Science.gov

Sample records for arranging dirac covariants

  1. Dirac Oscillator in a Galilean Covariant Non-commutative Space

    NASA Astrophysics Data System (ADS)

    de Melo, G. R.; de Montigny, M.; Pompeia, P. J.; Santos, E. S.

    2013-02-01

    We study the Galilean Dirac oscillator in a non-commutative situation, with space-space and momentum-momentum non-commutativity. The wave equation is obtained via a `Galilean covariant' approach, which consists in projecting the covariant equations from a (4,1)-dimensional manifold with light-cone coordinates, to a (3,1)-dimensional Galilean space-time. We obtain the exact wave functions and their energy levels for the plane and discuss the effects of non-commutativity.

  2. Baryon spectrum analysis using Dirac's covariant constraint dynamics

    NASA Astrophysics Data System (ADS)

    Whitney, Joshua F.; Crater, Horace W.

    2014-01-01

    We present a relativistic quark model for the baryons that combines three related relativistic formalisms. The three-body constraint formalism of Sazdjian is used to recast three relativistic two-body equations for the three pairs of interacting quarks into a single relativistically covariant three-body equation for the bound state energies, having a Schrodinger-like structure. The two-body equations are the two-body Dirac equations of constraint dynamics derived by Crater and Van Alstine for combined world vector and scalar interactions providing the necessary spin dependent and spin independent interaction terms. The minimal quasipotential formalism of Todorov is used to provide an invariant framework for the vector and scalar dynamics used in the two-body Dirac equations into which is inserted a local simplified version of the Richardson potential. The spectral results are analyzed and compared to experiment using a best fit method and several different algorithms, including a gradient approach, and a Monte Carlo method.

  3. Lorentz Covariance of Dirac Electrons in Solids: Dielectric and Diamagnetic Properties

    NASA Astrophysics Data System (ADS)

    Maebashi, Hideaki; Ogata, Masao; Fukuyama, Hidetoshi

    2017-08-01

    We study the electrodynamics of Dirac electrons in solids (e.g., bismuth) by comparing it with quantum electrodynamics (QED). It is shown that Lorentz covariance associated with the Dirac electrons in solids results in a remarkable correlation between the dielectric and diamagnetic properties, leading to a significant enhancement in the permittivity directly linked to the well-known phenomenon of large diamagnetism.

  4. Dirac's Covariant Constraint Dynamics Applied to the Baryon Spectrum

    NASA Astrophysics Data System (ADS)

    Whitney, Joshua; Crater, Horace

    2010-02-01

    A baryon is a hadron containing three quarks in a combination of up, down, strange, charm, or bottom. For prediction of the baryon energy spectrum, a baryon is modeled as a three-body system with the interacting forces coming from a set of two-body potentials that depend on the distance between the quarks, the spin-spin and spin-orbit angular momentum coupling terms, and a tensor term. Techniques and equations are derived from Todorov's work on constraint dynamics and the quasi-potential equation together with Two Body Dirac equations developed by Crater and Van Alstine, and adapted to this specific problem by further use of Sazdjian's N-body constraints dynamics for general confined systems. Baryon spectroscopy results are presented and compared with experiment. Typically, a best fit method is used in the analyses that employ several different algorithms, including a gradient approach, Monte Carlo modeling, and simulated annealing methods. )

  5. Novel characteristics of energy spectrum for 3D Dirac oscillator analyzed via Lorentz covariant deformed algebra.

    PubMed

    Betrouche, Malika; Maamache, Mustapha; Choi, Jeong Ryeol

    2013-11-14

    We investigate the Lorentz-covariant deformed algebra for Dirac oscillator problem, which is a generalization of Kempf deformed algebra in 3 + 1 dimension of space-time, where Lorentz symmetry are preserved. The energy spectrum of the system is analyzed by taking advantage of the corresponding wave functions with explicit spin state. We obtained entirely new results from our development based on Kempf algebra in comparison to the studies carried out with the non-Lorentz-covariant deformed one. A novel result of this research is that the quantized relativistic energy of the system in the presence of minimal length cannot grow indefinitely as quantum number n increases, but converges to a finite value, where c is the speed of light and β is a parameter that determines the scale of noncommutativity in space. If we consider the fact that the energy levels of ordinary oscillator is equally spaced, which leads to monotonic growth of quantized energy with the increment of n, this result is very interesting. The physical meaning of this consequence is discussed in detail.

  6. Novel characteristics of energy spectrum for 3D Dirac oscillator analyzed via Lorentz covariant deformed algebra

    PubMed Central

    Betrouche, Malika; Maamache, Mustapha; Choi, Jeong Ryeol

    2013-01-01

    We investigate the Lorentz-covariant deformed algebra for Dirac oscillator problem, which is a generalization of Kempf deformed algebra in 3 + 1 dimension of space-time, where Lorentz symmetry are preserved. The energy spectrum of the system is analyzed by taking advantage of the corresponding wave functions with explicit spin state. We obtained entirely new results from our development based on Kempf algebra in comparison to the studies carried out with the non-Lorentz-covariant deformed one. A novel result of this research is that the quantized relativistic energy of the system in the presence of minimal length cannot grow indefinitely as quantum number n increases, but converges to a finite value, where c is the speed of light and β is a parameter that determines the scale of noncommutativity in space. If we consider the fact that the energy levels of ordinary oscillator is equally spaced, which leads to monotonic growth of quantized energy with the increment of n, this result is very interesting. The physical meaning of this consequence is discussed in detail. PMID:24225900

  7. New Generally Covariant Generalization of the Dirac Equation Not Requiring Gauges

    NASA Astrophysics Data System (ADS)

    Maker, David

    2010-03-01

    We introduce a new pde (σμκμμγμψ/xμ-φψ=0) with spherically symmetric diagonalized κ00 = 1-rH/r=1/κrr giving it general covariance. If rH =2e^2/mec^2 this new pde reduces to the standard Dirac equation as r->∞. Next we solve this equation directly using separation of variables (e.g., 2P, 2S, 1S terms). Note metric time component κoo =0 at r=rH and so clocks slow down with baryon stability the result. Note also that near rH the 2P3/2 state for this new Dirac equation gives a azimuthal trifolium, 3 lobe shape; so this ONE charge e (so don't need color to guarantee this) spends 1/3 of its time in each lobe (fractionally charged lobes), the lobe structure is locked into the center of mass (asymptotic freedom), there are six 2P states (corresponding to the 6 flavors); the P wave scattering gives the jets, all these properties together constituting the main properties of quarks! without invoking the many free parameters, gauge conditions of QCD. Also the 2S1/2 is the tauon and the 1S.5ex1 -.1em/ -.15em.25ex2 is the muon here. The S matrix of this new pde gives the W and Z as resonances and does not require renormalization counterterms or free parameters. Thus we get nuclear, weak and E&M phenomenology as one step solutions of this new pde.

  8. Dirac

    NASA Astrophysics Data System (ADS)

    Kragh, Helge

    2005-07-01

    Preface; 1. Early years; 2. Discovery of quantum mechanics; 3. Relativity and spinning electrons; 4. Travels and thinking; 5. The dream of philosophers; 6. Quanta and fields; 7. Fifty years of a physicist's life; 8. 'The so-called quantum electrodynamics'; 9. Electrons and ether; 10. Just a disappointment; 11. Adventures in cosmology; 12. The purest soul; 13. Philosophy in physics; 14. The principle of mathematical beauty; Appendices; Bibliography of P. A. M. Dirac; Notes and references; General bibliography; Index of names; Index of subjects.

  9. A covariant extrapolation of the noncovariant two particle Wheeler-Feynman Hamiltonian from the Todorov equation and Dirac's constraint mechanics

    NASA Astrophysics Data System (ADS)

    Crater, Horace; Yang, Dujiu

    1991-09-01

    A semirelativistic expansion in powers of 1/c2 is canonically matched through order (1/c4) of the two-particle total Hamiltonian of Wheeler-Feynman vector and scalar electrodynamics to a similar expansion of the center of momentum (c.m.) total energy of two interacting particles obtained from covariant generalized mass shell constraints derived with the use of the classical Todorov equation and Dirac's Hamiltonian constraint mechanics. This determines through order 1/c4 the direct interaction used in the covariant Todorov constraint equation. We show that these interactions are momentum independent in spite of the extensive and complicated momentum dependence of the potential energy terms in the Wheeler-Feynman Hamiltonian. The invariant expressions for the relativistic reduced mass and energy of the fictitious particle of relative motion used in the Todorov equation are also dynamically determined through this order by this same procedure. The resultant covariant Todorov equation then not only reproduces the noncovariant Wheeler-Feynman dynamics through order 1/c4 but also implicitly provides a rather simple covariant extrapolation of it to all orders of 1/c2.

  10. The 3 K blackbody radiation, Dirac's Large Numbers Hypothesis, and scale-covariant cosmology

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Hsieh, S.-H.

    1978-01-01

    A program is described which is intended to derive a generalized system of gravitational equations that allow (but do not require) G to vary, to use the 3-K blackbody radiation to fix the relation between G and the gauge function, and to employ Dirac's (1937) Large Numbers Hypothesis to derive the geometry of the universe. Einstein's equations are retained in their total integrity, but the specification is made that they are valid only when gravitational units are used. A scale-invariant form of Einstein's equations is obtained, and from this are derived the energy conservation law, the baryon-number conservation law, and the appropriate cosmological equations. Dirac's proposals of 1937 and 1973 are incorporated into the formalism, and a gauge based on consolidation of the 3-K blackbody radiation is presented. A unique solution for the geometry of the universe is determined for zero curvature solely from the 3-K radiation and the Large Numbers Hypothesis; this solution predicts a deceleration parameter exactly equal to unity.

  11. The 3 K blackbody radiation, Dirac's Large Numbers Hypothesis, and scale-covariant cosmology

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Hsieh, S.-H.

    1978-01-01

    A program is described which is intended to derive a generalized system of gravitational equations that allow (but do not require) G to vary, to use the 3-K blackbody radiation to fix the relation between G and the gauge function, and to employ Dirac's (1937) Large Numbers Hypothesis to derive the geometry of the universe. Einstein's equations are retained in their total integrity, but the specification is made that they are valid only when gravitational units are used. A scale-invariant form of Einstein's equations is obtained, and from this are derived the energy conservation law, the baryon-number conservation law, and the appropriate cosmological equations. Dirac's proposals of 1937 and 1973 are incorporated into the formalism, and a gauge based on consolidation of the 3-K blackbody radiation is presented. A unique solution for the geometry of the universe is determined for zero curvature solely from the 3-K radiation and the Large Numbers Hypothesis; this solution predicts a deceleration parameter exactly equal to unity.

  12. Effects of Spatial Patch Arrangement and Scale of Covarying Resources on Growth and Intraspecific Competition of a Clonal Plant.

    PubMed

    Wang, Yong-Jian; Shi, Xue-Ping; Meng, Xue-Feng; Wu, Xiao-Jing; Luo, Fang-Li; Yu, Fei-Hai

    2016-01-01

    Spatial heterogeneity in two co-variable resources such as light and water availability is common and can affect the growth of clonal plants. Several studies have tested effects of spatial heterogeneity in the supply of a single resource on competitive interactions of plants, but none has examined those of heterogeneous distribution of two co-variable resources. In a greenhouse experiment, we grew one (without intraspecific competition) or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under a homogeneous environment and four heterogeneous environments differing in patch arrangement (reciprocal and parallel patchiness of light and soil water) and patch scale (large and small patches of light and water). Intraspecific competition significantly decreased the growth of I. japonica, but at the whole container level there were no significant interaction effects of competition by spatial heterogeneity or significant effect of heterogeneity on competitive intensity. Irrespective of competition, the growth of I. japonica in the high and the low water patches did not differ significantly in the homogeneous treatments, but it was significantly larger in the high than in the low water patches in the heterogeneous treatments with large patches. For the heterogeneous treatments with small patches, the growth of I. japonica was significantly larger in the high than in the low water patches in the presence of competition, but such an effect was not significant in the absence of competition. Furthermore, patch arrangement and patch scale significantly affected competitive intensity at the patch level. Therefore, spatial heterogeneity in light and water supply can alter intraspecific competition at the patch level and such effects depend on patch arrangement and patch scale.

  13. Effects of Spatial Patch Arrangement and Scale of Covarying Resources on Growth and Intraspecific Competition of a Clonal Plant

    PubMed Central

    Wang, Yong-Jian; Shi, Xue-Ping; Meng, Xue-Feng; Wu, Xiao-Jing; Luo, Fang-Li; Yu, Fei-Hai

    2016-01-01

    Spatial heterogeneity in two co-variable resources such as light and water availability is common and can affect the growth of clonal plants. Several studies have tested effects of spatial heterogeneity in the supply of a single resource on competitive interactions of plants, but none has examined those of heterogeneous distribution of two co-variable resources. In a greenhouse experiment, we grew one (without intraspecific competition) or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under a homogeneous environment and four heterogeneous environments differing in patch arrangement (reciprocal and parallel patchiness of light and soil water) and patch scale (large and small patches of light and water). Intraspecific competition significantly decreased the growth of I. japonica, but at the whole container level there were no significant interaction effects of competition by spatial heterogeneity or significant effect of heterogeneity on competitive intensity. Irrespective of competition, the growth of I. japonica in the high and the low water patches did not differ significantly in the homogeneous treatments, but it was significantly larger in the high than in the low water patches in the heterogeneous treatments with large patches. For the heterogeneous treatments with small patches, the growth of I. japonica was significantly larger in the high than in the low water patches in the presence of competition, but such an effect was not significant in the absence of competition. Furthermore, patch arrangement and patch scale significantly affected competitive intensity at the patch level. Therefore, spatial heterogeneity in light and water supply can alter intraspecific competition at the patch level and such effects depend on patch arrangement and patch scale. PMID:27375630

  14. Applications of Two-Body Dirac Equations to the Meson Spectrum with Three Versus Two Covariant Interactions, SU(3) Mixing

    NASA Astrophysics Data System (ADS)

    Schiermeyer, James; Crater, Horace

    2012-03-01

    In a previous work Crater and Van Alstine applied the Two Body Dirac equations of constraint dynamics to quark-antiquark bound states using a relativistic extention of the Adler-Piran potential in which the transformation properties of the quark-antiquark potentials were limited to a scalar and an electromagnetic-like four vector, with the former accounting for the confining aspects of the overall potential, and the latter the short range portion. The static Adler-Piran potential was first given an invariant form and then apportioned between those two different types of potentials. Here we make a change in this apportionment that leads to a substantial improvement in the resultant spectroscopy by including a time-like confining vector potential over and above the scalar confining one and the electromagnetic-like vector potential. Our fit includes 19 more mesons than the earlier results and we modify the scalar portion of the potential in such a way that allows this formalism to account for the isoscalar mesons η and η' not included in the previous work.

  15. Paul Dirac

    NASA Astrophysics Data System (ADS)

    Pais, Abraham; Jacob, Maurice; Olive, David I.; Atiyah, Michael F.

    1998-02-01

    Preface Peter Goddard; Dirac memorial address Stephen Hawking; 1. Paul Dirac: aspects of his life and work Abraham Pais; 2. Antimatter Maurice Jacob; 3. The monopole David Olive; 4. The Dirac equation and geometry Michael F. Atiyah.

  16. Paul Dirac

    NASA Astrophysics Data System (ADS)

    Pais, Abraham; Jacob, Maurice; Olive, David I.; Atiyah, Michael F.

    2005-09-01

    Preface Peter Goddard; Dirac memorial address Stephen Hawking; 1. Paul Dirac: aspects of his life and work Abraham Pais; 2. Antimatter Maurice Jacob; 3. The monopole David Olive; 4. The Dirac equation and geometry Michael F. Atiyah.

  17. Applications of two-body Dirac equations to the meson spectrum with three versus two covariant interactions, SU(3) mixing, and comparison to a quasipotential approach

    NASA Astrophysics Data System (ADS)

    Crater, Horace W.; Schiermeyer, James

    2010-11-01

    In a previous paper, Crater and Van Alstine applied the two-body Dirac equations of constraint dynamics to quark-antiquark bound states using a relativistic extention of the Adler-Piran potential and compared their spectral results to those from other approaches which also considered meson spectroscopy as a whole and not in parts. In this paper, we explore in more detail the differences and similarities in an important subset of those approaches, the quasipotential approach. In the earlier paper, the transformation properties of the quark-antiquark potentials were limited to a scalar and an electromagnetic-like four-vector, with the former accounting for the confining aspects of the overall potential, and the latter the short range portion. The static Adler-Piran potential was first given an invariant form and then apportioned between those two different types of potentials. Here, we make a change in this apportionment that leads to a substantial improvement in the resultant spectroscopy by including a timelike confining vector potential over and above the scalar confining one and the electromagnetic-like vector potential. Our fit includes 19 more mesons than the earlier results and we modify the scalar portion of the potential in such a way that allows this formalism to account for the isoscalar mesons η and η' not included in the previous work. Continuing the comparisons of formalisms and spectral results made in the previous paper with other approaches to meson spectroscopy, we examine in this paper the quasipotential approach of Ebert, Faustov, and Galkin.

  18. Paul Dirac:

    NASA Astrophysics Data System (ADS)

    Brown, Laurie M.

    Paul Dirac was a brilliant and original thinker. He used his physical intuition and his ideal of mathematical beauty to construct bridges between major areas of physics. This article discusses several such important works, including the bridge between quantum mechanics and relativity that led to his prediction of the existence of antimatter.

  19. Optomechanical Dirac physics

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Peano, V.; Marquardt, F.

    2015-02-01

    Recent progress in optomechanical systems may soon allow the realization of optomechanical arrays, i.e. periodic arrangements of interacting optical and vibrational modes. We show that photons and phonons on a honeycomb lattice will produce an optically tunable Dirac-type band structure. Transport in such a system can exhibit transmission through an optically created barrier, similar to Klein tunneling, but with interconversion between light and sound. In addition, edge states at the sample boundaries are dispersive and enable controlled propagation of photon-phonon polaritons.

  20. Paul Adrien Maurice Dirac

    NASA Astrophysics Data System (ADS)

    Kursunoglu, Behram N.; Wigner, Eugene Paul

    1990-04-01

    Portrait R. Feyman; List of contributors; A memorial to P. A. M. Dirac B. N. Kursunoglu; Preface B. N. Kursunoglu and E. P. Wigner; Chronology; Part I. Human Side: 1. Thinking of my darling Paul M. Dirac; 2. Dirac in coral gables S. A. Kursunoglu; 3. Recollections of Paul Dirac at Florida State University J. E. Lannutti; 4. My association with Professor Dirac Harish-Chandra; 5. What Paul Dirac meant in my life N. Kemmer; 6. Dirac's way R. Peierls; 7. An experimenter's view of P. A. M. Dirac A. D. Krisch; 8. Dirac at the University of Miami H. K. Stanford; 9. Remembering Paul Dirac E. P. Wigner; Part II. More Scientific Ideas: 10. Another side to Paul Dirac R. H. Dalitz; 11. Playing with equations, the Dirac way A. Pais; 12. Paul Dirac and Werner Heisenberg - a partnership in science L. M. Brown and H. Rechenberg; 13. Dirac's magnetic monopole and the fine structure constant W. J. Marciano and M. Goldhaber; 14. Magnetic monopoles and the halos of galaxies F. Hoyle; 15. The inadequacies of quantum field theory P. A. M. Dirac; 16. Dirac and the foundation of quantum mechanics P. T. Matthews; Part III. Influenced and Inspired by Association: 17. At the feet of Dirac J. C. Polkinghorne; 18. Reminiscences of Paul Dirac N. Mott; 19. From relativistic quantum theory to the human brain H. J. Lipkin; 20. Dirac in 1962, weak and gravitational radiation interactions J. Weber; 21. Schrödinger's cat W. E. Lamb, Jr.; 22. Dirac and finite field theories A. Salam; 23. Dirac's influence on unified field theory B. N. Kursunoglu; Index.

  1. Integrated optical Dirac physics via inversion symmetry breaking

    NASA Astrophysics Data System (ADS)

    Collins, Matthew J.; Zhang, Fan; Bojko, Richard; Chrostowski, Lukas; Rechtsman, Mikael C.

    2016-12-01

    Graphene and boron nitride are two-dimensional materials whose atoms are arranged in a honeycomb lattice. Their unique properties arise because their electrons behave like relativistic particles (without and with mass, respectively)—namely, they obey the Dirac equation. Here, we use a photonic analog of boron nitride to observe Dirac physics in a silicon integrated optical platform. This will allow for photonic applications of Dirac dispersions (gapped and ungapped) to be realized in an on-chip, integrated nanophotonic platform.

  2. Ultrarelativistic decoupling transformation for generalized Dirac equations

    NASA Astrophysics Data System (ADS)

    Noble, J. H.; Jentschura, U. D.

    2015-07-01

    The Foldy-Wouthuysen transformation is known to uncover the nonrelativistic limit of a generalized Dirac Hamiltonian, lending an intuitive physical interpretation to the effective operators within Schrödinger-Pauli theory. We here discuss the opposite, ultrarelativistic limit which requires the use of a fundamentally different expansion where the leading kinetic term in the Dirac equation is perturbed by the mass of the particle and other interaction (potential) terms, rather than vice versa. The ultrarelativistic decoupling transformation is applied to free Dirac particles (in the Weyl basis) and to high-energy tachyons, which are faster-than-light particles described by a fully Lorentz-covariant equation. The effective gravitational interactions are found. For tachyons, the dominant gravitational interaction term in the high-energy limit is shown to be attractive and equal to the leading term for subluminal Dirac particles (tardyons) in the high-energy limit.

  3. On the spring and mass of the Dirac oscillator

    NASA Technical Reports Server (NTRS)

    Crawford, James P.

    1993-01-01

    The Dirac oscillator is a relativistic generalization of the quantum harmonic oscillator. In particular, the square of the Hamiltonian for the Dirac oscillator yields the Klein-Gordon equation with a potential of the form: (ar(sub 2) + b(L x S)), where a and b are constants. To obtain the Dirac oscillator, a 'minimal substitution' is made in the Dirac equation, where the ordinary derivative is replaced with a covariant derivative. However, an unusual feature of the covariant derivative in this case is that the potential is a non-trivial element of the Clifford algebra. A theory which naturally gives rise to gage potentials which are non-trivial elements of the Clifford algebra is that based on local automorphism invariance. An exact solution of the automorphism gage field equations which reproduces both the potential term and the mass term of the Dirac oscillator is presented.

  4. Covariant approximation averaging

    NASA Astrophysics Data System (ADS)

    Shintani, Eigo; Arthur, Rudy; Blum, Thomas; Izubuchi, Taku; Jung, Chulwoo; Lehner, Christoph

    2015-06-01

    We present a new class of statistical error reduction techniques for Monte Carlo simulations. Using covariant symmetries, we show that correlation functions can be constructed from inexpensive approximations without introducing any systematic bias in the final result. We introduce a new class of covariant approximation averaging techniques, known as all-mode averaging (AMA), in which the approximation takes account of contributions of all eigenmodes through the inverse of the Dirac operator computed from the conjugate gradient method with a relaxed stopping condition. In this paper we compare the performance and computational cost of our new method with traditional methods using correlation functions and masses of the pion, nucleon, and vector meson in Nf=2 +1 lattice QCD using domain-wall fermions. This comparison indicates that AMA significantly reduces statistical errors in Monte Carlo calculations over conventional methods for the same cost.

  5. Transport experiments with Dirac electrons

    NASA Astrophysics Data System (ADS)

    Checkelsky, Joseph George

    This thesis presents transport experiments performed on solid state systems in which the behavior of the charge carriers can be described by the Dirac equation. Unlike the massive carriers in a typical material, in these systems the carriers behave like massless fermions with a photon-like dispersion predicted to greatly modify their spin and charge transport properties. The first system studied is graphene, a crystalline monolayer of carbon arranged in a hexagonal lattice. The band structure calculated from the hexagonal lattice has the form of the massless Dirac Hamiltonian. At the charge neutral Dirac point, we find that application of a magnetic field drives a transition to an insulating state. We also study the thermoelectric properties of graphene and find that the states near the Dirac point have a unique response compared to those at higher charge density. The second system is the 3D topological insulator Bi2Se3, where a Dirac-like dispersion for states on the 2D surface of the insulating 3D crystal arises as a result of the topology of the 3D bands and time reversal symmetry. To access the transport properties of the 2D states, we suppress the remnant bulk conduction channel by chemical doping and electrostatic gating. In bulk crystals we find strong quantum corrections to transport at low temperature when the bulk conduction channel is maximally suppressed. In microscopic crystals we are able better to isolate the surface conduction channel properties. We identify in-gap conducting states that have relatively high mobility compared to the bulk and exhibit weak anti-localization, consistent with predictions for protected 2D surface states with strong spin-orbit coupling.

  6. Bosonic Dirac Materials in 2 dimensions

    NASA Astrophysics Data System (ADS)

    Banerjee, Saikat; Black-Schaffer, A. M.; Fransson, J.; Agren, H.; Balatsky, A. V.

    We examine the low energy effective theory of phase oscillations in a two dimensional granular superconducting sheet where the grains are arranged in honeycomb lattice structure. Two different types of collective phase oscillations are obtained, which are analogous to the massive Leggett and massless Bogoliubov-Anderson-Gorkov modes for two-band superconductor. It is explicitly shown that the spectra of these collective Bosonic modes cross each other at K and K' points in the Brillouin zone and form a Dirac node. This Dirac node behavior in Bosonic excitations represent the case of Bosonic Dirac Materials (BDM). Dirac node is preserved in presence of an inter-grain interaction despite induced changes of the qualitative features of the two collective modes. Finally, breaking the sub lattice symmetry by choosing different on-site potentials for the two sub lattices leads to a gap opening near the Dirac node, in analogy with Fermionic Dirac material. Supported by US DOE E304, ERC DM 321031, KAW, VR2012-3447.

  7. Photoconductivity in Dirac materials

    SciTech Connect

    Shao, J. M.; Yang, G. W.

    2015-11-15

    Two-dimensional (2D) Dirac materials including graphene and the surface of a three-dimensional (3D) topological insulator, and 3D Dirac materials including 3D Dirac semimetal and Weyl semimetal have attracted great attention due to their linear Dirac nodes and exotic properties. Here, we use the Fermi’s golden rule and Boltzmann equation within the relaxation time approximation to study and compare the photoconductivity of Dirac materials under different far- or mid-infrared irradiation. Theoretical results show that the photoconductivity exhibits the anisotropic property under the polarized irradiation, but the anisotropic strength is different between 2D and 3D Dirac materials. The photoconductivity depends strongly on the relaxation time for different scattering mechanism, just like the dark conductivity.

  8. Three Dimensional Dirac Semimetals

    NASA Astrophysics Data System (ADS)

    Zaheer, Saad

    2014-03-01

    Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.

  9. The (2 + 1) curved Dirac equation in polar coordinates in the presence of electromagnetic field

    NASA Astrophysics Data System (ADS)

    Panahi, H.; Jahangiri, L.

    2015-03-01

    In this work we study the covariant Dirac equation in (2 + 1) dimensional space-time in the presence of electromagnetic field. In polar coordinates, we show that by using a unitary transformation which implies a constraint between the components of gauge field, the covariant Dirac equation can be transformed into a Schrodinger-like differential equation for one of the spinor components. We also obtain the relativistic energy and spinor wave function for two different kinds of electrostatic potentials. The non-relativistic limit of the Dirac equation is also studied and it is shown that the upper spinor component satisfies the Pauli equation.

  10. On nonautonomous Dirac equation

    SciTech Connect

    Hovhannisyan, Gro; Liu Wen

    2009-12-15

    We construct the fundamental solution of time dependent linear ordinary Dirac system in terms of unknown phase functions. This construction gives approximate representation of solutions which is useful for the study of asymptotic behavior. Introducing analog of Rayleigh quotient for differential equations we generalize Hartman-Wintner asymptotic integration theorems with the error estimates for applications to the Dirac system. We also introduce the adiabatic invariants for the Dirac system, which are similar to the adiabatic invariant of Lorentz's pendulum. Using a small parameter method it is shown that the change in the adiabatic invariants approaches zero with the power speed as a small parameter approaches zero. As another application we calculate the transition probabilities for the Dirac system. We show that for the special choice of electromagnetic field, the only transition of an electron to the positron with the opposite spin orientation is possible.

  11. Dirac Fermions in Borophene.

    PubMed

    Feng, Baojie; Sugino, Osamu; Liu, Ro-Ya; Zhang, Jin; Yukawa, Ryu; Kawamura, Mitsuaki; Iimori, Takushi; Kim, Howon; Hasegawa, Yukio; Li, Hui; Chen, Lan; Wu, Kehui; Kumigashira, Hiroshi; Komori, Fumio; Chiang, Tai-Chang; Meng, Sheng; Matsuda, Iwao

    2017-03-03

    Honeycomb structures of group IV elements can host massless Dirac fermions with nontrivial Berry phases. Their potential for electronic applications has attracted great interest and spurred a broad search for new Dirac materials especially in monolayer structures. We present a detailed investigation of the β_{12} sheet, which is a borophene structure that can form spontaneously on a Ag(111) surface. Our tight-binding analysis revealed that the lattice of the β_{12} sheet could be decomposed into two triangular sublattices in a way similar to that for a honeycomb lattice, thereby hosting Dirac cones. Furthermore, each Dirac cone could be split by introducing periodic perturbations representing overlayer-substrate interactions. These unusual electronic structures were confirmed by angle-resolved photoemission spectroscopy and validated by first-principles calculations. Our results suggest monolayer boron as a new platform for realizing novel high-speed low-dissipation devices.

  12. Dirac Fermions in Borophene

    NASA Astrophysics Data System (ADS)

    Feng, Baojie; Sugino, Osamu; Liu, Ro-Ya; Zhang, Jin; Yukawa, Ryu; Kawamura, Mitsuaki; Iimori, Takushi; Kim, Howon; Hasegawa, Yukio; Li, Hui; Chen, Lan; Wu, Kehui; Kumigashira, Hiroshi; Komori, Fumio; Chiang, Tai-Chang; Meng, Sheng; Matsuda, Iwao

    2017-03-01

    Honeycomb structures of group IV elements can host massless Dirac fermions with nontrivial Berry phases. Their potential for electronic applications has attracted great interest and spurred a broad search for new Dirac materials especially in monolayer structures. We present a detailed investigation of the β12 sheet, which is a borophene structure that can form spontaneously on a Ag(111) surface. Our tight-binding analysis revealed that the lattice of the β12 sheet could be decomposed into two triangular sublattices in a way similar to that for a honeycomb lattice, thereby hosting Dirac cones. Furthermore, each Dirac cone could be split by introducing periodic perturbations representing overlayer-substrate interactions. These unusual electronic structures were confirmed by angle-resolved photoemission spectroscopy and validated by first-principles calculations. Our results suggest monolayer boron as a new platform for realizing novel high-speed low-dissipation devices.

  13. Dirac's quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Kojevnikov, Alexei

    In the present paper I examine Dirac's contribution to quantum electrodynamics during the years 1926 to 1933, paying attention to the importance and the specificity of his approach and also tracing the roots of his dissatisfaction with the theory, which goes back to the same time and which, as I see it, in many ways influenced his attitude to its subsequent development. Some of Dirac's crucial accomplishments of that period, in particular his theory of the relativistic electron, have already been studied by historians in much detail. I will describe them more briefly, placing them in the context of Dirac's other works and of the general situation in quantum theory and leaving more room for other, less studied works, such as the 1932 Dirac-Fock-Podolsky theory.

  14. Dynamical supersymmetric Dirac Hamiltonians

    SciTech Connect

    Ginocchio, J.N.

    1986-01-01

    Using the language of quantum electrodynamics, the Dirac Hamiltonian of a neutral fermion interacting with a tensor field is examined. A supersymmetry found for a general Dirac Hamiltonian of this type is discussed, followed by consideration of the special case of a harmonic electric potential. The square of the Dirac Hamiltonian of a neutral fermion interacting via an anomalous magnetic moment in an electric potential is shown to be equivalent to a three-dimensional supersymmetric Schroedinger equation. It is found that for a potential that grows as a power of r, the lowest energy of the Hamiltonian equals the rest mass of the fermion, and the Dirac eigenfunction has only an upper component which is normalizable. It is also found that the higher energy states have upper and lower components which form a supersymmetric doublet. 15 refs. (LEW)

  15. Three dimensional Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Zaheer, Saad

    We extend the physics of graphene to three dimensional systems by showing that Dirac points can exist on the Fermi surface of realistic materials in three dimensions. Many of the exotic electronic properties of graphene can be ascribed to the pseudorelativistic behavior of its charge carriers due to two dimensional Dirac points on the Fermi surface. We show that certain nonsymmorphic spacegroups exhibit Dirac points among the irreducible representations of the appropriate little group at high symmetry points on the surface of the Brillouin zone. We provide a list of all Brillouin zone momenta in the 230 spacegroups that can host Dirac points. We describe microscopic considerations necessary to design materials in one of the candidate spacegroups such that the Dirac point appears at the Fermi energy without any additional non-Dirac-like Fermi pockets. We use density functional theory based methods to propose six new Dirac semimetals: BiO 2 and SbO2 in the beta-cristobalite lattice (spacegroup 227), and BiCaSiO4, BiMgSiO4, BiAlInO 4, and BiZnSiO4 in the distorted spinels lattice (spacegroup 74). Additionally we derive effective Dirac Hamiltonians given group representative operators as well as tight binding models incorporating spin-orbit coupling. Finally we study the Fermi surface of zincblende (spacegroup 216) HgTe which is effectively point-like at Gamma in the Brillouin zone and exhibits accidental degeneracies along a threefold rotation axis. Whereas compressive strain gaps the band structure into a topological insulator, tensile strain shifts the accidental degeneracies away from Gamma and enlarges the Fermi surface. States on the Fermi surface exhibit nontrivial spin texture marked by winding of spins around the threefold rotation axis and by spin vortices indicating a change in the winding number. This is confirmed by microscopic calculations performed in tensile strained HgTe and Hg0.5Zn 0.5 Te as well as k.p theory. We conclude with a summary of recent

  16. Collaborative Arrangements.

    ERIC Educational Resources Information Center

    Cota-Robles, Eugene; Doby, Winston

    Two conference papers describing various collaborative arrangements within the educational community among teachers, students and others are presented in this document. The first paper, "Successful Collaborations" (Eugene Cota-Robles), describes the following projects in California that seek to forge collaborations to improve the…

  17. Executor Framework for DIRAC

    NASA Astrophysics Data System (ADS)

    Casajus Ramo, A.; Graciani Diaz, R.

    2012-12-01

    DIRAC framework for distributed computing has been designed as a group of collaborating components, agents and servers, with persistent database back-end. Components communicate with each other using DISET, an in-house protocol that provides Remote Procedure Call (RPC) and file transfer capabilities. This approach has provided DIRAC with a modular and stable design by enforcing stable interfaces across releases. But it made complicated to scale further with commodity hardware. To further scale DIRAC, components needed to send more queries between them. Using RPC to do so requires a lot of processing power just to handle the secure handshake required to establish the connection. DISET now provides a way to keep stable connections and send and receive queries between components. Only one handshake is required to send and receive any number of queries. Using this new communication mechanism DIRAC now provides a new type of component called Executor. Executors process any task (such as resolving the input data of a job) sent to them by a task dispatcher. This task dispatcher takes care of persisting the state of the tasks to the storage backend and distributing them among all the Executors based on the requirements of each task. In case of a high load, several Executors can be started to process the extra load and stop them once the tasks have been processed. This new approach of handling tasks in DIRAC makes Executors easy to replace and replicate, thus enabling DIRAC to further scale beyond the current approach based on polling agents.

  18. Topological Superconductivity in Dirac Semimetals.

    PubMed

    Kobayashi, Shingo; Sato, Masatoshi

    2015-10-30

    Dirac semimetals host bulk band-touching Dirac points and a surface Fermi loop. We develop a theory of superconducting Dirac semimetals. Establishing a relation between the Dirac points and the surface Fermi loop, we clarify how the nontrivial topology of Dirac semimetals affects their superconducting state. We note that the unique orbital texture of Dirac points and a structural phase transition of the crystal favor symmetry-protected topological superconductivity with a quartet of surface Majorana fermions. We suggest the possible application of our theory to recently discovered superconducting states in Cd_{3}As_{2}.

  19. Locality properties of Neuberger's lattice Dirac operator

    NASA Astrophysics Data System (ADS)

    Hernández, Pilar; Jansen, Karl; Lüscher, Martin

    1999-07-01

    The gauge covariant lattice Dirac operator D which has recently been proposed by Neuberger satisfies the Ginsparg-Wilson relation and thus preserves chiral symmetry. The operator also avoids a doubling of fermion species, but its locality properties are not obvious. We now prove that D is local (with exponentially decaying tails) if the gauge field is sufficiently smooth at the scale of the cutoff. Further analytic and numerical studies moreover suggest that the locality of the operator is in fact guaranteed under far more general conditions.

  20. Adjunctation and Scalar Product in the Dirac Equation - II

    NASA Astrophysics Data System (ADS)

    Dima, M.

    2017-02-01

    Part-I Dima (Int. J. Theor. Phys. 55, 949, 2016) of this paper showed in a representation independent way that γ 0 is the Bergmann-Pauli adjunctator of the Dirac { γ μ } set. The distiction was made between similarity (MATH) transformations and PHYS transformations - related to the (covariant) transformations of physical quantities. Covariance is due solely to the gauging of scalar products between systems of reference and not to the particular action of γ 0 on Lorentz boosts - a matter that in the past led inadvertently to the definition of a second scalar product (the Dirac-bar product). Part-II shows how two scalar products lead to contradictions and eliminates this un-natural duality in favour of the canonical scalar product and its gauge between systems of reference. What constitutes a proper observable is analysed and for instance spin is revealed not to embody one (except as projection on the boost direction - helicity). A thorough investigation into finding a proper-observable current for the theory shows that the Dirac equation does not possess one in operator form. A number of problems with the Dirac current operator are revealed - its Klein-Gordon counterpart being significantly more physical. The alternative suggested is finding a current for the Dirac theory in scalar form j^{μ } = < ρ rangle _{_{ψ }}v^{μ }_{ψ }.

  1. Seal arrangement

    DOEpatents

    Lundholm, Gunnar

    1987-01-01

    A seal arrangement is provided for preventing gas leakage along a reciprocating piston rod or other reciprocating member passing through a wall which separates a high pressure gas chmber and a low pressure gas chamber. Liquid lubricant is applied to the lower pressure side of a sealing gland surrounding the piston rod to prevent the escape of gas between the rod and the gland. The sealing gland is radially forced against the piston rod by action of a plurality of axially stacked O-rings influenced by an axially acting spring as well as pressure from the gas.

  2. Dirac equation on coordinate dependent noncommutative space-time

    NASA Astrophysics Data System (ADS)

    Kupriyanov, V. G.

    2014-05-01

    In this paper we discuss classical aspects of spinor field theory on the coordinate dependent noncommutative space-time. The noncommutative Dirac equation describing spinning particle in an external vector field and the corresponding action principle are proposed. The specific choice of a star product allows us to derive a conserved noncommutative probability current and to obtain the energy-momentum tensor for free noncommutative spinor field. Finally, we consider a free noncommutative Dirac fermion and show that if the Poisson structure is Lorentz-covariant, the standard energy-momentum dispersion relation remains valid.

  3. Are the invariance principles really truly Lorentz covariant?

    SciTech Connect

    Arunasalam, V.

    1994-02-01

    It is shown that some sections of the invariance (or symmetry) principles such as the space reversal symmetry (or parity P) and time reversal symmetry T (of elementary particle and condensed matter physics, etc.) are not really truly Lorentz covariant. Indeed, I find that the Dirac-Wigner sense of Lorentz invariance is not in full compliance with the Einstein-Minkowski reguirements of the Lorentz covariance of all physical laws (i.e., the world space Mach principle).

  4. Dirac equation for strings

    NASA Astrophysics Data System (ADS)

    Trzetrzelewski, Maciej

    2016-11-01

    Starting with a Nambu-Goto action, a Dirac-like equation can be constructed by taking the square-root of the momentum constraint. The eigenvalues of the resulting Hamiltonian are real and correspond to masses of the excited string. In particular there are no tachyons. A special case of radial oscillations of a closed string in Minkowski space-time admits exact solutions in terms of wave functions of the harmonic oscillator.

  5. Dirac Semimetals in Two Dimensions.

    PubMed

    Young, Steve M; Kane, Charles L

    2015-09-18

    Graphene is famous for being a host of 2D Dirac fermions. However, spin-orbit coupling introduces a small gap, so that graphene is formally a quantum spin Hall insulator. Here we present symmetry-protected 2D Dirac semimetals, which feature Dirac cones at high-symmetry points that are not gapped by spin-orbit interactions and exhibit behavior distinct from both graphene and 3D Dirac semimetals. Using a two-site tight-binding model, we construct representatives of three possible distinct Dirac semimetal phases and show that single symmetry-protected Dirac points are impossible in two dimensions. An essential role is played by the presence of nonsymmorphic space group symmetries. We argue that these symmetries tune the system to the boundary between a 2D topological and trivial insulator. By breaking the symmetries we are able to access trivial and topological insulators as well as Weyl semimetal phases.

  6. Dirac structures in vakonomic mechanics

    NASA Astrophysics Data System (ADS)

    Jiménez, Fernando; Yoshimura, Hiroaki

    2015-08-01

    In this paper, we explore dynamics of the nonholonomic system called vakonomic mechanics in the context of Lagrange-Dirac dynamical systems using a Dirac structure and its associated Hamilton-Pontryagin variational principle. We first show the link between vakonomic mechanics and nonholonomic mechanics from the viewpoints of Dirac structures as well as Lagrangian submanifolds. Namely, we clarify that Lagrangian submanifold theory cannot represent nonholonomic mechanics properly, but vakonomic mechanics instead. Second, in order to represent vakonomic mechanics, we employ the space TQ ×V∗, where a vakonomic Lagrangian is defined from a given Lagrangian (possibly degenerate) subject to nonholonomic constraints. Then, we show how implicit vakonomic Euler-Lagrange equations can be formulated by the Hamilton-Pontryagin variational principle for the vakonomic Lagrangian on the extended Pontryagin bundle (TQ ⊕T∗ Q) ×V∗. Associated with this variational principle, we establish a Dirac structure on (TQ ⊕T∗ Q) ×V∗ in order to define an intrinsic vakonomic Lagrange-Dirac system. Furthermore, we also establish another construction for the vakonomic Lagrange-Dirac system using a Dirac structure on T∗ Q ×V∗, where we introduce a vakonomic Dirac differential. Finally, we illustrate our theory of vakonomic Lagrange-Dirac systems by some examples such as the vakonomic skate and the vertical rolling coin.

  7. A Lorentz-Covariant Connection for Canonical Gravity

    NASA Astrophysics Data System (ADS)

    Geiller, Marc; Lachièze-Rey, Marc; Noui, Karim; Sardelli, Francesco

    2011-08-01

    We construct a Lorentz-covariant connection in the context of first order canonical gravity with non-vanishing Barbero-Immirzi parameter. To do so, we start with the phase space formulation derived from the canonical analysis of the Holst action in which the second class constraints have been solved explicitly. This allows us to avoid the use of Dirac brackets. In this context, we show that there is a ''unique'' Lorentz-covariant connection which is commutative in the sense of the Poisson bracket, and which furthermore agrees with the connection found by Alexandrov using the Dirac bracket. This result opens a new way toward the understanding of Lorentz-covariant loop quantum gravity.

  8. Tunneling conductance in a two-dimensional Dirac semimetal protected by nonsymmorphic symmetry

    NASA Astrophysics Data System (ADS)

    Habe, Tetsuro

    2017-03-01

    We theoretically study a tunneling effect in a two-dimensional Dirac semimetal with two Dirac points protected by nonsymmorphic symmetries. The tunnel barrier can be arranged by a magnetic exchange potential which opens a gap at the Dirac points which can be induced by a magnetic proximity effect of a ferromagnetic insulator. We found that the tunnel decay length increases with a decrease in the strength of the spin-orbit coupling, and moreover the dependence is attributed to the correlation of sublattice and spin degrees of freedom which lead to symmetry-protected Dirac points. The tunnel probability is quite different in two Dirac points, and thus the tunnel effect can be applied to the highly selective valley filter.

  9. Dirac operator on spinors and diffeomorphisms

    NASA Astrophysics Data System (ADS)

    Dąbrowski, Ludwik; Dossena, Giacomo

    2013-01-01

    The issue of general covariance of spinors and related objects is reconsidered. Given an oriented manifold M, to each spin structure σ and Riemannian metric g there is associated a space Sσ, g of spinor fields on M and a Hilbert space {H}_{σ, g}= L^2(S_{σ, g}, vol_{g}(M)) of L2-spinors of Sσ, g. The group Diff+(M) of orientation-preserving diffeomorphisms of M acts both on g (by pullback) and on [σ] (by a suitably defined pullback f*σ). Any f ∈ Diff+(M) lifts in exactly two ways to a unitary operator U from {H}_{σ, g} to {H}_{f^*σ ,f^*g}. The canonically defined Dirac operator is shown to be equivariant with respect to the action of U, so in particular its spectrum is invariant under the diffeomorphisms.

  10. FUN WITH DIRAC EIGENVALUES.

    SciTech Connect

    CREUTZ, M.

    2006-01-26

    It is popular to discuss low energy physics in lattice gauge theory ill terms of the small eigenvalues of the lattice Dirac operator. I play with some ensuing pitfalls in the interpretation of these eigenvalue spectra. In short, thinking about the eigenvalues of the Dirac operator in the presence of gauge fields can give some insight, for example the elegant Banks-Casher picture for chiral symmetry breaking. Nevertheless, care is necessary because the problem is highly non-linear. This manifests itself in the non-intuitive example of how adding flavors enhances rather than suppresses low eigenvalues. Issues involving zero mode suppression represent one facet of a set of connected unresolved issues. Are there non-perturbative ambiguities in quantities such as the topological susceptibility? How essential are rough gauge fields, i.e. gauge fields on which the winding number is ambiguous? How do these issues interplay with the quark masses? I hope the puzzles presented here will stimulate more thought along these lines.

  11. Status of the DIRAC Project

    NASA Astrophysics Data System (ADS)

    Casajus, A.; Ciba, K.; Fernandez, V.; Graciani, R.; Hamar, V.; Mendez, V.; Poss, S.; Sapunov, M.; Stagni, F.; Tsaregorodtsev, A.; Ubeda, M.

    2012-12-01

    The DIRAC Project was initiated to provide a data processing system for the LHCb Experiment at CERN. It provides all the necessary functionality and performance to satisfy the current and projected future requirements of the LHCb Computing Model. A considerable restructuring of the DIRAC software was undertaken in order to turn it into a general purpose framework for building distributed computing systems that can be used by various user communities in High Energy Physics and other scientific application domains. The CLIC and ILC-SID detector projects started to use DIRAC for their data production system. The Belle Collaboration at KEK, Japan, has adopted the Computing Model based on the DIRAC system for its second phase starting in 2015. The CTA Collaboration uses DIRAC for the data analysis tasks. A large number of other experiments are starting to use DIRAC or are evaluating this solution for their data processing tasks. DIRAC services are included as part of the production infrastructure of the GISELA Latin America grid. Similar services are provided for the users of the France-Grilles and IBERGrid National Grid Initiatives in France and Spain respectively. The new communities using DIRAC started to provide important contributions to its functionality. Among recent additions can be mentioned the support of the Amazon EC2 computing resources as well as other Cloud management systems; a versatile File Replica Catalog with File Metadata capabilities; support for running MPI jobs in the pilot based Workload Management System. Integration with existing application Web Portals, like WS-PGRADE, is demonstrated. In this paper we will describe the current status of the DIRAC Project, recent developments of its framework and functionality as well as the status of the rapidly evolving community of the DIRAC users.

  12. Emergence of Type-II Dirac Points in Graphynelike Photonic Lattices.

    PubMed

    Pyrialakos, Georgios G; Nye, Nicholas S; Kantartzis, Nikolaos V; Christodoulides, Demetrios N

    2017-09-15

    We theoretically demonstrate that a type-II class of tilted Dirac cones can emerge in generalized two-dimensional anisotropic lattice arrangements. This is achieved by introducing a special set of graphynelike exchange bonds by means of which the complete spectrum of the underlying Weyl Hamiltonian can be realized. Our ab initio calculations demonstrate a unique class of eigensolutions corresponding to a type-II class of Dirac fermionic excitations. Based on our approach, one can systematically synthesize a wide range of strongly anisotropic band diagrams having tilted Dirac cones with variable location and orientation. Moreover, we show that asymmetric conical diffraction, as well as edge states, can arise in these configurations. Our results can provide a versatile platform to observe, for the first time, optical transport around type-II Dirac points in two-dimensional optical settings under linear, nonlinear, and non-Hermitian conditions.

  13. Emergence of Type-II Dirac Points in Graphynelike Photonic Lattices

    NASA Astrophysics Data System (ADS)

    Pyrialakos, Georgios G.; Nye, Nicholas S.; Kantartzis, Nikolaos V.; Christodoulides, Demetrios N.

    2017-09-01

    We theoretically demonstrate that a type-II class of tilted Dirac cones can emerge in generalized two-dimensional anisotropic lattice arrangements. This is achieved by introducing a special set of graphynelike exchange bonds by means of which the complete spectrum of the underlying Weyl Hamiltonian can be realized. Our ab initio calculations demonstrate a unique class of eigensolutions corresponding to a type-II class of Dirac fermionic excitations. Based on our approach, one can systematically synthesize a wide range of strongly anisotropic band diagrams having tilted Dirac cones with variable location and orientation. Moreover, we show that asymmetric conical diffraction, as well as edge states, can arise in these configurations. Our results can provide a versatile platform to observe, for the first time, optical transport around type-II Dirac points in two-dimensional optical settings under linear, nonlinear, and non-Hermitian conditions.

  14. New scale-relativistic derivations of Pauli and Dirac equations

    NASA Astrophysics Data System (ADS)

    Hammad, F.

    2008-02-01

    In scale relativity, quantum mechanics is recovered by transcribing the classical equations of motion to fractal spaces and demanding, as dictated by the principle of scale relativity, that the form of these equations be preserved. In the framework of this theory, however, the form of the classical energy equations both in the relativistic and nonrelativistic cases are not preserved. Aiming to get full covariance, i.e., to restore to these equations their classical forms, we show that the scale-relativistic form of the Schrödinger equation yields the Pauli equation, whilst the Pissondes's scale-relativistic form of the Klein-Gordon equation gives the Dirac equation.

  15. Oil fence arrangement

    SciTech Connect

    Muto, I.; Tatsuguchi, M.

    1984-01-10

    An oil fence arrangement for effectively preventing oil spills from spreading or diffusing over the surface of the sea. The arrangement is of a double wall construction and can fold into a small space.

