumar; Shannahan, Jonathan; Raghavendra, Achyut J; Rao, Apparao M; Brown, Jared M; Podila, Ramakrishna

    2016-07-01

    The present work experimentally investigates the interaction of aromatic amino acids viz., tyrosine, tryptophan, and phenylalnine with novel two-dimensional (2D) materials including graphene, graphene oxide (GO), and boron nitride (BN). Photoluminescence, micro-Raman spectroscopy, and cyclic voltammetry were employed to investigate the nature of interactions and possible charge transfer between 2D materials and amino acids. Graphene and GO were found to interact strongly with aromatic amino acids through π-π stacking, charge transfer, and H-bonding. Particularly, it was observed that both physi and chemisorption are prominent in the interactions of GO/graphene with phenylalanine and tryptophan while tyrosine exhibited strong chemisorption on graphene and GO. In contrast, BN exhibited little or no interactions, which could be attributed to localized π-electron clouds around N atoms in BN lattice. Lastly, the adsorption of amino acids on 2D materials was observed to considerably change their biological response in terms of reactive oxygen species generation. More importantly, these changes in the biological response followed the same trends observed in the physi and chemisorption measurements.

  18. Aromatic L-amino acids activate the calcium-sensing receptor.

    PubMed

    Conigrave, Arthur D; Mun, Hee-Chang; Lok, Hiu-Chuen

    2007-06-01

    The calcium-sensing receptor (CaR) is recognized as a member of class 3 of the G-protein coupled receptor superfamily. Members of this subgroup, which have large N-terminal extracellular domains, include receptors that respond specifically to the amino acid glutamate; receptors that respond to the glutamate analogue, gamma-amino butyric acid; and several receptors that act as broad-spectrum amino acid sensors. The CaR is one of these broad-spectrum amino acid sensors that, along with several other members of the subgroup, also responds to extracellular Ca2+. In this mini-review, we consider evidence that the CaR is a sensor of aromatic amino acids, that it has broad-spectrum amino acid sensing properties, that it provides an amino acid binding site in its extracellular N-terminal Venus Fly Trap domain, and that amino acids have a physiological impact on systems in which the CaR is expressed.

  19. Transmembrane aromatic amino acid distribution in P-glycoprotein. A functional role in broad substrate specificity.

    PubMed

    Pawagi, A B; Wang, J; Silverman, M; Reithmeier, R A; Deber, C M

    1994-01-14

    Multidrug resistance (MDR) in cancer cells is associated with overexpression of P-glycoprotein (Pgp), a membrane protein which interacts with structurally diverse hydrophobic molecules of high membrane affinity. In an analysis of the molecular basis for this broad range of substrate specificity, we found that the transmembrane (TM) regions of Pgp are rich in highly conserved aromatic amino acid residues. Computer-generated three-dimensional model structures showed that a typical substrate, rhodamine 123, can intercalate between three to four phenylalanine side-chains in any of several Pgp TM helices with minimal protrusion of the drug into bulk lipid, and that five to six (of the 12 Pgp putative TM segments) helices can facilitate transport through creation of a sterically compatible pore. In contrast to the case for proteins involved in the transport of membrane-impermeable, relatively polar substrates, the "transport path" for Pgp substrates need not be polar, and may involve either an internal channel occupied largely by aromatic side-chains, or external gaps along TM helix-lipid interfaces. Weakly polar interactions between drug cationic sites and Pgp aromatic residues contribute additionally to overall protein/drug binding. The ability of Pgp to recognize and efflux structurally diverse molecules suggests that rather than a unique structure, the Pgp channel may maintain the intrinsic capacity to undergo wide-ranging drug-dependent dynamic reorganization. PMID:7904655

  20. Perturbations of Aromatic Amino Acids Are Associated with Iron Cluster Assembly in Ribonucleotide Reductase

    PubMed Central

    Offenbacher, Adam R.; Chen, Jun; Barry, Bridgette A.

    2011-01-01

    The β2 subunit of class Ia ribonucleotide reductases (RNR) contains an antiferromagnetically coupled μ-oxo bridged diiron cluster and a tyrosyl radical (Y122•). In this study, an ultraviolet resonance Raman (UVRR) difference technique describes the structural changes induced by the assembly of the iron cluster and by the reduction of the tyrosyl radical. Spectral contributions from aromatic amino acids are observed through UV resonance enhancement at 229 nm. Vibrational bands are assigned by comparison to histidine, phenylalanine, tyrosine, tryptophan, and 3-methylindole model compound data and by isotopic labeling of histidine in the β2 subunit. Reduction of the tyrosyl radical reveals Y122• Raman bands at 1499 and 1556 cm−1 and Y122 Raman bands at 1170, 1199, and 1608 cm−1. There is little perturbation of other aromatic amino acids when Y122• is reduced. Assembly of the iron cluster is shown to be accompanied by deprotonation of histidine. A p2H titration study supports the assignment of an elevated pK for the histidine. In addition, structural perturbations of tyrosine and tryptophan are detected. For tryptophan, comparison to model compound data suggests an increase in hydrogen bonding and a change in conformation when the iron cluster is removed. pH and 2H2O studies suggest that the perturbed tryptophan is in a low dielectric environment, which is close to the metal center and protected from solvent exchange. Tyrosine perturbations are attributed to a conformational or hydrogen bonding change. In summary, our work shows that electrostatic and conformational perturbations of aromatic amino acids are associated with metal cluster assembly in RNR. These conformational changes may contribute to the allosteric effects, which regulate metal binding. PMID:21486062

  1. Adsorption and properties of aromatic amino acids on single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Cuihong; Li, Shuang; Zhang, Ruiqin; Lin, Zijing

    2012-02-01

    We investigated the adsorption of three aromatic amino acids--phenylalanine, tyrosine, and tryptophan--on the sidewalls of a number of representative single-walled carbon nanotubes (SWNTs) using density-functional tight-binding calculations, complemented by an empirical dispersion correction. The armchair (n, n) SWNTs (n = 3-12) and zigzag (n, 0) SWNTs (n = 4-12) were thoroughly examined. We found that the most stable amino acid/SWNT complexes for different SWNTs have similar local structures, and that the distance between the amino acid and SWNT is about 3 Å. Owing to the π-π and H-π stacking interactions, the benzene and indole rings are not exactly parallel to the SWNTs but instead lie at a small angle. We also investigated the diameter and chirality dependences of binding energies and found that SWNT (5, 0) has an especially large binding energy that can be used for SWNT identification or selection.

  2. [Ion pair-HPLC of some aromatic amino- and hydroxycarboxylic acids].

    PubMed

    Jira, T; Beyrich, T; Reinhardt, K

    1988-06-01

    Various factors influencing the ion-pair-HPLC separation of some aromatic amino- and hydroxycarbon acids were described and discussed. Distinct effects of the ion pair formation of organic acids with quarternary alkylammonium salts (CTAB) are recognized on condition that the carboxylic group is not blocked by intramolecular H-bonding or partial betain structure. If the carboxylic group is unconnected the retention time increases depending on the pka of the acid with increasing pH if no complete ionization exists. In order to separate similar compounds at low retention time with distinct resolution an organic modifier of suitable strength and high selectivity have to be added to the mobile phase. PMID:3212029

  3. Biomolecular interactions of emerging two-dimensional materials with aromatic amino acids

    NASA Astrophysics Data System (ADS)

    Mallineni, Sai Sunil Kumar; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao

    The present work experimentally investigates the interaction of aromatic amino acids, viz., tyrosine, tryptophan, and phenylalanine with novel two-dimensional (2D) materials including graphene (G), graphene oxide (GO), and boron nitride (BN). Photoluminescence, micro-Raman spectroscopy and cyclic voltammetry were employed to investigate the nature of interactions and possible charge transfer between 2D materials and amino acids. Consistent with previous theoretical studies, graphene and BN were observed to interact with amino acids through π- π interactions. Furthermore, we found that GO exhibits strong interactions with tryptophan and tyrosine as compared to graphene and BN, which we attribute to the formation of H-bonds between tryptophan and GO as shown theoretically in Ref. 2. On the other hand, phenylalanine did not exhibit much difference in interactions with G, GO, and BN. Clemson Nanomaterials Center, Clemson University, Clemson, SC, USA.

  4. Sorption of polar and nonpolar aromatic compounds to two humic acids with varied structural heterogeneity

    SciTech Connect

    Sun, H.Y.; Zhu, D.Q.; Mao, J.D.

    2008-12-15

    The major objective of the present study was to evaluate the correlation between structural nature of humic acids (HAs) and sorption affinity of organic compounds with varied polarity. We compared the sorption behavior of three aromatic compounds-nonpolar phenanthrene (PHEN) and 1,2,4,5-tetrachlorobenzene (TeCB) and highly polar 2,4-dichlorophenol (DCP)-to a solid-phase coal humic acid (CHA) and a soil humic acid (SHA) suspended in aqueous solution. The structural nature of HAs was characterized using elemental analysis, ultraviolet absorbance, diffusive reflectance Fourier-transform infrared, and solid-state C-13 nuclear magnetic resonance. The two tested HAs have very different structural properties: CHA consists primarily of poly(methylene)-rich aliphatics with high aromatic content and some COO/N-C=O but low polarity, while SHA consists of young materials of lignin, carbohydrates, and peptides with high polarity. In response to the structural heterogeneity of HAs, sorption of nonpolar and more hydrophobic solutes (PHEN, TeCB) to CHA is much greater than that to SHA because of the predominance of hydrophobic effects; however, disparities in sorption affinity between the two HAs become smaller for polar and less hydrophobic DCP because of the major role played by polar interactions. The influence of pH on the sorption of different solutes to the two HAs was also discussed. The results of the present work highlight the importance of structural heterogeneity of both solutes and HAs in the sorption process.

  5. Investigating the inclusion properties of aromatic amino acids complexing beta-cyclodextrins in model peptides.

    PubMed

    Caso, Jolanda Valentina; Russo, Luigi; Palmieri, Maddalena; Malgieri, Gaetano; Galdiero, Stefania; Falanga, Annarita; Isernia, Carla; Iacovino, Rosa

    2015-10-01

    Cyclodextrins are commonly used as complexing agents in biological, pharmaceutical, and industrial applications since they have an effect on protein thermal and proteolytic stability, refolding yields, solubility, and taste masking. β-cyclodextrins (β-CD), because of their cavity size are a perfectly suited complexing agent for many common guest moieties. In the case of peptide-cyclodextrin and protein-cyclodextrin host-guest complexes the aromatic amino acids are reported to be the principal responsible of the interaction. For these reasons, we have investigated the inclusion properties of nine designed tripeptides, obtained permuting the position of two L-alanines (Ala, A) with that of one L-tryptophan (Trp, W), L-phenylalanine (Phe, F), or L-tyrosine (Tyr, Y), respectively. Interestingly, the position of the aromatic side-chain in the sequence appears to modulate the β-CD:peptide binding constants, determined via UV-Vis and NMR spectroscopy, which in turn assumes values higher than those reported for the single amino acid. The tripeptides containing a tyrosine showed the highest binding constants, with the central position in the Ac-AYA-NH2 peptide becoming the most favorite for the interaction. A combined NMR and Molecular Docking approach permitted to build detailed complex models, highlighting the stabilizing interactions of the neighboring amino acids backbone atoms with the upper rim of the β-CD.

  6. New lipophilic piceatannol derivatives exhibiting antioxidant activity prepared by aromatic hydroxylation with 2-iodoxybenzoic acid (IBX).

    PubMed

    Bernini, Roberta; Barontini, Maurizio; Spatafora, Carmela

    2009-01-01

    Piceatannol (E-3,5,3',4'-tetrahydroxystilbene) is a phytoalexin synthesized in grapes in response to stress conditions. It exhibits strong antioxidant and antileukaemic activities due to the presence of the catechol moiety. To modify some physical properties like solubility, and miscibility in non-aqueous media some new previously unreported piceatannol derivatives having lipophilic chains on the A-ring were prepared in good yields by a simple and efficient procedure. The key step was a chemo- and regioselective aromatic hydroxylation with 2-iodoxybenzoic acid (IBX). The new compounds showed antioxidant activity and seemed promising for possible applications as multifunctional emulsifiers in food, cosmetic and pharmaceutical fields.

  7. Action of Plant Growth Regulators. IV. Adsorption of Unsubstituted and 2,6-Dichloro-aromatic Acids to Oat Monolayers

    PubMed Central

    Brian, R. C.

    1967-01-01

    The adsorption of chloro-aromatic acids to monomolecular layers of oat squashes is reported in earlier papers but it was not possible by the technique used, to measure unambiguously the adsorption of unsubstituted and 2,6-dichloro-aromatic acids. This has now been achieved by a modification of the earlier method and involves assessments of competitive adsorption between the unknown acid and a standard acid, using measurements of surface potential. Benzoic and phenoxyacetic acids were not adsorbed but phenylacetic acid was weakly adsorbed. The second ring in naphthalene and naphthoxyacetic acids greatly increased adsorption. Substitution of the 2 and 6 positions in the phenyl and phenoxyacetic acids resulted in low adsorption but 2,6-disubstituted phenoxybutyric and benzoic acids were more highly adsorbed. The adsorption values from earlier work are combined and discussed in relation to the growth-regulating activity of the acids. It is conciuded that there is no direct relation embracing all acids between adsorption and activity, notable exceptions being those substituted by chlorine in the 3-position of the aromatic ring. However, for a number of acids it is suggested that activity is limited not only by their ability to interact at enzyme sites but also by the amount of acid immobilised by adsorption when moving to these sites. It is also concluded that the hydrophilic/lipophilic balance of a growth regulator sometimes used as a guide to its activity, is an unreliable indication of interfacial behaviour. PMID:16656642

  8. Asymmetric synthesis of aromatic β-amino acids using ω-transaminase: Optimizing the lipase concentration to obtain thermodynamically unstable β-keto acids.

    PubMed

    Mathew, Sam; Jeong, Seong-Su; Chung, Taeowan; Lee, Sang-Hyeup; Yun, Hyungdon

    2016-01-01

    Synthesized aromatic β-amino acids have recently attracted considerable attention for their application as precursors in many pharmacologically relevant compounds. Previous studies on asymmetric synthesis of aromatic β-amino acids using ω-transaminases could not be done efficiently due to the instability of β-keto acids. In this study, a strategy to circumvent the instability problem of β-keto acids was utilized to generate β-amino acids efficiently via asymmetric synthesis. In this work, thermodynamically stable β-ketoesters were initially converted to β-keto acids using lipase, and the β-keto acids were subsequently aminated using ω-transaminase. By optimizing the lipase concentration, we successfully overcame the instability problem of β-keto acids and enhanced the production of β-amino acids. This strategy can be used as a general approach to efficiently generate β-amino acids from β-ketoesters.

  9. Polycarboxylated microfillers incorporated into light-curable resin-based dental adhesives evoke remineralization at the mineral-depleted dentin.

    PubMed

    Wang, Zhejun; Shen, Ya; Haapasalo, Markus; Wang, Jiao; Jiang, Tao; Wang, Yining; Watson, Timothy F; Sauro, Salvatore

    2014-01-01

    This study aimed at evaluating the remineralizing properties of three experimental light-curable resin-based dental adhesives containing tailored polycarboxylated microfillers. A co-monomers blend was firstly formulated and then mixed with each of the following microfillers: polycarboxylated bioactive glass (PBAG), polycarboxylated calcium silicates (PCS), and polycarboxylated calcium silicates-doped brushite (PDP). The three experimental and a filler-free control resins were applied onto 10% orthophosphoric acid treated dentin discs and light cured. The specimens were soaked in artificial saliva (AS) for 3, 7, and 14 days. Dentin mineral variation was monitored using attenuated total reflection-Fourier transform infrared (ATR-FTIR) and Raman spectroscopy. Confocal laser scanning microscopy (CLSM) was employed to observe the ultra-morphology/nanoleakage along the resin-dentin interface. The bonding ability and the durability of the resin-dentin bonds were investigated through microtensile bond strength (μTBS) test. ATR-FTIR and Raman showed a significant increase of the mineral matrix area ratio and phosphate peak intensity in specimens treated with the experimental resins within 14 days (p < 0.05). No significant increment of minerals was found in untreated specimens or specimens treated using the control filler-free resin (p > 0.05). Dentin treated using PBAG or PCS exhibited higher level of remineralization than the specimens in PDP group. CLSM showed reduction in nanoleakage, although the remineralization of the hybrid layer induced a significant drop in the μTBS after 3-month storage (p < 0.05). The experimental resin-based dental adhesives containing bioactive microfillers remineralize the resin-dentin interfaces when in intimate contact with biological fluids.

  10. A prospective clinical study of polycarboxylate cement in periapical surgery

    PubMed Central

    Ortega-Sánchez, Bárbara; García-Mira, Berta; Maestre-Ferrín, Laura; Peñarrocha-Oltra, David; Gay-Escoda, Cosme

    2012-01-01

    Objective: To evaluate the clinical efficacy of polycarboxylate cement as retrograde filling material. Design: A prospective clinical study was made of 25 patients subjected to periapical surgery with ultrasound and magnifying loupes, in which polycarboxylate cement was used as retrograde filling material. Measurements were made of the area and diameter of the lesions pre- and postoperatively, and 6 and 12 months after the operation. The apical resection and retrograde filling areas were also measured, and the prognosis following surgery was recorded. Results: A total of 23 patients with 31 apicoectomized teeth were studied (2 patients being lost to follow-up). The mean area of the periapical lesions before surgery was 52.25 mm2, with a mean major diameter of 6.1 mm and a mean lesser diameter of 4.8 mm. The success rate after 12 months was 54.7%, according to the criteria of Von Arx and Kurt. The prognosis was poorer in females, in larger lesions, and in cases with larger retrograde filling areas. Conclusions: Polycarboxylate cement offers good results, with important bone regeneration after periapical surgery. Key words: Periapical surgery, endodontic treatment, polycarboxylate cement. PMID:22143701

  11. Binding modes of aromatic ligands to mammalian heme peroxidases with associated functional implications: crystal structures of lactoperoxidase complexes with acetylsalicylic acid, salicylhydroxamic acid, and benzylhydroxamic acid.

    PubMed

    Singh, Amit K; Singh, Nagendra; Sinha, Mau; Bhushan, Asha; Kaur, Punit; Srinivasan, Alagiri; Sharma, Sujata; Singh, Tej P

    2009-07-24

    The binding and structural studies of bovine lactoperoxidase with three aromatic ligands, acetylsalicylic acid (ASA), salicylhydoxamic acid (SHA), and benzylhydroxamic acid (BHA) show that all the three compounds bind to lactoperoxidase at the substrate binding site on the distal heme side. The binding of ASA occurs without perturbing the position of conserved heme water molecule W-1, whereas both SHA and BHA displace it by the hydroxyl group of their hydroxamic acid moieties. The acetyl group carbonyl oxygen atom of ASA forms a hydrogen bond with W-1, which in turn makes three other hydrogen-bonds, one each with heme iron, His-109 N(epsilon2), and Gln-105 N(epsilon2). In contrast, in the complexes of SHA and BHA, the OH group of hydroxamic acid moiety in both complexes interacts with heme iron directly with Fe-OH distances of 3.0 and 3.2A respectively. The OH is also hydrogen bonded to His-109 N(epsilon2) and Gln-105N(epsilon2). The plane of benzene ring of ASA is inclined at 70.7 degrees from the plane of heme moiety, whereas the aromatic planes of SHA and BHA are nearly parallel to the heme plane with inclinations of 15.7 and 6.2 degrees , respectively. The mode of ASA binding provides the information about the mechanism of action of aromatic substrates, whereas the binding characteristics of SHA and BHA indicate the mode of inhibitor binding.

  12. Polycyclic Aromatic Acids Are Primary Metabolites of Alkyl-PAHs-A Case Study with Nereis diversicolor.

    PubMed

    Malmquist, Linus M V; Selck, Henriette; Jørgensen, Kåre B; Christensen, Jan H

    2015-05-01

    Although concentrations of alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) in oil-contaminated sediments are higher than those of unsubstituted PAHs, only little attention has been given to metabolism and ecotoxicity of alkyl-PAHs. In this study we demonstrated that metabolism of alkyl-PAHs primarily forms polycyclic aromatic acids (PAAs). We generalize this to other alkyl-PAHs, based on literature and the present study of the metabolism of 1-methylphenanthrene, 3,6-dimethylphenanthrene, and 1-, 2-, 3-, and 6-methylchrysene related to their unsubstituted parent PAHs. Also, we observed that body burdens and production of PAAs was related to the position of the methyl group, showing the same isomer specific preferences as for microbial degradation of alkyl-PAHs. We detected a high production of PAAs, and larger metabolism of alkyl-PAHs than their unsubstituted parent PAHs. We therefore propose that carboxylic acid metabolites of alkyl-PAHs have the potential of constituting a new class of contaminants in marine waters that needs attention in relation to ecological risk assessments.

  13. Extended Electron-Transfer in Animal Cryptochromes Mediated by a Tetrad of Aromatic Amino Acids.

    PubMed

    Nohr, Daniel; Franz, Sophie; Rodriguez, Ryan; Paulus, Bernd; Essen, Lars-Oliver; Weber, Stefan; Schleicher, Erik

    2016-07-26

    The cryptochrome/photolyase protein family possesses a conserved triad of tryptophans that may act as a molecular wire to transport electrons from the protein surface to the FAD cofactor for activation and/or signaling-state formation. Members from the animal (and animal-like) cryptochrome subclade use this process in a light-induced fashion in a number of exciting responses, such as the (re-)setting of circadian rhythms or magnetoreception; however, electron-transfer pathways have not been explored in detail yet. Therefore, we present an in-depth time-resolved optical and electron-paramagnetic resonance spectroscopic study of two cryptochromes from Chlamydomonas reinhardtii and Drosophila melanogaster. The results do not only reveal the existence of a fourth, more distant aromatic amino acid that serves as a terminal electron donor in both proteins, but also show that a tyrosine is able to fulfill this very role in Chlamydomonas reinhardtii cryptochrome. Additionally, exchange of the respective fourth aromatic amino acid to redox-inactive phenylalanines still leads to light-induced radical pair formation; however, the lifetimes of these species are drastically reduced from the ms- to the μs-range. The results presented in this study open up a new chapter, to our knowledge, in the diversity of electron-transfer pathways in cryptochromes. Moreover, they could explain unique functions of animal cryptochromes, in particular their potential roles in magnetoreception because magnetic-field effects of light-induced radical pairs strongly depend on distance and orientation parameters.

  14. Indole-3-acetic acid biosynthetic pathway and aromatic amino acid aminotransferase activities in Pantoea dispersa strain GPK.

    PubMed

    Kulkarni, G B; Nayak, A S; Sajjan, S S; Oblesha, A; Karegoudar, T B

    2013-05-01

    This investigation deals with the production of IAA by a bacterial isolate Pantoea dispersa strain GPK (PDG) identified by 16S rRNA gene sequence analysis. HPLC and Mass spectral analysis of metabolites from bacterial spent medium revealed that, IAA production by PDG is Trp-dependent and follows indole-3-pyruvic acid (IPyA) pathway. Substrate specificity study of aromatic amino acid aminotransferase (AAT) showed high activities, only when tryptophan (Trp) and α-ketoglutarate (α-kg) were used as substrates. AAT is highly specific for Trp and α-kg as amino group donor and acceptor, respectively. The effect of exogenous IAA on bacterial growth was established. Low concentration of exogenous IAA induced the growth, whereas high concentration decreased the growth of bacterium. PDG treatment significantly increased the root length, shoot length and dry mass of the chickpea and pigeon pea plants. PMID:23448265

  15. Triazolo-β-aza-ε-amino acid and its aromatic analogue as novel scaffolds for β-turn peptidomimetics.

    PubMed

    Bag, Subhendu Sekhar; Jana, Subhashis; Yashmeen, Afsana; De, Suranjan

    2015-03-28

    Triazolo-β-aza-ε-amino acid and its aromatic analogue ((Al)TAA/(Ar)TAA) in the peptide backbone mark a novel class of conformationally constrained molecular scaffolds to induce β-turn conformations. This was demonstrated for (Al)TAA in a Leu-enkephalin analogue and in a designed pentapeptide wherein the FRET process was established. Restricted rotation induced chirality and turn conformation into the achiral aromatic amino acid scaffold, (Ar)TAA, which in a short tripeptide backbone acted as a β-turn mimic as a β-sheet folding nucleator.

  16. The role of hyperconjugative π-aromaticity in the enhanced acidity of methyl-, silyl and germylcyclopentadienes

    NASA Astrophysics Data System (ADS)

    González-Castrillo, Alberto; Hurtado, Marcela; Mó, Otilia; Yáñez, Manuel; Guillemin, Jean-Claude

    2010-10-01

    The relative stability of the different isomers of cyclopentadienyl derivatives CpXH3 (X = C, Si, Ge) and their intrinsic acidities have been investigated by means of B3LYP/6-311+G(3df,2p)//CCSD/6-311+G(d,p) density functional theory calculations. Whereas for the methylcyclopentadiene the 1- and 2- substituted isomers are almost equally stable and much more stable than the 5-substituted isomer, for the germyl derivatives the 5-substituted compound is the global minimum, due to the stabilization of the system through a hyperconjugative π-aromaticity effect, which is the larger the more electropositive the XH3 substituent is. As a consequence CpXH3 (X = Si, Ge) are more aromatic than cyclopentadiene. The silyl and germyl derivatives are more fluxional than the methyl derivative, the 1,2-XH3 shift activation barriers being around 60 kJ mol-1. For all the isomers, the most favourable deprotonation process corresponds to the loss of the proton attached to the sp3 carbon atom of the five membered ring. For Si and Ge containing compounds this behaviour differs from that observed for saturated and α,β-unsaturated compounds, which behave as Si or Ge acids in the gas phase. CpXH3 (X = C, Si, Ge) compounds are predicted to be stronger acids in the gas phase than the unsubstituted parent compound, due to a significant anionic hyperconjugation effect which reinforces the C-X bond upon deprotonation and favours the conjugation of the C-X π-bond with the π-system associated to the five membered ring.

  17. Kinetically and thermodynamically stable isomers of thorium chelates of polyaza polycarboxylic macrocycles

    NASA Astrophysics Data System (ADS)

    Jacques, Vincent; Desreux, Jean F.

    1994-10-01

    The solution conformation of the thorium(IV) complexes of two polyaza polycarboxylic macrocycles, DOTA and HEHA (1,4,7,10-tetraazacyclododecane-N, N', N(double prime), N(triple prime)-tetraacetic acid and 1,4,7,10,13,16-hexaazacyclooctadecane-N, N', N(double prime), N(triple prime), N(double prime)(double prime), N(double prime)(triple prime)-hexaacetic acid), was investigated by one- and two-dimensional nuclear magnetic resonance spectroscopy. ThHEHA(2+) forms a kinetically stable topomer of C2 symmetry and a thermodynamically stable topomer of S6 symmetry. Both complexes are assigned an icosahedral geometry. The activation energy for the intermolecular exchange is very high (214 kJ/mol). The behavior of ThHEHA(2+) contrasts with the properties of the other Th(IV) chelates that are known to be fluxional.

  18. Adsorption of aromatic organic acids onto high area activated carbon cloth in relation to wastewater purification.

    PubMed

    Ayranci, Erol; Duman, Osman

    2006-08-25

    Adsorption of aromatic organic acids: benzoic acid (BA), salicylic acid (SA), p-aminobenzoic acid (pABA) and nicotinic acid (NA), onto high area activated carbon cloth from solutions in 0.4 M H(2)SO(4), in water at natural pH, in 0.1 M NaOH and also from solutions having pH 7.0 were studied by in situ UV-spectroscopic technique. The first-order rate law was found to be applicable for the kinetic data of adsorption. The rates and extents of adsorption of the organic acids were the highest from water or 0.4 M H(2)SO(4) solutions and the lowest from 0.1 M NaOH solution. The order of rates and extents of adsorption of the four organic acids in each of the four solutions (0.4 M H(2)SO(4), water, solution of pH 7.0 and 0.1 M NaOH) was determined as SA>BA>NA approximately pABA. These observed orders were explained in terms of electrostatic, dispersion and hydrogen bonding interactions between the surface and the adsorbate species, taking the charge of the carbon surface and the adsorbate in each solution into account. Adsorption of BA in molecular form or in benzoate form was analyzed by treating the solution as a mixture of two components and applying Lambert-Beer law to two-component system. The adsorption isotherm data of the systems studied were derived at 30 degrees C and fitted to Langmuir and Freundlich equations. PMID:16442224

  19. Aromatic amino acids as precursors of antimicrobial metabolites in Geotrichum candidum.

    PubMed

    Naz, Saima; Gueguen-Minerbe, Marielle; Cretenet, Marina; Vernoux, Jean-Paul

    2013-07-01

    Geotrichum candidum ATCC 204307 was previously found to generate phenyllactic acid (PLA) and indoleacetic acid (ILA) in complex culture media. In this study, a relationship between concentrations of PLA, ILA, and hydroxy PLA (OH-PLA) and initial concentrations of phenylalanine, tryptophan, and tyrosine, added respectively as unique sources of nitrogen in synthetic medium, was established. Phenylpyruvic acid (PPA), an intermediate compound of PLA metabolism, was able to induce not only PLA but also phenylethyl alcohol (PEA) production when used separately as initial substrate. Under pH, temperature, and salt concentrations used for cheese-making, phenylalanine was found to be the most efficient substrate for antimicrobial metabolite production. In excess of substrate, different yeast strains of Geotrichum candidum, Yarrowia lipolytica, Candida natalensis, and Candida catenulata were shown here to produce 1.6 ± 0.5-5.0 ± 0.2 mM of PLA from phenylalanine, 5.0 ± 0.1-10.9 ± 0.3 mM of ILA from tryptophan, and 1.3 ± 0.3-7.0 ± 0.02 of PLA and 0.1 ± 0.0-2.22 ± 0.09 mM of PEA from PPA. Geotrichum candidum ATCC 204307 was the highest producer. This is the first time these antimicrobial metabolites PLA, OH-PLA, ILA, and PEA are being reported as the reaction products of aromatic amino acids catabolism in G. candidum. PMID:23590565

  20. Biomimetic Fenton-catalyzed lignin depolymerization to high-value aromatics and dicarboxylic acids.

    PubMed

    Zeng, Jijiao; Yoo, Chang Geun; Wang, Fei; Pan, Xuejun; Vermerris, Wilfred; Tong, Zhaohui

    2015-03-01

    By mimicking natural lignin degradation systems, the Fenton catalyst (Fe(3+), H2O2) can effectively facilitate lignin depolymerization in supercritical ethanol (7 MPa, 250 °C) to give organic oils that consist of mono- and oligomeric aromatics, phenols, dicarboxylic acids, and their derivatives in yields up to (66.0±8.5) %. The thermal properties, functional groups, and surface chemistry of lignin before and after Fenton treatment were examined by thermogravimetric analysis, pyrolysis-gas chromatography-mass spectrometry, (31)P NMR spectroscopy, and X-ray photoelectron spectroscopy. The results suggest that the Fenton catalyst facilitates lignin depolymerization through cleavage of β-ether bonds between lignin residues. The formation of a lignin-iron chelating complex effectively depresses lignin recondensation; thus minimizing charcoal formation and enhancing the yield of liquid products.

  1. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    PubMed Central

    Guillamon, Jose Manuel; Torija, Maria Jesus; Beltran, Gemma; Troncoso, Ana M.; Garcia-Parrilla, M. Carmen

    2014-01-01

    Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements. PMID:24895623

  2. Extended Electron-Transfer in Animal Cryptochromes Mediated by a Tetrad of Aromatic Amino Acids.

    PubMed

    Nohr, Daniel; Franz, Sophie; Rodriguez, Ryan; Paulus, Bernd; Essen, Lars-Oliver; Weber, Stefan; Schleicher, Erik

    2016-07-26

    The cryptochrome/photolyase protein family possesses a conserved triad of tryptophans that may act as a molecular wire to transport electrons from the protein surface to the FAD cofactor for activation and/or signaling-state formation. Members from the animal (and animal-like) cryptochrome subclade use this process in a light-induced fashion in a number of exciting responses, such as the (re-)setting of circadian rhythms or magnetoreception; however, electron-transfer pathways have not been explored in detail yet. Therefore, we present an in-depth time-resolved optical and electron-paramagnetic resonance spectroscopic study of two cryptochromes from Chlamydomonas reinhardtii and Drosophila melanogaster. The results do not only reveal the existence of a fourth, more distant aromatic amino acid that serves as a terminal electron donor in both proteins, but also show that a tyrosine is able to fulfill this very role in Chlamydomonas reinhardtii cryptochrome. Additionally, exchange of the respective fourth aromatic amino acid to redox-inactive phenylalanines still leads to light-induced radical pair formation; however, the lifetimes of these species are drastically reduced from the ms- to the μs-range. The results presented in this study open up a new chapter, to our knowledge, in the diversity of electron-transfer pathways in cryptochromes. Moreover, they could explain unique functions of animal cryptochromes, in particular their potential roles in magnetoreception because magnetic-field effects of light-induced radical pairs strongly depend on distance and orientation parameters. PMID:27463133

  3. Dietary supplementation with aromatic amino acids increases protein synthesis in children wHh severe acute malnutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although 2 earlier studies reported that aromatic amino acid (AAA) supplementation of children with severe acute malnutrition (SAM) improved whole-body protein anabolism during the early postadmission (maintenance) phase of rehabilitation, it is not known whether this positive effect was maintained ...

  4. Genetic engineering activates biosynthesis of aromatic fumaric acid amides in the human pathogen Aspergillus fumigatus.

    PubMed

    Kalb, Daniel; Heinekamp, Thorsten; Lackner, Gerald; Scharf, Daniel H; Dahse, Hans-Martin; Brakhage, Axel A; Hoffmeister, Dirk

    2015-03-01

    The Aspergillus fumigatus nonribosomal peptide synthetase FtpA is among the few of this species whose natural product has remained unknown. Both FtpA adenylation domains were characterized in vitro. Fumaric acid was identified as preferred substrate of the first and both l-tyrosine and l-phenylalanine as preferred substrates of the second adenylation domain. Genetically engineered A. fumigatus strains expressed either ftpA or the regulator gene ftpR, encoded in the same cluster of genes, under the control of the doxycycline-inducible tetracycline-induced transcriptional activation (tet-on) cassette. These strains produced fumaryl-l-tyrosine and fumaryl-l-phenylalanine which were identified by liquid chromatography and high-resolution mass spectrometry. Modeling of the first adenylation domain in silico provided insight into the structural requirements to bind fumaric acid as peptide synthetase substrate. This work adds aromatic fumaric acid amides to the secondary metabolome of the important human pathogen A. fumigatus which was previously not known as a producer of these compounds.

  5. Polar solvent effects on tartaric acid binding by aromatic oligoamide foldamer capsules.

    PubMed

    Chandramouli, Nagula; El-Behairy, Mohammed Farrag; Lautrette, Guillaume; Ferrand, Yann; Huc, Ivan

    2016-02-28

    Aromatic oligoamide sequences able to fold into single helical capsules were functionalized with two types of side chains to make them soluble in various solvents such as chloroform, methanol or water and their propensity to recognize tartaric acid was evaluated. The binding affinities to tartaric acid and binding thermodynamics in different media were investigated by variable temperature (1)H NMR and ITC experiments, the two methods giving consistent results. We show that tartaric acid binding mainly rests on enthalpically favourable polar interactions that were found to be sufficiently strong to be effective in the presence of a polar aprotic solvent (DMSO) and even in pure methanol. Binding in water was very weak. The stronger binding interactions were found to be more susceptible to the effect of competitive solvents and compensated by unfavourable entropic effects. Thus, the best host in a less polar medium eventually was found to be the worst host in protic solvents. An interesting case of entropically driven binding was evidenced in methanol.

  6. Genetic Engineering Activates Biosynthesis of Aromatic Fumaric Acid Amides in the Human Pathogen Aspergillus fumigatus

    PubMed Central

    Kalb, Daniel; Heinekamp, Thorsten; Lackner, Gerald; Scharf, Daniel H.; Dahse, Hans-Martin; Brakhage, Axel A.

    2014-01-01

    The Aspergillus fumigatus nonribosomal peptide synthetase FtpA is among the few of this species whose natural product has remained unknown. Both FtpA adenylation domains were characterized in vitro. Fumaric acid was identified as preferred substrate of the first and both l-tyrosine and l-phenylalanine as preferred substrates of the second adenylation domain. Genetically engineered A. fumigatus strains expressed either ftpA or the regulator gene ftpR, encoded in the same cluster of genes, under the control of the doxycycline-inducible tetracycline-induced transcriptional activation (tet-on) cassette. These strains produced fumaryl-l-tyrosine and fumaryl-l-phenylalanine which were identified by liquid chromatography and high-resolution mass spectrometry. Modeling of the first adenylation domain in silico provided insight into the structural requirements to bind fumaric acid as peptide synthetase substrate. This work adds aromatic fumaric acid amides to the secondary metabolome of the important human pathogen A. fumigatus which was previously not known as a producer of these compounds. PMID:25527545

  7. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity

    DOE PAGES

    Johnson, Christopher W.; Salvachua, Davinia; Khanna, Payal; Smith, Holly; Peterson, Darren J.; Beckham, Gregg T.

    2016-04-22

    The conversion of biomass-derived sugars and aromatic molecules to cis,cis-muconic acid (referred to hereafter as muconic acid or muconate) has been of recent interest owing to its facile conversion to adipic acid, an important commodity chemical. Metabolic routes to produce muconate from both sugars and many lignin-derived aromatic compounds require the use of a decarboxylase to convert protocatechuate (PCA, 3,4-dihydroxybenzoate) to catechol (1,2-dihydroxybenzene), two central aromatic intermediates in this pathway. Several studies have identified the PCA decarboxylase as a metabolic bottleneck, causing an accumulation of PCA that subsequently reduces muconate production. A recent study showed that activity of the PCAmore » decarboxylase is enhanced by co-expression of two genetically associated proteins, one of which likely produces a flavin-derived cofactor utilized by the decarboxylase. Using entirely genome-integrated gene expression, we have engineered Pseudomonas putida KT2440-derived strains to produce muconate from either aromatic molecules or sugars and demonstrate in both cases that co-expression of these decarboxylase associated proteins reduces PCA accumulation and enhances muconate production relative to strains expressing the PCA decarboxylase alone. In bioreactor experiments, co-expression increased the specific productivity (mg/g cells/h) of muconate from the aromatic lignin monomer p-coumarate by 50% and resulted in a titer of >15 g/L. In strains engineered to produce muconate from glucose, co-expression more than tripled the titer, yield, productivity, and specific productivity, with the best strain producing 4.92+/-0.48 g/L muconate. Furthermore, this study demonstrates that overcoming the PCA decarboxylase bottleneck can increase muconate yields from biomass-derived sugars and aromatic molecules in industrially relevant strains and cultivation conditions.« less

  8. Identification of acidic and aromatic residues in the Zta activation domain essential for Epstein-Barr virus reactivation.

    PubMed

    Deng, Z; Chen, C J; Zerby, D; Delecluse, H J; Lieberman, P M

    2001-11-01

    Epstein-Barr virus (EBV) lytic cycle transcription and DNA replication require the transcriptional activation function of the viral immediate-early protein Zta. We describe a series of alanine substitution mutations in the Zta activation domain that reveal two functional motifs based on amino acid composition. Alanine substitution of single or paired hydrophobic aromatic amino acid residues resulted in modest transcription activation defects, while combining four substitutions of aromatic residues (F22/F26/W74/F75) led to more severe transcription defects. Substitution of acidic amino acid residue E27, D35, or E54 caused severe transcription defects on most viral promoters. Promoter- and cell-specific defects were observed for some substitution mutants. Aromatic residues were required for Zta interaction with TFIIA-TFIID and the CREB-binding protein (CBP) and for stimulation of CBP histone acetyltransferase activity in vitro. In contrast, acidic amino acid substitution mutants interacted with TFIIA-TFIID and CBP indistinguishably from the wild type. The nuclear domain 10 (ND10) protein SP100 was dispersed by most Zta mutants, but acidic residue mutations led to reduced, while aromatic substitution mutants led to increased SP100 nuclear staining. Acidic residue substitution mutants had more pronounced defects in transcription activation of endogenous viral genes in latently infected cells and for viral replication, as measured by the production of infectious virus. One mutant, K12/F13, was incapable of stimulating EBV lytic replication but had only modest transcription defects. These results indicate that Zta stimulates viral reactivation through two nonredundant structural motifs, one of which interacts with general transcription factors and coactivators, and the other has an essential but as yet not understood function in lytic transcription.

  9. α-Ketol linolenic acid (KODA) application affects endogenous abscisic acid, jasmonic acid and aromatic volatiles in grapes infected by a pathogen (Glomerella cingulata).

    PubMed

    Wang, Shanshan; Saito, Takanori; Ohkawa, Katsuya; Ohara, Hitoshi; Shishido, Masahiro; Ikeura, Hiromi; Takagi, Kazuteru; Ogawa, Shigeyuki; Yokoyama, Mineyuki; Kondo, Satoru

    2016-03-15

    Effects of α-ketol linolenic acid (KODA) application on endogenous abscisic acid (ABA), jasmonic acid (JA), and aromatic volatiles were investigated in 'Kyoho' grapes (Vitis labrusca×Vitis vinifera) infected by a pathogen (Glomerella cingulata). The expressions of 9-cis-epoxycarotenoid dioxygenase (VvNCED1), ABA 8'-hydroxylase (VvCYP707A1), lipoxygenase (VvLOX), and allene oxide synthase (VvAOS) were also examined. The grape berries were dipped in 0.1mM KODA solution before inoculation with the pathogen and stored at 25°C for 12 days. The development of infection was significantly suppressed upon KODA treatment. Endogenous ABA, JA and phaseic acid (PA) were induced in inoculated berries. KODA application before inoculation increased endogenous ABA, PA and JA through the activation of VvNCED1, VvCYP707A1 and VvAOS genes, respectively. In addition, terpenes, methyl salicylate (Me-SA) and C6-aldehydes such as (E)-2-hexenal and cis-3-hexenal associated with fungal resistance also increased in KODA-treated berries during storage. These results suggest that the synergistic effect of JA, ABA, and some aromatic volatiles induced by KODA application may provide resistance to pathogen infection in grape berries. PMID:26881925

  10. Degradation of bisphenol A in water by Fe(III)/UVA and Fe(III)/polycarboxylate/UVA photocatalysis.

    PubMed

    Alvarez, P M; Rodríguez, E M; Fernández, G; Beltrán, F J

    2010-01-01

    The photodegradation of the endocrine disrupting chemical Bisphenol A (BPA) under UVA irradiation in the presence of Fe(III) or Fe(III)-polycarboxylate systems was studied. The effect of Fe(III) concentration, aqueous pH and the presence of four carboxylic acids (oxalic, malic, tartaric and citric) were investigated. The Fe(III)/UVA system was able to effectively degrade BPA at pH 3 but failed at pH > 4. At any rate, no mineralization of BPA was achieved with the Fe(III)/UVA system. The presence of carboxylic acids greatly enhanced the BPA degradation rate because of the formation of photoactive Fe(III)-polycarboxylate complexes. Aqueous pH in the 3-7 range exerted a negative effect on the BPA degradation rate and TOC conversion in the presence of oxalic, malic and tartaric acids. Only slight effect of pH was observed in the presence of citric acid, being the BPA degradation rate significant even at pH 7.

  11. Characterization of the Suillus grevillei quinone synthetase GreA supports a nonribosomal code for aromatic α-keto acids.

    PubMed

    Wackler, Barbara; Lackner, Gerald; Chooi, Yit Heng; Hoffmeister, Dirk

    2012-08-13

    The gene greA was cloned from the genome of the basidiomycete Suillus grevillei. It encodes a monomodular natural product biosynthesis protein composed of three domains for adenylation, thiolation, and thioesterase and, hence, is reminiscent of a nonribosomal peptide synthetase (NRPS). GreA was biochemically characterized in vitro. It was identified as atromentin synthetase and therefore represents one of only a limited number of biochemically characterized NRPS-like enzymes which accept an aromatic α-keto acid. Specificity-conferring amino acid residues--collectively referred to as the nonribosomal code--were predicted for the primary sequence of the GreA adenylation domain and were an unprecedented combination for aromatic α-keto acids. Plausible support for this new code came from in silico simulation of the adenylation domain structure. According to the model, the predicted residues line the active site and, therefore, very likely contribute to substrate specificity.

  12. Secondary Structures in a Freeze-Dried Lignite Humic Acid Fraction Caused by Hydrogen-Bonding of Acidic Protons with Aromatic Rings.

    PubMed

    Cao, Xiaoyan; Drosos, Marios; Leenheer, Jerry A; Mao, Jingdong

    2016-02-16

    A lignite humic acid (HA) was separated from inorganic and non-HA impurities (i.e., aluminosilicates, metals) and fractionated by a combination of dialysis and XAD-8 resin. Fractionation revealed a more homogeneous structure of lignite HA. New and more specific structural information on the main lignite HA fraction is obtained by solid-state nuclear magnetic resonance (NMR) spectroscopy. Quantitative (13)C multiple cross-polarization (multiCP) NMR indicated oxidized phenyl propane structures derived from lignin. MultiCP experiments, conducted on potassium HA salts titrated to pH 10 and pH 12, revealed shifts consistent with carboxylate and phenolate formation, but structural changes associated with enolate formation from aromatic beta keto acids were not detected. Two-dimensional (1)H-(13)C heteronuclear correlation (2D HETCOR) NMR indicated aryl-aliphatic ketones, aliphatic and aromatic carboxyl groups, phenol, and methoxy phenyl ethers. Acidic protons from carboxyl groups in both the lignite HA fraction and a synthetic HA-like polycondensate were found to be hydrogen-bonded with electron-rich aromatic rings. Our results coupled with published infrared spectra provide evidence for the preferential hydrogen bonding of acidic hydrogens with electron-rich aromatic rings rather than adjacent carbonyl groups. These hydrogen-bonding interactions likely result from stereochemical arrangements in primary structures and folding. PMID:26836017

  13. Secondary Structures in a Freeze-Dried Lignite Humic Acid Fraction Caused by Hydrogen-Bonding of Acidic Protons with Aromatic Rings.

    PubMed

    Cao, Xiaoyan; Drosos, Marios; Leenheer, Jerry A; Mao, Jingdong

    2016-02-16

    A lignite humic acid (HA) was separated from inorganic and non-HA impurities (i.e., aluminosilicates, metals) and fractionated by a combination of dialysis and XAD-8 resin. Fractionation revealed a more homogeneous structure of lignite HA. New and more specific structural information on the main lignite HA fraction is obtained by solid-state nuclear magnetic resonance (NMR) spectroscopy. Quantitative (13)C multiple cross-polarization (multiCP) NMR indicated oxidized phenyl propane structures derived from lignin. MultiCP experiments, conducted on potassium HA salts titrated to pH 10 and pH 12, revealed shifts consistent with carboxylate and phenolate formation, but structural changes associated with enolate formation from aromatic beta keto acids were not detected. Two-dimensional (1)H-(13)C heteronuclear correlation (2D HETCOR) NMR indicated aryl-aliphatic ketones, aliphatic and aromatic carboxyl groups, phenol, and methoxy phenyl ethers. Acidic protons from carboxyl groups in both the lignite HA fraction and a synthetic HA-like polycondensate were found to be hydrogen-bonded with electron-rich aromatic rings. Our results coupled with published infrared spectra provide evidence for the preferential hydrogen bonding of acidic hydrogens with electron-rich aromatic rings rather than adjacent carbonyl groups. These hydrogen-bonding interactions likely result from stereochemical arrangements in primary structures and folding.

  14. Interactions of low molecular weight aromatic acids and amino acids with goethite, kaolinite and bentonite with or without organic matter coating

    NASA Astrophysics Data System (ADS)

    Gao, Jiajia; Jansen, Boris; Cerli, Chiara; Kalbitz, Karsten

    2015-04-01

    Interaction of organic matter molecules with the soil's solid phase is a key factor influencing the stabilization of carbon in soils and thus forms a crucial aspect of the global carbon cycle. While subject of much research attention so far, we still have much to learn about such interactions at the molecular level; in particular in the light of competition between different classes of organic molecules and in the presence of previously adsorbed soil organic matter. We studied the interaction of a group of low molecular weight (LMW) aromatic acids (salicylic, syringic, vanillic and ferulic acid) and amino acids (lysine, glutamic, leucine and phenylalanine) on goethite, kaolinite and bentonite with and without previously adsorbed dissolved organic matter (DOM). For this we used batch experiments at pH = 6.0 where some of the organic compounds were positively charged (i.e. lysine) or negatively charged (i.e. glutamic and salicylic acid) while the minerals also displayed positively (i.e. goethite) or negatively charged surfaces (i.e. bentonite). We found much higher sorption of salicylic acid and lysine than other compounds. On the bare minerals we found a great variety of sorption strength, with salicylic acid strongly adsorbed, while syringic, vanillic and ferulic acid showed little or no adsorption. For the amino acids, protonated lysine showed a stronger affinity to negatively charged kaolinite and bentonite than other amino acids. While deprotonated glutamic acid showed the strongest adsorption on goethite. Leucine and phenylalanine showed hardly any adsorption on any of the minerals. When present concurrently, amino acids decreased the sorption of salicylic acid on the three types of mineral, while the presence of LMW aromatic acids increased the sorption of lysine on kaolinite and bentonite and the sorption of glutamic acid on goethite. The presence of previously adsorbed DOM reduced the sorption of salicylic acid and lysine. The results confirm that

  15. Influence of pH and diluent on the ion-pair solvent extraction of aromatic carboxylic acids using quaternary ammonium salts

    SciTech Connect

    Kawamura, K.; Takahashi, K.; Okuwaki, A.

    2006-07-01

    The influence of pH and diluent on the ion-pair solvent extraction of benzene polycarboxylic acids have been investigated for the separation of the coal oxidation products, which are formed by the treatment with alkaline solutions at high temperatures. Although the extent of the solvent extraction of benzoic acid (1BE) with a quaternary ammonium reagent (tri-n-octylmethylammonium chloride) into chloroform and benzene did not change at a very acidic and alkaline solutions, those of 1,2-benzenedicarboxylic acid (12BE) and trimellitic acid (124BE) somewhat decreased at very low pH and very high pH. The magnitudes of the equilibrium constants (K{sub ex}) of 1BE using a different diluent decreased in the order benzene {gt} carbontetrachloride {gt} 1,2-dichloroethane {gt} cyclohexane {gt} hexane {gt} chloroform {gt} 1-octanol and those of 12BE decreased in the order benzene {gt} cyclohexane {gt} carbontetrachloride {gt} hexane {gt} 1,2-dichloroethane {gt} chloroform. The inspection of the correlation between the values of K{sub ex} and several parameters of the diluent implies that the magnitude of K{sub ex} can be described by using the dielectric constant and the solubility parameter of diluent.

  16. Oxidation of the aromatic amino acids tryptophan and tyrosine disrupts their anabolic effects on bone marrow mesenchymal stem cells.

    PubMed

    El Refaey, Mona; Watkins, Christopher P; Kennedy, Eileen J; Chang, Andrew; Zhong, Qing; Ding, Ke-Hong; Shi, Xing-ming; Xu, Jianrui; Bollag, Wendy B; Hill, William D; Johnson, Maribeth; Hunter, Monte; Hamrick, Mark W; Isales, Carlos M

    2015-07-15

    Age-induced bone loss is associated with greater bone resorption and decreased bone formation resulting in osteoporosis and osteoporosis-related fractures. The etiology of this age-induced bone loss is not clear but has been associated with increased generation of reactive oxygen species (ROS) from leaky mitochondria. ROS are known to oxidize/damage the surrounding proteins/amino acids/enzymes and thus impair their normal function. Among the amino acids, the aromatic amino acids are particularly prone to modification by oxidation. Since impaired osteoblastic differentiation from bone marrow mesenchymal stem cells (BMMSCs) plays a role in age-related bone loss, we wished to examine whether oxidized amino acids (in particular the aromatic amino acids) modulated BMMSC function. Using mouse BMMSCs, we examined the effects of the oxidized amino acids di-tyrosine and kynurenine on proliferation, differentiation and Mitogen-Activated Protein Kinase (MAPK) pathway. Our data demonstrate that amino acid oxides (in particular kynurenine) inhibited BMMSC proliferation, alkaline phosphatase expression and activity and the expression of osteogenic markers (Osteocalcin and Runx2). Taken together, our data are consistent with a potential pathogenic role for oxidized amino acids in age-induced bone loss.

  17. Synthesis of o-Carboxyarylacrylic Acids by Room Temperature Oxidative Cleavage of Hydroxynaphthalenes and Higher Aromatics with Oxone.

    PubMed

    Parida, Keshaba Nanda; Moorthy, Jarugu Narasimha

    2015-08-21

    A simple procedure for the synthesis of a variety of o-carboxyarylacrylic acids has been developed with Oxone (2KHSO5·KHSO4·K2SO4); the oxidation reaction involves the stirring of methoxy/hydroxy-substituted naphthalenes, phenanthrenes, anthracenes, etc. with Oxone in an acetonitrile-water mixture (1:1, v/v) at rt. Mechanistically, the reaction proceeds via initial oxidation of naphthalene to o-quinone, which undergoes cleavage to the corresponding o-carboxyarylacrylic acid. The higher aromatics are found to yield carboxymethyl lactones derived from the initially formed o-carboxyarylacrylic acids.

  18. Degradation of /sup 14/C-labeled lignins and /sup 14/C-labeled aromatic acids by fusarium solani

    SciTech Connect

    Norris, D.M.

    1980-08-01

    Abilities of isolate AF-W1 of Fusarium solani to degrade the side chain and the ring structure of synthetic dehydrogenative polymerizates, aromatic acids, or lignin in sound wood were investigated under several conditions of growth substrate or basal medium and pH. Significant transformations of lignins occurred in 50 days in both unextracted and extracted sound wood substrances with 3% malt as the growth substrate and the pH buffered initially at 4.0 with 2,2-dimethylsuccinate. Degradation of lignin in such woods also occurred under unbuffered pH conditions when a basal medium of either 3% malt or powdered cellulose in deionized water was present. Decomposition of the lignin in these woods did not occur in cultures where D-glucose was present as a growth substrate. F. solani significantly transformed, as measured as evolved /sup 14/CO/sub 2/, both synthetic side chain (beta, gamma)-/sup 14/C- and U-ring-/sup 14/C-labeled lignins in 30 days under liquid culture conditions of only distilled deionized water and no pH adjustment. Degradation of dehydrogenative polymerizates by F. solani was reduced drastically when D2 was the liquid medium. AF-W1 also cleaved the alpha-/sup 14/C from p- hydroxybenzoic acid and evolved /sup 14/CO/sub 2/ from the substrace, (3-/sup 14/C) cinnamic acid. Thus, the fungus cleaved side chain carbon from substrate that originally lacked hydroxyl substitution on the aromatic nucleus. Surprisingly, small amounts of /sup 14/C cleaved from aromatic acids by F. solani were incorporated into cell mass. Initial buffering of the culture medium to pH 4.0 or 5.0 with 0.1 M2,2-dimethylsuccinate significantly increased F. solani degradation of all lignins or aromatic acids. Results indicated that AF-W1 used lignin as a sole carbon source.

  19. Synthesis, crystal structure and photoluminescence property of Eu/Tb MOFs with mixed polycarboxylate ligands

    NASA Astrophysics Data System (ADS)

    Yang, Lu; Zhang, Sheng; Qu, Xiaoni; Yang, Qi; Liu, Xiangyu; Wei, Qing; Xie, Gang; Chen, Sanping

    2015-11-01

    Lanthanide MOFs, [Eu(TCA)(NDC)·H2O]n (1) and [Tb(TCA)(NDC)·H2O]n (2), have been prepared with the mixed aromatic carboxylate ligands, namely, 4,4‧,4″-tricarboxytriphenylamine (H3TCA) and 1,4-naphthalenedicarboxylate (H2NDC). Single-crystal X-ray diffraction analysis reveals that isomorphic 1 and 2 present pillar-layered 3D framework that Eu/Tb(III) bond with carboxylate in various coordination fashions. Optical investigation indicates that the as-prepared compounds feature characteristic luminescence emission bands of Eu/Tb ions in the visible regions at room temperature. Moreover, compound 2 shows a relatively longer luminescence lifetime (τ=0.342 ms) and significantly enhanced quantum yield (Φoverall=11%) comparing with those of 1 (τ=0.335 ms, Φoverall=0.06%). Two Ln-MOFs (Ln=EuIII, TbIII) with mixed polycarboxylate ligands present different luminescent properties.

