Sample records for aromatic ring compounds

  1. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOEpatents

    Baker, E.G.; Elliott, D.C.

    1993-01-19

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compounds as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  2. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOEpatents

    Baker, Eddie G.; Elliott, Douglas C.

    1993-01-01

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compouns as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  3. Compounds having aromatic rings and side-chain amide-functionality and a method for transporting monovalent anions across biological membranes using the same

    DOEpatents

    Davis, Jeffery T [College Park, MD; Sidorov, Vladimir [Richmond, VA; Kotch, Frank W [New Phila., PA

    2008-04-08

    A compound containing at least two aromatic rings covalently bonded together, with each aromatic ring containing at least one oxyacetamide-based side chain, the compound being capable of forming a chloride ion channel across a lipid bilayer, and transporting chloride ion across the lipid bilayer.

  4. Redox shuttles having an aromatic ring fused to a 1,1,4,4-tetrasubstituted cyclohexane ring

    DOEpatents

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2015-12-01

    An electrolyte includes an alkali metal salt; an aprotic solvent; and a redox shuttle additive including an aromatic compound having at least one aromatic ring fused with at least one non-aromatic ring, the aromatic ring having two or more oxygen or phosphorus-containing substituents.

  5. Fusing porphyrins with polycyclic aromatic hydrocarbons and heterocycles for optoelectronic applications

    DOEpatents

    Thompson, Mark E.; Diev, Viacheslav; Hanson, Kenneth; Forrest, Stephen R.

    2015-08-18

    A compound that can be used as a donor material in organic photovoltaic devices comprising a non-activated porphyrin fused with one or more non-activated polycyclic aromatic rings or one or more non-activated heterocyclic rings can be obtained by a thermal fusion process. The compounds can include structures of Formula I: ##STR00001## By heating the reaction mixture of non-activated porphyrins with non-activated polycyclic aromatic rings or heterocyclic rings to a fusion temperature and holding for a predetermined time, fusion of one or more polycyclic rings or heterocyclic rings to the non-activated porphyrin core in meso,.beta. fashion is achieved resulting in hybrid structures containing a distorted porphyrin ring with annulated aromatic rings. The porphyrin core can be olygoporphyrins.

  6. Can Baird's and Clar's Rules Combined Explain Triplet State Energies of Polycyclic Conjugated Hydrocarbons with Fused 4nπ- and (4n + 2)π-Rings?

    PubMed

    Ayub, Rabia; Bakouri, Ouissam El; Jorner, Kjell; Solà, Miquel; Ottosson, Henrik

    2017-06-16

    Compounds that can be labeled as "aromatic chameleons" are π-conjugated compounds that are able to adjust their π-electron distributions so as to comply with the different rules of aromaticity in different electronic states. We used quantum chemical calculations to explore how the fusion of benzene rings onto aromatic chameleonic units represented by biphenylene, dibenzocyclooctatetraene, and dibenzo[a,e]pentalene modifies the first triplet excited states (T 1 ) of the compounds. Decreases in T 1 energies are observed when going from isomers with linear connectivity of the fused benzene rings to those with cis- or trans-bent connectivities. The T 1 energies decreased down to those of the parent (isolated) 4nπ-electron units. Simultaneously, we observe an increased influence of triplet state aromaticity of the central 4n ring as given by Baird's rule and evidenced by geometric, magnetic, and electron density based aromaticity indices (HOMA, NICS-XY, ACID, and FLU). Because of an influence of triplet state aromaticity in the central 4nπ-electron units, the most stabilized compounds retain the triplet excitation in Baird π-quartets or octets, enabling the outer benzene rings to adapt closed-shell singlet Clar π-sextet character. Interestingly, the T 1 energies go down as the total number of aromatic cycles within a molecule in the T 1 state increases.

  7. Retardation effect of nitrogen compounds and condensed aromatics on shale oil catalytic cracking processing and their characterization.

    PubMed

    Li, Nan; Chen, Chen; Wang, Bin; Li, Shaojie; Yang, Chaohe; Chen, Xiaobo

    Untreated shale oil, shale oil treated with HCl aqueous solution and shale oil treated with HCl and furfural were used to do comparative experiments in fixed bed reactors. Nitrogen compounds and condensed aromatics extracted by HCl and furfural were characterized by electrospray ionization Fourier transform cyclotron resonance mass spectrometry and gas chromatography and mass spectrometry, respectively. Compared with untreated shale oil, the conversion and yield of liquid products increased considerably after removing basic nitrogen compounds by HCl extraction. Furthermore, after removing nitrogen compounds and condensed aromatics by both HCl and furfural, the conversion and yield of liquid products further increased. In addition, N 1 class species are predominant in both basic and non-basic nitrogen compounds, and they are probably indole, carbazole, cycloalkyl-carbazole, pyridine and cycloalkyl-pyridine. As for the condensed aromatics, most of them possess aromatic rings with two to three rings and zero to four carbon atom.

  8. CHEMISTRY OF OXIDATION OF POLYCYCLIC AROMATIC HYDROCARBONS BY SOIL PSEUDOMONADS

    PubMed Central

    Rogoff, Martin H.

    1962-01-01

    Rogoff, Martin H. (U.S. Bureau of Mines, Pittsburgh, Pa.). Oxidation of polycyclic aromatic hydrocarbons by soil pseudomonads. J. Bacteriol. 83:998–1004. 1962.—Substitution of phenanthrene by a methyl group at the 9-carbon blocks oxidation of the compound by a resting-cell suspension of a phenanthrene-grown soil pseudomonad. When 2-methylphenanthrene is provided, the oxidation rate is considerably higher; 3-methylphenanthrene is oxidized at a rate intermediate between the other two, even though the methyl group is attached to a carbon directly involved in ring splitting. Cells grown on naphthalene or anthracene oxidize phenanthrene at a much lower rate than cells grown with phenanthrene or 2-methylnaphthalene as the source of carbon. Naphthalene-grown cells also absorb less phenanthrene from aqueous solution than do their phenanthrene-grown counterparts. The data are in keeping with the hypothesis that polynuclear aromatic hydrocarbons attach to the relevant bacterial enzymes at carbon-carbon bonds of high electron density (K regions; localized double bonds), and that the ring-splitting reactions then occur at other bonds on the substrate molecule. The actual bond that undergoes fission is determined by the electronic and steric configurations of the enzyme-substrate complex. When linearly arranged aromatic compounds such as naphthalene or anthracene are attacked, attachment to an enzyme and ring splitting may take place on the same ring; angular aromatic compounds such as phenanthrene afford attachment to an enzyme at a bond in a ring other than the one containing the ring-splitting site. PMID:14493381

  9. Stereodynamics and edge-to-face CH-π aromatic interactions in imino compounds containing heterocyclic rings.

    PubMed

    González-Rosende, M Eugenia; Castillo, Encarna; Jennings, W Brian; Malone, John F

    2017-02-07

    By comparison with close contact interactions between benzene rings there is a paucity of experimental data available for attractive interactions involving aromatic heterocyclic rings, especially for small molecules in solution. Herein we describe aromatic heterocyclic and carbocyclic edge-to face interactions and conformational stereodynamics of N-1,2-diphenylethyl imines bearing a phenyl group and either a 2-pyridyl, 3-pyridyl, 2-thiophene or 2-furanyl moiety on the imino carbon. X-ray crystal structures have been determined for two compounds. Slow rotation about the phenyl-imino bond in the E-isomers and around the heterocycle-imino bond in the Z-isomers of the pyridyl compounds was observed at low temperatures by NMR. Abnormally large shielding of one ortho hydrogen indicates that both the imino phenyl and heterocycle rings can engage in an edge-to-face interaction with the N-terminal phenyl moiety in the appropriate isomer. Some rotational barriers around the phenyl-imino and heterocycle-imino bonds were measured.

  10. Assessing Uncertainty of Interspecies Correlation Estimation Models for Aromatic Compounds

    EPA Science Inventory

    We developed Interspecies Correlation Estimation (ICE) models for aromatic compounds containing 1 to 4 benzene rings to assess uncertainty in toxicity extrapolation in two data compilation approaches. ICE models are mathematical relationships between surrogate and predicted test ...

  11. Cyclic terpenoids of contemporary resinous plant detritus and of fossil woods, ambers and coals

    USGS Publications Warehouse

    Simoneit, B.R.T.; Grimalt, J.O.; Wang, T.-G.; Cox, R.E.; Hatcher, P.G.; Nissenbaum, A.

    1986-01-01

    Cyclic terpenoids present in the solvent extractable material of fossil woods, ambers and brown coals have been analyzed. The sample series chosen consisted of wood remains preserved in Holocene to Jurassic sediments and a set of of ambers from the Philippines (copalite), Israel, Canada and Dominican Republic. The brown coals selected were from the Fortuna Garsdorf Mine and Miocene formations on Fiji. The fossil wood extracts contained dominant diterpenoid or sesquiterpenoid skeletons, and aromatized species were present at high concentrations, with a major amount of two-ring aromatic compounds. Tricyclic diterpenoids were the predominant compounds in the ambers. Aromatized derivatives were the major components, consisting of one or two aromatic ring species with the abietane and occasionally pimarane skeletons. The saturated structures were comprised primarily of the abietane and pimarane skeletons having from three to five carbon (C1, C2, etc.) substituents. Kaurane and phyllocladane isomers were present in only minor amounts. Bicyclic sesquiterpenoids as saturated and partial or fully aromatized forms were also common in these samples, but only traces of sesterterpenoids and triterpenoid derivatives were found. The brown coal extracts were composed of major amounts of one- and two-ring aromatized terpenoids, with a greater proportion of triterpenoid derivatives than in the case of the woods and ambers. This was especially noticeable for the German coal, where the triterpenoids were predominant. Open C-ring aromatized structures were also present in this coal. Steroid compounds were not detectable, but some hopanes were found as minor components in the German brown coal. An overview of the skeletal structure classes identified in each sample, as well as the general mass spectrometric characteristics of the unknown compounds are included in the present paper. It can be concluded from these structural distributions that aromatization is the main process for the transformation of terrestrial cyclic terpenoids during diagenesis, constituting a general pathway for all terpenoids. ?? 1986 Pergamon Journals Ltd.

  12. Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds.

    PubMed Central

    Grifoll, M; Selifonov, S A; Gatlin, C V; Chapman, P J

    1995-01-01

    Pseudomonas cepacia F297 grew with fluorene as a sole source of carbon and energy; its growth yield corresponded to an assimilation of about 40% of fluorene carbon. The accumulation of a ring meta-cleavage product during growth and the identification of 1-indanone in growth media and washed-cell suspensions suggest that strain F297 metabolizes fluorene by mechanisms analogous to those of naphthalene degradation. In addition to fluorene, strain F297 utilized for growth a wide variety of polycyclic aromatic compounds (PACs), including naphthalene, 2,3-dimethylnaphthalene, phenanthrene, anthracene, and dibenzothiophene. Fluorene-induced cells of the strain also transformed 2,6-dimethylnaphthalene, biphenyl, dibenzofuran, acenaphthene, and acenaphthylene. The identification of products formed from those substrates (by gas chromatography-mass spectrometry) in washed-cell suspensions indicates that P. cepacia F297 carries out the following reactions: (i) aromatic ring oxidation and cleavage, apparently using the pyruvate released for growth, (ii) methyl group oxidations, (iii) methylenic oxidations, and (iv) S oxidations of aromatic sulfur heterocycles. Strain F297 grew with a creosote-PAC mixture, producing an almost complete removal of all aromatic compounds containing 2 to 3 rings in 14 days, as demonstrated by gas chromatography analysis of the remaining PACs recovered from cultures. The identification of key chemicals confirmed that not only are certain compounds depleted but also the anticipated reaction products are found. PMID:7487007

  13. Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds.

    PubMed

    Grifoll, M; Selifonov, S A; Gatlin, C V; Chapman, P J

    1995-10-01

    Pseudomonas cepacia F297 grew with fluorene as a sole source of carbon and energy; its growth yield corresponded to an assimilation of about 40% of fluorene carbon. The accumulation of a ring meta-cleavage product during growth and the identification of 1-indanone in growth media and washed-cell suspensions suggest that strain F297 metabolizes fluorene by mechanisms analogous to those of naphthalene degradation. In addition to fluorene, strain F297 utilized for growth a wide variety of polycyclic aromatic compounds (PACs), including naphthalene, 2,3-dimethylnaphthalene, phenanthrene, anthracene, and dibenzothiophene. Fluorene-induced cells of the strain also transformed 2,6-dimethylnaphthalene, biphenyl, dibenzofuran, acenaphthene, and acenaphthylene. The identification of products formed from those substrates (by gas chromatography-mass spectrometry) in washed-cell suspensions indicates that P. cepacia F297 carries out the following reactions: (i) aromatic ring oxidation and cleavage, apparently using the pyruvate released for growth, (ii) methyl group oxidations, (iii) methylenic oxidations, and (iv) S oxidations of aromatic sulfur heterocycles. Strain F297 grew with a creosote-PAC mixture, producing an almost complete removal of all aromatic compounds containing 2 to 3 rings in 14 days, as demonstrated by gas chromatography analysis of the remaining PACs recovered from cultures. The identification of key chemicals confirmed that not only are certain compounds depleted but also the anticipated reaction products are found.

  14. In Vitro Antifungal Activity of New and Known Geranylated Phenols against Phytophthora cinnamomi Rands.

    PubMed

    Chavez, María I; Soto, Mauricio; Cimino, Franco A; Olea, Andrés F; Espinoza, Luis; Díaz, Katy; Taborga, Lautaro

    2018-05-29

    A series of new and known geranylated phenol/methoxyphenol derivatives has been tested in vitro as inhibitor agents of mycelial growth of Phytophthora cinnamomi . The activity of tested compounds is correlated with the nature, number, and position of the substituent group on the aromatic ring. Results indicate that the most active geranylated derivatives are those having two hydroxyl groups (or one ⁻OH and one ⁻OCH₃) attached to the aromatic ring. Interestingly, these derivatives are as active as Metalaxil ® , a commonly used commercial fungicide. Thus, our results suggest that some of these compounds might be of agricultural interest due to their potential use as fungicides against P. cinnamomi . The effect of structure on fungicide activity is discussed in terms of electronic distribution on both the aromatic ring and side geranyl chain. All tested compounds have been synthesized by direct coupling of geraniol and the respective phenol. Interestingly, new digeranylated derivatives were obtained by increasing the reaction time.

  15. Quantitative study of interactions between oxygen lone pair and aromatic rings: substituent effect and the importance of closeness of contact.

    PubMed

    Gung, Benjamin W; Zou, Yan; Xu, Zhigang; Amicangelo, Jay C; Irwin, Daniel G; Ma, Shengqian; Zhou, Hong-Cai

    2008-01-18

    Current models describe aromatic rings as polar groups based on the fact that benzene and hexafluorobenzene are known to have large and permanent quadrupole moments. This report describes a quantitative study of the interactions between oxygen lone pair and aromatic rings. We found that even electron-rich aromatic rings and oxygen lone pairs exhibit attractive interactions. Free energies of interactions are determined using the triptycene scaffold and the equilibrium constants were determined by low-temperature 1H NMR spectroscopy. An X-ray structure analysis for one of the model compounds confirms the close proximity between the oxygen and the center of the aromatic ring. Theoretical calculations at the MP2/aug-cc-pVTZ level corroborate the experimental results. The origin of attractive interactions was explored by using aromatic rings with a wide range of substituents. The interactions between an oxygen lone pair and an aromatic ring are attractive at van der Waals' distance even with electron-donating substituents. Electron-withdrawing groups increase the strength of the attractive interactions. The results from this study can be only partly rationalized by using the current models of aromatic system. Electrostatic-based models are consistent with the fact that stronger electron-withdrawing groups lead to stronger attractions, but fail to predict or rationalize the fact that weak attractions even exist between electron-rich arenes and oxygen lone pairs. The conclusion from this study is that aromatic rings cannot be treated as a simple quadrupolar functional group at van der Waals' distance. Dispersion forces and local dipole should also be considered.

  16. Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids.

    PubMed

    Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R

    2013-10-01

    Lignin comprises 15-25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP-binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute-binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins. Copyright © 2013 Wiley Periodicals, Inc.

  17. Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids

    PubMed Central

    Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C.; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R.

    2013-01-01

    Lignin comprises 15.25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP.binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute.binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins. PMID:23606130

  18. The formation of quasi-alicyclic rings in alkyl-aromatic compounds

    NASA Astrophysics Data System (ADS)

    Straka, Pavel; Buryan, Petr; Bičáková, Olga

    2018-02-01

    The alkyl side chains of n-alkyl phenols, n-alkyl benzenes and n-alkyl naphthalenes are cyclised, as demonstrated by GC measurements, FTIR spectroscopy and molecular mechanics calculations. Cyclisation occurs due to the intramolecular interaction between an aromatic ring (-δ) and a hydrogen of the terminal methyl group (+δ) of an alkyl chain. In fact, conventional molecules are not aliphatic-aromatic, but quasi-alicyclic-aromatic. With the aromatic molecules formed with a quasi-alicyclic ring, the effect of van der Waals attractive forces increases not only intramolecularly but also intermolecularly. This effect is strong in molecules with propyl and higher alkyl substituents. The increase of intermolecular van der Waals attractive forces results in bi-linearity in the GC retention time of the compounds in question, observed in the dependence of the logarithm of the relative retention time on the number of carbons in a molecule in both polar and nonpolar stationary phases with both capillary and packed columns. The role of van der Waals forces has been demonstrated using the potential energies of covalent and noncovalent interactions for 2-n-alkyl phenols, n-alkyl benzenes and 1-n-alkyl- and 2-n-alkyl naphthalenes.

  19. Bond cleavage of lignin model compounds into aromatic monomers using supported metal catalysts in supercritical water

    PubMed Central

    Yamaguchi, Aritomo; Mimura, Naoki; Shirai, Masayuki; Sato, Osamu

    2017-01-01

    More efficient use of lignin carbon is necessary for carbon-efficient utilization of lignocellulosic biomass. Conversion of lignin into valuable aromatic compounds requires the cleavage of C–O ether bonds and C–C bonds between lignin monomer units. The catalytic cleavage of C–O bonds is still challenging, and cleavage of C–C bonds is even more difficult. Here, we report cleavage of the aromatic C–O bonds in lignin model compounds using supported metal catalysts in supercritical water without adding hydrogen gas and without causing hydrogenation of the aromatic rings. The cleavage of the C–C bond in bibenzyl was also achieved with Rh/C as a catalyst. Use of this technique may greatly facilitate the conversion of lignin into valuable aromatic compounds. PMID:28387304

  20. Aromatic ring generation as a dust precursor in acetylene discharges

    NASA Astrophysics Data System (ADS)

    De Bleecker, Kathleen; Bogaerts, Annemie; Goedheer, Wim

    2006-04-01

    Production of aromatic hydrocarbon compounds as an intermediate step for particle formation in low-pressure acetylene discharges is investigated via a kinetic approach. The detailed chemical reaction mechanism contains 140 reactions among 55 species. The cyclic hydrocarbon chemistry is mainly based on studies of polycyclic aromatic hydrocarbon formation in cosmic environments. The model explicitly includes organic chain, cyclic molecules, radicals, and ions up to a size of 12 carbon atoms. The calculated density profiles show that the aromatic formation yields are quite significant, suggesting that aromatic compounds play a role in the underlying mechanisms of particle formation in hydrocarbon plasmas.

  1. Functional electrolyte for lithium-ion batteries

    DOEpatents

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2015-04-14

    Functional electrolyte solvents include compounds having at least one aromatic ring with 2, 3, 4 or 5 substituents, at least one of which is a substituted or unsubstituted methoxy group, at least one of which is a tert-butyl group and at least one of which is a substituted or unsubstituted polyether or poly(ethylene oxide) (PEO) group bonded through oxygen to the aromatic ring, are provided.

  2. Laboratory Studies of Stabilities of Heterocyclic Aromatic Molecules: Suggested Gas Phase Ion-Molecule Routes to Production in Interstellar Gas Clouds

    NASA Technical Reports Server (NTRS)

    Adams, Nigel G.; Fondren, L. Dalila; McLain, Jason L.; Jackson, Doug M.

    2006-01-01

    Several ring compounds have been detected in interstellar gas clouds, ISC, including the aromatic, benzene. Polycyclic aromatic hydrocarbons, PAHs, have been implicated as carriers of diffuse interstellar bands (DIBs) and unidentified infrared (UIR) bands. Heterocyclic aromatic rings of intermediate size containing nitrogen, possibly PreLife molecules, were included in early searches but were not detected and a recent search for Pyrimidine was unsuccessful. Our laboratory investigations of routes to such molecules could establish their existence in ISC and suggest conditions under which their concentrations would be maximized thus aiding the searches. The stability of such ring compounds (C5H5N, C4H4N2, C5H11N and C4H8O2) has been tested in the laboratory using charge transfer excitation in ion-molecule reactions. The fragmentation paths, including production of C4H4(+), C3H3N(+) and HCN, suggest reverse routes to the parent molecules, which are presently under laboratory investigation as production sources.

  3. Determination of Aromatic Ring Number Using Multi-Channel Deep UV Native Fluorescence

    NASA Technical Reports Server (NTRS)

    Bhartia, R.; McDonald, G. D.; Salas, E.; Conrad, P.

    2004-01-01

    The in situ detection of organic material on an extraterrestrial surface requires both effective means of searching a relatively large surface area or volume for possible organic carbon, and a more specific means of identifying and quantifying compounds in indicated samples. Fluorescence spectroscopy fits the first requirement well, as it can be carried out rapidly, with minimal or no physical contact with the sample, and with sensitivity unmatched by any other organic analytical technique. Aromatic organic compounds with know fluorescence signatures have been identified in several extraterrestrial samples, including carbonaceous chondrites, interplanetary dust particles, and Martian meteorites. The compound distributions vary among these sources, however, with clear differences in relative abundances by number of aromatic rings and by degree of alkylation. This relative abundance information, therefore, can be used to infer the source of organic material detected on a planetary surface.

  4. Redox shuttles for overcharge protection of lithium batteries

    DOEpatents

    Amine, Khalil; Chen, Zonghai; Wang, Qingzheng

    2010-12-14

    The present invention is generally related to electrolytes containing novel redox shuttles for overcharge protection of lithium-ion batteries. The redox shuttles are capable of thousands hours of overcharge tolerance and have a redox potential at about 3-5.5 V vs. Li and particularly about 4.4-4.8 V vs. Li. Accordingly, in one aspect the invention provides electrolytes comprising an alkali metal salt; a polar aprotic solvent; and a redox shuttle additive that is an aromatic compound having at least one aromatic ring with four or more electronegative substituents, two or more oxygen atoms bonded to the aromatic ring, and no hydrogen atoms bonded to the aromatic ring; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  5. Protonation at the aromatic ring of samarium benzophenone dianion species. Isolation and structural characterization of a samarium(III) enolate complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Z.; Yoshimura, Takashi; Wakatsuki, Yasuo

    1994-11-30

    The reduction of aromatic compounds into their dihydro derivatives by dissolving metal/alcohol systems (the Birch reduction) is a useful methodology in organic synthesis. Of particular importance is the reduction of aromatic carbonyl compounds such as aromatic acids, esters, amides, and monoaryl ketones, which usually generates in situ useful metal enolate intermediates that upon further reaction with electrophiles yield a variety of cyclohexadiene derivatives. One of the possible processes to generate these metal enolate intermediates is thought to be the monoprotonation of dianionic species at the para position of the aromatic rings. On the other hand, the reduction of diaryl ketonesmore » by alkali metals in liquid ammonia or by lanthanide metals in THF/HMPA or DME has been well known to afford the corresponding ketone dianions. The first X-ray structure of metal ketone dianion complexes, [Yb([mu]-[eta][sup 1],[eta][sup 2]-OCPh[sub 2]) (HMPA)[sub 2

  6. The study of azaarene behavior over atmosphere of subtropical city(Keelung)

    NASA Astrophysics Data System (ADS)

    Liu, Chih Yun

    2017-04-01

    In this study, we collected the Total Suspended Particulates (TSP) from July 2014 to February 2016 in the subtropical city (Keelung), and researched azaarene behavior over atmosphere. Polycyclic Aromatic Compounds (PAHs) are ubiquitous pollutants in the environment; they have known carcinogens and/or mutagens, mainly produce from incomplete combustion. Azaarenes are polycyclic aromatic hydrocarbon derivative compounds in which a carbon atom in one of the aromatic rings is substituted by a nitrogen atom. Organism exposure to azaarenes occurs through inhalation of polluted air and by ingestion of food and/or water containing combustion products and accumulate in the body. Total azaarene concentration (16 individual compound concentration of the aggregate) is between 0.92 to 3.76 μg/m3, results showed that the concentration of azaarenes have significant seasonal variation, they have higher concentration in the cold month. In molecular weight, the highest proportion is the molecular weight equal to 143(ΣMQ) and then the molecular weight equal to 179(BAP), ΣMQ would rise from 30% 40% to 40% 50% during the cold month and warm months. Compared to ring number, 2-rings are biggest part, the smallest is 4-rings, its ratio has slight variation, but primary species is 2-rings. Emissions from transportation, local housing heating, factories burning fossil fuels and dust from Mainland south air mass are pollutant, their sources and climate conditions can affect concentration and composition of compound. There are highly significant correlation between 3-rings and 4-rings, which suggests that there are similar source strengths and transport mechanisms for these compounds. Correlation between concentration of azaarenes and ambient temperature is negative moderation, with concentration of atmospheric suspended particles is positive moderate correlation. Finally, we establish the relationship between the three parameters to predict concentration of azaarenes over atmosphere of subtropical regions. Key words: azaarenes, atmospheric suspended particles, subtropical city, multiple regression analysis.

  7. Stacking interactions between nitrogen-containing six-membered heterocyclic aromatic rings and substituted benzene: studies in solution and in the solid state.

    PubMed

    Gung, Benjamin W; Wekesa, Francis; Barnes, Charles L

    2008-03-07

    The stacking interactions between an aromatic ring and a pyridine or a pyrimidine ring are studied by using a series of triptycene-derived scaffolds. The indicative ratios of the syn and anti conformers were determined by variable-temperature NMR spectroscopy. The syn conformer aligns the attached aromatic ring and the heterocycle in a parallel-displaced orientation while the anti conformer sets the two rings apart from each other. Comparing to the corresponding control compounds where a benzene ring is in the position of the heterocycle, higher attractive interactions are observed as indicated by the higher syn/anti ratios. In general, the attractive interactions are much less sensitive to the substituent effects than the corresponding nonheterocycles. The greatest attractive interactions were observed between a pyrimidine ring and a N,N-dimethylaminobenzene, consistent with a predominant donor-acceptor interaction. The interactions between a pyridine ring and a substituted benzene ring show that the pyridine is comparable to that of a NO2- or a CN-substituted benzene ring except for the unpredictable substituent effects.

  8. Single kernel method for detection of 2-acetyl-1-pyrroline in aromatic rice germplasm using SPME-GC/MS

    USDA-ARS?s Scientific Manuscript database

    INTRODUCTION Aromatic rice or fragrant rice, (Oryza sativa L.), has a strong popcorn-like aroma due to the presence of a five-membered N-heterocyclic ring compound known as 2-acetyl-1-pyrroline (2-AP). To date, existing methods for detecting this compound in rice require the use of several kernels. ...

  9. Aerobic Biodegradation of Trichloroethylene.

    DTIC Science & Technology

    1987-07-01

    into C02 and unidentified nonvolatile products. Phenol, 41 toiin- andq- cresol were found to replace the site water requirement for TCE metabolism...identified as phenol. Other aromatic compounds that could support TCE degradation were toluene, o- cresol , and m- cresol . The degradation could be...Production...... .. .. .. . 17 4. Test for the Catechol Ortho °Ring-Fission Pathway . 18 5. Oxidation of Aromatic Compounds ............. .18 6

  10. Oxidation of Naphthenoaromatic and Methyl-Substituted Aromatic Compounds by Naphthalene 1,2-Dioxygenase

    PubMed Central

    Selifonov, S. A.; Grifoll, M.; Eaton, R. W.; Chapman, P. J.

    1996-01-01

    Oxidation of acenaphthene, acenaphthylene, and fluorene was examined with recombinant strain Pseudomonas aeruginosa PAO1(pRE695) expressing naphthalene dioxygenase genes cloned from plasmid NAH7. Acenaphthene underwent monooxygenation to 1-acenaphthenol with subsequent conversion to 1-acenaphthenone and cis- and trans-acenaphthene-1,2-diols, while acenaphthylene was dioxygenated to give cis-acenaphthene-1,2-diol. Nonspecific dehydrogenase activities present in the host strain led to the conversion of both of the acenaphthene-1,2-diols to 1,2-acenaphthoquinone. The latter was oxidized spontaneously to naphthalene-1,8-dicarboxylic acid. No aromatic ring dioxygenation products were detected from acenaphthene and acenaphthylene. Mixed monooxygenase and dioxygenase actions of naphthalene dioxygenase on fluorene yielded products of benzylic 9-monooxygenation, aromatic ring dioxygenation, or both. The action of naphthalene dioxygenase on a variety of methyl-substituted aromatic compounds, including 1,2,4-trimethylbenzene and isomers of dimethylnaphthalene, resulted in the formation of benzylic alcohols, i.e., methyl group monooxygenation products, which were subsequently converted to the corresponding carboxylic acids by dehydrogenase(s) in the host strain. Benzylic monooxygenation of methyl groups was strongly predominant over aromatic ring dioxygenation and essentially nonspecific with respect to the substitution pattern of the aromatic substrates. In addition to monooxygenating benzylic methyl and methylene groups, naphthalene dioxygenase behaved as a sulfoxygenase, catalyzing monooxygenation of the sulfur heteroatom of 3-methylbenzothiophene. PMID:16535238

  11. 1-Methyl-4-(4-nitro­benzo­yl)pyridinium perchlorate

    PubMed Central

    Gruber, Tobias; Eissmann, Frank; Weber, Edwin; Schüürmann, Gerrit

    2011-01-01

    In the main mol­ecule of the title compound, C13H11N2O3 +·ClO4 −, the two aromatic rings are twisted by 56.19 (3)° relative to each other and the nitro group is not coplanar with the benzene ring [36.43 (4)°]. The crystal packing is dominated by infinite aromatic stacks in the a-axis direction. These are formed by the benzene units of the mol­ecule featuring an alternating arrangement, which explains the two different distances of 3.3860 (4) and 3.4907 (4) Å for the aromatic units (these are the perpendicular distances of the centroid of one aromatic ring on the mean plane of the other other aromatic ring). Adjacent stacks are connected by π–π stacking between two pyridinium units [3.5949 (4) Å] and weak C—H⋯O inter­actions. The perchlorate anions are accomodated in the lattice voids connected to the cation via weak C—H⋯O contacts between the O atoms of the anion and various aromatic as well as methyl H atoms. PMID:22059070

  12. Positron annihilation studies in solid substituted aromatic compounds

    NASA Astrophysics Data System (ADS)

    Oliveira, F. C.; Oliveira, A. M.; Donnici, C. L.; Machado, J. C.; Magalhães, W. F.; Windmöller, D.; Fulgêncio, F. H.; Souza, L. R.

    2011-04-01

    Positronium formation was investigated in benzene and naphthalene compounds with electron donating (sbnd NH2 and sbnd OH) and electron withdrawing (sbnd CN and sbnd NO2) substituents. The results exhibit an increase in the positronium formation yield whenever donating groups are bound to the ring and a decrease with withdrawing groups. These results can be attributed to the π-system electronic density variation in the aromatic ring. The amount of positronium obtained, I3 parameter, has been correlated with the Hammett (σ) and Brown-Okamoto (σp+) constants and adjusted through the modified Hammett equation, which employs the ratio I3/I3ϕ, yielding a satisfactory fit.

  13. Comparative study of the affinity and metabolism of type I and type II binding quinoline carboxamide analogs by cytochrome P450 3A4

    PubMed Central

    Dahal, Upendra P.; Joswig-Jones, Carolyn; Jones, Jeffrey P.

    2011-01-01

    Compounds that coordinate to the heme-iron of cytochrome P450 (CYP) enzymes are assumed to increase metabolic stability. However, recently we observed that the type II binding quinoline carboxamide (QCA) compounds were metabolically less stable. To test if the higher intrinsic clearance of type II binding compounds relative to type I binding compounds is general for other metabolic transformations, we synthesized a library of QCA compounds that could undergo N-dealkylation, O-dealkylation, benzylic hydroxylation and aromatic hydroxylation. The results demonstrated that type II binding QCA analogs were metabolically less stable (2 to 12 fold) at sub-saturating concentration compared to type I binding counterparts for all the transformations. When the rates of different metabolic transformations between type I and type II binding compounds were compared, they were found to be in the order of N-demethylation>benzylic hydroxylation> O-demethylation> aromatic hydroxylation. Finally, for the QCA analogs with aza-heteroaromatic rings, we did not detect metabolism in aza-aromatic rings (pyridine, pyrazine, pyrimidine) indicating electronegativity of the nitrogen can change regioselectivity in CYP metabolism. PMID:22087535

  14. Aromatic C=C bonds as dipolarophiles: facile reactions of uncomplexed electron-deficient benzene derivatives and other aromatic rings with a non-stabilized azomethine ylide.

    PubMed

    Lee, Sunyoung; Diab, Sonia; Queval, Pierre; Sebban, Muriel; Chataigner, Isabelle; Piettre, Serge R

    2013-05-27

    Non-stabilized azomethine ylide 4a reacts smoothly at room temperature with a variety of uncomplexed aromatic heterocycles and carbocycles on the condition that the ring contains at least one or two electron-withdrawing substituents, respectively. Aromatic substrates, including pyridine and benzene derivatives, participate as 2π components in [3+2] cycloaddition reactions and interact with one, two, or three equivalent(s) of the ylide, depending on their structure and substitution pattern. Thus, this process affords highly functionalized polycyclic structures that contain between one and three pyrrolidinyl ring(s) in useful yields. These results indicate that the site selectivity of the cycloaddition reactions strongly depends on both the nature and the positions of the substituents. In most cases, the second 1,3-dipolar reaction occurs on the opposite face to the one that contains the first pyrrolidinyl ring. DFT calculations on model compounds indicate that a concerted mechanism features a low activation barrier. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass.

    PubMed

    Lee, Jin-Ho; Wendisch, Volker F

    2017-09-10

    Aromatic chemicals that contain an unsaturated ring with alternating double and single bonds find numerous applications in a wide range of industries, e.g. paper and dye manufacture, as fuel additives, electrical insulation, resins, pharmaceuticals, agrochemicals, in food, feed and cosmetics. Their chemical production is based on petroleum (BTX; benzene, toluene, and xylene), but they can also be obtained from plants by extraction. Due to petroleum depletion, health compliance, or environmental issues such as global warming, the biotechnological production of aromatics from renewable biomass came more and more into focus. Lignin, a complex polymeric aromatic molecule itself, is a natural source of aromatic compounds. Many microorganisms are able to catabolize a plethora of aromatic compounds and interception of these pathways may lead to the biotechnological production of value-added aromatic compounds which will be discussed for Corynebacterium glutamicum. Biosynthesis of aromatic amino acids not only gives rise to l-tryptophan, L-tyrosine and l-phenylalanine, but also to aromatic intermediates such as dehydroshikimate or chorismate from which value-added aromatic compounds can be derived. In this review, we will summarize recent strategies for the biotechnological production of aromatic and related compounds from renewable biomass by Escherichia coli, Pseudomonas putida, C. glutamicum and Saccharomyces cerevisiae. In particular, we will focus on metabolic engineering of the extended shikimate pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Interactions between manganese oxides and multiple-ringed aromatic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, G.; Sims, R.C.

    1992-08-01

    Objective is to determine whether Mn reductive dissolution can oxidize multiple-ringed aromatics, such as PAHs, in an oxic environment Research indicated that certain PAHs (eg, dihydrodiols and diones that form free-radical intermediates) are susceptible to oxidation and polymerization. Over 14 days, 83, 76, 54, 70, and 20% of the Mn was reduced by 2,3-, 1,3-, and 1,4-naphthalenediol, quinizarin, and 1,4-naphthoquinone, respectively. 100, 100, and 65% of the first three PAHs were oxidized, respectively. Aromatics with diol functional groups were more easily oxidized than those with only dione groups. Relatively insoluble compounds like quinizarin can be oxidized; insoluble ''humic-like'' material precipitated,more » indicating a polymerization-humification process. Results suggest that electron transfer/organic release from the oxide surface is the rate-limiting step.« less

  17. Interactions between manganese oxides and multiple-ringed aromatic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, G.; Sims, R.C.

    1992-08-01

    Objective is to determine whether Mn reductive dissolution can oxidize multiple-ringed aromatics, such as PAHs, in an oxic environment? Research indicated that certain PAHs (eg, dihydrodiols and diones that form free-radical intermediates) are susceptible to oxidation and polymerization. Over 14 days, 83, 76, 54, 70, and 20% of the Mn was reduced by 2,3-, 1,3-, and 1,4-naphthalenediol, quinizarin, and 1,4-naphthoquinone, respectively. 100, 100, and 65% of the first three PAHs were oxidized, respectively. Aromatics with diol functional groups were more easily oxidized than those with only dione groups. Relatively insoluble compounds like quinizarin can be oxidized; insoluble ``humic-like`` material precipitated,more » indicating a polymerization-humification process. Results suggest that electron transfer/organic release from the oxide surface is the rate-limiting step.« less

  18. Inhibition of carboxylesterases by benzil (diphenylethane-1,2-dione) and heterocyclic analogues is dependent upon the aromaticity of the ring and the flexibility of the dione moiety.

    PubMed

    Hyatt, Janice L; Stacy, Vanessa; Wadkins, Randy M; Yoon, Kyoung Jin P; Wierdl, Monika; Edwards, Carol C; Zeller, Matthias; Hunter, Allen D; Danks, Mary K; Crundwell, Guy; Potter, Philip M

    2005-08-25

    Benzil has been identified as a potent selective inhibitor of carboxylesterases (CEs). Essential components of the molecule required for inhibitory activity include the dione moiety and the benzene rings, and substitution within the rings affords increased selectivity toward CEs from different species. Replacement of the benzene rings with heterocyclic substituents increased the K(i) values for the compounds toward three mammalian CEs when using o-nitrophenyl acetate as a substrate. Logarithmic plots of the K(i) values versus the empirical resonance energy, the heat of union of formation energy, or the aromatic stabilization energy determined from molecular orbital calculations for the ring structures yielded linear relationships that allowed prediction of the efficacy of the diones toward CE inhibition. Using these data, we predicted that 2,2'-naphthil would be an excellent inhibitor of mammalian CEs. This was demonstrated to be correct with a K(i) value of 1 nM being observed for a rabbit liver CE. In addition, molecular simulations of the movement of the ring structures around the dione dihedral indicated that the ability of the compounds to inhibit CEs was due, in part, to rotational constraints enforced by the dione moiety. Overall, these studies identify subdomains within the aromatic ethane-1,2-diones, that are responsible for CE inhibition.

  19. Synthesis of Aromatic Aza-metallapentalenes from Metallabenzene via Sequential Ring Contraction/Annulation

    NASA Astrophysics Data System (ADS)

    Wang, Tongdao; Han, Feifei; Huang, Haiping; Li, Jinhua; Zhang, Hong; Zhu, Jun; Lin, Zhenyang; Xia, Haiping

    2015-04-01

    The concept of aromaticity has long played an important role in chemistry and continues to fascinate both experimentalists and theoreticians. Among the archetypal aromatic compounds, heteroaromatics are particularly attractive. Recently, substitution of a transition-metal fragment for a carbon atom in the anti-aromatic hydrocarbon pentalene has led to the new heteroaromatic osmapentalenes. However, construction of the aza-homolog of osmapentalenes cannot be accomplished by a similar synthetic manipulation. Here, we report the synthesis of aza-osmapentalenes by sequential ring contraction/annulation reactions of osmabenzenes via osmapentafulvenes. Nuclear magnetic resonance spectra, X-ray crystallographic analysis, and DFT calculations all suggest that these aza-osmapentalenes exhibit aromatic character. Thus, the stepwise transformation of metallabenzenes to metallapentafulvenes and then aza-metallapentalenes provides an efficient and facile synthetic route to these bicyclic heteroaromatics.

  20. Aromatic derivatives of 1H-2,3-dihydropyrazolo(4,5-b)-1,5-diazepine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orlov, V.D.; Kiroga, Kh.; Kolos, N.N.

    1987-09-01

    Aromatic derivatives of 1H-2,3-dihydropyrazole(4,5-b)-1,5-diazepine were obtained by the reaction of 1-phenyl-3-methyl-4,5-diaminopyrazole with chalcones and acetylarenes, catalyzed by acetic or sulfuric acid. The seven-membered ring in these compounds has a conformation of the boat type. The IR, UV, PMR, and mass spectra of the compounds are discussed.

  1. Sorption of the Aircraft Deicing Fluid Component Methyl-Benzotriazole in Soil

    DTIC Science & Technology

    1999-03-01

    Atlas , Ronald M., Bartha , Richard, Microbial Ecology : Fundamentals and Applications. Benjamin Cummings: Redwood City, 1993. Ball, William P., Roberts...cell; transfer of substances from one medium to another [ Atlas and Bartha , 533; Fetter, 117]. (2) The process by which a compound in solution or...oxygen, low redox potential. [ Atlas and Bartha , 534; Schwarzenbach et al, 410] Aromatic compound - Carbon skeletons containing aromatic benzene ring and

  2. Oxidation of Oil Sands Process-Affected Water by Potassium Ferrate(VI).

    PubMed

    Wang, Chengjin; Klamerth, Nikolaus; Huang, Rongfu; Elnakar, Haitham; Gamal El-Din, Mohamed

    2016-04-19

    This paper investigates the oxidation of oil sands process-affected water (OSPW) by potassium ferrate(VI). Due to the selectivity of ferrate(VI) oxidation, two-ring and three-ring fluorescing aromatics were preferentially removed at doses <100 mg/L Fe(VI), and one-ring aromatics were removed only at doses ≥100 mg/L Fe(VI). Ferrate(VI) oxidation achieved 64.0% and 78.4% removal of naphthenic acids (NAs) at the dose of 200 mg/L and 400 mg/L Fe(VI) respectively, and NAs with high carbon number and ring number were removed preferentially. (1)H nuclear magnetic resonance ((1)H NMR) spectra indicated that the oxidation of fluorescing aromatics resulted in the opening of some aromatic rings. Electron paramagnetic resonance (EPR) analysis detected signals of organic radical intermediates, indicating that one-electron transfer is one of the probable mechanisms in the oxidation of NAs. The inhibition effect of OSPW on Vibrio fischeri and the toxicity effect on goldfish primary kidney macrophages (PKMs) were both reduced after ferrate(VI) oxidation. The fluorescing aromatics in OSPW were proposed to be an important contributor to this acute toxicity. Degradation of model compounds with ferrate(VI) was also investigated and the results confirmed our findings in OSPW study.

  3. Crystal structure and Hirshfield analysis of the 4-(di-methyl-amino)-pyridine adduct of 4-meth-oxy-phenyl-borane.

    PubMed

    Shooter, Jesse; Allen, Caleb J; Tinsley, Colby W K; Zakharov, Lev N; Abbey, Eric R

    2017-11-01

    The title compound [systematic name: 4-(di-methyl-amino)-pyridine-4-meth-oxy-phenyl-borane (1/1)], C 14 H 19 BN 2 O, contains two independent mol-ecules in the asymmetric unit. Both molecules exhibit coplanar, mostly sp 2 -hybridized meth-oxy and di-methyl-amino substituents on their respective aromatic rings, consistent with π-donation into the aromatic systems. The B-H groups exhibit an intra-molecular close contact with a C-H group of the pyridine ring, which may be evidence of electrostatic attraction between the hydridic B-H and the electropositive aromatic C-H. There appears to be weak C-H⋯π(arene) inter-actions between two of the H atoms of an amino-methyl group and the meth-oxy-substituted benzene ring of the other independent mol-ecule, and another C-H⋯π (arene) inter-action between one of the pyridine ring H atoms and the same benzene ring.

  4. Polycyclic aromatic hydrocarbon formation during the gasification of sewage sludge in sub- and supercritical water: Effect of reaction parameters and reaction pathways.

    PubMed

    Gong, Miao; Wang, Yulan; Fan, Yujie; Zhu, Wei; Zhang, Huiwen; Su, Ying

    2018-02-01

    The formation of polycyclic aromatic hydrocarbon is a widespread issue during the supercritical water gasification of sewage sludge, which directly reduces the gasification efficiency and restricts the technology practical application. The changes of the concentrations and forms as well as the synthesis rate of polycyclic aromatic hydrocarbons in the residues from supercritical water gasification of dewatered sewage sludge were investigated to understand influence factors and the reaction pathways. Results showed that the increase of reaction temperature during the heating period favours directly concentration of polycyclic aromatic hydrocarbon (especially higher-molecular-weight), especially when it raise above 300 °C. Lower heating and cooling rate essentially extend the total reaction time. Higher polycyclic aromatic hydrocarbon concentration and higher number of rings were generally promoted by lower heating and cooling rate, longer reaction time and higher reaction temperature. The lower-molecular-weight polycyclic aromatic hydrocarbons can be directly generated through the decomposition of aromatic-containing compounds in sewage sludge, as well as 3-ring and 4-ring polycyclic aromatic hydrocarbons can be formed by aromatization of steroids. Possible mechanisms of reaction pathways of supercritical water gasification of sewage sludge were also proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Synthesis and antifungal activity of C-21 steroids with an aromatic D ring.

    PubMed

    Sonego, Juan M; Cirigliano, Adriana M; Cabrera, Gabriela M; Burton, Gerardo; Veleiro, Adriana S

    2013-07-01

    Six analogues of salpichrolides with a simplified side chain (6-11) were synthesized using a new methodology to obtain steroids with an aromatic D-ring. The key step was the elimination of HBr in a vicinal dibromo D-homosteroid by treatment with 1,4-diazabicyclo[2.2.2]octane (DABCO). All new compounds were completely characterized by 2D NMR techniques and tested on two fungal pathogenic species, Fusarium virguliforme and Fusarium solani. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. 1-(Benzyl­ideneamino)pyridinum iodide

    PubMed Central

    Cui, Yong-Tao; Wang, Jian-Qiang; Ji, Chun-Xiang; Wu, Cong-Ren; Guo, Cheng

    2009-01-01

    In the title compound, C12H11N2 +·I−, the aromatic rings are oriented at a dihedral angle of 73.40 (3)°. In the crystal structure, π–π contacts between the pyridine rings and the benzene and pyridine rings [centroid–centroid distances = 3.548 (3) and 4.211 (3) Å] may stabilize the structure. PMID:21581846

  7. Effect of ZSM-5 acidity on aromatic product selectivity during upgrading of pine pyrolysis vapors

    DOE PAGES

    Engtrakul, Chaiwat; Mukarakate, Calvin; Starace, Anne K.; ...

    2015-11-14

    The impact of catalyst acidity on the selectivity of upgraded biomass pyrolysis products was studied by passing pine pyrolysis vapors over five ZSM-5 catalysts of varying acidity at 500 degrees C. The SiO 2-to-Al 2O 3 ratio (SAR) of the ZSM-5 zeolite was varied from 23 to 280 to control the acidity of the catalyst and the composition of upgraded products. The upgraded product stream was analyzed by GCMS. Additionally, catalysts were characterized using temperature programmed desorption, diffuse-reflectance FTIR spectroscopy, N 2 physisorption, and X-ray diffraction. The results showed that the biomass pyrolysis vapors were highly deoxygenated to form amore » slate of aromatic hydrocarbons over all of the tested ZSM-5 catalysts. As the overall acidity of the ZSM-5 increased the selectivity toward alkylated (substituted) aromatics (e.g., xylene, dimethyl-naphthalene, and methyl-anthracene) decreased while the selectivity toward unsubstituted aromatics (e.g., benzene, naphthalene, and anthracene) increased. Additionally, the selectivity toward polycyclic aromatic compounds (2-ring and 3-ring) increased as catalyst acidity increased, corresponding to a decrease in acid site spacing. The increased selectivity toward less substituted polycyclic aromatic compounds with increasing acidity is related to the relative rates of cyclization and alkylation reactions within the zeolite structure. As the acid site concentration increases and sites become closer to each other, the formation of additional cyclization products occurs at a greater rate than alkylated products. The ability to adjust product selectivity within 1-, 2-, and 3-ring aromatic families, as well as the degree of substitution, by varying ZSM-5 acidity could have significant benefits in terms creating a slate of upgraded biomass pyrolysis products to meet specific target market demands.« less

  8. Quantum mechanical design of efficient second-order nonlinear optical materials based on heteroaromatic imido-substituted hexamolybdates: first theoretical framework of POM-based heterocyclic aromatic rings.

    PubMed

    Janjua, Muhammad Ramzan Saeed Ashraf

    2012-11-05

    This work was inspired by a previous report (Janjua et al. J. Phys. Chem. A 2009, 113, 3576-3587) in which the nonlinear-optical (NLO) response strikingly improved with an increase in the conjugation path of the ligand and the nature of hexamolybdates (polyoxometalates, POMs) was changed into a donor by altering the direction of charge transfer with a second aromatic ring. Herein, the first theoretical framework of POM-based heteroaromatic rings is found to be another class of excellent NLO materials having double heteroaromatic rings. First hyperpolarizabilities of a large number of push-pull-substituted conjugated systems with heteroaromatic rings have been calculated. The β components were computed at the density functional theory (DFT) level (BP86 geometry optimizations and LB94 time-dependent DFT). The largest β values are obtained with a donor (hexamolybdates) on the benzene ring and an acceptor (-NO(2)) on pyrrole, thiophene, and furan rings. The pyrrole imido-substituted hexamolybdate (system 1c) has a considerably large first hyperpolarizability, 339.00 × 10(-30) esu, and it is larger than that of (arylimido)hexamolybdate, calculated as 0.302 × 10(-30) esu (reference system 1), because of the double aromatic rings in the heteroaromatic imido-substituted hexamolybdates. The heteroaromatic rings act as a conjugation bridge between the electron acceptor (-NO(2)) and donor (polyanion). The introduction of an electron donor into heteroaromatic rings significantly enhances the first hyperpolarizabilities because the electron-donating ability is substantially enhanced when the electron donor is attached to the heterocyclic aromatic rings. Interposing five-membered auxiliary fragments between strong donor (polyanion) or acceptor (-NO(2)) groups results in a large computed second-order NLO response. The present investigation provides important insight into the NLO properties of (heteroaromatic) imido-substituted hexamolybdate derivatives because these compounds exhibit enhanced hyperpolarizabilities compared to typical NLO arylimido hexamolybdates and heterocyclic aromatic rings reported in the literature.

  9. Transformations of Aromatic Compounds by Nitrosomonas europaea

    PubMed Central

    Keener, William K.; Arp, Daniel J.

    1994-01-01

    Benzene and a variety of substituted benzenes inhibited ammonia oxidation by intact cells of Nitrosomonas europaea. In most cases, the inhibition was accompanied by transformation of the aromatic compound to a more oxidized product or products. All products detected were aromatic, and substituents were often oxidized but were not separated from the benzene ring. Most transformations were enhanced by (NH4)2SO4 (12.5 mM) and were prevented by C2H2, a mechanism-based inactivator of ammonia monooxygenase (AMO). AMO catalyzed alkyl substituent hydroxylations, styrene epoxidation, ethylbenzene desaturation to styrene, and aniline oxidation to nitrobenzene (and unidentified products). Alkyl substituents were preferred oxidation sites, but the ring was also oxidized to produce phenolic compounds from benzene, ethylbenzene, halobenzenes, phenol, and nitrobenzene. No carboxylic acids were identified. Ethylbenzene was oxidized via styrene to two products common also to oxidation of styrene; production of styrene is suggestive of an electron transfer mechanism for AMO. Iodobenzene and 1,2-dichlorobenzene were oxidized slowly to halophenols; 1,4-dichlorobenzene was not transformed. No 2-halophenols were detected as products. Several hydroxymethyl (-CH2OH)-substituted aromatics and p-cresol were oxidized by C2H2-treated cells to the corresponding aldehydes, benzaldehyde was reduced to benzyl alcohol, and o-cresol and 2,5-dimethylphenol were not depleted. PMID:16349282

  10. Process for reducing aromatic compounds in ethylenediamine with calcium

    DOEpatents

    Benkeser, Robert A.; Laugal, James A.; Rappa, Angela

    1985-01-01

    Olefins are produced by containing an organic compound having at least one benzene ring with ethylenediamine and calcium metal, the calcium metal being used in large excess or alternatively in conjunction with an inert abrasive particulate substance. Substantially all of the organic compounds are converted to corresponding cyclic olefins, largely mono-olefins.

  11. Process for reducing aromatic compounds in ethylenediamine with calcium

    DOEpatents

    Benkeser, R.A.; Laugal, J.A.; Rappa, A.

    1985-08-06

    Olefins are produced by containing an organic compound having at least one benzene ring with ethylenediamine and calcium metal, the calcium metal being used in large excess or alternatively in conjunction with an inert abrasive particulate substance. Substantially all of the organic compounds are converted to corresponding cyclic olefins, largely mono-olefins.

  12. Gasoline Particulate Filters as an Effective Tool to Reduce Particulate and Polycyclic Aromatic Hydrocarbon Emissions from Gasoline Direct Injection (GDI) Vehicles: A Case Study with Two GDI Vehicles.

    PubMed

    Yang, Jiacheng; Roth, Patrick; Durbin, Thomas D; Johnson, Kent C; Cocker, David R; Asa-Awuku, Akua; Brezny, Rasto; Geller, Michael; Karavalakis, Georgios

    2018-03-06

    We assessed the gaseous, particulate, and genotoxic pollutants from two current technology gasoline direct injection vehicles when tested in their original configuration and with a catalyzed gasoline particulate filter (GPF). Testing was conducted over the LA92 and US06 Supplemental Federal Test Procedure (US06) driving cycles on typical California E10 fuel. The use of a GPF did not show any fuel economy and carbon dioxide (CO 2 ) emission penalties, while the emissions of total hydrocarbons (THC), carbon monoxide (CO), and nitrogen oxides (NOx) were generally reduced. Our results showed dramatic reductions in particulate matter (PM) mass, black carbon, and total and solid particle number emissions with the use of GPFs for both vehicles over the LA92 and US06 cycles. Particle size distributions were primarily bimodal in nature, with accumulation mode particles dominating the distribution profile and their concentrations being higher during the cold-start period of the cycle. Polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs were quantified in both the vapor and particle phases of the PM, with the GPF-equipped vehicles practically eliminating most of these species in the exhaust. For the stock vehicles, 2-3 ring compounds and heavier 5-6 ring compounds were observed in the PM, whereas the vapor phase was dominated mostly by 2-3 ring aromatic compounds.

  13. 3-Phenyl-6-(2-pyrid-yl)-1,2,4,5-tetra-zine.

    PubMed

    Chartrand, Daniel; Laverdière, François; Hanan, Garry

    2007-12-06

    The title compound, C(13)H(9)N(5), is the first asymmetric diaryl-1,2,4,5-tetra-zine to be crystallographically characterized. We have been inter-ested in this motif for incorporation into supra-molecular assemblies based on coordination chemistry. The solid state structure shows a centrosymmetric mol-ecule, forcing a positional disorder of the terminal phenyl and pyridyl rings. The mol-ecule is completely planar, unusual for aromatic rings with N atoms in adjacent ortho positions. The stacking observed is very common in diaryl-tetra-zines and is dominated by π stacking [centroid-to-centroid distance between the tetrazine ring and the aromatic ring of an adjacent molecule is 3.6 Å, perpendicular (centroid-to-plane) distance of about 3.3 Å].

  14. Spectroscopic study of proflavine adsorption on the carbon nanotube surface.

    PubMed

    Buchelnikov, Anatoly S; Dovbeshko, Galina I; Voronin, Dmitry P; Trachevsky, Vladimir V; Kostjukov, Viktor V; Evstigneev, Maxim P

    2014-01-01

    Despite the fact that non-covalent interactions between various aromatic compounds and carbon nanotubes are being extensively investigated now, there is still a lack of understanding about the nature of such interactions. The present paper sheds light on one of the possible mechanisms of interaction between the typical aromatic dye proflavine and the carbon nanotube surface, namely, π-stacking between aromatic rings of these compounds. To investigate such a complexation, a qualitative analysis was performed by means of ultraviolet visible, infrared, and nuclear magnetic resonance spectroscopy. The data obtained suggest that π-stacking brings the major contribution to the stabilization of the complex between proflavine and the carbon nanotube.

  15. Illuminating the dark side of DOM: A bottom up approach to understanding the structure and composition of DOM.

    NASA Astrophysics Data System (ADS)

    Zito, P.; Tarr, M. A.; Spencer, R. G.; Podgorski, D. C.

    2017-12-01

    Dissolved organic matter (DOM) is one of the most complex natural mixtures on Earth. It is generally comprised of hydrocarbons incorporating a diverse subset of oxygen-containing functional groups along with a small amount of nitrogen, sulfur and phosphorous heteroatoms all of which make it very difficult to chromatographically separate. The only way to directly characterize and quantify these structural and compositional changes is by separating the DOM continuum into defined bins of structure and chemistry. In this study, we take an alternate bottom-up approach that utilizes petroleum to work toward identifying the molecular structures of DOM. Although petroleum is the most structurally diverse mixture in nature, it is almost exclusively comprised of hydrocarbons with only trace quantities of heteroatoms, including oxygen. Here, crude oil was chromatographically separated into bins based on the number of aromatic rings to be used as a starting carbon source. Photochemically produced DOM from these aromatic ring bins provides unique opportunities to gain insight in the compositional controls associated with transport, processing and fate of DOM in natural systems. Here, we present EEMs data from individual ring fractions that were subjected to 24 hours of sunlight to use as a model to fingerprint specific aromatic regions in the DOM fraction. Results illustrate that the 1-, 2-, 3-, 4- and 5- ring fractions exhibit a wide range of structurally dependent excitation and emission spectra. A well-known red-shift in the emission and excitation occurs as the number of rings increase. In order to understand changes in the elemental composition of the data, ultra high-resolution mass spectrometry was used to obtain molecular level information. Together, these data will provide a tool to help understand the relationship of the composition and structure of DOM released into the environment in terms of aromaticity. It is well known that aromaticity is an important indicator of the chemical characteristics of DOM and can be used to explain the role of DOM in environmental processes. Thus, identifying these compounds in terms of aromaticity after photodegradation will provide information about the fate, transport and mechanisms of the photolabile and recalcitrant compounds in the environment.

  16. Tough, high performance, addition-type thermoplastic polymers

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1992-01-01

    A tough, high performance polyimide is provided by reacting a triple bond conjugated with an aromatic ring in a bisethynyl compound with the active double bond in a compound containing a double bond activated toward the formation of a Diels-Adler type adduct, especially a bismaleimide, a biscitraconimide, or a benzoquinone, or mixtures thereof. Addition curing of this product produces a high linear polymeric structure and heat treating the highly linear polymeric structure produces a thermally stable aromatic addition-type thermoplastic polyimide, which finds utility in the preparation of molding compounds, adhesive compositions, and polymer matrix composites.

  17. Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate.

    PubMed

    Forsey, Steven P; Thomson, Neil R; Barker, James F

    2010-04-01

    The reactivity of permanganate towards polycyclic aromatics hydrocarbons (PAHs) is well known but little kinetic information is available. This study investigated the oxidation kinetics of a selected group of coal tar creosote compounds and alkylbenzenes in water using permanganate, and the correlation between compound reactivity and physical/chemical properties. The oxidation of naphthalene, phenanthrene, chrysene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole isopropylbenzene, ethylbenzene and methylbenzene closely followed pseudo first-order reaction kinetics. The oxidation of pyrene was initially very rapid and did not follow pseudo first-order kinetics at early times. Fluoranthene was only partially oxidized and the oxidation of anthracene was too fast to be captured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene were non-reactive under the study conditions. The oxidation rate was shown to increase with increasing number of polycyclic rings because less energy is required to overcome the aromatic character of a polycyclic ring than is required for benzene. Thus the rate of oxidation increased in the series naphthalene

  18. Selective Oxidation of Lignin Model Compounds.

    PubMed

    Gao, Ruili; Li, Yanding; Kim, Hoon; Mobley, Justin K; Ralph, John

    2018-05-02

    Lignin, the planet's most abundant renewable source of aromatic compounds, is difficult to degrade efficiently to welldefined aromatics. We developed a microwave-assisted catalytic Swern oxidation system using an easily prepared catalyst, MoO 2 Cl 2 (DMSO) 2 , and DMSO as the solvent and oxidant. It demonstrated high efficiency in transforming lignin model compounds containing the units and functional groups found in native lignins. The aromatic ring substituents strongly influenced the selectivity of β-ether phenolic dimer cleavage to generate sinapaldehyde and coniferaldehyde, monomers not usually produced by oxidative methods. Time-course studies on two key intermediates provided insight into the reaction pathway. Owing to the broad scope of this oxidation system and the insight gleaned with regard to its mechanism, this strategy could be adapted and applied in a general sense to the production of useful aromatic chemicals from phenolics and lignin. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Pseudomonads biodegradation of aromatic compounds in oil sands process-affected water.

    PubMed

    Zhang, Yanyan; McPhedran, Kerry N; Gamal El-Din, Mohamed

    2015-07-15

    Aromatic naphthenic acids (NAs) have been shown to be more toxic than the classical NAs found in oil sands process-affected water (OSPW). To reduce this toxicity, Pseudomonas fluorescens and Pseudomonas putida were used to determine their ability to biodegrade aromatic compounds including treatments considering the impacts of external carbon and iron addition. Results showed that with added carbon P. fluorescens and P. putida have the capability of biodegrading these aromatics. In the presence of external carbon, gene expression of a functional PAH-ring hydroxylating dioxygenase (PAH-RHDα) was determined through reverse transcription real-time PCR, suggesting active degradation of OSPW aromatic compounds. Although no significant classical NAs removal was observed during this process, toxicity was reduced by 49.3% under optimal conditions. OSPW toxicity was eliminated with the combination of ozonation at a dose of 80 mg/L followed by biodegradation, indicating that it is a promising combined OSPW treatment approach for the safe discharge to the aquatic environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Irradiated Benzene Ice Provides Clues to Meteoritic Organic Chemistry

    NASA Technical Reports Server (NTRS)

    Callahan, Michael Patrick; Gerakines, Perry Alexander; Martin, Mildred G.; Hudson, Reggie L.; Peeters, Zan

    2013-01-01

    Aromatic hydrocarbons account for a significant portion of the organic matter in carbonaceous chondrite meteorites, as a component of both the low molecular weight, solvent-extractable compounds and the insoluble organic macromolecular material. Previous work has suggested that the aromatic compounds in carbonaceous chondrites may have originated in the radiation-processed icy mantles of interstellar dust grains. Here we report new studies of the organic residue made from benzene irradiated at 19 K by 0.8 MeV protons. Polyphenyls with up to four rings were unambiguously identified in the residue by gas chromatography-mass spectrometry. Atmospheric pressure photoionization Fourier transform mass spectrometry was used to determine molecular composition, and accurate mass measurements suggested the presence of polyphenyls, partially hydrogenated polyphenyls, and other complex aromatic compounds. The profile of low molecular weight compounds in the residue compared well with extracts from the Murchison and Orgueil meteorites. These results are consistent with the possibility that solid phase radiation chemistry of benzene produced some of the complex aromatics found in meteorites.

  1. A Naphtho- p-quinodimethane Exhibiting Baird’s (Anti)Aromaticity, Broken Symmetry, and Attractive Photoluminescence

    DOE PAGES

    Shokri, Siamak; Li, Jingbai; Manna, Manoj K.; ...

    2017-08-24

    In this paper, we report a novel reductive desulfurization reaction involving π-acidic naphthalene diimides 1 (NDI) using thionating agents such as Lawesson’s reagent. Along with the expected thionated NDI derivatives 2-6, new heterocyclic naphtho-p-quinodimethane compounds 7 depicting broken/reduced symmetry were successfully isolated and fully characterized. Empirical studies and theoretical modeling suggest that was formed via a six-membered ring oxathiaphosphenine intermediate rather than the usual four-membered ring oxathiaphosphetane of 2-6. Aside from the reduced symmetry in 7 as confirmed by single-crystal XRD analysis, we established that the ground state UV-vis absorption of 7 is red-shifted in comparison to the parent NDImore » 1. This result was expected in the case of thionated polycyclic diimides. However, unusual low energy transitions originate from Baird 4nπ aromaticity of compounds 7 in lieu of the intrinsic Huckel (4n + 2)π aromaticity as encountered in NDI 1. Moreover, complementary theoretical modeling results also corroborate this change in aromaticity of 7. Consequently, photophysical investigations show that, compared to parent NDI 1, 7 can easily access and emit from its T 1 state with a phosphorescence 3(7a)* lifetime of τ P = 395 μs at 77 K indicative of the formation of the corresponding “aromatic triplet” species according to the Baird’s rule of aromaticity.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ijam, M.J.; Qatami, S.Y.A.; Arif, S.F.

    For several decades removal of aromatics from crude oil fractions (e.g. kerosene and lubricating oils) has been practiced in oil refining to produce fuels and lubricants of lower aromatic content and hence of improved quality. These aromatics are suitable raw materials for the manufacture of aromatic solvents, aromatic process oils, high octane gasoline, and as basic materials for making detergents, perfumes and dyes. Detailed study of molecular structure and substituent effects on the retention characteristics of aromatic hydrocarbons have been reported on alumina, silica and various chemically bonded silicas containing -C/sub 18/, -NH/sub 2/, -R(NH)/sub 2//sub 2/, -CN, RCN, RONmore » and phenyl-mercuric acetate for the compound class (ring-numbered) high performance liquid chromatography (2, 3, 8, 12, 24, 28). Previous work in this laboratory has demonstrated that individual normal and branched aliphatic hydrocarbons from kerosene and light gas oil were isolated and identified. This paper describes the extension of this work to cover the separation and identification of aromatic ring classes (mono-, di-, and tri-aromatics) in the gas oil fraction of Kuwait petroleum. Characterization and identification of the major components in the dinuclear aromatics is our primary objective in this study.« less

  3. Seasonal variation in diffusive exchange of polycyclic aromatic hydrocarbons across the air-seawater interface in coastal urban area.

    PubMed

    Kim, Seung-Kyu; Chae, Doo Hyun

    2016-08-15

    Concentrations of 15 polycyclic aromatic hydrocarbons (PAHs) in air-seawater interface were measured over 1year in the coastal region of Incheon, South Korea. Most individual PAHs and total PAHs in air displayed statistically significant negative correlations with temperature, but not significant in seawater. Less hydrophobic compounds with three rings were at or near equilibrium in summer, while PAHs with four to six rings were in disequilibrium in all seasons, with higher fugacity gradients in colder seasons and for more hydrophobic compounds. Differently from fugacity gradients, the highest net fluxes occurred for some three- and four-ring PAHs showing the highest atmospheric concentrations. Net gaseous exchange, which was higher in winter, occurred from air to seawater with an annual cumulative flux of 2075μg/m(2)/year (for Σ15PAHs), indicating that atmospheric PAHs in this region, originating from coal/biomass combustion, can deteriorate the quality of seawater and sediment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. INTERACTION OF PAH-RELATED COMPOUNDS WITH THE ALPHA AND BETA ISOFORMS OF ESTROGEN RECEPTOR. (R826192)

    EPA Science Inventory

    The ability of several 4- and 5-ring polycyclic aromatic hydrocarbons (PAHs), heterocyclic PAHs, and their monohydroxy derivatives to interact with the estrogen receptor (ER) alpha and beta isoforms was examined. Only compounds possessing a hydroxyl group were able to compete wit...

  5. Fungal lactone ring opening of 6', 7'-dihydroxybergamottin diminishes cytochrome P450 3A4 inhibitory activity

    USDA-ARS?s Scientific Manuscript database

    Furanocoumarins (FCs) are a class of aromatic compounds in grapefruit that inhibit human intestinal cytochrome P450 3A4 (CYP3A4). Since fungi metabolize polycyclic aromatic hydrocarbons, we hypothesized that certain fungi might also metabolize FCs into forms that may be inactive as CYP3A4 inhibitors...

  6. 3-Phenyl-6-(2-pyrid­yl)-1,2,4,5-tetra­zine

    PubMed Central

    Chartrand, Daniel; Laverdière, François; Hanan, Garry

    2008-01-01

    The title compound, C13H9N5, is the first asymmetric diaryl-1,2,4,5-tetra­zine to be crystallographically characterized. We have been inter­ested in this motif for incorporation into supra­molecular assemblies based on coordination chemistry. The solid state structure shows a centrosymmetric mol­ecule, forcing a positional disorder of the terminal phenyl and pyridyl rings. The mol­ecule is completely planar, unusual for aromatic rings with N atoms in adjacent ortho positions. The stacking observed is very common in diaryl­tetra­zines and is dominated by π stacking [centroid-to-centroid distance between the tetrazine ring and the aromatic ring of an adjacent molecule is 3.6 Å, perpendicular (centroid-to-plane) distance of about 3.3 Å]. PMID:21200916

  7. 2-[(4-Benzhydrylpipérazin-1-yl)méthyl]acrylonitrile

    PubMed Central

    Ben Amor, Fatma; Ould M’hamed, Mohamed; Mrabet, Hédi; Driss, Ahmed; Efrit, Mohamed Lotfi

    2008-01-01

    In the title compound, 2-[(4-benz­hydryl­piperazin-1-yl)­methyl]­acrylo­nitrile, C21H23N3, the substituted piperazine ring adopts a chair conformation and the dihedral angle between the mean planes of the aromatic rings is 71.61 (8)°. PMID:21201087

  8. Detecting aromatic compounds on planetary surfaces using ultraviolet time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Eshelman, E.; Daly, M. G.; Slater, G.; Cloutis, E.

    2018-02-01

    Many aromatic organic molecules exhibit strong and characteristic fluorescence when excited with ultraviolet radiation. As laser excitation in the ultraviolet generates both fluorescence and resonantly enhanced Raman scattering of aromatic vibrational modes, combined Raman and fluorescence instruments have been proposed to search for organic compounds on Mars. In this work the time-resolved fluorescence of a suite of 24 compounds composed of 2-5 ringed alternant, non-alternant, and heterocyclic PAHs was measured. Fluorescence instrumentation with similar specifications to a putative flight instrument was capable of observing the fluorescence decay of these compounds with a sub-ns resolution. Incorporating time-resolved capabilities was also found to increase the ability to discriminate between individual PAHs. Incorporating time-resolved fluorescence capabilities into an ultraviolet gated Raman system intended for a rover or lander can increase the ability to detect and characterize PAHs on planetary surfaces.

  9. Conformational dynamics in fluorophenylcarbamoyl-alpha-chymotrypsins.

    PubMed

    Kairi, M; Gerig, J T

    1990-06-19

    A series of fluorine-substituted diphenylcarbamoyl chlorides have been synthesized and used to prepare corresponding diphenylcarbamoylated derivatives of alpha-chymotrypsin. The enzyme is rapidly inactivated by these compounds, as has been previously observed for the unsubstituted chloride, and the derivatives are stable enough to permit extensive studies by fluorine NMR spectroscopy. In combination with previously reported results, these NMR experiments suggest that the aromatic rings of a diphenylcarbamoyl group attached to chymotrypsin may be found in two magnetically and dynamically distinguishable sites, with exchange between these sites taking place by a process that involves rotation about the carbamoyl N-CO bond and localized unfolding of the enzyme. The extent to which a given fluoroaromatic ring is found in one of these sites is dependent on the position of the fluorine substituent and the nature of the partner aromatic ring. It is found that a 2-fluorophenyl ring, when present, dominantly determines site occupation, while a 3-fluorophenyl ring has no effects that are detectably different from those of an unsubstituted phenyl ring. There is evidence for slow aromatic ring rotation within at least one of the phenyl ring interaction sites. Saturation transfer and lineshape methods provide information about the rates of interconversion of the N-phenyl groups between these sites. Line-width, spin-lattice relaxation times and fluorine-proton nuclear Overhauser effects determined at 282 and 470 MHz are reported for each system examined.

  10. Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway.

    PubMed Central

    Nelson, M J; Montgomery, S O; Mahaffey, W R; Pritchard, P H

    1987-01-01

    Biodegradation of trichloroethylene (TCE) by bacterial strain G4 resulted in complete dechlorination of the compound, as indicated by the production of inorganic chloride. A component of the water from which strain G4 was isolated that was required for TCE degradation was identified as phenol. Strain G4 degraded TCE in the presence of chloramphenicol only when preinduced with phenol. Toluene, o-cresol. and m-cresol could replace the phenol requirement. Two of the inducers of TCE metabolism, phenol and toluene, apparently induced the same aromatic degradative pathway that cleaved the aromatic ring by meta fission. Cells induced with either phenol or toluene had similar oxidation rates for several aromatic compounds and had similar levels of catechol-2,3-dioxygenase. The results indicate that one or more enzymes of an inducible pathway for aromatic degradation in strain G4 are responsible for the degradation of TCE. PMID:3606099

  11. Adsorbed States of phosphonate derivatives of N-heterocyclic aromatic compounds, imidazole, thiazole, and pyridine on colloidal silver: comparison with a silver electrode.

    PubMed

    Podstawka, Edyta; Olszewski, Tomasz K; Boduszek, Bogdan; Proniewicz, Leonard M

    2009-09-03

    Here, we report a systematic surface-enhanced Raman spectroscopy (SERS) study of the structures of phosphonate derivatives of the N-heterocyclic aromatic compounds imidazole (ImMeP ([hydroxy(1H-imidazol-5-yl)methyl]phosphonic acid) and (ImMe)(2)P (bis[hydroxy-(1H-imidazol-4-yl)-methyl]phosphinic acid)), thiazole (BAThMeP (butylaminothiazol-2-yl-methyl)phosphonic acid) and BzAThMeP (benzylaminothiazol-2-yl-methyl)phosphonic acid)), and pyridine ((PyMe)(2)P (bis[(hydroxypyridin-3-yl-methyl)]phosphinic acid)) adsorbed on nanometer-sized colloidal particles. We compared these structures to those on a roughened silver electrode surface to determine the relationship between the adsorption strength and the geometry. For example, we showed that all of these biomolecules interact with the colloidal surface through aromatic rings. However, for BzAThMeP, a preferential interaction between the benzene ring and the colloidal silver surface is observed more so than that between the thiazole ring and this substrate. The PC(OH)C fragment does not take part in the adsorption process, and the phosphonate moiety of ImMeP and (ImMe)(2)P, being removed from the surface, only assists in this process.

  12. Resveratrol and para-coumarate serve as ring precursors for coenzyme Q biosynthesis[S

    PubMed Central

    Xie, Letian X.; Williams, Kevin J.; He, Cuiwen H.; Weng, Emily; Khong, San; Rose, Tristan E.; Kwon, Ohyun; Bensinger, Steven J.; Marbois, Beth N.; Clarke, Catherine F.