  16. Kondo Effect in Dirac Systems

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Takashi

    2015-07-01

    We investigate the Kondo effect in Dirac systems, where Dirac electrons interact with the localized spin via the s-d exchange coupling. The Dirac electron in solid state has the linear dispersion and is described typically by the Hamiltonian such as Hk = vk · σ for the wave number k where σj are Pauli matrices. We derived the formula of the Kondo temperature TK by means of the Green's function theory for small J. The TK is determined from a singularity of Green's functions in the form TK ≃ bar{D}exp ( - const./ρ |J|) when the exchange coupling |J| is small where bar{D} = D/√{1 + D2/(2μ )2} for a cutoff D and ρ is the density of states at the Fermi surface. When |μ| ≪ D, TK is proportional to |μ|: TK ≃ |μ| exp(-const./ρ|J|). The Kondo screening will, however, disappear when the Fermi surface shrinks to a point called the Dirac point, that is, TK vanishes when the chemical potential μ is just at the Dirac point. The resistivity and the specific heat exhibit a log-T singularity in the range TK < T ≪ |μ|/kB. Instead, for T ˜ O(|μ|) or T > |μ|, they never show log-T.

  17. A detailed study of nonperturbative solutions of two-body Dirac equations

    SciTech Connect

    Crater, H.W.; Becker, R.L.; Wong, C.Y.; Van Alstine, P.

    1992-12-01

    In quark model calculations of the meson spectrums fully covariant two-body Dirac equations dictated by Dirac's relativistic constraint mechanics gave a good fit to the entire meson mass spectrum for light quark mesons as well as heavy quark mesons with constituent world scalar and vector potentials depending on just one or two parameters. In this paper, we investigate the properties of these equations that made them work so well by solving them numerically for quantum electrodynamics (QED) and related field theories. The constraint formalism generates a relativistic quantum mechanics defined by two coupled Dirac equations on a sixteen component wave function which contain Lorentz covariant constituent potentials that are initially undetermined. An exact Pauli reduction leads to a second order relativistic Schroedinger-like equation for a reduced eight component wave function determined by an effective interaction -- the quasipotential. We first determine perturbatively to lowest order the relativistic quasipotential for the Schroedinger-like equation by comparing that form with one derived from the Bethe-Salpeter equation. Insertion of this perturbative information into the minimal interaction structures of the two-body Dirac equations then completely determines their interaction structures. Then we give a procedure for constructing the full sixteen component solution to our coupled first-order Dirac equations from a solution of the second order equation for the reduced wave function. Next, we show that a perturbative treatment of these equations yields the standard spectral results for QED and related interactions.

  18. Auto covariance computer

    NASA Technical Reports Server (NTRS)

    Hepner, T. E.; Meyers, J. F. (Inventor)

    1985-01-01

    A laser velocimeter covariance processor which calculates the auto covariance and cross covariance functions for a turbulent flow field based on Poisson sampled measurements in time from a laser velocimeter is described. The device will process a block of data that is up to 4096 data points in length and return a 512 point covariance function with 48-bit resolution along with a 512 point histogram of the interarrival times which is used to normalize the covariance function. The device is designed to interface and be controlled by a minicomputer from which the data is received and the results returned. A typical 4096 point computation takes approximately 1.5 seconds to receive the data, compute the covariance function, and return the results to the computer.

  19. Neutron scattering by Dirac multipoles

    NASA Astrophysics Data System (ADS)

    Lovesey, S. W.; Khalyavin, D. D.

    2017-06-01

    Scattering by magnetic charge formed by Dirac multipoles that are magnetic and polar is examined in the context of materials with properties that challenge conventional concepts. An order parameter composed of Dirac quadrupoles has been revealed in the pseudo-gap phase of ceramic, high-T c superconductors on the basis of Kerr effect and magnetic neutron Bragg diffraction measurements. Construction of Dirac quadrupoles that emerge from centrosymmetric sites used by Cu ions in the ceramic superconductor Hg1201 is illustrated, together with selection rules for excitations that will feature in neutron inelastic scattering, and RIXS experiments. We report magnetic scattering amplitudes for diffraction by polar multipoles that have universal value, because they are not specific to ceramic superconductors. To illustrate this attribute, we consider neutron Bragg diffraction from a magnetically ordered iridate (Sr2IrO4) and discuss shortcomings in published interpretations of diffraction data.

  20. Ground-state Dirac monopole

    SciTech Connect

    Ruokokoski, E.; Moettoenen, M.

    2011-12-15

    We show theoretically that a monopole defect, analogous to the Dirac magnetic monopole, may exist as the ground state of a dilute spin-1 Bose-Einstein condensate. The ground-state monopole is not attached to a single semi-infinite Dirac string but forms a point where the circulation of a single vortex line is reversed. Furthermore, the three-dimensional dynamics of this monopole defect is studied after the magnetic field pinning the monopole is removed and the emergence of antimonopoles is observed. Our scheme is realizable with the current experimental facilities.

  1. Dirac Loops in Carbon Allotropes

    NASA Astrophysics Data System (ADS)

    Mullen, Kieran; Uchoa, Bruno; Glatzhofer, D.

    2015-03-01

    We propose a family of structures that have ``Dirac loops'': closed lines in momentum space with Dirac-like quasiparticles, on which the density of states vanishes linearly with energy. The structures all possess the planar trigonal connectivity present in graphene, but are three dimensional. We discuss the consequences of their multiply-connected Fermi surface for transport, including the presence of three dimensional Integer Quantum Hall effect. In the presence of spin-orbit coupling, we show that those structures may have topological surface states. We discuss the feasibility of realizing the structures as an allotrope of carbon. Work supported by NSF Grants DMR-1310407 and DMR-1352604.

  2. Galilean covariant harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Horzela, Andrzej; Kapuscik, Edward

    1993-01-01

    A Galilean covariant approach to classical mechanics of a single particle is described. Within the proposed formalism, all non-covariant force laws defining acting forces which become to be defined covariantly by some differential equations are rejected. Such an approach leads out of the standard classical mechanics and gives an example of non-Newtonian mechanics. It is shown that the exactly solvable linear system of differential equations defining forces contains the Galilean covariant description of harmonic oscillator as its particular case. Additionally, it is demonstrated that in Galilean covariant classical mechanics the validity of the second Newton law of dynamics implies the Hooke law and vice versa. It is shown that the kinetic and total energies transform differently with respect to the Galilean transformations.

  3. Generalized electromagnetism and Dirac algebra

    SciTech Connect

    Fryberger, D.

    1989-02-01

    Using a framework of Dirac algebra, the Clifford algebra appropriate for Minkowski space-time, the formulation of classical electromagnetism including both electric and magnetic charge is explored. Employing the two-potential approach of Cabibbo and Ferrari, a Lagrangian is obtained that is dyality invariant and from which it is possible to derive by Hamilton's principle both the symmetrized Maxwell's equations and the equations of motion for both electrically and magnetically charged particles. This latter result is achieved by defining the variation of the action associated with the cross terms of the interaction Lagrangian in terms of a surface integral. The surface integral has an equivalent path-integral form, showing that the contribution of the cross terms is local in nature. The form of these cross terms derives in a natural way from a Dirac algebraic formulation, and, in fact, the use of the geometric product of Dirac algebra is an essential aspect of this derivation. No kinematic restrictions are associated with the derivation, and no relationship between magnetic and electric charge evolves from the (classical) formulations. However, it is indicated that in bound states quantum mechanical considerations will lead to a version of Dirac's quantization condition. A discussion of parity violation of the generalized electromagnetic theory is given, and a new approach to the incorporation of this violation into the formalism is suggested. Possibilities for extensions are mentioned.

  4. Superconductivity in doped Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  5. Weyl, Dirac and Maxwell Quantum Cellular Automata

    NASA Astrophysics Data System (ADS)

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Tosini, Alessandro

    2015-10-01

    Recent advances on quantum foundations achieved the derivation of free quantum field theory from general principles, without referring to mechanical notions and relativistic invariance. From the aforementioned principles a quantum cellular automata (QCA) theory follows, whose relativistic limit of small wave-vector provides the free dynamics of quantum field theory. The QCA theory can be regarded as an extended quantum field theory that describes in a unified way all scales ranging from an hypothetical discrete Planck scale up to the usual Fermi scale. The present paper reviews the automaton theory for the Weyl field, and the composite automata for Dirac and Maxwell fields. We then give a simple analysis of the dynamics in the momentum space in terms of a dispersive differential equation for narrowband wave-packets. We then review the phenomenology of the free-field automaton and consider possible visible effects arising from the discreteness of the framework. We conclude introducing the consequences of the automaton dispersion relation, leading to a deformed Lorentz covariance and to possible effects on the thermodynamics of ideal gases.

  6. Dynamic Face Seal Arrangement

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher (Inventor)

    1999-01-01

    A radial face seal arrangement is disclosed comprising a stationary seal ring that is spring loaded against a seal seat affixed to a rotating shaft. The radial face seal arrangement further comprises an arrangement that not only allows for preloading of the stationary seal ring relative to the seal seat, but also provides for dampening yielding a dynamic seating response for the radial face seal arrangement. The overall seal system, especially regarding the selection of the material for the stationary seal ring, is designed to operate over a wide temperature range from below ambient up to 900 C.

  7. Snapshots of Dirac fermions near the Dirac point in topological insulators.

    PubMed

    Luo, C W; Wang, H J; Ku, S A; Chen, H-J; Yeh, T T; Lin, J-Y; Wu, K H; Juang, J Y; Young, B L; Kobayashi, T; Cheng, C-M; Chen, C-H; Tsuei, K-D; Sankar, R; Chou, F C; Kokh, K A; Tereshchenko, O E; Chulkov, E V; Andreev, Yu M; Gu, G D

    2013-01-01

    The recent focus on topological insulators is due to the scientific interest in the new state of quantum matter as well as the technology potential for a new generation of THz optoelectronics, spintronics and quantum computations. It is important to elucidate the dynamics of the Dirac fermions in the topologically protected surface state. Hence we utilized a novel ultrafast optical pump mid-infrared probe to explore the dynamics of Dirac fermions near the Dirac point. The femtosecond snapshots of the relaxation process were revealed by the ultrafast optics. Specifically, the Dirac fermion-phonon coupling strength in the Dirac cone was found to increase from 0.08 to 0.19 while Dirac fermions were away from the Dirac point into higher energy states. Further, the energy-resolved transient reflectivity spectra disclosed the energy loss rate of Dirac fermions at room temperature was about 1 meV/ps. These results are crucial to the design of Dirac fermion devices.

  8. Baryon Spectrum Analysis using Covariant Constraint Dynamics

    NASA Astrophysics Data System (ADS)

    Whitney, Joshua; Crater, Horace

    2012-03-01

    The energy spectrum of the baryons is determined by treating each of them as a three-body system with the interacting forces coming from a set of two-body potentials that depend on both the distance between the quarks and the spin and orbital angular momentum coupling terms. The Two Body Dirac equations of constraint dynamics derived by Crater and Van Alstine, matched with the quasipotential formalism of Todorov as the underlying two-body formalism are used, as well as the three-body constraint formalism of Sazdjian to integrate the three two-body equations into a single relativistically covariant three body equation for the bound state energies. The results are analyzed and compared to experiment using a best fit method and several different algorithms, including a gradient approach, and Monte Carlo method. Results for all well-known baryons are presented and compared to experiment, with good accuracy.

  9. Reduced Dirac equation and Lamb shift as off-mass-shell effect in quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Ni, Guang-Jiong; Xu, Jian-Jun; Lou, Sen-Yue

    2011-02-01

    Based on the accurate experimental data of energy-level differences in hydrogen-like atoms, especially the 1S—2S transitions of hydrogen and deuterium, the necessity of introducing a reduced Dirac equation with reduced mass as the substitution of original electron mass is stressed. Based on new cognition about the essence of special relativity, we provide a reasonable argument for the reduced Dirac equation to have two symmetries, the invariance under the (newly defined) space-time inversion and that under the pure space inversion, in a noninertial frame. By using the reduced Dirac equation and within the framework of quantum electrodynamics in covariant form, the Lamb shift can be evaluated (at one-loop level) as the radiative correction on a bound electron staying in an off-mass-shell state—-a new approach eliminating the infrared divergence. Hence the whole calculation, though with limited accuracy, is simplified, getting rid of all divergences and free of ambiguity.

  10. Covariant mutually unbiased bases

    NASA Astrophysics Data System (ADS)

    Carmeli, Claudio; Schultz, Jussi; Toigo, Alessandro

    2016-06-01

    The connection between maximal sets of mutually unbiased bases (MUBs) in a prime-power dimensional Hilbert space and finite phase-space geometries is well known. In this article, we classify MUBs according to their degree of covariance with respect to the natural symmetries of a finite phase-space, which are the group of its affine symplectic transformations. We prove that there exist maximal sets of MUBs that are covariant with respect to the full group only in odd prime-power dimensional spaces, and in this case, their equivalence class is actually unique. Despite this limitation, we show that in dimension 2r covariance can still be achieved by restricting to proper subgroups of the symplectic group, that constitute the finite analogues of the oscillator group. For these subgroups, we explicitly construct the unitary operators yielding the covariance.

  11. Covariant Noncommutative Field Theory

    SciTech Connect

    Estrada-Jimenez, S.; Garcia-Compean, H.; Obregon, O.; Ramirez, C.

    2008-07-02

    The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced.

  12. CALUTRON PLANT ARRANGEMENT

    DOEpatents

    Waite, L.O.

    1959-06-01

    A description is given of an arrangement for calutrons in which the tanks and magnets are placed alternately in a race track'' figure. Pump connections are through the floor to the pumps below where roughing and finishing headers are provided. The arrangement provides more efficient and exonomical operaton, economy of construction, and saving of space. (T.R.H.)

  13. Teaching Arrangement Inductively.

    ERIC Educational Resources Information Center

    Mendelson, Michael

    1988-01-01

    Argues that teaching arrangement inductively offers an alternative to the standard imitation of business communication text models. Asserts that the inductive method stimulates individual rather than formulaic responses to the problems of organization, and that inductively-trained writers see arrangements as a powerful element in persuasive…

  14. Gravitational Repulsion and Dirac Antimatter

    NASA Astrophysics Data System (ADS)

    Kowitt, Mark E.

    1996-03-01

    Based on an analogy with electron and hole dynamics in semiconductors, Dirac's relativistic electron equation is generalized to include a gravitational interaction using an electromagnetic-type approximation of the gravitational potential. With gravitational and inertial masses decoupled, the equation serves to extend Dirac's deduction of antimatter parameters to include the possibility of gravitational repulsion between matter and antimatter. Consequences for general relativity and related “antigravity” issues are considered, including the nature and gravitational behavior of virtual photons, virtual pairs, and negative-energy particles. Basic cosmological implications of antigravity are explored—in particular, potential contributions to inflation, expansion, and the general absence of detectable antimatter. Experimental and observational tests are noted, and new ones suggested.

  15. Dirac sigma models from gauging

    NASA Astrophysics Data System (ADS)

    Salnikov, Vladimir; Strobl, Thomas

    2013-11-01

    The G/G WZW model results from the WZW-model by a standard procedure of gauging. G/G WZW models are members of Dirac sigma models, which also contain twisted Poisson sigma models as other examples. We show how the general class of Dirac sigma models can be obtained from a gauging procedure adapted to Lie algebroids in the form of an equivariantly closed extension. The rigid gauge groups are generically infinite dimensional and a standard gauging procedure would give a likewise infinite number of 1-form gauge fields; the proposed construction yields the requested finite number of them. Although physics terminology is used, the presentation is kept accessible also for a mathematical audience.

  16. Hydrodynamics of the Dirac spectrum

    DOE PAGES

    Liu, Yizhuang; Warchoł, Piotr; Zahed, Ismail

    2015-12-15

    We discuss a hydrodynamical description of the eigenvalues of the Dirac spectrum in even dimensions in the vacuum and in the large N (volume) limit. The linearized hydrodynamics supports sound waves. The hydrodynamical relaxation of the eigenvalues is captured by a hydrodynamical (tunneling) minimum configuration which follows from a pertinent form of Euler equation. As a result, the relaxation from a phase of unbroken chiral symmetry to a phase of broken chiral symmetry occurs over a time set by the speed of sound.

  17. DIRAC: Secure web user interface

    NASA Astrophysics Data System (ADS)

    Casajus Ramo, A.; Sapunov, M.

    2010-04-01

    Traditionally the interaction between users and the Grid is done with command line tools. However, these tools are difficult to use by non-expert users providing minimal help and generating outputs not always easy to understand especially in case of errors. Graphical User Interfaces are typically limited to providing access to the monitoring or accounting information and concentrate on some particular aspects failing to cover the full spectrum of grid control tasks. To make the Grid more user friendly more complete graphical interfaces are needed. Within the DIRAC project we have attempted to construct a Web based User Interface that provides means not only for monitoring the system behavior but also allows to steer the main user activities on the grid. Using DIRAC's web interface a user can easily track jobs and data. It provides access to job information and allows performing actions on jobs such as killing or deleting. Data managers can define and monitor file transfer activity as well as check requests set by jobs. Production managers can define and follow large data productions and react if necessary by stopping or starting them. The Web Portal is build following all the grid security standards and using modern Web 2.0 technologies which allow to achieve the user experience similar to the desktop applications. Details of the DIRAC Web Portal architecture and User Interface will be presented and discussed.

  18. Dirac fermions in an antiferromagnetic semimetal

    SciTech Connect

    Tang, Peizhe; Zhou, Quan; Xu, Gang; Zhang, Shou-Cheng

    2016-08-08

    Analogues of the elementary particles have been extensively searched for in condensed-matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low-energy excitations in materials now known as Dirac semimetals. All of the currently known Dirac semimetals are non-magnetic with both time-reversal symmetry and inversion symmetry. Here in this paper, we show that Dirac fermions can exist in one type of antiferromagnetic system, where both and are broken but their combination is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyse the robustness of the Dirac points under symmetry protections and demonstrate its distinctive bulk dispersions, as well as the corresponding surface states, by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism.

  19. Dirac fermions in an antiferromagnetic semimetal

    DOE PAGES

    Tang, Peizhe; Zhou, Quan; Xu, Gang; ...

    2016-08-08

    Analogues of the elementary particles have been extensively searched for in condensed-matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low-energy excitations in materials now known as Dirac semimetals. All of the currently known Dirac semimetals are non-magnetic with both time-reversal symmetry and inversion symmetry. Here in this paper, we show that Dirac fermions can exist in one type of antiferromagnetic system, where both and are broken but their combination is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyse the robustness of the Dirac points under symmetry protections andmore » demonstrate its distinctive bulk dispersions, as well as the corresponding surface states, by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism.« less

  20. Mapping curved spacetimes into Dirac spinors

    PubMed Central

    Sabín, Carlos

    2017-01-01

    We show how to transform a Dirac equation in a curved static spacetime into a Dirac equation in flat spacetime. In particular, we show that any solution of the free massless Dirac equation in a 1 + 1 dimensional flat spacetime can be transformed via a local phase transformation into a solution of the corresponding Dirac equation in a curved static background, where the spacetime metric is encoded into the phase. In this way, the existing quantum simulators of the Dirac equation can naturally incorporate curved static spacetimes. As a first example we use our technique to obtain solutions of the Dirac equation in a particular family of interesting spacetimes in 1 + 1 dimensions. PMID:28074908

  1. Mapping curved spacetimes into Dirac spinors.

    PubMed

    Sabín, Carlos

    2017-01-11

    We show how to transform a Dirac equation in a curved static spacetime into a Dirac equation in flat spacetime. In particular, we show that any solution of the free massless Dirac equation in a 1 + 1 dimensional flat spacetime can be transformed via a local phase transformation into a solution of the corresponding Dirac equation in a curved static background, where the spacetime metric is encoded into the phase. In this way, the existing quantum simulators of the Dirac equation can naturally incorporate curved static spacetimes. As a first example we use our technique to obtain solutions of the Dirac equation in a particular family of interesting spacetimes in 1 + 1 dimensions.

  2. Dirac fermions in an antiferromagnetic semimetal

    NASA Astrophysics Data System (ADS)

    Tang, Peizhe; Zhou, Quan; Xu, Gang; Zhang, Shou-Cheng

    2016-12-01

    Analogues of the elementary particles have been extensively searched for in condensed-matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low-energy excitations in materials now known as Dirac semimetals. All of the currently known Dirac semimetals are non-magnetic with both time-reversal symmetry and inversion symmetry . Here we show that Dirac fermions can exist in one type of antiferromagnetic system, where both and are broken but their combination is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyse the robustness of the Dirac points under symmetry protections and demonstrate its distinctive bulk dispersions, as well as the corresponding surface states, by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism.

  3. Covariant Bardeen perturbation formalism

    NASA Astrophysics Data System (ADS)

    Vitenti, S. D. P.; Falciano, F. T.; Pinto-Neto, N.

    2014-05-01

    In a previous work we obtained a set of necessary conditions for the linear approximation in cosmology. Here we discuss the relations of this approach with the so-called covariant perturbations. It is often argued in the literature that one of the main advantages of the covariant approach to describe cosmological perturbations is that the Bardeen formalism is coordinate dependent. In this paper we will reformulate the Bardeen approach in a completely covariant manner. For that, we introduce the notion of pure and mixed tensors, which yields an adequate language to treat both perturbative approaches in a common framework. We then stress that in the referred covariant approach, one necessarily introduces an additional hypersurface choice to the problem. Using our mixed and pure tensors approach, we are able to construct a one-to-one map relating the usual gauge dependence of the Bardeen formalism with the hypersurface dependence inherent to the covariant approach. Finally, through the use of this map, we define full nonlinear tensors that at first order correspond to the three known gauge invariant variables Φ, Ψ and Ξ, which are simultaneously foliation and gauge invariant. We then stress that the use of the proposed mixed tensors allows one to construct simultaneously gauge and hypersurface invariant variables at any order.

  4. Covariance mapping techniques

    NASA Astrophysics Data System (ADS)

    Frasinski, Leszek J.

    2016-08-01

    Recent technological advances in the generation of intense femtosecond pulses have made covariance mapping an attractive analytical technique. The laser pulses available are so intense that often thousands of ionisation and Coulomb explosion events will occur within each pulse. To understand the physics of these processes the photoelectrons and photoions need to be correlated, and covariance mapping is well suited for operating at the high counting rates of these laser sources. Partial covariance is particularly useful in experiments with x-ray free electron lasers, because it is capable of suppressing pulse fluctuation effects. A variety of covariance mapping methods is described: simple, partial (single- and multi-parameter), sliced, contingent and multi-dimensional. The relationship to coincidence techniques is discussed. Covariance mapping has been used in many areas of science and technology: inner-shell excitation and Auger decay, multiphoton and multielectron ionisation, time-of-flight and angle-resolved spectrometry, infrared spectroscopy, nuclear magnetic resonance imaging, stimulated Raman scattering, directional gamma ray sensing, welding diagnostics and brain connectivity studies (connectomics). This review gives practical advice for implementing the technique and interpreting the results, including its limitations and instrumental constraints. It also summarises recent theoretical studies, highlights unsolved problems and outlines a personal view on the most promising research directions.

  5. Sense circuit arrangement

    NASA Technical Reports Server (NTRS)

    Bohning, Oliver D. (Inventor)

    1976-01-01

    A unique, two-node sense circuit is disclosed. The circuit includes a bridge comprised of resistance elements and a differential amplifier. The two-node circuit is suitably adapted to be arranged in an array comprised of a plurality of discrete bridge-amplifiers which can be selectively energized. The circuit is arranged so as to form a configuration with minimum power utilization and a reduced number of components and interconnections therebetween.

  6. Noncommutative Circle Bundles and New Dirac Operators

    NASA Astrophysics Data System (ADS)

    Dąbrowski, Ludwik; Sitarz, Andrzej

    2013-02-01

    We study spectral triples over noncommutative principal U(1) bundles. Basing on the classical situation and the abstract algebraic approach, we propose an operatorial definition for a connection and compatibility between the connection and the Dirac operator on the total space and on the base space of the bundle. We analyze in details the example of the noncommutative three-torus viewed as a U(1) bundle over the noncommutative two-torus and find all connections compatible with an admissible Dirac operator. Conversely, we find a family of new Dirac operators on the noncommutative tori, which arise from the base-space Dirac operator and a suitable connection.

  7. A Short Biography of Paul A. M. Dirac and Historical Development of Dirac Delta Function

    ERIC Educational Resources Information Center

    Debnath, Lokenath

    2013-01-01

    This paper deals with a short biography of Paul Dirac, his first celebrated work on quantum mechanics, his first formal systematic use of the Dirac delta function and his famous work on quantum electrodynamics and quantum statistics. Included are his first discovery of the Dirac relativistic wave equation, existence of positron and the intrinsic…

  8. A Short Biography of Paul A. M. Dirac and Historical Development of Dirac Delta Function

    ERIC Educational Resources Information Center

    Debnath, Lokenath

    2013-01-01

    This paper deals with a short biography of Paul Dirac, his first celebrated work on quantum mechanics, his first formal systematic use of the Dirac delta function and his famous work on quantum electrodynamics and quantum statistics. Included are his first discovery of the Dirac relativistic wave equation, existence of positron and the intrinsic…

  9. Origin of Dirac Cones in SiC Silagraphene: A Combined Density Functional and Tight-Binding Study.

    PubMed

    Qin, Xuming; Liu, Yi; Li, Xiaowu; Xu, Jingcheng; Chi, Baoqian; Zhai, Dong; Zhao, Xinluo

    2015-04-16

    The formation of Dirac cones in electronic band structures via isomorphous transformation is demonstrated in 2D planar SiC sheets. Our combined density functional and tight-binding calculations show that 2D SiC featuring C-C and Si-Si atom pairs possesses Dirac cones (DCs), whereas an alternative arrangement of C and Si leads to a finite band gap. The origin of Dirac points is attributed to bare interactions between Si-Si bonding states (valence bands, VBs) and C-C antibonding states (conduction bands, CBs), while the VB-CB coupling opens up band gaps elsewhere. A mechanism of atom pair coupling is proposed, and the conditions required for DC formation are discussed, enabling one to design a class of 2D binary Dirac fermion systems on the basis of DF calculations solely for pure and alternative binary structures.

  10. Covariance Applications with Kiwi

    NASA Astrophysics Data System (ADS)

    Mattoon, C. M.; Brown, D.; Elliott, J. B.

    2012-05-01

    The Computational Nuclear Physics group at Lawrence Livermore National Laboratory (LLNL) is developing a new tool, named `Kiwi', that is intended as an interface between the covariance data increasingly available in major nuclear reaction libraries (including ENDF and ENDL) and large-scale Uncertainty Quantification (UQ) studies. Kiwi is designed to integrate smoothly into large UQ studies, using the covariance matrix to generate multiple variations of nuclear data. The code has been tested using critical assemblies as a test case, and is being integrated into LLNL's quality assurance and benchmarking for nuclear data.

  11. Generalized Linear Covariance Analysis

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Markley, F. Landis

    2008-01-01

    We review and extend in two directions the results of prior work on generalized covariance analysis methods. This prior work allowed for partitioning of the state space into "solve-for" and "consider" parameters, allowed for differences between the formal values and the true values of the measurement noise, process noise, and a priori solve-for and consider covariances, and explicitly partitioned the errors into subspaces containing only the influence of the measurement noise, process noise, and a priori solve-for and consider covariances. In this work, we explicitly add sensitivity analysis to this prior work, and relax an implicit assumption that the batch estimator s anchor time occurs prior to the definitive span. We also apply the method to an integrated orbit and attitude problem, in which gyro and accelerometer errors, though not estimated, influence the orbit determination performance. We illustrate our results using two graphical presentations, which we call the "variance sandpile" and the "sensitivity mosaic," and we compare the linear covariance results to confidence intervals associated with ensemble statistics from a Monte Carlo analysis.

  12. Covariant canonical superstrings

    SciTech Connect

    Aratyn, H.; Ingermanson, R.; Niemi, A.J.

    1987-12-01

    A covariant canonical formulation of generic superstrings is presented. The (super)geometry emerges dynamically and supergravity transformations are identified with particular canonical transformations. By construction these transformations are off-shell closed, and the necessary auxiliary fields can be identified with canonical momenta.

  13. Generalized Linear Covariance Analysis

    NASA Technical Reports Server (NTRS)

    Carpenter, James R.; Markley, F. Landis

    2014-01-01

    This talk presents a comprehensive approach to filter modeling for generalized covariance analysis of both batch least-squares and sequential estimators. We review and extend in two directions the results of prior work that allowed for partitioning of the state space into solve-for'' and consider'' parameters, accounted for differences between the formal values and the true values of the measurement noise, process noise, and textita priori solve-for and consider covariances, and explicitly partitioned the errors into subspaces containing only the influence of the measurement noise, process noise, and solve-for and consider covariances. In this work, we explicitly add sensitivity analysis to this prior work, and relax an implicit assumption that the batch estimator's epoch time occurs prior to the definitive span. We also apply the method to an integrated orbit and attitude problem, in which gyro and accelerometer errors, though not estimated, influence the orbit determination performance. We illustrate our results using two graphical presentations, which we call the variance sandpile'' and the sensitivity mosaic,'' and we compare the linear covariance results to confidence intervals associated with ensemble statistics from a Monte Carlo analysis.

  14. Problems and Progress in Covariant High Spin Description

    NASA Astrophysics Data System (ADS)

    Kirchbach, Mariana; Banda Guzmán, Víctor Miguel

    2016-10-01

    A universal description of particles with spins j > 1, transforming in (j, 0) ⊕ (0, j), is developed by means of representation specific second order differential wave equations without auxiliary conditions and in covariant bases such as Lorentz tensors for bosons, Lorentz-tensors with Dirac spinor components for fermions, or, within the basis of the more fundamental Weyl- Van-der-Waerden sl(2,C) spinor-tensors. At the root of the method, which is free from the pathologies suffered by the traditional approaches, are projectors constructed from the Casimir invariants of the spin-Lorentz group, and the group of translations in the Minkowski space time.

  15. Gauge-covariant bimetric theory of gravitation and electromagnetism

    SciTech Connect

    Israelit, M.; Rosen, N.

    1983-10-01

    The Weyl theory of gravitation and electromagnetism, as modified by Dirac, contains a gauge-covariant scalar ..beta.. which has no geometric significance. This is a flaw if one is looking for a geometric description of gravitation and electromagnetism. A bimetric formalism is therefore introduced which enables one to replace ..beta.. by a geometric quantity. The formalism can be simplified by the use of a gauge-invariant physical metric. The resulting theory agrees with the general relativity for phenomena in the solar system.

  16. Dirac solutions for quaternionic potentials

    SciTech Connect

    De Leo, Stefano Giardino, Sergio

    2014-02-15

    The Dirac equation is solved for quaternionic potentials, i V{sub 0} + j W{sub 0} (V{sub 0}∈R , W{sub 0}∈C). The study shows two different solutions. The first one contains particle and anti-particle solutions and leads to the diffusion, tunneling, and Klein energy zones. The standard solution is recovered taking the complex limit of this solution. The second solution, which does not have a complex counterpart, can be seen as a V{sub 0}-antiparticle or |W{sub 0}|-particle solution.

  17. Dirac's aether in curved spacetime.

    PubMed

    Oliveira; Teixeira

    2000-06-01

    Proca's equations for two types of fields in a Dirac's aether with electric conductivity sigma are solved exactly. The Proca electromagnetic fields are assumed with cylindrical symmetry. The background is a static, curved spacetime whose spatial section is homogeneous and has the topology of either the three-sphere S 3 or the projective three-space P 3. Simple relations between the range of Proca field lambda, the Universe radius R, the limit of photon rest mass mgamma and the conductivity sigma are written down.

  18. Phenomenology of pseudo Dirac neutrinos

    NASA Astrophysics Data System (ADS)

    Joshipura, A. S.; Rindani, S. D.

    2000-11-01

    We formulate general conditions on /3×3 neutrino mass matrices under which a degenerate pair of neutrinos at a high scale would split at low scale by radiative corrections involving only the standard model fields. This generalizes the original observations of Wolfenstein on pseudo Dirac neutrinos to three generations. A specific model involving partially broken discrete symmetry and solving the solar and atmospheric anomalies is proposed. The symmetry pattern of the model naturally generates two large angles one of which can account for the large angle MSW solution to the solar neutrino problem.

  19. Double Dirac cone in two-dimensional phononic crystals beyond circular cells

    NASA Astrophysics Data System (ADS)

    Dai, Hongqing; Liu, Tingting; Jiao, Junrui; Xia, Baizhan; Yu, Dejie

    2017-04-01

    A double Dirac cone plays a significant role in the design of zero-refractive-index metamaterials without phase variation and topological insulators with pseudospin states. We present a study on the formation of a double Dirac cone in two-dimensional phononic crystals consisting of either hexagonal or triangular columns in air. We arranged hexagonal and triangular columns separately in a honeycomb lattice to explore the influence of phononic crystal symmetry on the formation of the double Dirac cone. The results show that phononic crystals forming a honeycomb lattice with C6v or C6 symmetry induce an accidental degeneracy, but C3v and C3 cannot. We also demonstrate that by varying the filling ratio of the hexagonal columns, a topological phase transformation induced by energy band inversion with dipolar and quadrupolar states occurs near the double Dirac cone. Transmission properties for acoustic tunneling and waveform shaping are confirmed in two numerical simulation examples. A discussion is given on the formation of the double Dirac cone in different phononic crystal symmetries in a honeycomb lattice. The conclusions suggest a new route for designing topological and zero-refractive-index acoustic devices.

  20. A fractional Dirac equation and its solution

    NASA Astrophysics Data System (ADS)

    Muslih, Sami I.; Agrawal, Om P.; Baleanu, Dumitru

    2010-02-01

    This paper presents a fractional Dirac equation and its solution. The fractional Dirac equation may be obtained using a fractional variational principle and a fractional Klein-Gordon equation; both methods are considered here. We extend the variational formulations for fractional discrete systems to fractional field systems defined in terms of Caputo derivatives. By applying the variational principle to a fractional action S, we obtain the fractional Euler-Lagrange equations of motion. We present a Lagrangian and a Hamiltonian for the fractional Dirac equation of order α. We also use a fractional Klein-Gordon equation to obtain the fractional Dirac equation which is the same as that obtained using the fractional variational principle. Eigensolutions of this equation are presented which follow the same approach as that for the solution of the standard Dirac equation. We also provide expressions for the path integral quantization for the fractional Dirac field which, in the limit α → 1, approaches to the path integral for the regular Dirac field. It is hoped that the fractional Dirac equation and the path integral quantization of the fractional field will allow further development of fractional relativistic quantum mechanics.

  1. Dirac-Kaehler Theory and Massless Fields

    SciTech Connect

    Pletyukhov, V. A.; Strazhev, V. I.

    2010-03-24

    Three massless limits of the Dirac-Kaehler theory are considered. It is shown that the Dirac-Kaehler equation for massive particles can be represented as a result of the gauge-invariant mixture (topological interaction) of the above massless fields.

  2. The DIRAC Language: Concepts and Facilities.

    ERIC Educational Resources Information Center

    Vallee, Jacques; Ludwig, Herbert

    The three documents contained in this report describe an interactive retrieval language implemented for the IBM 360/67 of the Campus Faculty at Stanford University, between October 1969 and May 1970. The three reports are: (1) DIRAC--An Interactive Retrieval Language with Computational Interface, (2) DIRAC--An Overview of an Interactive Retrieval…

  3. Two dimensional Dirac carbon allotropes from graphene.

    PubMed

    Xu, Li-Chun; Wang, Ru-Zhi; Miao, Mao-Sheng; Wei, Xiao-Lin; Chen, Yuan-Ping; Yan, Hui; Lau, Woon-Ming; Liu, Li-Min; Ma, Yan-Ming

    2014-01-21

    Using a structural search method in combination with first-principles calculations, we found lots of low energy 2D carbon allotropes and examined all possible Dirac points around their Fermi levels. Three amazing 2D Dirac carbon allotropes have been discovered, named as S-graphene, D-graphene and E-graphene. By analyzing the topology correlations among S-, T, net W graphene and graphene, we found that a general rule is valuable for constructing 2D carbon allotropes that are keen to possess Dirac cones in their electronic structures. Based on this rule, we have successfully designed many new 2D carbon allotropes possessing Dirac cones. Their energy order can be well described by an Ising-like model, and some allotropes are energetically more stable than those recently reported. The related electronic structures of these Dirac allotropes are anisotropy distinguished from those of graphene. Moreover, the fact that D- and E-graphene present Dirac cones suggests that sp hybridization or sp(3) hybridization could not suppress the emerging of Dirac features. Our results demonstrate that the Dirac cone and carrier linear dispersion is a very common feature in 2D carbon allotropes and can exist beyond the limitations of fundamental structure features of graphene.

  4. Fuel cell arrangement

    DOEpatents

    Isenberg, Arnold O.

    1987-05-12

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber.

  5. Fuel cell arrangement

    DOEpatents

    Isenberg, A.O.

    1987-05-12

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber. 3 figs.

  6. Fuel cell stack arrangements

    DOEpatents

    Kothmann, Richard E.; Somers, Edward V.

    1982-01-01

    Arrangements of stacks of fuel cells and ducts, for fuel cells operating with separate fuel, oxidant and coolant streams. An even number of stacks are arranged generally end-to-end in a loop. Ducts located at the juncture of consecutive stacks of the loop feed oxidant or fuel to or from the two consecutive stacks, each individual duct communicating with two stacks. A coolant fluid flows from outside the loop, into and through cooling channels of the stack, and is discharged into an enclosure duct formed within the loop by the stacks and seals at the junctures at the stacks.

  7. Dirac particle in gravitational quantum mechanics

    NASA Astrophysics Data System (ADS)

    Pedram, Pouria

    2011-08-01

    In this Letter, we consider the effects of the Generalized (Gravitational) Uncertainty Principle (GUP) on the eigenvalues and the eigenfunctions of the Dirac equation. This form of GUP is consistent with various candidates of quantum gravity such as string theory, loop quantum gravity, doubly special relativity and black hole physics and predicts both a minimum measurable length and a maximum measurable momentum. The modified Hamiltonian contains two additional terms proportional to a( and a( where αi are Dirac matrices and a∼1/MPlc is the GUP parameter. For the case of the Dirac free particle and the Dirac particle in a box, we solve the generalized Dirac equation and find the modified energy eigenvalues and eigenfunctions.

  8. Double Dirac Semimetals in Three Dimensions.

    PubMed

    Wieder, Benjamin J; Kim, Youngkuk; Rappe, A M; Kane, C L

    2016-05-06

    We study a class of Dirac semimetals that feature an eightfold-degenerate double Dirac point. We show that 7 of the 230 space groups can host such Dirac points and argue that they all generically display linear dispersion. We introduce an explicit tight-binding model for space groups 130 and 135. Space group 135 can host an intrinsic double Dirac semimetal with no additional states at the Fermi energy. This defines a symmetry-protected topological critical point, and we show that a uniaxial compressive strain applied in different directions leads to topologically distinct insulating phases. In addition, the double Dirac semimetal can accommodate topological line defects that bind helical modes. Connections are made to theories of strongly interacting filling-enforced semimetals, and potential materials realizations are discussed.

  9. Highly Anisotropic Dirac Fermions in Square Graphynes.

    PubMed

    Zhang, L Z; Wang, Z F; Wang, Zhiming M; Du, S X; Gao, H-J; Liu, Feng

    2015-08-06

    We predict a family of 2D carbon (C) allotropes, square graphynes (S-graphynes) that exhibit highly anisotropic Dirac fermions, using first-principle calculations within density functional theory. They have a square unit-cell containing two sizes of square C rings. The equal-energy contour of their 3D band structure shows a crescent shape, and the Dirac crescent has varying Fermi velocities from 0.6 × 10(5) to 7.2 × 10(5) m/s along different k directions. Near the Fermi level, the Dirac crescent can be nicely expressed by an extended 2D Dirac model Hamiltonian. Furthermore, tight-binding band fitting reveals that the Dirac crescent originates from the next-nearest-neighbor interactions between C atoms. S-graphynes may be used to build new 2D electronic devices taking advantages of their highly directional charge transport.

  10. Tunable Dirac Fermion Dynamics in Topological Insulators

    NASA Astrophysics Data System (ADS)

    Chen, Chaoyu; Xie, Zhuojin; Feng, Ya; Yi, Hemian; Liang, Aiji; He, Shaolong; Mou, Daixiang; He, Junfeng; Peng, Yingying; Liu, Xu; Liu, Yan; Zhao, Lin; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Yu, Li; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Chen, Chuangtian; Xu, Zuyan; Zhou, X. J.

    2013-08-01

    Three-dimensional topological insulators are characterized by insulating bulk state and metallic surface state involving relativistic Dirac fermions which are responsible for exotic quantum phenomena and potential applications in spintronics and quantum computations. It is essential to understand how the Dirac fermions interact with other electrons, phonons and disorders. Here we report super-high resolution angle-resolved photoemission studies on the Dirac fermion dynamics in the prototypical Bi2(Te,Se)3 topological insulators. We have directly revealed signatures of the electron-phonon coupling and found that the electron-disorder interaction dominates the scattering process. The Dirac fermion dynamics in Bi2(Te3-xSex) topological insulators can be tuned by varying the composition, x, or by controlling the charge carriers. Our findings provide crucial information in understanding and engineering the electron dynamics of the Dirac fermions for fundamental studies and potential applications.

  11. Double Dirac Semimetals in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Wieder, Benjamin J.; Kim, Youngkuk; Rappe, A. M.; Kane, C. L.

    2016-05-01

    We study a class of Dirac semimetals that feature an eightfold-degenerate double Dirac point. We show that 7 of the 230 space groups can host such Dirac points and argue that they all generically display linear dispersion. We introduce an explicit tight-binding model for space groups 130 and 135. Space group 135 can host an intrinsic double Dirac semimetal with no additional states at the Fermi energy. This defines a symmetry-protected topological critical point, and we show that a uniaxial compressive strain applied in different directions leads to topologically distinct insulating phases. In addition, the double Dirac semimetal can accommodate topological line defects that bind helical modes. Connections are made to theories of strongly interacting filling-enforced semimetals, and potential materials realizations are discussed.

  12. Tunable Dirac Fermion Dynamics in Topological Insulators

    PubMed Central

    Chen, Chaoyu; Xie, Zhuojin; Feng, Ya; Yi, Hemian; Liang, Aiji; He, Shaolong; Mou, Daixiang; He, Junfeng; Peng, Yingying; Liu, Xu; Liu, Yan; Zhao, Lin; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Yu, Li; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Chen, Chuangtian; Xu, Zuyan; Zhou, X. J.

    2013-01-01

    Three-dimensional topological insulators are characterized by insulating bulk state and metallic surface state involving relativistic Dirac fermions which are responsible for exotic quantum phenomena and potential applications in spintronics and quantum computations. It is essential to understand how the Dirac fermions interact with other electrons, phonons and disorders. Here we report super-high resolution angle-resolved photoemission studies on the Dirac fermion dynamics in the prototypical Bi2(Te,Se)3 topological insulators. We have directly revealed signatures of the electron-phonon coupling and found that the electron-disorder interaction dominates the scattering process. The Dirac fermion dynamics in Bi2(Te3−xSex) topological insulators can be tuned by varying the composition, x, or by controlling the charge carriers. Our findings provide crucial information in understanding and engineering the electron dynamics of the Dirac fermions for fundamental studies and potential applications. PMID:23934507

  13. Tunable Dirac fermion dynamics in topological insulators.

    PubMed

    Chen, Chaoyu; Xie, Zhuojin; Feng, Ya; Yi, Hemian; Liang, Aiji; He, Shaolong; Mou, Daixiang; He, Junfeng; Peng, Yingying; Liu, Xu; Liu, Yan; Zhao, Lin; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Yu, Li; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Chen, Chuangtian; Xu, Zuyan; Zhou, X J

    2013-01-01

    Three-dimensional topological insulators are characterized by insulating bulk state and metallic surface state involving relativistic Dirac fermions which are responsible for exotic quantum phenomena and potential applications in spintronics and quantum computations. It is essential to understand how the Dirac fermions interact with other electrons, phonons and disorders. Here we report super-high resolution angle-resolved photoemission studies on the Dirac fermion dynamics in the prototypical Bi2(Te,Se)3 topological insulators. We have directly revealed signatures of the electron-phonon coupling and found that the electron-disorder interaction dominates the scattering process. The Dirac fermion dynamics in Bi2(Te3-xSex) topological insulators can be tuned by varying the composition, x, or by controlling the charge carriers. Our findings provide crucial information in understanding and engineering the electron dynamics of the Dirac fermions for fundamental studies and potential applications.

  14. Adjunctation and Scalar Product in the Dirac Equation - I

    NASA Astrophysics Data System (ADS)

    Dima, M.

    2016-02-01

    The Bargmann-Pauli adjunctator (hermitiser) of {C}{l}_{_{1,3}}(C) is derived in a representation independent way, circumventing the early derivations (Pauli, Ann. inst. Henri Poincaré 6, 109 and 121 1936) using representation-dependent arguments. Relations for the adjunctator's transformation with the scalar product and space generator set are given. The S U(2) adjunctator is shown to determine the {C}{l}_{_{1,3}}(C) adjunctator. Part-II of the paper will approach the problem of the two scalar products used in Dirac theory - an unphysical situation of "piece-wise physics" with erroneous results. The adequate usage of scalar product - via calibration - will be presented, in particular under boosts, yielding the known covariant transformations of physical quantities.

  15. Revisiting double Dirac delta potential

    NASA Astrophysics Data System (ADS)

    Ahmed, Zafar; Kumar, Sachin; Sharma, Mayank; Sharma, Vibhu

    2016-07-01

    We study a general double Dirac delta potential to show that this is the simplest yet still versatile solvable potential to introduce double wells, avoided crossings, resonances and perfect transmission (T = 1). Perfect transmission energies turn out to be the critical property of symmetric and anti-symmetric cases wherein these discrete energies are found to correspond to the eigenvalues of a Dirac delta potential placed symmetrically between two rigid walls. For well(s) or barrier(s), perfect transmission (or zero reflectivity, R(E)) at energy E=0 is non-intuitive. However, this has been found earlier and called the ‘threshold anomaly’. Here we show that it is a critical phenomenon and we can have 0≤slant R(0)\\lt 1 when the parameters of the double delta potential satisfy an interesting condition. We also invoke a zero-energy and zero curvature eigenstate (\\psi (x)={Ax}+B) of the delta well between two symmetric rigid walls for R(0)=0. We resolve that the resonant energies and the perfect transmission energies are different and they arise differently.

  16. Multipoint Fuel Injection Arrangements

    NASA Technical Reports Server (NTRS)

    Prociw, Lev Alexander (Inventor)

    2017-01-01

    A multipoint fuel injection system includes a plurality of fuel manifolds. Each manifold is in fluid communication with a plurality of injectors arranged circumferentially about a longitudinal axis for multipoint fuel injection. The injectors of separate respective manifolds are spaced radially apart from one another for separate radial staging of fuel flow to each respective manifold.

  17. Some Thoughts on Arrangement.

    ERIC Educational Resources Information Center

    Stewart, Donald C.

    1987-01-01

    Raises questions about the extent to which the classical treatment of arrangement is still appropriated by the modern composition teacher, and the ways in which this concept is tied to notions of coherence. Discusses implications for modern composition theory and practice. (MS)

  18. A free-electron model for the Dirac bands in graphene

    NASA Astrophysics Data System (ADS)

    Kissinger, G. S.; Satpathy, S.

    2016-11-01

    We present a new method for describing the electronic structure of graphene, by treating the honeycomb lattice as an arrangement of crisscrossing one-dimensional quantum wires. The electrons travel as free particles along the wires and interfere at the three-way junctions formed by the carbon atoms. The approach produces the linearly dispersive Dirac band structure as well as the chiral pseudo-spin-wave functions. When vacancies are incorporated, the model reproduces the well known zero mode states.

  19. Using Analysis of Covariance (ANCOVA) with Fallible Covariates

    ERIC Educational Resources Information Center

    Culpepper, Steven Andrew; Aguinis, Herman

    2011-01-01

    Analysis of covariance (ANCOVA) is used widely in psychological research implementing nonexperimental designs. However, when covariates are fallible (i.e., measured with error), which is the norm, researchers must choose from among 3 inadequate courses of action: (a) know that the assumption that covariates are perfectly reliable is violated but…

  20. Using Analysis of Covariance (ANCOVA) with Fallible Covariates

    ERIC Educational Resources Information Center

    Culpepper, Steven Andrew; Aguinis, Herman

    2011-01-01

    Analysis of covariance (ANCOVA) is used widely in psychological research implementing nonexperimental designs. However, when covariates are fallible (i.e., measured with error), which is the norm, researchers must choose from among 3 inadequate courses of action: (a) know that the assumption that covariates are perfectly reliable is violated but…

  1. Covariant deformed oscillator algebras

    NASA Technical Reports Server (NTRS)

    Quesne, Christiane

    1995-01-01

    The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.

  2. The Bayesian Covariance Lasso

    PubMed Central

    Khondker, Zakaria S; Zhu, Hongtu; Chu, Haitao; Lin, Weili; Ibrahim, Joseph G.

    2012-01-01

    Estimation of sparse covariance matrices and their inverse subject to positive definiteness constraints has drawn a lot of attention in recent years. The abundance of high-dimensional data, where the sample size (n) is less than the dimension (d), requires shrinkage estimation methods since the maximum likelihood estimator is not positive definite in this case. Furthermore, when n is larger than d but not sufficiently larger, shrinkage estimation is more stable than maximum likelihood as it reduces the condition number of the precision matrix. Frequentist methods have utilized penalized likelihood methods, whereas Bayesian approaches rely on matrix decompositions or Wishart priors for shrinkage. In this paper we propose a new method, called the Bayesian Covariance Lasso (BCLASSO), for the shrinkage estimation of a precision (covariance) matrix. We consider a class of priors for the precision matrix that leads to the popular frequentist penalties as special cases, develop a Bayes estimator for the precision matrix, and propose an efficient sampling scheme that does not precalculate boundaries for positive definiteness. The proposed method is permutation invariant and performs shrinkage and estimation simultaneously for non-full rank data. Simulations show that the proposed BCLASSO performs similarly as frequentist methods for non-full rank data. PMID:24551316

  3. Magnetotransport properties near the Dirac point of Dirac semimetal Cd3As2 nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Li-Xian; Wang, Shuo; Li, Jin-Guang; Li, Cai-Zhen; Xu, Jun; Yu, Dapeng; Liao, Zhi-Min

    2017-02-01

    Three-dimensional (3D) Dirac semimetals are featured by 3D linear energy-momentum dispersion relation, which have been proposed to be a desirable system to study Dirac fermions in 3D space and Weyl fermions in solid-state materials. Significantly, to reveal exotic transport properties of Dirac semimetals, the Fermi level should be close to the Dirac point, around which the linear dispersion is retained. Here we report the magnetotransport properties near the Dirac point in Cd3As2 nanowires, manifesting the evolution of band structure under magnetic field. Ambipolar field effect is observed with the Dirac point at V g  =  3.9 V. Under high magnetic field, there is a resistivity dip in transfer curve at the Dirac point, which is caused by the Zeeman splitting enhanced density of state around the Dirac point. Furthermore, the low carrier density in the nanowires makes it feasible to enter into the quantum limit regime, resulting in the quantum linear magnetoresistance being observed even at room temperature. Besides, the dramatic reduction of bulk conductivity due to the low carrier density, together with a large surface to volume ratio of the nanowire, collectively help to reveal the Shubnikov-de Haas oscillations from the surface states. Our studies on transport properties around the Dirac point therefore provide deep insights into the emerging exotic physics of Dirac and Weyl fermions.