  20. Aromatic L-amino acid decarboxylase deficiency diagnosed by clinical metabolomic profiling of plasma.

    PubMed

    Atwal, Paldeep S; Donti, Taraka R; Cardon, Aaron L; Bacino, C A; Sun, Qin; Emrick, L; Reid Sutton, V; Elsea, Sarah H

    2015-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is an inborn error of metabolism affecting the biosynthesis of serotonin, dopamine, and catecholamines. We report a case of AADC deficiency that was detected using the Global MAPS platform. This is a novel platform that allows for parallel clinical testing of hundreds of metabolites in a single plasma specimen. It uses a state-of-the-art mass spectrometry platform, and the resulting spectra are compared against a library of ~2500 metabolites. Our patient is now a 4 year old boy initially seen at 11 months of age for developmental delay and hypotonia. Multiple tests had not yielded a diagnosis until exome sequencing revealed compound heterozygous variants of uncertain significance (VUS), c.286G>A (p.G96R) and c.260C>T (p.P87L) in the DDC gene, causal for AADC deficiency. CSF neurotransmitter analysis confirmed the diagnosis with elevated 3-methoxytyrosine (3-O-methyldopa). Metabolomic profiling was performed on plasma and revealed marked elevation in 3-methoxytyrosine (Z-score +6.1) consistent with the diagnosis of AADC deficiency. These results demonstrate that the Global MAPS platform is able to diagnose AADC deficiency from plasma. In summary, we report a novel and less invasive approach to diagnose AADC deficiency using plasma metabolomic profiling.

  1. Interaction of Gramicidin S and its Aromatic Amino-Acid Analog with Phospholipid Membranes

    PubMed Central

    Jelokhani-Niaraki, Masoud; Hodges, Robert S.; Meissner, Joseph E.; Hassenstein, Una E.; Wheaton, Laura

    2008-01-01

    To investigate the mechanism of interaction of gramicidin S-like antimicrobial peptides with biological membranes, a series of five decameric cyclic cationic β-sheet-β-turn peptides with all possible combinations of aromatic D-amino acids, Cyclo(Val-Lys-Leu-D-Ar1-Pro-Val-Lys-Leu-D-Ar2-Pro) (Ar ≡ Phe, Tyr, Trp), were synthesized. Conformations of these cyclic peptides were comparable in aqueous solutions and lipid vesicles. Isothermal titration calorimetry measurements revealed entropy-driven binding of cyclic peptides to POPC and POPE/POPG lipid vesicles. Binding of peptides to both vesicle systems was endothermic—exceptions were peptides containing the Trp-Trp and Tyr-Trp pairs with exothermic binding to POPC vesicles. Application of one- and two-site binding (partitioning) models to binding isotherms of exothermic and endothermic binding processes, respectively, resulted in determination of peptide-lipid membrane binding constants (Kb). The Kb1 and Kb2 values for endothermic two-step binding processes corresponded to high and low binding affinities (Kb1 ≥ 100 Kb2). Conformational change of cyclic peptides in transferring from buffer to lipid bilayer surfaces was estimated using fluorescence resonance energy transfer between the Tyr-Trp pair in one of the peptide constructs. The cyclic peptide conformation expands upon adsorption on lipid bilayer surface and interacts more deeply with the outer monolayer causing bilayer deformation, which may lead to formation of nonspecific transient peptide-lipid porelike zones causing membrane lysis. PMID:18621820

  2. Aromatic L-amino acid decarboxylase (AADC) is crucial for brain development and motor functions.

    PubMed

    Shih, De-Fen; Hsiao, Chung-Der; Min, Ming-Yuan; Lai, Wen-Sung; Yang, Chianne-Wen; Lee, Wang-Tso; Lee, Shyh-Jye

    2013-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare pediatric neuro-metabolic disease in children. Due to the lack of an animal model, its pathogenetic mechanism is poorly understood. To study the role of AADC in brain development, a zebrafish model of AADC deficiency was generated. We identified an aadc gene homolog, dopa decarboxylase (ddc), in the zebrafish genome. Whole-mount in situ hybridization analysis showed that the ddc gene is expressed in the epiphysis, locus caeruleus, diencephalic catecholaminergic clusters, and raphe nuclei of 36-h post-fertilization (hpf) zebrafish embryos. Inhibition of Ddc by AADC inhibitor NSD-1015 or anti-sense morpholino oligonucleotides (MO) reduced brain volume and body length. We observed increased brain cell apoptosis and loss of dipencephalic catecholaminergic cluster neurons in ddc morphants (ddc MO-injected embryos). Seizure-like activity was also detected in ddc morphants in a dose-dependent manner. ddc morphants had less sensitive touch response and impaired swimming activity that could be rescued by injection of ddc plasmids. In addition, eye movement was also significantly impaired in ddc morphants. Collectively, loss of Ddc appears to result in similar phenotypes as that of ADCC deficiency, thus zebrafish could be a good model for investigating pathogenetic mechanisms of AADC deficiency in children. PMID:23940784

  3. Induction of aromatic-L-amino acid decarboxylase by decarboxylase inhibitors in idiopathic parkinsonism.

    PubMed

    Boomsma, F; Meerwaldt, J D; Man in 't Veld, A J; Hovestadt, A; Schalekamp, M A

    1989-06-01

    We evaluated the effect of administration of L-dopa, alone or in combination with a peripheral decarboxylase inhibitor, on plasma levels of aromatic-L-amino acid decarboxylase (ALAAD). After single-dose administration of L-dopa plus benserazide (Madopar) in healthy subjects and in chronically treated patients with parkinsonism, plasma ALAAD followed for 2 to 3 hours fell, but returned to predosing levels within 90 minutes. Four groups of patients with idiopathic parkinsonism were studied during chronic treatment: Group I, no L-dopa treatment (n = 31); Group II, L-dopa alone (n = 15); Group III, L-dopa plus benserazide (n = 28); and Group IV, L-dopa plus carbidopa (Sinemet, n = 30). Plasma ALAAD 2 hours after dosing was normal in Groups I and II. ALAAD was increased threefold in Groups III and IV, suggesting induction of ALAAD by the coadministration of a peripheral decarboxylase inhibitor. In a study of 3 patients in whom L-dopa/benserazide was started, plasma ALAAD rose gradually over 3 to 4 weeks. Further detailed pharmacokinetic studies of L-dopa, dopamine, and ALAAD in plasma and cerebrospinal fluid are required to determine if the apparent ALAAD induction by a peripheral decarboxylase inhibitor may be related to the loss of clinical efficacy of combination therapy in some patients and how it is related to end-of-dose deterioration and on-off phenomena. PMID:2742363

  4. Induction of aromatic-L-amino acid decarboxylase by decarboxylase inhibitors in idiopathic parkinsonism.

    PubMed

    Boomsma, F; Meerwaldt, J D; Man in 't Veld, A J; Hovestadt, A; Schalekamp, M A

    1989-06-01

    We evaluated the effect of administration of L-dopa, alone or in combination with a peripheral decarboxylase inhibitor, on plasma levels of aromatic-L-amino acid decarboxylase (ALAAD). After single-dose administration of L-dopa plus benserazide (Madopar) in healthy subjects and in chronically treated patients with parkinsonism, plasma ALAAD followed for 2 to 3 hours fell, but returned to predosing levels within 90 minutes. Four groups of patients with idiopathic parkinsonism were studied during chronic treatment: Group I, no L-dopa treatment (n = 31); Group II, L-dopa alone (n = 15); Group III, L-dopa plus benserazide (n = 28); and Group IV, L-dopa plus carbidopa (Sinemet, n = 30). Plasma ALAAD 2 hours after dosing was normal in Groups I and II. ALAAD was increased threefold in Groups III and IV, suggesting induction of ALAAD by the coadministration of a peripheral decarboxylase inhibitor. In a study of 3 patients in whom L-dopa/benserazide was started, plasma ALAAD rose gradually over 3 to 4 weeks. Further detailed pharmacokinetic studies of L-dopa, dopamine, and ALAAD in plasma and cerebrospinal fluid are required to determine if the apparent ALAAD induction by a peripheral decarboxylase inhibitor may be related to the loss of clinical efficacy of combination therapy in some patients and how it is related to end-of-dose deterioration and on-off phenomena.

  5. Acid-promoted chemoselective introduction of amide functionality onto aromatic compounds mediated by an isocyanate cation generated from carbamate.

    PubMed

    Sumita, Akinari; Kurouchi, Hiroaki; Otani, Yuko; Ohwada, Tomohiko

    2014-10-01

    Carbamates have been used as precursors of isocyanates, but heating in the presence of strong acids is required because cleavage of the C-O bond in carbamates is energy-demanding even in acid media. Direct amidation of aromatic compounds by isocyanate cations generated at room temperature from carbamoyl salicylates in trifluoromethanesulfonic acid (TfOH) was examined. Carbamates with ortho-salicylate as an ether group (carbamoyl salicylates) showed dramatically accelerated O-C bond dissociation in TfOH, which resulted in facile generation of the isocyanate cation. These chemoselective intermolecular aromatic amidation reactions proceeded even at room temperature and showed good compatibility with other electrophilic functionalities and high discrimination between N-monosubstituted carbamate and N,N-disubstituted carbamate. The reaction rates of secondary and tertiary amide formation were markedly different, and this difference was utilized to achieve successive (tandem) amidation reactions of molecules with an N-monosubstituted carbamate and an N,N-disubstituted carbamate with two kinds of aromatic compounds.

  6. Aromatic aldehyde-catalyzed gas-phase decarboxylation of amino acid anion via imine intermediate: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Xiang, Zhang

    2013-10-01

    It is generally appreciated that carbonyl compound can promote the decarboxylation of the amino acid. In this paper, we have performed the experimental and theoretical investigation into the gas-phase decarboxylation of the amino acid anion catalyzed by the aromatic aldehyde via the imine intermediate on the basis of the tandem mass spectrometry (MS/MS) technique and density functional theory (DFT) calculation. The results show that the aromatic aldehyde can achieve a remarkable catalytic effect. Moreover, the catalytic mechanism varies according to the type of amino acid: (i) The decarboxylation of α-amino acid anion is determined by the direct dissociation of the Csbnd C bond adjacent to the carboxylate, for the resulting carbanion can be well stabilized by the conjugation between α-carbon, Cdbnd N bond and benzene ring. (ii) The decarboxylation of non-α-amino acid anion proceeds via a SN2-like transition state, in which the dissociation of the Csbnd C bond adjacent to the carboxylate and attacking of the resulting carbanion to the Cdbnd N bond or benzene ring take place at the same time. Specifically, for β-alanine, the resulting carbanion preferentially attacks the benzene ring leading to the benzene anion, because attacking the Cdbnd N bond in the decarboxylation can produce the unstable three or four-membered ring anion. For the other non-α-amino acid anion, the Cdbnd N bond preferentially participates in the decarboxylation, which leads to the pediocratic nitrogen anion.

  7. Interconversion of biologically important carboxylic acids by radiation

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1978-01-01

    The interconversion of a group of biologically important polycarboxylic acids (acetic, fumaric, malic, malonic, succinic, citric, isocitric, tricarballylic) under gamma-ray or ultraviolet radiation was investigated. The formation of high molecular weight compounds was observed in all cases. Succinic acid was formed in almost all radiolysis experiments. Citric, malonic, and succinic acids appeared to be relatively insensitive to radiation. Interconversion of the polycarboxylic acids studied may have occurred under the effect of radiation in the prebiotic earth.

  8. Fast analysis of flavonoids in plant extracts by liquid chromatography-ultraviolet absorbance detection on poly(carboxylic acid)-coated silica and electrospray ionization tandem mass spectrometric detection.

    PubMed

    Huck, C W; Buchmeiser, M R; Bonn, G K

    2002-01-11

    A highly hydrophilic poly(7-oxonorbornene-5,6-dicarboxylic acid-block-norbornene) [=poly-(ONDCA-b-NBE)]-coated silica was investigated for the liquid chromatographic (LC) determination of flavonoids in plant extracts of complex biological origin using UV absorbance and mass spectrometric (MS) detection. Compared to the most commonly used octadecyl derivatized silica this sorbent allowed fast separations even at extreme pH values. Furthermore, UV absorbance and MS detection were evaluated. As we found, UV detection at 254 nm allows the determination of flavonoids down to the ng range with a linearity of R2>0.9906. For the more selective characterization the validated LC system was coupled to a quadrupole ion trap mass spectrometer via an electrospray ionization (ESI) interface. MS detection showed high linearity (R2>0.9904) for all investigated flavonoids. Due to the relatively high flow-rate of 1 ml/min the limits of detection were found in the lower-microg range. Collision induced dissociation was applied to obtain characteristic fragmentation fingerprints. Finally, the validated LC-ESI-MS-MS method demonstrated that this poly-(ONDCA-b-NBE) stationary phase allows fast characterization and quantitation in onion, elderflower blossom, lime blossom, St. John's Wort and red wine.

  9. Separation of aromatic carboxylic acids using quaternary ammonium salts on reversed-phase HPLC. 2. Application for the analysis of Loy Yang coal oxidation products

    SciTech Connect

    Kawamura, K.; Okuwaki, A.; Verheyen, T.V.; Perry, G.J.

    2006-07-01

    In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt was optimized using the solvent gradient method. This method was applied for the analysis of Loy Yang coal oxidation products. It was confirmed that the analytical data using this method were consistent with those determined using gas chromatography.

  10. Photophysical properties of praseodymium complexes with aromatic carboxylic acids: double light conversion both in ultraviolet and visible region.

    PubMed

    Yan, Bing; Wang, Weijing; Song, Yishan

    2007-04-01

    A series of luminescent praseodymium complexes with different aromatic carboxylic acids have been synthesized and characterized. The photophysical properties of these complexes have been studied with ultraviolet spectra, phosphorescence spectra and fluorescence spectra. Ultraviolet absorption spectra show that the praseodymium complexes systems with aromatic carboxylate form the more extensive conjugated systems to be suitable for the distribution of electron in the whole coordination environment, resulting in the energy decrease and red-shifts of ultraviolet spectral bands. Phosphorescence spectra suggest that excited triplet state of aromatic carboxylic acids, which can indicate the energy match and intermolecular energy transfer process between the excited triplet state of ligands and the resonant emissive energy level of Pr ions. The emission spectra of all praseodymium complexes show two emission peaks under the excitation band of 245 nm at about 395 and 595 nm, respectively, while one peak at about 595 nm under 415 nm excitation, which attributed to be 1S0-->1I6 (395 nm) transition and the characteristic emission 1D2-->3H4 (595 nm) transition of Pr3+ ion. The 1S0-->1I6 transition can be speculated to belong to the transition of charge transfer state, and the 1D2-->3H4 can be further proved that there exists an antenna effect in the luminescence of praseodymium with aromatic carboxylic acids. In conclusion, the praseodymium complexes systems can realize the double proton light conversion both in the ultraviolet and visible region, which can be further studied to have potential application.

  11. Pyrolysis of simple coal model compounds containing aromatic carboxylic acids: Does decarboxylation lead to cross-linking?

    SciTech Connect

    Eskay, T.P.; Britt, P.F.; Buchanan, A.C. III

    1996-02-01

    The thermolysis of two aromatic carboxylic acids 1,2-(3,3`-dicarboxyphenyl)ethane (2) have been investigated at 400{degree} C as models of carboxylic acids in low rank coals. The major decomposition pathway observed is decarboxylation, which mainly occurs by an ionic pathway. This decarboxylation route does not lead to any significant amount of coupling or high molecular weight products that would be indicative of cross-linking products in coal. The pyrolysis of 1 and 2 will be investigated under a variety of conditions that better mimic the enviromment found in coal to further delineate the role that decarboxylation plays in coal cross-linking chemistry.

  12. Laccase-catalyzed cross-linking of amino acids and peptides with dihydroxylated aromatic compounds.

    PubMed

    Mikolasch, Annett; Hahn, Veronika; Manda, Katrin; Pump, Judith; Illas, Nicole; Gördes, Dirk; Lalk, Michael; Gesell Salazar, Manuela; Hammer, Elke; Jülich, Wolf-Dieter; Rawer, Stephan; Thurow, Kerstin; Lindequist, Ulrike; Schauer, Frieder

    2010-08-01

    In order to design potential biomaterials, we investigated the laccase-catalyzed cross-linking between L-lysine or lysine-containing peptides and dihydroxylated aromatics. L-Lysine is one of the major components of naturally occurring mussel adhesive proteins (MAPs). Dihydroxylated aromatics are structurally related to 3,4-dihydroxyphenyl-L-alanine, another main component of MAPs. Mass spectrometry and nuclear magnetic resonance analyses show that the epsilon-amino group of L-lysine is able to cross-link dihydroxylated aromatics. Additional oligomer and polymer cross-linked products were obtained from di- and oligopeptides containing L-lysine. Potential applications in medicine or industry for biomaterials synthesised via the three component system consisting of the oligopeptide [Tyr-Lys]10, dihydroxylated aromatics and laccase are discussed.

  13. Production of Dopamine by Aromatic l-Amino Acid Decarboxylase Cells after Spinal Cord Injury.

    PubMed

    Ren, Li-Qun; Wienecke, Jacob; Hultborn, Hans; Zhang, Mengliang

    2016-06-15

    Aromatic l-amino acid decarboxylase (AADC) cells are widely distributed in the spinal cord, and their functions are largely unknown. We have previously found that AADC cells in the spinal cord could increase their ability to produce serotonin (5-hydroxytryptamine) from 5-hydroxytryptophan after spinal cord injury (SCI). Because AADC is a common enzyme catalyzing 5-hydroxytryptophan to serotonin and l-3,4-dihydroxyphenylalanine (l-dopa) to dopamine (DA), it seems likely that the ability of AADC cells using l-dopa to synthesize DA is also increased. To prove whether or not this is the case, a similar rat sacral SCI model and a similar experimental paradigm were adopted as that which we had used previously. In the chronic SCI rats (> 45 days), no AADC cells expressed DA if there was no exogenous l-dopa application. However, following administration of a peripheral AADC inhibitor (carbidopa) with or without a monoamine oxidase inhibitor (pargyline) co-application, systemic administration of l-dopa resulted in ∼94% of AADC cells becoming DA-immunopositive in the spinal cord below the lesion, whereas in normal or sham-operated rats none or very few of AADC cells became DA-immunopositive with the same treatment. Using tail electromyography, spontaneous tail muscle activity was increased nearly fivefold over the baseline level. When pretreated with a central AADC inhibitor (NSD-1015), further application of l-dopa failed to increase the motoneuron activity although the expression of DA in the AADC cells was not completely inhibited. These findings demonstrate that AADC cells in the spinal cord below the lesion gain the ability to produce DA from its precursor in response to SCI. This ability also enables the AADC cells to produce 5-HT and trace amines, and likely contributes to the development of hyperexcitability. These results might also be implicated for revealing the pathological mechanisms underlying l-dopa-induced dyskinesia in Parkinson's disease. PMID:26830512

  14. Production of Dopamine by Aromatic l-Amino Acid Decarboxylase Cells after Spinal Cord Injury.

    PubMed

    Ren, Li-Qun; Wienecke, Jacob; Hultborn, Hans; Zhang, Mengliang

    2016-06-15

    Aromatic l-amino acid decarboxylase (AADC) cells are widely distributed in the spinal cord, and their functions are largely unknown. We have previously found that AADC cells in the spinal cord could increase their ability to produce serotonin (5-hydroxytryptamine) from 5-hydroxytryptophan after spinal cord injury (SCI). Because AADC is a common enzyme catalyzing 5-hydroxytryptophan to serotonin and l-3,4-dihydroxyphenylalanine (l-dopa) to dopamine (DA), it seems likely that the ability of AADC cells using l-dopa to synthesize DA is also increased. To prove whether or not this is the case, a similar rat sacral SCI model and a similar experimental paradigm were adopted as that which we had used previously. In the chronic SCI rats (> 45 days), no AADC cells expressed DA if there was no exogenous l-dopa application. However, following administration of a peripheral AADC inhibitor (carbidopa) with or without a monoamine oxidase inhibitor (pargyline) co-application, systemic administration of l-dopa resulted in ∼94% of AADC cells becoming DA-immunopositive in the spinal cord below the lesion, whereas in normal or sham-operated rats none or very few of AADC cells became DA-immunopositive with the same treatment. Using tail electromyography, spontaneous tail muscle activity was increased nearly fivefold over the baseline level. When pretreated with a central AADC inhibitor (NSD-1015), further application of l-dopa failed to increase the motoneuron activity although the expression of DA in the AADC cells was not completely inhibited. These findings demonstrate that AADC cells in the spinal cord below the lesion gain the ability to produce DA from its precursor in response to SCI. This ability also enables the AADC cells to produce 5-HT and trace amines, and likely contributes to the development of hyperexcitability. These results might also be implicated for revealing the pathological mechanisms underlying l-dopa-induced dyskinesia in Parkinson's disease.

  15. Spinal cord injury enables aromatic L-amino acid decarboxylase cells to synthesize monoamines.

    PubMed

    Wienecke, Jacob; Ren, Li-Qun; Hultborn, Hans; Chen, Meng; Møller, Morten; Zhang, Yifan; Zhang, Mengliang

    2014-09-01

    Serotonin (5-HT), an important modulator of both sensory and motor functions in the mammalian spinal cord, originates mainly in the raphe nuclei of the brainstem. However, following complete transection of the spinal cord, small amounts of 5-HT remain detectable below the lesion. It has been suggested, but not proven, that this residual 5-HT is produced by intraspinal 5-HT neurons. Here, we show by immunohistochemical techniques that cells containing the enzyme aromatic l-amino acid decarboxylase (AADC) occur not only near the central canal, as reported by others, but also in the intermediate zone and dorsal horn of the spinal gray matter. We show that, following complete transection of the rat spinal cord at S2 level, AADC cells distal to the lesion acquire the ability to produce 5-HT from its immediate precursor, 5-hydroxytryptophan. Our results indicate that this phenotypic change in spinal AADC cells is initiated by the loss of descending 5-HT projections due to spinal cord injury (SCI). By in vivo and in vitro electrophysiology, we show that 5-HT produced by AADC cells increases the excitability of spinal motoneurons. The phenotypic change in AADC cells appears to result from a loss of inhibition by descending 5-HT neurons and to be mediated by 5-HT1B receptors expressed by AADC cells. These findings indicate that AADC cells are a potential source of 5-HT at spinal levels below an SCI. The production of 5-HT by AADC cells, together with an upregulation of 5-HT2 receptors, offers a partial explanation of hyperreflexia below a chronic SCI. PMID:25186745

  16. Dietary supplementation with aromatic amino acids increases protein synthesis in children with severe acute malnutrition.

    PubMed

    Hsu, Jean W; Badaloo, Asha; Wilson, Lorraine; Taylor-Bryan, Carolyn; Chambers, Bentley; Reid, Marvin; Forrester, Terrence; Jahoor, Farook

    2014-05-01

    Although 2 earlier studies reported that aromatic amino acid (AAA) supplementation of children with severe acute malnutrition (SAM) improved whole-body protein anabolism during the early postadmission (maintenance) phase of rehabilitation, it is not known whether this positive effect was maintained during the catch-up growth and recovery phases of treatment. This study aimed to determine whether supplementation with an AAA cocktail (330 mg · kg(-1) · d(-1)) vs. isonitrogenous Ala would improve measures of protein kinetics in 22 children, aged 4-31 mo, during the catch-up growth and recovery phases of treatment for SAM. Protein kinetics were assessed by measuring leucine, phenylalanine, and urea kinetics with the use of standard stable isotope tracer methods in the fed state. Supplementation started at the end of the maintenance period when the children were clinically/metabolically stable and continued up to full nutritional recovery. Three experiments were performed: at the end of maintenance (at ∼13 d postadmission), at mid-catch-up growth (at ∼23 d post- admission when the children had replenished 50% of their weight deficit), and at recovery (at ∼48 d postadmission when they had achieved at least 90% weight for length). Children in the AAA group had significantly faster protein synthesis compared with those in the Ala group at mid-catch-up growth (101 ± 10 vs. 72 ± 7 μmol phenylalanine · kg(-1) · h(-1); P < 0.05) and better protein balance at mid-catch-up growth (49 ± 5 vs. 30 ± 2 μmol phenylalanine · kg(-1) · h(-1); P < 0.05) and at recovery (37 ± 8 vs. 11 ± 3 μmol phenylalanine · kg(-1) · h(-1); P < 0.05). We conclude that dietary supplementation with AAA accelerates net protein synthesis in children during nutritional rehabilitation for SAM.

  17. The metabolism of aromatic acids by micro-organisms. Metabolic pathways in the fungi

    PubMed Central

    Cain, R. B.; Bilton, R. F.; Darrah, Josephine A.

    1968-01-01

    1. The metabolic pathways of aromatic-ring fission were examined in a range of fungal genera that utilize several compounds related to lignin. 2. Most of the genera, after growth on p-hydroxybenzoate, protocatechuate or compounds that are degraded to the latter (e.g. caffeate, ferulate or vanillate), rapidly oxidized these compounds, but not catechol. 3. Such genera possessed a protocatechuate 3,4-oxygenase and accumulated β-carboxymuconate as the product of protocatechuate oxidation. This enzyme had a high pH optimum in most organisms; the Rhodotorula enzyme was competitively inhibited by catechol. 4. β-Carboxymuconate was converted by all competent fungi into β-carboxymuconolactone, which was isolated and characterized. None of the fungi produced or utilized at significant rates the corresponding bacterial intermediate γ-carboxymuconolactone. 5. The lactonizing enzymes of Rhodotorula and Neurospora crassa had a pH optimum near 5·5 and approximate molecular weights of 19000 and 190000 respectively. 6. The fungi did not degrade the isomeric (+)-muconolactone, γ-carboxymethylenebutanolide or β-oxoadipate enol lactone at significant rates, and thus differ radically from bacteria, where β-oxoadipate enol lactone is the precursor of β-oxoadipate in all strains examined. 7. The end product of β-carboxymuconolactone metabolism by extracts was β-oxoadipate. 8. Evidence for a coenzyme A derivative of β-oxoadipate was found during further metabolism of this keto acid. 9. A few anomalous fungi, after growth on p-hydroxybenzoate, had no protocatechuate 3,4-oxygenase, but possessed all the enzymes of the catechol pathway. Catechol was detected in the growth medium in one instance. 10. A strain of Penicillium sp. formed pyruvate but no β-oxoadipate from protocatechuate, suggesting the existence also of a `meta' type of ring cleavage among fungi. PMID:5691754

  18. Interaction of gramicidin S and its aromatic amino-acid analog with phospholipid membranes.

    PubMed

    Jelokhani-Niaraki, Masoud; Hodges, Robert S; Meissner, Joseph E; Hassenstein, Una E; Wheaton, Laura

    2008-10-01

    To investigate the mechanism of interaction of gramicidin S-like antimicrobial peptides with biological membranes, a series of five decameric cyclic cationic beta-sheet-beta-turn peptides with all possible combinations of aromatic D-amino acids, Cyclo(Val-Lys-Leu-D-Ar1-Pro-Val-Lys-Leu-D-Ar2-Pro) (Ar identical with Phe, Tyr, Trp), were synthesized. Conformations of these cyclic peptides were comparable in aqueous solutions and lipid vesicles. Isothermal titration calorimetry measurements revealed entropy-driven binding of cyclic peptides to POPC and POPE/POPG lipid vesicles. Binding of peptides to both vesicle systems was endothermic-exceptions were peptides containing the Trp-Trp and Tyr-Trp pairs with exothermic binding to POPC vesicles. Application of one- and two-site binding (partitioning) models to binding isotherms of exothermic and endothermic binding processes, respectively, resulted in determination of peptide-lipid membrane binding constants (K(b)). The K(b1) and K(b2) values for endothermic two-step binding processes corresponded to high and low binding affinities (K(b1) >or= 100 K(b2)). Conformational change of cyclic peptides in transferring from buffer to lipid bilayer surfaces was estimated using fluorescence resonance energy transfer between the Tyr-Trp pair in one of the peptide constructs. The cyclic peptide conformation expands upon adsorption on lipid bilayer surface and interacts more deeply with the outer monolayer causing bilayer deformation, which may lead to formation of nonspecific transient peptide-lipid porelike zones causing membrane lysis.

  19. Deletion of the Saccharomyces cerevisiae ARO8 gene, encoding an aromatic amino acid transaminase, enhances phenylethanol production from glucose.

    PubMed

    Romagnoli, Gabriele; Knijnenburg, Theo A; Liti, Gianni; Louis, Edward J; Pronk, Jack T; Daran, Jean-Marc

    2015-01-01

    Phenylethanol has a characteristic rose-like aroma that makes it a popular ingredient in foods, beverages and cosmetics. Microbial production of phenylethanol currently relies on whole-cell bioconversion of phenylalanine with yeasts that harbour an Ehrlich pathway for phenylalanine catabolism. Complete biosynthesis of phenylethanol from a cheap carbon source, such as glucose, provides an economically attractive alternative for phenylalanine bioconversion. In this study, synthetic genetic array (SGA) screening was applied to identify genes involved in regulation of phenylethanol synthesis in Saccharomyces cerevisiae. The screen focused on transcriptional regulation of ARO10, which encodes the major decarboxylase involved in conversion of phenylpyruvate to phenylethanol. A deletion in ARO8, which encodes an aromatic amino acid transaminase, was found to underlie the transcriptional upregulation of ARO10 during growth, with ammonium sulphate as the sole nitrogen source. Physiological characterization revealed that the aro8Δ mutation led to substantial changes in the absolute and relative intracellular concentrations of amino acids. Moreover, deletion of ARO8 led to de novo production of phenylethanol during growth on a glucose synthetic medium with ammonium as the sole nitrogen source. The aro8Δ mutation also stimulated phenylethanol production when combined with other, previously documented, mutations that deregulate aromatic amino acid biosynthesis in S. cerevisiae. The resulting engineered S. cerevisiae strain produced >3 mm phenylethanol from glucose during growth on a simple synthetic medium. The strong impact of a transaminase deletion on intracellular amino acid concentrations opens new possibilities for yeast-based production of amino acid-derived products.

  20. Functional characterization of aromatic amino acid aminotransferase involved in 2-phenylethanol biosynthesis in isolated rose petal protoplasts.

    PubMed

    Hirata, Hiroshi; Ohnishi, Toshiyuki; Ishida, Haruka; Tomida, Kensuke; Sakai, Miwa; Hara, Masakazu; Watanabe, Naoharu

    2012-03-15

    In rose flowers, 2-phenylethanol (2PE) is biosynthesized from l-phenylalanine (l-Phe) via phenylacetaldehyde (PAld) by the actions of two enzymes, pyridoxal-5'-phosphate (PLP)-dependent aromatic amino acid decarboxylase (AADC) and phenylacetaldehyde reductase (PAR). We here report that Rosa 'Yves Piaget' aromatic amino acid aminotransferase produced phenylpyruvic acid (PPA) from l-Phe in isolated petal protoplasts. We have cloned three full length cDNAs (RyAAAT1-3) of aromatic amino acid aminotransferase families based on rose EST database and homology regions. The RyAAATs enzymes were heterogeneously expressed in Escherichia coli and characterized biochemically. The recombinant RyAAAT3 showed the highest activity toward l-Phe in comparison with l-tryptophan, l-tyrosine, d-Phe, glycine, and l-alanine, and showed 9.7-fold higher activity with l-Phe rather than PPA as a substrate. RyAAAT3 had an optimal activity at pH 9 and at 45-55°C with α-ketoglutaric acid, and was found to be a PLP dependent enzyme based on the inhibition test using Carbidopa, an inhibitor of PLP-dependent enzymes. The transcript of RyAAAT3 was expressed in flowers as well as other organs of R. 'Yves Piaget'. RNAi suppression of RyAAAT3 decreased 2PE production, revealing the involvement of RyAAAT3 in 2PE biosynthesis in rose protoplasts and indicating that rose protoplasts have potentially two different 2PE biosynthetic pathways, the AADC route and the new route via PPA from l-Phe. PMID:22236980

  1. Functional characterization of aromatic amino acid aminotransferase involved in 2-phenylethanol biosynthesis in isolated rose petal protoplasts.

    PubMed

    Hirata, Hiroshi; Ohnishi, Toshiyuki; Ishida, Haruka; Tomida, Kensuke; Sakai, Miwa; Hara, Masakazu; Watanabe, Naoharu

    2012-03-15

    In rose flowers, 2-phenylethanol (2PE) is biosynthesized from l-phenylalanine (l-Phe) via phenylacetaldehyde (PAld) by the actions of two enzymes, pyridoxal-5'-phosphate (PLP)-dependent aromatic amino acid decarboxylase (AADC) and phenylacetaldehyde reductase (PAR). We here report that Rosa 'Yves Piaget' aromatic amino acid aminotransferase produced phenylpyruvic acid (PPA) from l-Phe in isolated petal protoplasts. We have cloned three full length cDNAs (RyAAAT1-3) of aromatic amino acid aminotransferase families based on rose EST database and homology regions. The RyAAATs enzymes were heterogeneously expressed in Escherichia coli and characterized biochemically. The recombinant RyAAAT3 showed the highest activity toward l-Phe in comparison with l-tryptophan, l-tyrosine, d-Phe, glycine, and l-alanine, and showed 9.7-fold higher activity with l-Phe rather than PPA as a substrate. RyAAAT3 had an optimal activity at pH 9 and at 45-55°C with α-ketoglutaric acid, and was found to be a PLP dependent enzyme based on the inhibition test using Carbidopa, an inhibitor of PLP-dependent enzymes. The transcript of RyAAAT3 was expressed in flowers as well as other organs of R. 'Yves Piaget'. RNAi suppression of RyAAAT3 decreased 2PE production, revealing the involvement of RyAAAT3 in 2PE biosynthesis in rose protoplasts and indicating that rose protoplasts have potentially two different 2PE biosynthetic pathways, the AADC route and the new route via PPA from l-Phe.

  2. Microbial biodegradation of aromatic alkanoic naphthenic acids is affected by the degree of alkyl side chain branching

    PubMed Central

    Johnson, Richard J; Smith, Ben E; Sutton, Paul A; McGenity, Terry J; Rowland, Steven J; Whitby, Corinne

    2011-01-01

    Naphthenic acids (NAs) occur naturally in oil sands and enter the environment through natural and anthropogenic processes. NAs comprise toxic carboxylic acids that are difficult to degrade. Information on NA biodegradation mechanisms is limited, and there are no studies on alkyl branched aromatic alkanoic acid biodegradation, despite their contribution to NA toxicity and recalcitrance. Increased alkyl side chain branching has been proposed to explain NA recalcitrance. Using soil enrichments, we examined the biodegradation of four aromatic alkanoic acid isomers that differed in alkyl side chain branching: (4′-n-butylphenyl)-4-butanoic acid (n-BPBA, least branched); (4′-iso-butylphenyl)-4-butanoic acid (iso-BPBA); (4′-sec-butylphenyl)-4-butanoic acid (sec-BPBA) and (4′-tert-butylphenyl)-4-butanoic acid (tert-BPBA, most branched). n-BPBA was completely metabolized within 49 days. Mass spectral analysis confirmed that the more branched isomers iso-, sec- and tert-BPBA were transformed to their butylphenylethanoic acid (BPEA) counterparts at 14 days. The BPEA metabolites were generally less toxic than BPBAs as determined by Microtox assay. n-BPEA was further transformed to a diacid, showing that carboxylation of the alkyl side chain occurred. In each case, biodegradation of the carboxyl side chain proceeded through beta-oxidation, which depended on the degree of alkyl side chain branching, and a BPBA degradation pathway is proposed. Comparison of 16S rRNA gene sequences at days 0 and 49 showed an increase and high abundance at day 49 of Pseudomonas (sec-BPBA), Burkholderia (n-, iso-, tert-BPBA) and Sphingomonas (n-, sec-BPBA). PMID:20962873

  3. Integration of chemotaxis, transport and catabolism in Pseudomonas putida and identification of the aromatic acid chemoreceptor PcaY.

    PubMed

    Luu, Rita A; Kootstra, Joshua D; Nesteryuk, Vasyl; Brunton, Ceanne N; Parales, Juanito V; Ditty, Jayna L; Parales, Rebecca E

    2015-04-01

    Aromatic and hydroaromatic compounds that are metabolized through the β-ketoadipate catabolic pathway serve as chemoattractants for Pseudomonas putida F1. A screen of P. putida F1 mutants, each lacking one of the genes encoding the 18 putative methyl-accepting chemotaxis proteins (MCPs), revealed that pcaY encodes the MCP required for metabolism-independent chemotaxis to vanillate, vanillin, 4-hydroxybenzoate, benzoate, protocatechuate, quinate, shikimate, as well as 10 substituted benzoates that do not serve as growth substrates for P. putida F1. Chemotaxis was induced during growth on aromatic compounds, and an analysis of a pcaY-lacZ fusion revealed that pcaY is expressed in the presence of β-ketoadipate, a common intermediate in the pathway. pcaY expression also required the transcriptional activator PcaR, indicating that pcaY is a member of the pca regulon, which includes three unlinked gene clusters that encode five enzymes required for the conversion of 4-hydroxybenzoate to tricarboxylic acid cycle intermediates as well as the major facilitator superfamily transport protein PcaK. The 4-hydroxybenzoate permease PcaK was shown to modulate the chemotactic response by facilitating the uptake of 4-hydroxybenzoate, which leads to the accumulation of β-ketoadipate, thereby increasing pcaY expression. The results show that chemotaxis, transport and metabolism of aromatic compounds are intimately linked in P. putida.

  4. Urinary Metabolomics Reveals Alterations of Aromatic Amino Acid Metabolism of Alzheimer's Disease in the Transgenic CRND8 Mice.

    PubMed

    Tang, Zhi; Liu, Liangfeng; Li, Yongle; Dong, Jiyang; Li, Min; Huang, Jiandong; Lin, Shuhai; Cai, Zongwei

    2016-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder, with amyloid plaques accumulation as the key feature involved in its pathology. To date, however, the biochemical changes in AD have not been clearly characterized. Here, we present that urinary metabolomics based on high resolution mass spectrometry was employed for delineation of metabolic alterations in transgenic CRND8 mice. In this noninvasive approach, urinary metabolome reveals the biochemical changes in early onset of this AD mouse model. In virtue of comprehensive metabolite profiling and multivariate statistical analysis, a total of 73 differential metabolites of urine sample sets was identified in 12-week and 18-week transgenic mice compared to wild-type littermates, covering perturbations of aromatic amino acid metabolism, the Krebs cycle and one-carbon metabolism. Of particular interest is that divergent tryptophan metabolism, such as upregulation of serotonin pathway while downregulation of kynurenine pathway, was observed. Meanwhile, the accumulation of both N-acetylvanilalanine and 3-methoxytyrosine indicated aromatic L-amino acid decarboxylase deficiency. And the microbial metabolites derived from aromatic amino acid metabolism and drug-like phase II metabolic response via the glycine conjugation reactions were also highlighted, indicating that genetic modification in mouse brain not only alters genotype but also perturbs the gut microbiome. Together, our study demonstrated that the integrative approach employing mass spectrometry-based metabolomics and a transgenic mouse model for AD may provide new evidence for distinct metabolic signatures. The perturbations of metabolic pathways may have far-reaching implications for early diagnosis and intervention in AD. PMID:26825095

  5. Solid-phase microextraction with pH adjustment for the determination of aromatic acids and bases in water.

    PubMed

    van Doorn, H; Grabanski, C B; Miller, D J; Hawthorne, S B

    1998-12-31

    Adjusting the pH of water samples before performing solid-phase microextraction (SPME) analysis can be used to selectively extract organic acids (at pH 2) and bases (at pH 12). Sorption behavior of test organics is predictable based on the acid dissociation constant in water. In general, polyacrylate (PA) and Carbowax-divinylbenzene (CW-DVB) show substantially higher fiber/water sorption coefficients (Kd values) than a polydimethylsiloxane (PDMS) coated fiber. Gas chromatography-flame ionization detection (GC-FID) detection limits with the CW-DVB sorbent are approximately 0.5 to 10 ng/ml in a 2-ml water sample for a variety of aromatic amines, phenols, and chlorinated phenols, and are approximately 1 to 50 ng/ml for the same solutes using the PA sorbent. However, the PA fiber is more selective (depending on the water pH) for the acid or base components than the CW-DVB fiber. With proper pH adjustment, the recovery of spiked aromatic amines and phenols from a surface wetlands water ranged from 73 to 118% of the known values, with a precision (R.S.D.) of approximately 5 to 20%. SPME quantitation of phenols in a coal gasification wastewater using a PA fiber also gave excellent agreement with conventional methylene chloride extraction, although continued use of a single fiber with this wastewater led to poorer precision.

  6. Chemical and isotopic characterization of fatty acids and polycyclic aromatic hydrocarbons in aerosols - implications for biomass burning

    SciTech Connect

    Ballentine, D.C.

    1995-12-31

    Emissions of organic materials during biomass burning have been suggested to influence the biogeochemical distribution of nutrients in a range of ecosystems. Additionally, some organic components survive pyrolytic processes and are of regional and global biogeochemical significance because they may serve as tracers for transport of biomass burning products. Two classes of compounds that are of interest in determining the transport of these products are polycyclic aromatic hydrocarbons (PAH) and fatty acids. Polycyclic aromatic hydrocarbons are stable to biodegradation and are typically produced during natural and anthropogenic combustion processes. Fatty acids are also stable to atmospheric degradation and have been implicated as useful biomarkers for atmospheric transport. In this study, PAH and fatty acids emitted during controlled low and high temperature burns of sugar cane have been chemically and isotopically characterized using GC/MS and GC/IRMS, respectively. In order to determine if these species are suitable biomarkers for the transport of biomass burning materials, aerosols collected during sugar cane burning in South Africa have been similarly analyzed.

  7. Aromatic L-amino acid decarboxylase deficiency with hyperdopaminuria. Clinical and laboratory findings in response to different therapies.

    PubMed

    Fiumara, A; Bräutigam, C; Hyland, K; Sharma, R; Lagae, L; Stoltenborg, B; Hoffmann, G F; Jaeken, J; Wevers, R A

    2002-08-01

    Aromatic L-amino acid decarboxylase (AADC - E.C. 4.1.1.28) converts L-dopa to dopamine and 5-hydroxytryptophan to serotonin. Inherited deficiency of this enzyme leads to decreased brain levels of these neurotransmitters. Clinically this results in the development of a progressive neurometabolic disorder characterized by severe hypotonia, dystonic and choreoathetoid movements, oculogyric crises, and hypothermia from infancy. Here we describe the clinical, biochemical and molecular details of two affected brothers, one of whom, despite the lack of AADC, presented with hyperdopaminuria. In addition, we detail his reactions to treatment with dopaminergic agonists, monoamine oxidase inhibitors and pyridoxine.

  8. Aromatic/heterocyclic amino acids and the simulated sunlight-ultraviolet inactivation of the Heliothis/Helicoverpa baculovirus

    SciTech Connect

    Ignoffo, C.M.; Garcia, C.

    1995-04-01

    Tryptophan, of five aromatic/heterocyclic amino acids (tyrosine, phenylalanine, proline, histidine) provided significant protection of the Heliothis baculovirus (HzSNPV) from inactivation by simulated ultraviolet (SUV). Fifty percent of SUV protection of HzSNPV with tryptophan or tyrosine was obtained at 0.03 mg/ml and 0.5 mg/ml, respectively. Rates as high as 100.0 mg/ml of phenylalanine, histidine, or proline provided <50% protection. The extent of tryptophan protection was correlated with its absorption in the sunlight UV-B spectra. 16 refs., 2 tabs.

  9. The synergic effect between Mo species and acid sites in Mo/HMCM-22 catalysts for methane aromatization.

    PubMed

    Ma, Ding; Zhu, Qingjun; Wu, Zili; Zhou, Danhong; Shu, Yuying; Xin, Qin; Xu, Yide; Bao, Xinhe

    2005-08-21

    The acid properties of Mo/HMCM-22 catalyst, which is the precursor form of the working catalyst for methane aromatization reaction, and the synergic effect between Mo species and acid sites were studied and characterized by various characterization techniques. It is concluded that Brønsted and Lewis acidities of HMCM-22 are modified due to the introduction of molybdenum. We suggest a monomer of Mo species is formed by the exchange of Mo species with the Brønsted acid sites. On the other hand, coordinate unsaturated sites (CUS) are suggested to be responsible for the formation of newly detected Lewis acid sites. Computer modelling is established and coupling with experimental results, it is then speculated that the effective activation of methane is properly accomplished on Mo species accommodated in the 12 MR supercages of MCM-22 zeolite whereas the Brønsted acid sites in the same channel system play a key role for the formation of benzene. A much more pronounced volcano-typed reactivity curve of the Mo/HMCM-22 catalysts, as compared with that of the Mo/HZSM-5, with respect to Mo loading is found and this can be well understood due to the unique channel structure of MCM-22 zeolite and synergic effect between Mo species and acid sites.

  10. Extraction of Lanthanide and Actinide Ions from Aqueous Mixtures Using a Carboxylic Acid-Functionalized Porous Aromatic Framework

    PubMed Central

    2016-01-01

    Porous aromatic frameworks (PAFs) incorporating a high concentration of acid functional groups possess characteristics that are promising for use in separating lanthanide and actinide metal ions, as required in the treatment of radioactive waste. These materials have been shown to be indefinitely stable to concentrated acids and bases, potentially allowing for multiple adsorption/stripping cycles. Additionally, the PAFs combine exceptional features from MOFs and inorganic/activated carbons giving rise to tunable pore surfaces and maximum chemical stability. Herein, we present a study of the adsorption of selected metal ions, Sr2+, Fe3+, Nd3+, and Am3+, from aqueous solutions employing a carbon-based porous aromatic framework, BPP-7 (Berkeley Porous Polymer-7). This material displays high metal loading capacities together with excellent adsorption selectivity for neodymium over strontium based on Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. Based in part upon X-ray absorption spectroscopy studies, the stronger adsorption of neodymium is attributed to multiple metal ion and binding site interactions resulting from the densely functionalized and highly interpenetrated structure of BPP-7. Recyclability and combustibility experiments demonstrate that multiple adsorption/stripping cycles can be completed with minimal degradation of the polymer adsorption capacity. PMID:27163056

  11. Extraction of Lanthanide and Actinide Ions from Aqueous Mixtures Using a Carboxylic Acid-Functionalized Porous Aromatic Framework.

    PubMed

    Demir, Selvan; Brune, Nicholas K; Van Humbeck, Jeffrey F; Mason, Jarad A; Plakhova, Tatiana V; Wang, Shuao; Tian, Guoxin; Minasian, Stefan G; Tyliszczak, Tolek; Yaita, Tsuyoshi; Kobayashi, Tohru; Kalmykov, Stepan N; Shiwaku, Hideaki; Shuh, David K; Long, Jeffrey R

    2016-04-27

    Porous aromatic frameworks (PAFs) incorporating a high concentration of acid functional groups possess characteristics that are promising for use in separating lanthanide and actinide metal ions, as required in the treatment of radioactive waste. These materials have been shown to be indefinitely stable to concentrated acids and bases, potentially allowing for multiple adsorption/stripping cycles. Additionally, the PAFs combine exceptional features from MOFs and inorganic/activated carbons giving rise to tunable pore surfaces and maximum chemical stability. Herein, we present a study of the adsorption of selected metal ions, Sr(2+), Fe(3+), Nd(3+), and Am(3+), from aqueous solutions employing a carbon-based porous aromatic framework, BPP-7 (Berkeley Porous Polymer-7). This material displays high metal loading capacities together with excellent adsorption selectivity for neodymium over strontium based on Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. Based in part upon X-ray absorption spectroscopy studies, the stronger adsorption of neodymium is attributed to multiple metal ion and binding site interactions resulting from the densely functionalized and highly interpenetrated structure of BPP-7. Recyclability and combustibility experiments demonstrate that multiple adsorption/stripping cycles can be completed with minimal degradation of the polymer adsorption capacity. PMID:27163056

  12. Investigation of a substrate-specifying residue within Papaver somniferum and Catharanthus roseus aromatic amino acid decarboxylases.

    PubMed

    Torrens-Spence, Michael P; Lazear, Michael; von Guggenberg, Renee; Ding, Haizhen; Li, Jianyong

    2014-10-01

    Plant aromatic amino acid decarboxylases (AAADs) catalyze the decarboxylation of aromatic amino acids with either benzene or indole rings. Because the substrate selectivity of AAADs is intimately related to their physiological functions, primary sequence data and their differentiation could provide significant physiological insights. However, due to general high sequence identity, plant AAAD substrate specificities have been difficult to identify through primary sequence comparison. In this study, bioinformatic approaches were utilized to identify several active site residues within plant AAAD enzymes that may impact substrate specificity. Next a Papaver somniferum tyrosine decarboxylase (TyDC) was selected as a model to verify our putative substrate-dictating residues through mutation. Results indicated that mutagenesis of serine 372 to glycine enables the P. somniferum TyDC to use 5-hydroxytryptophan as a substrate, and reduces the enzyme activity toward 3,4-dihydroxy-L-phenylalanine (dopa). Additionally, the reverse mutation in a Catharanthus roseus tryptophan decarboxylase (TDC) enables the mutant enzyme to utilize tyrosine and dopa as substrates with a reduced affinity toward tryptophan. Molecular modeling and molecular docking of the P. somniferum TyDC and the C. roseus TDC enzymes provided a structural basis to explain alterations in substrate specificity. Identification of an active site residue that impacts substrate selectivity produces a primary sequence identifier that may help differentiate the indolic and phenolic substrate specificities of individual plant AAADs.

  13. Extraction of Lanthanide and Actinide Ions from Aqueous Mixtures Using a Carboxylic Acid-Functionalized Porous Aromatic Framework.

    PubMed

    Demir, Selvan; Brune, Nicholas K; Van Humbeck, Jeffrey F; Mason, Jarad A; Plakhova, Tatiana V; Wang, Shuao; Tian, Guoxin; Minasian, Stefan G; Tyliszczak, Tolek; Yaita, Tsuyoshi; Kobayashi, Tohru; Kalmykov, Stepan N; Shiwaku, Hideaki; Shuh, David K; Long, Jeffrey R

    2016-04-27

    Porous aromatic frameworks (PAFs) incorporating a high concentration of acid functional groups possess characteristics that are promising for use in separating lanthanide and actinide metal ions, as required in the treatment of radioactive waste. These materials have been shown to be indefinitely stable to concentrated acids and bases, potentially allowing for multiple adsorption/stripping cycles. Additionally, the PAFs combine exceptional features from MOFs and inorganic/activated carbons giving rise to tunable pore surfaces and maximum chemical stability. Herein, we present a study of the adsorption of selected metal ions, Sr(2+), Fe(3+), Nd(3+), and Am(3+), from aqueous solutions employing a carbon-based porous aromatic framework, BPP-7 (Berkeley Porous Polymer-7). This material displays high metal loading capacities together with excellent adsorption selectivity for neodymium over strontium based on Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. Based in part upon X-ray absorption spectroscopy studies, the stronger adsorption of neodymium is attributed to multiple metal ion and binding site interactions resulting from the densely functionalized and highly interpenetrated structure of BPP-7. Recyclability and combustibility experiments demonstrate that multiple adsorption/stripping cycles can be completed with minimal degradation of the polymer adsorption capacity.

  14. Hydrogen-deuterium exchange of aromatic amines and amides using deuterated trifluoroacetic acid

    PubMed Central

    Giles, Richard; Lee, Amy; Jung, Erica; Kang, Aaron; Jung, Kyung Woon

    2014-01-01

    The H-D exchange of aromatic amines and amides, including pharmaceutically relevant compounds such as acetaminophen and diclofenac, was investigated using CF3COOD as both the sole reaction solvent and source of deuterium label. The described method is amenable to efficient deuterium incorporation for a wide variety of substrates possessing both electron-donating and electron-withdrawing substituents. Best results were seen with less basic anilines and highly activated acetanilides, reflecting the likelihood of different mechanistic pathways. PMID:25641994

  15. Monitoring the microbial community during solid-state acetic acid fermentation of Zhenjiang aromatic vinegar.

    PubMed

    Xu, Wei; Huang, Zhiyong; Zhang, Xiaojun; Li, Qi; Lu, Zhenming; Shi, Jinsong; Xu, Zhenghong; Ma, Yanhe

    2011-09-01

    Zhenjiang aromatic vinegar is one of the most famous Chinese traditional vinegars. In this study, change of the microbial community during its fermentation process was investigated. DGGE results showed that microbial community was comparatively stable, and the diversity has a disciplinary series of changes during the fermentation process. It was suggested that domestication of microbes and unique cycle-inoculation style used in the fermentation of Zhenjiang aromatic vinegar were responsible for comparatively stable of the microbial community. Furthermore, two clone libraries were constructed. The results showed that bacteria presented in the fermentation belonged to genus Lactobacillus, Acetobacter, Gluconacetobacter, Staphylococcus, Enterobacter, Pseudomonas, Flavobacterium and Sinorhizobium, while the fungi were genus Saccharomyces. DGGE combined with clone library analysis was an effective and credible technique for analyzing the microbial community during the fermentation process of Zhenjiang aromatic vinegar. Real-time PCR results suggested that the biomass showed a "system microbes self-domestication" process in the first 5 days, then reached a higher level at the 7th day before gradually decreasing until the fermentation ended at the 20th day. This is the first report to study the changes of microbial community during fermentation process of Chinese traditional solid-state fermentation of vinegar.

  16. A theoretical study on the interaction of aromatic amino acids with graphene and single walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Rajesh, Chinagandham; Majumder, Chiranjib; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2009-03-01

    In this study we have investigated the interaction of phenylalanine (Phe), histidine (His), tyrosine (Tyr), and tryptophan (Tryp) molecules with graphene and single walled carbon nanotubes (CNTs) with an aim to understand the effect of curvature on the non-covalent interaction. The calculations are performed using density functional theory and the Møller-Plesset second-order perturbation theory (MP2) within linear combination of atomic orbitals-molecular orbital (LCAO-MO) approach. Using these methods, the equilibrium configurations of these complexes were found to be very similar, i.e., the aromatic rings of the amino acids prefer to orient in parallel with respect to the plane of the substrates, which bears the signature of weak π-π interactions. The binding strength follows the trend: Hisaromatic motifs of the amino acids. Remarkably, we find excellent correlation between the polarizability and the strength of the interaction; the higher the polarizability, greater is the binding strength. Moreover, we have analyzed the electronic densities of state spectrum before and after adsorption of the amino acid moieties. The results reveal that the Fermi level of the free CNT is red-shifted by the adsorption of the amino acids and the degree of shift is consistent with the trend in polarizability of these molecules.

  17. Repression of the glucose-inducible outer-membrane protein OprB during utilization of aromatic compounds and organic acids in Pseudomonas putida CSV86.

    PubMed

    Shrivastava, Rahul; Basu, Bhakti; Godbole, Ashwini; Mathew, M K; Apte, Shree K; Phale, Prashant S

    2011-05-01

    Pseudomonas putida CSV86 shows preferential utilization of aromatic compounds over glucose. Protein analysis and [¹⁴C]glucose-binding studies of the outer membrane fraction of cells grown on different carbon sources revealed a 40 kDa protein that was transcriptionally induced by glucose and repressed by aromatics and succinate. Based on 2D gel electrophoresis and liquid chromatography-tandem mass spectrometry analysis, the 40 kDa protein closely resembled the porin B of P. putida KT2440 and carbohydrate-selective porin OprB of various Pseudomonas strains. The purified native protein (i) was estimated to be a homotrimer of 125 kDa with a subunit molecular mass of 40 kDa, (ii) displayed heat modifiability of electrophoretic mobility, (iii) showed channel conductance of 166 pS in 1 M KCl, (iv) permeated various sugars (mono-, di- and tri-saccharides), organic acids, amino acids and aromatic compounds, and (v) harboured a glucose-specific and saturable binding site with a dissociation constant of 1.3 µM. These results identify the glucose-inducible outer-membrane protein of P. putida CSV86 as a carbohydrate-selective protein OprB. Besides modulation of intracellular glucose-metabolizing enzymes and specific glucose-binding periplasmic space protein, the repression of OprB by aromatics and organic acids, even in the presence of glucose, also contributes significantly to the strain's ability to utilize aromatics and organic acids over glucose.