    2015-01-01

    Coenzyme Q (Q or ubiquinone) is a redox-active polyisoprenylated benzoquinone lipid essential for electron and proton transport in the mitochondrial respiratory chain. The aromatic ring 4-hydroxybenzoic acid (4HB) is commonly depicted as the sole aromatic ring precursor in Q biosynthesis despite the recent finding that para-aminobenzoic acid (pABA) also serves as a ring precursor in Saccharomyces cerevisiae Q biosynthesis. In this study, we employed aromatic 13C6-ring-labeled compounds including 13C6-4HB, 13C6-pABA, 13C6-resveratrol, and 13C6-coumarate to investigate the role of these small molecules as aromatic ring precursors in Q biosynthesis in Escherichia coli, S. cerevisiae, and human and mouse cells. In contrast to S. cerevisiae, neither E. coli nor the mammalian cells tested were able to form 13C6-Q when cultured in the presence of 13C6-pABA. However, E. coli cells treated with 13C6-pABA generated 13C6-ring-labeled forms of 3-octaprenyl-4-aminobenzoic acid, 2-octaprenyl-aniline, and 3-octaprenyl-2-aminophenol, suggesting UbiA, UbiD, UbiX, and UbiI are capable of using pABA or pABA-derived intermediates as substrates. E. coli, S. cerevisiae, and human and mouse cells cultured in the presence of 13C6-resveratrol or 13C6-coumarate were able to synthesize 13C6-Q. Future evaluation of the physiological and pharmacological responses to dietary polyphenols should consider their metabolism to Q. PMID:25681964

  13. Arylglycerol-γ-Formyl Ester as an Aromatic Ring Cleavage Product of Nonphenolic β-O-4 Lignin Substructure Model Compounds Degraded by Coriolus versicolor†

    PubMed Central

    Kawai, Shingo; Umezawa, Toshiaki; Higuchi, Takayoshi

    1985-01-01

    4-Ethoxy-3-methoxyphenylglycerol-γ-formyl ester (compound IV) was identified as a degradation product of both 4-ethoxy-3-methoxyphenylglycerol-β-syringaldehyde ether (compound I) and 4-ethoxy-3-methoxyphenylglycerol-β-2,6-dimethoxyphenyl ether (compound II) by a ligninolytic culture of Coriolus versicolor. An isotopic experiment with a 13C-labeled compound (compound II′) indicated that the formyl group of compound IV was derived from the β-phenoxyl group of β-O-4 dimer as an aromatic ring cleavage fragment. However, compound IV was not formed from 4-ethoxy-3-methoxyphenylglycerol-β-guaiacyl ether (compound III). γ-Formyl arylglycerol (compound IV) could be a precursor of 4-ethoxy-3-methoxyphenylglycerol (compound VI), because 3-(4-ethoxy-3-methoxyphenyl)-1-formyloxy propane (compound VII) was cleaved to give 3-(4-ethoxy-3-methoxyphenyl)-1-propanol (compound VIII) by C. versicolor. 4-Ethoxy-3-methoxyphenylglycerol-β,γ-cyclic carbonate (compound V), previously found as a degradation product of compound III by Phanerochaete chrysosporium (T. Umezawa, and T. Higuchi, FEBS Lett., 25:123-126, 1985), was also identified from the cultures with compound I, II, and III and degraded to give the arylglycerol (compound VI). An isotopic experiment with 13C-labeled compounds II′ and III′ indicated that the carbonate carbon of compound V was derived from the β-phenoxyl groups of β-O-4 substructure. PMID:16346950

  14. Low severity coal conversion by ionic hydrogenation: Quarterly report, October--December 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maioriello, J.; Larsen, J.W.

    1988-12-31

    A newly developed reaction system consisting of H/sub 2/O:BF/sub 3//H/sub 2//(CH/sub 3/CN)/sub 2/PtCl/sub 2/ was applied to the ionic hydrogenation of aromatic and functionalized aromatic compounds. Hydrogenations were carried out in this aqueous system at 50/degree/C and 500 psi H/sub 2/. Aryl ethers were hydrogenated and cleaved, yielding deoxygenated, fully saturated compounds as the major products. Reactions of nitrogen-containing aromatic compounds resulted in partial saturation of aromatic rings without cleavage of the C-N bonds. Aromatic and PNA compounds can be fully or partially hydrogenated depending on their structures. Aromatic thiols, sulfides and thiophenes poison the catalyst; the oxidized sulfur formsmore » (sulfonic acids, sulfones) were not reduced and did not poison the catalyst. It was found that certain aromatic compounds were easier to hydrogenate than others. Ionic hydrogenation of Wyodak cola using a H/sub 2/O:BF/sub 3//H/sub 2//(MeCN)/sub 2/PtCl/sub 2/ resulted in no significant increase in THF extractability (5.8--9.6% THF-extractables, wt) over that of the parent coal (4.6--6.7% THF-extractables, wt). Ionic hydrogenation of a demineralized Wyodak coal (1 M aq. citric acid, reflux 1 day) resulted in a slight increase in THF extractability (10.4%) over the untreated parent coal (5.6--5.8%). 4 refs., 1 fig., 1 tab.« less

  15. Substituent effect on the oxidation of phenols and aromatic amines by horseradish peroxidase compound I.

    PubMed

    Job, D; Dunford, H B

    1976-07-15

    A stopped-flow kinetic study shows that the reduction rate of horseradish peroxidase compound I by phenols and aromatic amines is greatly dependent upon the substituent effect on the benzene ring. Morever it has been possible to relate the reduction rate constants of monosubstituted substrates by a linear free-energy relationship (Hammett equation). The correlation of log (rate constants) with sigma values (Hammett equation) and the absence of correlation with sigma+ values (Okamoto-Brown equation) can be explained by a mechanism of aromatic substrate oxidations, in which the substrate gives an electron to the enzyme compound I and simultaneously loses a proton. The analogy which has been made with oxidation potentials of phenols or anilines strengthens the view that the reaction is only dependent on the relative ease of oxidation of the substrate. The rate constant obtained for p-aminophenol indicates that a value of 2.3 X 10(8) M-1 S-1 probably approaches the diffusion-controlled limit for a bimolecular reaction involving compound I and an aromatic substrate.

  16. Formation of highly oxygenated organic molecules from aromatic compounds

    NASA Astrophysics Data System (ADS)

    Molteni, Ugo; Bianchi, Federico; Klein, Felix; El Haddad, Imad; Frege, Carla; Rossi, Michel J.; Dommen, Josef; Baltensperger, Urs

    2018-02-01

    Anthropogenic volatile organic compounds (AVOCs) often dominate the urban atmosphere and consist to a large degree of aromatic hydrocarbons (ArHCs), such as benzene, toluene, xylenes, and trimethylbenzenes, e.g., from the handling and combustion of fuels. These compounds are important precursors for the formation of secondary organic aerosol. Here we show that the oxidation of aromatics with OH leads to a subsequent autoxidation chain reaction forming highly oxygenated molecules (HOMs) with an O : C ratio of up to 1.09. This is exemplified for five single-ring ArHCs (benzene, toluene, o-/m-/p-xylene, mesitylene (1,3,5-trimethylbenzene) and ethylbenzene), as well as two conjugated polycyclic ArHCs (naphthalene and biphenyl). We report the elemental composition of the HOMs and show the differences in the oxidation patterns of these ArHCs. A potential pathway for the formation of these HOMs from aromatics is presented and discussed. We hypothesize that AVOCs may contribute substantially to new particle formation events that have been detected in urban areas.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jongbok; Li, Huanbin; Kalin, Alexander J.

    Well-defined, fused-ring aromatic oligomers represent promising candidates for the fundamental understanding and application of advanced carbon-rich materials, though bottom-up synthesis and structure–property correlation of these compounds remain challenging. In this work, an efficient synthetic route was employed to construct extended benzo[k]tetraphene-derived oligomers with up to 13 fused rings. The molecular and electronic structures of these compounds were clearly elucidated. Precise correlation of molecular sizes and crystallization dynamics was established, thus demonstrating the pivotal balance between intermolecular interaction and molecular mobility for optimized processing of highly ordered solids of these extended conjugated molecules.

  18. Photooxidation products of polycyclic aromatic compounds containing sulfur.

    PubMed

    Bobinger, Stefan; Andersson, Jan T

    2009-11-01

    Photooxidation of crude oil components is an important process that removes pollutants from the environment. Polycyclic aromatic compounds (PACs) are known to be toxic to many life forms, but little is known about their photooxidation products in the aqueous phase. We here identify a large number of photoproducts from 11 benzothiophenes, a polycyclic aromatic sulfur heterocycle that is a major representative of PACs in crude oil. The investigated compounds contain two to four methyl groups and an ethyl or an n-octyl group. In water, the products arise through oxidation of alkyl side chains to aldehydes and carboxylic acids or through an opening in one of the aromatic rings. The product analysis was performed using gas chromatography with mass spectrometric or atomic emission detection. The main product is always a sulfobenzoic acid, which strongly lowers the pH of the solution. With long alkyl substituents, surfactants are formed, which may possess solubilizing properties in water. The larger the number of alkyl groups, the faster is the photooxidation. Several of the identified acidic compounds were also found when whole crude oil was photooxidized, showing that simulation with individual compounds reflects the situation in whole crude.

  19. Homologation process making higher alcohols

    DOEpatents

    Leung, Tak W.; Dombek, Bernard D.

    1990-01-01

    A liquid phase process for the manufacture of C.sub.2+ alkanols by the reaction of hydrogen with carbon monoxide in the presence of a catalyst containing ruthenium, cobalt, a halide-containing compound, and an aromatic compound substituted in adjacent ring positions by nitrogen atoms. The process embraces the use of rhodium as an additive to the catalyst system.

  20. Airborne Exposures to Polycyclic Aromatic Compounds Among Workers in Asphalt Roofing Manufacturing Facilities.

    PubMed

    Trumbore, David C; Osborn, Linda V; Johnson, Kathleen A; Fayerweather, William E

    2015-01-01

    We studied exposure of 151 workers to polycyclic aromatic compounds and asphalt emissions during the manufacturing of asphalt roofing products-including 64 workers from 10 asphalt plants producing oxidized, straight-run, cutback, and wax- or polymer-modified asphalts, and 87 workers from 11 roofing plants producing asphalt shingles and granulated roll roofing. The facilities were located throughout the United States and used asphalt from many refiners and crude oils. This article helps fill a gap in exposure data for asphalt roofing manufacturing workers by using a fluorescence technique that targets biologically active 4-6 ring polycyclic aromatic compounds and is strongly correlated with carcinogenic activity in animal studies. Worker exposures to polycyclic aromatic compounds were compared between manufacturing plants, at different temperatures and using different raw materials, and to important external benchmarks. High levels of fine limestone particulate in the plant air during roofing manufacturing increased polycyclic aromatic compound exposure, resulting in the hypothesis that the particulate brought adsorbed polycyclic aromatic compounds to the worker breathing zone. Elevated asphalt temperatures increased exposures during the pouring of asphalt. Co-exposures in these workplaces which act as confounders for both the measurement of total organic matter and fluorescence were detected and their influence discussed. Exposures to polycyclic aromatic compounds in asphalt roofing manufacturing facilities were lower than or similar to those reported in hot-mix paving application studies, and much below those reported in studies of hot application of built-up roofing asphalt. These relatively low exposures in manufacturing are primarily attributed to air emission controls in the facilities, and the relatively moderate temperatures, compared to built-up roofing, used in these facilities for oxidized asphalt. The exposure to polycyclic aromatic compounds was a very small part of the overall worker exposure to asphalt fume, on average less than 0.07% of the benzene-soluble fraction. Measurements of benzene-soluble fraction were uniformly below the American Conference of Governmental Industrial Hygienists' Threshold Limit Value for asphalt fume.

  1. Characteristics of microbial community functional structure of a biological coking wastewater treatment system.

    PubMed

    Joshi, Dev Raj; Zhang, Yu; Zhang, Hong; Gao, Yingxin; Yang, Min

    2018-01-01

    Nitrogenous heterocyclic compounds are key pollutants in coking wastewater; however, the functional potential of microbial communities for biodegradation of such contaminants during biological treatment is still elusive. Herein, a high throughput functional gene array (GeoChip 5.0) in combination with Illumina HiSeq2500 sequencing was used to compare and characterize the microbial community functional structure in a long run (500days) bench scale bioreactor treating coking wastewater, with a control system treating synthetic wastewater. Despite the inhibitory toxic pollutants, GeoChip 5.0 detected almost all key functional gene (average 61,940 genes) categories in the coking wastewater sludge. With higher abundance, aromatic ring cleavage dioxygenase genes including multi ring1,2diox; one ring2,3diox; catechol represented significant functional potential for degradation of aromatic pollutants which was further confirmed by Illumina HiSeq2500 analysis results. Response ratio analysis revealed that three nitrogenous compound degrading genes- nbzA (nitro-aromatics), tdnB (aniline), and scnABC (thiocyanate) were unique for coking wastewater treatment, which might be strong cause to increase ammonia level during the aerobic process. Additionally, HiSeq2500 elucidated carbozole and isoquinoline degradation genes in the system. These findings expanded our understanding on functional potential of microbial communities to remove organic nitrogenous pollutants; hence it will be useful in optimization strategies for biological treatment of coking wastewater. Copyright © 2017. Published by Elsevier B.V.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ijam, M.J.; Al-Qatami, S.Y.; Arif, S.F.

    For several decades removal of aromatics from crude oil fractions has been practiced in oil refining to produce fuels and lubricants of lower aromatic content and hence of improved quality. These aromatics are suitable raw materials for the manufacture of aromatic solvents, aromatic process oils, high octane gasoline, and as basic materials for making detergents, perfumes and dyes. A study for the UV and IR spectra of the aromatic hydrocarbons showed them to consist mainly of bi-, tri-, tetra-, and penta-substituted benzene, bicyclic and tricyclic compounds. Detailed studies have been reported of molecular structure and substituent effects have been reportedmore » on the retention characteristics of aromatic hydrocarbons on alumina, silica and various chemically bonded silicas containing {minus}C{sub 18}, {minus}NH{sub 2}, {minus}R(NH){sub 2}, {minus}CN, RCN, and phenyl-mercuric acetate for compound class (ring-numbered) high performance liquid chromatography separation. With the aid of a Finnegan type 9612-4000 GC/MS apparatus, the mixture of neutral + basic aromatic hydrocarbons was qualitatively identified and revealed the presence of more than 112 peaks. The neutral + basic aromatic hydrocarbons consist mainly of: 3.68% monoaromatics (C{sub 3} - C{sub 6} alkyl benzenes), 52.81% bicycloaromatics (C{sub 0} - C{sub 4} alkylnaphthalenes), 6.20% tricycloaromatics (C{sub 0} - C{sub 4} alkyl phenanthrenes), and 37.32% nonhydrocarbons aromatic compounds. The components in major HPLC peaks corresponding to bicycloaromatics were further separated into small groups (3-4 components in each) by HPLC using an ODS-reverse phase-C{sub 18} column. To separate a single component from the mixture is a difficult problem. The individual compounds in the separated fractions were identified by GC/MS (Hewlett Packard 5993 system).« less

  3. Multifunctional receptor model for dioxin and related compound toxic action: possible thyroid hormone-responsive effector-linked site.

    PubMed Central

    McKinney, J D

    1989-01-01

    Molecular/theoretical modeling studies have revealed that thyroid hormones and toxic chlorinated aromatic hydrocarbons of environmental significance (for which dioxin or TCDD is the prototype) have similar structural properties that could be important in molecular recognition in biochemical systems. These molecular properties include a somewhat rigid, sterically accessible and polarizable aromatic ring and size-limited, hydrophobic lateral substituents, usually contained in opposite adjoining rings of a diphenyl compound. These molecular properties define the primary binding groups thought to be important in molecular recognition of both types of structures in biochemical systems. Similar molecular reactivities are supported by the demonstration of effective specific binding of thyroid hormones and chlorinated aromatic hydrocarbons with four different proteins, enzymes, or receptor preparations that are known or suspected to be involved in the expression of thyroid hormone activity. These binding interactions represent both aromatic-aromatic (stacking) and molecular cleft-type recognition processes. A multiple protein or multifunctional receptor-ligand binding mechanism model is proposed as a way of visualizing the details and possible role of both the stacking and cleft type molecular recognition factors in the expression of biological activity. The model suggests a means by which hormone-responsive effector-linked sites (possible protein-protein-DNA complexes) can maintain highly structurally specific control of hormone action. Finally, the model also provides a theoretical basis for the design and conduct of further biological experimentation on the molecular mechanism(s) of action of toxic chlorinated aromatic hydrocarbons and thyroid hormones. Images FIGURE 3. A FIGURE 3. B FIGURE 3. C FIGURE 3. D PMID:2551666

  4. 1-(Hydroxy­meth­yl)pyrene

    PubMed Central

    Gruber, Tobias; Seichter, Wilhelm; Weber, Edwin

    2010-01-01

    The asymmetric unit of the title compound, C17H12O, contains two molecules, in which the fused aromatic ring systems are almost planar [maximum deviations = 0.0529 (9) and 0.0256 (9) Å]. In the crystal, aromatic π–π stacking inter­actions (perpendicular distance of centroids of about 3.4 Å) and strong O—H⋯O hydrogen bonds result in a helical arrangement of pyrenyl dimers. PMID:21579858

  5. A cluster of bacterial genes for anaerobic benzene ring biodegradation

    PubMed Central

    Egland, Paul G.; Pelletier, Dale A.; Dispensa, Marilyn; Gibson, Jane; Harwood, Caroline S.

    1997-01-01

    A reductive benzoate pathway is the central conduit for the anaerobic biodegradation of aromatic pollutants and lignin monomers. Benzene ring reduction requires a large input of energy and this metabolic capability has, so far, been reported only in bacteria. To determine the molecular basis for this environmentally important process, we cloned and analyzed genes required for the anaerobic degradation of benzoate and related compounds from the phototrophic bacterium, Rhodopseudomonas palustris. A cluster of 24 genes was identified that includes twelve genes likely to be involved in anaerobic benzoate degradation and additional genes that convert the related compounds 4-hydroxybenzoate and cyclohexanecarboxylate to benzoyl-CoA. Genes encoding benzoyl-CoA reductase, a novel enzyme able to overcome the resonance stability of the aromatic ring, were identified by directed mutagenesis. The gene encoding the ring-cleavage enzyme, 2-ketocyclohexanecarboxyl-CoA hydrolase, was identified by assaying the enzymatic activity of the protein expressed in Escherichia coli. Physiological data and DNA sequence analyses indicate that the benzoate pathway consists of unusual enzymes for ring reduction and cleavage interposed among enzymes homologous to those catalyzing fatty acid degradation. The cloned genes should be useful as probes to identify benzoate degradation genes from other metabolically distinct groups of anaerobic bacteria, such as denitrifying bacteria and sulfate-reducing bacteria. PMID:9177244

  6. Regulation of the Feruloyl Esterase (faeA) Gene from Aspergillus niger

    PubMed Central

    de Vries, Ronald P.; Visser, Jaap

    1999-01-01

    Feruloyl esterases can remove aromatic residues (e.g., ferulic acid) from plant cell wall polysaccharides (xylan, pectin) and are essential for complete degradation of these polysaccharides. Expression of the feruloyl esterase-encoding gene (faeA) from Aspergillus niger depends on d-xylose (expression is mediated by XlnR, the xylanolytic transcriptional activator) and on a second system that responds to aromatic compounds with a defined ring structure, such as ferulic acid and vanillic acid. Several compounds were tested, and all of the inducing compounds contained a benzene ring which had a methoxy group at C-3 and a hydroxy group at C-4 but was not substituted at C-5. Various aliphatic groups occurred at C-1. faeA expression in the presence of xylose or ferulic acid was repressed by glucose. faeA expression in the presence of ferulic acid and xylose was greater than faeA expression in the presence of either compound alone. The various inducing systems allow A. niger to produce feruloyl esterase not only during growth on xylan but also during growth on other ferulic acid-containing cell wall polysaccharides, such as pectin. PMID:10584009

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wear, Jr., John Edmund

    The objective of this study was to examine the hypothesis that select functional groups of bacteria from pristine sites have an innate ability to degrade synthetic aromatics that often contaminate groundwater environments,due to exposure to naturally occurring recalcitrant aromatics in their environment. This study demonstrates that subsurface microbial communities are capable of utilizing lignin and humic acid breakdown products. Utilizers of these compounds were found to be present in most all the wells tested. Even the deepest aquifer tested had utilizers present for all six of the aromatics tested. Highest counts for the aromatics tested were observed with the naturallymore » occurring breakdown products of either lignin or humic acid. Carboxylic acids were found to be an important sole carbon source for groundwater bacteria possibly explained by the fact that they are produced by the oxidative cleavage of aromatic ring structures. The carbohydrate sole carbon sources that demonstrated the greatest densities were ones commonly associated with humics. This study indicates that utilization of naturally occurring aromatic compounds in the subsurface is an important nutritional source for groundwater bacteria. In addition, it suggests that adaptation to naturally occurring recalcitrant substrates is the origin of degradative pathways for xenobiotic compounds with analogous structure. This work has important implications for in situ bioremediation as a method of environmental cleanup.« less

  8. Metal-sulfur type cell having improved positive electrode

    DOEpatents

    Dejonghe, Lutgard C.; Visco, Steven J.; Mailhe, Catherine C.; Armand, Michel B.

    1989-01-01

    An novel metal-sulfur type cell operable at a temperature of 200.degree. C. or less with an energy density of 150 Whrs/Kg or better is disclosed characterized by an organo-sulfur cathode formed from an organic-sulfur compound having the general formula, in its charged state, of (R(S).sub.y).sub.n wherein y=1 to 6; n=2 to 20; and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, or nitrogen heteroatoms when R comprisises one of more aromatic rings, or one or more oxygen, sulfur, nitrogen, or fluorine atoms associtated with the chain when R comprises an aliphatic chain, wherein the aliphatic group may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon.

  9. Metal-sulfur type cell having improved positive electrode

    DOEpatents

    DeJonghe, L.C.; Visco, S.J.; Mailhe, C.C.; Armand, M.B.

    1988-03-31

    A novel metal-sulfur type cell operable at a temperature of 200/degree/C or less with an energy density of 150 Whrs/Kg or better is disclosed characterized by an organo-sulfur cathode formed from an organic-sulfur compound having the general formula, in its charged state, of (R(S)/sub y/)n wherein y = 1 to 6; n = 2 to 20; and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, or nitrogen heteroatoms when R comprises one or more aromatic rings, or one or more oxygen, sulfur, nitrogen, or fluorine atoms associated with the chain when R comprises an aliphatic chain, wherein the aliphatic group may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon. 4 figs.

  10. Aromaticity of benzene derivatives: an exploration of the Cambridge Structural Database.

    PubMed

    Majerz, Irena; Dziembowska, Teresa

    2018-04-01

    The harmonic oscillator model of aromaticity (HOMA) index, one of the most popular aromaticity indices for solid-state benzene rings in the Cambridge Structural Database (CSD), has been analyzed. The histograms of HOMA for benzene, for benzene derivatives with one formyl, nitro, amino or hydroxy group as well as the histograms for the derivatives with two formyl, nitro, amino or hydroxy groups in ortho, meta and para positions were investigated. The majority of the substituted benzene derivatives in the CSD are characterized by a high value of HOMA, indicating fully aromatic character; however, the distribution of the HOMA value from 1 to about 0 indicates decreasing aromaticity down to non-aromatic character. Among the benzene derivatives investigated, a significant decrease in aromaticity can be related to compounds with diamino and dinitro groups in the meta position.

  11. Luminescent Li-based metal-organic framework tailored for the selective detection of explosive nitroaromatic compounds: direct observation of interaction sites.

    PubMed

    Kim, Tae Kyung; Lee, Jae Hwa; Moon, Dohyun; Moon, Hoi Ri

    2013-01-18

    A luminescent lithium metal-organic framework (MOF) is constructed from the solvothermal reaction of Li(+) and a well-designed organic ligand, bis(4-carboxyphenyl)-N-methylamine (H(2)CPMA). A Li-based MOF can detect an explosive aromatic compound containing nitro groups as an explosophore, by showing a dramatic color change with concurrent luminescence quenching in the solid state. The detection sites are proven directly through single-crystal-to-single-crystal transformations, which show strong interactions between the aromatic rings of the electron-rich CPMA(2-) molecules and the electron-deficient nitrobenzene.

  12. Mechanochemical synthesis and structural characterization of three novel cocrystals of dimethylglyoxime with N-heterocyclic aromatic compounds and acetamide

    NASA Astrophysics Data System (ADS)

    Abidi, Syed Sibte Asghar; Azim, Yasser; Gupta, Abhishek Kumar; Pradeep, Chullikkattil P.

    2017-12-01

    With an aim to explore the interactions of (RR'Cdbnd Nsbnd OH) oxime moiety of dimethylglyoxime (DMG) with pyridyl ring of N-heterocyclic aromatic compounds and acetamide, three novel cocrystals of dimethylglyoxime with acridine (ACR), 1,10-phenanthroline monohydrate (PT) and acetamide (ACT) are reported. These three cocrystals were obtained with a mechanochemical synthesis approach and were characterized by single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), fourier transform-infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Additionally, Hirshfeld surface analysis is used to investigate the intermolecular interaction and the crystal packing of cocrystals.

  13. Implementation of GPC characterization of asphalt binders at Louisiana materials laboratory : tech summary.

    DOT National Transportation Integrated Search

    2013-10-01

    Asphalt is a mixture of a wide variety of chemical compounds that include aliphatic hydrocarbons and highly fused : aromatic ring systems. They are classi ed as asphaltenes (medium molecular weight) and maltenes (low molecular : weight). To improv...

  14. Enhancement of the orientational order parameter of nematic liquid crystals in thin cells.

    PubMed

    Dhara, Surajit; Madhusudana, N V

    2004-04-01

    Abstract. We report measurements of birefringence (Delta n) of several nematic liquid crystals having transverse as well as longitudinal dipole moments in thin (1.4 to 2.3 microm) and thick (7 to 16 microm) cells. Rubbed polyimide-coated glass plates are used to get planar alignment of the nematic director in these cells. We find significant enhancement (6 to 18%) of Delta n (proportional to S, where S is the orientational order parameter) in thin cells in all compounds with aromatic cores even at temperatures far approximately 20 degrees C) below the nematic-isotropic transition point. The enhancement is larger in compounds having several phenyl rings and lower if the number of phenyl rings is reduced. In a compound that does not have an aromatic core no significant enhancement is observed, implying that the strength of the surface potential depends on the aromaticity of the cores. Assuming a perfect orientational order at the surface, calculations based on the Landau-de Gennes theory show that the thickness averaged enhancement of S is sharply reduced as the temperature is lowered in the nematic phase. The measured order parameter S is further enhanced in thin cells because of the stiffening of the elastic constant which reduces the thermal fluctuations of the nematic director. The combined effect is however too small at low temperatures to account for the experimental data.

  15. Reactions Involved in the Lower Pathway for Degradation of 4-Nitrotoluene by Mycobacterium Strain HL 4-NT-1

    PubMed Central

    He, Zhongqi; Spain, Jim C.

    2000-01-01

    In spite of the variety of initial reactions, the aerobic biodegradation of aromatic compounds generally yields dihydroxy intermediates for ring cleavage. Recent investigation of the degradation of nitroaromatic compounds revealed that some nitroaromatic compounds are initially converted to 2-aminophenol rather than dihydroxy intermediates by a number of microorganisms. The complete pathway for the metabolism of 2-aminophenol during the degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45 has been elucidated previously. The pathway is parallel to the catechol extradiol ring cleavage pathway, except that 2-aminophenol is the ring cleavage substrate. Here we report the elucidation of the pathway of 2-amino-4-methylphenol (6-amino-m-cresol) metabolism during the degradation of 4-nitrotoluene by Mycobacterium strain HL 4-NT-1 and the comparison of the substrate specificities of the relevant enzymes in strains JS45 and HL 4-NT-1. The results indicate that the 2-aminophenol ring cleavage pathway in strain JS45 is not unique but is representative of the pathways of metabolism of other o-aminophenolic compounds. PMID:10877799

  16. Novel mechanisms of biotransformation of p-tert-amylphenol by bacteria and fungi with special degradation abilities and simultaneous detoxification of the disinfectant.

    PubMed

    Schlueter, Rabea; Röder, Anja; Czekalski, Nadine; Gliesche, Daniel; Mikolasch, Annett; Schauer, Frieder

    2014-01-01

    The compound p-tert-amylphenol (p-(1,1-dimethylpropyl)phenol) is a widely used disinfectant belonging to the group of short branched-chain alkylphenols. It is produced in or imported into the USA with more than one million pounds per year and can be found in the environment in surface water, sediments, and soil. We have investigated for the first time the biotransformation of this disinfectant and the accumulation of metabolites by five bacterial strains, three yeast strains, and three filamentous fungi, selected because of their ability to transform either aromatic or branched-chain compounds. Of the 11 microorganisms tested, one yeast strain and three bacteria could not transform the disinfectant despite of a very low concentration applied (0.005%). None of the other seven organisms was able to degrade the short branched alkyl chain of p-tert-amylphenol. However, two yeast strains, two filamentous fungi, and two bacterial strains attacked the aromatic ring system of the disinfectant via the hydroxylated intermediate 4-(1,1-dimethyl-propyl)-benzene-1,2-diol resulting in two hitherto unknown ring fission products with pyran and furan structures, 4-(1,1-dimethyl-propyl)-6-oxo-6-H-pyran-2-carboxylic acid and 2-[3-(1,1-dimethyl-propyl)-5-oxo-2H-furan-2-yl]acetic acid. While the disinfectant was toxic to the organisms applied, one of the ring cleavage products was not. Thus, a detoxification of the disinfectant was achieved by ring cleavage. Furthermore, one filamentous fungus formed sugar conjugates with p-tert-amylphenol as another mechanism of detoxification of toxic environmental pollutants. With this work, we can also contribute to the allocation of unknown chemical compounds within environmental samples to their parent compounds.

  17. 1-(4-Methyl-1-naphth­yl)ethanone

    PubMed Central

    Hu, Yong-Hong; Zhao, Xiao-Lei; Yang, Wen-Ge; Yao, Jin-Feng; Lu, Xiu-Tao

    2008-01-01

    In the mol­ecule of the title compound, C13H12O, the two aromatic rings are oriented at a dihedral angle of 2.90 (3)°. An intra­molecular C—H⋯O hydrogen bond results in the formation of a non-planar six-membered ring, which adopts an envelope conformation. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules. PMID:21581284

  18. Investigation of the interaction between benzaldehyde thiosemicarbazone compounds and xanthine oxidase

    NASA Astrophysics Data System (ADS)

    Li, Mengrong; Yu, Yanying; Liu, Jing; Chen, Zelu; Cao, Shuwen

    2018-05-01

    A series of substituted benzaldehyde thiosemicarbazide compounds (1-7) were synthesized as xanthine oxidase (XO) inhibitors, and the interactions between substituted benzaldehyde thiosemicarbazide compounds (1-7) and XO were studied by ultraviolet spectroscopy, fluorescence spectroscopy, and molecular docking. It was found that the hydrogen bond and hydrophobicity were the main interactions between substituted benzaldehyde thiosemicarbazide compounds and XO, and introducing sbnd OH at the para position of the benzene ring and a Ph- or Me-group at the amino terminal of compound 4 increased the modifier's inhibitory activity. The results suggest that the newly introduced benzene ring interacted with the hydrophobic cavity of XO by means of the π-π stacking force between the newly introduced benzene ring and the aromatic amino acid residues, such as the Phe residue, which greatly increased the modifier's inhibitory activity. We conclude that introducing the Ph-group at the amino terminal of compound 4 and the sbnd OH group at the para position of the benzene ring was a good route to obtain novel XO inhibitors. Fluorescence spectroscopy assisted by 8-anilino-1-naphthalenesulfonic acid fluorescence probing and molecular docking were helpful for achieving a preliminary and relatively clear understanding of the interactions between target compounds and XO, which deserve further study.

  19. Antioxidative and antiradical properties of plant phenolics.

    PubMed

    Sroka, Zbigniew

    2005-01-01

    The plant phenolic compounds such as flavonoids, tannins and phenolic acids appeared to be strong antiradical and antioxidant compounds. The number of hydroxy groups and the presence of a 2,3-double bond and orthodiphenolic structure enhance antiradical and antioxidative activity of flavonoids. The glycosylation, blocking the 3-OH group in C-ring, lack of a hydroxy group or the presence of only a methoxy group in B-ring have a decreasing effect on antiradical or antioxidative activity of these compounds. Tannins show strong antioxidative properties. Some tannins in red wine or gallate esters were proved to have antioxidative effect in vivo. The number of hydroxy groups connected with the aromatic ring, in ortho or para position relative to each other, enhance antioxidative and antiradical activity of phenolic acids. The substitution of a methoxy group in ortho position to the OH in monophenols seems to favour the antioxidative activity of the former.

  20. Studies on non-steroidal inhibitors of aromatase enzyme; 4-(aryl/heteroaryl)-2-(pyrimidin-2-yl)thiazole derivatives.

    PubMed

    Sahin, Zafer; Ertas, Merve; Berk, Barkın; Biltekin, Sevde Nur; Yurttas, Leyla; Demirayak, Seref

    2018-05-01

    Steroidal and non-steroidal aromatase inhibitors target the suppression of estrogen biosynthesis in the treatment of breast cancer. Researchers have increasingly focused on developing non-steroidal derivatives for their potential clinical use avoiding steroidal side-effects. Non-steroidal derivatives generally have planar aromatic structures attached to the azole ring system. One part of this ring system comprises functional groups that inhibit aromatization through the coordination of the haem group of the aromatase enzyme. Replacement of the triazole ring system and development of aromatic/cyclic structures of the side chain can increase selectivity over aromatase enzyme inhibition. In this study, 4-(aryl/heteroaryl)-2-(pyrimidin-2-yl)thiazole derivatives were synthesized and physical analyses and structural determination studies were performed. The IC 50 values were determined by a fluorescence-based aromatase inhibition assay and compound 1 (4-(2-hydroxyphenyl)-2-(pyrimidine-2-yl)thiazole) were found potent inhibitor of enzyme (IC 50 :0.42 nM). Then, their antiproliferative activity over MCF-7 and HEK-293 cell lines was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Compounds 1, 7, 8, 13, 15, 18, 21 were active against MCF-7 breast cancer cells. Lastly, a series of docking experiments were undertaken to analyze the crystal structure of human placental aromatase and identify the possible interactions between the most active structure and the active site. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. QSAR and molecular modelling studies on B-DNA recognition of minor groove binders.

    PubMed

    de Oliveira, André Mauricio; Custódio, Flávia Beatriz; Donnici, Cláudio Luis; Montanari, Carlos Alberto

    2003-02-01

    Aromatic bisamidines have been proved to be efficient compounds against Leishmania spp. and Pneumocystis carinii. Although the mode of action is still not known, these molecules are supposed to be DNA minor groove binders (MGBs). This paper describes a molecular modelling study for a set of MGBs in order to rank them through their complementarity to the Dickerson Drew Dodecamer (DDD) according to their interaction energies with B-DNA. A comparative molecular field analysis (CoMFA) has shown the importance of relatively bulky positively charged groups attached to the MGB aromatic rings, and small and negatively charged substituents into the middle chain. Models were obtained for DNA denaturation related to H-bonding processes of binding modes. Validation of the model demonstrated the robustness of CoMFA in terms of independent test set of similar MGBs. GRID results allotted bioisosteric substitution of z.sbnd;Oz.sbnd; by z.sbnd;NHz.sbnd; in furan ring of furamidine and related compounds as being capable to enhance the binding to DDD.

  2. [Laser Induced Fluorescence Spectroscopic Analysis of Aromatics from One Ring to Four Rings].

    PubMed

    Zhang, Peng; Liu, Hai-feng; Yue, Zong-yu; Chen, Bei-ling; Yao, Ming-fa

    2015-06-01

    In order to distinguish small aromatics preferably, a Nd : YAG Laser was used to supply an excitation laser, which was adjusted to 0.085 J x cm(-2) at 266 nm. Benzene, toluene, naphthalene, phenanthrene, anthracene, pyrene and chrysene were used as the representative of different rings aromatics. The fluorescence emission spectra were researched for each aromatic hydrocarbon and mixtures by Laser induced fluorescence (LIF). Results showed that the rings number determined the fluorescence emission spectra, and the structure with same rings number did not affect the emission fluorescence spectrum ranges. This was due to the fact that the absorption efficiency difference at 266 nm resulted in that the fluorescence intensities of each aromatic hydrocarbon with same rings number were different and the fluorescence intensities difference were more apparently with aromatic ring number increasing. When the absorption efficiency was similar at 266 nm and the concentrations of each aromatic hydrocarbon were same, the fluorescence intensities were increased with aromatic ring number increasing. With aromatic ring number increasing, the fluorescence spectrum and emission peak wavelength were all red-shifted from ultraviolet to visible and the fluorescence spectrum range was also wider as the absorption efficiency was similar. The fluorescence emission spectra from one to four rings could be discriminated in the following wavelengths, 275 to 320 nm, 320 to 375 nm, 375 to 425 nm, 425 to 556 nm, respectively. It can be used for distinguish the type of the polycyclic aromatic hydrocarbons (PAHs) as it exists in single type. As PAHs are usually exist in a variety of different rings number at the same time, the results for each aromatic hydrocarbon may not apply to the aromatic hydrocarbon mixtures. For the aromatic hydrocarbon mixtures, results showed that the one- or two-ring PAHs in mixtures could not be detected by fluorescence as three- or four-ring PAHs existed in mixture. This was caused by radiation energy transfer mechanism, in which the ultraviolet light was lost in mixtures but the fluorescence intensities were increased with the one- or two-ring PAHs adding. When the mixture only contained three- and four-ring PAHs, the fluorescence emission spectrum showed the both characteristics of three- and four-ring PAHs fluorescence. When three- and four-ring PAHs existed in mixtures at the same time, the fluorescence emission spectra were related to each concentration, so the rings number could be discriminated to a certain extent.

  3. 3-O-Benzyl-6-O-benzoyl-1,2-O-isopropil-idene-5-C-nitro-methyl-a-d-glucofuran-ose.

    PubMed

    Pampín, Begoña; Valencia, Laura; Estévez, Juan C; Estévez, Ramón J

    2009-01-17

    The title compound, C(24)H(27)NO(9), is one of the epimers of the Henry reaction of 3-O-benzyl-6-O-benzoyl-2-O-isopropyl-idene-a-d-glucofuran-5-one with nitro-methane. The conformation of the five membered rings is as expected from the precursor compound and the mol-ecule is folded with a dihedral angle of 51.4 (2)° between the aromatic rings. One O-H⋯O hydrogen bond and some intra-molecular and inter-molecular C-H⋯O inter-actions are observed in the structure.

  4. Synthesis of new 1,2,4-triazole compounds containing Schiff and Mannich bases (morpholine) with antioxidant and antimicrobial activities.

    PubMed

    Ünver, Yasemin; Deniz, Sadik; Çelik, Fatih; Akar, Zeynep; Küçük, Murat; Sancak, Kemal

    2016-01-01

    Compound 2 was synthesized by reacting CS 2 /KOH with compound 1. The treatment of compound 2 with hydrazine hydrate produced compound 3. Then, compound 3 was converted to Schiff bases (4a-d) by the handling with several aromatic aldehydes. The treatment of triazole compounds 4a-d containing Schiff base with morpholine gave compounds 5a-d. All compounds were tested for their antioxidant and antimicrobial activities. The antioxidant test results of DPPH• radical scavenging and ferric reducing/antioxidant power methods showed good antioxidant activity. The triazole-thiol (3) was the most active, and the effect of the substituent type of the thiophene ring on the activity was same for both Schiff bases (4a-d) and Mannich bases (5a-d). Among the newly synthesized triazole derivatives, the Schiff base 4d and the Mannich base 5d carrying nitro substituent on the thiophene ring showed promising antibacterial and antifungal activity, with lower MIC values than the standard antibacterial ampicillin.

  5. The effect of aromatization on the isotopic compositions of hydrocarbons during early diagenesis

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Boreham, C. J.; Summons, R. E.; Hayes, J. M.

    1994-01-01

    Polycyclic aromatic hydrocarbons with varying degrees of aromatization were isolated from the Eocene Messel Shale (Rheingraben, Germany). The high abundances of these compounds and their structural resemblances to cyclic triterpenoid lipids are consistent with derivation from microbial rather than thermal processes. Compounds structurally related to oleanane contain from five to nine double bonds; those within a series of aromatized hopanoids contain from three to nine. All are products of diagenetic reactions that remove hydrogen or methyl groups, and, in several cases, break carbon-carbon bonds to open rings. Aromatized products are on average depleted in 13C relative to possible precursors by l.2% (range: l.5% enrichment to 4% depletion, n = 9). The dependence of 13C content on the number of double bonds is not, however, statistically significant and it must be concluded that there is no strong evidence for isotopic fractionation accompanying diagenetic aromatization. Isotopic differences between series (structures related to ursane, des-A-ursane, des-A-lupane, des-A-arborane, and possibly, des-A-gammacerane are present) are much greater, indicating that 13C contents are controlled primarily by source effects. Fractionations due to chromatographic isotope effects during HPLC ranged from 0.1 to 2.8%.

  6. Comparison of UV/hydrogen peroxide, potassium ferrate(VI), and ozone in oxidizing the organic fraction of oil sands process-affected water (OSPW).

    PubMed

    Wang, Chengjin; Klamerth, Nikolaus; Messele, Selamawit Ashagre; Singh, Arvinder; Belosevic, Miodrag; Gamal El-Din, Mohamed

    2016-09-01

    The efficiency of three different oxidation processes, UV/H2O2 oxidation, ferrate(VI) oxidation, and ozonation with and without hydroxyl radical (OH) scavenger tert-butyl alcohol (TBA) on the removal of organic compounds from oil sands process-affected water (OSPW) was investigated and compared. The removal of aromatics and naphthenic acids (NAs) was explored by synchronous fluorescence spectra (SFS), ion mobility spectra (IMS), proton and carbon nuclear magnetic resonance ((1)H and (13)C NMR), and ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC TOF-MS). UV/H2O2 oxidation occurred through radical reaction and photolysis, transforming one-ring, two-ring, and three-ring fluorescing aromatics simultaneously and achieving 42.4% of classical NAs removal at 2.0 mM H2O2 and 950 mJ/cm(2) UV dose provided with medium pressure mercury lamp. Ferrate(VI) oxidation exhibited high selectivity, preferentially removing two-ring and three-ring fluorescing aromatics, sulfur-containing NAs (NAs + S), and NAs with high carbon and high hydrogen deficiency. At 2.0 mM Fe(VI), 46.7% of classical NAs was removed. Ozonation achieved almost complete removal of fluorescing aromatics, NAs + S, and classical NAs (NAs with two oxygen atoms) at the dose of 2.0 mM O3. Both molecular ozone reaction and OH reaction were important pathways in transforming the organics in OSPW as supported by ozonation performance with and without TBA. (1)H NMR analyses further confirmed the removal of aromatics and NAs both qualitatively and quantitatively. All the three oxidation processes reduced the acute toxicity towards Vibrio fischeri and on goldfish primary kidney macrophages (PKMs), with ozonation being the most efficient. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Volatiles from the xylarialean fungus Hypoxylon invadens.

    PubMed

    Dickschat, Jeroen S; Wang, Tao; Stadler, Marc

    2018-01-01

    The volatiles emitted by agar plate cultures of the xylarialean fungus Hypoxylon invadens were investigated by use of a closed loop stripping apparatus in combination with GC-MS. Several aromatic compounds were found that could only be identified by comparison to all possible constitutional isomers with different ring substitution patterns. For the set of identified compounds a plausible biosynthetic scheme was suggested that gives further support for the assigned structures.

  8. Aromatic hydroxylation by cytochrome P450: model calculations of mechanism and substituent effects.

    PubMed

    Bathelt, Christine M; Ridder, Lars; Mulholland, Adrian J; Harvey, Jeremy N

    2003-12-10

    The mechanism and selectivity of aromatic hydroxylation by cytochrome P450 enzymes is explored using new B3LYP density functional theory computations. The calculations, using a realistic porphyrin model system, show that rate-determining addition of compound I to an aromatic carbon atom proceeds via a transition state with partial radical and cationic character. Reactivity is shown to depend strongly on ring substituents, with both electron-withdrawing and -donating groups strongly decreasing the addition barrier in the para position, and it is shown that the calculated barrier heights can be reproduced by a new dual-parameter equation based on radical and cationic Hammett sigma parameters.

  9. Structure of aryl O -demethylase offers molecular insight into a catalytic tyrosine-dependent mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Amanda C.; Mills, Matthew J. L.; Adams, Paul D.

    Some strains of soil and marine bacteria have evolved intricate metabolic pathways for using environmentally derived aromatics as a carbon source. Many of these metabolic pathways go through intermediates such as vanillate, 3-O-methylgallate, and syringate. Demethylation of these compounds is essential for downstream aryl modification, ring opening, and subsequent assimilation of these compounds into the tricarboxylic acid (TCA) cycle, and, correspondingly, there are a variety of associated aryl demethylase systems that vary in complexity. Intriguingly, only a basic understanding of the least complex system, the tetrahydrofolate-dependent aryl demethylase LigM from Sphingomonas paucimobilis, a bacterial strain that metabolizes lignin-derived aromatics, wasmore » previously available. LigM-catalyzed demethylation enables further modification and rin g opening of the single-ring aromatics vanillate and 3-Omethylgallate, which are common byproducts of biofuel production. We characterize aryl O-demethylation by LigM and report its 1.81-Å crystal structure, revealing a unique demethylase fold and a canonical folate-binding domain. Structural homology and geometry optimization calculations enabled the identification of LigM's tetrahydrofolate-binding site and protein-folate interactions. Computationally guided mutagenesis and kinetic analyses allowed the identification of the enzyme's aryl-binding site location and determination of its unique, catalytic tyrosine-dependent reaction mechanism. This work defines LigM as a distinct demethylase, both structurally and functionally, and provides insight into demethylation and its reaction requirements. Our results afford the mechanistic details required for efficient utilization of LigM as a tool for aryl O-demethylation and as a component of synthetic biology efforts to valorize previously underused aromatic compounds.« less

  10. Structure of aryl O -demethylase offers molecular insight into a catalytic tyrosine-dependent mechanism

    DOE PAGES

    Kohler, Amanda C.; Mills, Matthew J. L.; Adams, Paul D.; ...

    2017-04-03

    Some strains of soil and marine bacteria have evolved intricate metabolic pathways for using environmentally derived aromatics as a carbon source. Many of these metabolic pathways go through intermediates such as vanillate, 3-O-methylgallate, and syringate. Demethylation of these compounds is essential for downstream aryl modification, ring opening, and subsequent assimilation of these compounds into the tricarboxylic acid (TCA) cycle, and, correspondingly, there are a variety of associated aryl demethylase systems that vary in complexity. Intriguingly, only a basic understanding of the least complex system, the tetrahydrofolate-dependent aryl demethylase LigM from Sphingomonas paucimobilis, a bacterial strain that metabolizes lignin-derived aromatics, wasmore » previously available. LigM-catalyzed demethylation enables further modification and rin g opening of the single-ring aromatics vanillate and 3-Omethylgallate, which are common byproducts of biofuel production. We characterize aryl O-demethylation by LigM and report its 1.81-Å crystal structure, revealing a unique demethylase fold and a canonical folate-binding domain. Structural homology and geometry optimization calculations enabled the identification of LigM's tetrahydrofolate-binding site and protein-folate interactions. Computationally guided mutagenesis and kinetic analyses allowed the identification of the enzyme's aryl-binding site location and determination of its unique, catalytic tyrosine-dependent reaction mechanism. This work defines LigM as a distinct demethylase, both structurally and functionally, and provides insight into demethylation and its reaction requirements. Our results afford the mechanistic details required for efficient utilization of LigM as a tool for aryl O-demethylation and as a component of synthetic biology efforts to valorize previously underused aromatic compounds.« less

  11. Synthesis and mutagenicity of a ring-A-aromatized bile acid, 3-hydroxy-19-nor-1,3,5(10)-cholatrien-24-oic acid.

    PubMed

    Namba, T; Hirota, T; Hayakawa, S

    1988-06-01

    It has been presumed that ring-A-aromatized bile acids are produced from biliary bile acids by intestinal flora and the acids thus formed participate in the large bowel carcinogenesis. One of these acids is probably 3-hydroxy-19-nor-1,3,5(10)-cholatrien-24-oic acid, judged from the literatures. Consequently, this acid was synthesized from previously prepared 3-methoxy-19-nor-1,3,5(10)-cholatrien-24-ol. The phenolic ether was successively oxidized with pyridinium chlorochromate and wet silver oxide to give 3-methoxy-19-nor-1,3,5(10)-cholatrien-24-oic acid in high yield, which, after successive treatments with methanol containing a catalytic amount of p-toluenesulfonic acid, a combination of aluminum chloride and ethanethiol, and alkali, gave the desired compound in satisfactory yield. The compound was not mutagenic in Salmonella tester strains TA 98 and TA 100, but it increased the mutagenicity of 2-aminoanthracene when both were applied to plates together. When compared with cholic, deoxycholic, and lithocholic acids, the investigated compound exhibited about two to threefold increase of mutagenicity in the latter assay.

  12. 2-(Hetero(aryl)methylene)hydrazine-1-carbothioamides as potent urease inhibitors.

    PubMed

    Saeed, Aamer; Imran, Aqeel; Channar, Pervaiz A; Shahid, Mohammad; Mahmood, Wajahat; Iqbal, Jamshed

    2015-02-01

    A small series of 2-(hetero(aryl)methylene) hydrazine-1-carbothioamides including two aryl derivatives was synthesized and tested for their inhibitory activity against urease. Compound (E)-2-(Furan-2-ylmethylene) hydrazine-1-carbothioamide (3f), having a furan ring, was the most potent inhibitor of urease with an IC50 value of 0.58 μM. Molecular modeling was carried out through docking the designed compounds into the urease binding site to predict whether these derivatives have analogous binding mode to the urease inhibitors. The study revealed that all of the tested compounds bind with both metal atoms at the active site of the enzyme. The aromatic ring of the compounds forms ionic interactions with the residues, Ala(440), Asp(494), Ala(636), and Met(637). © 2014 John Wiley & Sons A/S.

  13. 2,3-Dimethyl-6-nitro-2H-indazole

    PubMed Central

    Chen, Yan; Fang, Zheng; Wei, Ping

    2009-01-01

    In the mol­ecule of the title compound, C9H9N3O2, the indazole ring system is almost planar [maximum deviation = 0.019 (3) Å for the C atom bearing the nitro group]. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules into centrosymmetric dimers, forming R 2 2(18) ring motifs. Aromatic π–π contacts between indazole rings [centroid–centroid distances = 3.632 (1) and 3.705 (1) Å] may further stabilize the structure. PMID:21583483

  14. Synthesis and Structural Data of Tetrabenzo[8]circulene

    PubMed Central

    Miller, Robert W.; Duncan, Alexandra K.; Schneebeli, Severin T.; Gray, Danielle L.; Whalley, Adam C.

    2015-01-01

    In 1976, the first attempted synthesis of the saddle-shaped molecule [8]circulene was reported. The next 37 years produced no advancement towards the construction of this complicated molecule. Remarkably, however, over the last six months a flurry of progress has been made with two groups reporting independent and strikingly different strategies for the synthesis of [8]circulene derivatives. Herein, we present a third synthetic method in which we target tetrabenzo[8]circulene. Our approach employs a Diels-Alder reaction and a palladium-catalyzed arylation reaction as the key steps. Despite calculations describing the instability of [8]circulene, coupled with the reported instability of synthesized derivatives of the parent molecule, the addition of four fused benzenoid rings around the periphery of the molecule provides a highly stable structure. This increased stability over the parent [8]circulene was predicted using Clar’s theory of aromatic sextets and is a result of the compound becoming fully benzenoid upon incorporation of these additional rings. The synthesized compound exhibits remarkable stability under ambient conditions – even at elevated temperatures – with no signs of decomposition over several months. The solid-state structure of this compound is significantly twisted compared to the calculated structure primarily as a result of crystal packing forces in the solid state. Despite this contortion from the lowest energy structure, a range of structural data is presented confirming the presence of localized aromaticity in this large polycyclic aromatic hydrocarbon. PMID:24615957

  15. Structure of Cryptosporidium IMP dehydrogenase bound to an inhibitor with in vivo antiparasitic activity

    DOE PAGES

    Kim, Youngchang; Makowska-Grzyska, Magdalena; Gorla, Suresh Kumar; ...

    2015-04-21

    Inosine 5´-monophosphate dehydrogenase (IMPDH) is a promising target for the treatment of Cryptosporidium infections. Here, the structure of C. parvum IMPDH ( CpIMPDH) in complex with inosine 5´-monophosphate (IMP) and P131, an inhibitor with in vivo anticryptosporidial activity, is reported. P131 contains two aromatic groups, one of which interacts with the hypoxanthine ring of IMP, while the second interacts with the aromatic ring of a tyrosine in the adjacent subunit. In addition, the amine and NO 2 moieties bind in hydrated cavities, forming water-mediated hydrogen bonds to the protein. The design of compounds to replace these water molecules is amore » new strategy for the further optimization of C. parvum inhibitors for both antiparasitic and antibacterial applications.« less

  16. Structure of Cryptosporidium IMP dehydrogenase bound to an inhibitor with in vivo antiparasitic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Youngchang; Makowska-Grzyska, Magdalena; Gorla, Suresh Kumar

    2015-04-21

    Inosine 5'-monophosphate dehydrogenase (IMPDH) is a promising target for the treatment ofCryptosporidiuminfections. Here, the structure ofC. parvumIMPDH (CpIMPDH) in complex with inosine 5'-monophosphate (IMP) and P131, an inhibitor within vivoanticryptosporidial activity, is reported. P131 contains two aromatic groups, one of which interacts with the hypoxanthine ring of IMP, while the second interacts with the aromatic ring of a tyrosine in the adjacent subunit. In addition, the amine and NO 2moieties bind in hydrated cavities, forming water-mediated hydrogen bonds to the protein. The design of compounds to replace these water molecules is a new strategy for the further optimization ofC. parvuminhibitorsmore » for both antiparasitic and antibacterial applications.« less

  17. The oxidation degradation of aromatic compounds

    NASA Technical Reports Server (NTRS)

    Brezinsky, Kenneth; Glassman, Irvin

    1987-01-01

    A series of experiments were conducted which focused on understanding the role that the O atom addition to aromatic rings plays in the oxidation of benzene and toluene. Flow reactor studies of the oxidation of toluene gave an indication of the amount of O atoms available during an oxidation and the degree to which the O atom adds to the ring. Flow reactor studies of the oxidation of toluene and benzene to which NO2 was added, have shown that NO2 appears to suppress the formation of O atoms and consequently reduce the amount of phenols and cresols formed by O atom addition. A high temperature pyrolysis study of phenol has confirmed that the major decomposition products are carbon monoxide and cyclopentadiene. A preliminary value for the overall decomposition rate constant was also obtained.

  18. Comparing Urinary Biomarkers of Airborne and Dermal Exposure to Polycyclic Aromatic Compounds in Asphalt-Exposed Workers

    PubMed Central

    Sobus, Jon R.; McClean, Michael D.; Herrick, Robert F.; Waidyanatha, Suramya; Nylander-French, Leena A.; Kupper, Lawrence L.; Rappaport, Stephen M.

    2009-01-01

    When working with hot mix asphalt, road pavers are exposed to polycyclic aromatic hydrocarbons (PAHs) through the inhalation of vapors and particulate matter (PM) and through dermal contact with PM and contaminated surfaces. Several PAHs with four to six rings are potent carcinogens which reside in these particulate emissions. Since urinary biomarkers of large PAHs are rarely detectable in asphalt workers, attention has focused upon urinary levels of the more volatile and abundant two-ring and three-ring PAHs as potential biomarkers of PAH exposure. Here, we compare levels of particulate polycyclic aromatic compounds (P-PACs, a group of aromatic hydrocarbons containing PAHs and heterocyclic compounds with four or more rings) in air and dermal patch samples from 20 road pavers to the corresponding urinary levels of naphthalene (U-Nap) (two rings), phenanthrene (U-Phe) (three rings), monohydroxylated metabolites of naphthalene (OH-Nap) and phenanthrene (OH-Phe), and 1-hydroxypyrene (OH-Pyr) (four rings), the most widely used biomarker of PAH exposure. For each worker, daily breathing-zone air (n = 55) and dermal patch samples (n = 56) were collected on three consecutive workdays along with postshift, bedtime, and morning urine samples (n = 149). Measured levels of P-PACs and the urinary analytes were used to statistically model exposure–biomarker relationships while controlling for urinary creatinine, smoking status, age, body mass index, and the timing of urine sampling. Levels of OH-Phe in urine collected postshift, at bedtime, and the following morning were all significantly associated with levels of P-PACs in air and dermal patch samples. For U-Nap, U-Phe, and OH-Pyr, both air and dermal patch measurements of P-PACs were significant predictors of postshift urine levels, and dermal patch measurements were significant predictors of bedtime urine levels (all three analytes) and morning urine levels (U-Nap and OH-Pyr only). Significant effects of creatinine concentration were observed for all analytes, and modest effects of smoking status and body mass index were observed for U-Phe and OH-Pyr, respectively. Levels of OH-Nap were not associated with P-PAC measurements in air or dermal patch samples but were significantly affected by smoking status, age, day of sample collection, and urinary creatinine. We conclude that U-Nap, U-Phe, OH-Phe, and OH-Pyr can be used as biomarkers of exposure to particulate asphalt emissions, with OH-Phe being the most promising candidate. Indications that levels of U-Nap, U-Phe, and OH-Pyr were significantly associated with dermal patch measurements well into the evening after a given work shift, combined with the small ratios of within-person variance components to between-person variance components at bedtime, suggest that bedtime measurements may be useful for investigating dermal PAH exposures. PMID:19602502

  19. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen.

    PubMed

    Zakzeski, Joseph; Weckhuysen, Bert M

    2011-03-21

    The solubilization and aqueous phase reforming of lignin, including kraft, soda, and alcell lignin along with sugarcane bagasse, at low temperatures (T≤498 K) and pressures (P≤29 bar) is reported for the first time for the production of aromatic chemicals and hydrogen. Analysis of lignin model compounds and the distribution of products obtained during the lignin aqueous phase reforming revealed that lignin was depolymerized through disruption of the abundant β-O-4 linkages and, to a lesser extent, the 5-5' carbon-carbon linkages to form monomeric aromatic compounds. The alkyl chains contained on these monomeric compounds were readily reformed to produce hydrogen and simple aromatic platform chemicals, particularly guaiacol and syringol, with the distribution of each depending on the lignin source. The methoxy groups present on the aromatic rings were subject to hydrolysis to form methanol, which was also readily reformed to produce hydrogen and carbon dioxide. The composition of the isolated yields of monomeric aromatic compounds and overall lignin conversion based on these isolated yields varied from 10-15% depending on the lignin sample, with the balance consisting of gaseous products and residual solid material. Furthermore, we introduce the use of a high-pressure autoclave with optical windows and an autoclave with ATR-IR sentinel for on-line in situ spectroscopic monitoring of biomass conversion processes, which provides direct insight into, for example, the solubilization process and aqueous phase reforming reaction of lignin. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Crystal structure of 3-(2,5-di-meth-oxy-phen-yl)propionic acid.

    PubMed

    Bugenhagen, Bernhard; Al Jasem, Yosef; AlAzani, Mariam; Thiemann, Thies

    2015-05-01

    In the crystal of the title compound, C11H14O4, the aromatic ring is almost coplanar with the 2-position meth-oxy group with which it subtends a dihedral of 0.54 (2)°, while the 5-position meth-oxy group makes a corresponding dihedral angle of just 5.30 (2)°. The angle between the mean planes of the aromatic ring and the propionic acid group is 78.56 (2)°. The fully extended propionic side chain is in a trans configuration with a C-C-C-C torsion angle of -172.25 (7)°. In the crystal, hydrogen bonding is limited to dimer formation via R 2 (2)(8) rings. The hydrogen-bonded dimers are stacked along the b axis. The average planes of the two benzene rings in a dimer are parallel to each other, but at an offset of 4.31 (2) Å. Within neighbouring dimers along the [101] direction, the average mol-ecular benzene planes are almost perpendicular to each other, with a dihedral angle of 85.33 (2)°.

  1. Analysis of the magnetically induced current density of molecules consisting of annelated aromatic and antiaromatic hydrocarbon rings.

    PubMed

    Sundholm, Dage; Berger, Raphael J F; Fliegl, Heike

    2016-06-21

    Magnetically induced current susceptibilities and current pathways have been calculated for molecules consisting of two pentalene groups annelated with a benzene (1) or naphthalene (2) moiety. Current strength susceptibilities have been obtained by numerically integrating separately the diatropic and paratropic contributions to the current flow passing planes through chosen bonds of the molecules. The current density calculations provide novel and unambiguous current pathways for the unusual molecules with annelated aromatic and antiaromatic hydrocarbon moieties. The calculations show that the benzene and naphthalene moieties annelated with two pentalene units as in molecules 1 and 2, respectively, are unexpectedly antiaromatic sustaining only a local paratropic ring current around the ring, whereas a weak diatropic current flows around the C-H moiety of the benzene ring. For 1 and 2, the individual five-membered rings of the pentalenes are antiaromatic and a slightly weaker semilocal paratropic current flows around the two pentalene rings. Molecules 1 and 2 do not sustain any net global ring current. The naphthalene moiety of the molecule consisting of a naphthalene annelated with two pentalene units (3) does not sustain any strong ring current that is typical for naphthalene. Instead, half of the diatropic current passing the naphthalene moiety forms a zig-zag pattern along the C-C bonds of the naphthalene moiety that are not shared with the pentalene moieties and one third of the current continues around the whole molecule partially cancelling the very strong paratropic semilocal ring current of the pentalenes. For molecule 3, the pentalene moieties and the individual five-membered rings of the pentalenes are more antiaromatic than for 1 and 2. The calculated current patterns elucidate why the compounds with formally [4n + 2] π-electrons have unusual aromatic properties violating the Hückel π-electron count rule. The current density calculations also provide valuable information for interpreting the measured (1)H NMR spectra.

  2. A novel withanolide with an unprecedented carbon skeleton from Physalis angulata.

    PubMed

    Sun, Cheng-Peng; Kutateladze, Andrei G; Zhao, Feng; Chen, Li-Xia; Qiu, Feng

    2017-02-01

    A novel withanolide, aromaphysalin A (1), possessing an exceptional C(11)-C(15) bond and an unprecedented 4,9-cyclized aromatic ring (ring A), is isolated from stems and leaves of Physalis angulata L. Its structure was determined by a combination of HRESIMS, 2D NMR spectra, and theoretical calculations. Compound 1 exhibited inhibitory activity on NO production with an IC 50 value of 51.64 μM. A plausible biosynthetic pathway for 1 is also discussed.

  3. Relationship between structure and antiproliferative activity of 1-azaflavanones.

    PubMed

    Kawaii, Satoru; Endo, Kotaro; Tokiwano, Tetsuo; Yoshizawa, Yuko

    2012-07-01

    The synthesis of 19 derivatives of 2-phenyl-3,4-dihydroquinolin-4(1H)-one, as aza analogs of flavanones, was carried out and these compounds were further screened for their antiproliferative activity toward HL60 promyelocytic leukemia cells. In comparison with flavanone the replacement of C-ring ether oxygen atom with a nitrogen atom potentiated activity by more than 100-fold. It was suggested that the aromaticity of the B-ring contributes greatly to the activity of 1-azaflavanones.

  4. 4-Nitro­benzyl 2-bromo­acetate

    PubMed Central

    Zhu, Kai; Liu, Hui; Wang, Yan-Hua; Han, Ping-Fang; Wei, Ping

    2009-01-01

    In the mol­ecule of the title compound, C9H8BrNO4, the acetate group is close to planar [maximum deviation = 0.042 (3) Å] and is oriented at a dihedral angle of 73.24 (3)° with respect to the aromatic ring. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules into a three-dimensional network, forming R 2 2(10) ring motifs. PMID:21582813

  5. Synthesis, Structural Characterization and Physicochemical Properties of Polymers Formed by Diazotization of 3-Amino-L-tyrosine and Closely Related Compounds

    DTIC Science & Technology

    1998-07-06

    the possibility that a diazotization at the aliphatic (alpha) amino group might lead to deamination with the formation of a cinnamic acid derivative...symmetric chlorinated/nitrated cinnamic acid derivative, and might not provide unequivocal connectivity information, although it could suggest ring...substituted aromatic ring, i.e., it is more like the spectrum of p-coumaric acid than the desired 3-amino-4-hydroxy- cinnamic acid , which would be

  6. Synthesis of Potential Metaboliters in the 1,2,3,4, and 5,6,7,8 Benzo Ring Positions of the Polycyclic Aromatic Hydrocarbon Benzo(G)Chrysene.

    DTIC Science & Technology

    1986-01-01

    biological activity. Pullman, in 1945 , noted that active compounds contained angular benzo rings. She introduced the terminology "K- region" to refer to...Figure 1.6) give .... ~~~~~. .. .. .. . ........ . _............ . _.-.•.-•.. . ..... ... ,. 12 .xcellent correlation when measured reactivity ( hydrolysis ...molecular plane, the diol epoxide is trans or series 2. Early studies indicated that isomer 1 is the more reactive diol epoxide in hydrolysis reactions

  7. An x-ray diffraction study of some mesoionic 2,3-diphenyltetrazoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luboradzki, R.; Kozminski, W.; Stefaniak, L.

    1993-02-01

    An X-my diffraction study is reported for four molecules of mesoionic 2,3-diphenyltetrazoles. The results confirm a dipolar [open quotes]mesoionic[close quotes] structure, aromatic character of the tetrazole ring and no conjugation between the phenyl and tetrazole rings. The geometry of the exocyclic group is discussed in detail. The molecular parameters of the compounds investigated are correlated with [sup 13]C and [sup 15]N nmr data. The results obtained are compared with similar structures which have already been studied.

  8. 3-(2,4-Dichloro­anilino)iso­benzo­furan-1(3H)-one1

    PubMed Central

    Odabaşoğlu, Mustafa; Büyükgüngör, Orhan

    2008-01-01

    In the mol­ecule of the title compound, C14H9Cl2NO2, the essentially planar phthalide group is oriented at a dihedral angle of 63.23 (5)° with respect to the substituted aromatic ring. In the crystal structure, inter­molecular C—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules, generating R 4 4(21) ring motifs to form a three-dimensional network. PMID:21202144

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, B.D.; Apel, W.A.; Walton, M.R.

    Conceptually, biofilters are vapor phase bioreactors that rely on microorganisms in the bed medium to oxidize contaminants in off-gases flowing through the bed to less hazardous compounds. In the most studied and utilized systems reduced compounds such as fuel hydrocarbons are enzymatically oxidized to compounds such as carbon dioxide and water. In these types of reactions the microorganisms in the bed oxidize the contaminant and transfer the electrons to oxygen which is the terminal electron acceptor in the process. In essence the contaminant is the carbon and energy source for the microorganisms in the bed medium and through this catabolicmore » process oxygen is reduced to water. An example of this oxidation process can be seen during the degradation of benzene and similar aromatic compounds. Aromatics are initially attacked by a dioxygenase enzyme which oxidizes the compounds to a labile dihydrodiole which is spontaneously converted to a catechol. The dihydroxylated aromatic rings is then opened by oxidative {open_quotes}ortho{close_quotes} or {open_quotes}meta{close_quotes} cleavage yielding cis, cis-muconic acid or 2-hydroxy-cis, cis-muconic semialdehyde, respectively. These organic compounds are further oxidized to carbon dioxide or are assimilated for cellular material. This paper describes the conversion of carbon tetrachloride using methanol as the primary carbon and energy source.« less

  10. 3-Ethyl-5-(4-meth­oxy­phen­oxy)-2-(pyridin-4-yl)-3H-imidazo[4,5-b]pyridine

    PubMed Central

    Ranjith, S.; SubbiahPandi, A.; Suresh, A. D.; Pitchumani, K.

    2011-01-01

    In the title compound, C20H18N4O2, the imidazopyridine fused ring system is almost perpendicular to the benzene ring [dihedral angle = 87.6 (5)°]. The pyridine ring makes a dihedral angle of 35.5 (5)° with the mean plane of the imidazopyridine fragment. The crystal structure is stabilized by an aromatic π–π stacking inter­action between the phenyl rings of neighbouring mol­ecules [centroid–centroid distance = 3.772 (2) Å, inter­planar distance = 3.546 (2) Å and slippage = 1.286 (2) Å]. PMID:21837144

  11. Effect of B-ring substitution pattern on binding mode of propionamide selective androgen receptor modulators.

    PubMed

    Bohl, Casey E; Wu, Zengru; Chen, Jiyun; Mohler, Michael L; Yang, Jun; Hwang, Dong Jin; Mustafa, Suni; Miller, Duane D; Bell, Charles E; Dalton, James T

    2008-10-15

    Selective androgen receptor modulators (SARMs) are essentially prostate sparing androgens, which provide therapeutic potential in osteoporosis, male hormone replacement, and muscle wasting. Herein we report crystal structures of the androgen receptor (AR) ligand-binding domain (LBD) complexed to a series of potent synthetic nonsteroidal SARMs with a substituted pendant arene referred to as the B-ring. We found that hydrophilic B-ring para-substituted analogs exhibit an additional region of hydrogen bonding not seen with steroidal compounds and that multiple halogen substitutions affect the B-ring conformation and aromatic interactions with Trp741. This information elucidates interactions important for high AR binding affinity and provides new insight for structure-based drug design.

  12. 3-O-Benzyl-6-O-benzoyl-1,2-O-isopropil­idene-5-C-nitro­methyl-a-d-glucofuran­ose

    PubMed Central

    Pampín, Begoña; Valencia, Laura; Estévez, Juan C.; Estévez, Ramón J.

    2009-01-01

    The title compound, C24H27NO9, is one of the epimers of the Henry reaction of 3-O-benzyl-6-O-benzoyl-2-O-isopropyl­idene-a-d-glucofuran-5-one with nitro­methane. The conformation of the five membered rings is as expected from the precursor compound and the mol­ecule is folded with a dihedral angle of 51.4 (2)° between the aromatic rings. One O—H⋯O hydrogen bond and some intra­molecular and inter­molecular C—H⋯O inter­actions are observed in the structure. PMID:21581936

  13. Polynuclear aromatic hydrocarbons for fullerene synthesis in flames

    DOEpatents

    Alford, J. Michael; Diener, Michael D.

    2006-12-19

    This invention provides improved methods for combustion synthesis of carbon nanomaterials, including fullerenes, employing multiple-ring aromatic hydrocarbon fuels selected for high carbon conversion to extractable fullerenes. The multiple-ring aromatic hydrocarbon fuels include those that contain polynuclear aromatic hydrocarbons. More specifically, multiple-ring aromatic hydrocarbon fuels contain a substantial amount of indene, methylnapthalenes or mixtures thereof. Coal tar and petroleum distillate fractions provide low cost hydrocarbon fuels containing polynuclear aromatic hydrocarbons, including without limitation, indene, methylnapthalenes or mixtures thereof.

  14. A physically interpretable quantum-theoretic QSAR for some carbonic anhydrase inhibitors with diverse aromatic rings, obtained by a new QSAR procedure.

    PubMed

    Clare, Brian W; Supuran, Claudiu T

    2005-03-15

    A QSAR based almost entirely on quantum theoretically calculated descriptors has been developed for a large and heterogeneous group of aromatic and heteroaromatic carbonic anhydrase inhibitors, using orbital energies, nodal angles, atomic charges, and some other intuitively appealing descriptors. Most calculations have been done at the B3LYP/6-31G* level of theory. For the first time we have treated five-membered rings by the same means that we have used for benzene rings in the past. Our flip regression technique has been expanded to encompass automatic variable selection. The statistical quality of the results, while not equal to those we have had with benzene derivatives, is very good considering the noncongeneric nature of the compounds. The most significant correlation was with charge on the atoms of the sulfonamide group, followed by the nodal orientation and the solvation energy calculated by COSMO and the charge polarization of the molecule calculated as the mean absolute Mulliken charge over all atoms.

  15. Δg: The new aromaticity index based on g-factor calculation applied for polycyclic benzene rings

    NASA Astrophysics Data System (ADS)

    Ucun, Fatih; Tokatlı, Ahmet

    2015-02-01

    In this work, the aromaticity of polycyclic benzene rings was evaluated by the calculation of g-factor for a hydrogen placed perpendicularly at geometrical center of related ring plane at a distance of 1.2 Å. The results have compared with the other commonly used aromatic indices, such as HOMA, NICSs, PDI, FLU, MCI, CTED and, generally been found to be in agreement with them. So, it was proposed that the calculation of the average g-factor as Δg could be applied to study the aromaticity of polycyclic benzene rings without any restriction in the number of benzene rings as a new magnetic-based aromaticity index.

  16. Synthesis of tetra- and octa-aurated heteroaryl complexes towards probing aromatic indoliums

    PubMed Central

    Yuan, Jun; Sun, Tingting; He, Xin; An, Ke; Zhu, Jun; Zhao, Liang

    2016-01-01

    Polymetalated aromatic compounds are particularly challenging synthetic goals because of the limited thermodynamic stability of polyanionic species arising from strong electrostatic repulsion between adjacent carbanionic sites. Here we describe a facile synthesis of two polyaurated complexes including a tetra-aurated indole and an octa-aurated benzodipyrrole. The imido trinuclear gold(I) moiety exhibits nucleophilicity and undergoes an intramolecular attack on a gold(I)-activated ethynyl to generate polyanionic heteroaryl species. Their computed magnetic properties reveal the aromatic character in the five-membered ring. The incorporation of the aurated substituents at the nitrogen atom can convert non-aromaticity in the parent indolium into aromaticity in the aurated one because of hyperconjugation. Thus, the concept of hyperconjugative aromaticity is extended to heterocycles with transition metal substituents. More importantly, further analysis indicates that the aurated substituents can perform better than traditional main-group substituents. This work highlights the difference in aromaticity between polymetalated aryls and their organic prototypes. PMID:27186982

  17. N-(1,3-Thia­zol-2-yl)benzamide

    PubMed Central

    Zonouzi, Afsaneh; Mirzazadeh, Roghieh; Rahmani, Hossein; Ng, Seik Weng

    2009-01-01

    The title compound, C10H8N2OS, features a nonplanar mol­ecule [dihedral angle between the two aromatic rings = 43.6 (1)°]. Two mol­ecules are linked by N—H⋯N hydrogen bonds about a centre of inversion, giving rise to a hydrogen-bonded dimer. PMID:21582538

  18. 1-(4-Chloro­benzyl­ideneamino)pyridinum iodide

    PubMed Central

    Cui, Yong-Tao; Wang, Jian-Qiang; Ji, Chun-Xiang; Wang, Hai-Bo; Cheng, Guo

    2009-01-01

    In the title compound, C12H10ClN2 +·I−, the aromatic rings are oriented at a dihedral angle of 54.55 (3)°. In the crystal structure, inter­molecular C—H⋯I and C—H⋯Cl hydrogen bonds link the mol­ecules. PMID:21581845

  19. 4-[(3-Chloro-2-methyl-phen-yl)imino-meth-yl]phenol.

    PubMed

    Manjunath, B C; Abdoh, M M M; Mallesha, L; Mohana, K N; Lokanath, N K

    2012-11-01

    In the title compound, C(14)H(12)ClNO, the dihedral angle between the aromatic rings is 39.84 (7)°. In th crystal, mol-ecules are connected by O-H⋯N hydrogen bonds into chains parallel to [001]. In addition, a C-H⋯π contact occurs.

  20. Conformational Study of Dibenzyl Ether

    NASA Astrophysics Data System (ADS)

    Hernandez-Castillo, Alicia O.; Abeysekera, Chamara; Hewett, Daniel M.; Zwier, Timothy S.

    2017-06-01

    Understanding the initial stages of polycyclic aromatic hydrocarbon (PAH) aggregation, the onset of soot formation, is an important goal on the pathway to cleaner combustion processes. PAHs with short alkyl chains, present in fuel-rich combustion environments, can undergo reactions that will chemically link aromatic rings together. One such example of a linked diaryl compound is dibenzyl ether, C_{6}H_{5}-CH_{2}-O-CH_{2}-C_{6}H_{5}. The -CH_{2}-O-CH_{2}- linkage has a length and flexibility well-suited to forming a π-stacked conformation between the two phenyl rings. In this talk, we will explore the single-conformation spectroscopy of dibenzyl ether under jet-cooled conditions in the gas phase. Laser-induced fluorescence, chirped pulse Fourier transform microwave (8-18 GHz region), and single-conformation infrared spectroscopy in the alkyl CH stretch region were all carried out on the molecule, thereby interrogating its full array of electronic, vibrational and rotational degrees of freedom. This work is the first step in a broader study to determine the extent of π-stacking in linked aryl compounds as a function of linkage and PAH size.