  4. Magnetotransport properties near the Dirac point of Dirac semimetal Cd3As2 nanowires.

    PubMed

    Wang, Li-Xian; Wang, Shuo; Li, Jin-Guang; Li, Cai-Zhen; Xu, Jun; Yu, Dapeng; Liao, Zhi-Min

    2017-02-01

    Three-dimensional (3D) Dirac semimetals are featured by 3D linear energy-momentum dispersion relation, which have been proposed to be a desirable system to study Dirac fermions in 3D space and Weyl fermions in solid-state materials. Significantly, to reveal exotic transport properties of Dirac semimetals, the Fermi level should be close to the Dirac point, around which the linear dispersion is retained. Here we report the magnetotransport properties near the Dirac point in Cd3As2 nanowires, manifesting the evolution of band structure under magnetic field. Ambipolar field effect is observed with the Dirac point at V g  =  3.9 V. Under high magnetic field, there is a resistivity dip in transfer curve at the Dirac point, which is caused by the Zeeman splitting enhanced density of state around the Dirac point. Furthermore, the low carrier density in the nanowires makes it feasible to enter into the quantum limit regime, resulting in the quantum linear magnetoresistance being observed even at room temperature. Besides, the dramatic reduction of bulk conductivity due to the low carrier density, together with a large surface to volume ratio of the nanowire, collectively help to reveal the Shubnikov-de Haas oscillations from the surface states. Our studies on transport properties around the Dirac point therefore provide deep insights into the emerging exotic physics of Dirac and Weyl fermions.

  5. Antiferromagnetic Dirac semimetals in two dimensions

    NASA Astrophysics Data System (ADS)

    Wang, Jing

    2017-03-01

    The search for symmetry-protected two-dimensional (2D) Dirac semimetals analogous to graphene is important both for fundamental and practical interest. The 2D Dirac cones are protected by crystalline symmetries and magnetic ordering may destroy their robustness. Here we propose a general framework to classify stable 2D Dirac semimetals in spin-orbit coupled systems having the combined time-reversal and inversion symmetries, and show the existence of the stable Dirac points in 2D antiferromagnetic semimetals. Compared to 3D Dirac semimetals which fall into two distinct classes, Dirac semimetals in 2D with combined time-reversal and inversion symmetries belong to a single class which is closely related to the nonsymmorphic space-group symmetries. We further provide a concrete model in antiferromagnetic semimetals which supports symmetry-protected 2D Dirac points. The symmetry breaking in such systems leads to 2D chiral topological states such as quantum anomalous Hall insulator and chiral topological superconductor phases.

  6. LHCbDirac: distributed computing in LHCb

    NASA Astrophysics Data System (ADS)

    Stagni, F.; Charpentier, P.; Graciani, R.; Tsaregorodtsev, A.; Closier, J.; Mathe, Z.; Ubeda, M.; Zhelezov, A.; Lanciotti, E.; Romanovskiy, V.; Ciba, K. D.; Casajus, A.; Roiser, S.; Sapunov, M.; Remenska, D.; Bernardoff, V.; Santana, R.; Nandakumar, R.

    2012-12-01

    We present LHCbDirac, an extension of the DIRAC community Grid solution that handles LHCb specificities. The DIRAC software has been developed for many years within LHCb only. Nowadays it is a generic software, used by many scientific communities worldwide. Each community wanting to take advantage of DIRAC has to develop an extension, containing all the necessary code for handling their specific cases. LHCbDirac is an actively developed extension, implementing the LHCb computing model and workflows handling all the distributed computing activities of LHCb. Such activities include real data processing (reconstruction, stripping and streaming), Monte-Carlo simulation and data replication. Other activities are groups and user analysis, data management, resources management and monitoring, data provenance, accounting for user and production jobs. LHCbDirac also provides extensions of the DIRAC interfaces, including a secure web client, python APIs and CLIs. Before putting in production a new release, a number of certification tests are run in a dedicated setup. This contribution highlights the versatility of the system, also presenting the experience with real data processing, data and resources management, monitoring for activities and resources.

  7. Inadequacy of internal covariance estimation for super-sample covariance

    NASA Astrophysics Data System (ADS)

    Lacasa, Fabien; Kunz, Martin

    2017-08-01

    We give an analytical interpretation of how subsample-based internal covariance estimators lead to biased estimates of the covariance, due to underestimating the super-sample covariance (SSC). This includes the jackknife and bootstrap methods as estimators for the full survey area, and subsampling as an estimator of the covariance of subsamples. The limitations of the jackknife covariance have been previously presented in the literature because it is effectively a rescaling of the covariance of the subsample area. However we point out that subsampling is also biased, but for a different reason: the subsamples are not independent, and the corresponding lack of power results in SSC underprediction. We develop the formalism in the case of cluster counts that allows the bias of each covariance estimator to be exactly predicted. We find significant effects for a small-scale area or when a low number of subsamples is used, with auto-redshift biases ranging from 0.4% to 15% for subsampling and from 5% to 75% for jackknife covariance estimates. The cross-redshift covariance is even more affected; biases range from 8% to 25% for subsampling and from 50% to 90% for jackknife. Owing to the redshift evolution of the probe, the covariances cannot be debiased by a simple rescaling factor, and an exact debiasing has the same requirements as the full SSC prediction. These results thus disfavour the use of internal covariance estimators on data itself or a single simulation, leaving analytical prediction and simulations suites as possible SSC predictors.

  8. The Dirac-Milne cosmology

    NASA Astrophysics Data System (ADS)

    Benoit-Lévy, Aurélien; Chardin, Gabriel

    2014-05-01

    We study an unconventional cosmology, in which we investigate the consequences that antigravity would pose to cosmology. We present the main characteristics of the Dirac-Milne Universe, a cosmological model where antimatter has a negative active gravitational mass. In this non-standard Universe, separate domains of matter and antimatter coexist at our epoch without annihilation, separated by a gravitationally induced depletion zone. We show that this cosmology does not require a priori the Dark Matter and Dark Energy components of the standard model of cosmology. Additionally, inflation becomes an unnecessary ingredient. Investigating this model, we show that the classical cosmological tests such as primordial nucleosynthesis, Type Ia supernovæ and Cosmic Microwave Background are surprisingly concordant.

  9. Geometric algebras in physics: Eigenspinors and Dirac theory

    NASA Astrophysics Data System (ADS)

    Keselica, J. David

    The foundations of quantum theory are closely tied to a formulation of classical relativistic physics. In Clifford's geometric algebra classical relativistic physics has a spinorial formulation that is closely related to the standard Dirac equation. The algebra of physical space, APS, gives clear insight into the quantum/classical interface. Here, APS is compared to other formulations of relativistic quantum theory, especially the Dirac equation. These formulations are shown to be effectively equivalent to each other and to the standard theory, as demonstrated by establishing several isomorphisms. Dirac spinors are four-component complex entities, and so must be represented by objects containing 8 real degrees of freedom in the standard treatment (or 7 if a normalization constant is added). The relation C4→Cl3 ⋍Cl+1,3⋍C l+3,1⋍H⊗ C indicates that the 8-dimensional even subalgebra Cl+1,3 of the Space-time algebra, STA is isomorphic to APS Cl 3, which is isomorphic to complex quaternions H⊗C . The complex quaternions should not be confused with the biquaternions, a name sometimes used for them. The biquaternions are more generally elements of the algebra H⊕H . The algebras Cl1,3 and Cl 3,1 are not isomorphic but their even sub-algebras are[1]. The Klein paradox is resolved in APS by considering Feynman's picture of antiparticles as negative energy solutions traveling backward in time. It is also shown that the algebra of physical space can naturally describe an extended version of the De Broglie-Bohm approach to quantum theory. A relativistic causal account of a spin measurement in APS is given. The Stern-Gerlach magnet acts on the eigenspinor Λ field of a charged particle in a way that is analogous to the interaction of a birefringent medium acts on a beam of light. Then we introduce a covariant interpretation of complex algebra of physical space, CAPS, the complex extension of APS. This is done to solve a problem in that the space-time inversion, PT

  10. Imaging arrangement and microscope

    SciTech Connect

    Pertsinidis, Alexandros; Chu, Steven

    2015-12-15

    An embodiment of the present invention is an imaging arrangement that includes imaging optics, a fiducial light source, and a control system. In operation, the imaging optics separate light into first and second tight by wavelength and project the first and second light onto first and second areas within first and second detector regions, respectively. The imaging optics separate fiducial light from the fiducial light source into first and second fiducial light and project the first and second fiducial light onto third and fourth areas within the first and second detector regions, respectively. The control system adjusts alignment of the imaging optics so that the first and second fiducial light projected onto the first and second detector regions maintain relatively constant positions within the first and second detector regions, respectively. Another embodiment of the present invention is a microscope that includes the imaging arrangement.

  11. Covariance and time regained in canonical general relativity

    SciTech Connect

    Kouletsis, I.

    2008-09-15

    Canonical vacuum gravity is expressed in generally covariant form in order that spacetime diffeomorphisms be represented within its equal-time phase space. In accordance with the principle of general covariance and ideas developed within history phase-space formalisms in [I. Kouletsis and K. V. Kuchar, Phys. Rev. D 65, 125026 (2002)], [K. Savvidou, Classical Quantum Gravity 18, 3611 (2001)], [K. Savvidou, Classical Quantum Gravity 21, 615 (2004)], [K. Savvidou, Classical Quantum Gravity 21, 631 (2004)], the time mapping T: M{yields}R and the space mapping X: M{yields}{sigma} that define the Dirac-Arnowitt-Deser-Misner (ADM) foliation are incorporated into the framework of the Hilbert variational principle. The resulting canonical action encompasses all individual Dirac-ADM actions, corresponding to different choices of foliating vacuum spacetimes by spacelike hypersurfaces. The equal-time phase space P=(g{sub ij},p{sup ij},Y{sup {alpha}},P{sub {alpha}}) includes the embeddings Y{sup {alpha}}: {sigma}{yields}M and their conjugate momenta P{sub {alpha}}. It is constrained by eight first-class constraints. The constraint surface C is determined by the super-Hamiltonian and supermomentum constraints of vacuum gravity and the vanishing of the embedding momenta. Deformations of the time and space mappings, {delta}T and {delta}X, and spacetime diffeomorphisms, V(set-membership sign)LDiffM, induce symplectic diffeomorphisms of P. While the generator D{sub ({delta}T,{delta}X)} of deformations depends on all eight constraints, the generator D{sub V} of spacetime diffeomorphisms depends only on the embedding momentum constraints. As a result, spacetime observables, namely, dynamical variables F on P that are invariant under spacetime diffeomorphisms, (F,D{sub V})|{sub C}=0, are not necessarily invariant under the deformations of the mappings, (F,D{sub ({delta}T,{delta}X)})|{sub C}{ne}0, nor are they constants of the motion, (F,{integral}d{sup 3}xH)|{sub C}{ne}0. Dirac

  12. Conformable fractional Dirac system on time scales.

    PubMed

    Gulsen, Tuba; Yilmaz, Emrah; Goktas, Sertac

    2017-01-01

    We study the conformable fractional (CF) Dirac system with separated boundary conditions on an arbitrary time scale [Formula: see text]. Then we extend some basic spectral properties of the classical Dirac system to the CF case. Eventually, some asymptotic estimates for the eigenfunction of the CF Dirac eigenvalue problem are obtained on [Formula: see text]. So, we provide a constructive procedure for the solution of this problem. These results are important steps to consolidate the link between fractional calculus and time scale calculus in spectral theory.

  13. Krylov subspace methods for the Dirac equation

    NASA Astrophysics Data System (ADS)

    Beerwerth, Randolf; Bauke, Heiko

    2015-03-01

    The Lanczos algorithm is evaluated for solving the time-independent as well as the time-dependent Dirac equation with arbitrary electromagnetic fields. We demonstrate that the Lanczos algorithm can yield very precise eigenenergies and allows very precise time propagation of relativistic wave packets. The unboundedness of the Dirac Hamiltonian does not hinder the applicability of the Lanczos algorithm. As the Lanczos algorithm requires only matrix-vector products and inner products, which both can be efficiently parallelized, it is an ideal method for large-scale calculations. The excellent parallelization capabilities are demonstrated by a parallel implementation of the Dirac Lanczos propagator utilizing the Message Passing Interface standard.

  14. Spurious Roots in the Algebraic Dirac Equation

    NASA Astrophysics Data System (ADS)

    Pestka, Grzegorz

    The nature of spurious roots discovered by Drake and Goldman [G. W. F. Drake and S. P. Goldman, Phys. Rev. A 23, 2093 (1981)] among solutions of the algebraic Dirac Hamiltonian eigenvalue problem is discussed. It is shown that the spurious roots represent the positive spectrum states of the Dirac Hamiltonian and that each of them has its variational non-relativistic counterpart. Sufficient conditions to avoid the appearance of the spuriouses in the forbidden gap of Dirac energies are formulated. Numerical examples for κ = 1 ( P1/2) states of an electron in a spherical Coulomb potential (in Slater-type bases) are presented.

  15. Helicity oscillations of Dirac and Majorana neutrinos

    NASA Astrophysics Data System (ADS)

    Dobrynina, Alexandra; Kartavtsev, Alexander; Raffelt, Georg

    2016-06-01

    The helicity of a Dirac neutrino with mass m evolves under the influence of a B field because it has a magnetic dipole moment proportional to m . Moreover, it was recently shown that a polarized or anisotropic medium engenders the same effect for both Dirac and Majorana neutrinos. Because a B field polarizes a background medium, it instigates helicity oscillations even for Majorana neutrinos unless the medium is symmetric between matter and antimatter. Motivated by these observations, we review the impact of a B field and of an anisotropic or polarized medium on helicity oscillations for Dirac and Majorana neutrinos from the common perspective of in-medium dispersion.

  16. Dirac Nodal Lines and Tilted Semi-Dirac Cones Coexisting in a Striped Boron Sheet.

    PubMed

    Zhang, Honghong; Xie, Yuee; Zhang, Zhongwei; Zhong, Chengyong; Li, Yafei; Chen, Zhongfang; Chen, Yuanping

    2017-04-20

    The enchanting Dirac fermions in graphene stimulated us to seek other 2D Dirac materials, and boron monolayers may be a good candidate. So far, a number of monolayer boron sheets have been theoretically predicted, and three have been experimentally prepared. However, none of intrinsic sheets possess Dirac electrons near the Fermi level. Herein, by means of density functional theory computations, we identified a new boron monolayer, namely, hr-sB, with two types of Dirac fermions coexisting in the sheet: One type is related to Dirac nodal lines traversing Brillouin zone (BZ) with velocities approaching 10(6) m/s, and the other is related to tilted semi-Dirac cones with strong anisotropy. This newly predicted boron monolayer consists of hexagon and rhombus stripes. With an exceptional stability comparable to the experimentally achieved boron sheets, it is rather optimistic to grow hr-sB on some suitable substrates such as the Ag (111) surface.

  17. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides.

    PubMed

    Yu, Hongyi; Liu, Gui-Bin; Gong, Pu; Xu, Xiaodong; Yao, Wang

    2014-05-12

    In monolayer transition metal dichalcogenides, tightly bound excitons have been discovered with a valley pseudospin optically addressable through polarization selection rules. Here, we show that this valley pseudospin is strongly coupled to the exciton centre-of-mass motion through electron-hole exchange. This coupling realizes a massless Dirac cone with chirality index I = 2 for excitons inside the light cone, that is, bright excitons. Under moderate strain, the I = 2 Dirac cone splits into two degenerate I = 1 Dirac cones, and saddle points with a linear Dirac spectrum emerge. After binding an extra electron, the charged exciton becomes a massive Dirac particle associated with a large valley Hall effect protected from intervalley scattering. Our results point to unique opportunities to study Dirac physics, with exciton's optical addressability at specifiable momentum, energy and pseudospin. The strain-tunable valley-orbit coupling also implies new structures of exciton condensates, new functionalities of excitonic circuits and mechanical control of valley pseudospin.

  18. Optimal covariant quantum networks

    NASA Astrophysics Data System (ADS)

    Chiribella, Giulio; D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2009-04-01

    A sequential network of quantum operations is efficiently described by its quantum comb [1], a non-negative operator with suitable normalization constraints. Here we analyze the case of networks enjoying symmetry with respect to the action of a given group of physical transformations, introducing the notion of covariant combs and testers, and proving the basic structure theorems for these objects. As an application, we discuss the optimal alignment of reference frames (without pre-established common references) with multiple rounds of quantum communication, showing that i) allowing an arbitrary amount of classical communication does not improve the alignment, and ii) a single round of quantum communication is sufficient.

  19. Covariant magnetic connection hypersurfaces

    NASA Astrophysics Data System (ADS)

    Pegoraro, F.

    2016-04-01

    > In the single fluid, non-relativistic, ideal magnetohydrodynamic (MHD) plasma description, magnetic field lines play a fundamental role by defining dynamically preserved `magnetic connections' between plasma elements. Here we show how the concept of magnetic connection needs to be generalized in the case of a relativistic MHD description where we require covariance under arbitrary Lorentz transformations. This is performed by defining 2-D magnetic connection hypersurfaces in the 4-D Minkowski space. This generalization accounts for the loss of simultaneity between spatially separated events in different frames and is expected to provide a powerful insight into the 4-D geometry of electromagnetic fields when .

  20. Earth Observing System Covariance Realism

    NASA Technical Reports Server (NTRS)

    Zaidi, Waqar H.; Hejduk, Matthew D.

    2016-01-01

    The purpose of covariance realism is to properly size a primary object's covariance in order to add validity to the calculation of the probability of collision. The covariance realism technique in this paper consists of three parts: collection/calculation of definitive state estimates through orbit determination, calculation of covariance realism test statistics at each covariance propagation point, and proper assessment of those test statistics. An empirical cumulative distribution function (ECDF) Goodness-of-Fit (GOF) method is employed to determine if a covariance is properly sized by comparing the empirical distribution of Mahalanobis distance calculations to the hypothesized parent 3-DoF chi-squared distribution. To realistically size a covariance for collision probability calculations, this study uses a state noise compensation algorithm that adds process noise to the definitive epoch covariance to account for uncertainty in the force model. Process noise is added until the GOF tests pass a group significance level threshold. The results of this study indicate that when outliers attributed to persistently high or extreme levels of solar activity are removed, the aforementioned covariance realism compensation method produces a tuned covariance with up to 80 to 90% of the covariance propagation timespan passing (against a 60% minimum passing threshold) the GOF tests-a quite satisfactory and useful result.

  1. Heptagraphene: Tunable Dirac Cones in a Graphitic Structure

    NASA Astrophysics Data System (ADS)

    Lopez-Bezanilla, Alejandro; Martin, Ivar; Littlewood, Peter B.

    2016-09-01

    We predict the existence and dynamical stability of heptagraphene, a new graphitic structure formed of rings of 10 carbon atoms bridged by carbene groups yielding seven-membered rings. Despite the rectangular unit cell, the band structure is topologically equivalent to that of strongly distorted graphene. Density-functional-theory calculations demonstrate that heptagraphene has Dirac cones on symmetry lines that are robust against biaxial strain but which open a gap under shear. At high deformation values bond reconstructions lead to different electronic band arrangements in dynamically stable configurations. Within a tight-binding framework this richness of the electronic behavior is identified as a direct consequence of the symmetry breaking within the cell which, unlike other graphitic structures, leads to band gap opening. A combined approach of chemical and physical modification of graphene unit cell unfurls the opportunity to design carbon-based systems in which one aims to tune an electronic band gap.

  2. Heptagraphene: Tunable dirac cones in a graphitic structure

    SciTech Connect

    Lopez-Bezanilla, Alejandro; Martin, Ivar; Littlewood, Peter B.

    2016-09-13

    Here, we predict the existence and dynamical stability of heptagraphene, a new graphitic structure formed of rings of 10 carbon atoms bridged by carbene groups yielding seven-membered rings. Despite the rectangular unit cell, the band structure is topologically equivalent to that of strongly distorted graphene. Density-functional-theory calculations demonstrate that heptagraphene has Dirac cones on symmetry lines that are robust against biaxial strain but which open a gap under shear. At high deformation values bond reconstructions lead to different electronic band arrangements in dynamically stable configurations. Within a tight-binding framework this richness of the electronic behavior is identified as a direct consequence of the symmetry breaking within the cell which, unlike other graphitic structures, leads to band gap opening. A combined approach of chemical and physical modification of graphene unit cell unfurls the opportunity to design carbon-based systems in which one aims to tune an electronic band gap.

  3. Heptagraphene: Tunable dirac cones in a graphitic structure

    DOE PAGES

    Lopez-Bezanilla, Alejandro; Martin, Ivar; Littlewood, Peter B.

    2016-09-13

    Here, we predict the existence and dynamical stability of heptagraphene, a new graphitic structure formed of rings of 10 carbon atoms bridged by carbene groups yielding seven-membered rings. Despite the rectangular unit cell, the band structure is topologically equivalent to that of strongly distorted graphene. Density-functional-theory calculations demonstrate that heptagraphene has Dirac cones on symmetry lines that are robust against biaxial strain but which open a gap under shear. At high deformation values bond reconstructions lead to different electronic band arrangements in dynamically stable configurations. Within a tight-binding framework this richness of the electronic behavior is identified as a directmore » consequence of the symmetry breaking within the cell which, unlike other graphitic structures, leads to band gap opening. A combined approach of chemical and physical modification of graphene unit cell unfurls the opportunity to design carbon-based systems in which one aims to tune an electronic band gap.« less

  4. Heptagraphene: Tunable Dirac Cones in a Graphitic Structure.

    PubMed

    Lopez-Bezanilla, Alejandro; Martin, Ivar; Littlewood, Peter B

    2016-09-13

    We predict the existence and dynamical stability of heptagraphene, a new graphitic structure formed of rings of 10 carbon atoms bridged by carbene groups yielding seven-membered rings. Despite the rectangular unit cell, the band structure is topologically equivalent to that of strongly distorted graphene. Density-functional-theory calculations demonstrate that heptagraphene has Dirac cones on symmetry lines that are robust against biaxial strain but which open a gap under shear. At high deformation values bond reconstructions lead to different electronic band arrangements in dynamically stable configurations. Within a tight-binding framework this richness of the electronic behavior is identified as a direct consequence of the symmetry breaking within the cell which, unlike other graphitic structures, leads to band gap opening. A combined approach of chemical and physical modification of graphene unit cell unfurls the opportunity to design carbon-based systems in which one aims to tune an electronic band gap.

  5. Heptagraphene: Tunable Dirac Cones in a Graphitic Structure

    PubMed Central

    Lopez-Bezanilla, Alejandro; Martin, Ivar; Littlewood, Peter B.

    2016-01-01

    We predict the existence and dynamical stability of heptagraphene, a new graphitic structure formed of rings of 10 carbon atoms bridged by carbene groups yielding seven-membered rings. Despite the rectangular unit cell, the band structure is topologically equivalent to that of strongly distorted graphene. Density-functional-theory calculations demonstrate that heptagraphene has Dirac cones on symmetry lines that are robust against biaxial strain but which open a gap under shear. At high deformation values bond reconstructions lead to different electronic band arrangements in dynamically stable configurations. Within a tight-binding framework this richness of the electronic behavior is identified as a direct consequence of the symmetry breaking within the cell which, unlike other graphitic structures, leads to band gap opening. A combined approach of chemical and physical modification of graphene unit cell unfurls the opportunity to design carbon-based systems in which one aims to tune an electronic band gap. PMID:27622775

  6. The squares of the dirac and spin-dirac operators on a riemann-cartan space(time)

    NASA Astrophysics Data System (ADS)

    Notte-Cuello, E. A.; Rodrigues, W. A.; Souza, Q. A. G.

    2007-08-01

    In this paper we introduce the Dirac and spin-Dirac operators associated to a connection on Riemann-Cartan space(time) and standard Dirac and spin-Dirac operators associated with a Levi-Civita connection on a Riemannian (Lorentzian) space(time) and calculate the squares of these operators, which play an important role in several topics of modern mathematics, in particular in the study of the geometry of moduli spaces of a class of black holes, the geometry of NS-5 brane solutions of type II supergravity theories and BPS solitons in some string theories. We obtain a generalized Lichnerowicz formula, decompositions of the Dirac and spin-Dirac operators and their squares in terms of the standard Dirac and spin-Dirac operators and using the fact that spinor fields (sections of a spin-Clifford bundle) have representatives in the Clifford bundle we present also a noticeable relation involving the spin-Dirac and the Dirac operators.

  7. Condensed-matter trio scoop Dirac prize

    NASA Astrophysics Data System (ADS)

    Durrani, Matin

    2012-09-01

    Three condensed-matter physicists, who have advanced our understanding of a strange type of material known as a "topological insulator", have won this year's Dirac medal from the International Centre for Theoretical Physics (ICTP) in Trieste, Italy.

  8. Dirac State in Giant Magnetoresistive Materials

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Jo, N. H.; Ochi, M.; Huang, L.; Mou, D.; Kong, T.; Mun, E.; Wang, L.; Lee, Y.; Bud'Ko, S. L.; Canfield, P. C.; Trivedi, N.; Arito, R.; Kaminski, A.

    We use ultrahigh resolution, tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy (ARPES) to study the electronic properties of materials that recently were discovered to display titanic magnetoresistance. We find that that several of these materials have Dirac-like features in their band structure. In some materials those features are ``ordinary'' Dirac cones, while in others the linear Dirac dispersion of two crossing bands forms a linear object in 3D momentum space. Our observation poses an important question about the role of Dirac dispersion in the unusually high, non-saturating magnetoresistance of these materials. Research was supported by the US DOE, Office of Basic Energy Sciences under Contract No. DE-AC02-07CH11358; Gordon and Betty Moore Foundation EPiQS Initiative (Grant No. GBMF4411); CEM, a NSF MRSEC, under Grant No. DMR-1420451.

  9. The degeneracy of the free Dirac equation

    SciTech Connect

    Gupta, V. . School of Physics Tata Inst. of Fundamental Research, Bombay ); McKellar, B.H.J. . School of Physics); Wu, D.D. . School of Physics Institute of High Energy Physics, Beijing, BJ . Electron LINAC Dept. General Atomics, San Diego, CA )

    1991-08-01

    Parity-mixed solutions of the free Dirac equation with the same 4-momentum are considered. The first-order EM energy has an electric dipole moment term whose value depends on the mixing angle. Further implications of this degeneracy to perturbative calculations are discussed. It is argued that the properties of the Dirac equation with the Coulomb potential can be used to decide the mixing angle, which should be zero.

  10. Pathways to naturally small Dirac neutrino masses

    NASA Astrophysics Data System (ADS)

    Ma, Ernest; Popov, Oleg

    2017-01-01

    If neutrinos are truly Dirac fermions, the smallness of their masses may still be natural if certain symmetries exist beyond those of the standard model of quarks and leptons. We perform a systematic study of how this may occur at tree level and in one loop. We also propose a scotogenic version of the left-right gauge model with naturally small Dirac neutrino masses in one loop.

  11. Gas cooler arrangement

    SciTech Connect

    Zabelka, J.

    1985-01-15

    The gas cooler arrangement includes a first pressure vessel in which heat is yielded by radiation and a following convection gas cooler. The pressure vessel of the convection gas cooler includes a faller flue and at least one riser flue for cooling the gas. The flues comprise heat-removing tubes which are parts of a steam generator. The bottom of the pressure vessel contains an ash collection chamber which is connected to the ends of the flues and which can be emptied via a suitable closure element.

  12. Dirac-Type Equations in a Gravitational Field, with Vector Wave Function

    NASA Astrophysics Data System (ADS)

    Arminjon, Mayeul

    2008-11-01

    An analysis of the classical-quantum correspondence shows that it needs to identify a preferred class of coordinate systems, which defines a torsionless connection. One such class is that of the locally-geodesic systems, corresponding to the Levi-Civita connection. Another class, thus another connection, emerges if a preferred reference frame is available. From the classical Hamiltonian that rules geodesic motion, the correspondence yields two distinct Klein-Gordon equations and two distinct Dirac-type equations in a general metric, depending on the connection used. Each of these two equations is generally-covariant, transforms the wave function as a four-vector, and differs from the Fock-Weyl gravitational Dirac equation (DFW equation). One obeys the equivalence principle in an often-accepted sense, whereas the DFW equation obeys that principle only in an extended sense.

  13. Phenomenology of Dirac Neutralino Dark Matter

    SciTech Connect

    Buckley, Matthew R.; Hooper, Dan; Kumar, Jason

    2013-09-01

    In supersymmetric models with an unbroken R-symmetry (rather than only R-parity), the neutralinos are Dirac fermions rather than Majorana. In this article, we discuss the phenomenology of neutralino dark matter in such models, including the calculation of the thermal relic abundance, and constraints and prospects for direct and indirect searches. Due to the large elastic scattering cross sections with nuclei predicted in R-symmetric models, we are forced to consider a neutralino that is predominantly bino, with very little higgsino mixing. We find a large region of parameter space in which bino-like Dirac neutralinos with masses between 10 and 380 GeV can annihilate through slepton exchange to provide a thermal relic abundance in agreement with the observed cosmological density, without relying on coannihilations or resonant annihilations. The signatures for the indirect detection of Dirac neutralinos are very different than predicted in the Majorana case, with annihilations proceeding dominately to $\\tau^+ \\tau^-$, $\\mu^+ \\mu^-$ and $e^+ e^-$ final states, without the standard chirality suppression. And unlike Majorana dark matter candidates, Dirac neutralinos experience spin-independent scattering with nuclei through vector couplings (via $Z$ and squark exchange), leading to potentially large rates at direct detection experiments. These and other characteristics make Dirac neutralinos potentially interesting within the context of recent direct and indirect detection anomalies. We also discuss the case in which the introduction of a small Majorana mass term breaks the $R$-symmetry, splitting the Dirac neutralino into a pair of nearly degenerate Majorana states.

  14. Phenomenology of Dirac neutralino dark matter

    NASA Astrophysics Data System (ADS)

    Buckley, Matthew R.; Hooper, Dan; Kumar, Jason

    2013-09-01

    In supersymmetric models with an unbroken R symmetry (rather than only R parity), the neutralinos are Dirac fermions rather than Majorana. In this article, we discuss the phenomenology of neutralino dark matter in such models, including the calculation of the thermal relic abundance, and constraints and prospects for direct and indirect searches. Because of the large elastic scattering cross sections with nuclei predicted in R-symmetric models, we are forced to consider a neutralino that is predominantly bino, with very little Higgsino mixing. We find a large region of parameter space in which binolike Dirac neutralinos with masses between 10 and 380 GeV can annihilate through slepton exchange to provide a thermal relic abundance in agreement with the observed cosmological density, without relying on coannihilations or resonant annihilations. The signatures for the indirect detection of Dirac neutralinos are very different than predicted in the Majorana case, with annihilations proceeding dominantly to τ+τ-, μ+μ- and e+e- final states, without the standard chirality suppression. And unlike Majorana dark matter candidates, Dirac neutralinos experience spin-independent scattering with nuclei through vector couplings (via Z and squark exchange), leading to potentially large rates at direct detection experiments. These and other characteristics make Dirac neutralinos potentially interesting within the context of recent direct and indirect detection anomalies. We also discuss the case in which the introduction of a small Majorana mass term breaks the R symmetry, splitting the Dirac neutralino into a pair of nearly degenerate Majorana states.

  15. The DIRAC Web Portal 2.0

    NASA Astrophysics Data System (ADS)

    Mathe, Z.; Casajus Ramo, A.; Lazovsky, N.; Stagni, F.

    2015-12-01

    For many years the DIRAC interware (Distributed Infrastructure with Remote Agent Control) has had a web interface, allowing the users to monitor DIRAC activities and also interact with the system. Since then many new web technologies have emerged, therefore a redesign and a new implementation of the DIRAC Web portal were necessary, taking into account the lessons learnt using the old portal. These new technologies allowed to build a more compact, robust and responsive web interface that enables users to have better control over the whole system while keeping a simple interface. The web framework provides a large set of “applications”, each of which can be used for interacting with various parts of the system. Communities can also create their own set of personalised web applications, and can easily extend already existing ones with a minimal effort. Each user can configure and personalise the view for each application and save it using the DIRAC User Profile service as RESTful state provider, instead of using cookies. The owner of a view can share it with other users or within a user community. Compatibility between different browsers is assured, as well as with mobile versions. In this paper, we present the new DIRAC Web framework as well as the LHCb extension of the DIRAC Web portal.

  16. Thermal radiation measuring arrangement

    SciTech Connect

    Berman, H.L.; Sprout, J.C.

    1983-02-08

    In a thermal radiation measuring arrangement, a thermal radiation detector is located at the focal point of a collecting mirror, upon which incident thermal radiation from a surface, such as a building wall, is directed. The thermal radiation detector may be, for example, a thermopile, and provides an output signal having a magnitude proportional to the amount of thermal radiation which it receives. The temperature detection means detects the temperature of the thermal radiation detector and, for example, may detect the cold junction of the thermopile. In a first operating condition, a signal summing means receives the output signal from the thermal radiation detector and the temperature detection means and provides a third output signal proportional to the sum of these first and second output signals. In a second operating condition, a signal biasing means is connected into the signal summing means. The signal biasing means provides a signal to the signal summing means to cause the third output signal to become zero when radiation is received from a reference surface. When the arrangement is in the second operating condition and directed to receive thermal radiation from a second surface different from the reference surface, the signal biasing means maintains the same level of bias to the signal summing means as it did when detecting the radiation from the reference surface.

  17. Stardust Navigation Covariance Analysis

    NASA Technical Reports Server (NTRS)

    Menon, Premkumar R.

    2000-01-01

    The Stardust spacecraft was launched on February 7, 1999 aboard a Boeing Delta-II rocket. Mission participants include the National Aeronautics and Space Administration (NASA), the Jet Propulsion Laboratory (JPL), Lockheed Martin Astronautics (LMA) and the University of Washington. The primary objective of the mission is to collect in-situ samples of the coma of comet Wild-2 and return those samples to the Earth for analysis. Mission design and operational navigation for Stardust is performed by the Jet Propulsion Laboratory (JPL). This paper will describe the extensive JPL effort in support of the Stardust pre-launch analysis of the orbit determination component of the mission covariance study. A description of the mission and it's trajectory will be provided first, followed by a discussion of the covariance procedure and models. Predicted accuracy's will be examined as they relate to navigation delivery requirements for specific critical events during the mission. Stardust was launched into a heliocentric trajectory in early 1999. It will perform an Earth Gravity Assist (EGA) on January 15, 2001 to acquire an orbit for the eventual rendezvous with comet Wild-2. The spacecraft will fly through the coma (atmosphere) on the dayside of Wild-2 on January 2, 2004. At that time samples will be obtained using an aerogel collector. After the comet encounter Stardust will return to Earth when the Sample Return Capsule (SRC) will separate and land at the Utah Test Site (UTTR) on January 15, 2006. The spacecraft will however be deflected off into a heliocentric orbit. The mission is divided into three phases for the covariance analysis. They are 1) Launch to EGA, 2) EGA to Wild-2 encounter and 3) Wild-2 encounter to Earth reentry. Orbit determination assumptions for each phase are provided. These include estimated and consider parameters and their associated a-priori uncertainties. Major perturbations to the trajectory include 19 deterministic and statistical maneuvers

  18. Deriving covariant holographic entanglement

    NASA Astrophysics Data System (ADS)

    Dong, Xi; Lewkowycz, Aitor; Rangamani, Mukund

    2016-11-01

    We provide a gravitational argument in favour of the covariant holographic entanglement entropy proposal. In general time-dependent states, the proposal asserts that the entanglement entropy of a region in the boundary field theory is given by a quarter of the area of a bulk extremal surface in Planck units. The main element of our discussion is an implementation of an appropriate Schwinger-Keldysh contour to obtain the reduced density matrix (and its powers) of a given region, as is relevant for the replica construction. We map this contour into the bulk gravitational theory, and argue that the saddle point solutions of these replica geometries lead to a consistent prescription for computing the field theory Rényi entropies. In the limiting case where the replica index is taken to unity, a local analysis suffices to show that these saddles lead to the extremal surfaces of interest. We also comment on various properties of holographic entanglement that follow from this construction.

  19. Stardust Navigation Covariance Analysis

    NASA Technical Reports Server (NTRS)

    Menon, Premkumar R.

    2000-01-01

    The Stardust spacecraft was launched on February 7, 1999 aboard a Boeing Delta-II rocket. Mission participants include the National Aeronautics and Space Administration (NASA), the Jet Propulsion Laboratory (JPL), Lockheed Martin Astronautics (LMA) and the University of Washington. The primary objective of the mission is to collect in-situ samples of the coma of comet Wild-2 and return those samples to the Earth for analysis. Mission design and operational navigation for Stardust is performed by the Jet Propulsion Laboratory (JPL). This paper will describe the extensive JPL effort in support of the Stardust pre-launch analysis of the orbit determination component of the mission covariance study. A description of the mission and it's trajectory will be provided first, followed by a discussion of the covariance procedure and models. Predicted accuracy's will be examined as they relate to navigation delivery requirements for specific critical events during the mission. Stardust was launched into a heliocentric trajectory in early 1999. It will perform an Earth Gravity Assist (EGA) on January 15, 2001 to acquire an orbit for the eventual rendezvous with comet Wild-2. The spacecraft will fly through the coma (atmosphere) on the dayside of Wild-2 on January 2, 2004. At that time samples will be obtained using an aerogel collector. After the comet encounter Stardust will return to Earth when the Sample Return Capsule (SRC) will separate and land at the Utah Test Site (UTTR) on January 15, 2006. The spacecraft will however be deflected off into a heliocentric orbit. The mission is divided into three phases for the covariance analysis. They are 1) Launch to EGA, 2) EGA to Wild-2 encounter and 3) Wild-2 encounter to Earth reentry. Orbit determination assumptions for each phase are provided. These include estimated and consider parameters and their associated a-priori uncertainties. Major perturbations to the trajectory include 19 deterministic and statistical maneuvers

  20. Covariant genetic dynamics.

    PubMed

    Chryssomalakos, Chryssomalis; Stephens, Christopher R

    2007-01-01

    We present a covariant form for the dynamics of a canonical GA of arbitrary cardinality, showing how each genetic operator can be uniquely represented by a mathematical object - a tensor - that transforms simply under a general linear coordinate transformation. For mutation and recombination these tensors can be written as tensor products of the analogous tensors for one-bit strings thus giving a greatly simplified formulation of the dynamics. We analyze the three most well known coordinate systems -- string, Walsh and Building Block - discussing their relative advantages and disadvantages with respect to the different operators, showing how one may transform from one to the other, and that the associated coordinate transformation matrices can be written as a tensor product of the corresponding one-bit matrices. We also show that in the Building Block basis the dynamical equations for all Building Blocks can be generated from the equation for the most fine-grained block (string) by a certain projection ("zapping").

  1. Covariantly quantum Galileon

    NASA Astrophysics Data System (ADS)

    Saltas, Ippocratis D.; Vitagliano, Vincenzo

    2017-05-01

    We derive the 1-loop effective action of the cubic Galileon coupled to quantum-gravitational fluctuations in a background and gauge-independent manner, employing the covariant framework of DeWitt and Vilkovisky. Although the bare action respects shift symmetry, the coupling to gravity induces an effective mass to the scalar, of the order of the cosmological constant, as a direct result of the nonflat field-space metric, the latter ensuring the field-reparametrization invariance of the formalism. Within a gauge-invariant regularization scheme, we discover novel, gravitationally induced non-Galileon higher-derivative interactions in the effective action. These terms, previously unnoticed within standard, noncovariant frameworks, are not Planck suppressed. Unless tuned to be subdominant, their presence could have important implications for the classical and quantum phenomenology of the theory.

  2. Viability of Dirac phase leptogenesis

    SciTech Connect

    Anisimov, Alexey; Blanchet, Steve; Di Bari, Pasquale E-mail: blanchet@mppmu.mpg.de

    2008-04-15

    We discuss the conditions for a non-vanishing Dirac phase {delta} and mixing angle {theta}{sub 13}, sources of CP violation in neutrino oscillations, to be uniquely responsible for the observed matter-antimatter asymmetry of the Universe through leptogenesis. We show that this scenario, that we call {delta}-leptogenesis, is viable when the degenerate limit for the heavy right-handed (RH) neutrino spectrum is considered. We derive an interesting joint condition on sin{theta}{sub 13} and the absolute neutrino mass scale that can be tested in future neutrino oscillation experiments. In the limit of the hierarchical heavy RH neutrino spectrum, we strengthen the previous result that {delta}-leptogenesis is only very marginally allowed, even when the production from the two heavier RH neutrinos is taken into account. An improved experimental upper bound on sin{theta}{sub 13} and/or an account of quantum kinetic effects could completely rule out this option in the future. Therefore, {delta}-leptogenesis can be also regarded as motivation for models with degenerate heavy neutrino spectrum.

  3. General Galilei Covariant Gaussian Maps

    NASA Astrophysics Data System (ADS)

    Gasbarri, Giulio; Toroš, Marko; Bassi, Angelo

    2017-09-01

    We characterize general non-Markovian Gaussian maps which are covariant under Galilean transformations. In particular, we consider translational and Galilean covariant maps and show that they reduce to the known Holevo result in the Markovian limit. We apply the results to discuss measures of macroscopicity based on classicalization maps, specifically addressing dissipation, Galilean covariance and non-Markovianity. We further suggest a possible generalization of the macroscopicity measure defined by Nimmrichter and Hornberger [Phys. Rev. Lett. 110, 16 (2013)].

  4. Covariance Manipulation for Conjunction Assessment

    NASA Technical Reports Server (NTRS)

    Hejduk, M. D.

    2016-01-01

    Use of probability of collision (Pc) has brought sophistication to CA. Made possible by JSpOC precision catalogue because provides covariance. Has essentially replaced miss distance as basic CA parameter. Embrace of Pc has elevated methods to 'manipulate' covariance to enable/improve CA calculations. Two such methods to be examined here; compensation for absent or unreliable covariances through 'Maximum Pc' calculation constructs, projection (not propagation) of epoch covariances forward in time to try to enable better risk assessments. Two questions to be answered about each; situations to which such approaches are properly applicable, amount of utility that such methods offer.

  5. First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals

    NASA Astrophysics Data System (ADS)

    Mei, Jun; Wu, Ying; Chan, C. T.; Zhang, Zhao-Qing

    2012-07-01

    By using the k⇀·p⇀ method, we propose a first-principles theory to study the linear dispersions in phononic and photonic crystals. The theory reveals that only those linear dispersions created by doubly degenerate states can be described by a reduced Hamiltonian that can be mapped into the Dirac Hamiltonian and possess a Berry phase of -π. Linear dispersions created by triply degenerate states cannot be mapped into the Dirac Hamiltonian and carry no Berry phase, and, therefore should be called Dirac-like cones. Our theory is capable of predicting accurately the linear slopes of Dirac and Dirac-like cones at various symmetry points in a Brillouin zone, independent of frequency and lattice structure.

  6. Innovative worktime arrangements.

    PubMed

    Knauth, P

    1998-01-01

    New worktime models can be introduced from an employer's point of view for many reasons. They can extend operational time for better utilization of expensive equipment, provide customer-oriented service hours, adjust operational time to the varying needs of personnel, adhere to a given operational time despite a reduction in workhours, avoid dismissals, or improve job attractiveness for qualified personnel. On the other hand, there are also many reasons for changing traditional worktime models from an employee's point of view. For example, new models can help fit private needs to occupational demands, change worktime according to life's phases, provide more autonomy for the organization of worktime or the choice of worktime model, and allow for reduced capacity due to illness or age. The paper primarily presents examples of innovative worktime models (eg, annual worktime, time-autonomous group, variable worktime, choice between different worktime models) but also discusses the possible negative effects of new worktime arrangements.

  7. Camshaft bearing arrangement

    SciTech Connect

    Aoi, K.; Ozawa, T.

    1986-06-10

    A bearing arrangement is described for the camshaft of an internal combustion engine or the like which camshaft is formed along its length in axial order with a first bearing surface, a first cam lobe, a second bearing surface, a second cam lobe, a third bearing surface, a third cam lobe and a fourth bearing surface, the improvement comprising first bearing means extending around substantially the full circumference of the first bearing surface and journaling the first bearing surface, second bearing means extending around substantially less than the circumference of the second bearing surface and journaling the second bearing surface, third bearing means extending around substantially less than the circumference of the third bearing surface and journaling the third bearing surface, and fourth bearing means extending around substantially the full circumference of the fourth bearing surface and journaling the first bearing surface.

  8. Concentric differential gearing arrangement

    NASA Technical Reports Server (NTRS)

    Zeiger, R. J.; Gerdts, J. C. (Inventor)

    1974-01-01

    Two input members and two concentric rotatable output members are interconnected by a planetary gear arrangement. The first input drives directly the first output. The second input engages a carrier having the planetary gears affixed thereto. Rotation of the carriage causes rotation of the central sun gear of the planetary gear system. The sun gear is journaled to the carriage and is drivingly connected to the second output through a direction reversing set of bevel gears. The first input drive member includes a ring gear drivingly connected to the planetary gears for driving the second output member in the same direction and by the same amount as the first output member. Motion of the first input results in equal motion of the two outputs while input motion of the second input results in movement of the second output relative to the first output. This device is useful where non-interacting two-axis control of remote gimbaled systems is required.

  9. Hybrid drive arrangement

    SciTech Connect

    Oetting, H.; Heidemeyer, P.

    1985-02-19

    The invention concerns a hybrid drive arrangement for vehicles, with an engine drive and with a flywheel storage drive, which includes a storage flywheel supported concentrically relative to the crankshaft for storing kinetic energy during such operations as braking operations of the vehicle. Both drives can be connected with the driving wheels of the vehicle by means of a common, preferably continuously variable, transmission. In order to obtain a faster response of the engine drive on suddenly occurring power demands and in order to achieve a more favorable design of the storage flywheel, there is to be provided in accordance with the invention, in addition to a storage flywheel, an engine flywheel associated with the reciprocating-piston internal combustion engine, which compensates for torque irregularities of the engine. The engine flywheel can be connected with a crankshaft by means of a first clutch and with the storage flywheel by means of at least one further clutch.

  10. A coupled wire model of topological Weyl and Dirac semimetal I: topological insulating texture and gapping interaction

    NASA Astrophysics Data System (ADS)

    Raza, Syed; Sirota, Alexander; Teo, Jeffrey

    Weyl and Dirac semimetals in three dimensions have semi-robust massless electronic structures. We mimic these gapless systems using an array of coupled Dirac wires, and analytically study the gapping effect of many-body interactions. The Dirac wires are arranged in a way so that the charge conserving model exhibits an antiferromagnetic time reversal symmetry as well as a p2mg wallpaper group symmetry, which contains twofold rotations, reflections and glide planes. The gapless electrons can aquire a mass upon symmetry breaking dimerizations, or more interestingly, symmetry preserving many-body interactions. This involves the introduction of a topological insulating texture in the bulk supported by layers of gapped symmetric interacting surfaces of topological insulators. The resulting massive system is a three dimensional geometric topological state.

  11. Dirac Sea and its Evolution

    NASA Astrophysics Data System (ADS)

    Volfson, Boris

    2013-09-01

    The hypothesis of transition from a chaotic Dirac Sea, via highly unstable positronium, into a Simhony Model of stable face-centered cubic lattice structure of electrons and positrons securely bound in vacuum space, is considered. 13.75 Billion years ago, the new lattice, which, unlike a Dirac Sea, is permeable by photons and phonons, made the Universe detectable. Many electrons and positrons ended up annihilating each other producing energy quanta and neutrino-antineutrino pairs. The weak force of the electron-positron crystal lattice, bombarded by the chirality-changing neutrinos, may have started capturing these neutrinos thus transforming from cubic crystals into a quasicrystal lattice. Unlike cubic crystal lattice, clusters of quasicrystals are "slippery" allowing the formation of centers of local torsion, where gravity condenses matter into galaxies, stars and planets. In the presence of quanta, in a quasicrystal lattice, the Majorana neutrinos' rotation flips to the opposite direction causing natural transformations in a category comprised of three components; two others being positron and electron. In other words, each particle-antiparticle pair "e-" and "e+", in an individual crystal unit, could become either a quasi- component "e- ve e+", or a quasi- component "e+ - ve e-". Five-to-six six billion years ago, a continuous stimulation of the quasicrystal aetherial lattice by the same, similar, or different, astronomical events, could have triggered Hebbian and anti-Hebbian learning processes. The Universe may have started writing script into its own aether in a code most appropriate for the quasicrystal aether "hardware": Eight three-dimensional "alphabet" characters, each corresponding to the individual quasi-crystal unit shape. They could be expressed as quantum Turing machine qubits, or, alternatively, in a binary code. The code numerals could contain terminal and nonterminal symbols of the Chomsky's hierarchy, wherein, the showers of quanta, forming the

  12. Pairing instabilities of Dirac composite fermions

    NASA Astrophysics Data System (ADS)

    Milovanović, M. V.; Ćirić, M. Dimitrijević; Juričić, V.

    2016-09-01

    Recently, a Dirac (particle-hole symmetric) description of composite fermions in the half-filled Landau level (LL) was proposed [D. T. Son, Phys. Rev. X 5, 031027 (2015), 10.1103/PhysRevX.5.031027], and we study its possible consequences on BCS (Cooper) pairing of composite fermions (CFs). One of the main consequences is the existence of anisotropic states in single-layer and bilayer systems, which was previously suggested in Jeong and Park [J. S. Jeong and K. Park, Phys. Rev. B 91, 195119 (2015), 10.1103/PhysRevB.91.195119]. We argue that in the half-filled LL in the single-layer case the gapped states may sustain anisotropy, because isotropic pairings may coexist with anisotropic ones. Furthermore, anisotropic pairings with the addition of a particle-hole symmetry-breaking mass term may evolve into rotationally symmetric states, i.e., Pfaffian states of Halperin-Lee-Read (HLR) ordinary CFs. On the basis of the Dirac formalism, we argue that in the quantum Hall bilayer at total filling factor 1, with decreasing distance between the layers, weak pairing of p -wave paired CFs is gradually transformed from Dirac to ordinary, HLR-like, with a concomitant decrease in the CF number. Global characterization of low-energy spectra based on the Dirac CFs agrees well with previous calculations performed by exact diagonalization on a torus. Finally, we discuss features of the Dirac formalism when applied in this context.

  13. Gravitationally coupled Dirac equation for antimatter

    NASA Astrophysics Data System (ADS)

    Jentschura, U. D.