  18. Polycyclic aromatic hydrocarbon reaction rates with peroxy-acid treatment: prediction of reactivity using local ionization potential.

    PubMed

    Shoulder, J M; Alderman, N S; Breneman, C M; Nyman, M C

    2013-08-01

    Property-Encoded Surface Translator (PEST) descriptors were found to be correlated with the degradation rates of polycyclic aromatic hydrocarbons (PAHs) by the peroxy-acid process. Reaction rate constants (k) in hr(-1) for nine PAHs (acenaphthene, anthracene, benzo[a]pyrene, benzo[k]fluoranthene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene) were determined by a peroxy-acid treatment method that utilized acetic acid, hydrogen peroxide, and a sulphuric acid catalyst to degrade the polyaromatic structures. Molecular properties of the selected nine PAHs were derived from structures optimized at B3LYP/6-31G(d) and HF/6-31G(d) levels of theory. Properties of adiabatic and vertical ionization potential (IP), highest occupied molecular orbitals (HOMO), HOMO/lowest unoccupied molecular orbital (LUMO) gap energies and HOMO/singly occupied molecular orbital (SOMO) gap energies were not correlated with rates of peroxy-acid reaction. PEST descriptors were calculated from B3LYP/6-31G(d) optimized structures and found to have significant levels of correlation with k. PIP Min described the minimum local IP on the surface of the molecule and was found to be related to k. PEST technology appears to be an accurate method in predicting reactivity and could prove to be a valuable asset in building treatment models and in remediation design for PAHs and other organic contaminants in the environment. PMID:23734862

  19. Pattern of aromatic and hydrophobic amino acids critical for one of two subdomains of the VP16 transcriptional activator.

    PubMed Central

    Regier, J L; Shen, F; Triezenberg, S J

    1993-01-01

    Structural features of the transcriptional activation domain of the herpes simplex virion protein VP16 were examined by oligonucleotide-directed mutagenesis. Extensive mutagenesis at position 442 of the truncated VP16 activation domain (delta 456), normally occupied by a phenylalanine residue, demonstrated the importance of an aromatic amino acid at that position. On the basis of an alignment of the VP16 sequence surrounding Phe-442 and the sequences of other transcriptional activation domains, we subjected leucine residues at positions 439 and 444 of VP16 to mutagenesis. Results from these experiments suggest that bulky hydrophobic residues flanking Phe-442 also contribute significantly to the function of the truncated VP16 activation domain. Restoration of amino acids 457-490 to various Phe-442 mutants partially restored activity. Although the pattern of amino acids surrounding Phe-473 resembles that surrounding Phe-442, mutations of Phe-473 did not dramatically affect activity; in fact, Phe-475 appears more sensitive to mutations than does Phe-473. We infer that the two regions of VP16 (amino acids 413-456 and 457-490) possess unique structural features, although neither is likely to be an amphipathic alpha-helix or an "acidic blob." These results, considered with previous in vitro activation and inhibition studies, suggest that the two subdomains of VP16 affect transcription by different mechanisms. Images PMID:8381535

  20. The mechanism of action of dipeptidyl aminopeptidase. Inhibition by amino acid derivatives and amines; activation by aromatic compounds.

    PubMed

    Metrione, R M; MacGeorge, N L

    1975-12-01

    A variety of amino acid and peptide amides have been shown to be inhibitors of dipeptidyl aminopeptidase. Among these compounds derivatives of strongly hydrophobic amino acids are the strongest inhibitors (Phe-NH2, Ki = 1.0 +/- 0.2 mM), while amides of basic amino acids were somewhat less effective (Lys-NH2, Ki = 36 +/- 3 mM). Short chain amino acid amides are notably weaker inhibitors (Gly-NH2, Ki = 293 +/- 50 mM). The interaction of the side chains of compounds with the enzyme appears to be at a site other than that at which the side chain of the amino-penultimate residue of the substrate interacts since the specificity of binding is different. Primary amines have been shown to inhibit, e.g., butylamine, Ki = 340 +/- 40 mM, and aromatic compounds have been shown to stimulate activity toward Gly-Gly-NH2 and Gly-Gly-OEt (phenol, 35% stimulation of activity at a 1:1 molar ratio with the substrate). The data suggest that inhibition involves binding at the site occupied by the free alpha-amino group and the N-terminal amino acid.

  1. Iridium-catalyzed ortho-selective C-H silylation of aromatic compounds directed toward the synthesis of π-conjugated molecules with Lewis acid-base interaction.

    PubMed

    Wakaki, Takayuki; Kanai, Motomu; Kuninobu, Yoichiro

    2015-04-01

    We successfully developed an iridium-catalyzed ortho-selective C-H silylation of aromatic compounds. The reaction exhibited a wide substrate scope, and a variety of π-conjugated molecules were synthesized in good to excellent yields, even in gram scale. Several silyl groups could also be introduced into the products. The experimental results indicated that the regioselectivity could be controlled by a Lewis acid-base interaction between the Lewis acidic silicon atoms of fluorinated hydrosilanes and the Lewis basic nitrogen atoms of aromatic compounds.

  2. A heteromeric membrane-bound prenyltransferase complex from hop catalyzes three sequential aromatic prenylations in the bitter acid pathway.

    PubMed

    Li, Haoxun; Ban, Zhaonan; Qin, Hao; Ma, Liya; King, Andrew J; Wang, Guodong

    2015-03-01

    Bitter acids (α and β types) account for more than 30% of the fresh weight of hop (Humulus lupulus) glandular trichomes and are well known for their contribution to the bitter taste of beer. These multiprenylated chemicals also show diverse biological activities, some of which have potential benefits to human health. The bitter acid biosynthetic pathway has been investigated extensively, and the genes for the early steps of bitter acid synthesis have been cloned and functionally characterized. However, little is known about the enzyme(s) that catalyze three sequential prenylation steps in the β-bitter acid pathway. Here, we employed a yeast (Saccharomyces cerevisiae) system for the functional identification of aromatic prenyltransferase (PT) genes. Two PT genes (HlPT1L and HlPT2) obtained from a hop trichome-specific complementary DNA library were functionally characterized using this yeast system. Coexpression of codon-optimized PT1L and PT2 in yeast, together with upstream genes, led to the production of bitter acids, but no bitter acids were detected when either of the PT genes was expressed by itself. Stepwise mutation of the aspartate-rich motifs in PT1L and PT2 further revealed the prenylation sequence of these two enzymes in β-bitter acid biosynthesis: PT1L catalyzed only the first prenylation step, and PT2 catalyzed the two subsequent prenylation steps. A metabolon formed through interactions between PT1L and PT2 was demonstrated using a yeast two-hybrid system, reciprocal coimmunoprecipitation, and in vitro biochemical assays. These results provide direct evidence of the involvement of a functional metabolon of membrane-bound prenyltransferases in bitter acid biosynthesis in hop. PMID:25564559

  3. Energetics and kinetics of anaerobic aromatic and fatty acid degradation. Final report

    SciTech Connect

    Michael J. McInerney

    1996-06-24

    The factors that affect the rate and extent of a model aromatic compound, benzoate, in methanogenic environments was studied. Benzoate is degraded to a threshold concentration below which no further substrate degradation occurs. The threshold concentration depended on the substrate concentration and the amount of acetate present. The threshold value was not a function of the kinetic ability of the organism or toxicity of the end products. Rather a minimal Gibb's free energy value may exist where thermodynamic constraints preclude further benzoate degradation. In addition, new bacterial species were isolated and described, that degrade benzoate or reduce iron, cobalt and other metals.

  4. Design, Synthesis, EPR-Studies and Conformational Bias of Novel Spin-Labeled DCC-Analogues for the Highly Regioselective Labeling of Aliphatic and Aromatic Carboxylic Acids.

    PubMed

    Gölz, Jan Philipp; NejatyJahromy, Yaser; Bauer, Mirko; Muhammad, Ashraf; Schnakenburg, Gregor; Grimme, Stefan; Schiemann, Olav; Menche, Dirk

    2016-07-01

    Novel types of spin-labeled N,N'-dicyclohexylcarbodiimides (DCC) are reported that bear a 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) residue on one side and different aromatic and aliphatic cyclohexyl analogues on the other side of the diimide core. These readily available novel reagents add efficiently to aliphatic and aromatic carboxylic acids, forming two possible spin-labeled amide derivatives with different radical distances of the resulting amide. The addition of aromatic DCC analogues proceeds with excellent selectivity, giving amides where the carboxylic acid is exclusively connected to the aromatic residue, while little or no selectivity was observed for the aliphatic congeners. The usefulness of these adducts in structural studies was demonstrated by EPR (electron paramagnetic resonance) measurements of biradical adducts of biphenyl-4,4'-dicarboxylic acids. These analyses also reveal high degrees of conformational bias for aromatic DCC derivatives, which further underlines the powerfulness of these novel reagents. This observation was further corroborated by quantum chemical calculations, giving a detailed understanding of the structural dynamics, while detailed information on the solid state structure of all novel reagents was obtained by X-ray structure analyses.

  5. Design, Synthesis, EPR-Studies and Conformational Bias of Novel Spin-Labeled DCC-Analogues for the Highly Regioselective Labeling of Aliphatic and Aromatic Carboxylic Acids.

    PubMed

    Gölz, Jan Philipp; NejatyJahromy, Yaser; Bauer, Mirko; Muhammad, Ashraf; Schnakenburg, Gregor; Grimme, Stefan; Schiemann, Olav; Menche, Dirk

    2016-07-01

    Novel types of spin-labeled N,N'-dicyclohexylcarbodiimides (DCC) are reported that bear a 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) residue on one side and different aromatic and aliphatic cyclohexyl analogues on the other side of the diimide core. These readily available novel reagents add efficiently to aliphatic and aromatic carboxylic acids, forming two possible spin-labeled amide derivatives with different radical distances of the resulting amide. The addition of aromatic DCC analogues proceeds with excellent selectivity, giving amides where the carboxylic acid is exclusively connected to the aromatic residue, while little or no selectivity was observed for the aliphatic congeners. The usefulness of these adducts in structural studies was demonstrated by EPR (electron paramagnetic resonance) measurements of biradical adducts of biphenyl-4,4'-dicarboxylic acids. These analyses also reveal high degrees of conformational bias for aromatic DCC derivatives, which further underlines the powerfulness of these novel reagents. This observation was further corroborated by quantum chemical calculations, giving a detailed understanding of the structural dynamics, while detailed information on the solid state structure of all novel reagents was obtained by X-ray structure analyses. PMID:27272435

  6. Fenton-like oxidation of small aromatic acids from biomass burning in atmospheric water and in the absence of light: Identification of intermediates and reaction pathways.

    PubMed

    Santos, Patrícia S M; Domingues, M Rosário M; Duarte, Armando C

    2016-07-01

    A previous work showed that the night period is important for the occurrence of Fenton-like oxidation of small aromatic acids from biomass burning in atmospheric waters, which originate new chromophoric compounds apparently more complex than the precursors, although the chemical transformations involved in the process are still unknown. In this work were identified by gas chromatography-mass spectrometry (GC-MS) and by electrospray mass spectrometry (ESI-MS) the organic intermediate compounds formed during the Fenton-like oxidation of three aromatic acids from biomass burning (benzoic, 4-hydroxybenzoic and 3,5-dihydroxybenzoic acids), the same compounds evaluated in the previous study, in water and in the absence of light, which in turns allows to disclose the chemical reaction pathways involved. The oxidation intermediate compounds found for benzoic acid were 2-hydroxybenzoic, 3-hydroxybenzoic, 4-hydroxybenzoic, 2,3-dihydroxybenzoic, 2,5-dihydroxybenzoic, 2,6-dihydroxybenzoic and 3,4-dihydroxybenzoic acids. The oxidation intermediates for 4-hydroxybenzoic acid were 3,4-hydroxybenzoic acid and hydroquinone, while for 3,5-dihydroxybenzoic acid were 2,4,6-trihydroxybenzoic and 3,4,5-trihydroxybenzoic acids, and tetrahydroxybenzene. The results suggested that the hydroxylation of the three small aromatic acids is the main step of Fenton-like oxidation in atmospheric waters during the night, and that the occurrence of decarboxylation is also an important step during the oxidation of the 4-dihydroxybenzoic and 3,5-dihydroxybenzoic acids. In addition, it is important to highlight that the compounds produced are also small aromatic compounds with potential adverse effects on the environment, besides becoming available for further chemical reactions in atmospheric waters.

  7. Principal transcriptional regulation and genome-wide system interactions of the Asp-family and aromatic amino acid networks of amino acid metabolism in plants.

    PubMed

    Less, Hadar; Angelovici, Ruthie; Tzin, Vered; Galili, Gad

    2010-10-01

    Amino acid metabolism is among the most important and best recognized networks within biological systems. In plants, amino acids serve multiple functions associated with growth. Besides their function in protein synthesis, the amino acids are also catabolized into energy-associated metabolites as well we into numerous secondary metabolites, which are essential for plant growth and response to various stresses. Despite the central importance of amino acids in plants growth, elucidation of the regulation of amino acid metabolism within the context of the entire system, particularly transcriptional regulation, is still in its infancy. The different amino acids are synthesized by a number of distinct metabolic networks, which are expected to possess regulatory cross interactions between them for proper coordination of their interactive functions, such as incorporation into proteins. Yet, individual amino acid metabolic networks are also expected to differentially cross interact with various genome-wide gene expression programs and metabolic networks, in respect to their functions as precursors for various metabolites with distinct functions. In the present review, we discuss our recent genomics, metabolic and bioinformatics studies, which were aimed at addressing these questions, focusing mainly on the Asp-family metabolic network as the main example and also comparing it to the aromatic amino acids metabolic network as a second example (Angelovici et al. in Plant Physiol 151:2058-2072, 2009; Less and Galili in BMC Syst Biol 3:14, 2009; Tzin et al. in Plant J 60:156-167, 2009). Our focus on these two networks is because of the followings: (i) both networks are central to plant metabolism and growth and are also precursors for a wide range of primary and secondary metabolites that are indispensable to plant growth; (ii) the amino acids produced by these two networks are also essential to the nutrition and health of human and farm animals; and (iii) both networks contain

  8. Characterization of novel perylene diimides containing aromatic amino acid side chains

    NASA Astrophysics Data System (ADS)

    Farooqi, Mohammed J.; Penick, Mark A.; Burch, Jessica; Negrete, George R.; Brancaleon, Lorenzo

    2016-01-01

    Perylene diimide derivatives have attracted initial interest as industrial dyes. Recently, much attention has been focused on their strong π- π stacks resulting from the large PDI aromatic core. These PDI stacks have distinct optical properties, and provide informative models that could mimic light-harvesting systems and initial charge transfer typical of photosynthetic systems. The absorption property of PDI derivatives may be tuned from visible to near-infrared region by peripheral substitution. We have studied a new class of PDI derivatives with aryl substituents derived from the side chains of aromatic aminoacids (Tyrosine, Tryptophan and Phenylalanine). We have investigated their absorption and the fluorescence properties in a set of organic solvents and established their different tendencies to aggregate in solution despite their solubility. Most aggregation appears to be unordered. One PDI analogue (the one formed from Tyr) in Methanol, however, appears to form J-type aggregates. Based on our results the compounds appear to be promising for future investigations regarding the interaction of these dyes with biomolecules.

  9. Characterization of novel perylene diimides containing aromatic amino acid side chains

    PubMed Central

    Farooqi, Mohammed J.; Penick, Mark A.; Burch, Jessica; Negrete, George R.; Brancaleon, Lorenzo

    2015-01-01

    Perylene diimide derivatives have attracted initial interest as industrial dyes. Recently, much attention has been focused on their strong π–π stacks resulting from the large PDI aromatic core. These PDI stacks have distinct optical properties, and provide informative models that could mimic light-harvesting systems and initial charge transfer typical of photosynthetic systems. The absorption property of PDI derivatives may be tuned from visible to near-infrared region by peripheral substitution. We have studied a new class of PDI derivatives with aryl substituents derived from the side chains of aromatic aminoacids (Tyrosine, Tryptophan and Phenylalanine). We have investigated their absorption and the fluorescence properties in a set of organic solvents and established their different tendencies to aggregate in solution despite their solubility. Most aggregation appears to be unordered. One PDI analogue (the one formed from Tyr) in Methanol, however, appears to form J-type aggregates. Based on our results the compounds appear to be promising for future investigations regarding the interaction of these dyes with biomolecules. PMID:26298679

  10. Isolation of fatty acids and aromatics from cell suspension cultures of Lavandula angustifolia.

    PubMed

    Topçu, Gülaçti; Herrmann, Gabriele; Kolak, Ufuk; Gören, C; Porzel, Andrea; Kutchan, Toni M

    2007-02-01

    Cell suspension cultures of Lavandula angustifolia Mill. ssp. angustifolia (syn.: L. officinalis Chaix.) afforded a fatty acid composition, cis and trans p-coumaric acids (=p-hydroxy cinnamic acids), and beta-sitosterol. The fatty acid composition was analyzed by GC-MS, and the structures of the isolated three compounds were determined by 1H- and 13C-NMR, and MS spectroscopic techniques.

  11. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique aroma of melons (Cucumis melo L., Cucurbitaceae) is composed of many volatile compounds biosynthetically derived from fatty-acids, carotenoids, amino-acids as well as terpenes. Incubation of melon fruit cubes with amino- and a-keto acids led to the enhanced formation of aroma compounds be...

  12. Solid compounds of europium and terbium with some aromatic carboxylic acids

    SciTech Connect

    Chupakhina, R.A.; Biryulina, V.N.; Kasimova, L.V.; Balakhonov, V.G.

    1986-10-20

    By the reactions of europium and terbium hydroxides with aqueous solutions of benzoic, salicylic, phthalic, and phthalaldehydic acids, compounds were obtained with the compositions: for phthalic acid M/sub 2/L/sub 3/ x 3H/sub 2/O, and for the other acids ML/sub 3/ x 3H/sub 2/O, in which M = Eu/sup 3 +/, Tb/sup 3 +/; L is the anion of the corresponding acid. The compounds of europium and terbium with phthalaldehydric acid were prepared for the first time.

  13. The effect of aromatic amines and phenols in the thiyl-induced reactions of polyunsaturated fatty acids

    NASA Astrophysics Data System (ADS)

    Tartaro Bujak, Ivana; Chatgilialoglu, Chryssostomos; Ferreri, Carla; Valgimigli, Luca; Amorati, Riccardo; Mihaljević, Branka

    2016-07-01

    Thiols are well known for their role in cellular redox homeostasis, while aromatic amines and phenols are the best known classes of chain-breaking antioxidants. On the other hand, thiyl radicals are known to catalyse the double bond isomerization in PUFA. We investigated the role and interplay of 2-mercaptoethanol and diphenylamine in the parallel processes of peroxidation and cis-trans isomerization of linoleic acid (LA) during gamma radiolysis, both in solution and micelles. Both compounds, used alone were able to protect LA from oxidation; however pro-oxidant activity and enhanced isomerization was observed when they were used together, depending on the experimental settings. Instead, α-tocopherol protected LA from both oxidation and isomerization in the presence of thiols under any tested settings. The mechanistic scenario is discussed highlighting the role of diphenylaminyl radicals in promoting thiyl-radical-induced cis-trans isomerization in the presence of oxygen.

  14. Aromatic amino Acid decarboxylase deficiency not responding to pyridoxine and bromocriptine therapy: case report and review of response to treatment.

    PubMed

    Alfadhel, Majid; Kattan, Rana

    2014-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency (MIM #608643) is an autosomal recessive inborn error of monoamines. It is caused by a mutation in the DDC gene that leads to a deficiency in the AADC enzyme. The clinical features of this condition include a combination of dopamine, noradrenaline, and serotonin deficiencies, and a patient may present with hypotonia, oculogyric crises, sweating, hypersalivation, autonomic dysfunction, and progressive encephalopathy with severe developmental delay. We report the case of an 8-month-old boy who presented with the abovementioned symptoms and who was diagnosed with AADC deficiency based on clinical, biochemical, and molecular investigations. Treatment with bromocriptine and pyridoxine showed no improvement. These data support the findings observed among previously reported cohorts that showed poor response of this disease to current regimens. Alternative therapies are needed to ameliorate the clinical complications associated with this disorder.

  15. Distribution of polychlorinated biphenyls, phthalic acid esters, polycyclic aromatic hydrocarbons and organochlorine substances in the Moscow River, Russia.

    PubMed

    Eremina, Natalia; Paschke, Albrecht; Mazlova, Elena A; Schüürmann, Gerrit

    2016-03-01

    The purpose of this study was to investigate the levels of polychlorinated biphenyl (PCB), phthalic acid esters (PAE), polycyclic aromatic hydrocarbons (PAH) and organochlorine substances (OCP) in the Moscow River water. Some studies have reported the occurrence of these substances in the soil of the Moscow region; however, no study has yet established an overview for these compounds in the Moscow River water. In this study the Moscow River water contamination with PAEs, PAHs and OCPs was determined. Obtained results were associated with the resident area located on the river bank, and the possible contamination sources were considered. The obtained data were compared with the data on the contamination of the different world-wide rivers. This research indicates the further study necessity of the Moscow region to cover more contaminated sites and environmental compartments. PMID:26807987

  16. Chemical structure and biodegradability of halogenated aromatic compounds. Halogenated muconic acids as intermediates.

    PubMed Central

    Schmidt, E; Remberg, G; Knackmuss, H J

    1980-01-01

    Substituted muconic acids were prepared from the corresponding catechols by pyrocatechase II from Pseudomonas sp. B13. The stabilities of substituted muconic acids were compared under different pH conditions. 3-Substituted cis, cis-muconic acids cycloisomerized readily in slightly acidic solutions, whereas 2-chloro- and 2-fluoro-cis,cis-muconic acids were stable under these conditions and could be isolated as crystalline compounds. They were isomerized to the cis, trans-form in highly acidic solution (pH 1), particularly when heated to 80 degrees C. Cycloisomerization of 2-chloro-cis,cis-muconic acid in 75% (v/v) H2SO4 yields 4-carboxymethyl-2-chloro-but-2-en-4-olide (4-chloro-2,5-dihydro-5-oxo-3H-furan-2-ylacetic acid). THe cis,cis-configuration of 2-chloromuconic acid was certified by 1H n.m.r. spectroscopy and by enzymic cycloisomerization. Although the cis,cis-configuration of 2-fluoromuconic acid was confirmed by corresponding spectroscopic data, it was not cycloisomerized by crude extracts or cycloisomerase II preparations from Pseudomonas sp. B13. PMID:7305905

  17. Utilization of oriented crystal growth for screening of aromatic carboxylic acids cocrystallization with urea

    NASA Astrophysics Data System (ADS)

    Przybyłek, Maciej; Ziółkowska, Dorota; Kobierski, Mirosław; Mroczyńska, Karina; Cysewski, Piotr

    2016-01-01

    The possibility of molecular complex formation in the solid state of urea with benzoic acid analogues was measured directly on the crystallite films deposited on the glass surface using powder X-ray diffractometry (PXRD). Obtained solid mixtures were also analyzed using Fourier transform infrared spectroscopy (FTIR). The simple droplet evaporation method was found to be efficient, robust, fast and cost-preserving approach for first stage cocrystal screening. Additionally, the application of orientation effect to cocrystal screening simplifies the analysis due to damping of majority of diffraction signals coming from coformers. During validation phase the proposed approach successfully reproduced both positive cases of cocrystallization (urea:salicylic acid and urea:4-hydroxy benzoic acid) as well as pairs of co-formers immiscible in the solid state (urea:benzoic acid and urea:acetylsalicylic acids). Based on validated approach new cocrystals of urea were identified in complexes with 3-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid and 3,5-dihydroxybenzoic acid. In all cases formation of multicomponent crystal phase was confirmed by the appearance of new reflexes on the diffraction patterns and FTIR absorption band shifts of O-H and N-H groups.

  18. Aromatic hydroxylation of salicylic acid and aspirin by human cytochromes P450.

    PubMed

    Bojić, Mirza; Sedgeman, Carl A; Nagy, Leslie D; Guengerich, F Peter

    2015-06-20

    Aspirin (acetylsalicylic acid) is a well-known and widely-used analgesic. It is rapidly deacetylated to salicylic acid, which forms two hippuric acids-salicyluric acid and gentisuric acid-and two glucuronides. The oxidation of aspirin and salicylic acid has been reported with human liver microsomes, but data on individual cytochromes P450 involved in oxidation is lacking. In this study we monitored oxidation of these compounds by human liver microsomes and cytochrome P450 (P450) using UPLC with fluorescence detection. Microsomal oxidation of salicylic acid was much faster than aspirin. The two oxidation products were 2,5-dihydroxybenzoic acid (gentisic acid, documented by its UV and mass spectrum) and 2,3-dihydroxybenzoic acid. Formation of neither product was inhibited by desferrioxamine, suggesting a lack of contribution of oxygen radicals under these conditions. Although more liphophilic, aspirin was oxidized less efficiently, primarily to the 2,5-dihydroxy product. Recombinant human P450s 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 all catalyzed the 5-hydroxylation of salicylic acid. Inhibitor studies with human liver microsomes indicated that all six of the previously mentioned P450s could contribute to both the 5- and 3-hydroxylation of salicylic acid and that P450s 2A6 and 2B6 have contributions to 5-hydroxylation. Inhibitor studies indicated that the major human P450 involved in both 3- and 5-hydroxylation of salicylic acid is P450 2E1.

  19. Site-directed mutagenesis of tobacco anionic peroxidase: Effect of additional aromatic amino acids on stability and activity.

    PubMed

    Poloznikov, A A; Zakharova, G S; Chubar, T A; Hushpulian, D M; Tishkov, V I; Gazaryan, I G

    2015-08-01

    Tobacco anionic peroxidase (TOP) is known to effectively catalyze luminol oxidation without enhancers, in contrast to horseradish peroxidase (HRP). To pursue structure-activity relationship studies for TOP, two amino acids have been chosen for mutation, namely Thr151, close to the heme plane, and Phe140 at the entrance to the active site pocket. Three mutant forms TOP F140Y, T151W and F140Y/T151W have been expressed in Escherichia coli, and reactivated to yield active enzymes. Single-point mutations introducing additional aromatic amino acid residues at the surface of TOP exhibit a significant effect on the enzyme catalytic activity and stability as judged by the results of steady-state and transient kinetics studies. TOP T151W is up to 4-fold more active towards a number of aromatic substrates including luminol, whereas TOP F140Y is 2-fold more stable against thermal inactivation and 8-fold more stable in the reaction course. These steady-state observations have been rationalized with the help of transient kinetic studies on the enzyme reaction with hydrogen peroxide in a single turnover regime. The stopped-flow data reveal (a) an increased stability of F140Y Compound I towards hydrogen peroxide, and thus, a higher operational stability as compared to the wild-type enzyme, and (b) a lesser leakage of oxidative equivalents from TOP T151W Compound I resulting in the increased catalytic activity. The results obtained show that TOP unique properties can be further improved for practical applications by site-directed mutagenesis.

  20. Thermal pretreatment of olive mill wastewater for efficient methane production: control of aromatic substances degradation by monitoring cyclohexane carboxylic acid.

    PubMed

    Pontoni, Ludovico; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; Pirozzi, Francesco

    2015-01-01

    Anaerobic digestion is investigated as a sustainable depurative strategy of olive oil mill wastewater (OOMW). The effect of thermal pretreatment on the anaerobic biodegradation of aromatic compounds present in (OMWW) was investigated. The anaerobic degradation of phenolic compounds, well known to be the main concern related to this kind of effluents, was monitored in batch anaerobic tests at a laboratory scale on samples pretreated at mild (80±1 °C), intermediate (90±1 °C) and high temperature (120±1 °C). The obtained results showed an increase of 34% in specific methane production (SMP) for OMWW treated at the lowest temperature and a decrease of 18% for treatment at the highest temperature. These results were related to the different decomposition pathways of the lignocellulosic compounds obtained in the tested conditions. The decomposition pathway was determined by measuring the concentrations of volatile organic acids, phenols, and chemical oxygen demand (COD) versus time. Cyclohexane carboxylic acid (CHCA) production was identified in all the tests with a maximum concentration of around 200 µmol L(-1) in accordance with the phenols degradation, suggesting that anaerobic digestion of aromatic compounds follows the benzoyl-CoA pathway. Accurate monitoring of this compound was proposed as the key element to control the process evolution. The total phenols (TP) and total COD removals were, with SMP, the highest (TP 62.7%-COD 63.2%) at 80 °C and lowest (TP 44.9%-COD 32.2%) at 120 °C. In all cases, thermal pretreatment was able to enhance the TP removal ability (up to 42% increase).

  1. Thermal pretreatment of olive mill wastewater for efficient methane production: control of aromatic substances degradation by monitoring cyclohexane carboxylic acid.

    PubMed

    Pontoni, Ludovico; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; Pirozzi, Francesco

    2015-01-01

    Anaerobic digestion is investigated as a sustainable depurative strategy of olive oil mill wastewater (OOMW). The effect of thermal pretreatment on the anaerobic biodegradation of aromatic compounds present in (OMWW) was investigated. The anaerobic degradation of phenolic compounds, well known to be the main concern related to this kind of effluents, was monitored in batch anaerobic tests at a laboratory scale on samples pretreated at mild (80±1 °C), intermediate (90±1 °C) and high temperature (120±1 °C). The obtained results showed an increase of 34% in specific methane production (SMP) for OMWW treated at the lowest temperature and a decrease of 18% for treatment at the highest temperature. These results were related to the different decomposition pathways of the lignocellulosic compounds obtained in the tested conditions. The decomposition pathway was determined by measuring the concentrations of volatile organic acids, phenols, and chemical oxygen demand (COD) versus time. Cyclohexane carboxylic acid (CHCA) production was identified in all the tests with a maximum concentration of around 200 µmol L(-1) in accordance with the phenols degradation, suggesting that anaerobic digestion of aromatic compounds follows the benzoyl-CoA pathway. Accurate monitoring of this compound was proposed as the key element to control the process evolution. The total phenols (TP) and total COD removals were, with SMP, the highest (TP 62.7%-COD 63.2%) at 80 °C and lowest (TP 44.9%-COD 32.2%) at 120 °C. In all cases, thermal pretreatment was able to enhance the TP removal ability (up to 42% increase). PMID:25624137

  2. Nucleophilic Aromatic Substitution.

    ERIC Educational Resources Information Center

    Avila, Walter B.; And Others

    1990-01-01

    Described is a microscale organic chemistry experiment which demonstrates one feasible route in preparing ortho-substituted benzoic acids and provides an example of nucleophilic aromatic substitution chemistry. Experimental procedures and instructor notes for this activity are provided. (CW)

  3. Effect of thenardite on the direct detection of aromatic amino acids: implications for the search for life in the solar system

    NASA Astrophysics Data System (ADS)

    Doc Richardson, C.; Hinman, Nancy W.; Scott, Jill R.

    2009-10-01

    With the discovery of Na-sulphate minerals on Mars and Europa, recent studies using these minerals have focused on their ability to assist in the detection of bio/organic signatures. This study further investigates the ability of thenardite (Na2SO4) to effectively facilitate the ionization and identification of aromatic amino acids (phenylalanine, tyrosine and tryptophan) using a technique called geomatrix-assisted laser desorption/ionization in conjunction with a Fourier transform ion cyclotron resonance mass spectrometry. This technique is based on the ability of a mineral host to facilitate desorption and ionization of bio/organic molecules for detection. Spectra obtained from each aromatic amino acid alone and in combination with thenardite show differences in ionization mechanism and fragmentation patterns. These differences are due to chemical and structural differences between the aromatic side chains of their respective amino acid. Tyrosine and tryptophan when combined with thenardite were observed to undergo cation-attachment ([M+Na]+), due to the high alkali ion affinity of their aromatic side chains. In addition, substitution of the carboxyl group hydrogen by sodium led to formation of [M-H+Na]Na+ peaks. In contrast, phenylalanine mixed with thenardite showed no evidence of Na+ attachment. Understanding how co-deposition of amino acids with thenardite can affect the observed mass spectra is important for future exploration missions that are likely to use laser desorption mass spectrometry to search for bio/organic compounds in extraterrestrial environments.

  4. Effect of Thenardite on the Direct Detection of Aromatic Amino Acids: Implications for the Search for Life in the Solar System

    SciTech Connect

    C. Doc Richardson; Nancy W. Hinman; Jill R. Scott

    2009-10-01

    With the discovery of Na-sulfate minerals on Mars and Europa, recent studies using these minerals have focused on their ability to assist in the detection of bio/organic signatures. This study further investigates the ability of thenardite (Na2SO4) to effectively facilitate the ionization and identification of aromatic amino acids (phenylalanine, tyrosine, and tryptophan) using a technique called geomatrix-assisted laser desorption/ionization (GALDI) in conjunction with a Fourier transform mass spectrometry (FTICR-MS). This technique is based on the ability of a mineral host to facilitate the ionization and detection of bio/organic molecules. Spectra obtained from each aromatic amino acid alone and in combination with thenardite show differences in ionization mechanism and fragmentation patterns. These differences are due to chemical and structural differences between the aromatic side chains of their respective amino acid. Tyrosine and tryptophan when combined with thenardite were observed to undergo cation-attachment ([M+Na]+), due to the high alkali affinity of their aromatic side chains. Subsequent cation substitution of the carboxyl group led to formation double cation-attached peaks ([M-H+Na]Na+). In contrast, phenylalanine mixed with thenardite showed no evidence of Na+ interaction. Understanding how codeposition of amino acids with thenardite can affect the observed mass spectra is important for future exploration missions that are likely to use laser desorption mass spectrometry to search for bio/organic compounds in extraterrestrial environments.

  5. Method of increasing conversion of a fatty acid to its corresponding dicarboxylic acid

    DOEpatents

    Craft, David L.; Wilson, C. Ron; Eirich, Dudley; Zhang, Yeyan

    2004-09-14

    A nucleic acid sequence including a CYP promoter operably linked to nucleic acid encoding a heterologous protein is provided to increase transcription of the nucleic acid. Expression vectors and host cells containing the nucleic acid sequence are also provided. The methods and compositions described herein are especially useful in the production of polycarboxylic acids by yeast cells.

  6. Surfactants, aromatic and isoprenoid compounds, and fatty acid biosynthesis inhibitors suppress Staphylococcus aureus production of toxic shock syndrome toxin 1.

    PubMed

    McNamara, Peter J; Syverson, Rae Ellen; Milligan-Myhre, Kathy; Frolova, Olga; Schroeder, Sarah; Kidder, Joshua; Hoang, Thanh; Proctor, Richard A

    2009-05-01

    Menstrual toxic shock syndrome is a rare but potentially life-threatening illness manifest through the actions of Staphylococcus aureus toxic shock syndrome toxin 1 (TSST-1). Previous studies have shown that tampon additives can influence staphylococcal TSST-1 production. We report here on the TSST-1-suppressing activity of 34 compounds that are commonly used additives in the pharmaceutical, food, and perfume industries. Many of the tested chemicals had a minimal impact on the growth of S. aureus and yet were potent inhibitors of TSST-1 production. The TSST-1-reducing compounds included surfactants with an ether, amide, or amine linkage to their fatty acid moiety (e.g., myreth-3-myristate, Laureth-3, disodium lauroamphodiacetate, disodium lauramido monoethanolamido, sodium lauriminodipropionic acid, and triethanolamine laureth sulfate); aromatic compounds (e.g. phenylethyl and benzyl alcohols); and several isoprenoids and related compounds (e.g., terpineol and menthol). The membrane-targeting and -altering effects of the TSST-1-suppressing compounds led us to assess the activity of molecules that are known to inhibit fatty acid biosynthesis (e.g., cerulenin, triclosan, and hexachlorophene). These compounds also reduced S. aureus TSST-1 production. This study suggests that more additives than previously recognized inhibit the production of TSST-1.

  7. Particulate n-alkanes, n-alkanoic acids and polycyclic aromatic hydrocarbons in the atmosphere of Algiers City Area

    NASA Astrophysics Data System (ADS)

    Yassaa, Noureddine; Youcef Meklati, Brahim; Cecinato, Angelo; Marino, Fabio

    The concentrations of particulate organic matter were measured from May to September 1998 in urban area of Algiers and in municipal waste landfill of Oued Smar. For the sake of comparability, organic aerosols were also monitored at Montelibretti (Italy) in June of the same year. In addition to n-alkanes and polycyclic aromatic hydrocarbons (PAH), monocarboxylic n-alkanoic acids accounted for a large portion of identified organic compounds of aerosol at both Algerian sites. All these species were more abundant at Oued Smar than in downtown Algiers. At the urban site, concentration levels reached by n-alkanes and PAH highlighted the strong impact of motor vehicle emission resulting over the city area. Instead, at the Oued Smar landfill n-alkane and PAH contents depended upon the nature and account of the wastes burnt, and their behaviours were consistent with a pyrolytic origin. n-Alkanoic acids rather originated from the bacterial activity. By contrast, n-alkanes and n-alkanoic acids at Montelibretti seemed to be released by biogenic sources, whereas PAH presence was related to downwind transport of air parcels from Rome metropolitan area.

  8. Characterisation of calamansi (Citrus microcarpa). Part I: volatiles, aromatic profiles and phenolic acids in the peel.

    PubMed

    Cheong, Mun Wai; Chong, Zhi Soon; Liu, Shao Quan; Zhou, Weibiao; Curran, Philip; Bin Yu

    2012-09-15

    Volatile compounds in the peel of calamansi (Citrus microcarpa) from Malaysia, the Philippines and Vietnam were extracted with dichloromethane and hexane, and then analysed by gas chromatography-mass spectroscopy/flame ionisation detector. Seventy-nine compounds representing >98% of the volatiles were identified. Across the three geographical sources, a relatively small proportion of potent oxygenated compounds was significantly different, exemplified by the highest amount of methyl N-methylanthranilate in Malaysian calamansi peel. Principal component analysis and canonical discriminant analysis were applied to interpret the complex volatile compounds in the calamansi peel extracts, and to verify the discrimination among the different origins. In addition, four common hydroxycinnamic acids (caffeic, p-coumaric, ferulic and sinapic acids) were determined in the methanolic extracts of calamansi peel using ultra-fast liquid chromatography coupled to photodiode array detector. The Philippines calamansi peel contained the highest amount of total phenolic acids. In addition, p-Coumaric acid was the dominant free phenolic acids, whereas ferulic acid was the main bound phenolic acid.

  9. (Fatty and aromatic acid catabolizing bacteria from methanogenic ecosystems). Annual technical progress report

    SciTech Connect

    Bryant, M.P.; Kammerer, J.J.

    1985-02-27

    A long-chain fatty acid degrading (beta oxidizing), obligate proton-reducing, acetogenic bacterium strain SD2 of the genus Syntrophomonas has been isolated in coculture with a hydrogen-using bacterium, Desulfovibrio strain G-11. The enzymology of fatty acid degradation is being studied to discover the differences of SD2 from S. wolfei which allow it to degrade long chain fatty acids. A new species, Clostridium pfennigii (V5-2) was isolated from the rumen. A new genus and species, Syntrophococcus sucromutans (S195) is present in relatively high numbers in rumen contents. Another new species is Eubacterium oxidoreducens. (ACR)

  10. Dual enhancement-inhibition roles of polycarboxylates in Cr(VI) reduction and organic pollutant oxidation in electrical plasma system.

    PubMed

    Jiang, Bo; Wang, Xianli; Hu, Ping; Wu, Mingbo; Zheng, Jingtang; Wu, Wenting

    2016-02-01

    In this study, the roles of polycarboxylates in synergistic Cr(VI) reduction and organic pollutant oxidation are investigated in glow discharge electrolysis (GDE). H2O2 generated in GDE plays a primary role for Cr(VI) reduction, and the presence of polycarboxylates can significantly enhance the reduction of Cr(VI) to Cr(III) with less value of [H2O2](consumption)/[Cr(VI)](reduction). Simultaneously, polycarboxylates inhibit the production of ·OH via chromium-based Fenton-like reaction, leading to the retarded oxidation of other pollutant oxidation, i.e., RhB. The formation of peroxochromate(V) is a requisite both for Cr(VI) reduction to Cr(III) and ·OH formation via Fenton-like reaction. Polycarboxylates can form complexes with peroxochromate(V), which can transform to Cr(III) spontaneously, thereby interrupting the pathway for additional ·OH production. These influences induced by polycarboxylate were found closely relative to the number and position of -OH group in polycarboxylates. Besides, 162.7 mg L(-1) Cr(VI) in actual electroplating effluent can be rapidly and almost completely reduced in GDE with introducing polycarboxylate containing nickel electroplating effluent. Generally, the present study provides a versatile strategy for Cr(VI) reduction, exhibiting a bright application future for real wastewater treatment. PMID:26517389

  11. The utilization of some halogenated aromatic acids by Nocardia. Oxidation and metabolism

    PubMed Central

    Cain, R. B.; Tranter, E. Karen; Darrah, Josephine A.

    1968-01-01

    1. Halogen analogues of p-nitrobenzoate and benzoate were oxidized by washed cells of Nocardia erythropolis. 2. The oxidation of 2-fluoro-4-nitrobenzoate ceased at the level of acetate, and fluoroacetate was found in the incubation medium and particularly in hot-ethanolic extracts of the cells. 3. Several fluorine-containing intermediates were detected and 2-fluoroprotocatechuate was identified as one of them. 4. The nitro group was also reduced by the organism, as evidenced by the formation of 4-amino-2-fluorobenzoate. 5. Extracts of N. erythropolis activated fluoroacetate and condensed the resulting fluoroacetyl-CoA with oxaloacetate to form fluorocitrate. This product was a very powerful inhibitor of citrate metabolism by guinea-pig kidney homogenates and of the aconitase also present in the bacterial extracts. The inhibitions effected by synthetic fluorocitrate and the natural product were comparable. 6. 2-Fluoro-4-nitrobenzoate had negligible mammalian toxicity. 7. The isolation of fluoroacetate as a product of 2-fluoro-4-nitrobenzoate oxidation implies that the aromatic ring in this bacterium must be degraded via a γ-carboxymuconolactone; fluoroacetate cannot arise by metabolism through the isomeric β-carboxymuconolactone. PMID:5721459

  12. Quenching of triplet states of aromatic ketones by sulfur-containing amino acids in solution. Evidence for electron transfer

    SciTech Connect

    Marciniak, B.; Bobrowski, K.; Hug, G.L. )

    1993-11-18

    The mechanism for quenching triplet states of benzophenones by sulfur-containing amino acids in water/acetonitrile solution was investigated by laser flash photolysis. The amino acids in the study were methionine, S-methylcysteine, and S-carboxymethylcysteine, and the eight aromatic triplets were those of benzophenone and its derivatives possessing electron-withdrawing or electron-donating groups. The presence of radical ions in the transient spectra and correlations of the quenching rate constants with the free energy change for electron transfer are strong indications that the process involves an electron transfer. These correlations were displayed as Rehm-Weller plots (logarithm of quenching rate vs free energy). Classical theoretical formulations of the Rehm-Weller correlations were used to estimate the intrinsic barriers and the transmission coefficients for the electron-transfer processes. Applying both [open quotes]quadratic[close quotes] Marcus and [open quotes]asymptotic[close quotes] Agmon-Levine free energy relationships led to the values of intrinsic barriers lower than the solvent reorganization energy calculated within the framework of the dielectric continuum model. These relationships also led to low electronic transmission coefficients. The low values of the intrinsic barriers for electron transfer were also obtained using the recently developed Tachiya approach. 58 refs., 5 figs., 2 tabs.

  13. The role of aromatic L-amino acid decarboxylase in bacillamide C biosynthesis by Bacillus atrophaeus C89.

    PubMed

    Yuwen, Lei; Zhang, Feng-Li; Chen, Qi-Hua; Lin, Shuang-Jun; Zhao, Yi-Lei; Li, Zhi-Yong

    2013-01-01

    For biosynthesis of bacillamide C by Bacillus atrophaeus C89 associated with South China sea sponge Dysidea avara, it is hypothesized that decarboxylation from L-tryptophan to tryptamine could be performed before amidation by the downstream aromatic L-amino acid decarboxylase (AADC) to the non-ribosomal peptide synthetases (NRPS) gene cluster for biosynthesizing bacillamide C. The structural analysis of decarboxylases' known substrates in KEGG database and alignment analysis of amino acid sequence of AADC have suggested that L-tryptophan and L-phenylalanine are the potential substrates of AADC. The enzymatic kinetic experiment of the recombinant AADC proved that L-tryptophan is a more reactive substrate of AADC than L-phenylalanine. Meanwhile, the AADC-catalyzed conversion of L-tryptophan into tryptamine was confirmed by means of HPLC and LC/MS. Thus during bacillamide C biosynthesis, the decarboxylation of L-tryptophan to tryptamine is likely conducted first under AADC catalysis, followed by the amidation of tryptamine with the carboxylic product of NRPS gene cluster.

  14. Adsorption and self-assembly of aromatic carboxylic acids on Au/electrolyte interfaces.

    PubMed

    Han, Bo; Li, Zhihai; Wandlowski, Thomas

    2007-05-01

    The adsorption and self-assembly of benzoic acid (BA), isophthalic acid (IA), and trimesic acid (TMA) on Au(111) single crystals and on Au(111-25 nm) quasi-single crystalline film electrodes have been investigated in 0.1 M HClO4 by combining in situ surface-enhanced infrared reflection absorption spectroscopy (SEIRAS) and scanning tunneling microscopy (STM) with cyclic voltammetry. All three acids are physisorbed on the electrode surface in a planar orientation at negative charge densities. Excursion to positive charge densities (or more positive potentials) causes an orientation change from planar to perpendicular. Chemisorbed structures are formed through the coordination of a deprotonated carboxyl group to the positively charged electrode surface. The three acid molecules assemble in different ordered patterns, which are controlled by pi-stacking (BA) or intermolecular hydrogen bonds between COOH groups (IA, TMA). A detailed analysis of the potential and time dependencies of the nu(C=O), nus(OCO), and nu(C-OH) vibration modes shows that the strength of lateral interactions increases upon chemisorption with an increasing number of COOH groups in the sequence of BA

  15. Water-Soluble Poly(p-aryleneethynylene)s: A Sensor Array Discriminates Aromatic Carboxylic Acids.

    PubMed

    Han, Jinsong; Wang, Benhua; Bender, Markus; Seehafer, Kai; Bunz, Uwe H F

    2016-08-10

    A chemical tongue consisting of 11 elements (four poly(p-aryleneethynylene)s (PAE) at pH 7 and pH 13, and seven electrostatic complexes formed from oppositely charged poly(p-aryleneethynylene)s at pH 7) discriminate 21 benzoic and phenylacetic acid derivatives in aqueous solution. The mechanism of discrimination is the fluorescence modulation of the PAEs, leading to quenching or fluorescence turn-on. The PAEs alone at both pH values and the tongue, consisting of the complexes only, discriminate the 21 acids with 92% (PAEs at pH 7), 95% (PAEs at pH 13), and 99% (complexes at pH 7) reliability after linear discriminant analysis (LDA). A sensor field with all 14 elements, according to LDA, discriminates all of the 21 acids with 100% accuracy. PMID:27415439

  16. The Legionella pneumophila Siderophore Legiobactin Is a Polycarboxylate That Is Identical in Structure to Rhizoferrin

    PubMed Central

    Burnside, Denise M.; Wu, Yuyang; Shafaie, Saman

    2015-01-01

    Legionella pneumophila, the agent of Legionnaires' disease, secretes a siderophore (legiobactin) that promotes bacterial infection of the lung. In past work, we determined that cytoplasmic LbtA (from Legiobactin gene A) promotes synthesis of legiobactin, inner membrane LbtB aids in export of the siderophore, and outer membrane LbtU and inner membrane LbtC help mediate ferrilegiobactin uptake and assimilation. However, the past studies examined legiobactin contained within bacterial culture supernatants. By utilizing high-pressure liquid chromatography that incorporates hydrophilic interaction-based chemistry, we have now purified legiobactin from supernatants of virulent strain 130b that is suitable for detailed chemical analysis. High-resolution mass spectrometry (MS) revealed that the molecular mass of (protonated) legiobactin is 437.140 Da. On the basis of the results obtained from both MS analysis and various forms of nuclear magnetic resonance, we found that legiobactin is composed of two citric acid residues linked by a putrescine bridge and thus is identical in structure to rhizoferrin, a polycarboxylate-type siderophore made by many fungi and several unrelated bacteria. Both purified legiobactin and rhizoferrin obtained from the fungus Cunninghamella elegans were able to promote Fe3+ uptake by wild-type L. pneumophila as well as enhance growth of iron-starved bacteria. These results did not occur with 130b mutants lacking lbtU or lbtC, indicating that both endogenously made legiobactin and exogenously derived rhizoferrin are assimilated by L. pneumophila in an LbtU- and LbtC-dependent manner. PMID:26195554

  17. Syntheses, crystal structures, and properties of four complexes based on polycarboxylate and imidazole ligands

    NASA Astrophysics Data System (ADS)

    Qiao, Rui; Chen, Shui-Sheng; Sheng, Liang-Quan; Yang, Song; Li, Wei-Dong

    2015-08-01

    Four metal-organic coordination polymers [Zn(HL)(H2O)]·4H2O (1), [Zn(HL)(L1)]·4H2O (2), [Cu(HL)(H2O)]·3H2O (3) and [Cu(HL)(L1)]·5H2O (4) were synthesized by reactions of the corresponding metal(II) salts with semirigid polycarboxylate ligand (5-((4-carboxypiperidin-1-yl)methyl)isophthalic acid hydrochloride, H3L·HCl) or auxiliary ligand (1,4-di(1H-imidazol-4-yl)benzene, L1). The structures of the compounds were characterized by elemental analysis, FT-IR spectroscopy and single-crystal X-ray diffraction. The use of auxiliary ligand L1 has great influence on the structures of two pairs of complexes 1, 2 and 3, 4. Complex 1 is a uninodal 3-connected rare 2-fold interpenetrating ZnSc net with a Point (Schlafli) symbol of (103) while 2 is a one-dimensional (1D) ladder structure. Compound 3 features a two-dimensional (2D) honeycomb network with typical 63-hcb topology, while 4 is 2D network with (4, 4) sql topology based on binuclear CuII subunits. The non-covalent bonding interactions such as hydrogen bonds, π···π stacking and C-H···π exist in complexes 1-4, which contributes to stabilize crystal structure and extend the low-dimensional entities into high-dimensional frameworks. And the photoluminescent property of 1 and 2 and gas sorption property of 4 have been investigated.

  18. Concerted effects in the reaction of rad OH radicals with aromatics: radiolytic oxidation of salicylic acid

    NASA Astrophysics Data System (ADS)

    Albarran, G.; Schuler, R. H.

    2003-06-01

    Liquid chromatographic and capillary electrophoretic studies have been used to resolve the products produced in the radiolytic oxidation of salicylic acid in aqueous solution. These studies have shown that, as in the case of phenol, rad OH radicals preferentially add to the positions ortho and para to the OH substituent. However, in contrast to its reaction with phenol, addition at the ortho position is favored over addition at the para position. Because rad OH radical is a strong electrophile this difference suggests that the electron population at the ortho position in the salicylate anion is enhanced as a result of the hydrogen bonding in salicylic acid.

  19. Pretreatment of solid carbonaceous material with dicarboxylic aromatic acids to prevent scale formation

    DOEpatents

    Brunson, Roy J.

    1982-01-01

    Scale formation during the liquefaction of lower ranking coals and similar carbonaceous materials is significantly reduced and/or prevented by pretreatment with a pretreating agent selected from the group consisting of phthalic acid, phthalic anhydride, pyromellitic acid and pyromellitic anhydride. The pretreatment is believed to convert the scale-forming components to the corresponding phthalate and/or pyromellitate prior to liquefaction. The pretreatment is accomplished at a total pressure within the range from about 1 to about 2 atmospheres. Temperature during pretreatment will generally be within the range from about 5.degree. to about 80.degree. C.

  20. Vibrational analysis of amino acids and short peptides in hydrated media. VIII. Amino acids with aromatic side chains: L-phenylalanine, L-tyrosine, and L-tryptophan.

    PubMed

    Hernández, Belén; Pflüger, Fernando; Adenier, Alain; Kruglik, Sergei G; Ghomi, Mahmoud

    2010-11-25

    Four out of the 20 natural α-amino acids (α-AAs) contain aromatic rings in their side chains. In a recent paper (J. Phys. Chem. B 2010, 114, 9072-9083), we have analyzed the structural and vibrational features of l-histidine, one of the potent elements of this series. Here, we report on the three remaining members of this family, i.e., l-phenylalanine, l-tyrosine, and l-tryptophan. Their solution (H(2)O and D(2)O) Raman scattering and Fourier transform infrared absorption attenuated total reflection (FT-IR ATR) spectra were measured at room temperature from the species corresponding to those existing at physiological conditions. Because of the very low water solubility of tyrosine, special attention was paid to avoid any artifact concerning the report of the vibrational spectra corresponding to nondissolved powder of this AA in aqueous solution. Finally, we could obtain for the first time the Raman and FT-IR spectra of tyrosine at very low concentration (2.3 mM) upon long accumulation time. To clarify this point, those vibrational spectra of tyrosine recorded either in the solid phase or in a heterogeneous state, where dissolved and nondissolved species of this AA coexist in aqueous solution, are also provided as Supporting Information . To carry out a discussion on the general geometrical and vibrational behavior of these AAs, we resorted to quantum mechanical calculations at the DFT/B3LYP/6-31++G* level, allowing (i) determination of potential energy surfaces of these AAs in a continuum solvent as a function of the torsion angles χ(1) and χ(2), defining the conformation of each aromatic side chain around C(α)-C(β) and C(β)-C(γ) bonds, respectively; (ii) analysis of geometrical features of the AAs surrounded by clusters of n explicit (n = 5-7) water molecules interacting with the backbone and aromatic rings; and (iii) assignment of the observed vibrational modes by means of the theoretical data provided by the lowest energy conformers of explicitly

  1. Two new Zn(II) coordination polymers based on mixed pipemidic acid and flexible aromatic dicarboxylic acid ligands: Syntheses, crystal structures and luminescent properties

    NASA Astrophysics Data System (ADS)

    Jia, Yanxia; Zhou, Pingping

    2016-09-01

    Two new Zn(II) coordination polymers, namely [Zn(4,4‧-sdb) (HPPA)]n (1) and [Zn(2,2‧-bpdc)0.5(PPA)]n (2) (4,4‧-H2sdb = 4,4‧-sulfonyldibenzoate, 2,2‧-H2bpdc = 2,2‧-biphenyldicarboxylic acid, HPPA = pipemidic acid) were successfully obtained under hydrothermal conditions. These two compounds were further characterized by single-crystal X-ray diffraction analyses, elemental analyses, powder X-ray diffraction (PXRD) analyses and IR spectra. Compound 1 features a 1D chain structure, which further extended into a 3D supramolecular framework via intermolecular hydrogen bonds and weak van der Waals interactions, and compound 2 features a 3D framework with 6-connected α-Po-type topology. The structural regulation for these two compounds was successfully achieved by changing the flexible aromatic dicarboxylic acid ligand. Moreover, the thermal stabilities and luminescent properties for these two compounds were also investigated.

  2. Comparison of Aromatic Dithiophoshinic and Phosphinic Acid Derivatives for Minor Actinide Extraction

    SciTech Connect

    John R. Klaehn; Dean R. Peterman; Mason K. Harrup; Richard D. Tillotson; Mitchell R. Greenhalgh; Thomas A. Luther; Jack D. Law; Lee M. Daniels

    2008-03-01

    A new extractant for the separation of actinide(III) and lanthanide(III), bis(otrifluoromethylphenyl) phosphinic acid (O-PA) was synthesized. The synthetic route employed mirrors one that was employed to produce the sulfur containing analog bis(otrifluoromethylphenyl) dithiophosphinic acid (S-PA). Multinuclear NMR spectroscopy was used for elementary characterization of the new O-PA derivative. This new O-PA extractant was used to perform Am(III)/Eu(III) separations and the results were directly compared to those obtained in identical separation experiments using S-PA, an extractant that is known to exhibit separation factors of ~100,000 at low pH. The separations data are presented and discussed in terms comparing the nature of the oxygen atom as a donor to that of the sulfur atom in extractants that are otherwise identical.

  3. Energetics and kinetics of anaerobic aromatic and fatty acid degradation. Progress report, March 1992--June 1995

    SciTech Connect

    McInerney M.J.