  1. pi-Selective stationary phases: (II) Adsorption behavior of substituted aromatic compounds on n-alkyl-phenyl stationary phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritti, Fabrice; Guiochon, Georges A; Mayfield, Kirsty

    2010-01-01

    The frontal analysis method was used to measure the adsorption isotherms of phenol, 4-chlorophenol, p-cresol, 4-methoxyphenol and caffeine on a series of columns packed with home-made alkyl-phenyl bonded silica particles. These ligands consist of a phenyl ring tethered to the silica support via a carbon chain of length ranging from 0 to 4 atoms. The adsorption isotherm models that fit best to the data account for solute-solute interactions that are likely caused by p-p interactions occurring between aromatic compounds and the phenyl group of the ligand. These interactions are the dominant factor responsible for the separation of low molecular weightmore » aromatic compounds on these phenyl-type stationary phases. The saturation capacities depend on whether the spacer of the ligands have an even or an odd number of carbon atoms, with the even alkyl chain lengths having a greater saturation capacity than the odd alkyl chain lengths. The trends in the adsorption equilibrium constant are also significantly different for the even and the odd chain length ligands.« less

  2. Pharmacophore Modelling and Synthesis of Quinoline-3-Carbohydrazide as Antioxidants

    PubMed Central

    El Bakkali, Mustapha; Ismaili, Lhassane; Tomassoli, Isabelle; Nicod, Laurence; Pudlo, Marc; Refouvelet, Bernard

    2011-01-01

    From well-known antioxidants agents, we developed a first pharmacophore model containing four common chemical features: one aromatic ring and three hydrogen bond acceptors. This model served as a template in virtual screening of Maybridge and NCI databases that resulted in selection of sixteen compounds. The selected compounds showed a good antioxidant activity measured by three chemical tests: DPPH radical, OH° radical, and superoxide radical scavenging. New synthetic compounds with a good correlation with the model were prepared, and some of them presented a good antioxidant activity. PMID:25954520

  3. Examination of new chiral smectics with four aromatic rings

    NASA Astrophysics Data System (ADS)

    Żurowska, Magdalena; Czerwiński, Michał; Dziaduszek, Jerzy; Filipowicz, Marek

    2018-05-01

    This paper presents the results of the study of four chiral mesogens with the acronym (4X1X2). The investigated compounds might be of interest for use as components of multicomponent mixtures useful in technical devices. The compounds have high chemical stability. Their mesomorphic properties were tested by means of polarizing optical microscopy and differential scanning calorimetry. The helical pitch of the prepared compounds and mixtures was estimated using the selective reflection method. Their phase smectic layer structure and usefulness for formulation of multicomponent antiferroelectric mixtures were then reported.

  4. 5-Amino-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde hemihydrate: a polarized electronic structure within hydrogen-bonded sheets of R(10)(8)(34) rings.

    PubMed

    Quiroga, Jairo; Trilleras, Jorge; Cobo, Justo; Glidewell, Christopher

    2010-01-01

    In the title compound, C(11)H(11)N(3)O.0.5H(2)O, the water molecule lies across a twofold rotation axis in the space group Pbcn. The bond distances in the organic component provide evidence for polarization of the electronic structure. The molecular components are linked into puckered sheets of R(10)(8)(34) rings by a combination of O-H...N and N-H...O hydrogen bonds; adjacent sheets are weakly linked by an aromatic pi-pi stacking interaction. Comparisons are made with some fused-ring analogues.

  5. Anaerobic biodegradation of aromatic compounds.

    PubMed

    Jothimani, P; Kalaichelvan, G; Bhaskaran, A; Selvaseelan, D Augustine; Ramasamy, K

    2003-09-01

    Many aromatic compounds and their monomers are existing in nature. Besides they are introduced into the environment by human activity. The conversion of these aromatic compounds is mainly an aerobic process because of the involvement of molecular oxygen in ring fission and as an electron acceptor. Recent literatures indicated that ring fission of monomers and obligomers mainly occurs in anaerobic environments through anaerobic respiration with nitrate, sulphate, carbon dioxide or carbonate as electron acceptors. These anaerobic processes will help to work out the better situation for bioremediation of contaminated environments. While there are plenty of efforts to reduce the release of these chemicals to the environment, already contaminated sites need to be remediated not only to restore the sites but to prevent the leachates spreading to nearby environment. Basically microorganisms are better candidates for breakdown of these compounds because of their wider catalytic mechanisms and the ability to act even in the absence of oxygen. These microbes can be grouped based on their energy mechanisms. Normally, the aerobic counterparts employ the enzymes like mono-and-dioxygenases. The end product is basically catechol, which further may be metabolised to CO2 by means of quinones reductases cycles. In the absense of reductases compounds, the reduced catechols tend to become oxidised to form many quinone compounds. The quinone products are more recalcitrant and lead to other aesthetic problems like colour in water, unpleasant odour, etc. On the contrary, in the reducing environment this process is prevented and in a cascade of pathways, the cleaved products are converted to acetyl co-A to be integrated into other central metabolite paths. The central metabolite of anaerobic degradation is invariably co-A thio-esters of benzoic acid or hydroxy benzoic acid. The benzene ring undergoes various substitution and addition reactions to form chloro-, nitro-, methyl- compounds. For complete degradation the side chains must be removed first and then the benzene ring is activated by carboxylation or hydroxylation or co-A thioester formation. In the next step the activated ring is converted to a form that can be collected in the central pool of metabolism. The third step is the channeling reaction in which the products of the catalysis are directed into central metabolite pool. The enzymes involved in these mechanisms are mostly benzyl co-A ligase, benzyl alcohol dehydrogenase. Other enzymes involved in this path are yet to be purified though many of the reactions products that have been theoretically postulated have been identified. This is mainly due to the instability of intermediate compounds as well as the association of the enzyme substrate is femoral and experimental conditions need to be sophisticated further for isolation of these enzymes. The first structural genes of benzoate and hydroxy benzoate ligases were isolated from Rhodopseudomonas palustris. This gene cluster of 30 kb size found in Rhodopseudomonas palustris coded for the Bad A protein. Similarly, some of the bph A,B,C and D cluster of genes coding for the degradation of pentachlorobenzenes were located in Pseudomonas pseudoalgaligenesKF 707.

  6. Desulfurization of benzonaphthothiophenes and dibenzothiophene with a Raney nickel catalyst and its relationship to the. pi. -electron density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagai, M.; Urimoto, H.; Uetake, K.

    The hydrodesulfurization of heavy petroleum feedstocks and coal-derived liquids requires the conversion of high molecular weight compounds like dibenzothiophene and benzonaphthothiophenes. There are several studies in the literature which deal with the mechanism of the hydrodesulfurization of multi-ring thiophenic compounds on cobalt or nickel molybdenum catalysts at high pressure. However, there are only a few studies which relate the chemical reactivity of these compounds to their electronic structure. The reactivity of a multi-ring sulfur-containing compound is not determined solely by the size of the molecule. In addition, others studied the relationship between the first step in the hydrotreating reaction ofmore » benzonaphthothiophene and the Coulombic interaction term of the compounds using the CNDO/S method. Because there is competition between the different processes (hydrogenation and desulfurization) during reaction, it is difficult to understand the relationship between desulfurization and the electronic properties of the compounds under reaction conditions. The calculation of electronic structures necessarily involves many sigma bonds of hydrogenated aromatic rings as well as many electrons of high molecular weight compounds. For this reason, it is best to select a catalyst and reaction conditions under which desulfurization takes place without hydrogenation.« less

  7. Specificity of the Antibody Receptor Site to D-Lysergamide: Model of a Physiological Receptor for Lysergic Acid Diethylamide

    PubMed Central

    Vunakis, Helen Van; Farrow, John T.; Gjika, Hilda B.; Levine, Lawrence

    1971-01-01

    Antibodies to D-lysergic acid have been produced in rabbits and guinea pigs and a radioimmunoassay for the hapten was developed. The specificity of this lysergamide-antilysergamide reaction was determined by competitive binding with unlabeled lysergic acid diethylamide (LSD), psychotomimetic drugs, neurotransmitters, and other compounds with diverse structures. LSD and several related ergot alkaloids were potent competitors, three to seven times more potent than lysergic acid itself. The N,N-dimethyl derivatives of several compounds, including tryptamine, 5-hydroxytryptamine, 4-hydroxytryptamine, 5-methoxytryptamine, tyramine, and mescaline, were only about ten times less effective than lysergic acid, even though these compounds lack some of the ring systems of lysergic acid. The pattern of inhibition by related compounds with various substituents suggests that the antibody receptor site recognizes structural features resembling the LSD molecule. In particular, the aromatic nucleus and the dimethylated ethylamine side chain in phenylethylamine and tryptamine derivatives may assume in solution a conformation resembling ring A and the methylated nitrogen in ring C of LSD. Among the tryptamine derivatives, a large percentage of the most potent competitors are also psychotomimetic compounds. PMID:5283939

  8. Synthesis, crystal structure and computational studies of a new Schiff base compound: (E)-4-bromo-2-eth-oxy-6-{[(2-meth-oxy-phen-yl)imino]meth-yl}phenol.

    PubMed

    Özek Yıldırım, Arzu; Gülsu, Murat; Albayrak Kaştaş, Çiğdem

    2018-03-01

    The title compound, C 16 H 16 BrNO 3 , which shows enol-imine tautomerism, crystallizes in the monoclinic P 2 1 / c space group. All non-H atoms of the mol-ecule are nearly coplanar, with a maximum deviation of 0.274 (3) Å. In the crystal, mol-ecules are held together by weak C-H⋯O, π-π and C-H⋯π inter-actions. The E / Z isomerism and enol/keto tautomerism energy barriers of the compound have been calculated by relaxed potential energy surface scan calculations with DFT methods. To observe the changes in the aromatic ring, HOMA aromaticity indexes were calculated during the scan process. Total energy and HOMA change curves were obtained to visualize results of the scan calculations.

  9. A Structure-Activity Study with Aryl Acylamidases

    PubMed Central

    Villarreal, David T.; Turco, Ronald F.; Konopka, Allan

    1994-01-01

    We examined the relationship between chemical structure and biodegradability of acylanilide herbicides by using a set of model compounds. Four bacterial isolates (one gram-negative and three gram-positive) that grew on acetanilide were used. These soil isolates cleaved the amide bond of acetanilide via an aryl acylamidase reaction, producing aniline and the organic acid acetate. A series of acetanilide analogs with alkyl substitutions on the nitrogen atom or the aromatic ring were tested for their ability to induce aryl acylamidase activity and act as substrates for the enzyme. The substrate range, in general, was limited to those analogs not disubstituted in the ortho position of the benzene ring or which did not contain an alkyl group on the nitrogen atom. These same N-substituted compounds did not induce enzyme activity either, whereas the ortho-substituted compounds could in some cases. PMID:16349428

  10. Structure-activity relationships among substituted N-benzoyl derivatives of phenylalanine and its analogs in a microbial antitumor prescreen I: Derivatives of o-fluoro-DL-phenylalanine.

    PubMed

    Otani, T T; Briley, M R

    1982-02-01

    Twelve derivatives of 0-fluoro-dl-phenylalanine containing fluorine, chlorine, methoxy, and nitro radicals in various positions of the aromatic ring of the benzoyl group were prepared and tested in a Lactobacillus casei system. It was found that most substitutions in the benzoyl phenyl ring resulted in a compound exhibiting greater growth-inhibiting activity than the nonsubstituted benzoyl-o-fluorophenylalanine. The greatest activity was observed in the ortho-substituted fluoro compound and the meta- and para-substituted chloro and nitro compounds. With the methoxy group, the position of substitution appeared unimportant, since all three methoxy isomers exhibited essentially equal inhibition. Nitro substitution in the ortho position had a protective effect in that the product was less active than the unsubstituted benzoyl-o-fluoro-dl-phenylalanine.

  11. Aryl sulfate formation in sea urchins (Strongylocentrotus droebachiensis) ingesting marine algae (Fucus distichus) containing 2,6-dimethylnapthalene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malins, D.C.; Roubal, W.T.

    1982-04-01

    The metabolism of tritiated 2,6-dimethylnapthalene (2,6-DMN) was studied in sea urchins (Strongylocentrotus droebachiensis) feeding on marine algae (Fucus distichus). The Fucus accumulated this hydrocarbon from sea water without converting it to metabolites. Most of the tritium accumulated by the sea urchins (e.g., 70.8% after 3 days) from feeding on 2,6-DMN-exposed Fucus was present in the exoskeleton (shell and spines). Moreover, after 3 days feeding, about 90% of the tritium in the total metabolite fraction of the gonads and digestive tract of the sea urchin was present as sulfate derivatives. These metabolites were identified through hydrolysis with aryl sulfatase, followed bymore » thin-layer chromatography of the products. After 14 days of feeding, the tritium associated with the sulfate derivatives decreased in the gonads and digestive tract to 61 and 65%, respectively, of the total metabolite fraction. Hydroxy compounds from sulfatase hydrolysis were chromatographed using multiple elutions with toluene. The hydroxy isomers were separated and the R/sub f/ values were compared to those of pure reference compounds. The data indicated that 80% of the 2,6-dimethylnaphtyl sulfate contained the sulfate on the 1 and/or 3 position of the aromatic ring. Moreover, 6-methyl-2-naphthalenemethanol was not detected, which implies that sea urchins, unlike fish, metabolize alkyl-substituted aromatic hydrocarbons primarily through aromatic ring oxidations.« less

  12. Monocyclic aromatic amines as potential human carcinogens: old is new again

    PubMed Central

    Skipper, Paul L.; Kim, Min Young; Sun, H.-L. Patty; Wogan, Gerald N.; Tannenbaum, Steven R.

    2010-01-01

    Alkylanilines are a group of chemicals whose ubiquitous presence in the environment is a result of the multitude of sources from which they originate. Exposure assessments indicate that most individuals experience lifelong exposure to these compounds. Many alkylanilines have biological activity similar to that of the carcinogenic multi-ring aromatic amines. This review provides an overview of human exposure and biological effects. It also describes recent investigations into the biochemical mechanisms of action that lead to the assessment that they are most probably more complex than those of the more extensively investigated multi-ring aromatic amines. Not only is nitrenium ion chemistry implicated in DNA damage by alkylanilines but also reactions involving quinone imines and perhaps reactive oxygen species. Recent results described here indicate that alkylanilines can be potent genotoxins for cultured mammalian cells when activated by exogenous or endogenous phase I and phase II xenobiotic-metabolizing enzymes. The nature of specific DNA damage products responsible for mutagenicity remains to be identified but evidence to date supports mechanisms of activation through obligatory N-hydroxylation as well as subsequent conjugation by sulfation and/or acetylation. A fuller understanding of the mechanisms of alkylaniline genotoxicity is expected to provide important insights into the environmental and genetic origins of one or more human cancers and may reveal a substantial role for this group of compounds as potential human chemical carcinogens. PMID:19887514

  13. Breaking Benzene Aromaticity-Computational Insights into the Mechanism of the Tungsten-Containing Benzoyl-CoA Reductase.

    PubMed

    Culka, Martin; Huwiler, Simona G; Boll, Matthias; Ullmann, G Matthias

    2017-10-18

    Aromatic compounds are environmental pollutants with toxic and carcinogenic properties. Despite the stability of aromatic rings, bacteria are able to degrade the aromatic compounds into simple metabolites and use them as growth substrates under oxic or even under anoxic conditions. In anaerobic microorganisms, most monocyclic aromatic growth substrates are converted to the central intermediate benzoyl-coenzyme A, which is enzymatically reduced to cyclohexa-1,5-dienoyl-CoA. The strictly anaerobic bacterium Geobacter metallireducens uses the class II benzoyl-CoA reductase complex for this reaction. The catalytic BamB subunit of this complex harbors an active site tungsten-bis-pyranopterin cofactor with the metal being coordinated by five protein/cofactor-derived sulfur atoms and a sixth, so far unknown, ligand. Although BamB has been biochemically and structurally characterized, its mechanism still remains elusive. Here we use continuum electrostatic and QM/MM calculations to model benzoyl-CoA reduction by BamB. We aim to elucidate the identity of the sixth ligand of the active-site tungsten ion together with the interplay of the electron and proton transfer events during the aromatic ring reduction. On the basis of our calculations, we propose that benzoyl-CoA reduction is initiated by a hydrogen atom transfer from a W(IV) species with an aqua ligand, yielding W(V)-[OH - ] and a substrate radical intermediate. In the next step, a proton-assisted second electron transfer takes place with a conserved active-site histidine serving as the second proton donor. Interestingly, our calculations suggest that the electron for the second reduction step is taken from the pyranopterin cofactors rather than from the tungsten ion. The resulting cationic radical, which is distributed over both pyranopterins, is stabilized by conserved anionic amino acid residues. The stepwise mechanism of the reduction shows similarities to the Birch reduction known from organic chemistry. However, the strict coupling of protons and electrons allows the reaction to proceed under milder conditions.

  14. [4-(All­yloxy)phen­yl](phen­yl)methanone

    PubMed Central

    D’Vries, Richard F.; Grande, Carlos D.; Chaur, Manuel N.; Ellena, Javier A.; Advincula, Rigoberto C.

    2014-01-01

    The structure of the title compound, C16H14O2, features a dihedral angle of 54.4 (3)° between the aromatic rings. The allyl group is rotated by 37.4 (4)° relative to the adjacent benzene ring. The crystal packing is characterized by numerous C—H⋯O and C—H⋯π inter­actions. Most of these inter­actions occur in layers along (011). The layers are linked by C—H⋯π inter­actions along [100], forming a three-dimensional network. PMID:25161593

  15. 2-Nitro­benzyl 2-chloro­acetate

    PubMed Central

    Zhu, Kai; Liu, Hui; Wang, Yan-Hua; Han, Ping-Fang; Wei, Ping

    2009-01-01

    In the mol­ecule of the title compound, C9H8ClNO4, an intra­molecular C—H⋯O inter­action results in the formation of a near-planar (r.m.s. deviation 0.002 Å) five-membered ring, which is oriented at a dihedral angle of 4.07 (4)° with respect to the adjacent aromatic ring. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules into a two-dimensional network. PMID:21577790

  16. 2,6-Bis[1-(2-isopropyl­phenyl­imino)­ethyl]­pyridine

    PubMed Central

    Agrifoglio, Giuseppe; Reyes, Julian; Atencio, Reinaldo; Briceño, Alexander

    2008-01-01

    The title compound, C27H31N3, has E substitution at each imine double bond where the two N atoms adopt a trans–trans relationship. The benzene rings are twisted out of the mean plane of the pyridine ring; the mean planes of the aromatic groups are rotated by 63.0 (1) and 72.58 (8)°. The crystal structure is sustained mainly by C—H⋯π and hydro­phobic methyl–methyl inter­actions. PMID:21200845

  17. (2E)-1-(2,6-Dichloro-3-fluoro-phen-yl)-3-phenyl-prop-2-en-1-one.

    PubMed

    Praveen, Aletti S; Yathirajan, Hemmige S; Narayana, Badiadka; Gerber, Thomas; Hosten, Eric; Betz, Richard

    2012-04-01

    In the title compound, C(15)H(9)Cl(2)FO, the F atom shows positional disorder over two positions, with site-occupancy factors of 0.747 (4) and 0.253 (4). The dihedral angle between the rings is 86.37 (10)°. In the crystal, C-H⋯O contacts connect the mol-ecules into chains along the c axis. The shortest inter-centroid distance between two aromatic systems is 3.6686 (12) Å and is apparent between the halogenated rings.

  18. 4-[(3-Chloro-2-methyl­phen­yl)imino­meth­yl]phenol

    PubMed Central

    Manjunath, B. C.; Abdoh, M. M. M; Mallesha, L.; Mohana, K. N.; Lokanath, N. K.

    2012-01-01

    In the title compound, C14H12ClNO, the dihedral angle between the aromatic rings is 39.84 (7)°. In th crystal, mol­ecules are connected by O—H⋯N hydrogen bonds into chains parallel to [001]. In addition, a C—H⋯π contact occurs. PMID:23284502

  19. 2'-Chloro-4-meth-oxy-3-nitro-benzil.

    PubMed

    Nithya, G; Thanuja, B; Chakkaravarthi, G; Kanagam, Charles C

    2011-06-01

    In the title compound, C(15)H(10)ClNO(5), the dihedral angle between the aromatic rings is 87.99 (5)°. The O-C-C-O torsion angle between the two carbonyl units is -119.03 (16)°. The crystal structure is stabilized by a weak intermolecular C-H⋯O hydrogen bond.

  20. Comparison of molecular structure of alkali metal o-, m- and p-nitrobenzoates

    NASA Astrophysics Data System (ADS)

    Regulska, E.; Świsłocka, R.; Samsonowicz, M.; Lewandowski, W.

    2008-09-01

    The influence of nitro-substituent in ortho, meta and para positions as well as lithium, sodium, potassium, rubidium and cesium on the electronic system of aromatic ring and the distribution of electronic charge in carboxylic group of the nitrobenzoates were estimated. Optimized geometrical structures were calculated (B3LYP/6-311++G ∗∗). To make quantitative evaluation of aromaticity of studied molecules the geometric (A J, BAC, I 6 and HOMA) as well as magnetic (NICS) aromaticity indices were calculated. Electronic charge distribution was also examined by molecular spectroscopic study, which may be the source of quality criterion for aromaticity. Experimental and theoretical FT-IR, FT-Raman and NMR ( 1H and 13C) spectra of the title compounds were analyzed. The calculated parameters were compared to experimental characteristics of these molecules.

  1. Aromatic aldehyde-catalyzed gas-phase decarboxylation of amino acid anion via imine intermediate: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Xiang, Zhang

    2013-10-01

    It is generally appreciated that carbonyl compound can promote the decarboxylation of the amino acid. In this paper, we have performed the experimental and theoretical investigation into the gas-phase decarboxylation of the amino acid anion catalyzed by the aromatic aldehyde via the imine intermediate on the basis of the tandem mass spectrometry (MS/MS) technique and density functional theory (DFT) calculation. The results show that the aromatic aldehyde can achieve a remarkable catalytic effect. Moreover, the catalytic mechanism varies according to the type of amino acid: (i) The decarboxylation of α-amino acid anion is determined by the direct dissociation of the Csbnd C bond adjacent to the carboxylate, for the resulting carbanion can be well stabilized by the conjugation between α-carbon, Cdbnd N bond and benzene ring. (ii) The decarboxylation of non-α-amino acid anion proceeds via a SN2-like transition state, in which the dissociation of the Csbnd C bond adjacent to the carboxylate and attacking of the resulting carbanion to the Cdbnd N bond or benzene ring take place at the same time. Specifically, for β-alanine, the resulting carbanion preferentially attacks the benzene ring leading to the benzene anion, because attacking the Cdbnd N bond in the decarboxylation can produce the unstable three or four-membered ring anion. For the other non-α-amino acid anion, the Cdbnd N bond preferentially participates in the decarboxylation, which leads to the pediocratic nitrogen anion.

  2. Aromatic Rings Commonly Used in Medicinal Chemistry: Force Fields Comparison and Interactions With Water Toward the Design of New Chemical Entities.

    PubMed

    Polêto, Marcelo D; Rusu, Victor H; Grisci, Bruno I; Dorn, Marcio; Lins, Roberto D; Verli, Hugo

    2018-01-01

    The identification of lead compounds usually includes a step of chemical diversity generation. Its rationale may be supported by both qualitative (SAR) and quantitative (QSAR) approaches, offering models of the putative ligand-receptor interactions. In both scenarios, our understanding of which interactions functional groups can perform is mostly based on their chemical nature (such as electronegativity, volume, melting point, lipophilicity etc.) instead of their dynamics in aqueous, biological solutions (solvent accessibility, lifetime of hydrogen bonds, solvent structure etc.). As a consequence, it is challenging to predict from 2D structures which functional groups will be able to perform interactions with the target receptor, at which intensity and relative abundance in the biological environment, all of which will contribute to ligand potency and intrinsic activity. With this in mind, the aim of this work is to assess properties of aromatic rings, commonly used for drug design, in aqueous solution through molecular dynamics simulations in order to characterize their chemical features and infer their impact in complexation dynamics. For this, common aromatic and heteroaromatic rings were selected and received new atomic charge set based on the direction and module of the dipole moment from MP2/6-31G * calculations, while other topological terms were taken from GROMOS53A6 force field. Afterwards, liquid physicochemical properties were simulated for a calibration set composed by nearly 40 molecules and compared to their respective experimental data, in order to validate each topology. Based on the reliance of the employed strategy, we expanded the dataset to more than 100 aromatic rings. Properties in aqueous solution such as solvent accessible surface area, H-bonds availability, H-bonds residence time, and water structure around heteroatoms were calculated for each ring, creating a database of potential interactions, shedding light on features of drugs in biological solutions, on the structural basis for bioisosterism and on the enthalpic/entropic costs for ligand-receptor complexation dynamics.

  3. Characterization of organic aromatic compounds in soils affected by an uncontrolled tire landfill fire through the use of comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry.

    PubMed

    Escobar-Arnanz, J; Mekni, S; Blanco, G; Eljarrat, E; Barceló, D; Ramos, L

    2018-02-09

    Discarded vehicle tires have become an increasing concern worldwide due to the enormous amount of wastes generated and the increasing evidence of health problems associated to their disposal and accidental combustion. Previous studies conducted involving either simulated or open uncontrolled tire fires have identified aromatics belonging to two main classes, volatile organic compounds and polycyclic aromatic compounds (PAHs), as the most relevant chemicals generated in these burning processes. As a consequence, and due to their recognized toxicity, most studies reported up to now have mainly focused on these two categories of compounds being information concerning the possible occurrence of other aromatic classes rather limited. In this study, the enhanced separation power and structural confirmation capabilities provided by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-ToF MS) has been used, for the first time, for the non-targeted analysis of soils impacted by a tire fire and an ash collected at the scene of the fire. In total, 118 volatile and semi-volatile aromatic compounds have been differentiated. Among them, 104 compounds have been either positively or tentatively identified. PAHs with 3-5 rings and their alkyl-derivatives were the most numerous and relevant classes in the investigated samples. A significant number of sulfur, oxygen- and nitrogen-containing PAHs were also detected in the samples. The application of a script function to the raw GC×GC-ToF MS data allowed the fast filtering and automatic recognition of compounds containing halogens in their structure. This part of the study evidenced that only a limited number of regulated persistent organic pollutants were present in the investigated samples. However, it also revealed the presence of emerging organophosphorous flame retardants, whose levels in tire fire impacted soils are reported for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Crystallization and preliminary crystallographic analysis of the catechol 2,3-dioxygenase PheB from Bacillus stearothermophilus BR219

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugimoto, Keisuke; Matsufuzi, Kazuki; Ohnuma, Hiroaki

    2006-02-01

    PheB, an extradiol-cleaving catecholic dioxygenase, was crystallized by the hanging-drop vapour-diffusion method using PEG 4000 as a precipitant. The crystal belongs to the orthorhombic system, space group P2{sub 1}2{sub 1}2{sub 1}, and diffracts to 2.3 Å resolution. Class II extradiol-cleaving catecholic dioxygenase, a key enzyme of aromatic compound degradation in bacteria, cleaves the aromatic ring of catechol by adding two O atoms. PheB is one of the class II extradiol-cleaving catecholic dioxygenases and shows a high substrate specificity for catechol derivatives, which have one aromatic ring. In order to reveal the mechanism of the substrate specificity of PheB, PheB hasmore » been crystallized by the hanging-drop vapour-diffusion method using PEG 4000 as a precipitant. The space group of the obtained crystal was P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 65.5, b = 119.2, c = 158.7 Å. The crystal diffracted to 2.3 Å resolution.« less

  5. Bio-electrochemical remediation of real field petroleum sludge as an electron donor with simultaneous power generation facilitates biotransformation of PAH: effect of substrate concentration.

    PubMed

    Chandrasekhar, K; Venkata Mohan, S

    2012-04-01

    Remediation of real-field petroleum sludge was studied under self-induced electrogenic microenvironment with the function of variable organic loads (OLs) in bio-electrochemical treatment (BET) systems. Operation under various OLs documented marked influence on both electrogenic activity and remediation efficiency. Both total petroleum hydrocarbons (TPH) and its aromatic fraction documented higher removal with OL4 operation followed by OL3, OL2, OL1 and control. Self-induced biopotential and associated multiple bio-electrocatalytic reactions during BET operation facilitated biotransformation of higher ring aromatics (5-6) to lower ring aromatic (2-3) compounds. Asphaltenes and NSO fractions showed negligible removal during BET operation. Higher electrogenic activity was recorded at OL1 (343mV; 53.11mW/m(2), 100Ω) compared to other three OLs operation. Bioaugmentation to anodic microflora with anaerobic culture documented enhanced electrogenic activity at OL4 operation. Voltammetric profiles, Tafel analysis and VFA generation were in agreement with the observed power generation and degradation efficiency. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Catalytic trimerization of aromatic nitriles and triaryl-s-triazine ring cross-linked high temperature resistant polymers and copolymers made thereby

    NASA Technical Reports Server (NTRS)

    Hsu, L. C. (Inventor)

    1979-01-01

    Triazine compounds and cross-linked polymer compositions are made by heating aromatic nitriles to a temperature in the range of from about 100 C to about 700 C, and preferably in the range of from about 200 C to about 350 C, in the presence of a catalyst or mixture of catalysts selected from one or more of the following groups: (1) organic sulfonic and sulfinic acids, (2) organic phosphonic and phosphinic acids, and (3)metallic acetylacetonates, at a pressure in the range of from about atmospheric pressure to about 10,000 psi and preferably in the range of from about 200 psi to about 750 psi. Aromatic nitrile-modified (terminated and/or appended) imide, benzimidazole, imidazopyrrolone, quinoxaline, and other condensation type prepolymers or their precopolymers are made which are trimerized with or without a filler by the aforementioned catalytic trimerization process into triaryl-s-triazine ring containing or cross-linked polymeric or copolymeric products useful in applications requiring high thermal-oxidative stability and high performance structural properties at elevated temperatures.

  7. Study of the slope of the linear relationship between retention and mobile phase composition (Snyder-Soczewiñski model) in normal phase liquid chromatography with bonded and charge-transfer phases.

    PubMed

    Wu, Di; Lucy, Charles A

    2016-12-02

    The Snyder model and the Soczewiñski model are compared on classic NPLC bonded phases using literature data, and on the charge transfer 2, 4-dinitroanilinopropyl (DNAP) column using experimentally collected data. Overall, the Snyder model slightly better predicts the n-slope than the Soczewiñski model. However, both models give comparable uncertainty in predicting n-slope for a given compound. The number of aromatic double bonds was the most suitable descriptor for estimating the relative n-slope of PAHs, as it correlated with behavior better than the number of aromatic rings and is simpler to calculate than the solute adsorption area. On the DNAP phase, a modified Soczewiñski model is suggested to allow for the significant contribution of the aromatic rings to the n-slope. For classic NPLC bonded phases and DNAP columns, the contribution of polar group to the n-slope parallels the adsorption energy of each polar group. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A quantum chemical study for exploring the inhibitory effect of nitrogen containing species on the adsorption of polynuclear aromatic hydrocarbons over a Bronsted acid site

    NASA Astrophysics Data System (ADS)

    Celis-Cornejo, C. M.; Garnica Mantilla, M. M.; Baldovino-Medrano, V. G.; Ramírez-Caballero, G. E.

    2016-08-01

    The analysis of the inhibitory effect of nitrogenated compounds on the hydroprocessing and hydropurification of oil derived fuels is important to produce cleaner fuels. In this work, density functional theory calculations were performed to investigate the effect of the nitrogen containing molecules on the adsorption of Polynuclear Aromatic Hydrocarbons (PAHs). Mordenite was chosen as a zeolitic structure for simulating a Bronsted acid site. The character of the acid site was confirmed by both a vibrational frequency calculation and a Bader charge analysis. From the adsorption calculations, it was found that the adsorption energy of PAHs increases with the number of aromatic rings in the structure. Also, the nitrogen containing species possibly inhibit more extensively two and three rings PAHs because of their lower adsorption energies. Finally, it was observed that the nitrogen species tend to drag the proton from the mordenite acid site. This explains the inhibitory effect in the adsorption of PAHs and contributes to understanding the dynamics of hydrocarbon hydroprocessing in refineries.

  9. Characterization of deposits formed on diesel injectors in field test and from thermal oxidative degradation of n-hexadecane in a laboratory reactor

    PubMed Central

    Venkataraman, Ramya; Eser, Semih

    2008-01-01

    Solid deposits from commercially available high-pressure diesel injectors (HPDI) were analyzed to study the solid deposition from diesel fuel during engine operation. The structural and chemical properties of injector deposits were compared to those formed from the thermal oxidative stressing of a diesel fuel range model compound, n-hexadecane at 160°C and 450 psi for 2.5 h in a flow reactor. Both deposits consist of polyaromatic compounds (PAH) with oxygen moieties. The similarities in structure and composition of the injector deposits and n-hexadecane deposits suggest that laboratory experiments can simulate thermal oxidative degradation of diesel in commercial injectors. The formation of PAH from n-hexadecane showed that aromatization of straight chain alkanes and polycondensation of aromatic rings was possible at temperatures as low as 160°C in the presence of oxygen. A mechanism for an oxygen-assisted aromatization of cylcoalkanes is proposed. PMID:19091086

  10. OBO-Protected Pyruvates as Reagents for the Synthesis of Functionalized Heteroaromatic Compounds.

    PubMed

    Alves Esteves, C Henrique; Koyioni, Maria; Christensen, Kirsten E; Smith, Peter D; Donohoe, Timothy J

    2018-06-15

    Pd-catalyzed α-arylation of methyl-OBO-ketone (OBO = 4-methyl-2,6,7-trioxabicyclo[2.2.2]octan-1-yl) gives rise to arylated OBO-protected pyruvates. By appropriate prefunctionalization of the aryl ring or by subsequent functionalization at the α-carbonyl position of the arylated OBO-ketones, useful diketo OBO-protected carboxylates can be generated. Cyclization, aromatization, and OBO deprotection of these intermediates, using two distinct routes, gives access to valuable α-acyl heteroaromatic compounds.

  11. Proton nuclear magnetic resonance characterization of the aromatic residues in the variant-3 neurotoxin from Centruroides sculpturatus Ewing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishna, N.R.; Nettesheim, D.G.; Klevit, R.E.

    1989-02-21

    The amino acid sequence for the variant-3 (CsE-v3) toxin from the venom of the scorpion Centruroides sculpturatus Ewing contains eight aromatic residues. By use of 2D NMR spectroscopic methods, the resonances from the individual protons (NH, C{sup alpha}H, C{sup beta}H{prime}, H{double prime}, and the ring) for each of the individual aromatic residues have been completely assigned. The spatial arrangement of the aromatic ring systems with respect to each other has been qualitatively analyzed by 2D-NOESY techniques. The results show that Trp-47, Tyr-4, and Tyr-42 are in close spatial proximity to each other. The NOESY contacts and the ring current inducedmore » shifts in the resonances of the individual protons of Tyr-4 and Trp-47 suggest that the aromatic ring planes of these residues are in an orthogonal arrangement. A comparison with the published crystal structure suggests that there is a minor rearrangement of the aromatic rings in the solution phase. No 2D-NOESY contacts involving Phe-44 and Tyr-14 to any other aromatic ring protons have been observed. The pH dependence of the aromatic ring proton chemical shifts has also been studied. These results suggest that the Tyr-58 phenolic group is experiencing a hydrogen-bonding interaction with a positively charged group, while Tyr-4, -14, -38, and -40 are experiencing through-space interactions with proximal negatively charged groups. These studies define the microenvironment of the aromatic residues in the variant-3 neurotoxin in aqueous solution.« less

  12. Stability and molecular properties of the boron-nitrogen alternating analogs of azulene and naphthalene: a computational study.

    PubMed

    Catão, Anderson José Lopes; López-Castillo, Alejandro

    2017-04-01

    In this work, the spectroscopic information, stability and aromaticity of the boron-nitrogen azulene and naphthalene molecules are provided by the use of CC2 (geometry optimization, dipole moment, UV-vis spectrum calculations) and DFT (vibrational spectrum and NMR calculations) methodologies. One isomer of the investigated boron-nitrogen naphthalene (boroazanaphthalene) and two isomers of boron-nitrogen azulene, 1,3,4,6,8-pentaaza-2,3a,5,7,8a-pentaboraazulene (BN-azulene) and 2,3a,5,7,8a-pentaaza-1,3,4,6,8- pentaboraazulene (NB-azulene), are stable systems. However, these molecules have different properties, i.e., different stability, dipole moment, and aromaticity based on the NICS approach. BN-naphthalene has a high dipole moment magnitude showing high polar character, while naphthalene is apolar. BN- and NB-azulene are weakly polar, while ordinary azulene is highly polar in character. Also, substitution of C atoms by B and N atoms decreases the aromaticity. In the case of NB-azulene, the seven-membered ring has anti-aromaticity behavior while both rings of BN-azulene exhibit aromaticity. We expect that the new theoretical data provided in this work will be useful in identifying and characterizing experimentally the compounds investigated, and in helping our understanding of the chemistry of boron-nitrogen molecules. Graphical abstract Boron-nitrogen alternating analogs of azulene. Spectral distinction between isomers.

  13. Dimethandrolone (7α,11β-dimethyl-19-nortestosterone) and 11β-methyl-19-nortestosterone are not converted to aromatic A-ring products in the presence of recombinant human aromatase☆

    PubMed Central

    Attardi, Barbara J.; Pham, Trung C.; Radler, Lisa M.; Burgenson, Janet; Hild, Sheri A.; Reel, Jerry R.

    2008-01-01

    Dimethandrolone undecanoate (DMAU: 7α,11β-dimethyl-19-nortestosterone 17β-undecanoate) is a potent orally active androgen in development for hormonal therapy in men. Cleavage of the 17β-ester bond by esterases in vivo leads to liberation of the biologically active androgen, dimethandrolone (DMA), a 19-norandrogen. For hormone replacement in men, administration of C19 androgens such as testosterone (T) may lead to elevations in circulating levels of estrogens due to aromatization. As several reports have suggested that certain 19-norandrogens may serve as substrates for the aromatase enzyme and are converted to the corresponding aromatic A-ring products, it was important to investigate whether DMA, the related compound, 11β-methyl-19-nortestosterone (11β-MNT), also being tested for hormonal therapy in men, and other 19-norandrogens can be converted to aromatic A-ring products by human aromatase. The hypothetical aromatic A-ring product corresponding to each substrate was obtained by chemical synthesis. These estrogens bound with high affinity to purified recombinant human estrogen receptors (ER) α and β in competitive binding assays (IC50's: 5−12 × 10−9 M) and stimulated transcription of 3XERE-luciferase in T47Dco human breast cancer cells with a potency equal to or greater than that of estradiol (E2) (EC50's: 10−12 to 10−11 M). C19 androgens (T, 17α-methyltestosterone (17α-MT), androstenedione (AD), and 16α-hydroxyandrostenedione (16α-OHAD)), 19-norandrogens (DMA, 11β-MNT, 19-nortestosterone (19-NT), and 7α-methyl-19-nortestosterone (MENT)) or the structurally similar 19-norprogestin, norethindrone (NET) were incubated at 50 μM with recombinant human aromatase for 10−180 min at 37 °C. The reactions were terminated by extraction with acetonitrile and centrifugation, and substrate and potential product were separated by HPLC. Retention times were monitored by UV absorption, and UV peaks were quantified using standard curves. Aromatization of the positive controls, T, AD, and 16α-OHAD was linear for 40−60 min, and conversion of T or AD was complete by 120 min. The nonsteroidal aromatase inhibitor, letrozole, demonstrated concentration-dependent suppression of T aromatization. Under the same conditions, there was no detectable conversion of DMA, 11β-MNT, or NET to their respective hypothetical aromatic A-ring products during incubation times up to 180 min. Aromatization of MENT and 19-NT proceeded slowly and was limited. Collectively, these data support the notion that in the absence of the C19-methyl group, which is the site of attack by oxygen, aromatization of androgenic substrates proceeds slowly or not at all and that this reaction is impeded by the presence of a methyl group at the 11β position. PMID:18555683

  14. Simulation of SOA formation and composition from oxidation of toluene and m-xylene in chamber experiments

    NASA Astrophysics Data System (ADS)

    Xu, J.; Liu, Y.; Nakao, S.; Cocker, D.; Griffin, R. J.

    2013-12-01

    Aromatic hydrocarbons contribute an important fraction of anthropogenic reactive volatile organic compounds (VOCs) in the urban atmosphere. Photo-oxidation of aromatic hydrocarbons leads to secondary organic products that have decreased volatilities or increased solubilities and can form secondary organic aerosol (SOA). Despite the crucial role of aromatic-derived SOA in deteriorating air quality and harming human health, its formation mechanism is not well understood and model simulation of SOA formation still remains difficult. The dependence of aromatic SOA formation on nitrogen oxides (NOx) is not captured fully by most SOA formation models. Most models predict SOA formation under high NOx levels well but underestimate SOA formation under low NOx levels more representative of the ambient atmosphere. Thus, it is crucial to investigate the NOx-dependent chemistry in aromatic photo-oxidation systems and correspondingly update SOA formation models. In this study, NOx-dependent mechanisms of toluene and m-xylene SOA formation are updated using the gas-phase Caltech Atmospheric Chemistry Mechanism (CACM) coupled to a gas/aerosol partitioning model. The updated models were optimized by comparing to eighteen University of California, Riverside United States Environmental Protection Agency (EPA) chamber experiment runs under both high and low NOx conditions. Correction factors for vapor pressures imply uncharacterized aerosol-phase association chemistry. Simulated SOA speciation implies the importance of ring-opening products in governing SOA formation (up to 40%~60% for both aromatics). The newly developed model can predict strong decreases of m-xylene SOA yield with increasing NOx. Speciation distributions under varied NOx levels implies that the well-known competition between RO2 + HO2 and RO2 + NO (RO2 = peroxide bicyclic radical) may not be the only factor influencing SOA formation. The reaction of aromatic peroxy radicals with NO competing with its self-cyclization also affects NOx-dependence of SOA formation. Comparison of SOA formation yield and composition between two aromatics implies aldehyde/ketone chemistry from ring-opening route and chemistry for phenolic route play important roles in governing SOA formation and that ring-opening aldehydes and phenolic nitrates are produced to a greater extent in the toluene system, leading to higher SOA yields for toluene than for m-xylene.

  15. Reflectance spectroscopy (350-2500 nm) of solid-state polycyclic aromatic hydrocarbons (PAHs)

    NASA Astrophysics Data System (ADS)

    Izawa, M. R. M.; Applin, D. M.; Norman, L.; Cloutis, E. A.

    2014-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are organic compounds based on fused aromatic rings, and are formed in a variety of astrophysical, solar nebula and planetary processes. Polycyclic aromatic hydrocarbons are known or suspected to occur in a wide variety of planetary settings including icy satellites, Titan’s hazes, carbonaceous meteorites, comet nuclei, ring particles; and terrestrial organic-rich lithologies such as coals, asphaltites, and bituminous sands. Relatively few measurements of the visible and near-infrared spectra of PAHs exist, yet this wavelength region (350-2500 nm) is widely used for remote sensing. This study presents detailed analyses of the 350-2500 nm reflectance spectra of 47 fine-grained powders of different high-purity solid-state PAHs. Spectral properties of PAHs change with variations in the number and connectivity of linked aromatic rings and the presence and type of side-groups and heterocycles. PAH spectra are characterized by three strong features near ∼880 nm, ∼1145 nm, and ∼1687 nm due to overtones of νCH fundamental stretching vibrations. Some PAHs are amenable to remote detection due to the presence of diagnostic spectral features, including: Nsbnd H stretching overtones at 1490-1515 nm in NH- and NH2-bearing PAHs, aliphatic or saturated bond Csbnd H overtone vibrations at ∼1180-1280 nm and ∼1700-1860 nm; a broad asymmetric feature between ∼1450 nm and ∼1900 nm due to Osbnd H stretching overtones in aromatic alcohols, Csbnd H and Cdbnd O combinations near ∼2000-2010 nm and ∼2060-2270 nm in acetyl and carboxyl-bearing PAHs. Other substituents such as sulphonyl, thioether ether and carboxyl heterocycles, or cyano, nitrate, and aromatic side groups, do not produce well-resolved diagnostic spectral features but do cause shifts in the positions of the aromatic Csbnd H vibrational overtone features. Fluorescence is commonly suppressed by the presence of heterocycles, side-groups and in many non-alternant PAHs. The spectral characteristics of PAHs offer the potential, under suitable circumstances, for remote characterization of the classes of PAH present and in some cases, identification of particular heterocyclic or side-group substituents.

  16. Hybrid dopamine uptake blocker-serotonin releaser ligands: a new twist on transporter-focused therapeutics.

    PubMed

    Blough, Bruce E; Landavazo, Antonio; Partilla, John S; Baumann, Michael H; Decker, Ann M; Page, Kevin M; Rothman, Richard B

    2014-06-12

    As part of our program to study neurotransmitter releasers, we report herein a class of hybrid dopamine reuptake inhibitors that display serotonin releasing activity. Hybrid compounds are interesting since they increase the design potential of transporter related compounds and hence represent a novel and unexplored strategy for therapeutic drug discovery. A series of N-alkylpropiophenones was synthesized and assessed for uptake inhibition and release activity using rat brain synaptosomes. Substitution on the aromatic ring yielded compounds that maintained hybrid activity, with the two disubstituted analogues (PAL-787 and PAL-820) having the most potent hybrid activity.

  17. Significance of Cytochrome P450 System Responses and Levels of Bile Fluorescent Aromatic Compounds in Marine Wildlife Following Oil Spills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Richard F.; Anderson, Jack W.

    2005-07-01

    The relationships among cytochrome P450 induction in marine wildlife species, levels of fluorescent aromatic compounds (FAC) in their bile, the chemical composition of the inducing compounds, the significance of the exposure pathway, and any resulting injury, as a consequence of exposure to crude oil following a spill, are reviewed. Fish collected after oil spills often show increases in cytochrome P450 system activity, cytochrome P4501A (CYP1A) and bile fluorescent aromatic compounds (FAC), that are correlated with exposure to polycyclic aromatic hydrocarbons (PAH) in the oil. There is also some evidence for increases in bile FAC and induction of cytochrome P450 inmore » marine birds and mammals after oil spills. However, when observed, increases in these exposure indicators are transitory and generally decrease to background levels within one year after the exposure. Laboratory studies have shown induction of cytochrome P450 systems occurs after exposure of fish to crude oil in water, sediment or food. Most of the PAH found in crude oil (dominantly 2- and 3-ring PAH) are not strong inducers of cytochrome P450. Exposure to the 4-ring chrysenes or the photooxidized products of the PAH may account for the cytochrome P450 responses in fish collected from oil-spill sites. The contribution of non-spill background PAH, particularly combustion-derived (pyrogenic) PAH, to bile FAC and cytochrome P450 system responses can be confounding and needs to be considered when evaluating oil spill effects. The ubiquity of pyrogenic PAH makes it important to fully characterize all sources of PAH, including PAH from natural resources, e.g. retene, in oil spill studies. In addition, such parameters as species, sex, age, ambient temperature and season need to be taken into account. While increases in fish bile FAC and cytochrome P450 system responses, can together, be sensitive general indicators of PAH exposure after an oil spill, there is little unequivocal evidence to suggest a linkage to higher order biological effects, e.g. toxicity, lesions, reproductive failure.« less

  18. Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil.

    PubMed

    Kato, Souichiro; Chino, Kanako; Kamimura, Naofumi; Masai, Eiji; Yumoto, Isao; Kamagata, Yoichi

    2015-09-24

    Anaerobic degradation of lignin-derived aromatics is an important metabolism for carbon and nutrient cycles in soil environments. Although there are some studies on degradation of lignin-derived aromatics by nitrate- and sulfate-reducing bacteria, knowledge on their degradation under methanogenic conditions are quite limited. In this study, methanogenic microbial communities were enriched from rice paddy field soil with lignin-derived methoxylated monoaromatics (vanillate and syringate) and their degradation intermediates (protocatechuate, catechol, and gallate) as the sole carbon and energy sources. Archaeal community analysis disclosed that both aceticlastic (Methanosarcina sp.) and hydrogenotrophic (Methanoculleus sp. and Methanocella sp.) methanogens dominated in all of the enrichments. Bacterial community analysis revealed the dominance of acetogenic bacteria (Sporomusa spp.) only in the enrichments on the methoxylated aromatics, suggesting that Sporomusa spp. initially convert vanillate and syringate into protocatechuate and gallate, respectively, with acetogenesis via O-demethylation. As the putative ring-cleavage microbes, bacteria within the phylum Firmicutes were dominantly detected from all of the enrichments, while the dominant phylotypes were not identical between enrichments on vanillate/protocatechuate/catechol (family Peptococcaceae bacteria) and on syringate/gallate (family Ruminococcaceae bacteria). This study demonstrates the importance of cooperation among acetogens, ring-cleaving fermenters/syntrophs and aceticlastic/hydrogenotrophic methanogens for degradation of lignin-derived aromatics under methanogenic conditions.

  19. Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil

    PubMed Central

    Kato, Souichiro; Chino, Kanako; Kamimura, Naofumi; Masai, Eiji; Yumoto, Isao; Kamagata, Yoichi

    2015-01-01

    Anaerobic degradation of lignin-derived aromatics is an important metabolism for carbon and nutrient cycles in soil environments. Although there are some studies on degradation of lignin-derived aromatics by nitrate- and sulfate-reducing bacteria, knowledge on their degradation under methanogenic conditions are quite limited. In this study, methanogenic microbial communities were enriched from rice paddy field soil with lignin-derived methoxylated monoaromatics (vanillate and syringate) and their degradation intermediates (protocatechuate, catechol, and gallate) as the sole carbon and energy sources. Archaeal community analysis disclosed that both aceticlastic (Methanosarcina sp.) and hydrogenotrophic (Methanoculleus sp. and Methanocella sp.) methanogens dominated in all of the enrichments. Bacterial community analysis revealed the dominance of acetogenic bacteria (Sporomusa spp.) only in the enrichments on the methoxylated aromatics, suggesting that Sporomusa spp. initially convert vanillate and syringate into protocatechuate and gallate, respectively, with acetogenesis via O-demethylation. As the putative ring-cleavage microbes, bacteria within the phylum Firmicutes were dominantly detected from all of the enrichments, while the dominant phylotypes were not identical between enrichments on vanillate/protocatechuate/catechol (family Peptococcaceae bacteria) and on syringate/gallate (family Ruminococcaceae bacteria). This study demonstrates the importance of cooperation among acetogens, ring-cleaving fermenters/syntrophs and aceticlastic/hydrogenotrophic methanogens for degradation of lignin-derived aromatics under methanogenic conditions. PMID:26399549

  20. Comprehensive GC²/MS for the monitoring of aromatic tar oil constituents during biodegradation in a historically contaminated soil.

    PubMed

    Vasilieva, Viktoriya; Scherr, Kerstin E; Edelmann, Eva; Hasinger, Marion; Loibner, Andreas P

    2012-02-20

    The constituents of tar oil comprise a wide range of physico-chemically heterogeneous pollutants of environmental concern. Besides the sixteen polycyclic aromatic hydrocarbons defined as priority pollutants by the US-EPA (EPA-PAHs), a wide range of substituted (NSO-PAC) and alkylated (alkyl-PAC) aromatic tar oil compounds are gaining increased attention for their toxic, carcinogenic, mutagenic and/or teratogenic properties. Investigations on tar oil biodegradation in soil are in part hampered by the absence of an efficient analytical tool for the simultaneous analysis of this wide range of compounds with dissimilar analytical properties. Therefore, the present study sets out to explore the applicability of comprehensive two-dimensional gas chromatography (GC²/MS) for the simultaneous measurement of compounds with differing polarity or that are co-eluting in one-dimensional systems. Aerobic tar oil biodegradation in a historically contaminated soil was analyzed over 56 days in lab-scale bioslurry tests. Forty-three aromatic compounds were identified with GC²/MS in one single analysis. The number of alkyl chains on a molecule was found to prime over alkyl chain length in hampering compound biodegradation. In most cases, substitution of carbon with nitrogen and oxygen was related to increased compound degradation in comparison to unalkylated and sulphur- or unsubstituted PAH with a similar ring number.The obtained results indicate that GC²/MS can be employed for the rapid assessment of a large variety of structurally heterogeneous environmental contaminants. Its application can contribute to facilitate site assessment, development and control of microbial cleanup technologies for tar oil contaminated sites. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. 2′-Chloro-4-meth­oxy-3-nitro­benzil

    PubMed Central

    Nithya, G.; Thanuja, B.; Chakkaravarthi, G.; Kanagam, Charles C.

    2011-01-01

    In the title compound, C15H10ClNO5, the dihedral angle between the aromatic rings is 87.99 (5)°. The O—C—C—O torsion angle between the two carbonyl units is −119.03 (16)°. The crystal structure is stabilized by a weak intermolecular C—H⋯O hydrogen bond. PMID:21754895

  2. Determination of polycyclic aromatic hydrocarbons in urine of coke oven workers by headspace solid phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Waidyanatha, Suramya; Zheng, Yuxin; Rappaport, Stephen M

    2003-05-06

    Polycyclic aromatic hydrocarbons (PAHs) represent a complex mixture of toxic compounds that are ubiquitous in the environment. We investigated the utility of head space-solid phase microextraction (HS-SPME) to measure the following surrogate PAHs in urine: naphthalene (NAP), phenanthrene (PHE), pyrene (PYR), and benzo(a)pyrene (BAP), representing classes of 2-, 3-, 4- and 5-ring compounds, respectively. We then applied the method to urine from 28 coke oven workers (median levels (microg/l) were: NAP=3.65, PHE=1.51, PYR=0.003, BAP not detected) and 22 controls (median (microg/l) NAP=0.859, PHE=0.062, PYR=0.001, BAP not detected). Urinary levels of NAP, PHE, and PYR were all associated with exposure category (controls, side- and bottom-workers, and top-workers) but not with smoking status. Strong correlations were observed between urinary levels of NAP, PHE, and PYR in coke-oven workers. Our results indicate that unmetabolized 2-, 3- and 4-ring PAHs can be measured in urine by HS-SPME. Such measurements can be used to investigate the uptake and metabolism of complex PAH mixtures in humans.

  3. Low-Temperature Molecular Layer Deposition Using Monofunctional Aromatic Precursors and Ozone-Based Ring-Opening Reactions.

    PubMed

    Svärd, Laura; Putkonen, Matti; Kenttä, Eija; Sajavaara, Timo; Krahl, Fabian; Karppinen, Maarit; Van de Kerckhove, Kevin; Detavernier, Christophe; Simell, Pekka

    2017-09-26

    Molecular layer deposition (MLD) is an increasingly used deposition technique for producing thin coatings consisting of purely organic or hybrid inorganic-organic materials. When organic materials are prepared, low deposition temperatures are often required to avoid decomposition, thus causing problems with low vapor pressure precursors. Monofunctional compounds have higher vapor pressures than traditional bi- or trifunctional MLD precursors, but do not offer the required functional groups for continuing the MLD growth in subsequent deposition cycles. In this study, we have used high vapor pressure monofunctional aromatic precursors in combination with ozone-triggered ring-opening reactions to achieve sustained sequential growth. MLD depositions were carried out by using three different aromatic precursors in an ABC sequence, namely with TMA + phenol + O 3 , TMA + 3-(trifluoromethyl)phenol + O 3 , and TMA + 2-fluoro-4-(trifluoromethyl)benzaldehyde + O 3 . Furthermore, the effect of hydrogen peroxide as a fourth step was evaluated for all studied processes resulting in a four-precursor ABCD sequence. According to the characterization results by ellipsometry, infrared spectroscopy, and X-ray reflectivity, self-limiting MLD processes could be obtained between 75 and 150 °C with each of the three aromatic precursors. In all cases, the GPC (growth per cycle) decreased with increasing temperature. In situ infrared spectroscopy indicated that ring-opening reactions occurred in each ABC sequence. Compositional analysis using time-of-flight elastic recoil detection indicated that fluorine could be incorporated into the film when 3-(trifluoromethyl)phenol and 2-fluoro-4-(trifluoromethyl)benzaldehyde were used as precursors.

  4. Determination of polycyclic aromatic hydrocarbons in fractions in asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-07-01

    An analytical method using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization for the determination of polycyclic aromatic hydrocarbons in asphalt fractions has been developed. The 14 compounds determined, characterized by having two or more condensed aromatic rings, are expected to be present in asphalt and are considered carcinogenic and mutagenic. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all of the compounds. The limits of detection ranged from 0.5 to 346.5 μg/L and the limits of quantification ranged from 1.7 to 1550 μg/L. The method was validated against a diesel particulate extract standard reference material (NIST SRM 1975), and the obtained concentrations agreed with the certified values. The method was applied to asphalt samples after its fractionation according to ASTM D4124 and the method of Green. The concentrations of the seven polycyclic aromatic hydrocarbons quantified in the sample ranged from 0.86 mg/kg for benzo[ghi]perylene to 98.32 mg/kg for fluorene. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Sediment contamination of residential streams in the metropolitan kansas city area, USA: Part I. distribution of polycyclic aromatic hydrocarbon and pesticide-related compounds

    USGS Publications Warehouse

    Tao, J.; Huggins, D.; Welker, G.; Dias, J.R.; Ingersoll, C.G.; Murowchick, J.B.

    2010-01-01

    This is the first part of a study that evaluates the influence of nonpoint-source contaminants on the sediment quality of five streams within the metropolitan Kansas City area, central United States. Surficial sediment was collected in 2003 from 29 sites along five streams with watersheds that extend from the core of the metropolitan area to its development fringe. Sediment was analyzed for 16 polycyclic aromatic hydrocarbons (PAHs), 3 common polychlorinated biphenyl mixtures (Aroclors), and 25 pesticide-related compounds of eight chemical classes. Multiple PAHs were detected at more than 50% of the sites, and concentrations of total PAHs ranged from 290 to 82,150 ??g/kg (dry weight). The concentration and frequency of detection of PAHs increased with increasing urbanization of the residential watersheds. Four- and five-ring PAH compounds predominated the PAH composition (73-100%), especially fluoranthene and pyrene. The PAH composition profiles along with the diagnostic isomer ratios [e.g., anthracene/(anthracene + phenanthrene), 0.16 ?? 0.03; fluoranthene/(fluoranthene + pyrene), 0.55 ?? 0.01)] indicate that pyrogenic sources (i.e., coal-tar-related operations or materials and traffic-related particles) may be common PAH contributors to these residential streams. Historical-use organochlorine insecticides and their degradates dominated the occurrences of pesticide-related compounds, with chlordane and dieldrin detected in over or nearly 50% of the samples. The occurrence of these historical organic compounds was associated with past urban applications, which may continue to be nonpoint sources replenishing local streams. Concentrations of low molecular weight (LMW; two or three rings) and high molecular weight (HMW; four to six rings) PAHs covaried along individual streams but showed dissimilar distribution patterns between the streams, while the historical pesticide-related compounds generally increased in concentration downstream. Correlations were noted between LMW and HMW PAHs for most of the streams and between historical-use organochlorine compounds and total organic carbon and clay content of sediments for one of the streams (Brush Creek). Stormwater runoff transport modes are proposed to describe how the two groups of contaminants migrated and distributed in the streambed. ?? 2010 Springer Science+Business Media, LLC.

  6. Contamination of agricultural lands by polycyclic aromatic hydrocarbons (Tver region, Russia)

    NASA Astrophysics Data System (ADS)

    Zhidkin, Andrey; Koshovskii, Timur; Gennadiev, Alexander

    2016-04-01

    It is important to study sources and concentrations of polycyclic aromatic hydrocarbons (PAHs) in the agriculture soils within areas without intensive contaminations. Our studied object was soil and snow cover in the taiga zone (Tver region, Russia). A total of 52 surface (0-30 cm) and 31 subsurface (30-50 cm) soil samples, and 13 snow samples were collected in 35 soil pits, located in forest, crop and layland soils. Studied concentrations of the following 11 individual compounds: two-ring compounds (diphenyl and naphthalene homologues); three-ring compounds (fluorene, phenanthrene, anthracene); four-ring compounds (chrysene, pyrene, tetraphene); five-ring compounds (perylene, benzo[a]pyrene); and six-ring compounds (benzo[ghi]perylene). Analyses made by specrtofluorometry method at the temperature of liquid nitrogen. The total concentrations of all PAHs in soil samples ranged from 9 to 770 ng*g-1 with a median of 96 ng*g-1. The sum of high molecular weight PAHs was significantly lower than the sum of low molecular weight PAHs in the studied soils. The phenanthrene concentration was highest and ranged from 1.2 to 720 ng*g-1 (medium 72 ng*g-1). Compared PAHs reserves in snow cover (μg*m-2) with the reserves in topsoil layer (μg*m-2 in the upper 30 cm). Low molecular weight PAHs (fluorene, phenanthrene, diphenyl, naphthalene) reserves in snow was less than 20% from the reserves in the soil surface layer. High molecular weight PAHs (benzo[a]pyrene, chrysene, perylene, pyrene and tetraphene) reserves in snow was about 50-70% from the reserves in soil surface layer. High molecular weight PAHs (benzo[ghi]perylene and anthracene) reserves in snow was more than in topsoil. PAHs vertical distribution in soil profiles was statistically examined. The total concentration of all PAHs decreased with depth in all studied forest soils. In the arable soils was no significant trend in domination of PAHs total concentrations in the plowing and subsoil layers. The ratio of topsoil to subsoil concentrations of PAHs is different for differ congeners. Contents of phenanthrene and fluorene predominantly increase with the depth. Content of high molecular weight PAHs (benzo[a]pyrene, anthracene, tetraphene, perylene and pyrene) predominantly decreased with the depth. Other PAHs congeners have indistinct profile distributions in studied pits. Based on studied results PAHs divided to associations with different concentrations, sources and vertical distribution in soils: a) phenanthrene and fluorine; b) naphthalene, diphenyl; c) pyrene, benzo(a)pyrene, tetraphene, perylene, chrysene; d) anthracene and benzo(ghi)perylene. Research is funded by Russian Science Foundation (Project 14-27-00083).

  7. Concentrations in human blood of petroleum hydrocarbons associated with the BP/Deepwater Horizon oil spill, Gulf of Mexico.

    PubMed

    Sammarco, Paul W; Kolian, Stephan R; Warby, Richard A F; Bouldin, Jennifer L; Subra, Wilma A; Porter, Scott A

    2016-04-01

    During/after the BP/Deepwater Horizon oil spill, cleanup workers, fisherpersons, SCUBA divers, and coastal residents were exposed to crude oil and dispersants. These people experienced acute physiological and behavioral symptoms and consulted a physician. They were diagnosed with petroleum hydrocarbon poisoning and had blood analyses analyzed for volatile organic compounds; samples were drawn 5-19 months after the spill had been capped. We examined the petroleum hydrocarbon concentrations in the blood. The aromatic compounds m,p-xylene, toluene, ethylbenzene, benzene, o-xylene, and styrene, and the alkanes hexane, 3-methylpentane, 2-methylpentane, and iso-octane were detected. Concentrations of the first four aromatics were not significantly different from US National Health and Nutritional Examination Survey/US National Institute of Standards and Technology 95th percentiles, indicating high concentrations of contaminants. The other two aromatics and the alkanes yielded equivocal results or significantly low concentrations. The data suggest that single-ring aromatic compounds are more persistent in the blood than alkanes and may be responsible for the observed symptoms. People should avoid exposure to crude oil through avoidance of the affected region, or utilizing hazardous materials suits if involved in cleanup, or wearing hazardous waste operations and emergency response suits if SCUBA diving. Concentrations of alkanes and PAHs in the blood of coastal residents and workers should be monitored through time well after the spill has been controlled.

  8. The biodegradation vs. biotransformation of fluorosubstituted aromatics.

    PubMed

    Kiel, Martina; Engesser, Karl-Heinrich

    2015-09-01

    Fluoroaromatics are widely and--in recent years--increasingly used as agrochemicals, starting materials for chemical syntheses and especially pharmaceuticals. This originates from the special properties the carbon-fluorine bond is imposing on organic molecules. Hence, fluoro-substituted compounds more and more are considered to be important potential environmental contaminants. On the other hand, the microbial potentials for their transformation and mineralization have received less attention in comparison to other haloaromatics. Due to the high electronegativity of the fluorine atom, its small size, and the extraordinary strength of the C-F bond, enzymes and mechanisms known to facilitate the degradation of chloro- or bromoarenes are not necessarily equally active with fluoroaromatics. Here, we review the literature on the microbial degradation of ring and side-chain fluorinated aromatic compounds under aerobic and anaerobic conditions, with particular emphasis being placed on the mechanisms of defluorination reactions.

  9. Synthesis and Cytotoxic Evaluation of 1H-1,2,3-Triazol-1-ylmethyl-2,3-dihydronaphtho[1,2-b]furan-4,5-diones.

    PubMed

    Chipoline, Ingrid C; Alves, Evelyne; Branco, Paola; Costa-Lotufo, Leticia V; Ferreira, Vitor F; Silva, Fernando C DA

    2018-01-01

    The 1,2-naphthoquinone compound was previously considered active against solid tumors. Moreover, glycosidase inhibitors such as 1,2,3-1H triazoles has been pointed out as efficient compounds in anticancer activity studies. Thus, a series of eleven 1,2-naphthoquinones tethered in C2 to 1,2,3-1H-triazoles 9a-k were designed, synthesized and their cytotoxic activity evaluated using HCT-116 (colon adenocarcinoma), MCF-7 (breast adenocarcinoma) and RPE (human nontumor cell line from retinal epithelium). The chemical synthesis was performed from C-3 allylation of lawsone followed by iodocyclization with subsequent nucleophilic displacement with sodium azide and, finally, the 1,3-dipolar cycloaddition catalyzed by Cu(I) with terminal alkynes led to the formation of 1H-1,2,3-Triazol-1-ylmethyl-2,3-dihydronaphtho[1,2-b]furan-4,5-diones in good yields. Compounds containing aromatic group linked to 1,2,3-triazole ring (9c, 9d, 9e, 9i) presented superior cytotoxic activity against cancer cell lines with IC50 in the range of 0.74 to 4.4 µM indicating that the presence of aromatic rings substituents in the 1,2,3-1H-triazole moiety is probably responsible for the improved cytotoxic activity.

  10. Spatial Distribution of Polycyclic Aromatic Hydrocarbon (PAH) Concentrations in Soils from Bursa, Turkey.

    PubMed

    Karaca, Gizem

    2016-02-01

    The objectives of this study were to identify regional variations in soil polycyclic aromatic hydrocarbon (PAH) contamination in Bursa, Turkey, and to determine the distributions and sources of various PAH species and their possible sources. Surface soil samples were collected from 20 different locations. The PAH concentrations in soil samples were analyzed using gas chromatography-mass spectrometry (GC-MS). The total PAH concentrations (∑12 PAH) varied spatially between 8 and 4970 ng/g dry matter (DM). The highest concentrations were measured in soils taken from traffic+barbecue+ residential areas (4970 ng/g DM) and areas with cement (4382 ng/g DM) and iron-steel (4000 ng/g DM) factories. In addition, the amounts of ∑7 carcinogenic PAH ranged from 1 to 3684 ng/g DM, and between 5 and 74 % of the total PAHs consisted of such compounds. Overall, 4-ring PAH compounds (Fl, Pyr, BaA and Chr) were dominant in the soil samples, with 29-82 % of the ∑12 PAH consisting of 4-ring PAH compounds. The ∑12 BaPeq values ranged from 0.1 to 381.8 ng/g DM. Following an evaluation of the molecular diagnostic ratios, it was concluded that the PAH pollution in Bursa soil was related to pyrolytic sources; however, the impact of petrogenic sources should not be ignored.

  11. N-[4-Cyano-3-(trifluoro­meth­yl)phen­yl]-2-eth­oxy­benzamide

    PubMed Central

    Naveen, S.; Basappa; Manjunath, H. R.; Sridhar, M. A.; Shashidhara Prasad, J.; Rangappa, K. S.

    2010-01-01

    In the title compound, C17H13F3N2O2, the two aromatic rings are essentially coplanar, forming a dihedral angle of 2.78 (12)°. The non-H atoms of the eth­oxy group are coplanar with the attached ring [maximum deviation = 0.271 (3) Å]. An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal structure, mol­ecules are linked by inter­molecular C—H⋯N and C—H⋯F hydrogen bonds. PMID:21587782

  12. The influence of the nature of a substituent on the parameters of the intra- and intermolecular interactions in molecules of cross-conjugated ketones

    NASA Astrophysics Data System (ADS)

    Kompaneets, V. V.; Vasilieva, I. A.

    2017-08-01

    We have quantitatively analyzed the vibronic parameters of two cross-conjugated δ-dimethylaminoketones. The presence of the -N(CH3)2, C=O, and -NO2 groups in the benzene ring has been shown to affect the manifestation of the vibronic parameters of characteristic bands that describe the state (vibrations, types of deformation upon excitation) of polyene systems with aromatic rings. Data on the influence of the nature of the substituent on the parameters of intra- and intermolecular interactions in the examined compounds have been presented.

  13. Arctigenin: a lignan from Arctium lappa.

    PubMed

    Gao, Haiyan; Li, Guanglei; Zhang, Junhe; Zeng, Jie

    2008-07-19

    The title compound {systematic name: (3R-trans)-4-[(3,4-dimethoxy-phen-yl)meth-yl]-3-[(4-hydr-oxy-3-methoxy-phen-yl)meth-yl]-4,5-dihydrofuran-2(3H)-one}, C(21)H(24)O(6), has a dibenz-yl-butyrolactone skeleton. The two aromatic rings are inclined at a dihedral angle of 68.75 (7)° with respect to each other. The lactone ring adopts an envelope conformation. A series of O-H⋯O and C-H⋯O hydrogen bonds contribute to the stabilization of the crystal packing. The absolute configuration was assigned on the basis of the published literature.

  14. The sensitive and selective adsorption of aromatic compounds with highly crosslinked polymer nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Shuqin; Chen, Darui; Zheng, Juan; Zeng, Lewei; Jiang, Jijun; Jiang, Ruifeng; Zhu, Fang; Shen, Yong; Wu, Dingcai; Ouyang, Gangfeng

    2015-10-01

    This study presents the preparation and characterization of a nanoscale Davankov-type hyper-crosslinked-polymer (HCP) as an adsorbent of benzene-ring-containing dyes and organic pollutants. HCP nanoparticles post-crosslinked from a poly(DVB-co-VBC) precursor were synthesized in this study, possessing ultrahigh surface area, hydrophobicity and stability. The as-synthesized Davankov-type HCP exhibited a rapid and selective adsorption ability towards the benzene-ring-containing dyes due to its highly conjugated structure. Besides, for the first time, the prepared HCP nanoparticles were adopted for the adsorption of nonpolar organic pollutants by means of solid-phase microextraction (SPME). Owing to its high hydrophobicity, diverse pore size distribution and highly conjugated structure, a 10 μm HCP coating exhibited excellent adsorption abilities towards benzene-ring-containing polycyclic aromatic hydrocarbons (PAHs) and benzene series compounds (benzene, toluene, ethylbenzene and o-xylene; abbreviated to BTEX) and to highly hydrophobic long-chain n-alkanes. Finally, the HCP-nanoparticles-coated SPME fiber was applied to the simultaneous analysis of five PAHs in environmental water samples and satisfactory recoveries were achieved. The findings could provide a new benchmark for the exploitation of superb HCPs as effective adsorbents for SPME or other adsorption applications.This study presents the preparation and characterization of a nanoscale Davankov-type hyper-crosslinked-polymer (HCP) as an adsorbent of benzene-ring-containing dyes and organic pollutants. HCP nanoparticles post-crosslinked from a poly(DVB-co-VBC) precursor were synthesized in this study, possessing ultrahigh surface area, hydrophobicity and stability. The as-synthesized Davankov-type HCP exhibited a rapid and selective adsorption ability towards the benzene-ring-containing dyes due to its highly conjugated structure. Besides, for the first time, the prepared HCP nanoparticles were adopted for the adsorption of nonpolar organic pollutants by means of solid-phase microextraction (SPME). Owing to its high hydrophobicity, diverse pore size distribution and highly conjugated structure, a 10 μm HCP coating exhibited excellent adsorption abilities towards benzene-ring-containing polycyclic aromatic hydrocarbons (PAHs) and benzene series compounds (benzene, toluene, ethylbenzene and o-xylene; abbreviated to BTEX) and to highly hydrophobic long-chain n-alkanes. Finally, the HCP-nanoparticles-coated SPME fiber was applied to the simultaneous analysis of five PAHs in environmental water samples and satisfactory recoveries were achieved. The findings could provide a new benchmark for the exploitation of superb HCPs as effective adsorbents for SPME or other adsorption applications. Electronic supplementary information (ESI) available: Fig. S1-S8, details of optimization of the SPME condition, Tables S1-S5. See DOI: 10.1039/c5nr04624f

  15. Evidence for a strong sulfur-aromatic interaction derived from crystallographic data.

    PubMed

    Zauhar, R J; Colbert, C L; Morgan, R S; Welsh, W J

    2000-03-01

    We have uncovered new evidence for a significant interaction between divalent sulfur atoms and aromatic rings. Our study involves a statistical analysis of interatomic distances and other geometric descriptors derived from entries in the Cambridge Crystallographic Database (F. H. Allen and O. Kennard, Chem. Design Auto. News, 1993, Vol. 8, pp. 1 and 31-37). A set of descriptors was defined sufficient in number and type so as to elucidate completely the preferred geometry of interaction between six-membered aromatic carbon rings and divalent sulfurs for all crystal structures of nonmetal-bearing organic compounds present in the database. In order to test statistical significance, analogous probability distributions for the interaction of the moiety X-CH(2)-X with aromatic rings were computed, and taken a priori to correspond to the null hypothesis of no significant interaction. Tests of significance were carried our pairwise between probability distributions of sulfur-aromatic interaction descriptors and their CH(2)-aromatic analogues using the Smirnov-Kolmogorov nonparametric test (W. W. Daniel, Applied Nonparametric Statistics, Houghton-Mifflin: Boston, New York, 1978, pp. 276-286), and in all cases significance at the 99% confidence level or better was observed. Local maxima of the probability distributions were used to define a preferred geometry of interaction between the divalent sulfur moiety and the aromatic ring. Molecular mechanics studies were performed in an effort to better understand the physical basis of the interaction. This study confirms observations based on statistics of interaction of amino acids in protein crystal structures (R. S. Morgan, C. E. Tatsch, R. H. Gushard, J. M. McAdon, and P. K. Warme, International Journal of Peptide Protein Research, 1978, Vol. 11, pp. 209-217; R. S. Morgan and J. M. McAdon, International Journal of Peptide Protein Research, 1980, Vol. 15, pp. 177-180; K. S. C. Reid, P. F. Lindley, and J. M. Thornton, FEBS Letters, 1985, Vol. 190, pp. 209-213), as well as studies involving molecular mechanics (G. Nemethy and H. A. Scheraga, Biochemistry and Biophysics Research Communications, 1981, Vol. 98, pp. 482-487) and quantum chemical calculations (B. V. Cheney, M. W. Schulz, and J. Cheney, Biochimica Biophysica Acta, 1989, Vol. 996, pp.116-124; J. Pranata, Bioorganic Chemistry, 1997, Vol. 25, pp. 213-219)-all of which point to the possible importance of the sulfur-aromatic interaction. However, the preferred geometry of the interaction, as determined from our analysis of the small-molecule crystal data, differs significantly from that found by other approaches. Copyright 2000 John Wiley & Sons, Inc.

  16. pH-Independent Recognition of Polyhydroxy Compounds by Niobium(V) Porphyrin Complex with Unique Sugar Selectivity.

    PubMed

    Doi, Takuya; Kachikawa, Norihide; Yasui, Takashi; Yuchi, Akio

    2017-01-01

    The niobium(V) complex with tetraphenylporphin having OH - as an auxilliay ligand exists as a dimeric complex, [Nb 2 (tpp) 2 O 3 ] at a total concentration >10 -4.5 mol dm -3 , and reacts with an aliphatic or aromatic polyhydroxy compound to form a monomeric complex containing chelate rings by coordination of the deprotonated species, and to cause an appreciable UV-Vis spectral change. In contrast to phenylboronic acid (PBA), the reactivity of [Nb 2 (tpp) 2 O 3 ] is independent of pH at least between 4 and 8. Aliphatic comounds are more reactive than aromatic compounds in dioxane-water, while the reactivity order is reversed in the two-phase reaction. The sugar selectivity order of [Nb 2 (tpp) 2 O 3 ] in dioxane-water (10:1) (sorbose > fructose > mannose > arabinose, galactose > glucose) is appreciably different from that of PBA (fructose > sorbose > arabinose > galactose > mannose > glucose). This may be related to the difference in size of the Lewis acidic center.

  17. QSAR modeling of acute toxicity on mammals caused by aromatic compounds: the case study using oral LD50 for rats.

    PubMed

    Rasulev, Bakhtiyor; Kusić, Hrvoje; Leszczynska, Danuta; Leszczynski, Jerzy; Koprivanac, Natalija

    2010-05-01

    The goal of the study was to predict toxicity in vivo caused by aromatic compounds structured with a single benzene ring and the presence or absence of different substituent groups such as hydroxyl-, nitro-, amino-, methyl-, methoxy-, etc., by using QSAR/QSPR tools. A Genetic Algorithm and multiple regression analysis were applied to select the descriptors and to generate the correlation models. The most predictive model is shown to be the 3-variable model which also has a good ratio of the number of descriptors and their predictive ability to avoid overfitting. The main contributions to the toxicity were shown to be the polarizability weighted MATS2p and the number of certain groups C-026 descriptors. The GA-MLRA approach showed good results in this study, which allows the building of a simple, interpretable and transparent model that can be used for future studies of predicting toxicity of organic compounds to mammals.