    2013-03-01

    The coupling of antimatter to gravity is of general interest because of conceivable cosmological consequences (“surprises”) related to dark energy and the cosmological constant. Here, we revisit the derivation of the gravitationally coupled Dirac equation and find that the prefactor of a result given previously by Brill and Wheeler [Rev. Mod. Phys.RMPHAT0034-686110.1103/RevModPhys.29.465 29, 465 (1957)] for the affine connection matrix is in need of a correction. We also discuss the conversion of the curved-space Dirac equation from the so-called “East-Coast” to the “West-Coast” convention, in order to bring the gravitationally coupled Dirac equation to a form where it can easily be unified with the electromagnetic coupling as it is commonly used in modern particle physics calculations. The Dirac equation describes antiparticles as negative-energy states. We find a symmetry of the gravitationally coupled Dirac equation, which connects particle and antiparticle solutions for a general space-time metric of the Schwarzschild type and implies that particles and antiparticles experience the same coupling to the gravitational field, including all relativistic quantum corrections of motion. Our results demonstrate the consistency of quantum mechanics with general relativity and imply that a conceivable difference of gravitational interaction of hydrogen and antihydrogen should directly be attributed to a a “fifth force” (“quintessence”).

  14. Strain engineering of Dirac cones in graphyne

    SciTech Connect

    Wang, Gaoxue; Kumar, Ashok; Pandey, Ravindra; Si, Mingsu

    2014-05-26

    6,6,12-graphyne, one of the two-dimensional carbon allotropes with the rectangular lattice structure, has two kinds of non-equivalent anisotropic Dirac cones in the first Brillouin zone. We show that Dirac cones can be tuned independently by the uniaxial compressive strain applied to graphyne, which induces n-type and p-type self-doping effect, by shifting the energy of the Dirac cones in the opposite directions. On the other hand, application of the tensile strain results into a transition from gapless to finite gap system for the monolayer. For the AB-stacked bilayer, the results predict tunability of Dirac-cones by in-plane strains as well as the strain applied perpendicular to the plane. The group velocities of the Dirac cones show enhancement in the resistance anisotropy for bilayer relative to the case of monolayer. Such tunable and direction-dependent electronic properties predicted for 6,6,12-graphyne make it to be competitive for the next-generation electronic devices at nanoscale.

  15. Covariant electromagnetic field lines

    NASA Astrophysics Data System (ADS)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  16. Covariant harmonic oscillators: 1973 revisited

    NASA Technical Reports Server (NTRS)

    Noz, M. E.

    1993-01-01

    Using the relativistic harmonic oscillator, a physical basis is given to the phenomenological wave function of Yukawa which is covariant and normalizable. It is shown that this wave function can be interpreted in terms of the unitary irreducible representations of the Poincare group. The transformation properties of these covariant wave functions are also demonstrated.

  17. Covariance hypotheses for LANDSAT data

    NASA Technical Reports Server (NTRS)

    Decell, H. P.; Peters, C.

    1983-01-01

    Two covariance hypotheses are considered for LANDSAT data acquired by sampling fields, one an autoregressive covariance structure and the other the hypothesis of exchangeability. A minimum entropy approximation of the first structure by the second is derived and shown to have desirable properties for incorporation into a mixture density estimation procedure. Results of a rough test of the exchangeability hypothesis are presented.

  18. The Bragg regime of the two-particle Kapitza-Dirac effect

    NASA Astrophysics Data System (ADS)

    Sancho, Pedro

    2011-07-01

    We analyse the Bragg regime of the two-particle Kapitza-Dirac arrangement, completing the basic theory of this effect. We provide a detailed evaluation of the detection probabilities for multi-mode states, showing that a complete description must include the interaction time in addition to the usual dimensionless parameter w. The arrangement can be used as a massive two-particle beam splitter. In this respect, we present a comparison with Hong-Ou-Mandel-type experiments in quantum optics. The analysis reveals the presence of dips for massive bosons and a differentiated behaviour of distinguishable and identical particles in an unexplored scenario. We suggest that the arrangement can provide the basis for symmetrization verification schemes.

  19. Bilinear covariants and spinor fields duality in quantum Clifford algebras

    SciTech Connect

    Abłamowicz, Rafał; Gonçalves, Icaro; Rocha, Roldão da

    2014-10-15

    Classification of quantum spinor fields according to quantum bilinear covariants is introduced in a context of quantum Clifford algebras on Minkowski spacetime. Once the bilinear covariants are expressed in terms of algebraic spinor fields, the duality between spinor and quantum spinor fields can be discussed. Thus, by endowing the underlying spacetime with an arbitrary bilinear form with an antisymmetric part in addition to a symmetric spacetime metric, quantum algebraic spinor fields and deformed bilinear covariants can be constructed. They are thus compared to the classical (non quantum) ones. Classes of quantum spinor fields classes are introduced and compared with Lounesto's spinor field classification. A physical interpretation of the deformed parts and the underlying Z-grading is proposed. The existence of an arbitrary bilinear form endowing the spacetime already has been explored in the literature in the context of quantum gravity [S. W. Hawking, “The unpredictability of quantum gravity,” Commun. Math. Phys. 87, 395 (1982)]. Here, it is shown further to play a prominent role in the structure of Dirac, Weyl, and Majorana spinor fields, besides the most general flagpoles and flag-dipoles. We introduce a new duality between the standard and the quantum spinor fields, by showing that when Clifford algebras over vector spaces endowed with an arbitrary bilinear form are taken into account, a mixture among the classes does occur. Consequently, novel features regarding the spinor fields can be derived.

  20. Light-front-quantized QCD in Covariant Gauge

    SciTech Connect

    Srivastava, Prem P.

    1999-06-17

    The light-front (LF) canonical quantization of quantum chromodynamics in covariant gauge is discussed. The Dirac procedure is used to eliminate the constraints in the gauge-fixed front form theory quantum action and to construct the LF Hamiltonian formulation. The physical degrees of freedom emerge naturally. The propagator of the dynamical {psi}{sub +} part of the free fermionic propagator in the LF quantized field theory is shown to be causal and not to contain instantaneous terms. Since the relevant propagators in the covariant gauge formulation are causal, rotational invariance--including the Coulomb potential in the static limit--can be recovered, avoiding the difficulties encountered in light-cone gauge. The Wick rotation may also be performed allowing the conversion of momentum space integrals into Euclidean space forms. Some explicit computations are done in quantum electrodynamics to illustrate the equivalence of front form theory with the conventional covariant formulation. LF quantization thus provides a consistent formulation of gauge theory, despite the fact that the hyperplanes x{sup {+-}} = 0 used to impose boundary conditions constitute characteristic surfaces of a hyperbolic partial differential equation.

  1. Interlayer magnetoresistance in multilayer Dirac electron systems: motion and merging of Dirac cones.

    PubMed

    Assili, M; Haddad, S

    2013-09-11

    We theoretically study the effect of the motion and the merging of Dirac cones on the interlayer magnetoresistance in multilayer graphene-like systems. This merging, which can be induced by a uniaxial strain, gives rise in a monolayer Dirac electron system to a topological transition from a semi-metallic phase to an insulating phase whereby Dirac points disappear. Based on a universal Hamiltonian, proposed to describe the motion and the merging of Dirac points in two-dimensional Dirac electron crystals, we calculate the interlayer conductivity of a stack of deformed graphene-like layers using the Kubo formula in the quantum limit where only the contribution of the n = 0 Landau level is relevant. A crossover from a negative to a positive interlayer magnetoresistance is found to take place as the merging is approached. This sign change of the magnetoresistance can also result from a coupling between the Dirac valleys, which is enhanced as the magnetic field amplitude increases. Our results describe the behavior of the magnetotransport in the organic conductor α-(BEDT)2I3 and in a stack of deformed graphene-like systems. The latter can be simulated by optical lattices or microwave experiments in which the merging of Dirac cones can be observed.

  2. Dirac neutrinos and SN 1987A

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1991-01-01

    Previous work has shown that the cooling of SN 1987A excludes a Dirac-neutrino mass greater than theta(20 keV) for nu(sub e), nu(sub mu), or nu(sub tau). The emission of wrong-helicity, Dirac neutrinos from SN 1987A, is re-examined. It is concluded that the effect of a Dirac neutrino on the cooling of SN 1987A has been underestimated due to neutrino degeneracy and additional emission processes. The limit that follows from the cooling of SN 1987A is believed to be greater (probably much greater) than 10 keV. This result is significant in light of the recent evidence for a 17 keV mass eigenstate that mixes with the electron neutrino.

  3. White dwarfs, the Galaxy and Dirac's cosmology

    NASA Technical Reports Server (NTRS)

    Stothers, R.

    1976-01-01

    The additive and multiplicative versions of Dirac's cosmological hypothesis relating the gravitational constant variation with elapsed time and number of particles populating the universe is invoked to account for the deficiency or absence of white dwarfs fainter than about 0.0001 solar luminosity. An estimate is made of white dwarf luminosity in accordance with the two evolutionary models, and it is conjectured that some old white dwarfs with high space velocities may be on the verge of gravitational collapse. Lack of a special mechanism to produce the vast numbers of black holes or other dead stars accounting for 'missing matter' in the vicinity of the sun and in the galactic halo is noted in Dirac's multiplicative model. Results indicate that either Dirac's theory is untenable, or that radiation and heating are of some unknown nature, or that the process of creation of new matter requires a corresponding input of energy.

  4. Supersymmetry in the 6D Dirac action

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yukihiro; Hasegawa, Kouhei; Nishiwaki, Kenji; Sakamoto, Makoto; Tatsumi, Kentaro

    2017-07-01

    We investigate a 6D Dirac fermion on a rectangle. It is found that the 4D spectrum is governed by N =2 supersymmetric quantum mechanics. Then we demonstrate that the supersymmetry is very useful for classifying all the allowed boundary conditions and to expand the 6D Dirac field in Kaluza-Klein modes. A striking feature of the model is that even though the 6D Dirac fermion has non-vanishing bulk mass, the 4D mass spectrum can contain degenerate massless chiral fermions, which may provide a hint to solve the problem of the generation of quarks and leptons. It is pointed out that zero-energy solutions are not affected by the presence of the boundaries, while the boundary conditions work well for determining the positive-energy solutions. We also provide a brief discussion on possible boundary conditions in the general case, especially those on polygons.

  5. White dwarfs, the Galaxy and Dirac's cosmology

    NASA Technical Reports Server (NTRS)

    Stothers, R.

    1976-01-01

    The additive and multiplicative versions of Dirac's cosmological hypothesis relating the gravitational constant variation with elapsed time and number of particles populating the universe is invoked to account for the deficiency or absence of white dwarfs fainter than about 0.0001 solar luminosity. An estimate is made of white dwarf luminosity in accordance with the two evolutionary models, and it is conjectured that some old white dwarfs with high space velocities may be on the verge of gravitational collapse. Lack of a special mechanism to produce the vast numbers of black holes or other dead stars accounting for 'missing matter' in the vicinity of the sun and in the galactic halo is noted in Dirac's multiplicative model. Results indicate that either Dirac's theory is untenable, or that radiation and heating are of some unknown nature, or that the process of creation of new matter requires a corresponding input of energy.

  6. Triplet fermions and Dirac fermions in borophene

    NASA Astrophysics Data System (ADS)

    Ezawa, Motohiko

    2017-07-01

    Borophene is a monolayer materials made of boron. A perfect planar boropehene called β12 borophene has Dirac cones and they are well reproduced by a tight-binding model according to recent experimental and first-principles calculation results. We explicitly derive a Dirac theory for β12 borophene. Dirac cones are gapless when the inversion symmetry exists, while they are gapped when it is broken. In addition, three-band touching points emerge together with pseudospin triplet fermions when all transfer energy is equal and all onsite energy is equal. The three-band touching is slightly resolved otherwise. We construct effective three-band theories for triplet fermions. We also study the edge states of borophene nanoribbons, which show various behaviors depending on the way of edge terminations.

  7. Threshold conditions, energy spectrum and bands generated by locally periodic Dirac comb potentials

    NASA Astrophysics Data System (ADS)

    Dharani, M.; Shastry, C. S.

    2016-01-01

    We derive expressions for polynomials governing the threshold conditions for different types of locally periodic Dirac comb potentials comprising of attractive and combination of attractive and repulsive delta potential terms confined symmetrically inside a one dimensional box of fixed length. The roots of these polynomials specify the conditions on the potential parameters in order to generate threshold energy bound states. The mathematical and numerical methods used by us were first formulated in our earlier works and it is also very briefly summarized in this paper. We report a number of mathematical results pertaining to the threshold conditions and these are useful in controlling the number of negative energy states as desired. We further demonstrate the correlation between the distribution of roots of these polynomials and negative energy eigenvalues. Using these results as basis, we investigate the energy bands in the positive energy spectrum for the above specified Dirac comb potentials and also for the corresponding repulsive case. In the case of attractive Dirac comb the base energy of the each band excluding the first band coincides with specific eigenvalue of the confining box whereas in the repulsive case it coincides with the band top. We deduce systematic correlation between band gaps, band spreads and box eigenvalues and explain the physical reason for the vanishing of band pattern at higher energies. In the case of Dirac comb comprising of orderly arranged attractive and repulsive delta potentials, specific box eigenvalues occur in the middle of each band excluding the first band. From our study we find that by controlling the number and strength parameters of delta terms in the Dirac comb and the size of confining box it is possible to generate desired types of band formations. We believe the results from our systematic analysis are useful and relevant in the study of various one dimensional systems of physical interest in areas like nanoscience.

  8. Is the Composite Fermion a Dirac Particle?

    NASA Astrophysics Data System (ADS)

    Son, Dam Thanh

    2015-07-01

    We propose a particle-hole symmetric theory of the Fermi-liquid ground state of a half-filled Landau level. This theory should be applicable for a Dirac fermion in the magnetic field at charge neutrality, as well as for the ν =1/2 quantum Hall ground state of nonrelativistic fermions in the limit of negligible inter-Landau-level mixing. We argue that when particle-hole symmetry is exact, the composite fermion is a massless Dirac fermion, characterized by a Berry phase of π around the Fermi circle. We write down a tentative effective field theory of such a fermion and discuss the discrete symmetries, in particular, C P . The Dirac composite fermions interact through a gauge, but non-Chern-Simons, interaction. The particle-hole conjugate pair of Jain-sequence states at filling factors n /(2 n +1 ) and (n +1 )/(2 n +1 ) , which in the conventional composite fermion picture corresponds to integer quantum Hall states with different filling factors, n and n +1 , is now mapped to the same half-integer filling factor n +1/2 of the Dirac composite fermion. The Pfaffian and anti-Pfaffian states are interpreted as d -wave Bardeen-Cooper-Schrieffer paired states of the Dirac fermion with orbital angular momentum of opposite signs, while s -wave pairing would give rise to a particle-hole symmetric non-Abelian gapped phase. When particle-hole symmetry is not exact, the Dirac fermion has a C P -breaking mass. The conventional fermionic Chern-Simons theory is shown to emerge in the nonrelativistic limit of the massive theory.

  9. Cloud flexibility using DIRAC interware

    NASA Astrophysics Data System (ADS)

    Fernandez Albor, Víctor; Seco Miguelez, Marcos; Fernandez Pena, Tomas; Mendez Muñoz, Victor; Saborido Silva, Juan Jose; Graciani Diaz, Ricardo

    2014-06-01

    Communities of different locations are running their computing jobs on dedicated infrastructures without the need to worry about software, hardware or even the site where their programs are going to be executed. Nevertheless, this usually implies that they are restricted to use certain types or versions of an Operating System because either their software needs an definite version of a system library or a specific platform is required by the collaboration to which they belong. On this scenario, if a data center wants to service software to incompatible communities, it has to split its physical resources among those communities. This splitting will inevitably lead to an underuse of resources because the data centers are bound to have periods where one or more of its subclusters are idle. It is, in this situation, where Cloud Computing provides the flexibility and reduction in computational cost that data centers are searching for. This paper describes a set of realistic tests that we ran on one of such implementations. The test comprise software from three different HEP communities (Auger, LHCb and QCD phenomelogists) and the Parsec Benchmark Suite running on one or more of three Linux flavors (SL5, Ubuntu 10.04 and Fedora 13). The implemented infrastructure has, at the cloud level, CloudStack that manages the virtual machines (VM) and the hosts on which they run, and, at the user level, the DIRAC framework along with a VM extension that will submit, monitorize and keep track of the user jobs and also requests CloudStack to start or stop the necessary VM's. In this infrastructure, the community software is distributed via the CernVM-FS, which has been proven to be a reliable and scalable software distribution system. With the resulting infrastructure, users are allowed to send their jobs transparently to the Data Center. The main purpose of this system is the creation of flexible cluster, multiplatform with an scalable method for software distribution for several

  10. Dirac equations for generalised Yang-Mills systems

    NASA Astrophysics Data System (ADS)

    Lechtenfeld, O.; Nahm, W.; Tchrakian, D. H.

    1985-11-01

    We present Dirac equations in 4 p dimensions for the generalised Yang-Mills (GYM) theories introduced earlier. These Dirac equations are related to the self-duality equations of the GYM and are checked to be elliptic in a “BPST” background. In this background these Dirac equations are integrated exactly. The possibility of imposing supersymmetry in the GYM-Dirac system is investigated, with negative results.

  11. New routines for algebraic programming of the Dirac equation

    SciTech Connect

    Cotaescu, I.I.; Vulcanov, D.N.

    1997-04-01

    We present new procedures in the REDUCE language for algebraic programming of the Dirac equation on curved space-time. The main part of the program is a package of routines defining the Pauli and Dirac matrix algebras. Then the Dirac equation is obtained using the facilities of the EXCALC package. Finally we present some results obtained after running our procedures for the Dirac equation on several curved space-times.

  12. Massive Dirac neutrinos and SN 1987A

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Gandhi, Raj; Turner, Michael S.

    1992-01-01

    The wrong-helicity states of a Dirac neutrino can provide an important cooling mechanism for young neutron stars. Based on numerical models of the early cooling of the neutron star associated with SN 1987A which self-consistently incorporate wrong-helicity neutrino emission, it is argued that a Dirac neutrino of mass greater than 30 keV (25 keV if it is degenerate) leads to shortening of the neutrino burst that is inconsistent with the Irvine-Michigan-Brookhaven and Kamiokande II data. If pions are as abundant as nucleons in the cores of neutron stars, the present limit improves to 15 keV.

  13. Precise predictions for Dirac neutrino mixing

    NASA Astrophysics Data System (ADS)

    Abbas, Gauhar; Abyaneh, Mehran Zahiri; Srivastava, Rahul

    2017-04-01

    The neutrino mixing parameters are thoroughly studied using renormalization-group evolution of Dirac neutrinos with recently proposed parametrization of the neutrino mixing angles referred to as "high-scale mixing relations." The correlations among all neutrino mixing and C P violating observables are investigated. The predictions for the neutrino mixing angle θ23 are precise, and could be easily tested by ongoing and future experiments. We observe that the high-scale mixing unification hypothesis is incompatible with Dirac neutrinos due to updated experimental data.

  14. Massive Dirac neutrinos and SN 1987A

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Gandhi, Raj; Turner, Michael S.

    1992-01-01

    The wrong-helicity states of a Dirac neutrino can provide an important cooling mechanism for young neutron stars. Based on numerical models of the early cooling of the neutron star associated with SN 1987A which self-consistently incorporate wrong-helicity neutrino emission, it is argued that a Dirac neutrino of mass greater than 30 keV (25 keV if it is degenerate) leads to shortening of the neutrino burst that is inconsistent with the Irvine-Michigan-Brookhaven and Kamiokande II data. If pions are as abundant as nucleons in the cores of neutron stars, the present limit improves to 15 keV.

  15. Line of Dirac Nodes in Hyperhoneycomb Lattices.

    PubMed

    Mullen, Kieran; Uchoa, Bruno; Glatzhofer, Daniel T

    2015-07-10

    We propose a family of structures that have "Dirac loops," closed lines of Dirac nodes in momentum space, on which the density of states vanishes linearly with energy. Those lattices all possess the planar trigonal connectivity present in graphene, but are three dimensional. We show that their highly anisotropic and multiply connected Fermi surface leads to quantized Hall conductivities in three dimensions for magnetic fields with toroidal geometry. In the presence of spin-orbit coupling, we show that those structures have topological surface states. We discuss the feasibility of realizing the structures as new allotropes of carbon.

  16. Line of Dirac Nodes in Hyperhoneycomb Lattices

    NASA Astrophysics Data System (ADS)

    Mullen, Kieran; Uchoa, Bruno; Glatzhofer, Daniel T.

    2015-07-01

    We propose a family of structures that have "Dirac loops," closed lines of Dirac nodes in momentum space, on which the density of states vanishes linearly with energy. Those lattices all possess the planar trigonal connectivity present in graphene, but are three dimensional. We show that their highly anisotropic and multiply connected Fermi surface leads to quantized Hall conductivities in three dimensions for magnetic fields with toroidal geometry. In the presence of spin-orbit coupling, we show that those structures have topological surface states. We discuss the feasibility of realizing the structures as new allotropes of carbon.

  17. Dirac particle tunneling from black rings

    SciTech Connect

    Jiang Qingquan

    2008-08-15

    Recent research shows that Hawking radiation can be treated as a quantum tunneling process, and Hawking temperatures of Dirac particles across the horizon of a black hole can be correctly recovered via the fermion tunneling method. In this paper, motivated by the fermion tunneling method, we attempt to apply the analysis to derive Hawking radiation of Dirac particles via tunneling from black ring solutions of 5-dimensional Einstein-Maxwell-dilaton gravity theory. Finally, it is interesting to find that, as in the black hole case, fermion tunneling can also result in correct Hawking temperatures for the rotating neutral, dipole, and charged black rings.

  18. Kapitza-Dirac effect with traveling waves

    NASA Astrophysics Data System (ADS)

    Hayrapetyan, Armen G.; Grigoryan, Karen K.; Götte, Jörg B.; Petrosyan, Rubik G.

    2015-08-01

    We report on the possibility of diffracting electrons from light waves traveling inside a dielectric medium. We show that, in the frame of reference which moves with the group velocity of light, the traveling wave acts as a stationary diffraction grating from which electrons can diffract, similar to the conventional Kapitza-Dirac effect. To characterize the Kapitza-Dirac effect with traveling light waves, we make use of the Hamiltonian Analogy between electron optics and quantum mechanics and apply the Helmholtz-Kirchhoff theory of diffraction.

  19. Search for Heavy Pointlike Dirac Monopoles

    NASA Astrophysics Data System (ADS)

    Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Babukhadia, L.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Bartlett, J. F.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Coney, L.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M. K.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Geld, T. L.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Glenn, S.; Gobbi, B.; Goldschmidt, A.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Greenlee, H.; Grinstein, S.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jesik, R.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Kang, J. S.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kelly, M. L.; Kim, C. L.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kourlas, J.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kuleshov, S.; Kunori, S.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, H.; Li, J.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Manankov, V.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Norman, D.; Oesch, L.; Oguri, V.; Oliveira, E.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Pawlik, B.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rasmussen, L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sosebee, M.; Sotnikova, N.; Souza, M.; Spadafora, A. L.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yang, J.; Yasuda, T.; Yepes, P.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhou, Z.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zverev, E. G.; Zylberstejn, A.

    1998-07-01

    We have searched for central production of a pair of photons with high transverse energies in pp¯ collisions at s = 1.8 TeV using 70 pb-1 of data collected with the D0 detector at the Fermilab Tevatron in 1994-1996. If they exist, virtual heavy pointlike Dirac monopoles could rescatter pairs of nearly real photons into this final state via a box diagram. We observe no excess of events above background, and set lower 95% C.L. limits of 610, 870, or 1580 GeV/c2 on the mass of a spin 0, 1/2, or 1 Dirac monopole.

  20. Solar shutter arrangement

    SciTech Connect

    Fulkerson, P.L.

    1988-02-02

    In a structure having a roof with a skylight including a glass panel which transmits solar energy, a shutter arrangement supported on the roof is described comprising an insulative flat one-piece solid shutter in the form of a panel selectively and linearly slidable on tracks which conceal the side edges thereof from a position blocking transmittal of solar energy through the glass panel of the skylight into an area within the structure to a position permitting transmittal of solar energy through the glass panel of the skylight into the area within the structure. The skylight presents a space between the glass panel and the selectively and linearly slidable insulative flat one-piece solid shutter, where the latter serves as the selective inner wall of the space contiguous with the area within the structure and the glass panel serves as the fixed outer wall of the space, where temperature responsive means is disposed within the space and in direct engagement with the inner surface of the glass panel, where the temperature responsive means is a black thermocouple operating a motor in a driving relationship with the insulative flat one-piece solid shutter. The insulative flat one-piece solid shutter is supported by a cable secured to a rotatable shaft controlled by the motor, where bi-directional movement of the rotatable shaft achieves raising and lowering of the insulative flat one-piece solid shutter to each of the solar energy blocking and transmittal positions, and where the insulative flat one-piece solid shutter includes a reflective surface facing the skylight and a decorative surface facing the area within the structure.

  1. Transmission gearing arrangement

    SciTech Connect

    Klemen, D.

    1987-08-04

    A gearing arrangement is described for an automotive power transmission comprising: an input shaft and an output shaft; first, second, and third simple planetary gear sets. Each has a sun gear, a ring gear, and a planet gears meshing with the sun and the ring gears and rotatably supported on a planet carrier; means rigidly interconnecting the ring gear of the third gear set and the carrier of the second gear set; means rigidly interconnecting the ring gear of the second gear set and the carrier of the first gear set; means rigidly connecting the output shaft and the carrier of the third gear set; a first intermediate shaft rigidly interconnecting the sun gears of the second and the third gear sets for unitary rotation; a second intermediate shaft rigidly connected to the carrier of the second gear set; a third intermediate shaft continuously connected to the input shaft and to the sun gear of the first gear set; first, second, and third brake means operative to selectively brake rotation of the ring gears of the first, the second, and the third gear sets, respectively; a first rotating clutch selectively operable to connect the input shaft and the first intermediate shaft for unitary rotation; a second rotating clutch selectively operable to connect the input shaft and the second intermediate shaft for unitary rotation; a fourth simple planetary gear set including a sun gear and a ring gear and planet gears meshing with the sun and the ring gears and rotatably supported on a planet carrier; means rigidly connecting the sun gear of the fourth gear set to the third intermediate shaft; means rigidly connecting the ring gear of the fourth gear set to the carrier of the first gear set; and a fourth brake means selectively operable to brake the carrier of the fourth gear set. The nine forward ratios are obtainable while preserving a single transition shifting over the entire nine forward ratios.

  2. Covariance Manipulation for Conjunction Assessment

    NASA Technical Reports Server (NTRS)

    Hejduk, M. D.

    2016-01-01

    The manipulation of space object covariances to try to provide additional or improved information to conjunction risk assessment is not an uncommon practice. Types of manipulation include fabricating a covariance when it is missing or unreliable to force the probability of collision (Pc) to a maximum value ('PcMax'), scaling a covariance to try to improve its realism or see the effect of covariance volatility on the calculated Pc, and constructing the equivalent of an epoch covariance at a convenient future point in the event ('covariance forecasting'). In bringing these methods to bear for Conjunction Assessment (CA) operations, however, some do not remain fully consistent with best practices for conducting risk management, some seem to be of relatively low utility, and some require additional information before they can contribute fully to risk analysis. This study describes some basic principles of modern risk management (following the Kaplan construct) and then examines the PcMax and covariance forecasting paradigms for alignment with these principles; it then further examines the expected utility of these methods in the modern CA framework. Both paradigms are found to be not without utility, but only in situations that are somewhat carefully circumscribed.

  3. General Galilei Covariant Gaussian Maps.

    PubMed

    Gasbarri, Giulio; Toroš, Marko; Bassi, Angelo

    2017-09-08

    We characterize general non-Markovian Gaussian maps which are covariant under Galilean transformations. In particular, we consider translational and Galilean covariant maps and show that they reduce to the known Holevo result in the Markovian limit. We apply the results to discuss measures of macroscopicity based on classicalization maps, specifically addressing dissipation, Galilean covariance and non-Markovianity. We further suggest a possible generalization of the macroscopicity measure defined by Nimmrichter and Hornberger [Phys. Rev. Lett. 110, 16 (2013)PRLTAO0031-9007].

  4. Covariance Models for Hydrological Applications

    NASA Astrophysics Data System (ADS)

    Hristopulos, Dionissios

    2014-05-01

    This methodological contribution aims to present some new covariance models with applications in the stochastic analysis of hydrological processes. More specifically, we present explicit expressions for radially symmetric, non-differentiable, Spartan covariance functions in one, two, and three dimensions. The Spartan covariance parameters include a characteristic length, an amplitude coefficient, and a rigidity coefficient which determines the shape of the covariance function. Different expressions are obtained depending on the value of the rigidity coefficient and the dimensionality. If the value of the rigidity coefficient is much larger than one, the Spartan covariance function exhibits multiscaling. Spartan covariance models are more flexible than the classical geostatatistical models (e.g., spherical, exponential). Their non-differentiability makes them suitable for modelling the properties of geological media. We also present a family of radially symmetric, infinitely differentiable Bessel-Lommel covariance functions which are valid in any dimension. These models involve combinations of Bessel and Lommel functions. They provide a generalization of the J-Bessel covariance function, and they can be used to model smooth processes with an oscillatory decay of correlations. We discuss the dependence of the integral range of the Spartan and Bessel-Lommel covariance functions on the parameters. We point out that the dependence is not uniquely specified by the characteristic length, unlike the classical geostatistical models. Finally, we define and discuss the use of the generalized spectrum for characterizing different correlation length scales; the spectrum is defined in terms of an exponent α. We show that the spectrum values obtained for exponent values less than one can be used to discriminate between mean-square continuous but non-differentiable random fields. References [1] D. T. Hristopulos and S. Elogne, 2007. Analytic properties and covariance functions of

  5. Covariant approach of perturbations in Lovelock type brane gravity

    NASA Astrophysics Data System (ADS)

    Bagatella-Flores, Norma; Campuzano, Cuauhtemoc; Cruz, Miguel; Rojas, Efraín

    2016-12-01

    We develop a covariant scheme to describe the dynamics of small perturbations on Lovelock type extended objects propagating in a flat Minkowski spacetime. The higher-dimensional analogue of the Jacobi equation in this theory becomes a wave type equation for a scalar field Φ . Whithin this framework, we analyse the stability of membranes with a de Sitter geometry where we find that the Jacobi equation specializes to a Klein-Gordon (KG) equation for Φ possessing a tachyonic mass. This shows that, to some extent, these types of extended objects share the symmetries of the Dirac-Nambu-Goto (DNG) action which is by no means coincidental because the DNG model is the simplest included in this type of gravity.

  6. Covariant response theory beyond RPA and its application

    SciTech Connect

    Litvinova, E. Ring, P. Tselyaev, V.

    2007-08-15

    The covariant particle-vibration coupling model within the time-blocking approximation is employed to supplement the relativistic random phase approximation (RRPA) with coupling to collective vibrations. The Bethe-Salpeter equation in the particle-hole channel with an energy-dependent residual particle-hole (ph) interaction is formulated and solved in the shell-model Dirac basis as well as in the momentum space. The same set of coupling constants generates the Dirac-Hartree single-particle spectrum, the static part of the residual ph interaction, and the particle-phonon coupling amplitudes. This approach is applied to a quantitative description of damping phenomenon in even-even spherical nuclei with closed shells {sup 208}Pb and {sup 132}Sn. Since phonon coupling enriches the RRPA spectrum with a multitude of ph - phonon states, a noticeable fragmentation of giant monopole and dipole resonances is obtained in the examined nuclei. The results are compared with experimental data and results of the nonrelativistic approach.

  7. Covariation neglect among novice investors.

    PubMed

    Hedesström, Ted Martin; Svedsäter, Henrik; Gärling, Tommy

    2006-09-01

    In 4 experiments, undergraduates made hypothetical investment choices. In Experiment 1, participants paid more attention to the volatility of individual assets than to the volatility of aggregated portfolios. The results of Experiment 2 show that most participants diversified even when this increased risk because of covariation between the returns of individual assets. In Experiment 3, nearly half of those who seemingly attempted to minimize risk diversified even when this increased risk. These results indicate that novice investors neglect covariation when diversifying across investment alternatives. Experiment 4 established that naive diversification follows from motivation to minimize risk and showed that covariation neglect was not significantly reduced by informing participants about how covariation affects portfolio risk but was reduced by making participants systematically calculate aggregate returns for diversified portfolios. In order to counteract naive diversification, novice investors need to be better informed about the rationale underlying recommendations to diversify.

  8. Hawking radiation and covariant anomalies

    SciTech Connect

    Banerjee, Rabin; Kulkarni, Shailesh

    2008-01-15

    Generalizing the method of Wilczek and collaborators we provide a derivation of Hawking radiation from charged black holes using only covariant gauge and gravitational anomalies. The reliability and universality of the anomaly cancellation approach to Hawking radiation is also discussed.

  9. Dynamical Localization for Discrete Anderson Dirac Operators

    NASA Astrophysics Data System (ADS)

    Prado, Roberto A.; de Oliveira, César R.; Carvalho, Silas L.

    2017-04-01

    We establish dynamical localization for random Dirac operators on the d-dimensional lattice, with d\\in { 1, 2, 3} , in the three usual regimes: large disorder, band edge and 1D. These operators are discrete versions of the continuous Dirac operators and consist in the sum of a discrete free Dirac operator with a random potential. The potential is a diagonal matrix formed by different scalar potentials, which are sequences of independent and identically distributed random variables according to an absolutely continuous probability measure with bounded density and of compact support. We prove the exponential decay of fractional moments of the Green function for such models in each of the above regimes, i.e., (j) throughout the spectrum at larger disorder, (jj) for energies near the band edges at arbitrary disorder and (jjj) in dimension one, for all energies in the spectrum and arbitrary disorder. Dynamical localization in theses regimes follows from the fractional moments method. The result in the one-dimensional regime contrast with one that was previously obtained for 1D Dirac model with Bernoulli potential.

  10. Understanding Quaternions and the Dirac Belt Trick

    ERIC Educational Resources Information Center

    Staley, Mark

    2010-01-01

    The Dirac belt trick is often employed in physics classrooms to show that a 2n rotation is not topologically equivalent to the absence of rotation whereas a 4n rotation is, mirroring a key property of quaternions and their isomorphic cousins, spinors. The belt trick can leave the student wondering if a real understanding of quaternions and spinors…

  11. Applications of Dirac's Delta Function in Statistics

    ERIC Educational Resources Information Center

    Khuri, Andre

    2004-01-01

    The Dirac delta function has been used successfully in mathematical physics for many years. The purpose of this article is to bring attention to several useful applications of this function in mathematical statistics. Some of these applications include a unified representation of the distribution of a function (or functions) of one or several…

  12. Understanding Quaternions and the Dirac Belt Trick

    ERIC Educational Resources Information Center

    Staley, Mark

    2010-01-01

    The Dirac belt trick is often employed in physics classrooms to show that a 2n rotation is not topologically equivalent to the absence of rotation whereas a 4n rotation is, mirroring a key property of quaternions and their isomorphic cousins, spinors. The belt trick can leave the student wondering if a real understanding of quaternions and spinors…

  13. On solvable Dirac equation with polynomial potentials

    SciTech Connect

    Stachowiak, Tomasz

    2011-01-15

    One-dimensional Dirac equation is analyzed with regard to the existence of exact (or closed-form) solutions for polynomial potentials. The notion of Liouvillian functions is used to define solvability, and it is shown that except for the linear potentials the equation in question is not solvable.

  14. Applications of Dirac's Delta Function in Statistics

    ERIC Educational Resources Information Center

    Khuri, Andre

    2004-01-01

    The Dirac delta function has been used successfully in mathematical physics for many years. The purpose of this article is to bring attention to several useful applications of this function in mathematical statistics. Some of these applications include a unified representation of the distribution of a function (or functions) of one or several…

  15. Emeritus trio scoops the 2013 Dirac Medal

    NASA Astrophysics Data System (ADS)

    Dacey, James

    2013-09-01

    The 2013 Dirac Medal has been awarded to three scientists whose wide-ranging work has brought profound advances in cosmology, astrophysics and fundamental physics. Thomas Kibble, James Peebles and Martin Rees all receive the honour, which is bestowed annually by the Abdus Salam International Centre for Theoretical Physics (ICTP) in Trieste, Italy.

  16. Paul Dirac:. Building Bridges of the Mind

    NASA Astrophysics Data System (ADS)

    Brown, Laurie M.

    2003-12-01

    Paul Dirac was a brilliant and original thinker. He used his physical intuition and his ideal of mathematical beauty to construct bridges between major areas of physics. This article discusses several such important works, including the bridge between quantum mechanics and relativity that led to his prediction of the existence of antimatter.

  17. Polymer Dirac field propagator: A model

    NASA Astrophysics Data System (ADS)

    García-Chung, Angel A.; Morales-Técotl, Hugo A.

    2014-03-01

    Polymer quantum mechanics, the mechanical analogue of the loop quantization of gravity, has been applied recently to scalar field modes yielding interesting behavior for its corresponding propagator at high, possibly Planck's, energy. Clearly other matter components are worth investigating along these lines, and thus we focus here on the Dirac field. To proceed to the polymer analysis of the Dirac field, a previous canonical analysis of its modes is advantageous. We show that this yields an energy spectrum suggesting a natural Fermi oscillator decomposition and, moreover, that both Fourier modes and Fermi oscillators lead to the corresponding free propagator in flat space-time. Finally, we advance a model entailing the polymer quantization of the Fermi oscillators that make up the Dirac field. It consists of a discrete set that replaces one of the two real anticommutative lines forming the reduced phase space of a Fermi oscillator. This is in analogy to the bosonic harmonic oscillator in which the corresponding polymer quantization involves replacing the real line by a regular lattice. The resulting polymer propagator contains as its body the standard Dirac field propagator plus soul terms involving up to second-order powers in two anticommutative parameters. Some possible physical implications are mentioned in the discussion.

  18. Poisson geometry from a Dirac perspective

    NASA Astrophysics Data System (ADS)

    Meinrenken, Eckhard

    2017-07-01

    We present proofs of classical results in Poisson geometry using techniques from Dirac geometry. This article is based on mini-courses at the Poisson summer school in Geneva, June 2016, and at the workshop Quantum Groups and Gravity at the University of Waterloo, April 2016.

  19. The Aesthetics of Behavioral Arrangements

    ERIC Educational Resources Information Center

    Hineline, Philip N.

    2005-01-01

    With their origins in scientific validation, behavior-analytic applications have understandably been developed with an engineering rather than a crafting orientation. Nevertheless, traditions of craftsmanship can be instructive for devising aesthetically pleasing arrangements--arrangements that people will try, and having tried, will choose to…

  20. Relative-Error-Covariance Algorithms

    NASA Technical Reports Server (NTRS)

    Bierman, Gerald J.; Wolff, Peter J.

    1991-01-01

    Two algorithms compute error covariance of difference between optimal estimates, based on data acquired during overlapping or disjoint intervals, of state of discrete linear system. Provides quantitative measure of mutual consistency or inconsistency of estimates of states. Relative-error-covariance concept applied, to determine degree of correlation between trajectories calculated from two overlapping sets of measurements and construct real-time test of consistency of state estimates based upon recently acquired data.

  1. Single-layer and bilayer graphene superlattices: collimation, additional Dirac points and Dirac lines.

    PubMed

    Barbier, Michaël; Vasilopoulos, Panagiotis; Peeters, François M

    2010-12-13

    We review the energy spectrum and transport properties of several types of one-dimensional superlattices (SLs) on single-layer and bilayer graphene. In single-layer graphene, for certain SL parameters an electron beam incident on an SL is highly collimated. On the other hand, there are extra Dirac points generated for other SL parameters. Using rectangular barriers allows us to find analytical expressions for the location of new Dirac points in the spectrum and for the renormalization of the electron velocities. The influence of these extra Dirac points on the conductivity is investigated. In the limit of δ-function barriers, the transmission T through and conductance G of a finite number of barriers as well as the energy spectra of SLs are periodic functions of the dimensionless strength P of the barriers, Pδ(x) = V(x)/ħv(F), with v(F) the Fermi velocity. For a Kronig-Penney SL with alternating sign of the height of the barriers, the Dirac point becomes a Dirac line for P = π/2+nπ with n an integer. In bilayer graphene, with an appropriate bias applied to the barriers and wells, we show that several new types of SLs are produced and two of them are similar to type I and type II semiconductor SLs. Similar to single-layer graphene SLs, extra 'Dirac' points are found in bilayer graphene SLs. Non-ballistic transport is also considered.

  2. Identifying Dirac cones in carbon allotropes with square symmetry

    SciTech Connect

    Wang, Jinying; Huang, Huaqing; Duan, Wenhui; Liu, Zhirong

    2013-11-14

    A theoretical study is conducted to search for Dirac cones in two-dimensional carbon allotropes with square symmetry. By enumerating the carbon atoms in a unit cell up to 12, an allotrope with octatomic rings is recognized to possess Dirac cones under a simple tight-binding approach. The obtained Dirac cones are accompanied by flat bands at the Fermi level, and the resulting massless Dirac-Weyl fermions are chiral particles with a pseudospin of S = 1, rather than the conventional S = 1/2 of graphene. The spin-1 Dirac cones are also predicted to exist in hexagonal graphene antidot lattices.

  3. Identifying Dirac cones in carbon allotropes with square symmetry.

    PubMed

    Wang, Jinying; Huang, Huaqing; Duan, Wenhui; Liu, Zhirong

    2013-11-14

    A theoretical study is conducted to search for Dirac cones in two-dimensional carbon allotropes with square symmetry. By enumerating the carbon atoms in a unit cell up to 12, an allotrope with octatomic rings is recognized to possess Dirac cones under a simple tight-binding approach. The obtained Dirac cones are accompanied by flat bands at the Fermi level, and the resulting massless Dirac-Weyl fermions are chiral particles with a pseudospin of S = 1, rather than the conventional S = 1∕2 of graphene. The spin-1 Dirac cones are also predicted to exist in hexagonal graphene antidot lattices.

  4. An Effective Theory of Dirac Dark Matter

    SciTech Connect

    Harnik, Roni; Kribs, Graham D.; /Oregon U.

    2010-06-11

    A stable Dirac fermion with four-fermion interactions to leptons suppressed by a scale {Lambda} {approx} 1 TeV is shown to provide a viable candidate for dark matter. The thermal relic abundance matches cosmology, while nuclear recoil direct detection bounds are automatically avoided in the absence of (large) couplings to quarks. The annihilation cross section in the early Universe is the same as the annihilation in our galactic neighborhood. This allows Dirac fermion dark matter to naturally explain the positron ratio excess observed by PAMELA with a minimal boost factor, given present astrophysical uncertainties. We use the Galprop program for propagation of signal and background; we discuss in detail the uncertainties resulting from the propagation parameters and, more importantly, the injected spectra. Fermi/GLAST has an opportunity to see a feature in the gamma-ray spectrum at the mass of the Dirac fermion. The excess observed by ATIC/PPB-BETS may also be explained with Dirac dark matter that is heavy. A supersymmetric model with a Dirac bino provides a viable UV model of the effective theory. The dominance of the leptonic operators, and thus the observation of an excess in positrons and not in anti-protons, is naturally explained by the large hypercharge and low mass of sleptons as compared with squarks. Minimizing the boost factor implies the right-handed selectron is the lightest slepton, which is characteristic of our model. Selectrons (or sleptons) with mass less than a few hundred GeV are an inescapable consequence awaiting discovery at the LHC.

  5. Dirac node arcs in PtSn4

    NASA Astrophysics Data System (ADS)

    Wu, Yun; Wang, Lin-Lin; Mun, Eundeok; Johnson, D. D.; Mou, Daixiang; Huang, Lunan; Lee, Yongbin; Bud'Ko, S. L.; Canfield, P. C.; Kaminski, Adam

    2016-07-01

    In topological quantum materials the conduction and valence bands are connected at points or along lines in the momentum space. A number of studies have demonstrated that several materials are indeed Dirac/Weyl semimetals. However, there is still no experimental confirmation of materials with line nodes, in which the Dirac nodes form closed loops in the momentum space. Here we report the discovery of a novel topological structure--Dirac node arcs--in the ultrahigh magnetoresistive material PtSn4 using laser-based angle-resolved photoemission spectroscopy data and density functional theory calculations. Unlike the closed loops of line nodes, the Dirac node arc structure arises owing to the surface states and resembles the Dirac dispersion in graphene that is extended along a short line in the momentum space. We propose that this reported Dirac node arc structure is a novel topological state that provides an exciting platform for studying the exotic properties of Dirac fermions.

  6. Maxwell–Dirac stress–energy tensor in terms of Fierz bilinear currents

    SciTech Connect

    Inglis, Shaun Jarvis, Peter

    2016-03-15

    We analyse the stress–energy tensor for the self-coupled Maxwell–Dirac system in the bilinear current formalism, using two independent approaches. The first method used is that attributed to Belinfante: starting from the spinor form of the action, the well-known canonical stress–energy tensor is augmented, by extending the Noether symmetry current to include contributions from the Lorentz group, to a manifestly symmetric form. This form admits a transcription to bilinear current form. The second method used is the variational derivation based on the covariant coupling to general relativity. The starting point here at the outset is the transcription of the action using, as independent field variables, both the bilinear currents, together with a gauge invariant vector field (a proxy for the electromagnetic vector potential). A central feature of the two constructions is that they both involve the mapping of the Dirac contribution to the stress–energy from the spinor fields to the equivalent set of bilinear tensor currents, through the use of appropriate Fierz identities. Although this mapping is done at quite different stages, nonetheless we find that the two forms of the bilinear stress–energy tensor agree. Finally, as an application, we consider the reduction of the obtained stress–energy tensor in bilinear form, under the assumption of spherical symmetry. -- Highlights: •Maxwell–Dirac stress–energy tensor derived in manifestly gauge invariant bilinear form. •Dirac spinor Belinfante tensor transcribed to bilinear fields via Fierz mapping. •Variational stress–energy obtained via bilinearized action, in contrast to Belinfante case. •Independent derivations via the Belinfante and variational methods agree, as required. •Spherical symmetry reduction given as a working example for wider applications.

  7. In-medium covariant propagator of baryons under a strong magnetic field: Effect of the intrinsic magnetic moments

    NASA Astrophysics Data System (ADS)

    Aguirre, R. M.; De Paoli, A. L.

    2016-11-01

    We obtain the covariant propagator at finite temperature for interacting baryons immersed in a strong magnetic field. The effect of the intrinsic magnetic moments on the Green function are fully taken into account. We make an expansion in terms of eigenfunctions of a Dirac field, which leads us to a compact form of its propagator. We present some simple applications of these propagators, where the statistical averages of nuclear currents and energy density are evaluated.

  8. Floral arrangements and hummingbird feeding.

    PubMed

    Hainsworth, F Reed; Mercier, Theresa; Wolf, Larry L

    1983-05-01

    The influence of simulated inflorescence design on feeding behavior of 3 male Eugenes fulgens (Rivoli's hummingbird) and one female Lampornis clemenciae (Bluethroated hummingbird) was studied in the laboratory using artificial flowers. Five two-dimensional and three three-dimensional arrangements provided constant rewards per artificial flower. Visits to two-dimensional arrangements had more flower visits per feeding bout, proportionally more flower revisits, and shorter time between flowers than visits to three-dimensional arrangements. This suggests inflorescence design may influence pollen movement by hummingbirds.

  9. Using analysis of covariance (ANCOVA) with fallible covariates.

    PubMed

    Culpepper, Steven Andrew; Aguinis, Herman

    2011-06-01

    Analysis of covariance (ANCOVA) is used widely in psychological research implementing nonexperimental designs. However, when covariates are fallible (i.e., measured with error), which is the norm, researchers must choose from among 3 inadequate courses of action: (a) know that the assumption that covariates are perfectly reliable is violated but use ANCOVA anyway (and, most likely, report misleading results); (b) attempt to employ 1 of several measurement error models with the understanding that no research has examined their relative performance and with the added practical difficulty that several of these models are not available in commonly used statistical software; or (c) not use ANCOVA at all. First, we discuss analytic evidence to explain why using ANCOVA with fallible covariates produces bias and a systematic inflation of Type I error rates that may lead to the incorrect conclusion that treatment effects exist. Second, to provide a solution for this problem, we conduct 2 Monte Carlo studies to compare 4 existing approaches for adjusting treatment effects in the presence of covariate measurement error: errors-in-variables (EIV; Warren, White, & Fuller, 1974), Lord's (1960) method, Raaijmakers and Pieters's (1987) method (R&P), and structural equation modeling methods proposed by Sörbom (1978) and Hayduk (1996). Results show that EIV models are superior in terms of parameter accuracy, statistical power, and keeping Type I error close to the nominal value. Finally, we offer a program written in R that performs all needed computations for implementing EIV models so that ANCOVA can be used to obtain accurate results even when covariates are measured with error. © 2011 American Psychological Association

  10. Covariate-free and Covariate-dependent Reliability.

    PubMed

    Bentler, Peter M

    2016-12-01

    Classical test theory reliability coefficients are said to be population specific. Reliability generalization, a meta-analysis method, is the main procedure for evaluating the stability of reliability coefficients across populations. A new approach is developed to evaluate the degree of invariance of reliability coefficients to population characteristics. Factor or common variance of a reliability measure is partitioned into parts that are, and are not, influenced by control variables, resulting in a partition of reliability into a covariate-dependent and a covariate-free part. The approach can be implemented in a single sample and can be applied to a variety of reliability coefficients.

  11. Levy Matrices and Financial Covariances

    NASA Astrophysics Data System (ADS)

    Burda, Zdzislaw; Jurkiewicz, Jerzy; Nowak, Maciej A.; Papp, Gabor; Zahed, Ismail

    2003-10-01

    In a given market, financial covariances capture the intra-stock correlations and can be used to address statistically the bulk nature of the market as a complex system. We provide a statistical analysis of three SP500 covariances with evidence for raw tail distributions. We study the stability of these tails against reshuffling for the SP500 data and show that the covariance with the strongest tails is robust, with a spectral density in remarkable agreement with random Lévy matrix theory. We study the inverse participation ratio for the three covariances. The strong localization observed at both ends of the spectral density is analogous to the localization exhibited in the random Lévy matrix ensemble. We discuss two competitive mechanisms responsible for the occurrence of an extensive and delocalized eigenvalue at the edge of the spectrum: (a) the Lévy character of the entries of the correlation matrix and (b) a sort of off-diagonal order induced by underlying inter-stock correlations. (b) can be destroyed by reshuffling, while (a) cannot. We show that the stocks with the largest scattering are the least susceptible to correlations, and likely candidates for the localized states. We introduce a simple model for price fluctuations which captures behavior of the SP500 covariances. It may be of importance for assets diversification.

  12. Seal arrangement for intersecting conduits

    DOEpatents

    Goedicke, Friedrich E.

    1980-01-01

    A seal arrangement in which two intersecting conduits are sealed from each other. A sleeve insert is locked in a sealed relationship within one conduit enclosing the openings of the intersecting conduit.

  13. Plexciton Dirac points and topological modes

    SciTech Connect

    Yuen-Zhou, Joel; Saikin, Semion K.; Zhu, Tony; Onbasli, Mehmet C.; Ross, Caroline A.; Bulovic, Vladimir; Baldo, Marc A.