    1995-06-23

    Factors affecting the rate and extent of benzoate degradation by anaerobic syntrophic consortia were studied. Cocultures of a syntrophic benzoate degrader, strain SB, with a hydrogen/formate-using sulfate reducer degraded benzoate to a threshold that depended on the amount of substrate and acetate present. The benzoate threshold was not a function of the inhibition of benzoate degradation capacity by acetate or the toxicity of the undissociated form of acetate. Rather, a critical or minimal Gibb`s free energy value may exist where thermodynamic constraints preclude further benzoate degradation. A sensitive assay to detect low formate concentrations was developed to measure the formate levels when the benzoate threshold was reached. We showed that increased acetate concentrations, even when hydrogen and formate levels are low, affects the extent of benzoate degradation, implicating the importance of interspecies acetate transfer. In addition to benzoate, various saturated and unsaturated fatty acids, 2-methylbutyrate, and methyl esters of fatty acids supported growth in coculture with a hydrogen-using partner. SB is the only syntrophic bacterium known to use both benzoate and fatty acids. Phylogenetic analysis showed that SB clustered with sulfate reducers in the delta subclass of the Proteobacteria. SB grew well in coculture with Desulfoarculus baarsii, a sulfate reducer that uses formate but not hydrogen. This unequivocally shows that SB can grow by interspecies formate transfer.

  4. Comamonas testosteroni uses a chemoreceptor for tricarboxylic acid cycle intermediates to trigger chemotactic responses towards aromatic compounds.

    PubMed

    Ni, Bin; Huang, Zhou; Fan, Zheng; Jiang, Cheng-Ying; Liu, Shuang-Jiang

    2013-11-01

    Bacterial chemotaxis towards aromatic compounds has been frequently observed; however, knowledge of how bacteria sense aromatic compounds is limited. Comamonas testosteroni CNB-1 is able to grow on a range of aromatic compounds. This study investigated the chemotactic responses of CNB-1 to 10 aromatic compounds. We constructed a chemoreceptor-free, non-chemotactic mutant, CNB-1Δ20, by disruption of all 19 putative methyl-accepting chemotaxis proteins (MCPs) and the atypical chemoreceptor in strain CNB-1. Individual complementation revealed that a putative MCP (tagged MCP2201) was involved in triggering chemotaxis towards all 10 aromatic compounds. The recombinant sensory domain of MCP2201 did not bind to 3- or 4-hydroxybenzoate, protocatechuate, catechol, benzoate, vanillate and gentisate, but bound oxaloacetate, citrate, cis-aconitate, isocitrate, α-ketoglutarate, succinate, fumarate and malate. The mutant CNB-1ΔpmdF that lost the ability to metabolize 4-hydroxybenzoate and protocatechuate also lost its chemotactic response to these compounds, suggesting that taxis towards aromatic compounds is metabolism-dependent. Based on the ligand profile, we proposed that MCP2201 triggers taxis towards aromatic compounds by sensing TCA cycle intermediates. Our hypothesis was further supported by the finding that introduction of the previously characterized pseudomonad chemoreceptor (McpS) for TCA cycle intermediates into CNB-1Δ20 likewise triggered chemotaxis towards aromatic compounds.

  5. Advanced Model Compounds for Understanding Acid-Catalyzed Lignin Depolymerization: Identification of Renewable Aromatics and a Lignin-Derived Solvent.

    PubMed

    Lahive, Ciaran W; Deuss, Peter J; Lancefield, Christopher S; Sun, Zhuohua; Cordes, David B; Young, Claire M; Tran, Fanny; Slawin, Alexandra M Z; de Vries, Johannes G; Kamer, Paul C J; Westwood, Nicholas J; Barta, Katalin

    2016-07-20

    The development of fundamentally new approaches for lignin depolymerization is challenged by the complexity of this aromatic biopolymer. While overly simplified model compounds often lack relevance to the chemistry of lignin, the direct use of lignin streams poses significant analytical challenges to methodology development. Ideally, new methods should be tested on model compounds that are complex enough to mirror the structural diversity in lignin but still of sufficiently low molecular weight to enable facile analysis. In this contribution, we present a new class of advanced (β-O-4)-(β-5) dilinkage models that are highly realistic representations of a lignin fragment. Together with selected β-O-4, β-5, and β-β structures, these compounds provide a detailed understanding of the reactivity of various types of lignin linkages in acid catalysis in conjunction with stabilization of reactive intermediates using ethylene glycol. The use of these new models has allowed for identification of novel reaction pathways and intermediates and led to the characterization of new dimeric products in subsequent lignin depolymerization studies. The excellent correlation between model and lignin experiments highlights the relevance of this new class of model compounds for broader use in catalysis studies. Only by understanding the reactivity of the linkages in lignin at this level of detail can fully optimized lignin depolymerization strategies be developed.

  6. Characterization of bovine aromatic L-amino acid decarboxylase expressed in a mouse cell line: comparison with native enzyme.

    PubMed

    Park, D H; Kim, K T; Choi, M U; Samanta, H; Joh, T H

    1992-12-01

    Bovine aromatic L-amino acid decarboxylase (AADC) was expressed in a mouse cell line, using a bovine papilloma virus-derived expression vector containing the full coding region of bovine AADC. The recombinant bovine AADC was characterized biochemically and immunochemically and compared with the native bovine AADC. The specific activity of crude recombinant bovine AADC was 30-fold higher than that of crude native AADC. With regard to optimal pH, effects of pyridoxal phosphate concentration and Km for 3,4-dihydroxyphenylalanine as a substrate, both native and recombinant enzymes were essentially identical. Rabbit polyclonal antiserum directed against bovine adrenal AADC recognized on Western blot a single protein band (molecular mass = 55,000 Dalton) in both native and recombinant bovine AADC crude extracts. Furthermore, double immunodiffusion analysis showed a single precipitin line of confluence with both enzyme preparations, indicating immunological identity of native and recombinant bovine AADC. Northern blot analysis identified a single mRNA species (2.2 kb) from native and recombinant bovine AADC preparations. The recombinant bovine AADC has two charge isozymes corresponding to those of the native bovine enzyme, although their relative abundances are different between native and recombinant enzymes. Taken together, our results show that recombinant bovine AADC, expressed from bovine AADC cDNA in a mouse cell line is not only enzymatically active, but also shares many biochemical and immunochemical common features with native bovine AADC.

  7. Transcriptome profiling and physiological studies reveal a major role for aromatic amino acids in mercury stress tolerance in rice seedlings.

    PubMed

    Chen, Yun-An; Chi, Wen-Chang; Trinh, Ngoc Nam; Huang, Li-Yao; Chen, Ying-Chih; Cheng, Kai-Teng; Huang, Tsai-Lien; Lin, Chung-Yi; Huang, Hao-Jen

    2014-01-01

    Mercury (Hg) is a serious environmental pollution threat to the planet. The accumulation of Hg in plants disrupts many cellular-level functions and inhibits growth and development, but the mechanism is not fully understood. To gain more insight into the cellular response to Hg, we performed a large-scale analysis of the rice transcriptome during Hg stress. Genes induced with short-term exposure represented functional categories of cell-wall formation, chemical detoxification, secondary metabolism, signal transduction and abiotic stress response. Moreover, Hg stress upregulated several genes involved in aromatic amino acids (Phe and Trp) and increased the level of free Phe and Trp content. Exogenous application of Phe and Trp to rice roots enhanced tolerance to Hg and effectively reduced Hg-induced production of reactive oxygen species. Hg induced calcium accumulation and activated mitogen-activated protein kinase. Further characterization of the Hg-responsive genes we identified may be helpful for better understanding the mechanisms of Hg in plants. PMID:24840062

  8. Transcriptome Profiling and Physiological Studies Reveal a Major Role for Aromatic Amino Acids in Mercury Stress Tolerance in Rice Seedlings

    PubMed Central

    Trinh, Ngoc Nam; Huang, Li-Yao; Chen, Ying-Chih; Cheng, Kai-Teng; Huang, Tsai-Lien; Lin, Chung-Yi; Huang, Hao-Jen

    2014-01-01

    Mercury (Hg) is a serious environmental pollution threat to the planet. The accumulation of Hg in plants disrupts many cellular-level functions and inhibits growth and development, but the mechanism is not fully understood. To gain more insight into the cellular response to Hg, we performed a large-scale analysis of the rice transcriptome during Hg stress. Genes induced with short-term exposure represented functional categories of cell-wall formation, chemical detoxification, secondary metabolism, signal transduction and abiotic stress response. Moreover, Hg stress upregulated several genes involved in aromatic amino acids (Phe and Trp) and increased the level of free Phe and Trp content. Exogenous application of Phe and Trp to rice roots enhanced tolerance to Hg and effectively reduced Hg-induced production of reactive oxygen species. Hg induced calcium accumulation and activated mitogen-activated protein kinase. Further characterization of the Hg-responsive genes we identified may be helpful for better understanding the mechanisms of Hg in plants. PMID:24840062

  9. Ascorbic Acid Enhances the Accumulation of Polycyclic Aromatic Hydrocarbons (PAHs) in Roots of Tall Fescue (Festuca arundinacea Schreb.)

    PubMed Central

    Gao, Yanzheng; Li, Hui; Gong, Shuaishuai

    2012-01-01

    Plant contamination by polycyclic aromatic hydrocarbons (PAHs) is crucial to food safety and human health. Enzyme inhibitors are commonly utilized in agriculture to control plant metabolism of organic components. This study revealed that the enzyme inhibitor ascorbic acid (AA) significantly reduced the activities of peroxidase (POD) and polyphenol oxidase (PPO), thus enhancing the potential risks of PAH contamination in tall fescue (Festuca arundinacea Schreb.). POD and PPO enzymes in vitro effectively decomposed naphthalene (NAP), phenanthrene (PHE) and anthracene (ANT). The presence of AA reduced POD and PPO activities in plants, and thus was likely responsible for enhanced PAH accumulation in tall fescue. This conclusion is supported by the significantly enhanced uptake of PHE in plants in the presence of AA, and the positive correlation between enzyme inhibition efficiencies and the rates of metabolism of PHE in tall fescue roots. This study provides a new perspective, that the common application of enzyme inhibitors in agricultural production could increase the accumulation of organic contaminants in plants, hence enhancing risks to food safety and quality. PMID:23185628

  10. Hydration profiles of aromatic amino acids: conformations and vibrations of L-phenylalanine-(H2O)n clusters.

    PubMed

    Ebata, Takayuki; Hashimoto, Takayo; Ito, Takafumi; Inokuchi, Yoshiya; Altunsu, Fuat; Brutschy, Bernhard; Tarakeshwar, P

    2006-11-01

    IR-UV double resonance spectroscopy and ab initio calculations were employed to investigate the structures and vibrations of the aromatic amino acid, L-phenylalanine-(H(2)O)(n) clusters formed in a supersonic free jet. Our results indicate that up to three water molecules are preferentially bound to both the carbonyl oxygen and the carboxyl hydrogen of L-phenylalanine (L-Phe) in a bridged hydrogen-bonded conformation. As the number of water molecules is increased, the bridge becomes longer. Two isomers are found for L-Phe-(H(2)O)(1), and both of them form a cyclic hydrogen-bond between the carboxyl group and the water molecule. In L-Phe-(H(2)O)(2), only one isomer was identified, in which two water molecules form extended cyclic hydrogen bonds with the carboxyl group. In the calculated structure of L-Phe-(H(2)O)(3) the bridge of water molecules becomes larger and exhibits an extended hydrogen-bond to the pi-system. Finally, in isolated L-Phe, the D conformer was found to be the most stable conformer by the experiment and by the ab initio calculation.

  11. Advanced Model Compounds for Understanding Acid-Catalyzed Lignin Depolymerization: Identification of Renewable Aromatics and a Lignin-Derived Solvent.

    PubMed

    Lahive, Ciaran W; Deuss, Peter J; Lancefield, Christopher S; Sun, Zhuohua; Cordes, David B; Young, Claire M; Tran, Fanny; Slawin, Alexandra M Z; de Vries, Johannes G; Kamer, Paul C J; Westwood, Nicholas J; Barta, Katalin

    2016-07-20

    The development of fundamentally new approaches for lignin depolymerization is challenged by the complexity of this aromatic biopolymer. While overly simplified model compounds often lack relevance to the chemistry of lignin, the direct use of lignin streams poses significant analytical challenges to methodology development. Ideally, new methods should be tested on model compounds that are complex enough to mirror the structural diversity in lignin but still of sufficiently low molecular weight to enable facile analysis. In this contribution, we present a new class of advanced (β-O-4)-(β-5) dilinkage models that are highly realistic representations of a lignin fragment. Together with selected β-O-4, β-5, and β-β structures, these compounds provide a detailed understanding of the reactivity of various types of lignin linkages in acid catalysis in conjunction with stabilization of reactive intermediates using ethylene glycol. The use of these new models has allowed for identification of novel reaction pathways and intermediates and led to the characterization of new dimeric products in subsequent lignin depolymerization studies. The excellent correlation between model and lignin experiments highlights the relevance of this new class of model compounds for broader use in catalysis studies. Only by understanding the reactivity of the linkages in lignin at this level of detail can fully optimized lignin depolymerization strategies be developed. PMID:27310182

  12. The effect of sorption on the degradation of aromatic acids and bases

    SciTech Connect

    Ainsworth, C.C.; Fredrickson, J.K.; Smith, S.C.

    1992-10-01

    The availability and degradation of selected ionizable organic compounds sorbed to pure mineral phases are discussed. Substrates sorbed to mineral surfaces may or may not be protected from microbial attack; the degree of protection appears to be dependent on the type and cell density of the microorganism involved. The currently available data, however, demonstrate that there is little, if any, consensus on the types of reactions or interactions that facilitate sorbed substrate utilization. Rates of degradation of organic bases and cations that sorb to clay minerals via an exchange reaction are suggested to be directly related to substrate binding intensity and conformation on the clay surface. Similarly, rates of degradation of organic acids sorbed to the surface of oxides are suggested to be related to their interaction with the surface and the type of oxide sorbent. Although the rate-limiting step in microbial utilization of sorbed acids and bases is apparently a desorption process, the rate of desorption is itself linked to the compound`s binding intensities on a given sorbent. Thus, as the binding intensities of compounds increase, chemical kinetic reactions, rather than mass-transfer processes, appear to limit the rate of desorption.

  13. The effect of sorption on the degradation of aromatic acids and bases

    SciTech Connect

    Ainsworth, C.C.; Fredrickson, J.K.; Smith, S.C.

    1992-10-01

    The availability and degradation of selected ionizable organic compounds sorbed to pure mineral phases are discussed. Substrates sorbed to mineral surfaces may or may not be protected from microbial attack; the degree of protection appears to be dependent on the type and cell density of the microorganism involved. The currently available data, however, demonstrate that there is little, if any, consensus on the types of reactions or interactions that facilitate sorbed substrate utilization. Rates of degradation of organic bases and cations that sorb to clay minerals via an exchange reaction are suggested to be directly related to substrate binding intensity and conformation on the clay surface. Similarly, rates of degradation of organic acids sorbed to the surface of oxides are suggested to be related to their interaction with the surface and the type of oxide sorbent. Although the rate-limiting step in microbial utilization of sorbed acids and bases is apparently a desorption process, the rate of desorption is itself linked to the compound's binding intensities on a given sorbent. Thus, as the binding intensities of compounds increase, chemical kinetic reactions, rather than mass-transfer processes, appear to limit the rate of desorption.

  14. Aromatization of hydrocarbons by oxidative dehydrogenation catalyzed by the mixed addenda heteropoly acid H sub 5 PMo sub 10 V sub 2 O sub 40

    SciTech Connect

    Neumann, R. ); Lissle, M. )

    1989-09-15

    The mixed addenda heteropoly acid H{sub 5}PMo{sub 10}V{sub 2}O{sub 40} dissolved in 1,2-dichloroethane with tetraglyme, forming the (tetraglyme){sub 3}-H{sub 5}PMo{sub 10}V{sub 2}O{sub 40} complex, catalyzes the aromatization of cyclic dienes at moderate temperatures in the presence of molecular oxygen. Dehydrogenations of exocyclic dienes such as limonene show that dehydrogenation is preceded by isomerization to their endocyclic isomers. Aromatization takes place by successive one-electron transfers and proton abstractions from the organic substrate to the heteropoly acid the latter being reoxidized by dioxygen coupled with the formation of water.

  15. Aromatic Amino Acids Required for Pili Conductivity and Long-Range Extracellular Electron Transport in Geobacter sulfurreducens

    PubMed Central

    Vargas, Madeline; Malvankar, Nikhil S.; Tremblay, Pier-Luc; Leang, Ching; Smith, Jessica A.; Patel, Pranav; Synoeyenbos-West, Oona; Nevin, Kelly P.; Lovley, Derek R.

    2013-01-01

    ABSTRACT It has been proposed that Geobacter sulfurreducens requires conductive pili for long-range electron transport to Fe(III) oxides and for high-density current production in microbial fuel cells. In order to investigate this further, we constructed a strain of G. sulfurreducens, designated Aro-5, which produced pili with diminished conductivity. This was accomplished by modifying the amino acid sequence of PilA, the structural pilin protein. An alanine was substituted for each of the five aromatic amino acids in the carboxyl terminus of PilA, the region in which G. sulfurreducens PilA differs most significantly from the PilAs of microorganisms incapable of long-range extracellular electron transport. Strain Aro-5 produced pili that were properly decorated with the multiheme c-type cytochrome OmcS, which is essential for Fe(III) oxide reduction. However, pili preparations of the Aro-5 strain had greatly diminished conductivity and Aro-5 cultures were severely limited in their capacity to reduce Fe(III) compared to the control strain. Current production of the Aro-5 strain, with a graphite anode serving as the electron acceptor, was less than 10% of that of the control strain. The conductivity of the Aro-5 biofilms was 10-fold lower than the control strain’s. These results demonstrate that the pili of G. sulfurreducens must be conductive in order for the cells to be effective in extracellular long-range electron transport. PMID:23481602

  16. Effects of Lewis acid catalysts on the hydrogenation and cracking of two-ring aromatic and hydroaromatic structures related to coal

    SciTech Connect

    Salim, Sadie S.; Bell, Alexis T.

    1982-08-01

    Little is known about the hydrogenation of fused aromatic nuclei during the liquefaction of coal under the influence of Lewis acid catalysts. For this paper, this study was conducted to establish the effects of catalyst acidity on the activity and selectivity of Lewis acid catalysts, the sources of hydrogen involved in hydrogenation and cracking, and the relations between reactant structure and reactivity. Two-ring aromatic and hydroaromatic compounds were used to simulate some of the structural units present in coal. The catalysts examined were ZnCl2 and AlCl3. ZnCl2 is less active than AlCl3 for both hydrogenation and cracking but it does not promote the formation of tars via Scholl condensation: Methyl or hydroxyl substitution of the reactants greatly enhances their reactivity towards hydrogenation and cracking. The source of hydrogen consumed during hydrogenation depends on the choice of catalyst. In the presence of AlCl3, Scholl condensation of aromatic nuclei serves as the principal source of hydrogen. Molecular hydrogen is used exclusively, though, when hydrogenation is catalysed by ZnCl2. The formation of reaction products and the trends in reactant reactivity can be interpreted on the basis of carbonium ion mechanisms. Finally, the results of this study provide a basis for assessing the extent of hydrogenation occurring during the liquefaction of coal using ZnCl2 or AlCl3.

  17. Polycyclic aromatic hydrocarbon removal from contaminated soils using fatty acid methyl esters.

    PubMed

    Gong, Zongqiang; Wang, Xiaoguang; Tu, Ying; Wu, Jinbao; Sun, Yifei; Li, Peng

    2010-03-01

    In this study, solubilization of PAHs from a manufactured gas plant (MGP) soil and two artificially spiked soils using fatty acid methyl esters (FAME) was investigated. PAH removals from both the MGP and the spiked soils by FAME, methanol, soybean oil, hydroxypropyl-beta-cyclodextrin, Triton X-100, and Tween 80 were compared. The effect of FAME:MGP soil ratios on PAH removals was also investigated. Results showed that the FAME mixture synthesized by our lab was more efficient than the cyclodextrin and the two surfactants used for PAH removal from the spiked soils with individual PAH concentrations of 200 and 400 mg kg(-1). However, the difference among three PAH removals by the FAME, soybean oil and methanol was not quite pronounced. The FAME synthesized and market biodiesel exhibited better performance for PAH removals (46% and 35% of total PAH) from the weathered contaminated MGP soil when compared with the other agents (0-31%). Individual PAH removals from the weathered MGP soil were much lower than those from the spiked soils. The percentages of total PAH removals from the MGP soil were 59%, 46%, and 51% for the FAME:MGP soil ratios of 1:2, 1:1, and 2:1, respectively. These results showed that the FAME could be a more attractive alternative to conventional surfactants in ex situ washing of PAH-contaminated soils. PMID:20149410

  18. Effect of polycarboxylate ether comb-type polymer on viscosity and interfacial properties of kaolinite clay suspensions.

    PubMed

    Zhang, Ling; Lu, Qingye; Xu, Zhenghe; Liu, Qingxia; Zeng, Hongbo

    2012-07-15

    The interactions between kaolinite clay particles and a comb-type polymer (polycarboxylate ether or PCE), so-called PCE super-plasticizer, were investigated through viscosity and surface forces measurements by a rheometer and a Surface Forces Apparatus (SFA). The addition of PCE shows a strong impact on the viscosity of concentrated kaolinite suspensions in alkaline solutions (pH=8.3) but a weak effect under acidic conditions (pH=3.4). In acidic solutions, the high viscosity measured is attributed to the strong electrostatic interaction between negatively charged basal planes and positively charged edge surfaces of clay particles. Under the alkaline condition, the suspension viscosity was found to first increase significantly and then decrease with increasing PCE dosages. The results from surface forces measurement show that PCE molecules at low dosages can bridge the kaolinite particles in the concentrated suspensions via hydrogen bonding, leading to the formation of a kaolinite-PCE "network" and hence an increased suspension viscosity. At high PCE dosages, clay particles are fully covered by PCE molecules, leading to a more dispersed kaolinite suspensions and hence lower suspension viscosity due to steric repulsion between the adsorbed PCE molecules. The insights derived from measuring viscosity and interfacial properties of kaolinite suspensions containing varying amount of comb-type super-plasticizer PCE at different pH provide the foundation for many engineering applications and optimizing industrial processes. PMID:22591681

  19. Zinc polycarboxylate dental cement for the controlled release of an active organic substance: proof of concept.

    PubMed

    Ali, Mohammad Naseem; Edwards, Mark; Nicholson, John W

    2010-04-01

    The potential of employing zinc polycarboxylate dental cement as a controlled release material has been studied. Benzalkonium chloride was used as the active ingredient, and incorporated at concentrations of 1, 2 and 3% by mass within the cement. At these levels, there was no observable effect on the speed of setting. Release was followed using an ion-selective electrode to determine changes in chloride ion concentration with time. This technique showed that the additive was released when the cured cement was placed in water, with release occurring by a diffusion mechanism for the first 3 h, but continuing beyond that for up to 1 week. Diffusion coefficients were in the range 5.62 x 10(-6) cm(2) s(-1) (for 1% concentration) to 10.90 x 10(-6) cm(2) s(-1) (for 3% concentration). Up to 3% of the total loading of benzalkonium chloride was released from the zinc polycarboxylate after a week, which is similar to that found in previous studies with glass-ionomer cement. It is concluded that zinc polycarboxylate cement is capable of acting as a useful material for the controlled release of active organic compounds.

  20. Syntheses, crystal structures, and properties of four complexes based on polycarboxylate and imidazole ligands

    SciTech Connect

    Qiao, Rui; Chen, Shui-Sheng; Sheng, Liang-Quan; Yang, Song; Li, Wei-Dong

    2015-08-15

    Four metal–organic coordination polymers [Zn(HL)(H{sub 2}O)]·4H{sub 2}O (1), [Zn(HL)(L{sub 1})]·4H{sub 2}O (2), [Cu(HL)(H{sub 2}O)]·3H{sub 2}O (3) and [Cu(HL)(L{sub 1})]·5H{sub 2}O (4) were synthesized by reactions of the corresponding metal(II) salts with semirigid polycarboxylate ligand (5-((4-carboxypiperidin-1-yl)methyl)isophthalic acid hydrochloride, H{sub 3}L·HCl) or auxiliary ligand (1,4-di(1H-imidazol-4-yl)benzene, L{sub 1}). The structures of the compounds were characterized by elemental analysis, FT-IR spectroscopy and single-crystal X-ray diffraction. The use of auxiliary ligand L{sub 1} has great influence on the structures of two pairs of complexes 1, 2 and 3, 4. Complex 1 is a uninodal 3-connected rare 2-fold interpenetrating ZnSc net with a Point (Schlafli) symbol of (10{sup 3}) while 2 is a one-dimensional (1D) ladder structure. Compound 3 features a two-dimensional (2D) honeycomb network with typical 6{sup 3}-hcb topology, while 4 is 2D network with (4, 4) sql topology based on binuclear Cu{sup II} subunits. The non-covalent bonding interactions such as hydrogen bonds, π···π stacking and C–H···π exist in complexes 1–4, which contributes to stabilize crystal structure and extend the low-dimensional entities into high-dimensional frameworks. And the photoluminescent property of 1 and 2 and gas sorption property of 4 have been investigated. - Graphical abstract: Four new coordination polymers have been obtained and their photoluminescent and gas sorption properties have also been investigated. - Highlights: • Two pairs of Zn{sup II}/ Cu{sup II} compounds have been synthesized. • Auxiliary ligand-controlled assembly of the complexes is reported. • The luminescent properties of complexes 1–2 were investigated. • The gas sorption property of 4 has been investigated.

  1. Studies on the Simultaneous Formation of Aroma-Active and Toxicologically Relevant Vinyl Aromatics from Free Phenolic Acids during Wheat Beer Brewing.

    PubMed

    Langos, Daniel; Granvogl, Michael

    2016-03-23

    During the brewing process of wheat beer, the desired aroma-active vinyl aromatics 2-methoxy-4-vinylphenol and 4-vinylphenol as well as the undesired and toxicologically relevant styrene are formed from their respective precursors, free ferulic acid, p-coumaric acid, and cinnamic acid, deriving from the malts. Analysis of eight commercial wheat beers revealed high concentrations of 2-methoxy-4-vinylphenol and 4-vinylphenol always in parallel with high concentrations of styrene or low concentrations of the odorants in parallel with low styrene concentrations, suggesting a similar pathway. To better understand the formation of these vinyl aromatics, each process step of wheat beer brewing and the use of different strains of Saccharomyces cerevisiae were evaluated. During wort boiling, only a moderate decarboxylation of free phenolic acids and formation of desired and undesired vinyl aromatics were monitored due to the thermal treatment. In contrast, this reaction mainly occurred enzymatically catalyzed during fermentation with S. cerevisiae strain W68 with normal Pof(+) activity (phenolic off-flavor) resulting in a wheat beer eliciting the typical aroma requested by consumers due to high concentrations of 2-methoxy-4-vinylphenol (1790 μg/L) and 4-vinylphenol (937 μg/L). Unfortunately, also a high concentration of undesired styrene (28.3 μg/L) was observed. Using a special S. cerevisiae strain without Pof(+) activity resulted in a significant styrene reduction (

  2. Studies on the Simultaneous Formation of Aroma-Active and Toxicologically Relevant Vinyl Aromatics from Free Phenolic Acids during Wheat Beer Brewing.

    PubMed

    Langos, Daniel; Granvogl, Michael

    2016-03-23

    During the brewing process of wheat beer, the desired aroma-active vinyl aromatics 2-methoxy-4-vinylphenol and 4-vinylphenol as well as the undesired and toxicologically relevant styrene are formed from their respective precursors, free ferulic acid, p-coumaric acid, and cinnamic acid, deriving from the malts. Analysis of eight commercial wheat beers revealed high concentrations of 2-methoxy-4-vinylphenol and 4-vinylphenol always in parallel with high concentrations of styrene or low concentrations of the odorants in parallel with low styrene concentrations, suggesting a similar pathway. To better understand the formation of these vinyl aromatics, each process step of wheat beer brewing and the use of different strains of Saccharomyces cerevisiae were evaluated. During wort boiling, only a moderate decarboxylation of free phenolic acids and formation of desired and undesired vinyl aromatics were monitored due to the thermal treatment. In contrast, this reaction mainly occurred enzymatically catalyzed during fermentation with S. cerevisiae strain W68 with normal Pof(+) activity (phenolic off-flavor) resulting in a wheat beer eliciting the typical aroma requested by consumers due to high concentrations of 2-methoxy-4-vinylphenol (1790 μg/L) and 4-vinylphenol (937 μg/L). Unfortunately, also a high concentration of undesired styrene (28.3 μg/L) was observed. Using a special S. cerevisiae strain without Pof(+) activity resulted in a significant styrene reduction (

  3. Bupivacaine salts of diflunisal and other aromatic hydroxycarboxylic acids: aqueous solubility and release characteristics from solutions and suspensions using a rotating dialysis cell model.

    PubMed

    Østergaard, Jesper; Larsen, Susan W; Parshad, Henrik; Larsen, Claus

    2005-11-01

    In the search for poorly soluble bupivacaine salts potentially enabling prolonged postoperative pain relief after local joint administration in the form of suspensions the solubility of bupivacaine salts of diflunisal and other aromatic hydroxycarboxylic acids were investigated together with the release characteristics of selected 1:1 salts from solutions and suspensions using a rotating dialysis cell model. The poorest soluble bupivacaine salts were obtained from the aromatic ortho-hydroxycarboxylic acids diflunisal, 5-iodosalicylic acid, and salicylic acid (aqueous solubilities: 0.6-1.9 mM at 37 degrees C). Diffusant appearance rates in the acceptor phase upon instillation of solutions of various salts in the donor cell applied to first-order kinetics. Calculated permeability coefficients for bupivacaine and the counterions diflunisal, 5-iodosalicylic acid, and mandelic acid were found to be correlated with the molecular size of the diffusants. Release experiments at physiological pH involving suspensions of the bupivacaine-diflunisal salt revealed that at each sampling point the diflunisal concentration exceeded that of bupivacaine in the acceptor phase. However, after an initial lag period, a steady state situation was attained resulting in equal and constant fluxes of the two diffusants controlled by the permeability coefficients in combination with the solubility product of the salt. Due to the fact that the saturation solubility of the bupivacaine-salicylic acid salt in water exceeded that of bupivacaine at pH 7.4, suspensions of the latter salt were unable to provide simultaneous release of the cationic and anionic species at pH 7.4. The release profiles were characterised by a rapid release of salicylate accompanied by a much slower appearance of bupivacaine in the acceptor phase caused by precipitation of bupivacaine base from the solution upon dissolution of the salt in the donor cell.

  4. Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases.

    PubMed Central

    Drechsel, H; Thieken, A; Reissbrodt, R; Jung, G; Winkelmann, G

    1993-01-01

    Growth promotion and iron transport studies revealed that certain alpha-keto acids generated by amino acid deaminases, by enterobacteria of the Proteus-Providencia-Morganella group (of the tribe Proteeae), show significant siderophore activity. Their iron-binding properties were confirmed by the chrome azurol S assay and UV spectra. These compounds form ligand-to-metal charge transfer bands in the range of 400 to 500 nm. Additional absorption bands of the enolized ligands at 500 to 700 nm are responsible for color formation. Siderophore activity was most pronounced with alpha-keto acids possessing an aromatic or heteroaromatic side chain, like phenylpyruvic acid and indolylpyruvic acid, resulting from deamination of phenylalanine and tryptophan, respectively. In addition, alpha-keto acids possessing longer nonpolar side chains, like alpha-ketoisocaproic acid or alpha-ketoisovaleric acid and even alpha-ketoadipic acid, also showed siderophore activity which was absent or negligible with smaller alpha-keto acids or those possessing polar functional groups, like pyruvic acid, alpha-ketobutyric acid, or alpha-ketoglutaric acid. The fact that deaminase-negative enterobacteria, like Escherichia coli and Salmonella spp., could not utilize alpha-keto acids supports the view that specific iron-carboxylate transport systems have evolved in members of the tribe Proteeae and are designed to recognize ferric complexes of both alpha-hydroxy acids and alpha-keto acids, of which the latter can easily be generated by L-amino acid deaminases in an amino acid-rich medium. Exogenous siderophores, like ferric hydroxamates (ferrichromes) and ferric polycarboxylates (rhizoferrin and citrate), were also utilized by members of the tribe Proteeae. Images PMID:8478334

  5. Polyimidazoles via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor)

    1991-01-01

    Polyimidazoles (Pl) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl)imidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The reactions are carried out in polar aprotic solvents such as N,N-dimethylacetamide, sulfolane, N-methylpyrroldinone, dimethylsulfoxide, or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperature under nitrogen. The di(hydroxyphenyl)imidazole monomers are prepared by reacting an aromatic aldehyde with a dimethoxybenzil or by reacting an aromatic dialdehyde with a methoxybenzil in the presence of ammonium acetate. The di(methoxyphenyl)imidazole is subsequently treated with aqueous hydrobromic acid to give the di(hydroxyphenyl)imidazole monomer. This synthetic route has provided high molecular weight Pl of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the availability of a large variety of activated aromatic dihalides and dinitro compounds.

  6. Polyimidazoles via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor)

    1992-01-01

    Polyimidazoles (PI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl) imidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The reactions are carried out in polar aprotic solvents such as N,N-dimethyl acetamide, sulfolane, N-methylpyrrolidinone, dimethylsulfoxide, or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl) imidazole monomers are prepared by reacting an aromatic aldehyde with a dimethoxybenzil or by reacting an aromatic dialdehyde with a methoxybenzil in the presence of ammonium acetate. The di(methoxyphenyl) imidazole is subsequently treated with aqueous hydrobromic acid to give the di(hydroxphenyl) imidazole monomer. This synthetic route has provided high molecular weight PI of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the availability of a large variety of activated aromatic dihalides and dinitro compounds.

  7. Enhanced formation of aromatic amino acids increases fragrance without affecting flower longevity or pigmentation in Petunia × hybrida.

    PubMed

    Oliva, Moran; Ovadia, Rinat; Perl, Avichai; Bar, Einat; Lewinsohn, Efraim; Galili, Gad; Oren-Shamir, Michal

    2015-01-01

    Purple Petunia × hybrida V26 plants accumulate fragrant benzenoid-phenylpropanoid molecules and anthocyanin pigments in their petals. These specialized metabolites are synthesized mainly from the aromatic amino acids phenylalanine. Here, we studied the profile of secondary metabolites of petunia plants, expressing a feedback-insensitive bacterial form of 3-deoxy-di-arabino-heptulosonate 7-phosphate synthase enzyme (AroG*) of the shikimate pathway, as a tool to stimulate the conversion of primary to secondary metabolism via the aromatic amino acids. We focused on specialized metabolites contributing to flower showy traits. The presence of AroG* protein led to increased aromatic amino acid levels in the leaves and high phenylalanine levels in the petals. In addition, the AroG* petals accumulated significantly higher levels of fragrant benzenoid-phenylpropanoid volatiles, without affecting the flowers' lifetime. In contrast, AroG* abundance had no effect on flavonoids and anthocyanins levels. The metabolic profile of all five AroG* lines was comparable, even though two lines produced the transgene in the leaves, but not in the petals. This implies that phenylalanine produced in leaves can be transported through the stem to the flowers and serve as a precursor for formation of fragrant metabolites. Dipping cut petunia stems in labelled phenylalanine solution resulted in production of labelled fragrant volatiles in the flowers. This study emphasizes further the potential of this metabolic engineering approach to stimulate the production of specialized metabolites and enhance the quality of various plant organs. Furthermore, transformation of vegetative tissues with AroG* is sufficient for induced production of specialized metabolites in organs such as the flowers. PMID:25283446

  8. Solid-phase extraction using bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes for the simultaneous determination of flavonoids and aromatic organic acid preservatives.

    PubMed

    Wang, Na; Liao, Yuan; Wang, Jiamin; Tang, Sheng; Shao, Shijun

    2015-12-01

    A novel bis(indolyl)methane-modified silica reinforced with multiwalled carbon nanotubes sorbent for solid-phase extraction was designed and synthesized by chemical immobilization of nitro-substituted 3,3'-bis(indolyl)methane on silica modified with multiwalled carbon nanotubes. Coupled with high-performance liquid chromatography analysis, the extraction properties of the sorbent were evaluated for flavonoids and aromatic organic acid compounds. Under optimum conditions, the sorbent can simultaneously extract five flavonoids and two aromatic organic acid preservatives in aqueous solutions in a single-step solid-phase extraction procedure. Wide linear ranges were obtained with correlation coefficients (R(2) ) ranging from 0.9843 to 0.9976, and the limits of detection were in the range of 0.5-5 μg/L for the compounds tested. Compared with the silica modified with multiwalled carbon nanotubes sorbent and the nitro-substituted 3,3'-bis(indolyl)methane-modified silica sorbent, the developed sorbent exhibited higher extraction efficiency toward the selected analytes. The synergistic effect of nitro-substituted 3,3'-bis(indolyl)methane and multiwalled carbon nanotubes not only improved the surface-to-volume ratio but also enhanced multiple intermolecular interactions, such as hydrogen bonds, π-π, and hydrophobic interactions, between the new sorbent and the selected analytes. The as-established solid-phase extraction with high-performance liquid chromatography and diode array detection method was successfully applied to the simultaneous determination of flavonoids and aromatic organic acid preservatives in grape juices with recoveries ranging from 83.9 to 112% for all the selected analytes.

  9. Enhanced formation of aromatic amino acids increases fragrance without affecting flower longevity or pigmentation in Petunia × hybrida.

    PubMed

    Oliva, Moran; Ovadia, Rinat; Perl, Avichai; Bar, Einat; Lewinsohn, Efraim; Galili, Gad; Oren-Shamir, Michal

    2015-01-01

    Purple Petunia × hybrida V26 plants accumulate fragrant benzenoid-phenylpropanoid molecules and anthocyanin pigments in their petals. These specialized metabolites are synthesized mainly from the aromatic amino acids phenylalanine. Here, we studied the profile of secondary metabolites of petunia plants, expressing a feedback-insensitive bacterial form of 3-deoxy-di-arabino-heptulosonate 7-phosphate synthase enzyme (AroG*) of the shikimate pathway, as a tool to stimulate the conversion of primary to secondary metabolism via the aromatic amino acids. We focused on specialized metabolites contributing to flower showy traits. The presence of AroG* protein led to increased aromatic amino acid levels in the leaves and high phenylalanine levels in the petals. In addition, the AroG* petals accumulated significantly higher levels of fragrant benzenoid-phenylpropanoid volatiles, without affecting the flowers' lifetime. In contrast, AroG* abundance had no effect on flavonoids and anthocyanins levels. The metabolic profile of all five AroG* lines was comparable, even though two lines produced the transgene in the leaves, but not in the petals. This implies that phenylalanine produced in leaves can be transported through the stem to the flowers and serve as a precursor for formation of fragrant metabolites. Dipping cut petunia stems in labelled phenylalanine solution resulted in production of labelled fragrant volatiles in the flowers. This study emphasizes further the potential of this metabolic engineering approach to stimulate the production of specialized metabolites and enhance the quality of various plant organs. Furthermore, transformation of vegetative tissues with AroG* is sufficient for induced production of specialized metabolites in organs such as the flowers.

  10. A quantum chemical study for exploring the inhibitory effect of nitrogen containing species on the adsorption of polynuclear aromatic hydrocarbons over a Bronsted acid site

    NASA Astrophysics Data System (ADS)

    Celis-Cornejo, C. M.; Garnica Mantilla, M. M.; Baldovino-Medrano, V. G.; Ramírez-Caballero, G. E.

    2016-08-01

    The analysis of the inhibitory effect of nitrogenated compounds on the hydroprocessing and hydropurification of oil derived fuels is important to produce cleaner fuels. In this work, density functional theory calculations were performed to investigate the effect of the nitrogen containing molecules on the adsorption of Polynuclear Aromatic Hydrocarbons (PAHs). Mordenite was chosen as a zeolitic structure for simulating a Bronsted acid site. The character of the acid site was confirmed by both a vibrational frequency calculation and a Bader charge analysis. From the adsorption calculations, it was found that the adsorption energy of PAHs increases with the number of aromatic rings in the structure. Also, the nitrogen containing species possibly inhibit more extensively two and three rings PAHs because of their lower adsorption energies. Finally, it was observed that the nitrogen species tend to drag the proton from the mordenite acid site. This explains the inhibitory effect in the adsorption of PAHs and contributes to understanding the dynamics of hydrocarbon hydroprocessing in refineries.

  11. Determination of unconjugated aromatic acids in urine by capillary electrophoresis with dual electrochemical detection--potential application in fast diagnosis of phenylketonuria.

    PubMed

    Zhang, Dong-li; Li, Wen-li; Zhang, Jun-bo; Tang, Wan-rong; Chen, Xiao-fei; Cao, Kai-wen; Chu, Qing-cui; Ye, Jian-nong

    2010-09-01

    A novel method of CE coupled with dual electrochemical detection has been developed for the determination of pathological metabolites of phenylalanine in urine samples. Factors influencing the separation and detection were examined and optimized. Five aromatic acid metabolites and a major coexisting interfering compound uric acid could be well separated within 23 min at a separation voltage of 16 kV using a 35 mmol/L SDS/60 mmol/L H(3)BO(3)-Na(2)B(4)O(7) running buffer (pH 8.2). Highly linear response was obtained for these five biomarker compounds over three orders of magnitude with detection limits ranging from 6.6 to 0.064 μg/mL (S/N=3). The average recovery and RSD were within the range of 92.6-121.0 and 1.0-12.0%, respectively. The proposed method has been used to detect the unconjugated aromatic acids simultaneously in urine samples with the advantages of obtaining more information about target analytes and avoiding redundant measurements and high assay cost, thus could find potential applications involving assays of biomarker compounds for the purpose of fast diagnose of some metabolic diseases including phenylketonuria.

  12. A base-mediated self-propagative Lossen rearrangement of hydroxamic acids for the efficient and facile synthesis of aromatic and aliphatic primary amines.

    PubMed

    Ohtsuka, Naoya; Okuno, Moriaki; Hoshino, Yujiro; Honda, Kiyoshi

    2016-10-14

    A variety of aromatic and aliphatic hydroxamic acids were converted to the corresponding primary amines via base-mediated rearrangement. This rearrangement could proceed with less than 1 equiv. of K2CO3 in polar solvents under thermal conditions with no external reagents. This rearrangement has several features including no external activating agents needed for promoting the rearrangement, less than one equivalent of a base is sufficient for the reaction, and a clean reaction in which only carbon dioxide is produced as a by-product. A self-propagating mechanism via an isocyanate intermediate is proposed and elementary reaction steps, namely, chain propagation reactions are supported by experiments. PMID:27605448

  13. Catalyst-Free Three-Component Tandem CDC Cyclization: Convenient Access to Isoindolinones from Aromatic Acid, Amides, and DMSO by a Pummerer-Type Rearrangement.

    PubMed

    Wang, Peng-Min; Pu, Fan; Liu, Ke-Yan; Li, Chao-Jun; Liu, Zhong-Wen; Shi, Xian-Ying; Fan, Juan; Yang, Ming-Yu; Wei, Jun-Fa

    2016-04-25

    A catalyst-free multicomponent CDC reaction is rarely reported, especially for the intermolecular tandem CDC cyclization, which represents an important strategy for constructing cyclic compounds. Herein, a three-component tandem CDC cyclization by a Pummerer-type rearrangement to afford biologically relevant isoindolinones from aromatic acids, amides, and DMSO, is described. This intermolecular tandem reaction undergoes a C(sp(2) )-H/C(sp(3) )-H cross-dehydrogenative coupling, C-N bond formation, and intramolecular amidation. A notable feature of this novel protocol is avoiding a catalyst and additive (apart from oxidant).

  14. Catalyst-Free Three-Component Tandem CDC Cyclization: Convenient Access to Isoindolinones from Aromatic Acid, Amides, and DMSO by a Pummerer-Type Rearrangement.

    PubMed

    Wang, Peng-Min; Pu, Fan; Liu, Ke-Yan; Li, Chao-Jun; Liu, Zhong-Wen; Shi, Xian-Ying; Fan, Juan; Yang, Ming-Yu; Wei, Jun-Fa

    2016-04-25

    A catalyst-free multicomponent CDC reaction is rarely reported, especially for the intermolecular tandem CDC cyclization, which represents an important strategy for constructing cyclic compounds. Herein, a three-component tandem CDC cyclization by a Pummerer-type rearrangement to afford biologically relevant isoindolinones from aromatic acids, amides, and DMSO, is described. This intermolecular tandem reaction undergoes a C(sp(2) )-H/C(sp(3) )-H cross-dehydrogenative coupling, C-N bond formation, and intramolecular amidation. A notable feature of this novel protocol is avoiding a catalyst and additive (apart from oxidant). PMID:26998754

  15. A base-mediated self-propagative Lossen rearrangement of hydroxamic acids for the efficient and facile synthesis of aromatic and aliphatic primary amines.

    PubMed

    Ohtsuka, Naoya; Okuno, Moriaki; Hoshino, Yujiro; Honda, Kiyoshi

    2016-10-14

    A variety of aromatic and aliphatic hydroxamic acids were converted to the corresponding primary amines via base-mediated rearrangement. This rearrangement could proceed with less than 1 equiv. of K2CO3 in polar solvents under thermal conditions with no external reagents. This rearrangement has several features including no external activating agents needed for promoting the rearrangement, less than one equivalent of a base is sufficient for the reaction, and a clean reaction in which only carbon dioxide is produced as a by-product. A self-propagating mechanism via an isocyanate intermediate is proposed and elementary reaction steps, namely, chain propagation reactions are supported by experiments.

  16. Selective Na(+)/K(+) effects on the formation of α-cyclodextrin complexes with aromatic carboxylic acids: competition for the guest.

    PubMed

    Terekhova, Irina V; Romanova, Anastasia O; Kumeev, Roman S; Fedorov, Maxim V

    2010-10-01

    We investigated the effects of K(+) and Na(+) ions on the formation of α-cyclodextrin complexes with ionized aromatic carboxylic acids. Using solution calorimetry and (1)H NMR, we performed the thermodynamic and structural investigation of α-cyclodextrin complex formation with benzoic and nicotinic acids in different aqueous solutions containing K(+) and Na(+) ions as well as in pure water. The experiments show that the addition of sodium ions to solution leads to a decrease in the binding constants of the carboxylic acids with α-cyclodextrin as compared to pure water and solutions containing potassium ions. From another side, the effect of potassium ions on the binding constants is insignificant as compared to pure water solution. We suggest that the selectivity of cation pairing with carboxylates is the origin of the difference between the effects of sodium and potassium ions on complex formation. The strong counterion pairing between the sodium cation and the carboxylate group shifts the equilibrium toward dissociation of the binding complexes. In turn, the weak counterion pairing between the potassium cation and the carboxylate group has no effect on the complex formation. We complemented the experiments with molecular modeling, which shows the molecular scale details of the formation of cation pairs with the carboxylate groups of the carboxylic acids. The fully atomistic molecular simulations show that sodium ions mainly form direct contact pairs with the carboxylate group. At the same time, potassium ions practically do not form direct contact pairs with the carboxylate groups and usually stay in the second solvation shell of carboxylate groups. That confirms our hypotheses that the selective formation of ion pairs is the main cause of the difference in the observed effects of sodium and potassium salts on the guest-host complex formation of α-cyclodextrin with aromatic carboxylic acids. We propose a molecular mechanism explaining the effects of salts

  17. Chemical design of pH-sensitive nanovalves on the outer surface of mesoporous silicas for controlled storage and release of aromatic amino acid

    SciTech Connect

    Roik, N.V. Belyakova, L.A.

    2014-07-01

    Mesoporous silicas with hexagonally arranged pore channels were synthesized in water–ethanol-ammonia solution using cetyltrimethylammonium bromide as template. Directed modification of silica surface with N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups was realized by postsynthetic activation of halogenoalkylsilicas, which have surface uniformly or selectively distributed 3-chloropropyl groups, with 2-aminodiphenylamine in the liquid phase. Chemical composition of silica materials was estimated by IR spectroscopy and chemical analysis of the surface products of reactions. Characteristics of porous structure of MCM-41-type silicas were determined from X-ray and low-temperature nitrogen ad-desorption measurements. Release ability of synthesized silica carriers was established on encapsulation of 4-aminobenzoic acid in pore channels and subsequent delivery at pH=6.86 and pH=1.00. It was found that N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups block pore entrances at neutral pH preventing 4-aminobenzoic acid release. At pH=1.00 repulsion of positively charged surface aromatic amino groups localized near pore orifices provides unhindered liberation of aromatic amino acid from mesoporous channels. - Graphical abstract: Blocking of pores with N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups at pH=6.86 for storage of ABA and opening of pore entrances at pH=1.00 for unhindered ABA liberation. - Highlights: • Modification of MCM-41 with N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups. • Study of release ability of synthesized silica carriers in relation to amino acid. • Controlled blocking and opening of pores by amino groups at pH change were performed. • Retention of amino acid at pH=6.86 and its liberation at pH=1.00 was proved.

  18. Beta-ketoadipic acid and muconolactone production from a lignin-related aromatic compound through the protocatechuate 3,4-metabolic pathway.

    PubMed

    Okamura-Abe, Yuriko; Abe, Tomokuni; Nishimura, Kei; Kawata, Yasutaka; Sato-Izawa, Kanna; Otsuka, Yuichiro; Nakamura, Masaya; Kajita, Shinya; Masai, Eiji; Sonoki, Tomonori; Katayama, Yoshihiro

    2016-06-01

    In this work, the effects of PcaJ (beta-ketoadipate:succinyl-coenzyme A transferase)- and PcaD (beta-ketoadipate enol-lactone hydrolase)-inactivation on protocatechuic acid metabolism in Pseudomonas putida KT2440 were evaluated. Beta-ketoadipic acid was produced from protocatechuic acid by the inactivation of PcaJ as expected; however, a portion of the produced beta-ketoadipic acid was converted to levulinic acid through a purification step consisting of extraction from the culture and recrystallization. On the other hand, muconolactone was purified from the culture of the PcaD-inactivated mutant of KT2440, although beta-ketoadipate enol-lactone was supposed to be produced because it is the substrate of PcaD. Under aerobic conditions, it has been reported that lignin-related aromatics are metabolized through PCA 2,3- or 3,4- or 4,5-ring cleavage pathways, and muconolactone is an intermediate observed in the metabolism of catechol, not protocatechuic acid. Our results will provide a prospective route to produce muconolactone with a high yield through the protocatechuate-3,4-metabolic pathway.

  19. Role of Aromatic Amino Acids in Lipopolysaccharide and Membrane Interactions of Antimicrobial Peptides for Use in Plant Disease Control.

    PubMed

    Datta, Aritreyee; Bhattacharyya, Dipita; Singh, Shalini; Ghosh, Anirban; Schmidtchen, Artur; Malmsten, Martin; Bhunia, Anirban

    2016-06-17

    KYE28 (KYEITTIHNLFRKLTHRLFRRNFGYT-LR), the representative sequence of helix D of heparin co-factor II, was demonstrated to be potent against agronomically important Gram-negative plant pathogens Xanthomonas vesicatoria and Xanthomonas oryzae, capable of inhibiting disease symptoms in detached tomato leaves. NMR studies in the presence of lipopolysaccharide provided structural insights into the mechanisms underlying this, notably in relationship to outer membrane permeabilization. The three-dimensional solution structure of KYE28 in LPS is characterized by an N-terminal helical segment, an intermediate loop followed by another short helical stretch, and an extended C terminus. The two termini are in close proximity to each other via aromatic packing interactions, whereas the positively charged residues form an exterior polar shell. To further demonstrate the importance of the aromatic residues for this, a mutant peptide KYE28A, with Ala substitutions at Phe(11), Phe(19), Phe(23), and Tyr(25) was designed, which showed attenuated antimicrobial activity at high salt concentrations, as well as lower membrane disruption and LPS binding abilities compared with KYE28. In contrast to KYE28, KYE28A adopted an extended helical structure in LPS with extended N and C termini. Aromatic packing interactions were completely lost, although hydrophobic interaction between the side chains of hydrophobic residues were still partly retained, imparting an amphipathic character and explaining its residual antimicrobial activity and LPS binding as observed from ellipsometry and isothermal titration calorimetry. We thus present key structural aspects of KYE28, constituting an aromatic zipper, of potential importance for the development of novel plant protection agents and therapeutic agents. PMID:27137928

  20. Polycyclic Aromatic Hydrocarbon Affects Acetic Acid Production during Anaerobic Fermentation of Waste Activated Sludge by Altering Activity and Viability of Acetogen.

    PubMed

    Luo, Jingyang; Chen, Yinguang; Feng, Leiyu

    2016-07-01

    Till now, almost all the studies on anaerobic fermentation of waste activated sludge (WAS) for bioproducts generation focused on the influences of operating conditions, pretreatment methods and sludge characteristics, and few considered those of widespread persistent organic pollutants (POPs) in sludge, for example, polycyclic aromatic hydrocarbons (PAHs). Herein, phenanthrene, which was a typical PAH and widespread in WAS, was selected as a model compound to investigate its effect on WAS anaerobic fermentation for short-chain fatty acids (SCFAs) accumulation. Experimental results showed that the concentration of SCFAs derived from WAS was increased in the presence of phenanthrene during anaerobic fermentation. The yield of acetic acid which was the predominant SCFA in the fermentation reactor with the concentration of 100 mg/kg dry sludge was 1.8 fold of that in the control. Mechanism exploration revealed that the present phenanthrene mainly affected the acidification process of anaerobic fermentation and caused the shift of the microbial community to benefit the accumulation of acetic acid. Further investigation showed that both the activities of key enzymes (phosphotransacetylase and acetate kinase) involved in acetic acid production and the quantities of their corresponding encoding genes were enhanced in the presence of phenanthrene. Viability tests by determining the adenosine 5'-triphosphate content and membrane potential confirmed that the acetogens were more viable in anaerobic fermentation systems with phenanthrene, which resulted in the increased production of acetic acid. PMID:27267805

  1. UHPLC-MS simultaneous determination and pharmacokinetic study of three aromatic acids and one monoterpene in rat plasma after oral administration of Shaofu Zhuyu decoction.

    PubMed

    Su, Shulan; Cui, Wenxia; Duan, Jin-Ao; Hua, Yongqing; Guo, Jianming; Shang, Erxin; Liu, Pei; Tang, Yuping

    2013-01-01

    We developed a sensitive and rapid method for determination of ferulic acid, caffeic acid, vanillic acid, and paeoniflorin in rat plasma based on ultra high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). The separation of the four compounds was carried out on an AcQuity UHPLC™ BEH C18 column using a mobile phase consisting of acetonitrile and water (containing 0.1% formic acid). Electrospray ionization in positive and negative ion mode and multiple reaction monitoring was used to identify and quantify active components. All calibration curves gave good linearity (r > 0.991) over the concentration range from 4.24-2875 ngmL(-1) for all components. The precision of the in vivo study was evaluated by intraday and interday assays and the percentages of RSD were all within 10.6%. The recovery ranged from 60.2 to 77.9%. The method was successfully applied to pharmacokinetic study of all three aromatic acids and one monoterpene in rat plasma. Furthermore, we compared the pharmacokinetics profile of the four compounds in normal and primary dysmenorrhea rats' plasma following oral administration of Shaofu Zhuyu decoction (SFZYD) and its ethanol supernatant extract (SFE). PMID:23711150

  2. Mixed ligand complexes of Cu(II)-2-(2-pyridyl)-benzimidazole and aliphatic or aromatic dicarboxylic acids: Synthesis, characterization and biological activity

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ahmed A.; Jeragh, Bakir J. A.

    2007-11-01

    The synthesis and structural characterization of mixed ligand complexes derived from 2-(2-pyridyl)-benzimidazole (PBI) (1ry ligand) and aliphatic or aromatic dicarboxylic acids (2ry ligand) are reported. Cu(II) complexes were characterized on the bases of their elemental analyses, IR, ESR and thermal analyses. The elemental analysis indicated the formation of mixed ligand complexes in a mole ratio 1:1:1 (Cu:L 1:L 2), L 1 = PBI and L 2 = oxalic acid, phthalic acid or malonic acid. IR spectra showed that PBI acts as a neutral bidentate coordinated to the Cu(II) via the pyridyl and imidazolyl nitrogen atoms. The dicarboxylic acids are bidentate with monodentate carboxylate groups. Thermal decomposition study of complexes was monitored by thermogravimetric (TG) and derivative thermogravimetric (DTG) analysis in N 2 atmosphere. The decomposition course and steps were analysed and the activation parameters of the nonisothermal decomposition were calculated from the TG curves and discussed. The isolated metal chelates were screened for their antimicrobial activities and the results are reported, discussed and compared with some known antibiotics.