  18. Chromatographic selectivity of poly(alkyl methacrylate-co-divinylbenzene) monolithic columns for polar aromatic compounds by pressure-driven capillary liquid chromatography.

    PubMed

    Lin, Shu-Ling; Wang, Chih-Chieh; Fuh, Ming-Ren

    2016-10-05

    In this study, divinylbenzene (DVB) was used as the cross-linker to prepare alkyl methacrylate (AlMA) monoliths for incorporating π-π interactions between the aromatic analytes and AlMA-DVB monolithic stationary phases in capillary LC analysis. Various AlMA/DVB ratios were investigated to prepare a series of 30% AlMA-DVB monolithic stationary phases in fused-silica capillaries (250-μm i.d.). The physical properties (such as porosity, permeability, and column efficiency) of the synthesized AlMA-DVB monolithic columns were investigated for characterization. Isocratic elution of phenol derivatives was first employed to evaluate the suitability of the prepared AlMA-DVB columns for small molecule separation. The run-to-run (0.16-1.20%, RSD; n = 3) and column-to-column (0.26-2.95%, RSD; n = 3) repeatabilities on retention times were also examined using the selected AlMA-DVB monolithic columns. The π-π interactions between the aromatic ring and the DVB-based stationary phase offered better recognition on polar analytes with aromatic moieties, which resulted in better separation resolution of aromatic analytes on the AlMA-DVB monolithic columns. In order to demonstrate the capability of potential environmental and/or food safety applications, eight phenylurea herbicides with single benzene ring and seven sulfonamide antibiotics with polyaromatic moieties were analyzed using the selected AlMA-DVB monolithic columns. Copyright © 2016. Published by Elsevier B.V.

  19. Effect of iodide on transformation of phenolic compounds by nonradical activation of peroxydisulfate in the presence of carbon nanotube: Kinetics, impacting factors, and formation of iodinated aromatic products.

    PubMed

    Guan, Chaoting; Jiang, Jin; Pang, Suyan; Luo, Congwei; Yang, Yi; Ma, Jun; Yu, Jing; Zhao, Xi

    2018-06-04

    Our recent study has demonstrated that iodide (I - ) can be easily and almost entirely oxidized to hypoiodous acid (HOI) but not to iodate by nonradical activation of peroxydisulfate (PDS) in the presence of a commercial carbon nanotube (CNT). In this work, the oxidation kinetics of phenolic compounds by the PDS/CNT system in the presence of I - were examined and potential formation of iodinated aromatic products was explored. Experimental results suggested that I - enhanced the transformation of six selected substituted phenols, primarily attributed to the generation of HOI that was considerably reactive toward these phenolic compounds. More significant enhancement was obtained at higher I - concentrations or lower pH values, while the change of PDS or CNT dosages exhibited a slight impact on the enhancing effect of I - . Product analyses with liquid chromatography tandem mass spectrometry clearly revealed the production of iodinated aromatic products when p-hydroxybenzoic acid (p-HBA, a model phenol) was treated by the PDS/CNT/I - system in both synthetic and real waters. Their formation pathways probably involved the substitution of HOI on aromatic ring of p-HBA, as well as the generation of iodinated p-HBA phenoxyl radicals and subsequent coupling of these radicals. Given the considerable toxicity and harmful effects of these iodinated aromatic products, particular attention should be paid when the novel PDS/CNT oxidation technology is applied for treatment of phenolic contaminants in iodide-containing waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Forming a Two-Ring Polycyclic Aromatic Hydrocarbon without a Benzene Intermediate: the Reaction of Propargyl with Acetylene

    NASA Astrophysics Data System (ADS)

    Osborn, David; Savee, John; Selby, Talitha; Welz, Oliver; Taatjes, Craig

    The reaction of acetylene (HCCH) with a resonance-stabilized free radical is a commonly invoked mechanism for the generation of polycyclic aromatic hydrocarbons (PAH), which are likely precursors of soot particles in combustion. In this work, we examine the sequential addition of acetylene to the propargyl radical (H2CCCH) at temperatures of 800 and 1000 K. Using time-resolved multiplexed photoionization mass spectrometry with tunable ionizing radiation, we identified the isomeric forms of the C5H5 and C7H7 intermediates in this reaction sequence, and confirmed that the final C9H8 product is the two-ring aromatic compound indene. We identified two different resonance-stabilized C5H5 intermediates, with different temperature dependencies. Furthermore, the C7H7 intermediate is the tropyl radical (c-C7H7) , not the benzyl radical (C6H5CH2) , as is usually assumed in combustion environments. These experimental results are in general agreement with the latest electronic structure / master equation results of da Silva et al. This work shows a pathway for PAH formation that bypasses benzene / benzyl intermediates.

  1. 1-(2,4-Dinitro­phen­yl)-2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)hydrazine

    PubMed Central

    Danish, M.; Hamid, Masood; Tahir, M. Nawaz; Ahmad, Nazir; Ghafoor, Sabiha

    2010-01-01

    In the title compound, C14H14N4O4, the dihedral angle between the benzene rings is 10.42 (8)°. The nitro groups make dihedral angles of 5.3 (2) and 6.47 (15)° with their parent ring and are oriented at 11.2 (3)° with respect to each other. An intra­molecular N—H⋯O hydrogen bond completes an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯O inter­actions, thus forming (010) chains in which R 2 2(13) ring motifs are present. There also exist aromatic π–π stacking inter­actions [centroid–centroid separation = 3.7046 (9) Å]. PMID:21588393

  2. Interstellar Polycyclic Aromatic Compounds and Astrophysics

    NASA Technical Reports Server (NTRS)

    Hodgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    Polycyclic aromatic compounds (PACs), a class of organic molecules whose structures are characterized by the presence of two or more fused aromatic rings, have been the subject of astrophysical interest for nearly two decades. Large by interstellar standards (from as few as 20 to perhaps as many as several hundred atoms), it has been suggested that these species are among the most abundant interstellar molecules impacting a wide range of astrophysical phenomena including: the ubiquitous family of infrared emission bands observed in an ever-increasing assortment of astronomical objects; the subtle but rich array of discrete visible/near-infrared interstellar molecular absorption features known as the diffuse interstellar bands (DIBs); the broad near-infrared quasi-continuum observed in a number of nebulae known as excess red emission (ERE); the interstellar ultraviolet extinction curve and broad '2200 Angstrom bump'; the heating/cooling mechanisms of interstellar clouds. Nevertheless, until recently a lack of good-quality laboratory spectroscopic data on PACs under astrophysically relevant conditions (i.e. isolated, ionized molecules; ionized molecular clusters, etc.) has hindered critical evaluation and extension of this model

  3. Polycyclic aromatic hydrocarbon metabolic network in Mycobacterium vanbaalenii PYR-1.

    PubMed

    Kweon, Ohgew; Kim, Seong-Jae; Holland, Ricky D; Chen, Hongyan; Kim, Dae-Wi; Gao, Yuan; Yu, Li-Rong; Baek, Songjoon; Baek, Dong-Heon; Ahn, Hongsik; Cerniglia, Carl E

    2011-09-01

    This study investigated a metabolic network (MN) from Mycobacterium vanbaalenii PYR-1 for polycyclic aromatic hydrocarbons (PAHs) from the perspective of structure, behavior, and evolution, in which multilayer omics data are integrated. Initially, we utilized a high-throughput proteomic analysis to assess the protein expression response of M. vanbaalenii PYR-1 to seven different aromatic compounds. A total of 3,431 proteins (57.38% of the genome-predicted proteins) were identified, which included 160 proteins that seemed to be involved in the degradation of aromatic hydrocarbons. Based on the proteomic data and the previous metabolic, biochemical, physiological, and genomic information, we reconstructed an experiment-based system-level PAH-MN. The structure of PAH-MN, with 183 metabolic compounds and 224 chemical reactions, has a typical scale-free nature. The behavior and evolution of the PAH-MN reveals a hierarchical modularity with funnel effects in structure/function and intimate association with evolutionary modules of the functional modules, which are the ring cleavage process (RCP), side chain process (SCP), and central aromatic process (CAP). The 189 commonly upregulated proteins in all aromatic hydrocarbon treatments provide insights into the global adaptation to facilitate the PAH metabolism. Taken together, the findings of our study provide the hierarchical viewpoint from genes/proteins/metabolites to the network via functional modules of the PAH-MN equipped with the engineering-driven approaches of modularization and rationalization, which may expand our understanding of the metabolic potential of M. vanbaalenii PYR-1 for bioremediation applications.

  4. Novel insights into the fungal oxidation of monoaromatic and biarylic environmental pollutants by characterization of two new ring cleavage enzymes.

    PubMed

    Schlüter, Rabea; Lippmann, Ramona; Hammer, Elke; Gesell Salazar, Manuela; Schauer, Frieder

    2013-06-01

    The phenol-degrading yeast Trichosporon mucoides can oxidize and detoxify biarylic environmental pollutants such as dibenzofuran, diphenyl ether and biphenyl by ring cleavage. The degradation pathways are well investigated, but the enzymes involved are not. The high similarity of hydroxylated biphenyl derivatives and phenol raised the question if the enzymes of the phenol degradation are involved in ring cleavage or whether specific enzymes are necessary. Purification of enzymes from T. mucoides with catechol cleavage activity demonstrated the existence of three different enzymes: a classical catechol-1,2-dioxygenase (CDO), not able to cleave the aromatic ring system of 3,4-dihydroxybiphenyl, and two novel enzymes with a high affinity towards 3,4-dihydroxybiphenyl. The comparison of the biochemical characteristics and mass spectrometric sequence data of these three enzymes demonstrated that they have different substrate specificities. CDO catalyzes the ortho-cleavage of dihydroxylated monoaromatic compounds, while the two novel enzymes carry out a similar reaction on biphenyl derivatives. The ring fission of 3,4-dihydroxybiphenyl by the purified enzymes results in the formation of (5-oxo-3-phenyl-2,5-dihydrofuran-2-yl)acetic acid. These results suggest that the ring cleavage enzymes catalyzing phenol degradation are not involved in the ring cleavage of biarylic compounds by this yeast, although some intermediates of the phenol metabolism may function as inducers.

  5. Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics.

    PubMed

    Wang, Yifan; Li, Jiasong; Liu, Aimin

    2017-04-01

    Molecular oxygen is utilized in numerous metabolic pathways fundamental for life. Mononuclear nonheme iron-dependent oxygenase enzymes are well known for their involvement in some of these pathways, activating O 2 so that oxygen atoms can be incorporated into their primary substrates. These reactions often initiate pathways that allow organisms to use stable organic molecules as sources of carbon and energy for growth. From the myriad of reactions in which these enzymes are involved, this perspective recounts the general mechanisms of aromatic dihydroxylation and oxidative ring cleavage, both of which are ubiquitous chemical reactions found in life-sustaining processes. The organic substrate provides all four electrons required for oxygen activation and insertion in the reactions mediated by extradiol and intradiol ring-cleaving catechol dioxygenases. In contrast, two of the electrons are provided by NADH in the cis-dihydroxylation mechanism of Rieske dioxygenases. The catalytic nonheme Fe center, with the aid of active site residues, facilitates these electron transfers to O 2 as key elements of the activation processes. This review discusses some general questions for the catalytic strategies of oxygen activation and insertion into aromatic compounds employed by mononuclear nonheme iron-dependent dioxygenases. These include: (1) how oxygen is activated, (2) whether there are common intermediates before oxygen transfer to the aromatic substrate, and (3) are these key intermediates unique to mononuclear nonheme iron dioxygenases?

  6. Soils impacted by PAHs: Would the stabilized organic matter be a green tool for the immobilization of these noxious compounds?

    PubMed

    Dores-Silva, Paulo R; Cotta, Jussara A O; Landgraf, Maria D; Rezende, Maria O O

    2018-05-04

    The objective of this study was to investigate the role of stabilized organic matter (vermicompost) and tropical soils in the sorption of naphthalene, anthracene and benzo[a]pyrene. The results obtained for the three compounds were extrapolated for the priority polycyclic aromatic hydrocarbons (PAHs) pollutants according to Environmental Protection Agency (US EPA). To evaluate the sorption process, high performance liquid chromatography was employed and the data was fitted by Freundlich isotherms. The results suggest that the sorption effect generally increases with the number of benzene rings of the PAHs, and that the persistence of PAHs in the environment is possibly related to the number of benzene rings in the PAH molecule. In addition, the pH of the vermicompost can strongly affect the adsorption process in this matrix.

  7. Biotransformation and biodegradation of selected nitroaromatics under anaerobic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razo-Flores, E.; Lettinga, G.; Field, J.A.

    The fate of four nitroaromatic compounds (5-nitrosalicylate, 5NSA; 4-nitrobenzoate, 4NBc; 2,4-dinitrotoluene, 2,4DNT; nitrobenzene, NB) was studied in 160 mL laboratory-scale upward-flow anaerobic sludge bed reactors supplied with a mixture of volatile fatty acids and/or glucose as electron donors. All the nitroaromatics were transformed stoichiometrically to their corresponding aromatic amines. After prolonged reactor operation, 5NSA and 4NBc were completely mineralized to CH[sub 4] and CO[sub 2], whereas 2,4DNT was partially transformed to a nonidentified and nondegradable metabolite. Batch nitro-reduction experiments indicated that the position of the nitro group in relation to the other substituents in the aromatic ring plays a keymore » role in the rate of the nitro-group reduction. The results obtained indicate that certain nitroaromatic compounds can be completely mineralized and serve as a carbon and energy source for anaerobic bacteria.« less

  8. Antifungal agents. 10. New derivatives of 1-[(aryl)[4-aryl-1H-pyrrol-3-yl]methyl]-1H-imidazole, synthesis, anti-candida activity, and quantitative structure-analysis relationship studies.

    PubMed

    Tafi, Andrea; Costi, Roberta; Botta, Maurizio; Di Santo, Roberto; Corelli, Federico; Massa, Silvio; Ciacci, Andrea; Manetti, Fabrizio; Artico, Marino

    2002-06-20

    The synthesis, anti-Candida activity, and quantitative structure-activity relationship (QSAR) studies of a series of 2,4-dichlorobenzylimidazole derivatives having a phenylpyrrole moiety (related to the antibiotic pyrrolnitrin) in the alpha-position are reported. A number of substituents on the phenyl ring, ranging from hydrophobic (tert-butyl, phenyl, or 1-pyrrolyl moiety) to basic (NH(2)), polar (CF(3), CN, SCH(3), NO(2)), or hydrogen bond donors and acceptor (OH) groups, were chosen to better understand the interaction of these compounds with cytochrome P450 14-alpha-lanosterol demethylase (P450(14DM)). Finally, the triazole counterpart of one of the imidazole compounds was synthesized and tested to investigate influence of the heterocyclic ring on biological activity. The in vitro antifungal activities of the newly synthesized azoles 10p-v,x-c' were tested against Candida albicans and Candida spp. at pH 7.2 and pH 5.6. A CoMFA model, previously derived for a series of antifungal agents belonging to chemically diverse families related to bifonazole, was applied to the new products. Because the results produced by this approach were not encouraging, Catalyst software was chosen to perform a new 3D-QSAR study. Catalyst was preferred this time because of the possibility of considering each compound as a collection of energetically reasonable conformations and of considering alternative stereoisomers. The pharmacophore model developed by Catalyst, named HYPO1, showed good performances in predicting the biological activity data, although it did not exhibit an unequivocal preference for one enantiomeric series of inhibitors relative to the other. One aromatic nitrogen with a lone pair in the ring plane (mapped by all of the considered compounds) and three aromatic ring features were recognized to have pharmacophoric relevance, whereas neither hydrogen bond acceptor nor hydrophobic features were found. These findings confirmed that the key interaction of azole antifungals with the demethylase enzyme is the coordination bond to the iron ion of the porphyrin system, while interactions with amino acids localized in proximity of heme could modulate the biological activity of diverse antifungal agents. In conclusion, HYPO1 conveys important information in an intuitive manner and can provide predictive capability for evaluating new compounds.

  9. Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Incardona, John P., E-mail: john.incardona@noaa.gov; Linbo, Tiffany L.; Scholz, Nathaniel L.

    Petroleum-derived compounds, including polycyclic aromatic hydrocarbons (PAHs), commonly occur as complex mixtures in the environment. Recent studies using the zebrafish experimental model have shown that PAHs are toxic to the embryonic cardiovascular system, and that the severity and nature of this developmental cardiotoxicity varies by individual PAH. In the present study we characterize the toxicity of the relatively higher molecular weight 5-ring PAHs benzo[a]pyrene (BaP), benzo[e]pyrene (BeP), and benzo[k]fluoranthene (BkF). While all three compounds target the cardiovascular system, the underlying role of the ligand-activated aryl hydrocarbon receptor (AHR2) and the tissue-specific induction of the cytochrome p450 metabolic pathway (CYP1A) weremore » distinct for each. BaP exposure (40 {mu}M) produced AHR2-dependent bradycardia, pericardial edema, and myocardial CYP1A immunofluorescence. By contrast, BkF exposure (4-40 {mu}M) caused more severe pericardial edema, looping defects, and erythrocyte regurgitation through the atrioventricular valve that were AHR2-independent (i.e., absent myocardial or endocardial CYP1A induction). Lastly, exposure to BeP (40 {mu}M) yielded a low level of CYP1A+ signal in the vascular endothelium of the head and trunk, without evident toxic effects on cardiac function or morphogenesis. Combined with earlier work on 3- and 4-ring PAHs, our findings provide a more complete picture of how individual PAHs may drive the cardiotoxicity of mixtures in which they predominate. This will improve toxic injury assessments and risk assessments for wild fish populations that spawn in habitats altered by overlapping petroleum-related human impacts such as oil spills, urban stormwater runoff, or sediments contaminated by legacy industrial activities. -- Highlights: Black-Right-Pointing-Pointer PAH compounds with 5 rings in different arrangements caused differential tissue-specific patterns of CYP1A induction in zebrafish embryos. Black-Right-Pointing-Pointer These compounds produced differential cardiac developmental toxicity that did not strictly correlate with associated CYP1A induction. Black-Right-Pointing-Pointer Cardiotoxicity of benzo(a)pyrene was partially dependent on the AHR2 isoform, while benzo(k)fluoranthene cardiotoxicity was not. Black-Right-Pointing-Pointer Individual PAH compounds have distinct toxicokinetic pathways in fish embryos, and act through different toxic mechanisms.« less

  10. Synthesis and Late-Stage Functionalization of Complex Molecules through C–H Fluorination and Nucleophilic Aromatic Substitution

    PubMed Central

    2015-01-01

    We report the late-stage functionalization of multisubstituted pyridines and diazines at the position α to nitrogen. By this process, a series of functional groups and substituents bound to the ring through nitrogen, oxygen, sulfur, or carbon are installed. This functionalization is accomplished by a combination of fluorination and nucleophilic aromatic substitution of the installed fluoride. A diverse array of functionalities can be installed because of the mild reaction conditions revealed for nucleophilic aromatic substitutions (SNAr) of the 2-fluoroheteroarenes. An evaluation of the rates for substitution versus the rates for competitive processes provides a framework for planning this functionalization sequence. This process is illustrated by the modification of a series of medicinally important compounds, as well as the increase in efficiency of synthesis of several existing pharmaceuticals. PMID:24918484

  11. Nucleophilic fluorination of aromatic compounds

    DOEpatents

    Satyamurthy, Nagichettiar; Barrio, Jorge R

    2014-03-18

    Iodylbenzene derivatives substituted with electron donating as well as electron withdrawing groups on the aromatic ring are used as precursors in aromatic nucleophilic substitution reactions. The iodyl group (IO.sub.2) is regiospecifically substituted by nucleophilic fluoride to provide the corresponding fluoroaryl derivatives. No-carrier-added [F-18]fluoride ion derived from anhydrous [F-18](F/Kryptofix, [F-18]CsF or a quaternary ammonium fluoride (e.g., Me.sub.4NF, Et.sub.4NF, n-Bu.sub.4NF, (PhCH.sub.2).sub.4NF) exclusively substitutes the iodyl moiety in these derivatives and provides high specific activity F-18 labeled fluoroaryl analogs. Iodyl derivatives of a benzothiazole analog and 6-iodyl-L-dopa derivatives have been synthesized as precursors and have been used in the preparation of no-carrier-added [F-18]fluorobenzothiazole as well as 6-[F-18]fluoro-L-dopa.

  12. 2-aminophenol 1,6-dioxygenase: a novel aromatic ring cleavage enzyme purified from Pseudomonas pseudoalcaligenes JS45.

    PubMed Central

    Lendenmann, U; Spain, J C

    1996-01-01

    Most bacterial pathways for the degradation of aromatic compounds involve introduction of two hydroxyl groups either ortho or para to each other. Ring fission then occurs at the bond adjacent to one of the hydroxyl groups. In contrast, 2-aminophenol is cleaved to 2-aminomuconic acid semialdehyde in the nitrobenzene-degrading strain Pseudomonas pseudoalcaligenes JS45. To examine the relationship between this enzyme and other dioxygenases, 2-aminophenol 1,6-dioxygenase has been purified by ethanol precipitation, gel filtration, and ion exchange chromatography. The molecular mass determined by gel filtration was 140,000 Da. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed two subunits of 35,000 and 39,000 Da, which suggested an alpha2beta2 subunit structure. Studies with inhibitors indicated that ferrous iron was the sole cofactor. The Km values for 2-aminophenol and oxygen were 4.2 and 710 microM, respectively. The enzyme catalyzed the oxidation of catechol, 6-amino-m-cresol, 2-amino-m-cresol, and 2-amino-4-chlorophenol. 3-Hydroxyanthranilate, protocatechuate, gentisate, and 3- and 4-methylcatechol were not substrates. The substrate range and the subunit structure are unique among those of the known ring cleavage dioxygenases. PMID:8892823

  13. Suspended particulate matter collection methods influence the quantification of polycyclic aromatic compounds in the river system.

    PubMed

    Abuhelou, Fayez; Mansuy-Huault, Laurence; Lorgeoux, Catherine; Catteloin, Delphine; Collin, Valéry; Bauer, Allan; Kanbar, Hussein Jaafar; Gley, Renaud; Manceau, Luc; Thomas, Fabien; Montargès-Pelletier, Emmanuelle

    2017-10-01

    In this study, we compared the influence of two different collection methods, filtration (FT) and continuous flow field centrifugation (CFC), on the concentration and the distribution of polycyclic aromatic compounds (PACs) in suspended particulate matter (SPM) occurring in river waters. SPM samples were collected simultaneously with FT and CFC from a river during six sampling campaigns over 2 years, covering different hydrological contexts. SPM samples were analyzed to determine the concentration of PACs including 16 polycyclic aromatic hydrocarbons (PAHs), 11 oxygenated PACs (O-PACs), and 5 nitrogen PACs (N-PACs). Results showed significant differences between the two separation methods. In half of the sampling campaigns, PAC concentrations differed from a factor 2 to 30 comparing FT and CFC-collected SPMs. The PAC distributions were also affected by the separation method. FT-collected SPM were enriched in 2-3 ring PACs whereas CFC-collected SPM had PAC distributions dominated by medium to high molecular weight compounds typical of combustion processes. This could be explained by distinct cut-off threshold of the two separation methods and strongly suggested the retention of colloidal and/or fine matter on glass-fiber filters particularly enriched in low molecular PACs. These differences between FT and CFC were not systematic but rather enhanced by high water flow rates.

  14. Endophytic Diaporthe sp. LG23 Produces a Potent Antibacterial Tetracyclic Triterpenoid.

    PubMed

    Li, Gang; Kusari, Souvik; Kusari, Parijat; Kayser, Oliver; Spiteller, Michael

    2015-08-28

    A new lanostanoid, 19-nor-lanosta-5(10),6,8,24-tetraene-1α,3β,12β,22S-tetraol (1), characterized by the presence of an aromatic B ring and hydroxylated at C-1, C-3, C-12, and C-22, was isolated from an endophytic fungus, Diaporthe sp. LG23, inhabiting leaves of the Chinese medicinal plant Mahonia fortunei. Six biosynthetically related known steroids were also isolated in parallel. Their structures were confirmed on the basis of detailed spectroscopic analysis in conjunction with the published data. Compound 1, an unusual fungus-derived 19-nor-lanostane tetracyclic triterpenoid with an aromatic B-ring system, exhibited pronounced antibacterial efficacy against both Gram-positive and -negative bacteria, especially the clinical isolates of Streptococcus pyogenes and Pseudomonas aeruginosa as well as a human pathogenic strain of Staphylococcus aureus. Our results reveal the potential of endophytes not only in conferring host fitness but also in contributing toward traditional host plant medicines.

  15. The effect of high pressure on the lattice structure and dynamics of phenacenes

    NASA Astrophysics Data System (ADS)

    Capitani, F.; Höppner, M.; Malavasi, L.; Marini, C.; Dore, P.; Boeri, L.; Postorino, Paolo

    2017-10-01

    We studied the effect of high pressure on three phenacenes, aromatic molecules with a zig-zag configuration of the benzene rings. The lattice structure and vibrational dynamics of crystalline phenanthrene (C14H10, three benzene rings), chrysene (C18H12, four), and picene (C22H14, five) were investigated by means of X-ray diffraction and Raman measurements. Raman spectra were compared with theoretical ones obtained from ab-initio Density Functional Theory calculations. Experimental and theoretical results allowed to identify the onset of a structural transition in phenanthrene at 7.8 GPa under hydrostatic conditions and at 5.7 GPa under non-hydrostatic conditions. We found that this transition is related to a reorientantion of the molecules in the ab plane. On the contrary, chrysene and picene do not undergo any phase transition in the investigated pressure range, thus suggesting that molecular size plays an important role in the occurence of pressure induced structural modifications in aromatic compounds.

  16. Syntheses of cytotoxic novel arctigenin derivatives bearing halogen and alkyl groups on aromatic rings.

    PubMed

    Yamauchi, Satoshi; Wukirsari, Tuti; Ochi, Yoshiaki; Nishiwaki, Hisashi; Nishi, Kosuke; Sugahara, Takuya; Akiyama, Koichi; Kishida, Taro

    2017-09-01

    The new lignano-9,9'-lactones (α,β-dibenzyl-γ-butyrolactone lignans), which showed the higher cytotoxicity than arctigenin, were synthesized. The well-known cytotoxic arctigenin showed activity against HL-60 cells (EC 50 =12μM), however, it was inactive against HeLa cells (EC 50 >100μM). The synthesized (3,4-dichloro, 2'-butoxy)-derivative 55 and (3,4-dichloro, 4'-butyl)-derivative 66 bearing the lignano-9,9'-lactone structures showed the EC 50 values of 10μM and 9.4μM against HL-60 cells, respectively. Against HeLa cells, the EC 50 value of the derivative 66 was 27μM. By comparing the activities with the corresponding 9,9'-epoxy structure (tetrahydrofuran compounds), the importance of the lactone structure of 55 and 66 for the higher activities was shown. The substituents on the aromatic ring of the lignano-9,9'-lactones affected the cytotoxicity level, observing more than 10-fold difference. Copyright © 2017. Published by Elsevier Ltd.

  17. Transnitrosation of alicyclic N-nitrosamines containing a sulfur atom.

    PubMed

    Inami, Keiko; Kondo, Sonoe; Ono, Yuta; Saso, Chiharu; Mochizuki, Masataka

    2013-12-15

    Aromatic and aliphatic nitrosamines are known to transfer a nitrosonium ion to another amine. The transnitrosation of alicyclic N-nitroso compounds generates S-nitrosothiols, which are potential nitric oxide donors in vivo. In this study, certain alicyclic N-nitroso compounds based on non-mutagenic N-nitrosoproline or N-nitrosothioproline were synthesised, and the formation of S-nitrosoglutathione (GSNO) was quantified under acidic conditions. We then investigated the effect of a sulfur atom as the substituent and as a ring component on the GSNO formation. In the presence of thiourea under acidic conditions, GSNO was formed from N-nitrosoproline and glutathione, and an N-nitroso compound containing a sulfur atom and glutathione produced GSNO without thiourea. The quantity of GSNO derived from the reaction of the N-nitrosamines containing a sulfur atom and glutathione was higher than that from the N-nitrosoproline and glutathione plus thiourea. Among the analogues that contained a sulfur atom either in the ring or as a substituent, the thiazolidines produced a slightly higher quantity of GSNO than the analogue with a thioamide group. A compound containing sulfur atoms both in the ring and as a substituent exhibited the highest activity for GSNO formation among the alicyclic N-nitrosamines tested. The results indicate that the intramolecular sulfur atom plays an important role in the transnitrosation via alicyclic N-nitroso compounds to form GSNO. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  18. Synthesis of Naturally Occurring Tropones and Tropolones

    PubMed Central

    Liu, Na; Song, Wangze; Schienebeck, Casi M.; Zhang, Min; Tang, Weiping

    2014-01-01

    Tropones and tropolones are an important class of seven-membered non-benzenoid aromatic compounds. They can be prepared directly by oxidation of seven-membered rings. They can also be derived from cyclization or cycloaddition of appropriate precursors followed by elimination or rearrangement. This review discusses the types of naturally occurring tropones and tropolones and outlines important methods developed for the synthesis of tropone and tropolone natural products. PMID:25400298

  19. 3-Chloro-4-methyl­quinolin-2(1H)-one

    PubMed Central

    Kassem, Mohamed G.; Ghabbour, Hazem A.; Abdel-Aziz, Hatem A.; Fun, Hoong-Kun; Ooi, Chin Wei

    2012-01-01

    The title compound, C10H8ClNO, is almost planar (r.m.s. deviation for the 13 non-H atoms = 0.023 Å). In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R 2 2(8) rings. Weak aromatic π–π stacking inter­actions [centroid–centroid distance = 3.7622 (12) Å] also occur. PMID:22589913

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuz'mina, L. G., E-mail: kuzmina@igic.ras.ru; Gunina, M. A.; Churakov, A. V.

    Two aromatic esters with the formulas C{sub 6}H{sub 13}-O-C{sub 6}H{sub 4}-C(O)O-C{sub 6}H{sub 4}-O-C{sub 7}H{sub 15} (1) and C{sub 7}H{sub 15}-O-C{sub 6}H{sub 4}-C(O)O-C{sub 6}H{sub 4}-O-C{sub 4}H{sub 9} (2) belonging to nematic liquid-crystal compounds were studied by X-ray diffraction. Compound 1 crystallizes in two modifications: monoclinic (1-m) and triclinic (1-tr). The crystal packing of 1 and 2 is built from alternating loosely packed aliphatic regions and closely packed aromatic regions. In crystal structures 1-m and 2, the aromatic regions are linked into chains by hydrogen bonds with the participation of the carbonyl oxygen atom of the ester group and the C-H fragmentmore » of the benzene ring, but these hydrogen bonds in 1-m are much weaker than in 2. In 1-m there are {pi}-stacking interactions between the molecules, resulting in the formation of centrosymmetric dimers with an interplanar distance of 3.45 A. In 1-tr, the aromatic fragments form a herringbone packing motif favorable for a two-dimensional network of directional C-H...{pi}-system interactions.« less

  1. Influence of Cadmium and Mercury on Activities of Ligninolytic Enzymes and Degradation of Polycyclic Aromatic Hydrocarbons by Pleurotus ostreatus in Soil

    PubMed Central

    Baldrian, Petr; in der Wiesche, Carsten; Gabriel, Jiří; Nerud, František; Zadražil, František

    2000-01-01

    The white-rot fungus Pleurotus ostreatus was able to degrade the polycyclic aromatic hydrocarbons (PAHs) benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, and benzo[ghi]perylene in nonsterile soil both in the presence and in the absence of cadmium and mercury. During 15 weeks of incubation, recovery of individual compounds was 16 to 69% in soil without additional metal. While soil microflora contributed mostly to degradation of pyrene (82%) and benzo[a]anthracene (41%), the fungus enhanced the disappearance of less-soluble polycyclic aromatic compounds containing five or six aromatic rings. Although the heavy metals in the soil affected the activity of ligninolytic enzymes produced by the fungus (laccase and Mn-dependent peroxidase), no decrease in PAH degradation was found in soil containing Cd or Hg at 10 to 100 ppm. In the presence of cadmium at 500 ppm in soil, degradation of PAHs by soil microflora was not affected whereas the contribution of fungus was negligible, probably due to the absence of Mn-dependent peroxidase activity. In the presence of Hg at 50 to 100 ppm or Cd at 100 to 500 ppm, the extent of soil colonization by the fungus was limited. PMID:10831426

  2. Influence of fused aromatic ring on the stability of charge transfer complex between iodine and some five membered heterocyclic molecules through ultrasonic and spectral studies

    NASA Astrophysics Data System (ADS)

    Ulagendran, V.; Balu, P.; Kannappan, V.; Kumar, R.; Jayakumar, S.

    2017-08-01

    The charge transfer (CT) interaction between two fused heterocyclic compounds with basic pyrrole group as donors, viz., indole (IND) and carbazole (CAR), and iodine (acceptor) in DMSO medium is investigated by ultrasonic and UV-visible spectral methods at 303 K. The formation of CT complex in these systems is established from the trend in acoustical and excess thermo acoustical properties with molar concentration. The frequency acoustic spectra (FAS) is also carried out on these two systems for two fixed concentrations 0.002 M and 0.02 M, and in the frequency range 1 MHz-10 MHz to justify the frequency chosen for ultrasonic study. The absorption coefficient values in solution are computed and discussed. The formation constants of these complexes are determined using Kannappan equation in ultrasonic method. The formation of 1:1 complexes between iodine and IND, CAR was established by the theory of Benesi - Hildebrand in the UV-visible spectroscopic method. The stability constants of the CT complexes determined by spectroscopic and ultrasonic methods show a similar trend. These values also indicate that the presence of fused aromatic ring influences significantly when compared with K values of similar CT complexes of parent five membered heterocyclic compound (pyrrole) reported by us earlier.

  3. Distribution, partition and removal of polycyclic aromatic hydrocarbons (PAHs) during coking wastewater treatment processes.

    PubMed

    Zhang, Wanhui; Wei, Chaohai; An, Guanfeng

    2015-05-01

    In this study, we report the performance of a full-scale conventional activated sludge (A-O1-O2) treatment in eliminating polycyclic aromatic hydrocarbons (PAHs). Both aqueous and solid phases along with the coking wastewater treatment processes were analyzed for the presence of 18 PAHs. It was found that the target compounds occurred widely in raw coking wastewater, treated effluent and sludge samples. In the coking wastewater treatment system, 4-5 ring PAHs were the dominant compounds, while 4 rings PAHs predominated in the sludge samples. Over 98% of the PAH removal was achieved in the coking wastewater treatment plant (WWTP), with the total concentration of PAHs being 21.3 ± 1.9 μg L(-1) in the final effluent. During the coking wastewater treatment processes, the association of the lower molecular weight PAH with suspended solids was generally less than 60%, while the association of higher molecular weight PAHs was greater than 90%. High distribution efficiencies (Kdp and Kds) were found, suggesting that adsorption was the potential removal pathway of PAHs. Finally, the mass balances of PAHs in various stages of the coking WWTP were obtained, and the results indicated that adsorption to sludge was the main removal pathway for PAHs in the coking wastewater treatment processes.

  4. Use of Biomarkers in Oil Spill Risk Assessment in the marine environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Jack W.; Lee, Richard F.

    2006-12-01

    Numerous molecular, cellular and physiological biomarkers have been used to assess the responses of marine animals to petroleum compounds. To be used in ecological risk assessment after an oil spill, a biomarker response needs to be linked to petroleum exposure and not strongly influenced by internal and external confounding factors. Biomarker responses to petroleum PAH, dominated by alkylated two- and three-ringed aromatics, can be quite different than responses to pyrogenic PAH, dominated by four- and five-ringed aromatics. In many field sites there is a mixture of petrogenic and pyrogenic PAH, along with other contaminant, making it difficult to relate biomarkermore » responses to a particular contaminant class. Biomarkers used to assess marine animal responses in the field include the cytochrome P450 system, heat stress protein, histopathology and bile fluorescent compounds (FAC). Other biomarkers, including DNA/chromosomal damage and phase 2 enzymes, have been shown to respond after laboratory exposure, but more works needs to be done to demonstrate their usefulness in the field. One of the most useful biomarkers of petroleum exposure are the FAC responses in fish, which can be used to distinguish between petrogenic and pyrogenic PAH exposure. Few of the presently used biomarkers are linked to higher order biological effects, e.g toxicity, reproductive failure.« less

  5. NMR analysis of cross strand aromatic interactions in an 8 residue hairpin and a 14 residue three stranded β-sheet peptide.

    PubMed

    Sonti, Rajesh; Rai, Rajkishor; Ragothama, Srinivasarao; Balaram, Padmanabhan

    2012-12-13

    Cross strand aromatic interactions between a facing pair of phenylalanine residues in antiparallel β-sheet structures have been probed using two structurally defined model peptides. The octapeptide Boc-LFV(D)P(L)PLFV-OMe (peptide 1) favors the β-hairpin conformation nucleated by the type II' β-turn formed by the (D)Pro-(L)Pro segment, placing Phe2 and Phe7 side chains in proximity. Two centrally positioned (D)Pro-(L)Pro segments facilitate the three stranded β-sheet formation in the 14 residue peptide Boc-LFV(D)P(L)PLFVA(D)P(L)PLFV-OMe (peptide 2) in which the Phe2/Phe7 orientations are similar to that in the octapeptide. The anticipated folded conformations of peptides 1 and 2 are established by the delineation of intramolecularly hydrogen bonded NH groups and by the observation of specific cross strand NOEs. The observation of ring current shifted aromatic protons is a diagnostic of close approach of the Phe2 and Phe7 side chains. Specific assignment of aromatic proton resonances using HSQC and HSQC-TOCSY methods allow an analysis of interproton NOEs between the spatially proximate aromatic rings. This approach facilitates specific assignments in systems containing multiple aromatic rings in spectra at natural abundance. Evidence is presented for a dynamic process which invokes a correlated conformational change about the C(α)-C(β)(χ(1)) bond for the pair of interacting Phe residues. NMR results suggest that aromatic ring orientations observed in crystals are maintained in solution. Anomalous temperature dependence of ring current induced proton chemical shifts suggests that solvophobic effects may facilitate aromatic ring clustering in apolar solvents.

  6. Preparation of dibenzo[e,g]isoindol-1-ones via Scholl-type oxidative cyclization reactions.

    PubMed

    van Loon, Amy A; Holton, Maeve K; Downey, Catherine R; White, Taryn M; Rolph, Carly E; Bruening, Stephen R; Li, Guanqun; Delaney, Katherine M; Pelkey, Sarah J; Pelkey, Erin T

    2014-09-05

    A flexible synthesis of dibenzo[e,g]isoindol-1-ones has been developed. Dibenzo[e,g]isoindol-1-ones represent simplified benzenoid analogues of biological indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-ones (indolocarbazoles), compounds that have demonstrated a wide range of biological activity. The synthesis of the title compounds involved tetramic acid sulfonates. Different aryl groups were introduced at C4 of the heterocyclic ring via Suzuki-Miyaura cross-coupling reactions. Finally, mild Scholl-type oxidative cyclizations mediated by phenyliodine(III) bis(trifluoroacetate) (PIFA) converted some of the latter compounds into the corresponding dibenzo[e,g]isoindol-1-ones. A systematic study of the oxidative cyclization revealed the following reactivity trend: 3,4-dimethoxyphenyl ≫ 3-methoxyphenyl > 3,4,5-trimethoxyphenyl > 4-methoxyphenyl ≈ phenyl. Overall, the oxidative cyclization required at least two methoxy groups distributed in the aromatic rings, at least one of which had to be located para to the site of the cyclization.

  7. Preparation of Dibenzo[e,g]isoindol-1-ones via Scholl-Type Oxidative Cyclization Reactions

    PubMed Central

    2015-01-01

    A flexible synthesis of dibenzo[e,g]isoindol-1-ones has been developed. Dibenzo[e,g]isoindol-1-ones represent simplified benzenoid analogues of biological indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-ones (indolocarbazoles), compounds that have demonstrated a wide range of biological activity. The synthesis of the title compounds involved tetramic acid sulfonates. Different aryl groups were introduced at C4 of the heterocyclic ring via Suzuki–Miyaura cross-coupling reactions. Finally, mild Scholl-type oxidative cyclizations mediated by phenyliodine(III) bis(trifluoroacetate) (PIFA) converted some of the latter compounds into the corresponding dibenzo[e,g]isoindol-1-ones. A systematic study of the oxidative cyclization revealed the following reactivity trend: 3,4-dimethoxyphenyl ≫ 3-methoxyphenyl > 3,4,5-trimethoxyphenyl > 4-methoxyphenyl ≈ phenyl. Overall, the oxidative cyclization required at least two methoxy groups distributed in the aromatic rings, at least one of which had to be located para to the site of the cyclization. PMID:25138638

  8. Bench-scale evaluation of in situ bioremediation strategies for soil at a former manufactured gas plant site.

    PubMed

    Li, Jun; Pignatello, Joseph J; Smets, Barth F; Grasso, Domenico; Monserrate, Esteban

    2005-03-01

    We examined the biodegradation and desorption of a set of 15 polycyclic aromatic hydrocarbon (PAH) compounds in coal tar-contaminated soil at a former manufactured gas plant site to evaluate the feasibility of in situ bioremediation. Experiments were conducted in well-mixed aerobic soil suspensions containing various additives over a 93- to 106-d period. In general, both biotransformation and desorption decreased with PAH ring size, becoming negligible for the six-ring PAH compounds. Biodegradation by indigenous microorganisms was strongly accelerated by addition of inorganic nutrients (N, P, K, and trace metals). The rates of biotransformation of PAH compounds by indigenous microorganisms in nutrient-amended flasks outpaced their maximum (i.e., chelate-enhanced) rates of desorption to an infinite sink (Tenax) in sterilized systems run in parallel, suggesting that indigenous organisms facilitated desorption. Biodegradation by indigenous organisms in nutrient-amended flasks appeared to be unaffected by the addition of a site-derived bacterial enrichment culture, resulting in approximately 100-fold higher aromatic dioxygenase levels, and by the addition of 0.01 M chelating agent (citrate or pyrophosphate), although such chelating agents greatly enhanced desorption in microbially inactivated flasks. The strong ability of nutrients to enhance degradation of the bioavailable PAHs indicates that their persistence for many decades at this site likely results from nutrient-limited natural biodegradation, and it also suggests that an effective strategy for their bioremediation could consist simply of adding inorganic nutrients.

  9. Role of methyl group number on SOA formation from aromatic hydrocarbons photooxidation under low NOx conditions

    NASA Astrophysics Data System (ADS)

    Li, L.; Tang, P.; Nakao, S.; Chen, C.-L.; Cocker, D. R., III

    2015-11-01

    Substitution of methyl groups onto the aromatic ring determines the SOA formation from the aromatic hydrocarbon precursor. This study links the number of methyl groups on the aromatic ring to SOA formation from aromatic hydrocarbons photooxidation under low NOx conditions (HC / NO > 10 ppb C : ppb). Aromatic hydrocarbons with increasing numbers of methyl groups are systematically studied. SOA formation from pentamethylbenzene and hexamethylbenzene are reported for the first time. A decreasing SOA yield with increasing number of methyl groups is observed. Linear trends are found in both f44 vs. f43 and O / C vs. H / C for SOA from aromatic hydrocarbons with zero to six methyl groups. An SOA oxidation state predictive method based on benzene is used to examine the effect of added methyl groups on aromatic oxidation under low NOx conditions. Further, the impact of methyl group number on density and volatility of SOA from aromatic hydrocarbons is explored. Finally, a mechanism for methyl group impact on SOA formation is suggested. Overall, this work suggests as more methyl groups are attached on the aromatic ring, SOA products from these aromatic hydrocarbons become less oxidized per mass/carbon.

  10. Thiophene/thiazole-benzene replacement on guanidine derivatives targeting α2-Adrenoceptors.

    PubMed

    Flood, Aoife; Trujillo, Cristina; Sanchez-Sanz, Goar; Kelly, Brendan; Muguruza, Carolina; Callado, Luis F; Rozas, Isabel

    2017-09-29

    Searching for improved antagonists of α 2 -adrenoceptors, a thorough theoretical study comparing the aromaticity of phenyl-, pyridinyl-, thiophenyl- and thiazolylguanidinium derivatives has been carried out [at M06-2X/6-311++G(p,d) computational level] confirming that thiophene and thiazole will be good 'ring equivalents' to benzene in these guanidinium systems. Based on these results, a small but chemically diverse library of guanidine derivatives (15 thiophenes and 2 thiazoles) were synthesised to explore the effect that the bioisosteric change has on affinity and activity at α 2 -adrenoceptors in comparison with our previously studied phenyl derivatives. All compounds were tested for their α 2 -adrenoceptor affinity and unsubstituted guanidinothiophenes displayed the strongest affinities in the same range as the phenyl analogues. In the case of cycloakyl systems, thiophenes with 6-membered rings showed the largest affinities, while for the thiazoles the 5-membered analogue presented the strongest affinity. From all the compounds tested for noradrenergic activity, only one compound exhibited agonistic activity, while two compounds showed very promising antagonism of α 2 -adrenoceptors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Measurement of phenols dearomatization via electrolysis: the UV-Vis solid phase extraction method.

    PubMed

    Vargas, Ronald; Borrás, Carlos; Mostany, Jorge; Scharifker, Benjamin R

    2010-02-01

    Dearomatization levels during electrochemical oxidation of p-methoxyphenol (PMP) and p-nitrophenol (PNP) have been determined through UV-Vis spectroscopy using solid phase extraction (UV-Vis/SPE). The results show that the method is satisfactory to determine the ratio between aromatic compounds and aliphatic acids and reaction kinetics parameters during treatment of wastewater, in agreement with results obtained from numerical deconvolution of UV-Vis spectra. Analysis of solutions obtained from electrolysis of substituted phenols on antimony-doped tin oxide (SnO(2)--Sb) showed that an electron acceptor substituting group favored the aromatic ring opening reaction, preventing formation of intermediate quinone during oxidation. (c) 2009 Elsevier Ltd. All rights reserved.

  12. Refining of fossil resin flotation concentrates from Western coal. Final fifth quarterly report, January 1, 1994--March 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, G.F.; Miller, J.D.

    1994-05-07

    Fossil resins occurring in the Wasatch Plateau coal field are composed mainly of aliphatic components, partially aromatized multi-cyclic terpenoids and a few oxygen functional groups (such as {minus}OH and {minus}COOH). The solvent extracted resins show the presence of a relatively large number of methyl groups when compared to the methylene groups, and this indicates the presence of extensive tertiary carbon and/or highly branching chains. In contrast coal consists primarily of aromatic ring structures, various oxygen functional groups ({minus}OH, >C=O, {minus}C{minus}O) and few aliphatic chains. The color difference observed among the four resin types is explained by the presence of chromophoresmore » (aromatized polyterpenoid) and also by the presence of finely dispersed coal particle inclusions in the resin matrix. The hexane soluble resin fraction has few aromatic compounds when compared to the hexane insoluble but toluene soluble resin fraction.« less

  13. Quenching of fluorescence of phenolic compounds and modified humic acids by cadmium ions.

    PubMed

    Tchaikovskaya, O N; Nechaev, L V; Yudina, N V; Mal'tseva, E V

    2016-08-01

    The interaction of a number of phenolic compounds, being 'model fragments' of humic acids, with cadmium ions was investigated. The fluorescence quenching method was used to determine the complexation constants of these compounds with cadmium ions. It was established that bonding of phenolic compounds by cadmium ions at рН 7 is weak and reaches a maximum value of 15% for interaction with resorcinol. It was demonstrated that modification of humic acids by the mechanoactivation method increases by three times bonding of cadmium ions, which is caused by strengthening the acid properties of carboxyl and hydroxyl groups at the aromatic ring. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. A Multistep Synthesis Incorporating a Green Bromination of an Aromatic Ring

    ERIC Educational Resources Information Center

    Cardinal, Pascal; Greer, Brandon; Luong, Horace; Tyagunova, Yevgeniya

    2012-01-01

    Electrophilic aromatic substitution is a fundamental topic taught in the undergraduate organic chemistry curriculum. A multistep synthesis that includes a safer and greener method for the bromination of an aromatic ring than traditional bromination methods is described. This experiment is multifaceted and can be used to teach students about…

  15. Blue Photoluminescence From Silacyclobutene Compounds

    NASA Astrophysics Data System (ADS)

    Pernisz, Udo

    1999-04-01

    Organosilicon compounds in which the Si atom is bound to an aromatic moiety such as a phenyl group, exhibit strong blue photoluminescence when excited with UV light (for example at a wavelength of 337 nm). This phenomenon was investigated quantitatively at room temperature and at the temperature of liquid nitrogen (78 K) by measuring the emission and excitation spectra of the total luminescence, and of the phosphorescence, for a silacyclobutene compound in which two phenyl groups are joined across the C=C double bond of the ring. The effect of a series of organic substituents on the Si atom was investigated as well as the time dependence of the phosphorescence intensity decay for this class of materials. A tentative model of the energy levels in this compound is proposed. The observation of visible blue emission -- in contrast to photoluminescence in the UV from the aromatic groups -- is explained by the Si-C bond lowering the energy of the molecular orbitals, an effect that is currently under study for a range of Si-containing compounds. Synthesis of the silacyclobutene compounds was performed at the laboratory of Prof. N. Auner, now at J.W. Goethe Universität, Frankfurt, Germany. His contributions, and those of his collaborators, to the work reported here are gratefully acknowledged.

  16. Distribution of polycyclic aromatic hydrocarbons in riverine waters after Mediterranean forest fires.

    PubMed

    Olivella, M A; Ribalta, T G; de Febrer, A R; Mollet, J M; de Las Heras, F X C

    2006-02-15

    Extensive forest fires occurred in Catalonia, northern Spain, in 1994. In our study, concentrations and profiles of 12 parent polycyclic aromatic hydrocarbons (PAHs) were determined in riverine waters, ash and sediment samples at nine sampling sites (W1-W9) and at three sampling dates from Llobregat hydrographic basin: in August, 1994, one month after the extensive forest fires; in September, 1994, after the first heavy autumn rainfalls and in January, 1995, six months after forest fires. In August 1994, the total concentrations of 12 PAHs measured in riverine waters varied from 2 ng/l to 336 ng/l. In September 1994, the total PAH concentrations decreased to 0.2-31 ng/l and in January 1995, from 9 ng/l to 73 ng/l. In August, the composition pattern of PAHs showed a distribution dominated by 4-ring PAHs (pyrene, chrysene+triphenylene, benzo(a)anthracene) at W3-W6, W8 and W9 and 3-ring PAHs (phenanthrene) at W1, W2 and W7. In September, a preference by 3-ring PAHs (phenanthrene) at all sampling sites except W5 was shown and in January was clearly dominated by 4-ring PAHs (chrysene+triphenylene, pyrene, benzo(a)anthracene) at all sampling sites. In ash and sediment samples, the total concentrations of 12 PAHs ranged from 1.3 ng/g to 19 ng/g. The dominant compound was phenanthrene.

  17. Analysis of aromatic catabolic pathways in Pseudomonas putida KT 2440 using a combined proteomic approach: 2-DE/MS and cleavable isotope-coded affinity tag analysis.

    PubMed

    Kim, Young Hwan; Cho, Kun; Yun, Sung-Ho; Kim, Jin Young; Kwon, Kyung-Hoon; Yoo, Jong Shin; Kim, Seung Il

    2006-02-01

    Proteomic analysis of Pseudomonas putida KT2440 cultured in monocyclic aromatic compounds was performed using 2-DE/MS and cleavable isotope-coded affinity tag (ICAT) to determine whether proteins involved in aromatic compound degradation pathways were altered as predicted by genomic analysis (Jiménez et al., Environ Microbiol. 2002, 4, 824-841). Eighty unique proteins were identified by 2-DE/MS or MS/MS analysis from P. putida KT2440 cultured in the presence of six different organic compounds. Benzoate dioxygenase (BenA, BenD) and catechol 1,2-dioxygenase (CatA) were induced by benzoate. Protocatechuate 3,4-dixoygenase (PcaGH) was induced by p-hydroxybenzoate and vanilline. beta-Ketoadipyl CoA thiolase (PcaF) and 3-oxoadipate enol-lactone hydrolase (PcaD) were induced by benzoate, p-hydroxybenzoate and vanilline, suggesting that benzoate, p-hydroxybenzoate and vanilline were degraded by different dioxygenases and then converged in the same beta-ketoadipate degradation pathway. An additional 110 proteins, including 19 proteins from 2-DE analysis, were identified by cleavable ICAT analysis for benzoate-induced proteomes, which complemented the 2-DE results. Phenylethylamine exposure induced beta-ketoacyl CoA thiolase (PhaD) and ring-opening enzyme (PhaL), both enzymes of the phenylacetate (pha) biodegradation pathway. Phenylalanine induced 4-hydroxyphenyl-pyruvate dioxygenase (Hpd) and homogentisate 1,2-dioxygenase (HmgA), key enzymes in the homogentisate degradation pathway. Alkyl hydroperoxide reductase (AphC) was induced under all aromatic compounds conditions. These results suggest that proteome analysis complements and supports predictive information obtained by genomic sequence analysis.

  18. Design and synthesis of novel chalcones as potent selective monoamine oxidase-B inhibitors.

    PubMed

    Hammuda, Arwa; Shalaby, Raed; Rovida, Stefano; Edmondson, Dale E; Binda, Claudia; Khalil, Ashraf

    2016-05-23

    A novel series of substituted chalcones were designed and synthesized to be evaluated as selective human MAO-B inhibitors. A combination of either methylsulfonyl or trifluoromethyl substituents on the aromatic ketone moiety with a benzodioxol ring on the other end of the chalcone scaffold was investigated. The compounds were tested for their inhibitory activities on both human MAO-A and B. All compounds appeared to be selective MAO-B inhibitors with Ki values in the micromolar to submicromolar range. Molecular modeling studies have been performed to get insight into the binding mode of the synthesized compounds to human MAO-B active site. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Synthesis, characterization and nonlinear optical properties of symmetrically substituted dibenzylideneacetone derivatives

    NASA Astrophysics Data System (ADS)

    Sunil Kumar Reddy, N.; Badam, Rajashekar; Sattibabu, Romala; Molli, Muralikrishna; Sai Muthukumar, V.; Siva Sankara Sai, S.; Rao, G. Nageswara

    2014-11-01

    We report here the nonlinear optical (NLO) properties of eight bis-chalcones of D-π-A-π-D type. These dibenzylideneacetone (DBA) derivatives are synthesized by Claisen-Schmidt reaction. The compounds are characterized by UV-vis, FTIR, 1H NMR, 13C NMR, mass spectroscopy and powder XRD. By substituting different groups (electron withdrawing and electron donating) at 'para' and 'meta' positions of the aromatic ring, we observed an enhancement in second harmonic generation with substitution at 'para' position. These compounds have also showed higher two-photon absorption compared to other chalcones reported in literature. These compounds, exhibiting both second and third order NLO effects, are plausible candidate materials in photonic devices.

  20. The effect of perfluorination on the aromaticity of benzene and heterocyclic six-membered rings.

    PubMed

    Wu, Judy I; Pühlhofer, Frank G; Schleyer, Paul von Ragué; Puchta, Ralph; Kiran, Boggavarapu; Mauksch, Michael; Hommes, Nico J R van Eikema; Alkorta, Ibon; Elguero, José

    2009-06-18

    Despite having six highly electronegative F's, perfluorobenzene C(6)F(6) is as aromatic as benzene. Ab initio block-localized wave function (BLW) computations reveal that both C(6)F(6) and benzene have essentially the same extra cyclic resonance energies (ECREs). Localized molecular orbital (LMO)-nucleus-independent chemical shifts (NICS) grids demonstrates that the F's induce only local paratropic contributions that are not related to aromaticity. Thus, all of the fluorinated benzenes (C(6)F(n)H((6-n)), n = 1-6) have similar ring-LMO-NICS(pi zz) values. However, 1,3-difluorobenzene 2b and 1,3,5-trifluorobenzene 3c are slightly less aromatic than their isomers due to a greater degree of ring charge alternation. Isoelectronic C(5)H(5)Y heterocycles (Y = BH(-), N, NH(+)) are as aromatic as benzene, based on their ring-LMO-NICS(pi zz) and ECRE values, unless extremely electronegative heteroatoms (e.g., Y = O(+)) are involved.

  1. 1-Nitro-4-(4-nitro-phen-oxy)benzene: a second monoclinic polymorph.

    PubMed

    Naz, Mehwish; Akhter, Zareen; McKee, Vickie; Nadeem, Arif

    2013-11-06

    In the title compound, C12H8N2O5, the aromatic rings are inclined to one another by 56.14 (7)°. The nitro groups are inclined by to the benzene rings to which they are attached by 3.86 (17) and 9.65 (15)°. In the crystal, mol-ecules are linked by C-H⋯O hydrogen bonds, forming a three-dimensional structure. The title compound is a new monoclinic polymorph, crystallizing in space group P21/c. The first polymorph crystallized in space group C2/c and the mol-ecule possesses twofold rotation symmetry. Two low-temperature structures of this polymorph (150 K and 100 K, respectively) have been reported [Meciarova et al. (2004). Private Communication (refcode IXOGAD). CCDC, Cambridge, England, and Dey & Desiraju (2005). Chem. Commun. pp. 2486-2488].

  2. Bond Length Equalization with molecular aromaticity-A new measurement of aromaticity.

    PubMed

    Shen, Chen-Fei; Liu, Zi-Zhong; Liu, Hong-Xia; Zhang, Hui-Qing

    2018-05-08

    A new method to measure the amount of aromaticity is presented through the process of Bond Length Equalization (BLE). Degree of Aromaticity (DOA), a two-dimensional intensive quantity including geometric and energetic factors, as a new measurement of aromaticity is proposed. The unique characteristic of DOA and the formation of DOA will be displayed. The calculation of the geometrical optimization, DOA, Nucleus Independent Chemical Shifts (NICS) and Ring Stretching Vibration Raman Spectroscopy Frequency (RSVRSF) for the aromatic ring molecules - G n H n m (G = C, Si, Ge, n = 3, 5-8, m = +1, -1, 0, +1, +2) were calculated using the method of Density Functional Theory (DFT). The correlation between radius angle and molecular energy is absolute quadratic in the process of BLE. As the increasing of the number of ring atoms, the value of DOA decreasing gradually, the aromaticity decreased gradually, which was a same conclusion as NICS and RSVRSF concluded. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Weathering Patterns of Forensic Biomarker Compounds and PAHs in Coastal Marsh Sediment Samples since the 2010 Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Overton, E. B.; Meyer, B.; Miles, S.; Olson, G.; Adhikari, P. L.

    2016-02-01

    It has been well established that the composition of oil, when spilled into the marine environment, undergoes substantial changes caused by weathering. The general sequence of this compositional change begins with straight chain alkanes (the fastest to degrade), followed by low molecular weight branched and cyclic alkanes and, finally the aromatics. Most resistant to weathering are the higher molecular weight cyclic and branched alkanes (i.e., the "forensic biomarker compounds" such as the hopanes and steranes) and tri-aromatic ringed steroids. The composition of these biomarker compounds is particularly resistant to change because they are not affected by evaporative weathering, are not water soluble, and are not readily degraded by microbial and/or photo-oxidation. However, after extensive time in the environment, being subjected to numerous weathering factors, biomarker compositional patterns are beginning to exhibit significant changes. This presentation will describe the general weathering patterns of petroleum residues in sediment samples collected from marsh areas of coastal Louisiana over a five year period. Particular attention will focus on compositional changes that have been observed in the steranes and diasteranes compounds that traditionally have been considered the most resistant to compositional changes due to weathering.

  4. Electron beam technology for multipollutant emissions control from heavy fuel oil-fired boiler.

    PubMed

    Chmielewski, Andrzej G; Ostapczuk, Anna; Licki, Janusz

    2010-08-01

    The electron beam treatment technology for purification of exhaust gases from the burning of heavy fuel oil (HFO) mazout with sulfur content approximately 3 wt % was tested at the Institute of Nuclear Chemistry and Technology laboratory plant. The parametric study was conducted to determine the sulfur dioxide (SO2), oxides of nitrogen (NO(x)), and polycyclic aromatic hydrocarbon (PAH) removal efficiency as a function of temperature and humidity of irradiated gases, absorbed irradiation dose, and ammonia stoichiometry process parameters. In the test performed under optimal conditions with an irradiation dose of 12.4 kGy, simultaneous removal efficiencies of approximately 98% for SO2, and 80% for NO(x) were recorded. The simultaneous decrease of PAH and one-ringed aromatic hydrocarbon (benzene, toluene, and xylenes [BTX]) concentrations was observed in the irradiated flue gas. Overall removal efficiencies of approximately 42% for PAHs and 86% for BTXs were achieved with an irradiation dose 5.3 kGy. The decomposition ratio of these compounds increased with an increase of absorbed dose. The decrease of PAH and BTX concentrations was followed by the increase of oxygen-containing aromatic hydrocarbon concentrations. The PAH and BTX decomposition process was initialized through the reaction with hydroxyl radicals that formed in the electron beam irradiated flue gas. Their decomposition process is based on similar principles as the primary reaction concerning SO2 and NO(x) removal; that is, free radicals attack organic compound chains or rings, causing volatile organic compound decomposition. Thus, the electron beam flue gas treatment (EBFGT) technology ensures simultaneous removal of acid (SO2 and NO(x)) and organic (PAH and BTX) pollutants from flue gas emitted from burning of HFO. This technology is a multipollutant emission control technology that can be applied for treatment of flue gas emitted from coal-, lignite-, and HFO-fired boilers. Other thermal processes such as metallurgy and municipal waste incinerators are potential candidates for this technology application.

  5. [Concentrations and influencing factors of gaseous polycyclic aromatic hydrocarbons in residential air in Beijing].

    PubMed

    Wei, Zhi-cheng; Chang, Biao; Qiu, Wei-xun; Wang, Yi; Wu, Shi-min; Xing, Bao-shan; Liu, Wen-xin; Tao, Shu

    2007-09-01

    7 gas phase PAHs components in indoor air collected from 38 families were investigated by modified passive air samplers in Beijing areas during the local heating and non-heating seasons, and the influencing factors were discussed as well. The analytical results indicate that the gasous PAHs in local indoor air are dominated by 2 and 3 rings compounds, the mean concentrations for the 7 individual gaseous components range from 1 to 40 ng/m3, and the average concentration of total gaseous PAHs is about 100 ng/m3. There is no significant difference in total gaseous PAHs concentrations between the heating and the non-heating seasons, while some apparent seasonal changes occur in ACY and FLA concentrations. Compared with heating season, contribution of 2 rings compounds decreases while the proportions of 3 and 4 rings species increase during the non-heating season. Based on household activity questionnaires and actual analytical concentrations, the main influencing factors accounted for gaseous PAHs in indoor air, identified by multifactor analysis of variance, include cigarette smoking, use of moth ball, intensity of draft, cuisine frequency and built age.

  6. Polyimides with carbonyl and ether connecting groups between the aromatic rings

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Havens, Stephen J. (Inventor)

    1992-01-01

    New polyimides have been prepared from the reaction of aromatic dianhydrides with novel aromatic diamines containing carbonyl and ether connecting groups between the aromatic rings. Several of these polyimides are shown to be semi-crystalline as evidenced by wide angle x ray diffraction and differential scanning calorimetry. Most of the polyimides form tough solvent resistant films with high tensile properties. Several of these materials can be thermally processed to form solvent and base resistant moldings.

  7. Structure, aromaticity and reactivity of corannulene and its analogues: a conceptual density functional theory and density functional reactivity theory study

    NASA Astrophysics Data System (ADS)

    Deng, Youer; Yu, Donghai; Cao, Xiaofang; Liu, Lianghong; Rong, Chunying; Lu, Tian; Liu, Shubin

    2018-04-01

    Corannulene is an interesting yet special molecule, which has witnessed widespread applications. It is aromatic, but not planar and the total number of 20 π electrons is in conflict with Hückel's 4n + 2 rule. In this work, we design a series of analogous model systems based on this molecule with the central ring size extended from five members to three to eight members. A number of theoretical and analytical tools available in the literature are employed to systematically examine their structure, aromaticity and reactivity properties. We found that structurally speaking, they change from bowl-like to planar and then to saddle shapes as the central ring size increases from three to eight. From the reactivity perspective, species with five and six-membered-rings in the centre are chemically more stable and less reactive, which are confirmed by the numerical results from aromaticity indexes and quantities from the information-theoretic approach. Overall, our results show that only corannulene and its six-membered-ring, coronene, analogue are aromatic. Even though these two systems are aromatic in nature, they are markedly different in a number of ways in structure, reactivity and other properties. These results should provide with us insights and understanding about the phenomenon of three-dimensional and non-planarity aromaticity.

  8. Structure dependence of the rate coefficients of hydroxyl radical+aromatic molecule reaction

    NASA Astrophysics Data System (ADS)

    Wojnárovits, László; Takács, Erzsébet

    2013-06-01

    The rate coefficients of hydroxyl radical addition to the rings of simple aromatic molecules (kOH) were evaluated based on the literature data. By analyzing the methods of kOH determination and the data obtained the most probable values were selected for the kOH's of individual compounds and thereby the most reliable dataset was created for monosubstituted aromatics and p-substituted phenols. For these compounds the rate coefficients fall in a narrow range between 2×109 mol-1 dm3 s-1 and 1×1010 mol-1 dm3 s-1. Although the values show some regular trend with the electron donating/withdrawing nature of the substituent, the log kOH-σp Hammett substituent constant plots do not give straight lines because these high kOH's are controlled by both, the chemical reactivity and the diffusion. However, the logarithms of the rate coefficients of the chemical reactivity controlled reactions (kchem), are calculated by the equation 1/kOH=1/kchem+1/kdiff, and accepting for the diffusion controlled rate coefficient kdiff=1.1×1010 mol-1 dm3 s-1, show good linear correlation with σp.

  9. Biodegradation of coal-related model compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, J.A.; Stewart, D.L.; McCulloch, M.

    1988-06-01

    We have studied the reactions of model compounds having coal-related functionalities (ester linkages, ether linkages, PAH) with the intact organism, cell-free filtrate, and cell-free enzyme of C. versicolor to better understand the process of biosolubilization. Many of the degradation products have been identified by gas chromatography/mass spectroscopy (GC/MS). Results indicate that the two compounds tested with the intact fungal organism were completely degraded. Complete degradation refers to no recovery of model compound. We can probably assume that the other two would also be totally degraded, since we have not yet found a simple compound that will survive long-term exposure tomore » the intact fungus. The ease of degradation with the cell-free filtrate appears to be in the order: phenylbenzoate > benzylbenzoate > benzyl ether > methoxybenzophenone. Esters and ethers that are activated by aromatic rings appear to be susceptible to the fungal extract; however, aromatic ketones are not affected by the extract. From the limited results we have obtained from the isolated enzyme, it appears that the activity may parallel the cell-free filtrate. When the cell-free extract was tested with the model compounds indole, dibenzothiophene, and bibenzyl, no degradation with the enzyme was noted: however, exposure of these compounds to the intact organism resulted in complete degradation. Analysis of the controls indicated no degradation. 8 refs., 1 fig., 1 tab.« less

  10. The design and synthesis of 9-phenylcyclohepta[d]pyrimidine-2,4-dione derivatives as potent non-nucleoside inhibitors of HIV reverse transcriptase.

    PubMed

    Wang, Xiaowei; Lou, Qinghua; Guo, Ying; Xu, Yang; Zhang, Zhili; Liu, Junyi

    2006-09-07

    Novel compounds, which can be considered as conformationally restricted analogues of MKC-442, have been synthesized and tested as inhibitors of the reverse transcriptase of human immunodeficiency virus type-1 (HIV-1). Reaction of urea with a beta-ketoester furnished 6,7,8,9-tetrahydro-9-phenyl-1H-cyclohepta[d]pyrimidine-2,4-(3H,5H)-dione (6a) and 6,7,8,9-tetrahydro-9-p-tolyl-1H-cyclohepta[d]pyrimidine-2,4-(3H,5H)-dione (6b) which were then alkylated at the N-1 position with chloromethyl ether, allyl bromide and benzyl bromide to afford the target compounds 7a-b, 8a-b, 9 and 10, respectively. The seven-membered, annelated compounds have a relatively rigid structures and can lock the orientation of the aromatic ring. Chemical modification at N-1 of the pyrinidine ring and the 9-phenyl ring was attempted, with the aim of improving the antiretroviral activity. In particular, replacement of the aliphatic group with the phenyl moiety at the terminus of N-1 side chain can enhance the activity. The most active compounds showed activity in the low micromolar range with IC50 values comparable to that of nevirapine. The biological activity results are in accordance with the docking results.

  11. Bioremediation of PAH-contamined soils: Consequences on formation and degradation of polar-polycyclic aromatic compounds and microbial community abundance.

    PubMed

    Biache, Coralie; Ouali, Salma; Cébron, Aurélie; Lorgeoux, Catherine; Colombano, Stéfan; Faure, Pierre

    2017-05-05

    A bioslurry batch experiment was carried out over five months on three polycyclic aromatic compound (PAC) contaminated soils to study the PAC (PAH and polar-PAC) behavior during soil incubation and to evaluate the impact of PAC contamination on the abundance of microbial communities and functional PAH-degrading populations. Organic matter characteristics and reactivity, assessed through solvent extractable organic matter and PAC contents, and soil organic matter mineralization were monitored during 5 months. Total bacteria and fungi, and PAH-ring hydroxylating dioxygenase genes were quantified. Results showed that PAHs and polar-PACs were degraded with different degradation dynamics. Differences in degradation rates were observed among the three soils depending on PAH distribution and availability. Overall, low molecular weight compounds were preferentially degraded. Degradation selectivity between isomers and structurally similar compounds was observed which could be used to check the efficiency of bioremediation processes. Bacterial communities were dominant over fungi and were most likely responsible for PAC degradation. Abundance of PAH-degrading bacteria increased during incubations, but their proportion in the bacterial communities tended to decrease. The accumulation of some oxygenated-PACs during the bioslurry experiment underlines the necessity to monitor these compounds during application of remediation treatment on PAH contaminated soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Radiolysis of paracetamol in dilute aqueous solution

    NASA Astrophysics Data System (ADS)

    Szabó, László; Tóth, Tünde; Homlok, Renáta; Takács, Erzsébet; Wojnárovits, László

    2012-09-01

    Using radiolytic experiments hydroxyl radical (main reactant in advanced oxidation processes) was shown to effectively destroy paracetamol molecules. The basic reaction is attachment to the ring. The hydroxy-cyclohexadienyl radical produced in the further reactions may transform to hydroxylated paracetamol derivatives or to quinone type molecules and acetamide. The initial efficiency of aromatic ring destruction in the absence of dissolved O2 is c.a. 10%. The efficiency is 2-3 times higher in the presence of O2 due to its reaction with intermediate hydroxy-cyclohexadienyl radical and the subsequent ring destruction reactions through peroxi radical. Upon irradiation the toxicity of solutions at low doses increases with the dose and then at higher doses it decreases. This is due to formation of compounds with higher toxicity than paracetamol (e.g. acetamide, hidroquinone). These products, however, are highly sensitive to irradiation and degrade easily.

  13. (S)-N-{1-[5-(4-Chloro-benzyl-sulfanyl)-1,3,4-oxadiazol-2-yl]eth-yl}-4-methyl-benzene-sulfonamide.

    PubMed

    Syed, Tayyaba; Hameed, Shahid; Jones, Peter G

    2011-10-01

    The title compound, C(18)H(18)ClN(3)O(3)S(2), adopts by folding the form of a distorted disc. Inter-planar angles are 29.51 (7) and 63.43 (7)° from the five-membered ring to the aromatic systems and 34.80 (6)° between these two latter rings. The absolute configuration was confirmed by determination of the Flack parameter. In the crystal, the mol-ecules are linked by four hydrogen bonds, one classical (N-H⋯N) and three 'weak' (C-H⋯O), forming layers parallel to the ac plane; these are in turn linked in the third dimension by Cl⋯N [3.1689 (16) Å] and Cl⋯O [3.3148 (13) Å] contacts to the heterocyclic ring.

  14. Crystal structure of N-{[3-bromo-1-(phenyl-sulfon-yl)-1H-indol-2-yl]meth-yl}benzene-sulfonamide.

    PubMed

    Umadevi, M; Raju, P; Yamuna, R; Mohanakrishnan, A K; Chakkaravarthi, G

    2015-10-01

    In the title compound, C21H17BrN2O4S2, the indole ring system subtends dihedral angles of 85.96 (13) and 9.62 (16)° with the planes of the N- and C-bonded benzene rings, respectively. The dihedral angles between the benzene rings is 88.05 (17)°. The mol-ecular conformation is stabilized by intra-molecular N-H⋯O and C-H⋯O hydrogen bonds and an aromatic π-π stacking [centroid-to-centroid distance = 3.503 (2) Å] inter-action. In the crystal, short Br⋯O [2.9888 (18) Å] contacts link the mol-ecules into [010] chains. The chains are cross-linked by weak C-H⋯π inter-actions, forming a three-dimensional network.

  15. The AHA Moment: Assessment of the Redox Stability of Ionic Liquids Based on Aromatic Heterocyclic Anions (AHAs) for Nuclear Separations and Electric Energy Storage.

    PubMed

    Shkrob, Ilya A; Marin, Timothy W

    2015-11-19

    Because of their extended conjugated bond network, aromatic compounds generally have higher redox stability than less saturated compounds. We conjectured that ionic liquids (ILs) consisting of aromatic heterocyclic anions (AHAs) may exhibit improved radiation and electrochemical stability. Such properties are important in applications of these ILs as diluents in radionuclide separations and electrolytes in the electric energy storage devices. In this study, we systematically examine the redox chemistry of the AHAs. Three classes of these anions have been studied: (i) simple 5-atom ring AHAs, such as the pyrazolide and triazolides, (ii) AHAs containing an adjacent benzene ring, and (iii) AHAs containing electron-withdrawing groups that were introduced to reduce their basicity and interaction with metal ions. It is shown that fragmentation in the reduced and oxidized states of these AHAs does not generally occur, and the two main products, respectively, are the H atom adduct and the imidyl radical. The latter species occurs either as an N σ-radical or as an N π-radical, depending on the length of the N-N bond, and the state that is stabilized in the solid matrix is frequently different from that having the lowest energy in the gas phase. In some instances, the formation of the sandwich π-stack dimer radical anions has been observed. For trifluoromethylated anions, H adduct formation did not occur; instead, there was facile loss of fluoride from their fluorinated groups. The latter can be problematic in nuclear separations, but beneficial in batteries. Overall, our study suggests that AHA-based ILs are viable candidates for use as radiation-exposed diluents and electrolytes.

  16. Reaction of nitrosonium cation with resorc[4]arenes activated by supramolecular control: covalent bond formation.

    PubMed

    Ghirga, Francesca; D'Acquarica, Ilaria; Delle Monache, Giuliano; Mannina, Luisa; Molinaro, Carmela; Nevola, Laura; Sobolev, Anatoly P; Pierini, Marco; Botta, Bruno

    2013-07-19

    Resorc[4]arenes 1 and 2, which previously proved to entrap NO(+) cation within their cavities under conditions of host-to-guest excess, were treated with a 10-fold excess of NOBF4 salt in chloroform. Kinetic and spectral UV-visible analyses revealed the formation of isomeric 1:2 complexes as a direct evolution of the previously observed event. Accordingly, three-body 1-(NO(+))2 and 2-(NO(+))2 adducts were built by MM and fully optimized by DFT calculations at the B3LYP/6-31G(d) level of theory. Notably, covalent nitration products 4, 5 and 6, 7 were obtained by reaction of NOBF4 salt with host 1 and 2, respectively, involving macrocycle ring-opening and insertion of a nitro group in one of the four aromatic rings. In particular, compounds 4 and 6, both containing a trans-double bond in the place of the methine bridge, were oxidized to aldehydes 5 and 7, respectively, after addition of water to the reaction mixture. Calculation of the charge and frontier orbitals of the aromatic donor (HOMO) and the NO(+) acceptor (LUMO) clearly suggests an ipso electrophilic attack by a first NO(+) unit on the resorcinol ring, mediated by the second NO(+) unit.