    2016-06-09

    Plexcitons are polaritonic modes that result from the strong coupling between excitons and plasmons. Here, we consider plexcitons emerging from the interaction of excitons in an organic molecular layer with surface plasmons in a metallic film. We predict the emergence of Dirac cones in the two-dimensional band-structure of plexcitons due to the inherent alignment of the excitonic transitions in the organic layer. An external magnetic field opens a gap between the Dirac cones if the plexciton system is interfaced with a magneto-optical layer. The resulting energy gap becomes populated with topologically protected one-way modes, which travel at the interface of this plexcitonic system. Furthermore, our theoretical proposal suggests that plexcitons are a convenient and simple platform for the exploration of exotic phases of matter and for the control of energy flow at the nanoscale.

  14. Plexciton Dirac points and topological modes

    DOE PAGES

    Yuen-Zhou, Joel; Saikin, Semion K.; Zhu, Tony; ...

    2016-06-09

    Plexcitons are polaritonic modes that result from the strong coupling between excitons and plasmons. Here, we consider plexcitons emerging from the interaction of excitons in an organic molecular layer with surface plasmons in a metallic film. We predict the emergence of Dirac cones in the two-dimensional band-structure of plexcitons due to the inherent alignment of the excitonic transitions in the organic layer. An external magnetic field opens a gap between the Dirac cones if the plexciton system is interfaced with a magneto-optical layer. The resulting energy gap becomes populated with topologically protected one-way modes, which travel at the interface ofmore » this plexcitonic system. Furthermore, our theoretical proposal suggests that plexcitons are a convenient and simple platform for the exploration of exotic phases of matter and for the control of energy flow at the nanoscale.« less

  15. Classical electromagnetic radiation of the Dirac electron

    NASA Technical Reports Server (NTRS)

    Lanyi, G.

    1973-01-01

    A wave-function-dependent four-vector potential is added to the Dirac equation in order to achieve conservation of energy and momentum for a Dirac electron and its emitted electromagnetic field. The resultant equation contains solutions which describe transitions between different energy states of the electron. As a consequence it is possible to follow the space-time evolution of such a process. This evolution is shown in the case of the spontaneous emission of an electromagnetic field by an electron bound in a hydrogen-like atom. The intensity of the radiation and the spectral distribution are calculated for transitions between two eigenstates. The theory gives a self-consistent deterministic description of some simple radiation processes without using quantum electrodynamics or the correspondence principle.

  16. Chiral Scars in Chaotic Dirac Fermion Systems

    NASA Astrophysics Data System (ADS)

    Xu, Hongya; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso

    2013-02-01

    Do relativistic quantum scars in classically chaotic systems possess unique features that are not shared by nonrelativistic quantum scars? We report a class of relativistic quantum scars in massless Dirac fermion systems whose phases return to the original values or acquire a 2π change only after circulating twice about some classical unstable periodic orbits. We name such scars chiral scars, the successful identification of which has been facilitated tremendously by our development of an analytic, conformal-mapping-based method to calculate an unprecedentedly large number of eigenstates with high accuracy. Our semiclassical theory indicates that the physical origin of chiral scars can be attributed to a combined effect of chirality intrinsic to massless Dirac fermions and the geometry of the underlying classical orbit.

  17. Topological Dirac line nodes in centrosymmetric semimetals

    NASA Astrophysics Data System (ADS)

    Kim, Youngkuk; Wieder, Benjamin; Kane, Charles; Rappe, Andrew; TI seed Team

    Dirac line nodes (DLNs) are one-dimensional lines of Dirac band-touching points, characterized by linear dispersion in only a single direction in momentum space. In the presence of inversion symmetry and time-reversal symmetry, crystals with vanishing spin-orbit coupling can host topologically protected DLNs. Recently, we have proposed and characterized a novel Z2 class of DLN semimetals [1]. We present Z2 topological invariants, dictating the presence of DLNs, based on the parity eigenvalues at the time-reversal invariant crystal momenta. Our first-principles calculations show that DLNs can be realized in Cu3N in an anti-ReO3 structure via a metal-insulator electronic transition, driven by transition metal doping. We also discuss the resultant surface states and the effects of spin-orbit coupling.

  18. Plexciton Dirac points and topological modes

    NASA Astrophysics Data System (ADS)

    Yuen-Zhou, Joel; Saikin, Semion K.; Zhu, Tony; Onbasli, Mehmet C.; Ross, Caroline A.; Bulovic, Vladimir; Baldo, Marc A.

    2016-06-01

    Plexcitons are polaritonic modes that result from the strong coupling between excitons and plasmons. Here, we consider plexcitons emerging from the interaction of excitons in an organic molecular layer with surface plasmons in a metallic film. We predict the emergence of Dirac cones in the two-dimensional band-structure of plexcitons due to the inherent alignment of the excitonic transitions in the organic layer. An external magnetic field opens a gap between the Dirac cones if the plexciton system is interfaced with a magneto-optical layer. The resulting energy gap becomes populated with topologically protected one-way modes, which travel at the interface of this plexcitonic system. Our theoretical proposal suggests that plexcitons are a convenient and simple platform for the exploration of exotic phases of matter and for the control of energy flow at the nanoscale.

  19. Plexciton Dirac points and topological modes.

    PubMed

    Yuen-Zhou, Joel; Saikin, Semion K; Zhu, Tony; Onbasli, Mehmet C; Ross, Caroline A; Bulovic, Vladimir; Baldo, Marc A

    2016-06-09

    Plexcitons are polaritonic modes that result from the strong coupling between excitons and plasmons. Here, we consider plexcitons emerging from the interaction of excitons in an organic molecular layer with surface plasmons in a metallic film. We predict the emergence of Dirac cones in the two-dimensional band-structure of plexcitons due to the inherent alignment of the excitonic transitions in the organic layer. An external magnetic field opens a gap between the Dirac cones if the plexciton system is interfaced with a magneto-optical layer. The resulting energy gap becomes populated with topologically protected one-way modes, which travel at the interface of this plexcitonic system. Our theoretical proposal suggests that plexcitons are a convenient and simple platform for the exploration of exotic phases of matter and for the control of energy flow at the nanoscale.

  20. Plexciton Dirac points and topological modes

    PubMed Central

    Yuen-Zhou, Joel; Saikin, Semion K.; Zhu, Tony; Onbasli, Mehmet C.; Ross, Caroline A.; Bulovic, Vladimir; Baldo, Marc A.

    2016-01-01

    Plexcitons are polaritonic modes that result from the strong coupling between excitons and plasmons. Here, we consider plexcitons emerging from the interaction of excitons in an organic molecular layer with surface plasmons in a metallic film. We predict the emergence of Dirac cones in the two-dimensional band-structure of plexcitons due to the inherent alignment of the excitonic transitions in the organic layer. An external magnetic field opens a gap between the Dirac cones if the plexciton system is interfaced with a magneto-optical layer. The resulting energy gap becomes populated with topologically protected one-way modes, which travel at the interface of this plexcitonic system. Our theoretical proposal suggests that plexcitons are a convenient and simple platform for the exploration of exotic phases of matter and for the control of energy flow at the nanoscale. PMID:27278258

  1. Classical electromagnetic radiation of the Dirac electron

    NASA Technical Reports Server (NTRS)

    Lanyi, G.

    1973-01-01

    A wave-function-dependent four-vector potential is added to the Dirac equation in order to achieve conservation of energy and momentum for a Dirac electron and its emitted electromagnetic field. The resultant equation contains solutions which describe transitions between different energy states of the electron. As a consequence it is possible to follow the space-time evolution of such a process. This evolution is shown in the case of the spontaneous emission of an electromagnetic field by an electron bound in a hydrogen-like atom. The intensity of the radiation and the spectral distribution are calculated for transitions between two eigenstates. The theory gives a self-consistent deterministic description of some simple radiation processes without using quantum electrodynamics or the correspondence principle.

  2. Plexciton Dirac points and topological modes

    SciTech Connect

    Yuen-Zhou, Joel; Saikin, Semion K.; Zhu, Tony; Onbasli, Mehmet C.; Ross, Caroline A.; Bulovic, Vladimir; Baldo, Marc A.

    2016-06-09

    Plexcitons are polaritonic modes that result from the strong coupling between excitons and plasmons. Here, we consider plexcitons emerging from the interaction of excitons in an organic molecular layer with surface plasmons in a metallic film. We predict the emergence of Dirac cones in the two-dimensional band-structure of plexcitons due to the inherent alignment of the excitonic transitions in the organic layer. An external magnetic field opens a gap between the Dirac cones if the plexciton system is interfaced with a magneto-optical layer. The resulting energy gap becomes populated with topologically protected one-way modes, which travel at the interface of this plexcitonic system. Our theoretical proposal suggests that plexcitons are a convenient and simple platform for the exploration of exotic phases of matter and for the control of energy flow at the nanoscale.

  3. Double Dirac point in a photonic graphene

    NASA Astrophysics Data System (ADS)

    Qiu, Pingping; Qiu, Weibin; Lin, Zhili; Chen, Houbo; Ren, Junbo; Wang, Jia-Xian; Kan, Qiang; Pan, Jiao-Qing

    2017-08-01

    The band structure of the photonic graphene composed of an array of dielectric cylinders in air with honeycomb lattice is computed in this work. The results reveal that there is a double Dirac point at the Brillouin zone center with a frequency of 0.870 61c/a in our proposed photonic graphene structure. By using average eigen-field calculation, we demonstrate that such a photonic graphene structure possesses both zero effective permittivity and effective permeability, which implied that this structure can serve as zero-index medium. Furthermore, applications including focusing, multidirectional emission and super-coupling are numerically demonstrated with the proposed structure at the double Dirac point frequency, which further conformed the zero-index properties of the photonic graphene structure.

  4. Dirac gauginos in low scale supersymmetry breaking

    NASA Astrophysics Data System (ADS)

    Goodsell, Mark D.; Tziveloglou, Pantelis

    2014-12-01

    It has been claimed that Dirac gaugino masses are necessary for realistic models of low-scale supersymmetry breaking, and yet very little attention has been paid to the phenomenology of a light gravitino when gauginos have Dirac masses. We begin to address this deficit by investigating the couplings and phenomenology of the gravitino in the effective Lagrangian approach. We pay particular attention to the phenomenology of the scalar octets, where new decay channels open up. This leads us to propose a new simplified effective scenario including only light gluinos, sgluons and gravitinos, allowing the squarks to be heavy - with the possible exception of the third generation. Finally, we comment on the application of our results to Fake Split Supersymmetry.

  5. A class of covariate-dependent spatiotemporal covariance functions.

    PubMed

    Reich, Brian J; Eidsvik, Jo; Guindani, Michele; Nail, Amy J; Schmidt, Alexandra M

    2011-12-01

    In geostatistics, it is common to model spatially distributed phenomena through an underlying stationary and isotropic spatial process. However, these assumptions are often untenable in practice because of the influence of local effects in the correlation structure. Therefore, it has been of prolonged interest in the literature to provide flexible and effective ways to model non-stationarity in the spatial effects. Arguably, due to the local nature of the problem, we might envision that the correlation structure would be highly dependent on local characteristics of the domain of study, namely the latitude, longitude and altitude of the observation sites, as well as other locally defined covariate information. In this work, we provide a flexible and computationally feasible way for allowing the correlation structure of the underlying processes to depend on local covariate information. We discuss the properties of the induced covariance functions and discuss methods to assess its dependence on local covariate information by means of a simulation study and the analysis of data observed at ozone-monitoring stations in the Southeast United States.

  6. Pseudoclassical description of the Dirac Oscillator

    NASA Technical Reports Server (NTRS)

    Delsolmesa, Antonio; Martinezyromero, R. P.

    1995-01-01

    In this paper we discuss the Dirac Oscillator wave equation in terms of pseudoclassical language, using Grassmann variables to describe the internal degrees of freedom of the oscillator. Regarding the original wave equation as a classical constraint, we use the theory of constrained systems, to develop a reparameterization invariant lagrangian, which is the pseudoclassical equivalent of the quantum case. The consistency of the Hamiltonian formalism and the quantization procedure are also analyzed.

  7. Dirac particle in a pseudoscalar potential

    SciTech Connect

    Moreno, M.; Zentella-Dehesa, A.

    1996-02-01

    We study the problem of a Dirac particle with a pseudoscalar interaction in the potential approximation. It is shown how nonperturbative relativistic solutions arise. The case of the central pseudoscalar potential is explicitly worked out also in a closed form. The angular functions are worked out in general for this central case. Finally for the special case of the spherical well the radial solutions are shown to behave like Bessel-type functions. {copyright} {ital 1996 American Institute of Physics.}

  8. Dirac particle in a pseudoscalar potential

    SciTech Connect

    Moreno, Matias; Zentella-Dehesa, Arturo

    1996-02-20

    We study the problem of a Dirac particle with a pseudoscalar interaction in the potential approximation. It is shown how nonperturbative relativistic solutions arise. The case of the central pseudoscalar potential is explicitly worked out also in a closed form. The angular functions are worked out in general for this central case. Finally for the special case of the spherical well the radial solutions are shown to behave like Bessel-type functions.

  9. Photonic realization of the relativistic Dirac oscillator.

    PubMed

    Longhi, S

    2010-04-15

    A photonic realization of the Dirac oscillator (DO), i.e., of the relativistic extension of the quantum harmonic oscillator, is proposed for light propagation in fiber Bragg gratings. Transmission spectra clearly show the existence of electron and positron bound states of the DO, corresponding to resonance modes above and below the Bragg frequency, as well as the asymmetry of the energy spectrum for electron and positron branches.

  10. First Integrals, Liouville Theorem, and Dirac Brackets

    NASA Astrophysics Data System (ADS)

    Gleria, Iram; Filho, Tarcísio M. Rocha; Figueiredo Neto, Annibal D.; Vianna, José David M.

    2017-08-01

    In this paper, we discuss the conditions for the existence of first integrals of movement and the Liouville theorem on integrable systems. We revise the core results of the Hamilton-Jacobi theory and discuss the extension of the formalism to encompass constrained systems using Dirac brackets, originally developed in the context of the canonical quantization of constrained systems. As an application, we analyze a Hamiltonian that represents the classical limit of a Fermionic system of oscillators.

  11. A relativistically covariant random walk

    NASA Astrophysics Data System (ADS)

    Almaguer, J.; Larralde, H.

    2007-08-01

    In this work we present and analyze an extremely simple relativistically covariant random walk model. In our approach, the probability density and the flow of probability arise naturally as the components of a four-vector and they are related to one another via a tensorial constitutive equation. We show that the system can be described in terms of an underlying invariant space time random walk parameterized by the number of sojourns. Finally, we obtain explicit expressions for the moments of the covariant random walk as well as for the underlying invariant random walk.

  12. Quantum logic gates from Dirac quasiparticles

    NASA Astrophysics Data System (ADS)

    Marino, E. C.; Brozeguini, J. C.

    2015-03-01

    We show that one of the fundamental operations of topological quantum computation, namely the non-Abelian braiding of identical particles, can be physically realized in a general system of Dirac quasiparticles in 1 + 1D. Our method is based on the study of the analytic structure of the different Euclidean correlation functions of Dirac fields, which are conveniently expressed as functions of a complex variable. When the Dirac field is an (Abelian) anyon with statistics parameter s (2s not an integer), we show that the associated Majorana states of such a field present non-Abelian statistics. The explicit form of the unitary, non-commuting (monodromy) matrices generated upon braiding is derived as a function of s and is shown to satisfy the Yang-Baxter algebra. For the special case of s = 1/4, we show that the braiding matrices become the logic gates NOT, CNOT,… required in the algorithms of universal quantum computation. We suggest that maybe polyacetylene, alternately doped with alkali and halogen atoms, is a potential candidate for a physical material realization of the system studied here.

  13. Manipulation of Dirac Cones in Mechanical Graphene

    PubMed Central

    Kariyado, Toshikaze; Hatsugai, Yasuhiro

    2015-01-01

    Recently, quantum Hall state analogs in classical mechanics attract much attention from topological points of view. Topology is not only for mathematicians but also quite useful in a quantum world. Further it even governs the Newton’s law of motion. One of the advantages of classical systems over solid state materials is its clear controllability. Here we investigate mechanical graphene, which is a spring-mass model with the honeycomb structure as a typical mechanical model with nontrivial topological phenomena. The vibration spectrum of mechanical graphene is characterized by Dirac cones serving as sources of topological nontriviality. We find that the spectrum has dramatic dependence on the spring tension at equilibrium as a natural control parameter, i.e., creation and annihilation of the Dirac particles are realized as the tension increases. Just by rotating the system, the manipulated Dirac particles lead to topological transition, i.e., a jump of the “Chern number” occurs associated with flipping of propagating direction of chiral edge modes. This is a bulk-edge correspondence governed by the Newton’s law. A simple observation that in-gap edge modes exist only at the fixed boundary, but not at the free one, is attributed to the symmetry protection of topological phases. PMID:26667580

  14. Manipulation of Dirac Cones in Mechanical Graphene

    NASA Astrophysics Data System (ADS)

    Kariyado, Toshikaze; Hatsugai, Yasuhiro

    2015-12-01

    Recently, quantum Hall state analogs in classical mechanics attract much attention from topological points of view. Topology is not only for mathematicians but also quite useful in a quantum world. Further it even governs the Newton’s law of motion. One of the advantages of classical systems over solid state materials is its clear controllability. Here we investigate mechanical graphene, which is a spring-mass model with the honeycomb structure as a typical mechanical model with nontrivial topological phenomena. The vibration spectrum of mechanical graphene is characterized by Dirac cones serving as sources of topological nontriviality. We find that the spectrum has dramatic dependence on the spring tension at equilibrium as a natural control parameter, i.e., creation and annihilation of the Dirac particles are realized as the tension increases. Just by rotating the system, the manipulated Dirac particles lead to topological transition, i.e., a jump of the “Chern number” occurs associated with flipping of propagating direction of chiral edge modes. This is a bulk-edge correspondence governed by the Newton’s law. A simple observation that in-gap edge modes exist only at the fixed boundary, but not at the free one, is attributed to the symmetry protection of topological phases.

  15. Quantum transport through 3D Dirac materials

    SciTech Connect

    Salehi, M.; Jafari, S.A.

    2015-08-15

    Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer–Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.

  16. Manipulation of Dirac Cones in Mechanical Graphene.

    PubMed

    Kariyado, Toshikaze; Hatsugai, Yasuhiro

    2015-12-15

    Recently, quantum Hall state analogs in classical mechanics attract much attention from topological points of view. Topology is not only for mathematicians but also quite useful in a quantum world. Further it even governs the Newton's law of motion. One of the advantages of classical systems over solid state materials is its clear controllability. Here we investigate mechanical graphene, which is a spring-mass model with the honeycomb structure as a typical mechanical model with nontrivial topological phenomena. The vibration spectrum of mechanical graphene is characterized by Dirac cones serving as sources of topological nontriviality. We find that the spectrum has dramatic dependence on the spring tension at equilibrium as a natural control parameter, i.e., creation and annihilation of the Dirac particles are realized as the tension increases. Just by rotating the system, the manipulated Dirac particles lead to topological transition, i.e., a jump of the "Chern number" occurs associated with flipping of propagating direction of chiral edge modes. This is a bulk-edge correspondence governed by the Newton's law. A simple observation that in-gap edge modes exist only at the fixed boundary, but not at the free one, is attributed to the symmetry protection of topological phases.

  17. Spectrum of the Wilson Dirac operator at finite lattice spacings

    SciTech Connect

    Akemann, G.; Damgaard, P. H.; Splittorff, K.; Verbaarschot, J. J. M.

    2011-04-15

    We consider the effect of discretization errors on the microscopic spectrum of the Wilson Dirac operator using both chiral perturbation theory and chiral random matrix theory. A graded chiral Lagrangian is used to evaluate the microscopic spectral density of the Hermitian Wilson Dirac operator as well as the distribution of the chirality over the real eigenvalues of the Wilson Dirac operator. It is shown that a chiral random matrix theory for the Wilson Dirac operator reproduces the leading zero-momentum terms of Wilson chiral perturbation theory. All results are obtained for a fixed index of the Wilson Dirac operator. The low-energy constants of Wilson chiral perturbation theory are shown to be constrained by the Hermiticity properties of the Wilson Dirac operator.

  18. Type-II Symmetry-Protected Topological Dirac Semimetals.

    PubMed

    Chang, Tay-Rong; Xu, Su-Yang; Sanchez, Daniel S; Tsai, Wei-Feng; Huang, Shin-Ming; Chang, Guoqing; Hsu, Chuang-Han; Bian, Guang; Belopolski, Ilya; Yu, Zhi-Ming; Yang, Shengyuan A; Neupert, Titus; Jeng, Horng-Tay; Lin, Hsin; Hasan, M Zahid

    2017-07-14

    The recent proposal of the type-II Weyl semimetal state has attracted significant interest. In this Letter, we propose the concept of the three-dimensional type-II Dirac fermion and theoretically identify this new symmetry-protected topological state in the large family of transition-metal icosagenides, MA_{3} (M=V, Nb, Ta; A=Al, Ga, In). We show that the VAl_{3} family features a pair of strongly Lorentz-violating type-II Dirac nodes and that each Dirac node can be split into four type-II Weyl nodes with chiral charge ±1 via symmetry breaking. Furthermore, we predict that the Landau level spectrum arising from the type-II Dirac fermions in VAl_{3} is distinct from that of known Dirac or Weyl semimetals. We also demonstrate a topological phase transition from a type-II Dirac semimetal to a quadratic Weyl semimetal or a topological crystalline insulator via crystalline distortions.

  19. Pseudo-Dirac dark matter leaves a trace.

    PubMed

    De Simone, Andrea; Sanz, Veronica; Sato, Hiromitsu Phil

    2010-09-17

    Pseudo-Dirac dark matter is a viable type of dark matter which originates from a new Dirac fermion whose two Weyl states get slightly split in mass by a small Majorana term. The decay of the heavier to the lighter state naturally occurs over a detectable length scale. Thus, whenever pseudo-Dirac dark matter is produced in a collider, it leaves a clear trace: a visible displaced vertex in association with missing energy. Moreover, pseudo-Dirac dark matter behaves Dirac-like for relic abundance and Majorana-like in direct detection experiments. We provide a general effective field theory treatment, specializing to a pseudo-Dirac bino. The dark matter mass and the mass splitting can be extracted from measurements of the decay length and the invariant mass of the products, even in the presence of missing energy.

  20. Type-II Symmetry-Protected Topological Dirac Semimetals

    NASA Astrophysics Data System (ADS)

    Chang, Tay-Rong; Xu, Su-Yang; Sanchez, Daniel S.; Tsai, Wei-Feng; Huang, Shin-Ming; Chang, Guoqing; Hsu, Chuang-Han; Bian, Guang; Belopolski, Ilya; Yu, Zhi-Ming; Yang, Shengyuan A.; Neupert, Titus; Jeng, Horng-Tay; Lin, Hsin; Hasan, M. Zahid

    2017-07-01

    The recent proposal of the type-II Weyl semimetal state has attracted significant interest. In this Letter, we propose the concept of the three-dimensional type-II Dirac fermion and theoretically identify this new symmetry-protected topological state in the large family of transition-metal icosagenides, M A3 (M =V , Nb, Ta; A =Al , Ga, In). We show that the VAl3 family features a pair of strongly Lorentz-violating type-II Dirac nodes and that each Dirac node can be split into four type-II Weyl nodes with chiral charge ±1 via symmetry breaking. Furthermore, we predict that the Landau level spectrum arising from the type-II Dirac fermions in VAl3 is distinct from that of known Dirac or Weyl semimetals. We also demonstrate a topological phase transition from a type-II Dirac semimetal to a quadratic Weyl semimetal or a topological crystalline insulator via crystalline distortions.

  1. Condition Number Regularized Covariance Estimation.

    PubMed

    Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala

    2013-06-01

    Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the "large p small n" setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required.

  2. Condition Number Regularized Covariance Estimation*

    PubMed Central

    Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala

    2012-01-01

    Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the “large p small n” setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required. PMID:23730197

  3. Covariation Neglect among Novice Investors

    ERIC Educational Resources Information Center

    Hedesstrom, Ted Martin; Svedsater, Henrik; Garling, Tommy

    2006-01-01

    In 4 experiments, undergraduates made hypothetical investment choices. In Experiment 1, participants paid more attention to the volatility of individual assets than to the volatility of aggregated portfolios. The results of Experiment 2 show that most participants diversified even when this increased risk because of covariation between the returns…

  4. Covariation Neglect among Novice Investors

    ERIC Educational Resources Information Center

    Hedesstrom, Ted Martin; Svedsater, Henrik; Garling, Tommy

    2006-01-01

    In 4 experiments, undergraduates made hypothetical investment choices. In Experiment 1, participants paid more attention to the volatility of individual assets than to the volatility of aggregated portfolios. The results of Experiment 2 show that most participants diversified even when this increased risk because of covariation between the returns…

  5. Dirac neutrinos and dark matter stability from lepton quarticity

    NASA Astrophysics Data System (ADS)

    Centelles Chuliá, Salvador; Ma, Ernest; Srivastava, Rahul; Valle, José W. F.

    2017-04-01

    We propose to relate dark matter stability to the possible Dirac nature of neutrinos. The idea is illustrated in a simple scheme where small Dirac neutrino masses arise from a type-I seesaw mechanism as a result of a Z4 discrete lepton number symmetry. The latter implies the existence of a viable WIMP dark matter candidate, whose stability arises from the same symmetry which ensures the Diracness of neutrinos.

  6. Revisiting observables in generally covariant theories in the light of gauge fixing methods

    SciTech Connect

    Pons, J. M.; Salisbury, D. C.; Sundermeyer, K. A.

    2009-10-15

    We derive for generally covariant theories the generic dependency of observables on the original fields, corresponding to coordinate-dependent gauge fixings. This gauge choice is equivalent to a choice of intrinsically defined coordinates accomplished with the aid of spacetime scalar fields. With our approach we make full contact with, and give a new perspective to, the 'evolving constants of motion' program. We are able to directly derive generic properties of observables, especially their dynamics and their Poisson algebra in terms of Dirac brackets, extending earlier results in the literature. We also give a new interpretation of the observables as limits of canonical maps.

  7. Covariant Formulations of Superstring Theories.

    NASA Astrophysics Data System (ADS)

    Mikovic, Aleksandar Radomir

    1990-01-01

    Chapter 1 contains a brief introduction to the subject of string theory, and tries to motivate the study of superstrings and covariant formulations. Chapter 2 describes the Green-Schwarz formulation of the superstrings. The Hamiltonian and BRST structure of the theory is analysed in the case of the superparticle. Implications for the superstring case are discussed. Chapter 3 describes the Siegel's formulation of the superstring, which contains only the first class constraints. It is shown that the physical spectrum coincides with that of the Green-Schwarz formulation. In chapter 4 we analyse the BRST structure of the Siegel's formulation. We show that the BRST charge has the wrong cohomology, and propose a modification, called first ilk, which gives the right cohomology. We also propose another superparticle model, called second ilk, which has infinitely many coordinates and constraints. We construct the complete BRST charge for it, and show that it gives the correct cohomology. In chapter 5 we analyse the properties of the covariant vertex operators and the corresponding S-matrix elements by using the Siegel's formulation. We conclude that the knowledge of the ghosts is necessary, even at the tree level, in order to obtain the correct S-matrix. In chapter 6 we attempt to calculate the superstring loops, in a covariant gauge. We calculate the vacuum-to -vacuum amplitude, which is also the cosmological constant. We show that it vanishes to all loop orders, under the assumption that the free covariant gauge-fixed action exists. In chapter 7 we present our conclusions, and briefly discuss the random lattice approach to the string theory, as a possible way of resolving the problem of the covariant quantization and the nonperturbative definition of the superstrings.

  8. Note on Generalized Fermi-Dirac Function and Its Derivatives

    NASA Astrophysics Data System (ADS)

    Gong, Zhigang; Zejda, Ladislav; Däppen, Werner

    2000-04-01

    Generalized Fermi-Dirac function and its derivatives are important in evaluating the thermodynamic functions of partially degenerate electrons in hot stellar plasmas. Because of the nature of the Fermi-Dirac functions, analytic expressions are only available for certain extreme cases, and regular numeric methods fail when degeneracy and temperature are relatively high (but not high enough to use approximative formulae). In this paper, recursion relations of the generalized Fermi-Dirac function are discussed, and an effective numerical method to evaluate the derivatives of the generalized Fermi-Dirac function is given, following the Aparicio (1998) scheme. Finally, accuracy and domain of reliability of some popular analytic approximations are investigated.

  9. Orbital magnetization of interacting Dirac fermions in graphene

    NASA Astrophysics Data System (ADS)

    Yan, Xin-Zhong; Ting, C. S.

    2017-09-01

    We present a formalism to calculate the orbital magnetization of interacting Dirac fermions under a magnetic field. In this approach, the divergence difficulty is overcome with a special limit of the derivative of the thermodynamic potential with respect to the magnetic field. The formalism satisfies the particle-hole symmetry of the Dirac fermions system. We apply the formalism to the interacting Dirac fermions in graphene. The charge and spin orderings and the exchange interactions between all the Landau levels are taken into account by the mean-field theory. The results for the orbital magnetization of interacting Dirac fermions are compared with that of noninteracting cases.

  10. Quasiparticle dynamics in reshaped helical Dirac cone of topological insulators.

    PubMed

    Miao, Lin; Wang, Z F; Ming, Wenmei; Yao, Meng-Yu; Wang, Meixiao; Yang, Fang; Song, Y R; Zhu, Fengfeng; Fedorov, Alexei V; Sun, Z; Gao, C L; Liu, Canhua; Xue, Qi-Kun; Liu, Chao-Xing; Liu, Feng; Qian, Dong; Jia, Jin-Feng

    2013-02-19

    Topological insulators and graphene present two unique classes of materials, which are characterized by spin-polarized (helical) and nonpolarized Dirac cone band structures, respectively. The importance of many-body interactions that renormalize the linear bands near Dirac point in graphene has been well recognized and attracted much recent attention. However, renormalization of the helical Dirac point has not been observed in topological insulators. Here, we report the experimental observation of the renormalized quasiparticle spectrum with a skewed Dirac cone in a single Bi bilayer grown on Bi(2)Te(3) substrate from angle-resolved photoemission spectroscopy. First-principles band calculations indicate that the quasiparticle spectra are likely associated with the hybridization between the extrinsic substrate-induced Dirac states of Bi bilayer and the intrinsic surface Dirac states of Bi(2)Te(3) film at close energy proximity. Without such hybridization, only single-particle Dirac spectra are observed in a single Bi bilayer grown on Bi(2)Se(3), where the extrinsic Dirac states Bi bilayer and the intrinsic Dirac states of Bi(2)Se(3) are well separated in energy. The possible origins of many-body interactions are discussed. Our findings provide a means to manipulate topological surface states.

  11. Quasiparticle dynamics in reshaped helical Dirac cone of topological insulators

    PubMed Central

    Miao, Lin; Wang, Z. F.; Ming, Wenmei; Yao, Meng-Yu; Wang, Meixiao; Yang, Fang; Song, Y. R.; Zhu, Fengfeng; Fedorov, Alexei V.; Sun, Z.; Gao, C. L.; Liu, Canhua; Xue, Qi-Kun; Liu, Chao-Xing; Liu, Feng; Qian, Dong; Jia, Jin-Feng

    2013-01-01

    Topological insulators and graphene present two unique classes of materials, which are characterized by spin-polarized (helical) and nonpolarized Dirac cone band structures, respectively. The importance of many-body interactions that renormalize the linear bands near Dirac point in graphene has been well recognized and attracted much recent attention. However, renormalization of the helical Dirac point has not been observed in topological insulators. Here, we report the experimental observation of the renormalized quasiparticle spectrum with a skewed Dirac cone in a single Bi bilayer grown on Bi2Te3 substrate from angle-resolved photoemission spectroscopy. First-principles band calculations indicate that the quasiparticle spectra are likely associated with the hybridization between the extrinsic substrate-induced Dirac states of Bi bilayer and the intrinsic surface Dirac states of Bi2Te3 film at close energy proximity. Without such hybridization, only single-particle Dirac spectra are observed in a single Bi bilayer grown on Bi2Se3, where the extrinsic Dirac states Bi bilayer and the intrinsic Dirac states of Bi2Se3 are well separated in energy. The possible origins of many-body interactions are discussed. Our findings provide a means to manipulate topological surface states. PMID:23382185

  12. Klein tunneling and Dirac potentials in trapped ions

    SciTech Connect

    Casanova, J.; Garcia-Ripoll, J. J.; Gerritsma, R.; Roos, C. F.; Solano, E.

    2010-08-15

    We propose the quantum simulation of the Dirac equation with potentials, allowing the study of relativistic scattering and Klein tunneling. This quantum relativistic effect permits a positive-energy Dirac particle to propagate through a repulsive potential via the population transfer to negative-energy components. We show how to engineer scalar, pseudoscalar, and other potentials in the 1+1 Dirac equation by manipulating two trapped ions. The Dirac spinor is represented by the internal states of one ion, while its position and momentum are described by those of a collective motional mode. The second ion is used to build the desired potentials with high spatial resolution.

  13. Configurable Dirac-like conical dispersions in complex photonic crystals

    NASA Astrophysics Data System (ADS)

    Xu, Changqing; Lai, Yun

    2017-01-01

    We investigate Dirac-like conical dispersions in photonic crystals with complex unit cells. Comparing with photonic crystals with simple unit cells, the complex-unit-cell design can provide extra degrees of freedom to engineer the frequency of the Dirac-like point in a broad frequency regime. Interestingly, we find that many functionalities of double zero media associated with the Dirac-like point are well preserved in such complex photonic crystals, such as wave tunneling, cloaking, wave front control, etc. Different transmission behaviors, e.g., total reflection and negative refraction, can be achieved by shifting the frequency of the Dirac-like point.

  14. Unpaired Dirac cones in photonic lattices and networks (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chong, Yidong; Leykam, Daniel; Rechtsman, Mikael C.

    2016-09-01

    Unpaired Dirac cones are bandstructures with two bands crossing at a single point in the Brillouin zone. It is known that photonic bandstructures can exhibit pairs of Dirac cones, similar to graphene; unpaired cones, however, have not observed in photonics, and have been observed in condensed-matter systems only among topological insulator surface states. We show that unpaired Dirac cones occur in a 2D photonic lattice that is not the surface of a 3D system. These modes have unusual properties, including conical diffraction and antilocalization immune to short-range disorder, due to the absence of "intervalley" scattering between Dirac cones.

  15. An Algorithm for the Hierarchical Organization of Path Diagrams and Calculation of Components of Expected Covariance.

    ERIC Educational Resources Information Center

    Boker, Steven M.; McArdle, J. J.; Neale, Michael

    2002-01-01

    Presents an algorithm for the production of a graphical diagram from a matrix formula in such a way that its components are logically and hierarchically arranged. The algorithm, which relies on the matrix equations of J. McArdle and R. McDonald (1984), calculates the individual path components of expected covariance between variables and…

  16. Local moment formation in Dirac electrons

    NASA Astrophysics Data System (ADS)

    Mashkoori, M.; Mahyaeh, I.; Jafari, S. A.

    2015-04-01

    Elemental bismuth and its compounds host strong spin-orbit interaction which is at the heart of topologically non-trivial alloys based on bismuth. These class of materials are described in terms of 4x4 matrices at each v point where spin and orbital labels of the underlying electrons are mixed. In this work we investigate the single impurity Anderson model (SIAM) within a mean field approximation to address the nature of local magnetic moment formation in a generic Dirac Hamiltonian. Despite the spin-mixing in the Hamiltonian, within the Hartree approximation it turns out that the impuritys Green function is diagonal in spin label. In the three dimensional Dirac materials defined over a bandwidth D and spin-orbit parameter γ, that hybridizes with impurity through V, a natural dimensionless parameter V2D/2πγ3 emerges. So neither the hybridization strength, V, nor the spin-orbit coupling γ, but a combination thereof governs the phase diagram. By tuning chemical potential and the impurity level, we present phase diagram for various values of Hubbard U. Numerical results suggest that strong spin-orbit coupling enhances the local moment formation both in terms of its strength and the area of the local moment region. In the case that we tune the chemical potential in a similar way as normal metal we find that magnetic region is confined to μ ≥ ε0, in sharp contrast to 2D Dirac fermions. If one fixes the chemical potential and tunes the impurity level, phase diagram has two magnetic regions which corresponds to hybridization of impurity level with lower and upper bands.

  17. The Dirac Experiments - Results and Challenges

    NASA Astrophysics Data System (ADS)

    Clark, R. G.; O'Brien, J. L.; Dzurak, A. S.; Kane, B. E.; Lumpkin, N. E.; Reilley, D. J.; Starrett, R. P.; Rickel, D. G.; Goettee, J. D.; Campbell, L. J.; Fowler, C. M.; Mielke, C.; Harrison, N.; Zerwekh, W. D.; Clark, D.; Bartram, B. D.; King, J. C.; Parkin, D.; Nakagawa, H.; Miura, N.

    2004-11-01

    The 1997 international Dirac II Series held at Los Alamos National Laboratory involved low temperature electrical transport and optical experiments in magnetic fields exceeding 800 T, produced by explosive flux compression using Russian MC-1 generators. An overview of the scientific and technical advances achieved in this Series is given, together with a strategy for future work in this challenging experimental environment. A significant outcome was achieved in transport studies of microfabricated thin-film YBCO structures with the magnetic field in the CuO plane. Using a GHz transmission line technique at an ambient temperature of 1.6 K, an onset of dissipation was observed at 150 T (a new upper bound for superconductivity in any material), with a saturation of resistivity at 240 T. Comparison with the Pauli limit expected at B - 155 T in this material suggests that the critical field in this geometry is limited by spin paramagnetism. In preparation for a Dirac III series, a systematic temperature-dependent transport study of YBCO using in-plane magnetic fields of 150 T generated by single-turn coils, at temperatures over the range 10-100 K, has been undertaken in collaboration with the Japanese Megagauss Laboratory. The objective is to map out the phase diagram for this geometry, which is expected to be significantly different than the Werthamer-Helfand-Hohenberg model due to the presence of paramagnetic limiting. Nanofabricated magnetometers have also been developed in a UNSW-LANL collaboration for use in Dirac III for Fermi surface measurements of YBCO in megagauss fields, which are described.

  18. Solar collector and arrangements thereof

    SciTech Connect

    Nguyen, H.N.

    1985-03-19

    In an all liquid flat plate type solar collector having risers therein, the risers having inlet and outlet portions, the improvement comprises providing a single header for servicing the risers and arranging the risers inlet and outlet portions within the header so as to obtain flow through the risers using the velocity effect or dynamic effect of flow through the header.

  19. Phyllotactic arrangements of optical elements

    NASA Astrophysics Data System (ADS)

    Horacek, M.; Meluzin, P.; Kratky, S.; Matejka, M.; Kolarik, V.

    2017-05-01

    Phyllotaxy studies arrangements of biological entities, e.g. a placement of seeds in the flower head. Vogel (1979) presented a phyllotactic model based on series of seeds ordered along a primary spiral. This arrangement allows each seed to occupy the same area within a circular flower head. Recently, a similar arrangement of diffraction primitives forming a planar relief diffractive structure was presented. The planar relief structure was used for benchmarking and testing purposes of the electron beam writer patterning process. This contribution presents the analysis of local periods and azimuths of optical phyllotactic arrangements. Two kinds of network characteristic triangles are introduced. If the discussed planar structure has appropriate size and density, diffraction of the incoming light creates characteristic a phyllotactic diffraction pattern. Algorithms enabling the analysis of such behavior were developed and they were validated by fabricated samples of relief structures. Combined and higher diffraction orders are also analyzed. Different approaches enabling the creation of phyllotactic diffractive patterns are proposed. E-beam lithography is a flexible technology for various diffraction gratings origination. The e-beam patterning typically allows for the creation of optical diffraction gratings in the first diffraction order. Nevertheless, this technology enables also more complex grating to be prepared, e.g. blazed gratings and zero order gratings. Moreover, the mentioned kinds of gratings can be combined within one planar relief structure. The practical part of the presented work deals with the nano patterning of such structures by using two different types of the e-beam pattern generators.

  20. Special Issue: Flexible Work Arrangements.

    ERIC Educational Resources Information Center

    Olmstead, Barney, Ed.

    1996-01-01

    Section 1 contains five chapters on flexible work arrangements, self-employment, working from home, part-time professionals, job sharing, and temporary employment. Section 2 includes reviews of four books on working flexibly, concluding with a list of 23 additional readings. (SK)

  1. New preshower detector for the DIRAC experiment

    NASA Astrophysics Data System (ADS)

    Pentia, M.; Aogaki, S.; Dumitriu, D.; Fluerasu, D.; Gugiu, M.; Yazkov, V.

    2015-09-01

    The Preshower (PSh) detector [1] is a component of the DIRAC setup [2]. It is designed to identify and reject the huge e-e+ pairs background in the ππ and Kπ pairs measurement produced in a hadronic atom ionization process. In the high energy region used for kaon detection, the small Nitrogen Cherenkov detector has low electron rejection efficiency. To increase the overall efficiency, a new two-layer scintillator Preshower detector has been developed and built. The new Preshower-Cherenkov combination ensures an electron rejection efficiency better than 99% in the momentum range 1-7 GeV/c.

  2. Dirac oscillator interacting with a topological defect

    SciTech Connect

    Carvalho, J.; Furtado, C.; Moraes, F.

    2011-09-15

    In this work we study the interaction problem of a Dirac oscillator with gravitational fields produced by topological defects. The energy levels of the relativistic oscillator in the cosmic string and in the cosmic dislocation space-times are sensible to curvature and torsion associated to these defects and are important evidence of the influence of the topology on this system. In the presence of a localized magnetic field the energy levels acquire a term associated with the Aharonov-Bohm effect. We obtain the eigenfunctions and eigenvalues and see that in the nonrelativistic limit some results known in standard quantum mechanics are reached.

  3. Microscopic Spectrum of the Wilson Dirac Operator

    SciTech Connect

    Damgaard, P. H.; Splittorff, K.; Verbaarschot, J. J. M.

    2010-10-15

    We calculate the leading contribution to the spectral density of the Wilson Dirac operator using chiral perturbation theory where volume and lattice spacing corrections are given by universal scaling functions. We find analytical expressions for the spectral density on the scale of the average level spacing, and introduce a chiral random matrix theory that reproduces these results. Our work opens up a novel approach to the infinite-volume limit of lattice gauge theory at finite lattice spacing and new ways to extract coefficients of Wilson chiral perturbation theory.

  4. Cosmic String Global Superconducting Dirac Born Infeld

    NASA Astrophysics Data System (ADS)

    Ikrima, Ika; Ramadhan, Handhika S.; Mart, Terry

    2016-08-01

    Superconducting cosmic string possibly plays an important role in the formation of the universe structure. The physics of this phenomenon has been explored by studying the field theory in the string interior. Numerical solutions of superconducting strings with all relevant fields are presented in this paper. The field is constructed from a generalization of the usual field theory of superconducting global string, but the kinetic term consists of the Dirac Born Infeld (DBI). Some changes in the characteristic of the superconducting string DBI from the usual superconducting string case have been observed. The observation includes physical mechanism of all related fields.

  5. Incomplete Dirac reduction of constrained Hamiltonian systems

    SciTech Connect

    Chandre, C.

    2015-10-15

    First-class constraints constitute a potential obstacle to the computation of a Poisson bracket in Dirac’s theory of constrained Hamiltonian systems. Using the pseudoinverse instead of the inverse of the matrix defined by the Poisson brackets between the constraints, we show that a Dirac–Poisson bracket can be constructed, even if it corresponds to an incomplete reduction of the original Hamiltonian system. The uniqueness of Dirac brackets is discussed. The relevance of this procedure for infinite dimensional Hamiltonian systems is exemplified.

  6. Neutrino oscillations from Dirac and Majorana masses

    SciTech Connect

    Ring, D.

    1997-05-01

    We present a scenario of neutrino masses and mixing angles. Each generation includes a sterile right-handed neutrino in addition to the usual left-handed one. We assume a hierarchy in their Dirac masses similar to, but much larger than, the hierarchies in the quarks and charged leptons. In addition, we include a Majorana mass term for the sterile neutrinos only. These assumptions prove sufficient to accommodate scales of mass differences and mixing angles consistent with all existing neutrino oscillation data. {copyright} {ital 1997} {ital The American Physical Society}

  7. Dirac operator normality and chiral properties

    NASA Astrophysics Data System (ADS)

    Kerler, W.

    Normality and γ5-hermiticity are what gives rise to chiral properties and rules. The Ginsparg-Wilson (GW) relation is only one of the possible spectral constraints. The sum rule for chiral differences of real modes has important consequences. The alternative transformation of Lüscher gives the same Ward identity as the usual chiral one (if zero modes are properly treated). Imposing normality on a general function of the hermitean Wilson-Dirac operator H leads at same time to the GW relation and to the Neuberger operator.

  8. Szekeres models: a covariant approach

    NASA Astrophysics Data System (ADS)

    Apostolopoulos, Pantelis S.

    2017-05-01

    We exploit the 1  +  1  +  2 formalism to covariantly describe the inhomogeneous and anisotropic Szekeres models. It is shown that an average scale length can be defined covariantly which satisfies a 2d equation of motion driven from the effective gravitational mass (EGM) contained in the dust cloud. The contributions to the EGM are encoded to the energy density of the dust fluid and the free gravitational field E ab . We show that the quasi-symmetric property of the Szekeres models is justified through the existence of 3 independent intrinsic Killing vector fields (IKVFs). In addition the notions of the apparent and absolute apparent horizons are briefly discussed and we give an alternative gauge-invariant form to define them in terms of the kinematical variables of the spacelike congruences. We argue that the proposed program can be used in order to express Sachs’ optical equations in a covariant form and analyze the confrontation of a spatially inhomogeneous irrotational overdense fluid model with the observational data.

  9. Filling-Enforced Magnetic Dirac Semimetals in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Young, Steve M.; Wieder, Benjamin J.

    2017-05-01

    Filling-enforced Dirac semimetals, or those required at specific fillings by the combination of crystalline and time-reversal symmetries, have been proposed in numerous materials. However, Dirac points in these materials are not generally robust against breaking or modifying time-reversal symmetry. We present a new class of two-dimensional Dirac semimetal protected by the combination of crystal symmetries and a special, antiferromagnetic time-reversal symmetry. Systems in this class of magnetic layer groups, while having broken time-reversal symmetry, still respect the operation of time-reversal followed by a half-lattice translation. In contrast to 2D time-reversal-symmetric Dirac semimetal phases, this magnetic Dirac phase is capable of hosting just a single isolated Dirac point at the Fermi level, one that can be stabilized solely by symmorphic crystal symmetries. We find that this Dirac point represents a new quantum critical point, existing at the boundary between Chern insulating, antiferromagnetic topological crystalline insulating, and trivial insulating phases, and we discuss its relationship with condensed matter fermion doubling theorems. We present density functional theoretic calculations which demonstrate the presence of these 2D magnetic Dirac points in FeSe monolayers and discuss the implications for engineering quantum phase transitions in these materials.

  10. Dirac's equation and the nature of quantum field theory

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2012-11-01

    This paper re-examines the key aspects of Dirac's derivation of his relativistic equation for the electron in order advance our understanding of the nature of quantum field theory. Dirac's derivation, the paper argues, follows the key principles behind Heisenberg's discovery of quantum mechanics, which, the paper also argues, transformed the nature of both theoretical and experimental physics vis-à-vis classical physics and relativity. However, the limit theory (a crucial consideration for both Dirac and Heisenberg) in the case of Dirac's theory was quantum mechanics, specifically, Schrödinger's equation, while in the case of quantum mechanics, in Heisenberg's version, the limit theory was classical mechanics. Dirac had to find a new equation, Dirac's equation, along with a new type of quantum variables, while Heisenberg, to find new theory, was able to use the equations of classical physics, applied to different, quantum-mechanical variables. In this respect, Dirac's task was more similar to that of Schrödinger in his work on his version of quantum mechanics. Dirac's equation reflects a more complex character of quantum electrodynamics or quantum field theory in general and of the corresponding (high-energy) experimental quantum physics vis-à-vis that of quantum mechanics and the (low-energy) experimental quantum physics. The final section examines this greater complexity and its implications for fundamental physics.

  11. Upper-Division Student Difficulties with the Dirac Delta Function

    ERIC Educational Resources Information Center

    Wilcox, Bethany R.; Pollock, Steven J.

    2015-01-01

    The Dirac delta function is a standard mathematical tool that appears repeatedly in the undergraduate physics curriculum in multiple topical areas including electrostatics, and quantum mechanics. While Dirac delta functions are often introduced in order to simplify a problem mathematically, students still struggle to manipulate and interpret them.…

  12. Decay of Dirac hair around a dilaton black hole

    SciTech Connect

    Gibbons, Gary W.; Rogatko, Marek

    2008-02-15

    The intermediate and late-time behavior of a massive Dirac field in the background of static spherically symmetric dilaton black hole solutions is investigated. The intermediate asymptotic behavior of a massive Dirac field depends on the mass parameter as well as the wave number of the mode, while the late-time behavior has a power-law decay rate independent of both.

  13. Dirac point movement and topological phase transition in patterned graphene.

    PubMed

    Dvorak, Marc; Wu, Zhigang

    2015-02-28

    The honeycomb lattice of graphene is characterized by linear dispersion and pseudospin chirality of fermions on the Dirac cones. If lattice anisotropy is introduced, the Dirac cones stay intact but move in reciprocal space. Dirac point movement can lead to a topological transition from semimetal to semiconductor when two inequivalent Dirac points merge, an idea that has attracted significant research interest. However, such movement normally requires unrealistically high lattice anisotropy. Here we show that anisotropic defects can break the C3 symmetry of graphene, leading to Dirac point drift in the Brillouin zone. Additionally, the long-range order in periodically patterned graphene can induce intervalley scattering between two inequivalent Dirac points, resulting in a semimetal-to-insulator topological phase transition. The magnitude and direction of Dirac point drift are predicted analytically, which are consistent with our first-principles electronic structure calculations. Thus, periodically patterned graphene can be used to study the fascinating physics associated with Dirac point movement and the corresponding phase transition.

  14. Filling-Enforced Magnetic Dirac Semimetals in Two Dimensions.

    PubMed

    Young, Steve M; Wieder, Benjamin J

    2017-05-05

    Filling-enforced Dirac semimetals, or those required at specific fillings by the combination of crystalline and time-reversal symmetries, have been proposed in numerous materials. However, Dirac points in these materials are not generally robust against breaking or modifying time-reversal symmetry. We present a new class of two-dimensional Dirac semimetal protected by the combination of crystal symmetries and a special, antiferromagnetic time-reversal symmetry. Systems in this class of magnetic layer groups, while having broken time-reversal symmetry, still respect the operation of time-reversal followed by a half-lattice translation. In contrast to 2D time-reversal-symmetric Dirac semimetal phases, this magnetic Dirac phase is capable of hosting just a single isolated Dirac point at the Fermi level, one that can be stabilized solely by symmorphic crystal symmetries. We find that this Dirac point represents a new quantum critical point, existing at the boundary between Chern insulating, antiferromagnetic topological crystalline insulating, and trivial insulating phases, and we discuss its relationship with condensed matter fermion doubling theorems. We present density functional theoretic calculations which demonstrate the presence of these 2D magnetic Dirac points in FeSe monolayers and discuss the implications for engineering quantum phase transitions in these materials.