  3. Rapid and Precise Measurement of Serum Branched-Chain and Aromatic Amino Acids by Isotope Dilution Liquid Chromatography Tandem Mass Spectrometry

    PubMed Central

    Yang, Ruiyue; Dong, Jun; Guo, Hanbang; Li, Hongxia; Wang, Shu; Zhao, Haijian; Zhou, Weiyan; Yu, Songlin; Wang, Mo; Chen, Wenxiang

    2013-01-01

    Background Serum branched-chain and aromatic amino acids (BCAAs and AAAs) have emerged as predictors for the future development of diabetes and may aid in diabetes risk assessment. However, the current methods for the analysis of such amino acids in biological samples are time consuming. Methods An isotope dilution liquid chromatography tandem mass spectrometry (ID-LC/MS/MS) method for serum BCAAs and AAAs was developed. The serum was mixed with isotope-labeled BCAA and AAA internal standards and the amino acids were extracted with acetonitrile, followed by analysis using LC/MS/MS. The LC separation was performed on a reversed-phase C18 column, and the MS/MS detection was performed via the positive electronic spray ionization in multiple reaction monitoring mode. Results Specific analysis of the amino acids was achieved within 2 min. Intra-run and total CVs for the amino acids were less than 2% and 4%, respectively, and the analytical recoveries ranged from 99.6 to 103.6%. Conclusion A rapid and precise method for the measurement of serum BCAAs and AAAs was developed and may serve as a quick tool for screening serum BCAAs and AAAs in studies assessing diabetes risk. PMID:24339906

  4. A Heteromeric Membrane-Bound Prenyltransferase Complex from Hop Catalyzes Three Sequential Aromatic Prenylations in the Bitter Acid Pathway1[OPEN

    PubMed Central

    Li, Haoxun; Ban, Zhaonan; Qin, Hao; Ma, Liya; King, Andrew J.

    2015-01-01

    Bitter acids (α and β types) account for more than 30% of the fresh weight of hop (Humulus lupulus) glandular trichomes and are well known for their contribution to the bitter taste of beer. These multiprenylated chemicals also show diverse biological activities, some of which have potential benefits to human health. The bitter acid biosynthetic pathway has been investigated extensively, and the genes for the early steps of bitter acid synthesis have been cloned and functionally characterized. However, little is known about the enzyme(s) that catalyze three sequential prenylation steps in the β-bitter acid pathway. Here, we employed a yeast (Saccharomyces cerevisiae) system for the functional identification of aromatic prenyltransferase (PT) genes. Two PT genes (HlPT1L and HlPT2) obtained from a hop trichome-specific complementary DNA library were functionally characterized using this yeast system. Coexpression of codon-optimized PT1L and PT2 in yeast, together with upstream genes, led to the production of bitter acids, but no bitter acids were detected when either of the PT genes was expressed by itself. Stepwise mutation of the aspartate-rich motifs in PT1L and PT2 further revealed the prenylation sequence of these two enzymes in β-bitter acid biosynthesis: PT1L catalyzed only the first prenylation step, and PT2 catalyzed the two subsequent prenylation steps. A metabolon formed through interactions between PT1L and PT2 was demonstrated using a yeast two-hybrid system, reciprocal coimmunoprecipitation, and in vitro biochemical assays. These results provide direct evidence of the involvement of a functional metabolon of membrane-bound prenyltransferases in bitter acid biosynthesis in hop. PMID:25564559

  5. Auxiliary aromatic-acid effect on the structures of a series of Zn{sup II} coordination polymers: Syntheses, crystal structures, and photoluminescence properties

    SciTech Connect

    Xu Yanhong; Lan Yaqian; Shao Kuizhan; Su Zhongmin; Liao Yi

    2010-04-15

    Five novel Zn{sup II}-(pyridyl)imidazole derivative coordination polymers, [Zn(L){sub 2}] (1), [Zn{sub 2}(mu{sub 3}-OH)L(m-BDC)] (2), [Zn{sub 2}(mu{sub 3}-OH)L(p-BDC)].H{sub 2}O (3), [Zn{sub 2}L(BTC)(H{sub 2}O)].2.5H{sub 2}O (4) and [Zn{sub 3.5}(mu{sub 3}-OH)L{sub 2}(BTEC)(H{sub 2}O)].H{sub 2}O (5) (L=4-((2-(pyridine-2-yl)-1H-imidazol-1-yl)methyl)benzoic acid, p-H{sub 2}BDC=1,4-benzenedicarboxylic acid, m-H{sub 2}BDC=1,3-benzenedicarboxylic acid, H{sub 3}BTC=1,3,5-benzenetricarboxylic acid, H{sub 4}BTEC=1,2,4,5-benzenetetracarboxylic acid), were successfully synthesized under hydrothermal conditions through varying auxiliary aromatic-acid ligands and structurally characterized by X-ray crystallography. Compound 1 exhibits a 1D chain linked via double L bridges. Compound 2 features a well-known pcu topology with bent dicarboxylate ligand (m-H{sub 2}BDC) as an auxiliary ligand, while 3 displays a bcu network with linear dicarboxylate ligand (p-H{sub 2}BDC) as an auxiliary ligand. The structure of compound 4 is a novel 3D (3,5)-connected network with (4.6{sup 2})(4.6{sup 4}.8{sup 2}.10.12{sup 2}) topology. It is interesting that compound 5 shows an intricate (3,4,8)-connected framework with (4.6{sup 2})(4{sup 2}.6{sup 3}.8)(4{sup 2}.6{sup 4})(4{sup 2}.6{sup 18}.7.8{sup 6}.10) topology. In addition, their infrared spectra (IR), X-ray powder diffraction (XPRD) and photoluminescent properties were also investigated in detail. - Graphical abstract: Five novel Zn{sup II}-organic architectures have been hydrothermally synthesized through varying auxiliary aromatic-acid ligands and characterized by X-ray diffraction, the photoluminescence properties of compounds 1-5 were studied.

  6. Inhibition of the mutagenicity of bay-region diol epoxides of polycyclic aromatic hydrocarbons by naturally occurring plant phenols: Exceptional activity of ellagic acid

    PubMed Central

    Wood, Alexander W.; Huang, Mou-Tuan; Chang, Richard L.; Newmark, Harold L.; Lehr, Roland E.; Yagi, Haruhiko; Sayer, Jane M.; Jerina, Donald M.; Conney, Allan H.

    1982-01-01

    concentrations of ellagic acid are needed to inhibit the mutagenic activity of the chemically less reactive bay-region diol epoxides of benz[a]anthracene, chrysene, and benzo[c]phenanthrene. These studies demonstrate that ellagic acid is a potent antagonist of the adverse biological effects of the ultimate carcinogenic metabolites of several polycyclic aromatic hydrocarbons and suggest that this naturally occurring plant phenol, normally ingested by humans, may inhibit the carcinogenicity of polycyclic aromatic hydrocarbons. PMID:6752950

  7. Aquatic risk assessment of a polycarboxylate dispersant polymer used in laundry detergents.

    PubMed

    Hamilton, J D; Freeman, M B; Reinert, K H

    1996-09-01

    Polycarboxylates enhance detergent soil removal properties and prevent encrustation of calcium salts on fabrics during washing. Laundry wastewater typically reaches wastewater treatment plants, which then discharge into aquatic environments. The yearly average concentration of a 4500 molecular weight (MW) sodium acrylate homopolymer reaching U.S. wastewater treatment plants will be approximately 0.7 mg/L. Publications showing the low to moderate acute aquatic toxicity of polycarboxylates are readily available. However, there are no published evaluations that estimate wastewater removal and characterize the probability of exceedance of acceptable chronic aquatic exposure. WW-TREAT can be used to estimate removal during wastewater treatment and PG-GRIDS can be applied to characterize risk for exceedance in wastewater treatment plant outfalls. After adjustments for the MW distribution of the homopolymer, WW-TREAT predicted that 6.5% will be removed in primary treatment plants and 60% will be removed in combined primary and activated sludge treatment plants. These estimates are consistent with wastewater fate tests, but underestimate homopolymer removal when homopolymer precipitation is included. Acceptable levels of chronic outfall (receiving water) exposure were based on aquatic toxicity testing in algae, fish, and Daphnia magna. PG-GRIDS predicted that no unreasonable risk for exceedance of acceptable chronic exposure will occur in the outfalls of U.S. wastewater plants. Future development of wastewater treatment models should consider polymer MW distribution and precipitation as factors that may alter removal of materials from wastewater.

  8. Photoinductive activity of humic acid fractions with the presence of Fe(III): the role of aromaticity and oxygen groups involved in fractions.

    PubMed

    Ou, Xiaoxia; Chen, Shuo; Quan, Xie; Zhao, Huimin

    2008-06-01

    Relationship between the photoinductive activity and the properties of humic acids (HA) fractions were investigated with and without Fe(III). Three fractions were separated based on the molecular weight (M(w)) and were obtained following the order of M(w): F(A)>F(B)>F(C). Compared to F(A) and F(B), photodegradation of atrazine under simulated sunlight was much faster in solution containing F(C), whose structure was dominated by greater aromaticity, more oxygen groups and fluorophores. The interaction of HA fractions and Fe(III) was studied using fluorescence spectrometry and F(C) had the largest quenching constant. The capacity of electron transfer, estimated from the amount of photoformed Fe(II), was also highest for F(C). Thus, the Fe(III)-F(C) complex was efficient in phototransformation of atrazine in nearly neutral aqueous solutions. These results suggest that the aromaticity and oxygen groups content of HA exert great influence on the binding ability of metals and on the fate of pollutants in natural waters.

  9. Silver-Ion Solid Phase Extraction Separation of Classical, Aromatic, Oxidized, and Heteroatomic Naphthenic Acids from Oil Sands Process-Affected Water.

    PubMed

    Huang, Rongfu; Chen, Yuan; Gamal El-Din, Mohamed

    2016-06-21

    The separation of classical, aromatic, oxidized, and heteroatomic (sulfur-containing) naphthenic acid (NA) species from unprocessed and ozone-treated oil sands process-affected water (OSPW) was performed using silver-ion (Ag-ion) solid phase extraction (SPE) without the requirement of pre-methylation for NAs. OSPW samples before SPE and SPE fractions were characterized using ultra performance liquid chromatography ion mobility time-of-flight mass spectrometry (UPLC-IM-TOFMS) to corroborate the separation of distinct NA species. The mass spectrum identification applied a mass tolerance of ±1.5 mDa due to the mass errors of NAs were measured within this range, allowing the identification of O2S-NAs from O2-NAs. Moreover, separated NA species facilitated the tandem mass spectrometry (MS/MS) characterization of NA compounds due to the removal of matrix and a simplified composition. MS/MS results showed that classical, aromatic, oxidized, and sulfur-containing NA compounds were eluted into individual SPE fractions. Overall results indicated that the separation of NA species using Ag-ion SPE is a valuable method for extracting individual NA species that are of great interest for environmental toxicology and wastewater treatment research, to conduct species-specific studies. Furthermore, the separated NA species on the milligram level could be widely used as the standard materials for environmental monitoring of NAs from various contamination sites. PMID:27183033

  10. Comparative analysis of main aromatic acids and phthalides in Angelicae Sinensis Radix, Chuanxiong Rhizoma, and Fo-Shou-San by a validated UHPLC-TQ-MS/MS.

    PubMed

    Li, Weixia; Tang, Yuping; Qian, Yefei; Shang, Erxin; Wang, Linyan; Zhang, Li; Su, Shulan; Duan, Jin-ao

    2014-10-01

    Fo-Shou-San (FSS) is an ancient and classic formula comprised of Angelicae Sinensis Radix (Danggui, DG) and Chuanxiong Rhizoma (Chuanxiong, CX) in a weight ratio of 3:2 with nourishing blood and dissipating blood stasis activities for the treatment of blood deficiency and blood stasis. In this study, a ultra-high-performance liquid chromatography coupled with a triple quadrupole electrospray tandem mass spectrometry (UHPLC-TQ-MS/MS) method was developed for simultaneous quantification of three aromatic acids (chlorogenic acid, caffeic acid, ferulic acid) and six phthalides (senkyunolide I, senkyunolide H, senkyunolide A, butylphthalide, ligustilide and butylidenephthalide) in DG, CX and FSS. The nine components were simultaneously determined within 10min. The proposed method was fully validated in terms of linearity, sensitivity, precision, repeatability as well as recovery. The results showed that there were significant differences in their contents of DG and CX, and there were remarkable differences between the theorized content and observed content in FSS. The content of each component in formulae was not just the simple addition among its content in the single herbs. These research results might be helpful to illustrate the drug interactions during decocting process of herb pair according to the quantity changes of these marker compounds, which would lay foundation to further reveal the compatibility rule of the herb pair and other related formulae. PMID:25061713

  11. Induction of aromatic amino acids and phenylpropanoid compounds in Scrophularia striata Boiss. cell culture in response to chitosan-induced oxidative stress.

    PubMed

    Kamalipourazad, Maryam; Sharifi, Mohsen; Maivan, Hassan Zare; Behmanesh, Mehrdad; Chashmi, Najmeh Ahmadian

    2016-10-01

    Manipulation of cell culture media by elicitors is one of most important strategies to inducing secondary metabolism for the production of valuable metabolites. In this investigation, inducing effect of chitosan on physiological, biochemical, and molecular parameters were investigated in cell suspension cultures of Scrophularia striata Boiss. The results showed that chitosan concentration and time of elicitation are determinants of the effectiveness of the elicitor. Accumulation of aromatic amino acids (phenylalanine [Phe] and tyrosine [Tyr]), phenylpropanoid compounds (phenolic acids [PAs] and echinacoside [ECH]), hydrogen peroxide (H2O2) production, phenylalanine ammonia-lyase (PAL) activity and gene expression, and antioxidant enzymes (superoxide dismutase [SOD], peroxidase [POX], catalase [CAT]) activities were altered by changing the exposure time of elicitation. Results showed that, upon elicitation with chitosan, oxidative events were induced, antioxidant responses of S. striata cells were boosted through enhanced activity of an effective series of scavenging enzymes (SOD, CAT, and POX), and biosynthesis of non-enzymatic antioxidants (ECH and PAs [cinnamic, p-coumaric and, caffeic acids]). The increase in amino acid content and PAL activity at early days of exposure to chitosan was related with rises in phenolic compounds. These results provide evidence that chitosan by up-regulation of PAL gene differentially improves the production of phenylpropanoid compounds, which are of medical commercial value with good biotechnological prospects. PMID:27392152

  12. Induction of aromatic amino acids and phenylpropanoid compounds in Scrophularia striata Boiss. cell culture in response to chitosan-induced oxidative stress.

    PubMed

    Kamalipourazad, Maryam; Sharifi, Mohsen; Maivan, Hassan Zare; Behmanesh, Mehrdad; Chashmi, Najmeh Ahmadian

    2016-10-01

    Manipulation of cell culture media by elicitors is one of most important strategies to inducing secondary metabolism for the production of valuable metabolites. In this investigation, inducing effect of chitosan on physiological, biochemical, and molecular parameters were investigated in cell suspension cultures of Scrophularia striata Boiss. The results showed that chitosan concentration and time of elicitation are determinants of the effectiveness of the elicitor. Accumulation of aromatic amino acids (phenylalanine [Phe] and tyrosine [Tyr]), phenylpropanoid compounds (phenolic acids [PAs] and echinacoside [ECH]), hydrogen peroxide (H2O2) production, phenylalanine ammonia-lyase (PAL) activity and gene expression, and antioxidant enzymes (superoxide dismutase [SOD], peroxidase [POX], catalase [CAT]) activities were altered by changing the exposure time of elicitation. Results showed that, upon elicitation with chitosan, oxidative events were induced, antioxidant responses of S. striata cells were boosted through enhanced activity of an effective series of scavenging enzymes (SOD, CAT, and POX), and biosynthesis of non-enzymatic antioxidants (ECH and PAs [cinnamic, p-coumaric and, caffeic acids]). The increase in amino acid content and PAL activity at early days of exposure to chitosan was related with rises in phenolic compounds. These results provide evidence that chitosan by up-regulation of PAL gene differentially improves the production of phenylpropanoid compounds, which are of medical commercial value with good biotechnological prospects.

  13. In situ infrared spectroscopic analysis of the adsorption of aromatic carboxylic acids to TiO 2, ZrO 2, Al 2O 3, and Ta 2O 5 from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Dobson, Kevin D.; McQuillan, A. James

    2000-02-01

    In situ infrared spectroscopy has been used to investigate the adsorption of a range of simple aromatic carboxylic acids from aqueous solution to metal oxides. Thin films of TiO 2, ZrO 2, Al 2O 3 and Ta 2O 5 were prepared by evaporation of aqueous sols on single reflection ZnSe prisms. Benzoic acid adsorbed very strongly to ZrO 2, in a bridging bidentate fashion, but showed only weak adsorption to TiO 2 and Ta 2O 5. Substituted aromatic carboxylic acids; salicylic, phthalic and thiosalicylic, were found to adsorb to each metal oxide. Salicylic and phthalic acids adsorbed to the metal oxides via bidentate interactions, involving coordination through both carboxylate and substituent groups. Thiosalicylic acid adsorbed to the metal oxides as a bridging bidentate carboxylate with no coordination through the thiol substituent group.

  14. Synthesis of aromatic secondary diamines

    NASA Technical Reports Server (NTRS)

    Wolfe, J. F.; Greenwood, T. D.; Kahley, R. A.

    1979-01-01

    A series of N-methyl substituted aromatic polyamides derived from the secondary aromatic diamines, 4,4'-bis(methylamino)diphenylmethane, 3,3'-bis(methylamino) diphenylmethane, 4,4'-bis(methylamino)benzophenone or 3,3'-bis(methylamino)benzophenone and isophthaloyl dichloride, terphthaloyl dichloride or 3,3'diphenylmethane dicarboxylic acid dichloride was prepared by high temperature solution polymerization in s-tetrachloroethane. Compared to analogous unsubstituted and partially N-methylated aromatic polyamides, the full N-methylated polyamides exhibited significantly lower glass transition temperatures, reduced crystallinity, improved thermal stability and good solubility in chlorinated solvents.

  15. Differentiation of regioisomeric aromatic ketocarboxylic acids by positive mode atmospheric pressure chemical ionization collision-activated dissociation tandem mass spectrometry in a linear quadrupole ion trap mass spectrometer.

    PubMed

    Amundson, Lucas M; Owen, Benjamin C; Gallardo, Vanessa A; Habicht, Steven C; Fu, Mingkun; Shea, Ryan C; Mossman, Allen B; Kenttämaa, Hilkka I

    2011-04-01

    Positive-mode atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS(n)) was tested for the differentiation of regioisomeric aromatic ketocarboxylic acids. Each analyte forms exclusively an abundant protonated molecule upon ionization via positive-mode APCI in a commercial linear quadrupole ion trap (LQIT) mass spectrometer. Energy-resolved collision-activated dissociation (CAD) experiments carried out on the protonated analytes revealed fragmentation patterns that varied based on the location of the functional groups. Unambiguous differentiation between the regioisomers was achieved in each case by observing different fragmentation patterns, different relative abundances of ion-molecule reaction products, or different relative abundances of fragment ions formed at different collision energies. The mechanisms of some of the reactions were examined by H/D exchange reactions and molecular orbital calculations.

  16. Formation of C═C bond via knoevenagel reaction between aromatic aldehyde and barbituric acid at liquid/HOPG and vapor/HOPG interfaces.

    PubMed

    Geng, Yanfang; Dai, Hongliang; Chang, Shaoqing; Hu, Fangyun; Zeng, Qingdao; Wang, Chen

    2015-03-01

    Controlling chemical reactions on surface is of great importance to constructing self-assembled covalent nanostructures. Herein, Knoevenagel reaction between aromatic aldehyde compound 2,5-di(5-aldehyde-2-thienyl)-1,4-dioctyloxybenzene (PT2) and barbituric acid (BA) has been successfully performed for the first time at liquid/HOPG interface and vapor/HOPG interface. The resulting surface nanostructures and the formation of C═C bond are recorded through scanning tunneling microscopy (STM), and confirmed by attenuated total reflectance Fourier-transform infrared (ATR/FT-IR) spectrometer and UV-vis absorption. The obtained results reveal that Knoevenagel condensation reaction can efficiently occur at both interfaces. This surface reaction would be an important step toward further reaction to produce innovative conjugated nanomaterial on the surface.

  17. Application of GC-triple quadrupole MS in the quantitative confirmation of polycyclic aromatic hydrocarbons and phthalic acid esters in soil.

    PubMed

    Liao, Chong; Yang, Ping; Xie, Zhenwei; Zhao, Yunzhi; Cheng, Xiaoyan; Zhang, Yu; Ren, Zhaohui; Guo, Zhonghua; Liao, Ji

    2010-03-01

    A new multi-residue method has been developed and validated for the simultaneous analysis of 34 polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs) in soil at trace levels by gas chromatography coupled to triple quadrupole mass spectrometry. Microwave extraction and solid-phase extraction have been employed prior to gas chromatography tandem mass spectrometry analysis. Quality parameters have been established using matrix spike and reference material IRM 104A. Average recoveries of the 34 organic compounds spiked at 5 microg/kg into soils are typically in the range of 66.59-122.07% with relative standard deviations generally less than 20%. Limits of detection (LODs) for PAEs are < or = 0.84 microg/kg, and limits of quantification (LOQs) ranged from 0.13 to 2.81 microg/kg. LODs for PAHs are < or = 0.51 microg/kg, and LOQs ranged from 0.02 to 1.81 microg/kg.

  18. NF-Y binding is required for transactivation of neuronal aromatic L-amino acid decarboxylase gene promoter by the POU-domain protein Brn-2.

    PubMed

    Dugast, C; Weber, M J

    2001-04-18

    We have previously characterized binding sites for the NF-Y transcription factor (-71/-52) and Brn-2 POU-domain protein (-92/-71) in the neuronal promoter of the human aromatic L-amino acid decarboxylase gene [Mol. Brain Res. 56 (1998) 227]. We have now explored the functional role of these binding sites in transfected SK-N-BE neuroblastoma cells. Mutations of the NF-Y site that abolish binding depressed expression of a luciferase reporter gene up to 25-fold. The overexpression of a dominant negative mutant of NF-YA subunit depressed expression by 60%. Promoter activity was increased by the overexpression of Brn-2. Mutations or deletion of the binding site of Brn-2 did not suppress transcriptional activation by overexpressed Brn-2, while promoters defective in NF-Y binding were not transactivated by Brn-2. A GST-pulldown experiment showed that recombinant human Brn-2 protein weakly interacts with recombinant NF-Y outside of DNA. Cooperative binding of recombinant NF-Y and GST--Brn-2 proteins on the neuronal promoter was evidenced by an electrophoretic mobility shift assay. The POU-domain of Brn-2 was sufficient for such interaction. The results thus suggest that the activation of the neuronal promoter of the aromatic L-amino acid decarboxylase gene requires a direct interaction between the ubiquitous NF-Y factor and a cell-specific POU-domain protein. The NF-Y, but not the Brn-2 binding site, is essential for the recruitment of the NF-Y/Brn-2 complex on the promoter. PMID:11311976

  19. Peptide hairpins with strand segments containing alpha- and beta-amino acid residues: cross-strand aromatic interactions of facing Phe residues.

    PubMed

    Roy, Rituparna S; Gopi, Hosahudya N; Raghothama, S; Gilardi, Richard D; Karle, Isabella L; Balaram, Padmanabhan

    2005-01-01

    The incporation of beta-amino acid residues into the strand segments of designed beta-hairpin leads to the formation of polar sheets, since in the case of beta-peptide strands, all adjacent carbonyl groups point in one direction and the amide groups orient in the opposite direction. The conformational analysis of two designed peptide hairpins composed of alpha/beta-hybrid segments are described: Boc-Leu-betaPhe-Val-(D)-Pro-Gly-Leu-betaPhe-Val-OMe (1) and Boc-betaLeu-Phe-betaVal-D-Pro-Gly-betaLeu-Phe-betaVal-OMe (2). A 500-MHz 1H-NMR (nuclear magnetic resonance) analysis in methanol supports a significant population of hairpin conformations in both peptides. Diagnostic nuclear Overhauser effects (NOEs) are observed in both cases. X-ray diffraction studies on single crystals of peptide 1 reveal a beta-hairpin conformation in both the molecules, which constitute the crystallographic asymmetric unit. Three cross-strand hydrogen bonds and a nucleating type II' beta-turn at the D-Pro-Gly segment are observed in the two independent molecules. In peptide 1, the betaPhe residues at positions 2 and 7 occur at the nonhydrogen-bonding position, with the benzyl side chains pointing on opposite faces of the beta-sheet. The observed aromatic centroid-to-centroid distances are 8.92 A (molecule A) and 8.94 A (molecule B). In peptide 2, the aromatic rings must occupy facing positions in antiparallel strands, in the NMR-derived structure. Peptide 1 yields a normal "hairpin-like" CD spectrum in methanol with a minimum at 224 nm. The CD spectrum of peptide 2 reveals a negative band at 234 nm and a positive band at 221 nm, suggestive of an exciton split doublet. Modeling of the facing Phe side chains at the hydrogen-bonding position of a canonical beta-hairpin suggests that interring separation is approximately 4.78 A for the gauche+ gauche- (g+ g-) rotamer. A previously reported peptide beta-hairpin composed of only alpha-amino acids, Boc-Leu-Phe-Val-D-Pro-Gly-Leu-Phe-Val-OMe also

  20. Aromatic structural components but not their degree of condensation are responsible for the persistence of biochars produced above 370 ˚C

    NASA Astrophysics Data System (ADS)

    Budai, A. E.; Rasse, D. P.; Forte, C.; Calucci, L.; Wiedemeier, D. B.; Abiven, S.; Rumpel, C.; Tau Strand, L.; Plante, A. F.; Pengerud, A.; Alexis, M.

    2015-12-01

    Charred plant residues are more resistant to decomposition in soil than fresh biomass, rendering biochar a promising technology for increasing soil C content and mitigating climate change. Due to its persistence in soils and its surface properties, biochar is also considered as a tool for managing soil fertility in the long term. Biochar properties change with degree of carbonization and the feedstock material it is produced from. With large differences existing among biochar products, characterizing these materials is the first step in devising a biochar technology plan. We therefore measured various chemical and structural properties of a series of biochars prepared from corncob and miscanthus grass at 250 to 800 ˚C pyrolysis temperatures. We also measured the persistence of biochar in soil and devised an incubation method that eliminates likely errors in measuring natural abundance 13C isotopes. In our search for reliable estimators of biochar properties, we focused on the identification of structural properties responsible for the unique inherent stability of biochar, including the presence of molecular markers of benzene polycarboxylic acids (BPCAs) and aromaticity from nuclear magnetic resonance (NMR). We found that the increased residence time of biochars, which were on average 60 times that of fresh plant residues, is mostly developed at pyrolysis temperatures up to 370 ˚C and does not appear to significantly increase with pyrolysis beyond this temperature threshold. Aromatic structural components were formed to a much greater extent above 370 ˚C, which can explain resistance to decomposition in soil. The fraction of C that is BPCA C correlated well with estimated biochar half-lives. However, aromatic condensation degree developed above 500 ˚C, and biochars produced at the highest production temperatures having the highest aromatic condensation degree were not found to be the most stable forms of biochar. This is an indication that the formation of

  1. Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis.

    PubMed

    Neshat, Armin; Mentz, Almut; Rückert, Christian; Kalinowski, Jörn

    2014-11-20

    The Gram-positive bacterium Corynebacterium glutamicum belongs to the order Corynebacteriales and is used as a producer of amino acids at industrial scales. Due to its economic importance, gene expression and particularly the regulation of amino acid biosynthesis has been investigated extensively. Applying the high-resolution technique of transcriptome sequencing (RNA-seq), recently a vast amount of data has been generated that was used to comprehensively analyze the C. glutamicum transcriptome. By analyzing RNA-seq data from a small RNA cDNA library of C. glutamicum, short transcripts in the known transcriptional attenuators sites of the trp operon, the ilvBNC operon and the leuA gene were verified. Furthermore, whole transcriptome RNA-seq data were used to elucidate the transcriptional organization of these three amino acid biosynthesis operons. In addition, we discovered and analyzed the novel attenuator aroR, located upstream of the aroF gene (cg1129). The DAHP synthase encoded by aroF catalyzes the first step in aromatic amino acid synthesis. The AroR leader peptide contains the amino acid sequence motif F-Y-F, indicating a regulatory effect by phenylalanine and tyrosine. Analysis by real-time RT-PCR suggests that the attenuator regulates the transcription of aroF in dependence of the cellular amount of tRNA loaded with phenylalanine when comparing a phenylalanine-auxotrophic C. glutamicum mutant fed with limiting and excess amounts of a phenylalanine-containing dipeptide. Additionally, the very interesting finding was made that all analyzed attenuators are leaderless transcripts. PMID:24910972

  2. Aromatic graphene

    NASA Astrophysics Data System (ADS)

    Das, D. K.; Sahoo, S.

    2016-04-01

    In recent years graphene attracts the scientific and engineering communities due to its outstanding electronic, thermal, mechanical and optical properties and many potential applications. Recently, Popov et al. [1] have studied the properties of graphene and proved that it is aromatic but without fragrance. In this paper, we present a theory to prepare graphene with fragrance. This can be used as scented pencils, perfumes, room and car fresheners, cosmetics and many other useful household substances.

  3. Dehalogenation of aromatics by nucleophilic aromatic substitution.

    PubMed

    Sadowsky, Daniel; McNeill, Kristopher; Cramer, Christopher J

    2014-09-16

    Nucleophilic aromatic substitution has been implicated as a mechanism for both the biotic and abiotic hydrodehalogenation of aromatics. Two mechanisms for the aqueous dehalogenation of aromatics involving nucleophilic aromatic substitution with hydride as a nucleophile are investigated using a validated density functional and continuum solvation protocol. For chlorinated and brominated aromatics, nucleophilic addition ortho to carbon-halogen bonds via an anionic intermediate is predicted to be the preferred mechanism in the majority of cases, while concerted substitution is predicted to be preferred for most fluorinated aromatics. Nucleophilic aromatic substitution reactions with the hydroxide and hydrosulfide anions as nucleophiles are also investigated and compared.

  4. Derepression of certain aromatic amino acid biosynthetic enzymes of Escherichia coli K-12 by growth in Fe3+-deficient medium.

    PubMed Central

    McCray, J W; Herrmann, K M

    1976-01-01

    3-Deoxy-arabino-heptulosonic acid 7-phosphate synthase, prephenate dehydratase, tryptophan synthase, and 2,3-dihydroxybenzoylserine synthase enzyme activities are derepressed in wild-type Escherichia coli K-12 cells grown on Fe3+-deficient medium. This derepression is reversed when FeSO4 is added to the growth medium. Addition of shikimic acid to the Fe3+-deficient growth medium caused repression of the first three enzyme activities but not of 2,3-dihydroxybenzoylserine synthase activity. Addition of 2,3-dihydroxybenzoic acid to the Fe3+-deficient growth medium has no effect on any of the above-mentioned enzyme activities. The Fe3+ deficiency-mediated derepression of 3-deoxyarabino-heptulosonic acid 7-phosphate synthase activity is due to an elevation of the tyrosine-sensitive isoenzyme; the phenylalanine-sensitive isoenzyme is not derepressed under these conditions. PMID:1383

  5. Functional analysis of conserved aromatic amino acids in the discoidin domain of Paenibacillus β-1,3-glucanase

    PubMed Central

    2009-01-01

    The 190-kDa Paenibacillus β-1,3-glucanase (LamA) contains a catalytic module of the glycoside hydrolase family 16 (GH16) and several auxiliary domains. Of these, a discoidin domain (DS domain), present in both eukaryotic and prokaryotic proteins with a wide variety of functions, exists at the carboxyl-terminus. To better understand the bacterial DS domain in terms of its structure and function, this domain alone was expressed in Escherichia coli and characterized. The results indicate that the DS domain binds various polysaccharides and enhances the biological activity of the GH16 module on composite substrates. We also investigated the importance of several conserved aromatic residues in the domain's stability and substrate-binding affinity. Both were affected by mutations of these residues; however, the effect on protein stability was more notable. In particular, the forces contributed by a sandwiched triad (W1688, R1756, and W1729) were critical for the presumable β-sandwich fold. PMID:19930717

  6. Aromatic hydrocarbon receptor inhibits lysophosphatidic acid-induced vascular endothelial growth factor-A expression in PC-3 prostate cancer cells

    SciTech Connect

    Wu, Pei-Yi; Lin, Yueh-Chien; Lan, Shun-Yan; Huang, Yuan-Li; Lee, Hsinyu

    2013-08-02

    Highlights: •LPA-induced VEGF-A expression was regulated by HIF-1α and ARNT. •PI3K mediated LPA-induced VEGF-A expression. •AHR signaling inhibited LPA-induced VEGF-A expression in PC-3 cells. -- Abstract: Lysophosphatidic acid (LPA) is a lipid growth factor with multiple biological functions and has been shown to stimulate cancer cell secretion of vascular endothelial growth factor-A (VEGF-A) and trigger angiogenesis. Hypoxia-inducible factor-1 (HIF-1), a heterodimer consisting of HIF-1α and HIF-1β (also known as aromatic hydrocarbon receptor nuclear translocator (ARNT)) subunits, is an important regulator of angiogenesis in prostate cancer (PC) through the enhancement of VEGF-A expression. In this study, we first confirmed the ability of LPA to induce VEGF-A expression in PC-3 cells and then validated that LPA-induced VEGF-A expression was regulated by HIF-1α and ARNT through phosphatidylinositol 3-kinase activation. Aromatic hydrocarbon receptor (AHR), a receptor for dioxin-like compounds, functions as a transcription factor through dimerization with ARNT and was found to inhibit prostate carcinogenesis and vanadate-induced VEGF-A production. Since ARNT is a common dimerization partner of AHR and HIF-1α, we hypothesized that AHR might suppress LPA-induced VEGF-A expression in PC-3 cells by competing with HIF-1α for ARNT. Here we demonstrated that overexpression and ligand activation of AHR inhibited HIF-1-mediated VEGF-A induction by LPA treatment of PC-3 cells. In conclusion, our results suggested that AHR activation may inhibit LPA-induced VEGF-A expression in PC-3 cells by attenuating HIF-1α signaling, and subsequently, suppressing angiogenesis and metastasis of PC. These results suggested that AHR presents a potential therapeutic target for the prevention of PC metastasis.

  7. pH and ionic strength effects on the binding constant between a nitrogen-containing polycyclic aromatic compound and humic acid.

    PubMed

    Chang, Kuei-Chen; Lee, Chon-Lin; Hsieh, Ping-Chieh; Brimblecombe, Peter; Kao, Shu-Min

    2015-09-01

    Polycyclic aromatic compounds (PACs) are widespread environmental pollutants with a high potential to act as human carcinogens and mutagens. The behavior of PACs is significantly affected by their interactions with dissolved organic matter (DOM), such as their transport, solubility, bioavailability, and bioaccumulation in the aquatic environment. Being a basic PAC, benzo(h)quinoline (BQ) is the dominant species, as the solution's pH value is higher than BQ's pK a (pK a of BQ = 4.2). In contrast, benzo(h)quinolinium (BQH(+)) is the major species, as the solution's pH value is lower than its pK a. The binding constant (K DOC), measured by fluorescence quenching, between BQ/BQH(+) and Leonardite humic acid (LHA) would decrease 70 to 95 % and 20 to 90 % when increasing the ionic strength in acidic and neutral to basic conditions, respectively. The results can be attributed to the added cation (Na(+) and Mg(2+)), which forms a bridge with LHA and enhances the intramolecular reaction among these functional groups, therefore inducing the coiling up within the LHA molecule. In addition, the decrease of the K DOC with added MgCl2/MgSO4 (75-95 %) is higher than that with added NaCl/Na2SO4 (20-75 %), indicating that the K DOC was affected by the charge density of cations. The fluorescence intensity of BQH(+) in the absence of LHA (F 0) was found to decay only in the acidic solution with Cl(-), suggesting that Cl(-) might be a heavy atom serving as a quencher in an acidic solution. PMID:25940463

  8. Coordinating activation strategy for C(sp(3))-H/C(sp(3))-H cross-coupling to access β-aromatic α-amino acids.

    PubMed

    Li, Kaizhi; Wu, Qian; Lan, Jingbo; You, Jingsong

    2015-01-01

    The past decade has witnessed significant advances in C-H bond functionalizations with the discovery of new mechanisms. Non-precious transition-metal-catalysed radical oxidative coupling for C(sp(3))-H bond transformations is an appealing strategy for C-C bond formations. The radical oxidative C(sp(3))-H/C(sp(3))-H cross-coupling reactions of α-C(sp(3))-H bonds of amines with free radicals represent a conceptual and practical challenge. We herein develop the coordinating activation strategy to illustrate the nickel-catalysed radical oxidative cross-coupling between C(sp(3))-H bonds and (hetero)arylmethyl free radicals. The protocol can tolerate a rich variety of α-amino acids and (hetero)arylmethanes as well as arylmethylenes and arylmethines, affording a large library of α-tertiary and α-quaternary β-aromatic α-amino acids. This process also features low-cost metal catalyst, readily handled and easily removable coordinating group, synthetic simplicity and gram-scale production, which would enable the potential for economical production at commercial scale in the future. PMID:26415985

  9. Using linoleic acid embedded cellulose acetate membranes to in situ monitor polycyclic aromatic hydrocarbons in lakes and predict their bioavailability to submerged macrophytes.

    PubMed

    Tao, Yuqiang; Xue, Bin; Yao, Shuchun

    2015-05-19

    To date no passive sampler has been used to predict bioavailability of contaminants to macrophytes. Here a novel passive sampler, linoleic acid embedded cellulose acetate membrane (LAECAM), was developed and used to in situ measure the freely dissolved concentrations of ten polycyclic aromatic hydrocarbons in the sediment porewaters and the water columns of two lakes in both winter and summer and predict their bioavailability to the shoots of resident submerged macrophytes (Potamogeton malainus, Myriophyllum spicata, Najas minor All., and Vallisneria natans (Lour.) Hara). PAH sampling by LAECAMs could reach equilibrium within 21 days. The influence of temperature on LAECAM-water partition coefficients was 0.0008-0.0116 log units/°C. The method of LAECAM was comparable with the active sampling methods of liquid-liquid extraction combined with fDOC adjustment, centrifugation/solid-phase extraction (SPE), and filtration/SPE but had several advantages. After lipid normalization, concentrations of the PAHs in LAECAMs were not significantly different from those in the macrophytes. In contrast, concentrations of the PAHs in the triolein containing passive sampler (TECAM) deployed simultaneously with LAECAM were much higher. The results suggest that linoleic acid is more suitable than triolein as the model lipid for passive samplers to predict bioavailability of PAHs to submerged macrophytes.

  10. Baicalin Protects Mice from Aristolochic Acid I-Induced Kidney Injury by Induction of CYP1A through the Aromatic Hydrocarbon Receptor

    PubMed Central

    Wang, Ke; Feng, Chenchen; Li, Chenggang; Yao, Jun; Xie, Xiaofeng; Gong, Likun; Luan, Yang; Xing, Guozhen; Zhu, Xue; Qi, Xinming; Ren, Jin

    2015-01-01

    Exposure to aristolochic acid I (AAI) can lead to aristolochic acid nephropathy (AAN), Balkan endemic nephropathy (BEN) and urothelial cancer. The induction of hepatic CYP1A, especially CYP1A2, was considered to detoxify AAI so as to reduce its nephrotoxicity. We previously found that baicalin had the strong ability to induce CYP1A2 expression; therefore in this study, we examined the effects of baicalin on AAI toxicity, metabolism and disposition, as well as investigated the underlying mechanisms. Our toxicological studies showed that baicalin reduced the levels of blood urea nitrogen (BUN) and creatinine (CRE) in AAI-treated mice and attenuated renal injury induced by AAI. Pharmacokinetic analysis demonstrated that baicalin markedly decreased AUC of AAI in plasma and the content of AAI in liver and kidney. CYP1A induction assays showed that baicalin exposure significantly increased the hepatic expression of CYP1A1/2, which was completely abolished by inhibitors of the Aromatic hydrocarbon receptor (AhR), 3ʹ,4ʹ-dimethoxyflavone and resveratrol, in vitro and in vivo, respectively. Moreover, the luciferase assays revealed that baicalin significantly increased the luciferase activity of the reporter gene incorporated with the Xenobiotic response elements recognized by AhR. In summary, baicalin significantly reduced the disposition of AAI and ameliorated AAI-induced kidney toxicity through AhR-dependent CYP1A1/2 induction in the liver. PMID:26204831

  11. Spectral and kinetic characterization of intermediates in the aromatization reaction catalyzed by NikD, an unusual amino acid oxidase.

    PubMed

    Bruckner, Robert C; Jorns, Marilyn Schuman

    2009-06-01

    The flavoenzyme nikD, a 2-electron acceptor, catalyzes a remarkable aromatization of piperideine-2-carboxylate (P2C) to picolinate, an essential component of nikkomycin antibiotics. Steady-state kinetic data are indicative of a sequential mechanism where oxygen reacts with a reduced enzyme.dihydropicolinate (DHP) complex. The kinetics observed for complex formation with competitive inhibitors are consistent with a one-step binding mechanism. The anaerobic reaction with P2C involves three steps. The first step yields an enzyme.substrate charge transfer complex likely to contain the electron-rich P2C enamine. Calculated rates of formation and dissociation of the nikD.P2C complex are similar to those observed for the enzyme.1-cyclohexenoate complex. Formation of a reduced enzyme.DHP complex, (EH(2).DHP)(ini), occurs in a second step that exhibits a hyperbolic dependence on substrate concentration. The limiting rate of nikD reduction is at least 10-fold faster than the turnover rate observed with unlabeled or [4,4,5,5,6,6-D(6)]-P2C and exhibits a kinetic isotope effect (KIE = 6.4). The observed KIE on K(d apparent) (4.7) indicates that P2C is a sticky substrate. Formation of a final reduced species, (EH(2).DHP)(fin), occurs in a third step that is independent of P2C concentration and equal to the observed turnover rate. The observed KIE (3.3) indicates that the final step involves cleavage of at least one C-H bond. Tautomerization, followed by isomerization, of the initial DHP intermediate can produce an isomer that could be oxidized to picolinate in a reaction that satisfies known steric constraints of flavoenzyme reactions without the need to reposition a covalently tethered flavin or tightly bound intermediate.

  12. Direct, copper-catalyzed oxidation of aromatic C-H bonds with hydrogen peroxide under acid-free conditions.

    PubMed

    Conde, Ana; Díaz-Requejo, M Mar; Pérez, Pedro J

    2011-07-28

    The direct oxidation of benzene into phenol using hydrogen peroxide has been achieved in the absence of any acid with Tp(x)Cu(NCMe) complexes as the catalysts. In the case of anthracenes as the substrates, valuable anthraquinones have been quantitatively obtained in the same manner.

  13. A single aromatic amino acid at the carboxyl terminus of Helicobacter pylori {alpha}1,3/4 fucosyltransferase determines substrate specificity.

    PubMed

    Ma, Bing; Lau, Leon H; Palcic, Monica M; Hazes, Bart; Taylor, Diane E

    2005-11-01

    Fucosyltransferases (FucT) from different Helicobacter pylori strains display distinct Type I (Galbeta1,3GlcNAc) or Type II (Galbeta1,4GlcNAc) substrate specificity. FucT from strain UA948 can transfer fucose to the OH-3 of Type II acceptors as well as to the OH-4 of Type I acceptors on the GlcNAc moiety, so it has both alpha1,3 and alpha1,4 activities. In contrast, FucT from strain NCTC11639 has exclusive alpha1,3 activity. Our domain swapping study (Ma, B., Wang, G., Palcic, M. M., Hazes, B., and Taylor, D. E. (2003) J. Biol. Chem. 278, 21893-21900) demonstrated that exchange of the hypervariable loops, (347)DNPFIFC(353) in 11639FucT and (345)CNDAHYSALH(354) in UA948FucT, were sufficient to either confer or abolish alpha1,4 activity. Here we performed alanine scanning site-directed mutagenesis to identify which amino acids within (345)CNDAHYSALH(354) of UA948FucT confer Type I substrate specificity. The Tyr(350) --> Ala mutation dramatically reduced alpha1,4 activity without lowering alpha1,3 activity. None of the other alanine substitutions selectively eliminated alpha1,4 activity. To elucidate how Tyr(350) determines alpha1,4 specificity, mutants Tyr(350) --> Phe, Tyr(350) --> Trp, and Tyr(350) --> Gly were constructed in UA948FucT. These mutations did not decrease alpha1,3 activity but reduced the alpha1,4 activity to 66.9, 55.6, and 3.1% [corrected] of wild type level, respectively. Apparently the aromatic nature, but not the hydroxyl group of Tyr(350), is essential for alpha1,4 activity. Our data demonstrate that a single amino acid (Tyr(350)) in the C-terminal hypervariable region of UA948FucT determines Type I acceptor specificity. Notably, a single aromatic residue (Trp) has also been implicated in controlling Type I acceptor preference for human FucT III, but it is located in an N-terminal hypervariable stem domain.

  14. Nanostructured alkyl carboxylic acid-based restricted access solvents: Application to the combined microextraction and cleanup of polycyclic aromatic hydrocarbons in mosses.

    PubMed

    Caballero-Casero, N; Çabuk, H; Martínez-Sagarra, G; Devesa, J A; Rubio, S

    2015-08-26

    Alkyl carboxylic acid-based nanostructured solvents, synthesized in mixtures of tetrahydrofuran (THF) and water through self-assembly and coacervation, were proved to behave as restricted access liquids. Both physical and chemical mechanisms were found responsible for exclusion of macromolecules such as proteins and polysaccharides. The potential of these solvents for extracting small molecules from complex solid samples, without interference from large biomolecules, was here evaluated. For this purpose, they were applied to the extraction of 14 priority polycyclic aromatic hydrocarbons (PAHs) from mosses prior to their separation by liquid chromatography and fluorescence detection (LC-FLD). Sample treatment involved the vortex shaking of 200 mg of moss with 200 μL of decanoic acid-based solvent for 5 min, subsequent centrifugation for 8 min and analysis of the extract by LC-FLD using external calibration. Proteins precipitated during extraction because of both the decrease of the dielectric constant of the solution caused by THF and the formation of macromolecular complexes with decanoic acid. Polysaccharides were not solubilized in the aqueous cavities of the solvent because of their size exclusion. In-house method validation was performed according to the recommendations of the European Commission Decision 202/657/EC. Method detection and quantification limits for the different PAHs were in the ranges 0.04-0.24 and 0.14-0.80 μg kg(-1), respectively. The method was applied to the determination of different moss species collected in both polluted and unpolluted sites in the South of Spain. Recoveries were within the range 71-110%. The results obtained show that solvents with restricted access properties have the potential to expand the scope of application of restricted access materials to areas other than biological fluids because of their suitability to combine analyte isolation and sample cleanup of solid samples in a single step. PMID:26347174

  15. Substitution of a single amino acid residue in the aromatic/arginine selectivity filter alters the transport profiles of tonoplast aquaporin homologs.

    PubMed

    Azad, Abul Kalam; Yoshikawa, Naoki; Ishikawa, Takahiro; Sawa, Yoshihiro; Shibata, Hitoshi

    2012-01-01

    Aquaporins are integral membrane proteins that facilitate the transport of water and some small solutes across cellular membranes. X-ray crystallography of aquaporins indicates that four amino acids constitute an aromatic/arginine (ar/R) pore constriction known as the selectivity filter. On the basis of these four amino acids, tonoplast aquaporins called tonoplast intrinsic proteins (TIPs) are divided into three groups in Arabidopsis. Herein, we describe the characterization of two group I TIP1s (TgTIP1;1 and TgTIP1;2) from tulip (Tulipa gesneriana). TgTIP1;1 and TgTIP1;2 have a novel isoleucine in loop E (LE2 position) of the ar/R filter; the residue at LE2 is a valine in all group I TIPs from model plants. The homologs showed mercury-sensitive water channel activity in a fast kinetics swelling assay upon heterologous expression in Pichia pastoris. Heterologous expression of both homologs promoted the growth of P. pastoris on ammonium or urea as sole sources of nitrogen and decreased growth and survival in the presence of H(2)O(2). TgTIP1;1- and TgTIP1;2-mediated H(2)O(2) conductance was demonstrated further by a fluorescence assay. Substitutions in the ar/R selectivity filter of TgTIP1;1 showed that mutants that mimicked the ar/R constriction of group I TIPs could conduct the same substrates that were transported by wild-type TgTIP1;1. In contrast, mutants that mimicked group II TIPs showed no evidence of urea or H(2)O(2) conductance. These results suggest that the amino acid residue at LE2 position is critical for the transport selectivity of the TIP homologs and group I TIPs might have a broader spectrum of substrate selectivity than group II TIPs.

  16. Nanostructured alkyl carboxylic acid-based restricted access solvents: Application to the combined microextraction and cleanup of polycyclic aromatic hydrocarbons in mosses.

    PubMed

    Caballero-Casero, N; Çabuk, H; Martínez-Sagarra, G; Devesa, J A; Rubio, S

    2015-08-26

    Alkyl carboxylic acid-based nanostructured solvents, synthesized in mixtures of tetrahydrofuran (THF) and water through self-assembly and coacervation, were proved to behave as restricted access liquids. Both physical and chemical mechanisms were found responsible for exclusion of macromolecules such as proteins and polysaccharides. The potential of these solvents for extracting small molecules from complex solid samples, without interference from large biomolecules, was here evaluated. For this purpose, they were applied to the extraction of 14 priority polycyclic aromatic hydrocarbons (PAHs) from mosses prior to their separation by liquid chromatography and fluorescence detection (LC-FLD). Sample treatment involved the vortex shaking of 200 mg of moss with 200 μL of decanoic acid-based solvent for 5 min, subsequent centrifugation for 8 min and analysis of the extract by LC-FLD using external calibration. Proteins precipitated during extraction because of both the decrease of the dielectric constant of the solution caused by THF and the formation of macromolecular complexes with decanoic acid. Polysaccharides were not solubilized in the aqueous cavities of the solvent because of their size exclusion. In-house method validation was performed according to the recommendations of the European Commission Decision 202/657/EC. Method detection and quantification limits for the different PAHs were in the ranges 0.04-0.24 and 0.14-0.80 μg kg(-1), respectively. The method was applied to the determination of different moss species collected in both polluted and unpolluted sites in the South of Spain. Recoveries were within the range 71-110%. The results obtained show that solvents with restricted access properties have the potential to expand the scope of application of restricted access materials to areas other than biological fluids because of their suitability to combine analyte isolation and sample cleanup of solid samples in a single step.

  17. Dissociations of copper(II)-containing complexes of aromatic amino acids: radical cations of tryptophan, tyrosine, and phenylalanine.

    PubMed

    Siu, Chi-Kit; Ke, Yuyong; Guo, Yuzhu; Hopkinson, Alan C; Siu, K W Michael

    2008-10-14

    The dissociations of two types of copper(II)-containing complexes of tryptophan (Trp), tyrosine (Tyr), or phenylalanine (Phe) are described. The first type is the bis-amino acid complex, [Cu(II)(M)(2)].(2+), where M = Trp, Tyr, or Phe; the second [Cu(II)(4Cl-tpy)(M)].(2+), where 4Cl-tpy is the tridendate ligand 4'-chloro-2,2':6',2''-terpyridine. Dissociations of the Cu(ii) bis-amino acid complexes produce abundant radical cation of the amino acid, M.(+), and/or its secondary products. By contrast, dissociations of the 4Cl-tpy-bearing ternary complexes give abundant M.(+) only for Trp. Density functional theory (DFT) calculations show that for Tyr and Phe, amino-acid displacement reactions by H(2)O and CH(3)OH (giving [Cu(II)(4Cl-tpy)(H(2)O)].(2+) and [Cu(II)(4Cl-tpy)(CH(3)OH)].(2+)) are energetically more favorable than dissociative electron transfer (giving M.(+) and [Cu(I)(4Cl-tpy)](+)). The fragmentation pathway common to all these [Cu(II)(4Cl-tpy)(M)].(2+) ions is the loss of NH(3). DFT calculations show that the loss of NH(3) proceeds via a "phenonium-type" intermediate. Dissociative electron transfer in [Cu(II)(4Cl-tpy)(M-NH(3))].(2+) results in [M-NH(3)].(+). The [Phe-NH(3)] (+) ion dissociates facilely by eliminating CO(2) and giving a metastable phenonium-type ion that rearranges readily into the styrene radical cation.

  18. Polybenzoxazole via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1993-01-01

    Polybenzoxazoles (PBO) are heterocyclic macromolecules which were first synthesized in a two-step process by the initial formation of aromatic diacid chlorides with bis(o-aminophenol)s through solution condensation of aromatic diacid chlorides with bis(o-aminophenol)s followed by thermal cyclodehydration. Since then several methods were utilized in their synthesis. The most common synthetic method for PBO involves a polycondensation of bis(o-aminophenol)s with aromatic diacid diphenyl esters. Another preparative route involves the solution polycondensation of the hydrochloride salts of bis(o-amino phenol)s with aromatic diacids in polyphosphoric acid. Another synthetic method involves the initial formation of poly(o-hydroxy amide)s from silylated bis(o-aminophenol)s with aromatic diacid chlorides followed by thermal cyclodehydration to PBO. A recent preparative route involves the reaction of aromatic bisphenols with bis(fluorophenyl) benzoxazoles by the displacement reaction to form PBO. The novelty of the present invention is that high molecular weight PBO of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.

  19. Enrichment of aliphatic, alicyclic and aromatic acids by oil-degrading bacteria isolated from the rhizosphere of plants growing in oil-contaminated soil from Kazakhstan.

    PubMed

    Mikolasch, Annett; Omirbekova, Anel; Schumann, Peter; Reinhard, Anne; Sheikhany, Halah; Berzhanova, Ramza; Mukasheva, Togzhan; Schauer, Frieder

    2015-05-01

    Three microbial strains were isolated from the rhizosphere of alfalfa (Medicago sativa), grass mixture (Festuca rubra, 75 %; Lolium perenne, 20 %; Poa pratensis, 10 %), and rape (Brassica napus) on the basis of their high capacity to use crude oil as the sole carbon and energy source. These isolates used an unusually wide spectrum of hydrocarbons as substrates (more than 80), including n-alkanes with chain lengths ranging from C12 to C32, monomethyl- and monoethyl-substituted alkanes (C12-C23), n-alkylcyclo alkanes with alkyl chain lengths from 4 to 18 carbon atoms, as well as substituted monoaromatic and diaromatic hydrocarbons. These three strains were identified as Gordonia rubripertincta and Rhodococcus sp. SBUG 1968. During their transformation of this wide range of hydrocarbon substrates, a very large number of aliphatic, alicyclic, and aromatic acids was detected, 44 of them were identified by GC/MS analyses, and 4 of them are described as metabolites for the first time. Inoculation of plant seeds with these highly potent bacteria had a beneficial effect on shoot and root development of plants which were grown on oil-contaminated sand. PMID:25592733

  20. Poly-Cross-Linked PEI Through Aromatically Conjugated Imine Linkages as a New Class of pH-Responsive Nucleic Acids Packing Cationic Polymers

    PubMed Central

    Chen, Shun; Jin, Tuo

    2016-01-01

    Cationic polyimines polymerized through aromatically conjugated bis-imine linkages and intra-molecular cross-linking were found to be a new class of effective transfection materials for their flexibility in structural optimization, responsiveness to intracellular environment, the ability to facilitate endosome escape and cytosol release of the nucleic acids, as well as self-metabolism. When three phthalaldehydes of different substitution positions were used to polymerize highly branched low-molecular weight polyethylenimine (PEI 1.8K), the product through ortho-phthalimines (named PPOP) showed significantly higher transfection activity than its two tere- and iso-analogs (named PPTP and PPIP). Physicochemical characterization confirmed the similarity of three polyimines in pH-responded degradability, buffer capacity, as well as the size and Zeta potential of the polyplexes formed from the polymers. A mechanistic speculation may be that the ortho-positioned bis-imine linkage of PPOP may only lead to the straight trans-configuration due to steric hindrance, resulting in larger loops of intra-polymer cross-linking and more flexible backbone. PMID:26869931

  1. Chiral ligand exchange high-speed countercurrent chromatography: mechanism, application and comparison with conventional liquid chromatography in enantioseparation of aromatic α-hydroxyl acids

    PubMed Central

    Tong, Shengqiang; Shen, Mangmang; Cheng, Dongping; Ito, Yoichiro; Yan, Jizhong

    2014-01-01

    This work concentrates on the separation mechanism and application of chiral ligand exchange high-speed countercurrent chromatography (HSCCC) in enantioseparations, and comparison with traditional chiral ligand exchange high performance liquid chromatography (HPLC). The enantioseparation of ten aromatic α-hydroxyl acids were performed by these two chromatographic methods. Results showed that five of the racemates were successfully enantioseparated by HSCCC while only three of the racemates could be enantioseparated by HPLC using a suitable chiral ligand mobile phase additive. For HSCCC, the two-phase solvent system was composed of butanol-water (1:1, v/v), to which N-n-dodecyl-L-proline was added in the organic phase as chiral ligand and cupric acetate was added in the aqueous phase as a transition metal ion. Various operation parameters in HSCCC were optimized by enantioselective liquid-liquid extraction. Based on the results of the present studies the separation mechanism for HSCCC was proposed. For HPLC, the optimized mobile phase composed of aqueous solution containing 6 mmol L−1 L-phenylalanine and 3 mmol L−1 cupric sulfate and methanol was used for enantioseparation. Among three ligands tested on a conventional reverse stationary phase column, only one was found to be effective. In the present studies HSCCC presented unique advantages due to its high versatility of two-phase solvent systems and it could be used as an alternative method for enantioseparations. PMID:25087742

  2. Cadmium and zinc chain and cluster-based layered coordination polymers prepared from flexible-arm aromatic ortho-dicarboxylic acids and 4-pyridylnicotinamide

    NASA Astrophysics Data System (ADS)

    Kraft, Peter E.; Uebler, Jacob W.; LaDuca, Robert L.