  17. Lubricating oil dominates primary organic aerosol emissions from motor vehicles.

    PubMed

    Worton, David R; Isaacman, Gabriel; Gentner, Drew R; Dallmann, Timothy R; Chan, Arthur W H; Ruehl, Christopher; Kirchstetter, Thomas W; Wilson, Kevin R; Harley, Robert A; Goldstein, Allen H

    2014-04-01

    Motor vehicles are major sources of primary organic aerosol (POA), which is a mixture of a large number of organic compounds that have not been comprehensively characterized. In this work, we apply a recently developed gas chromatography mass spectrometry approach utilizing "soft" vacuum ultraviolet photoionization to achieve unprecedented chemical characterization of motor vehicle POA emissions in a roadway tunnel with a mass closure of >60%. The observed POA was characterized by number of carbon atoms (NC), number of double bond equivalents (NDBE) and degree of molecular branching. Vehicular POA was observed to predominantly contain cycloalkanes with one or more rings and one or more branched alkyl side chains (≥80%) with low abundances of n-alkanes and aromatics (<5%), similar to "fresh" lubricating oil. The gas chromatography retention time data indicates that the cycloalkane ring structures are most likely dominated by cyclohexane and cyclopentane rings and not larger cycloalkanes. High molecular weight combustion byproducts, that is, alkenes, oxygenates, and aromatics, were not present in significant amounts. The observed carbon number and chemical composition of motor vehicle POA was consistent with lubricating oil being the dominant source from both gasoline and diesel-powered vehicles, with an additional smaller contribution from unburned diesel fuel and a negligible contribution from unburned gasoline.

  18. Catalytic oxidation of o-aminophenols and aromatic amines by mushroom tyrosinase.

    PubMed

    Muñoz-Muñoz, Jose Luis; Garcia-Molina, Francisco; Garcia-Ruiz, Pedro Antonio; Varon, Ramon; Tudela, Jose; Rodriguez-Lopez, Jose N; Garcia-Canovas, Francisco

    2011-12-01

    The kinetics of tyrosinase acting on o-aminophenols and aromatic amines as substrates was studied. The catalytic constants of aromatic monoamines and o-diamines were both low, these results are consistent with our previous mechanism in which the slow step is the transfer of a proton by a hydroxyl to the peroxide in oxy-tyrosinase (Fenoll et al., Biochem. J. 380 (2004) 643-650). In the case of o-aminophenols, the hydroxyl group indirectly cooperates in the transfer of the proton and consequently the catalytic constants in the action of tyrosinase on these compounds are higher. In the case of aromatic monoamines, the Michaelis constants are of the same order of magnitude than for monophenols, which suggests that the monophenols bind better (higher binding constant) to the enzyme to facilitate the π-π interactions between the aromatic ring and a possible histidine of the active site. In the case of aromatic o-diamines, both the catalytic and Michaelis constants are low, the values of the catalytic constants being lower than those of the corresponding o-diphenols. The values of the Michaelis constants of the aromatic o-diamines are slightly lower than those of their corresponding o-diphenols, confirming that the aromatic o-diamines bind less well (lower binding constant) to the enzyme. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Ficusnotins A-F: Rare diarylbutanoids from the leaves of Ficus nota.

    PubMed

    Latayada, Felmer S; Uy, Mylene M; Akihara, Yui; Ohta, Emi; Nehira, Tatsuo; Ômura, Hisashi; Ohta, Shinji

    2017-09-01

    Six diarylbutanoids, designated as ficusnotins A-F, with a rare carbon skeleton consisting of two aromatic rings separated by an unbranched C4-chain have been isolated from the leaves of Ficus nota (Blanco) Merr. (Moraceae). The structures were determined on the basis of spectroscopic data, as well as X-ray crystallographic analysis. The isolated compounds were evaluated for their antibacterial activity against Bacillus subtilis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Bioaccumulation of polycyclic aromatic hydrocarbons in bivalves from Sugarland Run and the Potomac River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, T.R.; Lauren, D.J.; Dimitry, J.A.

    1995-12-31

    A bioaccumulation study was conducted following a release of Fuel Oil {number_sign}2 into Sugarland Run, a small northern Virginia stream. Caged clams (Corbicula sp.) were placed in 3 downstream locations and 2 upstream reference areas for an exposure period of approximately 28 days. In addition, resident clams from the Potomac River were sampled at the start of the study and at 4 and 8 weeks. Chemical fingerprinting techniques were employed to identify spill-related polycyclic aromatic hydrocarbons (PAHs) and to differentiate these compounds from background sources of contamination. The greatest concentration of spill-related PAHs (2 and 3-ring compounds) were measured inmore » clams placed immediately downstream of the spill site, and tissue concentrations systematically decreased with distance from the spill site. PAHs that were not related to Fuel Oil {number_sign}2 were found in all clams and accounted for up to 90% of the total body burden at downstream locations. Furthermore, the highest concentrations of 4-, 5-, and 6-ring PAH were found at the upstream reference location, and indicated an important source of PAHs into the environment. Body burdens measured in this study were compared to ambient concentrations reported for bivalves from a variety of environments. Tissue concentrations were also compared to concentrations that have been reported to cause adverse biological effects.« less

  1. Aminoglycosylation Can Enhance the G-Quadruplex Binding Activity of Epigallocatechin

    PubMed Central

    Bai, Li-Ping; Ho, Hing-Man; Ma, Dik-Lung; Yang, Hui; Fu, Wai-Chung; Jiang, Zhi-Hong

    2013-01-01

    With the aim of enhancing G-quadruplex binding activity, two new glucosaminosides (16, 18) of penta-methylated epigallocatechin were synthesized by chemical glycosylation. Subsequent ESI-TOF-MS analysis demonstrated that these two glucosaminoside derivatives exhibit much stronger binding activity to human telomeric DNA and RNA G-quadruplexes than their parent structure (i.e., methylated EGC) (14) as well as natural epigallocatechin (EGC, 6). The DNA G-quadruplex binding activity of 16 and 18 is even more potent than strong G-quadruplex binder quercetin, which has a more planar structure. These two synthetic compounds also showed a higher binding strength to human telomeric RNA G-quadruplex than its DNA counterpart. Analysis of the structure-activity relationship revealed that the more basic compound, 16, has a higher binding capacity with DNA and RNA G-quadruplexes than its N-acetyl derivative, 18, suggesting the importance of the basicity of the aminoglycoside for G-quadruplex binding activity. Molecular docking simulation predicted that the aromatic ring of 16 π-stacks with the aromatic ring of guanine nucleotides, with the glucosamine moiety residing in the groove of G-quadruplex. This research indicates that glycosylation of natural products with aminosugar can significantly enhance their G-quadruplex binding activities, thus is an effective way to generate small molecules targeting G-quadruplexes in nucleic acids. In addition, this is the first report that green tea catechin can bind to nucleic acid G-quadruplex structures. PMID:23335983

  2. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons under anaerobic conditions: Overview of studies, proposed pathways and future perspectives.

    PubMed

    Nzila, Alexis

    2018-05-07

    The biodegradation of low- and high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) (LWM-PAHs and HMW-PAHs, respectively) has been studied extensively under aerobic conditions. Molecular O 2 plays 2 critical roles in this biodegradation process. O 2 activates the aromatic rings through hydroxylation prior to ring opening and serves as a terminal electron acceptor (TEA). However, several microorganisms have devised ways of activating aromatic rings, leading to ring opening (and thus biodegradation) when TEAs other than O 2 are used (under anoxic conditions). These microorganisms belong to the sulfate-, nitrate-, and metal-ion-reducing bacteria and the methanogens. Although the anaerobic biodegradation of monocyclic aromatic hydrocarbons and LWM-PAH naphthalene have been studied, little information is available about the biodegradation of HMW-PAHs. This manuscript reviews studies of the anaerobic biodegradation of HMW-PAHs and identifies gaps that limit both our understanding and the efficiency of this biodegradation process. Strategies that can be employed to overcome these limitations are also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Application of calculated NMR parameters, aromaticity indices and wavefunction properties for evaluation of corrosion inhibition efficiency of pyrazine inhibitors

    NASA Astrophysics Data System (ADS)

    Behzadi, Hadi; Manzetti, Sergio; Dargahi, Maryam; Roonasi, Payman; Khalilnia, Zahra

    2018-01-01

    In light of the importance of developing novel corrosion inhibitors, a series of quantum chemical calculations were carried out to evaluate 15N chemical shielding CS tensors as well as aromaticity indexes including NICS, HOMA, FLU, and PDI of three pyrazine derivatives, 2-methylpyrazine (MP), 2-aminopyrazine (AP) and 2-amino-5-bromopyrazine (ABP). The NICS parameters have been shown in previous studies to be paramount to the prediction of anti-corrosion properties, and have been combined here with HOMA, FLU and PDI and detailed wavefunction analysis to determine the effects from bromination and methylation on pyrazine. The results show that the electron density around the nitrogens, represented by CS tensors, can be good indicators of anti-corrosion efficiency. Additionally, the NICS, FLU and PDI, as aromaticity indicators of molecule, are well correlated with experimental corrosion inhibition efficiencies of the studied inhibitors. Bader sampling and detailed wavefunction analysis shows that the major effects from bromination on the pyrazine derivatives affect the Laplacian of the electron density of the ring, delocalizing the aromatic electrons of the carbon atoms into lone pairs and increasing polarization of the Laplacian values. This feature is well agreement with empirical studies, which show that ABP is the most efficient anti-corrosion compound followed by AP and MP, a property which can be attributed and predicted by derivation of the Laplacian of the electron density of the ring nuclei. This study shows the importance of devising DFT methods for development of new corrosion inhibitors, and the strength of electronic and nuclear analysis, and depicts most importantly how corrosion inhibitors composed of aromatic moieties may be modified to increase anti-corrosive properties.

  4. Chemical function based pharmacophore generation of endothelin-A selective receptor antagonists.

    PubMed

    Funk, Oliver F; Kettmann, Viktor; Drimal, Jan; Langer, Thierry

    2004-05-20

    Both quantitative and qualitative chemical function based pharmacophore models of endothelin-A (ET(A)) selective receptor antagonists were generated by using the two algorithms HypoGen and HipHop, respectively, which are implemented in the Catalyst molecular modeling software. The input for HypoGen is a training set of 18 ET(A) antagonists exhibiting IC(50) values ranging between 0.19 nM and 67 microM. The best output hypothesis consists of five features: two hydrophobic (HY), one ring aromatic (RA), one hydrogen bond acceptor (HBA), and one negative ionizable (NI) function. The highest scoring Hip Hop model consists of six features: three hydrophobic (HY), one ring aromatic (RA), one hydrogen bond acceptor (HBA), and one negative ionizable (NI). It is the result of an input of three highly active, selective, and structurally diverse ET(A) antagonists. The predictive power of the quantitative model could be approved by using a test set of 30 compounds, whose activity values spread over 6 orders of magnitude. The two pharmacophores were tested according to their ability to extract known endothelin antagonists from the 3D molecular structure database of Derwent's World Drug Index. Thereby the main part of selective ET(A) antagonistic entries was detected by the two hypotheses. Furthermore, the pharmacophores were used to screen the Maybridge database. Six compounds were chosen from the output hit lists for in vitro testing of their ability to displace endothelin-1 from its receptor. Two of these are new potential lead compounds because they are structurally novel and exhibit satisfactory activity in the binding assay.

  5. A concentration-dependent multi-term linear free energy relationship for sorption of organic compounds to soils based on the hexadecane dilute-solution reference state.

    PubMed

    Zhu, Dongqiang; Pignatello, Joseph J

    2005-11-15

    A LFER of the type in the title is applied to sorption of numerous compounds to polyethylene and three soils for which sorption to natural organic matter (NOM) is presumed dominant. It provides fractional contributions to the Gibbs free energy of sorption corresponding to hydrophobic effects, dipolar/polarizability (D/P) effects in excess of the reference state, and the sum of possible specific forces such as H-bonding and pi-pi electron donor-acceptor (pi-pi EDA) interactions in excess of the reference state. Minimal inputs are the isotherm, the n-hexadecane-water partition coefficient and the Abraham pi parameter representing D/P effects. Sorption of all compounds to polyethylene can be described by considering only hydrophobic effects. Sorption of a calibration set of apolar compounds (aromatic and aliphatic hydrocarbons and chlorinated hydrocarbons) to the natural sorbents is well-described by a combination of hydrophobic and D/P effects. For the apolar set, D/P contributes approximately 15-40% (2-8% for cyclohexane) of sorption free energy. D/P effects increase with the degree of chlorination for aliphatic compounds. For aromatic compounds D/P effects increase with fused ring size but do not vary with degree of chlorination and chlorine substitution pattern. H-bonding contributes substantially to sorption of alcohols, and similarly for 2-nonanol and 2,4-dichlorophenol (33-44%). pi-pi EDA forces contribute to phenanthrene sorption in one case. The effects of concentration, sorbent aromaticity (literature NMR), and sorbent polarity [(O + N)/C] on hydrophobic and D/P contributions for all compounds indicate that (a) molecules fill sites of progressively greater hydrophilic character; (b) the energy penalty for cavity formation in the solid decreases with concentration due to plasticization and greater intermolecular contact; (c) sorbent aromatic content more than sorbent polarity controls D/P interactions. Basing free energy on an inert electrostatic chemical environment afforded by n-hexadecane permits evaluation of direct electrostatic forces in NOM that contribute to sorption.

  6. Synthesis, spectroscopic characterization, and antibacterial evaluation of new Schiff bases bearing benzimidazole moiety

    NASA Astrophysics Data System (ADS)

    Redayan, Muayed Ahmed; Salih Hussein, Maha; Tark lafta, Ashraf

    2018-05-01

    The present work comprise synthesis of new derivatives for Schiff bases bearing benzimidazole ring. Compounds 1(a-d) were prepared by reaction of o-pheneylenediamine with a various of amino acids (glycine, alanine, phenyl alanine and tyrosine) in the presence 6N HCl to yielded derivatives of benzimidazole compounds containing free –NH2 group. Then these compounds used to prepare different Schiff bases through reaction with various of aromatic aldehydes. The chemical structure of synthesized compounds were confirmed by FTIR,1H,13C-NMR, and 13C-NMR dept135 spectroscopy. Some selected compounds were evaluated in vitro for their antibacterial activity against two types of Gram-positive bacteria namely (Staphylococcous aureus, Bacillus subtilis) and Gram-negative bacteria namely (Pseudomonas aeruginosa, Escherichia coli). Most of the results of the antibacterial activity of these compounds were good when compared with the standard antibiotic ampicillin and ciprofloxacin.

  7. Dibenzopyrrolo[1,2-a][1,8]naphthyridines: Synthesis and Structural Modification of Fluorescent L-Shaped Heteroarenes.

    PubMed

    Tateno, Kotaro; Ogawa, Rie; Sakamoto, Ryota; Tsuchiya, Mizuho; Kutsumura, Noriki; Otani, Takashi; Ono, Kosuke; Kawai, Hidetoshi; Saito, Takao

    2018-01-19

    The L-shaped, π-extended pentacycle dibenzopyrrolo[1,2-a][1,8]naphthyridine and its derivatives were synthesized using two methods: fully intramolecular [2 + 2 + 2] cycloaddition and oxidative aromatization using substituted carbodiimide and modification of an electron-rich indole ring of an L-shaped skeleton via electrophilic reaction and cross-coupling. These L-shaped compounds emitted fluorescence in high quantum yield. The position of substituents affected the fluorescence color through two different mechanisms, π-conjugation and skeletal distortion, which caused the substituted L-shaped compounds to emit fluorescence in a variety of colors and to exhibit solvato-fluorochromism.

  8. Role of methyl group number on SOA formation from monocyclic aromatic hydrocarbons photooxidation under low-NOx conditions

    NASA Astrophysics Data System (ADS)

    Li, L.; Tang, P.; Nakao, S.; Chen, C.-L.; Cocker, D. R., III

    2016-02-01

    Substitution of methyl groups onto the aromatic ring determines the secondary organic aerosol (SOA) formation from the monocyclic aromatic hydrocarbon precursor (SOA yield and chemical composition). This study links the number of methyl groups on the aromatic ring to SOA formation from monocyclic aromatic hydrocarbons photooxidation under low-NOx conditions (HC/NO > 10 ppbC : ppb). Monocyclic aromatic hydrocarbons with increasing numbers of methyl groups are systematically studied. SOA formation from pentamethylbenzene and hexamethylbenzene are reported for the first time. A decreasing SOA yield with increasing number of methyl groups is observed. Linear trends are found in both f44 vs. f43 and O / C vs. H / C for SOA from monocyclic aromatic hydrocarbons with zero to six methyl groups. An SOA oxidation state predictive method based on benzene is used to examine the effect of added methyl groups on aromatic oxidation under low-NOx conditions. Further, the impact of methyl group number on density and volatility of SOA from monocyclic aromatic hydrocarbons is explored. Finally, a mechanism for methyl group impact on SOA formation is suggested. Overall, this work suggests that, as more methyl groups are attached on the aromatic ring, SOA products from these monocyclic aromatic hydrocarbons become less oxidized per mass/carbon on the basis of SOA yield or chemical composition.

  9. Synthesis and antibacterial activity of sulfonamides. SAR and DFT studies

    NASA Astrophysics Data System (ADS)

    Boufas, Wahida; Dupont, Nathalie; Berredjem, Malika; Berrezag, Kamel; Becheker, Imène; Berredjem, Hajira; Aouf, Nour-Eddine

    2014-09-01

    A series of substituted sulfonamide derivatives were synthesized from chlorosulfonyl isocyanate (CSI) in tree steps (carbamoylation, sulfamoylation and deprotection). Antibacterial activity in vitro of some newly formed compounds investigated against clinical strains Gram-positive and Gram-negative: Escherichia coli and Staphylococcus aureus applying the method of dilution and minimal inhibition concentration (MIC) methods. These compounds have significant bacteriostatic activity with totalities of bacterial strains used. DFT calculations with B3LYP/6-31G(d) level have been used to analyze the electronic and geometric characteristics deduced for the stable structure of three compounds presenting conjugation between a nitrogen atom N through its lone pair and an aromatic ring next to it. The principal quantum chemical descriptors have been correlated with the antibacterial activity.

  10. Natural attenuation and biosurfactant-stimulated bioremediation of estuarine sediments contaminated with diesel oil.

    PubMed

    Bayer, Débora M; Chagas-Spinelli, Alessandra C O; Gavazza, Sávia; Florencio, Lourdinha; Kato, Mario T

    2013-09-01

    We evaluated the bioremediation, by natural attenuation (NA) and by natural attenuation stimulated (SNA) using a rhamnolipid biosurfactant, of estuarine sediments contaminated with diesel oil. Sediment samples (30 cm) were put into 35 cm glass columns, and the concentrations of the 16 polycyclic aromatic hydrocarbons (PAHs) prioritized by the US Environmental Protection Agency were monitored for 111 days. Naphthalene percolated through the columns more than the other PAHs, and, in general, the concentrations of the lower molecular weight PAHs, consisting of two and three aromatic rings, changed during the first 45 days of treatment, whereas the concentrations of the higher molecular weight PAHs, consisting of four, five, and six rings, were more stable. The higher molecular weight PAHs became more available after 45 days, in the deeper parts of the columns (20-30 cm). Evidence of degradation was observed only for some compounds, such as pyrene, with a total removal efficiency of 82 and 78 % in the NA and SNA treatments, respectively, but without significant difference. In the case of total PAH removal, the efficiencies were significantly different of 82 and 67 %, respectively.

  11. Towards the Rational Design of Ionic Liquid Matrices for Secondary Ion Mass Spectrometry: Role of the Anion

    NASA Astrophysics Data System (ADS)

    Dertinger, Jennifer J.; Walker, Amy V.

    2013-08-01

    The role of the ionic liquid (IL) anion structure on analyte signal enhancements has been systematically investigated in secondary ion mass spectrometry (SIMS) using a variety of samples, including lipids, sterols, polymers, and peptides. Twenty-four ILs were synthesized. The 12 matrix acids were cinnamic acid derivatives. Two bases were employed: 1-methylimidazole and tripropylamine. Three matrices, methylimmidazolium o-coumarate, tripropylammonium o-coumarate, and tripropylammonium 3,4,5-trimethoxycinnamate, were "universal" matrices enhancing all analytes tested. The pKa of the matrix acid does not appear to have a strong effect on analyte ion intensities. Rather, it is observed that a single hydroxyl group on the anion aromatic ring leads to significantly increased molecular ion intensities. No analyte signal enhancements were observed for -CH3, -CF3 and -OCH3 groups present on the aromatic ring. The position of the -OH group on the aromatic ring also alters molecular ion intensity enhancements. As well as the chemical identity and position of substituents, the number of moieties on the aromatic ring may affect the analyte signal enhancements observed. These observations suggest that the activation of the IL anion aromatic ring is important for optimizing analyte signal intensities. The implications for SIMS imaging of complex structures, such as biological samples, are discussed.

  12. Exploring the ring current of carbon nanotubes by first-principles calculations.

    PubMed

    Ren, Pengju; Zheng, Anmin; Xiao, Jianping; Pan, Xiulian; Bao, Xinhe

    2015-02-01

    Ring current is a fundamental concept to understand the nuclear magnetic resonance (NMR) properties and aromaticity for conjugated systems, such as carbon nanotubes (CNTs). Employing the recently developed gauge including projector augmented wave (GIPAW) method, we studied the ring currents of CNTs systematically and visualized their distribution. The ring current patterns are determined by the semiconducting or metallic properties of CNTs. The discrepancy is mainly caused by the axial component of external magnetic fields, whereas the radial component induced ring currents are almost independent of the electronic structures of CNTs, where the intensities of the ring currents are linearly related to the diameters of the CNTs. Although the ring currents induced by the radial component are more intense than those by the axial component, only the latter determines the overall NMR responses and aromaticity of the CNTs as well. Furthermore, the semiconducting CNTs are more aromatic than their metallic counterparts due to the existence of delocalized ring currents on the semiconducting CNTs. These fundamental features are of vital importance for the development of CNT-based nanoelectronics and applications in magnetic fields.

  13. Exploring the ring current of carbon nanotubes by first-principles calculations

    PubMed Central

    Ren, Pengju; Zheng, Anmin; Xiao, Jianping; Pan, Xiulian

    2015-01-01

    Ring current is a fundamental concept to understand the nuclear magnetic resonance (NMR) properties and aromaticity for conjugated systems, such as carbon nanotubes (CNTs). Employing the recently developed gauge including projector augmented wave (GIPAW) method, we studied the ring currents of CNTs systematically and visualized their distribution. The ring current patterns are determined by the semiconducting or metallic properties of CNTs. The discrepancy is mainly caused by the axial component of external magnetic fields, whereas the radial component induced ring currents are almost independent of the electronic structures of CNTs, where the intensities of the ring currents are linearly related to the diameters of the CNTs. Although the ring currents induced by the radial component are more intense than those by the axial component, only the latter determines the overall NMR responses and aromaticity of the CNTs as well. Furthermore, the semiconducting CNTs are more aromatic than their metallic counterparts due to the existence of delocalized ring currents on the semiconducting CNTs. These fundamental features are of vital importance for the development of CNT-based nanoelectronics and applications in magnetic fields. PMID:29560175

  14. Acetyl analogs of combretastatin A-4: synthesis and biological studies.

    PubMed

    Babu, Balaji; Lee, Megan; Lee, Lauren; Strobel, Raymond; Brockway, Olivia; Nickols, Alexis; Sjoholm, Robert; Tzou, Samuel; Chavda, Sameer; Desta, Dereje; Fraley, Gregory; Siegfried, Adam; Pennington, William; Hartley, Rachel M; Westbrook, Cara; Mooberry, Susan L; Kiakos, Konstantinos; Hartley, John A; Lee, Moses

    2011-04-01

    The combretastatins have received significant attention because of their simple chemical structures, excellent antitumor efficacy and novel antivascular mechanisms of action. Herein, we report the synthesis of 20 novel acetyl analogs of CA-4 (1), synthesized from 3,4,5-trimethoxyphenylacetone that comprises the A ring of CA-4 with different aromatic aldehydes as the B ring. Molecular modeling studies indicate that these new compounds possess a 'twisted' conformation similar to CA-4. The new analogs effectively inhibit the growth of human and murine cancer cells. The most potent compounds 6k, 6s and 6t, have IC(50) values in the sub-μM range. Analog 6t has an IC(50) of 182 nM in MDA-MB-435 cells and has advantages over earlier analogs due to its enhanced water solubility (456 μM). This compound initiates microtubule depolymerization with an EC(50) value of 1.8 μM in A-10 cells. In a murine L1210 syngeneic tumor model 6t had antitumor activity and no apparent toxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Computer-aided rational design of novel EBF analogues with an aromatic ring.

    PubMed

    Wang, Shanshan; Sun, Yufeng; Du, Shaoqing; Qin, Yaoguo; Duan, Hongxia; Yang, Xinling

    2016-06-01

    Odorant binding proteins (OBPs) are important in insect olfactory recognition. These proteins bind specifically to insect semiochemicals and induce their seeking, mating, and alarm behaviors. Molecular docking and molecular dynamics simulations were performed to provide computational insight into the interaction mode between AgamOBP7 and novel (E)-β-farnesene (EBF) analogues with an aromatic ring. The ligand-binding cavity in OBP7 was found to be mostly hydrophobic due to the presence of several nonpolar residues. The interactions between the EBF analogues and the hydrophobic residues in the binding cavity increased in strength as the distance between them decreased. The EBF analogues with an N-methyl formamide or ester linkage had higher docking scores than those with an amide linkage. Moreover, delocalized π-π and electrostatic interactions were found to contribute significantly to the binding between the ligand benzene ring and nearby protein residues. To design new compounds with higher activity, four EBF analogues D1-D4 with a benzene ring were synthesized and evaluated based on their docking scores and binding affinities. D2, which had an N-methyl formamide group linkage, exhibited stronger binding than D1, which had an amide linkage. D4 exhibited particularly strong binding due to multiple hydrophobic interactions with the protein. This study provides crucial foundations for designing novel EBF analogues based on the OBP structure. Graphical abstract The design strategy of new EBF analogues based on the OBP7 structure.

  16. No-carrier-added (NCA) aryl ([sup 18]F) fluorides via the nucleophilic aromatic substitution of electron rich aromatic rings

    DOEpatents

    Yushin Ding; Fowler, J.S.; Wolf, A.P.

    1993-10-19

    A method for synthesizing no-carrier-added (NCA) aryl [.sup.18 F] fluoride substituted aromatic aldehyde compositions bearing an electron donating group is described. The method of the present invention includes the step of reacting aromatic nitro aldehydes having a suitably protected hydroxyl substitutent on an electron rich ring. The reaction is The U.S. Government has rights in this invention pursuant to Contract Number DE-AC02-76CH00016, between the U.S. Department of Energy and Associated Universities Inc.

  17. No-carrier-added (NCA) aryl (18E) fluorides via the nucleophilic aromatic substitution of electron rich aromatic rings

    DOEpatents

    Ding, Yu-Shin; Fowler, Joanna S.; Wolf, Alfred P.

    1993-01-01

    A method for synthesizing no-carrier-added (NCA) aryl [.sup.18 F] fluoride substituted aromatic aldehyde compositions bearing an electron donating group is described. The method of the present invention includes the step of reacting aromatic nitro aldehydes having a suitably protected hydroxyl substitutent on an electron rich ring. The reaction is The U.S. Government has rights in this invention pursuant to Contract Number DE-AC02-76CH00016, between the U.S. Department of Energy and Associated Universities Inc.

  18. New beta-adrenergic agonists used illicitly as growth promoters in animal breeding: chemical and pharmacodynamic studies.

    PubMed

    Mazzanti, Gabriela; Daniele, Claudia; Boatto, Gianpiero; Manca, Giuliana; Brambilla, Gianfranco; Loizzo, Alberto

    2003-05-03

    Clenbuterol and beta-adrenergic receptor agonist drugs are illegally used as growth promoters in animal production. Pharmacologically active residues in edible tissues led to intoxication outbreaks in several countries. Pressure of official controls pulsed synthesis of new compounds to escape analytical procedures. We report two new compounds named 'A' and 'G4', found in feeding stuffs. Chemical structure was studied through nuclear magnetic resonance-imaging and infrared spectroscopy, and beta(1)- and beta(2)-adrenergic activity was evaluated on isolated guinea-pig atrium and trachea in comparison with clenbuterol. Both compounds share with clenbuterol an halogenated aromatic ring with a primary amino group. Main modifications consisted of substitution of secondary amino group with an alkyl chain in compound A and substitution of the ter-butyl group with a benzene ring in compound G4. In guinea-pig trachea these compounds showed myorelaxant potency lower than clenbuterol (EC(50) was 43.8 nM for clenbuterol, 11700 nM for compound A, 2140 nM for G4). On the contrary, in the guinea-pig atrium (heart-beat rate stimulant effect) the compounds were more potent than clenbuterol (EC(50) was 15.2 nM for clenbuterol, 3.4 nM for compound A, 2.8 nM for G4). These pharmacodynamic properties, and stronger lipophilic properties shown by the two compounds may result in increased cardiovascular risk for consumers of illicitly treated animals.

  19. Carbon Kinetic Isotope Effects in the Oxidation of Atmospheric Alkane and Aromatic Hydrocarbons by Hydroxyl Radicals

    NASA Astrophysics Data System (ADS)

    Anderson, R. S.; Thompson, A. E.; Rudolph, J.; Huang, L.

    2001-12-01

    To interpret measurements of stable carbon isotope ratios of ambient NMHC, we need to understand the isotopic composition of the emissions, and the isotope fractionation associated with the removal of NMHC from the atmosphere. Oxidation by OH-radicals is by far the most important atmospheric process for removal of NMHC. In this presentation measurements of the kinetic isotope effects (KIEs) for the reactions of hydroxyl radicals with several C5-C8 alkanes, including cyclic, branched and straight-chain alkanes, as well as C6-C9 aromatics are presented. All KIEs are positive: compounds containing only 12C atoms react faster than 13C labelled compounds. KIEs for light n-alkanes are typically between 1.5-4‰ and are larger than mass dependent collision frequencies, deviating from the collision frequency as carbon number increases. For n-alkanes there is no statistically significant difference between the KIEs of structural isomers. KIEs for the reactions of light alkenes and aromatics with OH-radicals are considerably higher than for alkane reactions, ranging from 3-18‰ . The KIEs for the aromatic reactions can be described by a 33.3+/-2.0‰ fractionation for the addition of an OH-radical to the aromatic ring and an inverse dependency on the number of carbon atoms, added to the mass dependent collision frequency. There are indications for minor structure specific effects, however the deviations from the idealised inverse carbon number dependence is relatively small and the limited number of studied alkyl benzenes does not yet allow the identification of systematic dependencies.

  20. Crystal structure of N′-[(E)-(1S,3R)-(3-isopropyl-1-methyl-2-oxo­cyclo­pent­yl)methyl­idene]-4-methyl­benzene­sulfono­hydrazide

    PubMed Central

    Tymann, David; Dragon, Dina Christina; Golz, Christopher; Preut, Hans; Strohmann, Carsten; Hiersemann, Martin

    2015-01-01

    The title compound, C17H24N2O3S, was synthesized in order to determine the relative configuration of the corresponding β-keto aldehyde. In the U-shaped mol­ecule, the five-membered ring approximates an envelope, with the methyl­ene C atom adjacent to the quaternary C atom being the flap, and the methyl and isopropyl substituents lying to the same side of the ring. The dihedral angles between the four nearly coplanar atoms of the five-membered ring and the flap and the aromatic ring are 35.74 (15) and 55.72 (9)°, respectively. The bond angles around the S atom are in the range from 103.26 (12) to 120.65 (14)°. In the crystal, mol­ecules are linked via N—H⋯O hydrogen bonds, forming a chain along the a axis. PMID:26870519

  1. Crystal structure of 4-fluoro-N-[2-(4-fluoro-benzo-yl)hydra-zine-1-carbono-thio-yl]benzamide.

    PubMed

    Firdausiah, Syadza; Salleh Huddin, Ameera Aqeela; Hasbullah, Siti Aishah; Yamin, Bohari M; Yusoff, Siti Fairus M

    2014-09-01

    In the title compound, C15H11F2N3O2S, the dihedral angle between the fluoro-benzene rings is 88.43 (10)° and that between the central semithiocarbazide grouping is 47.00 (11)°. The dihedral angle between the amide group and attached fluoro-benzene ring is 50.52 (11)°; the equivalent angle between the carbonyl-thio-amide group and its attached ring is 12.98 (10)°. The major twists in the mol-ecule occur about the C-N-N-C bonds [torsion angle = -138.7 (2)°] and the Car-Car-C-N (ar = aromatic) bonds [-132.0 (2)°]. An intra-molecular N-H⋯O hydrogen bond occurs, which generates an S(6) ring. In the crystal, the mol-ecules are linked by N-H⋯O and N-H⋯S hydrogen bonds, generating (001) sheets. Weak C-H⋯O and C-H⋯F inter-actions are also observed.

  2. Thio-phene-2-carbonyl azide.

    PubMed

    Hsu, Gene C; Singer, Laci M; Cordes, David B; Findlater, Michael

    2013-01-01

    The title compound, C5H3N3OS, is almost planar (r.m.s. deviation for the ten non-H atoms = 0.018 Å) and forms an extended layer structure in the (100) plane, held together via hydrogen-bonding inter-actions between adjacent mol-ecules. Of particular note is the occurrence of RC-H⋯N(-)=N(+)=NR inter-actions between an aromatic C-H group and an azide moiety which, in conjunction with a complementary C-H⋯O=C inter-action, forms a nine-membered ring.

  3. UV IRRADIATION OF AROMATIC NITROGEN HETEROCYCLES IN INTERSTELLAR ICE ANALOGS

    NASA Technical Reports Server (NTRS)

    Elsila, J. E.; Bernstein, M. P.; Sanford, S. A.

    2005-01-01

    Here, we present information on the properties of the ANH quinoline frozen in interstellar water-ice analogs. Quinoline is a two-ring compound structurally analogous to the PAH naphthalene. In this work, binary mixtures of water and quinoline were frozen to create interstellar ice analogs, which were then subjected to ultraviolet photolysis. We will present the infrared spectra of the resulting ices at various temperatures, as well as chromatographic analysis of the residues remaining upon warm-up of these ices to room temperature.

  4. Bio-Based Aromatic Epoxy Monomers for Thermoset Materials.

    PubMed

    Ng, Feifei; Couture, Guillaume; Philippe, Coralie; Boutevin, Bernard; Caillol, Sylvain

    2017-01-18

    The synthesis of polymers from renewable resources is a burning issue that is actively investigated. Polyepoxide networks constitute a major class of thermosetting polymers and are extensively used as coatings, electronic materials, adhesives. Owing to their outstanding mechanical and electrical properties, chemical resistance, adhesion, and minimal shrinkage after curing, they are used in structural applications as well. Most of these thermosets are industrially manufactured from bisphenol A (BPA), a substance that was initially synthesized as a chemical estrogen. The awareness on BPA toxicity combined with the limited availability and volatile cost of fossil resources and the non-recyclability of thermosets implies necessary changes in the field of epoxy networks. Thus, substitution of BPA has witnessed an increasing number of studies both from the academic and industrial sides. This review proposes to give an overview of the reported aromatic multifunctional epoxide building blocks synthesized from biomass or from molecules that could be obtained from transformed biomass. After a reminder of the main glycidylation routes and mechanisms and the recent knowledge on BPA toxicity and legal issues, this review will provide a brief description of the main natural sources of aromatic molecules. The different epoxy prepolymers will then be organized from simple, mono-aromatic di-epoxy, to mono-aromatic poly-epoxy, to di-aromatic di-epoxy compounds, and finally to derivatives possessing numerous aromatic rings and epoxy groups.

  5. Crystal structure of (E)-N′-{[(1R,3R)-3-isopropyl-1-methyl-2-oxo­cyclo­pent­yl]methyl­idene}-4-methyl­benzene­sulfono­hydrazide

    PubMed Central

    Tymann, David; Dragon, Dina Christina; Golz, Christopher; Preut, Hans; Strohmann, Carsten; Hiersemann, Martin

    2015-01-01

    The title compound, C17H24N2O3S, was synthesized in order to determine the relative configuration of the corresponding β-keto aldehyde. In the U-shaped mol­ecule, the five-membered ring approximates an envelope with the methyl­ene atom adjacent to the quaternary C atom being the flap. The dihedral angles between the four nearly coplanar atoms of the five-membered ring and the flap and the aromatic ring are 38.8 (4) and 22.9 (2)°, respectively. The bond angles around the S atom are in the range 104.11 (16)–119.95 (16)°. In the crystal, mol­ecules are linked via N—H⋯O by hydrogen bonds, forming a chain along the a-axis direction. PMID:25878892

  6. Crystal structure of (2Z,5Z)-3-(4-meth­oxy­phen­yl)-2-[(4-meth­oxy­phenyl)­imino]-5-[(E)-3-(2-nitro­phen­yl)allyl­idene]-1,3-thia­zolidin-4-one

    PubMed Central

    Rahmani, Rachida; Djafri, Ahmed; Daran, Jean-Claude; Djafri, Ayada; Chouaih, Abdelkader; Hamzaoui, Fodil

    2016-01-01

    In the title compound, C26H21N3O5S, the thia­zole ring is nearly planar with a maximum deviation of 0.017 (2) Å, and is twisted with respect to the three benzene rings, making dihedral angles of 25.52 (12), 85.77 (12) and 81.85 (13)°. In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions link the mol­ecules into a three-dimensional supra­molecular architecture. Aromatic π–π stacking is also observed between the parallel nitro­benzene rings of neighbouring mol­ecules, the centroid-to-centroid distance being 3.5872 (15) Å. PMID:26958377

  7. Orphenadrinium picrate picric acid.

    PubMed

    Fun, Hoong-Kun; Hemamalini, Madhukar; Siddaraju, B P; Yathirajan, H S; Narayana, B

    2010-02-24

    The asymmetric unit of the title compound N,N-dimethyl-2-[(2-methyl-phen-yl)phenyl-meth-oxy]ethanaminium picrate picric acid, C(18)H(24)NO(+)·C(6)H(2)N(3)O(7) (-)·C(6)H(3)N(3)O(7), contains one orphenadrinium cation, one picrate anion and one picric acid mol-ecule. In the orphenadrine cation, the two aromatic rings form a dihedral angle of 70.30 (7)°. There is an intra-molecular O-H⋯O hydrogen bond in the picric acid mol-ecule, which generates an S(6) ring motif. In the crystal structure, the orphenadrine cations, picrate anions and picric acid mol-ecules are connected by strong inter-molecular N-H⋯O hydrogen bonds, π⋯π inter-actions between the benzene rings of cations and anions [centroid-centroid distance = 3.5603 (9) Å] and weak C-H⋯O hydrogen bonds, forming a three-dimensional network.

  8. Recognition of extended linear and cyclised polyketide mimics by a type II acyl carrier protein† †Electronic supplementary information (ESI) available: Detailed experimental procedures and characterisation data for all new compounds, additional spectra and structural statistics for derivatised ACP three-dimensional structures. See DOI: 10.1039/c5sc03864b Click here for additional data file.

    PubMed Central

    Dong, Xu; Bailey, Christopher D.; Williams, Christopher; Crosby, John; Simpson, Thomas J.

    2016-01-01

    Polyketides are secondary metabolites which display both valuable pharmaceutical and agrochemical properties. Biosynthesis is performed by polyketide synthases (PKSs), and the acyl carrier protein (ACP), a small acidic protein, that transports the growing polyketide chain and is essential for activity. Here we report the synthesis of two aromatic probes and a linear octaketide mimic that have been tethered to actinorhodin ACP. These experiments were aimed at probing the ACP's capacity to sequester a non-polar versus a phenolic aromatic ring (that more closely mimics a polyketide intermediate) as well as investigations with extended polyketide chain surrogates. The binding of these mimics has been assessed using high-resolution solution NMR studies and high-resolution structure determination. These results reveal that surprisingly a PKS ACP is able to bind and sequester a bulky non-polar substrate containing an aromatic ring in a fatty acid type binding mode, but the introduction of even a small degree of polarity favours a markedly different association at a surface site that is distinct from that employed by fatty acid ACPs. PMID:28936328

  9. Pyridine-substituted thiazolylphenol derivatives: Synthesis, modeling studies, aromatase inhibition, and antiproliferative activity evaluation.

    PubMed

    Ertas, Merve; Sahin, Zafer; Berk, Barkin; Yurttas, Leyla; Biltekin, Sevde N; Demirayak, Seref

    2018-04-01

    Drugs used in breast cancer treatments target the suppression of estrogen biosynthesis. During this suppression, the main goal is to inhibit the aromatase enzyme that is responsible for the cyclization and structuring of estrogens either with steroid or non-steroidal-type inhibitors. Non-steroidal derivatives generally have a planar aromatic structure attached to the triazole ring system in their structures, which inhibits hydroxylation reactions during aromatization by coordinating the heme group. Bioisosteric replacement of the triazole ring system and development of aromatic/cyclic structures of the side chain can increase the selectivity for aromatase enzyme inhibition. In this study, pyridine-substituted thiazolylphenol derivatives, which are non-steroidal triazole bioisosteres, were synthesized using the Hantzsch method, and physical analysis and structural determination studies were performed. The IC 50 values of the compounds were determined by a fluorescence-based aromatase inhibition assay. Then, their antiproliferative activities on the MCF7 and HEK 293 cell lines were evaluated with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, the crystal structure of human placental aromatase was subjected to a series of docking experiments to identify the possible interactions between the most active structure and the active site. Lastly, an in silico technique was performed to analyze and predict the drug-likeness, molecular and ADME properties of the synthesized molecules. © 2018 Deutsche Pharmazeutische Gesellschaft.

  10. Multidimensional and comprehensive two-dimensional gas chromatography of dichloromethane soluble products from a high sulfur Jordanian oil shale.

    PubMed

    Amer, Mohammad W; Mitrevski, Blagoj; Jackson, W Roy; Chaffee, Alan L; Marriott, Philip J

    2014-03-01

    A high sulfur Jordanian oil shale was converted into liquid hydrocarbons by reaction at 390 °C under N2, and the dichloromethane soluble fraction of the products was isolated then analyzed by using gas chromatography (GC). Comprehensive two-dimensional GC (GC×GC) and multidimensional GC (MDGC) were applied for component separation on a polar - non-polar column set. Flame-ionization detection (FID) was used with GC×GC for general sample profiling, and mass spectrometry (MS) for component identification in MDGC. Multidimensional GC revealed a range of thiophenes (th), benzothiophenes (bth) and small amounts of dibenzothiophenes (dbth) and benzonaphthothiophenes (bnth). In addition, a range of aliphatic alkanes and cycloalkanes, ethers, polar single ring aromatic compounds and small amounts of polycyclic aromatics were also identified. Some of these compound classes were not uniquely observable by conventional 1D GC, and certainly this is true for many of their minor constituent members. The total number of distinct compounds was very large (ca.>1000). GC×GC was shown to be appropriate for general sample profiling, and MDGC-MS proved to be a powerful technique for the separation and identification of sulfur-containing components and other polar compounds. © 2013 Published by Elsevier B.V.

  11. Preliminary results of lab-scale investigations of products of incomplete combustion during incineration of primary and mixed digested sludge.

    PubMed

    Braguglia, C M; Bagnuolo, G; Gianico, A; Mininni, G; Pastore, C; Mascolo, G

    2016-03-01

    Separation between primary and secondary sludge treatment could be a valuable solution for sludge management. According to this approach, secondary sludge can be conveniently used in agriculture while primary sludge could be easily dried and incinerated. It follows that some concern may arise from incinerating primary sludge with respect to the current practice to incinerate mixed digested sludge. Incineration of primary and mixed digested municipal sludge was investigated with a lab-scale equipment in terms of emissions of products of incomplete combustion (PICs) during incineration failure modes. PICs can be grouped in three sub-categories, namely aliphatic hydrocarbons (alkanes and alkenes), compounds with a single aromatic ring, and polycyclic aromatic hydrocarbons (PAHs). After-burning temperature was the most important parameter to be controlled in order to minimize emissions of alkanes and alkenes. As for mono-aromatic compounds, benzene and toluene are the most thermally resistant compounds, and in some cases, an after-burning temperature of 1100 °C was not enough to get the complete destruction of benzene leading to a residual emission of 18 mg/kgsludge. PAHs showed an opposite trend with respect to aliphatic and mono-aromatic hydrocarbons being the thermal failure mode the main responsible of PIC emissions. A proper oxygen concentration is more important than elevated temperature thus reflecting the high thermal stability of PAHs. Overall, obtained results, even though obtained under flameless conditions that are different from those of the industrial plants, demonstrated that separation of primary and secondary sludge does not pose any drawbacks or concern regarding primary sludge being disposed of by incineration even though it is more contaminated than mixed digested sludge in terms of organic pollutants.

  12. Synthesis, Biological Evaluation and Molecular Docking Study of Hydrazone-Containing Pyridinium Salts as Cholinesterase Inhibitors.

    PubMed

    Parlar, Sulunay; Bayraktar, Gulsah; Tarikogullari, Ayse Hande; Alptüzün, Vildan; Erciyas, Ercin

    2016-01-01

    A series of pyridinium salts bearing alkylphenyl groups at 1 position and hydrazone structure at 4 position of the pyridinium ring were synthesized and evaluated for the inhibition of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. The cholinesterase (ChE) inhibitory activity studies were carried out by using the Ellman's colorimetric method. All compounds displayed considerable AChE and BuChE inhibitory activity and some of the compounds manifested remarkable anti-AChE activity compared to the reference compound, galantamine. Among the title compounds, the series including benzofuran aromatic ring exhibited the best inhibitory activity both on AChE and BuChE enzymes. Compound 3b, 4-[2-(1-(benzofuran-2-yl)ethylidene)hydrazinyl]-1-(3-phenylpropyl)pyridinium bromide, was the most active compound with IC50 value of 0.23 (0.24) µM against enantiomeric excess (ee)AChE (human (h)AChE) while compound 3a, 4-[2-(1-(benzofuran-2-yl)ethylidene)hydrazinyl]-1-phenethylpyridinium bromide, was the most active compound with IC50 value of 0.95 µM against BuChE. Moreover, 3a and b exhibited higher activity than the reference compound galantamine (eeAChE (hAChE) IC50 0.43 (0.52) µM; BuChE IC50 14.92 µM). Molecular docking studies were carried out on 3b having highest inhibitory activity against AChE.

  13. Fungal Unspecific Peroxygenases Oxidize the Majority of Organic EPA Priority Pollutants

    PubMed Central

    Karich, Alexander; Ullrich, René; Scheibner, Katrin; Hofrichter, Martin

    2017-01-01

    Unspecific peroxygenases (UPOs) are secreted fungal enzymes with promiscuity for oxygen transfer and oxidation reactions. Functionally, they represent hybrids of P450 monooxygenases and heme peroxidases; phylogenetically they belong to the family of heme-thiolate peroxidases. Two UPOs from the basidiomycetous fungi Agrocybe aegerita (AaeUPO) and Marasmius rotula (MroUPO) converted 35 out of 40 compounds listed as EPA priority pollutants, including chlorinated benzenes and their derivatives, halogenated biphenyl ethers, nitroaromatic compounds, polycyclic aromatic hydrocarbons (PAHs) and phthalic acid derivatives. These oxygenations and oxidations resulted in diverse products and—if at all—were limited for three reasons: (i) steric hindrance caused by multiple substitutions or bulkiness of the compound as such (e.g., hexachlorobenzene or large PAHs), (ii) strong inactivation of aromatic rings (e.g., nitrobenzene), and (iii) low water solubility (e.g., complex arenes). The general outcome of our study is that UPOs can be considered as extracellular counterparts of intracellular monooxygenases, both with respect to catalyzed reactions and catalytic versatility. Therefore, they should be taken into consideration as a relevant biocatalytic detoxification and biodegradation tool used by fungi when confronted with toxins, xenobiotics and pollutants in their natural environments. PMID:28848501

  14. Docking model of the nicotinic acetylcholine receptor and nitromethylene neonicotinoid derivatives with a longer chiral substituent and their biological activities.

    PubMed

    Nagaoka, Hikaru; Nishiwaki, Hisashi; Kubo, Takuya; Akamatsu, Miki; Yamauchi, Satoshi; Shuto, Yoshihiro

    2015-02-15

    In the present study, nitromethylene neonicotinoid derivatives possessing substituents that contain a sulfur atom, oxygen atom or aromatic ring at position 5 on the imidazolidine ring were synthesized to evaluate their affinity for the nicotinic acetylcholine receptor (nAChR) and their insecticidal activity against adult female houseflies. Comparing the receptor affinity of the alkylated derivative with the receptor affinity of compounds possessing either ether or thioether groups revealed that conversion of the carbon atom to a sulfur atom did not influence the receptor affinity, whereas conversion to an oxygen atom was disadvantageous for the receptor affinity. The receptor affinity of compounds possessing a benzyl or phenyl group was lower than that of the unsubstituted compound. Analysis of the three-dimensional quantitative structure-activity relationship using comparative molecular field analysis demonstrated that steric hindrance of the receptor should exist around the C3 of an n-butyl group attached at position 5 on the imidazolidine ring. A docking study of the nAChR-ligand model suggested that the ligand-binding region expands as the length of the substituent increases by brushing against the amino acids that form the binding region. The insecticidal activity of the compounds was positively correlated with the receptor affinity by considering logP and the number of heteroatoms, including sulfur and oxygen atoms, in the substituents, suggesting that the insecticidal activity is influenced by the receptor affinity, hydrophobicity, and metabolic stability of the compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Guaiacol hydrodeoxygenation mechanism on Pt(111): insights from density functional theory and linear free energy relations.

    PubMed

    Lee, Kyungtae; Gu, Geun Ho; Mullen, Charles A; Boateng, Akwasi A; Vlachos, Dionisios G

    2015-01-01

    Density functional theory is used to study the adsorption of guaiacol and its initial hydrodeoxygenation (HDO) reactions on Pt(111). Previous Brønsted-Evans-Polanyi (BEP) correlations for small open-chain molecules are inadequate in estimating the reaction barriers of phenolic compounds except for the side group (methoxy) carbon-dehydrogenation. New BEP relations are established using a select group of phenolic compounds. These relations are applied to construct a potential-energy surface of guaiacol-HDO to catechol. Analysis shows that catechol is mainly produced via dehydrogenation of the methoxy functional group followed by the CHx (x<3) removal of the functional group and hydrogenation of the ring carbon, in contrast to a hypothesis of a direct demethylation path. Dehydroxylation and demethoxylation are slow, implying that phenol is likely produced from catechol but not through its direct dehydroxylation followed by aromatic carbon-ring hydrogenation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Second-Generation Phenylthiazole Antibiotics with Enhanced Pharmacokinetic Properties.

    PubMed

    Seleem, Mohammed A; Disouky, Ahmed M; Mohammad, Haroon; Abdelghany, Tamer M; Mancy, Ahmed S; Bayoumi, Sammar A; Elshafeey, Ahmed; El-Morsy, Ahmed; Seleem, Mohamed N; Mayhoub, Abdelrahman S

    2016-05-26

    A series of second-generation analogues for 2-(1-(2-(4-butylphenyl)-4-methylthiazol-5-yl)ethylidene)aminoguanidine (1) have been synthesized and tested against methicillin-resistant Staphylococcus aureus (MRSA). The compounds were designed with the objective of improving pharmacokinetic properties. This main aim has been accomplished by replacing the rapidly hydrolyzable Schiff-base moiety of first-generation members with a cyclic, unhydrolyzable pyrimidine ring. The hydrazide-containing analogue 17 was identified as the most potent analogue constructed thus far. The corresponding amine 8 was 8 times less active. Finally, incorporating the nitrogenous side chain within an aromatic system completely abolished the antibacterial character. Replacement of the n-butyl group with cyclic bioisosteres revealed cyclohexenyl analogue 29, which showed significant improvement in in vitro anti-MRSA potency. Increasing or decreasing the ring size deteriorated the antibacterial activity. Compound 17 demonstrated a superior in vitro and in vivo pharmacokinetic profile, providing compelling evidence that this particular analogue is a good drug candidate worthy of further analysis.

  17. Substitution and solvent effects in the chalcones isomerization barrier of flavylium photochromic systems.

    PubMed

    Roque, Ana; Lima, João Carlos; Parola, A Jorge; Pina, Fernando

    2007-04-01

    Useful application of photochromic compounds as optical memories implies the existence of a large kinetic barrier between the forms interconverted by light. In the case of flavylium salts, the ground state isomerization barrier between the photoisomerizable chalcone isomers is shown to correlate with the electron donating ability of the substituents, measured by their effects in the (1)H NMR chemical shifts of the aromatic protons. Substitution with electron donating groups in ring A lowers the barrier while substitution at ring B has the opposite effect. However, in water, the observed increase is higher than expected in the case of compound 4',9-dihydroxychalcone when compared with the analogous 4'-dimethylamino-9-hydroxychalcone, containing a better electron donating group in the same position. Our interpretation is that the water network is providing an efficient pathway to form tautomers. In acetonitrile, unlike water, the expected order is indeed observed: E(a)(4',9-dihydroxychalcone) = 60 kJ mol(-1) < E(a) (4'-dimethylamino-9-hydroxychalcone) = 69 kJ mol(-1).

  18. Characterization of products from hydrothermal carbonization of pine.

    PubMed

    Wu, Qiong; Yu, Shitao; Hao, Naijia; Wells, Tyrone; Meng, Xianzhi; Li, Mi; Pu, Yunqiao; Liu, Shouxin; Ragauskas, Arthur J

    2017-11-01

    This study aims to reveal the structural features and reaction pathways for solid-liquid products from hydrothermal carbonization of Loblolly pine, where the solid products can be used as catalysts, adsorbents and electrode materials while liquid products can be treated yielding fuels and platform chemicals. Results revealed when treated at 240°C, cellulose and hemicellulose were degraded, in part, to 5-hydroxy-methyl furfural and furfural which were further transformed to aromatic structures via ring opening and Diels Alder reactions. Lignin degradation and formation of carbon-carbon bonds, forming aromatic motifs in the presence of furanic compounds connected via aliphatic bridges, ether or condensation reactions. After hydrothermal treatment, condensed aromatic carbon materials with methoxy groups were recovered with high fixed carbon content and HHV. The recovered liquid products are lignin-like value-added chemicals consisting of furfural and polyaromatic structure with alkanes and carboxyl, their total hydroxyl group content decreased when increasing reaction time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. [Polycyclic aromatic hydrocarbons (PAHs) in herbs and fruit teas].

    PubMed

    Ciemniak, Artur

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) of which benzo[a]pyrene is the most commonly studied and measured, are fused - ring aromatic compounds formed in both natural and man made processes and are found widely distributed throughout the human environment. PAHs occur as contaminants in different food categories and beverages including water, vegetables, fruit, cereals, oils and fats, barbecued and smoked meat. The sources of PAHs in food are predominantly from environmental pollution and food processing. PAHs emissions from automobile traffic and industry activities were show to influence the PAHs levels in vegetables and fruits. The present study was carried out to determine levels of 16 basic PAHs in herbs and fruit teas. The method was based on the hexane extraction and cleaned up by florisil cartridge. The extracts were analysed by GC-MS. The levels of total PAHs varied from 48,27 microg/kg (hibiscus tea) to 1703 microg/kg (green tea). The highest level of BaP was found in lime tea (74,2 microg/kg).

  20. Characterization of products from hydrothermal carbonization of pine

    DOE PAGES

    Wu, Qiong; Yu, Shitao; Hao, Naijia; ...

    2017-07-27

    This study aims to reveal the structural features and reaction pathways for solid–liquid products from hydrothermal carbonization of Loblolly pine, where the solid products can be used as catalysts, adsorbents and electrode materials while liquid products can be treated yielding fuels and platform chemicals. Results revealed when treated at 240 °C, cellulose and hemicellulose were degraded, in part, to 5-hydroxy-methyl furfural and furfural which were further transformed to aromatic structures via ring opening and Diels Alder reactions. Lignin degradation and formation of carbon–carbon bonds, forming aromatic motifs in the presence of furanic compounds connected via aliphatic bridges, ether or condensationmore » reactions. After hydrothermal treatment, condensed aromatic carbon materials with methoxy groups were recovered with high fixed carbon content and HHV. As a result, the recovered liquid products are lignin-like value-added chemicals consisting of furfural and polyaromatic structure with alkanes and carboxyl, their total hydroxyl group content decreased when increasing reaction time.« less

  1. Birds and polycyclic aromatic hydrocarbons

    USGS Publications Warehouse

    Albers, P.H.

    2006-01-01

    Polycyclic aromatic hydrocarbons (PAH) are present throughout the global environment and are produced naturally and by activities of humans. Effects of PAH on birds have been determined by studies employing egg injection, egg immersion, egg shell application, single and multiple oral doses, subcutaneous injection, and chemical analysis of field-collected eggs and tissue. The four-to six-ring aromatic compounds are the most toxic to embryos, young birds, and adult birds. For embryos, effects include death, developmental abnormalities, and a variety of cellular and biochemical responses. For adult and young birds, effects include reduced egg production and hatching, increased clutch or brood abandonment, reduced growth, increased organweights, and a variety of biochemical responses. Trophic level accumulation is unlikely. Environmental exposure to PAH in areas of high human population or habitats affected by recent petroleum spills might be sufficient to adversely affect reproduction. Evidence of long-term effects of elevated concentrations of environmental PAH on bird populations is very limited and the mechanisms of effect are unclear.

  2. Aromaticity of strongly bent benzene rings: persistence of a diatropic ring current and its shielding cone in [5]paracyclophane.

    PubMed

    Jenneskens, Leonardus W; Havenith, Remco W A; Soncini, Alessandro; Fowler, Patrick W

    2011-10-06

    Direct evaluation of the induced π current density in [5]paracyclophane (1) shows that, despite the significant non-planarity (α = 23.2°) enforced by the pentamethylene bridge, there is only a modest (ca. 17%) reduction in the π ring current, justifying the use of shielding-cone arguments for the assignment of (1)H NMR chemical shifts of 1 and the claim that the non-planar benzene ring in 1 retains its aromaticity (on the magnetic criterion).

  3. Disordered organic electronic materials based on non-benzenoid 1,6-methano[10]annulene rings

    DOEpatents

    Tovar, John D; Streifel, Benjamin C; Peart, Patricia A

    2014-10-07

    Conjugated polymers and small molecules including the nonplanar aromatic 1,6-methano[10]annulene ring structure along with aromatic subunits, such as diketopyrrolopyrrole, and 2,1,3-benzothiadiazole, substituted with alkyl chains in a "Tail In," "Tail Out," or "No Tail" regiochemistry are disclosed.

  4. Evidence for the Presence of Hn-PAHs in Post AGB Stars

    NASA Technical Reports Server (NTRS)

    Materese, Christopher K.; Bregman, Jesse D.; Sandford, Scott A.

    2017-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are believed to be ubiquitous in space therefore represent an important class of molecules for the field of astrochemistry. PAHs are relatively stable under interstellar conditions, account for a significant fraction of the known Universe's molecular carbon inventory, and are believed responsible for numerous telltale interstellar infrared emission bands. PAHs can be subdivided into numerous classes, one of which is Hydrogenated PAHs (Hn-PAHs). Hn-PAHs are multi-ringed partially aromatic compounds with excess hydrogenation, leading to a partial disruption of the aromatic system. The infrared spectra of these compounds produce telltale signatures that make them distinct from ordinary aromatic or aliphatic molecules (or a mixture of both). Hn-PAHs may be an important subclass of PAHs that could explain the spectra of some astronomical objects with anomalously large 3.4 micron features. The 3.4 micron feature observed in these objects may be associated with the aliphatic C-H stretching vibrations of the excess hydrogen. If this presumption is correct, we also expect to observe methylene scissoring modes at 6.9 microns. We have recently conducted a series of follow-up observations to compliment our laboratory experiments into the properties of Hn-PAHs. Here we present our laboratory and observational results in support of the hypothesis that Hn-PAHs are a viable candidate molecule as the emission source for numerous post-asymptotic giant branch objects with abnormally large 3.4 micron features.

  5. Selective Ring Opening of 1-Methylnaphthalene Over NiW-Supported Catalyst Using Dealuminated Beta Zeolite.

    PubMed

    Kim, Eun-Sang; Lee, You-Jin; Kim, Jeong-Rang; Kim, Joo-Wan; Kim, Tae-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Lee, Chang-Ha; Jeong, Soon-Yong

    2016-02-01

    Nanoporous Beta zeolite was dealuminated by weak acid treatment for reducing the acidity. Bi-functional catalysts were prepared using commercial Beta zeolites and the dealuminated zeolites for acidic function, NiW for metallic function. 1-Methylnaphthalene was selected as a model compound for multi-ring aromatics in heavy oil, and its selective ring opening reaction has been investigated using the prepared bi-functional catalysts with different acidity in fixed bed reaction system. The dealuminated Beta zeolites, which crystal structure and nanoporosity were maintained, showed the higher SiO2/Al2O3 ratio and smaller acidity than their original zeolite. NiW-supported catalyst using the dealuminated Beta zeolite with SiO2/Al203 mole ratio of 55 showed the highest performance for the selective ring opening. The acidity of catalyst seemed to play an important role as active sites for the selective ring opening of 1-methylnaphthalene but there should be some optimum catalyst acidity for the reaction. The acidity of Beta zeolite could be controlled by the acid treatment and the catalyst with the optimum acidity for the selective ring opening could be prepared.

  6. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection.

    PubMed

    Bhattacharya, Amita; Sood, Priyanka; Citovsky, Vitaly

    2010-09-01

    Phenolics are aromatic benzene ring compounds with one or more hydroxyl groups produced by plants mainly for protection against stress. The functions of phenolic compounds in plant physiology and interactions with biotic and abiotic environments are difficult to overestimate. Phenolics play important roles in plant development, particularly in lignin and pigment biosynthesis. They also provide structural integrity and scaffolding support to plants. Importantly, phenolic phytoalexins, secreted by wounded or otherwise perturbed plants, repel or kill many microorganisms, and some pathogens can counteract or nullify these defences or even subvert them to their own advantage. In this review, we discuss the roles of phenolics in the interactions of plants with Agrobacterium and Rhizobium.

  7. In vitro antiprogestational/antiglucocorticoid activity and progestin and glucocorticoid receptor binding of the putative metabolites and synthetic derivatives of CDB-2914, CDB-4124, and mifepristone.

    PubMed

    Attardi, Barbara J; Burgenson, Janet; Hild, Sheri A; Reel, Jerry R

    2004-03-01

    In determining the biological profiles of various antiprogestins, it is important to assess the hormonal and antihormonal activity, selectivity, and potency of their proximal metabolites. The early metabolism of mifepristone is characterized by rapid demethylation and hydroxylation. Similar initial metabolic pathways have been proposed for CDB-2914 (CDB: Contraceptive Development Branch of NICHD) and CDB-4124, and their putative metabolites have been synthesized. We have examined the functional activities and potencies, in various cell-based assays, and relative binding affinities (RBAs) for progesterone receptors (PR) and glucocorticoid receptors (GR) of the putative mono- and didemethylated metabolites of CDB-2914, CDB-4124, and mifepristone and of the 17alpha-hydroxy and aromatic A-ring derivatives of CDB-2914 and CDB-4124. The binding affinities of the monodemethylated metabolites for rabbit uterine PR and human PR-A and PR-B were similar to those of the parent compounds. Monodemethylated mifepristone bound to rabbit thymic GR with higher affinity than monodemethylated CDB-2914 or CDB-4124. T47D-CO cells were used to assess inhibition of R5020-stimulated endogenous alkaline phosphatase activity and transactivation of the PRE(2)-thymidine kinase (tk)-luciferase (LUC) reporter plasmid in transient transfections. The antiprogestational potency was as follows: mifepristone/CDB-2914/CDB-4124/monodemethylated metabolites (IC(50)'s approximately 10(-9)M) > aromatic A-ring derivatives (IC(50)'s approximately 10(-8)M) > didemethylated/17alpha-hydroxy derivatives (IC(50)'s approximately 10(-7)M). Antiglucocorticoid activity was determined by inhibition of dexamethasone-stimulated transcriptional activity in HepG2 cells. The mono- and didemethylated metabolites of CDB-2914 and CDB-4124 had less antiglucocorticoid activity (IC(50)'s approximately 10(-6)M) than monodemethylated mifepristone (IC(50) approximately 10(-8)M) or the other test compounds. At 10(-6)M in transcription assays, none of these compounds showed progestin agonist activity, whereas mifepristone and its monodemethylated metabolite manifested slight glucocorticoid agonist activity. The reduced antiglucocorticoid activity of monodemethylated CDB-2914 and CDB-4124 was confirmed in vivo by the thymus involution assay in adrenalectomized male rats. The aromatic A-ring derivatives-stimulated transcription of an estrogen-responsive reporter plasmid in MCF-7 and T47D-CO human breast cancer cells but were much less potent than estradiol. Taken together, these data suggest that the proximal metabolites of mifepristone, CDB-2914, and CDB-4124 contribute significantly to the antiprogestational activity of the parent compounds in vivo. Furthermore, the reduced antiglucocorticoid activity of CDB-2914 and CDB-4124 compared to mifepristone in vivo may be due in part to decreased activity of their putative proximal metabolites.

  8. Synthesis and serotonergic activity of substituted 2, N-benzylcarboxamido-5-(2-ethyl-1-dioxoimidazolidinyl)-N, N-dimethyltryptamine derivatives: novel antagonists for the vascular 5-HT(1B)-like receptor.

    PubMed

    Moloney, G P; Martin, G R; Mathews, N; Milne, A; Hobbs, H; Dodsworth, S; Sang, P Y; Knight, C; Williams, M; Maxwell, M; Glen, R C

    1999-07-15

    The synthesis and vascular 5-HT(1B)-like receptor activity of a novel series of substituted 2, N-benzylcarboxamido-5-(2-ethyl-1-dioxoimidazolidinyl)-N, N-dimethyltryptamine derivatives are described. Modifications to the 5-ethylene-linked heterocycle and to substituents on the 2-benzylamide side chain have been explored. Several compounds were identified which exhibited affinity at the vascular 5-HT(1B)-like receptor of pK(B) > 7.0, up to 100-fold selectivity over alpha(1)-adrenoceptor affinity and 5-HT(2A) receptor affinity, and which exhibited a favorable pharmacokinetic profile. N-Benzyl-3-[2-(dimethylamino)ethyl]-5-[2-(4,4-dimethyl-2, 5-dioxo-1-imidazolidinyl)ethyl]-1H-indole-2-carboxamide (23) was identified as a highly potent, silent (as judged by the inability of angiotensin II to unmask 5-HT(1B)-like receptor-mediated agonist activity in the rabbit femoral artery), and competitive vascular 5-HT(1B)-like receptor antagonist with a plasma elimination half-life of approximately 4 h in dog plasma and with good oral bioavailability. The selectivity of compounds from this series for the vascular 5-HT(1B)-like receptors over other receptor subtypes is discussed as well as a proposed mode of binding to the receptor pharmacophore. It has been proposed that the aromatic ring of the 2, N-benzylcarboxamide group can occupy an aromatic binding site rather than the indole ring. The resulting conformation allows an amine-binding site to be occupied by the ethylamine nitrogen and a hydrogen-bonding site to be occupied by one of the hydantoin carbonyls. The electronic nature of the 2,N-benzylcarboxamide aromatic group as well as the size of substituents on this aromatic group is crucial for producing potent and selective antagonists. The structural requirement on the 3-ethylamine side chain incorporating the protonatable nitrogen is achieved by the bulky 2, N-benzylcarboxamide group and its close proximity to the 3-side chain.

  9. Electronic distributions within protein phenylalanine aromatic rings are reflected by the three-dimensional oxygen atom environments.

    PubMed Central

    Thomas, K A; Smith, G M; Thomas, T B; Feldmann, R J

    1982-01-01

    The atomic environments of 170 phenylalanine-residue aromatic rings from 28 protein crystal structures are transformed into a common orientation and combined to calculate an average three-dimensional environment. The spatial distribution of atom types in this environment reveals a preferred interaction between oxygen atoms and the edge of the planar aromatic rings. From the difference in frequency of interaction of oxygen atoms with the edge and the top of the ring, an apparent net free energy difference of interaction favoring the edge of the ring is estimated to be about -1 kcal/mol (1 cal = 4.184 J). Ab initio quantum mechanical calculations, performed on a model consisting of benzene and formamide, indicate that the observed geometry is stabilized by a favorable enthalpic interaction. Although benzene rings are considered to be nonpolar, the electron distribution is a complex multipole with no net dipole moment. The observed interaction orientation frequencies demonstrate that these multipolar electron distributions, when occurring at the short distances encountered in densely packed protein molecules, are significant determinants of internal packing geometries. PMID:6956896

  10. Two Aromatic Rings Coupled a Sulfur-Containing Group to Favor Protein Electron Transfer by Instantaneous Formations of π∴S:π↔π:S∴π or π∴π:S↔π:π∴S Five-Electron Bindings

    PubMed Central

    Sun, Weichao; Ren, Haisheng; Tao, Ye; Xiao, Dong; Qin, Xin; Deng, Li; Shao, Mengyao; Gao, Jiali; Chen, Xiaohua

    2015-01-01

    The cooperative interactions among two aromatic rings with a S-containing group are described, which may participate in electron hole transport in proteins. Ab initio calculations reveal the possibility for the formations of the π∴S:π↔π:S∴π and π∴π:S↔π:π∴S five-electron bindings in the corresponding microsurrounding structures in proteins, both facilitating electron hole transport as efficient relay stations. The relay functionality of these two special structures comes from their low local ionization energies and proper binding energies, which varies with the different aromatic amino acids, S-containing residues, and the arrangements of the same aromatic rings according to the local microsurroundings in proteins. PMID:26120374

  11. Mechanism for Ring-Opening of Aromatic Polymers by Remote Atmospheric Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Gonzalez, Eleazar; Barankin, Michael; Guschl, Peter; Hicks, Robert

    2009-10-01

    A low-temperature, atmospheric pressure oxygen and helium plasma was used to treat the surfaces of polyetheretherketone, polyphenylsulfone, polyethersulfone, and polysulfone. These aromatic polymers were exposed to the afterglow of the plasma, which contained oxygen atoms, and to a lesser extent metastable oxygen (^1δg O2) and ozone. After less than 2.5 seconds treatment, the polymers were converted from a hydrophobic state with a water contact angle of 85±5 to a hydrophilic state with a water contact angle of 13±5 . It was found that plasma activation increased the bond strength to adhesives by as much as 4 times. X-ray photoelectron spectroscopy revealed that between 7% and 27% of the aromatic carbon atoms on the polymer surfaces was oxidized and converted into aldehyde and carboxylic acid groups. Analysis of polyethersulfone by internal reflection infrared spectroscopy showed that a fraction of the aromatic carbon atoms were transformed into C=C double bonds, ketones, and carboxylic acids after plasma exposure. It was concluded that the oxygen atoms generated by the atmospheric pressure plasma insert into the double bonds on the aromatic rings, forming a 3-member epoxy ring, which subsequently undergoes ring opening and oxidation to yield an aldehyde and a carboxylic acid group.

  12. Thiol Reactivity of Curcumin and Its Oxidation Products.

    PubMed

    Luis, Paula B; Boeglin, William E; Schneider, Claus

    2018-04-16

    The polypharmacological effects of the turmeric compound curcumin may be partly mediated by covalent adduction to cellular protein. Covalent binding to small molecule and protein thiols is thought to occur through a Michael-type addition at the enone moiety of the heptadienedione chain connecting the two methoxyphenol rings of curcumin. Here we show that curcumin forms the predicted thiol-Michael adducts with three model thiols, glutathione, N-acetylcysteine, and β-mercaptoethanol. More abundant, however, are respective thiol adducts of the dioxygenated spiroepoxide intermediate of curcumin autoxidation. Two electrophilic sites at the quinone-like ring of the spiroepoxide are identified. Addition of β-mercaptoethanol at the 5'-position of the ring gives a 1,7-dihydroxycyclopentadione-5' thioether, and addition at the 1'-position results in cleavage of the aromatic ring from the molecule, forming methoxyphenol-thioether and a tentatively identified cyclopentadione aldehyde. The curcuminoids demethoxy- and bisdemethoxycurcumin do not form all of the possible thioether adducts, corresponding with their increased stability toward autoxidation. RAW264.7 macrophage-like cells activated with phorbol ester form curcumin-glutathionyl and the 1,7-dihydroxycyclopentadione-5'-glutathionyl adducts. These studies indicate that the enone of the parent compound is not the only functional electrophile in curcumin, and that its oxidation products provide additional electrophilic sites. This suggests that protein binding by curcumin may involve oxidative activation into reactive quinone methide and spiroepoxide electrophiles.

  13. The Effect of n vs. iso Isomerization on the Thermophysical Properties of Aromatic and Non-aromatic Ionic Liquids.

    PubMed

    Rodrigues, Ana S M C; Almeida, Hugo F D; Freire, Mara G; Lopes-da-Silva, José A; Coutinho, João A P; Santos, Luís M N B F

    2016-09-15

    This work explores the n vs. iso isomerization effects on the physicochemical properties of different families of ionic liquids (ILs) with variable aromaticity and ring size. This study comprises the experimental measurements, in a wide temperature range, of the ILs' thermal behavior, heat capacities, densities, refractive indices, surface tensions, and viscosities. The results here reported show that the presence of the iso -alkyl group leads to an increase of the temperature of the glass transition, T g . The iso- pyrrolidinium (5 atoms ring cation core) and iso -piperidinium (6 atoms ring cation core) ILs present a strong differentiation in the enthalpy and entropy of melting. Non-aromatic ILs have higher molar heat capacities due to the increase of the atomic contribution, whereas it was not found any significant differentiation between the n and iso -alkyl isomers. A small increase of the surface tension was observed for the non-aromatic ILs, which could be related to their higher cohesive energy of the bulk, while the lower surface entropy observed for the iso isomers indicates a structural resemblance between the IL bulk and surface. The significant differentiation between ILs with a 5 and 6 atoms ring cation in the n -alkyl series (where 5 atoms ring cations have higher surface entropy) is an indication of a more efficient arrangement of the non-polar region at the surface in ILs with smaller cation cores. The ILs constituted by non-aromatic piperidinium cation, and iso -alkyl isomers were found to be the most viscous among the studied ILs due to their higher energy barriers for shear stress.

  14. Combined strategy for phytotoxicity enhancement of benzoxazinones.

    PubMed

    Macías, Francisco A; Chinchilla, Nuria; Arroyo, Elena; Molinillo, José M G; Marín, David; Varela, Rosa M

    2010-02-10

    Fifteen new derivatives of D-DIBOA, including aromatic ring modifications and the addition of side chains in positions C-2 and N-4, were synthesized and their phytotoxicity, selectivity, and structure-activity relationships evaluated. The most active compounds among the derivatives at the C-2 position were 6-Cl-2-Et-D-DIBOA and 6-F-2-Et-D-DIBOA. Of the derivatives at N-4, the most active compounds were 6-Cl-4-Pr-D-DIBOA and 6-Cl-4-Val-D-DIBOA. These four compounds showed high levels of inhibition in root length at very low concentrations in all species. The most remarkable result is the 70% inhibition observed for the root length of cress at 100 nM caused by the latter two compounds. These results support our previous research and conclusions regarding the steric, electronic, and solubility requirements to achieve the maximum phytotoxic activity.

  15. Conduction mechanism of nitronyl-nitroxide molecular magnetic compounds

    NASA Astrophysics Data System (ADS)

    Dotti, N.; Heintze, E.; Slota, M.; Hübner, R.; Wang, F.; Nuss, J.; Dressel, M.; Bogani, L.

    2016-04-01

    We investigate the conduction mechanisms of nitronyl-nitroxide (NIT) molecular radicals, as useful for the creation of nanoscopic molecular spintronic devices, finding that it does not correspond to standard Mott behavior, as previously postulated. We provide a complete investigation using transport measurements, low-energy, sub-THz spectroscopy and introducing differently substituted phenyl appendages. We show that a nontrivial surface-charge-limited regime is present in addition to the standard low-voltage Ohmic conductance. Scaling analysis allows one to determine all the main transport parameters for the compounds and highlights the presence of charge-trapping effects. Comparison among the different compounds shows the relevance of intermolecular stacking between the aromatic ring of the phenyl appendix and the NIT motif in the creation of useful electron transport channels. The importance of intermolecular pathways is further highlighted by electronic structure calculations, which clarify the nature of the electronic channels and their effect on the Mott character of the compounds.

  16. Magnetic Response of Aromatic Rings Under Rotation: Aromatic Shielding Cone of Benzene Upon Different Orientations of the Magnetic Field.

    PubMed

    Papadopoulos, A G; Charistos, N D; Muñoz-Castro, A

    2017-06-20

    The induced shielding cone is one of the most characteristic aspects of aromatic species. Herein, we explore its behavior under different orientations of the applied magnetic field by evaluating the overall and dissected π- and σ-electron contributions. Our results shed light onto the orientation dependence behavior of the shielding cone, unraveling a characteristic pattern upon rotation of the aromatic ring. This pattern decreases the long range of the magnetic response, such that it resembles the behavior under constant molecular tumbling in solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. 40 CFR 721.775 - Brominated aromatic com-pound (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a) Chemical... as a brominated aromatic compound (PMN P-84-824) is subject to reporting under this section for the...