  15. Dirac oscillator and nonrelativistic Snyder-de Sitter algebra

    SciTech Connect

    Stetsko, M. M. E-mail: mykola@ktf.franko.lviv.ua

    2015-01-15

    Three dimensional Dirac oscillator was considered in space with deformed commutation relations known as Snyder-de Sitter algebra. Snyder-de Sitter commutation relations give rise to appearance of minimal uncertainties in position as well as in momentum. To derive energy spectrum and wavefunctions of the Dirac oscillator, supersymmetric quantum mechanics and shape invariance technique were applied.

  16. Upper-Division Student Difficulties with the Dirac Delta Function

    ERIC Educational Resources Information Center

    Wilcox, Bethany R.; Pollock, Steven J.

    2015-01-01

    The Dirac delta function is a standard mathematical tool that appears repeatedly in the undergraduate physics curriculum in multiple topical areas including electrostatics, and quantum mechanics. While Dirac delta functions are often introduced in order to simplify a problem mathematically, students still struggle to manipulate and interpret them.…

  17. The Dirac oscillator in a rotating frame of reference

    NASA Astrophysics Data System (ADS)

    Strange, P.; Ryder, L. H.

    2016-10-01

    The Dirac equation in a rotating frame of reference is derived from first principles within a linear approximation. This equation is employed to exhibit an equivalence between a particle in a Dirac oscillator potential and a free particle in a rotating frame of reference. A zero-point contribution to the energy of the particle, resulting from its spin, is also noted.

  18. Strong topological metal material with multiple Dirac cones

    SciTech Connect

    Ji, Huiwen; Valla, T.; Pletikosic, I.; Gibson, Q. D.; Sahasrabudhe, Girija; Cava, R. J.

    2016-01-25

    We report a new, cleavable, strong topological metal, Zr2Te2P, which has the same tetradymite-type crystal structure as the topological insulator Bi2Te2Se. Instead of being a semiconductor, however, Zr2Te2P is metallic with a pseudogap between 0.2 and 0.7 eV above the Fermi energy (EF). Inside this pseudogap, two Dirac dispersions are predicted: one is a surface-originated Dirac cone protected by time-reversal symmetry (TRS), while the other is a bulk-originated and slightly gapped Dirac cone with a largely linear dispersion over a 2 eV energy range. A third surface TRS-protected Dirac cone is predicted, and observed using angle-resolved photoemission spectroscopy, making Zr2Te2P the first system, to our knowledge, to realize TRS-protected Dirac cones at M¯ points. The high anisotropy of this Dirac cone is similar to the one in the hypothetical Dirac semimetal BiO2. As a result, we propose that if EF can be tuned into the pseudogap where the Dirac dispersions exist, it may be possible to observe ultrahigh carrier mobility and large magnetoresistance in this material.

  19. Strong topological metal material with multiple Dirac cones

    DOE PAGES

    Ji, Huiwen; Valla, T.; Pletikosic, I.; ...

    2016-01-25

    We report a new, cleavable, strong topological metal, Zr2Te2P, which has the same tetradymite-type crystal structure as the topological insulator Bi2Te2Se. Instead of being a semiconductor, however, Zr2Te2P is metallic with a pseudogap between 0.2 and 0.7 eV above the Fermi energy (EF). Inside this pseudogap, two Dirac dispersions are predicted: one is a surface-originated Dirac cone protected by time-reversal symmetry (TRS), while the other is a bulk-originated and slightly gapped Dirac cone with a largely linear dispersion over a 2 eV energy range. A third surface TRS-protected Dirac cone is predicted, and observed using angle-resolved photoemission spectroscopy, making Zr2Te2Pmore » the first system, to our knowledge, to realize TRS-protected Dirac cones at M¯ points. The high anisotropy of this Dirac cone is similar to the one in the hypothetical Dirac semimetal BiO2. As a result, we propose that if EF can be tuned into the pseudogap where the Dirac dispersions exist, it may be possible to observe ultrahigh carrier mobility and large magnetoresistance in this material.« less

  20. Understanding covariate shift in model performance

    PubMed Central

    McGaughey, Georgia; Walters, W. Patrick; Goldman, Brian

    2016-01-01

    Three (3) different methods (logistic regression, covariate shift and k-NN) were applied to five (5) internal datasets and one (1) external, publically available dataset where covariate shift existed. In all cases, k-NN’s performance was inferior to either logistic regression or covariate shift. Surprisingly, there was no obvious advantage for using covariate shift to reweight the training data in the examined datasets. PMID:27803797

  1. Lorentz-covariant dissipative Lagrangian systems

    NASA Technical Reports Server (NTRS)

    Kaufman, A. N.

    1985-01-01

    The concept of dissipative Hamiltonian system is converted to Lorentz-covariant form, with evolution generated jointly by two scalar functionals, the Lagrangian action and the global entropy. A bracket formulation yields the local covariant laws of energy-momentum conservation and of entropy production. The formalism is illustrated by a derivation of the covariant Landau kinetic equation.

  2. Are Maxwell's equations Lorentz-covariant?

    NASA Astrophysics Data System (ADS)

    Redžić, D. V.

    2017-01-01

    It is stated in many textbooks that Maxwell's equations are manifestly covariant when written down in tensorial form. We recall that tensorial form of Maxwell's equations does not secure their tensorial contents; they become covariant by postulating certain transformation properties of field functions. That fact should be stressed when teaching about the covariance of Maxwell's equations.

  3. Lorentz-covariant dissipative Lagrangian systems

    NASA Technical Reports Server (NTRS)

    Kaufman, A. N.

    1985-01-01

    The concept of dissipative Hamiltonian system is converted to Lorentz-covariant form, with evolution generated jointly by two scalar functionals, the Lagrangian action and the global entropy. A bracket formulation yields the local covariant laws of energy-momentum conservation and of entropy production. The formalism is illustrated by a derivation of the covariant Landau kinetic equation.

  4. Berry phase jumps and giant nonreciprocity in Dirac quantum dots

    NASA Astrophysics Data System (ADS)

    Rodriguez-Nieva, Joaquin F.; Levitov, Leonid S.

    2016-12-01

    We predict that a strong nonreciprocity in the resonance spectra of Dirac quantum dots can be induced by the Berry phase. The nonreciprocity arises in relatively weak magnetic fields and is manifest in anomalously large field-induced splittings of quantum dot resonances which are degenerate at B =0 due to time-reversal symmetry. This exotic behavior, which is governed by field-induced jumps in the Berry phase of confined electronic states, is unique to quantum dots in Dirac materials and is absent in conventional quantum dots. The effect is strong for gapless Dirac particles and can overwhelm the B -induced orbital and Zeeman splittings. A finite Dirac mass suppresses the effect. The nonreciprocity, predicted for generic two-dimensional Dirac materials, is accessible through Faraday and Kerr optical rotation measurements and scanning tunneling spectroscopy.

  5. Discrete Dirac equation on a finite half-integer lattice

    NASA Technical Reports Server (NTRS)

    Smalley, L. L.

    1986-01-01

    The formulation of the Dirac equation on a discrete lattice with half-integer spacing and periodic boundary conditions is investigated analytically. The importance of lattice formulations for problems in field theory and quantum mechanics is explained; the concept of half-integer Fourier representation is introduced; the discrete Dirac equation for the two-dimensional case is derived; dispersion relations for the four-dimensional case are developed; and the spinor formulation for the Dirac fields on the half-integer lattice and the discrete time variable for the four-dimensional time-dependent Dirac equation are obtained. It is argued that the half-integer lattice, because it takes the Dirac Lagrangian into account, is more than a mere relabeling of the integer lattice and may have fundamental physical meaning (e.g., for the statistics of fermions). It is noted that the present formulation does not lead to species doubling, except in the continuum limit.

  6. Z_{2} and Chiral Anomalies in Topological Dirac Semimetals.

    PubMed

    Burkov, Anton A; Kim, Yong Baek

    2016-09-23

    We demonstrate that topological Dirac semimetals, which possess two Dirac nodes, separated in momentum space along a rotation axis and protected by rotational symmetry, exhibit an additional quantum anomaly, distinct from the chiral anomaly. This anomaly, which we call the Z_{2} anomaly, is a consequence of the fact that the Dirac nodes in topological Dirac semimetals carry a Z_{2} topological charge. The Z_{2} anomaly refers to nonconservation of this charge in the presence of external fields due to quantum effects and has observable consequences due to its interplay with the chiral anomaly. We discuss possible implications of this for the interpretation of magnetotransport experiments on topological Dirac semimetals. We also provide a possible explanation for the magnetic field dependent angular narrowing of the negative longitudinal magnetoresistance, observed in a recent experiment on Na_{3}Bi.

  7. Optical analogue of relativistic Dirac solitons in binary waveguide arrays

    SciTech Connect

    Tran, Truong X.; Longhi, Stefano; Biancalana, Fabio

    2014-01-15

    We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An optical analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.

  8. Tilted anisotropic Dirac cones in partially hydrogenated graphene

    NASA Astrophysics Data System (ADS)

    Lu, Hong-Yan; Cuamba, Armindo S.; Lin, Shih-Yang; Hao, Lei; Wang, Rui; Li, Hai; Zhao, YuanYuan; Ting, C. S.

    2016-11-01

    By means of first-principles calculations, we predict a partially hydrogenated graphene system, C6H2 , and find the one in A B -trans configuration is a Dirac material with a tilted anisotropic Dirac cone electronic structure. Different from graphene, in which the Dirac points are located at K and K' and the Fermi surfaces are circular with doping, the A B -trans C6H2 exhibits Dirac points located on the lines from Γ to M with quasielliptical Fermi surfaces when doped. Around the Dirac point, the Fermi velocity varies along different directions. Therefore, the propagation of charge carriers in this system is highly anisotropic, creating a new tunability for novel transport properties.

  9. The Clifford algebra of physical space and Dirac theory

    NASA Astrophysics Data System (ADS)

    Vaz, Jayme, Jr.

    2016-09-01

    The claim found in many textbooks that the Dirac equation cannot be written solely in terms of Pauli matrices is shown to not be completely true. It is only true as long as the term β \\psi in the usual Dirac factorization of the Klein-Gordon equation is assumed to be the product of a square matrix β and a column matrix ψ. In this paper we show that there is another possibility besides this matrix product, in fact a possibility involving a matrix operation, and show that it leads to another possible expression for the Dirac equation. We show that, behind this other possible factorization is the formalism of the Clifford algebra of physical space. We exploit this fact, and discuss several different aspects of Dirac theory using this formalism. In particular, we show that there are four different possible sets of definitions for the parity, time reversal, and charge conjugation operations for the Dirac equation.

  10. Plasmon modes of a massive Dirac plasma, and their superlattices

    NASA Astrophysics Data System (ADS)

    Sachdeva, Rashi; Thakur, Anmol; Vignale, Giovanni; Agarwal, Amit

    2015-05-01

    We explore the collective density oscillations of a collection of charged massive Dirac particles, in one, two, and three dimensions, and their one-dimensional (1D) superlattice. We calculate the long-wavelength limit of the dynamical polarization function analytically, and use the random phase approximation to obtain the plasmon dispersion. The density dependence of the long-wavelength plasmon frequency in massive Dirac systems is found to be different compared to systems with parabolic and gapless Dirac dispersion. We also calculate the long-wavelength plasmon dispersion of a 1D metamaterial made from 1D and 2D massive Dirac plasma. Our analytical results will be useful for exploring the use of massive Dirac materials as electrostatically tunable plasmonic metamaterials and can be experimentally verified by infrared spectroscopy, as in the case of graphene [L. Ju et al., Nat. Nanotechnol. 6, 630 (2011), 10.1038/nnano.2011.146].

  11. Discrete Dirac equation on a finite half-integer lattice

    NASA Technical Reports Server (NTRS)

    Smalley, L. L.

    1986-01-01

    The formulation of the Dirac equation on a discrete lattice with half-integer spacing and periodic boundary conditions is investigated analytically. The importance of lattice formulations for problems in field theory and quantum mechanics is explained; the concept of half-integer Fourier representation is introduced; the discrete Dirac equation for the two-dimensional case is derived; dispersion relations for the four-dimensional case are developed; and the spinor formulation for the Dirac fields on the half-integer lattice and the discrete time variable for the four-dimensional time-dependent Dirac equation are obtained. It is argued that the half-integer lattice, because it takes the Dirac Lagrangian into account, is more than a mere relabeling of the integer lattice and may have fundamental physical meaning (e.g., for the statistics of fermions). It is noted that the present formulation does not lead to species doubling, except in the continuum limit.

  12. Isometry generators in momentum representation of the Dirac theory on the de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Cotăescu, Ion I.; Băltăţeanu, Doru-Marcel

    2015-11-01

    In this paper, it is shown that the covariant representation (CR) transforming the Dirac field under de Sitter isometries is equivalent to a direct sum of two unitary irreducible representations (UIRs) of the Sp(2, 2) group transforming alike the particle and antiparticle field operators in momentum representation. Their basis generators and Casimir operators are written down for the first time finding that these representations are equivalent to an UIR from the principal series whose canonical labels are determined by the fermion mass and spin. The properties of the conserved observables (i.e. one-particle operators) associated to the de Sitter isometries via Noether theorem and of the corresponding Pauli-Lubanski type operator are also pointed out.

  13. Isospin of topological defects in Dirac systems

    NASA Astrophysics Data System (ADS)

    Herbut, Igor F.

    2012-02-01

    We study the Dirac quasiparticles in d-dimensional lattice systems of electrons in the presence of domain walls (d=1), vortices (d=2), or hedgehogs (d=3) of superconducting and/or insulating, order parameters, which appear as mass terms in the Dirac equation. Such topological defects have been known to carry nontrivial quantum numbers, such as charge and spin. Here we discuss their additional internal degree of freedom: irrespective of the dimensionality of space and the nature of orders that support the defect, an extra mass order parameter is found to emerge in their core. Six linearly independent local orders, which close two mutually commuting three-dimensional Clifford algebras, are proven to be in general possible. We show how the particle-hole symmetry restricts the defects to always carry the quantum numbers of a single effective isospin 1/2, quite independently of the values of their electric charge or true spin. Examples of this new degree of freedom in graphene and on surfaces of topological insulators are discussed.

  14. DIRAC File Replica and Metadata Catalog

    NASA Astrophysics Data System (ADS)

    Tsaregorodtsev, A.; Poss, S.

    2012-12-01

    File replica and metadata catalogs are essential parts of any distributed data management system, which are largely determining its functionality and performance. A new File Catalog (DFC) was developed in the framework of the DIRAC Project that combines both replica and metadata catalog functionality. The DFC design is based on the practical experience with the data management system of the LHCb Collaboration. It is optimized for the most common patterns of the catalog usage in order to achieve maximum performance from the user perspective. The DFC supports bulk operations for replica queries and allows quick analysis of the storage usage globally and for each Storage Element separately. It supports flexible ACL rules with plug-ins for various policies that can be adopted by a particular community. The DFC catalog allows to store various types of metadata associated with files and directories and to perform efficient queries for the data based on complex metadata combinations. Definition of file ancestor-descendent relation chains is also possible. The DFC catalog is implemented in the general DIRAC distributed computing framework following the standard grid security architecture. In this paper we describe the design of the DFC and its implementation details. The performance measurements are compared with other grid file catalog implementations. The experience of the DFC Catalog usage in the CLIC detector project are discussed.

  15. Terahertz Electrodynamics of Dirac Fermions in Graphene

    NASA Astrophysics Data System (ADS)

    Frenzel, Alex James

    Charge carriers in graphene mimic two-dimensional massless Dirac fermions with linear energy dispersion, resulting in unique optical and electronic properties. They exhibit high mobility and strong interaction with electromagnetic radiation over a broad frequency range. Interband transitions in graphene give rise to pronounced optical absorption in the mid-infrared to visible spectral range, where the optical conductivity is close to a universal value sigma_0 = pi e. 2/2h. Free-carrier intraband transitions, on the otherhand, cause low-frequency absorption, which varies significantly with charge density and results in strong light extinction at high carrier density. These properties together suggest a rich variety of possible optoelectronic applications for graphene. In this thesis, we investigate the optoelectronic properties of graphene by measuring transient photoconductivity with optical pump-terahertz probe spectroscopy. We demonstrate that graphene exhibits semiconducting positive photoconductivity near zero carrier density, which crosses over to metallic negative photoconductivity at high carrier density. These observations are accounted for by the interplay between photoinduced changes of both the Drude weight and carrier scattering rate. Our findings provide a complete picture to explain the opposite photoconductivity behavior reported in (undoped) graphene grown epitaxially and (doped) graphene grown by chemical vapor deposition. Our measurements also reveal the non-monotonic temperature dependence of the Drude weight in graphene, a unique property of two-dimensional massless Dirac fermions.

  16. Maxwell-Dirac stress-energy tensor in terms of Fierz bilinear currents

    NASA Astrophysics Data System (ADS)

    Inglis, Shaun; Jarvis, Peter

    2016-03-01

    We analyse the stress-energy tensor for the self-coupled Maxwell-Dirac system in the bilinear current formalism, using two independent approaches. The first method used is that attributed to Belinfante: starting from the spinor form of the action, the well-known canonical stress-energy tensor is augmented, by extending the Noether symmetry current to include contributions from the Lorentz group, to a manifestly symmetric form. This form admits a transcription to bilinear current form. The second method used is the variational derivation based on the covariant coupling to general relativity. The starting point here at the outset is the transcription of the action using, as independent field variables, both the bilinear currents, together with a gauge invariant vector field (a proxy for the electromagnetic vector potential). A central feature of the two constructions is that they both involve the mapping of the Dirac contribution to the stress-energy from the spinor fields to the equivalent set of bilinear tensor currents, through the use of appropriate Fierz identities. Although this mapping is done at quite different stages, nonetheless we find that the two forms of the bilinear stress-energy tensor agree. Finally, as an application, we consider the reduction of the obtained stress-energy tensor in bilinear form, under the assumption of spherical symmetry.

  17. Reduced vibration motor winding arrangement

    DOEpatents

    Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.

    1997-11-11

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency. 4 figs.

  18. Reduced vibration motor winding arrangement

    DOEpatents

    Slavik, Charles J.; Rhudy, Ralph G.; Bushman, Ralph E.

    1997-01-01

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of .sqroot.3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency.

  19. Covariance Evaluation Methodology for Neutron Cross Sections

    SciTech Connect

    Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.

    2008-09-01

    We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.

  20. Phase-covariant quantum benchmarks

    SciTech Connect

    Calsamiglia, J.; Aspachs, M.; Munoz-Tapia, R.; Bagan, E.

    2009-05-15

    We give a quantum benchmark for teleportation and quantum storage experiments suited for pure and mixed test states. The benchmark is based on the average fidelity over a family of phase-covariant states and certifies that an experiment cannot be emulated by a classical setup, i.e., by a measure-and-prepare scheme. We give an analytical solution for qubits, which shows important differences with standard state estimation approach, and compute the value of the benchmark for coherent and squeezed states, both pure and mixed.

  1. The relationship between work arrangements and work-family conflict.

    PubMed

    Higgins, Christopher; Duxbury, Linda; Julien, Mark

    2014-01-01

    A review of the literature determined that our understanding of the efficacy of flexible work arrangements (FWA) in reducing work-family conflict remains inconclusive. To shed light on this issue by examining the relationship between work-to-family conflict, in which work interferes with family (WFC), family-to-work conflict, in which family interferes with work (FWC), and four work arrangements: the traditional 9-5 schedule, compressed work weeks (CWWs) flextime, and telework. Hypotheses were tested on a sample of 16,145 employees with dependent care responsibilities. MANCOVA analysis was used with work arrangement as the independent variable and work interferes with family (WFC) and family interferes with work (FWC) as dependent variables. Work demands, non-work demands, income, job type and gender were entered into the analysis as covariates. The more flexible work arrangements such as flextime and telework were associated with higher levels of WFC than were fixed 9-to 5 and CWW schedules. Employees who teleworked reported higher FWC than their counterparts working a traditional 9-to-5 schedule particularly when work demands were high. The removal of both temporal and physical boundaries separating work and family domains results in higher levels of work-family interference in both directions. The results from this study suggest that policy makers and practitioners who are interested in improving employee well-being can reduce work-family conflict, and by extension improve employee mental health, by focusing on the effective use of traditional and CWW schedules rather than by implementing flextime and telework arrangements.

  2. Relativistic covariance of Ohm's law

    NASA Astrophysics Data System (ADS)

    Starke, R.; Schober, G. A. H.

    2016-04-01

    The derivation of Lorentz-covariant generalizations of Ohm's law has been a long-term issue in theoretical physics with deep implications for the study of relativistic effects in optical and atomic physics. In this article, we propose an alternative route to this problem, which is motivated by the tremendous progress in first-principles materials physics in general and ab initio electronic structure theory in particular. We start from the most general, Lorentz-covariant first-order response law, which is written in terms of the fundamental response tensor χμ ν relating induced four-currents to external four-potentials. By showing the equivalence of this description to Ohm's law, we prove the validity of Ohm's law in every inertial frame. We further use the universal relation between χμ ν and the microscopic conductivity tensor σkℓ to derive a fully relativistic transformation law for the latter, which includes all effects of anisotropy and relativistic retardation. In the special case of a constant, scalar conductivity, this transformation law can be used to rederive a standard textbook generalization of Ohm's law.

  3. Dirac node arcs in PtSn4

    SciTech Connect

    Wu, Yun; Wang, Lin -Lin; Mun, Eundeok; Johnson, D. D.; Mou, Daixiang; Huang, Lunan; Lee, Yongbin; Bud’ko, S. L.; Canfield, P. C.; Kaminski, Adam

    2016-04-04

    In topological quantum materials1,2,3 the conduction and valence bands are connected at points or along lines in the momentum space. A number of studies have demonstrated that several materials are indeed Dirac/Weyl semimetals4,5,6,7,8. However, there is still no experimental confirmation of materials with line nodes, in which the Dirac nodes form closed loops in the momentum space2,3. Here we report the discovery of a novel topological structure—Dirac node arcs—in the ultrahigh magnetoresistive material PtSn4 using laser-based angle-resolved photoemission spectroscopy data and density functional theory calculations. Unlike the closed loops of line nodes, the Dirac node arc structure arises owing to the surface states and resembles the Dirac dispersion in graphene that is extended along a short line in the momentum space. Here, we propose that this reported Dirac node arc structure is a novel topological state that provides an exciting platform for studying the exotic properties of Dirac fermions.

  4. Dirac cones in two-dimensional acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Dai, Hongqing; Xia, Baizhan; Yu, Dejie

    2017-08-01

    Dirac cones show many extraordinary properties, including Klein tunneling, pseudo-diffusive behavior, phase reconstruction, and topological edge states, and are thus attracting increasing research attention. However, no studies of Dirac cones on a subwavelength scale have been reported to date. In this paper, subwavelength-scale Dirac cones are realized using acoustic metamaterials that consist of hexagonal arrays of hexagonal columns with Helmholtz resonators. We have calculated the band structures of the three types of unit cells that are yielded by space group symmetry operations of the triangular Helmholtz resonators. The results show that these acoustic metamaterials with Helmholtz resonators can be used successfully to reduce the Dirac cone frequencies. Subwavelength Dirac cones of acoustic metamaterials with p6 mm or p6 symmetries are robust to rotation, while subwavelength Dirac cones of acoustic metamaterials with p31m symmetry are sensitive to rotation. In addition, the Dirac cone frequency decreases gradually with increasing filling ratio, which indicates a possible way to control wave propagation on the subwavelength scale. Numerical simulation results show that acoustic metamaterials can behave like zero-refractive-index media and can be applied to acoustic tunneling. The acoustic metamaterials designed in this work offer a route towards the design of functional acoustic devices operating on subwavelength scales.

  5. Dirac node arcs in PtSn4

    DOE PAGES

    Wu, Yun; Wang, Lin -Lin; Mun, Eundeok; ...

    2016-04-04

    In topological quantum materials1,2,3 the conduction and valence bands are connected at points or along lines in the momentum space. A number of studies have demonstrated that several materials are indeed Dirac/Weyl semimetals4,5,6,7,8. However, there is still no experimental confirmation of materials with line nodes, in which the Dirac nodes form closed loops in the momentum space2,3. Here we report the discovery of a novel topological structure—Dirac node arcs—in the ultrahigh magnetoresistive material PtSn4 using laser-based angle-resolved photoemission spectroscopy data and density functional theory calculations. Unlike the closed loops of line nodes, the Dirac node arc structure arises owing tomore » the surface states and resembles the Dirac dispersion in graphene that is extended along a short line in the momentum space. Here, we propose that this reported Dirac node arc structure is a novel topological state that provides an exciting platform for studying the exotic properties of Dirac fermions.« less

  6. Supersymmetric model with Dirac neutrino masses

    SciTech Connect

    Marshall, Gardner; McCaskey, Mathew; Sher, Marc

    2010-03-01

    New models have recently been proposed in which a second Higgs doublet couples only to the lepton doublets and right-handed neutrinos, yielding Dirac neutrino masses. The vacuum value of this second 'nu-Higgs' doublet is made very small by means of a very softly-broken Z{sub 2} or U(1) symmetry. The latter is technically natural and avoids fine-tuning and very light scalars. We consider a supersymmetric version of this model, in which two additional doublets are added to the minimal supersymmetric standard model (MSSM). If kinematically allowed, the decay of the heavy MSSM scalar into charged nu-Higgs scalars will yield dilepton events which can be separated from the W-pair background. In addition, the nu-Higgsinos can lead to very dramatic tetralepton, pentalepton, and hexalepton events which have negligible background and can be detected at the LHC and the Tevatron.

  7. Absorbing layers for the Dirac equation

    SciTech Connect

    Pinaud, Olivier

    2015-05-15

    This work is devoted to the construction of perfectly matched layers (PML) for the Dirac equation, that not only arises in relativistic quantum mechanics but also in the dynamics of electrons in graphene or in topological insulators. While the resulting equations are stable at the continuous level, some care is necessary in order to obtain a stable scheme at the discrete level. This is related to the so-called fermion doubling problem. For this matter, we consider the numerical scheme introduced by Hammer et al. [19], and combine it with the discretized PML equations. We state some arguments for the stability of the resulting scheme, and perform simulations in two dimensions. The perfectly matched layers are shown to exhibit, in various configurations, superior absorption than the absorbing potential method and the so-called transport-like boundary conditions.

  8. A two-dimensional Dirac fermion microscope

    NASA Astrophysics Data System (ADS)

    Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-06-01

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.

  9. Pseudo Dirac neutrinos in the seesaw model

    NASA Astrophysics Data System (ADS)

    Dutta, Gautam; Joshipura, Anjan S.

    1995-04-01

    A specific class of textures for the Dirac and Majorana mass matrices in the seesaw model leading to a pair of almost degenerate neutrinos is discussed. These textures can be obtained by imposing a horizontal U(1) symmetry. A specific model is discussed in which (1) all three neutrino masses are similar in magnitude and could lie around 1 eV providing the hot component of the dark matter in the Universe, (2) two of these are highly degenerate and their (mass)2 difference could solve the solar neutrino problem through the large angle MSW solution, and (3) the electron neutrino mass may be observable through a Kurie plot as well as through a search of the neutrinoless double β decay.

  10. Dirac neutrino in warped extra dimensions

    NASA Astrophysics Data System (ADS)

    Chang, We-Fu; Ng, John N.; Wu, Jackson M. S.

    2009-12-01

    We implement Dirac neutrinos in the minimal custodial Randall-Sundrum setting via the Krauss-Wilczek mechanism. We demonstrate by giving explicit lepton mass matrices that with neutrinos in the normal hierarchy, lepton mass and mixing patterns can be naturally reproduced at the scale set by the constraints from electroweak precision measurements, and at the same time without violating bounds set by lepton flavor violations. Our scenario generically predicts a nonzero neutrino mixing angle θ13, as well as the existence of sub-TeV right-handed Kaluza-Klein neutrinos, which partner the right-handed standard model charged leptons. These relatively light KK neutrinos may be searched for at the LHC.

  11. A two-dimensional Dirac fermion microscope

    PubMed Central

    Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-01-01

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots. PMID:28598421

  12. A two-dimensional Dirac fermion microscope.

    PubMed

    Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-06-09

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.

  13. Bosonic Analogue of Dirac Composite Fermi Liquid.

    PubMed

    Mross, David F; Alicea, Jason; Motrunich, Olexei I

    2016-09-23

    We introduce a particle-hole-symmetric metallic state of bosons in a magnetic field at odd-integer filling. This state hosts composite fermions whose energy dispersion features a quadratic band touching and corresponding 2π Berry flux protected by particle-hole and discrete rotation symmetries. We also construct an alternative particle-hole symmetric state-distinct in the presence of inversion symmetry-without Berry flux. As in the Dirac composite Fermi liquid introduced by Son [Phys. Rev. X 5, 031027 (2015)], breaking particle-hole symmetry recovers the familiar Chern-Simons theory. We discuss realizations of this phase both in 2D and on bosonic topological insulator surfaces, as well as signatures in experiments and simulations.

  14. Quantized charge pump of massive Dirac electrons

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Liu, Jun-Feng

    2017-05-01

    We study a new scheme to realize a quantized two-parameter charge pump based on massive Dirac electrons. It is shown that the two time-dependent and out-of-phase staggered potentials introduced in graphene can pump out an integer number of electrons in a pumping cycle as long as the Fermi energy resides in the effective energy gap opened by pumping potentials. The dependence of the pumped charge per mode on the pumping phase or the dynamic phase exhibits a binary alternation from +e to -e . This quantization has a topological origin and can be accounted for by adiabatic evolution of the topologically protected interfacial state forming between the two pumping sources.

  15. On regularizations of the Dirac delta distribution

    NASA Astrophysics Data System (ADS)

    Hosseini, Bamdad; Nigam, Nilima; Stockie, John M.

    2016-01-01

    In this article we consider regularizations of the Dirac delta distribution with applications to prototypical elliptic and hyperbolic partial differential equations (PDEs). We study the convergence of a sequence of distributions SH to a singular term S as a parameter H (associated with the support size of SH) shrinks to zero. We characterize this convergence in both the weak-* topology of distributions and a weighted Sobolev norm. These notions motivate a framework for constructing regularizations of the delta distribution that includes a large class of existing methods in the literature. This framework allows different regularizations to be compared. The convergence of solutions of PDEs with these regularized source terms is then studied in various topologies such as pointwise convergence on a deleted neighborhood and weighted Sobolev norms. We also examine the lack of symmetry in tensor product regularizations and effects of dissipative error in hyperbolic problems.

  16. Warm Dirac-Born-Infeld inflation

    SciTech Connect

    Cai Yifu; Dent, James B.; Easson, Damien A.

    2011-05-15

    We propose a warm inflationary model in the context of relativistic D-brane inflation in a warped throat, which has Dirac-Born-Infeld (DBI) kinetic term and is coupled to radiation through a dissipation term. The perturbation freezes at the sound horizon and the power spectrum is determined by a combination of the dissipative parameter and the sound speed parameter. The thermal dissipation ameliorates the eta problem and softens theoretical constraints from the extra-dimensional volume and from observational bounds on the tensor-to-scalar ratio. The warm DBI model can lead to appreciable non-Gaussianity of the equilateral type. As a phenomenological model, ignoring compactification constraints, we show that large-field warm inflation models do not necessarily yield a large tensor-to-scalar ratio.

  17. To Covary or Not to Covary, That is the Question

    NASA Astrophysics Data System (ADS)

    Oehlert, A. M.; Swart, P. K.

    2016-12-01

    The meaning of covariation between the δ13C values of carbonate carbon and that of organic material is classically interpreted as reflecting original variations in the δ13C values of the dissolved inorganic carbon in the depositional environment. However, recently it has been shown by the examination of a core from Great Bahama Bank (Clino) that during exposure not only do the rocks become altered acquiring a negative δ13C value, but at the same time terrestrial vegetation adds organic carbon to the system masking the original marine values. These processes yield a strong positive covariation between δ13Corg and δ13Ccar values even though the signals are clearly not original and unrelated to the marine δ13C values. Examining the correlation between the organic and inorganic system in a stratigraphic sense at Clino and in a second more proximally located core (Unda) using a windowed correlation coefficient technique reveals that the correlation is even more complex. Changes in slope and the magnitude of the correlation are associated with exposure surfaces, facies changes, dolomitized bodies, and non-depositional surfaces. Finally other isotopic systems such as the δ13C value of specific organic compounds as well as δ15N values of bulk and individual compounds can provide additional information. In the case of δ15N values, decreases reflect a changes in the influence of terrestrial organic material and an increase contribution of organic material from the platform surface where the main source of nitrogen is derived from the activities of cyanobacteria.

  18. Ultra high vacuum seal arrangement

    DOEpatents

    Flaherty, Robert

    1981-01-01

    Arrangement for demountably sealing two concentric metallic tubes in an ultra high vacuum system which facilitates remote actuation. A tubular seal includes integral spaced lips which circumferentially engage the metallic tubes. The lips plastically deform the metallic tubes by mechanical forces resulting from a martensite to austenite transformation of the tubular seal upon application of a predetermined temperature. The sealing force is released upon application of another temperature which causes a transformation from the stronger austenite to the weaker martensite. Use of a dual acting sealing ring and driving ring circumferentially contacting the sealing ring is particularly applicable to sealing larger diameter concentric metallic members.

  19. Visitation arrangements for impaired parents.

    PubMed

    Montgomery, Stephen A; Street, David F

    2011-07-01

    Forensic mental health professionals are frequently asked to evaluate the parenting skills of divorcing parents because the court seeks help in determining the custody, visitation, and parenting time arrangements for the children. When one of the parents is impaired, the court wants to know the way to help the children have a good relationship with that parent and keep the children safe. There is little empirical research to answer such questions. In this article, the authors describe their methodology for providing useful clinical information to the court to help guide their decisions regarding visitation with impaired parents.

  20. Spin Dynamics in the Kapitza-Dirac Effect

    NASA Astrophysics Data System (ADS)

    Ahrens, Sven; Bauke, Heiko; Keitel, Christoph H.; Müller, Carsten

    2012-07-01

    Electron spin dynamics in Kapitza-Dirac scattering from a standing laser wave of high frequency and high intensity is studied. We develop a fully relativistic quantum theory of the electron motion based on the time-dependent Dirac equation. Distinct spin dynamics, with Rabi oscillations and complete spin-flip transitions, is demonstrated for Kapitza-Dirac scattering involving three photons in a parameter regime accessible to future high-power x-ray laser sources. The Rabi frequency and, thus, the diffraction pattern is shown to depend crucially on the spin degree of freedom.

  1. Characteristic Dirac Signature in Elastic Proton Scattering at Intermediate Energies

    NASA Astrophysics Data System (ADS)

    Hynes, M. V.; Picklesimer, A.; Tandy, P. C.; Thaler, R. M.

    1984-03-01

    Nonrelativistic nucleon-nucleus first-order multiple-scattering calculations are extended to include virtual (Dirac) negative energy states of just the projectile. This effect may be thought of as virtual NN¯ pair production and annihilation in the field of the nucleus. This extension leads to a parameter-free Dirac description of the projectile in elastic proton scattering which produces a characteristic effect in spin observables over a wide range of energies which is in agreement with experiment. This Dirac signature is extremely stable with respect to uncertainties in the microscopic input.

  2. Strain-Engineering the Gauge Potential of Dirac fermions in PECVD-grown Graphene

    NASA Astrophysics Data System (ADS)

    Hsu, Chen-Chih; Teague, Marcus; Wang, Jaiqing; Yeh, Nai-Chang

    Non-trivial strain can induce pseudo-magnetic fields in graphene so that the electronic properties of Dirac fermions can be tuned by controlling the strain on graphene. Here we employ nearly strain-free single-domain PECVD-graphene1 to induce controlled strain by placing graphene on nanostructured substrates. Strain-induced gauge potentials and pseudo-magnetic fields can be manifested by the local tunneling conductance peaks at quantized energies.2,3 Additionally, pseudo-magnetic field-induced local spontaneous time-reversal symmetry breaking can be revealed by spatially alternating presence and absence of the zero mode in the tunneling conductance spectra.2,3 We also employ molecular dynamics simulations to determine the spatial distribution of the pseudo-magnetic field for a given nanostructure. We find that a tetrahedron-like nanostructure can be an effective ``valley splitter'' to separate the trajectories of Dirac fermions of opposite pseudo-spins. Proper design and arrangement of several valley filters can function as a ``valley propagator'' to guide valley-polarized currents. We plan to verify the valley Hall effect associated with a valley splitter and to assess the feasibility of realistic valleytronic applications.

  3. Particle-vibration coupling within covariant density functional theory

    SciTech Connect

    Litvinova, E.; Ring, P.; Tselyaev, V.

    2007-06-15

    Covariant density functional theory, which has so far been applied only within the framework of static and time-dependent mean-field theory, is extended to include particle-vibration coupling (PVC) in a consistent way. Starting from a conventional energy functional, we calculate the low-lying collective vibrations in the relativistic random phase approximation (RRPA) and construct an energy-dependent self-energy for the Dyson equation. The resulting Bethe-Salpeter equation in the particle-hole (p-h) channel is solved in the time blocking approximation (TBA). No additional parameters are used, and double counting is avoided by a proper subtraction method. The same energy functional, i.e., the same set of coupling constants, generates the Dirac-Hartree single-particle spectrum, the static part of the residual p-h interaction, and the particle-phonon coupling vertices. Therefore, a fully consistent description of nuclear excited states is developed. This method is applied for an investigation of damping phenomena in the spherical nuclei with closed shells {sup 208}Pb and {sup 132}Sn. Since the phonon coupling terms enrich the RRPA spectrum with a multitude of p-hxphonon components, a noticeable fragmentation of the giant resonances is found, which is in full agreement with experimental data and with results of the semiphenomenological nonrelativistic approach.

  4. COVARIANCE ASSISTED SCREENING AND ESTIMATION

    PubMed Central

    Ke, By Tracy; Jin, Jiashun; Fan, Jianqing

    2014-01-01

    Consider a linear model Y = X β + z, where X = Xn,p and z ~ N(0, In). The vector β is unknown and it is of interest to separate its nonzero coordinates from the zero ones (i.e., variable selection). Motivated by examples in long-memory time series (Fan and Yao, 2003) and the change-point problem (Bhattacharya, 1994), we are primarily interested in the case where the Gram matrix G = X′X is non-sparse but sparsifiable by a finite order linear filter. We focus on the regime where signals are both rare and weak so that successful variable selection is very challenging but is still possible. We approach this problem by a new procedure called the Covariance Assisted Screening and Estimation (CASE). CASE first uses a linear filtering to reduce the original setting to a new regression model where the corresponding Gram (covariance) matrix is sparse. The new covariance matrix induces a sparse graph, which guides us to conduct multivariate screening without visiting all the submodels. By interacting with the signal sparsity, the graph enables us to decompose the original problem into many separated small-size subproblems (if only we know where they are!). Linear filtering also induces a so-called problem of information leakage, which can be overcome by the newly introduced patching technique. Together, these give rise to CASE, which is a two-stage Screen and Clean (Fan and Song, 2010; Wasserman and Roeder, 2009) procedure, where we first identify candidates of these submodels by patching and screening, and then re-examine each candidate to remove false positives. For any procedure β̂ for variable selection, we measure the performance by the minimax Hamming distance between the sign vectors of β̂ and β. We show that in a broad class of situations where the Gram matrix is non-sparse but sparsifiable, CASE achieves the optimal rate of convergence. The results are successfully applied to long-memory time series and the change-point model. PMID:25541567

  5. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS.

    PubMed

    Schoop, Leslie M; Ali, Mazhar N; Straßer, Carola; Topp, Andreas; Varykhalov, Andrei; Marchenko, Dmitry; Duppel, Viola; Parkin, Stuart S P; Lotsch, Bettina V; Ast, Christian R

    2016-05-31

    Materials harbouring exotic quasiparticles, such as massless Dirac and Weyl fermions, have garnered much attention from physics and material science communities due to their exceptional physical properties such as ultra-high mobility and extremely large magnetoresistances. Here, we show that the highly stable, non-toxic and earth-abundant material, ZrSiS, has an electronic band structure that hosts several Dirac cones that form a Fermi surface with a diamond-shaped line of Dirac nodes. We also show that the square Si lattice in ZrSiS is an excellent template for realizing new types of two-dimensional Dirac cones recently predicted by Young and Kane. Finally, we find that the energy range of the linearly dispersed bands is as high as 2 eV above and below the Fermi level; much larger than of other known Dirac materials. This makes ZrSiS a very promising candidate to study Dirac electrons, as well as the properties of lines of Dirac nodes.

  6. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS

    PubMed Central

    Schoop, Leslie M.; Ali, Mazhar N.; Straßer, Carola; Topp, Andreas; Varykhalov, Andrei; Marchenko, Dmitry; Duppel, Viola; Parkin, Stuart S. P.; Lotsch, Bettina V.; Ast, Christian R.

    2016-01-01

    Materials harbouring exotic quasiparticles, such as massless Dirac and Weyl fermions, have garnered much attention from physics and material science communities due to their exceptional physical properties such as ultra-high mobility and extremely large magnetoresistances. Here, we show that the highly stable, non-toxic and earth-abundant material, ZrSiS, has an electronic band structure that hosts several Dirac cones that form a Fermi surface with a diamond-shaped line of Dirac nodes. We also show that the square Si lattice in ZrSiS is an excellent template for realizing new types of two-dimensional Dirac cones recently predicted by Young and Kane. Finally, we find that the energy range of the linearly dispersed bands is as high as 2 eV above and below the Fermi level; much larger than of other known Dirac materials. This makes ZrSiS a very promising candidate to study Dirac electrons, as well as the properties of lines of Dirac nodes. PMID:27241624

  7. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS

    NASA Astrophysics Data System (ADS)

    Schoop, Leslie M.; Ali, Mazhar N.; Straßer, Carola; Topp, Andreas; Varykhalov, Andrei; Marchenko, Dmitry; Duppel, Viola; Parkin, Stuart S. P.; Lotsch, Bettina V.; Ast, Christian R.

    2016-05-01

    Materials harbouring exotic quasiparticles, such as massless Dirac and Weyl fermions, have garnered much attention from physics and material science communities due to their exceptional physical properties such as ultra-high mobility and extremely large magnetoresistances. Here, we show that the highly stable, non-toxic and earth-abundant material, ZrSiS, has an electronic band structure that hosts several Dirac cones that form a Fermi surface with a diamond-shaped line of Dirac nodes. We also show that the square Si lattice in ZrSiS is an excellent template for realizing new types of two-dimensional Dirac cones recently predicted by Young and Kane. Finally, we find that the energy range of the linearly dispersed bands is as high as 2 eV above and below the Fermi level; much larger than of other known Dirac materials. This makes ZrSiS a very promising candidate to study Dirac electrons, as well as the properties of lines of Dirac nodes.

  8. Frailty models with missing covariates.

    PubMed

    Herring, Amy H; Ibrahim, Joseph G; Lipsitz, Stuart R

    2002-03-01

    We present a method for estimating the parameters in random effects models for survival data when covariates are subject to missingness. Our method is more general than the usual frailty model as it accommodates a wide range of distributions for the random effects, which are included as an offset in the linear predictor in a manner analogous to that used in generalized linear mixed models. We propose using a Monte Carlo EM algorithm along with the Gibbs sampler to obtain parameter estimates. This method is useful in reducing the bias that may be incurred using complete-case methods in this setting. The methodology is applied to data from Eastern Cooperative Oncology Group melanoma clinical trials in which observations were believed to be clustered and several tumor characteristics were not always observed.

  9. Covariant diagrams for one-loop matching

    DOE PAGES

    Zhang, Zhengkang

    2017-05-30

    Here, we present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective fi eld theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed "covariant diagrams." The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specifi c UV models to applications of master formulas. We also show how suchmore » derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.« less

  10. Covariant diagrams for one-loop matching

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengkang

    2017-05-01

    We present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed "covariant diagrams." The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We show how such derivation can be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.

  11. Shrinkage approach for EEG covariance matrix estimation.

    PubMed

    Beltrachini, Leandro; von Ellenrieder, Nicolas; Muravchik, Carlos H

    2010-01-01

    We present a shrinkage estimator for the EEG spatial covariance matrix of the background activity. We show that such an estimator has some advantages over the maximum likelihood and sample covariance estimators when the number of available data to carry out the estimation is low. We find sufficient conditions for the consistency of the shrinkage estimators and results concerning their numerical stability. We compare several shrinkage schemes and show how to improve the estimator by incorporating known structure of the covariance matrix.

  12. ANL Critical Assembly Covariance Matrix Generation - Addendum

    SciTech Connect

    McKnight, Richard D.; Grimm, Karl N.

    2014-01-13

    In March 2012, a report was issued on covariance matrices for Argonne National Laboratory (ANL) critical experiments. That report detailed the theory behind the calculation of covariance matrices and the methodology used to determine the matrices for a set of 33 ANL experimental set-ups. Since that time, three new experiments have been evaluated and approved. This report essentially updates the previous report by adding in these new experiments to the preceding covariance matrix structure.

  13. Generalized Fermi-Dirac functions and derivatives: properties and evaluation

    NASA Astrophysics Data System (ADS)

    Gong, Z.; Zejda, L.; Däppen, W.; Aparicio, J. M.

    2001-05-01

    The generalized Fermi-Dirac functions and their derivatives are important in evaluating the thermodynamic quantities of partially degenerate electrons in hot dense stellar plasmas. New recursion relations of the generalized Fermi-Dirac functions have been found. An effective numerical method to evaluate the derivatives of the generalized Fermi-Dirac functions up to third order with respect to both degeneracy and temperature is then proposed, following Aparicio [Ap.J.S.S. 117 (1998) 627]. A Fortran program based on this method, together with a sample test case, is provided. Accuracy and domain of reliability of some other, popularly used analytic approximations of the generalized Fermi-Dirac functions for extreme conditions are investigated and compared with our results.

  14. Pseudo-dirac neutrinos: a challenge for neutrino telescopes.

    PubMed

    Beacom, John F; Bell, Nicole F; Hooper, Dan; Learned, John G; Pakvasa, Sandip; Weiler, Thomas J

    2004-01-09

    Neutrinos may be pseudo-Dirac states, such that each generation is actually composed of two maximally mixed Majorana neutrinos separated by a tiny mass difference. The usual active neutrino oscillation phenomenology would be unaltered if the pseudo-Dirac splittings are deltam(2) less, similar 10(-12) eV(2); in addition, neutrinoless double beta decay would be highly suppressed. However, it may be possible to distinguish pseudo-Dirac from Dirac neutrinos using high-energy astrophysical neutrinos. By measuring flavor ratios as a function of L/E, mass-squared differences down to deltam(2) approximately 10(-18) eV(2) can be reached. We comment on the possibility of probing cosmological parameters with neutrinos.

  15. Does the Dirac cone of germanene exist on metal substrates?

    PubMed

    Wang, Yangyang; Li, Jingzhen; Xiong, Junhua; Pan, Yuanyuan; Ye, Meng; Guo, Ying; Zhang, Han; Quhe, Ruge; Lu, Jing

    2016-07-28

    Germanene, a germanium analogue of graphene and silicene, has been synthesized on metal substrates. It is predicted that the intrinsic germanene has a Dirac cone in its band structure, just like graphene and silicene. Using first-principles calculations, we investigate the geometrical structures and electronic properties of germanene on the Ag, Au, Cu, Al, Pt and Ir substrates. The Dirac cone of germanene is destroyed on the Al, Pt and Ir substrates but preserved on the Ag and Au substrates with a slight band hybridization. The upper part of the Dirac cone is destroyed for germanene on the Cu substrate while the lower part remains preserved. By contrast, the Dirac cone is always destroyed for silicene on these metal substrates because of a strong band hybridization. Our study suggests that it is possible to extract the intrinsic properties of germanene on the Ag and Au substrates although it appears impossible for silicene on these two substrates.

  16. 'Parabolic' trapped modes and steered Dirac cones in platonic crystals.

    PubMed

    McPhedran, R C; Movchan, A B; Movchan, N V; Brun, M; Smith, M J A

    2015-05-08

    This paper discusses the properties of flexural waves governed by the biharmonic operator, and propagating in a thin plate pinned at doubly periodic sets of points. The emphases are on the design of dispersion surfaces having the Dirac cone topology, and on the related topic of trapped modes in plates for a finite set (cluster) of pinned points. The Dirac cone topologies we exhibit have at least two cones touching at a point in the reciprocal lattice, augmented by another band passing through the point. We show that these Dirac cones can be steered along symmetry lines in the Brillouin zone by varying the aspect ratio of rectangular lattices of pins, and that, as the cones are moved, the involved band surfaces tilt. We link Dirac points with a parabolic profile in their neighbourhood, and the characteristic of this parabolic profile decides the direction of propagation of the trapped mode in finite clusters.

  17. Higher-order Dirac solitons in binary waveguide arrays

    SciTech Connect

    Tran, Truong X.; Duong, Dũng C.

    2015-10-15

    We study optical analogues of higher-order Dirac solitons (HODSs) in binary waveguide arrays. Like higher-order solitons obtained from the well-known nonlinear Schrödinger equation governing the pulse propagation in an optical fiber, these HODSs have amplitude profiles which are numerically shown to be periodic over large propagation distances. At the same time, HODSs possess some unique features. Firstly, the period of a HODS depends on its order parameter. Secondly, the discrete nature in binary waveguide arrays imposes the upper limit on the order parameter of HODSs. Thirdly, the order parameter of HODSs can vary continuously in a certain range. - Highlights: • Higher-order Dirac solitons in nonlinear binary waveguide arrays are numerically demonstrated. • Amplitude profiles of higher-order Dirac solitons are periodic during propagation. • The period of higher-order Dirac solitons decreases when the soliton order increases.

  18. PT-Symmetric Real Dirac Fermions and Semimetals.

    PubMed

    Zhao, Y X; Lu, Y

    2017-02-03

    Recently, Weyl fermions have attracted increasing interest in condensed matter physics due to their rich phenomenology originated from their nontrivial monopole charges. Here, we present a theory of real Dirac points that can be understood as real monopoles in momentum space, serving as a real generalization of Weyl fermions with the reality being endowed by the PT symmetry. The real counterparts of topological features of Weyl semimetals, such as Nielsen-Ninomiya no-go theorem, 2D subtopological insulators, and Fermi arcs, are studied in the PT symmetric Dirac semimetals and the underlying reality-dependent topological structures are discussed. In particular, we construct a minimal model of the real Dirac semimetals based on recently proposed cold atom experiments and quantum materials about PT symmetric Dirac nodal line semimetals.