    2013-04-01

    Hydrothermal reaction of a d10-metal nitrate salt, a flexible-arm aromatic ortho-dicarboxylic acid, and 4-pyridylnicotinamide (4-pna) afforded four new crystalline coordination polymers, which were characterized by single-crystal X-ray diffraction. [Cd(Hhmph)(nic)(H2O)2]n (1, hmph = homophthalate, nic = nicotinate) is a 1-D coordination polymer chain compound whose nic ligands were generated in situ via 4-pna hydrolysis. Addition of base and a shorter reaction duration afforded [Cd(hmph)(4-pna)]n (2), which has dinuclear [Cd2(hmph)2] dimers linked into a 1-D ladder polymer via 4-pna ligands. A similar chain structure, albeit with a different hmph binding mode, is seen in [Zn(hmph)(4-pna)]n (3). {[Zn2(phda)2(4-pna)2(H2O)]ṡH2O}n (4, phda = 1,2-phenylenediacetate) has both anti-syn bridged [Zn2(OCO)2] ring dimers and [Zn2(OCO)4] paddlewheel dimers, linked into a layered coordination polymer by dipodal 4-pna ligands. Luminescent properties of these new materials are also presented.

  3. Molecular cloning of genomic DNA and chromosomal assignment of the gene for human aromatic L-amino acid decarboxylase, the enzyme for catecholamine and serotonin biosynthesis

    SciTech Connect

    Sumi-Ichinose, Chiho ); Ichinose, Hiroshi; Nagatsu, Toshiharu ); Takahashi, Eiichi; Hori, Tadaaki )

    1992-03-03

    Aromatic L-amino acid decarboxylase (AADC) catalyzes the decarboxylation of both L-3,4-dihydroxyphenylalanine and L-5-hydroxytryptophan to dopamine and serotonin, respectively, which are major mammalian neurotransmitters and hormones belonging to catecholamines and indoleamines. This report describes the organization of the human AADC gene. The authors proved that the gene of human AADC consists of 15 exons spanning more than 85 kilobases and exists as a single copy in the haploid genome. The boundaries between exon and intron followed the AG/GT rule. The sizes of exons and introns ranged from 20 to 400 bp and from 1.0 to 17.7 kb, respectively, while the sizes of four introns were not determined. Untranslated regions located in the 5{prime} region of mRNA were encoded by two exons, exons 1 and 2. The transcriptional starting point was determined around G at position {minus}111 by primer extension and S1 mapping. There were no typical TATA box' and CAAT box' within 540 bp from the transcriptional starting point. The human AADC gene was mapped to chromosome band 7p12.1-p12.3 by fluorescence in situ hybridization. This is the first report on the genomic structure and chromosomal localization of the AADC gene in mammals.

  4. Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater--Using humic acid and iron nano-sized colloids as test particles.

    PubMed

    Nielsen, Katrine; Kalmykova, Yuliya; Strömvall, Ann-Margret; Baun, Anders; Eriksson, Eva

    2015-11-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in different particulate fractions in stormwater: Total, Particulate, Filtrated, Colloidal and Dissolved fractions, were examined and compared to synthetic suspensions of humic acid colloids and iron nano-sized particles. The distribution of low-molecular weight PAHs (LMW PAHs), middle-molecular weight PAHs (MMW PAHs) and high-molecular weight PAHs (HMW PAHs) among the fractions was also evaluated. The results from the synthetic suspensions showed that the highest concentrations of the PAHs were found in the Filtrated fractions and, surprisingly, high loads were found in the Dissolved fractions. The PAHs identified in stormwater in the Particulate fractions and Dissolved fractions follow their hydrophobic properties. In most samples >50% of the HMW PAHs were found in the Particulate fractions, while the LMW and MMW PAHs were found to a higher extent in the Filtrated fractions. The highest concentrations of PAHs were present in the stormwater with the highest total suspended solids (TSS); the relative amount of the HMW PAHs was highest in the Particulate fractions (particles>0.7 μm). The highest concentration of PAHs in the Colloidal fraction was found in the sample with occurrence of small nano-sized particles (<10nm). The results show the importance of developing technologies that both can manage particulate matter and effectively remove PAHs present in the Colloidal and Dissolved fractions in stormwater.

  5. Femtosecond-picosecond laser photolysis studies on the dynamics of excited charge-transfer complexes: Aromatic hydrocarbon-acid anhydride, -tetracyanoethylene, and -tetracyanoquinodimethane systems in acetonitrile solutions

    SciTech Connect

    Asahi, Tsuyoshi; Mataga, Noboru )

    1991-03-07

    Formation processes of contact ion pairs (CIP) from the excited Franck-Condon (FC) state of charge-transfer (CT) complexes of aromatic hydrocarbons with acid anhydride as well as cyano compound acceptors in acetonitrile solution and charge recombination (CR) rates (k{sub CR}{sup CIP}) of produced CIP states have been investigated by femtosecond and picosecond laser phototlysis and time-resolved absorption spectral measurements covering a wide range of free energy gap-{Delta}G{degree}{sub ip} between the ion pair and the ground state. It has been confirmed that the CIP formation becomes faster and k{sub CR}{sup CIP} of the produced CIP increases with increase of the strengths of the electron donor (D) and acceptor (A) in the complex, i.e., with decrease of the {minus}{Delta}G{degree}{sub ip} value. This peculiar energy gap dependence of k{sub CR}{sup CIP}, quite different from the bell-shaped one observed in the case of the solvent-separated ion pairs (SSIP) or loose ion pairs (LIP) formed by encounter between fluorescer and quencher in the fluoresence quenching reaction, has been interpreted by assuming the change of electronic and geometrical structures of CIP depending on the strengths of D and A.

  6. Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds.

    PubMed

    Yuan, Ruixia; Ramjaun, Sadiqua N; Wang, Zhaohui; Liu, Jianshe

    2011-11-30

    Sodium chloride is a common salt used during textile wet processes. Here a dual effect of chloride (i.e. inhibitory and accelerating effect) on azo dye (Acid Orange 7, AO7) degradation in an emerging cobalt/peroxymonosulfate (Co/PMS) advanced oxidation process (AOP) was reported. Compared to OH-based AOPs, high concentrations of chloride (>5mM) can significantly enhance dye decoloration independent of the presence of the Co(2+) catalyst, but did greatly inhibit dye mineralization to an extent which was closely dependent upon the chloride content. Both UV-vis absorbance spectra and AOX determination indicated the formation of some refractory byproducts. Some chlorinated aromatic compounds, including 3-chloroisocoumain, 2-chloro-7-hydroxynaphthalene, 1,3,5-trichloro-2-nitrobenzene and tetrachlorohydroquione, were identified by GC-MS measurement in both Co/PMS/Cl(-) and PMS/Cl(-) reaction systems. Based on those experimental results, two possible branched (SO(4)(-)radical-based and non-radical) reaction pathways are proposed. This is one of the very few studies dealing with chlorinated organic intermediates formed via chlorine radical/active chlorine species (HOCl/Cl(2)) attack on dye compounds. Therefore, this finding may have significant technical implications for utilizing Co/PMS regent to detoxify chloride-rich azo dyes wastewater.

  7. Enrichment of aliphatic, alicyclic and aromatic acids by oil-degrading bacteria isolated from the rhizosphere of plants growing in oil-contaminated soil from Kazakhstan.

    PubMed

    Mikolasch, Annett; Omirbekova, Anel; Schumann, Peter; Reinhard, Anne; Sheikhany, Halah; Berzhanova, Ramza; Mukasheva, Togzhan; Schauer, Frieder

    2015-05-01

    Three microbial strains were isolated from the rhizosphere of alfalfa (Medicago sativa), grass mixture (Festuca rubra, 75 %; Lolium perenne, 20 %; Poa pratensis, 10 %), and rape (Brassica napus) on the basis of their high capacity to use crude oil as the sole carbon and energy source. These isolates used an unusually wide spectrum of hydrocarbons as substrates (more than 80), including n-alkanes with chain lengths ranging from C12 to C32, monomethyl- and monoethyl-substituted alkanes (C12-C23), n-alkylcyclo alkanes with alkyl chain lengths from 4 to 18 carbon atoms, as well as substituted monoaromatic and diaromatic hydrocarbons. These three strains were identified as Gordonia rubripertincta and Rhodococcus sp. SBUG 1968. During their transformation of this wide range of hydrocarbon substrates, a very large number of aliphatic, alicyclic, and aromatic acids was detected, 44 of them were identified by GC/MS analyses, and 4 of them are described as metabolites for the first time. Inoculation of plant seeds with these highly potent bacteria had a beneficial effect on shoot and root development of plants which were grown on oil-contaminated sand.

  8. First hyperpolarizability of the natural aromatic amino acids tryptophan, tyrosine, and phenylalanine and the tripeptide lysine-tryptophan-lysine determined by hyper-Rayleigh scattering.

    PubMed

    Duboisset, J; Matar, G; Russier-Antoine, I; Benichou, E; Bachelier, G; Jonin, Ch; Ficheux, D; Besson, F; Brevet, P F

    2010-11-01

    We report the first hyperpolarizability of tryptophan (Trp) and tyrosine (Tyr) and an upper limit for that of phenylalanine (Phe), three natural aromatic amino acids. The measurements were performed with hyper-Rayleigh scattering in an aqueous Tris buffer solution at a pH of 8.5 and 150 mM salt concentration with a fundamental wavelength of 780 nm. A value of (4.7 ± 0.7) × 10(-30) esu is found for Trp and (4.1 ± 0.7) × 10(-30) esu for Tyr whereas the upper limit of 1.4 × 10(-30) esu is found for that of Phe due to its limited solubility. The influence of the presence of lysine (Lys) in close vicinity of Trp is investigated with a measurement of the first hyperpolarizabilty of Trp in an excess of Lys and compared to the first hyperpolarizability obtained for the tripeptide Lys-Trp-Lys. The clear decrease of the values measured in these two cases indicates that the first hyperpolarizabilty of Trp is very sensitive to its local environment.

  9. Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: enhanced removal of aromatic amines.

    PubMed

    Koupaie, E Hosseini; Moghaddam, M R Alavi; Hashemi, S H

    2011-11-15

    The application of aerobic moving bed biofilm process as post-treatment of anaerobically degraded azo dye Acid Red 18 was investigated in this study. The main objective of this work was to enhance removal of anaerobically formed the dye aromatic metabolites. Three separate sequential treatment systems were operated with different initial dye concentrations of 100, 500 and 1000 mg/L. Each treatment system consisted of an anaerobic sequencing batch reactor (An-SBR) followed by an aerobic moving bed sequencing batch biofilm reactor (MB-SBBR). Up to 98% of the dye decolorization and more than 80% of the COD removal occurred anaerobically. The obtained results suggested no significant difference in COD removal as well as the dye decolorization efficiency using three An-SBRs receiving different initial dye concentrations. Monitoring the dye metabolites through HPLC suggested that more than 80% of anaerobically formed 1-naphthylamine-4-sulfonate was completely removed in the aerobic biofilm reactors. Based on COD analysis results, at least 65-72% of the dye total metabolites were mineralized during the applied treatment systems. According to the measured biofilm mass and also based on respiration-inhibition test results, increasing the initial dye concentration inhibited the growth and final mass of the attached-growth biofilm in MB-SBBRs.

  10. Effect of 1,10-phenanthroline aromaticity in carboxylic acids:1H NMR spectroscopy, GIAO calculations and thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Machado, Camila M. B.; Santos, Vanessa F. C.; Belarmino, Marcia K. D. L.; França, José A. A.; Moura, Gustavo L. C.; Lima, Nathalia B. D.

    2016-08-01

    Hydrogen bonding represents a class of chemical interactions, which are directly responsible for several physical properties, such as: energetic stabilities, boiling points, vibrational modes, bond lengths, etc. In this article, we examine from the point of view of 1H NMR spectroscopy and GIAO calculations, the effects associated with the process of formation of the hydrogen bonds as they appear in the chemical shifts of the acidic hydrogens in the complexes between nitrogenated compounds, PHEN, BIPY and DIBIPY, and carboxylic acids, HOOCH, HOOCCH3 and HOOCC6H5. All computational simulations were performed using the quantum chemical methods B3LYP/6-31++G(d,p) and ωB97X-D/def2-TZVP. The 1H NMR spectroscopy results showed that, in both cases, the hydrogen nucleus of the OH group is the most affected in the process of hydrogen bond formation. For the complexes involving PHEN we observed that the hydrogen nucleus is more strongly shielded when compared with this signal in the corresponding complexes involving BIPY and DIBIPY.

  11. Retinobenzoic acids. 4. Conformation of aromatic amides with retinoidal activity. Importance of trans-amide structure for the activity.

    PubMed

    Kagechika, H; Himi, T; Kawachi, E; Shudo, K

    1989-10-01

    N-Methylation of two retinoidal amide compounds, 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbamoyl]benz oic acid (3, Am80) and 4-[[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2- naphthalenyl)carbonyl]amino]benzoic acid (5, Am580), resulted in the disappearance of their potent differentiation-inducing activity on human promyelocytic leukemia cell line HL-60. Studies with 1H NMR and UV spectroscopy indicated that large conformational differences exist between the active secondary amides and the inactive N-methyl amides. From a comparison of the spectroscopic results of these amides with those of stilbene derivatives, the conformations of the active amides are expected to resemble that of (E)-stilbene, whereas the inactive amides resemble the Z isomer: 3 (Am80) and 5 (Am580) have a trans-amide bond and their whole structures are elongated, while the N-methylated compounds [4 (Am90) and 6 (Am590)] have a cis-amide bond, resulting in the folding of the two benzene rings. These structures in the crystals were related to those in solution by 13C NMR spectroscopic comparison between the two phases (solid and solution).

  12. Microbial biomass in a shallow, urban aquifer contaminated with aromatic hydrocarbons: analysis by phospholipid fatty acid content and composition.

    PubMed

    Franzmann, P D; Patterson, B M; Power, T R; Nichols, P D; Davis, G B

    1996-06-01

    The city of Perth contains a number of sites that have been contaminated with hydrocarbons due to leakage from petroleum underground storage tanks. Microbial biomass in groundwater and sediment cores from above and below the water table, and from within and outside a plume of hydrocarbon contamination, was examined using phospholipid fatty acid methyl ester analysis. Microbial numbers, calculated from the phospholipid content, ranged from 0.9 x 10(6) to 7.8 x 10(6) 'Escherichia coli equivalent cells' g-1 dry wt of sediment. Over 96% of the microbial biomass was attached to the sediment and the proportion of attached cells did not decrease within the plume of contaminants. The amount of biomass within aquifer samples seemed to be related more to the proximity of the rhizosphere to the shallow aquifer, and other unknown urban inputs, rather than to the effects of the plume of contaminants. Fatty acids common to many bacterial groups dominated within the plume, and as such the analyses gave limited insight into microbial community structure. For site assessment of intrinsic remediation of shallow aquifers in urban areas, estimates of microbial biomass may not provide information that is readily applicable to plume management.

  13. Biodegradation of Aromatic Compounds by Escherichia coli

    PubMed Central

    Díaz, Eduardo; Ferrández, Abel; Prieto, María A.; García, José L.

    2001-01-01

    Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications. PMID:11729263

  14. Some aromatic hydrazone derivatives as inhibitors for the corrosion of C-steel in phosphoric acid solution.

    PubMed

    Fouda, Abd El-Aziz S; Al-Sarawy, Ahmed A; Radwan, Mohamed S

    2006-01-01

    The effect of furfural benzoylhydrazone and its derivatives (I-VII) as corrosion inhibitors for C-steel in 1M phosphoric acid solution has been studied by weight-loss and galvanostatic polarization techniques. A significant decrease in the corrosion rate of C-steel was observed in the presence of the investigated inhibitors. This study revealed that, the inhibition efficiency increases with increasing the inhibitor concentration, and the addition of iodide ions enhances it to a considerable extent. The effect of temperature on the inhibition efficiency of these compounds was studied using weight-loss method. Activation energy (E(a)*) and other thermodynamic parameters for the corrosion process were calculated and discussed. The galvanostatic polarization data indicated that, the inhibitors were of mixed-type, but the cathode is more polarized than the anode. The adsorption of these compounds on C-steel surface has been found to obey Frumkin's adsorption isotherm. The mechanism of inhibition was discussed in the light of the chemical structure of the undertaken inhibitors.

  15. Polymerin and lignimerin, as humic acid-like sorbents from vegetable waste, for the potential remediation of waters contaminated with heavy metals, herbicides, or polycyclic aromatic hydrocarbons.

    PubMed

    Capasso, Renato; De Martino, Antonio

    2010-10-13

    Polymerin is a humic acid-like polymer, which we previously recovered for the first time from olive oil mill waste waters (OMWW) only, and chemically and physicochemically characterized. We also previously investigated its versatile sorption capacity for toxic inorganic and organic compounds. Therefore, a review is presented on the removal, from simulated polluted waters, of cationic heavy metals [Cu(II), Zn, Cr(III)] and anionic ones [Cr(VI)) and As(V)] by sorption on this natural organic sorbent in comparison with its synthetic derivatives, K-polymerin, a ferrihydrite-polymerin complex and with ferrihydrite. An overview is also performed of the removal of ionic herbicides (2,4-D, paraquat, MCPA, simazine, and cyhalofop) by sorption on polymerin, ferrihydrite, and their complex and of the removal of phenanthrene, as a representative of polycyclic aromatic hydrocarbons, by sorption on this sorbent and its complexes with micro- or nanoparticles of aluminum oxide, pointing out the employment of all these sorbents in biobed systems, which might allow the remediation of water and protection of surface and groundwater. In addition, a short review is also given on the removal of Cu(II) and Zn from simulated contaminated waters, by sorption on the humic acid-like organic fraction, named lignimerin, which we previously isolated for the first time, in collaboration with a Chilean group, from cellulose mill Kraft waste waters (KCMWW) only. More specifically, the production methods and the characterization of the two natural sorbents (polymerin and lignimerin) and their derivatives (K-polymerin ferrihydrite-polymerin, polymerin-microAl(2)O(3) and -nanoAl(2)O(3), and H-lignimerin, respectively) as well as their sorption data and mechanism are reviewed. Published and original results obtained by the cyclic sorption on all of the considered sorbents for the removal of the above-mentioned toxic compounds from simulated waste waters are also reported. Moreover, sorption capacity

  16. Chelation-assisted Pd-catalysed ortho-selective oxidative C-H/C-H cross-coupling of aromatic carboxylic acids with arenes and intramolecular Friedel-Crafts acylation: one-pot formation of fluorenones.

    PubMed

    Sun, Denan; Li, Bijin; Lan, Jingbo; Huang, Quan; You, Jingsong

    2016-03-01

    Pd-Catalysed ortho-selective oxidative C-H/C-H cross-coupling of aromatic carboxylic acids with arenes and subsequent intramolecular Friedel-Crafts acylation has been accomplished for the first time through a chelation-assisted C-H activation strategy. Starting from the readily available substrates, a variety of fluorenone derivatives are obtained in one pot. The direct use of naturally occurring carboxylic acid functionalities as directing groups avoids unnecessary steps for installation and removal of an extra directing group.

  17. Chelation-assisted Pd-catalysed ortho-selective oxidative C-H/C-H cross-coupling of aromatic carboxylic acids with arenes and intramolecular Friedel-Crafts acylation: one-pot formation of fluorenones.

    PubMed

    Sun, Denan; Li, Bijin; Lan, Jingbo; Huang, Quan; You, Jingsong

    2016-03-01

    Pd-Catalysed ortho-selective oxidative C-H/C-H cross-coupling of aromatic carboxylic acids with arenes and subsequent intramolecular Friedel-Crafts acylation has been accomplished for the first time through a chelation-assisted C-H activation strategy. Starting from the readily available substrates, a variety of fluorenone derivatives are obtained in one pot. The direct use of naturally occurring carboxylic acid functionalities as directing groups avoids unnecessary steps for installation and removal of an extra directing group. PMID:26861768

  18. The novel R347g pathogenic mutation of aromatic amino acid decarboxylase provides additional molecular insights into enzyme catalysis and deficiency.

    PubMed

    Montioli, Riccardo; Paiardini, Alessandro; Kurian, Manju A; Dindo, Mirco; Rossignoli, Giada; Heales, Simon J R; Pope, Simon; Voltattorni, Carla Borri; Bertoldi, Mariarita

    2016-06-01

    We report here a clinical case of a patient with a novel mutation (Arg347→Gly) in the gene encoding aromatic amino acid decarboxylase (AADC) that is associated with AADC deficiency. The variant R347G in the purified recombinant form exhibits, similarly to the pathogenic mutation R347Q previously studied, a 475-fold drop of kcat compared to the wild-type enzyme. In attempting to unravel the reason(s) for this catalytic defect, we have carried out bioinformatics analyses of the crystal structure of AADC-carbidopa complex with the modelled catalytic loop (residues 328-339). Arg347 appears to interact with Phe103, as well as with both Leu333 and Asp345. We have then prepared and characterized the artificial F103L, R347K and D345A mutants. F103L, D345A and R347K exhibit about 13-, 97-, and 345-fold kcat decrease compared to the wild-type AADC, respectively. However, unlike F103L, the R347G, R347K and R347Q mutants as well as the D345A variant appear to be more defective in catalysis than in protein folding. Moreover, the latter mutants, unlike the wild-type protein and the F103L variant, share a peculiar binding mode of dopa methyl ester consisting of formation of a quinonoid intermediate. This finding strongly suggests that their catalytic defects are mainly due to a misplacement of the substrate at the active site. Taken together, our results highlight the importance of the Arg347-Leu333-Asp345 hydrogen-bonds network in the catalysis of AADC and reveal the molecular basis for the pathogenicity of the variants R347. Following the above results, a therapeutic treatment for patients bearing the mutation R347G is proposed.

  19. Catalysts for polyimide foams from aromatic isocyanates and aromatic dianhydrides. [flame retardant foams

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Sawko, P. M.; Estrella, C. A. (Inventor)

    1979-01-01

    Polyimide foam products having greatly improved burn-through and flame-spread resistance are prepared by the reaction of aromatic polyisocyanates with aromatic dianhydrides in the presence of metallic salts of octoic acid. The salts, for example stannous octoate, ferric octoate and aluminum octoate, favor the formation of imide linkages at the expense of other possible reactions.

  20. Aromatization and etherification process integration

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1989-08-08

    This patent describes a continuous process for the production of aromatics-rich high octane gasoline and ether-rich high octane gasoline. It comprises the steps of: contacting a C/sub 4/+ hydrocarbon feedstream containing iso-olefins and excess methanol based on the iso-olefins with an acid etherification catalyst under etherification conditions in an etherification zone whereby an effluent stream is produced comprising methyl tertiary alkyl ethers, unreacted methanol and hydrocarbons; distilling the effluent stream whereby a distillate bottom stream is produced comprising high octane ether-rich C/sub 5/+ gasoline and a distillate overhead stream comprising unreacted methanol and C/sub 5/- hydrocarbons; passing the distillate overhead stream and an aromatization hydrocarbon feedstream comprising an ethene rich gas feedstream and C/sub 3/ hydrocarbons to an olefins and paraffins fixed, fluid or moving bed aromatization zone under aromatization conditions in contact with medium pore size shape selective metallosilicate catalyst having the structure of ZSM-5 whereby a high octane aromatics-rich C/sub 5/+ gasoline is procluded and hydrogen-rich fuel gas.

  1. Solvothermal synthesis of uranium(VI) phases with aromatic carboxylate ligands: A dinuclear complex with 4-hydroxybenzoic acid and a 3D framework with terephthalic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Yingjie; Karatchevtseva, Inna; Bhadbhade, Mohan; Tran, Toan Trong; Aharonovich, Igor; Fanna, Daniel J.; Shepherd, Nicholas D.; Lu, Kim; Li, Feng; Lumpkin, Gregory R.

    2016-02-01

    With the coordination of dimethylformamide (DMF), two new uranium(VI) complexes with either 4-hydroxybenzoic acid (H2phb) or terephthalic acid (H2tph) have been synthesized under solvothermal conditions and structurally characterized. [(UO2)2(Hphb)2(phb)(DMF)(H2O)3]·4H2O (1) has a dinuclear structure constructed with both pentagonal and hexagonal bipyramidal uranium polyhedra linked through a μ2-bridging ligand via both chelating carboxylate arm and alcohol oxygen bonding, first observation of such a coordination mode of 4-hydroxybenzoate for 5 f ions. [(UO2)(tph)(DMF)] (2) has a three-dimensional (3D) framework built with pentagonal bipyramidal uranium polyhedra linked with μ4-terephthalate ligands. The 3D channeled structure is facilitated by the unique carboxylate bonding with nearly linear C-O-U angles and the coordination of DMF molecules. The presence of phb ligands in different coordination modes, uranyl ions in diverse environments and DMF in complex 1, and tph ligand, DMF and uranyl ion in complex 2 has been confirmed by Raman spectroscopy. In addition, their thermal stability and photoluminescence properties have been investigated.

  2. Steroidal esters of the aromatic nitrogen mustard 2-[4-N,N-bis(2-chloroethyl)amino-phenyl]butanoic acid (2-PHE-BU): synthesis and in-vivo biological evaluation.

    PubMed

    Papaconstantinou, Ioanna C; Fousteris, Manolis A; Koutsourea, Anna I; Pairas, Georgios N; Papageorgiou, Athanasios D; Nikolaropoulos, Sotiris S

    2013-01-01

    On the basis of the results of in-silico predictions and in an effort to extend our structure-activity relationship studies, the aromatic nitrogen mustard 2-[4-N,N-bis(2-chloroethyl) amino-phenyl]butanoic acid (2-PHE-BU) was synthesized and conjugated with various steroidal alcohols. The resulting steroidal esters were evaluated for their in-vivo toxicity and antileukemic activity in P388-leukemia-bearing mice. The new derivatives showed significantly reduced toxicity and marginally improved antileukemic activity compared with free 2-PHE-BU. Nevertheless, they did not prove to be superior either to the template steroidal ester used for in-silico predictions or to previously synthesized steroidal esters of aromatic nitrogen mustards. The results obtained indicate that in-silico design predictions may guide the design and synthesis of new bioactive steroidal esters, but further parameters should be considered aiming at the discovery of compounds with optimum activity.

  3. Aromatic cyclotriphosphazenes

    NASA Technical Reports Server (NTRS)

    Kamar, Devendra (Inventor); Fohlen, George M. (Inventor); Parker, John A. (Inventor)

    1988-01-01

    Four-Aminophenoxy cyclotriphosphazenes are reacted with maleic anhydride to produce maleamic acids which are converted to the maleimides. The maleimides are polymerized. By selection of starting materials (e.g., hexakis amino or trisaminophenoxy trisphenoxy cyclotrisphosphazenes), selection of molar porportions of reactants, use of mixtures of anhydrides and use of dianhydrides as bridging groups a variety of maleimides and polymers are produced. The polymers have high limiting oxygen indices, high char yields and other useful heat and fire resistant properties making them useful as, for example, impregnants of fabrics.

  4. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  5. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.

    1989-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  6. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-09-07

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 figures.

  7. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1994-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  8. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.

    1989-07-18

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  9. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1994-06-14

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  10. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    DOEpatents

    Smith, Robert E. [557 Escondido Cir., Livermore, CA 94550; Dolbeare, Frank A. [5178 Diane La., Livermore, CA 94550

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.

  11. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    DOEpatents

    Smith, R.E.; Dolbeare, F.A.

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes. No Drawings

  12. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    DOEpatents

    Smith, Robert E.; Dolbeare, Frank A.

    1979-01-01

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 5-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.

  13. The aromatic and charge pairs of the thin extracellular gate of the γ-aminobutyric acid transporter GAT-1 are differently impacted by mutation.

    PubMed

    Dayan, Oshrat; Ben-Yona, Assaf; Kanner, Baruch I

    2014-10-10

    GAT-1 is a sodium- and chloride-coupled GABA transporter and a member of the neurotransmitter:sodium:symporters, which are crucial for synaptic transmission. The structure of bacterial homologue LeuT shows a thin extracellular gate consisting of a charge and an aromatic pair. Here we addressed the question of whether mutation of the aromatic and charge pair residues of GAT-1 has similar consequences. In contrast to charge pair mutants, significant radioactive GABA transport was retained by mutants of the aromatic pair residue Phe-294. Moreover, the magnitude of maximal transport currents induced by GABA by these mutants was comparable with those by wild type GAT-1. However, the apparent affinity of the nonconserved mutants for GABA was reduced up to 20-fold relative to wild type. The voltage dependence of the sodium-dependent transient currents of the Phe-294 mutants was similar to that of the wild type. On the other hand, the conserved charge pair mutant D451E exhibited a right-shifted voltage dependence, indicating an increased apparent affinity for sodium. In further contrast to D451E, whereas the extracellular aqueous accessibility of an endogenous cysteine residue to a membrane-impermeant sulfhydryl reagent was increased relative to wild type, this was not the case for the aromatic pair mutants. Our data indicate that, in contrast to the charge pair, the aromatic pair is not essential for gating. Instead they are compatible with the idea that they serve to diminish dissociation of the substrate from the binding pocket.

  14. A series of Cd(II) supramolecular architectures based on polycarboxylate and 2-amino-benzimidazole mixed-ligands

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Guang; Li, Jian; Ding, Bin; Yang, En-Cui; Zhao, Xiao-Jun

    2008-03-01

    By reaction of Cd(II) salts, different aromatic/aliphatic carboxylic acid and 2-amino-benzimidazole (Abm), four crystalline supramolecular coordination polymers, {[Cd 2(tma) 2(Abm) 4]·2(HAbm)·5.5(H 2O)} n ( 1), {[Cd(tp)(Abm) 2]·(DMF)} n ( 2), {[Cd(ip) 2]·2(HAbm)} n ( 3), and {[Cd(ga) 2]·2(HAbm)} n ( 4) (H 3tma = trimesic acid; H 2tp = terephalatic acid; H 2ip = isophthalic acid; H 2ga = glutaric acid), have been successfully synthesized. In 1 pairs of 1D right- and left-hand helical structure and in 2 1D zigzag chains can be found, which are further extended into 3D hydrogen bonded frameworks via strong intra- and inter-chain N-H···O interactions. In contrast, 3 and 4 with 2D layer structure are stacked together in the ABAB way, where protonated HAbm cations are located between 2D layers and further stabilized by cooperative N-H···O, π···π and C-H···π interactions. Interestingly, single crystal 3 can reversibly transform into single crystal of its hydrated compound 3a, indicating small guest water molecules can be effectively absorbed in the host framework of 3. The FT-IR spectra of 1- 4 have also been discussed briefly.

  15. The effect of ultrasound on the setting reaction of zinc polycarboxylate cements.

    PubMed

    Shahid, S; Billington, R W; Hill, R G; Pearson, G J

    2010-11-01

    The set of glass ionomer cement (GIC) is accelerated by application of ultrasound. Although GIC has somewhat displaced zinc polycarboxylate cement (ZPC) in dental applications the latter is still extensively used. Like GIC, it provides direct adhesion to tooth and can provide F release, but is more radiopaque and biocompatible than GIC. The aim of this study is to examine the effect of ultrasound on the setting of ZPC using Fourier transform infra red spectroscopy and any interaction with SnF(2) addition. ZPC with and without SnF(2) addition (+/-S) at luting (L) 2:1 P/L ratio and restorative (R) 4:1 P/L ratio consistencies. Ultrasound is applied to the cement using Piezon-Master 400, EMS, Switzerland at 60 s from start of mixing for 15 s. The ratios of absorbance peak height at 1,400 cm(-1) -COO(-) to that at 1,630 cm(-1) -COOH were measured and compared those obtained for the cement not treated with US. These values were taken at the elapsed time at which no further change in spectrum [ratio] was observed at room temperature [10-20 min]. The US results are taken at 2 or 3 min. No US: R/+S (1.09), R/-S (1.2), L/+S (1.07), L/-S (1.04); US: R/+S (1.50), R/-S (1.64), L/+S (1.38), L/-S (1.05). The results show all four ZPC formulations are very sensitive to ultrasound whether with or without SnF(2). Reducing US to 10 s produces lower initial ratios but these increase up to 10 min when very high ratios (>2) are obtained. Previous studies with restorative GICs found that 40-55 s US was needed to produce the effect found with 15 s on ZPCs. ZPC powder is more basic than GIC glass; this may account for ZPC's greater sensitivity to US. Ultrasound may provide a useful adjunct to the clinical use of ZPC both as luting agent and temporary restorative.

  16. Constitutive expression of selected genes from the pentose phosphate and aromatic pathways increases the shikimic acid yield in high-glucose batch cultures of an Escherichia coli strain lacking PTS and pykF

    PubMed Central

    2013-01-01

    Background During the last two decades many efforts have been directed towards obtaining efficient microbial processes for the production of shikimic acid (SA); however, feeding high amounts of substrate to increase the titer of this compound has invariably rendered low conversion yields, leaving room for improvement of the producing strains. In this work we report an alternative platform to overproduce SA in a laboratory-evolved Escherichia coli strain, based on plasmid-driven constitutive expression of six genes selected from the pentose phosphate and aromatic amino acid pathways, artificially arranged as an operon. Production strains also carried inactivated genes coding for phosphotransferase system components (ptsHIcrr), shikimate kinases I and II (aroK and aroL), pyruvate kinase I (pykF) and the lactose operon repressor (lacI). Results The strong and constitutive expression of the constructed operon permitted SA production from the beginning of the cultures, as evidenced in 1 L batch-mode fermentors starting with high concentrations of glucose and yeast extract. Inactivation of the pykF gene improved SA production under the evaluated conditions by increasing the titer, yield and productivity of this metabolite compared to the isogenic pykF+ strain. The best producing strain accumulated up to 43 g/L of SA in 30 h and relatively low concentrations of acetate and aromatic byproducts were detected, with SA accounting for 80% of the produced aromatic compounds. These results were consistent with high expression levels of the glycolytic pathway and synthetic operon genes from the beginning of fermentations, as revealed by transcriptomic analysis. Despite the consumption of 100 g/L of glucose, the yields on glucose of SA and of total aromatic compounds were about 50% and 60% of the theoretical maximum, respectively. The obtained yields and specific production and consumption rates proved to be constant with three different substrate concentrations. Conclusions

  17. The role of aromatic-aromatic interactions in strand-strand stabilization of β-sheets

    PubMed Central

    Budyak, Ivan L.; Zhuravleva, Anastasia; Gierasch, Lila M.

    2013-01-01

    Aromatic-aromatic interactions have long been believed to play key roles in protein structure, folding, and binding functions. Yet we still lack full understanding of the contributions of aromatic-aromatic interactions to protein stability and the timing of their formation during folding. Here, using as a case study an aromatic ladder in the β-barrel protein, cellular retinoic acid binding protein 1 (CRABP1), we find aromatic π stacking plays a greater role in the Phe65-Phe71 cross-strand pair while in another pair, Phe50-Phe65, hydrophobic interactions are dominant. The Phe65/Phe71 pair spans β-strands 4 and 5 in the β-barrel, which lack interstrand hydrogen bonding, and we speculate that it compensates energetically for the absence of strand-strand backbone interactions. Using perturbation analysis, we find that both aromatic-aromatic pairs form after the transition state for folding of CRABP1, thus playing a role in the final stabilization of the β-sheet rather than in its nucleation as had been earlier proposed. The aromatic interaction between strands 4–5 in CRABP1 is highly conserved in the intracellular lipid-binding protein (iLBP) family, and several lines of evidence combine to support a model wherein it acts to maintain barrel structure while allowing the dynamic opening that is necessary for ligand entry. Lastly, we carried out a bioinformatic analysis and found 51 examples of aromatic-aromatic interactions across non-hydrogen-bonded β-strands outside the iLBPs, arguing for the generality of the role played by this structural motif. PMID:23810905

  18. Effect of water coordination on competition between π and non-π cation binding sites in aromatic amino acids: L-phenylalanine, L-tyrosine, and L-tryptophan Li+, Na +, and K+ complexes.

    PubMed

    Remko, Milan; Šoralová, Stanislava

    2012-04-01

    Quantum chemistry methods have been applied to charged complexes of the alkali metals Li(+), Na(+), and K(+) with the aromatic amino acids (AAAs) phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp). The geometries of 72 different complexes (Phe·M, Tyr·M, Trp·M, M is Li(+), Na(+), or K(+)) were completely optimized at the B3LYP/6-311+G(d,p) level of density functional theory. The solvent effect on the geometry and stability of individual complexes was studied by making use of a microsolvation model. The interaction enthalpies, entropies, and Gibbs energies of nine different complexes of the systems Phe·M, Tyr·M, and Trp·M (M is Li(+), Na(+), or K(+)) were also determined at the B3LYP density functional level of theory. The calculated Gibbs binding energies of the M(+)-AAA complexes follow the order Phe < Tyr < Trp for all three metal cations studied. Among the three AAAs studied, the indole ring of Trp is the best π donor for alkali metal cations. Our calculations demonstrated the existence of strong cation-π interactions between the alkali metals and the aromatic side chains of the three AAAs. These AAAs comprise about 8% of all known protein sequences. Thus, besides the potential for hydrogen-bond interaction, aromatic residues of Phe, Tyr, and Trp show great potential for π-donor interactions. The existence of cation-π interaction in proteins has also been demonstrated experimentally. However, more complex experimental studies of metal cation-π interaction in diverse biological systems will no doubt lead to more exact validation of these investigations.

  19. Radiolysis of aqueous solutions of acetic acid in the presence of Na-montmorillonite

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, R.; Negron-Mendoza, A.; Ramos, S.; Ponnamperuma, C.

    1990-01-01

    The gamma-irradiation of 0.8 mol dm-3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite. H2, CH4, CO, CO2, and several polycarboxylic acids were formed in all systems. The primary characteristics observed in the latter system were: (1) Higher yield of the decomposition of acetic acid; (2) Lower yield of the formation of polycarboxylic acids; (3) No effect on the formation of methane; (4) Higher yield of the formation of carbon dioxide; and (5) The reduction of Fe3+ in the octahedral sites of Na-montmorillonite. A possible reaction scheme was proposed to account for the observed changes. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.

  20. 40 CFR 721.825 - Certain aromatic ether diamines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Certain aromatic ether diamines. 721... Substances § 721.825 Certain aromatic ether diamines. (a) Chemical substances and significant new uses...,5-benzenetetracarboxylic acid, diethyl ester, compound with 4,4′- -2,5-diylbis(oxy)]bis (1:1) (PMN...

  1. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70.degree. C. and 500.degree. C. and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  2. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-01-05

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70 C and 500 C and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  3. Carbohydrate–Aromatic Interactions in Proteins

    PubMed Central

    2015-01-01

    Protein–carbohydrate interactions play pivotal roles in health and disease. However, defining and manipulating these interactions has been hindered by an incomplete understanding of the underlying fundamental forces. To elucidate common and discriminating features in carbohydrate recognition, we have analyzed quantitatively X-ray crystal structures of proteins with noncovalently bound carbohydrates. Within the carbohydrate-binding pockets, aliphatic hydrophobic residues are disfavored, whereas aromatic side chains are enriched. The greatest preference is for tryptophan with an increased prevalence of 9-fold. Variations in the spatial orientation of amino acids around different monosaccharides indicate specific carbohydrate C–H bonds interact preferentially with aromatic residues. These preferences are consistent with the electronic properties of both the carbohydrate C–H bonds and the aromatic residues. Those carbohydrates that present patches of electropositive saccharide C–H bonds engage more often in CH−π interactions involving electron-rich aromatic partners. These electronic effects are also manifested when carbohydrate–aromatic interactions are monitored in solution: NMR analysis indicates that indole favorably binds to electron-poor C–H bonds of model carbohydrates, and a clear linear free energy relationships with substituted indoles supports the importance of complementary electronic effects in driving protein–carbohydrate interactions. Together, our data indicate that electrostatic and electronic complementarity between carbohydrates and aromatic residues play key roles in driving protein–carbohydrate complexation. Moreover, these weak noncovalent interactions influence which saccharide residues bind to proteins, and how they are positioned within carbohydrate-binding sites. PMID:26561965

  4. RECOVERY OF URANIUM BY AROMATIC DITHIOCARBAMATE COMPLEXING

    DOEpatents

    Neville, O.K.

    1959-08-11

    A selective complexing organic solvent extraction process is presented for the separation of uranium values from an aqueous nitric acid solution of neutron irradiated thorium. The process comprises contacting the solution with an organic aromatic dithiccarbamaie and recovering the resulting urancdithiccarbamate complex with an organic solvent such as ethyl acetate.

  5. 1H NMR spectroscopic investigations on the conformation of amphiphilic aromatic amino acid derivatives in solution: effect of chemical architecture of amphiphiles and polarity of solvent medium.

    PubMed

    Vijay, R; Mandal, A B; Baskar, Geetha

    2010-11-01

    In this study, the conformation of the amphiphilic lauryl esters of L-tyrosine (LET) and L-phenylalanine (LEP) in water and dimethyl sulfoxide is established. The alkyl chain protons of LEP in D(2)O appear at δ 1.010-1.398 and show an upfield shift and large line width, suggesting the proximity of the phenyl ring to the alkyl chain in contrast to that of LET. Quite interestingly, in DMSO-d(6), the (1)H NMR spectra of LET and LEP show a strong similarity that is suggestive of an orientation that positions the aromatic ring and aliphatic chain away from each other. These results are substantiated with two-dimensional nuclear Overhauser enhancement spectroscopy (2D NOSEY). Theoretical molecular models of the conformation at the interface corroborate the experimental findings. Investigations of the solvent polarity and chemical structure-dependent conformation are discussed.

  6. Effects of low molecular-weight organic acids and dehydrogenase activity in rhizosphere sediments of mangrove plants on phytoremediation of polycyclic aromatic hydrocarbons.

    PubMed

    Wang, Yuanyuan; Fang, Ling; Lin, Li; Luan, Tiangang; Tam, Nora F Y

    2014-03-01

    This work evaluated the roles of the low-molecular-weight organic acids (LMWOAs) from root exudates and the dehydrogenase activity in the rhizosphere sediments of three mangrove plant species on the removal of mixed PAHs. The results showed that the concentrations of LMWOAs and dehydrogenase activity changed species-specifically with the levels of PAH contamination. In all plant species, the concentration of citric acid was the highest, followed by succinic acid. For these acids, succinic acid was positively related to the removal of all the PAHs except Chr. Positive correlations were also found between the removal percentages of 4-and 5-ring PAHs and all LMWOAs, except citric acid. LMWOAs enhanced dehydrogenase activity, which positively related to PAH removal percentages. These findings suggested that LMWOAs and dehydrogenase activity promoted the removal of PAHs. Among three mangrove plants, Bruguiera gymnorrhiza, the plant with the highest root biomass, dehydrogenase activity and concentrations of LMWOAs, was most efficient in removing PAHs. PMID:24287262

  7. Effects of low molecular-weight organic acids and dehydrogenase activity in rhizosphere sediments of mangrove plants on phytoremediation of polycyclic aromatic hydrocarbons.

    PubMed

    Wang, Yuanyuan; Fang, Ling; Lin, Li; Luan, Tiangang; Tam, Nora F Y

    2014-03-01

    This work evaluated the roles of the low-molecular-weight organic acids (LMWOAs) from root exudates and the dehydrogenase activity in the rhizosphere sediments of three mangrove plant species on the removal of mixed PAHs. The results showed that the concentrations of LMWOAs and dehydrogenase activity changed species-specifically with the levels of PAH contamination. In all plant species, the concentration of citric acid was the highest, followed by succinic acid. For these acids, succinic acid was positively related to the removal of all the PAHs except Chr. Positive correlations were also found between the removal percentages of 4-and 5-ring PAHs and all LMWOAs, except citric acid. LMWOAs enhanced dehydrogenase activity, which positively related to PAH removal percentages. These findings suggested that LMWOAs and dehydrogenase activity promoted the removal of PAHs. Among three mangrove plants, Bruguiera gymnorrhiza, the plant with the highest root biomass, dehydrogenase activity and concentrations of LMWOAs, was most efficient in removing PAHs.

  8. [The detection of aromatic substances in biological material].

    PubMed

    Fartushnyĭ, A F

    1992-01-01

    The author presents experimental data and suggests a method for extraction of aromatic substances from the blood, urine, lavage water, stomach and its contents, liver and kidneys. The extract is dissolved in 96% ethanol and the aromatic substances are detected in reactions with hydrochloric acid, Marki's reagent, 2,4-dinitrophenylhydrazine, diazotized o-dianisidine, phthivazide, chromotropic acid by UV spectrophotometry, thin-layer and gas-liquid chromatography. The sensitivity of the method is 0.1-0.5 mg %.

  9. Trimerization of aromatic nitriles

    NASA Technical Reports Server (NTRS)

    Hsu, L. C. (Inventor)

    1977-01-01

    Triazine compounds and cross-linked polymer compositions were made by heating aromatic nitriles to a temperature in the range of about 100 C to about 700 C, in the presence of a catalyst or mixture of catalysts. Aromatic nitrile-modified (terminated and/or appended) imide, benzimidazole, imidazopyrrolone, quinoxaline, and other condensation type prepolymers or their precopolymers were made which were trimerized with or without a filler by the aforementioned catalytic trimerization process.

  10. Aromatic Polyimide Foam

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2000-01-01

    A mechanically undensified aromatic polyimide foam is made from an aromatic polyimide precursor solid residuum and has the following combination of properties: a density according to ASTM D-3574A of about 0.5 pounds/cu.ft to about 20 pounds/cu.ft; a compression strength according to ASTM D-3574C of about 1.5 psi to about 1500 psi; and a limiting oxygen index according to ASTM D-2863 of about 35% oxygen to about 75% oxygen at atmospheric pressure. The aromatic polyimide foam has no appreciable solid inorganic contaminants which are residues of inorganic blowing agents. The aromatic polyimide which constitutes the aromatic polyimide foam has a glass transition temperature (Tg) by differential scanning calorimetry of about 235 C to about 400 C; and a thermal stability of 0 to about 1% weight loss at 204 C as determined by thermogravinietric analysis (TGA). The aromatic polyimide foam has utility as foam insulation and as structural foam, for example, for aeronautical, aerospace and maritime applications.

  11. Synthesis of perfluoroalkylene aromatic diamines

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Ito, T. I.; Nakahara, J. H.; Kratzer, R. H.

    1978-01-01

    Analogues of methylene dianilines were synthesized, in which the methylene group between the two aromatic nuclei was replaced by various perfluoroalkylene linkage. The hydrolytic thermal, and thermal oxidative stabilities of PMR Polyimides derived from these diamines were determined. Three types of PMR Polyimide discs were fabricated from the dimethyl ester of 3,3', 4,4'-benzophenonetetracarboxylic acid, the methyl ester of 5-norbornene-2,3-dicarboxylic acid, and one of the following three diamines: methyl dianiline, 1,3-bis(4-aminophenyl)hexafluoropropane, and 2,2-bis(4-aminophenyl)hexafluoropropane. The polyimide based on 2,2-bis(4-aminophenyl)hexafluoropropane exhibited the best hydrolytic, thermal, and thermal oxidative stability as determined by moisture uptake and thermogravimetric analysis.

  12. Benzene and Beyond: Pursuing the Core of Aromaticity.

    PubMed

    Weininger, Stephen J

    2015-04-01

    Kekulé first suggested a hexagonal structure for benzene in 1865. For over a half-century after, chemists struggled to reconcile proposed structures for benzene and other aromatic compounds with their resistance to chemical transformation and tendency to maintain the type during reaction. The combined structural and reactivity features of these compounds were eventually covered by the term 'aromaticity'. Kekulé, Bamberger and Thiele had each proposed a criterion for aromaticity; all were either empirically contradicted or incapable of evaluation. In the 1930s, two rival quantum mechanical methods succeeded in establishing a physical basis for aromaticity. Using valence bond theory, Pauling attributed benzene's stability to its being a resonance hybrid of several Lewis structures. Calculating resonance energies was challenging but manipulating Lewis structures was not; that procedure provided qualitative insights into aromatic structure and reactivity. Resonance theory appealed especially to organic chemists and eclipsed Hückel's contemporaneous molecular orbital approach, which remained relatively inaccessible. In the 1950s, however, simple rules derived from Hückel's mathematics, combined with proton NMR data, provided seemingly universal criteria for aromaticity. In the event, post-1950 discoveries of non-organic, three-dimensional compounds such as ferrocene and the fullerenes that exhibit aromatic properties led chemists to doubt the utility and universality of 'aromaticity' as a concept. A recent consensus maintains that aromaticity is a multi-variable phenomenon that cannot be reduced to a strict definition, a property it shares with other core chemical concepts such as 'acidity' and 'reactivity'.

  13. Coordinating activation strategy for C(sp3)–H/C(sp3)–H cross-coupling to access β-aromatic α-amino acids

    PubMed Central

    Li, Kaizhi; Wu, Qian; Lan, Jingbo; You, Jingsong

    2015-01-01

    The past decade has witnessed significant advances in C–H bond functionalizations with the discovery of new mechanisms. Non-precious transition-metal-catalysed radical oxidative coupling for C(sp3)–H bond transformations is an appealing strategy for C–C bond formations. The radical oxidative C(sp3)–H/C(sp3)–H cross-coupling reactions of α-C(sp3)–H bonds of amines with free radicals represent a conceptual and practical challenge. We herein develop the coordinating activation strategy to illustrate the nickel-catalysed radical oxidative cross-coupling between C(sp3)–H bonds and (hetero)arylmethyl free radicals. The protocol can tolerate a rich variety of α-amino acids and (hetero)arylmethanes as well as arylmethylenes and arylmethines, affording a large library of α-tertiary and α-quaternary β-aromatic α-amino acids. This process also features low-cost metal catalyst, readily handled and easily removable coordinating group, synthetic simplicity and gram-scale production, which would enable the potential for economical production at commercial scale in the future. PMID:26415985

  14. Aromatic amines and cancer.

    PubMed

    Vineis, P; Pirastu, R

    1997-05-01

    Epidemiological evidence on the relation between aromatic amines and cancer risk is reviewed. In particular, cancer risk in humans resulting from exposure to aromatic amines from occupational sources and tobacco smoking is assessed with reference to ecologic, cohort, and case-control studies. Seven arylamines have been classified by the International Agency for Research on Cancer: benzidine-based dyes and MOCA (4,4'-methylene bis 2-choloroaniline) were considered 'probably' carcinogenic, Group 2A, because of a high level of evidence in experimental animals; two occupational chemicals (2-naphthylamine and benzidine), one drug (Chlornaphazine), and two manufacturing processes (manufacture of auramine and magenta) were included in Group 1 on the basis of 'sufficient' evidence of carcinogenicity in humans. Occupational exposures to aromatic amines explain up to 25 percent of bladder cancers in some areas of Western countries; these estimates might be higher in limited areas of developing countries. Aromatic amines contaminate the ambient air as a component of environmental tobacco smoke. There is increasing evidence that the excess of bladder cancer in smokers is attributable to aromatic amines rather than to other contaminants of tobacco smoke such as polycyclic aromatic hydrocarbons (PAH). A modulating role in the risk of bladder cancer associated with exposure to aromatic amines is played by metabolic polymorphisms, such as the N-acetyltransferase genotype, raising important social and ethical issues. The consistent observation of a difference between men and women in bladder cancer risk, after allowing for known risk factors, suggests consideration of gender-related biological determinants for future investigation.

  15. Model pharmaceutical co-crystallization: Guest-directed assembly of caffeine and aromatic tri-hydroxy and dicarboxylic acids into different heteromolecular hydrogen bonding networks in solid state

    NASA Astrophysics Data System (ADS)

    Mahapatra, Ajit Kumar; Sahoo, Prithidipa; Goswami, Shyamaprosad; Fun, Hoong-Kun

    2010-01-01

    Three model pharmaceutical caffeine-containing co-crystals of 1,3,5-trihydroxybenzene (phloroglucinol), isophthalic acid and 5-hydroxyisophthalic acid were synthesized and characterized via single-crystal X-ray diffraction. The three crystalline forms reported are an anhydrous co-crystal and other two are co-crystal hydrates. Also their binding properties were studied by UV-vis analysis. In each of these structures, an organised intermolecular hydrogen bonding motif was observed. A comparison of hydrogen bonding motifs in the crystal sheets was presented.

  16. The aromatic ene reaction

    PubMed Central

    Niu, Dawen; Hoye, Thomas R.

    2014-01-01

    The ene reaction is a pericyclic process in which an alkene having an allylic hydrogen atom (the ene donor) reacts with a second unsaturated species (the enophile) to form a new product with a transposed π-bond. The aromatic ene reaction, in which the alkene component is embedded in an aromatic ring, has only been reported in a few (four) instances and has proceeded in low yield (≤6%). Here we show efficient aromatic ene reactions in which a thermally generated aryne engages a pendant m-alkylarene substituent to produce a dearomatized isotoluene, itself another versatile but rare reactive intermediate. Our experiments were guided by computational studies that revealed structural features conducive to the aromatic ene process. We proceeded to identify a cascade comprising three reactions: (i) hexadehydro-Diels-Alder (for aryne generation), (ii) intramolecular aromatic ene, and (iii) bimolecular Alder ene. The power of this cascade is evident from the structural complexity of the final products, the considerable scope, and the overall efficiency of these multi-stage, reagent- and byproduct-free, single-pot transformations. PMID:24345944

  17. Catalytic C-H bond activation at nanoscale Lewis acidic aluminium fluorides: H/D exchange reactions at aromatic and aliphatic hydrocarbons.

    PubMed

    Prechtl, Martin H G; Teltewskoi, Michael; Dimitrov, Anton; Kemnitz, Erhard; Braun, Thomas

    2011-12-16

    Nanoscopic amorphous Lewis acidic aluminium fluorides, such as aluminium chlorofluoride (ACF) and high-surface aluminium fluoride (HS-AlF(3)), are capable of activating C-H bonds of aliphatic hydrocarbons. H/D exchange reactions are catalysed under mild conditions (40 °C).

  18. Complex metabolism of aromatic glucosinolates in Pieris rapae caterpillars involving nitrile formation, hydroxylation, demethylation, sulfation, and host plant dependent carboxylic acid formation.