  18. Metal-Organic Framework with Aromatic Rings Tentacles: High Sulfur Storage in Li-S Batteries and Efficient Benzene Homologues Distinction.

    PubMed

    Li, Meng-Ting; Sun, Yu; Zhao, Kai-Sen; Wang, Zhao; Wang, Xin-Long; Su, Zhong-Min; Xie, Hai-Ming

    2016-12-07

    We designed and fabricated a fluorophore-containing tetradentate carboxylate ligand-based metal-organic framework (MOF) material with open and semiopen channels, which acted as the host for sulfur trapped in Li-S batteries and sensor of benzene homologues. These channels efficiently provide a π-π* conjugated matrix for the charge transfer and guest molecule trapping. The open channel ensured a much higher loading quantitative of sulfur (S content-active material, 72 wt %; electrode, 50.4 wt %) than most of the MOF/sulfur composites, while the semiopen channel possessing aromatic rings tentacles guaranteed an outstanding specific discharge capacity (1092 mA h g -1 at 0.1 C) accompanied by good cycling stability. To our surprise, benefiting from special π-π* conjugated conditions, compound 1 could be a chemical sensor for benzene homologues, especially for 1,2,4-trimethylbenzene (1,2,4-TMB). This is the first example of MOFs materials serving as a sensor of 1,2,4-TMB among benzene homologues. Our works may be worthy of use for references in other porous materials systems to manufacture more long-acting Li-S batteries and sensitive chemical sensors.

  19. Aqueous photolysis of niclosamide

    USGS Publications Warehouse

    Graebing, P.W.; Chib, J.S.; Hubert, T.D.; Gingerich, W.H.

    2004-01-01

    The photodegradation of [14C]niclosamide was studied in sterile, pH 5, 7, and 9 buffered aqueous solutions under artificial sunlight at 25.0 A? 1.0 A?C. Photolysis in pH 5 buffer is 4.3 times faster than in pH 9 buffer and 1.5 times faster than in pH 7 buffer. In the dark controls, niclosamide degraded only in the pH 5 buffer. After 360 h of continuous irradiation in pH 9 buffer, the chromatographic pattern of the degradates was the same regardless of which ring contained the radiolabel. An HPLC method was developed that confirmed these degradates to be carbon dioxide and two- and four-carbon aliphatic acids formed by cleavage of both aromatic rings. Carbon dioxide was the major degradate, comprising 40% of the initial radioactivity in the 360 h samples from both labels. The other degradates formed were oxalic acid, maleic acid, glyoxylic acid, and glyoxal. In addition, in the chloronitroaniline-labeled irradiated test solution, 2-chloro-4-nitroaniline was observed and identified after 48 h of irradiation but was not detected thereafter. No other aromatic compounds were isolated or observed in either labeled test system.

  20. Design, Synthesis, and Structure--Activity Relationship of New 2-Aryl-3,4-dihydro-β-carbolin-2-ium Salts as Antifungal Agents.

    PubMed

    Hou, Zhe; Zhu, Li-Fei; Yu, Xin-chi; Sun, Ma-Qiang; Miao, Fang; Zhou, Le

    2016-04-13

    Twenty-two 2-aryl-9-methyl-3,4-dihydro-β-carbolin-2-ium bromides along with four 9-demethylated derivatives were synthesized and characterized by spectroscopic analysis. By using the mycelium growth rate method, the compounds were evaluated for antifungal activities in vitro against six plant pathogenic fungi, and structure-activity relationships (SAR) were derived. Almost all of the compounds showed obvious inhibition activity on each of the fungi at 150 μM. For all of the fungi, 10 of the compounds showed average inhibition rates of >80% at 150 μM, and most of their EC50 values were in the range of 2.0-30.0 μM. SAR analysis showed that the substitution pattern of the N-aryl ring significantly influences the activity; N9-alkylation improves the activity, whereas aromatization of ring-C reduces the activity. It was concluded that the present research provided a series of new 2-aryl-9-alkyl-3,4-dihydro-β-carbolin-2-iums with excellent antifungal potency and structure optimization design for the development of new carboline antifungal agents.

  1. Di­chlorido­[N-(N,N-di­methyl­carbamimido­yl)-N′,N′,4-tri­methyl­benzohydrazonamide]­platinum(II) nitro­methane hemisolvate

    PubMed Central

    Bolotin, Dmitrii S.; Bokach, Nadezha A.; Haukka, Matti

    2014-01-01

    In the title compound, [PtCl2(C13H21N5)]·0.5CH3NO2, the PtII atom is coordinated in a slightly distorted square-planar geometry by two Cl atoms and two N atoms of the bidentate ligand. The (1,3,5-tri­aza­penta­diene)PtII metalla ring is slightly bent and does not conjugate with the aromatic ring. In the crystal, N—H⋯Cl hydrogen bonds link the complex mol­ecules, forming chains along [001]. The nitromethane solvent molecule shows half-occupancy and is disordered over two sets of sites about an inversion centre. PMID:24826095

  2. Copper Causes Regiospecific Formation of C4F8-Containing Six-Membered Rings and their Defluorination/Aromatization to C4F4-Containing Rings in Triphenylene/1,4-C4F8I2 Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rippy, Kerry C.; Bukovsky, Eric V.; Clikeman, Tyler T.

    The presence of Cu in reactions of triphenylene (TRPH) and 1,4-C4F8I2 at 360 °C led to regiospecific substitution of TRPH ortho C(β) atoms to form C4F8-containing rings, completely suppressing substitution on C(α) atoms. In addition, Cu caused selective reductive-defluorination/aromatization (RD/A) to form C4F4- containing aromatic rings. Without Cu, the reactions of TRPH and 1,4- C4F8I2 were not regiospecific and no RD/A was observed. These results, supported by DFT calculations, are the first examples of Cupromoted (i) regiospecific perfluoroannulation, (ii) preparative C–F activation, and (iii) RD/A. HPLC-purified products were characterized by X-ray diffraction, low-temperature PES, and 1H/19F NMR.

  3. Finding Inspiration in the Protein Data Bank to Chemically Antagonize Readers of the Histone Code.

    PubMed

    Campagna-Slater, Valérie; Schapira, Matthieu

    2010-04-12

    Members of the Royal family of proteins are readers of the histone code that contain aromatic cages capable of recognizing specific sequences and lysine methylation states on histone tails. These binding modules play a key role in epigenetic signalling, and are part of a larger group of epigenetic targets that are becoming increasingly attractive for drug discovery. In the current study, pharmacophore representations of the aromatic cages forming the methyl-lysine (Me-Lys) recognition site were used to search the Protein Data Bank (PDB) for ligand binding pockets possessing similar chemical and geometrical features in unrelated proteins. The small molecules bound to these sites were then extracted from the PDB, and clustered based on fragments binding to the aromatic cages. The compounds collected are numerous and structurally diverse, but point to a limited set of preferred chemotypes; these include quaternary ammonium, sulfonium, and primary, secondary and tertiary amine moieties, as well as aromatic, aliphatic or orthogonal rings, and bicyclic systems. The chemical tool-kit identified can be used to design antagonists of the Royal family and related proteins. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Unprecedented 22,26-seco physalins from Physalis angulata and their anti-inflammatory potential.

    PubMed

    Sun, Cheng-Peng; Oppong, Mahmood Brobbey; Zhao, Feng; Chen, Li-Xia; Qiu, Feng

    2017-10-25

    Two novel physalins, including a 22,26-seco physalin, physalin X (1), and a 11,15-cyclo-9(10),14(17),22(26)-triseco physalin with an unprecedented aromatic ring, aromaphysalin B (2), were isolated from Physalis angulata L. Their structures were determined by IR, UV, HRESIMS, and 2D NMR spectra as well as theoretical calculations. Compounds 1 and 2 exhibited inhibitory activities on NO production with IC 50 values of 68.50 and 29.69 μM, respectively. A plausible biosynthetic pathway for 2 is also discussed.

  5. Antioxidant farnesylated hydroquinones from Ganoderma capense.

    PubMed

    Peng, Xingrong; Li, Lei; Wang, Xia; Zhu, Guolei; Li, Zhongrong; Qiu, Minghua

    2016-06-01

    Phytochemical investigation of the fruiting bodies of Ganoderma capense led to isolation of eight aromatic meroterpenoids (1-8). Ganocapensins A and B (1, 2) possessed a thirteen-membered and a fourteen-membered ether rings, respectively. The structures of new isolates including absolute configuration were elucidated on the basis of extensive spectroscopic technologies and Mosher's method. All isolated compounds showed significant antioxidant effects with IC50 values ranging from 6.00±0.11 to 8.20±0.30μg/ml in the DPPH radical scavenging assay. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Noscapinoids with anti-cancer activity against human acute lymphoblastic leukemia cells (CEM): a three dimensional chemical space pharmacophore modeling and electronic feature analysis.

    PubMed

    Naik, Pradeep K; Santoshi, Seneha; Joshi, Harish C

    2012-01-01

    We have identified a new class of microtubule-binding compounds-noscapinoids-that alter microtubule dynamics at stoichiometric concentrations without affecting tubulin polymer mass. Noscapinoids show great promise as chemotherapeutic agents for the treatment of human cancers. To investigate the structural determinants of noscapinoids responsible for anti-cancer activity, we tested 36 structurally diverse noscapinoids in human acute lymphoblastic leukemia cells (CEM). The IC(50) values of these noscapinoids vary from 1.2 to 56.0 μM. Pharmacophore models of anti-cancer activity were generated that identify two hydrogen bond acceptors, two aromatic rings, two hydrophobic groups, and one positively charged group as essential structural features. Additionally, an atom-based quantitative structure-activity relationship (QSAR) model was developed that gave a statistically satisfying result (R(2) = 0.912, Q(2) = 0.908, Pearson R = 0.951) and effectively predicts the anti-cancer activity of training and test set compounds. The pharmacophore model presented here is well supported by electronic property analysis using density functional theory at B3LYP/3-21*G level. Molecular electrostatic potential, particularly localization of negative potential near oxygen atoms of the dimethoxy isobenzofuranone ring of active compounds, matched the hydrogen bond acceptor feature of the generated pharmacophore. Our results further reveal that all active compounds have smaller lowest unoccupied molecular orbital (LUMO) energies concentrated over the dimethoxy isobenzofuranone ring, azido group, and nitro group, which is indicative of the electron acceptor capacity of the compounds. Results obtained from this study will be useful in the efficient design and development of more active noscapinoids.

  7. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: Competition among oligomerization, functionalization, and fragmentation

    DOE PAGES

    Yu, Lu; Smith, Jeremy; Laskin, Alexander; ...

    2016-04-13

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants – the triplet excited state of an aromatic carbonyl ( 3C *) and hydroxyl radical ( • OH). Changes in themore » molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OS C) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ~2 h irradiation under midday winter solstice sunlight in Northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OS C values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules with carbon numbers ( n C) below 6. The average n C of phenolic aqSOA decreases while average OS C increases over the course of photochemical aging. In addition, the saturation vapor pressures ( C *) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C * values is observed, varying from < 10 –20 µg m –3 for functionalized phenolic oligomers to > 10 µg m –3 for small open-ring species. Furthermore, the detection of abundant extremely low-volatile organic compounds (ELVOC) indicates that aqueous reactions of phenolic compounds are likely an important source of ELVOC in the atmosphere.« less

  8. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: Competition among oligomerization, functionalization, and fragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Lu; Smith, Jeremy; Laskin, Alexander

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants – the triplet excited state of an aromatic carbonyl ( 3C *) and hydroxyl radical ( • OH). Changes in themore » molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OS C) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ~2 h irradiation under midday winter solstice sunlight in Northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OS C values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules with carbon numbers ( n C) below 6. The average n C of phenolic aqSOA decreases while average OS C increases over the course of photochemical aging. In addition, the saturation vapor pressures ( C *) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C * values is observed, varying from < 10 –20 µg m –3 for functionalized phenolic oligomers to > 10 µg m –3 for small open-ring species. Furthermore, the detection of abundant extremely low-volatile organic compounds (ELVOC) indicates that aqueous reactions of phenolic compounds are likely an important source of ELVOC in the atmosphere.« less

  9. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Laskin, A.; George, K. M.; Anastasio, C.; Laskin, J.; Dillner, A. M.; Zhang, Q.

    2015-10-01

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants - the triplet excited state of an aromatic carbonyl (3C*) and hydroxyl radical (•OH). Changes in the molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OSC) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ∼ 2 h irradiation under midday, winter solstice sunlight in northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OSC values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated open-ring molecules with carbon numbers (nC) below 6. The average nC of phenolic aqSOA decreases while average OSC increases over the course of photochemical aging. In addition, the saturation vapor pressures C*) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C* values is observed, varying from < 10-20 μg m-3 for functionalized phenolic oligomers to > 10 μg m-3 for small open-ring species. The detection of abundant extremely low volatile organic compounds (ELVOC) indicates that aqueous reactions of phenolic compounds are likely an important source of ELVOC in the atmosphere.

  10. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation

    NASA Astrophysics Data System (ADS)

    Yu, Lu; Smith, Jeremy; Laskin, Alexander; George, Katheryn M.; Anastasio, Cort; Laskin, Julia; Dillner, Ann M.; Zhang, Qi

    2016-04-01

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants - the triplet excited state of an aromatic carbonyl (3C∗) and hydroxyl radical (OH). Changes in the molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OSC) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ˜ 2 h irradiation under midday winter solstice sunlight in Northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OSC values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules with carbon numbers (nC) below 6. The average nC of phenolic aqSOA decreases while average OSC increases over the course of photochemical aging. In addition, the saturation vapor pressures (C∗) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C∗ values is observed, varying from < 10-20 µg m-3 for functionalized phenolic oligomers to > 10 µg m-3 for small open-ring species. The detection of abundant extremely low-volatile organic compounds (ELVOC) indicates that aqueous reactions of phenolic compounds are likely an important source of ELVOC in the atmosphere.

  11. 4-{2-[2-(4-Chloro­benzyl­idene)hydrazinyl­idene]-3,6-dihydro-2H-1,3,4-thia­diazin-5-yl}-3-phenyl­sydnone

    PubMed Central

    Fun, Hoong-Kun; Loh, Wan-Sin; Nithinchandra; Kalluraya, Balakrishna

    2011-01-01

    The title compound, C18H13ClN6O2S, exists in trans and cis configurations with respect to the acyclic C=N bonds [C=N = 1.2837 (15) and 1.3000 (14) Å, respectively]. The 3,6-dihydro-2H-1,3,4-thia­diazine ring adopts a half-boat conformation. The sydnone ring is approximately planar [maximum deviation = 0.002 (1) Å] and forms dihedral angles of 50.45 (7) and 61.21 (6)° with the aromatic rings. In the crystal, inter­molecular N—H⋯N, C—H⋯Cl and C—H⋯S hydrogen bonds link the mol­ecules into layers parallel to ab plane. The crystal packing is stabilized by C—H⋯π inter­actions and further consolidated by π–π inter­actions involving the phenyl rings [centroid–centroid distance = 3.6306 (7) Å]. PMID:21754481

  12. Crystal structure of 4-fluoro-N-[2-(4-fluoro­benzo­yl)hydra­zine-1-carbono­thio­yl]benzamide

    PubMed Central

    Firdausiah, Syadza; Salleh Huddin, Ameera Aqeela; Hasbullah, Siti Aishah; Yamin, Bohari M.; Yusoff, Siti Fairus M.

    2014-01-01

    In the title compound, C15H11F2N3O2S, the dihedral angle between the fluoro­benzene rings is 88.43 (10)° and that between the central semithiocarbazide grouping is 47.00 (11)°. The dihedral angle between the amide group and attached fluoro­benzene ring is 50.52 (11)°; the equivalent angle between the carbonyl­thio­amide group and its attached ring is 12.98 (10)°. The major twists in the mol­ecule occur about the C—N—N—C bonds [torsion angle = −138.7 (2)°] and the Car—Car—C—N (ar = aromatic) bonds [−132.0 (2)°]. An intra­molecular N—H⋯O hydrogen bond occurs, which generates an S(6) ring. In the crystal, the mol­ecules are linked by N—H⋯O and N—H⋯S hydrogen bonds, generating (001) sheets. Weak C—H⋯O and C—H⋯F inter­actions are also observed. PMID:25309250

  13. Larvicidal activity and structure activity relationship of cinnamoyl amides from Zanthoxylum armatum and their synthetic analogues against diamondback moth, Plutella xylostella.

    PubMed

    Kumar, Vishal; Reddy, S G Eswara; Bhardwaj, Anuja; Dolma, Shudh Kirti; Kumar, Neeraj

    2016-01-01

    Cinnamoyl amides isolated from Zanthoxylum armatum (Rutaceae) and their synthetic analogues were tested for their insecticidal activity against the second instar larvae of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) to determine the promising structures with insecticidal activity. Most of the test compounds showed promising activity against larvae of P. xylostella. However, the activities of different compounds varied depending on the presence of different substituents at various positions of both the aromatic rings A and B. Among the tested compounds, 8, N-(3-bromo-4-methoxyphenethyl)cinnamamide showed best larvicidal activity with an LC50 = 62.13 mg/L followed by 6, N-(3׳-bromophenethyl)cinnamamide (LC50=128.49 mg/L) and 2 N-(4׳-methoxyphenylethyl)cinnamamide (LC50 = 225.65 mg/L).

  14. Larvicidal activity and structure activity relationship of cinnamoyl amides from Zanthoxylum armatum and their synthetic analogues against diamondback moth, Plutella xylostella

    PubMed Central

    Kumar, Vishal; Reddy, S. G. Eswara; Bhardwaj, Anuja; Dolma, Shudh Kirti; Kumar, Neeraj

    2016-01-01

    Cinnamoyl amides isolated from Zanthoxylum armatum (Rutaceae) and their synthetic analogues were tested for their insecticidal activity against the second instar larvae of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) to determine the promising structures with insecticidal activity. Most of the test compounds showed promising activity against larvae of P. xylostella. However, the activities of different compounds varied depending on the presence of different substituents at various positions of both the aromatic rings A and B. Among the tested compounds, 8, N-(3-bromo-4-methoxyphenethyl)cinnamamide showed best larvicidal activity with an LC50 = 62.13 mg/L followed by 6, N-(3׳-bromophenethyl)cinnamamide (LC50=128.49 mg/L) and 2 N-(4׳-methoxyphenylethyl)cinnamamide (LC50 = 225.65 mg/L). PMID:27231477

  15. CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes.

    PubMed

    Syed, Khajamohiddin; Porollo, Aleksey; Lam, Ying Wai; Grimmett, Paul E; Yadav, Jagjit S

    2013-04-01

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons, albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was found to possess a broad oxidizing capability toward structurally diverse hydrocarbons belonging to mutagenic/carcinogenic fused-ring higher-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), endocrine-disrupting long-chain alkylphenols (APs), and crude oil aliphatic hydrocarbon n-alkanes. A homology-based three-dimensional (3D) model revealed the presence of an extraordinarily large active-site cavity in CYP63A2 compared to the mammalian PAH-oxidizing (CYP3A4, CYP1A2, and CYP1B1) and bacterial aliphatic-hydrocarbon-oxidizing (CYP101D and CYP102A1) P450s. This structural feature in conjunction with ligand docking simulations suggested potential versatility of the enzyme. Experimental characterization using recombinantly expressed CYP63A2 revealed its ability to oxidize HMW-PAHs of various ring sizes, including 4 rings (pyrene and fluoranthene), 5 rings [benzo(a)pyrene], and 6 rings [benzo(ghi)perylene], with the highest enzymatic activity being toward the 5-ring PAH followed by the 4-ring and 6-ring PAHs, in that order. Recombinant CYP63A2 activity yielded monohydroxylated PAH metabolites. The enzyme was found to also act as an alkane ω-hydroxylase that oxidized n-alkanes with various chain lengths (C9 to C12 and C15 to C19), as well as alkyl side chains (C3 to C9) in alkylphenols (APs). CYP63A2 showed preferential oxidation of long-chain APs and alkanes. To our knowledge, this is the first P450 identified from any of the biological kingdoms that possesses such broad substrate specificity toward structurally diverse xenobiotics (PAHs, APs, and alkanes), making it a potent enzyme biocatalyst candidate to handle mixed pollution (e.g., crude oil spills).

  16. CYP63A2, a Catalytically Versatile Fungal P450 Monooxygenase Capable of Oxidizing Higher-Molecular-Weight Polycyclic Aromatic Hydrocarbons, Alkylphenols, and Alkanes

    PubMed Central

    Syed, Khajamohiddin; Porollo, Aleksey; Lam, Ying Wai; Grimmett, Paul E.

    2013-01-01

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons, albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was found to possess a broad oxidizing capability toward structurally diverse hydrocarbons belonging to mutagenic/carcinogenic fused-ring higher-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), endocrine-disrupting long-chain alkylphenols (APs), and crude oil aliphatic hydrocarbon n-alkanes. A homology-based three-dimensional (3D) model revealed the presence of an extraordinarily large active-site cavity in CYP63A2 compared to the mammalian PAH-oxidizing (CYP3A4, CYP1A2, and CYP1B1) and bacterial aliphatic-hydrocarbon-oxidizing (CYP101D and CYP102A1) P450s. This structural feature in conjunction with ligand docking simulations suggested potential versatility of the enzyme. Experimental characterization using recombinantly expressed CYP63A2 revealed its ability to oxidize HMW-PAHs of various ring sizes, including 4 rings (pyrene and fluoranthene), 5 rings [benzo(a)pyrene], and 6 rings [benzo(ghi)perylene], with the highest enzymatic activity being toward the 5-ring PAH followed by the 4-ring and 6-ring PAHs, in that order. Recombinant CYP63A2 activity yielded monohydroxylated PAH metabolites. The enzyme was found to also act as an alkane ω-hydroxylase that oxidized n-alkanes with various chain lengths (C9 to C12 and C15 to C19), as well as alkyl side chains (C3 to C9) in alkylphenols (APs). CYP63A2 showed preferential oxidation of long-chain APs and alkanes. To our knowledge, this is the first P450 identified from any of the biological kingdoms that possesses such broad substrate specificity toward structurally diverse xenobiotics (PAHs, APs, and alkanes), making it a potent enzyme biocatalyst candidate to handle mixed pollution (e.g., crude oil spills). PMID:23416995

  17. Monoamine Oxidase Inhibitory Activity of Ferulic Acid Amides: Curcumin-Based Design and Synthesis.

    PubMed

    Badavath, Vishnu N; Baysal, İpek; Uçar, Gülberk; Mondal, Susanta K; Sinha, Barij N; Jayaprakash, Venkatesan

    2016-01-01

    Ferulic acid has structural similarity with curcumin which is being reported for its monoamine oxidase (MAO) inhibitory activity. Based on this similarity, we designed a series of ferulic acid amides 6a-m and tested for their inhibitory activity on human MAO (hMAO) isoforms. All the compounds were found to inhibit the hMAO isoforms either selectively or non-selectively. Nine compounds (6a, 6b, 6g-m) were found to inhibit hMAO-B selectively, whereas the other four (6c-f) were found to be non-selective. There is a gradual shift from hMAO-B selectivity (6a,b) to non-selectivity (6c-f) as there is an increase in chain length at the amino terminus. In case of compounds having an aromatic nucleus at the amino terminus, increasing the carbon number between N and the aromatic ring increases the potency as well as selectivity toward hMAO-B. Compounds 6f, 6j, and 6k were subjected to membrane permeability and metabolic stability studies by in vitro assay methods. They were found to have a better pharmacokinetic profile than curcumin, ferulic acid, and selegiline. In order to understand the structural features responsible for the potency and selectivity of 6k, we carried out a molecular docking simulation study. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Crystal structure of (E)-1-[4-({4-[(4-meth­oxy­benzyl­idene)amino]­phen­yl}sulfan­yl)phen­yl]ethan-1-one

    PubMed Central

    Hebbachi, Rabihe; Djedouani, Amel; Kadri, Soumia; Mousser, Hénia; Mousser, Abdelhamid

    2015-01-01

    The title Schiff base compound, C22H19NO2S, crystallized with two independent mol­ecules (A and B) in the asymmetric unit. Both mol­ecules have an E conformation about the C=N bond. The two mol­ecules differ in the orientation of the aromatic rings with respect to each other. The outer 4-meth­oxy­benzene ring is inclined to the central benzene ring and the outer 4-acetyl­benzene ring by 1.80 (19) and 63.73 (19)°, respectively, in mol­ecule A, and by 6.72 (18) and 68.53 (19)°, respectively, in mol­ecule B. The two outer benzene rings are inclined to one another by 63.77 (18) and 63.19 (18)° in mol­ecules A and B, respectively. In the crystal, the individual mol­ecules stack in columns along [010], and are linked by a number of C—H⋯π inter­actions, forming slabs lying parallel to (001). PMID:25878856

  19. Precise through-space control of an abiotic electrophilic aromatic substitution reaction

    NASA Astrophysics Data System (ADS)

    Murphy, Kyle E.; Bocanegra, Jessica L.; Liu, Xiaoxi; Chau, H.-Y. Katharine; Lee, Patrick C.; Li, Jianing; Schneebeli, Severin T.

    2017-04-01

    Nature has evolved selective enzymes for the efficient biosynthesis of complex products. This exceptional ability stems from adapted enzymatic pockets, which geometrically constrain reactants and stabilize specific reactive intermediates by placing electron-donating/accepting residues nearby. Here we perform an abiotic electrophilic aromatic substitution reaction, which is directed precisely through space. Ester arms--positioned above the planes of aromatic rings--enable it to distinguish between nearly identical, neighbouring reactive positions. Quantum mechanical calculations show that, in two competing reaction pathways, both [C-H...O]-hydrogen bonding and electrophile preorganization by coordination to a carbonyl group likely play a role in controlling the reaction. These through-space-directed mechanisms are inspired by dimethylallyl tryptophan synthases, which direct biological electrophilic aromatic substitutions by preorganizing dimethylallyl cations and by stabilizing reactive intermediates with [C-H...N]-hydrogen bonding. Our results demonstrate how the third dimension above and underneath aromatic rings can be exploited to precisely control electrophilic aromatic substitutions.

  20. (Hetero)aromatics from dienynes, enediynes and enyne-allenes.

    PubMed

    Raviola, Carlotta; Protti, Stefano; Ravelli, Davide; Fagnoni, Maurizio

    2016-08-07

    The construction of aromatic rings has become a key objective for organic chemists. While several strategies have been developed for the functionalization of pre-formed aromatic rings, the direct construction of an aromatic core starting from polyunsaturated systems is yet a less explored field. The potential of such reactions in the formation of aromatics increased at a regular pace in the last few years. Nowadays, there are reliable and well-established procedures to prepare polyenic derivatives, such as dienynes, enediynes, enyne-allenes and hetero-analogues. This has stimulated their use in the development of innovative cycloaromatizations. Different examples have recently emerged, suggesting large potential of this strategy in the preparation of (hetero)aromatics. Accordingly, this review highlights the recent advancements in this field and describes the different conditions exploited to trigger the process, including thermal and photochemical activation, as well as the use of transition metal catalysis and the addition of electrophiles/nucleophiles or radical species.

  1. Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15

    USGS Publications Warehouse

    Lovley, D.R.; Lonergan, D.J.

    1990-01-01

    The dissimilatory Fe(III) reducer, GS-15, is the first microorganism known to couple the oxidation of aromatic compounds to the reduction of Fe(III) and the first example of a pure culture of any kind known to anaerobically oxidize an aromatic hydrocarbon, toluene. In this study, the metabolism of toluene, phenol, and p-cresol by GS-15 was investigated in more detail. GS-15 grew in an anaerobic medium with toluene as the sole electron donor and Fe(III) oxide as the electron acceptor. Growth coincided with Fe(III) reduction. [ring-14C]toluene was oxidized to 14CO2, and the stoichiometry of 14CO2 production and Fe(III) reduction indicated that GS-15 completely oxidized toluene to carbon dioxide with Fe(III) as the electron acceptor. Magnetite was the primary iron end product during toluene oxidation. Phenol and p-cresol were also completely oxidized to carbon dioxide with Fe(III) as the sole electron acceptor, and GS-15 could obtain energy to support growth by oxidizing either of these compounds as the sole electron donor. p-Hydroxybenzoate was a transitory extracellular intermediate of phenol and p-cresol metabolism but not of toluene metabolism. GS-15 oxidized potential aromatic intermediates in the oxidation of toluene (benzylalcohol and benzaldehyde) and p-cresol (p-hydroxybenzylalcohol and p-hydroxybenzaldehyde). The metabolism described here provides a model for how aromatic hydrocarbons and phenols may be oxidized with the reduction of Fe(III) in contaminated aquifers and petroleum-containing sediments.

  2. Bismaleimide compounds

    DOEpatents

    Adams, J.E.; Jamieson, D.R.

    1986-01-14

    Bismaleimides of the formula shown in the diagram wherein R[sub 1] and R[sub 2] each independently is H, C[sub 1-4]-alkyl, C[sub 1-4]-alkoxy, Cl or Br, or R[sub 1] and R[sub 2] together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R[sub 1] and R[sub 2] are not t-butyl or t-butoxy; X is O, S or Se; n is 1--3; and the alkylene bridging group, optionally, is substituted by 1--3 methyl groups or by fluorine, form polybismaleimide resins which have valuable physical properties. Uniquely, these compounds permit extended cure times, i.e., they remain fluid for a time sufficient to permit the formation of a homogeneous melt prior to curing.

  3. Bismaleimide compounds

    DOEpatents

    Adams, Johnnie E.; Jamieson, Donald R.

    1986-01-14

    Bismaleimides of the formula ##STR1## wherein R.sub.1 and R.sub.2 each independently is H, C.sub.1-4 -alkyl, C.sub.1-4 -alkoxy, C1 or Br, or R.sub.1 and R.sub.2 together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R.sub.1 and R.sub.2 are not t-butyl or t-butoxy; X is O, S or Se; n is 1-3; and the alkylene bridging group, optionally, is substituted by 1-3 methyl groups or by fluorine, form polybismaleimide resins which have valuable physical properties. Uniquely, these compounds permit extended cure times, i.e., they remain fluid for a time sufficient to permit the formation of a homogeneous melt prior to curing.

  4. Isolation, Identification, and Xanthine Oxidase Inhibition Activity of Alkaloid Compound from Peperomia pellucida

    NASA Astrophysics Data System (ADS)

    Fachriyah, E.; Ghifari, M. A.; Anam, K.

    2018-04-01

    The research of the isolation and xanthine oxidation inhibition activity of alkaloid compound from Peperomia pellucida has been carried out. Alkaloid extract is isolated by column chromatography and preparative TLC. Alkaloid isolate is identified spectroscopically by UV-Vis spectrophotometer, FT-IR, and LC-MS/MS. Xanthine oxidase inhibition activity is carried out by in vitro assay. The result showed that the alkaloid isolated probably has piperidine basic structure. The alkaloid isolate has N-H, C-H, C = C, C = O, C-N, C-O-C groups and the aromatic ring. The IC50 values of ethanol and alkaloid extract are 71.6658 ppm and 76.3318 ppm, respectively. Alkaloid extract of Peperomia pellucida showed higher activity than ethanol extract.

  5. Effects-driven chemical fractionation of heavy fuel oil to isolate compounds toxic to trout embryos.

    PubMed

    Bornstein, Jason M; Adams, Julie; Hollebone, Bruce; King, Thomas; Hodson, Peter V; Brown, R Stephen

    2014-04-01

    Heavy fuel oil (HFO) spills account for approximately 60% of ship-source oil spills and are up to 50 times more toxic than medium and light crude oils. Heavy fuel oils contain elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and alkyl-PAHs, known to be toxic to fish; however, little direct characterization of HFO toxicity has been reported. An effects-driven chemical fractionation was conducted on HFO 7102 to separate compounds with similar chemical and physical properties, including toxicity, to isolate the groups of compounds most toxic to trout embryos. After each separation, toxicity tests directed the next phase of fractionation, and gas chromatography-mass spectrometry analysis correlated composition with toxicity, with a focus on PAHs. Low-temperature vacuum distillation permitted the separation of HFO into 3 fractions based on boiling point ranges. The most toxic of these fractions underwent wax precipitation to remove long-chain n-alkanes. The remaining PAH-rich extract was further separated using open column chromatography, which provided distinct fractions that were grouped according to increasing aromatic ring count. The most toxic of these fractions was richest in PAHs and alkyl-PAHs. The results of the present study were consistent with previous crude oil studies that identified PAH-rich fractions as the most toxic. © 2013 SETAC.

  6. In vitro trypanocidal activities of new S-adenosylmethionine decarboxylase inhibitors.

    PubMed Central

    Brun, R; Bühler, Y; Sandmeier, U; Kaminsky, R; Bacchi, C J; Rattendi, D; Lane, S; Croft, S L; Snowdon, D; Yardley, V; Caravatti, G; Frei, J; Stanek, J; Mett, H

    1996-01-01

    A series of novel aromatic derivatives based on the structure of methylglyoxal bis(guanylhydrazone) (MGBG) was examined for in vitro antitrypanosomal activities and cytotoxicities for human cells. One-third of the compounds tested showed trypanocidal activity at concentrations below 0.5 microM after an incubation period of 72 h. Structure-activity analysis revealed that bicyclic compounds with homocyclic rings and unmodified termini were the most active compounds. Results obtained in three laboratories employing different methods and trypanosome populations consistently ranked compound CGP 40215A highest. This compound had a 50% inhibitory concentration of 0.0045 microM for Trypanosoma brucei rhodesiense, was also active against other trypanosome species, including a multidrug-resistant Trypanosoma brucei brucei, and was significantly less toxic than other compounds tested for a human adenocarcinoma cell line, with a 50% inhibitory concentration of 1.14 mM. The effect of CGP 40215A was time and dose dependent, and low concentrations of the compound required exposure times of > 2 days to exert trypanocidal activity. Compounds were inactive against Leishmania donovani and Trypanosoma cruzi amastigotes in murine macrophages in vitro. PMID:8726017

  7. Strong CH/O interactions between polycyclic aromatic hydrocarbons and water: Influence of aromatic system size.

    PubMed

    Veljković, Dušan Ž

    2018-03-01

    Energies of CH/O interactions between water molecule and polycyclic aromatic hydrocarbons with a different number of aromatic rings were calculated using ab initio calculations at MP2/cc-PVTZ level. Results show that an additional aromatic ring in structure of polycyclic aromatic hydrocarbons significantly strengthens CH/O interactions. Calculated interaction energies in optimized structures of the most stable tetracene/water complex is -2.27 kcal/mol, anthracene/water is -2.13 kcal/mol and naphthalene/water is -1.97 kcal/mol. These interactions are stronger than CH/O contacts in benzene/water complex (-1.44 kcal/mol) while CH/O contacts in tetracene/water complex are even stronger than CH/O contacts in pyridine/water complexes (-2.21 kcal/mol). Electrostatic potential maps for different polycyclic aromatic hydrocarbons were calculated and used to explain trends in the energies of interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Modulation of ethoxyresorufin O-deethylase and glutathione S-transferase activities in Nile tilapia (Oreochromis niloticus) by polycyclic aromatic hydrocarbons containing two to four rings: implications in biomonitoring aquatic pollution.

    PubMed

    Pathiratne, Asoka; Hemachandra, Chamini K

    2010-08-01

    Despite ubiquity of polycyclic aromatic hydrocarbons (PAHs) in the tropical environments, little information is available concerning responses of tropical fish to PAHs and associated toxicity. In the present study, effects of five PAHs containing two to four aromatic rings on hepatic CYP1A dependent ethoxyresorufin O-deethylase (EROD), glutathione S-transferase (GST) and serum sorbitol dehydrogenase (SDH) activities in Nile tilapia, a potential fish species for biomonitoring pollution in tropical waters, were evaluated. Results showed that EROD activities were induced by the PAHs containing four aromatic rings (pyrene and chrysene) in a dose dependent manner. However PAHs with two to three aromatic rings (naphthalene, phenanthrene and fluoranthene) caused no effect or inhibition of EROD activities depending on the dose and the duration. Fluoranthene was the most potent inhibitor. SDH results demonstrated that high doses of fluoranthene induced hepatic damage. GST activity was induced by the lowest dose of phenanthrene, fluoranthene and chrysene but high doses had no effect. The results indicate that induction of EROD enzyme in Nile tilapia is a useful biomarker of exposure to PAHs such as pyrene and chrysene. However EROD inhibiting PAHs such as fluoranthene in the natural environment may modulate the EROD inducing potential of other PAHs thereby influencing PAH exposure assessments.

  9. Enhanced photocatalytic degradation of norfloxacin in aqueous Bi2WO6 dispersions containing nonionic surfactant under visible light irradiation.

    PubMed

    Tang, Lin; Wang, Jiajia; Zeng, Guangming; Liu, Yani; Deng, Yaocheng; Zhou, Yaoyu; Tang, Jing; Wang, Jingjing; Guo, Zhi

    2016-04-05

    Photocatalytic degradation is an alternative method to remove pharmaceutical compounds in water, however it is hard to achieve efficient rate because of the poor solubility of pharmaceutical compounds in water. This study investigated the photodegradation of norfloxacin in a nonionic surfactant Triton-X100 (TX100)/Bi2WO6 dispersion under visible light irradiation (400-750nm). It was found that the degradation of poorly soluble NOF can be strongly enhanced with the addition of TX100. TX100 was adsorbed strongly on Bi2WO6 surface and accelerated NOF photodegradation at the critical micelle concentration (CMC=0.25mM). Higher TX100 concentration (>0.25mM) lowered the degradation rate. In the presence of TX100, the degradation rate reached the maximum value when the pH value was 8.06. FTIR analyses demonstrated that the adsorbed NOF on the catalyst was completely degraded after 2h irradiation. According to the intermediates identified by HPLC/MS/MS, three possible degradation pathways were proposed to include addition of hydroxyl radical to quinolone ring, elimination of piperazynilic ring in fluoroquinolone molecules, and replacement of F atoms on the aromatic ring by hydroxyl radicals. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. All-metal aromatic cationic palladium triangles can mimic aromatic donor ligands with Lewis acidic cations† †Electronic supplementary information (ESI) available: Reaction procedures, characterization of complexes, copies of all spectra and cif files, modelling details and XYZ coordinates. CCDC 1410440–1410442. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc03475j Click here for additional data file. Click here for additional data file.

    PubMed Central

    Wang, Yanlan; Monfredini, Anna; Deyris, Pierre-Alexandre; Blanchard, Florent; Derat, Etienne; Malacria, Max

    2017-01-01

    We present that cationic rings can act as donor ligands thanks to suitably delocalized metal–metal bonds. This could grant parent complexes with the peculiar properties of aromatic rings that are crafted with main group elements. We assembled Pd nuclei into equilateral mono-cationic triangles with unhindered faces. Like their main group element counterparts and despite their positive charge, these noble-metal rings form stable bonding interactions with other cations, such as positively charged silver atoms, to deliver the corresponding tetranuclear dicationic complexes. Through a mix of modeling and experimental techniques we propose that this bonding mode is an original coordination-like one rather than a 4-centre–2-electron bond, which have already been observed in three dimensional aromatics. The present results thus pave the way for the use of suitable metal rings as ligands. PMID:29163890

  11. Isoxazole-type derivatives related to combretastatin A-4, synthesis and biological evaluation.

    PubMed

    Kaffy, Julia; Pontikis, Renée; Carrez, Danièle; Croisy, Alain; Monneret, Claude; Florent, Jean-Claude

    2006-06-15

    Novel combretastatin analogues bearing various five-membered heterocycles with consecutive oxygen and nitrogen atoms, in place of the olefinic bridge of CA4, have been synthesized (isoxazole, isoxazoline, oxadiazole, etc). These compounds have been evaluated for cytotoxicity and their ability to inhibit the tubulin assembly. On the basis of the relative position of the aromatic A- and B-rings on the heterocyclic moiety, they could be split in two classes, the alpha,gamma- or alpha,beta-diaryl heterocyclic derivatives. In the first series, the 3,5-diaryloxadiazole 9a displayed comparable antitubulin activity to that of CA4, but was devoid of cytotoxic effects. Among the alpha,beta-diaryl heterocyclic derivatives, the 4,5-diarylisoxazole 35 exhibited greater antitubulin activity than that of CA4 (0.75 vs 1.2 microM), but modest antiproliferative activity. These data showed that minor alteration in the chemical structure of the heterocyclic ring and its relative orientation with regard to the two phenyl rings of CA4 could dramatically influence the tubulin binding properties.

  12. Origin of organic matter in the early solar system. VII - The organic polymer in carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Hayatsu, R.; Matsuoka, S.; Anders, E.; Scott, R. G.; Studier, M. H.

    1977-01-01

    Degradation techniques, including pyrolysis, depolymerization, and oxidation, were used to study the insoluble polymer from the Murchison C2 chondrite. Oxidation with Cr2O7(2-) or O2/UV led to the identification of 15 aromatic ring systems. Of 11 aliphatic acids identified, three dicarboxylic acids presumably came from hydroaromatic portions of the polymer, whereas eight monocarboxylic acids probably derive from bridging groups or ring substituents. Depolymerization with CF3COO4 yielded some of the same ring systems, as well as alkanes (C1 through C8) and alkenes (C2 through C8), alkyl (C1 through C5) benzenes and naphthalenes, and methyl- or dimethyl -indene, -indane, -phenol, -pyrrole, and -pyridine. All these compounds were detected below 200 C, and are therefore probably indigenous constituents. The properties of the meteoritic polymer were compared with the properties of a synthetic polymer produced by the Fischer-Tropsch reaction. It is suggested that the meteoritic polymer was also produced by surface catalysis.

  13. Formation and characterization of a multicomponent equilibrium system derived from cis- and trans-1-aminomethylcyclohexane-1,2-diol.

    PubMed

    Hetényi, Anasztázia; Szakonyi, Zsolt; Klika, Karel D; Pihlaja, Kalevi; Fülöp, Ferenc

    2003-03-21

    Both cis and trans isomers of amino diols 3-6 were prepared stereoselectively. In the reactions between 3-6 and phenyl isothiocyanate, the ring closure proceeded regioselectively and resulted only in spiro derivatives of 2-phenyliminooxazolidines 9, 10, 13, and 14. The reaction of cis- (or trans-)1-aminomethylcyclohexane-1,2-diol 4 (or 6) with 1 equiv of an aromatic aldehyde 15a-g in EtOH at room temperature resulted in a complex, multicomponent equilibrium mixture of 16a-g and 18a-g (or 17a-g and 19a-g), in each case consisting of a five-component, ring-chain tautomeric system 16A-E (or 17A-E), involving the Schiff base, two epimeric spirooxazolidines, two epimeric condensed 1,3-oxazines, and some of the four tricyclic compounds 18A-D (or 19A-D). The five-component, ring-chain equilibria were found to be adequately described by the Hammett-Brown linear free energy equation.

  14. Orphenadrinium picrate picric acid

    PubMed Central

    Fun, Hoong-Kun; Hemamalini, Madhukar; Siddaraju, B. P.; Yathirajan, H. S.; Narayana, B.

    2010-01-01

    The asymmetric unit of the title compound N,N-dimethyl-2-[(2-methyl­phen­yl)phenyl­meth­oxy]ethanaminium picrate picric acid, C18H24NO+·C6H2N3O7 −·C6H3N3O7, contains one orphenadrinium cation, one picrate anion and one picric acid mol­ecule. In the orphenadrine cation, the two aromatic rings form a dihedral angle of 70.30 (7)°. There is an intra­molecular O—H⋯O hydrogen bond in the picric acid mol­ecule, which generates an S(6) ring motif. In the crystal structure, the orphenadrine cations, picrate anions and picric acid mol­ecules are connected by strong inter­molecular N—H⋯O hydrogen bonds, π⋯π inter­actions between the benzene rings of cations and anions [centroid–centroid distance = 3.5603 (9) Å] and weak C—H⋯O hydrogen bonds, forming a three-dimensional network. PMID:21580426

  15. Structural analysis and antimicrobial activity of 2[1H]-pyrimidinethione/selenone derivatives

    NASA Astrophysics Data System (ADS)

    Żesławska, Ewa; Korona-Głowniak, Izabela; Szczesio, Małgorzata; Olczak, Andrzej; Żylewska, Alicja; Tejchman, Waldemar; Malm, Anna

    2017-08-01

    Four new crystal structures of sulfur and selenium analogues of 2[1H]-pyrimidinone derivatives were determined with the use of X-ray diffraction method. The molecular geometry and intermolecular interactions of the investigated molecules were analyzed in order to find the structural features and geometrical parameters, which can be responsible for antimicrobial activities. The influence of chalcogen substituents (sulfur and selenium) on the crystal packing was also studied. The main differences in the molecular structures exist in mutual arrangement of two aromatic rings. The intermolecular interactions in all investigated compounds are similar. Furthermore, the in vitro antibacterial and antifungal activities for these compounds were evaluated. Preliminary investigations have identified two highly potent antibacterial compounds containing selenium atom, which display selectivity towards staphylococci and micrococci. This selectivity was not observed for a control compound used as a drug, namely vancomycin. These compounds possess also good antifungal activity. This is the first report of biological activities of 2[1H]-pyrimidineselenone derivatives.

  16. Extension of the SAFT-VR Mie EoS To Model Homonuclear Rings and Its Parametrization Based on the Principle of Corresponding States.

    PubMed

    Müller, Erich A; Mejía, Andrés

    2017-10-24

    The statistical associating fluid theory of variable range employing a Mie potential (SAFT-VR-Mie) proposed by Lafitte et al. (J. Chem Phys. 2013, 139, 154504) is one of the latest versions of the SAFT family. This particular version has been shown to have a remarkable capability to connect experimental determinations, theoretical calculations, and molecular simulations results. However, the theoretical development restricts the model to chains of beads connected in a linear fashion. In this work, the capabilities of the SAFT-VR Mie equation of state for modeling phase equilibria are extended for the case of planar ring compounds. This modification proposed replaces the Helmholtz energy of chain formation by an empirical contribution based on a parallelism to the second-order thermodynamic perturbation theory for hard sphere trimers. The proposed expression is given in terms of an extra parameter, χ, that depends on the number of beads, m s , and the geometry of the ring. The model is used to describe the phase equilibrium for planar ring compounds formed of Mie isotropic segments for the cases of m s equals to 3, 4, 5 (two configurations), and 7 (two configurations). The resulting molecular model is further parametrized, invoking a corresponding states principle resulting in sets of parameters that can be used indistinctively in theoretical calculations or in molecular simulations without any further refinements. The extent and performance of the methodology has been exemplified by predicting the phase equilibria and vapor pressure curves for aromatic hydrocarbons (benzene, hexafluorobenzene, toluene), heterocyclic molecules (2,5-dimethylfuran, sulfolane, tetrahydro-2H-pyran, tetrahydrofuran), and polycyclic aromatic hydrocarbons (naphthalene, pyrene, anthracene, pentacene, and coronene). An important aspect of the theory is that the parameters of the model can be used directly in molecular dynamics (MD) simulations to calculate equilibrium phase properties and interfacial tensions with an accuracy that rivals other coarse grained and united atom models, for example, liquid densities, are predicted, with a maximum absolute average deviation of 3% from both the theory and the MD simulations, while the interfacial tension is predicted, with a maximum absolute average of 8%. The extension to mixtures is exemplified by considering a binary system of hexane (chain fluid) and tetrahydro-2H-pyran (ring fluid).

  17. Crystal structure of (2E)-3-[4-(di-methyl-amino)-phen-yl]-1-(thio-phen-2-yl)prop-2-en-1-one.

    PubMed

    de Oliveira, Gabriela Porto; Bresolin, Leandro; Flores, Darlene Correia; de Farias, Renan Lira; de Oliveira, Adriano Bof

    2017-04-01

    The equimolar reaction between 4-(di-methyl-amino)-benzaldehyde and 2-acetyl-thio-phene in basic ethano-lic solution yields the title compound, C 15 H 15 NOS, whose mol-ecular structure matches the asymmetric unit. The mol-ecule is not planar, the dihedral angle between the aromatic and the thio-phene rings being 11.4 (2)°. In the crystal, mol-ecules are linked by C-H⋯O and weak C-H⋯S inter-actions along [100], forming R 2 2 (8) rings, and by weak C-H⋯O inter-actions along [010], forming chains with a C (6) graph-set motif. In addition, mol-ecules are connected into centrosymmetric dimers by weak C-H⋯π inter-actions, as indicated by the Hirshfeld surface analysis. The most important contributions for the crystal structure are the H⋯H (46.50%) and H⋯C (23.40%) inter-actions. The crystal packing resembles a herringbone arrangement when viewed along [100]. A mol-ecular docking calculation of the title compound with the neuraminidase enzyme was carried out. The enzyme shows ( ASN263 )N-H⋯O, ( PRO245 )C-H⋯ Cg (thio-phene ring) and ( AGR287 )C-H⋯N inter-molecular inter-actions with the title compound. The crystal structure was refined as a two-component twin with a fractional contribution to the minor domain of 0.0181 (8).

  18. Formation of highly oxygenated low-volatility products from cresol oxidation

    NASA Astrophysics Data System (ADS)

    Schwantes, Rebecca H.; Schilling, Katherine A.; McVay, Renee C.; Lignell, Hanna; Coggon, Matthew M.; Zhang, Xuan; Wennberg, Paul O.; Seinfeld, John H.

    2017-03-01

    Hydroxyl radical (OH) oxidation of toluene produces ring-retaining products: cresol and benzaldehyde, and ring-opening products: bicyclic intermediate compounds and epoxides. Here, first- and later-generation OH oxidation products from cresol and benzaldehyde are identified in laboratory chamber experiments. For benzaldehyde, first-generation ring-retaining products are identified, but later-generation products are not detected. For cresol, low-volatility (saturation mass concentration, C* ˜ 3.5 × 104 - 7.7 × 10-3 µg m-3), first- and later-generation ring-retaining products are identified. Subsequent OH addition to the aromatic ring of o-cresol leads to compounds such as hydroxy, dihydroxy, and trihydroxy methyl benzoquinones and dihydroxy, trihydroxy, tetrahydroxy, and pentahydroxy toluenes. These products are detected in the gas phase by chemical ionization mass spectrometry (CIMS) and in the particle phase using offline direct analysis in real-time mass spectrometry (DART-MS). Our data suggest that the yield of trihydroxy toluene from dihydroxy toluene is substantial. While an exact yield cannot be reported as authentic standards are unavailable, we find that a yield for trihydroxy toluene from dihydroxy toluene of ˜ 0.7 (equal to the reported yield of dihydroxy toluene from o-cresol; Olariu et al., 2002) is consistent with experimental results for o-cresol oxidation under low-NO conditions. These results suggest that even though the cresol pathway accounts for only ˜ 20 % of the oxidation products of toluene, it is the source of a significant fraction (˜ 20-40 %) of toluene secondary organic aerosol (SOA) due to the formation of low-volatility products.

  19. Polycyclic aromatic hydrocarbon (PAH) emissions from a coal-fired pilot FBC system.

    PubMed

    Liu, K; Han, W; Pan, W P; Riley, J T

    2001-06-29

    Due to the extensive amount of data suggesting the hazards of these compounds, 16 polycyclic aromatic hydrocarbons (PAHs) are on the Environmental Protection Agency (EPA) Priority Pollutant List. Emissions of these PAHs in the flue gas from the combustion of four coals were measured during four 1000h combustion runs using the 0.1MW heat-input (MWth) bench-scale fluidized bed combustor (FBC). An on-line sampling system was designed for the 16 PAHs, which consisted of a glass wool filter, condenser, glass fiber filter, Teflon filter, and a Tenax trap. The filters and Tenax were extracted by methylene chloride and hexane, respectively, followed by GC/MS analysis using the selective ion monitoring (SIM) mode. In this project, the effects of operating parameters, limestone addition, chlorine content in the coal, and Ca/S molar ratio on the emissions of PAHs were studied. The results indicated that the emissions of PAHs in an FBC system are primarily dependent on the combustion temperature and excess air ratio. The injection of secondary air with high velocity in the freeboard effectively reduces PAH emissions. The addition of extra limestone can promote the formation of PAHs in the FBC system. Chlorine in the coal can possibly lead to large benzene ring PAH formation during combustion. The total PAH emission increases with an increase in the sulfur content of coal. Incomplete combustion results in PAHs with four or more benzene rings. High efficiency combustion results in PAHs with two or three benzene rings.

  20. Normal-phase liquid chromatography retention behavior of polycyclic aromatic hydrocarbon and their methyl-substituted derivatives on an aminopropyl stationary phase.

    PubMed

    Wilson, Walter B; Hayes, Hugh V; Sander, Lane C; Campiglia, Andres D; Wise, Stephen A

    2017-09-01

    Retention indices for 124 polycyclic aromatic hydrocarbons (PAHs) and 62 methyl-substituted (Me-) PAHs were determined using normal-phase liquid chromatography (NPLC) on a aminopropyl (NH 2 ) stationary phase. PAH retention behavior on the NH 2 phase is correlated to the total number of aromatic carbons in the PAH structure. Within an isomer group, non-planar isomers generally elute earlier than planar isomers. MePAHs generally elute slightly later but in the same region as the parent PAHs. Correlations between PAH retention behavior on the NH 2 phase and PAH thickness (T) values were investigated to determine the influence of non-planarity for isomeric PAHs with four to seven aromatic rings. Correlation coefficients ranged from r = 0.19 (five-ring peri-condensed molecular mass (MM) 252 Da) to r = -0.99 (five-ring cata-condensed MM 278 Da). In the case of the smaller PAHs (MM ≤ 252 Da), most of the PAHs had a planar structure and provided a low correlation. In the case of larger PAHs (MM ≥ 278 Da), nonplanarity had a significant influence on the retention behavior and good correlation between retention and T was obtained for the MM 278 Da, MM 302 Da, MM 328 Da, and MM 378 Da isomer sets. Graphical abstract NPLC separation of the three-, four-, five-, and six-ring PAH isomers with different number of aromatic carbon atoms and degrees of non-planarity (Thickness, T). The inserted figure plots the number of aromatic carbon atoms vs. the log I value for the 124 parent PAHs.

  1. Simulation chamber studies of the atmospheric degradation of xylene oxidation products

    NASA Astrophysics Data System (ADS)

    Clifford, G.; Rea, G.; Thuener, L.; Wenger, J.

    2003-04-01

    Aromatic compounds are emitted to the atmosphere from their use in automobile fuels and solvents. In addition to being important primary pollutants, many aromatics, including the xylenes, possess high photochemical reactivity and make a major contribution to the formation of oxidants, such as ozone and nitrates, in the troposphere. The atmospheric oxidation of aromatics produces a wide variety of products and the atmospheric reactivity of many of these species is unknown. The aim of this work was to study the atmospheric degradation processes for dimethylphenols, tolualdehydes and dicarbonyl compounds which are produced from the hydroxyl radical initiated oxidation of the xylenes. Experiments on the hydroxyl (OH) and nitrate radical initiated oxidation of dimethylphenols and tolualdehydes have been performed in a large atmospheric simulation chamber in our laboratory. The chamber is made of FEP foil and has a volume of about 4750 litres. It is equipped with gas chromatography, GC-MS, and in situ FTIR spectroscopy for chemical analysis and a scanning mobility particle sizer for aerosol measurements. Rate coefficients have been determined for the reactions of hydroxyl and nitrate radicals with dimethylphenols and tolualdehydes. Gas-phase products and the yield of secondary organic aerosol have also been determined for the OH-initiated oxidation of these compounds. Mechanisms for the formation of the products are proposed. The photolysis of the unsaturated dicarbonyls, butenedial and 4-oxo-pent-2-enal, has been studied using real sunlight at the European Photoreactor (EUPHORE) in Valencia, Spain. Photolysis rates were measured and indicate that photolysis by sunlight is the major atmospheric degradation process for these compounds. Product studies show the formation of a ketene intermediate that decays to form five membered ring compounds such as furanones and maleic anhydride. Mechanisms for the formation of the products are proposed. Finally, the data obtained in this work is used to access the atmospheric impact of xylene oxidation products and to provide valuable information on their pollution forming potential.

  2. Synthesis of tricyclic butenolides and comparison their effects with known smoke-butenolide, KAR1.

    PubMed

    Krawczyk, Ewa; Koprowski, Marek; Cembrowska-Lech, Danuta; Wójcik, Agata; Kępczyński, Jan

    2017-08-01

    Plant-derived smoke - butenolide, called at present karrikin 1 (KAR 1 ) is known as an important inductor of seed germination and seedling growth. In this study, tricyclic butenolides were synthesized and their effects on germination of dormant and non-dormant Avena fatua caryopses were compared, as were also their effects versus those of KAR 1 on seedling growth. KAR 1 was found to be most effective and to completely remove dormancy. Butenolides, rac-8 and (S)-8a, showed a low stimulatory effect on germination of dormant caryopses, visible only when applied at very high concentrations. These compounds used at concentrations 100 times those of KAR 1 similarly increased the speed of germination and vigor of non-dormant caryopses. Likewise, growth of coleoptiles and their fresh weight were increased by KAR 1 as well as by rac-8 and (S)-8a to a similar value. KAR 1 and rac-8 were more effective than (S)-8a in increasing root growth. The results shown indicate that the presence of an aromatic ring in the absence of methyl group at C3 induced a much lower, or a similar, effect on germination of dormant and non-dormant Avena fatua caryopses and seedling growth compared to KAR 1 , but only when used at much higher concentrations. The simultaneous presence of a methyl group at C3 and an aromatic ring in the compound rac-7 exerted only a slight effect on the root growth. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Polycyclic aromatic hydrocarbons assessment in sediment of national parks in southeast Brazil.

    PubMed

    Meire, Rodrigo Ornellas; Azeredo, Antonio; Pereira, Márcia de Souza; Torres, João Paulo Machado; Malm, Olaf

    2008-08-01

    The aim of this work was to assess the levels of polycyclic aromatic hydrocarbons (PAHs) in the environment and their sources found in protected regions of southeastern Brazil. Samples of sediments were collected at four National Parks: Itatiaia National Park (PNIT), Serra da Bocaina National Park (PNSB), Serra dos Orgãos National Park (PNSO) and Jurubatiba National Park (PNJUB). The National Parks studied comprise rainforests, altitudinal fields and 'restinga' environments located in the Minas Gerais, Rio de Janeiro and São Paulo states. The sampling was conducted between 2002 and 2004 from June to September. In general, the environmental levels of PAHs found were similar to those in other remote areas around the globe. PNIT exhibited the highest median values of total PAHs in sediment (97 ng g(-1)), followed by PNJUB (89 ng g(-1)), PNSO (57 ng g(-1)) and PNSB (27 ng g(-1)). The highest levels of total PAHs (576 and 24430 ng g(-1)) could be associated to a point source contamination where are characterized for human activities. At PNSB and PNIT the PAH profiles were richer in 2 and 3 ring compounds, whereas at PNSO and PNJUB, the profiles exhibited 3 and 4 ring compounds. The phenanthrene predominance in most samples could indicate the influence of biogenic synthesis. The samples with a petrogenic pattern found in this study might be associated with the vicinity of major urban areas, highway traffic and/or industrial activities close to PNSO and PNIT. At PNIT and PNJUB, forest fires and slash and burn agricultural practices may drive the results towards a pyrolytic pattern.

  4. Identification of microbial carotenoids and isoprenoid quinones from Rhodococcus sp. B7740 and its stability in the presence of iron in model gastric conditions.

    PubMed

    Chen, Yashu; Xie, Bijun; Yang, Jifang; Chen, Jigang; Sun, Zhida

    2018-02-01

    Rhodococcus sp. B7740 is a newfound bacterium which was isolated from 25m deep seawater in the arctic. In this paper, Rhodococcus sp. B7740 was firstly discovered to produce abundant natural isoprenoids, including ubiquinone-4(UQ-4), 13 kinds of menaquinones, three rare aromatic carotenoids and more than one common carotenoid. These compounds were identified by UV-Visible, HPLC-APCI-MS/MS and HRMS spectra. Results demonstrated that Rhodococcus sp. B7740 might be a worthy source of natural isoprenoids especially for scarce aromatic carotenoids. Among them, isorenieratene with 528.3762Da (calculated for 528.3756Da, error: 1.1ppm), a carotenoid with aromatic ring, was purified by HSCCC. The stability of isorenieratene under the mimical gastric conditions was measured compared with common dietary carotenoids, β-carotene and lutein. Unlike β-carotene and lutein, isorenieratene exhibited rather stable in the presence of free iron or heme iron. Its high retention rate in gastrointestinal tract after ingestion indicates the benefits for health. Copyright © 2017. Published by Elsevier Ltd.

  5. Acyclic Cucurbit[n]uril-type Molecular Containers: Influence of Aromatic Walls on their Function as Solubilizing Excipients for Insoluble Drugs

    PubMed Central

    2015-01-01

    We studied the influence of the aromatic sidewalls on the ability of acyclic CB[n]-type molecular containers (1a–1e) to act as solubilizing agents for 19 insoluble drugs including the developmental anticancer agent PBS-1086. All five containers exhibit good water solubility and weak self-association (Ks ≤ 624 M–1). We constructed phase solubility diagrams to extract Krel and Ka values for the container·drug complexes. The acyclic CB[n]-type containers generally display significantly higher Ka values than HP-β-CD toward drugs. Containers 1a–1e bind the steroidal ring system and aromatic moieties of insoluble drugs. Compound 1b displays highest affinity toward most of the drugs studied. Containers 1a and 1b are broadly applicable and can be used to formulate a wider variety of insoluble drugs than was previously possible with cyclodextrin technology. For drugs that are solubilized by both HP-β-CD and 1a–1e, lower concentrations of 1a–1e are required to achieve identical [drug]. PMID:25369565

  6. Acyclic cucurbit[n]uril-type molecular containers: influence of aromatic walls on their function as solubilizing excipients for insoluble drugs.

    PubMed

    Zhang, Ben; Isaacs, Lyle

    2014-11-26

    We studied the influence of the aromatic sidewalls on the ability of acyclic CB[n]-type molecular containers (1a-1e) to act as solubilizing agents for 19 insoluble drugs including the developmental anticancer agent PBS-1086. All five containers exhibit good water solubility and weak self-association (Ks ≤ 624 M(-1)). We constructed phase solubility diagrams to extract Krel and Ka values for the container·drug complexes. The acyclic CB[n]-type containers generally display significantly higher Ka values than HP-β-CD toward drugs. Containers 1a-1e bind the steroidal ring system and aromatic moieties of insoluble drugs. Compound 1b displays highest affinity toward most of the drugs studied. Containers 1a and 1b are broadly applicable and can be used to formulate a wider variety of insoluble drugs than was previously possible with cyclodextrin technology. For drugs that are solubilized by both HP-β-CD and 1a-1e, lower concentrations of 1a-1e are required to achieve identical [drug].

  7. Gas-phase reactions of phenyl radicals with aromatic molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahr, A.; Stein, S.E.

    1988-08-25

    Relative rates of reactions of phenyl radicals with a series of aromatic and polycyclic aromatic compounds are reported. Most studies were done in static reactors at 450/degrees/C using diphenyl diketone (benzil) as the phenyl radical source. Reactions with the following molecules are reported: benzene, toluene, p-xylene, 1,3,5-trimethylbenzene, phenol, bromobenzene, naphthalene, biphenyl, anthracene, 9-methylanthracene, and triphenylene. For reactions with substituted benzenes, H abstraction is the dominant reaction. Relative rates of phenylation at different sites do not closely follow established trends for rates of radical attack. It is proposed that these deviations are primarily due to a dependence of the degree ofmore » reversibility on the specific site of phenylation. These studies also show that the rates of phenyl and H-atom migration around the ring in adduct radicals are slow relative to dissociation. Also, by use of these results to link literature rate data from high and low temperatures, a rate expression for H abstraction from p-xylene by phenyl of 10/sup 9.6/ exp(-4.4 kcal/RT) M/sup /minus/1/ s/sup /minus/1/ is derived.« less

  8. Function of Coenzyme F420 in Aerobic Catabolism of 2,4,6-Trinitrophenol and 2,4-Dinitrophenol by Nocardioides simplex FJ2-1A

    PubMed Central

    Ebert, Sybille; Rieger, Paul-Gerhard; Knackmuss, Hans-Joachim

    1999-01-01

    2,4,6-Trinitrophenol (picric acid) and 2,4-dinitrophenol were readily biodegraded by the strain Nocardioides simplex FJ2-1A. Aerobic bacterial degradation of these π-electron-deficient aromatic compounds is initiated by hydrogenation at the aromatic ring. A two-component enzyme system was identified which catalyzes hydride transfer to picric acid and 2,4-dinitrophenol. Enzymatic activity was dependent on NADPH and coenzyme F420. The latter could be replaced by an authentic preparation of coenzyme F420 from Methanobacterium thermoautotrophicum. One of the protein components functions as a NADPH-dependent F420 reductase. A second component is a hydride transferase which transfers hydride from reduced coenzyme F420 to the aromatic system of the nitrophenols. The N-terminal sequence of the F420 reductase showed high homology with an F420-dependent NADP reductase found in archaea. In contrast, no N-terminal similarity to any known protein was found for the hydride-transferring enzyme. PMID:10217752

  9. Spectral and kinetic studies of the oxidation of monosubstituted phenols and anilines by recombinant Synechocystis catalase-peroxidase compound I.

    PubMed

    Regelsberger, G; Jakopitsch, C; Engleder, M; Rüker, F; Peschek, G A; Obinger, C

    1999-08-10

    A high-level expression in Escherichia coli of a fully active recombinant form of a catalase-peroxidase (KatG) from the cyanobacterium Synechocystis PCC 6803 is reported. Since both physical and kinetic characterization revealed its identity with the wild-type protein, the large quantities of recombinant KatG allowed the first examination of second-order rate constants for the oxidation of a series of aromatic donor molecules (monosubstituted phenols and anilines) by a bifunctional catalase-peroxidase compound I using the sequential-mixing stopped-flow technique. Because of the overwhelming catalase activity, peroxoacetic acid has been used for compound I formation. A >/=50-fold excess of peroxoacetic acid is required to obtain a spectrum of relatively pure and stable compound I which is characterized by about 40% hypochromicity, a Soret maximum at 406 nm, and isosbestic points between the native enzyme and compound I at 357 and 430 nm. The apparent second-order rate constant for formation of compound I from ferric enzyme and peroxoacetic acid is (8.74 +/- 0.26) x 10(3) M(-)(1) s(-)(1) at pH 7. 0. Reduction of compound I by aromatic donor molecules is dependent upon the substituent effect on the benzene ring. The apparent second-order rate constants varied from (3.6 +/- 0.1) x 10(6) M(-)(1) s(-)(1) for p-hydroxyaniline to (5.0 +/- 0.1) x 10(2) M(-)(1) s(-)(1) for p-hydroxybenzenesulfonic acid. They are shown to correlate with the substituent constants in the Hammett equation, which suggests that in bifunctional catalase-peroxidases the aromatic donor molecule donates an electron to compound I and loses a proton simultaneously. The value of rho, the susceptibility factor in the Hammett equation, is -3.4 +/- 0.4 for the phenols and -5.1 +/- 0.8 for the anilines. The pH dependence of compound I reduction by aniline exhibits a relatively sharp maximum at pH 5. The redox intermediate formed upon reduction of compound I has spectral features which indicate that the single oxidizing equivalent in KatG compound II is contained on an amino acid which is not electronically coupled to the heme.

  10. Presence, distribution and risk assessment of polycyclic aromatic hydrocarbons in rice-wheat continuous cropping soils close to five industrial parks of Suzhou, China.

    PubMed

    Li, Yong; Long, Ling; Ge, Jing; Yang, Li-Xuan; Cheng, Jin-Jin; Sun, Ling-Xiang; Lu, Changying; Yu, Xiang-Yang

    2017-10-01

    Polycyclic aromatic hydrocarbons (PAHs) accumulated in agricultural soils are likely to threaten human health and ecosystem though the food chain, therefore, it is worth to pay more attention to soil contamination by PAHs. In this study, the presence, distribution and risk assessment of 16 priority PAHs in rice-wheat continuous cropping soils close to industrial parks of Suzhou were firstly investigated. The concentrations of the total PAHs ranged from 125.99 ng/g to 796.65 ng/g with an average of 352.94 ng/g. Phenanthrene (PHE), fluoranthene (FLT), benzo [a] anthracene (BaA) and pyrene (PYR) were the major PAHs in those soil samples. The highest level of PAHs was detected in the soils around Chemical plant and Steelworks, followed by Printed wire board, Electroplate Factory and Paper mill. The composition of PAHs in the soils around Chemical plant was dominated by 3-ring PAHs, however, the predominant compounds were 4, 5-ring PAHs in the soils around other four factories. Meanwhile, the concentration of the total PAHs in the soils close to the factories showed a higher level of PAHs in November (during rice harvest) than that in June (during wheat harvest). Different with other rings of PAHs, 3-ring PAHs in the soils around Chemical plant and Steelworks had a higher concentration in June. The results of principal component analysis and isomeric ratio analysis suggested that PAHs in the studied areas mainly originated from biomass, coal and petroleum combustion. The risk assessment indicated that higher carcinogenic risk was found in those sites closer to the industrial park. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Improved anti-inflammatory activity of three new terpenoids derived, by systematic chemical modifications, from the abundant triterpenes of the flowery plant Calendula officinalis.

    PubMed

    Neukirch, Hannes; D'Ambrosio, Michele; Sosa, Silvio; Altinier, Gianmario; Della Loggia, Roberto; Guerriero, Antonio

    2005-05-01

    Rings A, D and E of faradiol (1), and ring E of both arnidiol (10) and calenduladiol (4) have been subjected to various selective chemical manipulations to modify polarity, water affinity, H-bonding, sterics, and number of aromatic groups of these anti-inflammatory natural compounds. A total of 15 new and four known pentacyclic triterpenoids have been obtained in this way. Some 13 terpenoids were evaluated for their topical anti-inflammatory activities with respect to inhibition of croton oil induced ear oedema in mouse. Three derivatives of 1, the C(16) benzyl ether 15, the C(30) aldehyde 24, and the C(30) primary alcohol 25 showed significantly improved anti-inflammatory potencies, which is relevant for (future) structure-activity-relationship (SAR) studies.

  12. Piperidinium bis­(2-oxidobenzoato-κ2 O 1,O 2)borate

    PubMed Central

    Tang, Zhi-Hua; Huang, Chaojun

    2009-01-01

    The asymmetric unit of the title compound, C5H12N+·C14H8BO6 − or [C5H12N][BO4(C7H4O)2], contains two piperidinium cations and two bis­(salicylato)borate anions. The coordination geometries around the B atoms are distorted tetra­hedral. In the two mol­ecules, the aromatic rings are oriented at dihedral angles of 76.27 (3) and 83.86 (3)°. The rings containing B atoms have twist-boat conformations, while the two cations adopt chair conformations. In the crystal, the component species are linked by N—H⋯O hydrogen bonds. In the crystal structure, intra- and inter­molecular N—H⋯O hydrogen bonds link the mol­ecules. PMID:21581628

  13. Role of Pt during hydrodeoxygenation of biomass pyrolysis vapors over Pt/HBEA

    DOE PAGES

    Yung, Matthew M.; Foo, Guo Shiou; Sievers, Carsten

    2017-03-27

    1.3 wt% Pt/HBEA and HBEA were studied as catalysts for the hydrodeoxygenation of pine pyrolysis vapors at 500 °C. Both catalysts showed high initial conversion of oxygenated pyrolysis products into aromatic hydrocarbons, while Pt/HBEA showed higher stability in terms of hydrocarbon productivity and deferred breakthrough of oxygenated compounds. Among 1-, 2- and 3-ring aromatic hydrocarbons, Pt/HBEA had a significantly higher selectivity than HBEA towards unalkylated aromatics (e.g., benzene) as compared to the corresponding alkylated aromatics (e.g., toluene and xylene). Additionally, Pt addition to HBEA decreased coke deposition and improved resistance to pore and acid site blockage as determined by TPO,more » N 2 physisorption, and NH 3 TPD. The ability of Pt to promote cleavage and hydrogenation of methoxy and methyl groups was observed by increased methane production over Pt/HBEA relative to HBEA. A progressive decrease in the methane production over Pt/HBEA correlated with deactivation in terms of reduced benzene formation, breakthrough of oxygenated products, and increased formation of polynuclear aromatics and their degree of substitution, which indicate coke formation. In conclusion, the increased methane yield and suppressed coke formation with the addition of Pt is attributed to hydrogen spillover, through which hydrogen activated on Pt can subsequently migrate to the HBEA support to reverse the coke-forming hydrogen abstraction reaction.« less

  14. Role of Pt during hydrodeoxygenation of biomass pyrolysis vapors over Pt/HBEA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yung, Matthew M.; Foo, Guo Shiou; Sievers, Carsten

    1.3 wt% Pt/HBEA and HBEA were studied as catalysts for the hydrodeoxygenation of pine pyrolysis vapors at 500 °C. Both catalysts showed high initial conversion of oxygenated pyrolysis products into aromatic hydrocarbons, while Pt/HBEA showed higher stability in terms of hydrocarbon productivity and deferred breakthrough of oxygenated compounds. Among 1-, 2- and 3-ring aromatic hydrocarbons, Pt/HBEA had a significantly higher selectivity than HBEA towards unalkylated aromatics (e.g., benzene) as compared to the corresponding alkylated aromatics (e.g., toluene and xylene). Additionally, Pt addition to HBEA decreased coke deposition and improved resistance to pore and acid site blockage as determined by TPO,more » N 2 physisorption, and NH 3 TPD. The ability of Pt to promote cleavage and hydrogenation of methoxy and methyl groups was observed by increased methane production over Pt/HBEA relative to HBEA. A progressive decrease in the methane production over Pt/HBEA correlated with deactivation in terms of reduced benzene formation, breakthrough of oxygenated products, and increased formation of polynuclear aromatics and their degree of substitution, which indicate coke formation. In conclusion, the increased methane yield and suppressed coke formation with the addition of Pt is attributed to hydrogen spillover, through which hydrogen activated on Pt can subsequently migrate to the HBEA support to reverse the coke-forming hydrogen abstraction reaction.« less

  15. Diverse Reactions of Thiophenes, Selenophenes, and Tellurophenes with Strongly Oxidizing I(III) PhI(L)2 Reagents.

    PubMed

    Egalahewa, Sathsara; Albayer, Mohammad; Aprile, Antonino; Dutton, Jason L

    2017-02-06

    We report the outcomes of the reactions of aromatic group 16 thiophene, selenophene, and tellurophene rings with the I(III) oxidants PhI(OAc)(OTf) and [PhI(Pyr) 2 ][OTf] 2 (Pyr = pyridine). In all reactions, oxidative processes take place, with generation of PhI as the reduction product. However, with the exception of tellurophene with PhI(OAc)(OTf), +4 oxidation state complexes are not observed, but rather a variety of other processes occur. In general, where a C-H unit is available on the 5-membered ring, an electrophilic aromatic substitution reaction of either -IPh or pyridine onto the ring occurs. When all positions are blocked, reactions with PhI(OAc)(OTf) give acetic and triflic anhydride as the identifiable oxidative byproducts, while [PhI(Pyr) 2 ][OTf] 2 gives pyridine electrophilic aromatic substitution onto the peripheral rings. Qualitative mechanistic studies indicate that the presence of the oxidizable heteroatom is required for pyridine to act as an electrophile in a substantial manner.

  16. Urea-Aromatic Stacking and Concerted Urea Transport: Conserved Mechanisms in Urea Transporters Revealed by Molecular Dynamics.

    PubMed

    Padhi, Siladitya; Priyakumar, U Deva

    2016-10-11

    Urea transporters are membrane proteins that selectively allow urea molecules to pass through. It is not clear how these transporters allow rapid conduction of urea, a polar molecule, in spite of the presence of a hydrophobic constriction lined by aromatic rings. The current study elucidates the mechanism that is responsible for this rapid conduction by performing free energy calculations on the transporter dvUT with a cumulative sampling time of about 1.3 μs. A parallel arrangement of aromatic rings in the pore enables stacking of urea with these rings, which, in turn, lowers the energy barrier for urea transport. Such interaction of the rings with urea is proposed to be a conserved mechanism across all urea-conducting proteins. The free energy landscape for the permeation of multiple urea molecules reveals an interplay between interurea interaction and the solvation state of the urea molecules. This is for the first time that multiple molecule permeation through any small molecule transporter has been modeled.