  19. Dirac Fermions in a Nanopatterned Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Park, Cheol-Hwan

    2013-03-01

    If a lateral periodic potential with triangular (or honeycomb) lattice symmetry is applied to a conventional two-dimensional electron gas (2DEG), the charge carriers behave like massless Dirac ferions. A very interesting and useful point of these newly-generated massless Dirac fermions is that, unlike the case of graphene, their properties can be tuned through the external periodic potential. In this presentation, I will review the electronic properties of those newly-generated massless Dirac fermions in an artificial 2DEG superlattice system and will discuss how the elecctronic structure of those massless Dirac fermions changes depending on the external periodic potential. This work was partly supported by Research Settlement Fund for the new faculty of SNU.

  20. The connection between Dirac dynamic and parity symmetry

    NASA Astrophysics Data System (ADS)

    Coronado Villalobos, C. H.; Bueno Rogerio, R. J.

    2016-12-01

    Dirac spinors are important objects in the current literature, the algebraic structure presented in the text-books is a general method to write it, however, not unique. The purpose of the present work is to show an alternative approach to construct Dirac spinors, considering the interchange between the Lorentz representation space (1/2, 0) and (0, 1/2) made by the magic of Pauli matrices and not by parity, as was commonly thought. As is well known, the parity operator is related with the Dirac dynamics, as can be seen in Sperança L. D., Int. J. Mod. Phys. D, 2 (2014) 1444003. The major focus is to establish the relation between the Dirac dynamics with the parity operator, i.e., the reverse path shown in the paper by Sperança.

  1. Dirac cones in transition metal doped boron nitride

    SciTech Connect

    Feng, Min; Cao, Xuewei; Shao, Bin; Zuo, Xu

    2015-05-07

    The transition metal (TM) doped zinc blende boron nitride (c-BN) is studied by using the first principle calculation. TM atoms fill in the interstitials in c-BN and form two-dimensional honeycomb lattice. The generalized gradient approximation and projector augmented wave method are used. The calculated density of states and band structures show that d electrons of TM atoms form impurity bands in the gap of c-BN. When the TM-BN system is in ferromagnetic or non-magnetic state, Dirac cones emerge at the K point in Brillouin zone. When TM is Ti and Co, the Dirac cones are spin polarized and very close to the Fermi level, which makes them promising candidates of Dirac half-metal [H. Ishizuka and Y. Motome, Phys. Rev. Lett. 109, 237207 (2012)]. While TM is Ni and Cu, the system is non-magnetic and Dirac cones located above the Fermi level.

  2. P T -Symmetric Real Dirac Fermions and Semimetals

    NASA Astrophysics Data System (ADS)

    Zhao, Y. X.; Lu, Y.

    2017-02-01

    Recently, Weyl fermions have attracted increasing interest in condensed matter physics due to their rich phenomenology originated from their nontrivial monopole charges. Here, we present a theory of real Dirac points that can be understood as real monopoles in momentum space, serving as a real generalization of Weyl fermions with the reality being endowed by the P T symmetry. The real counterparts of topological features of Weyl semimetals, such as Nielsen-Ninomiya no-go theorem, 2D subtopological insulators, and Fermi arcs, are studied in the P T symmetric Dirac semimetals and the underlying reality-dependent topological structures are discussed. In particular, we construct a minimal model of the real Dirac semimetals based on recently proposed cold atom experiments and quantum materials about P T symmetric Dirac nodal line semimetals.

  3. The (weak) gravitational field of a Dirac monopole

    NASA Astrophysics Data System (ADS)

    Banyas, E.; Franklin, J.

    2017-10-01

    We establish the gravitational detectability of a Dirac monopole using a weak-field limit of general relativity, which can be developed from the Newtonian gravitational potential by including energy as a source. The resulting potential matches (by construction) the weak-field limit of two different solutions to Einstein’s equations of general relativity: one associated with the magnetically monopolar spray of field lines emerging from the half-infinite solenoid that makes up the Dirac monopole, the other associated with the field-energetic source of the solenoid itself (the Dirac string). The string’s gravitational effect dominates, and we suggest that the primary strong-field contribution of the Dirac configuration is that of a half-infinite line of energy, whose GR solution is known.

  4. Large optical conductivity of Dirac semimetal Fermi arc surface states

    NASA Astrophysics Data System (ADS)

    Shi, Li-kun; Song, Justin C. W.

    2017-08-01

    Fermi arc surface states, a hallmark of topological Dirac semimetals, can host carriers that exhibit unusual dynamics distinct from that of their parent bulk. Here we find that Fermi arc carriers in intrinsic Dirac semimetals possess a strong and anisotropic light-matter interaction. This is characterized by a large Fermi arc optical conductivity when light is polarized transverse to the Fermi arc; when light is polarized along the Fermi arc, Fermi arc optical conductivity is significantly muted. The large surface spectral weight is locked to the wide separation between Dirac nodes and persists as a large Drude weight of Fermi arc carriers when the system is doped. As a result, large and anisotropic Fermi arc conductivity provides a novel means of optically interrogating the topological surfaces states of Dirac semimetals.

  5. Dirac directional emission in anisotropic zero refractive index photonic crystals.

    PubMed

    He, Xin-Tao; Zhong, Yao-Nan; Zhou, You; Zhong, Zhi-Chao; Dong, Jian-Wen

    2015-08-14

    A certain class of photonic crystals with conical dispersion is known to behave as isotropic zero-refractive-index medium. However, the discrete building blocks in such photonic crystals are limited to construct multidirectional devices, even for high-symmetric photonic crystals. Here, we show multidirectional emission from low-symmetric photonic crystals with semi-Dirac dispersion at the zone center. We demonstrate that such low-symmetric photonic crystal can be considered as an effective anisotropic zero-refractive-index medium, as long as there is only one propagation mode near Dirac frequency. Four kinds of Dirac multidirectional emitters are achieved with the channel numbers of five, seven, eleven, and thirteen, respectively. Spatial power combination for such kind of Dirac directional emitter is also verified even when multiple sources are randomly placed in the anisotropic zero-refractive-index photonic crystal.

  6. Tuning surface Dirac valleys by strain in topological crystalline insulators

    NASA Astrophysics Data System (ADS)

    Zhao, Lu; Wang, Jianfeng; Gu, Bing-Lin; Duan, Wenhui

    2015-05-01

    A topological crystalline insulator has an even number of Dirac cones (i.e., multiple valleys) in its surface band structure, thus potentially leading to valleytronic applications such as graphene. Using the density-functional-theory method, we systematically investigate the strain-induced evolution of topological surface states on the SnTe(111) surface. Our results show that compressive strain can shift the Dirac cones at the Γ ¯ and M ¯ valleys to different extents (even oppositely) in energy, while the tensile strain can induce different band gaps at the valleys due to the enhanced penetration depths of surface states. Exploiting a strain-induced nanostructure with well-defined edges on the (111) surface, we demonstrate strong valley-selective filtering for massless Dirac fermions by dynamically applying local external pressure. Our findings may pave the way for strain-engineered valley-resolved manipulation of Dirac fermions with high tunability and scalability.

  7. Merging of the Dirac points in electronic artificial graphene

    NASA Astrophysics Data System (ADS)

    Feilhauer, J.; Apel, W.; Schweitzer, L.

    2015-12-01

    Theory predicts that graphene under uniaxial compressive strain in an armchair direction should undergo a topological phase transition from a semimetal into an insulator. Due to the change of the hopping integrals under compression, both Dirac points shift away from the corners of the Brillouin zone towards each other. For sufficiently large strain, the Dirac points merge and an energy gap appears. However, such a topological phase transition has not yet been observed in normal graphene (due to its large stiffness) neither in any other electronic system. We show numerically and analytically that such a merging of the Dirac points can be observed in electronic artificial graphene created from a two-dimensional electron gas by application of a triangular lattice of repulsive antidots. Here, the effect of strain is modeled by tuning the distance between the repulsive potentials along the armchair direction. Our results show that the merging of the Dirac points should be observable in a recent experiment with molecular graphene.

  8. Monte Carlo study of Dirac semimetals phase diagram

    NASA Astrophysics Data System (ADS)

    Braguta, V. V.; Katsnelson, M. I.; Kotov, A. Yu.; Nikolaev, A. A.

    2016-11-01

    In this paper the phase diagram of Dirac semimetals is studied within a lattice Monte Carlo simulation. In particular, we concentrate on the dynamical chiral symmetry breaking which results in a semimetal-insulator transition. Using numerical simulation, we determine the values of the critical coupling constant of the semimetal-insulator transition for different values of the anisotropy of the Fermi velocity. This measurement allows us to draw a tentative phase diagram for Dirac semimetals. It turns out that within the Dirac model with Coulomb interaction both Na3Bi and Cd3As2 , known experimentally to be Dirac semimetals, would lie deep in the insulating region of the phase diagram. This result probably shows a decisive role of screening of the interelectron interaction in real materials, similar to the situation in graphene.

  9. Dirac directional emission in anisotropic zero refractive index photonic crystals

    PubMed Central

    He, Xin-Tao; Zhong, Yao-Nan; Zhou, You; Zhong, Zhi-Chao; Dong, Jian-Wen

    2015-01-01

    A certain class of photonic crystals with conical dispersion is known to behave as isotropic zero-refractive-index medium. However, the discrete building blocks in such photonic crystals are limited to construct multidirectional devices, even for high-symmetric photonic crystals. Here, we show multidirectional emission from low-symmetric photonic crystals with semi-Dirac dispersion at the zone center. We demonstrate that such low-symmetric photonic crystal can be considered as an effective anisotropic zero-refractive-index medium, as long as there is only one propagation mode near Dirac frequency. Four kinds of Dirac multidirectional emitters are achieved with the channel numbers of five, seven, eleven, and thirteen, respectively. Spatial power combination for such kind of Dirac directional emitter is also verified even when multiple sources are randomly placed in the anisotropic zero-refractive-index photonic crystal. PMID:26271208

  10. Variational Integrators for Interconnected Lagrange-Dirac Systems

    NASA Astrophysics Data System (ADS)

    Parks, Helen; Leok, Melvin

    2017-02-01

    Interconnected systems are an important class of mathematical models, as they allow for the construction of complex, hierarchical, multiphysics, and multiscale models by the interconnection of simpler subsystems. Lagrange-Dirac mechanical systems provide a broad category of mathematical models that are closed under interconnection, and in this paper, we develop a framework for the interconnection of discrete Lagrange-Dirac mechanical systems, with a view toward constructing geometric structure-preserving discretizations of interconnected systems. This work builds on previous work on the interconnection of continuous Lagrange-Dirac systems (Jacobs and Yoshimura in J Geom Mech 6(1):67-98, 2014) and discrete Dirac variational integrators (Leok and Ohsawa in Found Comput Math 11(5), 529-562, 2011). We test our results by simulating some of the continuous examples given in Jacobs and Yoshimura (2014).

  11. 45 CFR 302.34 - Cooperative arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 2 2011-10-01 2011-10-01 false Cooperative arrangements. 302.34 Section 302.34... PLAN REQUIREMENTS § 302.34 Cooperative arrangements. The State plan shall provide that the State will enter into written agreements for cooperative arrangements under § 303.107 with appropriate courts,...

  12. 45 CFR 63.4 - Cooperative arrangements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Cooperative arrangements. 63.4 Section 63.4 Public... OFFICE OF THE ASSISTANT SECRETARY FOR PLANNING AND EVALUATION General § 63.4 Cooperative arrangements. (a) Eligible parties may enter into cooperative arrangements with other eligible parties, including those...

  13. 45 CFR 302.34 - Cooperative arrangements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 2 2012-10-01 2012-10-01 false Cooperative arrangements. 302.34 Section 302.34... PLAN REQUIREMENTS § 302.34 Cooperative arrangements. The State plan shall provide that the State will enter into written agreements for cooperative arrangements under § 303.107 with appropriate courts,...

  14. 45 CFR 63.4 - Cooperative arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Cooperative arrangements. 63.4 Section 63.4 Public... OFFICE OF THE ASSISTANT SECRETARY FOR PLANNING AND EVALUATION General § 63.4 Cooperative arrangements. (a) Eligible parties may enter into cooperative arrangements with other eligible parties, including those...

  15. 45 CFR 63.4 - Cooperative arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Cooperative arrangements. 63.4 Section 63.4 Public... OFFICE OF THE ASSISTANT SECRETARY FOR PLANNING AND EVALUATION General § 63.4 Cooperative arrangements. (a) Eligible parties may enter into cooperative arrangements with other eligible parties, including those...

  16. 45 CFR 302.34 - Cooperative arrangements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 2 2013-10-01 2012-10-01 true Cooperative arrangements. 302.34 Section 302.34... PLAN REQUIREMENTS § 302.34 Cooperative arrangements. The State plan shall provide that the State will enter into written agreements for cooperative arrangements under § 303.107 with appropriate courts,...

  17. 45 CFR 302.34 - Cooperative arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 2 2014-10-01 2012-10-01 true Cooperative arrangements. 302.34 Section 302.34... PLAN REQUIREMENTS § 302.34 Cooperative arrangements. The State plan shall provide that the State will enter into written agreements for cooperative arrangements under § 303.107 with appropriate courts,...

  18. 45 CFR 63.4 - Cooperative arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Cooperative arrangements. 63.4 Section 63.4 Public... OFFICE OF THE ASSISTANT SECRETARY FOR PLANNING AND EVALUATION General § 63.4 Cooperative arrangements. (a) Eligible parties may enter into cooperative arrangements with other eligible parties, including those...

  19. 45 CFR 63.4 - Cooperative arrangements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Cooperative arrangements. 63.4 Section 63.4 Public... OFFICE OF THE ASSISTANT SECRETARY FOR PLANNING AND EVALUATION General § 63.4 Cooperative arrangements. (a) Eligible parties may enter into cooperative arrangements with other eligible parties, including those...

  20. 29 CFR 779.229 - Other arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Franchise and Other Business Arrangements § 779.229 Other arrangements. With respect to those arrangements...” establishment will be considered a part of the same “enterprise.” For example, whether a franchise, lease, or... the enterprise which grants the franchise, right, or concession. (S. Rept. 145, 87th Cong., 1st...

  1. 42 CFR 413.241 - Pharmacy arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Pharmacy arrangements. 413.241 Section 413.241... Disease (ESRD) Services and Organ Procurement Costs § 413.241 Pharmacy arrangements. Effective January 1, 2011, an ESRD facility that enters into an arrangement with a pharmacy to furnish renal...

  2. Balancing continuous covariates based on Kernel densities.

    PubMed

    Ma, Zhenjun; Hu, Feifang

    2013-03-01

    The balance of important baseline covariates is essential for convincing treatment comparisons. Stratified permuted block design and minimization are the two most commonly used balancing strategies, both of which require the covariates to be discrete. Continuous covariates are typically discretized in order to be included in the randomization scheme. But breakdown of continuous covariates into subcategories often changes the nature of the covariates and makes distributional balance unattainable. In this article, we propose to balance continuous covariates based on Kernel density estimations, which keeps the continuity of the covariates. Simulation studies show that the proposed Kernel-Minimization can achieve distributional balance of both continuous and categorical covariates, while also keeping the group size well balanced. It is also shown that the Kernel-Minimization is less predictable than stratified permuted block design and minimization. Finally, we apply the proposed method to redesign the NINDS trial, which has been a source of controversy due to imbalance of continuous baseline covariates. Simulation shows that imbalances such as those observed in the NINDS trial can be generally avoided through the implementation of the new method. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Lorentz covariant {kappa}-Minkowski spacetime

    SciTech Connect

    DaPbrowski, Ludwik; Godlinski, Michal; Piacitelli, Gherardo

    2010-06-15

    In recent years, different views on the interpretation of Lorentz covariance of noncommuting coordinates have been discussed. By a general procedure, we construct the minimal canonical central covariantization of the {kappa}-Minkowski spacetime. Here, undeformed Lorentz covariance is implemented by unitary operators, in the presence of two dimensionful parameters. We then show that, though the usual {kappa}-Minkowski spacetime is covariant under deformed (or twisted) Lorentz action, the resulting framework is equivalent to taking a noncovariant restriction of the covariantized model. We conclude with some general comments on the approach of deformed covariance.

  4. Effects of patch contrast and arrangement on benefits of clonal integration in a rhizomatous clonal plant

    PubMed Central

    Wang, Yong-Jian; Shi, Xue-Ping; Wu, Xiao-Jing; Meng, Xue-Feng; Wang, Peng-Cheng; Zhou, Zhi-Xiang; Luo, Fang-Li; Yu, Fei-Hai

    2016-01-01

    The availabilities of light and soil water resources usually spatially co-vary in natural habitats, and the spatial pattern of such co-variation may affect the benefits of physiological integration between connected ramets of clonal plants. In a greenhouse experiment, we grew connected or disconnected ramet pairs [consisting of a proximal (relatively old) and a distal (relative young) ramet] of a rhizomatous herb Iris japonica in four heterogeneous environments differing in patch arrangement (reciprocal vs. parallel patchiness of light and soil water) and patch contrast (high vs. low contrast of light and water). Biomass of the proximal part, distal part and clonal fragment of I. japonica were all significantly greater in the intact than in the severed treatment, in the parallel than in the reciprocal patchiness treatment and in the high than in the low contrast treatment, but the effect of severing the connection between ramet pairs did not depend on patch arrangement or contrast. Severing the connection decreased number of ramets of the distal part and the clonal fragment in the parallel patchiness arrangement, but not in the reciprocal patchiness arrangement. Therefore, the spatial arrangement of resource patches can alter the effects of clonal integration on asexual reproduction in I. japonica. PMID:27759040

  5. [P.A.M. Dirac and antimatter applied to medicine].

    PubMed

    Kulenović, Fahrudin; Vobornik, Slavenka; Dalagija, Faruk

    2003-01-01

    Regarding to the hundredth anniversary of P. Dirac birth, it was made review on life and work of this genius in the history of physics and science generally. His ingenious scientific work, that significantly marked contemporary time, was presented in the simplest way with aim to approach more number of readers. Special accent was put on application of Dirac's ideas about antiparticles in medical practice.

  6. Qualitative analysis of trapped Dirac fermions in graphene

    SciTech Connect

    Jakubský, Vít Krejčiřík, David

    2014-10-15

    We study the confinement of Dirac fermions in graphene and in carbon nanotubes by an external magnetic field, mechanical deformations or inhomogeneities in the substrate. By applying variational principles to the square of the Dirac operator, we obtain sufficient and necessary conditions for confinement of the quasi-particles. The rigorous theoretical results are illustrated on the realistic examples of the three classes of traps.

  7. The confluent supersymmetry algorithm for Dirac equations with pseudoscalar potentials

    SciTech Connect

    Contreras-Astorga, Alonso Schulze-Halberg, Axel E-mail: xbataxel@gmail.com

    2014-10-15

    We introduce the confluent version of the quantum-mechanical supersymmetry formalism for the Dirac equation with a pseudoscalar potential. Application of the formalism to spectral problems is discussed, regularity conditions for the transformed potentials are derived, and normalizability of the transformed solutions is established. Our findings extend and complement former results [L. M. Nieto, A. A. Pecheritsin, and B. F. Samsonov, “Intertwining technique for the one-dimensional stationary Dirac equation,” Ann. Phys. 305, 151–189 (2003)].

  8. The confluent supersymmetry algorithm for Dirac equations with pseudoscalar potentials

    NASA Astrophysics Data System (ADS)

    Contreras-Astorga, Alonso; Schulze-Halberg, Axel

    2014-10-01

    We introduce the confluent version of the quantum-mechanical supersymmetry formalism for the Dirac equation with a pseudoscalar potential. Application of the formalism to spectral problems is discussed, regularity conditions for the transformed potentials are derived, and normalizability of the transformed solutions is established. Our findings extend and complement former results [L. M. Nieto, A. A. Pecheritsin, and B. F. Samsonov, "Intertwining technique for the one-dimensional stationary Dirac equation," Ann. Phys. 305, 151-189 (2003)].

  9. Magnetotransport in Dirac metals: Chiral magnetic effect and quantum oscillations

    DOE PAGES

    Monteiro, Gustavo M.; Abanov, Alexander G.; Kharzeev, Dmitri E.

    2015-10-08

    Dirac metals are characterized by the linear dispersion of fermionic quasiparticles, with the Dirac point hidden inside a Fermi surface. We study the magnetotransport in these materials using chiral kinetic theory to describe within the same framework both the negative magnetoresistance caused by the chiral magnetic effect and quantum oscillations in the magnetoresistance due to the existence of the Fermi surface. Lastly, we discuss the relevance of obtained results to recent measurements on Cd3As2.

  10. Magnetotransport in Dirac metals: Chiral magnetic effect and quantum oscillations

    SciTech Connect

    Monteiro, Gustavo M.; Abanov, Alexander G.; Kharzeev, Dmitri E.

    2015-10-08

    Dirac metals are characterized by the linear dispersion of fermionic quasiparticles, with the Dirac point hidden inside a Fermi surface. We study the magnetotransport in these materials using chiral kinetic theory to describe within the same framework both the negative magnetoresistance caused by the chiral magnetic effect and quantum oscillations in the magnetoresistance due to the existence of the Fermi surface. Lastly, we discuss the relevance of obtained results to recent measurements on Cd3As2.

  11. Zero-energy eigenstates for the Dirac boundary problem

    NASA Astrophysics Data System (ADS)

    Hortaçsu, M.; Rothe, K. D.; Schroer, B.

    1980-10-01

    As an alternative to the method of spherical compactification for the Dirac operator in instanton background fields we study the correct method of "box-quantization": the Atiyah-Patodi-Singer spectral boundary condition. This is the only self-adjoint boundary condition which respects the charge conjugation property and the γ 5 symmetry, apart from the usual breaking due to zero modes. We point out the relevance of this approach to the computation of instanton determinants and other problems involving Dirac spinors.

  12. Bimetric Weyl-Dirac theory and the gravitational constant

    SciTech Connect

    Rosen, N.

    1983-03-01

    The Weyl-Dirac theory of grativation and electromagnetism is modified by the introduction of a background metric characterized by a scale constant related to the size of the universe. One is led to a natural gauge giving G/G = -5.5 x 10/sup -12/y/sup -1/. This is smaller by about a factor of ten than the value obtained on the basis of Dirac's large number hypothesis.

  13. Zero-modes of the QED Neuberger Dirac operator

    NASA Astrophysics Data System (ADS)

    Berg, Bernd A.; Heller, Urs M.; Markum, Harald; Pullirsch, Rainer; Sakuler, Wolfgang

    2002-03-01

    We consider 4 d compact lattice QED in the quenched approximation. First, we briefly summarize the spectrum of the staggered Dirac operator and its connection with random matrix theory. Afterwards we present results for the low-lying eigenmodes of the Neuberger overlap-Dirac operator. In the strong coupling phase we find exact zero-modes. Subsequently we discuss possibly related topological excitations of the U(1) lattice gauge theory.

  14. Zero-modes of the QED Neuberger Dirac operator

    NASA Astrophysics Data System (ADS)

    Berg, Bernd A.; Heller, Urs M.; Markum, Harald; Pullirsch, Rainer; Sakuler, Wolfgang

    We consider 4d compact lattice QED in the quenched approximation. First, we briefly summarize the spectrum of the staggered Dirac operator and its connection with random matrix theory. Afterwards we present results for the low-lying eigenmodes of the Neuberger overlap-Dirac operator. In the strong coupling phase we find exact zero-modes. Subsequently we discuss possibly related topological excitations of the U(1) lattice gauge theory.

  15. Supersymmetry between Jackiw-Nair and Dirac-Majorana anyons

    SciTech Connect

    Horvathy, Peter A.; Valenzuela, Mauricio; Plyushchay, Mikhail S.

    2010-06-15

    The Jackiw-Nair description of anyons combines spin-1 topologically massive fields with the discrete series representation of the Lorentz algebra, which has fractional spin. In the Dirac-Majorana formulation the spin-1 part is replaced by the spin 1/2 planar Dirac equation. The two models are shown to belong to an N=1 supermultiplet, which carries a super-Poincare symmetry.

  16. The right inverse of Dirac operator in octonionic space

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Bian, Xiaoli

    2017-09-01

    The octonion Dirac equation also called wave equation is an important equation which formulates the localization spaces for subluminal and superluminal particles. The purpose of this paper is to look for the right inverse operator of octonion Dirac operator in Hölder space. However, some difficulties will arise in noncommutative and nonassociative setting. We note that the associator is available to overcome the difficulties.

  17. Aft outer rim seal arrangement

    SciTech Connect

    Lee, Ching-Pang; Tham, Kok-Mun; Schroeder, Eric; Meeroff, Jamie; Miller, Jr., Samuel R; Marra, John J; Campbell, Christian X

    2015-04-28

    An outer rim seal arrangement (10), including: an annular rim (70) centered about a longitudinal axis (30) of a rotor disc (31), extending fore and having a fore-end (72), an outward-facing surface (74), and an inward-facing surface (76); a lower angel wing (62) extending aft from a base of a turbine blade (22) and having an aft end (64) disposed radially inward of the rim inward-facing surface to define a lower angel wing seal gap (80); an upper angel wing (66) extending aft from the turbine blade base and having an aft end (68) disposed radially outward of the rim outward-facing surface to define a upper angel wing seal gap (80, 82); and guide vanes (100) disposed on the rim inward-facing surface in the lower angel wing seal gap. Pumping fins (102) may be disposed on the upper angel wing seal aft end in the upper angel wing seal gap.

  18. Dirac equation in low dimensions: The factorization method

    SciTech Connect

    Sánchez-Monroy, J.A.; Quimbay, C.J.

    2014-11-15

    We present a general approach to solve the (1+1) and (2+1)-dimensional Dirac equations in the presence of static scalar, pseudoscalar and gauge potentials, for the case in which the potentials have the same functional form and thus the factorization method can be applied. We show that the presence of electric potentials in the Dirac equation leads to two Klein–Gordon equations including an energy-dependent potential. We then generalize the factorization method for the case of energy-dependent Hamiltonians. Additionally, the shape invariance is generalized for a specific class of energy-dependent Hamiltonians. We also present a condition for the absence of the Klein paradox (stability of the Dirac sea), showing how Dirac particles in low dimensions can be confined for a wide family of potentials. - Highlights: • The low-dimensional Dirac equation in the presence of static potentials is solved. • The factorization method is generalized for energy-dependent Hamiltonians. • The shape invariance is generalized for energy-dependent Hamiltonians. • The stability of the Dirac sea is related to the existence of supersymmetric partner Hamiltonians.

  19. Split Dirac Supersymmetry: An Ultraviolet Completion of Higgsino Dark Matter

    SciTech Connect

    Fox, Patrick J.; Kribs, Graham D.; Martin, Adam

    2014-10-07

    Motivated by the observation that the Higgs quartic coupling runs to zero at an intermediate scale, we propose a new framework for models of split supersymmetry, in which gauginos acquire intermediate scale Dirac masses of $\\sim 10^{8-11}$ GeV. Scalar masses arise from one-loop finite contributions as well as direct gravity-mediated contributions. Like split supersymmetry, one Higgs doublet is fine-tuned to be light. The scale at which the Dirac gauginos are introduced to make the Higgs quartic zero is the same as is necessary for gauge coupling unification. Thus, gauge coupling unification persists (nontrivially, due to adjoint multiplets), though with a somewhat higher unification scale $\\gtrsim 10^{17}$ GeV. The $\\mu$-term is naturally at the weak scale, and provides an opportunity for experimental verification. We present two manifestations of Split Dirac Supersymmetry. In the "Pure Dirac" model, the lightest Higgsino must decay through R-parity violating couplings, leading to an array of interesting signals in colliders. In the "Hypercharge Impure" model, the bino acquires a Majorana mass that is one-loop suppressed compared with the Dirac gluino and wino. This leads to weak scale Higgsino dark matter whose overall mass scale, as well as the mass splitting between the neutral components, is naturally generated from the same UV dynamics. We outline the challenges to discovering pseudo-Dirac Higgsino dark matter in collider and dark matter detection experiments.

  20. DIRAC3 - the new generation of the LHCb grid software

    NASA Astrophysics Data System (ADS)

    Tsaregorodtsev, A.; Brook, N.; Casajus Ramo, A.; Charpentier, Ph; Closier, J.; Cowan, G.; Graciani Diaz, R.; Lanciotti, E.; Mathe, Z.; Nandakumar, R.; Paterson, S.; Romanovsky, V.; Santinelli, R.; Sapunov, M.; Smith, A. C.; Seco Miguelez, M.; Zhelezov, A.

    2010-04-01

    DIRAC, the LHCb community Grid solution, was considerably reengineered in order to meet all the requirements for processing the data coming from the LHCb experiment. It is covering all the tasks starting with raw data transportation from the experiment area to the grid storage, data processing up to the final user analysis. The reengineered DIRAC3 version of the system includes a fully grid security compliant framework for building service oriented distributed systems; complete Pilot Job framework for creating efficient workload management systems; several subsystems to manage high level operations like data production and distribution management. The user interfaces of the DIRAC3 system providing rich command line and scripting tools are complemented by a full-featured Web portal providing users with a secure access to all the details of the system status and ongoing activities. We will present an overview of the DIRAC3 architecture, new innovative features and the achieved performance. Extending DIRAC3 to manage computing resources beyond the WLCG grid will be discussed. Experience with using DIRAC3 by other user communities than LHCb and in other application domains than High Energy Physics will be shown to demonstrate the general-purpose nature of the system.

  1. The DIRAC Data Management System and the Gaudi dataset federation

    NASA Astrophysics Data System (ADS)

    Haen, Christophe; Charpentier, Philippe; Frank, Markus; Tsaregorodtsev, Andrei

    2015-12-01

    The DIRAC Interware provides a development framework and a complete set of components for building distributed computing systems. The DIRAC Data Management System (DMS) offers all the necessary tools to ensure data handling operations for small and large user communities. It supports transparent access to storage resources based on multiple technologies, and is easily expandable. The information on data files and replicas is kept in a File Catalog of which DIRAC offers a powerful and versatile implementation (DFC). Data movement can be performed using third party services including FTS3. Bulk data operations are resilient with respect to failures due to the use of the Request Management System (RMS) that keeps track of ongoing tasks. In this contribution we will present an overview of the DIRAC DMS capabilities and its connection with other DIRAC subsystems such as the Transformation System. This paper also focuses on the DIRAC File Catalog, for which a lot of new developments have been carried out, so that LHCb could migrate its replica catalog from the LCG File Catalog to the DFC. Finally, we will present how LHCb achieves a dataset federation without the need of an extra infrastructure.

  2. Conjugated Molecules Described by a One-Dimensional Dirac Equation.

    PubMed

    Ernzerhof, Matthias; Goyer, Francois

    2010-06-08

    Starting from the Hückel Hamiltonian of conjugated hydrocarbon chains (ethylene, allyl radical, butadiene, pentadienyl radical, hexatriene, etc.), we perform a simple unitary transformation and obtain a Dirac matrix Hamiltonian. Thus already small molecules are described exactly in terms of a discrete Dirac equation, the continuum limit of which yields a one-dimensional Dirac Hamiltonian. Augmenting this Hamiltonian with specially adapted boundary conditions, we find that all the orbitals of the unsaturated hydrocarbon chains are reproduced by the continuous Dirac equation. However, only orbital energies close to the highest occupied molecular orbital/lowest unoccupied molecular orbital energy are accurately predicted by the Dirac equation. Since it is known that a continuous Dirac equation describes the electronic structure of graphene around the Fermi energy, our findings answer the question to what extent this peculiar electronic structure is already developed in small molecules containing a delocalized π-electron system. We illustrate how the electronic structure of small polyenes carries over to a certain class of rectangular graphene sheets and eventually to graphene itself. Thus the peculiar electronic structure of graphene extends to a large degree to the smallest unsaturated molecule (ethylene).

  3. Dirac Cone Protected by Non-Symmorphic Symmetry and highly dispersive 3D Dirac crossings in ZrSiS

    NASA Astrophysics Data System (ADS)

    Schoop, Leslie; Ali, Mazhar; Strasser, Carola; Duppel, Viola; Parkin, Stuart; Lotsch, Bettina; Ast, Christian

    Materials harboring exotic quasiparticles, such as Dirac and Weyl fermions have garnered much attention from the physics and material science communities. Here, we show with angle resolved photoemission studies supported by ab initio calculations that the highly stable, non-toxic and earth-abundant material, ZrSiS, has an electronic band structure that hosts several Dirac cones which form a Fermi surface with a diamond-shaped line of Dirac nodes. We also experimentally show, for the first time, that the square Si lattice in ZrSiS is an excellent template for realizing the new types of 2D Dirac cones protected by non-symmophic symmetry and image an unforseen surface state that arises close to the 2D Dirac cone. Finally, we find that the energy range of the linearly dispersed bands is as high as 2 eV above and below the Fermi level; much larger than of any known Dirac material so far. We will discuss why these characteristics make ZrSiS very promising for future applications.

  4. Dirac Green function for angular projection potentials.

    PubMed

    Zeller, Rudolf

    2015-11-25

    The aim of this paper is twofold: first, it is shown that the angular dependence of the Dirac Green function can be described analytically for potentials with non-local dependence on the angular variables if they are chosen as projection potentials in angular momentum space. Because the local dependence on the radial variable can be treated to any precision with present computing capabilities, this means that the Green function can be calculated practically exactly. Second, it is shown that a result of this kind not only holds for a single angular projection potential but also more generally, for instance if space is divided into non-overlapping cells and a separate angular projection potential is used in each cell. This opens the way for relativistic density-functional calculations within a different perspective than the conventional one. Instead of trying to obtain the density for a given potential approximately as well as possible, the density is determined exactly for non-local potentials which can approximate arbitrary local potentials as well as desired.

  5. Nonlinear propagation of light in Dirac matter.

    PubMed

    Eliasson, Bengt; Shukla, P K

    2011-09-01

    The nonlinear interaction between intense laser light and a quantum plasma is modeled by a collective Dirac equation coupled with the Maxwell equations. The model is used to study the nonlinear propagation of relativistically intense laser light in a quantum plasma including the electron spin-1/2 effect. The relativistic effects due to the high-intensity laser light lead, in general, to a downshift of the laser frequency, similar to a classical plasma where the relativistic mass increase leads to self-induced transparency of laser light and other associated effects. The electron spin-1/2 effects lead to a frequency upshift or downshift of the electromagnetic (EM) wave, depending on the spin state of the plasma and the polarization of the EM wave. For laboratory solid density plasmas, the spin-1/2 effects on the propagation of light are small, but they may be significant in superdense plasma in the core of white dwarf stars. We also discuss extensions of the model to include kinetic effects of a distribution of the electrons on the nonlinear propagation of EM waves in a quantum plasma.

  6. Planar Dirac electrons in magnetic quantum dots

    NASA Astrophysics Data System (ADS)

    Yang, Ning; Zhu, Jia-Lin

    2012-05-01

    In this paper, we explore the size- and mass-dependent energy spectra and the electronic correlation of two- and three-electron graphene magnetic quantum dots. It is found that only the magnetic dots with large size can well confine the electrons. For large graphene magnetic dots with massless (ultra-relativity) electrons, the energy level structures of two Dirac electrons and even the ground state spin and angular momentum of three electrons are quite different from those of the usual semiconductor quantum dots. Also we reveal that such differences are not due to the magnetic confinement but originate from the character of the Coulomb interaction of two-component electronic wavefunctions in graphene. We reveal that the increase of the mass leads to both the crossover of the energy spectrum structures from the ultra-relativity to non-relativity ones and the increasing of the crystallization. The results are helpful for the understanding of the mass and size effects and may be useful in controlling the few-electron states in graphene-based nanodevices.

  7. DIRAC: reliable data management for LHCb

    NASA Astrophysics Data System (ADS)

    Smith, A. C.; Tsaregorodtsev, A.

    2008-07-01

    DIRAC, LHCb's Grid Workload and Data Management System, utilizes WLCG resources and middleware components to perform distributed computing tasks satisfying LHCb's Computing Model. The Data Management System (DMS) handles data transfer and data access within LHCb. Its scope ranges from the output of the LHCb Online system to Grid-enabled storage for all data types. It supports metadata for these files in replica and bookkeeping catalogues, allowing dataset selection and localization. The DMS controls the movement of files in a redundant fashion whilst providing utilities for accessing all metadata. To do these tasks effectively the DMS requires complete self integrity between its components and external physical storage. The DMS provides highly redundant management of all LHCb data to leverage available storage resources and to manage transient errors in underlying services. It provides data driven and reliable distribution of files as well as reliable job output upload, utilizing VO Boxes at LHCb Tier1 sites to prevent data loss. This paper presents several examples of mechanisms implemented in the DMS to increase reliability, availability and integrity, highlighting successful design choices and limitations discovered.

  8. Two-dimensional Dirac signature of germanene

    SciTech Connect

    Zhang, L.; Bampoulis, P.; Houselt, A. van; Zandvliet, H. J. W.

    2015-09-14

    The structural and electronic properties of germanene coated Ge{sub 2}Pt clusters have been determined by scanning tunneling microscopy and spectroscopy at room temperature. The interior of the germanene sheet exhibits a buckled honeycomb structure with a lattice constant of 4.3 Å and a buckling of 0.2 Å. The zigzag edges of germanene are reconstructed and display a 4× periodicity. The differential conductivity of the interior of the germanene sheet has a V-shape, which is reminiscent of the density of states of a two-dimensional Dirac system. The minimum of the differential conductivity is located close to the Fermi level and has a non-zero value, which we ascribe to the metallic character of the underlying Ge{sub 2}Pt substrate. Near the reconstructed germanene zigzag edges the shape of the differential conductivity changes from a V-shape to a more parabolic-like shape, revealing that the reconstructed germanene zigzag edges do not exhibit a pronounced metallic edge state.

  9. Magnetic monopoles, electric currents, and dirac strings

    NASA Astrophysics Data System (ADS)

    Lipkin, Harry J.; Peshkin, Murray

    1986-10-01

    A magnetic charge interacting with an electric current is the simplest system containing both types of charges in which there is energy exchange between the kinetic energy of the motion of the charges and other degrees of freedom. In this system several energy paradoxes arise which prevent the definition of a hamiltonian for a magnetic charge moving in a static field of a stationary current. These paradoxes are simply exhibited in a toy model which treates the dynamics of the current and its sources and includes the limiting case of an externally fixed current. Hamiltonians and lagrangians exist, but the interaction of the current variable with the monopole is nonlocal. A local multivalued lagrangian and corresponding hamiltionian exist, which apparently introduce a kind of winding number as the monopole encircles the current. Requiring exp[(i/h) ƒ; Ldt] to be singlevalued even though L and H are not, gives the Dirac quantization condition, forcing the charge which has been introduced as a classical continuous variable to have a discrete spectrum. Permanent address: Argonne National Laboratory, Argonne, IL 60439-4843, USA.

  10. Robust covariance estimation of galaxy-galaxy weak lensing: validation and limitation of jackknife covariance

    NASA Astrophysics Data System (ADS)

    Shirasaki, Masato; Takada, Masahiro; Miyatake, Hironao; Takahashi, Ryuichi; Hamana, Takashi; Nishimichi, Takahiro; Murata, Ryoma

    2017-09-01

    We develop a method to simulate galaxy-galaxy weak lensing by utilizing all-sky, light-cone simulations and their inherent halo catalogues. Using the mock catalogue to study the error covariance matrix of galaxy-galaxy weak lensing, we compare the full covariance with the 'jackknife' (JK) covariance, the method often used in the literature that estimates the covariance from the resamples of the data itself. We show that there exists the variation of JK covariance over realizations of mock lensing measurements, while the average JK covariance over mocks can give a reasonably accurate estimation of the true covariance up to separations comparable with the size of JK subregion. The scatter in JK covariances is found to be ∼10 per cent after we subtract the lensing measurement around random points. However, the JK method tends to underestimate the covariance at the larger separations, more increasingly for a survey with a higher number density of source galaxies. We apply our method to the Sloan Digital Sky Survey (SDSS) data, and show that the 48 mock SDSS catalogues nicely reproduce the signals and the JK covariance measured from the real data. We then argue that the use of the accurate covariance, compared to the JK covariance, allows us to use the lensing signals at large scales beyond a size of the JK subregion, which contains cleaner cosmological information in the linear regime.

  11. Group Theory of Covariant Harmonic Oscillators

    ERIC Educational Resources Information Center

    Kim, Y. S.; Noz, Marilyn E.

    1978-01-01

    A simple and concrete example for illustrating the properties of noncompact groups is presented. The example is based on the covariant harmonic-oscillator formalism in which the relativistic wave functions carry a covariant-probability interpretation. This can be used in a group theory course for graduate students who have some background in…

  12. Quality Quantification of Evaluated Cross Section Covariances

    SciTech Connect

    Varet, S.; Dossantos-Uzarralde, P.

    2015-01-15

    Presently, several methods are used to estimate the covariance matrix of evaluated nuclear cross sections. Because the resulting covariance matrices can be different according to the method used and according to the assumptions of the method, we propose a general and objective approach to quantify the quality of the covariance estimation for evaluated cross sections. The first step consists in defining an objective criterion. The second step is computation of the criterion. In this paper the Kullback-Leibler distance is proposed for the quality quantification of a covariance matrix estimation and its inverse. It is based on the distance to the true covariance matrix. A method based on the bootstrap is presented for the estimation of this criterion, which can be applied with most methods for covariance matrix estimation and without the knowledge of the true covariance matrix. The full approach is illustrated on the {sup 85}Rb nucleus evaluations and the results are then used for a discussion on scoring and Monte Carlo approaches for covariance matrix estimation of the cross section evaluations.

  13. Covariance Structure Analysis of Ordinal Ipsative Data.

    ERIC Educational Resources Information Center

    Chan, Wai; Bentler, Peter M.

    1998-01-01

    Proposes a two-stage estimation method for the analysis of covariance structure models with ordinal ipsative data (OID). A goodness-of-fit statistic is given for testing the hypothesized covariance structure matrix, and simulation results show that the method works well with a large sample. (SLD)

  14. Group Theory of Covariant Harmonic Oscillators

    ERIC Educational Resources Information Center

    Kim, Y. S.; Noz, Marilyn E.

    1978-01-01

    A simple and concrete example for illustrating the properties of noncompact groups is presented. The example is based on the covariant harmonic-oscillator formalism in which the relativistic wave functions carry a covariant-probability interpretation. This can be used in a group theory course for graduate students who have some background in…

  15. Position Error Covariance Matrix Validation and Correction

    NASA Technical Reports Server (NTRS)

    Frisbee, Joe, Jr.

    2016-01-01

    In order to calculate operationally accurate collision probabilities, the position error covariance matrices predicted at times of closest approach must be sufficiently accurate representations of the position uncertainties. This presentation will discuss why the Gaussian distribution is a reasonable expectation for the position uncertainty and how this assumed distribution type is used in the validation and correction of position error covariance matrices.

  16. Adjoints and Low-rank Covariance Representation

    NASA Technical Reports Server (NTRS)

    Tippett, Michael K.; Cohn, Stephen E.

    2000-01-01

    Quantitative measures of the uncertainty of Earth System estimates can be as important as the estimates themselves. Second moments of estimation errors are described by the covariance matrix, whose direct calculation is impractical when the number of degrees of freedom of the system state is large. Ensemble and reduced-state approaches to prediction and data assimilation replace full estimation error covariance matrices by low-rank approximations. The appropriateness of such approximations depends on the spectrum of the full error covariance matrix, whose calculation is also often impractical. Here we examine the situation where the error covariance is a linear transformation of a forcing error covariance. We use operator norms and adjoints to relate the appropriateness of low-rank representations to the conditioning of this transformation. The analysis is used to investigate low-rank representations of the steady-state response to random forcing of an idealized discrete-time dynamical system.

  17. The aesthetics of behavioral arrangements

    PubMed Central

    Hineline, Philip N.

    2005-01-01

    With their origins in scientific validation, behavior-analytic applications have understandably been developed with an engineering rather than a crafting orientation. Nevertheless, traditions of craftsmanship can be instructive for devising aesthetically pleasing arrangements—arrangements that people will try, and having tried, will choose to continue living with. Pye (1968) provides suggestions for this, particularly through his distinctions between workmanship of risk versus workmanship of certainty, and the mating of functional precision with effective or otherwise pleasing variability. Close examination of woodworking tools as well as antique machines offers instructive analogues that show, for instance, that misplaced precision can be dysfunctional when precision is not essential to a design. Variability should be allowed or even encouraged. Thus, in the design of behavioral contingencies as well as of practical or purely aesthetic objects, “precise versus variable” is not necessarily a distinction between good and bad. More generally, behavior analysts would do well to look beyond their technical experience for ways to improve the aesthetics of contingency design while continuing to understand the resulting innovations in relation to behavior-analytic principles. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6Figure 7Figure 8Figure 9 PMID:22478437

  18. Linearly arranged polytypic CZTSSe nanocrystals

    PubMed Central

    Fan, Feng-Jia; Wu, Liang; Gong, Ming; Chen, Shi You; Liu, Guang Yao; Yao, Hong-Bin; Liang, Hai-Wei; Wang, Yi-Xiu; Yu, Shu-Hong

    2012-01-01

    Even colloidal polytypic nanostructures show promising future in band-gap tuning and alignment, researches on them have been much less reported than the standard nano-heterostructures because of the difficulties involved in synthesis. Up to now, controlled synthesis of colloidal polytypic nanocrsytals has been only realized in II-VI tetrapod and octopod nanocrystals with branched configurations. Herein, we report a colloidal approach for synthesizing non-branched but linearly arranged polytypic I2-II-IV-VI4 nanocrystals, with a focus on polytypic non-stoichiometric Cu2ZnSnSxSe4−x nanocrystals. Each synthesized polytypic non-stoichiometric Cu2ZnSnSxSe4−x nanocrystal is consisted of two zinc blende-derived ends and one wurtzite-derived center part. The formation mechanism has been studied and the phase composition can be tuned through adjusting the reaction temperature, which brings a new band-gap tuning approach to Cu2ZnSnSxSe4-x nanocrystals. PMID:23233871

  19. Canonical ADM tetrad gravity: From metrological inertial gauge variables to dynamical tidal Dirac observables

    NASA Astrophysics Data System (ADS)

    Lusanna, Luca

    2015-02-01

    In this updated review of canonical ADM tetrad gravity in a family of globally hyperbolic asymptotically Minkowskian space-times without super-translations I show which is the status-of-the-art in the search of a canonical basis adapted to the first-class Dirac constraints and of the Dirac observables of general relativity (GR) describing the tidal degrees of freedom of the gravitational field. In these space-times the asymptotic ADM Poincaré group replaces the Poincaré group of particle physics, there is a York canonical basis diagonalizing the York-Lichnerowicz approach and a post-Minkowskian linearization is possible with the associated description of gravitational waves in the family of non-harmonic 3-orthogonal Schwinger time gauges. Moreover I show that every fixation of the inertial gauge variables (i.e. the choice of a non-inertial frame) of every generally covariant formulation of GR is equivalent to a set of conventions for the metrology of the space-time (like the GPS ones near the Earth): for instance the freedom in clock synchronization is described by the inertial gauge variable York time (the trace of the extrinsic curvature of the instantaneous 3-spaces). This inertial gauge freedom and the non-Euclidean nature of the instantaneous 3-spaces required by the equivalence principle are connected with the dark side of the universe and could explain the presence of dark matter or at least part of it by means of the adoption of suitable metrical conventions for the ICRS celestial reference system. Also some comments on a canonical quantization of GR coherent with this viewpoint are done.

  20. Dirac matrices for Chern-Simons gravity

    SciTech Connect

    Izaurieta, Fernando; Ramirez, Ricardo; Rodriguez, Eduardo

    2012-10-06

    A genuine gauge theory for the Poincare, de Sitter or anti-de Sitter algebras can be constructed in (2n- 1)-dimensional spacetime by means of the Chern-Simons form, yielding a gravitational theory that differs from General Relativity but shares many of its properties, such as second order field equations for the metric. The particular form of the Lagrangian is determined by a rank n, symmetric tensor invariant under the relevant algebra. In practice, the calculation of this invariant tensor can be reduced to the computation of the trace of the symmetrized product of n Dirac Gamma matrices {Gamma}{sub ab} in 2n-dimensional spacetime. While straightforward in principle, this calculation can become extremely cumbersome in practice. For large enough n, existing computer algebra packages take an inordinate long time to produce the answer or plainly fail having used up all available memory. In this talk we show that the general formula for the trace of the symmetrized product of 2n Gamma matrices {Gamma}{sub ab} can be written as a certain sum over the integer partitions s of n, with every term being multiplied by a numerical cofficient {alpha}{sub s}. We then give a general algorithm that computes the {alpha}-coefficients as the solution of a linear system of equations generated by evaluating the general formula for different sets of tensors B{sup ab} with random numerical entries. A recurrence relation between different coefficients is shown to hold and is used in a second, 'minimal' algorithm to greatly speed up the computations. Runtime of the minimal algorithm stays below 1 min on a typical desktop computer for up to n = 25, which easily covers all foreseeable applications of the trace formula.

  1. Dirac matrices for Chern-Simons gravity

    NASA Astrophysics Data System (ADS)

    Izaurieta, Fernando; Ramírez, Ricardo; Rodríguez, Eduardo

    2012-10-01

    A genuine gauge theory for the Poincaré, de Sitter or anti-de Sitter algebras can be constructed in (2n - 1)-dimensional spacetime by means of the Chern-Simons form, yielding a gravitational theory that differs from General Relativity but shares many of its properties, such as second order field equations for the metric. The particular form of the Lagrangian is determined by a rank n, symmetric tensor invariant under the relevant algebra. In practice, the calculation of this invariant tensor can be reduced to the computation of the trace of the symmetrized product of n Dirac Gamma matrices Γab in 2n-dimensional spacetime. While straightforward in principle, this calculation can become extremely cumbersome in practice. For large enough n, existing computer algebra packages take an inordinate long time to produce the answer or plainly fail having used up all available memory. In this talk we show that the general formula for the trace of the symmetrized product of 2n Gamma matrices Γab can be written as a certain sum over the integer partitions s of n, with every term being multiplied by a numerical cofficient αs. We then give a general algorithm that computes the α-coefficients as the solution of a linear system of equations generated by evaluating the general formula for different sets of tensors Bab with random numerical entries. A recurrence relation between different coefficients is shown to hold and is used in a second, "minimal" algorithm to greatly speed up the computations. Runtime of the minimal algorithm stays below 1 min on a typical desktop computer for up to n = 25, which easily covers all foreseeable applications of the trace formula.