    PubMed

    Agerbirk, Niels; Olsen, Carl Erik; Poulsen, Eva; Jacobsen, Niels; Hansen, Paul Robert

    2010-02-01

    We investigated the metabolism of two chain elongated phenolic glucosinolates and the corresponding O-methyl derivatives upon ingestion by caterpillars of the butterfly Pieris rapae (L.). The glucosinolates (GSLs) were 4-hydroxyphenethylGSL, (R)-2-hydroxy-2-(4-hydroxyphenyl)ethylGSL, 4-methoxyphenethylGSL, and (R)-2-hydroxy-2-(4-methoxyphenyl)ethylGSL, variously occurring in foliage of two Arabis species: Arabis hirsuta (L.) Scop. and Arabis soyeri Reut. & Huet subsp. subcoriacea (Gren. ex Nyman) Breitstr. (Brassicaceae). Frass from caterpillars reared on each Arabis species contained two sulfated nitriles (4-sulfates of 3-(4-hydroxyphenyl)propanenitrile and 3-hydroxy-3-(4-hydroxyphenyl)propanenitrile) as apparent GSL metabolites. Comparison of glucosinolate levels in foliage and levels of sulfated nitriles in frass, and experiments with isolated GSLs spiked to crucifer foliage and ingested by P. rapae, demonstrated that phenolic GSLs and the corresponding O-methyl derivatives were metabolised to sulfated nitriles, and that metabolites lacking a beta-hydroxy group were partially hydroxylated in this position during metabolism in P. rapae. In contrast, an induction experiment did not show increased levels of beta-hydroxylated GSLs in A. soyeri plants upon caterpillar feeding. Frass contents of other putative GSL metabolites from the interaction with the two Arabis species differed significantly; caterpillars reared on A. hirsuta excreted significant amounts of four carboxylic acids (3-(4-hydroxyphenyl)propanoic acid, 3-hydroxy-3-(4-hydroxyphenyl)propanoic acid, and the corresponding 4-sulfates), which were low or absent when the caterpillars were reared on A. soyeri. The excreted carboxylic acids could be formed by hydrolysis of nitriles to carboxylic acids in caterpillar guts by an ingested nitrilase enzyme from A. hirsuta foliage; this hypothesis was supported by demonstration of 3-(4-hydroxyphenyl)propanenitrile hydrolysing nitrilase activity (E.C. 3.5.5.x) in a

  19. Magnetic criteria of aromaticity.

    PubMed

    Gershoni-Poranne, Renana; Stanger, Amnon

    2015-09-21

    This review describes the current state of magnetic criteria of aromaticity. The introduction contains the fundamentals of ring currents in aromatic and antiaromatic systems, followed by a brief description of experimental and computational tools: NMR, diamagnetic susceptibility exaltation, current density analyses (CDA) and nucleus independent chemical shifts (NICS). This is followed by more comprehensive chapters: NMR - focusing on the work of R. Mitchell - NICS and CDA - describing the progress and development of the methods to their current state and presenting some examples of representative work. PMID:26035305

  20. Magnetic criteria of aromaticity.

    PubMed

    Gershoni-Poranne, Renana; Stanger, Amnon

    2015-09-21

    This review describes the current state of magnetic criteria of aromaticity. The introduction contains the fundamentals of ring currents in aromatic and antiaromatic systems, followed by a brief description of experimental and computational tools: NMR, diamagnetic susceptibility exaltation, current density analyses (CDA) and nucleus independent chemical shifts (NICS). This is followed by more comprehensive chapters: NMR - focusing on the work of R. Mitchell - NICS and CDA - describing the progress and development of the methods to their current state and presenting some examples of representative work.

  1. Direct high-performance liquid chromatographic separation of the enantiomers of an aromatic amine and four aminoalcohols using polysaccharide chiral stationary phases and acidic additive.

    PubMed

    Caccamese, Salvatore; Bianca, Salvatore; Carter, Guy T

    2007-08-01

    The HPLC enantiomeric separation of N-benzyl-alpha-methyl-benzylamine, phenylalaninol, tryptophanol, 2 (diphenylhydroxymethyl)pyrrolidine, and isoproterenol was accomplished in the normal-phase mode using two polysaccharide-derived chiral stationary phases (CSPs) and various n-hexane/2-propanol mobile phases with acidic (TFA) or basic (DEA) additive. The compounds were separated without any derivatization and separation factor range between 2.09 and 1.09 with resolution factor 3.4 and 0.4, respectively. The best separation of the enantiomers of the amine was achieved on amylose tris (3, 5-dimethylphenylcarbamate) CSP with TFA additive in the mobile phase; in acidic conditions, instead, the best enantioseparation of the aminoalcohols was achieved on cellulose tris (3, 5-dimethylphenilcarbamate). A long equilibration time of the CSP when switching from an undoped mobile phase to a doped one is required to obtain reproducible results. PMID:17568428

  2. Metal-Free Cross-Coupling of Arylboronic Acids and Derivatives with DAST-Type Reagents for Direct Access to Diverse Aromatic Sulfinamides and Sulfonamides.

    PubMed

    Wang, Qiang; Tang, Xiang-Ying; Shi, Min

    2016-08-26

    We have developed a simple and convenient method for the cross-coupling of arylboronic acids and their derivatives with DAST-type reagents under mild and metal-free conditions to directly afford sulfinamides in moderate to good yields. Moreover, sulfonamides were obtained after a simple oxidation reaction. The reaction mechanism was investigated by (18) O-labeling experiments, and the synthetic utility was demonstrated by the sulfoxidation of natural products.

  3. One-pot hydrogen peroxide and hydrohalic acid induced ring closure and selective aromatic halogenation to give new ring-fused benzimidazoles.

    PubMed

    Gurry, Michael; Sweeney, Martin; McArdle, Patrick; Aldabbagh, Fawaz

    2015-06-01

    A new series of selectively dichlorinated and dibrominated five- to eight-membered-ring [1,2-a]-fused benzimidazoles and [1,4]oxazino[4,3-a]benzimidazoles are synthesized in mostly high yields of >80% using the reaction of hydrogen peroxide and hydrohalic acid with commercially available o-cyclic amine substituted anilines. Domestic bleach with HCl can also be used for a one-pot ring closure and chlorination.

  4. Relaxed specificity in aromatic prenyltransferases.

    PubMed

    Koehl, Patrice

    2005-07-01

    Prenylation represent a critical step in the biosynthesis of many natural products, A new study reveals how aromatic prenyltransferase enzymes tolerate diverse aromatic polyketides while still controlling the length of prenyl side chains.

  5. Tough soluble aromatic thermoplastic copolyimides

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor)

    2000-01-01

    Tough, soluble, aromatic, thermoplastic copolyimides were prepared by reacting 4,4'-oxydiphthalic anhydride, 3,4,3',4'-biphenyltetracarboxylic dianhydride and 3,4'-oxydianiline. Alternatively, these copolyimides may be prepared by reacting 4,4'-oxydiphthalic anhydride with 3,4,3',4'-biphenyltetracarboxylic dianhydride and 3,4'-oxydiisocyanate. Also, the copolyimide may be prepared by reacting the corresponding tetra acid and ester precursors of 4,4'-oxydiphthalic anhydride and 3,4,3',4'-biphenyltetracarboxylic dianhydride with 3,4'-oxydianiline. These copolyimides were found to be soluble in common amide solvents such as N,N'-dimethyl acetamide, N-methylpyrrolidinone, and dimethylformamide allowing them to be applied as the fully imidized copolymer and to be used to prepare a wide range of articles.

  6. Polybenzimidazole via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Joseph G. (Inventor)

    1994-01-01

    Di(hydroxyphenyl)benzimidazole monomers were prepared from phenyl-4-hydroxybenzoate and aromatic bis(o-diamine)s. These monomers were used in the synthesis of soluble polybenzimidazoles. The reaction involved the aromatic nucleophilic displacement of various di(hydroxyphenyl)benzimidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds in the presence of an alkali metal base. These polymers exhibited lower glass transition temperatures, improved solubility, and better compression moldability over their commercial counterparts.

  7. Tunable Control of Polyproline Helix (PPII) Structure via Aromatic Electronic Effects: An Electronic Switch of Polyproline Helix

    PubMed Central

    2015-01-01

    Aromatic rings exhibit defined interactions via the unique aromatic π face. Aromatic amino acids interact favorably with proline residues via both the hydrophobic effect and aromatic–proline interactions, C−H/π interactions between the aromatic π face and proline ring C–H bonds. The canonical aromatic amino acids Trp, Tyr, and Phe strongly disfavor a polyproline helix (PPII) when they are present in proline-rich sequences because of the large populations of cis amide bonds induced by favorable aromatic–proline interactions (aromatic–cis-proline and proline–cis-proline–aromatic interactions). We demonstrate the ability to tune polyproline helix conformation and cis–trans isomerism in proline-rich sequences using aromatic electronic effects. Electron-rich aromatic residues strongly disfavor polyproline helix and exhibit large populations of cis amide bonds, while electron-poor aromatic residues exhibit small populations of cis amide bonds and favor polyproline helix. 4-Aminophenylalanine is a pH-dependent electronic switch of polyproline helix, with cis amide bonds favored as the electron-donating amine, but trans amide bonds and polyproline helix preferred as the electron-withdrawing ammonium. Peptides with block proline–aromatic PPXPPXPPXPP sequences exhibited electronically switchable pH-dependent structures. Electron-poor aromatic amino acids provide special capabilities to integrate aromatic residues into polyproline helices and to serve as the basis of aromatic electronic switches to change structure. PMID:25075447

  8. Solid Phase Synthesis of Helically Folded Aromatic Oligoamides.

    PubMed

    Dawson, S J; Hu, X; Claerhout, S; Huc, I

    2016-01-01

    Aromatic amide foldamers constitute a growing class of oligomers that adopt remarkably stable folded conformations. The folded structures possess largely predictable shapes and open the way toward the design of synthetic mimics of proteins. Important examples of aromatic amide foldamers include oligomers of 7- or 8-amino-2-quinoline carboxylic acid that have been shown to exist predominantly as well-defined helices, including when they are combined with α-amino acids to which they may impose their folding behavior. To rapidly iterate their synthesis, solid phase synthesis (SPS) protocols have been developed and optimized for overcoming synthetic difficulties inherent to these backbones such as low nucleophilicity of amine groups on electron poor aromatic rings and a strong propensity of even short sequences to fold on the solid phase during synthesis. For example, acid chloride activation and the use of microwaves are required to bring coupling at aromatic amines to completion. Here, we report detailed SPS protocols for the rapid production of: (1) oligomers of 8-amino-2-quinolinecarboxylic acid; (2) oligomers containing 7-amino-8-fluoro-2-quinolinecarboxylic acid; and (3) heteromeric oligomers of 8-amino-2-quinolinecarboxylic acid and α-amino acids. SPS brings the advantage to quickly produce sequences having varied main chain or side chain components without having to purify multiple intermediates as in solution phase synthesis. With these protocols, an octamer could easily be synthesized and purified within one to two weeks from Fmoc protected amino acid monomer precursors. PMID:27586338

  9. Integrated reforming/aromatization process

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1990-06-26

    This patent describes an integrated process for increasing the gasoline yield from a catalytic reforming process. It comprises: charging a naphtha boiling range feedstream to a catalytic reforming reaction zone under reforming conversion conditions; withdrawing a reactor effluent stream from the reforming reaction zone; separating the reactor effluent stream into a hydrogen-rich gas stream and an unstabilized reformate stream; further separating the unstabilized reformate in a fractionator into an overhead stream containing C{sub 4} - components and a bottom stream containing C{sub 6} + components; charging the fractionator overhead stream to a catalytic aromatization zone under aromatization conversion conditions; withdrawing an aromatization zone effluent stream from the aromatization zone; cooling the aromatization zone effluent stream; separating the cooled aromatization zone effluent steam into a C{sub 4} - stream and a C{sub 5} + stream; and refluxing the C{sub 5} + aromatic gasoline stream to the fractionation zone.

  10. Bioorganometallic Chemistry, Part 15. A novel molecular recognition process of host, trans-[Cp*Rh({eta}{sup 1}(N3)-1-methylcytosine)({mu}-OH)]{sub 2} (OTf){sub 2}, with l-aromatic amino acid guests: selective hydrogen bonding to the {mu}-OH groups and the 1-methylcytosine ligands

    SciTech Connect

    Elduque, Anabel; Carmona, Daniel; Oro, Luis; Eisenstein, Miriam; Fish, Richard H.

    2002-11-01

    The {sup 1}H-NMR and computer docking experiments have elucidated a novel molecular recognition process of host, trans-[Cp*Rh({eta}{sup 1}(Ne)-1-methylcytosine)({mu}-OH)]{sub 2}(OTf){sub 2} (1), with L-aromatic amino acids, which is predicated on a selective hydrogen bonding regime of the NH{sub 3}{sup +} of the amino acid to one of the Rh-{mu}-OH groups, as well as to a C{double_bond}O group of one of the other 1-methycytosine ligands, while the COO{sup -} H-bonds to an NH{sub 2} of the other 1-methycytosine ligand.

  11. Locomotor response to L-DOPA in reserpine-treated rats following central inhibition of aromatic L-amino acid decarboxylase: further evidence for non-dopaminergic actions of L-DOPA and its metabolites.

    PubMed

    Alachkar, Amal; Brotchie, Jonathan M; Jones, Owen T

    2010-09-01

    L-DOPA is the most widely used treatment for Parkinson's disease. The anti-parkinsonian and pro-dyskinetic actions of L-DOPA are widely attributed to its conversion, by the enzyme aromatic L-amino acid decarboxylase (AADC), to dopamine. We investigated the hypothesis that exogenous L-DOPA can induce behavioural effects without being converted to dopamine in the reserpine-treated rat-model of Parkinson's disease. A parkinsonian state was induced with reserpine (3 mg/kg s.c.). Eighteen hours later, the rats were administered L-DOPA plus the peripherally acting AADC inhibitor benserazide (25 mg/kg), with or without the centrally acting AADC inhibitor NSD1015 (100 mg/kg). L-DOPA/benserazide alone reversed reserpine-induced akinesia (4158+/-1125 activity counts/6 h, cf vehicle 1327+/-227). Addition of NSD1015 elicited hyperactive behaviour that was approximately 7-fold higher than L-DOPA/benserazide (35755+/-5226, P<0.001). The hyperactivity induced by L-DOPA and NSD1015 was reduced by the alpha(2C) antagonist rauwolscine (1 mg/kg) and the 5-HT(2C) agonist MK212 (5 mg/kg), but not by the D2 dopamine receptor antagonist remoxipride (3 mg/kg) or the D1 dopamine receptor antagonist SCH23390 (1 mg/kg). These data suggest that L-DOPA, or metabolites produced via routes not involving AADC, might be responsible for the generation of at least some L-DOPA actions in reserpine-treated rats. PMID:20542064

  12. Substituted Phthalic Anhydrides from Biobased Furanics: A New Approach to Renewable Aromatics.

    PubMed

    Thiyagarajan, Shanmugam; Genuino, Homer C; Śliwa, Michał; van der Waal, Jan C; de Jong, Ed; van Haveren, Jacco; Weckhuysen, Bert M; Bruijnincx, Pieter C A; van Es, Daan S

    2015-09-21

    A novel route for the production of renewable aromatic chemicals, particularly substituted phthalic acid anhydrides, is presented. The classical two-step approach to furanics-derived aromatics via Diels-Alder (DA) aromatization has been modified into a three-step procedure to address the general issue of the reversible nature of the intermediate DA addition step. The new sequence involves DA addition, followed by a mild hydrogenation step to obtain a stable oxanorbornane intermediate in high yield and purity. Subsequent one-pot, liquid-phase dehydration and dehydrogenation of the hydrogenated adduct using a physical mixture of acidic zeolites or resins in combination with metal on a carbon support then allows aromatization with yields as high as 84 % of total aromatics under relatively mild conditions. The mechanism of the final aromatization reaction step unexpectedly involves a lactone as primary intermediate.

  13. Substituted Phthalic Anhydrides from Biobased Furanics: A New Approach to Renewable Aromatics.

    PubMed

    Thiyagarajan, Shanmugam; Genuino, Homer C; Śliwa, Michał; van der Waal, Jan C; de Jong, Ed; van Haveren, Jacco; Weckhuysen, Bert M; Bruijnincx, Pieter C A; van Es, Daan S

    2015-09-21

    A novel route for the production of renewable aromatic chemicals, particularly substituted phthalic acid anhydrides, is presented. The classical two-step approach to furanics-derived aromatics via Diels-Alder (DA) aromatization has been modified into a three-step procedure to address the general issue of the reversible nature of the intermediate DA addition step. The new sequence involves DA addition, followed by a mild hydrogenation step to obtain a stable oxanorbornane intermediate in high yield and purity. Subsequent one-pot, liquid-phase dehydration and dehydrogenation of the hydrogenated adduct using a physical mixture of acidic zeolites or resins in combination with metal on a carbon support then allows aromatization with yields as high as 84 % of total aromatics under relatively mild conditions. The mechanism of the final aromatization reaction step unexpectedly involves a lactone as primary intermediate. PMID:26235971

  14. Aromaticity Competition in Differentially Fused Borepin-Containing Polycyclic Aromatics.

    PubMed

    Messersmith, Reid E; Siegler, Maxime A; Tovar, John D

    2016-07-01

    This report describes the synthesis and characterization of a series of borepin-based polycyclic aromatics bearing two different arene fusions. The borepin synthesis features streamlined Ti-mediated alkyne reduction, leading to Z-olefins, followed by direct lithiation and borepin formation. These molecules allow for an assessment of aromatic competition between the fused rings and the central borepin core. Crystallographic, magnetic, and computational studies yielded insights about the aromaticity of novel, differentially fused [b,f]borepins and allowed for comparison to literature compounds. Multiple borepin motifs were also incorporated into polycyclic aromatics with five or six rings in the main backbone, and their properties were also evaluated.

  15. Investigation of the accumulation of aromatic compounds during biogas production from kitchen waste.

    PubMed

    Hecht, C; Griehl, C

    2009-01-01

    This paper presents laboratory scale studies on the anaerobic degradation of kitchen waste, with a high protein and fat content, using a quasi-continuous co-digestion process. The increased accumulation of non-degraded intermediates as an indication of process imbalances was examined in experiments where the substrate load was gradually increased. In addition to the critical rise of known toxic metabolites like ammonia, hydrogen sulphide or volatile fatty acids, aromatic acids accumulated with increasing substrate loading. These metabolites could be identified as intermediates from the anaerobe degradation of the aromatic amino acids phenylalanine, tyrosine and tryptophan. In most experiments the important finding was the early detection of aromatics, especially phenylacetic acid, even before the monitoring of volatile fatty acid concentrations gave an indication of a process imbalance. This demonstrates the potential use aromatic acids as indicators for an upcoming process failure.

  16. Contorted polycyclic aromatics.

    PubMed

    Ball, Melissa; Zhong, Yu; Wu, Ying; Schenck, Christine; Ng, Fay; Steigerwald, Michael; Xiao, Shengxiong; Nuckolls, Colin

    2015-02-17

    CONSPECTUS: This Account describes a body of research in the design, synthesis, and assembly of molecular materials made from strained polycyclic aromatic molecules. The strain in the molecular subunits severely distorts the aromatic molecules away from planarity. We coined the term "contorted aromatics" to describe this class of molecules. Using these molecules, we demonstrate that the curved pi-surfaces are useful as subunits to make self-assembled electronic materials. We have created and continue to study two broad classes of these "contorted aromatics": discs and ribbons. The figure that accompanies this conspectus displays the three-dimensional surfaces of a selection of these "contorted aromatics". The disc-shaped contorted molecules have well-defined conformations that create concave pi-surfaces. When these disc-shaped molecules are substituted with hydrocarbon side chains, they self-assemble into columnar superstructures. Depending on the hydrocarbon substitution, they form either liquid crystalline films or macroscopic cables. In both cases, the columnar structures are photoconductive and form p-type, hole- transporting materials in field effect transistor devices. This columnar motif is robust, allowing us to form monolayers of these columns attached to the surface of dielectrics such as silicon oxide. We use ultrathin point contacts made from individual single-walled carbon nanotubes that are separated by a few nanometers to probe the electronic properties of short stacks of a few contorted discs. We find that these materials have high mobility and can sense electron-deficient aromatic molecules. The concave surfaces of these disc-shaped contorted molecules form ideal receptors for the molecular recognition and assembly with spherical molecules such as fullerenes. These interfaces resemble ball-and-socket joints, where the fullerene nests itself in the concave surface of the contorted disc. The tightness of the binding between the two partners can be

  17. Contorted polycyclic aromatics.

    PubMed

    Ball, Melissa; Zhong, Yu; Wu, Ying; Schenck, Christine; Ng, Fay; Steigerwald, Michael; Xiao, Shengxiong; Nuckolls, Colin

    2015-02-17

    CONSPECTUS: This Account describes a body of research in the design, synthesis, and assembly of molecular materials made from strained polycyclic aromatic molecules. The strain in the molecular subunits severely distorts the aromatic molecules away from planarity. We coined the term "contorted aromatics" to describe this class of molecules. Using these molecules, we demonstrate that the curved pi-surfaces are useful as subunits to make self-assembled electronic materials. We have created and continue to study two broad classes of these "contorted aromatics": discs and ribbons. The figure that accompanies this conspectus displays the three-dimensional surfaces of a selection of these "contorted aromatics". The disc-shaped contorted molecules have well-defined conformations that create concave pi-surfaces. When these disc-shaped molecules are substituted with hydrocarbon side chains, they self-assemble into columnar superstructures. Depending on the hydrocarbon substitution, they form either liquid crystalline films or macroscopic cables. In both cases, the columnar structures are photoconductive and form p-type, hole- transporting materials in field effect transistor devices. This columnar motif is robust, allowing us to form monolayers of these columns attached to the surface of dielectrics such as silicon oxide. We use ultrathin point contacts made from individual single-walled carbon nanotubes that are separated by a few nanometers to probe the electronic properties of short stacks of a few contorted discs. We find that these materials have high mobility and can sense electron-deficient aromatic molecules. The concave surfaces of these disc-shaped contorted molecules form ideal receptors for the molecular recognition and assembly with spherical molecules such as fullerenes. These interfaces resemble ball-and-socket joints, where the fullerene nests itself in the concave surface of the contorted disc. The tightness of the binding between the two partners can be

  18. Aromatic molecules as spintronic devices

    SciTech Connect

    Ojeda, J. H.; Orellana, P. A.; Laroze, D.

    2014-03-14

    In this paper, we study the spin-dependent electron transport through aromatic molecular chains attached to two semi-infinite leads. We model this system taking into account different geometrical configurations which are all characterized by a tight binding Hamiltonian. Based on the Green's function approach with a Landauer formalism, we find spin-dependent transport in short aromatic molecules by applying external magnetic fields. Additionally, we find that the magnetoresistance of aromatic molecules can reach different values, which are dependent on the variations in the applied magnetic field, length of the molecules, and the interactions between the contacts and the aromatic molecule.

  19. Assembly of three novel metal (II) complexes based on polycarboxylate and 1,10-phenanthroline ligands

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoli; Qiao, Yali; Gao, Loujun; Cui, Huali; Zhang, Meili; Lv, Junfang

    2013-04-01

    With the principles of crystal engineering, three novel metal(II) complexes, [Cu2(betd)(phen)4].15H2O (1), [Cd4(betd)2(phen)8]ṡ28H2O (2) and {[Co2(betd)(phen)2(H2O)2]·2H2O}n (3) (H4betd = bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic acid, phen = 1,10-phenanthroline) were synthesized and structurally characterized by elemental analyses, IR spectroscopy, single-crystal X-ray diffraction analyses, TGA, powder XRD and fluorescent measurements. Complex 1 is a binuclear structure, novel water tapes are observed to be encapsulated in the 3D open supramolecular architecture by hydrogen bond interactions. In 2, two pairs of CdII ions joined with two (betd)4- ions to form a cyclic tetranuclear structure. The neighboring tetranuclear units are linked into 2D network through π⋯π stacking interactions. Interestingly, the lattice H2O molecules are joined by strong hydrogen bond interactions generating a wavy water layer, which contacts the 2D network to form 3D supramolecular structure. 3 shows a 2D (4, 4) grid network, which are assembled in an ABAB sequence to 3D supramolecular structures via π⋯π stacking interactions between two central phen ligands from two adjacent sheets and hydrogen bond interactions.

  20. BIOCHEMICAL AND GENETIC CHARACTERIZATION OF AN EARLY STEP IN A NOVEL PATHWAY FOR THE BIOSYNTHESIS OF AROMATIC AMINO ACIDS AND P-AMINOBENZOIC ACID IN THE ARCHAEON METHANOCOCCUS MARIPALUDIS

    EPA Science Inventory

    Methanococcus maripaludis is a strictly anaerobic, methane-producing archaeon and facultative autotroph capable of biosynthesizing all the amino acids and vitamins required for growth. In this work, the novel 6-deoxy-5-ketofructose-1-phosphate (DKFP) pathway for the biosynthesis ...

  1. Mixed ligand two dimensional Cd(ii)/Ni(ii) metal organic frameworks containing dicarboxylate and tripodal N-donor ligands: Cd(ii) MOF is an efficient luminescent sensor for detection of picric acid in aqueous media.

    PubMed

    Rachuri, Yadagiri; Parmar, Bhavesh; Bisht, Kamal Kumar; Suresh, Eringathodi

    2016-05-01

    Two dimensional metal organic frameworks (MOFs) [Cd(5-BrIP)(TIB)]n () and [Ni2(5-BrIP)2(TIB)2]n (), involving the aromatic polycarboxylate ligand 5-bromo isophthalic acid (H2BrIP), flexible tripodal ligand 1,3,5-tris(imidazol-1-ylmethyl)benzene (TIB) and Cd(ii)/Ni(ii) metal nodes have been synthesized by different methods. These compounds were characterized by various analytical methods, and variable temperature X-ray diffraction data showed thermal stability of both MOFs up to 350 °C. Phase purity as well as water stability of the MOFs were established by powder X-ray diffraction, and the structural diversity of the compounds were investigated by single-crystal X-ray diffraction. Both the MOFs are mixed ligand 2D nets, and the topology of the network can be described as a binodal 3,5-c connected net with 3,5L2 topology having the point symbol {4(2)·6(7)·8}{4(2)·6}. Sensing of picric acid [2,4,6-trinitrophenol, TNP] by luminescence quenching among a large range of nitroanalytes in aqueous phase by the Cd(ii) luminescent MOF (LMOF) were been investigated. Structural studies on 1 : 1 co-crystals () of TIB and TNP were carried out. The selective and sensitive fluorescence quenching response of towards electron-deficient TNP over other nitro analytes in aqueous phase was demonstrated by fluorescence quenching titration. Concomitant occurrence of electron transfer/energy transfer processes and electrostatic interaction favours the selective sensing of TNP. A Cd(ii) LMOF ()-coated paper strip that we developed demonstrated fast and selective response to TNP, by the complete quenching of the blue fluorescence upon excitation of the paper strip at 365 nm radiation in its presence. PMID:27067118

  2. "Carbo-aromaticity" and novel carbo-aromatic compounds.

    PubMed

    Cocq, Kévin; Lepetit, Christine; Maraval, Valérie; Chauvin, Remi

    2015-09-21

    While the concept of aromaticity is being more and more precisely delineated, the category of "aromatic compounds" is being more and more expanded. This is illustrated by an introductory highlight of the various types of "aromaticity" previously invoked, and by a focus on the recently proposed "aromatic character" of the "two-membered rings" of the acetylene and butatriene molecules. This serves as a general foundation for the definition of "carbo-aromaticity", the relevance of which is surveyed through recent results in the synthetic, physical, and theoretical chemistry of carbo-mers and in particular macrocyclic-polycyclic representatives constituting a natural family of "novel aromatic compounds". With respect to their parent molecules, carbo-mers are constitutionally defined as "carbon-enriched", and can also be functionally regarded as "π-electron-enriched". This is exemplified by recent experimental and theoretical results on functional, aromatic, rigid, σ,π-macrocyclic carbo-benzene archetypes of various substitution patterns, with emphasis on the quadrupolar pattern. For the purpose of comparison, several types of non-aromatic references of carbo-benzenes are then considered, i.e. freely rotating σ,π-acyclic carbo-n-butadienes and flexible σ-cyclic, π-acyclic carbo-cyclohexadienes, and to "pro-aromatic" congeners, i.e. rigid σ,π-macrocyclic carbo-quinoids. It is shown that functional carbo-mers are entering the field of "molecular materials" for properties such as linear or nonlinear optical properties (e.g. dichromism and two-photon absorption) and single molecule conductivity. Since total or partial carbo-mers of aromatic carbon-allotropes of infinite size such as graphene (graphynes and graphdiynes) and graphite ("graphitynes") have long been addressed at the theoretical or conceptual level, recent predictive advances on the electrical, optical and mechanical properties of such carbo-materials are surveyed. Very preliminary experimental results

  3. "Carbo-aromaticity" and novel carbo-aromatic compounds.

    PubMed

    Cocq, Kévin; Lepetit, Christine; Maraval, Valérie; Chauvin, Remi

    2015-09-21

    While the concept of aromaticity is being more and more precisely delineated, the category of "aromatic compounds" is being more and more expanded. This is illustrated by an introductory highlight of the various types of "aromaticity" previously invoked, and by a focus on the recently proposed "aromatic character" of the "two-membered rings" of the acetylene and butatriene molecules. This serves as a general foundation for the definition of "carbo-aromaticity", the relevance of which is surveyed through recent results in the synthetic, physical, and theoretical chemistry of carbo-mers and in particular macrocyclic-polycyclic representatives constituting a natural family of "novel aromatic compounds". With respect to their parent molecules, carbo-mers are constitutionally defined as "carbon-enriched", and can also be functionally regarded as "π-electron-enriched". This is exemplified by recent experimental and theoretical results on functional, aromatic, rigid, σ,π-macrocyclic carbo-benzene archetypes of various substitution patterns, with emphasis on the quadrupolar pattern. For the purpose of comparison, several types of non-aromatic references of carbo-benzenes are then considered, i.e. freely rotating σ,π-acyclic carbo-n-butadienes and flexible σ-cyclic, π-acyclic carbo-cyclohexadienes, and to "pro-aromatic" congeners, i.e. rigid σ,π-macrocyclic carbo-quinoids. It is shown that functional carbo-mers are entering the field of "molecular materials" for properties such as linear or nonlinear optical properties (e.g. dichromism and two-photon absorption) and single molecule conductivity. Since total or partial carbo-mers of aromatic carbon-allotropes of infinite size such as graphene (graphynes and graphdiynes) and graphite ("graphitynes") have long been addressed at the theoretical or conceptual level, recent predictive advances on the electrical, optical and mechanical properties of such carbo-materials are surveyed. Very preliminary experimental results

  4. Efficient copper-catalyzed trifluoromethylation of aromatic and heteroaromatic iodides: the beneficial anchoring effect of borates.

    PubMed

    Gonda, Zsombor; Kovács, Szabolcs; Wéber, Csaba; Gáti, Tamás; Mészáros, Attila; Kotschy, András; Novák, Zoltán

    2014-08-15

    Efficient copper-catalyzed trifluoromethylation of aromatic iodides was achieved with TMSCF3 in the presence of trimethylborate. The Lewis acid was used to anchor the in situ generated trifluoromethyl anion and suppress its rapid decomposition. Broad applicability of the new trifluoromethylating reaction was demonstrated in the functionalization of different aromatic and heteroaromatic iodides. PMID:25068681

  5. Formation, characterization and properties of hydroxyapatite-calcium polycarboxylate and calcium polyvinylphosphonate composites for biomedical applications

    NASA Astrophysics Data System (ADS)

    Greish, Yaser Elhanafy

    A hot pressing technique was used to prepare composites anticipated to be biocompatible. Composites were formed by reactions between tetracalcium phosphate (Ca4(PO4)2O, TetCP) and a biomedical polymer. Polymers used in this study were poly(acrylic-co-itaconic), and poly(vinyl phosphonic acid) (PVPA). The processing technique is commonly used in metallurgy where powder mixtures are hot pressed at elevated pressures, and temperatures. Powder mixtures of TetCP with both polymers were compacted at temperatures up to 300°C, pressures up to 690 MPa for up to 60 minutes. The effects of varying these conditions as well as the TetCP:polymer weight ratios on the reaction kinetics were studied using X-ray diffraction (XRD), Fourier-transform-infrared (FT-IR), 13C, and 31P nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), scanning electron microscope (SEM) and transmission electron microscope (TEM). Results showed that TetCP was converted to hydroxyapatite (Ca10 (PO4)6(OH)2, HAp) with the formation of a Ca salt of the polymer. The reaction kinetics were found to increase with increasing compaction time, temperature and pressure. Formation of anhydrous calcium phosphate (CaHPO4, DCPA) was also observed when PVPA was used. The reaction appears to start with the softening of the polymer when it was heated at temperatures equal to or greater than its glass transition temperature (Tg). The molten polymer flows and surrounds the TetCP grains, permitting a direct reaction to take place on the interface between them. The Ca polysalt appear to form first followed by formation of HAp in case of the copolymer and DCPA then HAp in case of PVPA. Tensile strengths and elastic moduli of the composites increased when the compaction time and temperature were increased. However, when the applied pressure was increased, these properties increased then reduced at higher pressures. The improvement in mechanical properties was related to the increase in densification of

  6. Electronic Structure Principles and Aromaticity

    ERIC Educational Resources Information Center

    Chattaraj, P. K.; Sarkar, U.; Roy, D. R.

    2007-01-01

    The relationship between aromaticity and stability in molecules on the basis of quantities such as hardness and electrophilicity is explored. The findings reveal that aromatic molecules are less energetic, harder, less polarizable, and less electrophilic as compared to antiaromatic molecules, as expected from the electronic structure principles.

  7. Polycyclic Aromatic Hydrocarbons as Plausible Prebiotic Membrane Components

    NASA Astrophysics Data System (ADS)

    Groen, Joost; Deamer, David W.; Kros, Alexander; Ehrenfreund, Pascale

    2012-08-01

    Aromatic molecules delivered to the young Earth during the heavy bombardment phase in the early history of our solar system were likely to be among the most abundant and stable organic compounds available. The Aromatic World hypothesis suggests that aromatic molecules might function as container elements, energy transduction elements and templating genetic components for early life forms. To investigate the possible role of aromatic molecules as container elements, we incorporated different polycyclic aromatic hydrocarbons (PAH) in the membranes of fatty acid vesicles. The goal was to determine whether PAH could function as a stabilizing agent, similar to the role that cholesterol plays in membranes today. We studied vesicle size distribution, critical vesicle concentration and permeability of the bilayers using C6-C10 fatty acids mixed with amphiphilic PAH derivatives such as 1-hydroxypyrene, 9-anthracene carboxylic acid and 1,4 chrysene quinone. Dynamic Light Scattering (DLS) spectroscopy was used to measure the size distribution of vesicles and incorporation of PAH species was established by phase-contrast and epifluorescence microscopy. We employed conductimetric titration to determine the minimal concentration at which fatty acids could form stable vesicles in the presence of PAHs. We found that oxidized PAH derivatives can be incorporated into decanoic acid (DA) vesicle bilayers in mole ratios up to 1:10 (PAH:DA). Vesicle size distribution and critical vesicle concentration were largely unaffected by PAH incorporation, but 1-hydroxypyrene and 9-anthracene carboxylic acid lowered the permeability of fatty acid bilayers to small solutes up to 4-fold. These data represent the first indication of a cholesterol-like stabilizing effect of oxidized PAH derivatives in a simulated prebiotic membrane.

  8. A comparative study of retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements with stainless steel crowns - an in vitro study.

    PubMed

    Raghunath Reddy, M H; Subba Reddy, V V; Basappa, N

    2010-01-01

    An in vitro study was conducted to compare the retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements using Instron universal testing machine. Thirty preformed and pretrimmed stainless steel crowns were used for cementation on 30 extracted human primary molars which were divided into three groups of 10 teeth in each group. Then the teeth were stored in artificial saliva and incubated at 37°C for 24 h. A load was applied on to the crown and was gradually increased till the crown showed dislodgement, and then the readings were recorded using Instron recorder and analyzed for statistical significance. The surface area of crown was measured by graphical method. The retentive strength was expressed in terms of kg/cm 2 , which was calculated by the equation load divided by area. Retentive strengths of zinc phosphate (ranged from a minimum of 16.93 to amaximum of 28.13 kg/cm 2 with mean of 21.28 kg/cm 2 ) and glass ionomer cement (minimum of 13.69 - 28.15 kg/cm 2 with mean of 20.69 kg/cm 2 ) were greater than that of polycarboxylate cement (minimum of 13.26 - 22.69 kg/cm 2 with mean of 16.79 kg/cm 2 ). Negligible difference (0.59 kg/cm 2 ) of retentive strength was observed between zinc phosphate (21.28 kg/cm 2 ) and glass ionomer cements (20.69 kg/cm 2 ). Glass ionomer cements can be recommended for cementation of stainless steel crowns because of its advantages and the retentive strength was almost similar to that of zinc phosphate cement.

  9. MICROBIAL METABOLISM OF AROMATIC COMPOUNDS I.

    PubMed Central

    Tabak, Henry H.; Chambers, Cecil W.; Kabler, Paul W.

    1964-01-01

    Tabak, Henry H. (Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio), Cecil W. Chambers, and Paul W. Kabler. Microbial metabolism of aromatic carbon compounds. I. Decomposition of phenolic compounds and aromatic hydrocarbons by phenol-adapted bacteria. J. Bacteriol. 87:910–919. 1964.—Bacteria from soil and related environments were selected or adapted to metabolize phenol, hydroxy phenols, nitrophenols, chlorophenols, methylphenols, alkylphenols, and arylphenols when cultured in mineral salts media with the specific substrate as the sole source of carbon. A phenol-adapted culture (substrate-induced enzyme synthesis proven) was challenged in respirometric tests with 104 related compounds; probable significant oxidative activity occurred with 65. Dihydric phenols were generally oxidized; trihydric phenols were not. Cresols and dimethylphenols were oxidized; adding a chloro group increased resistance. Benzoic and hydroxybenzoic acids were oxidized; sulfonated, methoxylated, nitro, and chlorobenzoic acids were not; m-toluic acid was utilized but not the o- and p-isomers. Benzaldehyde and p-hydroxybenzaldehyde were oxidized. In general, nitro- and chloro-substituted compounds and the benzenes were difficult to oxidize. PMID:14137630

  10. The Importance of Hydrogen Bonding and Aromatic Stacking to the Affinity and Efficacy of Cannabinoid Receptor CB2 Antagonist, 5-(4-Chloro-3-methyl-phenyl)-1-(4-methyl-benzyl)-1H-pyrazole-3-carboxylic acid (1,3,3-trimethyl-bicyclo[2.2.1]hept-2-yl)-amide (SR144528)

    PubMed Central

    Kotsikorou, Evangelia; Navas, Frank; Roche, Michael J.; Gilliam, Anne F.; Thomas, Brian; Seltzman, Herbert H.; Kumar, Pritesh; Song, Zhao-Hui; Hurst, Dow P.; Lynch, Diane L.; Reggio, Patricia H.

    2013-01-01

    Despite the therapeutic promise of the sub-nanomolar affinity cannabinoid CB2 antagonist, N-[(1S)-endo-1,3,3-trimethylbicyclo[2.2.1]heptan2-yl]-5-(4-chloro-3-methylphenyl)-1-[(4-methylphenyl)methyl]-1H-pyrazole-3-carboxamide (SR144528, 1), little is known about its binding site interactions and no primary interaction site for 1 at CB2 has been identified. We report here the results of Glide docking studies in our cannabinoid CB2 inactive state model that were then tested via compound synthesis, binding and functional assays. Our results show that the amide functional group of 1 is critical to its CB2 affinity and efficacy and that aromatic stacking interactions in the TMH5/6 aromatic cluster of CB2 are also important. Molecular modifications that increased the positive electrostatic potential in the region between the fenchyl and aromatic rings led to more efficacious compounds. This result is consistent with the EC-3 loop negatively charged amino acid, D275 (identified via Glide docking studies) acting as the primary interaction site for 1 and its analogs. PMID:23855811

  11. Carbocation Rearrangement in An Electrophilic Aromatic Substitution Discovery Laboratory

    ERIC Educational Resources Information Center

    Polito, Victoria; Hamann, Christian S.; Rhile, Ian J.

    2010-01-01

    In this discovery laboratory, students performed electrophilic aromatic substitution reactions between 1,4-dimethoxybenzene and either 2-methyl-2-butanol or 3-methyl-2-butanol with sulfuric acid as a catalyst. The carbocation from 3-methyl-2-butanol undergoes a hydride shift, and hence, both reactions afford…

  12. A single aromatic core mutation converts a designed "primitive" protein from halophile to mesophile folding.

    PubMed

    Longo, Liam M; Tenorio, Connie A; Kumru, Ozan S; Middaugh, C Russell; Blaber, Michael

    2015-01-01

    The halophile environment has a number of compelling aspects with regard to the origin of structured polypeptides (i.e., proteogenesis) and, instead of a curious niche that living systems adapted into, the halophile environment is emerging as a candidate "cradle" for proteogenesis. In this viewpoint, a subsequent halophile-to-mesophile transition was a key step in early evolution. Several lines of evidence indicate that aromatic amino acids were a late addition to the codon table and not part of the original "prebiotic" set comprising the earliest polypeptides. We test the hypothesis that the availability of aromatic amino acids could facilitate a halophile-to-mesophile transition by hydrophobic core-packing enhancement. The effects of aromatic amino acid substitutions were evaluated in the core of a "primitive" designed protein enriched for the 10 prebiotic amino acids (A,D,E,G,I,L,P,S,T,V)-having an exclusively prebiotic core and requiring halophilic conditions for folding. The results indicate that a single aromatic amino acid substitution is capable of eliminating the requirement of halophile conditions for folding of a "primitive" polypeptide. Thus, the availability of aromatic amino acids could have facilitated a critical halophile-to-mesophile protein folding adaptation-identifying a selective advantage for the incorporation of aromatic amino acids into the codon table.

  13. A Facile Solid‐Phase Route to Renewable Aromatic Chemicals from Biobased Furanics

    PubMed Central

    Thiyagarajan, Shanmugam; Genuino, Homer C.; van der Waal, Jan C.; Weckhuysen, Bert M.; van Haveren, Jacco

    2015-01-01

    Abstract Renewable aromatics can be conveniently synthesized from furanics by introducing an intermediate hydrogenation step in the Diels–Alder (DA) aromatization route, to effectively block retro‐DA activity. Aromatization of the hydrogenated DA adducts requires tandem catalysis, using a metal‐based dehydrogenation catalyst and solid acid dehydration catalyst in toluene. Herein it is demonstrated that the hydrogenated DA adducts can instead be conveniently converted into renewable aromatics with up to 80 % selectivity in a solid‐phase reaction with shorter reaction times using only an acidic zeolite, that is, without solvent or dehydrogenation catalyst. Hydrogenated adducts from diene/dienophile combinations of (methylated) furans with maleic anhydride are efficiently converted into renewable aromatics with this new route. The zeolite H‐Y was found to perform the best and can be easily reused after calcination. PMID:26684008

  14. A Facile Solid-Phase Route to Renewable Aromatic Chemicals from Biobased Furanics.

    PubMed

    Thiyagarajan, Shanmugam; Genuino, Homer C; van der Waal, Jan C; de Jong, Ed; Weckhuysen, Bert M; van Haveren, Jacco; Bruijnincx, Pieter C A; van Es, Daan S

    2016-01-22

    Renewable aromatics can be conveniently synthesized from furanics by introducing an intermediate hydrogenation step in the Diels-Alder (DA) aromatization route, to effectively block retro-DA activity. Aromatization of the hydrogenated DA adducts requires tandem catalysis, using a metal-based dehydrogenation catalyst and solid acid dehydration catalyst in toluene. Herein it is demonstrated that the hydrogenated DA adducts can instead be conveniently converted into renewable aromatics with up to 80% selectivity in a solid-phase reaction with shorter reaction times using only an acidic zeolite, that is, without solvent or dehydrogenation catalyst. Hydrogenated adducts from diene/dienophile combinations of (methylated) furans with maleic anhydride are efficiently converted into renewable aromatics with this new route. The zeolite H-Y was found to perform the best and can be easily reused after calcination. PMID:26684008

  15. Polyimidazoles Via Aromatic Nucleophilic Displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul M.

    1990-01-01

    Experiments show variety of polyimidazoles prepared by aromatic nucleophilic displacement, from reactions of bisphenol imidazoles with activated difluoro compounds. Polyimidazoles have good mechanical properties making them suitable for use as films, moldings, and adhesives.

  16. Polybenzimidazoles via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1995-01-01

    Novel molecular weight controlled and endcapped polybenzimidazoles (PBI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl benzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The PBI are endcapped with mono(hydroxyphenyl) benzimidazoles. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. Mono(hydroxyphenyl) benzimidazoles are synthesizedby reacting phenyl-4-hydroxybenzoate with aromatic (o-diamine)s in diphenylsulfone. Molecular weight controlled and endcapped PBI of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.

  17. Three-dimensional aromatic networks.

    PubMed

    Toyota, Shinji; Iwanaga, Tetsuo

    2014-01-01

    Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.

  18. Polybenzimidazoles Via Aromatic Nucleophilic Displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergerrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1997-01-01

    Novel molecular weight controlled and endcapped polybenzimidazoles (PBI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenylbenzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The PBI are endcapped with mono(hydroxyphenyl)benzimidazoles. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. Mono(hydroxyphenyl)benzimidazoles are synthesized by reacting phenyl-4-hydroxybenzoate with aromatic (o-diamine)s in diphenylsulfone. Molecular weight controlled and endcapped PBI of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.

  19. Enzyme catalytic nitration of aromatic compounds.

    PubMed

    Kong, Mingming; Wang, Kun; Dong, Runan; Gao, Haijun

    2015-06-01

    Nitroaromatic compounds are important intermediates in organic synthesis. The classic method used to synthesize them is chemical nitration, which involves the use of nitric acid diluted in water or acetic acid, both harmful to the environment. With the development of green chemistry, environmental friendly enzyme catalysis is increasingly employed in chemical processes. In this work, we adopted a non-aqueous horseradish peroxidase (HRP)/NaNO2/H2O2 reaction system to study the structural characteristics of aromatic compounds potentially nitrated by enzyme catalysis, as well as the relationship between the charges on carbon atoms in benzene ring and the nitro product distribution. Investigation of various reaction parameters showed that mild reaction conditions (ambient temperature and neutral pH), plus appropriate use of H2O2 and NaNO2 could prevent inactivation of HRP and polymerization of the substrates. Compared to aqueous-organic co-solvent reaction media, the aqueous-organic two-liquid phase system had great advantages in increasing the dissolved concentration of substrate and alleviating substrate inhibition. Analysis of the aromatic compounds' structural characteristics indicated that substrates containing substituents of NH2 or OH were readily catalyzed. Furthermore, analysis of the relationship between natural bond orbital (NBO) charges on carbon atoms in benzene ring, as calculated by the density functional method, and the nitro product distribution characteristics, demonstrated that the favored nitration sites were the ortho and para positions of substituents in benzene ring, similar to the selectivity of chemical nitration. PMID:26002502

  20. Enzyme catalytic nitration of aromatic compounds.

    PubMed

    Kong, Mingming; Wang, Kun; Dong, Runan; Gao, Haijun

    2015-06-01

    Nitroaromatic compounds are important intermediates in organic synthesis. The classic method used to synthesize them is chemical nitration, which involves the use of nitric acid diluted in water or acetic acid, both harmful to the environment. With the development of green chemistry, environmental friendly enzyme catalysis is increasingly employed in chemical processes. In this work, we adopted a non-aqueous horseradish peroxidase (HRP)/NaNO2/H2O2 reaction system to study the structural characteristics of aromatic compounds potentially nitrated by enzyme catalysis, as well as the relationship between the charges on carbon atoms in benzene ring and the nitro product distribution. Investigation of various reaction parameters showed that mild reaction conditions (ambient temperature and neutral pH), plus appropriate use of H2O2 and NaNO2 could prevent inactivation of HRP and polymerization of the substrates. Compared to aqueous-organic co-solvent reaction media, the aqueous-organic two-liquid phase system had great advantages in increasing the dissolved concentration of substrate and alleviating substrate inhibition. Analysis of the aromatic compounds' structural characteristics indicated that substrates containing substituents of NH2 or OH were readily catalyzed. Furthermore, analysis of the relationship between natural bond orbital (NBO) charges on carbon atoms in benzene ring, as calculated by the density functional method, and the nitro product distribution characteristics, demonstrated that the favored nitration sites were the ortho and para positions of substituents in benzene ring, similar to the selectivity of chemical nitration.

  1. Hydrophilic properties of aromatics.

    PubMed

    Bonadeo, I; Lodi, V; Ghidini, D

    1980-10-01

    Synopsis The study of the behaviour of perfume ingredients in emulsions involves several technological problems. Recently, the scientific and practical validity of the parameter known as 'hydrophilic value' K(d) (according to Bonadeo) was recognised; it relates to the behaviour of fatty materials in emulsions. The purpose of this research was to verify the reliability of the above parameter as applied to perfume ingredients. From the experimental results it is possible to establish a mathematical relationship between K(d) and the 'required emulsification value' (HLB(r)) of the aromatics used in perfuming cosmetics and toiletries. From the K(d) value it is possible to calculate the critical limit of the water phase (CLWP) concerning the single ingredients of a perfume compound. These parameters are particularly important in predicting the optimal behaviour of perfumes in the chemical-physical balance of emulsions, with which are connected the principal parameters of the chemical and olfactive stability. Thus, in practice, it has been demonstrated that the perfumed substances behave as, and can be considered as, other fatty bodies forming the fatty phase of emulsions.

  2. Bioassay of polycyclic aromatic hydrocarbons

    SciTech Connect

    Van Kirk, E.A.

    1980-08-01

    A positive relationship was found between the photodynamic activity of 24 polycyclic aromatic hydrocarbons versus published results on the mutagenicity, carcinogenicity, and initiation of unscheduled DNA synthesis. Metabolic activation of benzo(a)pyrene resulted in detection of increased mutagenesis in Paramecium tetraurelia as found also in the Ames Salmonella assay. The utility of P. tetraurelia as a biological detector of hazardous polycyclic aromatic hydrocarbons is discussed.

  3. THE ACID-BASE AND METAL COMPLEXATION CHEMISTRY OF PHOSPHINO-POLYCARBOXYLIC ACID UNDER HIGH IONIC STRENGTH AND HIGH TEMPERATURE. (R825513C024)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  4. Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2010-01-01

    Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.

  5. Bacterial degradation of monocyclic aromatic amines

    PubMed Central

    Arora, Pankaj K.

    2015-01-01

    Aromatic amines are an important group of industrial chemicals, which are widely used for manufacturing of dyes, pesticides, drugs, pigments, and other industrial products. These compounds have been considered highly toxic to human beings due to their carcinogenic nature. Three groups of aromatic amines have been recognized: monocyclic, polycyclic, and heterocyclic aromatic amines. Bacterial degradation of several monocyclic aromatic amines has been studied in a variety of bacteria, which utilizes monocyclic aromatic amines as their sole source of carbon and energy. Several degradation pathways have been proposed and the related enzymes and genes have also been characterized. Many reviews have been reviewed toxicity of monocyclic aromatic amines; however, there is lack of review on biodegradation of monocyclic aromatic amines. The aim of this review is to summarize bacterial degradation of monocyclic aromatic amines. This review will increase our current understanding of biochemical and molecular basis of bacterial degradation of monocyclic aromatic amines. PMID:26347719

  6. Production of alkyl-aromatics from light oxygenates over zeolite catalysts for bio-oil refining

    NASA Astrophysics Data System (ADS)

    Hoang, Trung Q.

    Upgrading of light oxygenates derived from biomass conversion, such as propanal and glycerol, to more valuable aromatics for biofuels has been demonstrated on zeolite catalysts. Aromatics with a high ratio of C 9/(C8+C7) and little benzene are produced at much higher yield from oxygenates than from olefins at mild conditions over HZSM-5. It is proposed that C9 aromatics are predominantly produced via acid-catalyzed aldol condensation. This reaction pathway is different from the pathway of propylene and other hydrocarbon aromatization that occurs via a hydrocarbon pool at more severe conditions with major aromatic products C6 and C7. In fact, investigation on the effect of crystallite size HZSM-5 has shown a higher ratio of C9/(C8+C 7) aromatics on small crystallite. This is due to faster removal of products from the shorter diffusion path length. As a result, a longer catalyst lifetime, less isomerization, and less cracking were observed on small crystallites. Beside crystallite size, pore geometry of zeolites was also found to significantly affect aromatic production for both conversion of propanal and glycerol. It is shown that the structure of the HZSM-22, with a one-dimensional and narrower channel system, restricts the formation of aromatics. In contrast, a higher yield of aromatic products is observed over HZSM-5 with its three-dimensional channel system. By increasing channel dimension and connectivity of the channels, increasing catalyst activity was also observed due to more accessible acid sites. It was also found that glycerol is highly active for dehydration on zeolites to produce high yields of acrolein (propenal), a high value chemical. To maximize aromatics from glycerol conversion, HZSM-5 and HY were found to be effective. A two-bed reactor of Pd/ZnO and HZSM-5 was used to first deoxygenate/hydrogenate glycerol over Pd/ZnO to intermediate oxygenates that can further aromatize on HZSM-5. The end results are very promising with significant improvement

  7. Metabolic activation of aromatic amines and azo dyes.

    PubMed

    Bartsch, H

    1981-01-01

    Aromatic amines, amides and nitro compounds are a class of chemicals that produce tumors in a wide variety of tissues in experimental animals, including liver, urinary bladder, forestomach, small intestine, Zymbal's gland, subcutaneous tissue or skin. In man, exposure to some aromatic amines is associated with tumours of the urinary bladder and carcinoma of the renal pelvis. Their biological activity as carcinogens or genotoxic agents is, in all the cases that have been studied in detail, dependent on metabolic activation in vivo, occurring by multiple pathways. Differences in these metabolic pathways may largely account for the differences in tissues and species susceptibilities to cancer induction. Carcinogenicity of aromatic amines or amides is dependent on their oxidation to N-hydroxy derivatives, whilst the carcinogenicity of aromatic nitro compounds is linked to their reduction to hydroxylamines. Further conversion of the N-hydroxylamine or N-hydroxyamide to reactive intermediates can occur in several ways, which include (i) esterification of the N-hydroxy group, (ii) non-enzymic protonation of the nitrogen of the hydroxylamine and (iii) oxidation to a free radical of arylhydroxamic acids. Following generation of such reactive electrophilic intermediates in tissues or cells, macromolecular binding has been observed to nucleic acids and proteins. In many cases, arylamidated and arylaminated products are formed with nucleic acid bases; in the case of the well-studied 2-acetylaminofluorene, nucleophilic atoms of guanine are the predominant site of reaction. Relatively little is known of the structure and biological consequences of DNA adducts formed from other aromatic amines, amides or nitro compounds; more research in these directions is warranted.

  8. Detection of chlorinated aromatic compounds

    DOEpatents

    Ekechukwu, Amy A.

    1996-01-01

    A method for making a composition for measuring the concentration of chloated aromatic compounds in aqueous fluids, and an optical probe for use with the method. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis.

  9. Detection of chlorinated aromatic compounds

    DOEpatents

    Ekechukwu, A.A.

    1996-02-06

    A method for making a composition for measuring the concentration of chlorinated aromatic compounds in aqueous fluids, and an optical probe for use with the method are disclosed. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis. 5 figs.

  10. Volatile profiles of aromatic and non-aromatic rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice is enjoyed by many people as a staple food because of its flavor and texture. Some scented varieties command a premium in the marketplace because of their distinctive aroma and flavor. The compound most commonly associated with the popcorn or nutty scent of aromatic rice is 2-acetyl-1-pyrroline...

  11. Maleimido substituted aromatic cyclotriphosphazenes

    NASA Technical Reports Server (NTRS)

    Kumar, D.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1985-01-01

    4-Aminophenoxy cyclotriphosphazenes are reacted with maleic anhydride to produce maleamic acids which are converted to the maleimides. The maleimides are polymerized. By selection of starting materials (e.g., hexakis amino or trisaminophenoxy-trisphenoxy-cyclo-triphosphazenes), selection of molar proportions of reactants, use of mixtures of anhydrides and use of dianhydrides as bridging groups a variety of maleimides and polymers are produced. The polymers have high limiting oxygen indices, high char yields and other useful heat and fire resistant properties making them useful as, for example, impregnants of fabrics.