  17. Exploring the Origin of Blue and Ultraviolet Fluorescence in Graphene Oxide.

    PubMed

    Kozawa, Daichi; Miyauchi, Yuhei; Mouri, Shinichiro; Matsuda, Kazunari

    2013-06-20

    We studied the fluorescence (FL) properties of highly exfoliated graphene oxide (GO) in aqueous solution using continuous-wave and time-resolved FL spectroscopy. The FL spectra of highly exfoliated GO showed two distinct peaks at ∼440 (blue) and ∼300 nm [ultraviolet (UV)]. The FL of GO in the UV region at ∼300 nm was observed for the first time. The average FL lifetimes of the emission peaks at ∼440 and ∼300 nm are 8-13 and 6-8 ns, respectively. The experimentally observed peak wavelengths of pH-dependent FL, FL excitation spectra, and the FL lifetimes are nearly coincident with those of aromatic compounds bound with oxygen functional groups, which suggests that the FL comes from sp(2) fragments consisting of small numbers of aromatic rings with oxygen functional groups acting as FL centers in the GO.

  18. Characterization of polycyclic aromatic hydrocarbons and carbonyl compounds in diesel exhaust emissions.

    PubMed

    Mabilia, Rosanna; Cecinato, Angelo; Tomasi Scianò, Maria Concetta; Di Palo, Vincenzo; Possanzini, Massimiliano

    2004-01-01

    Exhaust emissions from a recent model heavy-duty diesel vehicle (city bus) in a chassis dynamometer were measured during a transient driving cycle. Particle-bound polycyclic aromatic hydrocarbons (PAHs) and gaseous carbonyls, substances that create health hazards and are, as yet, unregulated were collected, the former on filters and the latter on dinitrophenylhydrazine (DNPH)-coated silica cartridges and analysed by GC-MS and HPLC, respectively. PAH emission rates decreased with the number of benzene fused rings. They averaged 0.2 mg km(-1) for a total of 11 PAHs ranging from fluoranthene to benzo(ghi)perylene. Fluoranthene and pyrene accounted for 90% of total PAHs. The sum of emission rates of C1 approximately C6 carbonyls averaged 174 mg km(-1), even if formaldehyde alone represented approximately 70% of the total carbonyl mass, followed by acetaldehyde (13%). Results obtained were compared with emission data reported in previous studies.

  19. Electrolytic oxidation of anthracite

    USGS Publications Warehouse

    Senftle, F.E.; Patton, K.M.; Heard, I.

    1981-01-01

    An anthracite slurry can be oxidized only with difficulty by electrolytic methods in which aqueous electrolytes are used if the slurry is confined to the region of the anode by a porous pot or diaphragm. However, it can be easily oxidized if the anthracite itself is used as the anode. No porous pot or diaphragm is needed. Oxidative consumption of the coal to alkali-soluble compounds is found to proceed preferentially at the edges of the aromatic planes. An oxidation model is proposed in which the chief oxidants are molecular and radical species formed by the electrolytic decomposition of water at the coal surface-electrolyte interface. The oxidation reactions proposed account for the opening of the aromatic rings and the subsequent formation of carboxylic acids. The model also explains the observed anisotropic oxidation and the need for the porous pot or diaphragm used in previous studies of the oxidation of coal slurries. ?? 1981.

  20. Anaerobic Catabolism of Aromatic Compounds: a Genetic and Genomic View

    PubMed Central

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F.; Valderrama, J. Andrés; Barragán, María J. L.; García, José Luis; Díaz, Eduardo

    2009-01-01

    Summary: Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach. PMID:19258534

  1. The Misuse of the Circle Notation to Represent Aromatic Rings.

    ERIC Educational Resources Information Center

    Belloli, Robert C.

    1983-01-01

    Discusses the confusion and erroneous conclusions that can result from the overuse and misuse of the circle notation to represent aromaticity in polycylic aromatic hydrocarbons. Includes nature of the problem, textbook treatment, and a possible compromise method of representation. (Author/JN)

  2. PERFLUORINATED AROMATIC COMPOUND

    DTIC Science & Technology

    octafluorobiphenyl, and perfluoroaliphatic aldehydes. Synthetic routes to perfluoro cyclohexyls via reactions of phenyl and pentafluorphenyl lithium with...other perfluorinated aromatic compounds were employed in the synthesis of perfluorinated aromatic model compounds and polymers. The hydrogenic analogues...hydrazides, and imides. Synthetic routes to perfluoro aralkyl compounds are being investigated. Starting materials are tetrafluorobenzene

  3. Ligand-based virtual screening and inductive learning for identification of SIRT1 inhibitors in natural products.

    PubMed

    Sun, Yunan; Zhou, Hui; Zhu, Hongmei; Leung, Siu-wai

    2016-01-25

    Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent deacetylase, and its dysregulation can lead to ageing, diabetes, and cancer. From 346 experimentally confirmed SIRT1 inhibitors, an inhibitor structure pattern was generated by inductive logic programming (ILP) with DMax Chemistry Assistant software. The pattern contained amide, amine, and hetero-aromatic five-membered rings, each of which had a hetero-atom and an unsubstituted atom at a distance of 2. According to this pattern, a ligand-based virtual screening of 1 444 880 active compounds from Chinese herbs identified 12 compounds as inhibitors of SIRT1. Three compounds (ZINC08790006, ZINC08792229, and ZINC08792355) had high affinity (-7.3, -7.8, and -8.6 kcal/mol, respectively) for SIRT1 as estimated by molecular docking software AutoDock Vina. This study demonstrated a use of ILP and background knowledge in machine learning to facilitate virtual screening.

  4. Electron-ion dissociative recombination rate constants relevant to the Titan atmosphere and the Interstellar Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborne, David; Lawson, Patrick; Adams, Nigel, E-mail: ngadams@uga.edu

    Following the arrival of Cassini at Titan in 2004, the Titan atmosphere has been shown to contain large complex polycyclic-aromatic hydrocarbons. Since Cassini has provided a great deal of data, there exists a need for kinetic rate data to help with modeling this atmosphere. One type of kinetic data needed is electron-ion dissociative recombination (e-IDR) rate constants. These data are not readily available for larger compounds, such as naphthalene, or oxygen containing compounds, such as 1,4 dioxane or furan. Here, the rate constants for naphthalene, 1,4 dioxane, and furan have been measured and their temperature dependencies are determined when possible,more » using the University of Georgia's Variable Temperature Flowing Afterglow. The rate constants are compared with those previously published for other compounds; these show trends which illustrate the effects which multi-rings and oxygen heteroatoms substitutions have upon e-IDR rate constants.« less

  5. Ligand-based virtual screening and inductive learning for identification of SIRT1 inhibitors in natural products

    NASA Astrophysics Data System (ADS)

    Sun, Yunan; Zhou, Hui; Zhu, Hongmei; Leung, Siu-Wai

    2016-01-01

    Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent deacetylase, and its dysregulation can lead to ageing, diabetes, and cancer. From 346 experimentally confirmed SIRT1 inhibitors, an inhibitor structure pattern was generated by inductive logic programming (ILP) with DMax Chemistry Assistant software. The pattern contained amide, amine, and hetero-aromatic five-membered rings, each of which had a hetero-atom and an unsubstituted atom at a distance of 2. According to this pattern, a ligand-based virtual screening of 1 444 880 active compounds from Chinese herbs identified 12 compounds as inhibitors of SIRT1. Three compounds (ZINC08790006, ZINC08792229, and ZINC08792355) had high affinity (-7.3, -7.8, and -8.6 kcal/mol, respectively) for SIRT1 as estimated by molecular docking software AutoDock Vina. This study demonstrated a use of ILP and background knowledge in machine learning to facilitate virtual screening.

  6. Electron-ion dissociative recombination rate constants relevant to the Titan atmosphere and the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Osborne, David; Lawson, Patrick; Adams, Nigel

    2014-01-01

    Following the arrival of Cassini at Titan in 2004, the Titan atmosphere has been shown to contain large complex polycyclic-aromatic hydrocarbons. Since Cassini has provided a great deal of data, there exists a need for kinetic rate data to help with modeling this atmosphere. One type of kinetic data needed is electron-ion dissociative recombination (e-IDR) rate constants. These data are not readily available for larger compounds, such as naphthalene, or oxygen containing compounds, such as 1,4 dioxane or furan. Here, the rate constants for naphthalene, 1,4 dioxane, and furan have been measured and their temperature dependencies are determined when possible, using the University of Georgia's Variable Temperature Flowing Afterglow. The rate constants are compared with those previously published for other compounds; these show trends which illustrate the effects which multi-rings and oxygen heteroatoms substitutions have upon e-IDR rate constants.

  7. Anti-cancer agents based on N-acyl-2, 3-dihydro-1H-pyrrolo[2,3-b] quinoline derivatives and a method of making

    DOEpatents

    Gakh, Andrei; Krasavin, Mikhail; Karapetian, Ruben; Rufanov, Konstantin A; Konstantinov, Igor; Godovykh, Elena; Soldatkina, Olga; Sosnov, Andrey V

    2013-04-16

    The present disclosure relates to novel compounds that can be used as anti-cancer agents in the prostate cancer therapy. In particular, the invention relates to N-acyl derivatives of 2,3-dihydro-1H-pyrrolo[2,3-b]quinolines having the structural Formula (I), ##STR00001## stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof. The meaning of R1 is independently selected from H; C1-C6 Alkyl, cyclo-Alkyl or iso-Alkyl substituents; R2 is selected from C1-C6 Alkyl, cyclo-Alkyl or iso-Alkyl; substituted or non-substituted, fused or non-fused to substituted or non-substituted aromatic ring, aryl or heteroaryl groups. The invention also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  8. Phthalimide-derived strigolactone mimics as germinating agents for seeds of parasitic weeds.

    PubMed

    Cala, Antonio; Ghooray, Kala; Fernández-Aparicio, Mónica; Molinillo, José Mg; Galindo, Juan Cg; Rubiales, Diego; Macías, Francisco A

    2016-11-01

    Broomrapes attack important crops, cause severe yield losses and are difficult to eliminate because their seed bank is virtually indestructible. In the absence of a host, the induction of seed germination leads to inevitable death due to nutrient starvation. Synthetic analogues of germination-inducing factors may constitute a cheap and feasible strategy to control the seed bank. These compounds should be easy and cheap to synthesise, as this will allow their mass production. The aim of this work is to obtain new synthethic germinating agents. Nineteen N-substituted phthalimides containing a butenolide ring and different substituents in the aromatic ring were synthesised. The synthesis started with commercially available phthalimides. The complete collection was assayed against the parasitic weeds Orobanche minor, O. cumana, Phelipanche ramosa and P. aegyptiaca, with the synthetic strigolactone analogue GR24 used as a positive control. These compounds offered low EC 50 values: O. cumana 38.3 μM, O. minor 3.77 μM, P. aegyptiaca 1.35 μM and P. ramosa 1.49 μM. The synthesis was carried out in a few steps and provided the target compounds in good yields. The compounds tested showed great selectivity, and low EC 50 values were obtained for structures that were simpler than GR24. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Inhibitors of calling behavior of Plodia interpunctella

    PubMed Central

    Hirashima, Akinori; Shigeta, Yoko; Eiraku, Tomohiko; Kuwano, Eiichi

    2003-01-01

    Some octopamine agonists were found to suppress the calling behavior of the stored product Indian meal moth, Plodia interpunctella. Compounds were screened using a calling behavior bioassay using female P. interpunctella. Four active derivatives, with inhibitory activity at the nanomolar range, were identified in order of decreasing activity: 2-(1-phenylethylamino)-2-oxazoline > 2-(2-ethyl,6-methylanilino)oxazolidine > 2-(2-methyl benzylamino)-2-thiazoline > 2-(2,6-diethylanilino)thiazolidine. Three-dimensional pharmacophore hypotheses were built from a set of 15 compounds. Among the ten common-featured models generated by the program Catalyst/HipHop, a hypothesis including a hydrogen-bond acceptor lipid, a hydrophobic aromatic and two hydrophobic aliphatic features was considered to be essential for inhibitory activity in the calling behavior. Active compounds mapped well onto all the hydrogen-bond acceptor lipid, hydrophobic aromatic and hydrophobic aliphatic features of the hypothesis. On the other hand, less active compounds were shown not to achieve the energetically favorable conformation that is found in the active molecules in order to fit the 3D common-feature pharmacophore models. The present studies demonstrate that inhibition of calling behavior is via an octopamine receptor. Abbreviation: AII 2-(arylimino)imidazolidine AIO 2-(arylimino)oxazolidine AIT 2-(arylimino)thiazolidine CBO 2-(4-chlorobenzylamino)-2-(4-phenyl)oxazoline CDM chlordimeform Confs number of conformers DIP 2-(2,6-diethylphenylimino)piperidine Features/Confs total number of features divided by the number of conformers (summed over the entire family of conformers) HBA hydrogen-bond acceptor HBAl hydrogen-bond acceptor lipid HBD hydrogen-bond donor Hp hydrophobic HpAl hydrophobic aliphatic HpAr hydrophobic aromatic mp melting point MTO 2-(3-methyl benzylthio)-2-oxazoline NI negative ionizable NIO 2-(1-naphthylimino)oxazolidine OA octopamine ODA 2-phenyl-5,6-dihydro-4H-1,3,4-oxadiazine ODO 2-phenyl-5,6-dihydro-4H-1,3,4-oxadiazine-5(6H)-one PBAN pheromone biosynthesis activating neuropeptide PEO 2-(1-phenylethylamino)-2-oxazoline PI positive ionizable PIT 1-(2,6-dimethylphenyl)imidazolidine-2-thione RA ring aromatic SBO 2-(substituted benzylamino)-2-oxazoline SBT 2-(substituted benzylamino)-2-thiazoline STO 2-(substituted benzylthio)-2-oxazoline ZETA (Z,E)-9,12-tetradecadienyl acetate PMID:15841221

  10. Mercury photolytic transformation affected by low-molecular-weight natural organics in water.

    PubMed

    He, Feng; Zheng, Wang; Liang, Liyuan; Gu, Baohua

    2012-02-01

    Mechanisms by which dissolved organic matter (DOM) mediates the photochemical reduction of Hg(II) in aquatic ecosystems are not fully understood, owing to the heterogeneous nature and complex structural properties of DOM. In this work, naturally occurring aromatic compounds including salicylic, 4-hydrobenzoic, anthranilic, 4-aminobenzoic, and phthalic acid were systematically studied as surrogates for DOM in order to gain an improved mechanistic understanding of these compounds in the photoreduction of Hg(II) in water. We show that the photoreduction rates of Hg(II) are influenced not only by the substituent functional groups such as -OH, -NH(2) and -COOH on the benzene ring, but also the positioning of these functional groups on the ring structure. The Hg(II) photoreduction rate decreases in the order anthranilic acid>salicylic acid>phthalic acid according to the presence of the -NH(2), -OH, -COOH functional groups on benzoic acid. The substitution position of the functional groups affects reduction rates in the order anthranilic acid>4-aminobenzoic acid and salicylic acid>4-hydroxybenzoic acid. Reduction rates correlate strongly with ultraviolet (UV) absorption of these compounds and their concentrations, suggesting that the formation of organic free radicals during photolysis of these compounds is responsible for Hg(II) photoreduction. These results provide insight into the role of low-molecular-weight organic compounds and possibly DOM in Hg photoredox transformation and may thus have important implications for understanding Hg geochemical cycling in the environment. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Prediction of the Ultraviolet-Visible Absorption Spectra of Polycyclic Aromatic Hydrocarbons (Dibenzo and Naphtho) Derivatives of Fluoranthene.

    PubMed

    Oña-Ruales, Jorge O; Ruiz-Morales, Yosadara

    2017-06-01

    The annellation theory method has been used to predict the locations of maximum absorbance (LMA) of the ultraviolet-visible (UV-Vis) spectral bands in the group of polycyclic aromatic hydrocarbons (PAHs) C 24 H 14 (dibenzo and naphtho) derivatives of fluoranthene (DBNFl). In this group of 21 PAHs, ten PAHs present a sextet migration pattern with four or more benzenoid rings that is potentially related to a high molecular reactivity and high mutagenic conduct. This is the first time that the locations of maximum absorbance in the UV-Vis spectra of naphth[1,2- a]aceanthrylene, dibenz[ a,l]aceanthrylene, indeno[1,2,3- de]naphthacene, naphtho[1,2- j]fluoranthene, naphth[2,1- e]acephenanthrylene, naphth[2,1- a]aceanthrylene, dibenz[ a,j]aceanthrylene, naphth[1,2- e]acephenanthrylene, and naphtho[2,1- j]fluoranthene have been predicted. Also, this represents the first report about the application of the annellation theory for the calculation of the locations of maximum absorbance in the UV-Vis spectra of PAHs with five-membered rings. Furthermore, this study constitutes the premier investigation beyond the pure benzenoid classical approach toward the establishment of a generalized annellation theory that will encompass not only homocyclic benzenoid and non-benzenoid PAHs, but also heterocyclic compounds.

  12. Uncertainties of polynuclear aromatic hydrocarbon and carbonyl measurements in heavy-duty diesel emission.

    PubMed

    Mabilia, Rosanna; Cecinato, Angelo; Guerriero, Ettore; Possanzini, Massimiliano

    2006-02-01

    In this note we describe the speciated particle-phase PM2.5 polynuclear aromatic hydrocarbon (PAH) and gas-phase carbonyl emissions as collected from a heavy-duty diesel bus outfitted with an oxidation catalyst for exhaust after-treatment. The vehicle was run on a chassis dynamometer during a transient cycle test reproducing a typical city bus route (Azienda Tramviaria Municipalizzata cycle). The diluted tailpipe emissions were sampled for PAH using a 2.5 microm cut size cyclone glass fiber filter assembly, while carbonyls were absorbed onto dinitrophenyl hydrazine-coated silica cartridges. The former compounds were analysed by CGC-MS, the latter by HPLC-UV. Combining the two sets of speciation data resulting from 15 identical dynamometer tests provided a profile of both unregulated organic emissions. PAH emission rates decreased with the number of benzene fused rings. Fluoranthene and pyrene amounted to 90% of total PAHs quantified; six-ring PAHs accounted only for 0.5%. Similarly, formaldehyde and acetaldehyde accounted for approximately 80% of the total carbonyl emissions. Uncertainties of the method in the determination of individual emission factors were calculated. Statistical data processing revealed that all the measurements were quite unaffected by systematic errors and repeatability percentages did not exceed 50% for the majority of components of both groups.

  13. N,N′-Bis(3,5-dichloro­benzyl­idene)­ethane-1,2-diamine

    PubMed Central

    Fun, Hoong-Kun; Kia, Reza

    2008-01-01

    The mol­ecule of the title Schiff base compound, C16H12Cl4N2, lies across an inversion centre and adopts an E configuration with respect to the azomethine C=N bond. The imine groups are coplanar with the aromatic rings. Within the mol­ecule, the planar units are parallel but extend in opposite directions from the dimethyl­ene bridge. In the crystal structure, mol­ecules are linked together by inter­molecular C—H⋯Cl hydrogen bonds along the a axis. PMID:21580993

  14. Synthesis of first row transition metal selenomaltol complexes.

    PubMed

    Spiegel, Michael T; Hoogerbrugge, Amanda; Truksa, Shamus; Smith, Andrew G; Shuford, Kevin L; Klausmeyer, Kevin K; Farmer, Patrick J

    2018-06-21

    We report an efficient, one-step synthesis of the chelator 3-hydroxy-2-methyl-4-selenopyrone (selenomaltol). Complexes of selenomaltol with Fe(iii), Ni(ii), Cu(ii) and Zn(ii) have been prepared and studied by NMR, X-ray crystallography, cyclic voltammetry, EPR and electronic absorption. The Ni(ii) and Cu(ii) complexes show chemically reversible oxidations which are suggested to be ligand-based. Nuclear independent chemical shifts (NICS) analysis is used to compare aromaticity of the heterocyclic rings of selenomaltol and its chelates. The compounds described here should significantly expand the scope and utility of unusual O,Se-donor chelates.

  15. Crystal structure of 1,3-bis-(1H-benzotriazol-1-yl-meth-yl)benzene.

    PubMed

    Macías, Mario A; Nuñez-Dallos, Nelson; Hurtado, John; Suescun, Leopoldo

    2016-06-01

    The mol-ecular structure of the title compound, C20H16N6, contains two benzotriazole units bonded to a benzene nucleus in a meta configuration, forming dihedral angles of 88.74 (11) and 85.83 (10)° with the central aromatic ring and 57.08 (9)° with each other. The three-dimensional structure is controlled mainly by weak C-H⋯N and C-H⋯π inter-actions. The mol-ecules are connected in inversion-related pairs, forming the slabs of infinite chains that run along the [-110] and [110] directions.

  16. Phthalazin-1(2H)-one–picric acid (1/1)

    PubMed Central

    Yathirajan, H. S.; Narayana, B.; Swamy, M. T.; Sarojini, B. K.; Bolte, Michael

    2008-01-01

    The geometric parameters of the title compound, C8H6N2O·C6H3N3O7, are in the usual ranges. The three nitro groups are almost coplanar with the aromatic picrate ring [dihedral angles 10.2 (2)°, 7.62 (16) and 8.08 (17)°]. The mol­ecular conformation of the picric acid is stabilized by an intra­molecular O—H⋯O hydrogen bond. The phthalazin-1(2H)-one mol­ecules are connected via N—H⋯O hydrogen bonds, forming centrosymmetric dimers. PMID:21200682

  17. Quantum coherent π-electron rotations in a non-planar chiral molecule induced by using a linearly polarized UV laser pulse

    NASA Astrophysics Data System (ADS)

    Mineo, Hirobumi; Fujimura, Yuichi

    2015-06-01

    We propose an ultrafast quantum switching method of π-electron rotations, which are switched among four rotational patterns in a nonplanar chiral aromatic molecule (P)-2,2’- biphenol and perform the sequential switching among four rotational patterns which are performed by the overlapped pump-dump laser pulses. Coherent π-electron dynamics are generated by applying the linearly polarized UV pulse laser to create a pair of coherent quasidegenerated excited states. We also plot the time-dependent π-electron ring current, and discussed ring current transfer between two aromatic rings.

  18. Synthesis and activity of novel analogs of hemiasterlin as inhibitors of tubulin polymerization: modification of the A segment.

    PubMed

    Yamashita, Ayako; Norton, Emily B; Kaplan, Joshua A; Niu, Chuan; Loganzo, Frank; Hernandez, Richard; Beyer, Carl F; Annable, Tami; Musto, Sylvia; Discafani, Carolyn; Zask, Arie; Ayral-Kaloustian, Semiramis

    2004-11-01

    Analogs of hemiasterlin (1) and HTI-286 (2), which contain various aromatic rings in the A segment, were synthesized as potential inhibitors of tubulin polymerization. The structure-activity relationships related to stereo- and regio-chemical effects of substituents on the aromatic ring in the A segment were studied. Analogs, which carry a meta-substituted phenyl ring in the A segment show comparable activity for inhibition of tubulin polymerization to 2, as well as in the cell proliferation assay using KB cells containing P-glycoprotein, compared to those of 1 and 2.

  19. Maize Tricin-Oligolignol Metabolites and Their Implications for Monocot Lignification.

    PubMed

    Lan, Wu; Morreel, Kris; Lu, Fachuang; Rencoret, Jorge; Carlos Del Río, José; Voorend, Wannes; Vermerris, Wilfred; Boerjan, Wout; Ralph, John

    2016-06-01

    Lignin is an abundant aromatic plant cell wall polymer consisting of phenylpropanoid units in which the aromatic rings display various degrees of methoxylation. Tricin [5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-chromen-4-one], a flavone, was recently established as a true monomer in grass lignins. To elucidate the incorporation pathways of tricin into grass lignin, the metabolites of maize (Zea mays) were extracted from lignifying tissues and profiled using the recently developed 'candidate substrate product pair' algorithm applied to ultra-high-performance liquid chromatography and Fourier transform-ion cyclotron resonance-mass spectrometry. Twelve tricin-containing products (each with up to eight isomers), including those derived from the various monolignol acetate and p-coumarate conjugates, were observed and authenticated by comparisons with a set of synthetic tricin-oligolignol dimeric and trimeric compounds. The identification of such compounds helps establish that tricin is an important monomer in the lignification of monocots, acting as a nucleation site for starting lignin chains. The array of tricin-containing products provides further evidence for the combinatorial coupling model of general lignification and supports evolving paradigms for the unique nature of lignification in monocots. © 2016 American Society of Plant Biologists. All Rights Reserved.

  20. Maize Tricin-Oligolignol Metabolites and Their Implications for Monocot Lignification1[OPEN

    PubMed Central

    Lu, Fachuang

    2016-01-01

    Lignin is an abundant aromatic plant cell wall polymer consisting of phenylpropanoid units in which the aromatic rings display various degrees of methoxylation. Tricin [5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-chromen-4-one], a flavone, was recently established as a true monomer in grass lignins. To elucidate the incorporation pathways of tricin into grass lignin, the metabolites of maize (Zea mays) were extracted from lignifying tissues and profiled using the recently developed ‘candidate substrate product pair’ algorithm applied to ultra-high-performance liquid chromatography and Fourier transform-ion cyclotron resonance-mass spectrometry. Twelve tricin-containing products (each with up to eight isomers), including those derived from the various monolignol acetate and p-coumarate conjugates, were observed and authenticated by comparisons with a set of synthetic tricin-oligolignol dimeric and trimeric compounds. The identification of such compounds helps establish that tricin is an important monomer in the lignification of monocots, acting as a nucleation site for starting lignin chains. The array of tricin-containing products provides further evidence for the combinatorial coupling model of general lignification and supports evolving paradigms for the unique nature of lignification in monocots. PMID:27208246

  1. Maize Tricin-Oligolignol Metabolites and their Implications for Monocot Lignification

    DOE PAGES

    Lan, Wu; Morreel, Kris; Lu, Fachuang; ...

    2016-06-01

    Lignin is an abundant aromatic plant cell wall polymer consisting of phenylpropanoid units in which the aromatic rings display various degrees of methoxylation. Tricin [5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-chromen-4-one], a flavone, was recently established as a true monomer in grass lignins. To elucidate the incorporation pathways of tricin into grass lignin, the metabolites of maize (Zea mays) were extracted from lignifying tissues and profiled using the recently developed ‘candidate substrate product pair’ algorithm applied to ultra-high-performance liquid chromatography and Fourier transform-ion cyclotron resonance-mass spectrometry. Twelve tricin-containing products (each with up to eight isomers), including those derived from the various monolignol acetate and p-coumarate conjugates,more » were observed and authenticated by comparisons with a set of synthetic tricin-oligolignol dimeric and trimeric compounds. The identification of such compounds helps establish that tricin is an important monomer in the lignification of monocots, acting as a nucleation site for starting lignin chains. The array of tricincontaining products provides further evidence for the combinatorial coupling model of general lignification and supports evolving paradigms for the unique nature of lignification in monocots.« less

  2. Structure of an extracellular giant hemoglobin of the gutless beard worm Oligobrachia mashikoi

    PubMed Central

    Numoto, Nobutaka; Nakagawa, Taro; Kita, Akiko; Sasayama, Yuichi; Fukumori, Yoshihiro; Miki, Kunio

    2005-01-01

    Mouthless and gutless marine animals, pogonophorans and vestimentiferans, obtain their nutrition solely from their symbiotic chemoautotrophic sulfur-oxidizing bacteria. These animals have sulfide-binding 400-kDa and/or 3,500-kDa Hb, which transports oxygen and sulfide simultaneously. The symbiotic bacteria are supplied with sulfide by Hb of the host animal and use it to provide carbon compounds. Here, we report the crystal structure of a 400-kDa Hb from pogonophoran Oligobrachia mashikoi at 2.85-Å resolution. The structure is hollow-spherical, composed of a total of 24 globins as a dimer of dodecamer. This dodecameric assemblage would be a fundamental structural unit of both 400-kDa and 3,500-kDa Hbs. The structure of the mercury derivative used for phasing provides insights into the sulfide-binding mechanism. The mercury compounds bound to all free Cys residues that have been expected as sulfide-binding sites. Some of the free Cys residues are surrounded by Phe aromatic rings, and mercury atoms come into contact with these residues in the derivative structure. It is strongly suggested that sulfur atoms bound to these sites could be stabilized by aromatic-electrostatic interactions by the surrounding Phe residues. PMID:16204001

  3. Molecular Marker Study of Particulate Organic Matter in Southern Ontario Air

    PubMed Central

    Stupak, Jacek; Gong, Xueping; Chan, Tak-Wai; Cox, Michelle; McLaren, Robert; Rudolph, Jochen

    2017-01-01

    To study the origins of airborne particulate organic matter in southern Ontario, molecular marker concentrations were studied at Hamilton, Simcoe, and York Gateway Tunnel, representing industrial, rural, and heavy traffic sites, respectively. Airborne particulate matter smaller than 10 μm in aerodynamic diameter was collected on quartz filters, and the collected samples were analyzed for total carbons, 5-6 ring PAHs, hopanes, n-alkanes (C20 to C34), and oxygenated aromatic compounds. Results showed that PAH concentrations at all three sites were highly correlated, indicating vehicular emissions as the major source. Meanwhile, in the scatter plots of α,β-hopane and trisnorhopane, concentrations displayed different trends for Hamilton and Simcoe. The slopes of the linear regressions for Hamilton and the tunnel were statistically the same, while the slope for Simcoe was significantly different from those. Comparison with literature values revealed that the trend observed at Simcoe was explained by the influence from coal combustion. We also found that the majority of oxygenated aromatic compounds at both sites were in the similar level, possibly implying secondary products contained in the southern Ontario air. Regardless of some discrepancies, absolute principal component analysis applied to the datasets could reproduce those findings. PMID:29075550

  4. Synthesis and biological evaluation of new piplartine analogues as potent aldose reductase inhibitors (ARIs)

    PubMed Central

    Ramasubba Rao, Vidadala; Muthenna, Puppala; Shankaraiah, Gundeti; Akileshwari, Chandrasekhar; Hari Babu, Kothapalli; Suresh, Ganji; Suresh Babu, Katragadda; Chandra Kumar, Rotte Sateesh; Rajendra Prasad, Kothakonda; Ashok Yadav, Potharaju; Petrash, J. Mark; Bhanuprakash Reddy, Geereddy; Madhusudana Rao, Janaswamy

    2013-01-01

    As a continuation of our efforts directed towards the development of anti-diabetic agents from natural sources, piplartine was isolated from Piper chaba, and was found to inhibit recombinant human ALR2 with an IC50 of 160 µM. To improve the efficacy, a series of analogues have been synthesized by modification of the styryl/aromatic and heterocyclic ring functionalities of this natural product lead. All the derivatives were tested for their ALR2 inhibitory activity, and results indicated that adducts 3c, 3e and 2j prepared by the Michael addition of piplartine with indole derivatives displayed potent ARI activity, while the other compounds displayed varying degrees of inhibition. The active compounds were also capable of preventing sorbitol accumulation in human red blood cells. PMID:23124161

  5. Stabilizing Pentacene By Cyclopentannulation.

    PubMed

    Bheemireddy, Sambasiva R; Ubaldo, Pamela C; Rose, Peter W; Finke, Aaron D; Zhuang, Junpeng; Wang, Lichang; Plunkett, Kyle N

    2015-12-21

    A new class of stabilized pentacene derivatives with externally fused five-membered rings are prepared by means of a key palladium-catalyzed cyclopentannulation step. The target compounds are synthesized by chemical manipulation of a partially saturated 6,13-dibromopentacene precursor that can be fully aromatized in a final step through a DDQ-mediated dehydrogenation reaction (DDQ=2,3-dichloro-5,6-dicyano-1,4-benzoquinone). The new 1,2,8,9-tetraaryldicyclopenta[fg,qr]pentacene derivatives have narrow energy gaps of circa 1.2 eV and behave as strong electron acceptors with lowest unoccupied molecular orbital energies between -3.81 and -3.90 eV. Photodegradation studies reveal the new compounds are more photostable than 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Pharmacophore modeling of diverse classes of p38 MAP kinase inhibitors.

    PubMed

    Sarma, Rituparna; Sinha, Sharat; Ravikumar, Muttineni; Kishore Kumar, Madala; Mahmood, S K

    2008-12-01

    Mitogen-activated protein (MAP) p38 kinase is a serine-threonine protein kinase and its inhibitors are useful in the treatment of inflammatory diseases. Pharmacophore models were developed using HypoGen program of Catalyst with diverse classes of p38 MAP kinase inhibitors. The best pharmacophore hypothesis (Hypo1) with hydrogen-bond acceptor (HBA), hydrophobic (HY), hydrogen-bond donor (HBD), and ring aromatic (RA) as features has correlation coefficient of 0.959, root mean square deviation (RMSD) of 1.069 and configuration cost of 14.536. The model was validated using test set containing 119 compounds and had high correlation coefficient of 0.851. The results demonstrate that results obtained in this study can be considered to be useful and reliable tools in identifying structurally diverse compounds with desired biological activity.

  7. Knowledge based identification of MAO-B selective inhibitors using pharmacophore and structure based virtual screening models.

    PubMed

    Boppana, Kiran; Dubey, P K; Jagarlapudi, Sarma A R P; Vadivelan, S; Rambabu, G

    2009-09-01

    Monoamine Oxidase B interaction with known ligands was investigated using combined pharmacophore and structure based modeling approach. The docking results suggested that the pharmacophore and docking models are in good agreement and are used to identify the selective MAO-B inhibitors. The best model, Hypo2 consists of three pharmacophore features, i.e., one hydrogen bond acceptor, one hydrogen bond donor and one ring aromatic. The Hypo2 model was used to screen an in-house database of 80,000 molecules and have resulted in 5500 compounds. Docking studies were performed, subsequently, on the cluster representatives of 530 hits from 5500 compounds. Based on the structural novelty and selectivity index, we have suggested 15 selective MAO-B inhibitors for further synthesis and pharmacological screening.

  8. Online and offline experimental techniques for polycyclic aromatic hydrocarbons recovery and measurement.

    PubMed

    Comandini, A; Malewicki, T; Brezinsky, K

    2012-03-01

    The implementation of techniques aimed at improving engine performance and reducing particulate matter (PM) pollutant emissions is strongly influenced by the limited understanding of the polycyclic aromatic hydrocarbons (PAH) formation chemistry, in combustion devices, that produces the PM emissions. New experimental results which examine the formation of multi-ring compounds are required. The present investigation focuses on two techniques for such an experimental examination by recovery of PAH compounds from a typical combustion oriented experimental apparatus. The online technique discussed constitutes an optimal solution but not always feasible approach. Nevertheless, a detailed description of a new online sampling system is provided which can serve as reference for future applications to different experimental set-ups. In comparison, an offline technique, which is sometimes more experimentally feasible but not necessarily optimal, has been studied in detail for the recovery of a variety of compounds with different properties, including naphthalene, biphenyl, and iodobenzene. The recovery results from both techniques were excellent with an error in the total carbon balance of around 10% for the online technique and an uncertainty in the measurement of the single species of around 7% for the offline technique. Although both techniques proved to be suitable for measurement of large PAH compounds, the online technique represents the optimal solution in view of the simplicity of the corresponding experimental procedure. On the other hand, the offline technique represents a valuable solution in those cases where the online technique cannot be implemented.

  9. Development of genetically engineered bacteria for production of selected aromatic compounds

    DOEpatents

    Ward, Thomas E.; Watkins, Carolyn S.; Bulmer, Deborah K.; Johnson, Bruce F.; Amaratunga, Mohan

    2001-01-01

    The cloning and expression of genes in the common aromatic pathway of E. coli are described. A compound for which chorismate, the final product of the common aromatic pathway, is an anabolic intermediate can be produced by cloning and expressing selected genes of the common aromatic pathway and the genes coding for enzymes necessary to convert chorismate to the selected compound. Plasmids carrying selected genes of the common aromatic pathway are also described.

  10. Polycyclovorans algicola gen. nov., sp. nov., an aromatic-hydrocarbon-degrading marine bacterium found associated with laboratory cultures of marine phytoplankton.

    PubMed

    Gutierrez, Tony; Green, David H; Nichols, Peter D; Whitman, William B; Semple, Kirk T; Aitken, Michael D

    2013-01-01

    A strictly aerobic, halotolerant, rod-shaped bacterium, designated strain TG408, was isolated from a laboratory culture of the marine diatom Skeletonema costatum (CCAP1077/1C) by enrichment with polycyclic aromatic hydrocarbons (PAHs) as the sole carbon source. 16S rRNA gene sequence analysis placed this organism within the order Xanthomonadales of the class Gammaproteobacteria. Its closest relatives included representatives of the Hydrocarboniphaga-Nevskia-Sinobacter clade (<92% sequence similarity) in the family Sinobacteraceae. The strain exhibited a narrow nutritional spectrum, preferring to utilize aliphatic and aromatic hydrocarbon compounds and small organic acids. Notably, it displayed versatility in degrading two- and three-ring PAHs. Moreover, catechol 2,3-dioxygenase activity was detected in lysates, indicating that this strain utilizes the meta-cleavage pathway for aromatic compound degradation. Cells produced surface blebs and contained a single polar flagellum. The predominant isoprenoid quinone of strain TG408 was Q-8, and the dominant fatty acids were C(16:0), C(16:1) ω7c, and C(18:1) ω7c. The G+C content of the isolate's DNA was 64.3 mol% ± 0.34 mol%. On the basis of distinct phenotypic and genotypic characteristics, strain TG408 represents a novel genus and species in the class Gammaproteobacteria for which the name Polycyclovorans algicola gen. nov., sp. nov., is proposed. Quantitative PCR primers targeting the 16S rRNA gene of this strain were developed and used to show that this organism is found associated with other species of marine phytoplankton. Phytoplankton may be a natural biotope in the ocean where new species of hydrocarbon-degrading bacteria await discovery and which contribute significantly to natural remediation processes.

  11. Detection of Aryl Hydrocarbon Receptor Activation by Some Chemicals in Food Using a Reporter Gene Assay

    PubMed Central

    Amakura, Yoshiaki; Tsutsumi, Tomoaki; Yoshimura, Morio; Nakamura, Masafumi; Handa, Hiroshi; Matsuda, Rieko; Teshima, Reiko; Watanabe, Takahiro

    2016-01-01

    The purpose of this study was to examine whether a simple bioassay used for the detection of dioxins (DXNs) could be applied to detect trace amounts of harmful DXN-like substances in food products. To identify substances with possible DXN-like activity, we assessed the ability of various compounds in the environment to bind the aryl hydrocarbon receptor (AhR) that binds specifically to DXNs. The compounds tested included 19 polycyclic aromatic hydrocarbons (PAHs), 20 PAH derivatives (nitrated, halogenated, and aminated derivatives), 23 pesticides, six amino acids, and eight amino acid metabolites. The AhR binding activities (AhR activity) of these compounds were measured using the chemical activated luciferase gene expression (CALUX) reporter gene assay system. The majority of the PAHs exhibited marked AhR activity that increased in a concentration-dependent manner. Furthermore, there was a positive link between AhR activity and the number of aromatic rings in the PAH derivatives. Conversely, there appeared to be a negative correlation between AhR activity and the number of chlorine residues present on halogenated PAH derivatives. However, there was no correlation between AhR activity and the number and position of substituents among nitrated and aminated derivatives. Among the pesticides tested, the indole-type compounds carbendazim and thiabendazole showed high levels of activity. Similarly, the indole compound tryptamine was the only amino acid metabolite to induce AhR activity. The results are useful in understanding the identification and characterization of AhR ligands in the CALUX assay. PMID:28231110

  12. Effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds using a modified QSAR model.

    PubMed

    Lim, Seung Joo; Fox, Peter

    2014-02-01

    The effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds were investigated using a modified half life equation. The potential future pharmaceutical compounds investigated were approximately 2000 pharmaceutical drugs currently undergoing the United States Food and Drug Administration (US FDA) testing. EPI Suite (BIOWIN) model estimates the fates of compounds based on the biodegradability under aerobic conditions. While BIOWIN considered the biodegradability of a compound only, the half life equation used in this study was modified by biodegradability, sorption and cometabolic oxidation. It was possible that the potential future pharmaceutical compounds were more accurately estimated using the modified half life equation. The modified half life equation considered sorption and cometabolic oxidation of halogenated aromatic/aliphatics and nitrogen(N)-heterocyclic aromatics in the sub-surface, while EPI Suite (BIOWIN) did not. Halogenated aliphatics in chemicals were more persistent than halogenated aromatics in the sub-surface. In addition, in the sub-surface environment, the fates of organic chemicals were much more affected by halogenation in chemicals than by nitrogen(N)-heterocyclic aromatics. © 2013.

  13. Insight into unresolved complex mixtures of aromatic hydrocarbons in heavy oil via two-dimensional gas chromatography coupled with time-of-flight mass spectrometry analysis.

    PubMed

    Weng, Na; Wan, Shan; Wang, Huitong; Zhang, Shuichang; Zhu, Guangyou; Liu, Jingfu; Cai, Di; Yang, Yunxu

    2015-06-12

    The aromatic hydrocarbon fractions of five crude oils representing a natural sequence of increasing degree of biodegradation from the Liaohe Basin, NE, China, were analyzed using conventional gas chromatography-mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography (GC×GC). Because of the limited peak capability and low resolution, compounds in the aromatic fraction of a heavily biodegraded crude oil that were analyzed by GC-MS appeared as unresolved complex mixtures (UCMs) or GC "humps". They could be separated based on their polarity by GC×GC. UCMs are composed mainly of aromatic biomarkers and aromatic hydrocarbons with branched alkanes or cycloalkanes substituents. The quantitative results achieved by GC×GC-FID were shown that monoaromatic hydrocarbons account for the largest number and mass of UCMs in the aromatic hydrocarbon fraction of heavily biodegraded crude oil, at 45% by mass. The number and mass of diaromatic hydrocarbons ranks second at 33% by mass, followed by the aromatic biomarker compounds, triaromatic, tetraaromatic, and pentaaromatic hydrocarbons, that account for 10%, 6%, 1.5%, and 0.01% of all aromatic compounds by mass, respectively. In the heavily biodegraded oil, compounds with monocyclic cycloalkane substituents account for the largest proportion of mono- and diaromatic hydrocarbons, respectively. The C4-substituted compounds account for the largest proportion of naphthalenes and the C3-substituted compounds account for the largest proportion of phenanthrenes, which is very different from non-biodegraded, slightly biodegraded, and moderately biodegraded crude oil. It is inferred that compounds of monoaromatic, diaromatic and triaromatic hydrocarbons are affected by biodegradation, that compounds with C1-, C2-substituents are affected by the increase in degree of biodegradation, and that their relative content decreased, whereas compounds with C3-substituents or more were affected slightly or unaffected, and their relative content also increased. The varying regularity of relative content of substituted compounds may be used to reflect the degree of degradation of heavy oil. Moreover, biomarkers for the aromatic hydrocarbons of heavily biodegraded crude oil are mainly aromatic steranes, aromatic secohopanes, aromatic pentacyclotriterpanes, and benzohopanes. According to resultant data, aromatic secohopanes could be used as a specific marker because of their relatively high concentration. This aromatic compound analysis of a series of biodegraded crude oil is useful for future research on the quantitative characterization of the degree of biodegradation of heavy oil, unconventional oil maturity evaluation, oil source correlation, depositional environment, and any other geochemical problems. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. New insights into thermal decomposition of polycyclic aromatic hydrocarbon oxyradicals.

    PubMed

    Liu, Peng; Lin, He; Yang, Yang; Shao, Can; Gu, Chen; Huang, Zhen

    2014-12-04

    Thermal decompositions of polycyclic aromatic hydrocarbon (PAH) oxyradicals on various surface sites including five-membered ring, free-edge, zigzag, and armchair have been systematically investigated by using ab initio density functional theory B3LYP/6-311+G(d,p) basis set. The calculation based on Hückel theory indicates that PAHs (3H-cydopenta[a]anthracene oxyradical) with oxyradicals on a five-membered ring site have high chemical reactivity. The rate coefficients of PAH oxyradical decomposition were evaluated by using Rice-Ramsperger-Kassel-Marcus theory and solving the master equations in the temperature range of 1500-2500 K and the pressure range of 0.1-10 atm. The kinetic calculations revealed that the rate coefficients of PAH oxyradical decomposition are temperature-, pressure-, and surface site-dependent, and the oxyradical on a five-membered ring is easier to decompose than that on a six-membered ring. Four-membered rings were found in decomposition of the five-membered ring, and a new reaction channel of PAH evolution involving four-membered rings is recommended.

  15. 1-(2,4-Di-nitro-phen-yl)-2-[(E)-(3,4,5-tri-meth-oxy-benzyl-idene)]hydrazine.

    PubMed

    Chantrapromma, Suchada; Ruanwas, Pumsak; Boonnak, Nawong; Chidan Kumar, C S; Fun, Hoong-Kun

    2014-02-01

    Mol-ecules of the title compound, C16H16N4O7, are not planar with a dihedral angle of 5.50 (11)° between the substituted benzene rings. The two meta-meth-oxy groups of the 3,4,5-tri-meth-oxy-benzene moiety lie in the plane of the attached ring [Cmeth-yl-O-C-C torsion angles -0.1 (4)° and -3.7 (3)°] while the para-meth-oxy substituent lies out of the plane [Cmeth-yl-O-C-C, -86.0 (3)°]. An intra-molecular N-H⋯O hydrogen bond involving the 2-nitro substituent generates an S(6) ring motif. In the crystal structure, mol-ecules are linked by weak C-H⋯O inter-actions into screw chains, that are arranged into a sheet parallel to the bc plane. These sheets are connected by π-π stacking inter-actions between the nitro and meth-oxy substituted aromatic rings with a centroid-centroid separation of 3.9420 (13) Å. C-H⋯π contacts further stabilize the two-dimensional network.

  16. Purification, crystallization and X-ray diffraction analysis of a novel ring-cleaving enzyme (BoxC{sub C}) from Burkholderia xenovorans LB400

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bains, Jasleen; Boulanger, Martin J., E-mail: mboulang@uvic.ca

    2008-05-01

    Preliminary X-ray diffraction studies of a novel ring-cleaving enzyme from B. xenovorans LB400 encoded by the benzoate-oxidation (box) pathway. The assimilation of aromatic compounds by microbial species requires specialized enzymes to cleave the thermodynamically stable ring. In the recently discovered benzoate-oxidation (box) pathway in Burkholderia xenovorans LB400, this is accomplished by a novel dihydrodiol lyase (BoxC{sub C}). Sequence analysis suggests that BoxC{sub C} is part of the crotonase superfamily but includes an additional uncharacterized region of approximately 115 residues that is predicted to mediate ring cleavage. Processing of X-ray diffraction data to 1.5 Å resolution revealed that BoxC{sub C} crystallizedmore » with two molecules in the asymmetric unit of the P2{sub 1}2{sub 1}2{sub 1} space group, with a solvent content of 47% and a Matthews coefficient of 2.32 Å{sup 3} Da{sup −1}. Selenomethionine BoxC{sub C} has been purified and crystals are currently being refined for anomalous dispersion studies.« less

  17. Biodegradation of Aromatic Compounds by Escherichia coli

    PubMed Central

    Díaz, Eduardo; Ferrández, Abel; Prieto, María A.; García, José L.

    2001-01-01

    Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications. PMID:11729263

  18. Revisiting shape selectivity in liquid chromatography for polycyclic aromatic hydrocarbons (PAHs) - six-ring and seven-ring Cata-condensed PAH isomers of molecular mass 328 Da and 378 Da.

    PubMed

    Oña-Ruales, Jorge O; Sander, Lane C; Wilson, Walter B; Wise, Stephen A

    2018-01-01

    The relationship of reversed-phase liquid chromatography (RPLC) retention on a polymeric C 18 stationary phase and the shape of polycyclic aromatic hydrocarbons (PAHs) was investigated for three-ring to seven-ring cata-condensed isomers. We report the first RPLC separation for six-ring and seven-ring cata-condensed PAH isomers. Correlations of LC retention and shape parameters (length-to-breath ratio, L/B and thickness, T) were investigated for 2 three-ring isomers (molecular mass 178 Da), 5 four-ring isomers (molecular mass 228 Da), 11 five-ring isomers (molecular mass 278 Da), 17 six-ring isomers (molecular mass 328 Da), and 20 seven-ring isomers (molecular mass 378 Da). Significant linear correlations were found for all isomer groups (r = 0.71 to 0.94). Nonplanarity of the PAH isomers was found to influence retention (i.e., nonplanar isomers eluting earlier than expected based on L/B) and linear correlations of retention vs. T for isomer groups containing nonplanar isomers were significant (r = 0.71 to 0.86). Graphical abstract.

  19. Synthesis of Secondary Aromatic Amides via Pd-Catalyzed Aminocarbonylation of Aryl Halides Using Carbamoylsilane as an Amide Source.

    PubMed

    Tong, Wenting; Cao, Pei; Liu, Yanhong; Chen, Jianxin

    2017-11-03

    Using N-methoxymethyl-N-organylcarbamoyl(trimethyl)silanes as secondary amides source, the direct transformation of aryl halides into the corresponding secondary aromatic amides via palladium-catalyzed aminocarbonylation is described. The reactions tolerated a broad range of functional groups on the aryl ring except big steric hindrance of substituent. The types and the relative position of substituents on the aryl ring impact the coupling efficiency.

  20. Polycyclic aromatic hydrocarbons in soils and crops after irrigation of wastewater discharged from domestic sewage treatment plants.

    PubMed

    Chung, N J; Cho, J Y; Park, S W; Park, B J; Hwang, S A; Park, T I

    2008-08-01

    The effects of domestic wastewater application on the translocation and accumulation of polycyclic aromatic hydrocarbons (PAHs) in soil and crops (rice, lettuce, and barley) were investigated by Wagner's pot experiment. In the soils and crops after domestic wastewater irrigation, high-molecular weight PAHs (5 to 6 ring) were not detected, but low-molecular weight PAHs (3 to 4 ring) were only detected at trace levels.

  1. Effects of Alternative Fuels and Aromatics on Gas-Turbine Particle Emissions

    NASA Astrophysics Data System (ADS)

    Thornhill, K. L., II; Moore, R.; Winstead, E.; Anderson, B. E.; Klettlinger, J. L.; Ross, R. C.; Surgenor, A.

    2015-12-01

    This presentation describes experiments conducted with a Honeywell GTCP36-150 Auxiliary Power Unit (APU) to evaluate the effects of varying fuel composition on particle emissions. The APU uses a single-stage compressor stage, gas turbine engine with a can-type combustor to generate bypass flow and electrical power for supporting small aircraft and helicopters. It is installed in a "hush-house" at NASA Glenn Research Center and is configured as a stand-alone unit that can be fueled from an onboard tank or external supply. It operates at constant RPM, but its fuel flow can be varied by changing the electrical load or volume of bypass flow. For these tests, an external bank of resistors were attached to the APU's DC and AC electrical outlets and emissions measurements were made at low, medium and maximum electrical current loads. Exhaust samples were drawn from several points downstream in the exhaust duct and fed to an extensive suite of gas and aerosol sensors installed within a mobile laboratory parked nearby. Aromatic- and sulfur-free synthetic kerosenes from Rentech, Gevo, UOP, Amyris and Sasol were tested and their potential to reduce PM emissions evaluated against a single Jet A1 base fuel. The role of aromatic compounds in regulating soot emissions was also evaluated by adding metered amounts of aromatic blends (Aro-100, AF-Blend, SAK) and pure compounds (tetracontane and 1-methylnaphthalene) to a base alternative fuel (Sasol). Results show that, relative to Jet A1, alternative fuels reduce nonvolatile particle number emissions by 50-80% and--by virtue of producing much smaller particles—mass emissions by 65-90%; fuels with the highest hydrogen content produced the greatest reductions. Nonvolatile particle emissions varied in proportion to fuel aromatic content, with additives containing the most complex ring structures producing the greatest emission enhancements.

  2. Spectroscopic study of the charge-transfer complexes TiCl4/styrene and TiCl4/polystyrene

    NASA Astrophysics Data System (ADS)

    Gonçalves, Norberto S.; Noda, Lúcia. K.

    2017-10-01

    In this work, solutions of TiCl4/styrene and TiCl4/polystyrene charge-transfer complexes in CHCl3 or CDCl3 were investigated by UV-vis, resonance Raman and 1H NMR spectroscopies in order to study their molecular and electronic structures. Both show a yellow colour due to absorption in the 400 nm region, related to a charge-transfer transition. In Raman spectra, as the excitation approaches the resonance region, the primary enhancement of aromatic ring modes was mainly observed, rather than intensification of the vinylic double-bond stretch. Under the experimental conditions it was observed that formation of polystyrene takes place, as showed by 1H NMR spectra, and the most significant interaction occurs at the aromatic ring, as supported by the results from interaction of TiCl4 with polystyrene, as indicated by the charge-transfer band and resonant intensification of the aromatic ring modes.

  3. Constructing an atomic-resolution model of human P2X7 receptor followed by pharmacophore modeling to identify potential inhibitors.

    PubMed

    Ahmadi, Mehdi; Nowroozi, Amin; Shahlaei, Mohsen

    2015-09-01

    The P2X purinoceptor 7 (P2X7R) is a trimeric ATP-activated ion channel gated by extracellular ATP. P2X7R has important role in numerous diseases including pain, neurodegeneration, and inflammatory diseases such as rheumatoid arthritis and osteoarthritis. In this prospective, the discovery of small-molecule inhibitors for P2X7R as a novel therapeutic target has received considerable attention in recent years. At first, 3D structure of P2X7R was built by using homology modeling (HM) and a 50ns molecular dynamics simulation (MDS). Ligand-based quantitative pharmacophore modeling methodology of P2X7R antagonists were developed based on training set of 49 compounds. The best four-feature pharmacophore model, includes two hydrophobic aromatic, one hydrophobic and one aromatic ring features, has the highest correlation coefficient (0.874), cost difference (368.677), low RMSD (2.876), as well as it shows a high goodness of fit and enrichment factor. Consequently, some hit compounds were introduced as final candidates by employing virtual screening and molecular docking procedure simultaneously. Among these compounds, six potential molecule were identified as potential virtual leads which, as such or upon further optimization, can be used to design novel P2X7R inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Radiolysis of N-acetyl amino acids as model compounds for radiation degradation of polypeptides

    NASA Astrophysics Data System (ADS)

    Wayne Garrett, R.; Hill, David J. T.; Ho, Sook-Ying; O'Donnell, James H.; O'Sullivan, Paul W.; Pomery, Peter J.

    Radiation chemical yields of (i) the volatile radiolysis products and (ii) the trapped free radicals from the y-radiolysis of the N-acetyl derivatives of glycine, L-valine, L-phenylalanine and L-tyrosine in the polycrystalline state have been determined at room temperature (303 K). Carbon dioxide was found to be the major molecular product for all these compounds with G(CO 2) varying from 0.36 for N-acetyl-L-tyrosine to 8 for N-acetyl-L-valine. There was evidence for some scission of the N-C α bond, indicated by the production of acetamide and the corresponding aliphatic acid, but the determination reaction was found to be of much lesser importance than the decarboxylation reaction. A protective effect of the aromatic ring in N-acetyl-L-phenylalanine and in N-acetyl-L-tyrosine was indicated by the lower yields of volatile products for these compounds. The yields of trapped free radicals were found to vary with the nature of the amino acid side chain, increasing with chain length and chain branching. The radical yields were decreased by incorporation of an aromatic moiety in the side chain, this effect being greater for the tyrosyl side chain than for the phenyl side chain. The G(R·) values showed a good correlation with G(CO 2) indicating that a common reaction may be involved in radical production and carbon dioxide formation.

  5. Insight into the binding interactions of CYP450 aromatase inhibitors with their target enzyme: a combined molecular docking and molecular dynamics study.

    PubMed

    Galeazzi, Roberta; Massaccesi, Luca

    2012-03-01

    CYP450 aromatase catalyzes the terminal and rate-determining step in estrogen synthesis, the aromatization of androgens, and its inhibition is an efficient approach to treating estrogen-dependent breast cancer. Insight into the molecular basis of the interaction at the catalytic site between CYP450 aromatase inhibitors and the enzyme itself is required in order to design new and more active compounds. Hence, a combined molecular docking-molecular dynamics study was carried out to obtain the structure of the lowest energy association complexes of aromatase with some third-generation aromatase inhibitors (AIs) and with other novel synthesized letrozole-derived compounds which showed high in vitro activity. The results obtained clearly demonstrate the role of the pharmacophore groups present in the azaheterocyclic inhibitors (NSAIs)-namely the triazolic ring and highly functionalized aromatic moieties carrying H-bond donor or acceptor groups. In particular, it was pointed out that all of them can contribute to inhibition activity by interacting with residues of the catalytic cleft, but the amino acids involved are different for each compound, even if they belong to the same class. Furthermore, the azaheterocyclic group strongly coordinates with the Fe(II) of heme cysteinate in the most active NSAI complexes, while it prefers to adopt another orientation in less active ones.

  6. Secondary Structures in a Freeze-Dried Lignite Humic Acid Fraction Caused by Hydrogen-Bonding of Acidic Protons with Aromatic Rings.

    PubMed

    Cao, Xiaoyan; Drosos, Marios; Leenheer, Jerry A; Mao, Jingdong

    2016-02-16

    A lignite humic acid (HA) was separated from inorganic and non-HA impurities (i.e., aluminosilicates, metals) and fractionated by a combination of dialysis and XAD-8 resin. Fractionation revealed a more homogeneous structure of lignite HA. New and more specific structural information on the main lignite HA fraction is obtained by solid-state nuclear magnetic resonance (NMR) spectroscopy. Quantitative (13)C multiple cross-polarization (multiCP) NMR indicated oxidized phenyl propane structures derived from lignin. MultiCP experiments, conducted on potassium HA salts titrated to pH 10 and pH 12, revealed shifts consistent with carboxylate and phenolate formation, but structural changes associated with enolate formation from aromatic beta keto acids were not detected. Two-dimensional (1)H-(13)C heteronuclear correlation (2D HETCOR) NMR indicated aryl-aliphatic ketones, aliphatic and aromatic carboxyl groups, phenol, and methoxy phenyl ethers. Acidic protons from carboxyl groups in both the lignite HA fraction and a synthetic HA-like polycondensate were found to be hydrogen-bonded with electron-rich aromatic rings. Our results coupled with published infrared spectra provide evidence for the preferential hydrogen bonding of acidic hydrogens with electron-rich aromatic rings rather than adjacent carbonyl groups. These hydrogen-bonding interactions likely result from stereochemical arrangements in primary structures and folding.

  7. Anti-Amyloidogenic Properties of Some Phenolic Compounds

    PubMed Central

    Porzoor, Afsaneh; Alford, Benjamin; Hügel, Helmut M.; Grando, Danilla; Caine, Joanne; Macreadie, Ian

    2015-01-01

    A family of 21 polyphenolic compounds consisting of those found naturally in danshen and their analogues were synthesized and subsequently screened for their anti-amyloidogenic activity against the amyloid beta peptide (Aβ42) of Alzheimer’s disease. After 24 h incubation with Aβ42, five compounds reduced thioflavin T (ThT) fluorescence, indicative of their anti-amyloidogenic propensity (p < 0.001). TEM and immunoblotting analysis also showed that selected compounds were capable of hindering fibril formation even after prolonged incubations. These compounds were also capable of rescuing the yeast cells from toxic changes induced by the chemically synthesized Aβ42. In a second assay, a Saccharomyces cerevisiae AHP1 deletant strain transformed with GFP fused to Aβ42 was treated with these compounds and analyzed by flow cytometry. There was a significant reduction in the green fluorescence intensity associated with 14 compounds. We interpret this result to mean that the compounds had an anti-amyloid-aggregation propensity in the yeast and GFP-Aβ42 was removed by proteolysis. The position and not the number of hydroxyl groups on the aromatic ring was found to be the most important determinant for the anti-amyloidogenic properties. PMID:25898401

  8. 4,4′-[Ethylenebis(nitrilomethylidyne)]dibenzonitrile

    PubMed Central

    Kia, Reza; Fun, Hoong-Kun; Kargar, Hadi

    2009-01-01

    The mol­ecule of the title Schiff base compound, C18H14N4, lies across a crystallographic inversion centre and adopts an E configuration with respect to the azomethine (C=N) bonds. The imino groups are coplanar with the aromatic rings with a maximum deviation of 0.1574 (12) Å for the N atom. Within the mol­ecule, the planar units are parallel, but extend in opposite directions from the dimethyl­ene bridge. In the crystal structure, pairs of inter­molecular C—H⋯N hydrogen bonds link neighbouring mol­ecules into centrosymmetric dimers with R 2 2(10) ring motifs. An inter­esting feature of the crystal structure is the short inter­molecular C⋯C inter­action with a distance of 3.3821 (13) Å, which is shorter than the sum of the van der Waals radius of a carbon atom. PMID:21582425

  9. Elucidating the mass spectrum of the retronecine alkaloid using DFT calculations.

    PubMed

    Modesto-Costa, Lucas; Martinez, Sabrina T; Pinto, Angelo C; Vessecchi, Ricardo; Borges, Itamar

    2018-06-23

    Pyrrolizidine alkaloids are natural molecules playing important roles in different biochemical processes in nature and in humans. In this work, the electron ionization mass spectrum (EI-MS) of retronecine, an alkaloid molecule found in plants, is investigated computationally. Its mass spectrum can be characterized by three main fragment ions having the following m/z ratios: 111, 94 and 80. In order to rationalize the mass spectrum, minima and transition state geometries were computed using density functional theory (DFT). It was showed that the dissociation process includes an aromatization of the originally five-membered ring of retronecine converted into a six-membered ring compound. A fragmentation pathway mechanism involving dissociation activation barriers that are easily overcome by the initial ionization energy was found. From the computed quantum chemical geometric, atomic charges and energetic parameters, the abundance of each ion in the mass spectrum of retronecine was discussed. This article is protected by copyright. All rights reserved.

  10. The effect of sewage sludge fertilization on the concentration of PAHs in urban soils.

    PubMed

    Wołejko, Elżbieta; Wydro, Urszula; Jabłońska-Trypuć, Agata; Butarewicz, Andrzej; Łoboda, Tadeusz

    2018-01-01

    This paper analyses sources of sixteen PAHs - polycyclic aromatic hydrocarbons in urbanized areas by using selected diagnostic ratios. Simultaneously, an attempt was made to determine how sewage sludge changes PAHs content in urbanized areas soils. In the experiment three lawns along the main roads in Bialystok with different traffic intensity, three doses of sewage sludge and two years of study were considered. There was no effect of fertilization with sewage sludge on the sum of 16 PAHs in urban soil samples, nevertheless, the sum of 16 PAHs was reduced from 2.6 in 2011 to 2.3 mg/kg in 2012. Among 16 tested PAHs compounds, benzo[a]pyrene was the most dominant compound in samples collected in both years - about 15% of all PAHs. The results suggest that application of sludge into the soil did not influence the concentration of 2-3-ring, 4-ring and 5-6-ring PAHs. For the objects fertilized with a dose 150.0 Mg/ha, of sludge the total sum of potentially carcinogenic PAHs in the urban soil lowered by approximately 68% in comparison with the control plots. PAHs contamination of the urban soil samples resulted from the influence of coal, petroleum and biomass combustion. Moreover, PAHs can enter soil via at mospheric deposition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Structure-Activity Relationship and Pharmacokinetic Studies of 1,5-Diheteroarylpenta-1,4-dien-3-ones: A Class of Promising Curcumin-Based Anticancer Agents.

    PubMed

    Wang, Rubing; Chen, Chengsheng; Zhang, Xiaojie; Zhang, Changde; Zhong, Qiu; Chen, Guanglin; Zhang, Qiang; Zheng, Shilong; Wang, Guangdi; Chen, Qiao-Hong

    2015-06-11

    Forty-three 1,5-diheteroaryl-1,4-pentadien-3-ones were designed as potential curcumin mimics, structurally featuring a central five-carbon dienone linker and two identical nitrogen-containing aromatic rings. They were synthesized using a Horner-Wadsworth-Emmons reaction as the critical step and evaluated for their cytotoxicity and antiproliferative activities toward both androgen-insensitive and androgen-sensitive prostate cancer cell lines and an aggressive cervical cancer cell line. Most of the synthesized compounds showed distinctly better in vitro potency than curcumin in the four cancer cell lines. The structure-activity data acquired from the study validated (1E,4E)-1,5-dihereroaryl-1,4-pentadien-3-ones as an excellent scaffold for in-depth development for clinical treatment of prostate and cervical cancers. 1-Alkyl-1H-imidazol-2-yl, ortho pyridyl, 1-alkyl-1H-benzo[d]imidazole-2-yl, 4-bromo-1-methyl-1H-pyrazol-3-yl, thiazol-2-yl, and 2-methyl-4-(trifluoromethyl)thiazol-5-yl were identified as optimal heteroaromatic rings for the promising in vitro potency. (1E,4E)-1,5-Bis(2-methyl-4-(trifluoromethyl)thiazol-5-yl)penta-1,4-dien-3-one, featuring thiazole rings and trifluoromethyl groups, was established as the optimal lead compound because of its good in vitro potency and attractive in vivo pharmacokinetic profiles.

  12. A 3D QSAR pharmacophore model and quantum chemical structure--activity analysis of chloroquine(CQ)-resistance reversal.

    PubMed

    Bhattacharjee, Apurba K; Kyle, Dennis E; Vennerstrom, Jonathan L; Milhous, Wilbur K

    2002-01-01

    Using CATALYST, a three-dimensional QSAR pharmacophore model for chloroquine(CQ)-resistance reversal was developed from a training set of 17 compounds. These included imipramine (1), desipramine (2), and 15 of their analogues (3-17), some of which fully reversed CQ-resistance, while others were without effect. The generated pharmacophore model indicates that two aromatic hydrophobic interaction sites on the tricyclic ring and a hydrogen bond acceptor (lipid) site at the side chain, preferably on a nitrogen atom, are necessary for potent activity. Stereoelectronic properties calculated by using AM1 semiempirical calculations were consistent with the model, particularly the electrostatic potential profiles characterized by a localized negative potential region by the side chain nitrogen atom and a large region covering the aromatic ring. The calculated data further revealed that aminoalkyl substitution at the N5-position of the heterocycle and a secondary or tertiary aliphatic aminoalkyl nitrogen atom with a two or three carbon bridge to the heteroaromatic nitrogen (N5) are required for potent "resistance reversal activity". Lowest energy conformers for 1-17 were determined and optimized to afford stereoelectronic properties such as molecular orbital energies, electrostatic potentials, atomic charges, proton affinities, octanol-water partition coefficients (log P), and structural parameters. For 1-17, fairly good correlation exists between resistance reversal activity and intrinsic basicity of the nitrogen atom at the tricyclic ring system, frontier orbital energies, and lipophilicity. Significantly, nine out of 11 of a group of structurally diverse CQ-resistance reversal agents mapped very well on the 3D QSAR pharmacophore model.

  13. Essential oil composition of stems and fruits of Caralluma europaea N.E.Br. (Apocynaceae).

    PubMed

    Zito, Pietro; Sajeva, Maurizio; Bruno, Maurizio; Maggio, Antonella; Rosselli, Sergio; Formisano, Carmen; Senatore, Felice

    2010-01-27

    The essential oil of the stems and fruits of Caralluma europaea (Guss.) N.E.Br. (Apocynaceae) from Lampedusa Island has been obtained by hydrodistillation and its composition analyzed. The analyses allowed the identification and quantification of 74 volatile compounds, of which 16 were aromatic and 58 non-aromatic. Stems and fruits contained 1.4% and 2.7% of aromatic compounds respectively, while non-aromatic were 88.3% and 88.8%. Non-aromatic hydrocarbons were the most abundant compounds in both organs, followed by fatty acids. Data showed differences in the profiles between stems and fruits which shared only eighteen compounds; stems accounted for 38 compounds while fruits for 53. Fruits showed a higher diversity especially in aromatic compounds with twelve versus four in stems. Among the volatiles identified in stems and fruits of C. europaea 26 are present in other taxa of Apocynaceae, 52 are semiochemicals for many insects, and 21 have antimicrobial activity. The possible ecological role of the volatiles found is briefly discussed.

  14. Quantum control of coherent π -electron ring currents in polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Mineo, Hirobumi; Fujimura, Yuichi

    2017-12-01

    We present results for quantum optimal control (QOC) of the coherent π electron ring currents in polycyclic aromatic hydrocarbons (PAHs). Since PAHs consist of a number of condensed benzene rings, in principle, there exist various coherent ring patterns. These include the ring current localized to a designated benzene ring, the perimeter ring current that flows along the edge of the PAH, and the middle ring current of PAHs having an odd number of benzene rings such as anthracene. In the present QOC treatment, the best target wavefunction for generation of the ring current through a designated path is determined by a Lagrange multiplier method. The target function is integrated into the ordinary QOC theory. To demonstrate the applicability of the QOC procedure, we took naphthalene and anthracene as the simplest examples of linear PAHs. The mechanisms of ring current generation were clarified by analyzing the temporal evolutions of the electronic excited states after coherent excitation by UV pulses or (UV+IR) pulses as well as those of electric fields of the optimal laser pulses. Time-dependent simulations of the perimeter ring current and middle ring current of anthracene, which are induced by analytical electric fields of UV pulsed lasers, were performed to reproduce the QOC results.

  15. Exploratory breath analyses for assessing toxic dermal exposures of firefighters during suppression of structural burns.

    PubMed

    Pleil, Joachim D; Stiegel, Matthew A; Fent, Kenneth W

    2014-09-01

    Firefighters wear fireproof clothing and self-contained breathing apparatus (SCBA) during rescue and fire suppression activities to protect against acute effects from heat and toxic chemicals. Fire services are also concerned about long-term health outcomes from chemical exposures over a working lifetime, in particular about low-level exposures that might serve as initiating events for adverse outcome pathways (AOP) leading to cancer. As part of a larger US National Institute for Occupational Safety and Health (NIOSH) study of dermal exposure protection from safety gear used by the City of Chicago firefighters, we collected pre- and post-fire fighting breath samples and analyzed for single-ring and polycyclic aromatic hydrocarbons as bioindicators of occupational exposure to gas-phase toxicants. Under the assumption that SCBA protects completely against inhalation exposures, any changes in the exhaled profile of combustion products were attributed to dermal exposures from gas and particle penetration through the protective clothing. Two separate rounds of firefighting activity were performed each with 15 firefighters per round. Exhaled breath samples were collected onto adsorbent tubes and analyzed with gas-chromatography-mass spectrometry (GC-MS) with a targeted approach using selective ion monitoring. We found that single ring aromatics and some PAHs were statistically elevated in post-firefighting samples of some individuals, suggesting that fire protective gear may allow for dermal exposures to airborne contaminants. However, in comparison to a previous occupational study of Air Force maintenance personnel where similar compounds were measured, these exposures are much lower suggesting that firefighters' gear is very effective. This study suggests that exhaled breath sampling and analysis for specific targeted compounds is a suitable method for assessing systemic dermal exposure in a simple and non-invasive manner.

  16. POLYCYCLIC AROMATIC HYDROCARBONS ASSESSMENT IN SEDIMENT OF NATIONAL PARKS IN SOUTHEAST BRAZIL

    PubMed Central

    Meire, Rodrigo Ornellas; Azeredo, Antonio; de Souza Pereira, Márcia; Paulo, João; Torres, Machado; Malm, Olaf

    2008-01-01

    The aim of this work was to assess the levels of polycyclic aromatic hydrocarbons (PAHs) in the environment and their sources found in protected regions of southeastern Brazil. Samples of sediments were collected at four National Parks: Itatiaia National Park (PNIT), Serra da Bocaina National Park (PNSB), Serra dos Orgãos National Park (PNSO) and Jurubatiba National Park (PNJUB). The National Parks studied comprise rainforests, altitudinal fields and ‘restinga’ environments located in the Minas Gerais, Rio de Janeiro and São Paulo states. The sampling was conducted between 2002 and 2004 from June to September. In general, the environmental levels of PAHs found were similar to those in other remote areas around the globe. PNIT exhibited the highest median values of total PAHs in sediment (97 ng·g−1), followed by PNJUB (89 ng·g−1), PNSO (57 ng·g−1) and PNSB (27 ng·g−1). The highest levels of total PAHs (576 and 24430 ng·g−1) could be associated to a point source contamination where are characterizated for human activities. At PNSB and PNIT the PAH profiles were richer in 2 and 3 ring compounds, whereas at PNSO and PNJUB, the profiles exhibited 3 and 4 ring compounds. The phenanthrene predominance in most samples could indicate the influence of biogenic synthesis. The samples with a petrogenic pattern found in this study might be associated with the vicinity of major urban areas, highway traffic and/or industrial activities close to PNSO and PNIT. At PNIT and PNJUB, forest fires and slash and burn agricultural practices may drive the results towards a pyrolytic pattern. PMID:18472130

  17. Quasi-aromatic Möbius Metal Chelates.

    PubMed

    Mahmoudi, Ghodrat; Afkhami, Farhad A; Castiñeiras, Alfonso; García-Santos, Isabel; Gurbanov, Atash; Zubkov, Fedor I; Mitoraj, Mariusz P; Kukułka, Mercedes; Sagan, Filip; Szczepanik, Dariusz W; Konyaeva, Irina A; Safin, Damir A

    2018-04-16

    We report the design as well as structural and spectroscopic characterizations of two new coordination compounds obtained from Cd(NO 3 ) 2 ·4H 2 O and polydentate ligands, benzilbis(pyridin-2-yl)methylidenehydrazone (L I ) and benzilbis(acetylpyridin-2-yl)methylidenehydrazone (L II ), in a mixture with two equivalents of NH 4 NCS in MeOH, namely [Cd(SCN)(NCS)(L I )(MeOH)] (1) and [Cd(NCS) 2 (L II )(MeOH)] (2). Both L I and L II are bound via two pyridyl-imine units yielding a tetradentate coordination mode giving rise to the 12 π electron chelate ring. It has been determined for the first time (qualitatively and quantitatively), using the EDDB electron population-based method, the HOMA index, and the ETS-NOCV charge and energy decomposition scheme, that the chelate ring containing Cd II can be classified as a quasi-aromatic Möbius motif. Notably, using the methyl-containing ligand L II controls the exclusive presence of the NCS - connected with the Cd II atom (structure 2), while applying L I allows us to simultaneously coordinate NCS - and SCN - ligands (structure 1). Both systems are stabilized mostly by hydrogen bonding, C-H···π interactions, aromatic π···π stacking, and dihydrogen C-H···H-C bonds. The optical properties have been investigated by diffused reflectance spectroscopy as well as molecular and periodic DFT/TD-DFT calculations. The DFT-based ETS-NOCV analysis as well as periodic calculations led us to conclude that the monomers which constitute the obtained chelates are extremely strongly bonded to each other, and the calculated interaction energies are found to be in the regime of strong covalent connections. Intramolecular van der Waals dispersion forces, due to the large size of L I and L II , appeared to significantly stabilize these systems as well as amplify the aromaticity phenomenon.

  18. Binding of tetramethylammonium to polyether side-chained aromatic hosts. Evaluation of the binding contribution from ether oxygen donors.

    PubMed

    Bartoli, Sandra; De Nicola, Gina; Roelens, Stefano

    2003-10-17

    A set of macrocyclic and open-chain aromatic ligands endowed with polyether side chains has been prepared to assess the contribution of ether oxygen donors to the binding of tetramethylammonium (TMA), a cation believed incapable of interacting with oxygen donors. The open-chain hosts consisted of an aromatic binding site and side chains possessing a variable number of ether oxygen donors; the macrocyclic ligands were based on the structure of a previously investigated host, the dimeric cyclophane 1,4-xylylene-1,4-phenylene diacetate (DXPDA), implemented with polyether-type side chains in the backbone. Association to tetramethylammonium picrate (TMAP) was measured in CDCl(3) at T = 296 K by (1)H NMR titrations. Results confirm that the main contribution to the binding of TMA comes from the cation-pi interaction established with the aromatic binding sites, but they unequivocally show that polyether chains participate with cooperative contributions, although of markedly smaller entity. Water is also bound, but the two guests interact with aromatic rings and oxygen donors in an essentially noncompetitive way. An improved procedure for the preparation of cyclophanic tetraester derivatives has been developed that conveniently recycles the oligomeric ester byproducts formed in the one-pot cyclization reaction. An alternative entry to benzylic diketones has also been provided that makes use of a low-order cyanocuprate reagent to prepare in fair yields a class of compounds otherwise uneasily accessible.