  2. Designer Dirac fermions and topological phases in molecular graphene.

    PubMed

    Gomes, Kenjiro K; Mar, Warren; Ko, Wonhee; Guinea, Francisco; Manoharan, Hari C

    2012-03-14

    The observation of massless Dirac fermions in monolayer graphene has generated a new area of science and technology seeking to harness charge carriers that behave relativistically within solid-state materials. Both massless and massive Dirac fermions have been studied and proposed in a growing class of Dirac materials that includes bilayer graphene, surface states of topological insulators and iron-based high-temperature superconductors. Because the accessibility of this physics is predicated on the synthesis of new materials, the quest for Dirac quasi-particles has expanded to artificial systems such as lattices comprising ultracold atoms. Here we report the emergence of Dirac fermions in a fully tunable condensed-matter system-molecular graphene-assembled by atomic manipulation of carbon monoxide molecules over a conventional two-dimensional electron system at a copper surface. Using low-temperature scanning tunnelling microscopy and spectroscopy, we embed the symmetries underlying the two-dimensional Dirac equation into electron lattices, and then visualize and shape the resulting ground states. These experiments show the existence within the system of linearly dispersing, massless quasi-particles accompanied by a density of states characteristic of graphene. We then tune the quantum tunnelling between lattice sites locally to adjust the phase accrual of propagating electrons. Spatial texturing of lattice distortions produces atomically sharp p-n and p-n-p junction devices with two-dimensional control of Dirac fermion density and the power to endow Dirac particles with mass. Moreover, we apply scalar and vector potentials locally and globally to engender topologically distinct ground states and, ultimately, embedded gauge fields, wherein Dirac electrons react to 'pseudo' electric and magnetic fields present in their reference frame but absent from the laboratory frame. We demonstrate that Landau levels created by these gauge fields can be taken to the

  3. Concordance between criteria for covariate model building.

    PubMed

    Hennig, Stefanie; Karlsson, Mats O

    2014-04-01

    When performing a population pharmacokinetic modelling analysis covariates are often added to the model. Such additions are often justified by improved goodness of fit and/or decreased in unexplained (random) parameter variability. Increased goodness of fit is most commonly measured by the decrease in the objective function value. Parameter variability can be defined as the sum of unexplained (random) and explained (predictable) variability. Increase in magnitude of explained parameter variability could be another possible criterion for judging improvement in the model. The agreement between these three criteria in diagnosing covariate-parameter relationships of different strengths and nature using stochastic simulations and estimations as well as assessing covariate-parameter relationships in four previously published real data examples were explored. Total estimated parameter variability was found to vary with the number of covariates introduced on the parameter. In the simulated examples and two real examples, the parameter variability increased with increasing number of included covariates. For the other real examples parameter variability decreased or did not change systematically with the addition of covariates. The three criteria were highly correlated, with the decrease in unexplained variability being more closely associated with changes in objective function values than increases in explained parameter variability were. The often used assumption that inclusion of covariates in models only shifts unexplained parameter variability to explained parameter variability appears not to be true, which may have implications for modelling decisions.

  4. Theoretical prediction of a strongly correlated Dirac metal.

    PubMed

    Mazin, I I; Jeschke, Harald O; Lechermann, Frank; Lee, Hunpyo; Fink, Mario; Thomale, Ronny; Valentí, Roser

    2014-07-01

    Recently, the most intensely studied objects in the electronic theory of solids have been strongly correlated systems and graphene. However, the fact that the Dirac bands in graphene are made up of sp(2) electrons, which are subject to neither strong Hubbard repulsion U nor strong Hund's rule coupling J, creates certain limitations in terms of novel, interaction-induced physics that could be derived from Dirac points. Here we propose GaCu3(OH)6Cl2 (Ga-substituted herbertsmithite) as a correlated Dirac-Kagome metal combining Dirac electrons, strong interactions and frustrated magnetic interactions. Using density functional theory, we calculate its crystallographic and electronic properties, and observe that it has symmetry-protected Dirac points at the Fermi level. Its many-body physics is diverse, with possible charge, magnetic and superconducting instabilities. Through a combination of various many-body methods we study possible symmetry-lowering phase transitions such as Mott-Hubbard, charge or magnetic ordering, and unconventional superconductivity, which in this compound assumes an f-wave symmetry.

  5. Relativistic space-charge-limited current for massive Dirac fermions

    NASA Astrophysics Data System (ADS)

    Ang, Y. S.; Zubair, M.; Ang, L. K.

    2017-04-01

    A theory of relativistic space-charge-limited current (SCLC) is formulated to determine the SCLC scaling, J ∝Vα/Lβ , for a finite band-gap Dirac material of length L biased under a voltage V . In one-dimensional (1D) bulk geometry, our model allows (α ,β ) to vary from (2,3) for the nonrelativistic model in traditional solids to (3/2,2) for the ultrarelativistic model of massless Dirac fermions. For 2D thin-film geometry we obtain α =β , which varies between 2 and 3/2, respectively, at the nonrelativistic and ultrarelativistic limits. We further provide rigorous proof based on a Green's-function approach that for a uniform SCLC model described by carrier-density-dependent mobility, the scaling relations of the 1D bulk model can be directly mapped into the case of 2D thin film for any contact geometries. Our simplified approach provides a convenient tool to obtain the 2D thin-film SCLC scaling relations without the need of explicitly solving the complicated 2D problems. Finally, this work clarifies the inconsistency in using the traditional SCLC models to explain the experimental measurement of a 2D Dirac semiconductor. We conclude that the voltage scaling 3 /2 <α <2 is a distinct signature of massive Dirac fermions in a Dirac semiconductor and is in agreement with experimental SCLC measurements in MoS2.

  6. Observation of Dirac monopoles in a synthetic magnetic field

    NASA Astrophysics Data System (ADS)

    Ray, M. W.; Ruokokoski, E.; Kandel, S.; Möttönen, M.; Hall, D. S.

    2014-01-01

    Magnetic monopoles--particles that behave as isolated north or south magnetic poles--have been the subject of speculation since the first detailed observations of magnetism several hundred years ago. Numerous theoretical investigations and hitherto unsuccessful experimental searches have followed Dirac's 1931 development of a theory of monopoles consistent with both quantum mechanics and the gauge invariance of the electromagnetic field. The existence of even a single Dirac magnetic monopole would have far-reaching physical consequences, most famously explaining the quantization of electric charge. Although analogues of magnetic monopoles have been found in exotic spin ices and other systems, there has been no direct experimental observation of Dirac monopoles within a medium described by a quantum field, such as superfluid helium-3 (refs 10, 11, 12, 13). Here we demonstrate the controlled creation of Dirac monopoles in the synthetic magnetic field produced by a spinor Bose-Einstein condensate. Monopoles are identified, in both experiments and matching numerical simulations, at the termini of vortex lines within the condensate. By directly imaging such a vortex line, the presence of a monopole may be discerned from the experimental data alone. These real-space images provide conclusive and long-awaited experimental evidence of the existence of Dirac monopoles. Our result provides an unprecedented opportunity to observe and manipulate these quantum mechanical entities in a controlled environment.

  7. Observation of Dirac monopoles in a synthetic magnetic field.

    PubMed

    Ray, M W; Ruokokoski, E; Kandel, S; Möttönen, M; Hall, D S

    2014-01-30

    Magnetic monopoles--particles that behave as isolated north or south magnetic poles--have been the subject of speculation since the first detailed observations of magnetism several hundred years ago. Numerous theoretical investigations and hitherto unsuccessful experimental searches have followed Dirac's 1931 development of a theory of monopoles consistent with both quantum mechanics and the gauge invariance of the electromagnetic field. The existence of even a single Dirac magnetic monopole would have far-reaching physical consequences, most famously explaining the quantization of electric charge. Although analogues of magnetic monopoles have been found in exotic spin ices and other systems, there has been no direct experimental observation of Dirac monopoles within a medium described by a quantum field, such as superfluid helium-3 (refs 10-13). Here we demonstrate the controlled creation of Dirac monopoles in the synthetic magnetic field produced by a spinor Bose-Einstein condensate. Monopoles are identified, in both experiments and matching numerical simulations, at the termini of vortex lines within the condensate. By directly imaging such a vortex line, the presence of a monopole may be discerned from the experimental data alone. These real-space images provide conclusive and long-awaited experimental evidence of the existence of Dirac monopoles. Our result provides an unprecedented opportunity to observe and manipulate these quantum mechanical entities in a controlled environment.

  8. Optimal Arrangement of Components Via Pairwise Rearrangements.

    DTIC Science & Technology

    1987-10-01

    reliability function under component pairwise rearrangement. They use this property to find the optimal component arrangement. Worked examples illustrate the methods proposed. Keywords: Optimization; Permutations; Nodes.

  9. Reliability-based covariance control design

    SciTech Connect

    Field, R.V. Jr.; Bergman, L.A.

    1997-03-01

    An extension to classical covariance control methods, introduced by Skelton and co-workers, is proposed specifically for application to the control of civil engineering structures subjected to random dynamic excitations. The covariance structure of the system is developed directly from specification of its reliability via the assumption of independent (Poisson) outcrossings of its stationary response process from a polyhedral safe region. This leads to a set of state covariance controllers, each of which guarantees that the closed-loop system will possess the specified level of reliability. An example civil engineering structure is considered.

  10. Conformal Covariance and the Split Property

    NASA Astrophysics Data System (ADS)

    Morinelli, Vincenzo; Tanimoto, Yoh; Weiner, Mihály

    2017-08-01

    We show that for a conformal local net of observables on the circle, the split property is automatic. Both full conformal covariance (i.e., diffeomorphism covariance) and the circle-setting play essential roles in this fact, while by previously constructed examples it was already known that even on the circle, Möbius covariance does not imply the split property. On the other hand, here we also provide an example of a local conformal net living on the 2-dimensional Minkowski space, which—although being diffeomorphism covariant—does not have the split property.

  11. Primordial nucleosynthesis and Dirac's large numbers hypothesis

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Hsieh, S.-H.

    1980-01-01

    Consideration is given to the analysis of Falik (1979) which attempted to show that the cosmological model proposed by Canuto and Hsieh (1978) in which the gravitational constant varies with time contradicts observations of primordial helium. It is shown that the analysis was based on the assumptions that (1) the energy density of radiation in local thermodynamic equilibrium is approximately equal to the fourth power of the equilibrium temperature, where the product of the equilibrium temperature with the scale factor of the Robertson-Walker metric is constant, and (2) the gravitational constant is approximately equal to the inverse of the time even at early cosmological epochs. These assumptions are demonstrated to be invalid in the scale covariant theory of gravitation used to develop the model, thus negating the conclusion that the Canuto and Hsieh model excludes the primordial synthesis of helium.

  12. Primordial nucleosynthesis and Dirac's large numbers hypothesis

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Hsieh, S.-H.

    1980-01-01

    Consideration is given to the analysis of Falik (1979) which attempted to show that the cosmological model proposed by Canuto and Hsieh (1978) in which the gravitational constant varies with time contradicts observations of primordial helium. It is shown that the analysis was based on the assumptions that (1) the energy density of radiation in local thermodynamic equilibrium is approximately equal to the fourth power of the equilibrium temperature, where the product of the equilibrium temperature with the scale factor of the Robertson-Walker metric is constant, and (2) the gravitational constant is approximately equal to the inverse of the time even at early cosmological epochs. These assumptions are demonstrated to be invalid in the scale covariant theory of gravitation used to develop the model, thus negating the conclusion that the Canuto and Hsieh model excludes the primordial synthesis of helium.

  13. Patchy reaction-diffusion and population abundance: the relative importance of habitat amount and arrangement.

    PubMed

    Flather, Curtis H; Bevers, Michael

    2002-01-01

    A discrete reaction-diffusion model was used to estimate long-term equilibrium populations of a hypothetical species inhabiting patchy landscapes to examine the relative importance of habitat amount and arrangement in explaining population size. When examined over a broad range of habitat amounts and arrangements, population size was largely determined by a pure amount effect (proportion of habitat in the landscape accounted for >96% of the total variation compared to <1% for the arrangement main effect). However, population response deviated from a pure amount effect as coverage was reduced below 30%-50%. That deviation coincided with a persistence threshold as indicated by a rapid decline in the probability of landscapes supporting viable populations. When we partitioned experimental landscapes into sets of "above" and "below" persistence threshold, habitat arrangement became an important factor in explaining population size below threshold conditions. Regression analysis on below-threshold landscapes using explicit measures of landscape structure (after removing the covariation with habitat amount) indicated that arrangement variables accounted for 33%-39% of the variation in population size, compared to 27%-49% for habitat amount. Thus, habitat arrangement effects became important when species persistence became uncertain due to dispersal mortality.

  14. Scalable implementation of spectral methods for the Dirac equation

    SciTech Connect

    Wells, J.C.

    1998-10-01

    The author discusses the implementation and performance on massively parallel, distributed-memory computers of a message-passing program to solve the time-dependent dirac equation in three Cartesian coordinates. Luses pseudo-spectral methods to obtain a discrete representation of the dirac spinor wavefunction and all coordinate-space operators. Algorithms for the solution of the discrete equations are iterative and depend critically on the dirac hamiltonian-wavefunction product, which he implements as a series of parallel matrix products using MPI. He investigated two communication algorithms, a ring algorithm and a collective-communication algorithm, and present performance results for each on a Paragon-MP (1024 nodes) and a Cray T3E-900 (512 nodes). The ring algorithm achieves very good performance, scaling up to the maximum number of nodes on each machine. However, the collective-communication algorithm scales effectively only on the Paragon.

  15. Nonlinear modes of the tensor Dirac equation and CPT violation

    NASA Technical Reports Server (NTRS)

    Reifler, Frank J.; Morris, Randall D.

    1993-01-01

    Recently, it has been shown that Dirac's bispinor equation can be expressed, in an equivalent tensor form, as a constrained Yang-Mills equation in the limit of an infinitely large coupling constant. It was also shown that the free tensor Dirac equation is a completely integrable Hamiltonian system with Lie algebra type Poisson brackets, from which Fermi quantization can be derived directly without using bispinors. The Yang-Mills equation for a finite coupling constant is investigated. It is shown that the nonlinear Yang-Mills equation has exact plane wave solutions in one-to-one correspondence with the plane wave solutions of Dirac's bispinor equation. The theory of nonlinear dispersive waves is applied to establish the existence of wave packets. The CPT violation of these nonlinear wave packets, which could lead to new observable effects consistent with current experimental bounds, is investigated.

  16. Dirac Cones in two-dimensional conjugated polymer networks

    NASA Astrophysics Data System (ADS)

    Adjizian, Jean-Joseph; Briddon, Patrick; Humbert, Bernard; Duvail, Jean-Luc; Wagner, Philipp; Adda, Coline; Ewels, Christopher

    2014-12-01

    Linear electronic band dispersion and the associated Dirac physics has to date been limited to special-case materials, notably graphene and the surfaces of three-dimensional (3D) topological insulators. Here we report that it is possible to create two-dimensional fully conjugated polymer networks with corresponding conical valence and conduction bands and linear energy dispersion at the Fermi level. This is possible for a wide range of polymer types and connectors, resulting in a versatile new family of experimentally realisable materials with unique tuneable electronic properties. We demonstrate their stability on substrates and possibilities for doping and Dirac cone distortion. Notably, the cones can be maintained in 3D-layered crystals. Resembling covalent organic frameworks, these materials represent a potentially exciting new field combining the unique Dirac physics of graphene with the structural flexibility and design opportunities of organic-conjugated polymer chemistry.

  17. Spin-1 Dirac-Weyl fermions protected by bipartite symmetry

    SciTech Connect

    Lin, Zeren; Liu, Zhirong

    2015-12-07

    We propose that bipartite symmetry allows spin-1 Dirac-Weyl points, a generalization of the spin-1/2 Dirac points in graphene, to appear as topologically protected at the Fermi level. In this spirit, we provide methodology to construct spin-1 Dirac-Weyl points of this kind in a given 2D space group and get the classification of the known spin-1 systems in the literature. We also apply the workflow to predict two new systems, P3m1-9 and P31m-15, to possess spin-1 at K/K′ in the Brillouin zone of hexagonal lattice. Their stability under various strains is investigated and compared with that of T{sub 3}, an extensively studied model of ultracold atoms trapped in optical lattice with spin-1 also at K/K′.

  18. Shot noise in systems with semi-Dirac points

    SciTech Connect

    Zhai, Feng; Wang, Juan

    2014-08-14

    We calculate the ballistic conductance and shot noise of electrons through a two-dimensional stripe system (width W ≫ length L) with semi-Dirac band-touching points. We find that the ratio between zero-temperature noise power and mean current (the Fano factor) is highly anisotropic. When the transport is along the linear-dispersion direction and the Fermi energy is fixed at the semi-Dirac point, the Fano factor has a universal value F = 0.179 while a minimum conductivity exists and scales with L{sup 1∕2}. Along the parabolic dispersion direction, the Fano factor at the semi-Dirac point has a contact-independent limit exceeding 0.9, which varies weakly with L due to the common-path interference of evanescent waves. Our findings suggest a way to discern the type of band-touching points.

  19. Dirac charge dynamics in graphene by infrared spectroscopy

    SciTech Connect

    Martin, Michael C; Li, Z.Q.; Henriksen, E.A.; Jiang, Z.; Hao, Z.; Martin, Michael C; Kim, P.; Stormer, H.L.; Basov, Dimitri N.

    2008-04-29

    A remarkable manifestation of the quantum character of electrons in matter is offered by graphene, a single atomic layer of graphite. Unlike conventional solids where electrons are described with the Schrödinger equation, electronic excitations in graphene are governed by the Dirac hamiltonian. Some of the intriguing electronic properties of graphene, such as massless Dirac quasiparticles with linear energy-momentum dispersion, have been confirmed by recent observations. Here, we report an infrared spectromicroscopy study of charge dynamics in graphene integrated in gated devices. Our measurements verify the expected characteristics of graphene and, owing to the previously unattainable accuracy of infrared experiments, also uncover significant departures of the quasiparticle dynamics from predictions made for Dirac fermions in idealized, free-standing graphene. Several observations reported here indicate the relevance of many-body interactions to the electromagnetic response of graphene.

  20. Spin precession of Dirac particles in Kerr geometry

    NASA Astrophysics Data System (ADS)

    Farooqui, Anusar

    2017-01-01

    We isolate and study the transformation of the intrinsic spin of Dirac particles as they propagate along timelike geodesics in Kerr geometry. Reference frames play a crucial role in the definition and measurement of the intrinsic spin of test particles. We show how observers located in the outer geometry of Kerr black holes may exploit the symmetries of the geometry to set up reference frames using purely geometric, locally-available information. Armed with these geometrically-defined reference frames, we obtain a closed-form expression for the geometrically-induced spin precession of Dirac particles in the outer geometry of Kerr black holes. We show that the spin of Dirac particles does not precess on the equatorial place of Kerr geometry; and hence, in Schwarzschild geometry.

  1. Photocontrol of Dirac electrons in a bulk Rashba semiconductor

    NASA Astrophysics Data System (ADS)

    Ogawa, N.; Bahramy, M. S.; Kaneko, Y.; Tokura, Y.

    2014-09-01

    We demonstrate the generation of circularly polarized light induced current of bulk Dirac electrons at room temperature by exploiting a giant Rashba effect in a bulk semiconductor. The photocurrent is spin polarized due to the spin-momentum locking of the electronic states, which is manifested by a sign reversal upon flipping either the photon helicity or the sign of the Rashba parameter, without any stray current. The action spectra revealed the photon energy range, where the photocurrent is carried by the Dirac electrons at the inner Fermi surface. This photogalvanic control is enabled by the sizable spin splittings both at the valence and conduction bands with the same helicity, and also by a number of optical transition pathways compared to those in the two-dimensional Rashba systems. An efficient coupling between the photon field and large spin-orbit interaction is accordingly proposed to allow the universal control of Dirac electrons.

  2. Electronic structure of a graphene superlattice with massive Dirac fermions

    SciTech Connect

    Lima, Jonas R. F.

    2015-02-28

    We study the electronic and transport properties of a graphene-based superlattice theoretically by using an effective Dirac equation. The superlattice consists of a periodic potential applied on a single-layer graphene deposited on a substrate that opens an energy gap of 2Δ in its electronic structure. We find that extra Dirac points appear in the electronic band structure under certain conditions, so it is possible to close the gap between the conduction and valence minibands. We show that the energy gap E{sub g} can be tuned in the range 0 ≤ E{sub g} ≤ 2Δ by changing the periodic potential. We analyze the low energy electronic structure around the contact points and find that the effective Fermi velocity in very anisotropic and depends on the energy gap. We show that the extra Dirac points obtained here behave differently compared to previously studied systems.

  3. Classification of stable three-dimensional Dirac semimetals with nontrivial topology.

    PubMed

    Yang, Bohm-Jung; Nagaosa, Naoto

    2014-09-15

    A three-dimensional (3D) Dirac semimetal (SM) is the 3D analogue of graphene having linear energy dispersion around Fermi points. Owing to the nontrivial topology of electronic wave functions, the 3D Dirac SM shows nontrivial physical properties and hosts various exotic quantum states such as Weyl SMs and topological insulators under proper external conditions. There are several kinds of Dirac SMs proposed theoretically and partly confirmed experimentally, but its unified picture is still missing. Here we propose a general framework to classify stable 3D Dirac SMs in systems having the time-reversal, inversion and uniaxial rotational symmetries. We show that there are two distinct classes of 3D Dirac SMs. In one class, the Dirac SM possesses a single Dirac point (DP) at a time-reversal invariant momentum on the rotation axis. Whereas the other class of Dirac SMs have a pair of DPs created by band inversion, and carry a quantized topological invariant.

  4. Using Incidence Sampling to Estimate Covariances.

    ERIC Educational Resources Information Center

    Knapp, Thomas R.

    1979-01-01

    This paper presents the generalized symmetric means approach to the estimation of population covariances, complete with derivations and examples. Particular attention is paid to the problem of missing data, which is handled very naturally in the incidence sampling framework. (CTM)

  5. Conformally covariant parametrizations for relativistic initial data

    NASA Astrophysics Data System (ADS)

    Delay, Erwann

    2017-01-01

    We revisit the Lichnerowicz-York method, and an alternative method of York, in order to obtain some conformally covariant systems. This type of parametrization is certainly more natural for non constant mean curvature initial data.

  6. Earth Observing System Covariance Realism Updates

    NASA Technical Reports Server (NTRS)

    Ojeda Romero, Juan A.; Miguel, Fred

    2017-01-01

    This presentation will be given at the International Earth Science Constellation Mission Operations Working Group meetings June 13-15, 2017 to discuss the Earth Observing System Covariance Realism updates.

  7. Covariance Spectroscopy for Fissile Material Detection

    SciTech Connect

    Rusty Trainham, Jim Tinsley, Paul Hurley, Ray Keegan

    2009-06-02

    Nuclear fission produces multiple prompt neutrons and gammas at each fission event. The resulting daughter nuclei continue to emit delayed radiation as neutrons boil off, beta decay occurs, etc. All of the radiations are causally connected, and therefore correlated. The correlations are generally positive, but when different decay channels compete, so that some radiations tend to exclude others, negative correlations could also be observed. A similar problem of reduced complexity is that of cascades radiation, whereby a simple radioactive decay produces two or more correlated gamma rays at each decay. Covariance is the usual means for measuring correlation, and techniques of covariance mapping may be useful to produce distinct signatures of special nuclear materials (SNM). A covariance measurement can also be used to filter data streams because uncorrelated signals are largely rejected. The technique is generally more effective than a coincidence measurement. In this poster, we concentrate on cascades and the covariance filtering problem.

  8. Covariation bias in panic-prone individuals.

    PubMed

    Pauli, P; Montoya, P; Martz, G E

    1996-11-01

    Covariation estimates between fear-relevant (FR; emergency situations) or fear-irrelevant (FI; mushrooms and nudes) stimuli and an aversive outcome (electrical shock) were examined in 10 high-fear (panic-prone) and 10 low-fear respondents. When the relation between slide category and outcome was random (illusory correlation), only high-fear participants markedly overestimated the contingency between FR slides and shocks. However, when there was a high contingency of shocks following FR stimuli (83%) and a low contingency of shocks following FI stimuli (17%), the group difference vanished. Reversal of contingencies back to random induced a covariation bias for FR slides in high- and low-fear respondents. Results indicate that panic-prone respondents show a covariation bias for FR stimuli and that the experience of a high contingency between FR slides and aversive outcomes may foster such a covariation bias even in low-fear respondents.

  9. Spawning rings of exceptional points out of Dirac cones.

    PubMed

    Zhen, Bo; Hsu, Chia Wei; Igarashi, Yuichi; Lu, Ling; Kaminer, Ido; Pick, Adi; Chua, Song-Liang; Joannopoulos, John D; Soljačić, Marin

    2015-09-17

    The Dirac cone underlies many unique electronic properties of graphene and topological insulators, and its band structure--two conical bands touching at a single point--has also been realized for photons in waveguide arrays, atoms in optical lattices, and through accidental degeneracy. Deformation of the Dirac cone often reveals intriguing properties; an example is the quantum Hall effect, where a constant magnetic field breaks the Dirac cone into isolated Landau levels. A seemingly unrelated phenomenon is the exceptional point, also known as the parity-time symmetry breaking point, where two resonances coincide in both their positions and widths. Exceptional points lead to counter-intuitive phenomena such as loss-induced transparency, unidirectional transmission or reflection, and lasers with reversed pump dependence or single-mode operation. Dirac cones and exceptional points are connected: it was theoretically suggested that certain non-Hermitian perturbations can deform a Dirac cone and spawn a ring of exceptional points. Here we experimentally demonstrate such an 'exceptional ring' in a photonic crystal slab. Angle-resolved reflection measurements of the photonic crystal slab reveal that the peaks of reflectivity follow the conical band structure of a Dirac cone resulting from accidental degeneracy, whereas the complex eigenvalues of the system are deformed into a two-dimensional flat band enclosed by an exceptional ring. This deformation arises from the dissimilar radiation rates of dipole and quadrupole resonances, which play a role analogous to the loss and gain in parity-time symmetric systems. Our results indicate that the radiation existing in any open system can fundamentally alter its physical properties in ways previously expected only in the presence of material loss and gain.

  10. PREFACE: International Workshop on Dirac Electrons in Solids 2015

    NASA Astrophysics Data System (ADS)

    Ogata, M.; Suzumura, Y.; Fuseya, Y.; Matsuura, H.

    2015-04-01

    It is our pleasure to publish the Proceedings of the International Workshop on Dirac Electrons in Solids held in University of Tokyo, Japan, for January 14-15, 2015. The workshop was organized by the entitled project which lasted from April 2012 to March 2015 with 10 theorists. It has been supported by a Grand-in-Aid for Scientific Research (A) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan. The subjects discussed in the workshop include bismuth, organic conductors, graphene, topological insulators, new materials including Ca3PbO, and new directions in theory (superconductivity, orbital susceptibility, etc). The number of participants was about 70 and the papers presented in the workshop include four invited talks, 16 oral presentations, and 23 poster presentations. Dirac electron systems appear in various systems, such as graphene, quasi-two-dimensional organic conductors, bismuth, surface states in topological insulators, new materials like Ca3PbO. In these systems, characteristic transport properties caused by the linear dispersion of Dirac electrons and topological properties, have been extensively discussed. In addition to these, there are many interesting research fields such as Spin-Hall effect, orbital diamagnetism due to interband effects, Landau levels characteristic to Dirac dispersion, anomalous interlayer transport phenomena and magnetoresistance, the effects of spin-orbit interaction, and electron correlation. The workshop focused on recent developments of theory and experiment of Dirac electron systems in the above materials. We note that all papers published in this volume of Journal of Physics: Conference Series were peer reviewed. Reviews were performed by expert referees with professional knowledge and high scientific standards in this field. Editors made efforts so that the papers may satisfy the criterion of a proceedings journal published by IOP Publishing. We hope that all the participants of the workshop

  11. Noncommutative Gauge Theory with Covariant Star Product

    SciTech Connect

    Zet, G.

    2010-08-04

    We present a noncommutative gauge theory with covariant star product on a space-time with torsion. In order to obtain the covariant star product one imposes some restrictions on the connection of the space-time. Then, a noncommutative gauge theory is developed applying this product to the case of differential forms. Some comments on the advantages of using a space-time with torsion to describe the gravitational field are also given.

  12. Breeding curvature from extended gauge covariance

    NASA Astrophysics Data System (ADS)

    Aldrovandi, R.

    1991-05-01

    Independence between spacetime and “internal” space in gauge theories is related to the adjoint-covariant behaviour of the gauge potential. The usual gauge scheme is modified to allow a coupling between both spaces. Gauging spacetime translations produce field equations similar to Einstein equations. A curvature-like quantity of mixed differential-algebraic character emerges. Enlarged conservation laws are present, pointing to the presence of an covariance.

  13. Covariate analysis of bivariate survival data

    SciTech Connect

    Bennett, L.E.

    1992-01-01

    The methods developed are used to analyze the effects of covariates on bivariate survival data when censoring and ties are present. The proposed method provides models for bivariate survival data that include differential covariate effects and censored observations. The proposed models are based on an extension of the univariate Buckley-James estimators which replace censored data points by their expected values, conditional on the censoring time and the covariates. For the bivariate situation, it is necessary to determine the expectation of the failure times for one component conditional on the failure or censoring time of the other component. Two different methods have been developed to estimate these expectations. In the semiparametric approach these expectations are determined from a modification of Burke's estimate of the bivariate empirical survival function. In the parametric approach censored data points are also replaced by their conditional expected values where the expected values are determined from a specified parametric distribution. The model estimation will be based on the revised data set, comprised of uncensored components and expected values for the censored components. The variance-covariance matrix for the estimated covariate parameters has also been derived for both the semiparametric and parametric methods. Data from the Demographic and Health Survey was analyzed by these methods. The two outcome variables are post-partum amenorrhea and breastfeeding; education and parity were used as the covariates. Both the covariate parameter estimates and the variance-covariance estimates for the semiparametric and parametric models will be compared. In addition, a multivariate test statistic was used in the semiparametric model to examine contrasts. The significance of the statistic was determined from a bootstrap distribution of the test statistic.

  14. Combining biomarkers for classification with covariate adjustment.

    PubMed

    Kim, Soyoung; Huang, Ying

    2017-03-09

    Combining multiple markers can improve classification accuracy compared with using a single marker. In practice, covariates associated with markers or disease outcome can affect the performance of a biomarker or biomarker combination in the population. The covariate-adjusted receiver operating characteristic (ROC) curve has been proposed as a tool to tease out the covariate effect in the evaluation of a single marker; this curve characterizes the classification accuracy solely because of the marker of interest. However, research on the effect of covariates on the performance of marker combinations and on how to adjust for the covariate effect when combining markers is still lacking. In this article, we examine the effect of covariates on classification performance of linear marker combinations and propose to adjust for covariates in combining markers by maximizing the nonparametric estimate of the area under the covariate-adjusted ROC curve. The proposed method provides a way to estimate the best linear biomarker combination that is robust to risk model assumptions underlying alternative regression-model-based methods. The proposed estimator is shown to be consistent and asymptotically normally distributed. We conduct simulations to evaluate the performance of our estimator in cohort and case/control designs and compare several different weighting strategies during estimation with respect to efficiency. Our estimator is also compared with alternative regression-model-based estimators or estimators that maximize the empirical area under the ROC curve, with respect to bias and efficiency. We apply the proposed method to a biomarker study from an human immunodeficiency virus vaccine trial. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Covariant action for type IIB supergravity

    NASA Astrophysics Data System (ADS)

    Sen, Ashoke

    2016-07-01

    Taking clues from the recent construction of the covariant action for type II and heterotic string field theories, we construct a manifestly Lorentz covariant action for type IIB supergravity, and discuss its gauge fixing maintaining manifest Lorentz invariance. The action contains a (non-gravitating) free 4-form field besides the usual fields of type IIB supergravity. This free field, being completely decoupled from the interacting sector, has no physical consequence.

  16. Vector Meson Property in Covariant Classification Scheme

    NASA Astrophysics Data System (ADS)

    Oda, Masuho

    2004-08-01

    Recently our collaboration group has proposed the covariant classification shceme of hadrons, leading to possible existence of two ground state vector mesons. One is corresponding to ordinary ρ nonet and the other is extra ρ nonet. We investigate the decay property of ω(1250) and ρ(1250) in the covariant classification scheme. And it is shown that ω(1250) is promising candidate of our extra ω meson.

  17. Phase-covariant quantum cloning of qudits

    SciTech Connect

    Fan Heng; Imai, Hiroshi; Matsumoto, Keiji; Wang, Xiang-Bin

    2003-02-01

    We study the phase-covariant quantum cloning machine for qudits, i.e., the input states in a d-level quantum system have complex coefficients with arbitrary phase but constant module. A cloning unitary transformation is proposed. After optimizing the fidelity between input state and single qudit reduced density operator of output state, we obtain the optimal fidelity for 1 to 2 phase-covariant quantum cloning of qudits and the corresponding cloning transformation.

  18. 75 FR 346 - Proposed Subsequent Arrangement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... Peaceful Uses of Nuclear Energy and the Agreement Between the United States and the Government of Japan Concerning Peaceful Uses of Nuclear Energy. This subsequent arrangement concerns the retransfer of 28,409 kg... Doc No: E9-31370] DEPARTMENT OF ENERGY Proposed Subsequent Arrangement AGENCY: Office of...

  19. Retail Florist: Designing Basic Types of Arrangements.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale.

    This retail florist unit guide is provided to help teachers teach a unit on designing basic types of flower arrangements. Topics covered are principles of design, foundation materials used, foundation securing methods, tints and flower dyes, wire and ribbon sizes, color harmony, and basic types of arrangements. Learning activities include choosing…

  20. More Combinatorial Proofs via Flagpole Arrangements

    ERIC Educational Resources Information Center

    DeTemple, Duane; Reynolds, H. David, II

    2006-01-01

    Combinatorial identities are proved by counting the number of arrangements of a flagpole and guy wires on a row of blocks that satisfy a set of conditions. An identity is proved by first deriving and then equating two expressions that each count the number of permissible arrangements. Identities for binomial coefficients and recursion relations…

  1. 42 CFR 413.241 - Pharmacy arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Pharmacy arrangements. 413.241 Section 413.241 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE... Disease (ESRD) Services and Organ Procurement Costs § 413.241 Pharmacy arrangements. Effective January 1...

  2. 42 CFR 413.241 - Pharmacy arrangements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false Pharmacy arrangements. 413.241 Section 413.241 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE... Disease (ESRD) Services and Organ Procurement Costs § 413.241 Pharmacy arrangements. Effective January 1...

  3. 42 CFR 413.241 - Pharmacy arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 2 2014-10-01 2014-10-01 false Pharmacy arrangements. 413.241 Section 413.241 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE... Disease (ESRD) Services and Organ Procurement Costs § 413.241 Pharmacy arrangements. Effective January 1...

  4. 42 CFR 413.241 - Pharmacy arrangements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 2 2012-10-01 2012-10-01 false Pharmacy arrangements. 413.241 Section 413.241 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE... Disease (ESRD) Services and Organ Procurement Costs § 413.241 Pharmacy arrangements. Effective January 1...

  5. Retail Florist: Designing Basic Types of Arrangements.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale.

    This retail florist unit guide is provided to help teachers teach a unit on designing basic types of flower arrangements. Topics covered are principles of design, foundation materials used, foundation securing methods, tints and flower dyes, wire and ribbon sizes, color harmony, and basic types of arrangements. Learning activities include choosing…

  6. 48 CFR 48.104 - Sharing arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Sharing arrangements. 48.104 Section 48.104 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT VALUE ENGINEERING Policies and Procedures 48.104 Sharing arrangements. ...

  7. 77 FR 22480 - Conduit Financing Arrangements; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... Internal Revenue Service 26 CFR Part 1 RIN 1545-BH77 Conduit Financing Arrangements; Correction AGENCY... correction to final regulations (TD 9562) that were published in the Federal Register on Friday, December 9... arrangement. DATES: This correction is effective on April 16, 2012 and is applicable on December 9, 2011....

  8. 24 CFR 401.301 - Partnership arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Partnership arrangements. 401.301...) § 401.301 Partnership arrangements. If the PAE is in a partnership, the PRA must specify the following: (a) The responsibilities of each partner regarding the Restructuring Plan; (b) The resources...

  9. More Combinatorial Proofs via Flagpole Arrangements

    ERIC Educational Resources Information Center

    DeTemple, Duane; Reynolds, H. David, II

    2006-01-01

    Combinatorial identities are proved by counting the number of arrangements of a flagpole and guy wires on a row of blocks that satisfy a set of conditions. An identity is proved by first deriving and then equating two expressions that each count the number of permissible arrangements. Identities for binomial coefficients and recursion relations…

  10. 24 CFR 401.301 - Partnership arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Partnership arrangements. 401.301 Section 401.301 Housing and Urban Development Regulations Relating to Housing and Urban Development...) § 401.301 Partnership arrangements. If the PAE is in a partnership, the PRA must specify the...

  11. 24 CFR 401.301 - Partnership arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Partnership arrangements. 401.301 Section 401.301 Housing and Urban Development Regulations Relating to Housing and Urban Development...) § 401.301 Partnership arrangements. If the PAE is in a partnership, the PRA must specify the...

  12. 24 CFR 401.301 - Partnership arrangements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Partnership arrangements. 401.301 Section 401.301 Housing and Urban Development Regulations Relating to Housing and Urban Development...) § 401.301 Partnership arrangements. If the PAE is in a partnership, the PRA must specify the...

  13. 24 CFR 401.301 - Partnership arrangements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Partnership arrangements. 401.301 Section 401.301 Housing and Urban Development Regulations Relating to Housing and Urban Development...) § 401.301 Partnership arrangements. If the PAE is in a partnership, the PRA must specify the...

  14. 7 CFR 28.906 - Sampling arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Sampling arrangements. 28.906 Section 28.906... Producers Sampling § 28.906 Sampling arrangements. (a) Cotton must be sampled by a gin or warehouse that... an authorized representative may direct that sampling be performed by employees of the Department of...

  15. 7 CFR 28.906 - Sampling arrangements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Sampling arrangements. 28.906 Section 28.906... Producers Sampling § 28.906 Sampling arrangements. (a) Cotton must be sampled by a gin or warehouse that... an authorized representative may direct that sampling be performed by employees of the Department of...

  16. 7 CFR 28.906 - Sampling arrangements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Sampling arrangements. 28.906 Section 28.906... Producers Sampling § 28.906 Sampling arrangements. (a) Cotton must be sampled by a gin or warehouse that... an authorized representative may direct that sampling be performed by employees of the Department of...

  17. 7 CFR 28.906 - Sampling arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Sampling arrangements. 28.906 Section 28.906... Producers Sampling § 28.906 Sampling arrangements. (a) Cotton must be sampled by a gin or warehouse that... an authorized representative may direct that sampling be performed by employees of the Department of...

  18. 7 CFR 28.906 - Sampling arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Sampling arrangements. 28.906 Section 28.906... Producers Sampling § 28.906 Sampling arrangements. (a) Cotton must be sampled by a gin or warehouse that... an authorized representative may direct that sampling be performed by employees of the Department of...

  19. 48 CFR 48.104 - Sharing arrangements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Sharing arrangements. 48.104 Section 48.104 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT VALUE ENGINEERING Policies and Procedures 48.104 Sharing arrangements....

  20. 48 CFR 48.104 - Sharing arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Sharing arrangements. 48.104 Section 48.104 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT VALUE ENGINEERING Policies and Procedures 48.104 Sharing arrangements....

  1. 48 CFR 48.104 - Sharing arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Sharing arrangements. 48.104 Section 48.104 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT VALUE ENGINEERING Policies and Procedures 48.104 Sharing arrangements....

  2. 48 CFR 48.104 - Sharing arrangements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Sharing arrangements. 48.104 Section 48.104 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT VALUE ENGINEERING Policies and Procedures 48.104 Sharing arrangements....

  3. External Quality Arrangements for Scotland's Colleges

    ERIC Educational Resources Information Center

    Her Majesty's Inspectorate of Education, 2008

    2008-01-01

    This document represents an innovative and radical landmark in the development of external quality arrangements for Scotland's colleges. The quality framework and arrangements for annual engagement, subject-based aspect reports, and external review reflect new thinking nationally, within HMIE, in the Scottish Further and Higher Education Funding…

  4. Chemistry at the dirac point of graphene

    NASA Astrophysics Data System (ADS)

    Sarkar, Santanu

    device mobility. To this end, we find that the organometallic hexahapto metal complexation chemistry of graphene, in which the graphene pi-band constructively hybridizes with the vacant d-orbitals of transition metals, allows the fabrication of field effect devices which retain a high degree of the mobility with enhanced on-off ratio. In summary, we find that the singular electronic structure of graphene at the Dirac point governs the chemical reactivity of graphene and this chemistry will play a vital role in propelling graphene to assume its role as the next generation electronic material beyond silicon.

  5. Covariance Modifications to Subspace Bases

    SciTech Connect

    Harris, D B

    2008-11-19

    Adaptive signal processing algorithms that rely upon representations of signal and noise subspaces often require updates to those representations when new data become available. Subspace representations frequently are estimated from available data with singular value (SVD) decompositions. Subspace updates require modifications to these decompositions. Updates can be performed inexpensively provided they are low-rank. A substantial literature on SVD updates exists, frequently focusing on rank-1 updates (see e.g. [Karasalo, 1986; Comon and Golub, 1990, Badeau, 2004]). In these methods, data matrices are modified by addition or deletion of a row or column, or data covariance matrices are modified by addition of the outer product of a new vector. A recent paper by Brand [2006] provides a general and efficient method for arbitrary rank updates to an SVD. The purpose of this note is to describe a closely-related method for applications where right singular vectors are not required. This note also describes the SVD updates to a particular scenario of interest in seismic array signal processing. The particular application involve updating the wideband subspace representation used in seismic subspace detectors [Harris, 2006]. These subspace detectors generalize waveform correlation algorithms to detect signals that lie in a subspace of waveforms of dimension d {ge} 1. They potentially are of interest because they extend the range of waveform variation over which these sensitive detectors apply. Subspace detectors operate by projecting waveform data from a detection window into a subspace specified by a collection of orthonormal waveform basis vectors (referred to as the template). Subspace templates are constructed from a suite of normalized, aligned master event waveforms that may be acquired by a single sensor, a three-component sensor, an array of such sensors or a sensor network. The template design process entails constructing a data matrix whose columns contain the

  6. SuperB evaluation of DIRAC Distributed Infrastructure

    NASA Astrophysics Data System (ADS)

    Fella, A.; Donvito, G.; Santeramo, B.; Gianoli, A.; Luppi, E.; Manzali, M.; Tomassetti, L.; Rama, M.; Russo, G.; Pardi, S.; Del Prete, D.; Stroili, R.; Corvo, M.; Longo, S.; Perez, A.; Di Simone, A.; Bianchi, F.; Luitz, S.; Giacomini, F.; Ciaschini, V.

    2012-12-01

    The SuperB asymmetric energy e+e- collider and detector to be built at the newly founded Nicola Cabibbo Lab will provide a uniquely sensitive probe of New Physics in the flavour sector of the Standard Model. SuperB distributed computing group performed a detailed evaluation of DIRAC Distributed Infrastructure for use in the SuperB experiment based on the two use cases: End User Analysis and Monte Carlo Production. Test aims to evaluate DIRAC capabilities to manage both gLite and OSG sites, File Catalog management, job and data management features in SuperB realistic use cases.

  7. Spectral Gaps of Dirac Operators Describing Graphene Quantum Dots

    NASA Astrophysics Data System (ADS)

    Benguria, Rafael D.; Fournais, Søren; Stockmeyer, Edgardo; Van Den Bosch, Hanne

    2017-06-01

    The two-dimensional Dirac operator describes low-energy excitations in graphene. Different choices for the boundary conditions give rise to qualitative differences in the spectrum of the resulting operator. For a family of boundary conditions, we find a lower bound to the spectral gap around zero, proportional to |Ω|-1/2, where {Ω } \\subset R2 is the bounded region where the Dirac operator acts. This family contains the so-called infinite mass and armchair cases used in the physics literature for the description of graphene quantum dots.

  8. Effective Dirac dynamics of ultracold atoms in bichromatic optical lattices

    SciTech Connect

    Witthaut, D.; Salger, T.; Kling, S.; Grossert, C.; Weitz, M.

    2011-09-15

    We study the dynamics of ultracold atoms in tailored bichromatic optical lattices. By tuning the lattice parameters, one can readily engineer the band structure and realize a Dirac point, i.e., a true crossing of two Bloch bands. The dynamics in the vicinity of such a crossing is described by the one-dimensional Dirac equation, which is rigorously shown beyond the tight-binding approximation. Within this framework we analyze the effects of an external potential and demonstrate numerically that it is possible to demonstrate Klein tunneling with current experimental setups.

  9. Three-dimensional gauge theory in Dirac formalism

    NASA Astrophysics Data System (ADS)

    Kamimura, Kiyoshi

    1986-08-01

    The Hagen model [C. R. Hagen, Ann. Phys. (NY) 157, 342 (1984); Phys. Rev. D 31, 331 (1985)] is studied using the method of constrained Hamiltonian formalism developed by Dirac [P. A. M. Dirac, Can. J. Math. 2, 129 (1950); Lectures on Quantum Mechanics (Yeshiva U. P., New York, 1964)]. The results recently obtained by Burnel and Van Der Rest-Jaspers [A. Burnel and M. Van Der Rest-Jaspers, J. Math. Phys. 26, 3155 (1985)] are reexamined and modified. There appear two second-class constraints and their choice is not crucial. The equivalence of different gauges is proved without referring to the current conservation law.

  10. Relativistic Lagrangians for the Lorentz–Dirac equation

    SciTech Connect

    Deguchi, Shinichi; Nakano, Kunihiko; Suzuki, Takafumi

    2015-09-15

    We present two types of relativistic Lagrangians for the Lorentz–Dirac equation written in terms of an arbitrary world-line parameter. One of the Lagrangians contains an exponential damping function of the proper time and explicitly depends on the world-line parameter. Another Lagrangian includes additional cross-terms consisting of auxiliary dynamical variables and does not depend explicitly on the world-line parameter. We demonstrate that both the Lagrangians actually yield the Lorentz–Dirac equation with a source-like term.

  11. Dirac oscillator in perpendicular magnetic and transverse electric fields

    SciTech Connect

    Nath, D.; Roy, P.

    2014-12-15

    We study (2+1) dimensional massless Dirac oscillator in the presence of perpendicular magnetic and transverse electric fields. Exact solutions are obtained and it is shown that there exists a critical magnetic field B{sub c} such that the spectrum is different in the two regions B>B{sub c} and BDirac Oscillator with magnetic as well as electric field. • Exact solutions are found. • Critical cases have been examined.

  12. Microwave collimation based on zero index metamaterials with Dirac point.

    PubMed

    Fang, Kai; Zhang, Yewen; Li, Fangfei; Jiang, Haitao; Li, Yunhui; Wang, Wusong; Chen, Hong

    2012-11-15

    The microwave zero index metamaterials (ZIMs) can be realized by loading lumped elements into two-dimensional transmission lines (TLs) with Dirac cones whose linear dispersion can appear around the center of the Brillouin zone. Based on Snell's law, the refracted angle of waves nearly equals zero when a point source radiates from the ZIM TL into the double positive (DPS) one in the ZIM-DPS TL structure. Experimental results demonstrate that at Dirac point the curved wavefronts in the ZIM region are transformed into planar ones in DPS region.

  13. Chiral anomaly in Dirac semimetals due to dislocations

    NASA Astrophysics Data System (ADS)

    Chernodub, M. N.; Zubkov, M. A.

    2017-03-01

    The dislocation in Dirac semimetal carries an emergent magnetic flux parallel to the dislocation axis. We show that due to the emergent magnetic field, the dislocation accommodates a single fermion massless mode of the corresponding low-energy one-particle Hamiltonian. The mode is propagating along the dislocation with its spin directed parallel to the dislocation axis. In agreement with the chiral anomaly observed in Dirac semimetals, an external electric field results in the spectral flow of the one-particle Hamiltonian, in pumping of the fermionic quasiparticles out from vacuum, and in creating a nonzero axial (chiral) charge in the vicinity of the dislocation.

  14. Does the Dirac Cone Exist in Silicene on Metal Substrates?

    PubMed Central

    Quhe, Ruge; Yuan, Yakun; Zheng, Jiaxin; Wang, Yangyang; Ni, Zeyuan; Shi, Junjie; Yu, Dapeng; Yang, Jinbo; Lu, Jing

    2014-01-01

    Absence of the Dirac cone due to a strong band hybridization is revealed to be a common feature for epitaxial silicene on metal substrates according to our first-principles calculations for silicene on Ir, Cu, Mg, Au, Pt, Al, and Ag substrates. The destroyed Dirac cone of silicene, however, can be effectively restored with linear or parabolic dispersion by intercalating alkali metal atoms between silicene and the metal substrates, offering an opportunity to study the intriguing properties of silicene without further transfer of silicene from the metal substrates. PMID:24969493

  15. Twisting dirac fermions: circular dichroism in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Suárez Morell, E.; Chico, Leonor; Brey, Luis

    2017-09-01

    Twisted bilayer graphene is a chiral system which has been recently shown to present circular dichroism. In this work we show that the origin of this optical activity is the rotation of the Dirac fermions’ helicities in the top and bottom layer. Starting from the Kubo formula, we obtain a compact expression for the Hall conductivity that takes into account the dephasing of the electromagnetic field between the top and bottom layers and gathers all the symmetries of the system. Our results are based in both a continuum and a tight-binding model, and they can be generalized to any two-dimensional Dirac material with a chiral stacking between layers.

  16. Radiative heat transfer in 2D Dirac materials.

    PubMed

    Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R

    2015-06-03

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  17. Plasmonics in Dirac systems: from graphene to topological insulators.

    PubMed

    Stauber, Tobias

    2014-03-26

    Recent developments in the emerging field of plasmonics in graphene and other Dirac systems are reviewed and a comprehensive introduction to the standard models and techniques is given. In particular, we discuss intrinsic plasmon excitation of single and bilayer graphene via hydrodynamic equations and the random phase approximation, but also comment on double and multilayer structures. Additionally, we address Dirac systems in the retardation limit and also with large spin–orbit coupling including topological insulators. Finally, we summarize basic properties of the charge, current and photon linear response functions in an appendix.

  18. Anisotropic magnetotransport in Dirac-Weyl magnetic junctions

    NASA Astrophysics Data System (ADS)

    Ominato, Yuya; Kobayashi, Koji; Nomura, Kentaro

    2017-02-01

    We theoretically study the anisotropic magnetotransport in Dirac-Weyl magnetic junctions where a doped ferromagnetic Weyl semimetal is sandwiched between doped Dirac semimetals. We calculate the conductance using the Landauer formula and find that the system exhibits extraordinarily large anisotropic magnetoresistance (AMR). The AMR depends on the ratio of the Fermi energy to the strength of the exchange interaction. The origin of the AMR is the shift of the Fermi surface in the Weyl semimetal, and the mechanism is completely different from the conventional AMR originating from the spin dependent scattering and the spin-orbit interaction.

  19. Radiative heat transfer in 2D Dirac materials

    SciTech Connect

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  20. Gordon Decomposition of Dirac Spinors in Gravitational Background

    NASA Astrophysics Data System (ADS)

    Parashar, D.

    The scheme outlined earlier is continued here to investigate the structure of Dirac spinors in the background of a gravitational field within the context of cosmological Robertson-Walker metric where the treatment is based on general considerations of spatially curved (non-flat) hypersurfaces embracing open as well as closed versions of the Universe. A Gordon decomposition of the generalized Dirac current is then carried out in terms of the polarization and the magnetization densities. We also take a look at the Klein-Gordon equation in the curved space formalism.