  12. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust

    SciTech Connect

    Carlson, Torren R.; Cheng, Yu-Ting; Jae, Jungho; Huber, George W.

    2011-10-26

    Catalytic fast pyrolysis of pine wood sawdust and furan (a model biomass compound) with ZSM-5 based catalysts was studied with three different reactors: a bench scale bubbling fluidized bed reactor, a fixed bed reactor and a semi-batch pyroprobe reactor. The highest aromatic yield from sawdust of 14% carbon in the fluidized bed reactor was obtained at low biomass weight hourly space velocities (less than 0.5 h-1) and high temperature (600 °C). Olefins (primarily ethylene and propylene) were also produced with a carbon yield of 5.4% carbon. The biomass weight hourly space velocity and the reactor temperature can be used to control both aromatic yield and selectivity. At low biomass WHSV the more valuable monocyclic aromatics are produced and the formation of less valuable polycyclic aromatics is inhibited. Lowering the reaction temperature also results in more valuable monocyclic aromatics. The olefins produced during the reaction can be recycled to the reactor to produce additional aromatics. Propylene is more reactive than ethylene. Co-feeding propylene to the reactor results in a higher aromatic yield in both continuous reactors and higher conversion of the intermediate furan in the fixed bed reactor. When olefins are recycled aromatic yields from wood of 20% carbon can be obtained. After ten reaction–regeneration cycles there were metal impurities deposited on the catalyst, however, the acid sites on the zeolite are not affected. Of the three reactors tested the batch pyroprobe reactor yielded the most aromatics, however, the aromatic product is largely naphthalene. The continuous reactors produce less naphthalene and the sum of aromatics plus olefin products is higher than the pyroprobe reactor.

  13. Aromatic Gain in a Supramolecular Polymer.

    PubMed

    Saez Talens, Victorio; Englebienne, Pablo; Trinh, Thuat T; Noteborn, Willem E M; Voets, Ilja K; Kieltyka, Roxanne E

    2015-09-01

    The synergy of aromatic gain and hydrogen bonding in a supramolecular polymer is explored. Partially aromatic bis(squaramide) bolaamphiphiles were designed to self-assemble through a combination of hydrophobic, hydrogen-bonding, and aromatic effects into stiff, high-aspect-ratio fibers. UV and IR spectroscopy show electron delocalization and geometric changes within the squaramide ring indicative of strong hydrogen bonding and aromatic gain of the monomer units. The aromatic contribution to the interaction energy was further supported computationally by nucleus-independent chemical shift (NICS) and harmonic oscillator model of aromaticity (HOMA) indices, demonstrating greater aromatic character upon polymerization: at least 30% in a pentamer. The aromatic gain-hydrogen bonding synergy results in a significant increase in thermodynamic stability and a striking difference in aggregate morphology of the bis(squaramide) bolamphiphile compared to isosteres that cannot engage in this effect. PMID:26179942

  14. THE PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) continues to be interested in developing methods for the detection of polycyclic aromatic hydrocarbons (PAHS) in the environment. Polycyclic aromatic hydrocarbons (PAHS) are common contaminants in our environment. Being major product...

  15. Correlation and prediction of adsorption capacity and affinity of aromatic compounds on carbon nanotubes.

    PubMed

    Wu, Wenhao; Yang, Kun; Chen, Wei; Wang, Wendi; Zhang, Jie; Lin, Daohui; Xing, Baoshan

    2016-01-01

    Adsorption of 22 nonpolar and polar aromatic compounds on 10 carbon nanotubes (CNTs) with various diameters, lengths and surface oxygen-containing group contents was investigated to develop predictive correlations for adsorption, using the isotherm fitting of Polanyi theory-based Dubinin-Ashtakhov (DA) model. Adsorption capacity of aromatic compounds on CNTs is negatively correlated with melting points of aromatic compounds, and surface oxygen-containing group contents and surface area ratios of mesopores to total pores of CNTs, but positively correlated with total surface area of CNTs. Adsorption affinity is positively correlated with solvatochromic parameters of aromatic compounds, independent of tube lengths and surface oxygen-containing group contents of CNTs, but negatively correlated with surface area ratios of mesopores to total pores of CNTs. The correlations of adsorption capacity and adsorption affinity with properties of both aromatic compounds and CNTs clearly have physical significance, can be used successfully with DA model to predict adsorption of aromatic compounds on CNTs from the well-known physiochemical properties of aromatic compounds (i.e., solvatochromic parameters, melting points) and CNTs (i.e., surface area and total acidic group contents), and thus can facilitate the environmental application of CNTs as sorbents and environmental risk assessment of both aromatic contaminants and CNTs.

  16. Polybenzimidazoles Via Aromatic Nucleophilic Displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul M.; Smith, Joseph G.

    1994-01-01

    Soluble polybenzimidazoles (PBI's) synthesized by nucleophilic displacement reaction of di(hydroxyphenyl)-benzimidazole monomers with activated aromatic difluoride compounds in presence of anhydrous potassium carbonate. These polymers exhibit good thermal, thermo-oxidative, and chemical stability, and high mechanical properties. Using benzimidazole monomers, more economical, and new PBI's processed more easily than commercial PBI, without loss of desirable physical properties.

  17. Rapid estimation of concentration of aromatic classes in middistillate fuels by high-performance liquid chromatography

    NASA Technical Reports Server (NTRS)

    Otterson, D. A.; Seng, G. T.

    1985-01-01

    An high performance liquid chromatography (HPLC) method to estimate four aromatic classes in middistillate fuels is presented. Average refractive indices are used in a correlation to obtain the concentrations of each of the aromatic classes from HPLC data. The aromatic class concentrations can be obtained in about 15 min when the concentration of the aromatic group is known. Seven fuels with a wide range of compositions were used to test the method. Relative errors in the concentration of the two major aromatic classes were not over 10 percent. Absolute errors of the minor classes were all less than 0.3 percent. The data show that errors in group-type analyses using sulfuric acid derived standards are greater for fuels containing high concentrations of polycyclic aromatics. Corrections are based on the change in refractive index of the aromatic fraction which can occur when sulfuric acid and the fuel react. These corrections improved both the precision and the accuracy of the group-type results.

  18. Reductive carbonylation of aromatic nitro compounds

    SciTech Connect

    Wehman, P.; Kamer, P.C.J.; Leeuwen, P.W.N.M. van

    1995-12-31

    In the reductive carbonylation of aromatic nitro compounds carbamates and isocyanates are prepared through a direct reaction between the nitro group and CO under the influence of a catalyst. This route avoids the major disadvantages of the traditional process for the production of the industrially important isocyanates and carbamates. The authors have developed a stable, active, and rather selective homogeneous palladium catalyst for the reductive carbonylation of the nitro substrate. Best results were obtained with Pd-phenanthroline complexes in which the ligands bear moderately donating substituents. Noncoordinating anions in the catalyst complex are clearly preferable. The highest activity was reached with the Pd(4,7-Me{sub 2}-1,10-phen){sub 2}(OTf){sub 2} catalyst complex (t.o.f. = 311 mol/mol/h, selectivity toward the desired carbamate = 84%). With the Pd(1,10-phenanthroline){sub 2}(OTf){sub 2} catalyst complex, the authors studied the scope of the reaction in order to prepare a wide range of functionalized carbamates for the fine chemistry. During this study, it was found that a remarkable improvement of the catalytic activity and selectivity on addition of a benzoic acid (t.o.f. > 365 mol/mol/h, selectivity toward carbamate = 94%). In the presence of 4-chlorobenzoic acid even aromatic dinitro compounds could be converted easily, resulting in the best results reported ever for the conversion of 1,4-dinitrobenzene into the corresponding dicarbamate (t.o.f. = 73 mol/mol/h, selectivity toward the dicarbamate = 86%).

  19. The Aromaticity of Pericyclic Reaction Transition States

    ERIC Educational Resources Information Center

    Rzepa, Henry S.

    2007-01-01

    An approach is presented that starts from two fundamental concepts in organic chemistry, chirality and aromaticity, and combines them into a simple rule for stating selection rules for pericyclic reactions in terms of achiral Huckel-aromatic and chiral Mobius-aromatic transition states. This is illustrated using an example that leads to apparent…

  20. A metal-bridged tricyclic aromatic system: synthesis of osmium polycyclic aromatic complexes.

    PubMed

    Zhu, Congqing; Zhu, Qin; Fan, Jinglan; Zhu, Jun; He, Xumin; Cao, Xiao-Yu; Xia, Haiping

    2014-06-10

    Aromaticity is one of the most important concepts in organic chemistry. A variety of metalla-aromatic compounds have been recently prepared and in most of those examples, the metal participates only in a monocyclic ring. In contrast, metal-bridged bicyclic aromatic molecules, in which a metal is shared between two aromatic rings, have been less developed. Herein, we report the first metal-bridged tricyclic aromatic system, in which the metal center is shared by three aromatic five-membered rings. These metalla-aromatics are formed by reaction between osmapentalyne and arene nucleophiles. Experimental results and theoretical calculations reveal that the three five-membered rings around the osmium center are aromatic. In addition, the broad absorption bands in the UV/Vis absorption spectra of these novel aromatic systems cover almost the entire visible region. This straightforward synthetic strategy may be extended to the synthesis of other metal-bridged polycyclic aromatics. PMID:24782397

  1. Microbial monomers custom-synthesized to build true bio-derived aromatic polymers.

    PubMed

    Fujita, Tomoya; Nguyen, Hieu Duc; Ito, Takashi; Zhou, Shengmin; Osada, Lisa; Tateyama, Seiji; Kaneko, Tatsuo; Takaya, Naoki

    2013-10-01

    Aromatic polymers include novel and extant functional materials although none has been produced from biotic building blocks derived from primary biomass glucose. Here we screened microbial aromatic metabolites, engineered bacterial metabolism and fermented the aromatic lactic acid derivative β-phenyllactic acid (PhLA). We expressed the Wickerhamia fluorescens gene (pprA) encoding a phenylpyruvate reductase in Escherichia coli strains producing high levels of phenylalanine, and fermented optically pure (>99.9 %) D-PhLA. Replacing pprA with bacterial ldhA encoding lactate dehydrogenase generated L-PhLA, indicating that the produced enzymes converted phenylpyruvate, which is an intermediate of phenylalanine synthesis, to these chiral PhLAs. Glucose was converted under optimized fermentation conditions to yield 29 g/l D-PhLA, which was purified from fermentation broth. The product satisfied the laboratory-scale chemical synthesis of poly(D-PhLA) with M w 28,000 and allowed initial physiochemical characterization. Poly(D-PhLA) absorbed near ultraviolet light, and has the same potential as all other biomass-derived aromatic bioplastics of phenylated derivatives of poly(lactic acid). This approach to screening and fermenting aromatic monomers from glucose exploits a new era of bio-based aromatic polymer design and will contribute to petroleum conservation and carbon dioxide fixation. PMID:23949992

  2. Microbial monomers custom-synthesized to build true bio-derived aromatic polymers.

    PubMed

    Fujita, Tomoya; Nguyen, Hieu Duc; Ito, Takashi; Zhou, Shengmin; Osada, Lisa; Tateyama, Seiji; Kaneko, Tatsuo; Takaya, Naoki

    2013-10-01

    Aromatic polymers include novel and extant functional materials although none has been produced from biotic building blocks derived from primary biomass glucose. Here we screened microbial aromatic metabolites, engineered bacterial metabolism and fermented the aromatic lactic acid derivative β-phenyllactic acid (PhLA). We expressed the Wickerhamia fluorescens gene (pprA) encoding a phenylpyruvate reductase in Escherichia coli strains producing high levels of phenylalanine, and fermented optically pure (>99.9 %) D-PhLA. Replacing pprA with bacterial ldhA encoding lactate dehydrogenase generated L-PhLA, indicating that the produced enzymes converted phenylpyruvate, which is an intermediate of phenylalanine synthesis, to these chiral PhLAs. Glucose was converted under optimized fermentation conditions to yield 29 g/l D-PhLA, which was purified from fermentation broth. The product satisfied the laboratory-scale chemical synthesis of poly(D-PhLA) with M w 28,000 and allowed initial physiochemical characterization. Poly(D-PhLA) absorbed near ultraviolet light, and has the same potential as all other biomass-derived aromatic bioplastics of phenylated derivatives of poly(lactic acid). This approach to screening and fermenting aromatic monomers from glucose exploits a new era of bio-based aromatic polymer design and will contribute to petroleum conservation and carbon dioxide fixation.

  3. Environmental diagnostic analysis of ground water bacteria and their involvement in utilization of aromatic compounds

    SciTech Connect

    Wear, J.E. Jr.

    1993-05-01

    The objective of this study was to examine the hypothesis that select functional groups of bacteria from pristine sites have an innate ability to degrade synthetic aromatics that often contaminate groundwater environments,due to exposure to naturally occurring recalcitrant aromatics in their environment. This study demonstrates that subsurface microbial communities are capable of utilizing lignin and humic acid breakdown products. Utilizers of these compounds were found to be present in most all the wells tested. Even the deepest aquifer tested had utilizers present for all six of the aromatics tested. Highest counts for the aromatics tested were observed with the naturally occurring breakdown products of either lignin or humic acid. Carboxylic acids were found to be an important sole carbon source for groundwater bacteria possibly explained by the fact that they are produced by the oxidative cleavage of aromatic ring structures. The carbohydrate sole carbon sources that demonstrated the greatest densities were ones commonly associated with humics. This study indicates that utilization of naturally occurring aromatic compounds in the subsurface is an important nutritional source for groundwater bacteria. In addition, it suggests that adaptation to naturally occurring recalcitrant substrates is the origin of degradative pathways for xenobiotic compounds with analogous structure. This work has important implications for in situ bioremediation as a method of environmental cleanup.

  4. Nucleophilic fluorination of aromatic compounds

    DOEpatents

    Satyamurthy, Nagichettiar; Barrio, Jorge R

    2014-03-18

    Iodylbenzene derivatives substituted with electron donating as well as electron withdrawing groups on the aromatic ring are used as precursors in aromatic nucleophilic substitution reactions. The iodyl group (IO.sub.2) is regiospecifically substituted by nucleophilic fluoride to provide the corresponding fluoroaryl derivatives. No-carrier-added [F-18]fluoride ion derived from anhydrous [F-18](F/Kryptofix, [F-18]CsF or a quaternary ammonium fluoride (e.g., Me.sub.4NF, Et.sub.4NF, n-Bu.sub.4NF, (PhCH.sub.2).sub.4NF) exclusively substitutes the iodyl moiety in these derivatives and provides high specific activity F-18 labeled fluoroaryl analogs. Iodyl derivatives of a benzothiazole analog and 6-iodyl-L-dopa derivatives have been synthesized as precursors and have been used in the preparation of no-carrier-added [F-18]fluorobenzothiazole as well as 6-[F-18]fluoro-L-dopa.

  5. Process for lowering the dielectric constant of polyimides using diamic acid additives

    NASA Technical Reports Server (NTRS)

    Stoakley, Diane M. (Inventor); St.clair, Anne K. (Inventor)

    1990-01-01

    Linear aromatic polyimides with low dielectric constants are produced by adding a diamic acid additive to the polyamic acid resin formed by the condensation of an aromatic dianhydride with an aromatic diamine. The resulting modified polyimide is a better electrical insulator than state-of-the-art commercially available polyimides.

  6. Bioconversions of ferulic acid, an hydroxycinnamic acid.

    PubMed

    Mathew, Sindhu; Abraham, T Emilia

    2006-01-01

    Ferulic acid is the most abundant hydroxycinnamic acid in the plant world and is ester linked to arabinose, in various plant polysaccharides such as arabinoxylans and pectins. It is a precursor to vanillin, one of the most important aromatic flavor compound used in foods, beverages, pharmaceuticals, and perfumes. This article presents an overview of the various biocatalytic routes, focusing on the relevant biotransformations of ferulic acid using plant sources, microorganisms, and enzymes.

  7. Tough, Soluble, Aromatic, Thermoplastic Copolyimides

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor)

    1998-01-01

    Tough, soluble, aromatic, thermoplastic copolyimides were prepared by reacting 4,4'-oxydiphthalic anhydride, 3,4,3',4'-biphenyltetracarboxylic dianhydride and 3,4'-oxydianiline. These copolyimides were found to be soluble in common amide solvents such as N,N'-dimethyl acetamide, N-methylpyrrolidinone, and dimethylformamide allowing them to be applied as the fully imidized copolymer and to be used to prepare a wide range of articles.

  8. The direct aromatization of methane

    SciTech Connect

    Marcelin, G.; Oukaci, R.; Migone, R.A.; Kazi, A.M.

    1995-12-31

    The thermal decomposition of methane shows significant potential as a process for the production of higher unsaturated and aromatic hydrocarbons when the extent of the reaction is limited. Thermodynamic calculations have shown that when the reaction is limited to the formation of C{sub 2} to C{sub 10} products, yields of aromatics can exceed 40% at temperatures of 1200{degrees}C. Preliminary experiments have shown that when the reaction is limited to the formation of C{sub 2} to C{sub 10} products, yields of aromatics can exceed 40% at temperatures of 1200{degrees}C. Preliminary experiments have shown that cooling the product and reacting gases as the reaction proceeds can significantly reduce or eliminate the formation of solid carbon and heavier (C{sub 10+}) materials. Much work remains to be done in optimizing the quenching process and this is one of the goals of this program. Means to lower the temperature of the reaction are being studied as this result in a more feasible commercial process due to savings realized in energy and material of construction costs. The use of free-radical generators and catalysts will be investigated as a means of lowering the reaction temperature thus allowing faster quenching. It is highly likely that such studies will lead to a successful direct methane to higher hydrocarbon process.

  9. Degradation of aromatic hydrocarbons by Sphingomonas paucimobilis strain EPA505.

    PubMed

    Story, S P; Kline, E L; Hughes, T A; Riley, M B; Hayasaka, S S

    2004-08-01

    To determine the substrate range capability of Sphingomonas paucimobilis strain EPA505, a number of aromatic compounds were tested as potential growth substrates. Strain EPA505 grew on phenanthrene, naphthalene, fluoranthene, toluene, benzoic acid, 2,3- and 3,4-dihydroxybenzoic acids, 1-chloro-2,4-dinitrobenzene, anthracene, 2-hydroxy-3-naphthoic acid and 1-hydroxy- 2-naphthoic acid, salicylic acid, and catechol. Strain EPA505 was unable to grow on coumarine 3-carboxylic acid, naphthalene dicarboxylic acid, acenaphthene, chrysene, pyrene, benzo[b]fluoranthene, and fluorene. Catabolic products were not detected or identified when the bacterium was incubated with coumarine 3-carboxylic acid, naphthalene dicarboxylic acid, acenaphthene, chrysene, or benzo[b]fluoranthene. Dihydroxypyrene, the ortho ring fission product of pyrene, and 10-hydroxy-1- phenanthroic acid were detected when the bacterium was incubated with pyrene. The open rings of benzo[b]fluoranthene, hydroxyacephenanthroic acid, hydroxyacephenanthrene, and phenanthrene anhydride, catabolites of benzo[b]fluoranthene degradation, were detected with Tn5 mutants of EPA505. With strain EPA505, both 9-fluorenone and an open ring fission product accumulated during incubation with fluorene. Other catabolites beyond the open ring of fluorene were detected, specifically dihydroxyfluorene, hydroxy-9-fluorenone, dihydroxy-9-fluorenone, hydroxyindane, and a putative glutathione-conjugated benzylanhydride. Benzylanhydride appeared to be a final end product of fluorene degradation by strain EPA505.

  10. Noncomparative scaling of aromaticity through electron itinerancy

    SciTech Connect

    Paul, Satadal; Goswami, Tamal; Misra, Anirban

    2015-10-15

    Aromaticity is a multidimensional concept and not a directly observable. These facts have always stood in the way of developing an appropriate theoretical framework for scaling of aromaticity. In the present work, a quantitative account of aromaticity is developed on the basis of cyclic delocalization of π-electrons, which is the phenomenon leading to unique features of aromatic molecules. The stabilization in molecular energy, caused by delocalization of π-electrons is obtained as a second order perturbation energy for archetypal aromatic systems. The final expression parameterizes the aromatic stabilization energy in terms of atom to atom charge transfer integral, onsite repulsion energy and the population of spin orbitals at each site in the delocalized π-electrons. An appropriate computational platform is framed to compute each and individual parameter in the derived equation. The numerical values of aromatic stabilization energies obtained for various aromatic molecules are found to be in close agreement with available theoretical and experimental reports. Thus the reliable estimate of aromaticity through the proposed formalism renders it as a useful tool for the direct assessment of aromaticity, which has been a long standing problem in chemistry.

  11. Noncomparative scaling of aromaticity through electron itinerancy

    NASA Astrophysics Data System (ADS)

    Paul, Satadal; Goswami, Tamal; Misra, Anirban

    2015-10-01

    Aromaticity is a multidimensional concept and not a directly observable. These facts have always stood in the way of developing an appropriate theoretical framework for scaling of aromaticity. In the present work, a quantitative account of aromaticity is developed on the basis of cyclic delocalization of π-electrons, which is the phenomenon leading to unique features of aromatic molecules. The stabilization in molecular energy, caused by delocalization of π-electrons is obtained as a second order perturbation energy for archetypal aromatic systems. The final expression parameterizes the aromatic stabilization energy in terms of atom to atom charge transfer integral, onsite repulsion energy and the population of spin orbitals at each site in the delocalized π-electrons. An appropriate computational platform is framed to compute each and individual parameter in the derived equation. The numerical values of aromatic stabilization energies obtained for various aromatic molecules are found to be in close agreement with available theoretical and experimental reports. Thus the reliable estimate of aromaticity through the proposed formalism renders it as a useful tool for the direct assessment of aromaticity, which has been a long standing problem in chemistry.

  12. Self-assembled electrical materials from contorted aromatics

    NASA Astrophysics Data System (ADS)

    Xiao, Shengxiong

    This thesis describes the design, synthesis, self-assembly and electrical properties of new types of contorted polycyclic aromatic hydrocarbons. These topologically interesting contorted aromatics show promising transistor characteristics as new building blocks for organic field-effect transistors (OFETs) at different length scales. In chapter 2, a class of pentacenes that are substituted along their long edges with aromatic rings were synthesized. Their solid-state assemblies were studied by X-ray crystallography. Their performance as thin film transistors (TFTs) and single crystal field effect transistors (SCFETs) were systematically evaluated. A structure-property relationship between these highly phenylated pentacenes was found. Chapter 3 explores the new concept of whether a non-planar aromatic core could yield efficacious electronic materials, as the ultimate success in the organic electronics will require a holistic approach to creating new building blocks. Synthesis, functionalization and assembly of a new type of contorted hexabenzocoronene (HBC) whose aromatic core is heavily distorted away from planarity due to the steric congestion around its proximal carbons were discussed. Structural studies by X-ray crystallography showed that these HBC molecules stack into columnar structures in the solid state, which are ideal for conduction. Chapter 4 describes that microscale liquid crystalline thin film OFETs of tetradodecyloxy HBC showed the best transistor properties of all discotic columnar materials. Chapter 5 details the fabrication and characterization of nanoscale single crystalline fiber OFETs of octadodecyloxyl HBC. In Chapter 6 we show that a molecular scale monolayer of HBC acid chlorides could be self-assembled on SiO2 insulating layer and could be organized laterally between the ends of 2 nm carbon nanotube gaps to form high quality FETs that act as environmental and chemical sensors. Chapter 7 details the enforced one-dimensional photoconductivity

  13. Metabolic Pathways for Degradation of Aromatic Hydrocarbons by Bacteria.

    PubMed

    Ladino-Orjuela, Guillermo; Gomes, Eleni; da Silva, Roberto; Salt, Christopher; Parsons, John R

    2016-01-01

    The aim of this review was to build an updated collection of information focused on the mechanisms and elements involved in metabolic pathways of aromatic hydrocarbons by bacteria. Enzymes as an expression of the genetic load and the type of electron acceptor available, as an environmental factor, were highlighted. In general, the review showed that both aerobic routes and anaerobic routes for the degradation of aromatic hydrocarbons are divided into two pathways. The first, named the upper pathways, entails the route from the original compound to central intermediate compounds still containing the aromatic ring but with the benzene nucleus chemically destabilized. The second, named the lower pathway, begins with ring de-aromatization and subsequent cleavage, resulting in metabolites that can be used by bacteria in the production of biomass. Under anaerobic conditions the five mechanisms of activation of the benzene ring described show the diversity of chemical reactions that can take place. Obtaining carbon and energy from an aromatic hydrocarbon molecule is a process that exhibits the high complexity level of the metabolic apparatus of anaerobic microorganisms. The ability of these bacteria to express enzymes that catalyze reactions, known only in non-biological conditions, using final electron acceptors with a low redox potential, is a most interesting topic. The discovery of phylogenetic and functional characteristics of cultivable and noncultivable hydrocarbon degrading bacteria has been made possible by improvements in molecular research techniques such as SIP (stable isotope probing) tracing the incorporation of (13)C, (15)N and (18)O into nucleic acids and proteins. Since many metabolic pathways in which enzyme and metabolite participants are still unknown, much new research is required. Therefore, it will surely allow enhancing the known and future applications in practice.

  14. Strategies for the preparation and concentration of mushroom aromatic products.

    PubMed

    Villares, Ana; Guillamon, Eva; Mateo-Vivaracho, Laura; D'Arrigo, Matilde; Garcia-Lafuente, Ana

    2012-08-01

    Fungal aroma comprises at least seven chemical groups of volatile organic compounds, which are plain hydrocarbons, heterocycles, alcohols, phenols, acids and derivatives, carbonyls (aldehydes and ketones), and sulfur containing molecules. This aromatic blend provides the excellent sensory properties to produce and several strategies have been employed to create aromatic products having the aroma and taste of mushrooms and truffles. Nowadays, there are several procedures to obtain aroma concentrates. Among them, the simulation of mushroom aroma by the combination of the main substances responsible for the flavour could be an efficient strategy. Nevertheless, natural procedures are gaining more importance since the concentrate is not a synthetic product and the processes commonly involve the use of mushroom waste. In this field, the maceration with precursor molecules, such as linoleic acid, or different types of enzymes is commonly used in food industry. This article provides a wide view of the most common strategies to produce fungal aroma taking into account the main advantages and disadvantages they present. The article presents some promising patents on strategies for the preparation and concentration of mushroom aromatic products.

  15. Process for preparing solvent resistant, thermoplastic aromatic poly(imidesulfone)

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Yamaki, D. A. (Inventor)

    1984-01-01

    A process for preparing a thermoplastic poly(midesulfone) is disclosed. This resulting material has thermoplastic properties which are generally associated with polysulfones but not polyimides, and solvent resistant which is generally associated with polyimides but not polysulfones. This system is processable in the 250 to 350 C range for molding, adhesive and laminating applications. This unique thermoplastic poly(imidesulfone) is obtained by incorporating an aromatic sulfone moiety into the backbone of an aromatic linear polyimide by dissolving a quantity of a 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) in a solution of 3,3'-diaminodiphenylsulfone and bis(2-methoxyethyl)ether, precipitating the reactant product in water, filtering and drying the recovered poly(amide-acid sulfone) and converting it to the poly(imidesulfone) by heating.

  16. PREDICTION OF BASO4 PRECIPITATION IN THE PRESENCE AND ABSENCE OF A POLYMERIC INHIBITOR: PHOSPHINO-POLYCARBOXYLIC ACID. (R825513C024)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  17. O-demethylation, dehydroxylation, ring-reduction and cleavage of aromatic substrates by Enterobacteriaceae under anaerobic conditions.

    PubMed

    Grbić-Galić, D

    1986-12-01

    Four fermentative facultative anaerobes, members of the genera Enterobacter and Escherichia, were tested for their ability to transform an aromatic lignin derivative, 3-methoxy-4-hydroxy-cinnamic acid (ferulic acid), under anaerobic (fermentative) conditions. The pure cultures studied were shown to O-demethylate, dehydroxylate, reduce the double bond in the side-chain, decarboxylate the aromatic ring to the stage of benzoate and to reduce the ring to an alicyclic acid. Aromatic hydrocarbons (toluene, ethylbenzene and propylbenzene), as well as phenols (phenol, o-cresol, p-cresol, 2-ethylphenol and 3-hydroxy-4-ethylphenol) were also produced. In addition, during 3 months incubation, the cleavage of the aromatic ring occurred, whereby a small fraction of the substrate was converted to straight-chain and branched (methylated, ethylated) five- to eight-carbon aliphatic acids. The results indicate that pure cultures of fermentative facultative anaerobes might be capable of degrading substituted aromatic acids to aliphatic products under strictly anaerobic (fermentative) conditions. These abilities, which have so far been found only in denitrifying pseudomonads among facultative anaerobes, might be common in Enterobacteriaceae. It is conceivable that these bacteria are important as degraders of aromatic compounds in anaerobic ecosystems.

  18. Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter

    USGS Publications Warehouse

    Lindsey, M.E.; Tarr, M.A.

    2000-01-01

    Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater than that expected based on a simple model in which aromatic compound molecules bound to NOM are considered to be unreactive. In this study, hydroxyl radical was produced at steady-state concentrations using Fenton chemistry (H2O2 + Fe2+ ??? Fe3+ + HO- + HO??). Suwannee River fulvic acid and humic acid were used as NOM. The most likely mechanism for the observed inhibition is that hydroxyl radical formation occurs in microenvironmental sites remote from the aromatic compounds. In addition to changes in kinetics, pyrene hydroxyl radical reaction also exhibited a mechanistic change in the presence of fulvic acid. The mechanism changed from a reaction that was apparently firstorder in pyrene to one that was apparently secondorder in pyrene, indicating that pyrene self-reaction may have become the dominant mechanism in the presence of fulvic acid. Dissolved NOM causes significant changes in the rate and mechanism of hydroxyl radical degradation of aromatic compounds. Consequently, literature rate constants measured in pure water will not be useful for predicting the degradation of pollutants in environmental systems. The kinetic and mechanistic information in this study will be useful for developing improved degradation methods involving Fenton chemistry.Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater than that expected based on a simple model in which aromatic compounds molecules bounds to NOM are considered to be unreactive. In this study, hydroxyl radical was produced at steady-state concentrations using Fenton chemistry (H2O2 + Fe2+ ??? Fe3+ + HO- + HO??). Suwannee River fulvic acid and humic acid were used as NOM. The most likely mechanisms for the observed inhibition is that hydroxyl radical

  19. Quantum transport through aromatic molecules

    SciTech Connect

    Ojeda, J. H.; Rey-González, R. R.; Laroze, D.

    2013-12-07

    In this paper, we study the electronic transport properties through aromatic molecules connected to two semi-infinite leads. The molecules are in different geometrical configurations including arrays. Using a nearest neighbor tight-binding approach, the transport properties are analyzed into a Green's function technique within a real-space renormalization scheme. We calculate the transmission probability and the Current-Voltage characteristics as a function of a molecule-leads coupling parameter. Our results show different transport regimes for these systems, exhibiting metal-semiconductor-insulator transitions and the possibility to employ them in molecular devices.

  20. Seven 3d-4f coordination polymers of macrocyclic oxamide with polycarboxylates: Syntheses, crystal structures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Xin, Na; Sun, Ya-Qiu; Zheng, Yan-Feng; Xu, Yan-Yan; Gao, Dong-Zhao; Zhang, Guo-Ying

    2016-11-01

    Seven new 3d-4f heterometallic coordination polymers, [Ln(CuL)2(Hbtca)(btca)(H2O)]·2H2O (Ln = TbIII1, PrIII2, SmIII3, EuIII4, YbIII5), [Nd(NiL)(nip)(Rnip)]·0·25H2O·0.25CH3OH (R= 0.6CH3, 0.4H) 6 and [Nd2(NiL)(nip)3(H2O)]·2H2O 7(CuL or NiL, H2L = 2, 3-dioxo-5, 6, 14, 15-dibenzo-1, 4, 8, 12-tetraazacyclo-pentadeca-7, 13-dien; H2btca = benzotriazole-5-carboxylic acid; H2nip = 5-nitroisophthalic acid) have been synthesized by a solvothermal method and characterized by single-crystal X-ray diffraction. Complexes 1-5 exhibit a double-strand meso-helical chain structures formed by [LnIIICuII2] units via the oxamide and benzotriazole-5-carboxylate bridges, while complex 6 exhibits a four-strand meso-helical chain formed by NdNi unit via the oxamide and 5-nitroisophthalate bridges. Complex 7 consists of a 2D layer framework formed by four-strand meso-helical chain via the nip2- bridges. Moreover, the magnetic properties of them were investigated, and the best-fit analysis of χMT versus T show that the anisotropic contribution of Ln(III) ions (arising from the spin-orbit coupling or the crystal field perturbation) dominates (weak exchange limit) in these complexes(for 3, λ = 214.6 cm-1, zj' = -0.33 cm-1, gav = 1.94; for 5, Δ = 6.98 cm-1, zj' = 1.53 cm-1, gav = 1.85).

  1. Presence and potential significance of aromatic-ketone groups in aquatic humic substances

    USGS Publications Warehouse

    Leenheer, J.A.; Wilson, M.A.; Malcolm, R.L.

    1987-01-01

    Aquatic humic- and fulvic-acid standards of the International Humic Substances Society were characterized, with emphasis on carbonyl-group nature and content, by carbon-13 nuclear-magnetic-resonance spectroscopy, proton nuclear-magnetic-resonance spectroscopy, and infrared spectroscopy. After comparing spectral results of underivatized humic and fulvic acids with spectral results of chemically modified derivatives, that allow improved observation of the carbonyl group, the data clearly indicated that aromatic ketone groups comprised the majority of the carbonyl-group content. About one ketone group per monocyclic aromatic ring was determined for both humic and fulvic acids. Aromatic-ketone groups were hypothesized to form by photolytic rearrangements and oxidation of phenolic ester and hydrocarbon precursors; these groups have potential significance regarding haloform formation in water, reactivity resulting from active hydrogen of the methyl and methylene adjacent to the ketone groups, and formation of hemiketal and lactol structures. Aromatic-ketone groups also may be the point of attachment between aliphatic and aromatic moieties of aquatic humic-substance structure. ?? 1987.

  2. Environmental diagnostic analysis of ground water bacteria and their involvement in utilization of aromatic compounds

    SciTech Connect

    Wear, J.E. Jr.

    1993-01-01

    This study examines the hypothesis that select functional groups of bacteria from pristine sites have an innate ability to degrade synthetic aromatics contaminating groundwater environments, due to exposure to naturally occurring recalcitrant aromatics in their environment. Ground water was pumped at monthly intervals from twelve wells at four different sites. Two of these sites could be considered pristine. The other two sites were contaminated, one with trichloroethylene, the other with polyaromatic hydrocarbons and possible sulfur compounds. There are great variations in physiological states and metabolic needs of bacteria in these different aquifers. All but one of the wells studied demonstrated higher counts on low nutrient media than high nutrient media, suggesting the oligotrophic nature of these groundwater environments. The subsurface microbial communities are capable of utilizing lignin and humic acid breakdown products. Highest counts for the aromatics tested were observed with the naturally occurring breakdown products of either lignin or humic acid. Carboxylic acids were found to be an important sole carbon source for groundwater bacteria possibly explained by the fact that they are produced by the oxidative cleavage of aromatic ring structures. Utilization of naturally occurring aromatic compounds in the subsurface is an important nutritional source for groundwater bacteria. In addition, adaptation to naturally occurring recalcitrant substrates is the origin of degradative pathways for xenobiotic compounds with analogous structure. This has important implications for in situ bioremediation as a method of environmental cleanup.

  3. Birds and polycyclic aromatic hydrocarbons

    USGS Publications Warehouse

    Albers, P.H.

    2006-01-01

    Polycyclic aromatic hydrocarbons (PAH) are present throughout the global environment and are produced naturally and by activities of humans. Effects of PAH on birds have been determined by studies employing egg injection, egg immersion, egg shell application, single and multiple oral doses, subcutaneous injection, and chemical analysis of field-collected eggs and tissue. The four-to six-ring aromatic compounds are the most toxic to embryos, young birds, and adult birds. For embryos, effects include death, developmental abnormalities, and a variety of cellular and biochemical responses. For adult and young birds, effects include reduced egg production and hatching, increased clutch or brood abandonment, reduced growth, increased organweights, and a variety of biochemical responses. Trophic level accumulation is unlikely. Environmental exposure to PAH in areas of high human population or habitats affected by recent petroleum spills might be sufficient to adversely affect reproduction. Evidence of long-term effects of elevated concentrations of environmental PAH on bird populations is very limited and the mechanisms of effect are unclear.

  4. Chromatographic and mass spectrometric characterization of essential oils and extracts from Lippia (Verbenaceae) aromatic plants.

    PubMed

    Stashenko, Elena E; Martínez, Jairo R; Cala, Mónica P; Durán, Diego C; Caballero, Deyanira

    2013-01-01

    Analytical methodologies based on GC and HPLC were developed for the separation and quantification of carnosic acid, ursolic acid, caffeic acid, p-coumaric acid, rosmarinic acid, apigenin, luteolin, quercetin, kaempferol, naringenin, and pinocembrin. These methods were used to characterize essential oils and extracts obtained by solvent (methanol) and by supercritical fluid (CO(2)) extraction from stems and leaves of Lippia (Verbenaceae family) aromatic plants (Lippia alba, Lippia origanoides, Lippia micromera, Lippia americana, Lippia graveolens, and Lippia citriodora). Supercritical CO(2) extraction isolated solely pinocembrin and narigenin from three L. origanoides chemotypes. Solvent extracts possessed a more varied composition that additionally included apigenin, quercetin, and luteolin. Solvent extraction afforded higher overall flavonoid yields from all species in comparison with supercritical CO(2) extraction. Pinocembrin was determined in L. origanoides extract at a concentration of 30 mg/g of plant material, which is more than ten times higher than the amount at which polyphenols are regularly found in aromatic plant extracts.

  5. Beyond organic chemistry: aromaticity in atomic clusters.

    PubMed

    Boldyrev, Alexander I; Wang, Lai-Sheng

    2016-04-28

    We describe joint experimental and theoretical studies carried out collaboratively in the authors' labs for understanding the structures and chemical bonding of novel atomic clusters, which exhibit aromaticity. The concept of aromaticity was first discovered to be useful in understanding the square-planar unit of Al4 in a series of MAl4(-) bimetallic clusters that led to discoveries of aromaticity in many metal cluster systems, including transition metals and similar cluster motifs in solid compounds. The concept of aromaticity has been found to be particularly powerful in understanding the stability and bonding in planar boron clusters, many of which have been shown to be analogous to polycyclic aromatic hydrocarbons in their π bonding. Stimulated by the multiple aromaticity in planar boron clusters, a design principle has been proposed for stable metal-cerntered aromatic molecular wheels of the general formula, M@Bn(k-). A series of such borometallic aromatic wheel complexes have been produced in supersonic cluster beams and characterized experimentally and theoretically, including Ta@B10(-) and Nb@B10(-), which exhibit the highest coordination number in two dimensions.

  6. Heterogeneous photocatalytic reactions of sulfur aromatic compounds.

    PubMed

    Samokhvalov, Alexander

    2011-11-18

    Sulfur aromatic compounds, such as mono-, di-, tri-, and tetraalkyl-substituted thiophene, benzothiophenes, dibenzothiophenes, are the molecular components of many fossils (petroleum, oil shale, tar sands, bitumen). Structural units of natural, cross-linked heteroaromatic polymers present in brown coals, turf, and soil are similar to those of sulfur aromatic compounds. Many sulfur aromatic compounds are found in the streams of petroleum refining and upgrading (naphthas, gas oils) and in the consumer products (gasoline, diesel, jet fuels, heating fuels). Besides fossils, the structural fragments of sulfur aromatic compounds are present in molecules of certain organic semiconductors, pesticides, small molecule drugs, and in certain biomolecules present in human body (pheomelanin pigments). Photocatalysis is the frontier area of physical chemistry that studies chemical reactions initiated by absorption of photons by photocatalysts, that is, upon electronic rather than thermal activation, under "green" ambient conditions. This review provides systematization and critical review of the fundamental chemical and physicochemical information on heterogeneous photocatalysis of sulfur aromatic compounds accumulated in the last 20-30 years. Specifically, the following topics are covered: physicochemical properties of sulfur aromatic compounds, major classes of heterogeneous photocatalysts, mechanisms and reactive intermediates of photocatalytic reactions of sulfur aromatic compounds, and the selectivity of these reactions. Quantum chemical calculations of properties and structures of sulfur aromatic compounds, their reactive intermediates, and the structure of adsorption complexes formed on the surface of the photocatalysts are also discussed.

  7. Aromatic Polyimides With Group VI Linkages

    NASA Technical Reports Server (NTRS)

    St. Clair, T. L.; Burks, H. D.; Ely, R. M.

    1983-01-01

    New polymer system combines thermal and solvent resistant properties of aromatic polyimides with processability of PPX polymers. PPX polymers include polyphenylene oxide, polyphenylene sulfide, and polyphenylene sulfone classes. Generally more processable by hot melt or thermoplastic techniques than aromatic polyimides. PPX systems more susceptible to attack by solvents and have lower glass transition temperatures than PI group.

  8. Interspecies metabolism of heterocyclic aromatic amines

    SciTech Connect

    Turesky, R.J.; Welti, D.H.; Fay, L.B.

    1996-12-31

    2-Amino-3,8-dimethylimadazo[4,5-f]quinoxaline (MeIQx) and other heterocyclic aromatic amines (HAAs) are rodent carcinogens and potential human carcinogens formed in cooked meats and fish. Metabolic activation of MeIQx to a genotoxin occurs through cytochrome P450 mediated N-oxidation to form N-hydroxy-MeIQx which may undergo further activation by esterification to product species which bind to DNA. Pathways of MeIQx metabolism have been elucidated in rodents and nonhuman primates to develop strategies of human biomonitoring. In addition to N-oxidation, predominant routes of detoxification include direct conjugation at the exoyclic amino group with sulfate or glucuronic acid and cytochrome P450 mediated ring oxidation. Analysis of urine from five human subjects exposed to MeIQx reveals that phase II conjugation reactions to the exocyclic amine group are prominent detoxifaction pathways while heterocyclic ring oxidation is a minor pathway. Notably, the N{sup 2-} glucuronide conjugate of N-hydroxy-MeIQx is an important metabolite in human urine. Several other metabolites have been detected in human urine which have not been previously identified in rats or nonhuman primates. Similarities and differences exist in the metabolic processing of MeIQx by humans and other species and may be a critical determinant in assessing the human health risk of HAAs.

  9. From organic pollutants to bioplastics: insights into the bioremediation of aromatic compounds by Cupriavidus necator.

    PubMed

    Berezina, Nathalie; Yada, Bopha; Lefebvre, Rodrigue

    2015-01-25

    Organic pollution by aromatic compounds is of increasing concern to our environment. Therefore, the transformation of aromatic pollutants into valuable aliphatic and biodegradable bioplastics was studied. Since benzoic acid was found to be the key compound for such bioremediation processes, its transformation, and metabolic pathways of digestion, by Cupriavidus necator were specifically analysed. It was found that the degradation of aromatic compounds follows the 2,3-dioxygenase pathway in this strain and that the batch transformations of benzoic acid with either fresh or adapted cells were limited to an initial concentration of 2.5 g/L of pollutant. The repeated fed-batch with partial withdrawal process, however, showed a 17.5-fold improvement, thus allowing the transformation of a total of 43.7 g/L in 12 weeks. PMID:25252021

  10. MHDA-Functionalized Multiwall Carbon Nanotubes for detecting non-aromatic VOCs

    PubMed Central

    Thamri, Atef; Baccar, Hamdi; Struzzi, Claudia; Bittencourt, Carla; Abdelghani, Adnane; Llobet, Eduard

    2016-01-01

    The chemical modification of multiwalled carbon nanotubes (MWCNTs) with a long chain mercapto acid is reported as a way to improve sensitivity and response time of gas sensors for detecting alcohols, acetone and toxic gases such as DMMP. We have developed sensors employing MWCNTs decorated with gold nanoparticles and modified with a 16-mercaptohexadecanoic acid (MHDA) monolayer. Morphological and compositional analysis by Transmission Electron Microscopy (TEM), Fourier Transform Infra-red Spectroscopy (FTIR) and X-ray photoelectron spectroscopy were performed to characterize the gold nanoparticles and to check the bonding of the thiol monolayer. The detection of aromatic and non-aromatic volatiles and DMMP vapors by MWCNT/Au and MWCNT/Au/MHDA shows that the presence of the self-assembled layer increases sensitivity and selectivity towards non-aromatics. Furthermore, it ameliorates response dynamics, and significantly reduces nitrogen dioxide and moisture cross-sensitivity. PMID:27721503

  11. MHDA-Functionalized Multiwall Carbon Nanotubes for detecting non-aromatic VOCs

    NASA Astrophysics Data System (ADS)

    Thamri, Atef; Baccar, Hamdi; Struzzi, Claudia; Bittencourt, Carla; Abdelghani, Adnane; Llobet, Eduard

    2016-10-01

    The chemical modification of multiwalled carbon nanotubes (MWCNTs) with a long chain mercapto acid is reported as a way to improve sensitivity and response time of gas sensors for detecting alcohols, acetone and toxic gases such as DMMP. We have developed sensors employing MWCNTs decorated with gold nanoparticles and modified with a 16-mercaptohexadecanoic acid (MHDA) monolayer. Morphological and compositional analysis by Transmission Electron Microscopy (TEM), Fourier Transform Infra-red Spectroscopy (FTIR) and X-ray photoelectron spectroscopy were performed to characterize the gold nanoparticles and to check the bonding of the thiol monolayer. The detection of aromatic and non-aromatic volatiles and DMMP vapors by MWCNT/Au and MWCNT/Au/MHDA shows that the presence of the self-assembled layer increases sensitivity and selectivity towards non-aromatics. Furthermore, it ameliorates response dynamics, and significantly reduces nitrogen dioxide and moisture cross-sensitivity.

  12. From organic pollutants to bioplastics: insights into the bioremediation of aromatic compounds by Cupriavidus necator.

    PubMed

    Berezina, Nathalie; Yada, Bopha; Lefebvre, Rodrigue

    2015-01-25

    Organic pollution by aromatic compounds is of increasing concern to our environment. Therefore, the transformation of aromatic pollutants into valuable aliphatic and biodegradable bioplastics was studied. Since benzoic acid was found to be the key compound for such bioremediation processes, its transformation, and metabolic pathways of digestion, by Cupriavidus necator were specifically analysed. It was found that the degradation of aromatic compounds follows the 2,3-dioxygenase pathway in this strain and that the batch transformations of benzoic acid with either fresh or adapted cells were limited to an initial concentration of 2.5 g/L of pollutant. The repeated fed-batch with partial withdrawal process, however, showed a 17.5-fold improvement, thus allowing the transformation of a total of 43.7 g/L in 12 weeks.

  13. Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity

    USGS Publications Warehouse

    Chin, Y.-P.; Aiken, G.R.; Danielsen, K.M.

    1997-01-01

    The binding of pyrene to a number of humic substances isolated from various aquatic sources and a commercial humic acid was measured using the solubility enhancement method. The humic materials used in this study were characterized by various spectroscopic and liquid chromatography methods. A strong correlation was observed between the pyrene binding coefficient, K(doc), and the molecular weights, molar absorptivities at 280 nm, and aromaticity of the aquatic humic substances. Binding of pyrene to the commercial humic acid, however, was significantly stronger and did not obey the relationships observed between K(doc) and the chemical properties of the aquatic humic substrates. These results suggest that the molecular weight and the aromatic content of the humic substrates exert influences on the binding of nonpolar and planar aromatic molecules and that the physicochemical properties of both humic materials and organic solutes are important in controlling the speciation of nonpolar organic contaminants in natural waters.

  14. Determination of polycyclic aromatic compounds in fish tissue.

    PubMed

    Birkholz, D A; Coutts, R T; Hrudey, S E

    1988-09-30

    A method is presented for the analysis of polycyclic aromatic hydrocarbons (PAHs), polycyclic aromatic sulfur heterocycles (PASHs), and basic polycyclic aromatic nitrogen heterocycles (PANHs) in fish. The analytical procedure includes Soxhlet extraction of prepared fish tissue with methylene chloride followed by gel permeation chromatography (GPC) using Bio-beads SX-3. For PAHs/PASHs, further cleanup is performed using adsorption chromatography on Florisil (5% water deactivated) and elution with hexane. For basic PANHs further cleanup of the fish extracts after GPC is achieved using liquid-liquid partitioning with 6 M hydrochloric acid and chloroform and then basifying the aqueous phase and extracting it with chloroform. Analysis of fortified fish samples was performed using capillary gas chromatography with flame ionization detection and capillary gas chromatography-mass spectrometry. Good agreement was observed for both methods of analysis when applied to fish samples fortified with PAHs, PASHs and basic PANHs at 0.1 to 1 microgram/g, suggesting that the method is effective at removing interfering biogenic compounds prior to analysis. Average recovery of PAHs/PASHs from fortified fish tissue was 87% and 70% for fish tissue fortified at 0.24-1.1 and 0.024-0.11 microgram/g, respectively. Average recovery for basic PANHs was 97% for fish fortified at 1.2-1.4 micrograms/g.

  15. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.

    PubMed

    Shah, Aamer Ali; Kato, Satoshi; Shintani, Noboru; Kamini, Numbi Ramudu; Nakajima-Kambe, Toshiaki

    2014-04-01

    Biodegradable plastics (BPs) have attracted much attention since more than a decade because they can easily be degraded by microorganisms in the environment. The development of aliphatic-aromatic co-polyesters has combined excellent mechanical properties with biodegradability and an ideal replacement for the conventional nondegradable thermoplastics. The microorganisms degrading these polyesters are widely distributed in various environments. Although various aliphatic, aromatic, and aliphatic-aromatic co-polyester-degrading microorganisms and their enzymes have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. In this review, we have reported some new microorganisms and their enzymes which could degrade various aliphatic, aromatic, as well as aliphatic-aromatic co-polyesters like poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), poly(L-lactic acid) (PLA), poly(3-hydroxybutyrate) and poly(3-hydoxybutyrate-co-3-hydroxyvalterate) (PHB/PHBV), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(butylene adipate-co-terephthalate (PBAT), poly(butylene succinate-co-terephthalate) (PBST), and poly(butylene succinate/terephthalate/isophthalate)-co-(lactate) (PBSTIL). The mechanism of degradation of aliphatic as well as aliphatic-aromatic co-polyesters has also been discussed. The degradation ability of microorganisms against various polyesters might be useful for the treatment and recycling of biodegradable wastes or bioremediation of the polyester-contaminated environments.

  16. Potent Reversible Inhibition of Myeloperoxidase by Aromatic Hydroxamates*

    PubMed Central

    Forbes, Louisa V.; Sjögren, Tove; Auchère, Françoise; Jenkins, David W.; Thong, Bob; Laughton, David; Hemsley, Paul; Pairaudeau, Garry; Turner, Rufus; Eriksson, Håkan; Unitt, John F.; Kettle, Anthony J.

    2013-01-01

    The neutrophil enzyme myeloperoxidase (MPO) promotes oxidative stress in numerous inflammatory pathologies by producing hypohalous acids. Its inadvertent activity is a prime target for pharmacological control. Previously, salicylhydroxamic acid was reported to be a weak reversible inhibitor of MPO. We aimed to identify related hydroxamates that are good inhibitors of the enzyme. We report on three hydroxamates as the first potent reversible inhibitors of MPO. The chlorination activity of purified MPO was inhibited by 50% by a 5 nm concentration of a trifluoromethyl-substituted aromatic hydroxamate, HX1. The hydroxamates were specific for MPO in neutrophils and more potent toward MPO compared with a broad range of redox enzymes and alternative targets. Surface plasmon resonance measurements showed that the strength of binding of hydroxamates to MPO correlated with the degree of enzyme inhibition. The crystal structure of MPO-HX1 revealed that the inhibitor was bound within the active site cavity above the heme and blocked the substrate channel. HX1 was a mixed-type inhibitor of the halogenation activity of MPO with respect to both hydrogen peroxide and halide. Spectral analyses demonstrated that hydroxamates can act variably as substrates for MPO and convert the enzyme to a nitrosyl ferrous intermediate. This property was unrelated to their ability to inhibit MPO. We propose that aromatic hydroxamates bind tightly to the active site of MPO and prevent it from producing hypohalous acids. This mode of reversible inhibition has potential for blocking the activity of MPO and limiting oxidative stress during inflammation. PMID:24194519

  17. Poly(cyclopropenone)s: formal inclusion of the smallest Hückel aromatic into pi-conjugated polymers.

    PubMed

    Peart, Patricia A; Tovar, John D

    2010-08-20

    The synthesis of precursors to pi-conjugated cyclopropenium polymers is described. Monomers for chemical and electrochemical manipulation are easily prepared through electrophilic substitution of in situ generated cyclopropenium cations that are then hydrolyzed to the respective cyclopropenones. The unusually strong dipole moment associated with the cyclopropenone renders this core formally aromatic, an electronic structure that becomes more important within individual monomers upon protonation of the carbonyl function with trifluoroacetic acid or alkylation with triethyloxonium salts. The electronic properties of cyclopropenone polymers in their pristine states and after acidification are discussed along with conjugated carbonyl-containing polymers that are also acid sensitive but without the added element of aromaticity. We find that the increased contributions of cyclopropenium cation aromaticity restrict the quinoidal charge carriers due to the energetically less favorable proposition of disrupting the local aromatic stabilization.

  18. PRACTICAL SYNTHESIS OF AROMATIC DITHIOCARBAMATES

    PubMed Central

    Padungros, Panuwat; Wei, Alexander

    2015-01-01

    GRAPHICAL ABSTRACT Oxidation-sensitive N,N-diaryl dithiocarbamates (DTCs) are synthesized in good yields by the generation of metal amide salts from N-benzoyl precursors, followed by addition of CS2. para-Substituted diphenylamines are prepared by electrophilic aromatic substitution of diphenylbenzamide and saponification. Deacylation of electron-rich species such as bis(p-dimethylaminophenyl)benzamide is challenging because of the oxidative sensitivity of the anionic intermediate but could be achieved in good yield by using n-BuLi to generate a hemiaminal adduct, prior to acidification. The N,N-diaryl DTCs are stable as alkali salts and can be used to produce densely packed monolayers on gold surfaces. PMID:25999616

  19. The importance of being aromatic: π interactions in sodium symporters.

    PubMed

    Jiang, Xuan; Loo, Donald D F; Hirayama, Bruce A; Wright, Ernest M

    2012-11-27

    In the LeuT family of sodium solute symporters, 13-17% of the residues in transmembrane domains are aromatic. The unique properties of aromatic amino acids allow them to play specialized roles in proteins, but their function in membrane transporters is underappreciated. Here we analyze the π bonding pattern in the LeuT (5TMIR) family and then describe the role of a triad of aromatic residues in sodium-dependent sugar cotransporters (SGLTs). In SLC5 symporters, three aromatic residues in TM6 (SGLT1 W289, Y290, and W291) are conserved in only those transporting sugars and inositols. We used biophysical analysis of mutants to discover their functional roles, which we have interpreted in terms of CH-π, π-π, and cation-π bonding. We discovered that (1) glucose binding involves CH-π stacking with Y290, (2) π T-stacking interactions between Y290 and W291 and H-bonding between Y290 and N78 (TM1) are essential to form the sodium and sugar binding sites, (3) the Na(+):sugar stoichiometry is determined by these residues, and (4) W289 may be important in stabilizing the structure through H-bonding to TM3. We also find that the WYW triad plays a role in Na(+) coordination at the Na1 site, possibly through cation-π interactions. Surprisingly, this Na(+) is not necessarily coupled to glucose translocation. Our analysis of π interactions in other LeuT proteins suggests that they also contribute to the structure and function in this whole family of transporters.

  20. Preparing composite materials from matrices of processable aromatic polyimide thermoplastic blends

    NASA Technical Reports Server (NTRS)

    Johnston, Norman J. (Inventor); St.clair, Terry L. (Inventor); Baucom, Robert M. (Inventor); Gleason, John R. (Inventor)

    1991-01-01

    Composite materials with matrices of tough, thermoplastic aromatic polyimides are obtained by blending semi-crystalline polyimide powders with polyamic acid solutions to form slurries, which are used in turn to prepare prepregs, the consolidation of which into finished composites is characterized by excellent melt flow during processing.