  19. Role of Kekulé and Non-Kekulé Structures in the Radical Character of Alternant Polycyclic Aromatic Hydrocarbons: A TAO-DFT Study

    PubMed Central

    Yeh, Chia-Nan; Chai, Jeng-Da

    2016-01-01

    We investigate the role of Kekulé and non-Kekulé structures in the radical character of alternant polycyclic aromatic hydrocarbons (PAHs) using thermally-assisted-occupation density functional theory (TAO-DFT), an efficient electronic structure method for the study of large ground-state systems with strong static correlation effects. Our results reveal that the studies of Kekulé and non-Kekulé structures qualitatively describe the radical character of alternant PAHs, which could be useful when electronic structure calculations are infeasible due to the expensive computational cost. In addition, our results support previous findings on the increase in radical character with increasing system size. For alternant PAHs with the same number of aromatic rings, the geometrical arrangements of aromatic rings are responsible for their radical character. PMID:27457289

  20. Vasodilator effects and putative guanylyl cyclase stimulation by 2-nitro-1-phenylethanone and 2-nitro-2-phenyl-propane-1,3-diol on rat aorta.

    PubMed

    Vasconcelos, Thiago Brasileiro de; Ribeiro-Filho, Helder Veras; Lahlou, Saad; Pereira, José Geraldo de Carvalho; Oliveira, Paulo Sérgio Lopes de; Magalhães, Pedro Jorge Caldas

    2018-07-05

    Compounds containing a nitro group may reveal vasodilator properties. Several nitro compounds have a NO 2 group in a short aliphatic chain connected to an aromatic group. In this study, we evaluated in rat aorta the effects of two nitro compounds, with emphasis on a putative recruitment of the soluble guanylate cyclase (sGC) pathway to induce vasodilation. Isolated aortic rings were obtained from male Wistar rats to compare the effects induced by 2-nitro-1-phenylethanone (NPeth) or 2-nitro-2-phenyl-propane-1,3-diol (NPprop). In aortic preparations contracted with phenylephrine or KCl, NPeth and NPprop induced vasorelaxant effects that did not depend on the integrity of vascular endothelium. NPeth had a lesser vasorelaxant efficacy than NPprop and only the NPprop effects were inhibited by pretreatment with the sGC inhibitors, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or methylene blue. In an ODQ-preventable manner, NPprop inhibited the contractile component of the phenylephrine-induced response mediated by intracellular Ca 2+ release or by extracellular Ca 2+ recruitment through receptor- or voltage-operated Ca 2+ channels. In contrast, NPprop was inert against the transient contraction induced by caffeine in Ca 2+ -free medium. In an ODQ-dependent manner, NPprop inhibited the contraction induced by the protein kinase C activator phorbol 12,13-dibutyrate or by the tyrosine phosphatase inhibitor sodium orthovanadate. In silico docking analysis of a sGC homologous protein revealed preferential site for NPprop. In conclusion, the nitro compounds NPeth and NPprop induced vasorelaxation in rat aortic rings. Aliphatic chain substituents selectively interfered in the ability of these compounds to induce vasorelaxant effects, and only NPprop relaxed aortic rings via a sGC pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Phototransformation of the insecticide fipronil: identification of novel photoproducts and evidence for an alternative pathway of photodegradation.

    PubMed

    Raveton, Muriel; Aajoud, Asmae; Willison, John C; Aouadi, Heddia; Tissut, Michel; Ravanel, Patrick

    2006-07-01

    Fipronil is a recently discovered insecticide of the phenylpyrazole series. It has a highly selective biochemical mode of action, which has led to its use in a large number of important agronomical, household, and veterinary applications. Previous studies have shown that, during exposure to light, fipronil is converted into a desulfurated derivative (desulfinyl-fipronil), which has slightly reduced insecticidal activity. In this study, the photodegradation of fipronil was studied in solution at low light intensities (sunlight or UV lamp). In addition to desulfinyl-fipronil, a large number of minor photoproducts were observed, including diversely substituted phenylpyrazole derivatives and aniline derivatives that had lost the pyrazole ring. Desulfinylfipronil itself was shown to be relatively stable under both UV light and sunlight, with only limited changes occurring in the substitution of the aromatic ring. Since this compound accumulated to levels corresponding to only 30-55% of the amount of fipronil degraded, it was concluded that one or more alternative pathways of photodegradation must be operating. On the basis of the structurally identified photoproducts, it is proposed that fipronil photodegradation occurs via at least two distinct pathways, one of which involves desulfuration at the 4-position of the pyrazole ring giving the desulfinyl derivative and the other of which involves a different modification of the 4-substituent, leading to cleavage of the pyrazole ring and the formation of aniline derivatives. The latter compounds do not accumulate to high levels and may, therefore, be degraded further. The ecological significance of these results is discussed, particularly with regard to the insecticidal activity of the photoproducts.

  2. Light-induced yellowing of selectively 13C-enriched dehydrogenation polymers (DHPs). Part 2, NMR assignments and photoyellowing of aromatic ring 1-, 3-, 4-, and 5-13C DHPs

    Treesearch

    Jim Parkas; Magnus Paulsson; Terashima Noritsugu; Ulla Westermark; Sally Ralph

    2004-01-01

    Light-induced yellowing of lignocellulosicmaterials has been studied using 13C-enriched DHP (dehydrogenation polymer), selectively 13C-enriched at positions 1, 3, 4, and 5 in the aromatic ring, and quantitative solution state 13C NMR spectroscopy. The NMR study confirmed the results of previous studies using side-chain labeled DHP, mainly that coniferyl alcohol end...

  3. Methyl substituted polyimides containing carbonyl and ether connecting groups

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Havens, Stephen J. (Inventor)

    1992-01-01

    Polyimides were prepared from the reaction of aromatic dianhydrides with novel aromatic diamines having carbonyl and ether groups connecting aromatic rings containing pendant methyl groups. The methyl substituent polyimides exhibit good solubility and form tough, strong films. Upon exposure to ultraviolet irradiation and/or heat, the methyl substituted polyimides crosslink to become insoluble.

  4. Surface chemistry of aromatic reactants on Pt- and Mo-modified Pt catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Allison M.; Mark, Lesli; Rasmussen, Mathew J.

    Supported catalysts containing an oxophilic metal such as Mo and a noble metal such as Pt have shown promising activity and selectivity for deoxygenation of biomass-derived compounds. Here, we report that PtMo catalysts also promote hydrogenolysis of the model compound benzyl alcohol, while decarbonylation is most prevalent over unmodified Pt. A combination of single crystal surface science studies, density functional theory (DFT) calculations, and vapor phase upgrading experiments using supported catalysts was carried out to better understand the mechanism by which Mo promotes deoxygenation. Molybdenum was deposited in submonolayer quantities on a Pt(111) surface and reduced at high temperature. Temperature-programmedmore » desorption (TPD) experiments using benzyl alcohol as a reactant showed greatly enhanced yields of the deoxygenation product toluene at moderate Mo coverages. To understand how the interaction of the aromatic group with the surface influenced this reactivity, we investigated the adsorption of toluene as a probe molecule. We found that the addition of Mo to Pt(111) resulted in a significant decrease in toluene decomposition. DFT calculations indicated that this decrease was consistent with decreased aromatic adsorption strengths that accompany incorporation of Mo into the Pt subsurface. The weaker aromatic-surface interaction on Pt/Mo surfaces led to a tilted adsorption geometry for benzyl alcohol, which presumably promotes hydrogenolysis to produce toluene instead of decarbonylation to produce benzene and CO. Alumina-supported Pt and PtMo catalysts were also tested for benzyl alcohol deoxygenation. PtMo catalysts had a higher rate of toluene production and lower rates of benzene and benzaldehyde production. Additionally, when benzaldehyde was used as the reactant to measure decarbonylation activity the mass-normalized rate of benzene production was 2.5 times higher on Pt than PtMo. Altogether, the results of TPD, DFT, and supported catalyst experiments suggest that subsurface Mo sites weaken the binding of aromatic rings on PtMo surfaces; the weakened aromatic-surface interaction is correlated with an improvement in selectivity to C-O bond scission.« less

  5. Surface chemistry of aromatic reactants on Pt- and Mo-modified Pt catalysts

    DOE PAGES

    Robinson, Allison M.; Mark, Lesli; Rasmussen, Mathew J.; ...

    2016-11-01

    Supported catalysts containing an oxophilic metal such as Mo and a noble metal such as Pt have shown promising activity and selectivity for deoxygenation of biomass-derived compounds. Here, we report that PtMo catalysts also promote hydrogenolysis of the model compound benzyl alcohol, while decarbonylation is most prevalent over unmodified Pt. A combination of single crystal surface science studies, density functional theory (DFT) calculations, and vapor phase upgrading experiments using supported catalysts was carried out to better understand the mechanism by which Mo promotes deoxygenation. Molybdenum was deposited in submonolayer quantities on a Pt(111) surface and reduced at high temperature. Temperature-programmedmore » desorption (TPD) experiments using benzyl alcohol as a reactant showed greatly enhanced yields of the deoxygenation product toluene at moderate Mo coverages. To understand how the interaction of the aromatic group with the surface influenced this reactivity, we investigated the adsorption of toluene as a probe molecule. We found that the addition of Mo to Pt(111) resulted in a significant decrease in toluene decomposition. DFT calculations indicated that this decrease was consistent with decreased aromatic adsorption strengths that accompany incorporation of Mo into the Pt subsurface. The weaker aromatic-surface interaction on Pt/Mo surfaces led to a tilted adsorption geometry for benzyl alcohol, which presumably promotes hydrogenolysis to produce toluene instead of decarbonylation to produce benzene and CO. Alumina-supported Pt and PtMo catalysts were also tested for benzyl alcohol deoxygenation. PtMo catalysts had a higher rate of toluene production and lower rates of benzene and benzaldehyde production. Additionally, when benzaldehyde was used as the reactant to measure decarbonylation activity the mass-normalized rate of benzene production was 2.5 times higher on Pt than PtMo. Altogether, the results of TPD, DFT, and supported catalyst experiments suggest that subsurface Mo sites weaken the binding of aromatic rings on PtMo surfaces; the weakened aromatic-surface interaction is correlated with an improvement in selectivity to C-O bond scission.« less

  6. Conformational behavior of phenylglycines and hydroxyphenylglycines and non-planarity of phenyl rings.

    PubMed

    Nandel, Fateh S; Shafique, Mohd

    2014-10-01

    The non-proteinogenic amino acids--phenylglycine (PG) and hydroxyphenylglycine (HPG) are crucial components of certain peptidic natural products and are important for the preparation of various medicines. In this, study, the conformation of model dipeptides Ac-X-NHMe of PG, p-HPG and 3, 5-di-hydroxyphenylglycine (3, 5-DHPG) was studied both in R and S form by quantum mechanical (QM) and molecular dynamics approaches. On the energy scale, the conformational states of these molecules in both the R and S were found to be degenerate by QM studies, stabilized by non-covalent interactions like carbonyl--carbonyl interactions, carbonyl-lp .. π (aromatic ring) interactions etc. These interactions disappeared/weakened due to interaction of water molecules with carbonyl groups of backbone in simulation and water was found to interact with the aromatic ring through O(w)-H .. π or O(w)lp .. π interactions. The degeneracy of conformational states was lifted in favor of R-form of PG and DHPG and water molecules interactions with aromatic ring led to non-planarity of the aromatic ring. In simulation studies, irrespective of the starting geometry, the Φ, ψ values for the R form correspond to inverse β/inverse collagen region and for the S-form, the Φ, ψ values correspond to β/collagen region i.e., adopt single conformation. The obtained results were in conformity with the CD spectroscopic data on D-PG and D-p-HPG. The conformational behavior of the unusual amino acids might be of great help in designing of bioactive peptides/peptide based drugs to be realized in single conformation--an essential requirement.

  7. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1983-09-20

    A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.

  8. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, John M.; Napier, John M.; Travaglini, Michael A.

    1983-01-01

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced.

  9. Gene cloning and in vivo characterization of a dibenzothiophene dioxygenase from Xanthobacter polyaromaticivorans.

    PubMed

    Hirano, Shin-Ichi; Haruki, Mitsuru; Takano, Kazufumi; Imanaka, Tadayuki; Morikawa, Masaaki; Kanaya, Shigenori

    2006-02-01

    Xanthobacter polyaromaticivorans sp. nov. 127W is a bacterial strain that is capable of degrading a wide range of cyclic aromatic compounds such as dibenzothiophene, biphenyl, naphthalene, anthracene, and phenanthrene even under extremely low oxygen [dissolved oxygen (DO)< or = 0.2 ppm] conditions (Hirano et al., Biosci Biotechnol Biochem 68:557-564, 2004). A major protein fraction carrying dibenzothiophene degradation activity was purified. Based on its partial amino acid sequences, dbdCa gene encoding alpha subunit terminal oxygenase (DbdCa) and its flanking region were cloned and sequenced. A phylogenetic analysis based on the amino acid sequence demonstrates that DbdCa is a member of a terminal oxygenase component of group IV ring-hydroxylating dioxygenases for biphenyls and monocyclic aromatic hydrocarbons, rather than group III dioxygenases for polycyclic aromatic hydrocarbons. Gene disruption in dbdCa abolished almost of the degradation activity against biphenyl, dibenzothiophene, and anthracene. The gene disruption also impaired degradation activity of the strain under extremely low oxygen conditions (DO< or = 0.2 ppm). These results indicate that Dbd from 127W represents a group IV dioxygenase that is functional even under extremely low oxygen conditions.

  10. Molecular composition of rainwater and aerosol during rain events in León, Spain, using high resolution mass spectrometry.

    NASA Astrophysics Data System (ADS)

    Fee, Anna

    2017-04-01

    Anna Fee (1), Markus Kalberer (1), Roberto Fraile (2), Amaya Castro (2), Ana. I. Calvo (2), Carlos Blanco-Alegre (2), Fernanda Oduber (2) and Mário Cerqueira (3). 1 Department of Chemistry, University of Cambridge, UK. 2 Department of Applied Chemistry and Physics, IMARENAB, University of León, Spain. 3 Department of Environmental Planning, University of Aveiro, Portugal. A wide range of atmospheric compounds which are present in rainwater are often also present in aerosol. They can be taken up during cloud droplet formation (in-cloud scavenging) or washed out during precipitation (below-cloud scavenging). Such compounds including aromatic hydrocarbons and organic nitrogen containing compounds are hazardous to health. In this study, the organic chemical composition of rainwater and aerosol from rain events in León, Spain, is being analysed using high resolution mass spectrometry. Collected rainwater along with high volume and low volume filters from rain events which occurred during spring, summer and winter of 2016 have been selected for analysis. Rainwater samples were prepared using Polymeric Reversed Phase Solid Phase Extraction (SPE) and filters have been extracted in water with and without SPE. Three different SPE polymer based sorbents were tested; one for extracting neutral compounds and two which are more suitable for extracting organic compounds containing sulphate and other polar functional groups. The sorbent for extracting neutral compounds was found to yield a higher number of compounds from the sample extraction than the other two varieties. Kendrick masses, Van Krevelen plots and carbon oxidation states have been investigated to identify compounds and patterns. Preliminary results show a predominance in peaks with O/C ratios between 0.2 and 0.7 and H/C ratios between 1 and 2 in both rain and aerosol samples which indicates substituted aromatic compounds. Cellulose material and fatty acids may also be present. The rain samples also have a significant number of peaks with O/C ratios of 0.0 and H/C ratios between 0.5 and 1 which appear to be absent from the aerosol. These may be due to condensed aromatic rings and considering local meteorological factors will aid interpretation. More preliminary results show that on average 70% of assigned compounds in the rainwater contain nitrogen and 28% contain sulphur. In the aerosol, 54% of compounds contain nitrogen and 41% contain sulphur. Further analysis is also predicted to reveal significant seasonal trends between rainwater and aerosol samples.

  11. Polycyclic aromatic hydrocarbons profiles of spent drilling fluids deposited at Emu-Uno, Delta State, Nigeria.

    PubMed

    Iwegbue, Chukwujindu M A

    2011-10-01

    The concentrations and profiles of polycyclic aromatic hydrocarbons were determined in spent drilling fluid deposited at Emu-Uno, Delta State of Nigeria. The total concentrations of polycyclic aromatic hydrocarbons in the spent drilling fluid deposits ranged between 40 and 770 μg kg(-1). The PAHs profile were predominantly 2- and 3-rings with acenaphthalene, phenanthrene, fluorene being the predominant PAHs. The prevalence of 2- and 3-rings PAHs in the spent drilling fluid deposits indicate contamination of the drilling fluids with crude oil during drilling. Incorporation of spent drilling fluids into the soil has serious implication for soil, surface water and groundwater quality. © Springer Science+Business Media, LLC 2011

  12. A fruitful decade from 2005 to 2014 for anthraquinone patents.

    PubMed

    Hussain, Hidayat; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Green, Ivan R; Csuk, René; Ahmed, Ishtiaq; Shah, Afzah; Abbas, Ghulam; Rehman, Najeeb Ur; Ullah, Riaz

    2015-01-01

    Anthraquinones are aromatic compounds whose structures are related to anthracene (parent structure: 9,10-dioxoanthracene) for which various methods for their synthesis have been developed. In the past decade (2005 - 2014), much work has been done regarding anthraquinone chemistry in order to discover new compounds related to this scaffold as anticancer, antibacterial, antidiabetic, antiviral, anti-HCV, antifibrotic, fungicidal and anti-inflammatory agents. This review covers the patents on therapeutic activities of anthraquinones and their derivatives in the years between 2005 and 2014. A large portion of the therapeutic applications that were reported in international patents will be presented and discussed. Although a large number of patents have been registered over the last decade, this review is focused on important patents related to cancer, inflammation, infectious diseases, diabetic conditions and hepatitis C. The tricyclic planar ring system of anthraquinones displays a wide range of important pharmaceutical properties. By linking active anthraquinone analogs to other important pharmacophores or conjugates such as oximes, N-heterocycles, benzodiazepines or glycosyl ethers, their anticancer potential is enhanced. The ability of anthraquinone analogs to become more prominent as novel pharmaceutical agents may further be enhanced by fusing functionalized heterocyclic rings onto established anthraquinone cores.

  13. Oxidation of aromatic contaminants coupled to microbial iron reduction

    USGS Publications Warehouse

    Lovley, D.R.; Baedecker, M.J.; Lonergan, D.J.; Cozzarelli, I.M.; Phillips, E.J.P.; Siegel, D.I.

    1989-01-01

    THE contamination of sub-surface water supplies with aromatic compounds is a significant environmental concern1,2. As these contaminated sub-surface environments are generally anaerobic, the microbial oxidation of aromatic compounds coupled to nitrate reduction, sulphate reduction and methane production has been studied intensively1-7. In addition, geochemical evidence suggests that Fe(III) can be an important electron acceptor for the oxidation of aromatic compounds in anaerobic groundwater. Until now, only abiological mechanisms for the oxidation of aromatic compounds with Fe(III) have been reported8-12. Here we show that in aquatic sediments, microbial activity is necessary for the oxidation of model aromatic compounds coupled to Fe(III) reduction. Furthermore, a pure culture of the Fe(III)-reducing bacterium GS-15 can obtain energy for growth by oxidizing benzoate, toluene, phenol or p-cresol with Fe(III) as the sole electron acceptor. These results extend the known physiological capabilities of Fe(III)-reducing organisms and provide the first example of an organism of any type which can oxidize an aromatic hydrocarbon anaerobically. ?? 1989 Nature Publishing Group.

  14. Ring flips revisited: (13)C relaxation dispersion measurements of aromatic side chain dynamics and activation barriers in basic pancreatic trypsin inhibitor.

    PubMed

    Weininger, Ulrich; Modig, Kristofer; Akke, Mikael

    2014-07-22

    Intramolecular motions of proteins are critical for biological function. Transient structural fluctuations underlie a wide range of processes, including enzyme catalysis, ligand binding to buried sites, and generic protein motions, such as 180° rotation of aromatic side chains in the protein interior, but remain poorly understood. Understanding the dynamics and molecular nature of concerted motions requires characterization of their rates and energy barriers. Here we use recently developed (13)C transverse relaxation dispersion methods to improve our current understanding of aromatic ring flips in basic pancreatic trypsin inhibitor (BPTI). We validate these methods by benchmarking ring-flip rates against the three previously characterized cases in BPTI, namely, Y23, Y35, and F45. Further, we measure conformational exchange for one additional aromatic ring, F22, which can be interpreted in terms of a flip rate of 666 s(-1) at 5 °C. Upon inclusion of our previously reported result that Y21 also flips slowly [Weininger, U., et al. (2013) J. Phys. Chem. B 117, 9241-9247], the (13)C relaxation dispersion experiments thus reveal relatively slow ring-flip rates for five of eight aromatic residues in BPTI. These results are in contrast with previous reports, which have estimated that all rings, except Y23, Y35, and F45, flip with a high rate at ambient temperature. The (13)C relaxation dispersion data result in an updated rank order of ring-flip rates in BPTI, which agrees considerably better with that estimated from a recent 1 ms molecular dynamics trajectory than do previously published NMR data. However, significant quantitative differences remain between experiment and simulation, in that the latter yields flip rates that are in many cases too fast by 1-2 orders of magnitude. By measuring flip rates across a temperature range of 5-65 °C, we determined the activation barriers of ring flips for Y23, Y35, and F45. Y23 and F45 have identical activation parameters, suggesting that the fluctuations of the protein core around these residues are similar in character. Y35 differs from the other two in its apparent activation entropy. These results might be rationalized by the fact that Y23 and F45 are located in the same region of the structure while Y35 is remote from the other two rings. As indicated by our new results for the exceptionally well-characterized protein BPTI, (13)C relaxation dispersion experiments open the possibility of studying ring flips in a range of cases wider than that previously possible.

  15. The Aromatic Head Group of Spider Toxin Polyamines Influences Toxicity to Cancer Cells

    PubMed Central

    Wilson, David; McIntyre, Lachlan; Smith, Jennifer J.; Tribolet, Leon; Loukas, Alex; Liddell, Michael J.; Daly, Norelle L.

    2017-01-01

    Spider venoms constitute incredibly diverse libraries of compounds, many of which are involved in prey capture and defence. Polyamines are often prevalent in the venom and target ionotropic glutamate receptors. Here we show that a novel spider polyamine, PA366, containing a hydroxyphenyl-based structure is present in the venom of several species of tarantula, and has selective toxicity against MCF-7 breast cancer cells. By contrast, a polyamine from an Australian funnel-web spider venom, which contains an identical polyamine tail to PA366 but an indole-based head-group, is only cytotoxic at high concentrations. Our results suggest that the ring structure plays a role in the cytotoxicity and that modification to the polyamine head group might lead to more potent and selective compounds with potential as novel cancer treatments. PMID:29077051

  16. The Aromatic Head Group of Spider Toxin Polyamines Influences Toxicity to Cancer Cells.

    PubMed

    Wilson, David; Boyle, Glen M; McIntyre, Lachlan; Nolan, Matthew J; Parsons, Peter G; Smith, Jennifer J; Tribolet, Leon; Loukas, Alex; Liddell, Michael J; Rash, Lachlan D; Daly, Norelle L

    2017-10-27

    Spider venoms constitute incredibly diverse libraries of compounds, many of which are involved in prey capture and defence. Polyamines are often prevalent in the venom and target ionotropic glutamate receptors. Here we show that a novel spider polyamine, PA 366 , containing a hydroxyphenyl-based structure is present in the venom of several species of tarantula, and has selective toxicity against MCF-7 breast cancer cells. By contrast, a polyamine from an Australian funnel-web spider venom, which contains an identical polyamine tail to PA 366 but an indole-based head-group, is only cytotoxic at high concentrations. Our results suggest that the ring structure plays a role in the cytotoxicity and that modification to the polyamine head group might lead to more potent and selective compounds with potential as novel cancer treatments.

  17. Process for removing halogenated aliphatic and aromatic compounds from petroleum products. [Polychlorinated biphenyls; methylene chloride; perchloroethylene; trichlorofluoroethane; trichloroethylene; chlorobenzene

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1982-03-31

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contracting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible polyhydroxy compound, such as, water, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds in the low polar or nonpolar solvent by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered for recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 2 tables.

  18. 40 CFR 721.775 - Brominated aromatic com-pound (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Requirements as specified in § 721.80 (j) (use as an additive flame retardant for plastics) and (q). (iv... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a) Chemical...

  19. 40 CFR 721.775 - Brominated aromatic com-pound (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Requirements as specified in § 721.80 (j) (use as an additive flame retardant for plastics) and (q). (iv... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a) Chemical...

  20. 40 CFR 721.775 - Brominated aromatic com-pound (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Requirements as specified in § 721.80 (j) (use as an additive flame retardant for plastics) and (q). (iv... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Brominated aromatic com-pound (generic... Specific Chemical Substances § 721.775 Brominated aromatic com-pound (generic name). (a) Chemical...

  1. Hydrogenated Benzene in Circumstellar Environments: Insights into the Photostability of Super-hydrogenated PAHs

    NASA Astrophysics Data System (ADS)

    Quitián-Lara, Heidy M.; Fantuzzi, Felipe; Nascimento, Marco A. C.; Wolff, Wania; Boechat-Roberty, Heloisa M.

    2018-02-01

    Polycyclic aromatic hydrocarbons (PAHs), comprised of fused benzene (C6H6) rings, emit infrared radiation (3–12 μm) due to the vibrational transitions of the C–H bonds of the aromatic rings. The 3.3 μm aromatic band is generally accompanied by the band at 3.4 μm assigned to the vibration of aliphatic C–H bonds of compounds such as PAHs with an excess of peripheral H atoms (H n –PAHs). Herein we study the stability of fully hydrogenated benzene (or cyclohexane, C6H12) under the impact of stellar radiation in the photodissociation region (PDR) of NGC 7027. Using synchrotron radiation and time-of-flight mass spectrometry, we investigated the ionization and dissociation processes at energy ranges of UV (10–200 eV) and soft X-rays (280–310 eV). Density Functional Theory (DFT) calculations were used to determine the most stable structures and the relevant low-lying isomers of singly charged C6H12 ions. Partial Ion Yield (PIY) analysis gives evidence of the higher tendency toward dissociation of cyclohexane in comparison to benzene. However, because of the high photoabsorption cross-section of benzene at the C1s resonance edge, its photodissociation and photoionization cross-sections are enhanced, leading to a higher efficiency of dissociation of benzene in the PDR of NGC 7027. We suggest that a similar effect is experienced by PAHs in X-ray photon-rich environments, which ultimately acts as an auxiliary protection mechanism of super-hydrogenated polycyclic hydrocarbons. Finally, we propose that the single photoionization of cyclohexane could enhance the abundance of branched molecules in interstellar and circumstellar media.

  2. Structural Mechanism of Replication Stalling on a Bulky Amino-Polycyclic Aromatic Hydrocarbon DNA Adduct by a Y Family DNA Polymerase

    PubMed Central

    Kirouac, Kevin N.; Basu, Ashis K.; Ling, Hong

    2013-01-01

    Polycyclic aromatic hydrocarbons and their nitro derivatives are culprits of the detrimental health effects of environmental pollution. These hydrophobic compounds metabolize to reactive species and attach to DNA producing bulky lesions, such as N-[deoxyguanosine-8-yl]-1-aminopyrene (APG), in genomic DNA. The bulky adducts block DNA replication by high-fidelity polymerases and compromise replication fidelities and efficiencies by specialized lesion bypass polymerases. Here we present three crystal structures of the DNA polymerase Dpo4, a model translesion DNA polymerase of the Y family, in complex with APG-lesion-containing DNA in pre-insertion and extension stages. APG is captured in two conformations in the pre-insertion complex; one is highly exposed to the solvent, whereas the other is harbored in a shallow cleft between the finger and unique Y family little finger domain. In contrast, APG is in a single conformation at the extension stage, in which the pyrene ring is sandwiched between the little finger domain and a base from the turning back single-stranded template strand. Strikingly, a nucleotide intercalates the DNA helix to form a quaternary complex with Dpo4, DNA, and an incoming nucleotide, which stabilizes the distorted DNA structure at the extension stage. The unique APG DNA conformations in Dpo4 inhibit DNA translocation through the polymerase active site for APG bypass. We also modeled an insertion complex that illustrates a solvent-exposed pyrene ring contributing to an unstable insertion state. The structural work combined with our lesion replication assays provides a novel structural mechanism on bypass of DNA adducts containing polycyclic aromatic hydrocarbon moieties. PMID:23876706

  3. Structural mechanism of replication stalling on a bulky amino-polycyclic aromatic hydrocarbon DNA adduct by a y family DNA polymerase.

    PubMed

    Kirouac, Kevin N; Basu, Ashis K; Ling, Hong

    2013-11-15

    Polycyclic aromatic hydrocarbons and their nitro derivatives are culprits of the detrimental health effects of environmental pollution. These hydrophobic compounds metabolize to reactive species and attach to DNA producing bulky lesions, such as N-[deoxyguanosine-8-yl]-1-aminopyrene (APG), in genomic DNA. The bulky adducts block DNA replication by high-fidelity polymerases and compromise replication fidelities and efficiencies by specialized lesion bypass polymerases. Here we present three crystal structures of the DNA polymerase Dpo4, a model translesion DNA polymerase of the Y family, in complex with APG-lesion-containing DNA in pre-insertion and extension stages. APG is captured in two conformations in the pre-insertion complex; one is highly exposed to the solvent, whereas the other is harbored in a shallow cleft between the finger and unique Y family little finger domain. In contrast, APG is in a single conformation at the extension stage, in which the pyrene ring is sandwiched between the little finger domain and a base from the turning back single-stranded template strand. Strikingly, a nucleotide intercalates the DNA helix to form a quaternary complex with Dpo4, DNA, and an incoming nucleotide, which stabilizes the distorted DNA structure at the extension stage. The unique APG DNA conformations in Dpo4 inhibit DNA translocation through the polymerase active site for APG bypass. We also modeled an insertion complex that illustrates a solvent-exposed pyrene ring contributing to an unstable insertion state. The structural work combined with our lesion replication assays provides a novel structural mechanism on bypass of DNA adducts containing polycyclic aromatic hydrocarbon moieties. © 2013.

  4. Graphene-based materials via benzidine-assisted exfoliation and reduction of graphite oxide and their electrochemical properties

    NASA Astrophysics Data System (ADS)

    Vermisoglou, E. C.; Giannakopoulou, T.; Romanos, G.; Boukos, N.; Psycharis, V.; Lei, C.; Lekakou, C.; Petridis, D.; Trapalis, C.

    2017-01-01

    Benzidine, a compound bearing aromatic rings and terminal amino groups, was employed for the intercalation and simultaneous reduction of graphite oxide (GO). The aromatic diamine can be intercalated into GO as follows: (1) by grafting with the epoxy groups of GO, (2) by hydrogen bonding with the oxygen containing groups of GO. Stacking between benzidine aromatic rings and unoxidized domains of GO may occur through π-π interaction. The role of benzidine is influenced by pH conditions and the weight ratio GO/benzidine. Two weight ratios were tested i.e. 1:2 and 1:3. Under strong alkaline conditions through K2CO3 addition (pH ∼10.4-10.6) both intercalation and reduction of GO via amino groups occur, while under strong acidic conditions through HCl addition (pH ∼1.4-2.2) π-π stacking is preferred. When no base or acid is added (pH ∼5.2) and the weight ratio is 1:2, there are indications that reduction and π-π stacking occur, while at a GO/benzidine weight ratio 1:3 intercalation via amino groups and reduction seem to dominate. The aforementioned remarks render benzidine a multifunctional tool towards production of reduced graphene oxide. The effect of pH conditions and the GO/benzidine weight ratio on the quality and the electrochemical properties of the produced graphene-based materials were investigated. Cyclic voltammetry measurements using three-electrode cell and KCl aqueous solution as an electrolyte gave specific capacitance values up to ∼178 F/g. When electric double-layer capacitors (EDLC) were fabricated from these materials, the maximum capacitance in organic electrolyte i.e., tetraethyl ammonium tetrafluoroborate (TEABF4) in polycarbonate (PC) was ∼29 F/g.

  5. Normal-phase liquid chromatography retention behavior of polycyclic aromatic sulfur heterocycles and alkyl-substituted polycyclic aromatic sulfur heterocycle isomers on an aminopropyl stationary phase.

    PubMed

    Wilson, Walter B; Hayes, Hugh V; Sander, Lane C; Campiglia, Andres D; Wise, Stephen A

    2018-02-01

    Retention indices for 67 polycyclic aromatic sulfur heterocycles (PASHs) and 80 alkyl-substituted PASHs were determined using normal-phase liquid chromatography (NPLC) on an aminopropyl (NH 2 ) stationary phase. The retention behavior of PASH on the NH 2 phase is correlated with the number of aromatic carbon atoms and two structural characteristics have a significant influence on their retention: non-planarity (thickness, T) and the position of the sulfur atom in the bay-region of the structure. Correlations between solute retention on the NH 2 phase and T of PASHs were investigated for three cata-condensed (cata-) PASH isomer groups: (a) 13 four-ring molecular mass (MM) 234 Da cata-PASHs, (b) 20 five-ring MM 284 Da cata-PASHs, and (c) 12 six-ring MM 334 Da cata-PASHs. Correlation coefficients ranged from r = -0.49 (MM 234 Da) to r = -0.65 (MM 334 Da), which were significantly lower than structurally similar PAH isomer groups (r = -0.70 to r = -0.99). The NPLC retention behavior of the PASHs are compared to similar results for PAHs.

  6. Crystal structure of 1,3-bis­(1H-benzotriazol-1-yl­meth­yl)benzene

    PubMed Central

    Macías, Mario A.; Nuñez-Dallos, Nelson; Hurtado, John; Suescun, Leopoldo

    2016-01-01

    The mol­ecular structure of the title compound, C20H16N6, contains two benzotriazole units bonded to a benzene nucleus in a meta configuration, forming dihedral angles of 88.74 (11) and 85.83 (10)° with the central aromatic ring and 57.08 (9)° with each other. The three-dimensional structure is controlled mainly by weak C—H⋯N and C—H⋯π inter­actions. The mol­ecules are connected in inversion-related pairs, forming the slabs of infinite chains that run along the [-110] and [110] directions. PMID:27308049

  7. Diastereoselective Synthesis of a Strawberry Flavoring Agent by Epoxidation of Ethyl trans-b-Methylcinnamate

    NASA Astrophysics Data System (ADS)

    Pageau, Gayle J.; Mabaera, Rodwell; Kosuda, Kathryn M.; Sebelius, Tamara A.; Ghaffari, Ali H.; Kearns, Kenneth A.; McIntyre, Jean P.; Beachy, Tina M.; Thamattoor, Dasan M.

    2002-01-01

    The diastereoselective synthesis of ethyl (E)-3-methyl-3-phenylglycidate, a strawberry flavoring agent, is carried out by epoxidizing ethyl trans-b-methylcinnamate with m-chloroperbenzoic acid. This epoxidation is appropriate for the introductory organic laboratory and augments the small number of such experiments currently available for undergraduate education. In the course of performing this exercise, students are exposed to many important facets of organic chemistry such as synthesis, reaction mechanism, stereochemistry, chromatography, quantitative analysis, spectroscopy, and computational chemistry. The 1H NMR spectrum of this compound is especially interesting and presents instructive examples of diastereotopic protons and shielding effects of the aromatic ring current.

  8. Synthesis of 1-phenyl-3-(4'-nitrophenyl)-5-(3',4'-dimethoxy-6'-nitrophenyl)-2-pyrazoline and its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Fauzi'ah, Lina; Wahyuningsih, Tutik Dwi

    2017-03-01

    Synthesis of pyrazoline substituted with nitro groups as antibacterial agent has been carried out by cycloaddition reaction. The compound was synthesized from chalcone and phenylhyrazine by refluxing them in 2-butanol for 24 h. The product was purified and characterized using FTIR and 1H-NMR spectrometers. The result showed that pyrazoline has been succesfully synthesized in 33.06% yield. The compund has antibacterial activity againts Bacillus subtilis and Shigella flexneri. However, it has tendency of activity for Gram-negative bacteria. In conclusion, the nitro groups that substituted in aromatic ring were predicted as a part of pharmacophore.

  9. Rotational Spectra and Nuclear Quadrupole Coupling Constants of Iodoimidazoles

    NASA Astrophysics Data System (ADS)

    Cooper, Graham A.; Anderson, Cara J.; Medcraft, Chris; Legon, Anthony; Walker, Nick

    2017-06-01

    The microwave spectra of two isomers of iodoimidazole have been recorded and assigned with resolution of their nuclear quadrupole coupling constants. These constants have been analysed in terms of the conjugation between the lone pairs on the iodine atom and the aromatic π-bonding system, and the effect of this conjugation on the distribution of π-electron density in the ring. A comparison of these properties has been made between iodoimidazole and other 5- and 6-membered aromatic rings bonded to halogen atoms.

  10. Cation induced electrochromism in 2,4-dinitrophenylhydrazine (DNPH): Tuning optical properties of aromatic rings

    NASA Astrophysics Data System (ADS)

    Sanader, Željka; Brunet, Claire; Broyer, Michel; Antoine, Rodolphe; Dugourd, Philippe; Mitrić, Roland; Bonačić-Koutecký, Vlasta

    2013-05-01

    We have theoretically investigated the influence of protons and noble metal cations on optical properties of 2,4-dinitrophenylhydrazine (DNPH). We show that optical properties of aromatic rings can be tuned by cation-induced electrochromism in DNPH due to binding to specific NO2 groups. Our findings on cation-induced electrochromism in DNPH may open new routes in two different application areas, due to the fact that DNPH can easily bind to biological molecules and surface materials through carbonyl groups.

  11. Isomer effects on polyimide properties

    NASA Technical Reports Server (NTRS)

    Stump, B. L.

    1978-01-01

    Thermally stable polyimide polymers were prepared. Parameters explored include asymmetry of substitution, addition of alkyl substituents to an aromatic ring, and an increase in the number of aromatic rings present in the diamine monomer. It is shown that the use of an asymmetrical diamine in the preparation of a polyimide produces a polymer with a markedly lowered glass transition temperature. This is achieved with little or no sacrifice of thermal stability. An alternate approach taken was to prepare imide monomers which are capable of addition-type polymerization.

  12. Device for aqueous detection of nitro-aromatic compounds

    DOEpatents

    Reagen, W.K.; Schulz, A.L.; Ingram, J.C.; Lancaster, G.D.; Grey, A.E.

    1994-04-26

    This invention relates to a compact and portable detection apparatus for nitro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound. 4 figures.

  13. Device for aqueous detection of nitro-aromatic compounds

    DOEpatents

    Reagen, William K.; Schulz, Amber L.; Ingram, Jani C.; Lancaster, Gregory D.; Grey, Alan E.

    1994-01-01

    This invention relates to a compact and portable detection apparatus for ro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound.

  14. Identification and removal of polycyclic aromatic hydrocarbons in wastewater treatment processes from coke production plants.

    PubMed

    Zhang, Wanhui; Wei, Chaohai; Yan, Bo; Feng, Chunhua; Zhao, Guobao; Lin, Chong; Yuan, Mengyang; Wu, Chaofei; Ren, Yuan; Hu, Yun

    2013-09-01

    Identification and removal of polycyclic aromatic hydrocarbons (PAHs) were investigated at two coke plants located in Shaoguan, Guangdong Province of China. Samples of raw coking wastewaters and wastewaters from subunits of a coke production plant were analyzed using gas chromatography-mass spectrometry (GC/MS) to provide a detailed chemical characterization of PAHs. The identification and characterization of PAH isomers was based on a positive match of mass spectral data of sample peaks with those for PAH isomers in mass spectra databases with electron impact ionization mass spectra and retention times of internal reference compounds. In total, 270 PAH compounds including numerous nitrogen, oxygen, and sulfur heteroatomic derivatives were positively identified for the first time. Quantitative analysis of target PAHs revealed that total PAH concentrations in coking wastewaters were in the range of 98.5 ± 8.9 to 216 ± 20.2 μg/L, with 3-4-ring PAHs as dominant compounds. Calculation of daily PAH output from four plant subunits indicated that PAHs in the coking wastewater came mainly from ammonia stripping wastewater. Coking wastewater treatment processes played an important role in removing PAHs in coking wastewater, successfully removing 92 % of the target compounds. However, 69 weakly polar compounds, including PAH isomers, were still discharged in the final effluent, producing 8.8 ± 2.7 to 31.9 ± 6.8 g/day of PAHs with potential toxicity to environmental waters. The study of coking wastewater herein proposed can be used to better predict improvement of coke production facilities and treatment conditions according to the identification and removal of PAHs in the coke plant as well as to assess risks associated with continuous discharge of these contaminants to receiving waters.

  15. Geometry dependence of electron donating or accepting abilities of amine groups in 4,4‧-disulfanediylbis(methylene)dithiazol-2-amine: Pyramidal versus planar

    NASA Astrophysics Data System (ADS)

    Karabıyık, Hasan; Kırılmış, Cumhur; Karabıyık, Hande

    2017-08-01

    The molecular and crystal structure of the title compound in which two thiazole-2-amine rings are linked to each other by disulfide bridge (sbnd Csbnd Ssbnd Ssbnd Csbnd) were studied by single-crystal X-ray diffraction, FT-IR, NMR spectroscopy, quantum chemical calculations and topological analyses on the electron density. A novel synthesis route for the compounds having symmetrical disulfide bridge is reported. The most important result regarding the compound is about electron donating or accepting properties of the terminal amine groups. Planar amine group acts as an electron-donating group, while pyramidal amine behaves as electron-accepting group. This inference was confirmed by scrutiny of crystallographic geometry and quantum chemical studies. To ascertain underlying reasons for this fact, intermolecular interactions (Nsbnd H⋯N type H-bonds and Csbnd H···π interactions) were studied. These interactions involving aromatic thiazole rings are verified by topological electron density and Hirshfeld surface analyses. Intermolecular interactions do not have an effect on the differentiation in electron donating or accepting ability of amine groups, because both amine groups are involved in Nsbnd H⋯N type H-bonds. In methodological sense, it has been understood that Ehrenfest forces acting on electron density are useful theoretical probe to analyze intra-molecular charge transfer processes.

  16. Methanogenic biodegradation of creosote contaminants in natural and simulated ground-water ecosystems

    USGS Publications Warehouse

    Godsy, E. Michael; Goerlitz, Donald; Grbic-Galic, Dunja

    1992-01-01

    Wastes from a wood preserving plant in Pensacola, Florida have contaminated the near-surface sand-and-gravel aquifer with creosote-derived compounds and pentachlorophenol. Contamination resulted from the discharge of plant waste waters to and subsequent seepage from unlined surface impoundments that were in direct hydraulic contact with the ground water. Two distinct phases resulted when the creosote and water mixed: a denser than water hydrocarbon phase that moved vertically downward, and an organic-rich aqueous phase that moved laterally with the ground-water flow. The aqueous phase is enriched in organic acids, phenolic compounds, single- and double-ring nitrogen, sulfur, and oxygen containing compounds, and single- and double-ring aromatic hydrocarbons. The ground water is devoid of dissolved O2, is 60-70% saturated with CH4 and contains H2S. Field analyses document a greater decrease in concentration of organic fatty acids, benzoic acid, phenol, 2-, 3-, 4-methylphenol, quinoline, isoquinoline, 1(2H)-quinolinone, and 2(1H)-isoquinolinone during downgradient movement in the aquifer than could be explained by dilution and/or dispersion. Laboratory microcosm studies have shown that within the study region, this effect can be attributed to microbial degradation to CH4 and CO2. A small but active methanogenic population was found on sediment materials taken from highly contaminated parts of the aquifer.

  17. The degradation of three-ringed polycyclic aromatic hydrocarbons by wood-inhabiting fungus Pleurotus ostreatus and soil-inhabiting fungus Agaricus bisporus.

    PubMed

    Pozdnyakova, Natalia; Dubrovskaya, Ekaterina; Chernyshova, Marina; Makarov, Oleg; Golubev, Sergey; Balandina, Svetlana; Turkovskaya, Olga

    2018-05-01

    The degradation of two isomeric three-ringed polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus D1 and the litter-decomposing fungus Agaricus bisporus F-8 was studied. Despite some differences, the degradation of phenanthrene and anthracene followed the same scheme, forming quinone metabolites at the first stage. The further fate of these metabolites was determined by the composition of the ligninolytic enzyme complexes of the fungi. The quinone metabolites of phenanthrene and anthracene produced in the presence of only laccase were observed to accumulate, whereas those formed in presence of laccase and versatile peroxidase were metabolized further to form products that were further included in basal metabolism (e.g. phthalic acid). Laccase can catalyze the initial attack on the PAH molecule, which leads to the formation of quinones, and that peroxidase ensures their further oxidation, which eventually leads to PAH mineralization. A. bisporus, which produced only laccase, metabolized phenanthrene and anthracene to give the corresponding quinones as the dominant metabolites. No products of further utilization of these compounds were detected. Thus, the fungi's affiliation with different ecophysiological groups and their cultivation conditions affect the composition and dynamics of production of the ligninolytic enzyme complex and the completeness of PAH utilization. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  18. A second triclinic polymorph of azimsulfuron

    PubMed Central

    Kwon, Eunjin; Kim, Jineun; Park, Hyunjin; Kim, Tae Ho

    2016-01-01

    The title compound, C13H16N10O5S (systematic name: 1-(4,6-di­meth­oxypyrimidin-2-yl)-3-{[1-methyl-4-(2-methyl-2H-tetra­zol-5-yl)pyrazol-5-yl]sulfonyl}urea), is a second triclinic polymorph of this crystal [for the other, see: Jeon et al., (2015 ▸). Acta Cryst. E71, o470–o471]. There are two mol­ecules, A and B, in the asymmetric unit; the dihedral angles between the pyrazole ring and the tetra­zole and di­meth­oxy­pyrimidine ring planes are 72.84 (10) and 37.24 (14)°, respectively (mol­ecule A) and 84.38 (9) and 26.09 (15)°, respectively (mol­ecule B). Each mol­ecule features an intra­molecular N—H⋯N hydrogen bond. In the crystal, aromatic π–π stacking inter­actions [centroid–centroid separations = 3.9871 (16), 3.4487 (14) and 3.5455 (16) Å] link the mol­ecules into [001] chains. In addition, N—H⋯N, N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds occur, forming a three-dimensional architecture. We propose that the dimorphism results from differences in conformations and packing owing to different inter­molecular inter­actions, especially aromatic π–π stacking. PMID:27746943

  19. Treatability of phenol-production wastewater: Rate constant and pathway of dimethyl phenyl carbinol oxidation by hydroxyl radicals.

    PubMed

    Boonrattanakij, Nonglak; Joysampao, Atsawin; Pobsuktanasub, Tuksinaiya; Anotai, Jin; Ruangchainikom, Chalermchai

    2017-12-15

    Phenol-production wastewater is difficult to treat biologically by aerobic processes to meet the effluent standard COD of 120 mg L -1 because it contains several highly refractory aromatic pollutants, particularly dimethyl phenyl carbinol. Pretreatment revealed that dimethyl phenyl carbinol was slowly oxidized by molecular ozone; however, it readily reacted with hydroxyl radicals to yield acetophenone as a primary product. Acetophenone was further oxidized, first through five different pathways to form benzoic acid, phenyl glyoxalic acid, 4-4'-diacetyl biphenyl, and several hydroxylated aromatic compounds, and later to aliphatic carboxylic acids via ring cleavage. Regardless of system configuration (homogeneous vs heterogeneous), operating mode (batch vs continuous), and chemical concentration, the average intrinsic rate constants were 1.05 × 10 10 and 9.29 × 10 9  M -1  s -1 for dimethyl phenyl carbinol and acetophenone, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND CARBONACEOUS SOLIDS IN GAS-PHASE CONDENSATION EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaeger, C.; Huisken, F.; Henning, Th.

    2009-05-01

    Carbonaceous grains represent a major component of cosmic dust. In order to understand their formation pathways, they have been prepared in the laboratory by gas-phase condensation reactions such as laser pyrolysis and laser ablation. Our studies demonstrate that the temperature in the condensation zone determines the formation pathway of carbonaceous particles. At temperatures lower than 1700 K, the condensation by-products are mainly polycyclic aromatic hydrocarbons (PAHs) that are also the precursors or building blocks for the condensing soot grains. The low-temperature condensates contain PAH mixtures that are mainly composed of volatile three to five ring systems. At condensation temperatures highermore » than 3500 K, fullerene-like carbon grains and fullerene compounds are formed. Fullerene fragments or complete fullerenes equip the nucleating particles. Fullerenes can be identified as soluble components. Consequently, condensation products in cool and hot astrophysical environments such as cool and hot asymptotic giant branch stars or Wolf-Rayet stars should be different and should have distinct spectral properties.« less

  1. Reassessing the atmospheric oxidation mechanism of toluene

    NASA Astrophysics Data System (ADS)

    Ji, Yuemeng; Zhao, Jun; Terazono, Hajime; Misawa, Kentaro; Levitt, Nicholas P.; Li, Yixin; Lin, Yun; Peng, Jianfei; Wang, Yuan; Duan, Lian; Pan, Bowen; Zhang, Fang; Feng, Xidan; An, Taicheng; Marrero-Ortiz, Wilmarie; Secrest, Jeremiah; Zhang, Annie L.; Shibuya, Kazuhiko; Molina, Mario J.; Zhang, Renyi

    2017-08-01

    Photochemical oxidation of aromatic hydrocarbons leads to tropospheric ozone and secondary organic aerosol (SOA) formation, with profound implications for air quality, human health, and climate. Toluene is the most abundant aromatic compound under urban environments, but its detailed chemical oxidation mechanism remains uncertain. From combined laboratory experiments and quantum chemical calculations, we show a toluene oxidation mechanism that is different from the one adopted in current atmospheric models. Our experimental work indicates a larger-than-expected branching ratio for cresols, but a negligible formation of ring-opening products (e.g., methylglyoxal). Quantum chemical calculations also demonstrate that cresols are much more stable than their corresponding peroxy radicals, and, for the most favorable OH (ortho) addition, the pathway of H extraction by O2 to form the cresol proceeds with a smaller barrier than O2 addition to form the peroxy radical. Our results reveal that phenolic (rather than peroxy radical) formation represents the dominant pathway for toluene oxidation, highlighting the necessity to reassess its role in ozone and SOA formation in the atmosphere.

  2. [Contamination and ecological risk assessment of polycyclic aromatic hydrocarbons in water and in Karst underground river catchment].

    PubMed

    Lan, Jia-Cheng; Sun, Yu-Chuan; Tian, Ping; Lu, Bing-Qing; Shi, Yang; Xu, Xin; Liang Zuo-Bing; Yang, Ping-Heng

    2014-10-01

    Water samples in Laolongdong underground river catchment were collected to determine the concentration, compositional profiles, and evaluate ecological risk of 16 priority polycyclic aromatic hydrocarbons (PAHs). PAHs were measured by GC/MS. The total concentrations of 16 PAH ranged from 81.5-8019 ng · L(-1) in underground river, 288.7-15,200 ng · L(-1) in karst springs, and 128.4-2,442 ng · L(-1) in surface water. Affected by waste water from Huangjueya town, concentrations of PAHs in underground river were higher than those in surface water and waste water from sinkhole. The PAHs profiles were dominated by 3 ring PAHs. There were differences of monthly variations of PAHs contents in the water, due to waste water, season and different characteristics of PAH. Surface water and waste water from sinkhole played an important role on contamination in the river. The levels of ecological risk were generally moderately polluted and heavily polluted according to all detected PAH compounds in the water.

  3. Content of polyphenol compound in mangrove and macroalga extracts

    NASA Astrophysics Data System (ADS)

    Takarina, N. D.; Patria, M. P.

    2017-07-01

    Polyphenol or phenolic are compounds containing one or more hydroxyl group of the aromatic ring [1]. These compounds have some activities like antibacterial, antiseptic, and antioxidants. Natural resources like mangrove and macroalga were known containing these compounds. The purpose of the research was to investigate polyphenol content in mangrove and macroalga. Materials used in this research were mangrove (Avicennia sp.) leaves and the whole part of macroalga (Caulerpa racemosa). Samples were dried for 5 days then macerated in order to get an extract. Maceration were done using methanol for 48 hours (first) and 24 hours (second) continously. Polyphenol content was determined using phytochemical screening on both extracts. The quantitative test was carried out to determine catechin and tannin as polyphenol compound. The result showed that catechin was observed in both extracts while tannin in mangrove extract only. According to quantitative test, mangrove has a higher content of catechin and tannin which were 12.37-13.44 % compared to macroalga which was 2.57-4.58 %. Those indicated that both materials can be the source of polyphenol compound with higher content on mangrove. Moreover, according to this result, these resources can be utilized for advanced studies and human needs like medical drug.

  4. Infrared spectroscopy of protonated trimethylamine-(benzene)(n) (n = 1-4) as model clusters of the quaternary ammonium-aromatic ring interaction.

    PubMed

    Shishido, Ryunosuke; Kawai, Yuki; Fujii, Asuka

    2014-09-04

    The essence of the molecular recognition of the neurotransmitter acetylcholine has been attributed to the attractive interaction between a quaternary ammonium and aromatic rings. We employed protonated trimethylamine-(benzene)n clusters (n = 1-4) in the gas phase as a model to study the recognition mechanism of acetylcholine at the microscopic level. We applied size-selective infrared spectroscopy to the clusters and observed the NH and CH stretching vibrational regions. We also performed density functional theory calculations of stable structures, charge distributions, and infrared spectra of the clusters. It was shown that the methyl groups of protonated trimethylamine are solvated by benzene one at a time in the n > 1 clusters, and the validity of these clusters as a model system of the acetylcholine recognition was demonstrated. The nature of the interactions between a quaternary ammonium and aromatic rings is discussed on the basis of the observed infrared spectra and the theoretical calculations.

  5. Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass.

    PubMed

    Mäkelä, Miia R; Marinović, Mila; Nousiainen, Paula; Liwanag, April J M; Benoit, Isabelle; Sipilä, Jussi; Hatakka, Annele; de Vries, Ronald P; Hildén, Kristiina S

    2015-01-01

    The biological conversion of plant lignocellulose plays an essential role not only in carbon cycling in terrestrial ecosystems but also is an important part of the production of second generation biofuels and biochemicals. The presence of the recalcitrant aromatic polymer lignin is one of the major obstacles in the biofuel/biochemical production process and therefore microbial degradation of lignin is receiving a great deal of attention. Fungi are the main degraders of plant biomass, and in particular the basidiomycete white rot fungi are of major importance in converting plant aromatics due to their ability to degrade lignin. However, the aromatic monomers that are released from lignin and other aromatic compounds of plant biomass are toxic for most fungi already at low levels, and therefore conversion of these compounds to less toxic metabolites is essential for fungi. Although the release of aromatic compounds from plant biomass by fungi has been studied extensively, relatively little attention has been given to the metabolic pathways that convert the resulting aromatic monomers. In this review we provide an overview of the aromatic components of plant biomass, and their release and conversion by fungi. Finally, we will summarize the applications of fungal systems related to plant aromatics. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Prediction of cyclohexane-water distribution coefficient for SAMPL5 drug-like compounds with the QMPFF3 and ARROW polarizable force fields.

    PubMed

    Kamath, Ganesh; Kurnikov, Igor; Fain, Boris; Leontyev, Igor; Illarionov, Alexey; Butin, Oleg; Olevanov, Michael; Pereyaslavets, Leonid

    2016-11-01

    We present the performance of blind predictions of water-cyclohexane distribution coefficients for 53 drug-like compounds in the SAMPL5 challenge by three methods currently in use within our group. Two of them utilize QMPFF3 and ARROW, polarizable force-fields of varying complexity, and the third uses the General Amber Force-Field (GAFF). The polarizable FF's are implemented in an in-house MD package, Arbalest. We find that when we had time to parametrize the functional groups with care (batch 0), the polarizable force-fields outperformed the non-polarizable one. Conversely, on the full set of 53 compounds, GAFF performed better than both QMPFF3 and ARROW. We also describe the torsion-restrain method we used to improve sampling of molecular conformational space and thus the overall accuracy of prediction. The SAMPL5 challenge highlighted several drawbacks of our force-fields, such as our significant systematic over-estimation of hydrophobic interactions, specifically for alkanes and aromatic rings.

  7. Mutasynthesis of pyrrole spiroketal compound using calcimycin 3-hydroxy anthranilic acid biosynthetic mutant.

    PubMed

    Gou, Lixia; Wu, Qiulin; Lin, Shuangjun; Li, Xiangmei; Liang, Jingdan; Zhou, Xiufen; An, Derong; Deng, Zixin; Wang, Zhijun

    2013-09-01

    The five-membered aromatic nitrogen heterocyclic pyrrole ring is a building block for a wide variety of natural products. Aiming at generating new pyrrole-containing derivatives as well as to identify new candidates that may be of value in designing new anticancer, antiviral, and/or antimicrobial agents, we employed a strategy on pyrrole-containing compound mutasynthesis using the pyrrole-containing calcimycin biosynthetic gene cluster. We blocked the biosynthesis of the calcimycin precursor, 3-hydroxy anthranilic acid, by deletion of calB1-3 and found that two intermediates containing the pyrrole and the spiroketal moiety were accumulated in the culture. We then fed the mutant using the structurally similar compound of 3-hydroxy anthranilic acid. At least four additional new pyrrole spiroketal derivatives were obtained. The structures of the intermediates and the new pyrrole spiroketal derivatives were identified using LC-MS and NMR. One of them shows enhanced antibacterial activity. Our work shows a new way of pyrrole derivative biosynthetic mutasynthesis.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuz'mina, L. G.; Fedorova, O. A.; Andryukhina, E. N.

    A comparative study of the molecular geometry and crystal packing of crown-containing styryl heterocycles and their dimethoxy substituted analogues is performed. It is established that all the compounds exhibit an identical type of distortions of the geometry of the central styryl fragment. These are the localization of the {pi}-electron density at the ethylene bond and the bond alternation in a half of the phenyl ring due to the conjugation of lone electron pairs of the oxygen substituents with the chromophore system of the molecule. A comparative analysis of the crystal packings of the compounds reveals extended separate hydrophilic and hydrophobicmore » regions. The hydrophilic regions are built of crown ether fragments, and the hydrophobic regions consist of {pi}-conjugated and aromatic molecular fragments. The hydrophobic regions are characterized by a wide variety of packing motifs, among which stacking packing is absent. For two compounds, the formation of sandwich dimers that are preorganized to enter into the photochemical [2 + 2]cycloaddition reaction is observed.« less

  9. Investigating isoindoline, tetrahydroisoquinoline, and tetrahydrobenzazepine scaffolds for their sigma receptor binding properties.

    PubMed

    Linkens, Kathryn; Schmidt, Hayden R; Sahn, James J; Kruse, Andrew C; Martin, Stephen F

    2018-05-10

    Substituted norbenzomorphans are known to display high affinity and selectivity for the two sigma receptor (σR) subtypes. In order to study the effects of simplifying the structures of these compounds, a scaffold hopping strategy was used to design several novel sets of substituted isoindolines, tetrahydroisoquinolines and tetrahydro-2-benzazepines. The binding affinities of these new compounds for the sigma 1 (σ1R) and sigma 2 (σ2R) receptors were determined, and some analogs were identified that exhibit high affinity (K i  ≤ 25 nM) and significant selectivity (>10-fold) for σ1R or σ2R. The preferred binding modes of selected compounds for the σ1R are predicted by modeling studies, and the nature of substituents on the aromatic ring and the nitrogen atom of the bicyclic skeleton appears to affect the preferred binding orientation of σ1R-preferring ligands. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. High-pressure synthesis of a pentazolate salt [High-pressure synthesis of condensed-phase pentazolate

    DOE PAGES

    Steele, Brad A.; Stavrou, Elissaios; Crowhurst, Jonathan C.; ...

    2016-12-06

    The pentazolates, the last all-nitrogen members of the azole series, have been notoriously elusive for the last hundred years despite enormous efforts to make these compounds in either gas or condensed phases. Here, we report a successful synthesis of a solid state compound consisting of isolated pentazolate anions N 5 –, which is achieved by compressing and laser heating cesium azide (CsN 3) mixed with N 2 cryogenic liquid in a diamond anvil cell. The experiment was guided by theory, which predicted the transformation of the mixture at high pressures to a new compound, cesium pentazolate salt (CsN 5). Electronmore » transfer from Cs atoms to N 5 rings enables both aromaticity in the pentazolates as well as ionic bonding in the CsN 5 crystal. As a result, this work provides critical insight into the role of extreme conditions in exploring unusual bonding routes that ultimately lead to the formation of novel high nitrogen content species.« less

  11. Multifunctional Octamethyltetrasila[2.2]cyclophanes: Conformational Variations, Circularly Polarized Luminescence, and Organic Electroluminescence.

    PubMed

    Shimada, Masaki; Yamanoi, Yoshinori; Ohto, Tatsuhiko; Pham, Song-Toan; Yamada, Ryo; Tada, Hirokazu; Omoto, Kenichiro; Tashiro, Shohei; Shionoya, Mitsuhiko; Hattori, Mineyuki; Jimura, Keiko; Hayashi, Shigenobu; Koike, Hikaru; Iwamura, Munetaka; Nozaki, Koichi; Nishihara, Hiroshi

    2017-08-16

    Both symmetrical and unsymmetrical cyclophanes containing disilane units, tetrasila[2.2]cyclophanes 1-9, were synthesized. The syn and anti conformations and the kinetics of inversion between two anti-isomers were investigated by X-ray diffraction and variable-temperature NMR analysis, respectively. The flipping motion of two aromatic rings was affected by the bulkiness of the aromatic moiety (1 vs 6), the phase (solid vs solution), and the inclusion by host molecules (1 vs 1⊂[Ag 2 L] 2+ ). The photophysical, electrochemical, and structural properties of the compounds were thoroughly investigated. Unsymmetrical tetrasila[2.2]cyclophanes 5-8 displayed blue-green emission arising from intramolecular charge transfer. Compound 6 emitted a brilliant green light in the solid state under 365 nm irradiation and showed a higher fluorescence quantum yield in the solid state (Φ = 0.49) than in solution (Φ = 0.05). We also obtained planar chiral tetrasila[2.2]cyclophane 9, which showed interesting chiroptical properties, such as a circularly polarized luminescence (CPL) with a dissymmetry factor of |g lum | = ca. 2 × 10 -3 at 500 nm. Moreover, an organic green light-emitting diode that showed a maximum external quantum efficiency (η ext ) of ca. 0.4% was fabricated by doping 4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl with 6.

  12. Inhibition Kinetics and Emodin Cocrystal Structure of a Type II Polyketide Ketoreductase†,‡

    PubMed Central

    Korman, Tyler Paz; Tan, Yuhong; Wong, Justin; Luo, Rui; Tsai, Shiou-Chuan

    2008-01-01

    Type II polyketides are a class of natural products that include pharmaceutically important aromatic compounds such as the antibiotic tetracycline and antitumor compound doxorubicin. The type II polyketide synthase (PKS) is a complex consisting of 5–10 standalone domains homologous to fatty acid synthase (FAS). Polyketide ketoreductase (KR) provides regio- and stereochemical diversity during the reduction. How the type II polyketide KR specifically reduces only the C9 carbonyl group is not well understood. The cocrystal structures of actinorhodin polyketide ketoreductase (actKR) bound with NADPH or NADP+ and the inhibitor emodin were solved with the wild type and P94L mutant of actKR, revealing the first observation of a bent p-quinone in an enzyme active site. Molecular dynamics simulation help explain the origin of the bent geometry. Extensive screening for in vitro substrates shows that unlike FAS KR, the actKR prefers bicyclic substrates. Inhibition kinetics indicate that actKR follows an ordered Bi Bi mechanism. Together with docking simulations that identified a potential phosphopantetheine binding groove, the structural and functional studies reveal that the C9 specificity is a result of active site geometry and substrate ring constraints. The results lay the foundation for the design of novel aromatic polyketide natural products with different reduction patterns. PMID:18205400

  13. Inhibition Kinetics And Emodin Cocrystal Structure of a Type II Polyketide Ketoreductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korman, T.P.; Tan, Y.-H.; Wong, J.

    Type II polyketides are a class of natural products that include pharmaceutically important aromatic compounds such as the antibiotic tetracycline and antitumor compound doxorubicin. The type II polyketide synthase (PKS) is a complex consisting of 5-10 standalone domains homologous to fatty acid synthase (FAS). Polyketide ketoreductase (KR) provides regio- and stereochemical diversity during the reduction. How the type II polyketide KR specifically reduces only the C9 carbonyl group is not well understood. The cocrystal structures of actinorhodin polyketide ketoreductase (actKR) bound with NADPH or NADP{sup +} and the inhibitor emodin were solved with the wild type and P94L mutant ofmore » actKR, revealing the first observation of a bent p-quinone in an enzyme active site. Molecular dynamics simulation help explain the origin of the bent geometry. Extensive screening for in vitro substrates shows that unlike FAS KR, the actKR prefers bicyclic substrates. Inhibition kinetics indicate that actKR follows an ordered Bi Bi mechanism. Together with docking simulations that identified a potential phosphopantetheine binding groove, the structural and functional studies reveal that the C9 specificity is a result of active site geometry and substrate ring constraints. The results lay the foundation for the design of novel aromatic polyketide natural products with different reduction patterns.« less

  14. Towards a molecular level understanding of the sulfanilamide-soil organic matter-interaction.

    PubMed

    Ahmed, Ashour A; Thiele-Bruhn, Sören; Leinweber, Peter; Kühn, Oliver

    2016-07-15

    Sorption experiments of sulfanilamide (SAA) on well-characterized samples of soil size-fractions were combined with the modeling of SAA-soil-interaction via quantum chemical calculations. Freundlich unit capacities were determined in batch experiments and it was found that they increase with the soil organic matter (SOM) content according to the order fine silt > medium silt > clay > whole soil > coarse silt > sand. The calculated binding energies for mass-spectrometrically quantified sorption sites followed the order ionic species > peptides > carbohydrates > phenols and lignin monomers > lignin dimers > heterocyclic compounds > fatty acids > sterols > aromatic compounds > lipids, alkanes, and alkenes. SAA forms H-bonds through its polar centers with the polar SOM sorption sites. In contrast dispersion and π-π-interactions predominate the interaction of the SAA aromatic ring with the non-polar moieties of SOM. Moreover, the dipole moment, partial atomic charges, and molecular volume of the SOM sorption sites are the main physical properties controlling the SAA-SOM-interaction. Further, reasonable estimates of the Freundlich unit capacities from the calculated binding energies have been established. Consequently, we suggest using this approach in forthcoming studies to disclose the interactions of a wide range of organic pollutants with SOM. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Crystal structure of PnpCD, a two-subunit hydroquinone 1,2-dioxygenase, reveals a novel structural class of Fe2+-dependent dioxygenases.

    PubMed

    Liu, Shiheng; Su, Tiantian; Zhang, Cong; Zhang, Wen-Mao; Zhu, Deyu; Su, Jing; Wei, Tiandi; Wang, Kang; Huang, Yan; Guo, Liming; Xu, Sujuan; Zhou, Ning-Yi; Gu, Lichuan

    2015-10-02

    Aerobic microorganisms have evolved a variety of pathways to degrade aromatic and heterocyclic compounds. However, only several classes of oxygenolytic fission reaction have been identified for the critical ring cleavage dioxygenases. Among them, the most well studied dioxygenases proceed via catecholic intermediates, followed by noncatecholic hydroxy-substituted aromatic carboxylic acids. Therefore, the recently reported hydroquinone 1,2-dioxygenases add to the diversity of ring cleavage reactions. Two-subunit hydroquinone 1,2-dioxygenase PnpCD, the key enzyme in the hydroquinone pathway of para-nitrophenol degradation, catalyzes the ring cleavage of hydroquinone to γ-hydroxymuconic semialdehyde. Here, we report three PnpCD structures, named apo-PnpCD, PnpCD-Fe(3+), and PnpCD-Cd(2+)-HBN (substrate analog hydroxyenzonitrile), respectively. Structural analysis showed that both the PnpC and the C-terminal domains of PnpD comprise a conserved cupin fold, whereas PnpC cannot form a competent metal binding pocket as can PnpD cupin. Four residues of PnpD (His-256, Asn-258, Glu-262, and His-303) were observed to coordinate the iron ion. The Asn-258 coordination is particularly interesting because this coordinating residue has never been observed in the homologous cupin structures of PnpCD. Asn-258 is proposed to play a pivotal role in binding the iron prior to the enzymatic reaction, but it might lose coordination to the iron when the reaction begins. PnpD also consists of an intriguing N-terminal domain that might have functions other than nucleic acid binding in its structural homologs. In summary, PnpCD has no apparent evolutionary relationship with other iron-dependent dioxygenases and therefore defines a new structural class. The study of PnpCD might add to the understanding of the ring cleavage of dioxygenases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Crystal Structure of PnpCD, a Two-subunit Hydroquinone 1,2-Dioxygenase, Reveals a Novel Structural Class of Fe2+-dependent Dioxygenases*

    PubMed Central

    Liu, Shiheng; Su, Tiantian; Zhang, Cong; Zhang, Wen-Mao; Zhu, Deyu; Su, Jing; Wei, Tiandi; Wang, Kang; Huang, Yan; Guo, Liming; Xu, Sujuan; Zhou, Ning-Yi; Gu, Lichuan

    2015-01-01

    Aerobic microorganisms have evolved a variety of pathways to degrade aromatic and heterocyclic compounds. However, only several classes of oxygenolytic fission reaction have been identified for the critical ring cleavage dioxygenases. Among them, the most well studied dioxygenases proceed via catecholic intermediates, followed by noncatecholic hydroxy-substituted aromatic carboxylic acids. Therefore, the recently reported hydroquinone 1,2-dioxygenases add to the diversity of ring cleavage reactions. Two-subunit hydroquinone 1,2-dioxygenase PnpCD, the key enzyme in the hydroquinone pathway of para-nitrophenol degradation, catalyzes the ring cleavage of hydroquinone to γ-hydroxymuconic semialdehyde. Here, we report three PnpCD structures, named apo-PnpCD, PnpCD-Fe3+, and PnpCD-Cd2+-HBN (substrate analog hydroxyenzonitrile), respectively. Structural analysis showed that both the PnpC and the C-terminal domains of PnpD comprise a conserved cupin fold, whereas PnpC cannot form a competent metal binding pocket as can PnpD cupin. Four residues of PnpD (His-256, Asn-258, Glu-262, and His-303) were observed to coordinate the iron ion. The Asn-258 coordination is particularly interesting because this coordinating residue has never been observed in the homologous cupin structures of PnpCD. Asn-258 is proposed to play a pivotal role in binding the iron prior to the enzymatic reaction, but it might lose coordination to the iron when the reaction begins. PnpD also consists of an intriguing N-terminal domain that might have functions other than nucleic acid binding in its structural homologs. In summary, PnpCD has no apparent evolutionary relationship with other iron-dependent dioxygenases and therefore defines a new structural class. The study of PnpCD might add to the understanding of the ring cleavage of dioxygenases. PMID:26304122

  17. Ab initio molecular orbital and infrared spectroscopic study of the conformation of secondary amides: derivatives of formanilide, acetanilide and benzylamides

    NASA Astrophysics Data System (ADS)

    Ilieva, S.; Hadjieva, B.; Galabov, B.

    1999-09-01

    Ab initio molecular orbital calculations at HF/4-31G level and infrared spectroscopic data for the frequencies are applied to analyse the grouping in a series model aromatic secondary amides: formanilide; acetanilide; o-methylacetanilide; 2,6-dimethylformanilide, 2,6-dimethylacetanilide; N-benzylacetamide and N-benzylformamide. The theoretical and experimental data obtained show that the conformational state of the molecules studied is determined by the fine balance of several intramolecular factors: resonance effect between the amide group and the aromatic ring, steric interaction between various substituents around the -NH-CO- grouping in the aromatic ring, conjugation between the carbonyl bond and the nitrogen lone pair as well as direct field influences inside the amide group.

  18. Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-12-01

    Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Chemical and nanometer-scale structure of kerogen and its change during thermal maturation investigated by advanced solid-state 13C NMR spectroscopy

    USGS Publications Warehouse

    Mao, J.; Fang, X.; Lan, Y.; Schimmelmann, A.; Mastalerz, Maria; Xu, L.; Schmidt-Rohr, K.

    2010-01-01

    We have used advanced and quantitative solid-state nuclear magnetic resonance (NMR) techniques to investigate structural changes in a series of type II kerogen samples from the New Albany Shale across a range of maturity (vitrinite reflectance R0 from 0.29% to 1.27%). Specific functional groups such as CH3, CH2, alkyl CH, aromatic CH, aromatic C-O, and other nonprotonated aromatics, as well as "oil prone" and "gas prone" carbons, have been quantified by 13C NMR; atomic H/C and O/C ratios calculated from the NMR data agree with elemental analysis. Relationships between NMR structural parameters and vitrinite reflectance, a proxy for thermal maturity, were evaluated. The aromatic cluster size is probed in terms of the fraction of aromatic carbons that are protonated (???30%) and the average distance of aromatic C from the nearest protons in long-range H-C dephasing, both of which do not increase much with maturation, in spite of a great increase in aromaticity. The aromatic clusters in the most mature sample consist of ???30 carbons, and of ???20 carbons in the least mature samples. Proof of many links between alkyl chains and aromatic rings is provided by short-range and long-range 1H-13C correlation NMR. The alkyl segments provide most H in the samples; even at a carbon aromaticity of 83%, the fraction of aromatic H is only 38%. While aromaticity increases with thermal maturity, most other NMR structural parameters, including the aromatic C-O fractions, decrease. Aromaticity is confirmed as an excellent NMR structural parameter for assessing thermal maturity. In this series of samples, thermal maturation mostly increases aromaticity by reducing the length of the alkyl chains attached to the aromatic cores, not by pronounced growth of the size of the fused aromatic ring clusters. ?? 2010 Elsevier Ltd. All rights reserved.

  20. Linear pi-Acceptor-Templated Dynamic Clipping to Macrobicycles and[2]Rotaxanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klivansky, Liana M.; Koshkakaryan, Gayane; Cao, Dennis

    2009-04-30

    Functional rotaxanes are one of the representative nanoscale molecular machines that have found applications in many areas, including molecular electronics, nanoelectromechanical systems (NEMS), photo controllable smart surfaces, and nanovalves. With the advent of molecular recognition and self-assembly, such molecular compounds can now be obtained efficiently through template-directed synthesis. One of the common strategies of making [2]rotaxanes involves the clipping of a macrocycle around a preformed dumbbell-shaped template in a [1+1] or [2+2] manner. While early examples were based on irreversible kinetic pathway through covalent bond formation, recent advances on reversible dynamic covalent chemistry (DCC) has attracted great attention to thismore » field. By virtue of thermodynamically controlled equilibria, DCC has provided highly efficient and versatile synthetic routes in the selection of specific products from a complex system. Among the several reversible reactions in the category of DCC reactions, the imine formation has proven to be very versatile in macrocyclization to give complex interlocked molecular compounds. Cryptands are three dimensional bicyclic hosts with preorganized cavities capable of inclusion of ions and small molecules. Replacing the nitrogen bridgeheads in common cryptands with aromatic ring systems gives cyclophane-based macrobicycles. The introduction of aromatic ring systems into a preorganized cage-like geometry facilitates ion-{pi} interactions and {pi}-{pi} interactions, resulting in novel metal sandwiches, fluoride receptors, and host-guest complexes. In particular, the seminal work by Gibson, Huang and coworkers on cryptand complexation with paraquat and diquat guests have resulted in the efficient synthesis of mechanically interlocked rotaxanes. The synthesis of cyclophane-based macrobicycles, however, was mostly realized through multiple reaction steps and in high-dilution conditions, which often suffered from low yield and tedious workup. Thus, a one-step, five-component [2+3] clipping reaction that can give the desired macrobicycle is highly desirable. We are motivated by a {pi}-guest templating protocol, because not only {pi}-{pi} interactions can contribute to the formation of macrobicycles, but also the resulting host-guest system holds great promise as a forerunner in the construction of interlocked molecules. (Scheme 1c) Very simple precursors, namely 1,3,5-benzenetrialdehyde (1) and 2,2{prime}-(ethylenedioxy)diethylamine (2) were chosen as the components for desired macrobicycle. (Scheme 2) The formation of six imine bonds would connect the five components to give a macrobicycle while extending the conjugation in the C{sub 3}-symmetric aromatic 'ceiling' and 'floor', which is suitable for enhancing the {pi}-{pi} interactions with a complementary aromatic template. Meanwhile, the ethylene glycol 'pillars' can provide sufficient flexibility, proper spacing, and polar binding sites to assist guest encapsulation. Initial screening of ?-templates engaged several C{sub 3} symmetric aromatic compounds in order to match the symmetry of the desired macrobicycle, which only resulted in nonspecific mixtures. It was found instead that linear bipyridinium (BPY) containing guests effectively templated the [2+3] clipping reaction. Based on this protocol, a [2]rotaxane was successfully assembled as the single product from the six-component reaction.« less

Top